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Abstract 
 

Nicotinic acetylcholine receptor (nAChR) activation is neuroprotective and nicotine is 

a cognitive enhancer. Loss of nAChRs, deposition of tau neurofibrillary tangles, 

cleavage of amyloid precursor protein (APP) and inflammation are well documented 

in the pathogenesis of Alzheimer’s disease (AD). Sequential cleavage of APP by - 

and -secretase enzymes generates soluble A peptides, with oligomeric forms of A 

implicated in both the control of synaptic excitability and dysregulation of synaptic 

transmission and induction of neuronal death in AD. A production is inhibited by 

calcium-dependent recruitment of -secretase, as exemplified by activation of N-

methyl-D-aspartate receptors (NMDAR). All neurodegenerative diseases are 

associated with inflammation, arising from altered homeostasis of the innate immune 

system, resulting in heightened activation of immune cells and induction of a pro-

inflammatory environment. Stimulation of the 7 subtype of nAChR is anti-

inflammatory and also enhances cognition and promotes neuronal survival. This work 

addressed the hypotheses that stimulation of highly calcium-permeable 7nAChR 

inhibits A production by promoting -secretase-mediated processing of APP and 

also modulates inflammatory cellular behaviour of microglia. Thus, this study 

assessed the role of 7nAChR at glutamatergic synapses, through probing effects on 

APP processing and phagocytosis in primary cortical neurons and microglia, 

respectively. Primary cortical neurons expressed functional 7nAChR and glutamate 

receptors, and through a number of experimental approaches, including 

immunoblotting and a cleavage reporter assay, results indicated 7nAChR activation 

with the 7nAChR-selective agonist PNU-282987 and positive allosteric modulator 

PNU-120596 had no effect on APP and Tau, in contrast to NMDAR activation that 

significantly modulated these proteins. Data suggest low expression of 7nAChR, 

coupled with distinct localisation of presynaptic 7nAChR and postsynaptic APP 

could explain the lack of effect. In addition, primary microglia were highly responsive 

to lipopolysaccharide and possessed functional 7nAChR that coupled to ERK 

phosphorylation. Microglial 7nAChR activation promoted neuroprotective 

phagocytic behaviour, in agreement with the ‘cholinergic anti-inflammatory pathway’. 

This study supports the hypothesis that 7nAChR are modulators of anti-

inflammatory behaviour, thus 7nAChR-selective ligands are viable candidates for 

the treatment of AD and promoting cognitive enhancement. 
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1. Introduction 

1.1 Cholinergic signalling within the central nervous system 
 

Acetylcholine (ACh) modulates a wide array of physiological processes within both 

the peripheral nervous system and the central nervous system (CNS). CNS roles of 

ACh include modulation of reward, pain, memory and cognition (reviewed by Miwa et 

al., 2011). An early pharmacological approach enabled identification of distinct 

acetylcholine receptor subtypes, namely muscarinic and nicotinic receptors, after 

observing the plant alkaloids muscarine and nicotine mimicked some of the actions 

of ACh. The identification of these pharmacologically distinct receptors resulted in the 

classification of two functionally unrelated receptor groups, muscarinic acetylcholine 

receptors (mAChR) and nicotinic acetylcholine receptors (nAChR), with nAChR being 

the focus of this thesis. ACh is generated by the enzyme choline acetyltransferase, 

which catalyses the formation of ACh from acetyl-CoA and choline. Conversely, ACh 

is rapidly broken down by acetylcholinesterase (AChE), which enables choline 

reuptake into neurons for conversion back to ACh, allowing precise temporal and 

spatial regulation of signalling (Brady et al., 2012). Regions of dense cholinergic 

activity within the brain and peripheral nervous system have been mapped through 

biochemical detection of choline acetyltransferase, AChE, choline reuptake 

transporters (ChT) and vesicular acetylcholine transporters (VAChT). The major 

cholinergic projection pathways (in the rodent CNS) are indicated in figure 1.1. Of 

particular importance, with respect to this thesis, are the neurons projecting from the 

basal forebrain complex (BFC), which send axons to the hippocampus, limbic cortex, 

olfactory bulb, amygdala and neocortex. The cholinergic projections from the BFC to 

the neocortex, hippocampus and limbic cortex degenerate in Alzheimer’s disease 

(AD) (Whitehouse et al., 1982), as discussed below (section 1.6), which gives rise to 

the clinical symptoms of memory loss, personality alterations and declined cognitive 

performance.  

1.2 Nicotinic acetylcholine receptors  
 

nAChR were the first identified from the muscle endplate of electric ray, eel and 

Torpedo from the Electrophorus family. The presence of nAChR was also observed 

within mammalian skeletal muscle, where they are found highly concentrated at the 

neuromuscular junction (NMJ). Muscle nAChR have been extensively studied and 
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 Figure 1.1: Cholinergic signalling pathways in the rodent brain. The basal forebrain (BFC) provides the major cholinergic 
output projections to the cortex and hippocampus. Acetylcholine signalling (red arrows) into the hippocampus and cortex 
enhances plasticity and learning. The pedunculopontine (PPT) and laterodorsal tegmental areas (LDT) innervate the brain stem 
and midbrain, whilst cholinergic interneurons are found within the striatum (taken from Brady et al., 2012). 
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well characterised, and more recently the structurally analogous neuronal nAChR 

have been the focus of significant research efforts. Muscle nAChR were the first 

neurotransmitter receptors identified (Nachmansohn, 1966) and are the prototypical 

receptor within the Cys loop family of pentameric ligand-gated ion channels. The Cys 

loop family comprises nAChR, GABAA, GABAC, glycine, 5-HT3 receptors and 

invertebrate glutamate-, histamine- and 5-HT-gated chloride channels (Changeux, 

2013a). The extracellular N-terminus of each receptor subunit contains a 15-residue 

disulphide bonded ‘Cys loop’, providing the defining feature of this ligand-gated ion 

channel family of receptors, purported to be involved in channel opening, following 

agonist binding, figure 1.2A.  

In the ~50 years since their identification (Changeux, 2012), nAChR have been 

extensively studied by pharmacology, electrophysiology, biochemistry, molecular 

biology, structural biology and cellular biology techniques. As discussed below 

(section 1.4) using a pharmacological approach, identification of distinct nAChR 

subtypes was possible, thanks to subtype-selective ligands. Such, subtype-selective 

ligands have been developed to target nAChR, in order to investigate a number of 

human diseases. Biochemistry and molecular biology enabled identification of 

endogenous neurotransmitter interaction sites within nAChR, through mutagenesis 

screens, figure 1.2B. Electrophysiology has enabled a detailed understanding of 

nAChR responses to exogenous ligands and endogenous neurotransmitters. nAChR 

were the first receptors to have channel currents and kinetics studied and the era of 

structural biology has begun to elucidate the detailed molecular composition and 

functional regions of nAChR, and specifically how nAChR-ligand interactions 

modulate receptor behaviour (Unwin, 2005). Finally, cellular biology has begun to 

investigate downstream cellular signalling events, following nAChR activation (Dajas-

Bailador and Wonnacott, 2004). 

1.3 nAChR function 
 

Thanks to a number of structural studies (Brejc et al., 2001; Karlin, 2002; Samson et 

al., 2002; Miyazawa et al., 2003; Unwin, 2005; Sine and Engel, 2006; Li et al., 2011), 

we now have a greater understanding of Cys loop receptor functionality, from the 

stages of neurotransmitter binding, communication between binding site and the 

channel barrier, and opening and closing of the channel modulating ion passage, in 

turn affecting membrane potential. For all Cys loop family members, at least two 

agonist molecules are required for channel opening and receptor activation.   
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Figure 1.2: nAChR physiology and structural components. A: Orientation 
of a single nAChR subunit within the plasma membrane. B: Schematic of an 

assembled homomeric nAChR composed of five 7-subunits arranged around 
a central pore, lined by M2. Each principle agonist binding site is derived from 

three loops of the entire extracellular N-terminal domain of an -subunit and 
three loops from an adjacent complementary subunit. Notional sites of nAChR-
interacting drugs are indicated, either on extracellular or luminal domains of the 
receptor. 
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Upon agonist binding, the channel opens following an allosteric transition and agonist 

remains bound, due to its high affinity for an open-state receptor. In the open state, 

an influx of Na+ and Ca2+ ions is permitted, alongside efflux of K+ ions. The kinetics of 

channel opening are rapid, with the time between agonist binding and channel 

opening measured as tens of microseconds (Sine and Engel, 2006). In the transition 

from closed to open state, the second transmembrane segment (M2 domain) of each 

subunit acts as a barrier to ion passage, which following agonist binding undergoes a 

rotation to widen the channel pore by 3Å, enabling transient ion passage. In the open 

state, the residues flanking M2 act as an ion selectivity filter. Coupled with this, the 

presence of a ring of negatively charged residues within the internal channel vestibule 

contributes to cation selectivity (Li et al., 2011). Naturally occurring mutations within 

nAChR subunits and other Cys loop receptor family members can lead to reduced 

function receptors and result in a number of disease-causing conditions, termed 

channelopathies. The presence of bound agonist does not guarantee channel 

opening and receptor activation, as nAChR are subject to rapid desensitisation, a 

period in which the receptor is non-conducting following agonist-induced activation. 

Primary hippocampal neurons exhibit desensitisation periods of ~1 second (Dani et 

al., 2000) and desensitisation is entirely overcome by 15-30 seconds (Frazier et al., 

1998a, 1998b). Alternatively, blockade of nAChR activation can arise from antagonist 

binding. Structural studies have enabled mechanistic insight into competitive nAChR 

antagonists, which bind within the agonist binding pocket (Samson et al., 2002), 

blocking the entrance of agonist and thus preventing channel opening and receptor 

activation.  

1.4 nAChR diversity  
 

The (limited) diversity of muscle nAChR subtypes, has been appreciated for over 60 

years but extensive diversity amongst neuronal nAChR was only accepted ~20 years 

ago, following sequencing, cloning, exogenous oocyte expression and examining 

nAChR pharmacology using subtype-selective antagonists (Marks et al., 1986; Chen 

and Patrick, 1997; Wu and Lukas, 2011). Partially cross-linking nAChR from electric 

eel revealed a pentameric structure. Each of the five subunits combine to form a 

functional ion channel, spanning the plasma membrane, enabling the inward passage 

of Ca2+ and Na+ ions and efflux of K+ ions. The five subunits comprising muscle 

nAChR are known to be composed of up to five different proteins, termed 1, 1, ,  

and . Through gel separation, the relative subunit stoichiometry for muscle nAChR 
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was determined as 12111(/)1, where  and  are foetal and adult expressed 

muscle nAChR subunits, respectively (Changeux, 2013a). In contrast, 9 neuronal 

nAChR subunits have been identified to date, designated 2-7 and 2-4, figure 1.3. 

