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Abstract 

Optimal control of energy flows in a Hybrid Electric Vehicle (HEV) is crucial to 

maximising the benefits of hybridisation. The problem is complex because the 

optimal solution depends on future power demands, which are often unknown. 

Stochastic Dynamic Programming (SDP) is among the most advanced control 

optimisation algorithms proposed and incorporates a stochastic representation of the 

future. The potential of a fully developed SDP controller has not yet been 

demonstrated on a real vehicle; this work presents what is believed to be the most 

concerted and complete attempt to do so. 

In characterising typical driving patterns of the target vehicles this work included the 

development and trial of an eco-driving driver assistance system; this aims to reduce 

fuel consumption by encouraging reduced rates of acceleration and efficient use of 

the gears via visual and audible feedback. Field trials were undertaken using 15 light 

commercial vehicles over four weeks covering a total of 39,300 km. Average fuel 

savings of 7.6% and up to 12% were demonstrated. Data from the trials were used to 

assess the degree to which various legislative test cycles represent the vehicles’ real-

world use and the LA92 cycle was found to be the closest statistical match.  

Various practical considerations in SDP controller development are addressed such 

as the choice of discount factor and how charge sustaining characteristics of the 

policy can be examined and adjusted. These contributions are collated into a method 

for robust implementation of the SDP algorithm.  

Most reported HEV controllers neglect the significant complications resulting from 

extensive use of the electrical powertrain at high power, such as increased heat 

generation and battery stress. In this work a novel cost function incorporates the 

square of battery C-rate as an indicator of electrical powertrain stress, with the aim of 

lessening the affliction of real-world concerns such as temperatures and battery 

health. Controllers were tested in simulation and then implemented on a test vehicle; 

the challenges encountered in doing so are discussed. Testing was performed on a 

chassis dynamometer using the LA92 test cycle and the novel cost function was 

found to enable the SDP algorithm to reduce electrical powertrain stress by 13% 

without sacrificing any fuel savings, which is likely to be beneficial to battery health. 
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Chapter 1 Introduction 

 

 

This chapter offers an introduction to the subject area of hybrid electric vehicles, 

motivations for their adoption and an overview of the Ashwoods Automotive retrofit 

conversion system used in the work. The scope of the research is described and the 

author’s individual contributions are distinguished from those of others with respect 

to the various work packages completed in the project as a whole. 
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1.1 Overview 

Awareness of environmental and sustainability issues has grown considerably in 

recent decades and as such there is an ever growing pressure on motor vehicle 

manufacturers to produce vehicles that are more energy efficient, recyclable, and less 

polluting. Coupled with this, the rising cost of crude oil and taxation incentives for 

‘clean’ transportation add financial motivation to the shift toward environmentally 

friendly transportation. Aside from any personal convictions toward the ethos of 

sustainability both individuals and companies, now more than ever, are encouraged 

to buy in to low carbon vehicles for at least two motives: to make a statement 

concerning the individual or company’s ethical values by appearing ‘green’, and to 

make financial savings either through reduced fuel bills or taxation incentives. 

Whilst the thermal efficiency of the Internal Combustion Engine (ICE), by which 

road vehicles have been almost exclusively powered, has increased significantly in 

the previous two decades, such engines based on the principle of a ‘heat pump’ are 

ultimately limited by the Carnot efficiency. This defines a theoretical maximum 

efficiency dependent on the temperature rise of combustion gasses. As such, 

efficiency gains are becoming harder to find and manufacturers are designing 

increasingly elaborate engines (incorporating complex electronic fuel injection 

strategies, exhaust energy recovery, exhaust gas recirculation and variable valve 

timing, for example) in the pursuit of ever smaller improvements. Taylor [1] predicts 

that improvements in ICE efficiency during the present decade will see vehicle fuel 

consumption fall by 6-15%, whilst integrating electric motors to hybridise vehicle 

powertrains and to recover kinetic energy could increase this figure to 21-28%. 

Hybridisation of vehicle powertrains can take many forms, but fundamentally seeks 

to deliver tractive power from more than one energy store. Usually one of the energy 

converters may be operated bi-directionally and so the vehicle’s fuel economy is 

improved by its ability to recover kinetic energy during periods of braking or 

coasting and to convert this back into stored energy for later use. Fuel economy may 

be further improved by the ability to trade energy between the two (or more) storage 

systems, allowing opportunities for the energy converters to be operated near their 

points of maximum efficiency, even if this results in an inequality between their 

combined power generation and the vehicle’s instantaneous power requirement. 
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Furthermore, some hybrid vehicles allow for one of the energy storage systems to be 

charged off-line, for example from the electricity grid, which may be able to deliver 

less carbon-intensive and/or cheaper energy.  

In most cases the primary energy store remains a petroleum-based fuel, with a 

traditional ICE used to convert this into tractive work. The secondary energy store 

and conversion technology tend to vary considerably more, both in size and in usage; 

technologies commonly suggested for this application include flywheels and 

hydraulic accumulators, though by far the most common is an electric battery. A 

hybrid vehicle incorporating an electric powertrain is termed a Hybrid Electric 

Vehicle (HEV) and uses an Electric Machine (EM) to convert electrical energy into 

mechanical energy and vice versa; the term ‘electric machine’ is used to emphasise 

the ability of the machine to operate as a bi-directional energy converter in both 

motoring and generating regimes. 

Some of the companies for whom fuel economy is a particularly pertinent issue are 

those operating large fleets of commercial vehicles in an urban environment. The 

drive cycles of these vehicles combined with potentially very large fleets mean that 

fuel costs for such companies can be extremely significant. Although vehicle 

manufacturers have introduced HEVs, and these continue to gain increasing market 

acceptance, their application has been almost exclusively focused toward the 

passenger car market. This is a peculiarity when it is considered that in many cases 

the typical drive cycle of Light Commercial Vehicles (LCVs) – delivery vans, for 

example – is far better matched to the characteristics of the hybrid powertrain than 

many passenger car trips. HEVs have historically been subject to cynicism from 

some parties, and it has been questioned whether early designs actually made any 

improvement at all. Some scepticism may be a result of manufacturers claiming fuel 

saving figures derived from laboratory testing which do not reflect the savings 

achieved in the real world; this is part of a much bigger issue pertaining to 

manufacturers optimising vehicle performance to legislative drive cycles which do 

not correspond to real world conditions. 

This research will examine the potential for supervisory control of HEV energy 

management which is optimised for real-world use, so as to ensure that the 
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hybridised powertrain delivers the best possible fuel consumption savings when 

operating during normal use. With this target an important part of the work is to 

characterise ‘normal use’ of vehicles in the real world, and as well as this to 

acknowledge some difficulties which affect HEVs operating in the real world which 

are often overlooked in simulation and dynamometer testing. 

This work was undertaken in collaboration with Ashwoods Automotive Ltd (Exeter, 

UK) – specialists in retrofit hybrid electric powertrains. Although the techniques and 

knowledge gained through this work are applicable to a broad range of road vehicles 

its scope is specifically the application of retrofit hybrid-electric systems to LCVs. 

The significance of this market will be explained in the following sections. 

1.2 Transport in the Context of Climate Change and CO2 

In the United Kingdom the transport sector generates 21% of total greenhouse gas 

emissions – the single biggest contributor aside from the energy generation sector – 

and of these 92% are owing to road transport [2]. These figures are reflected in 

countries around the world and, in combination with problems arising from city 

smog and energy security, have motivated a coordinated attempt to reduce pollutant 

emissions from road vehicles over time. The greenhouse gasses emitted by road 

vehicles constitute almost exclusively carbon dioxide (CO2), which is a product of 

hydrocarbon combustion and so is proportional to fuel consumption. 

Since the introduction of European emission standards (Euro 1, Euro 2, etc.) in 1992 

and similar standards worldwide tailpipe emissions have been controlled increasingly 

stringently. Every vehicle sold in the European Union must go through Type 

Approval, which includes rigorous emissions test procedures. Regulation (EC) No 

692/2008 [3] outlines the implementation of Euro 5 and Euro 6 emission regulations, 

while Regulation No 83 [4] deals with specific testing procedures and protocols for 

all passenger and light commercial vehicles, including electric and hybrid-electric 

vehicles. 

Trends in public attitudes toward transport, including climate change and CO2 

emissions, are monitored in the UK by the Department for Transport. Results of a 
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2010 survey [5] showed that 82% of participants believe that climate change will 

impact the UK, and that 69% are concerned about this. The statement “Transport is 

one of the major contributors to climate change” was correctly identified as true by 

66% of participants. This concern for the environment affects what consumers look 

for in the market place, and 56% of people said that low carbon emissions would be 

“high on my list of must haves” when buying a new car, though environmental 

friendliness may not be the only motive for this response. With fuel costs continuing 

to rise in recent years 55% of people cited running costs as a reason for wanting a car 

with lower carbon emissions, while 43% mentioned the environment. Another survey 

[6] which is conducted every year, but has a smaller sample, suggests that levels of 

belief and concern about climate change have actually fallen slightly in recent years, 

though still remain high, with 76% of respondents at least fairly concerned about 

climate change. In this survey 38% of people considered environmental friendliness 

important when buying a car whilst 76% deemed cost important, of whom 53% 

considered fuel costs significant. 

As well as public opinion and fuel costs, government schemes such as the Carbon 

Reduction Commitment Energy Efficiency Scheme add another incentive for 

reducing emissions. This mandatory scheme requires companies not covered by other 

legislation to report on their annual CO2 footprint as calculated according to The 

Carbon Trust Standard Rules which includes fuel used in company vehicles [7]. As 

well as these figures being published in a league table, therefore adding a dimension 

of competition and company reputation, companies are also charged for their carbon 

emissions, adding further fiscal incentives. Environmental concerns, the cost of fuel, 

and government incentives are all strong drivers for reduced fuel consumption and 

CO2 emissions in the automotive transport sector. 

1.3 Significance of the Existing Vehicle Fleet 

Once sold, vehicles tend to stay on the roads for around a decade, with the mean age 

of vehicles being in the order of 8 years [8, 9]. In Great Britain 59% of all cars are 

over 6 years old, and 78% are over three years old [8]. Light commercial vehicles 

(LCVs) tend to be slightly newer than cars, with the comparative figures being 57% 
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and 75% respectively [9], this perhaps owing to their more intensive use and 

therefore faster aging. 

As a result of the slow turnaround of the vehicle fleet any new legislative change or 

technological advance which was to result in, for example, a 50% reduction in fuel 

consumption would take in the order of a decade to saturate the vehicle fleet and for 

its potential savings to be realised in the real world. For this reason technologies with 

potential to reduce the fuel consumption of existing vehicles have an important role 

to play in the short- and medium-term, while the knowledge gained during the 

development of such devices may also be transferable to new vehicle design. 

Over 3.3 million LCVs are registered in the UK [9], covering an estimated fleet 

mileage of 43 billion miles per year [10] (about 12,800 miles per vehicle per year). 

LCVs may be used in a variety of applications, however among the most common 

are delivery (including courier and mail services) and technical maintenance or call-

out services. Driving patterns for these applications typically involve a high 

proportion of time on urban and suburban roads as well as frequent stop-start 

behaviour, which are often regarded as the ideal conditions for HEVs due to the 

potential to recover substantial braking energy. Despite being strong candidates for 

hybridisation none of the leading LCV manufacturers currently produce hybrid or 

electric versions of their vehicles in any volume at a market competitive price; it 

therefore seems likely that even a decade from now the majority of the active LCV 

fleet will not be OEM produced hybrids. 

Since the duty cycle of LCVs means that they are likely to benefit from 

hybridisation, and given also that their intensive use means they consume a 

considerable volume of fuel annually, the business case for their hybridisation is 

strong. Having observed the potential for fuel saving by hybridisation of LCVs 

Ashwoods Automotive Ltd have developed a retrofit hybrid system aimed at this 

market, which will be described in the following section. 



 Chapter 1 – Introduction 

 7 

1.4 Introduction to Ashwoods’ Hybrid Electric Vehicle 

Ashwoods Automotive’s hybrid electric conversion system consists of a battery pack 

and an EM coupled to the propeller shaft as shown in Figure 1-1. Energy may be 

recovered from the rear axle during braking by using the EM in its generating regime 

to charge the batteries; this energy may later be used to assist the engine by 

delivering a portion of the driver’s power demand. Systems of this kind are often 

called Kinetic Energy Recovery Systems (KERS). It is also possible to perform some 

energy trading by increasing the load on the ICE to charge the batteries; this moves 

the ICE to a higher torque operating point where it is typically more efficient, though 

this efficiency gain may be outweighed by the round-trip mechanical-electrical-

mechanical energy conversion losses. This architecture is known as ‘parallel’ or 

‘torque-assist’ because the EM acts to deliver tractive torque alongside the 

conventional ICE, with both conventional and electric power paths having a 

mechanical connection to the wheels; other common HEV architectures include 

‘series’ and ‘power-split’. 

 

Figure 1-1:  Architecture of Ashwoods Automotive's retrofit Hybrid Electric Vehicle. Retrofit components are 

highlighted in green, while OEM components are shown in grey.  
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In series architectures tractive force is provided exclusively by the EM, while the 

ICE is used for the sole purpose of generating electricity to maintain the level of 

energy stored in the battery pack and so has no mechanical link to the wheels. Series 

architectures usually exploit a downsized ICE which may be operated near its 

maximum power, where efficiency is best, to supply the average power requirement 

of the drive cycle. The battery pack acts as an energy buffer and stores enough 

energy for the EM to meet transient power demands. Series hybrids are well suited to 

urban driving conditions but suffer from multiple energy conversion efficiency 

losses. Power-split hybrids such as the Toyota Prius (described in [11]) exhibit some 

extremely attractive traits, allowing exploitation of the strengths of parallel and series 

architectures while avoiding their weaknesses. These systems allow power flows to 

be blended through the use of, for example, epicyclic gearboxes where the wheels, 

ICE and EM are connected to the sun gear, ring gear and planet carrier in some 

order, therefore allowing great flexibility in how the required wheel speed and torque 

are met. 

Whilst both series and power-split architectures have their strengths both require 

heavy integration with the conventional powertrain which is problematic in the 

context of a retrofit system. Series architectures invariably lead to removal of the 

vehicle transmission, at least two EMs (and therefore two power electronic 

inverters), and probably engine downsizing. A power-split architecture would 

probably replace the standard vehicle transmission with an epicyclic gearbox, and 

this architecture also often uses two EMs. Although there are many configurations 

which could be adopted with great technical scope the complication and cost 

involved in these conversions eliminates them as viable retrofit options. 

As a result of the problems identified with other hybrid architectures Ashwoods 

Automotive have identified the parallel HEV architecture as the only one which may 

be easily and cheaply implemented as a retrofit system. The simplicity of this design 

also means that most manufacturers will still honour their standard warranty, since 

no components of the standard vehicle are actually modified – this is a vital issue 

when selling into the commercial vehicle sector. Furthermore the system is entirely 

fail-safe, any malfunction simply reverts the vehicle to its standard (non-hybrid) 

condition in which it is drivable as though the hybrid system was not present. Even 
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in the most dramatic failure mode where for some reason the EM were to become 

seized the drive belt simply breaks, preventing any damage to the standard vehicle. 

Having established the reasons for the mechanical and architectural design of the 

hybrid system this research will focus on its control. It may be expected that energy 

will be recovered by the EM at a relatively consistent rate depending on the 

frequency of braking events in the drive cycle. Given this availability of energy the 

question arising is when this should be re-deployed to maximum effect and when, if 

ever, the energy recovered should be augmented with energy generated from the 

ICE. The object of this research is therefore to develop an optimal energy 

management policy which maximises the potential gains of the hybridisation. 

For the control of most hybrid vehicles it may be assumed that the driver’s power 

demand power is shared between the ICE and EM, that is to say that for a fixed 

accelerator pedal position the controller is capable of increasing the power delivered 

by the EM and correspondingly decreasing the power delivered by the ICE to meet 

the driver’s demand exactly. Whilst this would almost certainly be a valid 

assumption for a vehicle designed by an Original Equipment Manufacturer (OEM) 

with a heavily integrated hybrid powertrain, it is not at all the case for a retrofit 

vehicle where no supervisory control is exercised over the ICE. For this reason the 

addition of the electric powertrain essentially supplements the power available from 

the ICE, making the vehicle more powerful. It might be hoped that in response to this 

drivers would reduce the accelerator pedal position such that less power is delivered 

by the ICE thereby saving fuel, however this is by no means guaranteed. Furthermore 

the optimal control policy for the hybrid vehicle depends greatly on the typical drive 

cycle which it is used for, and so for these reasons this work also includes significant 

research into driver behaviour characterisation and modification, as will be described 

later. 

1.5 Work Split 

Since the extent of this work is quite large it is important that the personal 

contributions of the author are clearly presented. Activities undertaken in the course 
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of the research included mapping, theoretical modelling, control design and testing of 

a real HEV, as well as the design and field testing of a driver feedback device 

(known commercially as Lightfoot) and analysis of the resulting data. Broadly 

speaking Ashwoods Automotive were responsible for hardware design, integration 

and low-level coding of drivers and protocols, whilst the author was responsible for 

the design and evaluation of top-level control strategies and logic. The work 

packages forming the project, their interdependences and the party responsible for 

their completion are shown in Figure 1-2.  

  

 

Figure 1-2:  Work packages forming the project and their interdependences. Those completed by the author 

are grey ( ) whilst those completed by Ashwoods Automotive Ltd are white ( ). 
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1.6 Chapter Conclusions 

Whether motivated by environmental concerns or the incentive to save money, 

reducing vehicle fuel consumption is now a priority for many individuals and 

companies. Despite the apparent aptness of HEVs to many LCV duty cycles OEMs 

have refrained from producing hybrid models of their commercial vehicles. For this 

reason Ashwoods Automotive Ltd produce a retrofit hybrid-electric conversion 

system. 

This research will seek to understand how the energy management control system for 

the HEV should be designed so as to maximise its performance. In doing so it is 

important to understand vehicles’ typical use in the real world and to ensure that they 

are driven appropriately; to this end the work includes the design and evaluation 

through field testing of a driver behaviour improvement tool. Data collected during 

testing of the driver behaviour tool are fed into the design of optimal control 

strategies and used to select an appropriate test cycle to evaluate HEV controllers.  

 

 





 

   

 

 

 

Chapter 2 Literature Review 

 

 

Given the scope of the project set out in Chapter 1 this review covers present state-

of-the-art in hybrid vehicle control, seeking to identify opportunities for further 

research. It is observed that Stochastic Dynamic Programming has been shown to 

have great potential for predictive control, but has not been convincingly 

demonstrated in control of a real vehicle. Furthermore most optimal controllers 

reported in existing literature do not sufficiently account for practical limitations of 

hybrid electric systems, for example the consequences of persistent high power 

operation. Finally, it is noted that in the present context of a retrofit system, where 

the installed vehicle power is increased, some degree of driver behaviour monitoring 

is necessary and approaches to implementing this are reviewed. 
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In this chapter state-of-the-art energy management strategies for hybrid vehicles will 

be reviewed within the context of the control problem at hand. As will be discussed 

the best control strategy fundamentally depends on the drive cycle which a vehicle is 

typically used for; this motivated a full investigation into the typical driving patterns 

of the target vehicles, which also included the development of a tool designed to 

reduce fuel consumption by encouraging efficient driving behaviour. These topics 

are introduced and addressed in the later part of this review. Gaps in the present 

understanding are highlighted, which form the basis of the research aims. 

The topics covered in this survey are non-exhaustive, partly for brevity, and also 

because there is a huge volume of literature examining HEV development, much of 

which is not relevant to this research. As an example, the relative strengths and 

weaknesses of different HEV architectures (parallel, series, power-split, etc.) are not 

examined. The object of this research is to examine retrofit technologies with 

commercial viability; for this reason the parallel torque-assist hybrid architecture was 

predefined outside the scope of this work, as described in Chapter 1. The emphasis of 

the review will therefore be on optimising the efficacy and performance of the 

system in the real world. 

2.1 Hybrid Electric Vehicle Control 

Achieving an optimal control strategy which maximises the potential benefits of a 

hybridised powertrain is non-trivial because the solution fundamentally depends on 

the future. For example, if the driver is soon to go down a long steep hill which will 

provide opportunity for kinetic energy recovery then it would make sense to deplete 

the stored energy reserves to achieve maximum immediate benefit, freeing up the 

capacity of the energy storage system (ESS) with the expectation that the energy will 

soon be replaced. Conversely, if it is unlikely that there will be a huge opportunity 

for energy recovery in the immediate future then the question becomes “When can 

the energy which is currently stored be deployed to greatest effect”? 

In some cases it is possible that the future drive cycle is known in advance, if not 

precisely then at least to a good degree of certainty. Examples of such cases would 
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include railway applications, or Personal Rapid Transit systems. In road-based 

transportation advances are being made toward fully autonomous vehicles which 

would know their route in advance and could therefore plan an energy management 

policy. Perhaps more immediately conceivable are vehicles in which the driver’s 

satellite navigation system can feed the powertrain supervisory controller with 

information about the likely future. For more familiar and mundane journeys such as 

the daily commute the driver may not be using a navigation system but, based on a 

database of similar journeys started from the present location at that time of day, 

considerable information about likely routes could probably be inferred by the 

controller. Nevertheless at present the future is entirely unknown to the powertrain 

control system in the vast majority of applications. 

2.1.1 Control Classification 

Salmasi [12] reviewed and classified approaches to the control of HEVs and 

proposed a classification structure which has been adopted by others [13]. This 

classification structure is presented in Figure 2-1 and each of the four categories of 

control strategy will be explained and discussed. 

Rule-Based Control 

Rule-Based controllers follow rigid logical protocols in order to decide on an 

appropriate power split for the hybrid vehicle powertrain. Based on inputs such as 

power demand, vehicle speed, acceleration, and state of charge (SOC) of the ESS the 

controller will behave in a predictable manner following logical statements to 

Control Strategies 

Rule Based Optimisation Based 

Fuzzy 

Logic 

Deterministic 

Logic 

Global 

(time variant) 

Real-Time 

(time invariant) 

Figure 2-1:  Classification of control strategies, adapted from [13]. 
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demand either positive (assist) torque or negative (regeneration) torque from the EM. 

Rule-based controllers may be further sub-divided into Deterministic and Fuzzy 

Logic based classes.  

Controllers categorised as ‘Deterministic’ are typified by the use of flowcharts, state 

flow diagrams and lookup tables to determine the vehicle state and make appropriate 

decisions. The controller outputs are therefore dictated by a set of discrete logical 

statements, probably designed by engineers based on heuristic logic using a set of 

desirable operating conditions and efficiency maps of the powertrain components. 

Fuzzy Logic controllers gained popularity in an effort to move away from the rigidity 

of determinism. The central concept of fuzzy logic is to move away from ‘crisp’ 

variables (precise numeric values) and towards the use of linguistic measures 

(temperature could be cold, warm, or hot) with which humans are inherently more 

familiar [14, 15]. Rather than using raw values of input parameters, each is assigned 

a degree of membership to a fuzzy set, for example speed could be categorised as 

slow, medium, high or some combination of states. A variable’s degree of 

membership to any possible fuzzy state is between 0 and 1, and the sum of the 

degrees of membership must equal 1 at all times; this input processing stage is 

known as ‘fuzzification’ (Figure 2-2). 

The control response to each fuzzy state may be different and so the second stage, 

 

Figure 2-2:  Fuzzy logic may be used to assign a crisp value of speed with degrees of membership to a fuzzy 

set. A level of abstraction is therefore added into the logic, which can simplify complex strategy design. 
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known as ‘inference’, uses fuzzy logic operators to establish the extent to which the 

‘antecedent’ (condition) of each fuzzy rule is satisfied. Finally, through a 

‘defuzzification’ process the ‘consequents’ (results) of each applicable fuzzy rule are 

combined and converted back into a ‘crisp’ output variable.  

Salmasi regards fuzzy controllers as an extension of ‘conventional’ rule based 

controllers where the primary advantages are added robustness (for example to 

imprecise measurement) and ease of use, both in initial calibration and in adaptation 

to new or varying scenarios [12].  

Lee and Sul [16] first showed the potential for the application of fuzzy control to 

HEVs, in this case with a view to reducing NOx emissions. The comparative ease 

with which a fuzzy controller could be implemented and tuned compared to 

deterministic control was highlighted and the control was shown to be robust. 

However, the controller was relatively simple as it only received engine speed and 

throttle demand as inputs and also sought only to optimise ICE performance. An 

interesting feature of the real-world parallel HEV implementation in this case is that 

the EM was integrated on the engine side of the transmission, taking the place of the 

flywheel. This is in contrast to the majority of parallel HEV implementations which 

integrate the EM downstream of the transmission. Pre-transmission integration of the 

EM has a significant advantage in that it greatly reduces the speed range that the 

motor operates over. The result of this is that for an EM of the same torque rating a 

pre-transmission motor can operate near its rated power much more of the time; the 

disadvantage is that this configuration requires heavily integrating the EM, adding 

complexity and cost to the system. In the present case the EM was actually operated 

almost exclusively in the field-weakening (constant power) region, meaning that the 

rated power of the motor could be used frequently, allowing maximum benefit. 

Schouten et al. [17] built on the work of Lee and Sul [16] by adding SOC as an input 

variable to the fuzzy controller and optimising the HEV holistically, taking account 

of the efficiencies of the various powertrain components. This controller was 

implemented in a simulation environment and assumed the more common post-

transmission EM configuration. 
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Numerous studies claim to show the benefits of fuzzy over conventional control [16, 

17] however it is difficult to know whether these are really fair comparisons. It 

should be noted that the distinction between deterministic controllers and fuzzy 

controllers can be overstated. In most cases it is possible to implement the same 

control logic as a fuzzy controller using look-up tables, which are regarded as 

‘deterministic’. The primary advantage of the fuzzy controller lies in its higher level 

of abstraction, which allows easier implementation and tuning, and greater 

robustness. However this is also its weakness, since this same trait means that it is 

less precise. 

Salmasi concluded that rule based approaches are simple and effective in real-time 

supervisory control, which led to their widespread use in early HEVs: both the 

Toyota Prius and Honda Insight are based on deterministic logic. However, these 

strategies are inherently inflexible and therefore do not perform so well over 

different types of drive cycle. Furthermore rule based approaches tend to optimise 

components in isolation rather than the system as a whole (holistically), and 

Wirasingha and Emadi [13] suggest that for these reasons developers have moved 

their attention towards optimisation based strategies. 

Optimisation-Based Control 

Design of rule based control strategies is almost exclusively based on heuristic logic, 

or on trial-and-error, to determine the best operating mode for the vehicle. Such 

techniques offer no guarantee of optimality in the strict mathematical sense of 

ensuring the control strategy is the best it could be. Furthermore trial-and-error 

development, for example evaluation and refinement of a controller’s performance 

through on-road testing, is time consuming and expensive. In recent years it has 

become common practice to use ‘model-based design’ techniques to design 

controllers in a simulation environment, which then require considerably less testing 

and refinement. Model-based design practices have also made possible the study of 

strictly optimal controllers for which a ‘cost function’ is defined. The optimum 

strategy is that from the set of all possible strategies which minimises this cost.  

In practise it is common that the control problem definition for an HEV is in fact a 

multi-objective one. For example, as well as reducing fuel consumption, which is 
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usually the primary goal, other objectives may include reducing pollutant emissions 

and improving drivability; these secondary objectives often oppose the primary and 

so a trade-off is necessary. In order to manage the compromise between multiple 

objectives a cost function may be formulated in which all of the costs/objectives are 

represented and weighted to varying degrees depending on their relative importance; 

the optimal all-round solution is then found by minimising the total cost incurred. 

The distinction between ‘global’ and ‘real-time’ optimisation (Figure 2-1) stems 

from whether the control problem is formed with the assumption that the drive cycle 

is known entirely in advance or not. As discussed previously the truly optimal 

control strategy would require information about the future in order to decide how 

best to manage the stored energy. Given this information a ‘globally optimal’ 

strategy would control the vehicle powertrain so as to minimise the cost incurred 

over an entire drive cycle. An important quality of such a system is that the control 

decision at any time is not only a function of the vehicle’s past and present states, but 

also its future. As a result the strategy’s response to any vehicle state in the present 

time is not fully defined without the knowledge of the future and so, for two identical 

vehicle states, the strategy may make different control decisions because of 

differences in the projected futures. For this reason globally optimal control 

strategies may be labelled ‘time variant’.  

Real-time optimal controllers are those which do not assume any knowledge of the 

future, but retain some degree of optimality. Given that in the vast majority of cases 

the drive cycle is not known in advance this set is concerned with finding the most 

optimal controller which is practically implementable, i.e. ‘time invariant’. In the 

following sections the three most prominent optimisation-based control solutions will 

be presented and more thoroughly reviewed.  

2.1.2 Dynamic Programming 

Dynamic Programming (DP) is perhaps the most established global optimisation 

technique, however there also exists some potential for its adaptation to real-time 

implementation. The method is based on Bellman’s Optimality Equation which is 

used to formulate a recursive equation describing the minimum possible cost that can 
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be incurred during operation of the system under the optimal control policy and 

starting from its present state:  

 𝐽𝑘
∗(𝑥𝑘) = min[𝑐(𝑥𝑘, 𝑢𝑘) + 𝐽𝑘+1

∗ (𝑥𝑘+1)] (2-1) 

where k is a discrete time index, 𝑥𝑘 is the vehicle state vector at time k and 𝑢𝑘 is the 

control decision at time k. The instantaneous cost arising from the present vehicle 

state and control decision is 𝑐(𝑥𝑘, 𝑢𝑘), however it is expected the present control 

decision will affect the vehicle state at the next timestep and so 𝐽𝑘+1(𝑥𝑘+1) is the 

total summative cost incurred in the next timestep and all timesteps in the future 

thereafter. The superscript * denotes optimality, and so Equation (2-1) represents the 

statement that the minimum total cost to progress from state 𝑥𝑘 is achieved by the 

optimal control policy which minimises the sum of the instantaneous cost and all 

future costs. 

At face value this statement appears rather trivial, however the power of DP lies in 

the method which may be applied to solve for the optimal control policy. Before 

explaining this however, the single biggest limitation of Equation (2-1) should be 

highlighted: since the equation is recursive, containing total cost J on both sides, an 

attempt to solve the equation without a finite end time would result in an infinite 

regress. As a result the method is only applicable to situations where the drive cycle 

is known entirely in advance and so a finite chain of causal events may be 

considered. It is for this reason that DP is a global optimisation technique. The 

equation is solved backwards in time, starting from k=N (the end of the drive cycle) 

and moving towards k=0, to solve for the absolute optimum system performance 

over a known drive cycle subject to constraints. 

DP is helpful when the control decision at the present timestep directly affects the 

system state at the next timestep; for example in the problem of hybrid vehicle 

control the decision made in the present timestep will affect the subsequent SOC. 

This is an important notion because the instantaneous fuel consumption will always 

be reduced when tractive force is provided by the EM rather than by the combustion 

engine; however for a system with a limited reserve of electrical energy this use of 

electricity necessarily means that less will be available in the future, and so the future 
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cost may be higher as a result. The optimality problem could be solved by brute 

force, by directly enumerating every possible control trajectory; however this is 

extremely wasteful as many of the trajectories will be very similar. For example, 

starting from state 𝑥𝑘 a set of simulations may follow the same control trajectory 

over the entire problem up until the very last timestep, at which point each simulation 

makes a different decision in order to see which trajectory was best. The result is a 

set of control trajectories that are extremely similar, only different at the final 

timestep, but each is simulated entirely. If 𝑁𝑥 is the number of discrete states, 𝑁𝑢 the 

number of possible control decisions in each state, and 𝑁𝑘 the number of timesteps in 

the drive cycle, this direct enumeration would therefore require the simulation of 

𝑁𝑥 × 𝑁𝑢
𝑁𝑘 state transitions. 

Instead of enumerating every possibility DP considers the problem starting from the 

final timestep, working backwards in time towards the beginning of the problem, 

quickly rejecting sub-optimal solutions. It may be conceptually helpful to consider 

the algorithm’s benefits in a more trivial case: The common shortest path problem 

may require the shortest path from B→C to be found. If a new problem were then 

posed to find the shortest route from A→B→C (i.e. A to C, via B) only the solution 

to A→B must now be found, because the solution to B→C was found previously and 

is still optimal. In the same way DP breaks down top level problem into a series of 

single stage problems, each solved in turn, to build up the full solution. 

The procedure for DP is to first consider the one-stage (instantaneous) cost for being 

in the final state, for example at k=N in Figure 2-3. Moving backward in time one 

step to k=N-1 a control decision in each state will define the state at the next timestep 

(k=N), and so the one-stage cost of being in each state is added to the optimal cost 

from the resulting state onward. By following this procedure a table can be 

constructed containing the optimal cost of moving from any state x at time k to the 

end of the problem, where non-optimal control trajectories are ignored completely. 