In addition, an 8 subunit has been identified in avian species and 9-10 in 

mammalian non-CNS tissues. In both muscle and neuronal nAChR, ligand binding 

occurs at the interface between an - and an adjacent complementary (either - or -

) subunit (Sauguet et al., 2013). Mutagenesis of single residues within the N-terminus 

of the -subunit has revealed four crucial aromatic residues that constitute the agonist 

binding site. These residues (Tyr93, Trp149, Tyr190 and Tyr198), coupled with two 

adjacent cysteine residues (Cys192 and Cys193) constitute the principle binding site of 

a nAChR, with the adjacent subunit (-strand rich, containing Trp55/57) termed the 

complementary site (Sine and Engel, 2006; Li et al., 2011). The presence of differing 

nAChR subunits at the complementary site alters the affinity of nAChR ligands, giving 

rise to the agonist affinity variations between nAChR subtypes (Andersen et al., 

2011).  

1.4.1 Neuronal nAChR subtypes 
 

Each of the above listed -subunits (except 5, which lacks Tyr190) is capable of acting 

as the principle agonist binding site. Conversely, -subunits lack the agonist binding 

site, but instead contain the complementary site (with the exception of the 3 subunit). 

Thus, - and -subunit conformations can form complementary pairs and constitute 

functional heteropentameric nAChR. In addition, 7-9 subunits can form functional 

homomeric receptors that lack -subunits. Homomeric -subunit expression results 

in the formation of both the principle and complementary binding sites, which are 

capable of binding up to five agonist molecules per receptor (Rayes et al., 2009), with 

enhanced agonist sensitivity and Ca2+ permeability over heteromeric nAChR 

(Andersen et al., 2011, 2013). As a result, the potential number of receptor subunit 

combinations is huge, and there exists a large diversity of naturally expressed nAChR 

subtypes (Wu and Lukas, 2011), named according to their subunit composition, figure 

1.3. Following successful efforts to sequence, clone and express neuronal nAChR 

subunits (Boulter et al., 1987; Heinemann et al., 1990; Séguéla et al., 1993), the 

distinction between muscle, neuronal and ganglionic nAChR pharmacology began to 

be appreciated, along with the breadth of receptor subtypes. The differential affinity 

of nicotine for populations of nAChR was further   
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Figure 1.3: Putative vertebrate nAChR subunit combinations. Reported 
subunit combinations reveals vast heterogeneity of nAChR subunit stoichiometry. 
Black circles indicate putative agonist binding sites between principle and 

complementary binding sites. Vertebrate neuronal (2-8 and 2-4) and 

mammalian non-CNS (9-10) nAChR subunits are coloured, whilst muscle 

nAChR subunits (1, 1, ,  and ) are white. The 7nAChR subtype (circled) is 
the focus of this thesis. 
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evidence for expression of a host of neuronal nAChR subtypes, as determined by 

subunit combinations. Accordingly, the 42 nAChR subtype possesses a high 

affinity for nicotine, and accounts for >90% of [3H]-nicotine binding within brain 

material, with 7nAChR making up the remainder, with a minimal contribution from 

other nAChR subtypes.  Native 42 receptors exhibit an (4)2(2)3 stoichiometry, 

containing the minimum required two agonist binding sites. In contrast, exogenous 

expression of an (4)3(2)2 nAChR conformation reduced ACh affinity but enhanced 

Ca2+ permeability, reminiscent of homomeric -subunit expression properties 

(Andersen et al., 2011, 2013). The most phylogenetically ancient 7nAChR forms a 

homopentamer ligand-gated ion channel, with 42* and 7nAChR exhibiting 

complementary distributions across the mammalian CNS. 

1.4.2 The 7 subtype of nAChR 
 

Initial work comparing the nAChR within the muscle and brain highlighted a striking 

difference between muscle and neuronal nAChR. All muscle nAChR (which bound 

nicotine) bind the 74 amino acid 8kDa -neurotoxin, -bungarotoxin (BTX), which 

renders the nAChR silent. In contrast, within the brain, only the low affinity nicotine-

binding nAChR bind BTX. BTX is now known to be an 7nAChR-selective 

antagonist (Chen and Patrick, 1997), binding to the -subunit agonist binding pocket 

(Samson et al., 2002) to stop access of the agonist molecule.  

7nAChR are distinguished from other nAChR subtypes due to their unique 

pharmacological properties, most notably their high permeability to calcium (Séguéla 

et al., 1993; Dajas-Bailador and Wonnacott, 2004; Fucile, 2004), rapid desensitisation 

kinetics (Williams et al., 2012) and low open state probability (Pesti et al., 2014). The 

7nAChR has the highest fractional Ca2+ current (Fucile, 2004), being the highest 

reported for ligand-gated ion channels and is equal to NMDA-type glutamate 

receptors (Dajas-Bailador and Wonnacott, 2004). Desensitisation of 7nAChR is 

more likely to occur following saturating agonist binding to the principle binding sites, 

with maximal receptor activation occurring with 1-2 bound agonist molecules 

(Williams et al., 2011a, 2012) or with 3 agonist molecules bound at non-consecutive 

binding sites (Rayes et al., 2009).  

Following 7nAChR activation increased intracellular Ca2+ concentration can be 

produced through a number of means. Firstly, Ca2+ influx can occur directly through 

the Ca2+-permeable nAChR ion channel. Secondly, nAChR-mediated cellular 
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depolarization, as a result of Na+ influx, also activates voltage-operated calcium 

channels (Barrantes et al., 1995a), significantly increasing the influx of Ca2+ ions. 

Thirdly, 7nAChR activation induces calcium-induced calcium release (CICR) from 

endoplasmic reticulum calcium stores, via ryanodine receptors (Dajas-Bailador and 

Wonnacott, 2004). Finally, 7nAChR-mediated Ca2+-induced activation of the inositol 

(1,4,5)-trisphosphate (IP3) receptor within the endoplasmic reticulum results in further 

release of Ca2+ from intracellular stores, which is purported to be ryanodine receptor-

dependent. Thanks to the strong increase in intracellular calcium following 7nAChR 

activation, a range of signalling cascades and cellular processes are facilitated 

(Dajas-Bailador and Wonnacott, 2004). As populations of 7nAChR have differential 

spatial distribution across the CNS and are capable of increasing intracellular Ca2+ by 

a number of means, the diversity of nAChR-induced calcium-dependent cellular 

processes is vast (Berg and Conroy, 2002) and is subject to intense research efforts. 

1.4.2.1 7nAChR expression and distribution 
 

In situ hybridization, radio-ligand binding and immunolabelling studies have enabled 

extensive analyses of nAChR expression throughout the CNS (Marks et al., 1986; 

Breese et al., 1997; Lewis and Picciotto, 2013) and across human brain aging (Perry 

et al., 2000). The 7nAChR subtype is of particular interest due to its relatively high 

expression within discrete brain regions associated with cognition, learning and 

memory. 7nAChR are highly expressed within the hippocampus (Fabian-Fine et al., 

2001; Ji et al., 2001; Kawai et al., 2002), cortex (Lubin et al., 1999; Metherate, 2004; 

Poorthuis et al., 2013) and ventral tegmental area (Mansvelder and Mcgehee, 2000; 

Mansvelder et al., 2009). The 7nAChR expressed within these brain regions are well 

documented as being involved in attention, learning and memory and reward 

processes, respectively. Thus, targeting 7nAChR within these brain regions has 

been the focus of intense research efforts to treat cognitive disorders, ranging from 

schizophrenia to mild cognitive impairment and Alzheimer’s disease (AD) (Wallace 

and Porter, 2011), as discussed below (section 1.9).  
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1.4.2.2 Expression of 7nAChR within CNS cell types 
 

Within native CNS tissue, 7nAChR are expressed across a number of brain regions 

by neurons (Ji et al., 2001; Charpantier et al., 2005; Wu and Lukas, 2011; Poorthuis 

et al., 2013), astrocytes (Teaktong et al., 2003; Poisik et al., 2008; Duffy et al., 2011; 

Wang et al., 2013) and microglia (Shytle et al., 2004; Thomsen and Mikkelsen, 2012; 

Parada et al., 2013; Morioka et al., 2014). 7nAChR have also been extensively 

studied in mammalian CNS cell lines (Nakayama et al., 2002; El Kouhen et al., 2009), 

primary neurons (Dajas-Bailador et al., 2002; Brown and Wonnacott, 2014) and 

through exogenous expression of 7nAChR (and non-7 nAChR subtypes) in 

Xenopus oocytes (Charpantier et al., 2005; Williams et al., 2011a). 7nAChR have 

also been documented within non-CNS cell types (Sharma and Vijayaraghavan, 

2002; Wessler and Kirkpatrick, 2008). The most intensively studied non-CNS cell type 

is macrophages (Lu et al., 2014), due to 7nAChR’s reported role as an inhibitor of 

inflammation (Wang et al., 2003; Cui and Li, 2010; Bencherif et al., 2011), in line with 

their purported function of reducing pro-inflammatory cytokine release from microglia 

(Giunta et al., 2004; Lu et al., 2014; section 1.4.2.3.2). 

1.4.2.3 7nAChR physiological functions 
 

Neuronal 7nAChR are expressed at presynaptic, perisynaptic, somatodendritic and 

extrasynaptic sites. Their function within the CNS is broadly to modulate synaptic 

function and plasticity (Gray et al., 1996; Lozada et al., 2012; Pesti et al., 2014), 

underlying their role in cognition (Hurst et al., 2013). The majority of studies have 

focused on the presynaptic population of 7nAChR and their role in modulating 

calcium-dependent release of neurotransmitters (Wonnacott, 1997; Wonnacott et al., 

2006), such as aspartate (Rousseau et al., 2005) dopamine (Grilli et al., 2012), GABA 

(Alkondon et al., 1997) and glutamate (Gray et al., 1996; Dickinson et al., 2008; 

Gomez-Varela and Berg, 2013). For example, in the hippocampus, where some of 

the highest levels of 7nAChR are expressed presynaptically on mossy fibres, the 

7nAChR modulate release of the major excitatory neurotransmitter glutamate. As a 

result of enhanced glutamate release, increased numbers of -amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid (AMPA)- and N-methyl-D-aspartate (NMDA)-type 

glutamate receptors are trafficked to the postsynaptic membrane; increasing the 

potential to enhance synapse strength and long-term potentiation (LTP, Lin et al., 
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2010; Halff et al., 2014), and thus 7nAChR can modulate synaptic plasticity, learning 

and memory. Conversely, the postsynaptic population of 7nAChR (mostly found at 

extrasynaptic sites) are best known for their role in generating excitatory responses. 

As 7nAChR are capable of being (weakly) activated by choline, the ubiquitously 

present precursor to ACh, it has also been suggested 7nAChR evolved to undertake 

slower signalling and alternative physiological roles, as well as rapid 

neurotransmission (Papke, 2014). The physiological levels of choline at pyramidal 

neurons of the CA1 region of the hippocampus (estimated to be ~10M, Kalappa et 

al., 2010) were used to assess 7nAChR activation, revealing persistent activation of 

7nAChR (Kalappa et al., 2010) and thus emphasizing the potential of 7nAChR 

modulators as cognitive enhancers.  

1.4.2.3.1 7nAChR in cognition, learning and memory 
 

7nAChR activation selectively promotes glutamatergic synapse formation in 

development, as determined by examination of glutamatergic synapse number in 

7nAChR knock-out mice (Lozada et al., 2012). Furthermore, 7nAChR maintain and 

modulate glutamate release probability. A pool of presynaptic 7nAChR, within 

primary hippocampal neurons, was shown to transition from mobile and freely 

diffusible to synaptically constrained (via PSD-95 and CAST/ELKS association), 

which in turn increased the capacity for neurotransmitter release by enhancing the 

size of the readily releasable pool of vesicles (Gomez-Varela and Berg, 2013). 

Following enhanced glutamate release, 7nAChR activation also indirectly modulates 

glutamate receptor trafficking (Lin et al., 2010) to the postsynaptic membrane, 

promoting synapse maintenance and synaptic plasticity (Gomez-Varela and Berg, 

2013). 7nAChR activity-dependent regulation of glutamate release results in long-

term consequences, such as changes in gene expression, regulation of gene 

transcription, namely immediate-early genes, which in turn activate the MAPK 

pathway and subsequent activation of CREB (Berg and Conroy, 2002) and section 

1.4.2.3.1.1. As 7nAChR are highly expressed in brain regions associated with 

cognition, such as the hippocampus and cortex, they are capable of inducing long-

lasting synaptic changes that act as the cellular basis for learning and memory 

(Newhouse et al., 2004; Lendvai et al., 2013; Yang et al., 2013). Depletion of ACh 

signalling to the prefrontal cortex significantly impairs working memory (Croxson et 
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al., 2011), whilst chronic 7nAChR-selective agonist treatment of aged AD model 

mice restored cognition (Medeiros et al., 2014).  

1.4.2.3.1.1 7nAChR signalling in cognition, learning and memory 
 

The specific downstream cellular events following nAChR activation have not been 

fully defined, owing to a lack of subtype-selective antagonists. In recent years the 

effects of nicotine and selective 7nAChR activation and cellular transduction have 

been mapped to phosphatidylinositol 3-kinase (PI3K, Kihara et al., 2004) and protein 

kinase B (Akt) via Janus Kinase 2 (JAK2, Shaw et al., 2002) and extracellular signal-

related kinase (ERK, Steiner et al., 2007; Dickinson et al., 2008; El Kouhen et al., 

2009) phosphorylation as part of the mitogen-activated protein kinase (MAPK) 

pathway. The central signalling cascade implicated in learning and memory 

processes is the MAPK pathway, physiologically targeted by neurotrophins binding a 

cell surface receptor-linked tyrosine kinase (such as TrkB) and a number of ionotropic 

and metabotropic receptors. Upon ligand binding, receptor activation, dimerization 

and autophosphorylation results, and a downstream phosphorylation signalling 

cascade initiates. Receptor-docking proteins (SOS and GRB2) activate GTP-bound 

Ras, which activates a central three-tiered core signalling module beginning with Raf, 

which in turn activates and phosphorylates MEK, figure 1.4. Activation of the 

serine/threonine-selective protein kinase MEK results in rapid but reversible ERK1/2 

isoform phosphorylation at both a serine and threonine residue (Ferrell and Bhatt, 

1997). ERK1/2 activation results in a number of signalling events, which can broadly 

be attributed to cytoplasm-specific and nucleus-specific ERK targets. Within the 

cytoplasm, phospho-ERK1/2 act on components of the MAPK pathway (such as 

destabilization of the receptor docking SOS-GRB2 complex and ERK 

dephosphorylation enzyme activation) to serve as a negative feedback regulator of 

further ERK phosphorylation and hyperactivation. Within the nucleus, phospho-ERK 

activates numerous pro-survival transcription factors and subsequent transcription 

and translation of pro-survival and cell cycle genes and proteins, such as CREB 

(Bitner et al., 2007) and Akt (Nakayama et al., 2002). 7nAChR-mediated ERK 

activation (Cui and Li, 2010) has also been observed in microglia, with subsequent 

PI3K-, Akt- and JAK-mediated cell survival (Bencherif et al., 2011). There exists a 

balance between ERK phosphorylation by kinase enzymes and dephosphorylation by 

phosphatase enzymes. Dual-specificity phosphatases (DUSPs) serve to 

dephosphorylate ERK1/2 at both serine and threonine residues  
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Figure 1.4: Schematic of the MAPK signalling cascade. Physiological activation 
of a receptor-linked tyrosine kinase (RTK) by growth factors results in receptor 
dimerization and autophosphorylation. Receptor-docking proteins (SOS and GRB2) 
activate GTP-bound Ras, which activates Raf, which in turn activates and 
phosphorylates MEK. Activation of MEK results in rapid but reversible ERK1/2 
phosphorylation and activation, resulting in a number of signalling events, including 
activation of pro-survival transcription factors and cell cycle genes. As a negative 
feedback loop, phospho-ERK1/2 acts to destabilise the SOS-GRB2 complex and 
activate dual-specificity phosphatases (DUSPs), which dephosphorylate and 
inactivate ERK1/2.  
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and regulate MAPK signal transduction cascades (Caunt and Keyse, 2013). 

Activation of 7nAChR stimulates MEK-dependent ERK phosphorylation in neurons 

(Dajas-Bailador et al., 2002; Bitner et al., 2007; Steiner et al., 2007; Dickinson et al., 

2008; El Kouhen et al., 2009), astrocytes (Koyama et al., 2004) and microglia (Giunta 

et al., 2004), in response to a number of ligands. The resultant MAPK signalling 

results in cell survival, cell division, and in a neuronal context: axon growth (Nordman 

et al., 2014), LTP (Schafe et al., 2008) and memory consolidation (Schafe et al., 

2000). Phosphorylated ERK is increased in the hippocampus following memory 

consolidation and pharmacological antagonism of MEK prevents ERK 

phosphorylation and concomitant blockade in long-term memory formation (Bitner et 

al., 2007). The emerging role of phospho-ERK in cognition, learning and memory is 

only now becoming more apparent, with the development of more sensitive molecular, 

biochemical and imaging tools (Sweatt, 2004). 

1.4.2.3.2 7nAChR and CNS inflammation 
 

All CNS degenerative diseases are associated with inflammation (Shytle et al., 2004). 

The cholinergic anti-inflammatory pathway modifies the immune system, through 

immune cells, such as macrophages (in the peripheral nervous system) and microglia 

(in the CNS). 7nAChR are essential regulators of cholinergic anti-inflammatory 

pathway (Wang et al., 2003), controlling the innate immune response to prevent 

excessive inflammation. Macrophage pro-inflammatory TNF cytokine release is 

negatively regulated by ACh signalling to the vagus nerve, with enhanced TNF 

release in 7nAChR knock-out mice (Wang et al., 2003).  

Microglia are intrinsic immune cells of the brain, derived from erythromyeloid 

precursor lineage (Kierdorf et al., 2013; Prinz and Priller, 2014). Microglia are highly 

ramified cells, with motile processes, termed ‘resting’ microglia. Resting microglia 

constantly survey their environment and are the first cells to respond to any changes, 

by transforming into an amoeboid morphology and becoming ‘activated’. Activated 

microglia can proliferate, secrete cytokines, reactive oxygen species and 

phagocytose damaged cells and debris (Pocock and Kettenmann, 2007). 

Macrophages and microglia are activated by lipopolysaccharide (LPS), found on the 

outer membrane of Gram-negative bacteria. LPS exposure triggers synthesis of 

inflammatory mediators, such as TNF and interleukin-1 (IL-1), along with 

regulatory cytokines, such as IL-12. Diffusible inflammatory mediators activate large 

numbers of immune cells, amplifying the immune response, which produce large 
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quantities of pro-inflammatory cytokines, such as TNF, IL-1, IL-6, IL-12 and IL-18 

(Bencherif et al., 2011) resulting in neurodegeneration (Bodea et al., 2014). Microglia 

not only express chemokine and cytokine receptors, but have more recently been 

shown to respond to neurotransmitters via expression of neurotransmitter receptors 

(reviewed by Pocock and Kettenmann, 2007). Activation of microglial 

neurotransmitter receptors can be protective or inflammatory, depending on the 

receptor class. For example, activation of ionotropic AMPA-type glutamate receptors 

is pro-inflammatory, enhancing TNF release, whereas metabotropic glutamate 

receptors can be either protective or inflammatory (via activation of type III or type II, 

respectively). Activation of G-protein coupled purinergic P2Y receptors is 

neuroprotective, enhancing microglial motility, migration and phagocytosis. 7nAChR 

expression on glial cells has not been well studied, as the focus on 7nAChR’s 

cognitive enhancing effects have historically remained on the neuronal population 

within the CNS. However, as 7nAChR flux calcium, which is the basis for glial cell 

excitability (Parri et al., 2011), the question of whether 7nAChR can modulate glial 

cell behaviour remains largely unanswered. However, the few studies of nAChR in 

microglia show sole expression of the 7-subtype; and its activation is anti-

inflammatory and neuroprotective. Activation of microglial 7nAChR enhanced 

neuroprotective gene expression (Parada et al., 2013), reduced LPS-induced TNF 

release (Shytle et al., 2004), reduced IFN- mediated pro-inflammatory cell activation 

(Giunta et al., 2004), enhanced GLAST/EAAT1 expression (Morioka et al., 2014), 

reducing glutamate-mediated neuronal excitotoxicity and enhanced macrophage 

phagocytosis of bacteria in infected mice (Sitapara et al., 2014). Furthermore, the 

anti-inflammatory effects of macrophages can be attenuated by BTX application 

(Ulloa, 2005). The anti-inflammatory nature of 7nAChR activation can also be 

attributed to reduced inflammasome activation. The inflammasome is a multi-

molecular complex that orchestrates the activation of pro-inflammatory caspase-1 

and IL-1 and IL-18 release. Bacteria-mediated macrophage activation prime 

microglia to activate the NLRP3 inflammasome (Lee et al., 2013). The activated 

NLRP3 inflammasome is released as an extracellular particle to signal and amplify an 

immune response (Baroja-Mazo et al., 2014). Knock-out of the NLRP-3 

inflammasome reduced caspase-1 activation and IL release, whilst enhancing 

microglial phagocytosis (Heneka et al., 2013). Recent data has shown 7nAChR 

activation inhibits NLRP3 inflammasome activation by preventing mitochondrial DNA 
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release (Lu et al., 2014). Thus activation of microglial neurotransmitter receptors 

(especially 7nAChR) and their subsequent downstream signalling cascades may be 

a key strategy in controlling inflammatory cell behaviour, with the potential to regulate 

inflammation within the CNS for the treatment of inflammatory neurodegenerative 

diseases (Bencherif et al., 2011). 