By removing the repeated simulation of trajectories that are known to be sub-optimal 

the total number of state transitions which need to be simulated to establish the table 

of costs is (𝑁𝑥 × 𝑁𝑢 ×𝑁𝑘), which is likely to be considerably lower than 𝑁𝑥 ×𝑁𝑢
𝑁𝑘. 
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Having populated a table of costs the optimal control decision from any starting state 

may be read from the table, moving to the subsequent state defined by the present 

control decision, and continuing to follow the optimal path from there. 

These descriptions of the procedure are an extremely brief summary as a full 

explanation would be considerably longer and not proportional to the method’s 

pertinence to the present work; an excellent practical guide to the method with 

worked examples is provided by Larson and Casti [18].  

As well as being non-causal in time the DP result is also a time-variant full-feedback 

controller; that is to say that the controller adapts with time to suit future power 

demands and so a given system state (perhaps defined by vehicle speed, power 

demand, and SOC for example) may result in a different control output at two 

different times. As a result the controller’s response cannot be reproduced in real-

time without complete knowledge of the driving cycle and so is not implementable in 

the majority of applications. Having said that, by examining the average behaviour of 

the DP controller it is possible to derive a deterministic controller designed and tuned 

to emulate the average behaviour of the DP control, as is demonstrated by Lin et al. 

[19, 20]. The resulting controller is a near-optimal approximation of the DP control 

when operating on the drive cycle which the DP controller was developed on, 

 

Figure 2-3:  Diagrammatic representation of a Dynamic Programming cost table. The number in each grid 

space is the minimum cost which can be incurred in progressing from that state to the problem end. 

Starting from state 𝒙𝟒 at time k=4 the minimum is 1.69. The instantaneous cost of the optimal trajectory at 

time k=4 is 0.54, and so the minimum cost from the next timestep (k=5) to the end is 1.15.  
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however its performance over other drive cycles (that the DP controller was not 

developed for) may not be at all optimal, and these controllers are therefore accused 

of being ‘cycle beating’. 

Despite its limitations the DP approach is very useful in gauging the theoretical 

performance limit of a system if it were controlled perfectly. Furthermore there 

remains significant potential for DP when integrated with in-vehicle Global 

Positioning Systems (GPS) to predict the future vehicle path and optimise the HEV 

accordingly [21-23], though this is by no means a simple task.  

2.1.3 Stochastic Dynamic Programming 

To overcome the limitations of DP with a view to implementing an optimal control 

strategy which is causal Stochastic Dynamic Programming (SDP) has been proposed, 

the application of which to HEV control is usually credited to Lin et al. [24]. In SDP 

the precise future expected cost 𝐽𝑘+1
∗ (𝑥𝑘+1) in the DP algorithm is instead replaced 

with a stochastic representation of what this cost is likely to be, based on historical 

data, thereby avoiding the requirement for a priori knowledge of the exact drive 

cycle. 

SDP requires a library of historic driving data which can be statistically analysed to 

generate a state transition probability matrix, describing the probability of 

transitioning from any vehicle state to any other. Given the present vehicle state this 

stochastic representation of state transitions can therefore be used to find the 

statistical distribution of likely states at the next timestep, and this distribution used 

the find the statistical distribution at the following timestep, and so on; the statistical 

distribution of vehicle states may therefore be forecast far into the future with 

decreasing certainty. For a particular control policy which is a function of vehicle 

state the cost associated with each state (and the resulting control decision) can be 

explicitly calculated, and so it becomes possible to create a future expected cost 

function, which takes into account the likelihood of future vehicle states as well as 

the cost of a particular controller’s response to those states. With respect to the 

original DP formulation presented in Equation (2-1) the stochastic version replaces 

the second term (future cost) with an equivalent expectation of the future cost, 

denoted by E: 
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 𝐽𝑘+1(𝑥𝑘+1) ~ lim
𝑁→∞

𝐸 { ∑ 𝜆𝑘𝑐(𝑥𝑘, 𝜋(𝑥𝑘))

𝑘=𝑁−1

𝑘=1

} . (2-2) 

This expected future cost has an infinite horizon, that is there is no limit as to how far 

into the future the expected cost could be predicted, but over an infinite time horizon 

the expected cost would clearly be infinite. For this reason the discount factor, 

0<𝜆<1, is essential in ensuring that the sum converges to a finite limit. Since the 

discount factor is raised to the power of the time index the value of 𝜆𝑘 decays 

exponentially such that costs in the distant future carry far less weighting than costs 

in the immediate future. Although there is no threshold or fixed time window being 

considered (the discounting is exponential) the value of the discount factor 

effectively determines how far into the future the controller considers by defining 

how rapidly future costs are discounted. For this reason the value of the discount 

factor has a considerable effect on the resulting control strategy; however this effect, 

and how a final decision on its value should be reached, is not adequately explored in 

existing literature. In two worked examples Kolmanovsky et al. [25] state that they 

used discount factors of 0.95 and 0.98, though without further explanation. 

Johannesson [22] used 0.995, while Lin et al [24] used 0.95, whose example was 

followed by Tate el al [26] and Moura et al [27], with Moura noting that the choice 

of discount factor is a matter open for further research. 

Beyond the choice of discount factor the existing literature in which SDP is used 

generally provides very limited guidance on how the algorithm should be applied 

successfully; there is no well documented method summarizing good practice 

implementation. For example, in order to find the optimal control policy SDP 

requires an iterative procedure in which the first step is to find the expected cost 

function for an arbitrary controller. Based on this cost function an improved control 

strategy is found, for which the cost function may be calculated, and so on. Much 

iteration of successive policies is generally necessary, but how to determine when 

iterations may be truncated is not explored. Yet another issue not satisfactorily 

resolved in previous works on the subject is that the resulting policy is a multi-

dimensional state lookup table which is practically impossible to examine manually, 
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and how the charge sustenance properties of the resulting policy may be examined or 

adjusted is therefore not clear.  

The potential of SDP is extremely appealing because it allows a time-invariant full-

feedback optimal controller to be generated. Although the controller may not be 

optimal among the set of all possible controllers, it is guaranteed to be optimal 

among the subset of controllers which are ‘stationary’ (time-invariant) policies, with 

the proviso that the historic stochastic driving data continues to be an accurate 

representation of the vehicle’s future use. The poor understanding of how the 

algorithm should be implemented robustly in real vehicles is likely due to the fact 

that in the vast majority of cases its evaluation has been limited to simulation; only 

one example of the algorithm’s application to control of a real HEV is known of 

[28], and though the results looked promising the study had limited applicability 

because no real world driving data was available from which to form a stochastic 

model.  

2.1.4 Equivalent Consumption Minimisation 

Moving away from global optimisation altogether some degree of optimality may 

still be retained by subtly changing the objective to the minimisation of instantaneous 

equivalent cost. When first introduced by Paganelli et al. [29] this approach, named 

the Equivalent Consumption Minimisation Strategy (ECMS), marked a significant 

step forward in the approach to HEV control beyond deterministic logic because for 

the first time it allowed the controller to be optimal to some degree. The term 

‘equivalent consumption’ refers to the equivalence drawn between fuel energy and 

electrical energy, which is used to ensure that the ESS maintains a suitable SOC. It is 

defined by Salmasi [12] as the “extra fuel consumption that will be required for the 

battery recharge in the near future” if the electric motor is used to supply some of the 

driver’s power demand instead of the ICE. Since the use of electrical energy always 

reduces fuel consumption this equivalent cost is essential to ensure that the value of 

the electricity is considered; the instantaneous control decision is always the one 

which minimises the combined cost of fuel and electricity, and in the same manner as 

previously described other objectives may also be represented in the cost function 

with equivalence factors used to weight their relative importance.  
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Paganelli et al. [29] applied ECMS to a parallel torque addition HEV where the EM 

added torque to the drivetrain between the gearbox and final drive of the vehicle, and 

was therefore directly coupled to the wheel speed. The ICE was replaced with a 

downsized engine, and the EM accounted for approximately one third of the power 

capability of the new powertrain. In this example a known torque demand could be 

fulfilled by the ICE and EM in different proportions, and so in order to find the 

optimum torque split ratio the ECMS considered the sum of ICE fuel consumption 

and the ‘equivalent fuel’ consumption of the EM for every possible ratio. The torque 

split resulting in the absolute minimum equivalent consumption was then selected. In 

order to ensure that SOC constraints were adhered to a nonlinear correction factor 

was applied to the EM demand torque after the optimum operating condition had 

been determined. To compensate for this adjustment the ICE torque demand was 

corrected by an equivalent amount in the opposite direction to ensure the driver 

torque demand was satisfied exactly. 

Clearly for ECMS controllers the price of electricity is extremely important, and was 

defined by Paganelli et al. [29] using the average cost of the fuel used to generate the 

electricity. In reality however the cost to generate electricity may vary depending on 

operating conditions or drive cycle, so a price with some degree of variability may be 

an improvement. Also, by adding the SOC correction after the optimum operation 

point has been determined and adjusting the torque split accordingly, the controller 

does not capitalise on its potential to optimise the system holistically. 

Paganelli et al. went on to show how the ECMS could be used to control a fuel cell 

hybrid vehicle [30], demonstrating the versatility of the approach to different 

architectures. A significant advance in this paper was the adjustment of the SOC 

correction so that it acted as a multiplier on the cost of electricity rather than simply 

modifying the torque demand of the EM. In this way it was more integrated in the 

decision making process rather than a retrospective adjustment. This scenario is still 

not ideal in that SOC correction is enforced immediately, and the controller is 

allowed very little flexibility in when it is applied. It can be seen from some of the 

simulation results that at times in the drive cycle the equivalent fuel consumption 

curve is relatively insensitive to changes in power split, and therefore a large change 

in power split may sometimes only deviate from optimal operation very slightly. 
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These scenarios would be ideal for correcting SOC, and so a further improvement to 

the strategy may be to alter the SOC correction so that it is another control objective 

handled in a similar way to emissions in [29], allowing the controller greater 

flexibility in when it corrects the SOC. 

Liu and Peng [31] compared SDP and ECMS strategies in the control of the Toyota 

Prius power-split system. They also compared the effectiveness of their controllers 

against the DP theoretical benchmark, unlike others [16, 29, 30], which allows for 

much better evaluation of their performance against a theoretical limit rather than 

against other heuristic controllers which are unfamiliar to the reader. They showed 

that both SDP and ECMS outperform traditional deterministic logic, and give 

relatively similar fuel consumption results despite delivering them in very different 

ways, though the SDP approach was marginally better in their simulations. For 

control using ECMS a tendency was observed for the ICE power demand to alternate 

between a high value and zero (engine off). This is logical because the controller 

tries to maximise instantaneous efficiency and, since the most fuel efficient operating 

condition for the engine is in the high load region, the controller exploits this. In 

contrast the SDP controller is much smoother in its control of the ICE as it also 

considers the future to some degree (statistically modelled), and so produces a 

control signal closer to the DP result. 

2.1.5 Real-World Considerations 

Optimal control design techniques, such as those discussed, rely heavily on model-

based-design; they use computer simulations to assess and optimise the performance 

of a control strategy. This approach is enormously powerful, however computer 

models always require simplifications and assumptions to be made since including 

every physical dependence would make the model impossibly complicated and 

computationally expensive. While many simplifications are relatively 

inconsequential some risk introducing a significant disparity between the simulated 

and physical environments. As an example, it is common practice in all of the 

research discussed thus far that the electrical powertrain is modelled with a fixed 

maximum power limit which it may be operated at as much or as little as desired. In 

fact this is far from the truth, since electric motors can often deliver considerably 
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more than their ‘continuous rated’ power in short bursts, usually limited by 

temperature. Similarly, batteries may be operated at high charge/discharge rates in 

short bursts, but at the expense of increased heat generation and very often the 

Battery Management System (BMS) will struggle to maintain even temperature and 

SOC distributions between cells. In addition to these short-term problems batteries’ 

usable life span may suffer as a result of consistently heavy use. 

Since the great majority of the work in this area is based on simulation, with minimal 

real-world validation or implementation, the significance of ignoring battery cell 

balancing issues, battery thermal management and motor temperature has been 

understated, though these concerns are familiar in industry and to those working with 

hardware [32]. Paganelli et al. demonstrated real world control implementation [29] 

and Dubarry et al. [33] demonstrated how battery models built on laboratory data 

could increase understanding of real-life performance, but it is certain that more real 

world field trials are needed. 

It has been noted by Plett [34] that the HEV environment is particularly harsh for 

batteries as it is frequently desirable to draw and return energy at extremely high 

rates. This makes sense because batteries are heavy and expensive and so it is 

essential that maximum benefit is obtained in exchange for carrying them. In 

contrast, full Battery Electric Vehicles require much larger battery packs to achieve 

satisfactory vehicle range, and this added capacity also tends to yield a higher power 

capability (even if the batteries in the two vehicles have the same energy and power 

densities), meaning that the powertrain is rarely operating at its power limit.  

Cell Aging 

Unfortunately high power use of battery cells is a well-known stress factor, 

accelerating capacity fade and reducing the useable life of the battery [35, 36]. For 

this reason it is usually preferable to operate batteries more consistently at a low 

power, rather than have a ‘peaky’ duty cycle with high rates of charge 

draw/acceptance. In order to smooth out the duty cycle batteries are exposed to and 

reduce battery stress load-levelling control strategies have been proposed which 

intelligently control the electrical load of auxiliaries [37, 38]. Hybrid energy storage 

systems have also been proposed, in which super capacitors (or mechanical 
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flywheels) are used during high power events to smooth out the peaks in battery 

power demand, while batteries remain the primary means of energy storage [39, 40]. 

It is widely supposed that such load levelling would also increase the service life of 

batteries, though good quality data to quantify this is not readily available. 

The problem of high power operation is made considerably more pertinent in HEVs 

because it is normal to use battery packs made up of numerous cells. Ohmic losses 

cause heat generation in each individual battery cell proportional to its internal 

resistance. Manufacturing tolerances mean cells in a pack will have a spread of 

nominal internal resistance and as a result some cells generate more ohmic heating 

than others, which can cause thermal gradients to develop within the pack during 

normal use. Since thermal cycling plays a role in cell aging and affects internal 

resistance [41] this thermal gradient can cause cells to age differently and their 

internal resistances to deviate further. Uneven heat generation in battery packs is also 

problematic from a safety viewpoint because in extreme cases it introduces a risk of 

thermal runaway, requiring the battery power to be temporarily limited; for this 

reason battery pack cooling has become important [42]. 

Battery Management 

On a shorter timescale the spread of internal losses between cells can also be very 

problematic because, for an identical current cycle, cells which start with identical 

SOC will begin to develop a disparity [43]. Since battery cell internal resistance is 

typically much higher at low SOC [44] this SOC disparity can become self-

perpetuating if not properly managed by a BMS, since cells with low SOC become 

even less efficient. 

The consequences of SOC imbalances are considerable because battery cells usually 

have specified safe working limits for terminal voltage. Nominal cell voltage at rest 

varies between cell types, but as an example a lithium ion cell may have a nominal 

voltage of 3.2 V which varies slightly between 3.1 V at low SOC and 3.3 V at high 

SOC. Drawing current from a cell causes a voltage drop proportional to the current 

draw and the cell internal resistance (∆𝑉 = 𝐼 ∙ 𝑅𝑖𝑛𝑡), so cells with a higher internal 

resistance will experience a greater voltage drop for the same current. Should the 

terminal voltage fall below 2.7 V permanent damage may be done to the cell, and the 
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situation is mirrored during charging where the maximum safe terminal voltage may 

be in the order of 3.7 V. One of the roles of a BMS is therefore to implement over- 

and under-voltage protection logic such that the terminal voltages of all cells are kept 

within the safe range 3.2±0.5 V. When the battery pack is considered as a whole the 

problem becomes apparent: in order to avoid damage to any cells the working limits, 

or operational window, of the pack must be limited by the highest and lowest cell 

voltages [45]. In a battery pack in which the majority of cells have the same SOC but 

one cell is lower the permissible charge/discharge rates of the pack may be severely 

limited because of the higher internal resistance of the one cell with a low SOC. The 

same scenario is true of cells having different thermal cycling histories. 

The net result of all of these cell balancing issues is that at various times the BMS 

may be forced to reduce the power demand on the battery in order to ensure no cells 

incur any permanent damage, and to try to re-balance the pack [43].  

Motor Considerations 

Operating the electric powertrain at high powers also has consequences for the EM 

because ohmic losses in the motor windings, which are proportional to the square of 

current, cause the EM to become hot. If the EM is consistently operated at high 

powers and the rate of cooling is not sufficient the control system may be forced into 

thermal cutback, reducing the availability of the electric powertrain. 

Relevance to Optimal Control 

Since research in the area of HEV control tends not to consider the physical effects 

of high power operation an ‘optimal controller’ in simulation may actually prove 

highly sub-optimal in practice if it demands too much of the electric powertrain, 

which then goes into a self-protection mode. Conversely if researchers choose to stay 

within the confines of the continuous power limits then the efficacy of the system is 

not maximised. 

Most HEV control strategies being developed employ a cost function to define when 

a control strategy is optimal [22, 31]; the optimal strategy is the one which minimizes 

the total cost over a drive cycle. In its most simple form this cost function is probably 

equal to fuel consumption, however efforts have been made to include several other 

parameters to achieve multi-objective optimisation; examples include equivalent cost 
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of electricity used [23, 27, 29, 46], NOX and PM emissions [20, 24] and gear shift 

busyness [19]. Salmasi [12] suggested that further work should add durability 

extensions (or extension of the life of hybrid powertrain components) to controller 

cost functions. In light of the real-world problems experienced with hybrid systems, 

as discussed, it certainly seems there might be benefits to also considering short-term 

State of Health (SOH), or a measure of electrical powertrain stress.  

There is no uniformly agreed measure of battery stress, however Moura [47] 

proposed two cost functions aimed at improving long-term battery health, one based 

on minimizing anode side solid electrolyte interface (SEI) film growth (which is 

widely regarded as a key cause of capacity fade) and the other designed to reduce 

battery current throughput. Of these two cost functions the former requires a 

relatively detailed model of the battery cell chemistry which may not be appropriate 

for higher level holistic system optimisation – the relative mathematical simplicity of 

throughput models makes them better candidates for control optimisation purposes. 

Both functions are aimed primarily at reducing long-term capacity fade with a view 

to increasing battery service life. Ebbesen et al [48] and Serrao et al [49] also 

demonstrated controllers incorporating throughput aging models. In both examples 

the rate of aging is acknowledged to increase at high battery currents, and so the cost 

function amounts to a non-linear function of instantaneous current, while [49] also 

accounts for temperature and SOC. 

An alternative metric which has been proposed is the mean square of the battery 

current (I2̅) [50], with the reasoning that ohmic losses, and therefore heat generation, 

are proportional to the square of current. This is perhaps more appropriate for 

management of short-term system SOH, with the advantage that its physical meaning 

can be extended to the EM as well as the battery, therefore offering some indication 

of the stress of the entire electrical powertrain. 

2.1.6 Drive Cycles and Driver Behaviour  

Vehicles will achieve different levels of efficiency depending on the driving 

conditions in which they are used, and for this reason it is important when testing a 

vehicle to use a defined ‘drive cycle’ which specifies the vehicle’s speed as a 

function of time. This issue is particularly pertinent for HEVs because the 
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effectiveness of the hybrid powertrain is highly dependent on the drive cycle it is 

used over. A hybridised vehicle may achieve considerable fuel savings over its 

standard counterpart on some drive cycles, but none at all on others. For driving 

cycles that involve a lot of accelerating and braking, such as urban conditions, there 

is considerable scope for kinetic energy recovery during braking which can be used 

to assist the engine when required. In contrast, for haulage vehicles which spend the 

majority of their time cruising at steady speed on a motorway no opportunity exists 

for kinetic energy recovery, and so the only energy available would be ‘traded’ by 

first using the ICE to generate the electricity. This generally does not result in 

worthwhile fuel savings because of the roundtrip efficiency losses during energy 

conversion. For these reasons it is important when developing and testing an HEV 

that the test cycle is a realistic representation of the real-world vehicle use. 

For legislative purposes pre-defined drive cycles are used to test and report vehicle 

fuel consumption in a consistent manner, with tests varying between different 

countries worldwide. However, whether driving cycles accurately reproduce the real-

world conditions that they intend to emulate is questionable [51-53]. Adornato et al. 

[53] compared legislative drive cycles with real-world data collected by the authors 

using average measures such as mean speed and specific energy (energy consumed 

per unit distance). It was decided that none of the standard drive cycles represented 

the real-world data collected by the authors, and so HEV simulations were conducted 

using the real-world data instead. The disadvantage of this is that simulations are not 

reproducible by others; for this reason where possible simulations and laboratory 

experiments should be based on widely used drive cycles, and then compared and 

contrasted later with the results of real-world implementation. Daniel et al. [52] used 

a more sophisticated approach of constructing cumulative probability plots of various 

parameters such as vehicle speed and aggressivity for each of the legislative drive 

cycles. The level of agreement between these plots and similar plots based on 

observed data was then established using the coefficient of determination (𝑅2). 

Although this approach gives more insight than simply comparing average values it 

is not ideal because it assumes that individual variables such as speed, acceleration 

and power can be decoupled and considered independently from one another. In fact 
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rates of acceleration are likely to be highly dependent on the vehicle speed, for 

example.  

It is clear that for a fair comparison to be made between a standard vehicle and a 

hybridised vehicle both should ordinarily be tested over identical drive cycles. In the 

case of a retrofit hybrid system however the situation must be more carefully 

considered. By adding an electric powertrain alongside the vehicle’s standard ICE, 

without modifying the Engine Control Unit (ECU) to reduce the ICE power demand, 

the vehicle is effectively made more powerful. Since in the case of the Ashwoods 

Automotive system the ICE is unaware that the electric powertrain exists at all the 

driver has use of the full power of the ICE, augmented by the power of the EM. One 

may hope that in response to this additional power the driver would reduce the 

accelerator pedal position, thereby reducing engine load and saving fuel. For the 

driver the perceived effect of adding the hybrid system would be a minor re-mapping 

of the accelerator pedal response, so that the vehicle delivers slightly more power at 

each pedal position, and so the pedal needs to be activated slightly less. In reality 

however there is a risk that the driver would instead continue to use the ICE at a 

similar operating point, benefiting from the additional power provided by the EM for 

increased acceleration. 

Use of the retrofit electric powertrain to increase rates of acceleration would 

completely undermine the addition of the hybrid system and not result in any fuel 

saving at all; it is therefore important that drivers are encouraged to limit their 

acceleration. One way in which driver behaviour and acceleration can be controlled 

is with a Driver Advisory System (DAS) which can give drivers feedback on their 

performance and help them to limit rates of acceleration; such devices will be 

discussed in the following section. 

2.2 Driver Behaviour Improvement 

It has been known for some time that driver behaviour has a significant effect on fuel 

consumption, which is reflected in the growing popularity of ‘eco-driving’ courses as 

fuel economy has become an increasingly important issue. As discussed, the retrofit 
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hybrid electric system studied in this work would likely require some monitoring of 

driver behaviour to achieve its potential. In view of this it seems only logical that 

such monitoring should also be carefully designed and its effects investigated with a 

view to achieving the maximum fuel savings that might be deliverable through this 

route, alongside the hybrid electric technology. 

Studies have shown that suitable driver training can reduce fuel consumption by 10% 

on average [54, 55]. However, it has also been suggested that the long-term effects of 

such courses are less significant. Beusen et al. [56] followed a set of car drivers for 5 

months before and 5 months after such a course and noted that the long-term effects 

varied between drivers, with around 20% relapsing to old habits. The authors of the 

study acknowledged that since the drivers volunteered for the course there was also 

likely to be some bias in the mentality of the drivers (many showed an increase in 

fuel efficiency in the months leading up to the course, prior to any training). It seems 

likely that relapse amongst an accurate sample of the population would be higher. A 

further problem with eco-driving training when applied to drivers of light 

commercial vehicles is that usually the driver does not pay the fuel bill, and as such 

may have significantly less motivation to save fuel. A similar study following bus 

drivers for a period of years found that 12 months after an eco-driving course fuel 

consumption was reduced by just 2% [57]. There is an apparent need to give 

continuous real-time advice to drivers to ensure they do not forget what they have 

learnt. 

The idea of using a real-time driver feedback device to try to improve fuel economy 

is not new. Van der Voort et al. [58] conducted experiments where such a device 

encouraged drivers to keep the engine near its point of optimal efficiency, and 

demonstrated fuel savings of up to 23% in urban driving. However this was 

demonstrated on a driving simulator and based on a relatively small number of 

driving hours. Furthermore, despite stating that using specialised sensors which must 

be added to the vehicle should be avoided, the system used inputs such as steering 

angle and headway (gap to vehicle in front) which are not readily accessible on most 

vehicles. 



 Chapter 2 – Literature Review 

 35 

More recently Wu et al. [59] showed that fuel savings during acceleration events (not 

over a drive cycle) of up to 31% could be achieved by encouraging drivers to follow 

an optimal acceleration profile. However these were shown using a driving 

simulator, and once again the system was quite complex, requiring information about 

headway as well as the state of traffic lights being approached. Furthermore, the 

human machine interface consisted of a colour bar representing good/bad levels of 

acceleration overlaid with a black line corresponding to the current rate of 

acceleration. Drivers were expected to alter their acceleration, moving the black line 

until it rested in the optimal region. Whilst this is fine in a simulator environment, the 

safety implications of having a driver concentrate on a moving display during 

transient events in the real world are questionable. It is likely the algorithms 

developed here are better suited to autonomous vehicle applications. This tension 

between safe driving and ‘green’ driving, and the volume of information made 

available to a driver was highlighted by Young et al. [55]. 

As part of the European FP7 project “ecoDriver” Nouveliere et al. [60] presented a 

more fully developed system with similarities to that developed by Wu et al. [59]. In 

this implementation Dynamic Programming was used to calculate the optimal future 

speed trace over a short time horizon, and the driver was encouraged to meet this. 

However, in order to derive the optimal speed trace access to GPS data, road speed 

limits and headway were all required. Information was fed back to the driver by 

means of a large ring around the speedometer (in the instrument cluster) which 

would change colour depending on whether the driver was above or below the 

calculated optimal speed. It is conceivable that this mechanism of feedback could be 

safely adopted as it is likely the driver may be generally aware of the colour in their 

peripheral vision without having to deliberately look at it frequently. As well as fuel 

consumption reduction this device placed considerable emphasis on potential for 

safety improvement, which was delivered primarily through a reduction of speeding 

events (time spent above the legal speed limit). Trials undertaken on-road with 6 

drivers showed substantial average fuel savings of 7.5%, though this was achieved at 

the expense of journey times being increased by 8% which may not always be 

tolerated. 
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Van Driel et al. [61] also set out some guidelines and lessons learnt from 

development of such a device, suggesting amongst other things that integrating the 

system with the vehicle CAN-bus would eliminate the need for dedicated sensors, 

reducing complexity and cost. 

Larsson and Ericsson [62] developed an acceleration advisory tool with a novel 

implementation, in that it provided feedback to the driver by adding resistance to the 

throttle pedal. Therefore if the system deemed that the driver was accelerating 

unnecessarily harshly it would make the throttle pedal more difficult to press. The 

results showed a significant reduction in throttle depression but no significant 

reduction in fuel consumption, and it was concluded that rate of acceleration is not 

the only parameter affecting fuel consumption. 

The findings of Larsson and Ericsson [62] highlight the fact that in order to reduce 

fuel consumption by modifying driver behaviour it is important to first understand 

what behaviours affect fuel consumption and to define quantifiable metrics. This in 

itself is no simple task as there are many facets of driver behaviour, some of which 

will vary depending on driving conditions and drive cycle, and not all of which the 

driver will necessarily be willing to change. Ericsson [63] defined 26 parameters to 

characterise driving patterns, divided into level measures (for example average speed 

and average acceleration), oscillation measures (which describe ‘jerkiness’) and 

distribution measures (proportions of time spent at various operating points). Three 

oscillation measures were defined: 

(1) Frequency of maximum and minimum values: This is calculated by finding 

the time between peaks and troughs in the vehicle speed trace, where the 

minimum speed difference between a peak and a trough is defined (for 

example 10 mph); 

(2) Integral of the square of the acceleration: This is defined as  
1

𝑛
∫ 𝑎2 𝑑𝑡 where 

a is the vehicle acceleration and n is the number of time steps; 

(3) Relative Positive Acceleration (RPA): This is defined as  
1

𝑥
∫ 𝑣𝑎+ 𝑑𝑡 where v 

is the vehicle speed, x is the total distance, and 𝑎+ is positive acceleration 

only. 
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Whilst level measures and distribution measures are good for quantifying behaviour 

over a drive cycle they rely on collecting a sample of data over a period of time and 

then reviewing it, as does oscillation measure #1. For this reason they are difficult to 

use as instantaneous measures of driver performance. A measure which can be 

calculated instantaneously is likely to be of more use in modifying driver behaviour 

real-time for two reasons: firstly, the driver is immediately aware of actions which 

negatively impact fuel economy rather than trying to relate statistics to their driving 

style retrospectively; secondly, the driver is not required to set aside time to analyse 

their feedback. A study conducted by Tulusan et al. [64] confirmed that corporate car 

drivers prefer instantaneous real-time feedback from an eco-driving device and find 

this more helpful in reducing their fuel consumption. 

Taking the terms inside the integrals only, the square of the acceleration and the RPA 

may both be calculated instantaneously. The RPA has an additional strength over the 

square of the acceleration in that small accelerations at high speed may produce 

values equally as large as rapid accelerations at low speed. This dependence on speed 

compensates for the fact that vehicles are capable of less severe acceleration when at 

high speed because the engine has a power limit and mechanical power is 

proportional to speed. RPA was shown to have a strong positive correlation with fuel 

consumption [65]. 

Fomunung et al. [66] defined the same quantity (speed times acceleration) as the 

Inertial Power Surrogate (IPS), also defining a Drag Power Surrogate (acceleration 

times velocity squared). The IPS was shown to have a positive correlation with NOX 

emissions. In an effort to quantify driver aggressiveness Ford Motor Co. later used a 

similar approach [67] to define a Power Factor,  𝑃𝑓 = 2𝑣𝑎. Power Factor was 

identified as a loose measure of inertial load, or change in kinetic energy, and the 

driver’s total ‘aggressivity’ was defined as the root mean square of Pf over a journey. 

2.3 Chapter Conclusions 

Energy management in a hybrid electric vehicle is a complex control task which 

ideally requires knowledge of the future. Most of the literature in the area assumes 
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the vehicle possesses a level of hybridisation that is consistent with a system 

originally conceived as a hybrid powertrain, not with a retrofit system. For example, 

the EM rated power consistently accounts for between a quarter and a third of the 

total powertrain rated power and the ICE is commonly downsized to reflect the extra 

power available from the EM [17, 19, 20, 24, 29]. The exception to this is [16] where 

the EM accounted for approximately 15% of the total powertrain rated power, but 

was integrated pre-transmission and so is equivalent to a larger EM mounted post-

transmission. For retrofit systems where the electrical powertrain is likely to be much 

smaller some of the functionality assumed, for example the ability to turn the ICE off 

and operate in ‘electric only’ mode, is not available. While the underlying concepts 

remain common this observation suggests there is a gap in the present research to 

examine good control of retrofit HEVs. 

HEV applications represent a particularly intensive duty cycle for the electric 

powertrain because it is likely to be operated near its maximum power capacity a 

great deal of the time. Much of the previous research in the area is based entirely in 

simulation and so rarely acknowledges the practical issues and limitations arising 

from battery thermal management, cell SOC imbalances and motor thermal 

management, for example. For this reason the addition of a factor representing 

powertrain stress to the cost function may prove beneficial when applying the control 

strategy to a real vehicle, and improve the optimality of controllers developed in 

simulation when applied to real vehicles. 

With regard to state-of-the-art control algorithms the approach achieving the greatest 

theoretical optimality while retaining the feasibility to be implemented in real-time is 

SDP, though in practice this may not be a great deal more effective than ECMS in 

reducing fuel consumption. Evaluation of the performance of SDP in real hybrid 

vehicles has thus far been extremely limited, and so there exists a research 

opportunity to progress this; however, to do justice to the algorithm a representative 

library of historic driving data would be required and the vehicle should be tested on 

a driving cycle consistent with these data.  

Adding a retrofit hybrid electric system to a standard vehicle effectively makes the 

vehicle more powerful. To ensure that in the real world deployment of the system the 
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electrical power capacity is used instead of, and not as well as, the ICE a driver 

advisory system would most likely be required. The development and trial of such a 

system would also provide the library of historic driving data necessary to design a 

SDP control strategy. With this in mind this research will aim to further the current 

body of knowledge by examining optimal control design for a retrofit HEV, 

conscious of stress on the electric powertrain, and where the driver does not have the 

explicit goal of saving fuel. 