1.5 nAChR pharmacology  
 

As nAChR (particularly the 7 subtype) are involved in a vast range of cellular 

processes and are implicated in cognitive function; compounds that modulate nAChR 

have been the focus of significant research efforts in a bid to improve cognition and 

also combat neurological decline. Table 1.1 lists neuronal nAChR-selective ligands, 

grouped into agonists, antagonists and modulators. Agonists activate nAChR to bring 

about a biological response, whereas antagonists block agonist-mediated responses, 

by binding to orthosteric or allosteric sites on the receptors. Modulators encompass 

all nAChR-binding ligands that exert alternative effects to agonism and antagonism 

of nAChR. Allosteric modulators of nAChR have been developed to modulate native 

nAChR in cognitive disease states, such as schizophrenia and Alzheimer’s disease, 

where nAChR-mediated processes are reduced (Timmermann et al., 2007; Taly et 

al., 2009; Williams et al., 2011b). Positive allosteric modulators (PAMs) have been 

grouped into two classes, type I and type II PAMs (Grønlien et al., 2007), as 

determined by their apparent peak current profile and type II PAMs can reactivate 

nAChR following receptor desensitisation (Bertrand and Gopalakrishnan, 2007; 

Changeux, 2013b; Uteshev, 2014), figure 1.5. PAMs bind to nAChR at sites distinct 

from the agonist binding (orthosteric) site (Barron et al., 2009) and enhance receptor 

gating in the presence of agonists. PNU-120596 dramatically enhances the channel 

open time (daCosta et al., 2011; Williams et al., 2012) and also enables 7nAChR to 

overcome desensitisation and receptor silencing (Papke et al., 2009; Szabo et al., 

2014). Non-desensitising 7nAChR-selective agonists have also recently been 

reported in the literature (Gill et al., 2011) and exhibit potential in neurological 

conditions where endogenous neurotransmitter levels are reduced.  

Throughout this thesis, the 7nAChR-selective type II PAM PNU-120596 (Table 1.1; 

(Hurst et al., 2005; Grønlien et al., 2007) was used in combination with the 7nAChR- 

selective agonist PNU-282987  
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Drug nAChR-isoform selectivity Comment(s) Reference(s) 

Agonists 

A-85380 42*-selective Analog of (±)-Epibatidine, with lower binding to 

non-42 nAChR. 

Sullivan et al, 1996 

5-iodo-A-85380 42*-selective Iodinated variant of A-85380, shows improved 

selectivity for 2-containing nAChR. 

Mukhin et al, 2000, 
Rousseau et al, 2005 

Acetylcholine All mAChR and nAChR subtypes Susceptible to hydrolysis and requires the 
presence of AChE inhibitor. 

Williams et al, 2011 

AR-R17779 7-selective 100-fold greater potency for binding to 

7nAChR than 42nAChR. Binding potency Ki: 

0.2M, EC50: 10-20M. 

Mullen at al, 2000 

Choline Weak agonist at 7 

Partial agonist at 34 

Weak agonist, 10-fold lower potency than ACh. 
Binding potency Ki: 2mM, EC50: 0.4-1.6mM. 

Alkondon et al, 1997; 
Kalappa et al, 2010 

Compound A 7-selective agonist Potent and selective agonist. Binding potency Ki: 

40nM, EC50: 14nM-0.95M. 

Ondrejcak et al, 2012 

(-)-Cotinine 42*-selective agonist 

7-selective antagonist 

Metabolite of nicotine, with lower potency.  Vainio et al, 2001 

(-)-Cytisine 42*-selective partial agonist Isolated from leguminosae plant family. Full 

efficacy for the 4 subunit. Binding potency Ki: 
1nM. 

Marotta et al, 2014 

(±)-Epibatidine Highly potent agonist at 
heteromeric nAChR 

Isolated from Amazonian frog skin.  Rousseau et al, 2005 

EVP-6124 Partial agonist at 7 Acts as an agonist as well as potentiating ACh-
evoked responses. 

Prickaerts et al, 2012 

GTS-21 Partial agonist at 7 

Very weak partial agonist at 42 

Strong antagonist at 42 

Elicits only 30% of an ACh-evoked 7nAChR 
maximum response.  Binding potency Ki: 0.2-

0.5M, EC50: 6-26M. 

Sitapara et al, 2014 

(-)-Nicotine All nAChR subtypes Higher affinity for 42* over 7. Prolonged 
nicotine-binding induces a reversible 
desensitisation state. 

Wonnacott et al, 2005 
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PNU-282987 7-selective Selective and potent. Weak activity at 5-HT 
receptors. Binding potency Ki: 26nM, EC50: 
14nM-128nM. 

Bodnar et al, 2005; Hajos et 
al, 2005; Barrio et al, 2010 

RJR 2403 42*-selective agonist EC50: 26nM. Bencherif et al, 1996 

Sazetidine-A 42* desensitising agent  

7 agonist and desensitising 
agent 

Originally thought to have no effect on nAChR 

activation. EC50: 4.2M.  

Xiao et al, 2006; Brown and 
Wonnacott, 2014; Marotta 
et al, 2014 

SSR180711 7-selective partial agonist Elicits 30-50% of an ACh-evoked 7nAChR 
maximum response. Binding potency Ki: 20nM, 

EC50: 1-4M. 

Biton et al, 2006; Pichat et 
al, 2006 

TC 2559 42-selective partial agonist Selective for (4)2(2)3 stoichiometry. Low 
efficacy. EC50: 200nM.  

Bencherif et al, 2000 

Antagonists 

-bungarotoxin 

(BTX) 

Homomeric 7-, 8-, 9-selective 
competitive antagonist 

Polypeptide toxin from snake venom. Interacts 

with -subunit. Binding potency Ki: 0.5-1nM, 
IC50: 1-100nM. 

Samson et al, 2002 

A peptide 7-selective antagonist Selective to the A42 form. Binds competitively 
IC50: 5pM and inhibits non-competitively at 1-
100nM. 

Wang et al, 2000; Liu et al, 
2001; Pettit et al, 2001; 
Grassi et al, 2003 

Dihydro--
erythroidine 

(DHE) 

Competitive neuronal non-7 
antagonist 

Isolated from Erythrina seeds. More potent at 

42 and 32 and 50-fold less potent at 34 

and 7 in oocytes. In neurons, DHE only 

blocked 42*. 

Harvey et al, 1996; 
Alkondon and Albuquerque, 
1993 

Mecamylamine Non-competitive non-selective 
antagonist 
Weak NMDAR antagonist 

7 less sensitive then heteromeric nAChR 

(mecamylamine only blocks ~70% of a BTX 
block). Saturating concentrations inhibit 

NMDAR. IC50: 0.1-1M. 

Chavez-Noriega et al, 1997; 
Ridley et al, 2002; Sharma 
and Vijayaraghavan, 2003 

Methyllycaconitine 
(MLA) 

Potent 7 competitive antagonist 

Relatively potent at 9, 9/10 

and 62* 

Isolated from Delphinium sp. Discriminates 

between muscle and 7nAChR. Binding potency 
Ki: 1nM, IC50: 10-200nM. 

Ward et al, 1990; Drasdo et 
al, 1992; Mogg et al, 2002 
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MK-801 Potent NMDAR antagonist 
Weak open nAChR channel 
blocker 

IC50 at nAChR: 15M. Ramoa et al, 1990; Briggs 
and McKenna, 1996; 
Buisson and Bertrand, 1998 

Modulators 

Galantamine AChE inhibitor 
Potentiates nAChR responses 

Isolated from the common snowdrop. Modest 
potentiation of ACh-evoked currents (30%) and 
increases intracellular calcium at low 
concentrations, above which reverts to a nAChR 
antagonist. Approved for use in treatment of mild 
to moderate AD. 

Dajas-Bailador et al, 2003; 
Smulders et al, 2005; Arias 
et al, 2005 

5-hydroxyindole Potentiates 7  
 

5-HT metabolite, Type I PAM: increases ACh 
potency and efficacy without effect on 
desensitisation. EC50: 2.5mM. 

Zwart et al, 2002; 
Timmermann et al, 2007 

JNJ-1930942 7-selective positive allosteric 
modulator  

No effect at 42, 34 or 5-
HT3R 

No agonist properties at 7. Type I PAM: 
enhances recovery but does not prevent 

desensitisation. EC50: 1.9M 

Dinklo et al, 2010 

LY2087101 Potent potentiator of 7 and 42 Avoids potentiation of 34 nAChR hence 
removes undesirable in vivo side effects. EC50: 

4.2M. 

De Filippi et al, 2010 

PNU-120596 7-selective positive allosteric 
modulator 

No effect on 42, 34 or 

910 

Type II PAM. No agonist properties at 7. 
Prolongs and increases agonist-evoked 
currents. No effect on ion-selectivity or unitary 
conductance. Reactivates desensitized 

7nAChRs. Binds to 7nAChR within -helical 
transmembrane regions. Capable of cognitive 
enhancement in vivo. EC50: 200nM 

Hurst et al, 2005; Gronlien 
et al, 2007; Timmermann et 
al, 2007; Young et al, 2008; 
Barron et al, 2009; Da 
Costa et al, 2011; Sitzia et 
al, 2012; Williams et al, 
2012; Szabo et al, 2014 

 

Table 1.1: nAChR-interacting ligands, nAChR-subtype selectivity and pharmacological effects. Selected notable neuronal nAChR 
ligands grouped into agonists, antagonists and positive allosteric modulators (PAMs), with key references of characterisation included.
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(Bodnar et al., 2005; Hajos et al., 2005; del Barrio et al., 2011) to reveal the activity 

of native 7nAChR, in order to examine the biological role of 7nAChR at the 

glutamatergic synapse. 

1.5.1 Modulators of nAChR and effects on cognitive function 
 

Presynaptic 7nAChR-mediated glutamate release at hippocampal synapses is 

known to contribute to development of synaptic plasticity (Mansvelder and Mcgehee, 

2000; Huang et al., 2010), and is modulated by inhibitory GABA signalling inputs 

(Alkondon et al., 1997). Due to the high expression level of 7nAChR within the 

hippocampus (Dani and Bertrand, 2007) and the nicotinic deficits observed in 

pathological conditions (section 1.6.1), 7nAChR are implicated in various 

neurological and cognitive disorders. In support of this, 7nAChR gene knockout 

studies showed impaired learning and memory (Marubio and Changeux, 2000; 

Dineley et al., 2002b; Young et al., 2007). The depolarisation contributed by 

7nAChRs helps to relieve the magnesium block of postsynaptic NMDA-type 

glutamate receptors (NMDAR) (Kenney and Gould, 2008; Yang et al., 2013; Cheng 

and Yakel, 2014) and enhance probability of LTP induction. Hence, a loss of 

hippocampal and cortical ACh signalling through 7nAChRs in aging or pathological 

acceleration of aging is of significant detriment, and is thought to be a major 

contributing factor underlying age-related memory decline (Bierer et al., 1995) and 

loss of working memory (Croxson et al., 2011). Many years of research (Mansvelder 

and Mcgehee, 2000; Miwa et al., 2011) has shown in both animals and humans, that 

nicotine can paradoxically, both improve and impair cognitive performance 

(Newhouse et al., 2004). Nicotine-induced cognitive enhancement is generally 

observed in subjects exhibiting sub-optimal cognitive performance, such as those with 

age-related cognitive decline or Alzheimer’s disease (AD). Contrastingly, nicotinic 

stimulation impairs cognitive performance in those performing at a near-optimal level 

(Newhouse et al., 2004). However, the mechanism of nicotine-induced improvements 

in cognition is unknown. To this end, an array of pharmacological compounds (namely 

agonists, positive allosteric modulators (PAMs) and AChE inhibitors) have been 

developed to selectively enhance physiological 7nAChR activity, in favour of 

7nAChR activation-induced cognitive enhancement (Table 1.1, reviewed by Wallace 

and Porter, 2011), without the undesirable side effects of ACh and nicotine-mediated 

pan-mAChR and nAChR activation, respectively.   
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Figure 1.5: The electrophysiological distinction between type I/II positive 

allosteric modulators (PAMs) of 7nAChR. Type I and type II PAM-potentiated 
signals (grey traces) produce different peak current profiles following agonist-
mediated (black traces) receptor activation (adapted from Lendvai et al., 2013). Type 
II PAMs prevent receptor desensitisation and allow increased mean channel open 
time. 
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1.5.1.1 7nAChR-selective agonists 
 

Agonists acting at nAChR exhibit inverted U-shaped dose response curves, attributed 

to the rapid desensitisation of nAChR (particularly the 7 subtype), thus resulting in a 

dose-limiting loss of effect (Picciotto, 2003; Wallace and Porter, 2011), when applied 

in the absence of type II PAMs. Development of orthosteric agonists has been 

intense, however, the homology of nAChR with other members of the Cys-loop ligand-

gated ion channel family has resulted in few wholly 7nAChR-selective compounds. 

The few 7nAChR-selective agonists have been shown to improve deficits in sensory 

gating in schizophrenia (Toyohara and Hashimoto, 2010), enhance cognition in 

humans and animals (Levin and Rezvani, 2000), mild cognitive impairment and AD 

mouse models (Medeiros et al., 2014), enhance attention (Levin, 2013), episodic 

memory (Wallace and Porter, 2011) and working memory (Lendvai et al., 2013). 

Conversely, 7nAChR-selective antagonists, such as MLA (Table 1.1) impair 

cognition in animal behavioural models (Wallace and Porter, 2011). Thus enhanced 

activation of native 7nAChR is widely regarded as an attractive strategy in 

cognitively impaired disease states.  

1.5.1.2 7nAChR-selective PAMs 
 

Type II PAMs are more favourable clinical molecules, over type I PAMs, as they 

prevent or overcome nAChR desensitisation (Grønlien et al., 2007), but may introduce 

the risk of excitotoxicity (Ng et al., 2007; Hu et al., 2009a). PAMs serve to enhance 

small 7nAChR stimuli and thus heighten them above the receptor activation 

threshold, leading to cellular activation and concomitant cell survival. PAMs allow 

enhancement of endogenous agonist effect and have shown promise in models of 

sensory gating deficits and paradigms of altered cholinergic tone (Wallace and Porter, 

2011). Many of the AChE inhibitors also act as 7nAChR-selective PAMs (Dajas-

Bailador et al., 2003) to further boost cholinergic signalling.  

1.6 The cholinergic hypothesis of Alzheimer’s disease 
 

The cholinergic hypothesis (Perry, 1986) postulates that cholinergic 

neurodegeneration within the basal forebrain induces the cognitive decline observed 

in AD (Coyle et al., 1983). This neurodegeneration within the basal forebrain leads to 

reduced cholinergic neurotransmission and resultant losses of presynaptic terminals 
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in the cortex and hippocampus (Pettit et al., 2001). Studies showed a marked 

reduction in acetylcholine synthesis and breakdown within post-mortem AD patient 

cortex and hippocampal tissue, by measuring choline acetyltransferase and 

acetylcholinesterase activity, respectively (Bartus et al., 1982; Whitehouse et al., 

1982). Furthermore, reduced uptake of the acetylcholine precursor, choline (Apelt et 

al., 2002), reduced acetylcholine release (Francis et al., 1999) and reduced levels of 

nAChR in AD brains (Martin-Ruiz et al., 2002) further reinforced this hypothesis. 

Hence following this theory, acetylcholinesterase inhibitors (section 1.9.1) were 

adopted as therapeutic treatments for AD. These findings, when coupled with the 

central role of acetylcholine in memory and cognition implicate dysregulation of 

acetylcholine release and nAChR signalling in the pathogenesis of AD, and reinforce 

the central role of cholinergic function in healthy cognitive aging.  

1.6.1 Alzheimer’s disease and age-related cognitive decline 
 

Dementia affects approximately 30-40 million people worldwide with numbers 

projected to rise to 115 million by 2050 (Alzheimer’s Society, 2014), due to the world’s 

aging population. The most common cause of dementia is AD. AD is characterised 

by progressive memory loss with age, due to specific vulnerability of the neurons 

within the hippocampus and cortex associated with memory formation and storage, 

with pathology beginning in and spreading from the entorhinal cortex (Khan et al., 

2013). It is these brain regions that show the pathological signs of AD, including 

extracellular plaques, composed of A peptide and intracellular neurofibrillary tangles 

(NFT), composed of hyperphosphorylated Tau (Walsh and Selkoe, 2007). 

Subsequently, the hippocampus and cortex exhibit synapse loss and neuronal cell 

death (Wei et al., 2010), leading to the impaired cognition and behavioural changes 

observed in AD (Näslund et al., 2000). Throughout physiological aging, the brain 

accrues extracellular plaques of A peptides (Walsh et al., 2002; Walsh and Selkoe, 

2007). These plaques are observed to a greater degree in AD patient brains (La Joie 

et al., 2012), but whether they play a primary role in initiating, or secondary role in 

mediating cholinergic dysfunction in both aging and AD is controversial (Kenney and 

Gould, 2008; Knowles et al., 2014). Cholinergic axon loss has been shown to be more 

pronounced in the vicinity of A plaques in aged humans, primates and AD patients 

(Shah et al., 2010). Soluble and oligomeric A peptide species have been shown to 

modulate synaptic plasticity and LTP (Walsh et al., 2002; Wang et al., 2002; Cleary 

et al., 2005; Abramov et al., 2009), as well as cholinergic synapse dysfunction 
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(Shankar et al., 2007; Innocent et al., 2010; Fowler et al., 2014). A dimerisation, 

oligomerisation and differential species formation may precede deposition of insoluble 

A plaques (Schliebs and Arendt, 2011; Larson and Lesné, 2012). A may exert its 

cholinergic neurotoxic effects through interactions with 7nAChR (Wang et al., 2000a, 

2000b; Parri and Dineley, 2010; Tong et al., 2011; Liu et al., 2013) but conversely, 

cholinergic signalling has also been shown to be neuroprotective against A toxicity 

(Liu et al., 2001; Lahiri et al., 2002; Mousavi and Hellström-Lindahl, 2009; Nie et al., 

2010). Thus, understanding the mechanism leading to A-induced neurodegeneration 

of the neurons within the hippocampus and cortex is central to aging-induced 

cognitive decline and AD, and the fundamental process underlying this is the cleavage 

of amyloid precursor protein (APP) to yield A peptides. The amyloid cascade 

hypothesis posits that the Aβ peptides, derived from APP holoprotein, are the root 

cause of AD. 

1.7 Amyloid cascade hypothesis 
 

The essence of the amyloid cascade hypothesis is that increased A production 

(especially the A42 species, over A40) or reduced A clearance causes AD. 

Accumulation of A results in aggregation and plaque formation, which initiates a 

cascade of cellular events ultimately resulting in cell death. The amyloid cascade 

hypothesis was suggested ~20 years ago (Hardy and Allsop, 1991; Hardy and Selkoe, 

2010), with genetic and biochemical data supporting the hypothesis although some 

researchers believe that Aβ is one factor and not the sole cause of AD (Pimplikar et 

al., 2010).  

Of the millions of AD sufferers worldwide, less than 1% exists as ‘familial’ cases, 

caused by autosomal dominant mutation(s) in either APP or presenilin (PS-1/ PS-2) 

genes (Price and Sisodia, 1998; Hardy and Selkoe, 2002). Presenilin 1 and 2 make 

up the catalytic core of -secretase (De Strooper, 2003; Selkoe and Wolfe, 2007), 

which cleaves APP to yield A species; with familial presenilin mutations favouring 

the secretase-mediated production of the longer 42-residue A form. APP mutations 

occur near the site of secretase cleavage and serve to enhance total A levels and 

the A42:A40 ratio. A42 is more prone to aggregation and plaque formation (Meisl et 

al., 2014). Familial AD typically affects patients at 40-50 years of age, whereas 

symptoms of sporadic AD occur after 65 years of age. These two forms of AD present 

with similar neurological and pathological hallmarks and are thus thought to be 
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identical or at least highly analogous diseases. Whilst mutations in APP or presenilin 

potentially cause AD, Tau NFT load more closely correlates with disease severity and 

cognitive decline correlates with hippocampal volume (Ong et al., 2014). Whilst the 

presence of amyloid plaques (composed of A) and NFT (composed of Tau) are 

considered to be the defining hallmarks of AD, these aggregates are increasingly 

recognised as not being the neurotoxic species underlying cell death in AD. As more 

research has been undertaken into the amyloid cascade hypothesis, the central toxic 

species has been revised, from A plaques to a multi-faceted neurotoxic insult (Oddo 

et al., 2006), including NFT, environmental factors and soluble A species, which 

have been isolated from cell culture medium (Walsh and Selkoe, 2007), AD brain 

extracts (Shankar et al., 2007) and AD mouse models (Lesné et al., 2006); but this 

remains controversial as the exact toxic nature of the A species is yet to be resolved, 

figure 1.6. A plaques are no longer purported to be the toxic species, after they were 

shown to be present in cognitively normal people (Nordberg, 2008), lacking in AD 

patients (Terry et al., 1991), the non-correlative relationship between plaque load and 

disease progression (Ong et al., 2014) and a number of animal models showing 

cognitive impairment prior to plaque deposition (Lesné et al., 2006). Nonetheless, the 

majority of modern pharmacological intervention strategies for AD have focussed on 

amyloid-based therapeutic approaches, aiming to lower A production, in accordance 

with mechanisms postulated through the amyloid cascade hypothesis. A number of 

pharmacological compounds have been developed to target toxic A species, namely 

- and -secretase inhibition (Zhou et al., 2011), inhibition of A aggregation (McKoy 

et al., 2012), A immunisation (Schenk et al., 1999) and enhancing amyloid 

degradation (Walker et al., 2013); each of which has had minimal success in the clinic 

(Karran et al., 2011). However, given the emerging evidence highlighting A-mediated 

NFT formation and the strong correlation between NFT deposition and cognitive 

decline, this suggests amyloid-targeting mechanisms may have some future scope, 

inhibiting A as an upstream modulator of Tau modification (namely 

hyperphosphorylation), further validating the amyloid cascade hypothesis and placing 

it at the crux of on-going research into the basic mechanistic biology of AD.  
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Figure 1.6: The amyloid cascade hypothesis. According to the amyloid cascade 
hypothesis, the causative event in AD pathogenesis is an imbalance between Aβ 
production and clearance. Various Aβ species can directly inhibit hippocampal LTP 
and impair synaptic function, in addition to the inflammatory and oxidative stress 
caused by Aβ plaques. As a result, Tau hyperphosphorylation and subsequent NFT 
formation impairs neuronal and synaptic function, resulting in neuronal death, 
neurotransmitter deficits and cognitive decline before the symptomatic onset of 
dementia.   



 40 

1.8 Amyloid precursor protein 
 

APP is found in the plasma membrane as a type I transmembrane glycoprotein (Hardy 

and Selkoe, 2002). There are three major isoforms, APP770, APP751 and APP695. 