2.4 Research Aims 

In view of the opportunities for further research highlighted in the Literature Review 

the scope of the work is broken down into the following aims. 

Aim 1: Design and test a driver advisory system to encourage eco-driving and 

restrict use of vehicles’ maximum available power. Use the real-world driving data 

collected to characterise vehicles’ normal use and select a representative drive cycle 

for testing HEV control strategies. 

Aim 2: Develop an optimal SDP control strategy for the retrofit HEV which allows 

stress exerted on the electric powertrain to be controlled, and evaluate this 

controller’s performance on-vehicle. 





 

   

 

 

 

Chapter 3 Driver Behaviour 

 

 

This section of the work may be regarded as a standalone contribution of its own 

merit, as well as an essential component in the development of the HEV control 

strategies. Development of a driver assistance system designed to reduce fuel 

consumption is described, and fleet trials of the system demonstrated fleet fuel 

savings of 7.6%. Driving data collected during the trials is statistically compared 

against common legislative cycles, with the conclusion that the LA92 cycle is the 

closest match to the vehicles’ typical in-service use. Recorded data is then used to 

generate a gear shift schedule for use with the LA92, which will together form the 

test cycle for dynamometer testing of the HEV. 

Parts of this chapter have been published in the following separate works: 

C. Vagg, C. J. Brace, D. Hari, S. Akehurst, J. Poxon and L. Ash, “Development and 

field trial of a driver assistance system to encourage eco-driving in light commercial 

vehicle fleets,” IEEE Transactions on Intelligent Transportation Systems, 14 (2), pp. 

796-805, 2013. 

C. Vagg, C. J. Brace, D. Hari, S. Akehurst, and L. Ash, “A driver advisory tool to 

reduce fuel consumption : SAE Technical Paper 2012-01-2087.” In: 5th 

International Environmentally Friendly Vehicle Conference, 2012-09-09 - 2012-09-

10, Baltimore, Maryland, USA. 
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In the scheme of this work this chapter will characterise the typical usage of the 

vehicle to be hybridised, which is crucial to achieving an optimal control strategy. 

The aim of this is to collect data which may be used to build a stochastic model of 

typical driving patterns, which will in turn form the basis of the optimal hybrid 

controller. As well as this the data collected will be compared against common 

legislative driving cycles to determine which is most representative of the vehicle’s 

real-world usage. However, it is also noted that driver behaviour has a considerable 

effect on fuel economy, and that it may be possible reduce the vehicles’ fuel 

consumption by encouraging drivers to adopt a less aggressive driving style, 

incorporating some techniques which are taught as ‘eco-driving’. This is particularly 

important when considered alongside the fact that the retrofit hybridisation being 

considered effectively increases the installed power of the vehicle, and the desired 

effect would not be achieved if this additional power were simply exploited, and 

wasted, in more aggressive driving. 

In light of these observations this chapter will describe the development of a retrofit 

real-time DAS designed to reduce fuel consumption by encouraging eco-driving in 

drivers of light commercial vehicles. Field trials of the system will then be described, 

with analysis of the driving patterns observed. Finally, the recorded data will be 

compared against legislative driving cycles to determine the most representative test 

cycle for the hybrid vehicle and controller to be evaluated over. 

3.1 Driver Assistance System (Lightfoot) 

With the intention that the DAS developed here should be viable as a commercial 

product, and potentially independent of the retrofit hybrid electric system, it must be 

designed such that it is: 

a) Cheap: requiring a minimum of dedicated sensors, therefore also allowing 

quick installation; 

b) Simple: such that its functionality is transparent to the driver and perceived as 

fair, and to avoid the need for calibration on different vehicle models; 

c) Safe: demanding minimal active attention from the driver such that they are 

not distracted from the road conditions. 
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Focussing on commercial vehicle drivers offers greater opportunity in some respects, 

because a driver’s performance can be fed back to their employers and so the system 

can assume some authority. Whereas drivers in their own vehicles may choose to 

ignore driving advice the subjects of this system may be obliged to improve their 

driving behaviour. On the other hand commercial drivers present additional 

challenges because they do not typically pay for the fuel they use, and so may be less 

motivated to reduce their consumption. Furthermore, the driver’s obligation to obey 

the system increases the necessity for good design, and since its installation is most 

likely the decision of the employer and not the driver there is a risk of resentment if 

the driver perceives the advice of the system to be unfair. 

3.1.1 System Design 

The system implemented was based on the method set out by Fomunung et al. [66] to 

calculate the IPS real-time. As discussed in Chapter 2 this metric is one of relatively 

few which may be determined instantaneously, and has been shown by others to have 

a clear link to fuel consumption.  

IPS is calculated instantaneously by multiplying the speed and acceleration, as 

shown in Figure 3-1, where the acceleration is derived from change in speed over 

 

Figure 3-1:  Schematic showing the calculation of short-term and long-term IPS, on which the core 

functionality of the DAS algorithm is based. Vehicle speed is the only essential input. 
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0.5s. The instantaneous IPS is passed through a low-pass filter with a time constant 

of 0.5s to smooth it; this is referred to as the Short-Term IPS (IPSST) and is displayed 

to the driver using a strip of 9 LEDs mounted inside the vehicle instrument cluster. 

Of the LEDs the first 4 are green, followed by 3 amber and then 2 red (Figure 3-2), 

to convey at a glance how economical the instantaneous driving behaviour is. 

Monitoring a driver’s behaviour directly with IPSST was found to be problematic as 

all drivers occasionally need to accelerate harshly. Some method of monitoring IPS 

over a longer period of time was therefore required, and this was achieved with the 

implementation of the Long-Term IPS (IPSLT). As shown in Figure 3-1 the value of 

IPSLT is calculated in a manner analogous to a P-control loop, where a modified 

value of the instantaneous IPS is the ‘reference’, IPSLT is the process variable, and 

𝐾𝑝 the proportional gain.  

The effect of this formulation is that IPSLT tracks the instantaneous IPS, continually 

moving towards it. Calculation of IPSLT is in fact directly analogous to passing IPS 

through a low-pass filter, however the implementation shown was preferred because 

of the ease with which signals could be intercepted and modified. The value of IPSLT 

was the basis for determining whether a driver’s behaviour was acceptable or not, 

and its inherent properties meant that brief episodes of extremely aggressive driving 

could be identified as well as moderately bad driving sustained over a longer period.  

In calculation of the IPSLT  two notable modifications were made to the 

instantaneous value of IPS to refine the algorithm’s behaviour: use of a degrade 

factor and inclusion of gear shift indicator (GSI) advice, such that the discrete-time 

transfer function of the IPSLT logic may be written as 

 IPSLT[𝑘] = IPSLT[𝑘−1] + 𝐾𝑃 (𝐾𝑑𝑔𝑑(𝑣[𝑘] ∙ 𝑎[𝑘]) + (𝑝 ∙ 𝐺[𝑘]) − IPSLT[𝑘−1]) (3-1) 

where 𝑘 is the discrete time index,  𝐾𝑑𝑔𝑑 the degrade factor, 𝑝 the value of the 

penalty for ignoring the GSI indicator, and G a Boolean flag indicating the 

application, or not, of this penalty. This calculation is performed at a 10 Hz task rate. 

By multiplying the raw IPS signal by a degrade factor, 0< 𝐾𝑑𝑔𝑑<1, the IPS could be 

artificially reduced during moderate accelerations in situations where it might be 
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unfair to penalise the driver. Specifically, two cases were screened for: long 

accelerations of moderate magnitude which might indicate accelerating up to a safe 

speed on a slip road, and accelerations at very low throttle which would suggest a 

steep negative road slope. 

It was decided to incorporate gear shift advice since it is well know that reducing 

engine speed is one of the most straightforward ways of maximising the efficiency of 

modern automotive engines [68] by reducing air pumping losses. The GSI was 

integrated with the rest of the logic so that its advice could be enforced. Many 

modern vehicles are equipped with GSIs as standard – mainly for legislative reasons, 

and these often go unnoticed by the driver – and so the vehicle’s built-in gear shift 

signal was used where this could be detected on the CAN-bus. For the case where 

OEM-designed gear shift advice was not available a simple logic was implemented 

which advised upshifts at 2200 rpm. In order to avoid inappropriate gear shift advice 

this shift flag was suppressed at high throttle positions where a steep gradient or an 

overtaking manoeuver was suspected. 

The gear shift flag was conveyed to the driver with a green light marked “Shift Up” 

in the instrument cluster (Figure 3-2), however since it is not expected that drivers 

 

Figure 3-2:  Photograph showing a vehicle instrument cluster with Lightfoot during key-on initialisation. The 

Lightfoot add-on can be seen in the centre; LEDs indicating IPSST are below the standard vehicle computer 

screen, and those indicating IPSLT and the GSI are positioned above the screen.  
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routinely watch the instrument display during driving the light was reinforced with a 

short beep to notify the driver when it illuminated. Upon illumination of the GSI 

drivers were given 1 s in which to change gear, after which a penalty 𝑝 of 200 

km
2
/h

2
s was added as an offset to the raw IPS (equation (3-1) and Figure 3-1), in turn 

causing the value of IPSLT to rapidly climb.  

In a similar fashion to IPSST the value of IPSLT is displayed to the driver, this time 

using a 5 bar LED display following the green-amber-red convention (Figure 3-2). 

As already noted it is not expected that the driver will ordinarily look at this visual 

display and so the driver is also informed audibly when their driving style is deemed 

unnecessarily aggressive, as determined by the level of IPSLT. Three thresholds are 

used such that the crossing of the first causes “Warning 1” to be issued audibly, the 

second causes “Warning 2” to be issued, and a failure of the driver to effect a 

reduction in IPSLT causes a “Violation” to be issued if the third threshold is reached. 

These three thresholds were set at 100, 150 and 185 km
2
/h

2
s respectively, and the 

value of IPSLT was saturated at the Violation threshold such that this could not be 

exceeded. The time taken for a warning to be issued based on GSI logic would 

depend on the value of IPSLT when the GSI was activated, however because the 

penalty offset was higher than the Violation threshold ignoring the GSI advice would 

always ultimately result in a Violation, usually after around 25 s. 

Although IPS inherently and logically depends on speed, and so for the same 

acceleration is larger at higher speeds, in practice this intrinsic adjustment was not 

found to result in a subjectively consistent feel to the logic across the speed range. 

This was understood to be because at low speeds, which tend to suggest urban 

driving, accelerations tend to be relatively brief. Conversely at higher speeds, which 

are indicative of rural driving, accelerations tend to be sustained over longer periods 

of time resulting in greater accumulation of IPSLT. For this reason it was deemed 

necessary to vary the value of 𝐾𝑝 with speed, using a value of 0.11 below 50 km/h 

and 0.07 above 75 km/h, with linear interpolation in the range 50-75 km/h; this logic 

resulted in better subjective fairness. It may also be obvious that 𝐾𝑝 controls the rate 

at which IPSLT falls as well as rises, and it was generally felt that the natural fall rate 

was too fast. In order to address this a rate limit was placed on IPSLT such that the 

fall rate was limited to -3 km
2
/h

2
s

2
. 
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3.1.2 Implementation of Embedded Code 

The logic described in Section 3.1.1 was implemented in SIMULINK and the Real-

Time Workshop add-on was then used to auto-generate C code. This source code 

was integrated with other low-level functionality by engineers at Ashwoods 

Automotive, to create a project structure which could be compiled and run as 

embedded code on a target microprocessor. In this work a Microchip PIC32 

microcontroller was used to run the driver behaviour logic as well as the hybrid 

control strategy described in Chapter 4. 

3.1.3 Field Testing 

For assessment of the advisory system’s efficacy in helping drivers to reduce their 

fuel consumption field trials were undertaken with 7 companies in the UK, with the 

device fitted into a total of 15 vehicles. Companies used in the trials represented a 

range of business sectors from mail delivery to environmental site surveyance, 

however the majority were providers of delivery or technical support services 

primarily operating in urban environments. During the trial baseline data were 

recorded from each vehicle for a period of approximately 2 weeks, of which the 

drivers were unaware and so would have driven naturally. Data collection was 

achieved by installing the electronic hardware of the DAS equipped with data 

logging capabilities, but without fitting the display and with audio feedback disabled. 

Following this period the display was fitted, audio feedback was enabled and the trial 

run for approximately 2 further weeks with the system active. Throughout the trials 

essential data were recorded from the vehicle CAN-bus at 10 Hz via the On-Board 

Diagnostics (OBD) port and stored to a SD card. These data included the most 

essential inputs and outputs of the ECU such as vehicle speed, accelerator pedal 

position, engine speed, engine load, engine coolant temperature, and fuel injection 

rate, allowing insight into the behaviour of both the vehicle and driver.  

Details of the companies involved in the trial can be seen in Table 3-1 as well as the 

total duration of each phase of the trial. The number of active days shown are the 

number of days during which the vehicles were in active use, since they tended not to 

be used every day of the week; these numbers are approximate as usage may have 

varied slightly between vehicles within each company.  
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The total duration of each trial was about 4 weeks; this was considered to be long 

enough to collect representative data from each vehicle which is desensitised to daily 

or weekly fluctuations in usage pattern, cargo load, traffic or weather, while short 

enough not to be affected by seasonal changes; thus the effects of these confounding 

factors were minimised. Each vehicle was normally paired with only one driver and 

so a comparison between vehicles is also a comparison between drivers. All of the 

vehicles involved in the trial were Ford Transit vans of Euro IV emissions stage 

specification built from 2008-2011, further details of which can be found in Table 

3-2.  

For the calculation of vehicle fuel consumption a reliable measure of fuel consumed 

is clearly essential, and for this purpose the logged ECU engine fuelling rate was 

used. This measure was regarded as precise but not accurate, that is each ECU may 

have a small calibration offset, but this should be constant. With this in mind it is 

reasonable to calculate percentage fuel savings of each vehicle and to compare these, 

but the comparison of absolute fuel consumption figures between vehicles should be 

cautioned against. 

3.1.4 Results 

During the trials a total of 1,107 hours of real world driving data were recorded, 

covering 39,300 km and comprising 5,587 individual trips. In the greater context of 

this work these data offer a wealth of information pertaining to typical vehicle usage 

patterns and driver behaviour which is essential knowledge for good design of hybrid 

vehicle control strategies; however it is also worthwhile examining the fuel savings 

achieved by the system.  

Table 3-1:  Details of companies and vehicles involved in the trial. 

Company 
No 

Vehicles 
Vehicle Use 

Baseline duration 

days (active daysa) 

Live duration 

Days (active daysa) 

A 3 Technical call-out service 14 (13) 14 (13) 

B 3 Retail parts delivery 15 (13) 14 (12) 

C 2 Fresh produce delivery 11 (9) 14 (12) 

D 2 Technical call-out service 14 (10) 22 (16) 

E 2 Site visits 16 (10) 22 (13) 

F 2 Technical call-out service 14 (9) 18 (12) 

G 1 Support service 14 (12) 16 (14) 

aActive days are the days during each phase of the trial where the vehicle(s) were in active use. 
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Fuel consumption results for each vehicle are shown in Table 3-2 for each vehicle, as 

well as the total fleet savings calculated as the average of each vehicle’s savings 

weighted by distance covered. Overall it can be seen that the fleet fuel consumption 

was reduced by 7.61% - an extremely encouraging figure carrying considerable 

environmental and monetary value. It is also interesting to note that there is a large 

range in savings, from 0.43% to 12.03%. This range is presumably because of a 

difference in the drivers’ aggressivity to begin with meaning that some had more 

potential for improvement than others, though possibly also because the efficacy of 

the device depends somewhat on the drive cycle a vehicle is used over.  

In order for the reported fuel savings to be meaningful it is important that the 

vehicles usage was broadly similar during each phase of the trial. Simple analysis 

using cumulative probability plots showed that on the whole the usage was 

comparable, however it became apparent that the data for some vehicles showed 

inconsistencies in the amount of time spent stationary with the engine idling. Further 

analysis showed that whilst the great majority of idling events were of less than 60 

seconds, as might be expected, a small subset were far longer, with the longest being 

2.5 hours. This was problematic for the analysis because although relatively little 

fuel is consumed at idle this can become significant over a long period of time, and 

since no distance is covered this can cause skew in the fuel consumption per unit 

Table 3-2: Vans involved in the trial and the idle-corrected fuel savings achieved by each. 

Company Van Vehicle Type 

Total Distance 

Covered 

(km) 

Baseline Fuel 

Consumption 

(L/100km) 

Live Fuel 

Consumption 

(L/100km) 

Fuel Saving 

(%) 

A 1 N/A 2375.2 8.20 7.44 9.16 

2 260S  2.2L 5-speed 1635.0 9.12 9.09 0.43 

3 260S  2.2L 5-speed 1402.7 9.08 7.99 12.03 

B 4 350E  2.4L 6-speed 7666.1 10.12 9.00 11.08 

5 280S  2.2L 6-speed 6604.2 7.99 7.20 9.89 

6 350L  2.4L 6-speed 2613.4 9.74 9.57 1.75 

C 7 350L  2.4L 6-speed 3727.9 11.00 10.01 8.97 

8 300M 2.2L 6-speed 2918.3 10.43 9.20 11.82 

D 9 350M 2.2L 6-speed 1740.7 9.92 9.08 8.48 

10 350M 2.2L 6-speed 1737.5 9.18 8.86 3.44 

E 11 350M 2.4L 6-speed 2065.3 11.04 10.98 0.49 

12 350L  2.4L 6-speed 2355.3 11.14 10.83 2.77 

F 13 300S  2.2L 5-speed 917.1 9.05 8.86 2.08 

14 300S  2.2L 5-speed 507.3 10.77 10.31 4.29 

G 15 280S  2.2L 5-speed 1036.0 9.74 8.97 7.91 

  Average fuel saving (weighted by distance travelled per vehicle) 7.61 
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distance (L/100km for example). For this reason all idling events longer than 90 

seconds, representing the 97
th

 percentile, were regarded as outliers and removed from 

the analysis; the data presented in Table 3-2 have been adjusted for idling time in this 

way.  

Correction of the data to remove exceptionally long idling instances resulted in 

satisfactory parity between the Baseline and the Live data sets. The most acute 

example of idling time discrepancy in the raw data is shown in Figure 3-3(a), along 

with the corrected data in Figure 3-3(b). This figure illustrates the perhaps surprising 

proportion of time for which light commercial vehicles are at idle, and suggests that 

the introduction of start-stop systems which are now common in new vehicles may 

have great potential for reducing fuel consumption in real world driving. Figure 3-3 

also indicates a significant shift towards lower engine speeds during the Live trial 

when compared against the Baseline for this vehicle, a phenomenon which will be 

further discussed with respect to the complete fleet later (Figure 3-7).  

To illustrate the functioning of the algorithm and the effect of the device on driver 

behaviour Figure 3-4 and Figure 3-5 are provided as exemplary excerpts of urban 

driving before and after the device was activated. These data are recorded by the 

same driver completing similar journeys with roughly the same average speed. As 

explained in Section 3.1.1 periods of acceleration cause peaks in IPSST, generally 

 

Figure 3-3:  Cumulative probability distribution of engine speed for Van 14 before removal of exceptional 

idling instances (a) and after (b). The 10% discrepancy in idling time between Baseline and Live phases of the 

trial could have skewed the results, and is reduced to 3% in the idle-corrected data set.  
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causing IPSLT to rise. With the system active the driver has been encouraged to 

reduce the magnitude of acceleration events with respect to the baseline condition, 

and the IPSLT is correspondingly reduced.   

  

 

 
Figure 3-4:  Example of urban driving during the Baseline phase of the trial, and the accompanying response 

of IPSST and IPSLT. The solid red line at 100 km2h-2s-1 on the IPSLT graph indicates the level of the Warning 1 

threshold; this driving would therefore have warranted several warnings, though the driver would have been 

unaware.  

 

 
Figure 3-5:  Example of data collected from the same van as in Figure 3-4, during the Live phase with the 

system active. Note the smoother driving style has resulted in lower values of IPSST and correspondingly lower 

values of IPSLT. 
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Analysis of the instantaneous algorithm response is helpful in understanding the 

interaction of the system with the driver, however to gain insight into the change in 

driving style effected by the system it is more helpful to consider the higher-level 

statistics. Table 3-3 shows the changes in average fuel consumption, engine load, 

engine speed, and accelerator pedal position during the Live phase of the trial, which 

give a good indication of how the drivers’ behaviour was altered. In calculating these 

figures the data from all vehicles was regarded as one continuous data set, thus the 

figures represent the ‘fleet average’, with vehicles having recorded the most usage 

contributing more to the overall average; this is not the same as the average which 

any one driver, selected at random, might expect to see. 

The observed drop in average accelerator pedal position by 10.93% is an indication 

of the less aggressive driving style being adopted, and the reduction in average 

engine speed is the result of gear shift advice. It is interesting as an aside to note that 

the average engine load was actually increased, most likely because the shift of 

engine operating point toward lower speeds requires an increase in torque to deliver 

comparable tractive power. The observed reduction in fuel consumption is 

understood to be a result of both smoother driving and reduced engine speed. A 

reduction in the average positive IPS value corresponds to a decrease in the tractive 

work consumed per kilometre driven. In contrast a reduction in average engine speed 

would imply a shift towards higher torque operation for the same net power output, 

moving the engine operating point towards the region of the speed-torque envelope 

where automotive engines are typically most efficient. There are therefore at least 

two mechanisms by which fuel could be saved – one pertaining to how much energy 

is required, and the other how efficiently this energy is supplied. Further insight into 

the two mechanisms of fuel saving is offered by consideration of Figure 3-6 and 

Figure 3-7, which compare the probability distributions of raw IPS and engine speed 

during the Baseline and Live phases of the trial. 

Table 3-3: Changes in average operating parameters with Lightfoot active. 

 Fuel 

Consumption 

(L/100km) 

Engine Load 

(%) 

Engine Speed 

(rpm) 

Accelerator 

Position 

(%) 

Baseline 9.68 36.65 1575 17.45 

Live 8.94 39.63 1412 15.54 

Change (%) -7.61 +8.14 -10.36 -10.93 
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Probability data in Figure 3-6 ignore periods where the vehicle is stationary, as well 

as when the value of IPS is negative. The data therefore represent the distribution of 

positive IPS while the vehicle is moving, and the y-axis intercept represents the 

proportion of time spent at cruise. The values of IPS used in generating the plot are 

not those which would have been calculated by the algorithm real-time, but are 

instead calculated off-line over the recorded speed trace. The acceleration across 

each time sample is therefore calculated using the adjacent speeds (at the previous 

and subsequent timesteps), 𝑎(𝑡) =
𝑣(𝑡+1)−𝑣(𝑡−1)

2∙𝛥𝑡
, which gives a more precise and less 

noisy value for instantaneous acceleration than is possible to calculate in real-time.  

Examination of Figure 3-6 reveals that the IPS distribution has shifted considerably 

away from high values and towards the mid-range. For example, the frequency of 

IPS exceeding 200 km
2
/h

2
s, which corresponds to the threshold of the 7

th
 LED (3

rd
 

amber), has been reduced by half (from 11.0% to 5.4%), while moderate values of 

IPS have become more frequent. In contrast the frequency of low values of IPS 

below 50 km
2
/h

2
s is relatively unchanged, and the proportion of time spent at cruise 

(indicated by the y-axis intercept) is almost identical. This is the clearest indication 

that the IPS logic achieved the design intent of discouraging aggressive acceleration 

in favour of more moderate accelerations.  

 

Figure 3-6:  Cumulative Distribution Functions for positive IPS during the Baseline and Live phases of the 

trial. Low values of IPS are more common in the Live phase and the frequency of IPS>200 km2/h2s is 

halved.  
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To study the effect of the GSI logic Figure 3-7 presents histograms of engine speed 

during the trial and shows that drivers’ choice of engine operating point changed 

substantially. During the Live trial the advice of the GSI resulted in drivers 

upshifting earlier, greatly reducing the proportion of time spent above 1700 rpm and 

encouraging use of the engine around 1450 rpm. In both phases of the trial an 

anomaly is evident in the region 2100-2200 rpm where the frequency density is very 

high; this engine speed typically corresponds to 96-98 km/h in top gear, and many of 

the vans were electronically limited to 100 km/h, so it is likely that this discontinuity 

results from high-speed cruising. 

In the context of determining the success of Lightfoot it is important to remember 

that in the commercial sector the financial gains achieved through fuel savings may 

be negated if journey times were increased at all. It is perhaps tempting to suppose 

that reduced rates of acceleration result in slower speeds, and therefore longer 

journey times. In fact this logic is flawed because during normal driving it is unusual 

for speed to be unrestricted and so journey time is more often determined by traffic 

conditions than by how quickly one can accelerate; the opposite is of course true on a 

race track. This logic is supported by the observation that the average speed of all 

vehicles during the Baseline phase of the trial was 38.59 km/h, which actually 

increased slightly to 38.75 km/h during the live phase, despite reduced rates of 

 

Figure 3-7:  Engine speed probability density during the Baseline and Live phases of the trial. A 

considerable shift towards lower engine speeds is evident during the Live phase. Bars showing engine 

speed below 850 rpm have been omitted for clarity. 
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acceleration. It is difficult to comment on the statistical significance of such a small 

difference, however it suffices to say that the introduction of Lightfoot appeared not 

to have adverse effects on average speeds, and therefore journey times, and so the 

system shows strong potential for commercial application.  

3.2 Drive Cycle Selection 

The aim of this work is to develop a hybrid vehicle control strategy which is optimal 

for the usage patterns to which the vehicles are likely to be exposed. In order to 

evaluate the performance of the eventual control strategy it is therefore essential that 

the test cycle over which it is assessed is representative of this same usage, otherwise 

the evaluation phase will not give an accurate impression of the controller’s 

behaviour under real world conditions. In view of this an important part of this work 

is to define a representative test cycle over which to evaluate the performance of the 

hybrid electric system and its controller.  

Whilst the huge quantity of real world drive cycle data collected would have made it 

possible to design a bespoke cycle from scratch this would have been an enormous 

undertaking in its own right, and would also make the results less transparent to 

others not familiar with this new drive cycle. For these reasons the preferred method 

was to compare the real world data against a broad range of widely used legislative 

test cycles, and to select the cycle most similar. 

Analysis of driving patterns is a complex activity, since there are a great many facets 

and parameters which can be used characterise a cycle, and since it is unlikely to be 

possible to perfectly align all of these it is necessary to focus on matching some 

while compromising on others. The most basic of approaches to this problem is to 

consider a table of average or extrema parameters – such as vehicle speed, 

acceleration, and power – and to try to match these between the collected data and a 

drive cycle. This may serve as a very approximate tool, but is far from ideal as an 

average gives only extremely limited insight. A more advanced approach which has 

been used by some [52] is to consider the cumulative frequency distributions of these 

same parameters, with the aim of matching the curve shapes. Although a 

considerable improvement this still leaves open substantial margin for inadvertent 

erroneous matching, since considering the frequency distribution of each parameter 
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in isolation is an unfair simplification. For example, an acceleration of 2 m/s
2
 at low 

speed (e.g. pullaway) may be regarded as quite modest; however the same 

acceleration at motorway speeds would imply a much larger power use and be 

regarded as extremely aggressive driving. Decoupling speed and acceleration and 

considering each separately does not therefore give sufficient insight into the 

aggressivity of the driving cycle. 

3.2.1 SAFD Analysis 

The approach taken here was to define a two dimensional discrete state space 

consisting of speed and acceleration. By placing each sample point into its 

appropriate bin a two dimensional histogram, or surface, was constructed 

representing the speed-acceleration frequency distribution (SAFD) of the cycle. The 

surface represents the probability distribution of the driving cycle in the speed-

acceleration plane, and so the volume under the surface has a sum of exactly one. 

The shape of a SAFD surface gives detailed insight into driving patterns, where the 

speed and acceleration distributions are not artificially decoupled, but instead may be 

considered simultaneously to build a better picture of the duty cycle and its 

aggressivity. Though it is not often employed the benefits of this method of analysis 

have been understood for some time [69]. 

SAFD data were calculated for each vehicle involved in the trial as well as for a 

range of common legislative driving cycles, and examples of the resulting surfaces 

are presented in Figure 3-8 and Figure 3-9. In the probability calculations a linear 

interpolation regime was used so that data samples not lying exactly on a grid node 

of the state space could be apportioned appropriately between the surrounding nodes, 

rather than simply rounded to the nearest. Interpolation was particularly important in 

the analysis of the set of legislative tests to ensure the resulting surfaces were not 

unduly jagged because of the relatively few data points in any one drive cycle. The 

idle condition, where speed and acceleration were exactly zero, was not included in 

the analysis as it otherwise dominates. Since the hybrid system is inactive at idle it is 

not a particularly important condition to consider in the selection of a representative 

driving cycle. 
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Figure 3-8: SAFD plot for the combined data of vans 4, 6 and 7 with Lightfoot active. 

 

 

Figure 3-9: SAFD plot for the LA92 legislative drive cycle, sampled at 10 Hz. 
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Having obtained SAFD data for each legislative drive cycle these were compared 

against the real world data collected from each van, both with and without Lightfoot 

fitted. Using equation (3-2) a percentage agreement was obtained for each 

combination in an effort to determine which test cycle was the closest statistical 

match to the real world usage patterns observed. 

 % agreement = 100 × (
2 − ∑|𝑆𝐴𝐹𝐷1 − 𝑆𝐴𝐹𝐷2|

2
) (3-2) 

In the calculation 𝑆𝐴𝐹𝐷1 and 𝑆𝐴𝐹𝐷2 are the two frequency distributions to be 

compared. The difference between their elements is summated and subtracted from 

100%. Note that a factor of two is necessary since two SAFDs with no overlap at all 

would have a summative difference of two. An alternative calculation can be done 

using a chi-square (𝜒2) test, however this process squares the differences and it was 

not felt there was any particular justification for this in the analysis. The percentage 

agreement between each of the legislative drive cycles and the vans is shown in 

Table 3-4 for the case without Lightfoot, and in Table 3-5 and Figure 3-10 for the 

case with Lightfoot.  

 

Figure 3-10:  Percentage agreement between common legislative cycles and each vehicle data set with 

Lightfoot active. Data corresponding to van numbers 4, 6 and 7 are highlighted in red since these have the gear 

ratios most representative of the test vehicle.  
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Table 3-4: Percentage agreement between common legislative driving cycles and each vehicle data set 

without Lightfoot. The best agreement in each row is highlighted in bold. 
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1  38.1 38.0 64.5 64.4 74.2 66.7 59.1 29.0 70.6 70.5 
2  37.3 37.2 58.1 59.9 64.2 77.2 42.6 23.9 60.1 63.2 

3  35.3 36.1 57.7 59.1 64.8 76.7 44.0 25.8 61.0 61.9 
4 * 28.4 30.7 42.5 40.7 62.6 34.2 58.3 56.6 62.9 50.5 

5  32.9 34.1 53.4 51.7 69.7 48.9 66.7 41.7 68.5 62.2 

6 * 36.9 37.3 59.9 60.5 70.4 73.0 51.0 24.0 66.7 67.9 
7 * 35.7 33.5 53.4 52.4 74.6 57.0 60.1 30.7 67.4 65.7 

8  34.8 33.8 55.1 54.9 72.8 64.4 53.5 27.1 64.5 64.4 
9  38.2 39.2 61.1 62.4 67.6 75.7 48.3 25.4 65.2 67.2 

10  33.5 33.9 47.2 47.1 68.5 53.4 51.9 38.3 63.8 58.4 
11  32.9 34.5 52.8 50.2 71.7 45.9 66.9 43.4 72.0 62.8 

12  38.3 37.6 63.3 61.8 65.7 58.2 64.7 25.3 67.8 71.0 

13  36.5 36.5 64.8 67.3 58.1 77.2 37.8 17.6 53.7 60.4 
14  35.0 35.0 57.5 60.3 57.4 81.2 34.7 17.5 53.0 59.0 

15  34.7 34.7 52.1 54.9 55.8 81.2 32.4 17.8 53.4 59.1 

Mean- 3 vans (*) 33.7 33.8 51.9 51.2 69.2 54.7 56.5 37.1 65.6 61.4 
Mean- All vans 35.2 35.5 56.2 56.5 66.5 64.7 51.5 29.6 63.4 62.9 

 

 

Table 3-5: Percentage agreement between common legislative driving cycles and each vehicle data set with 

Lightfoot active. The best agreement in each row is highlighted in bold. 
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1  37.7 37.0 62.9 61.8 74.7 60.4 63.9 30.6 72.7 71.3 
2  35.9 35.9 57.8 60.3 59.0 80.0 36.1 18.5 55.4 61.7 
3  37.7 37.5 60.9 63.5 61.8 79.4 40.0 19.3 58.0 64.0 

4 * 32.1 33.0 51.9 47.5 70.3 39.3 66.7 44.8 69.7 59.9 

5  34.0 34.2 54.2 51.5 69.8 45.4 69.2 42.3 69.4 64.6 
6 * 37.7 37.9 60.8 61.5 69.0 75.0 49.3 21.8 65.6 69.9 

7 * 37.7 34.7 56.5 55.1 75.9 57.2 62.0 29.9 68.6 68.5 
8  36.7 36.0 61.1 60.8 74.6 68.2 56.5 24.8 67.2 70.6 

9  38.1 39.6 60.2 60.8 70.6 63.7 55.6 35.4 71.4 68.2 

10  36.4 36.6 54.2 52.3 75.5 54.3 66.5 34.2 71.4 68.4 
11  32.8 34.9 54.1 51.6 72.3 48.7 67.2 40.7 72.6 64.4 

12  37.4 36.8 61.0 58.8 67.3 56.6 65.9 25.5 68.2 70.7 
13  37.5 37.0 65.9 68.5 59.7 76.1 39.2 19.7 55.2 61.8 

14  35.1 35.1 55.3 58.1 56.0 80.5 34.4 17.3 54.3 59.9 
15  35.8 35.8 55.6 58.1 56.8 81.5 33.6 17.0 53.8 61.1 

Mean- 3 vans (*) 35.8 35.2 56.4 54.7 71.7 57.1 59.3 32.2 68.0 66.1 
Mean- All vans 36.2 36.1 58.2 58.0 67.6 64.4 53.7 28.1 64.9 65.7 

 

Key to non-standard abbreviations:   

NEDC120 Standard NEDC Art.Urb Artemis Urban 

NEDC100 NEDC limited to 100 km/h Art.Rd Artemis Road 

WLTP.F WLTP “fast” version Art.Mw Artemis Motorway 

WLTP.S WLTP “slow” version   
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Comparison of driving patterns using SAFDs considers only the distributions of 

speed and acceleration. When constructing the stochastic driving distributions which 

the SDP hybrid vehicle controller will be based on (Chapter 5.2) it will be extremely 

important these incorporate representative and consistent use of vehicle gears, since 

for a fixed driving cycle it is the gear selection which determines the engine speed-

load operating point. Considering the data from all of the vehicles involved in the 

trial would not result in consistent use of the gears, because when purchasing a LCV 

customers often have a choice of gearing, achieved through different final drive 

ratios, allowing the same vehicle model to be tailored for different purposes. Use of 

data from all of the vehicles may therefore introduce a large variance in gear shift 

speeds. A further consideration for implementation of the SDP hybrid vehicle 

controller is that the vehicles used to construct the stochastic gear shift data ought to 

have similar overall gear ratios to the test vehicle on which the control strategy is 

physically implemented and tested; otherwise the speed-load operating points of the 

engine will be fundamentally shifted. 