APP695 is the major isoform localised to the brain, where it is found in a mature O- and 

N-glycosylated state. APP695 is the major isoform in mouse primary cortical neurons 

(Hoey et al., 2009), whilst primary astrocytes and microglia express all three isoforms 

of APP (Haass et al., 1991), where APP is found densely localised to the Golgi and 

endoplasmic reticulum (Palacios et al., 1992). 

APP interacts with a number of cell-surface localised proteins but its role in both 

development and the mature brain is yet to be elucidated. Analysis of APP’s in vivo 

physiological function is made difficult by its proteolytic cleavage, to yield various 

peptides with their own functions. Furthermore, APP is part of a highly conserved 

family with overlapping and redundant functions (Müller and Zheng, 2012). APP is a 

member of a gene family including APL-1 in Caenorhabditis elegans, APPL in 

Drosophila, appa and appb in zebrafish and APLP1 and APLP2 (along with APP) in 

mammals. APP family proteins are composed of highly conserved regions, and 

interestingly, the extracellular and juxtamembrane regions are divergent across the 

family, with A being specific to APP (Müller and Zheng, 2012). The family is subject 

to posttranslational modifications, such as N- and O-glycosylation, sialyation, and 

phosphorylation at many intracellular C-terminal sites by GSK-3 (Rockenstein et al., 

2007). The exact role of APP phosphorylation is unknown, but is the subject of intense 

study. Hypothesised functions include regulation of APP secretion (Caporaso et al., 

1992), neuronal sensitivity to trophic signalling (Matrone et al., 2011), regulation of 

APP’s interaction with adaptor and signalling proteins (Schettini et al., 2010) and as 

an iron-export ferroxidase (Duce et al., 2011). The phosphorylation state-mediated 

regulation of APP processing remains a topic of considerable debate (Sano et al., 

2006; Barbagallo et al., 2010; Matrone et al., 2011) and its in vivo relevance is only 

beginning to be revealed. APP is particularly highly expressed in neurons, where it is 

localised to the cell body, axons and dendrites (Back et al., 2007; Hoe et al., 2009; 

Hoey et al., 2009, 2013).  

1.8.1 Physiological functions of APP 
 

Despite a wealth of data on A and its production, the physiological role of APP 

remains an enigma (Hoe et al., 2009). Much of the data on APP comes from knock-
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out studies, complemented by cellular in vitro studies (Müller and Zheng, 2012). 

Complete knock-out of APP produced viable and fertile mice, but with 20% reduced 

body mass and 10% reduced brain weight (Zheng et al., 1995), consistent with in vitro 

data showing APP mediates neurogenesis, synaptic adhesion and axonal pathfinding 

(Sosa et al., 2013; Wang et al., 2014). The mice also showed increased levels of 

metal deposition, consistent with recent data highlighting APP and its cleavage 

product sAPP as being involved in iron efflux (Duce et al., 2011; McCarthy et al., 

2014). Furthermore, knock-out mice were hypersensitive to kainate-induced seizures, 

and impaired performance in learning and spatial memory tasks, associated with a 

defect in LTP, consistent with a role for APP in mediating the balance of neuronal 

excitation (Zhang et al., 2013). Finally, knock-out mice displayed reduced grip 

strength, consistent with APP’s hypothesised role in directing the formation of the 

neuromuscular junction early in development (Zheng et al., 1995). Combinatorial 

knock-out of APP family members (APP/APLP) is postnatal lethal, revealing defects 

in glutamatergic synaptic transmission (Schrenk-Siemens et al., 2008) and reinforcing 

the role of APP in mature synapse formation and synaptic transmission. 

In contrast, APP cleavage products have been extensively studied, and extracellular 

soluble forms of APP (particularly sAPP) have been shown to act as neurotrophins, 

regulating axon pruning and degeneration (Copanaki et al., 2010) through binding to 

the death receptor DR6 under stress (Nikolaev et al., 2009; Kallop et al., 2014). 

sAPP is able to rescue the APP knock-out phenotypes of anatomical, behavioural 

and electrophysiological defects (Ring et al., 2007), reinforcing the important 

physiological function of APP and its cleavage products. The AICD produced from -

secretase cleavage of APP-CTFs regulates gene expression (Pardossi-Piquard and 

Checler, 2012), following its stabilisation by Fe65 (Kimberly et al., 2001) and 

translocation to the nucleus; where AICD forms a transcriptionally active complex with 

Fe65 and Tip60 (Cao and Südhof, 2001). Understanding the physiological processing 

of APP may provide a more in depth insight into the fundamental role of APP and its 

cleavage products.  

1.8.2 APP processing 
 

Processing of APP produces the A peptide which appears to be central to the 

pathogenesis of AD. Only a small quantity of mature APP is cleaved, however its half-

life is predicted to be ~10 min (De Strooper and Annaert, 2000), indicating a highly 

dynamic regulation. There are two principal APP processing pathways, the pro-
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amyloidogenic pathway, leading to A formation and the non-amyloidogenic pathway, 

preventing A formation, figure 1.7. The principle proteolytic cleavage of APP, under 

basal homeostatic conditions is via the non-amyloidogenic pathway, with initial APP 

cleavage performed by an -secretase (Buxbaum et al., 1998). -secretase cleaves 

APP between Lys16 and Leu17 residues, cutting APP within the A peptide sequence 

(Sisodia et al., 1999), preventing the formation of the amyloid plaque-forming peptide. 

-secretase action yields extracellular sAPP and an 83-residue CTF- (also known 

as C83). Intracellular CTF- is subsequently cleaved by intra-membrane -secretase, 

to give rise to intracellular p3 and AICD, figure 1.7.  

Conversely, pro-amyloidogenic APP processing produces the A peptide by the 

consecutive action of - and -secretase (Lichtenthaler and Haass, 2004). -

secretase cleaves APP at the N-terminus of the A sequence, producing a large 

ectodomain peptide, CTF- or C99, which is cleaved by -secretase to give rise to 

intracellular AICD and A, which has been found to be secreted into plasma and CSF 

(Cirrito et al., 2003). Distinct sites of -secretase action on CTF- yield a number of 

potentially neurotoxic A species (Hartmann et al., 1997; Lesné et al., 2006). There 

is conflicting evidence to show -/-secretase activity act in competition or reciprocally 

with one another. Some studies indicate BACE-1 inhibition does not enhance -

secretase activity and sAPP release (Kim et al., 2008; Dobrowolska et al., 2014) and 

others reporting the converse (Postina et al., 2004; Fukumoto et al., 2010; Zhang et 

al., 2010; May et al., 2011) with enhanced sAPP production following reduced 

BACE-1 expression. Similarly, a number of studies report increased -secretase 

activity results in reduced -secretase activity and A formation (Lichtenthaler and 

Haass, 2004; Hiraoka et al., 2007). However, this relationship may depend on cell 

type and subcellular localisation of both secretase enzymes and APP substrate. 

1.8.2.1 Regulation of APP processing by secretases 

1.8.2.1.1 -secretase 
 

Putative -secretases (ADAM-9, ADAM-10 and ADAM-17) are members of the ADAM 

(a disintegrin and metalloproteinase) family and are each type I transmembrane 

proteins. Of the three putative -secretase enzymes, ADAM-10 and  
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Figure 1.7: Amyloid precursor protein (APP) processing. Initial cleavage of APP occurs in the extracellular region of the peptide by 

either - or -secretase to release soluble APP fragments (sAPP) and intracellular C-terminal fragments (CTF). Membrane embedded 

-secretase subsequently carries out a second cleavage of APP within the transmembrane (TM) region of the CTF peptide. Cleavage 

of CTF- by -secretase within the non-amyloidogenic pathway (right hand side), gives rise to APP intracellular cytoplasmic domain 

(AICD) and p3 fragments. Pro-amyloidogenic cleavage (left hand side) of APP gives rise to CTF- that is cleaved by -secretase to yield 

AICD and various putative A species, dependent on the residue of -secretase action. A peptides can subsequently be degraded by 
neprilysin or dimerise, oligomerise and form fibrils, which are deposited as extracellular plaques. 
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ADAM-17 are the best characterised, whilst knock-out of ADAM-9 had no effect on 

APP processing and sAPP generation, suggesting it is not a constitutive -secretase 

and can be compensated for by other ADAMs (Kuhn et al., 2010). Under normal 

conditions, constitutive -secretase processing is carried out by the zinc 

metalloproteinase ADAM-10 (Kuhn et al., 2010), which is localised to the cell surface 

and Golgi apparatus. Overexpression of ADAM-10 enhances non-amyloidogenic APP 

cleavage and knock-down completely suppressed -cleavage (Kuhn et al., 2010) and 

results in enhanced A plaque deposition (Postina et al., 2004). Rare ADAM-10 

mutations exist in the population, but have been shown to have no role in sporadic 

AD onset (Cai et al., 2012) but in transgenic mice can enhance A production through 

chaperone dysfunction (Suh et al., 2013; Vassar, 2013). ADAM-17 cleaves APP (as 

well as TNF, amongst other notable cytokine and growth factor substrates) in a PKC-

dependent process (Nitsch et al., 1992) and knock-out of ADAM-17 produced 

defective PKC-mediated sAPP secretion, suggesting ADAM-17 is a regulated and 

stimulatory -secretase (Buxbaum et al., 1998) in both primary neurons and cell lines 

(Zhang et al., 2011). The pharmacological broad-spectrum matrix metalloproteinase 

inhibitor TAPI-1 blocks the in vitro shedding of -secretase cleaved cell surface 

proteins by both constitutive and stimulated ADAMs (Slack et al., 2001). In vivo, 

ADAM-10 is regulated by endogenous secreted TIMP-1 and TIMP-3 matrix 

metalloproteinase inhibitors (Postina, 2012; Vingtdeux and Marambaud, 2012). 

1.8.2.1.2 -secretase 
 

Only one -secretase has been identified in neurons and is known to be the sole 

enzyme responsible for pro-amyloidogenic APP processing, known as BACE-1. -site 

APP cleaving enzyme (BACE-1) is a type I integral transmembrane protein and is an 

aspartyl protease (Cole and Vassar, 2007). BACE-1 functions optimally at low pH, 

hence is found in endosomes and the Golgi apparatus (Vassar, 1999), and whose 

activity is required for Drosophila glial cell survival (Bolkan et al., 2012). The BACE-1 

homolog BACE-2 is expressed as the APP cleaving -secretase in astrocytes 

(Bettegazzi et al., 2011), which cleaves APP within the A peptide, analogous to -

secretase (Farzan et al., 2000). Under physiological conditions APP and BACE-1 are 

spatially segregated (Das et al., 2013) in neurons, with APP and BACE-1 localised to 

the trans-Golgi and recycling endosomes, respectively. BACE-1 overexpression shifts 

the subcellular localisation of APP, suggesting cleavage of the APP substrate and A 
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formation are tightly controlled and depend on secretase availability (Lee et al., 2005). 