Of the 15 vans analysed three have identical gear ratios to one another, and are 

extremely closely matched to the test vehicle. For this reason these three vans - 

numbers 4, 6 and 7 - are of particular interest. By selecting data from these vans to 

build the stochastic drive cycle model it is ensured that the test vehicle will be 

exercised in a manner most similar to real world conditions. 

Whether considering the data from all of the vans or from the three highlighted as of 

particular interest, and whether with or without Lightfoot, the LA92 drive cycle is 

unanimously the best fit. This was therefore selected as the drive cycle used in the 

development and evaluation of hybrid control strategies both in simulation and for 

dynamometer testing. 

3.2.2 Gear Shift Schedule Design 

Following the selection of the LA92 speed trace, a final step was required to fully 

define the drive cycle. Unlike the NEDC, Artemis cycles and others, the LA92 does 

not have a standard time-based gear shift schedule which can be used with manual 

transmissions. Instead, the cycle requires that a custom gear shift schedule be 
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designed according to the same regulatory framework set out for the FTP drive cycle 

in CFR Title 40 §86.128-00 [70]. This framework does allow for gear shifts to be 

effected as a function of road speed or engine speed, however the speeds defined are 

now extremely unrepresentative of modern vehicles with more than 5 gears and so 

the alternative method using an empirical “Shift Speed Survey” described in 

Advisory Circular (A/C) No. 72A [71] was used instead. The procedure set out in 

A/C 72A considers the road speed at which gear shifts occur during acceleration 

events and in cruise conditions during normal driving. For acceleration events the 

mean shift speed is used; the calculation of shift speeds during cruise conditions is a 

little more elaborate however: 

“For any particular gear, the cruise speed should be the speed 

at which the number of cruise shift data points … in lower 

gears at higher speeds is exactly offset by the number in that 

and higher gears at lower speeds. For example, the fourth 

gear cruise speed can be determined by adding the number of 

points in fourth and fifth gears starting at the lowest speed, 

adding the number of points in first through third gears 

starting at the highest speed, and selecting the speed where 

the two sums become equal. This speed can be graphically 

determined by plotting the cumulative points in fourth (and 

higher gears) starting at the lowest speed and the cumulative 

points in third (and lower gears) starting at the highest speed. 

The speed at which the two plots intersect is the speed at 

which the cumulative points offset one another.” 

– A/C 72A, pp10. 

An applied example of this method is shown in Figure 3-11. The only deviation from 

the method set out was that the three vans were not weighted in any way to account 

for differences in the number of shift points recorded by each. Instead the three data 

sets were treated as though they were one continuous data set, therefore reflecting the 

relative use of each vehicle. 

The shift speeds derived using these legislative procedures are shown in Table 3-6 

and these were applied to the LA92 speed trace to complete the drive cycle. Having 

applied the procedure two further filtering operations were deemed necessary in 

order to remove anomalous gear shift points and ensure the resulting gear shift 

schedule was realistic:  
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1. Where a gear was selected, and then the previous gear re-selected only one 

second later, the gear change events were regarded as noise and ignored. 

2. During harsh accelerations it is possible that the acceleration shift speed 

values dictate an upshift every second. This behaviour was not regarded as 

realistic, and the shortest time in which the driver could perform an upshift 

while also delivering tractive power to accelerate the vehicle was felt to be 

two seconds. In these cases, therefore, upshifts were delayed as necessary to 

ensure that each gear was engaged for at least two seconds. 

The final time-based gear shift schedule used is made available in Appendix 1. 

 

Table 3-6: Gear shift speeds determined from road survey, according to the procedure set out in 

Advisory Circular No. 72A. 

 Gear 2 Gear 3 Gear 4 Gear 5 Gear 6 

Acceleration Shift Speed (km/h) 14.1 28.7 39.7 51.3 62.4 

Cruise Shift Speed (km/h) 12.0† 25.0 36.9 48.0 58.9 

† The calculated cruise shift speed here was 8.0 km/h, which would result in engine speeds less than 700 rpm. 

This was therefore replaced with 12.0 km/h, corresponding to an engine speed of 1000 rpm. 

 

Figure 3-11:  Determination of cruise shift speed for gear 4. The number of shifts into gears 4 and higher 

exceeds those into gears 3 and lower at 36.9 km/h. This is therefore the cruise shift speed used.  
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3.3 Chapter Conclusions 

In this chapter the development and field trials of a driver assistance system have 

been presented. During fleet trials of the system it was shown to reduce fleet fuel 

consumption by 7.6% through reduced accelerations and encouragement of early 

gear upshifting resulting in considerably lower engine speeds.  

Naturalistic driving data collected during the trials has been compared against 

legislative drive cycles, resulting in the LA92 cycle being identified as the most 

representative of the vehicles’ typical in-service usage. For this reason the LA92 is 

selected as the reference drive cycle for testing and evaluation of the hybrid vehicle 

energy management strategies developed in Chapter 5. Use of a standardised, well 

defined and publically available drive cycle was felt preferable over the development 

of a bespoke drive cycle for reasons of reproducibility and transferability of the 

work. Recorded driving data was used to generate a gear shift schedule for use with 

the LA92 in accordance with relevant legislative procedures, and the drive cycle and 

gear shift schedule are carried forward to the development and evaluation work 

carried out in Chapters 4 – 6. 

In addition to the selection of a reference drive cycle the driving data obtained here 

are also processed to obtain the probability data required for the development of the 

SDP control strategy in Chapter 5.  





 

   

 

 

 

Chapter 4 Hybrid Vehicle Modelling 

 

 

Computational modelling of the HEV is of key importance to the control design 

techniques described later, and this chapter describes in detail the experimental data 

collection and empirical component sub-models which form the whole HEV model. 

A bespoke model was developed in the SIMULINK environment with a focus on 

characterising components at the highest possible level. In particular, the 

conventional powertrain components (ICE, transmission, differential, tyres) were 

mapped as a single unit on a chassis dynamometer to obtain a direct link between 

tractive force and fuel consumption. This modelling approach is a novel contribution 

and is presented in the following separately published work: 

C. Vagg, C. J. Brace, R. Wijetunge, S. Akehurst and L. Ash, “Development of a new 

method to assess fuel saving using gear shift indicators,” Proceedings of the 

Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 

226 (12), pp. 1630-1639, 2012. 
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Optimal control of a hybrid powertrain is highly dependent on the drive cycle to 

which the vehicle is subjected. Having gathered a considerable amount of data 

relating to the expected typical usage of Ashwoods’ hybrids, and designed a driver 

feedback device with the aim of minimising the energy intensity of this drive cycle, 

the focus of this work will now shift towards optimal control of the hybrid vehicles. 

All of the optimal control algorithms presently proposed in literature rely heavily on 

Model-Based Design (MBD) techniques already used widely in industry for control 

system design. In this approach a computational model of the physical system is built 

in which the effects of any control signal can be simulated, enabling the best 

controller behaviour to be found. Clearly the optimality of the final control strategy 

therefore depends heavily on the fidelity of the system model – an optimal controller 

designed with the aid of a poor simulation is unlikely to be optimal when 

implemented on the physical system. The bespoke powertrain model developed in 

this work for the purposes of control strategy development is described in this 

chapter. 

4.1 Hybrid Vehicle Description 

At the most basic level Ashwoods’ hybrid system consists of an EM and a battery 

pack which enable kinetic energy usually dissipated as heat during braking to instead 

be captured through regenerative braking and stored in the batteries. This energy may 

then be used to assist at other times, supplying tractive force and therefore reducing 

the load on the engine, reducing the vehicle’s fuel consumption and emissions. 

In the common classification of HEVs the configuration adopted here is categorized 

as a parallel torque-assist hybrid vehicle, and the architecture is illustrated in Figure 

4-1. The EM adds tractive power through a belt and pulley, with the pulley being 

sandwiched between the propeller shaft and the final drive (differential). Since the 

propeller shaft incorporates some telescopic travel to accommodate suspension 

movement the pulley can be inserted without any modification to the standard 

components. In this arrangement the speed of the EM is directly proportional to the 

vehicle road speed as it is integrated downstream of the clutch and transmission; this 
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has the advantage that regenerative braking is possible regardless of whether the 

clutch is engaged, but carries the disadvantage that the EM must be able to operate 

over a wide speed range.  

The hybrid system adds tractive force, and the mechanism of fuel saving is through 

the driver’s assumed reduction in accelerator pedal position – there is no direct 

intervention in the accelerator pedal position reported to the ECU or the engine 

control signals. It is possible that the driver would not reduce the accelerator pedal 

position and would simply make use of the additional power, however in most cases 

drivers are not operating at the limit of the power already available to them, but 

rather are limited by traffic or road conditions. Furthermore any driver consistently 

making full use of the vehicle’s installed power would likely fall foul of the DAS 

presented in the previous chapter, and it is the commercial intention that these two 

systems be sold together. 

The battery pack is able to store around 2.16 MJ (0.6 kWh) of energy at a nominal 

voltage of 78 V and the system has a peak power of about 6 kW. The system is a 

‘mild hybrid’ because the electrical powertrain is much less powerful than the 

standard ICE. Some of the functionality common in full hybrid vehicles, such as the 

 

Figure 4-1:  Schematic of the Ashwoods Automotive hybrid electric conversion system, showing the parallel 

torque-assist architecture. Stock components are in black, while retrofit components are highlighted in green. 
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ability to turn off the ICE and operate in ‘electric only’ mode, is not available. 

The stock vehicle which was hybridised in this work was a Ford Transit 330S, details 

of which are given in Table 4-1. A model of this vehicle with the retrofit hybrid 

electric system fitted was developed in the MATLAB/SIMULINK environment, and the 

following sections describe the model’s architecture, implementation, and validation.  

Table 4-1:  Characteristics of the baseline vehicle. 

Symbol Quantity Value 

Vehicle  2011 Ford Transit 330S 

Engine Model 2.2 L 100 PS diesel 

 Peak power 74 kW @ 3500 rpm 

 Peak torque 310 Nm @ 1300-2100 rpm 

Transmission Model MT82 – 6 speed manual 

 Gear 1 5.441 

 Gear 2 2.839 

 Gear 3 1.721 

 Gear 4 1.223 

 Gear 5 1.000 

 Gear 6 0.794 

 Final Drive 3.909 

4.1.1 Model Architecture 

When considering the modelling of a vehicle two main approaches to the model 

architecture exist, referred to as ‘Forwards’ and ‘Backwards’. A forwards model 

represents the physical vehicle and the chain of causality observed in real life: a 

desired vehicle speed (reference signal) is defined, and the difference between this 

and the actual vehicle speed is processed by the driver. The driver’s response is to 

manipulate the vehicle controls (accelerator, brake and clutch pedals, and the gear 

selection) so as to reduce the speed error, and the vehicle’s response to the control 

inputs is calculated.  

In contrast, the backwards approach to vehicle modelling assumes that the drive 

cycle is completely described in advance and is followed perfectly by the vehicle. 

Given the vehicle speed trace the tractive force required to have achieved this is 

calculated, and the fuel consumed in the process of delivering this is found. In this 

case the effect of the hybrid control strategy is actually to determine the proportion 

of the required tractive force which is delivered by the electric powertrain, while the 

remainder is assumed to have been provided by the conventional powertrain. 
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Forwards models are in principle the more thorough approach to modelling the 

system, which includes the driver. Nevertheless they do not always represent the 

more appropriate choice for a particular application. The inclusion of a driver model 

means that the ideal speed trace defined by the drive cycle is not accurately followed 

and the actual speed trace completed may be affected by changes to the vehicle, for 

example to the hybrid controller. Furthermore accurate modelling of driver behaviour 

is actually extremely difficult since human drivers often respond non-linearly to 

differences between intended and actual speed, as well using foresight to anticipate 

accelerations and decelerations. If undertaken to a high degree of fidelity forwards 

models may allow interactions between driver and powertrain to be modelled and 

enable some study into drivability; however if done only to a basic level the 

approach adds little value. 

A further significant advantage of the forwards modelling approach is that the model 

can be used to simulate the non-ideal response of the vehicle in cases where it is not 

capable of completing the drive cycle perfectly. Specifically, for a low power vehicle 

situations may arise where its performance limits mean it is unable to accelerate at 

the rate defined by the speed schedule. In this case a forwards model allows the 

vehicle to accelerate at its maximum possible rate until it achieves the ideal speed, in 

line with the likely response of a human driver, and so the model can provide some 

insight. In contrast a backwards model in the same scenario may identify that the 

speed schedule is outside of the vehicle performance limits and therefore return an 

error, but it would be unable to provide any further insight as to what the non-ideal 

response would look like.  

Present models used in state-of-the-art controller design are typically based on the 

backwards architecture. Since the study of drivability is outside of the scope of this 

work this is also the class of model implemented here. A top-level block diagram of 

the model is illustrated in Figure 4-2 which shows the various subsystems in their 

order of execution, and the inputs and outputs of each. A brief description of the 

function of each subsystem is given below, followed by detail on the individual 

components and their modelling in Section 4.1.2.  
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Figure 4-2:  Top-level block diagram of the vehicle powertrain model in SIMULINK. 
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At the most fundamental level the model receives the drive cycle speed, acceleration, 

and gear as inputs, deduces the response of the hybrid controller in this state and the 

resulting tractive force from the electric powertrain, assumes that all of the remaining 

tractive force requirement is delivered by the diesel engine, and returns the fuel 

consumed in achieving this. To this end each block in the model is called by a 

function call generator in the following order, and performs the functions described 

accordingly: 

(1) Drive Cycle Demand: The present simulation time is fed into a lookup table, 

which returns the present vehicle speed according to the prescribed drive 

cycle. The change in vehicle speed since the previous timestep is used to 

calculate the vehicle acceleration, which is passed through a low-pass filter. 

A second lookup table is accessed to retrieve the present gear selection from 

the gear schedule, and a change in the gear since the previous timestep causes 

the ‘shift flag’ to be triggered. 

(2) Vehicle Dynamics: Given the vehicle speed at the present timestep the drag 

force due to aerodynamics and rolling resistance can be calculated. Present 

acceleration is multiplied by the vehicle mass to find the inertial load. These 

two components are then summated to find the total tractive force required at 

the wheels to achieve the present speed and acceleration. 

(3) Driveline: Present vehicle speed and gear selection are combined to find the 

engine speed; the tractive force and gear selection are similarly combined to 

find the engine torque. The ‘shift flag’ signal allows an alternative engine 

speed to be specified during gear shift events. The accelerator pedal position 

(calculated during the previous execution of the ‘Engine’ subsystem) is used 

to detect when complete lift-off occurs, and it is assumed that the brake pedal 

is applied in this case.  

(4) Hybrid Drive: This block contains three further subsystems: ‘Hybrid 

Controller’, ‘Battery’, and ‘Motor’. The Hybrid Controller subsystem 

simulates the controller’s response to the present vehicle state; this is a 

unitless number in the range ±255 which specifies the battery current demand 

as a proportion of the maximum available at the present vehicle speed. The 

demand is interpreted and scaled by the Battery subsystem (as per the BMS 
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on the physical vehicle), and the present DC battery current, voltage, and 

SOC are output. Finally, in the Motor subsystem the motor speed is 

calculated from the vehicle speed, and this is combined with the DC power to 

find the present motor torque and tractive force at the wheels.  

(5) Engine: Tractive force supplied by the engine is found by subtracting that 

supplied by the motor from that required at the wheels. The tractive force 

provided by the engine, engine speed, and gear selection are used to infer 

instantaneous fuel consumption. The same three variables are used to find the 

present accelerator pedal position (used in the ‘Driveline’ subsystem). The 

‘idle flag’ is used to swap the fuel consumption to a known engine fuelling 

rate during idling; the ‘shift flag’ may be used to select zero fuelling rate 

during gear shift events, though this was found to introduce inaccuracies 

during ideal drive cycle simulation and was only used when the input to the 

simulation was recorded data from a real driver following the ideal drive 

cycle. 

4.1.2 Component Characterisation and Modelling 

Detailed empirical models of each powertrain component were constructed. 

Empirical component modelling based on measured performance data was preferred 

over physical modelling, since for these purposes accurate representation of the 

macroscopic component behaviours is more important than an understanding of the 

underlying physical causes. For each component the data collection and modelling 

approaches are described below. 

Modelling of Vehicle Dynamics 

Forces acting on the vehicle are assumed to include only aerodynamic drag, rolling 

resistance and inertia. At this stage for the purposes of simulation and dynamometer 

testing forces arising due to road gradient are not considered, as the drive cycle data 

does not contain information on this. 

Rather than the classical approach of modelling aerodynamic drag from first 

principles the steady state road forces were modelled as a second order polynomial of 

vehicle speed, as is common in dynamometers. The quadratic coefficients are 

commonly found either from a ‘coast-down test’ on a straight level road, or from 
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legislative tables of standard values, as were used here. Inertial forces are 

proportional to the vehicle acceleration, with the greatest by far being due to the 

vehicle mass. Other minor contributions to vehicle inertia are made by the rotational 

inertias of wheels and driveline components, and these were also represented in the 

simulation using approximate equivalent masses suggested by Miller [72]. 

Combining all these forces, 

 𝐹𝑇𝑅 = 𝐹2 ∙ 𝑣
2 + 𝐹1 +

𝑑𝑣

𝑑𝑡
(𝑚𝑣 +𝑚𝑤 +𝑚𝑑). (4-1) 

In this approach 𝐹𝑇𝑅 is the total tractive force acting at the road-tyre interface, v the 

vehicle speed, 𝐹2 a constant resulting from the vehicle aerodynamic properties, 𝐹1 a 

constant rolling resistance force, 𝑚𝑣 the vehicle mass and 𝑚𝑤 and 𝑚𝑑 the equivalent 

inertial masses of the wheels and driveline components respectively. Values used for 

these constants are given in Table 4-2. 

Table 4-2:  Constants used in modelling the vehicle dynamics. 

Symbol Quantity Value 

mv Vehicle mass 1930 kg 

mw Equivalent mass of wheels 40.9 kg 

md Equivalent mass of drivetrain 39.9 kg 

F1 Tractive force term 11.05 N 

F2 Tractive force term 0.9733 N·s2/m2 

 

Modelling of the Diesel Engine 

In order to obtain fuel consumption data for the engine a mapping exercise was 

undertaken on a chassis dynamometer. The objective of this exercise was to obtain 

an accurate map of fuel consumption as a function of engine speed, tractive force, 

and gear selection. Performing this mapping exercise on a chassis dynamometer 

rather than an engine dynamometer was advantageous because the result directly 

linked fuel consumption to tractive force, accounting for all losses that occur 

between the engine crankshaft and the road surface such as transmission and tyre 

losses. Engine fuel consumption should be identical for any engine speed and torque 

regardless of gear, however it was felt worthwhile repeating the exercise for each 

gear so that any differences in gearbox or tyre transmission efficiencies at different 

speeds were captured. Engine load and accelerator pedal position were also logged 
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throughout the exercise and the availability of this information was important for 

other facets of the control strategy development; it was therefore also worthwhile 

completing the exercise in each gear to obtain these data. 

The test facility is temperature controlled and was maintained at 25°C throughout all 

tests. Regular checks of vehicle battery charge, engine oil level and tyre pressures 

were performed to ensure repeatable data collection and so that these variables could 

be similarly monitored for parity during the subsequent vehicle testing described in 

Section 6.2.2.  

Fuel consumption was determined by analysing the components of the vehicle 

exhaust gasses and performing a carbon balance calculation. Exhaust gas 

composition was measured by two Horiba MEXA 7000 series emissions analysers, 

and knowing the carbon composition of the fuel the mass of fuel burned (f) was 

calculated by 

 𝑓 =
1

𝑑𝐶𝑊𝐹
(𝑑𝐶𝑊𝐹 ∙ 𝑚𝑇𝐻𝐶 + 0.428 ∙ 𝑚𝐶𝑂 + 0.273 ∙ 𝑚𝐶𝑂2) (4-2) 

where 𝑑𝐶𝑊𝐹 is the carbon weight factor of the diesel fuel (the mass ratio of carbon in 

the fuel, here 0.867), 𝑚𝑇𝐻𝐶 , 𝑚𝐶𝑂 , 𝑚𝐶𝑂2are the measured masses of THC, CO and 

CO2 emissions, and 0.428 and 0.273 represent the ratio of the atomic weight of 

carbon to the molecular weight of carbon monoxide and carbon dioxide, respectively 

[73]. 

Two forms of emissions readings are available from the dynamometer systems: bag 

analysis values, and modal emissions. Bag analysis is the industry standard method 

for measuring total cumulative emissions over a test, and is achieved by taking a 

proportional sample of exhaust gasses throughout the test, storing this in one or more 

bags, and analysing the contents of the bag after completion of the test to infer the 

total mass of emissions during the test, in accordance with UN/ECE Regulation No 

83 [4] and ISO 16183:2002 [74]. This approach is extremely accurate but does not 

allow any insight into the instantaneous emissions production; only the total 

emissions over the test are reported. In modal emissions measurement a continuous 
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sample of tailpipe gas is passed through emissions analysers real-time and the results 

recorded at 10 Hz.  

During engine mapping the dynamometer was used in closed-loop speed control 

mode and manually adjusted to achieve a range of engine speeds. At each speed the 

accelerator pedal was progressively applied in steps to achieve the full range of 

tractive force, while the dynamometer supplied the necessary reactive torque to 

maintain the set speed. Each speed-force point was held for 5 seconds to allow gas 

concentrations to stabilise and during this period modal emissions measurements 

were used to sample the rate of fuel consumption. This procedure of progressive 

application of the accelerator pedal in steps and then holding each sample point 

represents a significant amount of learning from a pilot study published by the author 

elsewhere [68]. During the pilot study an engine was mapped in a similar way but 

applying a continuous ramp to the accelerator pedal. As a result of gas mixing in the 

connecting pipes the sampled emissions concentrations were found not to respond 

instantly to a step change and so during the application of a continuous accelerator 

pedal ramp a time lag is introduced, which caused hysteresis in the fuel consumption 

loop. The stepped ramp procedure used during this mapping was found to yield 

better results.  

Each pedal ramp was applied over 2 minutes and then released over 2 minutes, 

however the pedal step size was increased during the second half of the ramp 

because the engine is far less responsive to changes in accelerator pedal position near 

 

Figure 4-3:  Sample points of engine fuel consumption during a stepped ramp application of the accelerator 

pedal on the chassis dynamometer. These data were recorded at 2500 rpm in gear 4 (69.5 km/h). 
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full load, as was also observed during the pilot study. A MATLAB script was written 

to identify points during the ramps at which CO2 emissions were stable for periods 

longer than 1.5 seconds and the tractive wheel force was also stable, and these points 

were used as steady state samples of the engine operation as shown in Figure 4-3.  

As well as showing how sample points were selected Figure 4-3 also hints at the non-

linear relationship observed between accelerator pedal position and engine response. 

Throughout the time window shown the steps in accelerator pedal position between 

each sample were approximately constant, but it can be seen that the fuel 

consumption (which tracks engine torque) increases linearly at first, then is almost 

unresponsive at around 435 seconds, before becoming increasingly sensitive. 

Collating the steady state samples of engine operation from ramps at different engine 

speeds allowed a complete picture to be built of the engine fuel consumption as a 

function of engine speed and tractive force in each gear, an example of which can be 

seen in Figure 4-4.  It is perhaps worth noting that fuel is burned even when some 

negative tractive force is being generated, as the engine will consume fuel in 

overcoming its own internal losses; it is for this reason important to find the tractive 

force at zero load (i.e. maximum engine braking) as this defines the accelerator pedal 

“lift-off” point described in Section 4.1.1. 

 

Figure 4-4:  Fuel consumption map obtained in gear 4 using the accelerator pedal stepped ramp technique. 

Data at intermediary speeds were also obtained but are omitted for clarity. 
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The data sets for each gear were parameterised as third-order polynomial surfaces 

using the MATLAB Model-Based Calibration toolbox, and the polynomial coefficients 

used to calculate fuel consumption in the vehicle powertrain model.  This type of 

engine model, based on steady-state measurements, is often called quasi-static.  As 

previously described the models implemented directly linked tractive force and 

engine speed to fuel consumption, and an example of the gear 5 polynomial surface 

is shown in Figure 4-5.  Data for the quality of fit of the engine model in each gear 

are given in Table 4-3. 

Table 4-3: Quality of fit statistics for fuel consumption models in each gear. 

Symbol R2 PRESS R2 

Gear 1 0.991 0.987 

Gear 2 0.996 0.995 

Gear 3 0.998 0.998 

Gear 4 0.998 0.998 

Gear 5 0.999 0.998 

Gear 6 0.993 0.993 

 

If desired, the data collected may also be manipulated using the known gear ratios to 

present the results in more conventional forms, such as the Brake Specific Fuel 

Consumption (BSFC) map shown in Figure 4-6, however it must be noted that in this 

 

Figure 4-5:  Polynomial model of fuel consumption in gear 5 as a function of engine speed and tractive force. 
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case the results represent the brake work measured at the tyre (after transmission 

losses) and not at the crankshaft as would be usual.  

 

Modelling of Motor and Power Electronics 

The electric motor used in the retrofit hybrid electric system is a bespoke unit 

manufactured by Ashwoods Automotive; it is a three-phase axial flux permanent 

magnet machine rated to 6000 rpm and producing a maximum torque of 65 Nm. Key 

specifications of the motor can be found in Table 4-4, and a photograph of the unit in 

Figure 4-7. 

Table 4-4:  Specifications of the Ashwoods Automotive motor. 

Quantity Value 

Maximum torque 65 Nm @ 2200 rpm 

Maximum power 14.8 kW @ 3250 rpm 

Continuous torque 11.5 Nm @ 2500 rpm  

Continuous power 3.0 kW @ 2500 rpm 

Operating speed 0-6000 rpm 

Peak efficiency >95% 

Cooling Air 

Weight 15.0 kg 

Dimensions ø237 mm × 130 mm 

 

Figure 4-6:  BSFC  (g/kW·h) of the engine, constructed from the data collected in gear 5. Note that the 

engine torque is calculated from measurements taken at the tyre, not crankshaft, and so include 

transmission losses. 
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Using a similar method to that described for the engine mapping a model of the 

power electronics and electric motor was developed from data collected running both 

on a motor test facility. The tests and data collection were performed by other 

researchers and so no credit is claimed for this. The data were processed and then 

implemented in the powertrain model as a 2D look-up table, using linear 

interpolation between measurements.  Motor speed and DC power consumption 

define the operating point, and the torque produced is calculated. This representation 

of the data, as shown in Figure 4-8, is not the typical way in which motor 

performance is reported; it is perhaps more normal to have efficiency as a function of 

a speed and torque, however because the hybrid controller specifies a DC current 

demand it makes more sense in this case to find the torque output resulting from this.  

As with the engine mapping exercise the characterisation of the motor and power 

electronics as a discrete unit is a simplification, but because the measurements 

 

Figure 4-7:  Ashwoods Automotive axial flux permanent magnet motor, as fitted to the hybrid vehicle. 
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account for any losses or component interactions it is possible to achieve greater 

accuracy in the model without added complication. 

Although the peak power of the motor is 14.8 kW in fact the peak system power is 

limited to 5.8 kW by the battery current, as will be discussed in the following 

section. Furthermore the temperature of the motor rapidly increases during operation 

at high power, and so for continuous operation the motor power is limited to 3.0 kW. 

The power electronic inverter (motor controller) used during motor characterisation 

was a SEVCON Gen4 600 amp unit capable of supplying the full power of the motor; 

however since the available system power on-vehicle is less than this a smaller 

variant in the same range – the SEVCON Gen 4 350 amp – is used. The use of a 

different inverter during motor characterisation to on-vehicle may mean that the 

model is not entirely representative of the vehicle system, however it is assumed that 

since the two variants are from the same manufacturer and part of the same range any 

differences are likely to be relatively small.  

On-vehicle the electric motor was geared such that at the vehicle’s maximum speed 

of 100 km/h the motor was also at its maximum speed of 6000 rpm. At this speed it 

is not possible to demand any torque from the motor because the back emf 

approaches the DC battery voltage. 

 

Figure 4-8:  Motor map defining the torque output (Nm) for any combination of motor speed and DC 

power within the operating envelope. Points marked (x) are data points obtained experimentally. 
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Modelling of Batteries 

Lithium iron phosphate (LiFePO4) battery cells are used as the electrical energy store 

for the hybrid system. Each cell is a Headway HW38120HP, and the battery pack 

consists of 24 cells arranged in series; key parameters describing the cells and the 

pack are shown in Table 4-5, and a photograph of the assembled pack is shown in 

Figure 4-9.  

Table 4-5:  Specification of the battery cells and pack. 

Quantity Cell Value Pack Value 

Manufacturer Headway  

Model HW38120HP  

Nominal voltage 3.2-3.25 V 76.8-78 V 

Internal resistance 8 mΩ 192 mΩ 

Nominal capacity 8.0 Ah 

Max charge current 80 A (10 C) 

Max continuous discharge 

current 

80 A (10 C) 

Max pulse discharge current 200 A (25 C) 

 

 

Figure 4-9:  Battery pack used in the retrofit hybrid electric system, comprising 24 lithium iron phosphate 

cells in series. The wires shown allow the BMS boards to monitor individual cell voltages. 
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In the absence of battery testing facilities the battery pack was modelled using data 

supplied on the manufacturer data sheet. Since the hybrid control strategy specifies a 

battery current the primary purpose of the model is to estimate the change in SOC as 

a result of the current; for this purpose the prediction of battery terminal voltage is 

not of major importance and so a relatively simplistic battery model was deemed 

adequate, with an equivalent circuit comprising only of an internal resistance, and 

not accounting for any time-dependent capacitive effects. Data sheets for the battery 

cells provide time-voltage discharge curves at various discharge rates. For estimation 

of the open circuit cell voltage the curve for a 1 C discharge rate was digitized using 

MATLAB and the energy dispensed during a complete discharge evaluated, thus 

allowing the data to be rearticulated as a SOC-voltage plot as shown in Figure 4-10. 

It was found that the entire curve could not be represented well by a polynomial 

function, however the range 30-90% SOC could be well represented. Since 30-90% 

SOC covers the desirable operational state of the cell a polynomial was used to 

approximate the open circuit cell voltage within this range, 𝑉𝑜𝑐(𝑆𝑂𝐶).  