BACE-1 cleavage is the rate-limiting step in A production (Vassar, 2004) and is an 

important therapeutic target, as BACE-1 knock-out removes both A production and 

CTF- generation, which has also been reported as a toxic species (Lahiri et al., 2006; 

Lauritzen et al., 2012) and reduces A plaque pathology (Cai et al., 2001). BACE-1 

knock-out mice display severe defects in hippocampal CA1 mossy fibre synapses, 

due to defective ryanodine receptor-mediated intracellular calcium release, which can 

be rescued by nicotine-mediated activation of 7nAChR that restores LTP (Wang et 

al., 2010a). BACE-1 knock-out mice are viable and fertile, but exhibit behavioural, 

pain sensitivity and muscle defects (Cheret et al., 2013) as a result of an accumulation 

of other BACE-1 substrates, such as Notch (Brou et al., 2000), neuregulin-1 and the 

2 subunit of voltage-gated sodium channels.  

1.8.2.1.3 -secretase 
 

The intra-membrane cleavage of both - and -CTFs by -secretase gives rise to p3 

and A peptides, respectively. CTFs generated by -/-secretase cleavage of APP 

are difficult to detect due to a very short half-life (Kuhn et al., 2010) as a result of their 

high affinity to -secretase and subsequent rapid hydrolysis. The hydrophobic nature 

of the plasma membrane makes -secretase cleavage controversial, as peptide bond 

hydrolysis typically requires a water molecule (Haass et al., 2012).  

-secretase exists as a high molecular weight complex, composed of a number of 

components: presenilin-1/-2, nicastrin, anterior pharynx-defective-1 (APH-1) and 

presenilin enhancer-2 (PEN-2). Each component is necessary for -secretase activity. 

Either of the presenilin (PS) isoforms (PS-1 and PS-2) can make up the 

transmembrane catalytic core of -secretase (Xia et al., 1998). PEN-2 regulates 

presenilin maturation, whilst nicastrin is a scaffold protein within the complex, acting 

as the size-selective substrate receptor (Xie et al., 2014) and implicated in intracellular 

calcium homeostasis and synaptic plasticity (Lee et al., 2014). APH-1 acts to stabilise 

nicastrin during formation of the -secretase complex (Zhang et al., 2011; Haass et 

al., 2012). 

There exist a number of intra-membrane -secretase substrates, with 91 known to 

date (Haapasalo and Kovacs, 2011), with the most notable being APP and Notch. 

The huge variety of cellular processes regulated by PS-substrates makes targeting -

secretase for therapeutic intervention in AD an enormous challenge (Wolfe, 2012). 
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Designing inhibitors capable of selectively targeting -secretase-mediated A 

production remains a challenge in intelligent drug design (Haapasalo and Kovacs, 

2011). The spatial separation of specific substrates across various subcellular 

membranous organelles may make targeting specific populations of presenilin-

containing -secretase complexes easier (Jeon et al., 2013; Mizutari et al., 2013). 

-secretase can cleave CTF- within the plasma membrane to give rise to A peptides 

ranging from 38-43 amino acids in length (Zhang et al., 2012). The predominant -

secretase cleavage gives rise to the A40 isoform, but (as discussed above) mutations 

within PS-1 and PS-2 are a major cause of familial AD (Sisodia et al., 1999), with the 

majority of PS mutations altering -secretase action to favour formation of the 

aggregation-prone A42 isoform (Page et al., 2008). Selective loss of presenilins at 

presynaptic sites within neurons of the hippocampus impairs activity-dependent 

neurotransmitter release (Pratt et al., 2011), due to depleted endoplasmic reticulum 

calcium stores (Zhang et al., 2009) in a ryanodine receptor-mediated fashion (Oulès 

et al., 2012; Wu et al., 2013), resulting in impaired LTP induction. Thus, -secretase 

and its components play a vital role in a number of cellular processes and which 

probably accounts for the adverse effects observed both in vivo and in vitro following 

-secretase inhibition or knock-out (Wang et al., 2004; Selkoe and Wolfe, 2007).  

1.8.2.2 Activity-dependent regulation of APP processing 
 

APP processing and thus generation of A is closely related to excitatory neuronal 

activity (Kamenetz et al., 2003; Cirrito et al., 2005, 2008; Tampellini et al., 2009; 

Tampellini and Gouras, 2010; Bero et al., 2011; Walker and Jucker, 2011). However, 

determining the precise relationship of APP, its proteolytic by-products and functional 

neuronal excitation is yet to be completely elucidated. Neuronal activity has been 

shown to modulate formation and secretion of A in a number of cellular models, such 

as CNS cell lines, primary neurons, organotypic brain slices and in vivo using plasma 

and CSF microdialysis. Electrical depolarisation of synapses has been shown to both 

enhance pro-amyloidogenic APP cleavage and A production (Kamenetz et al., 2003; 

Cirrito et al., 2005; Schroeder and Koo, 2005; Bero et al., 2011; Walker and Jucker, 

2011) and conversely also promote non-amyloidogenic cleavage and reduce A 

(Buxbaum et al., 1992; Nitsch et al., 1992; Hoey et al., 2009, 2013; Tampellini et al., 

2009; Tampellini and Gouras, 2010; Cisse et al., 2011).  
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Recent data has attempted to clarify the opposing synaptic regulation of A 

production by neuronal activity (Verges et al., 2011). Thus, it appears that neuronal 

electrical hyperexcitability is detrimental to synapses as a result of excessive neuronal 

activity, which enhances A production and its progressive accumulation. For 

example, A-mediated synaptic depression was observed in hippocampal slices, and 

the enhanced CTF- production was reversed by blocking sustained neuronal activity 

with TTX or by blocking NMDAR with high Mg2+ application, and A/CTF- production 

was enhanced by (GABAA channel blocker) picrotoxin application. Reciprocally, 

hippocampal slices over expressing APP showed A-mediated reductions in 

excitatory synaptic transmission in an NMDAR activity-dependent fashion (Kamenetz 

et al., 2003), suggesting a negative feedback loop to keep neuronal hyperactivity 

under control. The synaptic depression observed from hyperactivity-dependent A 

production could contribute to the cognitive decline observed in AD. Furthermore, 

epileptiform electrical stimulation of afferent axons leading into the hippocampus and 

concomitant real-time in vivo microdialysis sampling of ISF showed a 30% increase 

in A over a 1 h time period, which was reversed by TTX perfusion (Cirrito et al., 

2005). Similarly, neuronal hyperexcitability is observed in transgenic models of AD 

(Palop et al., 2007; Busche et al., 2008), and increased A deposition is observed in 

human epilepsy (Mackenzie and Miller, 1994), suggesting neuronal hyperexcitation 

could promote enhanced A release and deposition. Excessive electrical 

depolarisation of cortical and hippocampal neurons increases presynaptic glutamate 

release, resulting in activation of both the synaptic and extrasynaptic population of 

ionotropic glutamate receptors. More subtle activation of neurons will induce release 

of physiological concentrations of glutamate, solely acting at the synaptic ionotropic 

glutamate receptor population (section 1.8.2.2.1). Activation of these distinct 

ionotropic glutamate receptor populations may give rise to the differential APP 

processing effects, further discussed below, and figure 1.8. Following more ‘subtle’ 

neuronal signalling, under more physiological conditions, synaptic activation reduced 

intraneuronal A and protected synapses from A-mediated synaptic changes and 

PSD-95 loss. Physiological synaptic activity has been shown to promote A 

degradation by neprilysin and also enhanced APP trafficking to synapses (Tampellini 

et al., 2009), away from sites of BACE-1 activity. 

Under normal conditions, the physiological concentration of A species in the CSF is 

very low, within the picomolar range (1,500pM and 200pM for A40 and A42, 
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respectively (Puzzo and Arancio, 2013)), even after activity-dependent release of A 

(Cirrito et al., 2003), and is not neurotoxic at these low concentrations. However, the 

rising concentration of A in the extracellular space will no doubt play a role in the 

aggregation state of A and thus its eventual toxicity (Schroeder and Koo, 2005). 

Nonetheless, exogenous application of picomolar concentrations of A monomers 

and oligomers has been shown to enhance LTP and synaptic plasticity in 

hippocampal brain slices and boost both reference and contextual fear memory in 

vivo (Puzzo et al., 2008). In humans, the protective nature of cognitive activity has 

been shown by the correlation between higher educational level and reduced 

incidence of AD (Stern, 2006). This is further reinforced by environmental enrichment 

of transgenic AD model mice displaying reduced A plaque load (Lazarov et al., 2005) 

and the fact that cognitively normal humans also secrete A into the CSF. Thus, the 

notion that cognitive activity may or may not be protective is still somewhat 

controversial; due to conflicting data indicating neuronal depolarisation can 

paradoxically both increase and decrease A level (Verges et al., 2011). Many of 

these contradictory findings will vary depending on the model system and especially 

the experimental conditions of promoting neuronal activity, through either electrical, 

synaptic or ion channel-mediated activation (Bordji et al., 2011). 

A number of receptor and ion channel populations have been shown to selectively 

mediate activity-dependent non-amyloidogenic APP processing, including ionotropic 

glutamate receptors, metabotropic glutamate receptors, muscarinic and nicotinic 

acetylcholine receptors and other ligand-gated ion channels, and their associated 

literature shall be reviewed below.  

1.8.2.2.1 Ionotropic glutamate receptors and APP processing 
 

Ionotropic glutamate receptors are important in learning and memory, due to their role 

in mediating a large part of the postsynaptic calcium influx into neurons (Grienberger 

and Konnerth, 2012). NMDAR activation exhibits contrasting effects in vivo, with over 

activation being implicated in excitotoxicity, whilst physiological signalling through 

NMDAR is neuroprotective and plays a role in synaptic plasticity and neurotrophic 

processes (Hardingham, 2006). In recent years, uncovering the molecular 

mechanisms behind the reciprocal effects of NMDAR activation have identified two 

distinct pools of NMDAR, synaptic and extrasynaptic, which may explain the 

contradictory relationship between NMDAR activation and both cell survival and 

death. Synaptic NMDAR activation is neuroprotective (Léveillé et al., 2008; Hoey et 
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al., 2009; Bordji et al., 2010), whereas extrasynaptic NMDAR initiate neuronal death 

and neurodegeneration (Léveillé et al., 2008; Bordji et al., 2010; Talantova et al., 

2013; Parsons and Raymond, 2014; Rush and Buisson, 2014). Selective NR2A-

containing synaptic NMDAR activation reduced A production whilst NR2B-

containing extrasynaptic NMDAR activation increased A release (Bordji et al., 2010), 

and hence is a promising therapeutic target. Accordingly, the NMDAR antagonist 

memantine (an approved therapeutic agent for the treatment of AD) has been shown 

to selectively block extrasynaptic NMDAR (Léveillé et al., 2008; Xia et al., 2010), with 

no effect on the remaining synaptic activity (Lipton, 2007) and confers a beneficial 

effect in AD patients. Memantine is a non-competitive open channel NMDAR blocker 

that only comes into effect in pathological conditions, to prevent prolonged channel 

opening of the extrasynaptic population of NMDAR (Lipton, 2007; Bordji et al., 2011) 

resulting in excitotoxicity and cell death. A-induced down-regulation of synaptic 