Of greater importance to SOC estimation is that the energy losses incurred during 

charge/discharge are accounted for, which was achieved by calculating an equivalent 

current, 𝐼𝑒𝑓𝑓. 

 

Figure 4-10:  By processing and rearticulating the 1 C time-voltage discharge plot provided in the cell data 

sheet a SOC-voltage plot was obtained. A polynomial function was used to model open circuit cell voltage 

in the range 30-90% SOC.  
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Equivalent current is the hypothetical current which we may imagine has been drawn 

from or absorbed by each cell to account for its charge/discharge inefficiencies. 

During discharge the equivalent current will be higher than the DC current, in 

recognition of the fact that some energy is consumed by internal cell losses; similarly 

during charge the equivalent current will be lower than the DC current, to represent 

the fact that not all of the DC current is converted into stored chemical energy. 

During charge events the cell efficiencies were assumed to be dominated by ohmic 

(𝐼2𝑅) losses, and therefore quantified by using the cell internal resistance. For 

discharge events the time-voltage graphs from the cell data sheets were employed 

again, and the curves for a variety of discharge rates ranging from 1 C to 20 C were 

digitized to calculate the energy delivered during a complete discharge at each C-

rate. At higher C-rates the total energy delivered is less than at low C-rates, allowing 

an effective current to be calculated at each C-rate. To characterise the reduction in 

available energy capacity of a battery when operating at higher C-rates Peukert’s 

Law is often applied. When considered in terms of effective current Peukert’s Law 

may be expressed as stating that the effective current is proportional to the discharge 

current raised to the power of the Peukert constant, 𝐾𝑃, which is an exponent that 

may be experimentally determined for any battery. Figure 4-11 shows how the 

Peukert constant was determined as 1.0526 using a trendline through the calculated 

 

Figure 4-11:  Effective currents for six discharge rates were calculated based on effective capacity determined 

from manufacturer discharge curves. At high discharge rates effective current is substantially higher than the 

DC current due to internal cell losses. The Peukert coefficient best matching the trend is 1.0526.  
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effective currents, and also conveys graphically the difference between the measured 

DC current and the effective current at higher discharge rates. The equations 

describing the battery pack model are therefore: 

 𝑉𝑏𝑎𝑡 = 24 × (𝑉𝑜𝑐(𝑆𝑂𝐶) − 𝐼𝐷𝐶 ∙ 𝑅𝑖𝑛𝑡) (4-3) 

 𝑆𝑂𝐶𝑘+1 =
(𝑆𝑂𝐶𝑘 × 𝑄 × 3600) − (𝐼𝑒𝑓𝑓 ∙ ∆𝑡)

𝑄 × 3600
 (4-4) 

where 𝑅𝑖𝑛𝑡 is the internal resistance of each battery cell, 𝐼𝐷𝐶 is the DC bus current 

flowing out of the battery, 𝑉𝑏𝑎𝑡 is the terminal voltage of the battery pack, subscript k 

is a discrete time index, and Q is the nominal battery capacity in amp-hours. The 

effective current is defined by 

 𝐼𝑒𝑓𝑓 =

{
 
 

 
 
𝐼𝐷𝐶 +

𝐼𝐷𝐶
2(24 ∙ 𝑅𝑖𝑛𝑡)

𝑉𝑏𝑎𝑡
, 𝐼𝐷𝐶 < 0

𝑄 ∙ 𝐶𝐾𝑃 , 𝐼𝐷𝐶 ≥ 0

 (4-5) 

where   

 𝐶 =
𝐼𝐷𝐶
𝑄

 (4-6) 

is the battery C-rate: a fraction representing the instantaneous current draw as a 

proportion of the rated battery capacity 𝑄. A continuous current draw of 1 C 

therefore flattens the battery completely in 1 hour.  

Finally, it should be noted that although the specifications from the battery data 

sheet, reproduced in Table 4-5, suggest that charge/discharge rates of 80 A/200 A 

respectively are possible this is a simplification. In practice there are many other 

factors that affect maximum or minimum charge/discharge rates, with 

maximum/minimum allowable terminal voltage being one of the most significant. In 

order to the ensure cell voltages were reliably operated within their specified 

terminal voltage range the battery management system limited current to 63 A (7.9 

C) in charge and 54 A (6.8 C) in discharge. These were therefore regarded as the 

absolute maximum limits within which the hybrid control strategy could operate. 
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4.1.3 Engine Model Validation 

Since the engine model is quasi-static, based solely on steady-state measurements, 

there was concern that it might be a less accurate predictor of highly transient 

behaviour. Since the NEDC is a relatively gentle drive cycle with much time spent in 

steady state and very few aggressive transients any difficulties predicting transient 

fuel consumption may not be detected through validation on a NEDC. For this reason 

the engine model’s behaviour was also compared against recorded data on a LA92 

cycle, which is highly transient; this cycle was selected due to its strong correlation 

with observed real-world use, as already described.  

 

Figure 4-12:  Correlation between measured and simulated instantaneous fuel consumption over an excerpt of 

the LA92. This correlation is considered very good considering the engine model is quasi-static and the drive 

cycle is extremely transient.  
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Comparison of the predicted and recorded instantaneous fuel consumption over a 

LA92 is shown in Figure 4-12. In order to gain insight into the ability of the model to 

predict fuel consumption even when the speed trace is not precisely followed the 

modelled fuel consumption is based entirely on the ideal speed trace, not the 

recorded speed trace. It can be seen that the model generally predicts the 

instantaneous fuel consumption extremely well despite the highly transient drive 

cycle. Since the ideal speed trace is defined at 1 Hz there are abrupt changes in 

acceleration every 1 second, which gives rise to the step-like appearance of the 

modelled fuel consumption. 

The greatest discrepancies between the simulation and measured data are during pull-

away events, as shown by rapid increases in the cumulative fuel error. In these cases 

the simulation under-predicts fuel consumption because clutch slip was not modelled 

in detail. Overall the simulation under-predicts the fuel consumption by about 4.9% 

over a LA92; this was deemed extremely encouraging as a worst-case scenario, using 

a quasi-static engine map to predict fuel consumption over a highly transient drive 

cycle, and where the measured drive cycle completed may differ slightly from the 

ideal speed trace. 

4.2 Chapter Conclusions 

This chapter has presented the development of a bespoke vehicle model in SIMULINK 

representing the vehicle hybridised in subsequent chapters. Powertrain components 

were characterised at the highest possible level, based on experimental data where 

possible and physics-based approaches otherwise. 

The component models developed in this chapter are used in Chapter 5 to calculate 

the consumptions of fuel and electrical energy in any state, which are fundamental to 

the model-based control design approaches pursued. In Chapter 6 the complete 

vehicle model will be employed to simulate the performance of the HEV when 

running the control strategies developed in Chapter 5.  

 



 

   

 

 

 

Chapter 5 Hybrid Control Development 

 

 

In this chapter the development of HEV controllers is described in detail. The 

primary focus of effort is on the design of SDP controllers using the real-world data 

already recorded as the basis for a stochastic drive cycle model (Markov chain). 

ECMS controllers are also developed, primarily as a benchmark. For both control 

approaches a set of controllers are developed which exert stress on the electric 

powertrain to different extents.  

The development process used in the design of the SDP controllers is extremely 

thorough and believed to be the most concerted effort to date to produce a controller, 

based on recorded driving data, which is suitable for real-world implementation. 

Elements of the process, notably the use of probabilistic charge sustenance plots, are 

believed to be entirely novel. Further novelty lies in the design of the cost function 

proposed which allows fuel saving to be traded-off against electric powertrain stress. 

Parts of this chapter have been published in the following separate works: 

C. Vagg, C. J. Brace, S. Akehurst and L. Ash, “Model-based Optimal Control of a 

Hybrid Electric Vehicle Using Stochastic Dynamic Programming.” In: 6th 

Conference on Simulation and Testing for Automotive Electronics, 2014-05-15 - 

2014-05-16, Berlin, Germany. 

C. Vagg, C. J. Brace, S. Akehurst and L. Ash, “Minimizing Battery Stress during 

Hybrid Electric Vehicle Control Design.” In: 9th IEEE Vehicle Power and 

Propulsion Conference, 2013-10-15 - 2013-10-18, Beijing, China. 
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5.1 Defining Cost 

As outlined in the aims one of the primary goals of this work is to integrate 

powertrain stress considerations, notably those of the battery, into the cost function. 

Moura [47] proposed two functions which could be incorporated into a cost function: 

the first aimed at accounting for SEI film growth at the anode of the battery, however 

this required a relatively advanced electrochemical model of the battery cells. The 

second function proposed by Moura simply accounts for battery current throughput, 

i.e. minimising the battery use, and similar cost functions were proposed by Ebbesen 

et al [48] and Serrao et al [49]. These functions were designed primarily to enhance 

the longevity of battery cells in the long term, rather than shorter term effects which 

this thesis aims to address, such as cell voltage and temperature imbalances within 

the battery pack, and motor temperature. 

Long-term and short-term system healths certainly share similarities and the 

functions previously discussed would most likely have a positive effect on short-term 

health, however for the specific goals of this thesis an alternative is proposed. It is 

noted that the majority of electrical losses in battery cells and the motor are due to 

ohmic heating, which is proportional to the square of current (𝐼2𝑅 losses). Avoiding 

high power peaks in the use of the system and introducing a partiality towards more 

constant low power use would minimise these ohmic losses, with potentially 

beneficial effects on the system performance in the real world. It is not entirely 

straightforward to do this because the DC battery current and AC motor current are 

in fact decoupled from one another by the power electronic inverter, however the DC 

current is also a reliable indicator of system power, as the battery voltage is relatively 

steady. For these reasons the cost function 

 𝑐 = 𝑓 +  𝛼 · 𝐼𝐷𝐶
2 (5-1) 

is proposed, where c is the instantaneous cost, f is the instantaneous fuel flow (g/s), α 

is an equivalence factor and 𝐼𝐷𝐶  is the DC battery current. Since the acceptable 

battery current is very much dependent on the size of a battery it is more helpful to 

work with the C-rate. In order to generalise the cost function and make the results 

more transferable it is therefore rephrased as 
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 𝑐 = 𝑓 +  𝛼 · 𝐶2 (5-2) 

where C is the instantaneous C-rate (h
-1

) at which the battery is being operated, and α 

therefore has units of g·h
2
. This cost function provides a mechanism to deter high 

power system operation, in turn reducing heat generation in the battery cells and EM. 

Apart from defining a metric of optimality an important secondary purpose of the 

cost function was to implement any constraints which the control strategies must 

observe. This was done by assigning certain operating conditions either with a null 

value, for example ‘NaN’ (Not a Number), or with an extremely high cost, for 

example ‘bitmax’ (the largest double precision number in MATLAB), such that these 

operating points were never selected. An example of such a constraint is that when 

the vehicle is at 100 km/h the motor will be at 6000 rpm – its maximum speed – and 

so it is not permissible to demand any power from it. 

5.2 SDP Controller Development 

The SDP controller concept seeks to find the stationary policy which minimises the 

future cost incurred over an infinite time horizon, when starting from any vehicle 

state. For this aim a statistical model of the future is required, and the control policy 

is iteratively refined to minimise the expected future cost. This policy will not 

necessarily be optimal for any one drive cycle in particular, but rather is the single 

time-invariant control policy that would return the lowest cost when run for an 

infinite time period on a drive cycle with statistical distributions matching the design 

set. Over a finite drive cycle, say an hour in duration, it may be possible that an 

alternative policy would have better minimised the cost, or that there would be a 

more globally optimal non-stationary policy (i.e. changing over time) that could 

adapt to suit specific conditions or different drivers. However, assuming that over a 

long period of time the drive cycle which the vehicle is exposed to approaches that 

which was used in the design of the SDP controller, this policy is the single time-

invariant policy which would yield the lowest cost. 
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The problem is formally defined and the algorithm formulation explained from a 

high level conceptual perspective in the next paragraphs, followed by a more detailed 

explanation as to how this was implemented. 

We require a control decision to be made based on a discrete set of states, 

 𝑢 = 𝜋(𝑥𝑘) (5-3) 

where π is a stationary control policy which may be interrogated for any state 𝑥𝑘 to 

return the instantaneous control decision in that state, u. As described in Chapter 4 

the drive cycle is defined entirely by three variables: vehicle speed (v), vehicle 

acceleration (a) and gear selection (g). To describe the state of the hybrid system the 

present SOC of the battery is also required and so, in our case, the full state vector on 

which control decisions are made includes four state variables. 

 𝑥𝑘 = {𝑣𝑘, 𝑎𝑘, 𝑔𝑘, 𝑠𝑜𝑐𝑘} (5-4) 

It is worth noting that there is no mathematical reason why the state vectors should 

have constant grid spacing, and so in fact the grid used for vehicle speed was sparser 

at higher speeds. The grid spacing for each state vector is given in MATLAB notation 

in Table 5-1. 

Table 5-1:  State vectors used in control development 

Symbol Quantity (Unit) Parameter Value 

v speed state space (km/h) [0:2:80  85:5:120] 

a acceleration state space (km/h·s) [-14:14] 

g gear state space [1:6] 

soc SOC state space (%) [55:85]  

u control state space [-255:17:255] 

 

Any vehicle state combined with a control decision will result in some instantaneous 

cost, 𝑐(𝑥𝑘 , 𝜋(𝑥𝑘)), and by summing the instantaneous costs over an infinite time 

horizon we may arrive at an estimate of the future cost expected when the policy π is 

used starting from the present state 𝑥0: 
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 𝐽𝜋(𝑥0) = lim
𝑁→∞

𝐸 { ∑ 𝜆𝑘𝑐(𝑥𝑘, 𝜋(𝑥𝑘))

𝑘=𝑁−1

𝑘=0

} . (5-5) 

Since the actual cost over an infinite horizon would clearly be infinite, the discount 

factor, 0< λ<1, is introduced to ensure that the sum converges. The effect of λ is not 

to define a discrete window or time horizon for the sum, but to exponentially reduce 

the relative weighting of samples that extend into the future, such that in the far 

distant future the relative weighting approaches zero. Having said that, it is also true 

to say that λ defines how quickly the importance of the future is degraded. For 

example in the extreme case when λ=0 only the instantaneous cost is considered and 

the future is disregarded entirely; meanwhile λ=1 would be a true infinite sum, and 

therefore not converge at all. 

Since the future states are not known these are instead modelled as a probability 

distribution and so Equation (5-5) is broken into two terms: the instantaneous cost 

and the future expected cost from the next state onward. Again, the impact of a 

control decision is twofold: firstly the decision will affect the instantaneous cost, for 

example we would expect the decision to assist the engine result in reduced 

instantaneous fuel consumption; secondly the decision will affect the system state in 

the next timestep, for example an assist will deplete the battery, and the SOC will 

consequently be lower at the next timestep. This effect on the future state is critical, 

since any depletion of charge must necessarily be made up in the future, and 

therefore the future cost expected when at a low SOC will be higher than the future 

cost from a high SOC. The reduction in instantaneous cost must therefore be 

considered with respect to the increase in the future cost which is expected as a result 

of depleting the battery SOC. This is expressed in Equation (5-6) where, on the right 

hand side of the equation, the first term represents the immediate cost and the second 

represents the future expected cost of every state, multiplied by the probability of 

being in each state at the next timestep as a result of the present control decision. 

 𝐽𝜋(𝑥𝑘) =  𝑐(𝑥𝑘, 𝑢) +  𝜆 ∑ ℙ(𝑋𝑘+1 = 𝑥𝑘+1|𝑥𝑘, 𝑢) ∙ 𝐽𝜋(𝑥𝑘+1)

𝑥𝑘+1ϵ𝑋

 (5-6) 

where  
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 ℙ(𝑋𝑘+1 = 𝑥𝑘+1 | 𝑥𝑘, 𝑢)  

defines the probability of progressing into every vehicle state at the next time step, 

given knowledge of the present vehicle state and the present control policy decision 

resulting from this vehicle state. This matrix therefore has 8 dimensions in this case. 

The objective is to determine the optimal control policy, 𝜋∗, which minimises the 

expected cost when starting from any state 𝑥0. Put formally, 

 𝜋∗(𝑥0) = arg min
𝑢
{𝑐(𝑥0, 𝑢) +  𝜆 ∑ ℙ(𝑋1 = 𝑥1|𝑥0, 𝑢) ∙ 𝐽𝜋∗(𝑥1)

𝑥1ϵ𝑋

} . (5-7) 

Equations (5-6) and (5-7) introduce the idea that the vehicle state at the next timestep 

may be defined as a probability distribution, based only on the vehicle state in the 

present timestep. This mathematical description is known as a Markov chain, and 

posits that the vehicle states may be defined in a discrete state space where the 

transition probabilities between states at each timestep are time-invariant. An 

important property of the Markov chain is that it is memoryless – the transition 

probabilities depend only on the present state, and not on the history of the system. 

As an illustrative example Figure 5-1 portrays an extract of a basic Markov chain 

where the state variable is simply vehicle speed. 

 

Figure 5-1: A portion of a Markov chain showing three states and the transition probabilities between 

them. In this simplistic example the state is defined solely by vehicle speed. 

The real world driving data described in Chapter 3 contains a wealth of information 

recorded at 10 Hz, which was used to construct a Markov chain describing the 

vehicles’ real-world use. This therefore enabled the design of a SDP control policy 

optimised to the recorded driving data. As an example of real data Figure 5-2 
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illustrates the probability distribution of speed and acceleration states at the 

subsequent timestep given the present state of 40 km/h, 0.56 m/s
2
 and 4

th
 gear. The 

resulting surface broadly resembles a two dimensional normal distribution centred on 

the present vehicle state. Vehicle speed must be continuous in real-time and so 

cannot deviate greatly from the present speed. In contrast acceleration may in theory 

be discontinuous and therefore change significantly from one timestep to the next, 

but in reality rarely does so. Since the acceleration at the present timestep (calculated 

over the previous 0.1 s) is positive the probability distribution of speed at the next 

timestep has a slight skew towards speeds over 40 km/h; nevertheless the 

acceleration over the previous 0.1 s is no guarantee of the acceleration over the next 

0.1 s, and so speeds less than 40 km/h are also possible. Finally, the surface 

illustrated accounts only for the state transitions in which the gear selection is 

unchanged, and the sum of probabilities is 0.9934; there is therefore a 0.0066 chance 

at each state transition that a different gear may be selected. 

It should be noted that the probability distribution described in Equations (5-6) and 

(5-7) may actually be regarded as two probability distributions which can be 

 

Figure 5-2:  Probability distribution of the next vehicle state given the present vehicle speed and 

acceleration are 40 km/h and 0.56 m/s2 in 4th gear. The surface resembles a two dimensional normal 

distribution centred on the present vehicle state. 
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decoupled. The progression of v, a, and g depend exclusively on these same 

parameters at the previous timestep – the drive cycle probabilities – and not on the 

control decision. Conversely the progression of SOC depends only on SOC, v and the 

control decision at the previous timestep, and not a or g. We may therefore regard the 

overall state transition probability set not as one 8-D matrix, but rather as one 6-D 

matrix and one 4-D matrix. In summary, in order to implement this algorithm and 

find the optimal control policy we require three fundamental pieces of information: 

(1) The instantaneous cost resulting from the combination of being in any vehicle 

state and making any control decision. Since the instantaneous cost is not 

actually dependent on the battery SOC, only on the electrical power, this cost 

matrix has four dimensions. 

 𝑐𝑘(𝑣𝑘, 𝑎𝑘, 𝑔𝑘, 𝑢𝑘) (5-8) 

(2) The drive cycle probability matrix. This is based on the real-world recorded 

drive cycle data, and defines the probability of progressing from any speed-

acceleration-gear combination into another. 

 ℙ({𝑉, 𝐴, 𝐺}𝑘+1 = {𝑣, 𝑎, 𝑔}𝑘+1 | {𝑣, 𝑎, 𝑔}𝑘) (5-9) 

(3) The SOC progression matrix. This defines what the battery SOC will be in 

the subsequent timestep, given the SOC, vehicle speed, and the control 

decision made in the present timestep. 

 ℙ(𝑆𝑂𝐶𝑘+1 = 𝑠𝑜𝑐𝑘+1 | {𝑠𝑜𝑐, 𝑢, 𝑣}𝑘) (5-10) 

The SOC progression matrix is a probability distribution because it is extremely 

unlikely that the charge depletion or gain over a single timestep be enough to move 

the SOC exactly onto the next grid point. In practice the change will only be a tiny 

fraction of one grid point. Therefore the subsequent state is represented by a 

probability distribution split between two SOC grid points. Similarly, the subsequent 

driving state will depend on the model described in Equation (5-9), which will also 

be some probability distribution of {𝑣, 𝑎, 𝑔} centred around the present {𝑣, 𝑎, 𝑔}. 

These two probability distributions may then be combined to obtain the likelihood of 

transitioning to each {𝑣, 𝑎, 𝑔, 𝑠𝑜𝑐} given a control decision.  
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The matrices described by Equations (5-8) and (5-10) contain values which must be 

obtained from the vehicle model. It is worth noting that SIMULINK contains 

functionality to create such outputs relatively easily, without needing to simulate 

each point in the matrix individually. By saving the components of the vehicle model 

as blocks in a “Block Library” they may be re-used in a stand-alone model with the 

specific purpose of producing the required matrices. The blocks can be connected up 

within a “For Each” subsystem which accepts vectorized inputs, and so produces the 

matrices in one call. This approach ensures the model components used to create the 

SDP matrices are exactly those which form the vehicle model, and is both less time 

consuming and more robust that writing equivalent MATLAB code for the models. 

In order to converge on the optimal control policy the algorithm is divided into two 

steps which are repeated alternately many times. Eventually the policy π will stop 

changing, though in practice it is necessary to implement some threshold at which to 

stop iterating. The steps are: 

(1) Policy Evaluation: This is the evaluation of equation (5-6), which returns the 

cost of the present control policy, 𝐽𝜋𝑖. 

(2) Policy Improvement: This is the evaluation of equation (5-7), which returns a 

refined control policy 𝜋𝑖+1, optimised for the latest estimate of the cost 

matrix calculated in the Policy Evaluation step. 

5.2.1 Practical Implementation: Step-by-Step 

In practice the procedure described above is not straightforward to implement 

because probability matrices soon become enormous. For example the full state 

transition probability matrix ℙ(𝑋𝑘+1 = 𝑥𝑘+1 | 𝑥𝑘) would be an 8-D matrix, which if 

stored only in single precision would occupy 326 GB of memory – far in excess of 

the practical RAM capacities of present day computers. Even with terminal servers, 

where memory limitations are less of a concern, the element-wise dot product of two 

matrices of these proportions would take an inordinately long period of time, and 

must be performed several thousand times over. By rationalising the problem a 

solution may be found, and the actual implementation described below makes 

extensive use of the most highly optimised elements of MATLAB such as sparse 
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matrices, matrix operations, matrix cross-multiplication, and one dimensional linear 

interpolation. The gradual introduction of these functionalities as the code was 

refined reduced computational times by several orders of magnitude, however the 

price is that the solution becomes more abstract and it becomes increasingly difficult 

to visualise the placement of dimensions. 

Before proceeding the concept of sparse matrices should be briefly introduced, since 

this is used extensively. For an array that is mostly composed of zeroes, as the 

majority of the probability matrices are, it is hugely inefficient to store every element 

in the array. A variable stored as “sparse” does not store a complete list of every 

element value in the array. Rather, only the non-zero elements of the array are stored, 

along with the indices in the array which each element occupies. For arrays which 

are very space this is a much more memory efficient way of storing the variable, and 

so for the probability matrices used here this is an attractive option. Having the 

matrices stored as sparse arrays also greatly reduces the computational burden of 

multiplying each element in one matrix by each in another, as there are no 0·0 

calculations taking place: the only calculations taking place are those where both 

elements are non-zero. For any matrix multiplication the product is at least as sparse 

as the factors. The final word about sparse matrices is that MATLAB restricts this 

class to a maximum of two dimensions for technical reasons. It is however possible 

to circumvent this limitation by nesting dimensions inside one another, such that a 

multi-dimensional matrix is represented as an extremely large 2-D matrix. This 

approach proved invaluable, but does reduce the transparency of the operations and 

means that great care is required to ensure matrices retain their integrity while having 

their dimensions collapsed, expanded, and permuted. 

Policy Evaluation 

The purpose of this step is to calculate the future cost which may be expected if the 

present control policy is used. For every {𝑣, 𝑎, 𝑔, 𝑠𝑜𝑐} the algorithm combines the 

two probability matrices defined in Equations (5-9) and (5-10) to return the state 

probability distribution at the subsequent time step. Each probability is multiplied by 

the cost of being in that state, which results in the probability-weighted cost of each 

state. Each {𝑣, 𝑎, 𝑔} is considered in turn inside a “for” loop, according to the 

following procedure: 
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1. The control decisions, now only a function of SOC, are isolated: 

 𝑢𝑣,𝑎,𝑔(𝑆𝑂𝐶) =  𝜋(𝑖𝑣, 𝑖𝑎, 𝑖𝑔)  

where 𝑖𝑣, 𝑖𝑎, 𝑖𝑔 are the positional indices of the present speed, acceleration 

and gear states respectively. 

2. For the set of 𝑆𝑂𝐶𝑘 the probability distribution ℙ(𝑆𝑂𝐶𝑘+1) at the subsequent 

timestep is calculated – this depends solely on the present control decision, 

since the vehicle speed is fixed. Note that for any 𝑠𝑜𝑐𝑘 the probability 

distribution of SOC at the subsequent timestep may be divided between a 

maximum of two values. For example, if the calculated 𝑠𝑜𝑐𝑘+1 lay exactly 

between two grid points the probability would be split equally between the 

two. 

In the example shown in Figure 5-3 for a given {𝑣, 𝑎, 𝑔} the control 

decision at 𝑠𝑜𝑐𝑘 is to use the EM to supply an assist torque. The result of this 

at the subsequent timestep is that the SOC has been depleted slightly, though 

because the SOC grid has a relatively coarse discretisation compared to the 

amount by which SOC changes in one timestep the SOC depletion is not 

enough to have moved a full grid space; in this example the SOC deviation is 

in fact one fifth of a grid space. Since the SOC is now between two grid 

spaces, their probability weightings at time 𝑘 + 1 are calculated as 0.8 and 

0.2 in favour of the original SOC value. For simplicity the example assumes 

that the same control decision is made regardless of 𝑠𝑜𝑐𝑘 ∈ 𝑆𝑂𝐶𝑘, and as a 

result the same weightings flow through the table, with the exception of 

𝑠𝑜𝑐𝑘 = 𝑠𝑜𝑐𝑚𝑖𝑛 where any assist would violate the SOC constraints. In this 

ℙ(𝑆𝑂𝐶𝑘+1) =

[
 
 
 
 
 
 
 1 0.2 0
 0 0.8 0.2
 0 0 0.8

⋯
0   0    0
0   0    0
0   0    0

⋮ ⋱ ⋮
0   0    0
0   0    0
0   0    0

⋯
0.8 0.2 0
0 0.8 0.2
0 0 0.8]

 
 
 
 
 
 

  ↑        
𝑠𝑜𝑐𝑚𝑖𝑛

 
↑  
𝑠𝑜𝑐𝑘

←
←

ℙ(𝑆𝑂𝐶𝑘+1)
 

Figure 5-3 – Diagrammatic representation of the SOC transition matrix, which at a given 
{𝒗, 𝒂, 𝒈} is dependent only on the control decision, 𝝅(𝒔𝒐𝒄𝒌). 
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case (top-left of the diagram) the control decision is therefore not to assist, 

and so ℙ(𝑆𝑂𝐶𝑘+1|𝑠𝑜𝑐𝑚𝑖𝑛) contains 𝑠𝑜𝑐𝑚𝑖𝑛 with probability 1 and is 0 

elsewhere.  

3. Having obtained the probability distribution ℙ(𝑆𝑂𝐶𝑘+1) we need also to 

obtain the probability distribution for {𝑣, 𝑎, 𝑔}𝑘+1 which is comparatively 

simple. This is isolated by appropriately indexing into  

ℙ({𝑉, 𝐴, 𝐺}𝑘+1 = {𝑣, 𝑎, 𝑔}𝑘+1 | {𝑣, 𝑎, 𝑔}𝑘) to return a 3-D probability matrix 

valid at the present values of {𝑣, 𝑎, 𝑔}𝑘. 

4. The two probability matrices must be combined to return  

 ℙ(𝑋{𝑉, 𝐴, 𝐺, 𝑆𝑂𝐶}𝑘+1 = 𝑥{𝑣, 𝑎, 𝑔, 𝑠𝑜𝑐}𝑘+1 | 𝑠𝑜𝑐𝑘)  

which is a 5-D matrix valid at the present values of {𝑣, 𝑎, 𝑔}. Perhaps the 

most obvious solution for this operation would be to extend the concept of 

scalar expansion and replicate the probability distribution for {𝑉, 𝐴, 𝐺}𝑘+1 by 

the length of SOC in the 4
th

 dimension, and then again in the 5
th

 dimension. 

Each replica of the original 3-D matrix could then be multiplied by the 

elements of ℙ(𝑆𝑂𝐶𝑘+1) to give the desired 5-D probability matrix. Although 

relatively transparent this approach is extremely computationally inefficient 

and does not take advantage of much of the built-in optimisation of MATLAB. 

Since ℙ(𝑆𝑂𝐶𝑘+1) is mainly zeroes (see Figure 5-3), as is ℙ({𝑉, 𝐴, 𝐺}𝑘+1), the 

operation can be completed far more quickly using sparse matrices. 

Furthermore, since we are actually seeking to multiply every element in 

ℙ({𝑉, 𝐴, 𝐺}𝑘+1) by every element in ℙ(𝑆𝑂𝐶𝑘+1) we can use the properties of 

the matrix cross-product. Therefore both matrices are re-arranged into 1-D 

arrays, where their second (and subsequent) dimensions are nested inside the 

first dimension. Both arrays are then converted into sparse arrays, and the 

cross product is carried out as shown in Figure 5-4. 

[
⋯

⋮ ⋱ ⋮
⋯

]
⏟        

ℙ(𝑋(𝑉,𝐴,𝐺,𝑆𝑂𝐶)𝑘+1| 𝑠𝑜𝑐𝑘)

= [
⋮
⋮
⋮
]
⏟

ℙ({𝑉,𝐴,𝐺}𝑘+1)

× [⋯ ⋯ ⋯]⏟        
ℙ(𝑆𝑂𝐶𝑘+1)

 

Figure 5-4 - Diagrammatic representation of the calculation of  ℙ(𝑿𝒌+𝟏 = 𝒙𝒌+𝟏 | 𝒔𝒐𝒄𝒌) using 

matrix cross-product and sparse matrices. 
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This procedure is repeated in a loop for each speed, acceleration and gear, 

and for each repetition the resulting ℙ(𝑋𝑘+1|𝑠𝑜𝑐𝑘) is stored in a cell array. It 

is important to keep track of the number and location of dimensions in the 

result, as this has quickly become rather abstract: We now possess a cell array 

with a length of nv·na·ng, where n denotes the length of each state vector. Each 

cell in the array pertains to one combination of {𝑣, 𝑎, 𝑔}𝑘 and contains a 

matrix representing the probability of progressing into any {𝑣, 𝑎, 𝑔, 𝑠𝑜𝑐}𝑘+1 

starting from any 𝑠𝑜𝑐𝑘, i.e. ℙ({𝑉, 𝐴, 𝐺, 𝑆𝑂𝐶}𝑘+1 | {𝑣, 𝑎, 𝑔, 𝑠𝑜𝑐}𝑘). Although 

each matrix should have five dimensions, these have in fact been collapsed 

into just two to allow storage as a sparse matrix; the first dimension contains 

{𝑣, 𝑎, 𝑔}𝑘+1 nested inside one another, and the second contains 𝑠𝑜𝑐𝑘+1 nested 

inside 𝑠𝑜𝑐𝑘. 

5. Once again, we use a “for” loop to cycle through each combination of 

{𝑣, 𝑎, 𝑔}. Inside the loop, the corresponding ℙ(𝑋𝑘+1|𝑠𝑜𝑐𝑘) matrix is retrieved 

from the cell array, and the dimensions are rearranged so as 𝑠𝑜𝑐𝑘+1 is moved 

into the first dimension, and the second dimension then only contains 𝑠𝑜𝑐𝑘. 

This matrix now has dimensions of nv·na·ng·nsoc × nsoc. The future expected 

cost, 𝐽𝜋(𝑥𝑘+1), is also rearranged into row vector form, so as to have 

dimensions  1× nv·na·ng·nsoc. These two matrices may now be combined with 

a cross product, where the probability of arriving at state 𝑋𝑘+1 at the next 

timestep, having started from 𝑠𝑜𝑐𝑘, is multiplied by the future-expected cost 

of moving onward from that state. This yields a 1×nsoc array containing the 

future cost which each present state 𝑠𝑜𝑐𝑘 may be expected to incur from the 

next timestep onward under the control policy π. 

[⋯ ⋯ ⋯ ]⏟      
𝐽𝜋(𝑠𝑜𝑐𝑘)

dim. [1 × 𝑛𝑠𝑜𝑐]

= [⋯ ⋯ ⋯ ⋯ ⋯ ]⏟          
𝐽𝜋({𝑣,𝑎,𝑔,𝑠𝑜𝑐}𝑘+1)

dim. [1 × 𝑛𝑣·𝑛𝑎·𝑛𝑔·𝑛𝑠𝑜𝑐]

×

[
 
 
 
 

⋯
⋮
⋮ ⋱

⋮
⋮

⋮
⋯

⋮
]
 
 
 
 

⏟        
ℙ(𝑋(𝑣,𝑎,𝑔,𝑆𝑂𝐶)𝑘+1| 𝑆𝑂𝐶𝑘)

dim. [𝑛𝑣·𝑛𝑎·𝑛𝑔·𝑛𝑠𝑜𝑐 × 𝑛𝑠𝑜𝑐]

 

Figure 5-5: Calculation of the future expected cost resulting from following control policy π at 

each 𝒔𝒐𝒄𝒌. 
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6. The final consideration in the policy evaluation step is the cost incurred 

instantaneously during the progression from 𝑋𝑘 to 𝑋𝑘+1. In order to account 

for this the set of control decisions 𝑢𝑣,𝑎,𝑔(𝑆𝑂𝐶) isolated in step (1) is used to 

retrieve the instantaneous cost 𝑐(𝑥𝑘, 𝑢) for each SOC. This is arranged as a 

1×nsoc array, and may be summed with the future expected cost 𝐽𝜋(𝑠𝑜𝑐𝑘) to 

create an updated estimate of the expected cost 𝐽𝜋(𝑥𝑘), as defined in equation 

(5-6). 

The process of updating the estimate of future expected cost is recursive: 𝐽𝜋 appears 

on both sides of equation (5-6) and so the solution is approached by iterating several 

times. Since each iteration is not actually calculated is one pass, but rather consists of 

the “for” loops described above, the speed of convergence is increased slightly by 

updating the values used in the old 𝐽𝜋 during the “for” loops, i.e. mid-iteration. 

For the calculation of 𝐽𝜋0 an initial control policy 𝜋0 is required, as well as an initial 

estimate for the future expected cost, 𝐽𝜋0(𝑥0). These are both set to be entirely 

zeroes, i.e. neither assist nor regenerate, and the future cost is zero. The calculation 

of 𝐽𝜋0 is therefore time consuming as it must be constructed from nothing – iterations 

were stopped once every element in the matrix was changing by less than 0.1% per 

iteration. In subsequent Policy Evaluation steps, after changing the control policy, a 

minimum of 20 iterations were performed.  

Policy Improvement 

The purpose of this step is to refine the control policy, approaching the optimal one 

for the probability-weighted future cost calculated in the Policy Evaluation step. 

Since the instantaneous cost of any control decision is easily calculated, and the 

effect this decision has in determining the next state is known, the expected future 

cost of any decision may be found from 𝐽𝜋. This step is therefore simply a case of 

picking out the control decision which results in the minimum total (instantaneous 

plus future) cost for each vehicle state. 

The techniques and processes used in the programming of the Policy Improvement 

step are similar to those described above with regard to the exploitation of sparse 

matrices and matrix cross-products. The implementation of this step is slightly more 
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straightforward in that the equation is not recursive, and therefore the optimal control 

decision at any state 𝑥𝑘 is independent of the control decision made in any other 

state. Therefore at the most fundamental level the task at hand is simply, at every 

possible state, to evaluate the cost of each possible control decision and return the 

decision which minimises the cost. Though the more sophisticated MATLAB built-in 

optimisation functions were trialled it was found to be faster simply to evaluate the 

cost of every possible control decision by direct enumeration, since the discretisation 

of the control vector was relatively coarse and so the set of possible control decisions 

in any state is small. 

Although the essence of the problem is simple it is advantageous to increase the 

number of dimensions being handled simultaneously so as to reduce the number of 

nested loops, making best use of MATLAB’s built-in matrix optimisations. Therefore 

the gear and SOC dimensions are processed simultaneously, and the following 

procedure is repeated inside “for” loops for each speed and acceleration. 

1. 𝐽𝜋 is rearranged to have {𝑣, 𝑎, 𝑔}𝑘+1 in the first dimension and 𝑠𝑜𝑐𝑘+1 in the 

second dimension (in fact this is invariant and so is only rearranged once, 

outside of the loops). 

2. The probability distribution of speed, acceleration and gear at the next 

timestep is isolated from the drive cycle probability matrix:  

ℙ({𝑉, 𝐴, 𝐺}𝑘+1 = {𝑣, 𝑎, 𝑔}𝑘+1 | 𝑔𝑘). This is rearranged so as to contain 𝑔𝑘 in 

the first dimension and {𝑣, 𝑎, 𝑔}𝑘+1 nested inside one another in the second 

dimension. This is converted into a sparse matrix. 

3. The probability distribution of speed, acceleration and gear at the next 

timestep (from step 2) is cross-multiplied by the future expected cost of each 

state (step 1) as shown in Figure 5-6. The result is a 2-D matrix representing 

the future expected cost as a function of the present gear, 𝑔𝑘, and the SOC at 

the next timestep, 𝑠𝑜𝑐𝑘+1. 
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[⋮
⋯
⋯ ⋮]⏟      

𝐽𝜋
{𝑣,𝑎}𝑘(𝑔𝑘,𝑠𝑜𝑐𝑘+1)

dim. [𝑛𝑔 × 𝑛𝑠𝑜𝑐]

= [⋮
⋯
⋯

⋯
⋯

⋯
⋯ ⋮]⏟            

ℙ({𝑉,𝐴,𝐺}𝑘+1={𝑣,𝑎,𝑔}𝑘+1 | 𝑔𝑘)

dim. [𝑛𝑔 × 𝑛𝑣·𝑛𝑎·𝑛𝑔]

×

[
 
 
 
 

⋯
⋮
⋮
⋮

⋱
⋮
⋮
⋮

⋯ ]
 
 
 
 

⏟        
𝐽𝜋({𝑣,𝑎,𝑔,𝑠𝑜𝑐}𝑘+1)

dim. [𝑛𝑣·𝑛𝑎·𝑛𝑔 × 𝑛𝑠𝑜𝑐]

 

Figure 5-6: Weighting the future expected cost at k+1 by the probability distribution of 
{𝑽, 𝑨, 𝑮}𝒌+𝟏 to give the future expected cost as a function of 𝒈𝒌 and 𝒔𝒐𝒄𝒌+𝟏 based on present 

vehicle speed and acceleration, {𝒗, 𝒂}𝒌. 

 

4. From the SOC progression matrix the probability distribution of SOC at the 

next timestep is isolated for the present speed, such that it now only depends 

on the present SOC and the control decision: 

ℙ(𝑆𝑂𝐶𝑘+1 = 𝑠𝑜𝑐𝑘+1 | {𝑠𝑜𝑐, 𝑢}𝑘). This may then be cross-multiplied with the 

transposed result of the previous step to give the future expected cost of any 

SOC-control-gear combination at the present timestep, for {𝑣, 𝑎}𝑘. 

[⋮
⋯
⋯ ⋮]⏟      

𝐽𝜋
{𝑣,𝑎}𝑘(𝑠𝑜𝑐𝑘,𝑢𝑘,𝑔𝑘)

dim. [𝑛𝑠𝑜𝑐∙𝑛𝑢 × 𝑛𝑔]

=

[
 
 
 
 

⋯
⋮
⋮
⋮

⋱
⋮
⋮
⋮

⋯ ]
 
 
 
 

⏟        
ℙ(𝑆𝑂𝐶𝑘+1=𝑠𝑜𝑐𝑘+1 | {𝑠𝑜𝑐,𝑢}𝑘)

dim. [𝑛𝑠𝑜𝑐·𝑛𝑢 × 𝑛𝑠𝑜𝑐]

 × [

⋯
⋮ ⋮
⋯
]

⏟  

𝐽𝜋
{𝑣,𝑎}𝑘(𝑠𝑜𝑐𝑘+1,𝑔𝑘)

dim. [𝑛𝑠𝑜𝑐 × 𝑛𝑔]

 

Figure 5-7: Weighting the future expected cost of all SOCk+1 by the probability distribution of 

SOCk+1 to give the expected cost of any SOC-control-gear combination. 

 

5. The instantaneous cost is isolated at the present speed and acceleration, so as 

it is now only a 2-D matrix with dimensions of gear and control decision. 

Since instantaneous cost is not a function of SOC this is simply replicated in 

a third dimension nsoc times to represent the cost of each gear-control-SOC 

combination at the present {𝑣, 𝑎}𝑘. The cost is not dependent on SOC, but this 

is necessary so that the dimensions can be rearranged to match those of the 

result of the previous step. Instantaneous cost and future expected cost may 

then be summed directly as shown in Figure 5-8, where the future expected 

cost is discounted by λ. 
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⏟      
𝑡𝑜𝑡𝑎𝑙 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑠𝑡
dim. [𝑛𝑠𝑜𝑐×𝑛𝑢 × 𝑛𝑔]

     ⏟      

𝑐
{𝑣,𝑎}𝑘(𝑠𝑜𝑐𝑘,𝑢𝑘,𝑔𝑘)

dim. [𝑛𝑠𝑜𝑐×𝑛𝑢 × 𝑛𝑔]

         ⏟      

𝐽𝜋
{𝑣,𝑎}𝑘(𝑠𝑜𝑐𝑘,𝑢𝑘,𝑔𝑘)

dim. [𝑛𝑠𝑜𝑐× 𝑛𝑢 × 𝑛𝑔]

 

Figure 5-8: Adding the instantaneous cost to the discounted future expected cost gives the total 

expected cost of each control decision. The decision yielding the minimum total expected cost may 

then be selected for each {𝒔𝒐𝒄, 𝒈}𝒌. 

 

6. From the result of the previous step the control decision yielding the 

minimum total expected cost for each {𝑠𝑜𝑐, 𝑔}𝑘 at the present {𝑣, 𝑎}𝑘 may be 

read out directly; that is: 𝜋𝑖+1(𝑥𝑘) = arg min
𝑢
{𝑡𝑜𝑡𝑎𝑙 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑠𝑡}. Steps 

(1)-(6) are repeated for each speed-acceleration point. 

The policy evaluation and policy improvement steps described must be repeated 

many times – in this case several thousand times – to converge on the optimal 

solution. However, the convergence on a solution and the quality of the output 

depend hugely upon appropriate parameter selection, and during this work practical 

advice on this was found to be scarce. The methods and plots presented in the 

following section were found to be informative during the development process. 

5.2.2 Choice of Discount Factor 

Perhaps the most important parameter to select appropriately is the discount factor, λ, 

and this issue is not explored or widely reported on in the existing literature, as 

discussed in Chapter 2. Since this defines how quickly the future costs are 

discounted, it essentially determines how future looking the control strategy is; for 

example, considering equation (5-5), when λ=0 the strategy only considers the 

immediate cost of its decision. In contrast if λ=1 the strategy would consider the cost 

at every timestep in the future with equal weighting, and therefore attempt to look 

infinitely far into the future. 

  =      +   λ·   
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A strategy which discounts future costs quickly will be relatively unaware of the 

costs required to replenish any battery energy consumed in the present; for this 

reason strategies built with a low λ tend to be charge depleting. Conversely, 

strategies with λ→1 are more aware of energy balance costs and so are more charge 

sustaining. However, although the quality of the solution is better with higher values 

of λ the number of iterations required increases exponentially. For this reason higher 

values of λ carry the burden of considerably more computational effort before the 

solution converges and computation times quickly escalate as a result. 

To achieve charge sustaining behaviour it is not mathematically necessary to place a 

cost on deviation of the SOC from a target or nominal value, as charge sustenance is 

achievable by selection of an appropriately high value of λ. Nevertheless other 

researchers have added a cost on SOC deviation, primarily because of other desirable 

effects such as reducing the likelihood of the SOC being very low when the vehicle 

is switched off [75], though this may also have been motivated by its enabling the 

use of a smaller λ. In the ideal case λ would be sufficiently high to ensure the control 

strategy is adequately charge sustaining, but no higher, therefore not incurring 

additional computation time unnecessarily. 

Determining and examining the charge sustaining properties of a control strategy are 

not necessarily straightforward, as the response of any control strategy will depend 

greatly on the drive cycle to which it is subjected. Rather than follow the widely used 

approach of simulating the controller’s response to a particular drive cycle a more 

advanced method of examining the controller’s behaviour was developed in 

furtherance of the probabilistic nature of the SDP approach. In this approach the 

probabilistic ratio of positive to negative DC current at each SOC was calculated, in 

the hypothetical scenario where the SOC is invariant. In other words, this is the ratio 

of assist to regeneration which is likely to occur at each SOC, calculated by 

multiplying the probability of each {𝑣, 𝑎, 𝑔} combination with the controller’s 

response in that state, and dividing the sum of positive values by the sum of negative 

values: 
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 𝑄𝐼(𝑠𝑜𝑐𝑖) =
∑ℙ(𝑣, 𝑎, 𝑔) ∙ (𝜋(𝑣, 𝑎, 𝑔, 𝑠𝑜𝑐𝑖) > 0)

∑ℙ(𝑣, 𝑎, 𝑔) ∙ (𝜋(𝑣, 𝑎, 𝑔, 𝑠𝑜𝑐𝑖) < 0)
 ,   𝑖 = 1, 2, … 𝑛𝑠𝑜𝑐 . (5-11) 

Where this ratio is greater than 1 the strategy is generally charge depleting, whereas 

at values less than 1 it is charge gaining over a drive cycle with the same statistical 

distributions of {𝑣, 𝑎, 𝑔} as the data on which it was based. 

Selecting an appropriate value of λ was very much a trial-and-error process and a 

range of values were experimented with starting from 0.95, as used by several other 

researchers, and progressively working towards higher values. It became apparent 

very early on that for this application a value of λ considerably higher than those 

reported by others was necessary. Figure 5-9 presents the ratio 𝑄𝐼 varying with SOC 

for a range of λ values, and the importance of λ in determining the equilibrium SOC 

is evident. These plots shall be referred to as probabilistic charge sustenance plots, 

and the SOC at which the ratio is exactly 1 is the probabilistic nominal SOC. It can 

be seen in Figure 5-9 that increasing λ up to a value of 0.999,999 has a considerable 

 

Figure 5-9:  Probabilistic charge sustenance plot for different values of λ, showing the ratio of positive to 

negative current demand as a function of SOC. The control strategy is nominally charge sustaining where 

𝑸𝑰 = 𝟏. The variation of this function with λ is a result of how “future looking” the strategy is.  
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effect of the probabilistic nominal SOC, but increasing the value above this does not 

change the response, and therefore this value was selected.  

As identified in Chapter 2 previous researchers have reported using values of λ in the 

range 0.95-0.995. The considerably higher values required here are most likely 

because of the use of 10 Hz data where others have used 1 Hz data, meaning the 

algorithm needs to consider 10 times more data samples and degrade 10 times slower 

in order to consider the same physical timeframe as the versions implemented by 

others. Since driving data was available at 10 Hz it was used at this frequency 

throughout, and not down-sampled, because reduced frequencies would result in 

considerable loss of information regarding vehicle energy [76].  

5.2.3 SOC Adjustment 

Probabilistic charge sustenance plots may also prove useful where developers wish to 

adjust the nominal SOC that a controller operates at. For example, if the 𝑄𝐼 = 1 

intercept is at 73% SOC, but it is desirable for other reasons that the nominal SOC is 

78%, the SOC reported to the controller may simply be offset by 5%. This simple 

observation offers a great deal of clarity and robustness to the process of developing 

SDP controllers, which can otherwise be obscured by the difficulty visualising and 

interrogating the large number of controller dimensions. 

5.2.4 Number of Iterations 

Complete convergence of the future expected cost 𝐽𝜋 would take an extremely long 

time, however since small changes in the shape of the cost function do not 

necessarily effect a change in the shape of the control strategy map it may be 

possible to truncate the iterations at some point; in practice therefore we may permit 

ourselves to terminate iterations once the shape of the control strategy map is stable. 

This raises the question of how the truncation threshold, or stability criterion, is 

defined. Simply comparing successive policies and waiting for them to become 

identical would take an enormous number of iterations, and does not necessarily give 

the best representation of the amount of change being undergone. In this work it was 

observed that there was often some amount of cyclical change where policies cycled 

through some repeatable series of changes, while the net change over several 
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iterations was zero. For this reason it was found to be more helpful to define the 

maximum percentage change of any element in 𝐽𝜋 as ε, and curtail iterations when 

this fell below a threshold. The sum of the absolute difference between the final 

control strategy 𝜋𝑁 and each 𝜋𝑖 was then counted and divided by the grid space size 

to find the number of grid space differences, 𝑛∆ =
|𝜋𝑁−𝜋𝑖|

17
, used to ensure that no 

cumulative change was taking place. Note that each value in 𝜋 may move by more 

than one grid space. This method was used for a very long sequence of 𝜋 iterations to 

investigate at what point cumulative change stopped, and from this information the 

value of ε was chosen as 0.0008%, which was considered low enough to leave a safe 

margin between the end of any cumulative change and the conclusion of iterations.  

Figure 5-10 shows an example of the exponential convergence of 𝐽𝜋. For 

λ=0.999,999 the threshold is reached after 5719 iterations of π (note that there are a 

minimum of 20 iterations of 𝐽𝜋 for each iteration of π) and there is no cumulative 

change in π by this point.  

The implementation of SDP achieved during this work took about 30 seconds for 

each policy evaluation step (which includes 20 iterations of 𝐽𝜋) and a similar amount 

of time for each policy improvement, running on a desktop computer with an Intel 

Core i7 CPU at 2.0 GHz. Therefore the evaluation of 5719 iterations of π represents 

approximately 4 days of contemporary desktop computing. Since the rate of 

convergence is considerably slower with higher values of λ, and quicker with lower 

values of λ, it is easy to appreciate the desire to use a λ which is no larger than 

necessary.  

The final result of the SDP iteration is a stationary policy in the form of a multi-

dimensional look-up table. In this case the look-up table has four dimensions, 

{𝑣𝑘, 𝑎𝑘, 𝑔𝑘, 𝑠𝑜𝑐𝑘}, and Figure 5-11 presents a cross-section of what this looks like.  
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Figure 5-10:  Convergence of the future expected cost function and the control policy based on this cost. 

Iterations are truncated when  𝜺 ≤ 𝟖 × 𝟏𝟎−𝟒 %. The inset axis shows that at this point the changes in the 

control policy are cyclical and not cumulative; further iterations are unlikely to yield any significant changes 

to the salient shape of the policy. 



 Chapter 5 – Hybrid Control Development 

 109 

5.2.5 Robustness to Varying Driving Patterns 

Section 5.2.2 first introduced the idea that the demand of the SDP controller for each 

SOC can be weighted by the probability of each state occurring. When expressed as a 

ratio of positive to negative current the result gives an indication of how charge 

sustaining the strategy is as a function of SOC. Naturally the ratios of positive to 

negative current demand and the inferred nominal SOC are only good indicators of 

the controller’s average behaviour over an extended period, assuming that the 

stochastic distributions of the actual driving are close to those used in the design of 

the controller. It is of course foreseeable that there will be differences between the 

stochastic distributions of real driving and those historic ones used to design the 

controller. These differences may be considered under two categories: 

(1) Real-time variability: When considering short periods of driving it is 

inevitable that the distributions observed on the macro scale no longer hold 

true. As the period under consideration is shortened the variations between 

 

Figure 5-11:  SDP control policy surface as a function of vehicle speed and acceleration in 4th gear, at 70% 

SOC, with α = 0.001. The control decision is a unitless number in the range ±255 which defines the battery 

assist or regeneration current as a proportion of the maximum available at the present vehicle speed.  
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samples will increase, as too will the difference between the macro trends 

and the trends of each sample.  

(2) Paradigm shift: It is possible that the average driving pattern of the vehicle 

will change permanently, perhaps as a result of the vehicle’s purpose being 

altered, the driver adjusting their style slightly or a different driver 

altogether. 

Both of these situations will result in deviation from the probabilistic nominal SOC, 

either fleetingly or more permanently. With respect to real-time variability the 

deviation from the nominal SOC is no cause for concern – on the contrary if there 

were no deviation this would simply indicate that the system was entirely inactive. 

The maximum and minimum SOC define the extremes of the operating window and 

the control strategy will never attempt to operate outside of these limits. 

With regard to more fundamental changes in the average use of the vehicle over time 

it is certainly true that some degree of sub-optimality may develop and that the 

nominal SOC may drift. For this reason it is interesting to examine the controller’s 

behaviour when a stochastic drive cycle other than that used in its design is assumed. 

For this purpose the probabilistic charge sustenance characteristics of the SDP 

controller were calculated using the same procedure as previously set out, but using 

stochastic driving data from each of vans 4, 6 and 7 in isolation. Each curve therefore 

describes the controller’s behaviour in the situation where the composition of the 

actual drive cycle differs from the historic set for which the controller was designed. 

In these cases the differences between actual and historic driving patterns are not 

enormous since the historic set is actually the combination of the three vans. The 

situation is therefore illustrative of the condition where a minor change to the 

vehicle’s role has been made, or where the driver has changed. The results are 

presented in Figure 5-12 and indicate that in such a situation the ratio of energy 

recovered to energy deployed can change significantly, therefore moving the 

probabilistic nominal SOC. 

In the case of using only Van 4 data Figure 5-12 suggests that less recoverable 

energy is available in the driving cycle and/or the states resulting in assist events are 

frequented more often. As a result of this the nominal SOC has fallen to around 63%. 
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In contrast the opposite is true of Van 6 data, leading to the nominal SOC rising to 

81%, while using only Van 7 data seems not to impact the behaviour a great deal. In 

all cases the responses are considered robust because the controller naturally adjusts 

to the availability of energy to achieve a charge sustaining behaviour without resting 

on the limits of the acceptable battery SOC. 

Despite the strategy being charge sustaining there may be reasons why it is 

undesirable for the nominal SOC to have significantly shifted. For example, if the 

nominal SOC is reduced then the probability of the vehicle being switched off and 

leaving the battery at a low SOC for an extended period is increased. This may have 

consequences for the battery’s self-discharge rate and subsequent SOH when the 

vehicle is restarted. If the SDP technique were to be adopted it is likely that this 

possibility would need to be addressed, though it is unlikely to be problematic. The 

ideal solution would be to continuously record actual driving data and to refine the 

optimal control surface based on the most recent use of the vehicle, perhaps when the 

vehicle is not in use. Should this approach not be feasible (due to hardware 

performance limitations, for example) simpler adjustments may be made at a higher 

 

Figure 5-12:  Probabilistic charge sustenance plots for the SDP controller when the actual stochastic driving 

data is based on each van in isolation. The controller is optimised for the combined data of all 3 vans and so its 

behaviour changes if the actual stochastic driving data differs from the design set.  
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level in the controller, for example by monitoring the nominal SOC and applying an 

offset to the SOC reported to the SDP control sub-routine, thereby readjusting the 

nominal SOC as desired.  

5.3 Implementation of ECMS 

To properly evaluate the performance and potential of the SDP control strategy best 

practice would suggest comparison with another accepted and well regarded 

approach to control; for this reason a comparable ECMS policy was developed. The 

basis of ECMS optimality is to minimise the instantaneous cost, without any regard 

to the potential future costs which the present decision might incur. Although in 

principle this instantaneous optimisation approach is inferior to the global 

optimisation offered by SDP, the ECMS may in fact perform almost as well, and 

offers other advantages since it is relatively easy to implement, transparent, and easy 

to work with. As with other approaches the cost function may be composed of 

multiple terms, and in ECMS terminology these are weighted using equivalence 

factors which define an equivalent price for the different elements of the cost 

function in units of the primary cost – fuel. 

In the case when the ECMS is deployed in control of a plug-in hybrid vehicle the 

electricity available in the batteries has an associated physical cost, this being the 

price paid to charge the batteries from the grid. However in the present case, where 

much of the energy stored in the battery is recovered from regenerative braking and 

therefore has no monetary cost, the appropriate price on electricity consumption is 

not so clear. Leaving the consumption of electrical energy from the batteries without 

an equivalent cost would simply result in continual use of the electric powertrain to 

assist, as this always reduces the instantaneous fuel consumption. It is therefore 

necessary to impose some cost on electricity consumption by means of an 

equivalence factor that ensures charge sustaining behaviour. For the ECMS control 

strategy the cost function implemented may then be written as 

 𝑐(𝑥𝑘, 𝜋(𝑥𝑘)) = 𝑓(𝑣𝑘, 𝑎𝑘, 𝑔𝑘, 𝑢𝑘) + 𝛼 ∙ 𝐶
2 + 𝛾 ∙ 𝐶 . (5-12) 
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As for the SDP cost function the first two terms represent instantaneous fuel 

consumption and the cost for high power electrical operation respectively. The third 

term introduces equivalence between the consumption of electricity stored in the 

batteries and the consumption of fuel, with equivalence factor γ. It should be noted 

that the second term, penalising high power use of the electric powertrain, is always 

positive regardless of the direction of energy flow. In contrast the third term 

representing the instantaneous cost of electricity consumption can be positive or 

negative, becoming negative when the batteries are being charged. 

Computation of the ECMS control map is far less complicated than that of the SDP, 

and is adequately described elsewhere, so will not be covered in the same length. 

Using the same “For Each” models as in the SDP development a cost matrix was 

derived for each of the three cost terms in the cost function. The cost matrices for 

high power operation and electricity consumption were expanded as necessary to 

have dimensions {𝑣𝑘 , 𝑎𝑘, 𝑔𝑘, 𝑢𝑘}, matching the dimensions of the instantaneous fuel 

cost. For specified values of the two equivalence factors the three cost matrices were 

then combined into a single matrix, defining the cost of each control decision in any 

vehicle state {𝑣𝑘, 𝑎𝑘, 𝑔𝑘}. The control map was then obtained simply by retrieving 

 

Figure 5-13:  ECMS control policy surface as a function of vehicle speed and acceleration in 4th gear, with 

α = 0.001. The control decision is a unitless number in the range ±255 which defines the battery assist or 

regeneration current as a proportion of the maximum available at the present vehicle speed.  
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the value of the control decision which minimised the combined cost in each vehicle 

state. As with the SDP controller all of this was computed off-line such that the 

resulting control policy could simply be implemented as a look-up table, an example 

of which is shown in Figure 5-13. 

Selection of γ values was made by using the simulation and a golden search 

optimisation routine to vary γ with the aim of minimising SOC change over a LA92, 

with the target being to achieve less than ±0.5% SOC difference. This optimisation 

was carried out for each value of α used, since the control strategies resulting from 

different α naturally had different charge sustaining behaviour.  

5.4 Controller Architecture 

Both the SDP and ECMS algorithms output multi-dimensional state loop-up tables 

which define the optimal response of the hybrid powertrain to the present vehicle 

state. These look-up tables were implemented as the core decision making block in 

the centre of a much larger control system architecture which incorporated a 

substantial amount of low level functionality, both upstream and downstream of the 

look-up table. A great deal of this low level functionality comprised relatively trivial 

but important tasks such as input and output filtering and processing, however some 

more advanced features such as inference of the vehicle context and driver intentions 

were also necessary for safety and drivability reasons. Functionality outside of the 

core maps was common between all control policies tested. 

One of the most basic examples of safety critical contextual logic is the assurance 

that when the brake pedal is activated by the driver the demand of the hybrid 

controller can only be negative (regeneration); it should never be permissible to 

deliver positive (assist) torque during braking, as this is in direct contravention of the 

driver’s request. By the same token, when the engine is operating very close to its 

maximum load this may suggest the vehicle is struggling to climb a steep hill or that 

a rapid acceleration is necessary, when on a slip road preparing to join a motorway 

for example. In such situations it may be dangerous to demand regeneration, and so 

this is forbidden. 
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Whenever the brake pedal is activated it is safe to assume the driver’s intention is to 

slow the vehicle even if this is not adequately reflected in the vehicle’s acceleration, 

due to a gradient for example. For this reason it would seem logical that during 

braking the control demand should be maximum regeneration, however since the 

cost function used in this work aims to evaluate different levels of positive and 

negative aggressivity such crude conditional logic would not be appropriate. Instead, 

the acceleration input to the control map was overridden with the minimum 

acceleration defined in the state space, so that the controller’s output became its 

natural response to strong deceleration at that speed, gear and SOC. By following 

this logic the rate of energy recovery during braking was respectful of the 

controller’s other objectives.  

A more subtle example of the contextual logic implemented is the detection of gear 

upshift events during accelerations, which is of interest for drivability reasons. 

During any gear shift event the clutch is pressed, mechanically disconnecting the 

engine from the wheels, hence ensuring that there is no tractive power. As a result of 

the absence of tractive power the vehicle will immediately begin to decelerate, which 

may cause the controller to demand regeneration. Although the response of the 

controller in this situation is entirely logical the inputs to the controller are somewhat 

misleading as it is not the driver’s intention to slow down, nor is regeneration an 

appropriate control demand. Recovering kinetic energy during an upshift would 

cause the speed to fall further, therefore requiring more work to re-accelerate the 

vehicle as soon as the next gear is engaged. In order to mitigate this scenario the 

control logic monitors the clutch signal, and if activated during an acceleration event 

triggers an upshift flag; in this case the output of the look-up table is passed through 

a low pass filter so that the assist torque which was applied during the preceding 

acceleration is continued through the upshift event, only decaying to about half its 

magnitude at the end of the shift. For safety reasons this flag expires after two 

seconds and is overridden by several other use cases, as may be expected, such as 

brake pedal activation. 
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5.5 Chapter Conclusions 

A set of SDP controllers has been developed in this chapter, which are each designed 

to operate the HEV powertrain optimally for minimisation of fuel consumption 

whilst utilising the electric powertrain at different levels of aggressivity, controlled 

by a weighted term in their cost functions. Each SDP controller is based on realistic 

stochastic driving distributions extracted from the data collected in Chapter 3, and 

should therefore be optimised to driving patterns representative of the vehicles’ 

typical real-world usage. 

The development of the controllers has been described in detail, with practical 

considerations and limitations explained and addressed. In particular the 

management of SOC is not enforced explicitly in the cost function, but is instead 

managed by appropriate choice of the discount factor, λ. The effect of the discount 

factor on charge sustenance was therefore examined and methods developed to 

examine this graphically, thereby aiding selection of an appropriate value. 

ECMS controllers were also developed, primarily as a benchmark. The controllers 

developed in this chapter are implemented both in the whole-vehicle simulation 

developed in Chapter 4, as well as on a real vehicle, and performance results reported 

in Chapter 6. 

 



 

   

 

 

 

Chapter 6 Hybrid Control Results 

 

 

In this chapter the HEV controllers are tested, first in simulation, then under 

controlled conditions on a chassis dynamometer. The trade-off between fuel 

consumption savings and electrical system stress is investigated through testing of 

control strategies with a range of values for the equivalence factor α. Finally, one of 

the SDP controllers is adapted for real-world use and tested on-road. The application 

of the SDP algorithm to control of a real vehicle is believed to be the most concerted 

and complete reported to date, as well as the first time that testing of a SDP 

controller on the open road is reported. For this purpose the controller response 

surface was transformed by replacing the acceleration state with engine load. This 

was deemed necessary for safety reasons and because of road gradients in the real 

world, and this approach is believed novel. 

Parts of this chapter have been published in the following separate works: 

C. Vagg, C. J. Brace, S. Akehurst and L. Ash, “Model-based Optimal Control of a 

Hybrid Electric Vehicle Using Stochastic Dynamic Programming.” In: 6th 

Conference on Simulation and Testing for Automotive Electronics, 2014-05-15 - 

2014-05-16, Berlin, Germany. 

C. Vagg, C. J. Brace, S. Akehurst and L. Ash, “Minimizing Battery Stress during 

Hybrid Electric Vehicle Control Design.” In: 9th IEEE Vehicle Power and 

Propulsion Conference, 2013-10-15 - 2013-10-18, Beijing, China. 

 

  



 

118 

In order to evaluate the potential of the control strategies to trade-off fuel savings 

with electrical system stress several variations were built and tested. The cost 

function on which the SDP control strategies were based was proposed in Section 

5.1, and is restated for reference below.  

 𝑐 = 𝑓 +  𝛼 · 𝐶2 (5-2) 

The effect of increasing α is to impose a cost on high power use of the electrical 

system, introducing a preferential bias towards control resulting in more sustained 

low power operation wherever this detracts least from possible fuel consumption 

savings. Several control strategies were developed with a range of α; their 

performance was first evaluated using the vehicle powertrain simulation developed 

in Chapter 4 before implementing them in hardware and testing on a chassis 

dynamometer. Results of this testing are presented in the following sections. 

6.1 Simulation Results 

A range of SDP and ECMS controllers were tested in simulation with different 

values of α in order to investigate the parameter’s effect on fuel consumption and 

electric powertrain use. It was expected that higher values of α should deter use of 

the electric powertrain, particularly at high power levels, and that this would have a 

negative impact on fuel consumption; however it is the shape of the resulting trade-

off which is of interest. 

Simulations were conducted over a LA92 drive cycle using the bespoke gear shift 

schedule already described. This drive cycle was selected based on the work 

presented in Chapter 3 with the intention of testing the hybrid vehicle over a drive 

cycle representative of its real-world usage. The vehicle simulation used was that 

presented in Chapter 4, which contains a model of the control strategy and is capable 

of simulating its response to each vehicle state. Given the drive cycle as an input this 

simulation is therefore capable of calculating the total fuel consumption of the HEV. 

In the case of the SDP controllers charge sustenance over the drive cycle was 

adjusted by adding an offset to the SOC reported to the controller, as described in 
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Section 5.2.3, thereby shifting its natural charge-discharge ratio (𝑄𝐼). Since the SDP 

controllers were generally found to be charge depleting the offset applied was in the 

range -9.5% to -5% SOC. In the case of the ECMS controllers charge sustenance was 

achieved by optimisation of γ, as described in Section 5.3. All simulations were 

charge sustaining to within ±0.5% SOC. Parameters used for each control strategy 

including α, γ, and SOC offset are presented in Table 6-1, along with results of the 

simulations. 

As previously discussed the square of the battery C-rate is proposed as a metric of 

the aggressivity at which the electric powertrain is being operated at, and the stresses 

to which components are exposed. Figure 6-1 presents the trade-off between fuel 

consumption and mean square battery C-rate using the data presented in Table 6-1, 

and the non-linear nature of the relationship suggests that α may be used to reduce 

aggressive use of the electric powertrain without sacrificing a proportional amount of 

the potential fuel consumption savings. Using the SDP results as an example, 

increasing α from 0 to 0.002 g∙h2 reduces the mean square C-rate from 6.62 h−2 to 

3.24 h−2, a reduction of 51%; meanwhile the sacrifice of potential fuel savings is 

20%. 

Table 6-1:  Simulation parameters and results for SDP and ECMS controllers over a LA92 drive cycle. 

 
α 

(g∙h2) 
SOC offset 

(%) 
γ 

(g∙h) 

ΔSOC 

(%) 

Fuel Cons. 

(g) 
|𝐶|̅̅ ̅̅  

(h−1) 

𝐶2̅̅̅̅  

(h−2) 
Fuel Saving 

(%) 

Hybrid off        

     1158.63 

 

0 0  

SDP        

 0.006 -9.5  0.01 1144.61 0.52 0.71 1.21 

 0.004 -8.5  -0.09 1139.62 0.75 1.42 1.64 
 0.003 -8.5  0.13 1137.18 0.87 1.96 1.85 

 0.002 -7.0  -0.40 1132.00 1.10 3.24 2.30 
 0.001 -6.5  -0.03 1126.25 1.45 5.94 2.80 

 0 -5.0  0.13 1125.38 1.60 6.62 2.87 

ECMS        

 0.006  0.0036 0.29 1141.70 0.65 1.07 1.46 
 0.004  0.0036 0.02 1138.14 0.82 1.62 1.77 

 0.003  0.0035 0.02 1133.12 1.04 2.77 2.20 

 0.002  0.0035 0.00 1127.69 1.33 4.75 2.67 
 0.0015  0.0035 0.05 1124.87 1.50 6.22 2.91 

 0.0010  0.0036 0.18 1124.77 1.55 6.43 2.92 
 0.0005  0.0037 0.46 1123.72 1.69 7.02 3.01 

 0.00025  0.0038 0.04 1124.02 1.83 7.84 2.99 

 0  0.0038 0.40 1124.60 2.14 9.77 2.94 
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Alongside the trade-off with mean square C-rate it is perhaps helpful to consider the 

equivalent trade-off with the mean not-squared C-rate (Figure 6-2). This is 

enlightening and reassuring because the linear trend with relatively constant gradient 

for the majority of the range suggests that the fuel benefit per unit battery throughput 

is roughly constant. In other words, for each kilojoule of energy deployed through 

 

Figure 6-1:  Trade-off between mean square C-rate, 𝑪𝟐̅̅̅̅ , and the fuel consumption achieved in simulation. 

The non-linear relationship suggests 𝑪𝟐̅̅̅̅  can be reduced considerably without sacrificing fuel savings in the 

same proportion. 

 

Figure 6-2:  Trade-off between mean C-rate, �̅�, and the fuel consumption achieved in simulation. The 

generally linear relationship confirms that battery energy throughput is proportional to the fuel savings 

achieved.  
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the electric powertrain a proportional amount of fuel is saved. This observation 

confirms that applying cost to the square of the battery C-rate rather than the C-rate 

directly does not achieve any mysterious improvement in the equivalence between 

electrical and fuel energy, it simply ensures that when use of the electric powertrain 

is scaled back it is the highest power events which are sacrificed first, in favour of 

more consistent low power operation. Although the trend is linear for the majority of 

the range this is not true at the highest C-rates, which suggests that at this extreme 

the equivalence between electrical and fuel energy becomes less favourable. 

Both the SDP and ECMS control strategies appear able to achieve similar fuel 

savings, and in doing so operate the electric powertrain at comparable levels of  𝐶2̅̅̅̅ , 

therefore exerting similar levels of stress. It is significant however that the curve for 

ECMS extends considerably further into the high 𝐶2̅̅̅̅  region than that for SDP, 

suggesting that with small values of α the natural response of the ECMS is to apply 

additional and unnecessary stress to the electric powertrain through high power 

operation – in this case an additional 39% – while actually achieving sub-optimal 

fuel savings.  

Figure 6-1 suggests the fuel savings achieved by ECMS over a LA92 are slightly 

better than those achieved using SDP. This is slightly surprising as the SDP 

algorithm is the more advanced of the two in theory, though its performance is only 

strictly guaranteed to be optimal when the probabilistic source data exactly matches 

the test cycle. In reality the savings are extremely similar and it is likely that the 

unavoidable inaccuracies inherent in modelling make it impossible to make any 

worthwhile claims on the significance of this observation. 

6.2 Chassis Dynamometer Results 

Following successful development and demonstration of both types of control 

strategy the next objective was to implement them as embedded code on production 

hardware, so that their real-time performance in an operational vehicle could be 

evaluated on a chassis dynamometer. This process required some preparation of the 
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control strategies which is described in the next section, followed by a description of 

the experimental test procedure and the results. 

6.2.1 Adaptation for Real-World Use 

The principal output of the SDP algorithm is a very large look-up table or control 

map, in this case four-dimensional, of which exemplary cross sections are shown in 

Figure 5-11 and Figure 6-4(a). For practical reasons some post-processing of this raw 

output was found to be necessary, firstly due to memory limitations of the hardware, 

but also because the control policy may contain occasional discontinuities for reasons 

explained in the following paragraphs. 

For each vehicle state the SDP definition of the optimal control decision relies on the 

matrix dot-product ℙ(𝑋1 = 𝑥1|𝑥0, 𝑢) ∙ 𝐽𝜋(𝑥1) which represents the probability-

weighted future expected cost of decision u, where 𝑥0 is the present vehicle state 

{𝑣0, 𝑎0, 𝑔0, 𝑠𝑜𝑐0}. If, however, a particular driving state {𝑣0, 𝑎0, 𝑔0} was never visited 

during the source data then the state transition probability matrix ℙ(𝑋1 = 𝑥1|𝑥0, 𝑢) is 

not defined, and in this implementation is simply null (all zeroes). In this case the 

cost on which the optimal control decision would be selected is exclusively the 

instantaneous cost.  Since the instantaneous cost does not give any consideration to 

the value of stored electrical energy, though it may penalise high power use, the 

result is almost always to demand maximum assist during accelerations and cruises, 

and to demand no regeneration during decelerations, which is clearly illogical. 

Instead of accepting these decisions it was decided to override the stored control 

value with a null entry during the control policy refinement, and to re-evaluate the 

potential effect of the problem off-line. 

The very nature of the poorly defined state probability matrix implies that this 

problem is not a significant one, since if a state was not visited at all during the 

extensive on-road data collection exercise then it is unlikely to pose any problem 

during normal operation, and for this reason no remedial action was felt necessary 

for testing in simulation. Nevertheless for real-world testing these sorts of issues 

must be taken more seriously, as sudden discontinuities in the control response may 

be cause for safety concerns. The nature of the problem can be seen in the high 
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speed, harsh deceleration quadrant of Figure 5-11, but is also illustrated in Figure 

6-3. 

In general the discontinuities noted in the control policy were in the negative 

acceleration domain, under braking. This is also the area which is of more concern 

from a safety viewpoint since under progressively heavy braking the controller’s 

response may switch between zero and maximum regeneration, with the potential to 

confuse and destabilise the vehicle’s ABS. Discontinuities in the positive 

acceleration domain were not regarded as a significant concern. In order to address 

the problem in the negative domain the controller’s response to increasingly harsh 

deceleration was considered in every state. The value of this function at the largest 

deceleration before any unstable behaviour was encountered was then extended and 

applied universally to all decelerations beyond this. Figure 6-3 shows an example of 

the raw controller response where the region below -1.67 m/s
2
 is considered unstable; 

the value of the controller response at -1.67 m/s
2
 was therefore applied throughout 

the unstable region as indicated by the corrected response.  

Memory allocation was the second significant concern in the embedded 

implementation of SDP, since the raw look-up table has a size of 48×29×6×31, and 

therefore a total of 258,912 elements, occupying over 500 kB of memory in single 

 

Figure 6-3:  SDP controller response as a function of acceleration in 4th gear at v = 90 km/h, SOC = 67%. 

Undefined state transition probabilities can cause discontinuities in the raw controller response which 

must be identified and corrected for safety reasons.  
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precision. Since the target hardware had only 128 kB memory in total, which also 

needed to store all other functions associated with the hybrid system operation, some 

significant reduction was necessary. Two steps were taken to drastically reduce the 

size occupied by the look-up table in memory: a smaller data type was used, and the 

number of elements was reduced. 

Since the vector of possible control decisions was only 31 elements long, comprising 

the values [-255:17:255], it was possible to translate the stored values into the indices 

[1:31] thus allowing the entire table to be stored as 8 bit integers. The indices were 

decoded real-time in the strategy so that the net output was unchanged, but the table 

occupied a quarter of the physical memory compared to a floating point equivalent. 

To reduce of the number of elements in the look-up table a MATLAB script was 

written to cycle through and remove slices from the v, a, and SOC dimensions. 

During each execution of the loop this script removed in turn every possible slice 

from all dimensions of the table and noted the sum of the absolute error when the 

values in the missing slice were interpolated from surrounding values. The slice 

which minimized the sum of absolute errors was then permanently deleted from the 

table. This operation was repeated inside a loop until the map could be stored in less 

than 90 kB memory. During each execution of the loop the choice over which 

dimension to delete a slice from was entirely free, so each dimension was not 

necessarily reduced in size by the same proportion. In fact the a and SOC dimensions 

were reduced most, while the v dimension remained almost entirely intact. This 

process was found to be very effective in reducing the memory requirement of the 

look-up table without significantly diminishing its fidelity to the raw output of the 

SDP algorithm, as illustrated in Figure 6-4(b). 

Other approaches to reducing the size of the look-up table for practical 

implementation have been suggested, for example Leroy et al [75] proposed using a 

neural network to model the controller surface. It is likely that this would work 

equally well and probably enable a far greater reduction in memory than was 

necessary here; however for this purpose the robustness of retaining calculated 

values was preferred. 
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(a) 

 

 

(b) 

Figure 6-4:  Control policy surface as a function of a and SOC at v = 32 km/h and in 4th gear. α = 0.001. In 

(a) the control decision u is a number in the range ±255 which defines the battery assist or regeneration 

current as a proportion of the maximum available at the present vehicle speed. In (b) the fineness of the 

state space has been reduced while maintaining the salient shape of the control surface, and the control 

values have been mapped to the range 1-31 to allow storage as an 8 bit integer in memory. 
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Several other tactics could also have been used to further reduce memory allocation 

while maintaining the calculated control values. It is worth noting, for example, that 

a single four-dimensional look-up table must take the form of a hyperrectangle in 

which every combination of states is defined. This means that the controller response 

in gear 1 is defined in the speed range 0–120 km/h, the vast majority of which is 

clearly unnecessary. Storing separate maps for each gear would allow the speed 

range for each to be more sensibly defined, thereby reducing waste. Another 

enhancement that could have been pursued is to make use of the probability data, 

with the aim of reducing the fidelity of the map more at infrequently visited states, 

and better maintaining its integrity in the most common regions. These approaches 

were considered but ultimately not thought necessary in the scope of this work as the 

process described delivered satisfactory results while maintaining simplicity and 

robustness.  

6.2.2 Test Procedure  

Chassis dynamometer testing was carried out at the University of Bath test facility, 

with the vehicle installation shown in Figure 6-5. The test cell is a temperature 

controlled environment, and all testing was carried out at 25°C. As previously 

described all quoted fuel consumption figures were recorded via the industry 

standard bag analysis method. 

Preliminary testing found that over a NEDC the facility is capable of achieving fuel 

consumption measurement with a repeatability in the order of 1% Coefficient of 

Variance (CoV) [68]. To achieve the best repeatability it is essential that variables 

known to significantly affect fuel consumption are properly monitored, such as use 

of vehicle ancillaries (for example air conditioning and lights), SOC of the vehicle 12 

V battery (which affects control of the alternator) and tyre pressures [77]. For this 

reason the use of ancillaries was constant throughout testing, tyre pressures 

monitored regularly, and the vehicle 12 V battery was left on trickle charge every 

night to ensure its SOC was well maintained.  

In order to allow multiple tests per day all testing was performed with a hot engine; 

this introduces engine temperature as an additional and highly influential test 

condition which must be controlled. A consistent start of test condition for the engine 
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was achieved by first driving the vehicle at high speed until the engine coolant 

reached its target temperature of 90°C. As an additional step to the repeatability 

procedure used in preliminary testing the vehicle was then driven over a EUDC – the 

extra-urban section of the NEDC – which was followed immediately by the LA92 

test, at which point logging of emissions data commenced. This procedure ensured 

no delay between the conditioning cycle and the test cycle, and as a result the 

repeatability of the test results is extremely good. 

Possibly the greatest source of variability in chassis dynamometer testing is the 

human driver, and it is essential that the individual in this role is highly experienced 

in chassis dynamometer testing and able to follow the prescribed speed trace 

accurately and precisely. This task is far more difficult that might be imagined, even 

for somebody very experienced in road driving, because the surrounding 

environment gives no speed cue. In effect the task resembles a computer game much 

more than regular driving, where the driver’s foot-eye coordination – a quality not 

often developed in daily life – is vital. Highly transient drive cycles such as the LA92 

are considerably more difficult to drive accurately than modal drive cycles such as 

 

Figure 6-5:  Vehicle installation on the chassis dynamometer test facility. Road speed fan can be seen in the 

bottom left of the photo, and the driver’s aid display in front of the windscreen. 
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the NEDC. As well as the increased importance of anticipating the vehicle’s 

responsiveness to changes in accelerator pedal position, the LA92 also does not 

provide the driver with convenient breaks in acceleration during which to change 

gears, which the NEDC does. The driver used throughout this work is very well 

accustomed to the task, and the degree of fidelity achieved in following the speed 

trace is shown in Figure 6-6; the greatest deviations from the scheduled speed are 

due to the driver compensating for the loss of tractive power during gear shifts, 

though even these are managed relatively well.  

As an alternative to using a human driver the use of a robot driver to further improve 

repeatability was considered, though ultimately rejected because of the desire to 

maintain human-like control inputs. For the proper calibration of the hybrid 

controller it was felt important to develop and test the control strategies with input 

signals representative of those exhibited by normal drivers. Although robot drivers 

allow excellent trace following and repeatability the PID control loops they employ 

to achieve this, and their relatively aggressive handling of gear shifts, are not typical 

of human behaviour. 

The bag analysis emissions measurement system used for this testing was equipped 

with 3 bags which filled sequentially, switching between bags at pre-programmed 

 

Figure 6-6:  An example of the driver’s ability to reproduce the LA92 scheduled speed with a good degree 

of fidelity. The greatest deviations from the trace are the result of gear shifting.  
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times in the test. Each test is therefore effectively divided into 3 sections, and the 

total test fuel consumption is the sum of these. A secondary consequence of this is 

that the three sections may legitimately be regarded in isolation, and so an error in 

one section does not necessarily invalidate other(s); in fact for similar tests which 

both contain an error it may even be possible to construct a complete valid test by 

combining the two if the errors occur in different test sections. This was exploited on 

two occasions, and therefore 2 of the 23 tests reported are actually re-constructed. In 

one case this was due to errors in gear selection by the driver, whilst the other was a 

result of hardware faults causing one or more bags not to record a reading. In both 

cases the hybrid system behaved similarly in the two tests combined, and so the 

resulting re-construction did not contain any significant discontinuities in SOC, for 

example. 

Accurate estimation of battery SOC is notoriously difficult, and especially so in the 

normal SOC working range because the voltage-SOC profile is very flat (Figure 

4-10), and so a very small difference in the recorded voltage can dramatically change 

the inferred SOC. Furthermore the capacitive properties of cells means it is often 

necessary to leave them completely at rest for some time to allow the open circuit 

voltage to stabilise; the cells used in the battery pack took around 30 minutes rest to 

read a representative open circuit voltage. For repeatable performance of the hybrid 

controller between tests it was essential that the reported SOC at the start of each test 

be consistent, however for the reasons described it was found to be impractical to try 

and ensure an identical start of test SOC in absolute terms. For this reason the BMS 

was allowed to re-estimate the battery SOC between each test, and if necessary the 

battery was charged or discharged slightly during the high speed pre-conditioning 

drive in preparation for the subsequent test. The cell voltages were examined to 

ensure these were indicative of approximately 70% SOC and, once satisfied, the 

SOC stored in the BMS memory was manually overwritten as 70% to ensure 

consistency between tests.  

Generally the strategies were very good at sustaining the battery SOC over a test, and 

of all of the reported tests the maximum change in SOC was 73 kJ – about 3%. In the 

case of the SDP controllers this was achieved without any offsets applied to the SOC 

reported to the strategy. For ECMS controllers some fine tuning of γ values was 
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necessary as the values predicted by the simulation tended to result in charge gaining 

behaviour. Each of the ECMS controllers was actually tested 3 times, but since the 

first tests were 8% and 11% charge gaining they are not reported. Lowering γ slightly 

ensured that charge sustenance was improved for the subsequent two tests, in both 

controller configurations, the results of which are reported. Since the SOC difference 

over a test, ΔSOC, was relatively little no correction of the fuel consumption values 

was carried out. In fact even had this have been deemed desirable it would not have 

been straightforward as no clear trend between fuel consumption and ΔSOC was 

observed; this suggests that the overall fuel consumption values are more affected by 

factors such as driver repeatability than by a 3% ΔSOC over a test. 

6.2.3 Effect of Equivalence Factor, α 

A total of 5 different control strategies were tested, comprising 3 variations of the 

SDP controller with different values of α, and 2 variations of the ECMS controller. 

For overall evaluation of the performance of the retrofit hybrid system a baseline 

condition was also tested with the hybrid system electrically deactivated. In each 

case a minimum of three repeats were conducted to ensure the controller was 

behaving repeatability and that the tests’ repeatability was within the expected 

bounds. Average results of each configuration are presented in Table 6-2 and the 

trade-off between fuel consumption and 𝐶2 plotted in Figure 6-7 which may be 

compared with the corresponding model predictions previously presented in Figure 

6-1. 

The trend observed in the results of the SDP controller is similar to that predicted by 

the simulation, suggesting that there is a non-linear relationship which allows the 

battery mean square C-rate to be reduced without compromising fuel savings. For the 

ECMS results the trend does not align so well with the simulation, though in fact this 

amounts to one data point (at 5.96 h−2, 1173.2 g with α = 0.0015) not returning the 

expected result; the other ECMS result (with α = 0) would fit with the predicted 

trend. It is therefore perhaps not appropriate to suggest too much from this 

observation, particularly since the number of repeat tests for the ECMS 

configurations were less than for SDP configurations. 
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For both SDP and ECMS control strategies increasing α is clearly effective in 

reducing the mean square C-rate, which does not necessarily incur a sacrifice of fuel 

savings in the same measure. Considering the SDP set of strategies tested it seems 

that the introduction of a relatively small α value yields highly favourable results, 

with the data showing that with α = 0.001 the mean square battery C-rate is reduced 

by 13% compared to α = 0, without any sacrifice of fuel savings. 

Table 6-2:  Results of chassis dynamometer testing showing the number of repeats, fuel consumption, 

Coefficient of Variance of the fuel consumption, change in SOC, and the mean square battery C-rate for a 

range of SDP and ECMS controllers. 

 

α # repeats 
ΔSOC 

(% / kJ) 

Fuel Cons. 

(g) 

CoV 

(%) 
𝐶2̅̅̅̅  

(h−2) 

Fuel 

Saving 

(%) 

Hybrid off       

  6  1183.8 

 

0.24   

SDP       

 0.003 3 -0.5 / 11.2 1174.1 0.21 1.84 0.82 

 0.001 5 +2.0 / 43.8 1165.8 0.47 5.70 1.52 

 0 5 +1.9 / 43.2 1166.3 0.53 6.58 1.48 

ECMS       

 0.0015 2 +1.4 / 32.3 1173.2 0.20 5.96 0.89 

 0 2 +0.2 / 4.2 1168.1 0.87 8.43 1.32 

  

 

Figure 6-7:  Dynamometer test results showing the trade-off between mean square C-rate and fuel 

consumption. The trend for SDP controllers is similar to that predicted in simulation, while the 

performance of ECMS seems inferior. 
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6.2.4 Instantaneous Controller Behaviour 

Examining the effect of α in more detail the instantaneous controller response for a 

set of SDP controllers can be compared. For each SDP controller variant the test with 

fuel consumption closest to the mean for that condition is selected as a 

representative, and the timeseries of SOC and DC current are presented in Figure 6-8 

and Figure 6-9 respectively. The three tests shown have α values of 0.003, 0.001, and 

0, fuel consumption of 1173.8, 1163.9, and 1163.9 g, and mean square currents of 

1.84, 5.73, and 6.44 h-2 respectively. 

Figure 6-8 provides an overview of how the control strategies manage the electric 

powertrain, allowing insight into at what point during the test most energy is 

deployed in assisting the diesel engine, and where the majority of energy is 

recovered. Perhaps unsurprisingly this analysis reveals that the three strategies follow 

similar approaches to the control, absorbing and discharging energy in the same 

places; there is no great dichotomy or bifurcation in what the overall approach looks 

like, but the tests with lower α exaggerate the SOC trajectory during the test as a 

result of their more aggressive use of the electric powertrain. 

 

Figure 6-8:  SOC trajectories over a LA92 for SDP controllers with different values of α. 
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Figure 6-9:  Instantaneous response of SDP controllers with different values of α over an excerpt of the LA92. 
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The conclusions drawn from considering Figure 6-8 are further supported by Figure 

6-9, which shows that the control strategies generally cause assist and regeneration in 

the same places, though as the value of α increases the high current assist events are 

scaled back towards 10 A, and regeneration events are similarly less aggressive. The 

tests with α = 0 and 0.001 recorded identical fuel consumption, though the test with α 

= 0.001 was more charge gaining and had lower mean square C-rate. The final 

observation of note from this figure is that once again the extremely transient nature 

of the LA92 is apparent, with continual change of acceleration and frequent gear 

changes much akin to real world driving, but very different to the NEDC. As a result 

of this the assist events in particular are short and highly irregular.  

6.3 Road Testing Results 

6.3.1 Adaptation for Road Testing 

Having successfully demonstrated the feasibility of running the SDP control strategy 

in real-time in a controlled environment on a chassis dynamometer the final step was 

to apply this to an on-road test. For all purposes thus far, both in simulation and 

during dynamometer testing, zero road gradient has been assumed; this assumption is 

important as it has been possible to directly infer both the driver’s intention and the 

tractive force developed by the engine from the vehicle acceleration. Inference of 

tractive force from the engine is significant because this is used to determine 

instantaneous fuel consumption, and therefore in the calculation of the cost function. 

Moving towards a production-ready strategy which may be operated on-road the 

unavoidable existence of road gradients will at times mean that there is a disconnect 

between acceleration, engine load, and possibly even the driver’s intentions, making 

use of acceleration as a core state variable in the controller less acceptable; in fact in 

the worst scenarios this could be dangerous. When descending a steep hill for 

example it may be possible for the vehicle to be accelerating even with the engine at 

zero load (engine braking). In this situation a control strategy based on acceleration 

would incorrectly infer that the optimal decision is to deploy electrical energy in an 

assist event, which is in fact the opposite of the driver’s intention.  
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In order to safely test the SDP control strategy on-road it was felt necessary to 

completely depart from use of acceleration in the state space, instead replacing this 

with a measure from which engine tractive force and the driver’s intention could be 

inferred more directly. Of the ECU signals available through the OBD port two were 

contenders to replace vehicle acceleration: accelerator pedal position, and engine 

load. Accelerator pedal position may be the most direct indicator of the driver’s 

intention, however it tends to have a highly non-linear relationship to tractive force, 

often incorporating some hysteresis and which may differ depending on gear. In 

contrast, for diesel engine vehicles the OBD engine load parameter directly reports 

the present engine output torque as a proportion of the maximum torque available at 

that engine speed. 

Having already obtained an engine map on the dynamometer which included tractive 

force and engine load parameters, it was relatively straightforward to establish a 

direct relationship between acceleration (at zero road gradient) and engine load, 

allowing a direct substitution in the state space. In this way the control policy was 

completely transformed so as to be load-based rather than acceleration-based. An 

 

Figure 6-10:  SDP control surface having been transformed in the state space, replacing the acceleration 

dimension with engine load. The cross-section is at v = 32 km/h and in 4th gear, with α = 0.001. 
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example of the resulting transformed surface is shown in Figure 6-10 which may be 

compared against the original surface in Figure 6-4.  

6.3.2 Analysis of Road Testing 

For the road test the control strategy with α = 0.001 was used because in the 

dynamometer testing this achieved maximum fuel savings without over-stressing the 

electric powertrain. The vehicle was driven on public roads leaving Bath in the 

direction of Exeter, UK, following the A36, A39, and A368 roads. It is always 

important to reflect on the representativeness of a test in order to assess the results 

appropriately and in context. In this case it is particularly important to consider again 

the level of stochastic similarity between the route driven and the data for which the 

controller was optimised. To this end a comparison of SAFD plots is again 

employed, and the SAFD surface for this journey is shown in Figure 6-11. It is 

clearly evident from comparison between this and Figure 3-8 that, in comparison to 

the collective data from the 3 vans which were used in the design of the controller, 

the road test contains a greater proportion of time spent in the region of 50 km/h and 

less time at around 100 km/h. With this exception the probability distributions are 

 

Figure 6-11:  SAFD plot of the road test data. The surface resembles those of the LA92 and the data used 

to design the controller, but with higher probability density around 50 km/h and less around 100 km/h. 
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not dissimilar. The agreement between the road test data and the data on which the 

controller was based is 67%. This suggests that the road test is broadly representative 

of the conditions for which the controller was designed, while introducing a healthy 

degree of discrepancy (which must be expected in the real world) allowing some 

comment on the robustness of the controller to be made. 

Interestingly the level of agreement between the SAFD of the historic data and that 

of this road test (67%) is similar to the level noted between the historic data set and 

the LA92 (72%), though the differences are realised in different places. It may 

therefore be said that although the agreement between the LA92 and road test data is 

not so strong (60%) both are similarly valid approximations of the original historic 

data set.  

Traces of vehicle speed and battery SOC throughout the road test are shown in 

Figure 6-12. The transformed control strategy based on engine load appears to 

operate robustly and to manage battery state of charge easily, maintaining a margin 

to the maximum and minimum SOC limits. The initial SOC is slightly low, and this 

is gradually recovered by issuing assist events of reduced magnitude as per the 

controller’s optimality rules. As the SOC increases the assist events become larger, 

and as a result the SOC approaches and then fluctuates around a nominal SOC. The 

probabilistic nominal SOC predicted for the acceleration-based version of this 

 

Figure 6-12:  SOC trajectory of the SDP controller during a road test between Bath and Exeter, UK. 
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control strategy was 73% when simulating the LA92 cycle using the vehicle model 

developed in Chapter 4; behaviour on-road appears broadly consistent with this 

despite the controller having been translated into a different state space and any 

deviation from the raw SDP policy that might have be expected as a result of this 

process. This demonstrates some inherent resilience of the SDP control algorithm to 

post-processing and external influences, and well as to drive cycles which do not 

perfectly match the historic data set. 

6.4 Chapter Conclusions 

In this chapter the HEV controllers developed in Chapter 5 were tested, first in 

simulation, then under controlled conditions on a chassis dynamometer. Following 

successful dynamometer testing one of the SDP controllers was adapted for real-

world use by replacing acceleration with engine load in the controller state space, 

and the controller tested on-road. 

The trends observed through simulation were also observed in hardware testing. The 

results show that the trade-off between achievable fuel savings and mean square 

battery C-rate is indeed an interesting one, being highly non-linear and suggesting 

that the aggressivity with which the electric powertrain is used may be reduced 

considerably without significant forfeit of fuel savings. This observation may have 

profound impacts for system thermal management, as well as battery management 

and longevity.  

Further analyses of the controllers’ performances, accuracy of simulations, and 

potential for interaction between the hybrid system and driver assistance system are 

presented in Chapter 7. 

 

 



 

   

 

 

 

Chapter 7 Discussion 

 

 

Testing of both the driver assistance system and the hybrid controllers revealed some 

interesting and unanticipated effects. For the driver assistance system this included 

reduced rates of deceleration in addition to the expected reduced rates of 

acceleration; the hybrid testing exposed some of the weaknesses of relying on the 

backwards modelling approach. This section includes more advanced investigation 

into these observations and examines the potential interaction of the two systems 

when operating simultaneously.  

Parts of this chapter have been published in the following separate work: 

C. Vagg, C. J. Brace, S. Akehurst and L. Ash, “Model-based Optimal Control of a 

Hybrid Electric Vehicle Using Stochastic Dynamic Programming.” In: 6th 

Conference on Simulation and Testing for Automotive Electronics, 2014-05-15 - 

2014-05-16, Berlin, Germany. 
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7.1 Lightfoot 

During development of the Lightfoot logic the majority of the development time and 

effort was invested in design of the IPS-driven logic. It is therefore interesting to note 

that subjectively speaking the driver is often more conscious of the GSI-driven logic. 

This is probably in part due to frequency of communication – for most drivers in the 

early stages after the system is activated the GSI beep will prompt almost every gear 

change, because most drivers habitually upshift at speeds higher that 2200 rpm. 

Nevertheless, it is also true that when the advice of the GSI is strictly observed it is 

much more difficult to drive so aggressively as to generate warnings or violations, 

because the tractive power of the engine is less at lower speeds and so rates of 

acceleration are also limited. 

There is currently interest from legislating bodies in the ability of GSIs to deliver 

fuel consumption reductions in the real world [78], and how this can be fairly 

incorporated into legislative testing. In normal circumstances drivers may choose to 

ignore the advice of a GSI, or still more likely do not even register it. With this in 

mind, although it is not strictly the case, it is interesting to view the results as the 

effect of consistently following the advice of a GSI in the real world, and therefore 

the maximum possible savings achieved when drivers cannot ignore it. 

An inherent assumption in the development of the IPS logic was that the threshold 

levels for triggering warnings should be independent of the vehicle which the system 

is fitted in and its maximum power. Effectively the IPS thresholds define an 

acceptable limit of acceleration which is an absolute value with no relation to the 

vehicle power or mass. In day-to-day life however, it is common to see vehicles 

accelerating at very different rates, with heavy haulage vehicles often accelerating 

much more slowly than small sports cars for example. It is therefore a matter of 

opinion as to whether it makes sense to define an absolute limit, or whether it might 

be sensible to tailor this to some extent based on vehicle power-to-weight ratio. The 

argument could be made, for example, that heavy vehicles consume more energy in 

accelerating and are bigger polluters per vehicle mile, and therefore should be subject 

to more stringent limits than small vehicles. Nevertheless it was felt that allowing all 

traffic to accelerate at the same rate makes a great deal of sense, and for the purposes 

of this work this carries the additional benefit that the functionality of the system is 
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not dependent on the vehicle specification, and so it may be installed in any vehicle 

without calibration. 

For the commercial success of the Lightfoot system a key factor which has not been 

discussed is driver acceptance. During the trials there was no formal collection of 

feedback from the drivers involved through interviews or surveys for example, 

however during informal conversations drivers generally reported the system as 

being helpful and fair. Similarly the fleet managers of the companies involved did 

not report any dislike or problems with acceptance of the system by the drivers.  

During the trials no consequences were attached to the number of violations a driver 

accumulated, though when implemented across a whole company fleet the 

expectation is that some policy would be adopted. This raises a further question and 

opportunity for research with regard to what form such a policy should take to 

maximise the effectiveness of the system, for example whether it should be based 

around a reward or punishment structure. Furthermore it is noted that the system’s 

current implementation is largely based around providing criticism for poor driving, 

rather than constructive feedback. A re-evaluation of this along with a carefully 

considered management policy would mitigate the risk of any driver acceptance 

problems.  

7.1.1 Effect on Recoverable Energy 

It is well known that the amount of energy which may be recovered by a hybrid or 

electric vehicle may be heavily affected by the way in which it is driven [79]; for 

example sudden braking will mean that brake energy is released at high power levels 

which may exceed the power capacity of the energy regeneration system. Any energy 

released at powers above the limit of the KERS must be dissipated by the mechanical 

brakes as heat. As a result of the power limitations of the recovery system it is likely 

in most hybrid powertrains that lower rates of deceleration would result in a greater 

proportion of braking energy falling within the recoverable envelope, increasing the 

amount of energy which may be captured and consequently enabling the system to 

deliver greater fuel savings.  
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Although the IPS-driven logic only considered positive values of IPS (sometimes 

called Relative Positive Acceleration) it should be noted that the value is equally well 

defined in the negative domain, giving some indication of braking aggressiveness. 

Figure 7-1 compares the distribution of braking power during each phase of the trial, 

showing that during the Live phase the incidence of high power braking was reduced 

with respect to the Baseline phase, while the incidence of lower power decelerations 

was increased. This is an interesting finding because no part of the logic 

implemented was designed so as to encourage more gentle decelerations in any way. 

It seems that the act of accelerating more gently, and perhaps the slightly more 

relaxed mentality of the driver which results from this, inadvertently also caused a 

shift in braking behaviour. This finding has at least two practical consequences:  

1. Reduced braking rates would suggest that drivers are better anticipating the 

road in front of them, and adopting an all-round smoother driving style. This 

is likely to have safety implications and an accompanying fall in accident 

rates might be anticipated, though long-term data collection would be 

required to substantiate this. 

2. The proportion of braking energy which may be captured by the KERS may 

be increased, further enhancing the efficacy of the hybrid powertrain. In this 

way the interaction between the systems may mean that the fuel savings 

 

Figure 7-1:  Distribution of braking power during decelerations. In the Live phase drivers were more likely to 

decelerate gently (reducing the braking power) even though this was not deliberately encouraged. 
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achievable with both operating together exceed the sum of their individual 

contributions.  

With regard to the second observation, it may be that reduced rates of braking mean 

a greater proportion of deceleration energy becomes recoverable; however, although 

the probability distribution of deceleration power shifted in favour of lower powers 

the absolute quantity of deceleration energy released per kilometre actually fell from 

380.6 kJ/km in the Baseline phase to 334.9 kJ/km in the Live phase of the trial as a 

result of the smoother driving style adopted. The question concerning absolute 

recoverable energy is therefore slightly different to that concerning the proportion of 

braking energy which may be recovered. 

In order to investigate further the potential effect of Lightfoot on energy recoverable 

by the hybrid system the recoverable energy per kilometre was calculated as a 

function of the energy recovery power limit, as shown in Figure 7-2. The calculation 

of these data assumes that with an energy recovery system rated at 15 kW, for 

example, any deceleration energy released at powers less than or equal to 15 kW is 

 

Figure 7-2:  Braking energy recoverable per kilometre during each phase of the trial. During the Live phase 

less energy was available for recovery because of the smoother driving styles adopted; however at recovery 

rates below about 10 kW the overall reduction in energy availability was largely offset by the shift towards 

lower deceleration rates, meaning there was little net change.  
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recovered entirely, while for all powers above this threshold energy is recovered at 

the 15 kW limit, with mechanical brakes also employed to make up the remaining 

braking power required.  

Examination of  Figure 7-2 shows that overall there is less recoverable energy per 

kilometre with Lightfoot active, however it also reveals that at low rates of energy 

recovery (below approximately 10 kW) this is offset by the already described shift 

towards lower rates of deceleration, meaning there is little net change. It should be 

noted however that the situation is in fact far more complicated than this graph may 

suggest, because with no fuel being injected the engine alone may provide as much 

as 10 kW of braking power (engine braking), meaning that for the Live trial up to 

67% of the energy which is in theory available for recovery could have been 

absorbed by the engine. In practice this is likely to be an overestimate because the 

engine is sometimes disconnected from the wheels during braking by means of the 

clutch. The situation is in fact even less clear-cut than this because the KERS 

actually recovers energy at the same time as engine braking and not only when the 

braking power exceeds engine friction. A side-effect of the hybrid system’s operation 

would probably therefore be to introduce some bias towards faster rates of 

deceleration. This coupling of effects makes it very difficult to draw quantitative 

conclusions, however the simple observations drawn from Figure 7-2 offer 

worthwhile insight. 

In summary, although it is extremely difficult to quantify the effects of interaction 

between Lightfoot and the hybrid system it appears probable that reduced rates of 

deceleration would result in a greater proportion of deceleration energy being 

captured by regenerative braking, though the absolute quantity of energy recovered 

per kilometre may be less because of the smoother driving style. It should be 

reiterated that these findings were observed even though no attempt to encourage 

gentle braking was made, and that if this were actively encouraged then more energy 

may be recoverable. 
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7.2 Hybrid Control 

For several years SDP has been proposed in literature as a state-of-the-art solution to 

the optimal control problem, with researchers demonstrating in simulation how the 

approach could be applied to a vehicle. During the course of applying this to a real 

vehicle a great deal was learnt about how this should be approached; this is 

generalised into a procedure for robust implementation of the algorithm and 

presented in Section 7.2.1. Following this the performances of the SDP and ECMS 

controllers relative to one another are discussed.  

7.2.1 Generalised SDP Implementation Process 

Development of a robust SDP control strategy which may be implemented on a real 

vehicle and expected to perform reliably as well as optimally is a substantial 

undertaking; it requires collation of drive cycle information with data extracted from 

models of powertrain components, as well as considerable trial and error in the 

course of parameter selection. In order to illustrate this procedure a flowchart of the 

process is presented in Figure 7-3. 

Both an accurate state transition model for the vehicle and a good representation of 

the vehicle’s typical driving cycle are required in order to make SDP worthwhile. 

This information is combined in the SDP implementation, and values of the discount 

factor λ and the policy convergence threshold ε must then be determined by trial-

and-error, ensuring that the probabilistic charge sustenance profile is acceptable, as 

indicated by the first feedback loop in Figure 7-3. It should also be noted that varying 

the equivalence factors in the cost function will alter the charge sustaining properties 

and so, though these effects are likely to be considerably less than from varying λ, it 

may be necessary to repeat the exercise for several values of these parameters. 

As a result of the controller’s performance in simulation, and possibly some real-

world validation, it may prove necessary to apply a SOC offset to achieve the desired 

nominal SOC during operation. Finally, although not ideal, it may be necessary to 

transform the state space of the controller to one more suited to real-world 

implementation, as will be discussed in the following section; this is represented in 

the second feedback loop in Figure 7-3. 
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Figure 7-3:  Generalised process for the robust design of SDP controllers.  
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The calculation of probabilistic charge sustenance profiles is dependent on the 

driving cycle probabilities, and in Section 5.2.5 some consideration was given to the 

effect of using driving cycle probabilities which differ from the design set. It would 

be interesting as an item of further work to carry out a more rigorous analysis of this 

to determine the effects on the control and probabilistic charge sustenance of a 

sudden change in duty cycle, perhaps as a result of a reallocation of a vehicle’s usage 

within the company, or a change in driver. A natural progression of this would be to 

consider ways in which the controller could identify shifts in driver behaviour on-

line and self-adapt to better suit these. 

7.2.2 On-Road SDP Implementation 

In this work a stochastic model of the typical drive cycle as a Markov process was 

used, with vehicle acceleration as one of the states. In the road-ready version of the 

control strategy the acceleration state was replaced with engine load. This 

transformation between states is not ideal and will undoubtedly have incurred some 

loss if information, and therefore of optimality. For example, there will have been 

situations where an acceleration-based controller would have assisted or regenerated, 

where the revised load-based controller did not. While this is precisely the reason for 

having made this change, it also means that the strictly optimal policy which was the 

output of the SDP algorithm has subsequently been changed, and must therefore no 

longer be optimal. Of course the reality of the situation is less absolute since the 

original policy was only optimal among those sharing the level of information 

available, which did not include road gradient for example; it was therefore already 

sub-optimal among controllers for which road gradient could have been available. 

An alternative approach to the SDP problem formulation may have been to describe 

the stochastic drive cycle in terms of engine load from the outset, thereby absorbing 

road gradient and acceleration into a single state and avoiding the necessity for a fifth 

probabilistic state. This was not pursued here because the vehicles used to collect 

drive cycle data did not all have the same engine model and so the load signals 

would not have been comparable, nor was the fuel consumption map based on load 

available for these engines. Furthermore since the engine load signal can be 
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extremely volatile it is possible that this may cause unexpected problems in its 

stochastic modelling. 

Nevertheless the behaviour of the controller when operating on-road seemed robust, 

with the net charge sustaining properties appearing undiminished. This 

implementation of SDP to a physical vehicle, the subsequent on-road application, 

and the lessons learned therein represent an incremental advance on the work of 

others. The better incorporation of road gradient in the stochastic model to produce a 

policy which is more globally optimal is an opportunity for future work. 

7.2.3 Comparison of SDP and ECMS 

Having successfully implemented a SDP control strategy on-vehicle it is clear that 

the approach has great potential for practical application. Nevertheless the behaviour 

of the ECMS controller is also of interest and since this work is one of very few in 

which SDP and ECMS controllers are implemented side-by-side the opportunity 

should be taken to make a direct comparison. 

Regarding the two control strategies’ relative performance it is clear from the holistic 

analysis that SDP and ECMS are able to achieve similar levels of fuel saving, but 

that the SDP controller is able to do so while exerting less stress on the powertrain. 

Although differences exist between the simulated and measured results this overall 

trend is apparent in both, and is consistent with the finding of Liu and Peng [31] who 

observed through simulation that the ECMS can tend to oscillate between heavy 

assist and regeneration. This behaviour is a result of the characteristics of 

reciprocating internal combustion engines, which tend to be most efficient when 

operating under heavy load where the volumetric efficiency is highest (both for spark 

ignition and compression ignition engines). For this reason both strategies ought to 

have a similar tendency to regenerate electricity heavily in an effort to move the 

engine’s operating point into the high load region, and to later use that energy to 

reduce the required power output of the engine. Both strategies are aware of the 

engine efficiency map; the difference between the strategies’ approaches is in fact 

solely due to the value they assign to stored energy in the context of the driving 

mission, as is highlighted by Equations (7-1) and (7-2), in which the strategies 
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ordinary notation have been combined so that their cost functions can be compared 

analogously.   

 𝐽𝑆𝐷𝑃(𝑥𝑘)  =  𝑓(𝑥𝑘, 𝑢) +  𝜆 ∑ ℙ(𝑋𝑘+1 = 𝑥𝑘+1|𝑥𝑘, 𝑢) ∙ 𝐽𝜋(𝑥𝑘+1)

𝑥𝑘+1ϵ𝑋

 (7-1) 

 𝐽𝐸𝐶𝑀𝑆(𝑥𝑘) = 𝑓(𝑥𝑘, 𝑢) + 𝛾 ∙ 𝐶 (7-2) 

For both strategies the optimal control response at every state is found according to 

 𝜋∗(𝑥𝑘) = arg min
𝑢
{ 𝐽(𝑥𝑘) } . (7-3) 

In the case presented it is assumed that there is no cost on powertrain stress (𝛼 = 0), 

and the equations have been laid out so as to facilitate direct parallels being drawn. 

The first term is common between both cost functions and represents the 

instantaneous fuel consumption, which will always be reduced by assistance from the 

EM and increased by regeneration; however the second terms, which offset the 

instantaneous effects by implying some worth of the electrical energy, differ 

considerably. In the case of ECMS the price of electrical energy is assumed constant 

and defined by the equivalence factor 𝛾, whilst in the case of SDP a far more 

sophisticated approach is taken which incorporates the likely availability of electrical 

energy in the future, and whether the stored energy might be better spent at other 

opportunities. The global result of this variable electricity price is that the SDP 

strategy is better able to target the use of stored energy to minimise cost incurred 

over a drive cycle, including battery stress where this is included in the cost function.  

Quantifying the difference in performance between the SDP and ECMS is an 

important contribution of this work, and it certainly seems from the test results that 

SDP has substantial advantages over ECMS. For example, by directly comparing the 

𝛼 = 0 cases with reference to Table 6-2 and Figure 6-7 we may conclude that the 

ECMS tests had a mean square C-rate 28% higher than the SDP, while achieving 

10% less fuel consumption savings.  

Although the difference in performance between the two controller groups is quite 

apparent when considering the overall results it is worth noting that differences 

between their instantaneous behaviour are not so easy to identify. Figure 7-4 presents 
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SOC trajectories for two tests: one SDP with α = 0, and the other ECMS with α = 

0.0015. Both tests have a similar mean square C-rates (6.44 h
-2

 and 6.20 h
-2

 

respectively) while the fuel consumptions achieved differ substantially (1163.9 g and 

1174.9 g respectively). The SOC trajectories of the two tests are extremely similar, 

and therefore the controllers are generating and consuming energy in roughly the 

same way.  

The current profiles during middle portion of the test, where the greatest SOC 

difference is accumulated, are shown in Figure 7-5. Even during this section it is 

clear that the controllers are operating in broadly the same fashion, both tending to 

assist and regenerate in the same places, with the SDP controller showing only a 

slight propensity towards more energy recovery and less assist throughout. 

The distinct lack of any great differences between controller responses suggests that 

there may be ways in which the ECMS could be slightly enhanced, without great 

effort, so as to achieve more SDP-like behaviour. Essentially the goal of such an 

exercise would be to replicate the variable electricity price used in SDP while 

avoiding much of its inherent complexity, therefore yielding a more straightforward, 

 

Figure 7-4:  Comparison between SOC trajectories of one SDP and one ECMS test. The tests are 

generally similar, regenerating and deploying energy in the same places, they have similar mean square 

C-rates of 6.44 h-2 and 6.20 h-2 for the SDP and ECMS controllers respectively, but have very different 

fuel consumptions of 1163.9 g and 1174.9 g respectively. 
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practical and less cumbersome solution. One possible approach, for example, might 

be to assume a crude link between vehicle speed and the likelihood of urban, rural or 

motorway driving, and to adjust the price of electricity based on this; this approach 

could be viewed as some form of ECMS augmented with a Fuzzy Logic driving 

pattern recognition module such as that developed by Liaw and Dubarry [36]. 

Since it is difficult to ascertain any great differences between the current profiles of 

the two tests in consideration the reason for the difference in measured fuel 

consumption must be questioned. It is likely that when examining differences in this 

order of magnitude other confounding factors, such as driver repeatability, are 

important. Overall the trends observed using averaged results are as expected from 

simulation, and so the results are regarded as robust. Nevertheless it would certainly 

be a worthwhile exercise to repeat the investigation using an electrical powertrain 

with a larger power capacity. 

 

Figure 7-5:  Comparison between battery current profiles of one SDP and one ECMS test. The tests are 

generally similar, with the SDP controller regenerating only slightly more around 550 s and 695 s.  
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7.2.4 Physical Effects of Mean Square C-rate 

A major assumption in this work is that a reduction in the mean square C-rate would 

result in reduced heat generation in the motor and battery pack, which in turn has 

system level benefits such as reduced cooling requirements, reduced BMS workload, 

reduced battery degradation and/or reduced battery capacity requirement. Although 

the reasoning behind these hypothesised effects is regarded as well-grounded it is 

worthwhile examining the data for any sign of their manifestation. Figure 7-6 

presents the mean temperature rise of the battery pack and motor for all tests as a 

function of mean square C-rate. It should be noted that no particular procedures were 

put in place to maximise the quality of these data, because to do so while also 

monitoring engine temperature and battery SOC would have complicated the testing 

too much; nevertheless the data show clear trends. In the case of the battery it is not 

unreasonable to conclude that the temperature rise is directly proportional to mean 

square C-rate. For the motor temperature a similar conclusion may be reached, 

though it should be noted that the trend line will not pass through the origin because 

electrical resistance is not the only source of heat generation; even with zero 

electrical activity some heat is generated by friction in the motor bearings and by 

magnetic cogging.  

As well as the bulk temperature rise of the battery it is also hypothesised that, 

 

Figure 7-6:  Temperature rise in the motor and battery pack during each LA92 test as a function of mean 

square C-rate, with lines of best fit. 
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perhaps over a longer drive cycle, a trend linking high mean square C-rates to larger 

cell temperature differentials could be established. This is an important metric 

because cell temperature differentials have the effect of creating differences between 

internal resistances, which in turn cause difficulties for the battery management 

system. Unfortunately it was not possible to observe these effects during the test 

program because temperatures of each cell in the battery pack were only measured 

with a resolution of one degree centigrade, and because for its protection the battery 

was operated relatively conservatively within known safe working limits.  

7.2.5 Correlation between Simulation and Dyno Results 

Although the absolute quantity of fuel consumed during a test and the general trends 

observed when varying the value of α were both predicted by the simulation to good 

levels of accuracy, comparison of the percentage fuel savings predicted and those 

achieved during testing reveals a disappointing correlation. For example, in 

simulation a maximum fuel saving of 2.87% was predicted with the retrofit hybrid 

system active and under SDP control; however during dynamometer testing the 

average fuel saving for the same controller was only 1.48%. This difference clearly 

warrants some investigation.  

In order for the hybrid system to achieve any fuel saving it is assumed that the 

driver’s target speed is achievable without the assistansce of the EM, and therefore 

that any assistance from the hybrid system would result in the driver activating the 

accelerator pedal less. As previously described the retrofit system actually increases 

the installed power of the vehicle, and so ensuring that this power is not simply 

exploited is part of the rationale for also having the driver behaviour tool installed 

alongside the hybrid system. Much of the discrepency observed between the 

simulated and measured fuel savings is likey to be because of this fundamental 

assumption being erroneous in the case of the LA92, since its high power demands 

meant that in several places the vehicle struggled to achieve the scheduled speed 

trace even with full activation of the accelerator pedal. 

Figure 7-7 shows an excerpt of the acceleration from 0–100 km/h at 850 seconds into 

the LA92 test; the scheduled speed is shown with a heavy black line, alongside the 

speed achieved for each of the 6 baseline (hybrid off) tests. As can be seen, for 
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approximately 15 seconds the driver was applying full accelerator pedal demand, 

lifting off momentarily only to change gears, and so the accelerator pedal trace 

resembles an on-off demand. In addition to this the driver frequently started the 

acceleration slightly ahead of the scheduled speed in order to carry some speed in 

reserve, yet despite this consistently struggled to meet the prescribed test speed from 

about 860 seconds on. For this reason when the hybrid system was activated the 

additional power available was not in fact used exclusively to save fuel, but was at 

least in part used to supplement the engine power and therefore help the driver better 

achieve the speed trace.  

Although difficult to quantify it is suspected that power deficit during hard 

accelerations, which invariably correspond to regions of assist, was a large 

contributor to the discrepency between simulated and measured performances. 

 

Figure 7-7:  Speed and accelerator pedal position during a harsh acceleration in the LA92. The bold black 

line is the scheduled test speed; the data series presented represent all 6 baseline (hybrid off) tests. The 

high power requirement of the test cycle meant the vehicle often struggled to keep to the speed trace even 

with maximum activation of the accelerator pedal.  
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Nevertheless is it possible that other factors also played major roles, for example it 

may be that the transmission efficiency of the EM pully system, assumed in 

simulation to be 98%, was not this high. Similarly the motor controller used on-

vehicle was a smaller model than that used during motor mapping, and so its 

MOSFETs may have been operating nearer their load capacity and therefore at 

slightly lower efficiency.  

7.2.6 Limitations of Backwards Modelling 

As described in Chapter 4 the simulation is arranged with a backwards architecture, 

such that it is assumed that the speed trace is perfectly achieved, and the fuel 

consumed in doing so is calculated. This approach has limitations, of which the 

power deficit observed during dynamometer testing (Figure 7-7) is exemplary. Since 

the simulation assumed that the speed profile was perfectly followed it was incapable 

of detecting that this would have been unachievable in practice.  

Two problems are inherent: Firstly, the transient engine performance differs from 

steady state performance, due to turbocharger lag for example, and so even though 

the accelerator pedal was fully depressed the engine did not achieve a torque output 

equal to the maximum achieved at steady state. Secondly, the absence of tractive 

power during gear shifts meant that more power was required transiently to make up 

for the temporary deficit. These issues highlight the limitations not only of the 

backwards modelling approach, but also of quasi-static engine modelling.  

Some alternative simulation architectures, such as forward simulation and backward-

forward hybrid simulation, do exist however these do not necessarily have the same 

potential for model-based control design exploited here. Furthermore these 

simulation architectures may not in fact have resolved the limitations in this case, 

since the power requirements were within the capability of the engine according to 

the quasi-static engine model – a transient engine model would therefore also be 

required. 

In addition to problems during accelerations it was found that the simulation also had 

shortcomings in modelling the interaction between the hybrid system and the vehicle 

during braking phases. Specifically, it was found that the controller’s decision to 
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regenerate would in some instances cause the vehicle speed to fall below the 

scheduled speed due to added braking torque, however it was not always possible for 

the driver to correct for this. As an example, Figure 7-8 presents a deceleration 

during which the drive cycle gear shift schedule specified neutral gear be engaged at 

1003 seconds; from this time on it was therefore impossible to supply positive 

tractive force using the engine without violating the gear shift schedule. Initially the 

driver employed the mechanical brakes to decelerate the vehicle, and the control 

strategy responded appropriately by demanding maximum regeneration current. As 

the vehicle speed fell below the scheduled speed the driver released the mechanical 

brakes, however seeing a constant deceleration the hybrid control strategy continued 

to regenerate electricity. The regeneration was therefore self-perpetuating and the 

braking force generated by the EM was enough to cause the vehicle speed to fall well 

below the scheduled speed.  

In the case of real-world driving such an episode would not present any real problem, 

and so to some extend this is a non-issue generated by the peculiarity of following a 

prescribed speed trace. Nevertheless this raises questions as to how this would be 

dealt with during a legislative test. These sorts of issues are not foreseeable using a 

backwards model because the speed is explicitly defined by the driving cycle. 

 

Figure 7-8:  During regeneration the actual vehicle speed occasionally fell below the scheduled speed, 

which the driver was unable to correct without violating the gear shift schedule. A backwards simulation 

is unable to predict this. 
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Similarly the control strategies were not augmented with enough intelligence to 

understand the effect of regeneration demand on vehicle acceleration, for example. 

7.3 Chapter Conclusions 

Detailed analyses of the data collected during both the driver assistance and hybrid 

control elements of this work yield noteworthy observations. For the Lightfoot data 

this includes the observation that rates of deceleration have been inadvertently 

reduced in addition to the intended effect on rates of positive acceleration, and the 

potentially beneficial influence this could have on recoverable energy. For the HEV 

controller development a generalised procedure for good-practice implementation of 

the SDP algorithm has been proposed. Whilst the trends resulting from HEV testing 

shown here are believed robust it is also clear that there is plenty of potential for 

further development and refinement. Repeating the study with a more heavily 

hybridised vehicle would certainly improve the confidence in results, and doing so 

with test procedures and instrumentation that would allow system state of health 

metrics to be recorded would be yet more interesting. The shortcomings of the 

backwards modelling approach, quasi-static modelling, and testing over a fixed 

velocity trajectory are also important observations.  

Improvements can be envisaged in terms of how each system is conceived (including 

the possibility for interaction), the details of each system’s design, and also the 

procedures used to evaluate performance. Further detailed conclusions and 

possibilities for further work are outlined in Chapter 8. 





 

   

 

 

 

 

Chapter 8 Conclusion 

 

 

This chapter summarises the main findings of this work, namely the 7.6% reduction 

in fuel consumption achieved through driver behaviour modification and the 13% 

reduction in electrical powertrain stress achieved through hybrid control 

optimisation. Opportunities for further work are identified in each field separately, as 

well as the possibility of greater synergy between systems.  
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8.1 Hybrid Control 

This work has examined the real-world potential for predictive control of HEVs 

using Stochastic Dynamic Programming. A set of control strategies were developed 

for a hybrid LCV based on recorded data from similar vehicles operating in their 

daily commercial routine. Of the common legislative test cycles the LA92 was found 

to be the closest statistical match. The control strategies were tested in simulation 

before being implemented on-vehicle and evaluated both on a chassis dynamometer 

and on-road. 

The completeness of this work in designing a SDP controller using a representative 

real-world historic data set, applying this control strategy to a physical vehicle and 

testing it over a suitable test cycle is unique. During this process several practical 

challenges were resolved and the methods used here are offered to others wishing to 

implement the algorithm; these included selection of an appropriate test cycle, 

determining a suitable value for the discount factor (𝜆) and number of necessary 

policy iterations, determining and adjusting the nominal SOC which a controller 

yields by use of probabilistic charge sustenance plots and a simple method for 

compressing the size of the resulting look-up table so as to be implementable on 

hardware with restricted memory allocation. 

A novel cost function was used during the optimisation which incorporated a 

measure of battery stress and electrical heating. By varying the weighting of this 

component of the cost function the trade-off between fuel consumption and electrical 

component stress could be examined. It was found that in simulation a 20% sacrifice 

in potential fuel savings could yield a 51% reduction in electrical stress, and during 

dynamometer testing a 13% reduction in stress was achieved without any sacrifice of 

fuel savings. The stress metric showed potential to reduce thermal loading on the 

battery and motor which will yield dividends in real-world operation, or alternatively 

a corresponding reduction in the size of the battery pack carried, yielding weight and 

cost savings. Further benefits for battery management are also likely, but were not 

detectable within the scope or resource of this work. 

Performance of the SDP controller set was directly compared against a set of similar 

ECMS controllers and found to achieve a lower mean square battery C-rate, though 
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the fuel consumption savings for both types of controller were similar. It was found 

to be difficult to pinpoint exactly how the SDP achieved superior results to the 

ECMS, no doubt partly because the power capacity of the hybrid system was 

relatively small in comparison to the total installed vehicle power. Both controller 

types appear to follow a similar regime, suggesting that it may be possible to achieve 

behaviour very similar to the SDP using ECMS, which is considerably more 

straightforward and easier to calibrate. 

For on-road testing a SDP controller was adapted by replacing the acceleration state, 

which the controller’s decision was based on, with engine load. The control surface 

was correspondingly transformed into this state-space using the correlation between 

engine load and acceleration at zero road slope. Although this process is not ideal 

and will have incurred some loss of optimality the resulting controller appeared to 

operate robustly and managed SOC well. 

8.2 Driver Behaviour 

In the course of this work a driver assistance system was developed with the aim of 

ensuring the additional power installed in a hybridised vehicle is not abused, while 

also facilitating a reduction in fuel consumption through eco-driving techniques. The 

device encourages drivers to restrict their rates of acceleration and enforces the 

advice of a GSI, therefore reducing the average engine speed. 

When applied to a test fleet of 15 light commercial vehicles the fuel consumption of 

the fleet, weighted by the distance travelled by each vehicle, was reduced by 7.6%. It 

was noted that the savings of individual vehicles/drivers varied considerably, with 

the maximum saving being 12.0%. Changes in driver behaviour and fuel 

consumption were achieved without any impact on average vehicle speeds. 

The device presented represents an improvement on those developed by other 

researchers because its relative simplicity allows easy integration into vehicles, using 

only signals available on the vehicle CAN-bus accessed via the OBD port, thereby 

avoiding the need for dedicated sensors. Furthermore the device is safe for real-time 
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use as it does not require the active attention of the driver and so is likely to 

introduce minimal additional cognitive loading. 

8.3 Further Work 

The behaviours of SDP and ECMS controllers were found to be broadly similar and 

the primary difference between their cost functions was shown to be in the value they 

assign to electrical energy. Whereas SDP assumes a value based on a stochastic 

model of future operating conditions the ECMS uses a fixed value model. It may be 

possible to produce SDP-like behaviour by adopting an Adaptive ECMS (A-ECMS) 

approach where the equivalence factor is allowed to vary slightly, a basic version of 

which was proposed by Musardo et al. [80]. This approach may yield a better 

compromise between optimality and ease of use than does SDP. 

During trials of the driver assistance system a considerable range of fuel savings 

were recorded, from a minimum of 0.43% to a maximum of 12.0%. There are several 

plausible reasons as to why some drivers were able to achieve substantial savings 

whilst others were not: it could be that some drivers were very conservative to begin 

with, or it may be that the drive cycles of some vehicles allowed greater savings than 

others. Further analysis is required to establish the mechanisms of fuel saving, as 

well as the reasons for the large range of observed savings.  

A logical development of the driver assistance system would be to introduce a degree 

of adaptive behaviour such as that proposed by Wada et al. [81], so that the 

sensitivity of the system is no longer fixed during operation. This would allow the 

system to continually encourage drivers at an appropriate level, driving continuous 

improvement without becoming irritating.  

Finally, it was noted that as well as causing drivers to accelerate more gently the 

driver advisory system also inadvertently caused drivers to decelerate more slowly. 

Although this could in principle have increased the amount of braking energy per 

kilometre which the hybrid system was able to capture, analysis showed that this was 

in fact almost exactly offset by a reduction in total braking energy throughput. 

Nevertheless it may yet be that a concerted effort to integrate rate of deceleration into 
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the system logic could further increase the proportion of recoverable energy, making 

the total fuel savings achieved by the two systems more than the sum of their 

independent contributions. These observations give rise to the next set of research 

questions which may be explored in furtherance of the work presented here. 





 

   

Appendix 1 – LA92 gear shift schedule 

 

Table A1:  Gear shift points for the LA92 determined using the gear shift survey method. 

Time (s) Gear  Time (s) Gear  Time (s) Gear 

0 0  499 4  1001 0 
25 1  503 5  1027 1 
36 2  511 4  1035 2 

54 0  526 0  1039 3 
67 1  535 1  1050 4 

75 2  553 0  1058 0 

84 1  576 1  1061 1 
86 2  585 2  1065 2 

89 3  588 3  1068 3 
97 4  596 2  1071 4 

104 0  599 3  1076 5 
112 1  602 4  1083 0 

122 2  607 5  1091 1 

124 3  621 0  1095 2 
126 4  625 1  1117 3 

137 0  627 2  1120 4 
147 1  632 3  1124 5 

154 2  647 4  1128 6 

156 3  666 5  1160 0 
158 4  673 6  1169 1 

161 5  683 5  1193 0 
165 6  703 0  1195 1 

173 5  707 2  1203 2 
179 4  710 3  1205 3 

185 5  714 4  1208 4 

190 6  732 0  1219 0 
207 0  734 2  1244 1 

211 1  739 0  1250 2 
215 0  767 1  1254 3 

242 1  774 2  1257 4 

249 2  785 3  1260 5 
253 3  818 0  1268 6 

256 2  820 1  1283 5 
262 3  854 2  1286 6 

271 4  856 3  1332 4 
277 5  858 4  1359 5 

286 0  860 5  1374 0 

317 1  862 6  1391 1 
325 2  955 0  1402 2 

327 3  964 1  1420 0 
330 4  973 2    

333 5  976 3    

337 6  979 4    
495 2  983 5    

497 3  989 6    





 

   

Appendix 2 – Journal Paper 1 (Proc. IMechE) 

The following article written by the author includes some of the work presented in 

this thesis. The article appeared in the peer-reviewed journal Proceedings of the 

Institute of Mechanical Engineers Part D: Journal of Automobile Engineering. 

Article information 

Authors: C. Vagg, C. J. Brace, S. Akehurst, R. Wijetunge, and L. Ash 

Title: Development of a new method to assess fuel saving using gear 

shift indicators 

Journal: Proceedings of the Institution of Mechanical Engineers, Part D: 

Journal of Automobile Engineering, vol. 226, pp. 1630-1639 

Publication year: 2012 
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Appendix 3 – Journal Paper 2 (IEEE Trans.) 

The following article written by the author includes some of the work presented in 

this thesis. The article appeared in the peer-reviewed journal IEEE Transactions on 

Intelligent Transportation Systems. 

Article information 

Authors: C. Vagg, C. J. Brace, D. Hari, S. Akehurst, J. Poxon, and L. Ash 

Title: Development and Field Trial of a Driver Assistance System to 

Encourage Eco-Driving in Light Commercial Vehicle Fleets 
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