NMDAR expression acts to further disrupt the balance between pro-survival and 

apoptotic cell signalling (Snyder et al., 2005). Thus, the relationship between 

prolonged extrasynaptic NMDAR activation and A production is clear, whilst the 

mechanism behind synaptic NMDAR signalling and reduced A production is yet to 

be fully elucidated, figure 1.8. The high calcium permeability of NMDAR (and also 

AMPAR) contributes to their ability to participate in induction of LTP and modulate 

synaptic plasticity. The calcium influx is also required for glutamate receptor-mediated 

APP processing (Hoey et al., 2009, 2013). In primary hippocampal neurons, activation 

of synaptic NMDAR promoted upregulation of transcription (Wan et al., 2012) and 

protein trafficking of the -secretase ADAM-10 to the postsynaptic membrane 

(Marcello et al., 2007), where APP is predominantly localised (Hoey et al., 2009, 

2013). Both synaptic NMDAR and AMPAR activation increases non-amyloidogenic 

APP processing, with reduced -secretase cleavage of APP, reduced A production 

and enhanced sAPP and CTF- production in primary cortical neurons (Hoey et al., 

2009, 2013). Similarly,  
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Figure 1.8: Schematic highlighting APP processing, A production and secretion are closely related to neuronal activity and 

modulate neuronal survival. A: Subtle signalling through 7nAChR (grey) induces physiological concentrations of glutamate release (blue 
dots) throughout the cortex (Gray et al., 1996), which acts at synaptic receptor populations (NMDAR (blue), AMPAR (purple), mGluR 
(green)). Activation of synaptic receptors enhances non-amyloidogenic APP processing, through ERK-dependent ADAM-10 (orange) 
activation (Hoey et al., 2009; Verges et al., 2011), ERK-dependent ADAM-10 trafficking (Marcello et al., 2007; Wan et al., 2012), enhanced 

A degradation and spatial separation of APP from BACE-1, whilst also reducing pro-amyloidogenic APP processing by BACE-1 (Tampellini 
et al., 2009). Synaptic receptor activation enhances pro-survival signalling cascades, through PI3K Akt, and CREB phosphorylation resulting 
in increased BDNF transcription (Léveillé et al., 2008). B: Neuronal hyperexcitability is detrimental to synapses through activation of 

extrasynaptic receptor populations, which increases pro-amyloidogenic APP processing, A release, CTF- production (Bordji et al., 2010) 
and pro-apoptotic signalling cascades through p38 MAPK and p53 (Parsons and Raymond, 2014). Extrasynaptic receptor activation is 
targeted by the clinically approved drug memantine (Lipton, 2007) for the treatment of AD. 
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selective activation of NMDAR (not AMPAR or metabotropic glutamate receptors) 

induced activity-dependent ADAM-10-mediated cleavage of nectin-1 and ectodomain 

shedding (Kim et al., 2010a). Upregulation of -secretase expression and activity is 

ERK-dependent (Marcello et al., 2007; Wan et al., 2012), suggesting an ERK-

dependent mechanism for non-amyloidogenic APP processing. Thus, the high 

relative calcium permeability and MAPK/ERK signalling through 7nAChR makes 

them a logical candidate for being putative APP processing modulators. 

1.8.2.2.2 Neuronal 7nAChR and APP processing 
 

Initial studies focussed on the effect of muscarinic acetylcholine receptors (section 

1.8.2.2.3), with subsequent research highlighting the effect of nAChR activation on 

APP processing, however this has mostly been restricted to cell lines and through 

nAChR activation with the non-selective agonist nicotine. Many in vitro studies have 

highlighted the protective effect of nAChR activation, especially the 7 subtype, 

against A-induced neurotoxicity (Zamani et al., 1997; Kihara et al., 2001; 

Shimohama and Kihara, 2001; Picciotto and Zoli, 2008; Yu et al., 2011) and also 

nicotine-induced sAPP release (Kim et al., 1997; Lahiri et al., 2002; Mousavi and 

Hellström-Lindahl, 2009; Nie et al., 2010). Chronic treatment with nicotine for 6 weeks 

in vivo, following A infusion, reduced CSF A levels and BACE-1 protein levels in 

the hippocampus, whilst preventing A-induced synaptic transmission defects and 

A-mediated reduction in nAChR subunit expression (Srivareerat et al., 2011). 

Accordingly, when APP overexpressing AD transgenic mice were crossed with 

7nAChR knock-out mice, enhanced cognitive decline was observed, with a dramatic 

loss in hippocampal neuron number and reduced brain volume, versus APP 

transgenic mice alone (Hernandez and Dineley, 2012). Furthermore, nicotine 

treatment of 7nAChR-expressing cell lines reduced A release (Nie et al., 2010) and 

lowered A plaque deposition (Nordberg et al., 2002) and soluble A species 

(Hellström-Lindahl et al., 2004; Hedberg et al., 2008) in AD transgenic mice. A has 

also been shown to modulate nAChR signalling, through directly binding to the 7 

subtype of nAChR (Wang et al., 2000a, 2000b, 2009; Dineley et al., 2002a; Parri and 

Dineley, 2010; Nery et al., 2013), with implications in enhanced tau phosphorylation 

(Wang et al., 2010b), aberrant cell signalling (Dineley et al., 2001) and synaptic 

dysfunction (Hu et al., 2007).  
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1.8.2.2.3 Other cell surface receptors and APP processing 
 

Modulation of APP processing by cell surface receptors was first demonstrated for 

M1 and M3 muscarinic acetylcholine receptors (mAChR), with the M2 and M4 

subtypes displaying no effect (Nitsch et al., 1992). mAChR activation increased sAPP 

release and numerous subsequent studies confirmed this to be robust and 

reproducible (Haring et al., 1998; Davis et al., 2010; Cisse et al., 2011; Fisher, 2012). 

Activation of mAChR in both neuronal and glial cell lines induced a dose-dependent 

release of sAPP that was blocked by TTX (Buxbaum et al., 1992; Nitsch et al., 1992), 

and was PKC-dependent (Nitsch et al., 1992; Caputi et al., 1997). Furthermore, 

knock-out of M1 mAChR increased amyloid pathology, with enhanced A production 

and reduced sAPP secretion, both in vivo and in primary neurons (Davis et al., 

2010). AChE inhibitors serve to boost endogenous ACh levels in the CNS and along 

with mAChR-selective PAMs, enhance and prolong mAChR activation (Fisher, 2012), 

enhancing cognition, similar to nAChR activation. Thus, targeting cholinergic 

signalling is an attractive a therapeutic target in AD, as both nAChR and mAChR 

activation exerts beneficial effects both in vivo and in vitro.  

The purinergic P2X7 receptor, a non-selective ATP-gated cation channel is expressed 

in hippocampal neurons and glial cells, has been shown to mediate non-

amyloidogenic APP processing, with enhanced sAPP release, in a calcium influx-, 

ERK- and JNK-dependent manner (Delarasse et al., 2011). Furthermore, the G-

protein coupled nucleotide receptor P2Y2 has been shown to similarly enhance 

ADAM-10/-17-mediated sAPP release in a PKC- and ERK-dependent manner 

(Camden et al., 2005). 

Metabotropic glutamate receptors have been shown, similar to ionotropic glutamate 

receptors, to possess contradictory effects on A production, through both reducing 

and enhancing pro-amyloidogenic APP processing, A production and release from 

synapses. Non-amyloidogenic APP processing was upregulated following mGluR 

activation in primary hippocampal neurons and a non-CNS cell line (Lee et al., 1995), 

however a bi-phasic effect of mGluR activation has been observed, with up to 50M 

glutamate application to cortical brain slices promoting non-amyloidogenic APP 

processing, whilst higher doses produced negligible effect on sAPP release (Kirazov 

et al., 1997). In contrast, KCl-induced depolarisation of cortical synaptosomes has 

also been shown to induce sustained A release, as well as -, - and -secretase 

activation (Kim et al., 2010b). 
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The similarities existing between receptor- and ion channel-mediated non-

amyloidogenic APP processing subtype indicate 7nAChR are endowed with equally 

similar properties and are a viable target in the treatment of AD.  

1.9 Targeting 7nAChR in Alzheimer’s disease 
 

Neuronal 7nAChR promote both direct and indirect activity-dependent 

neuroprotective mechanisms and are thus critical for maintenance of neuronal 

integrity within the CNS. Stimulation of α7nAChR has been proposed to reduce pro-

amyloidogenic APP processing, enhance non-amyloidogenic APP processing and to 

attenuate A-mediated toxicity. Exploiting these putative properties of 7nAChR to 

either delay AD onset or to treat the disease at later stages is the crux of a number of 

potential therapeutic avenues that are currently being explored by drug discovery. 

The 7-selective agonist A-582941 was used in the treatment of 3xTg-AD transgenic 

mice (expressing mutated PS-1 and double mutated APP), displaying robust AD 

pathology and cognitive deficits. Long-term 7nAChR activation restored cognition in 

the mice, as judged by novel object recognition, Morris water maze task and 

contextual fear conditioning, but had no effect on AD pathology (Medeiros et al., 

2014),  

The reported interaction between A and 7nAChR has been the subject of intense 

research (Parri and Dineley, 2010), with data showing A binding with high affinity 

(Wang et al., 2000a, 2000b; Dineley et al., 2001; Nagele et al., 2002) to the agonist 

binding site of 7nAChR (Nery et al., 2013); which when dissociated can restore 

7nAChR- and also NMDAR-evoked currents (Dineley et al., 2002a; Wang et al., 

2009), likely via restoring 7nAChR-mediated glutamate release. This remains 

controversial as A-mediated toxicity has also been reported to occur through A 

binding to receptor-dense lipid rafts (Rushworth and Hooper, 2011; Rushworth et al., 

2013) and not to 7nAChR directly (Small et al., 2007). A-induced 7nAChR 

inactivation results in LTD, excitotoxicity, neuron death and eventual cognitive 

decline. Thus, targeting both reduced A-7nAChR interaction and prolonged 

physiological 7nAChR activation, through A-7nAChR dissociating compounds, 

7nAChR-selective agonists, PAMs and AChE inhibitors is an on going 

pharmaceutical strategy to enhance cognition and delay the onset of AD (Maelicke, 

2000; Parri and Dineley, 2010; Parri et al., 2011). 
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1.9.1 AChE inhibitors 
 

A long-standing mechanism for enhancing cholinergic transmission has been to 

selectively target and inhibit the hydrolysis of ACh by the serine hydrolase enzyme 

acetylcholinesterase (AChE), which acts to breakdown ACh at a rate of one molecule 

per 100sec (Miwa et al., 2011). AChE inhibitors affect both nicotinic and muscarinic 

receptor function, as they boost levels and prolong action of the endogenous 

neurotransmitter ACh throughout the CNS. A number of AChE inhibitors have been 

approved for human clinical use (donepezil, galantamine and rivastigmine), for the 

treatment of AD. These compounds are the major class of drugs showing clinical 

efficacy, capable of retarding AD progression by 6-12 months. In AD cholinergic 

signalling from the basal forebrain degenerates, resulting in a loss of projections to 

the higher functioning centres of the brain (namely, the hippocampus and cortex) and 

subsequent cognitive decline and memory deficits (section 1.6). The reversible and 

non-competitive AChE inhibitor donepezil has shown cognitive enhancement 

properties and delayed deposition of AD-hallmark amyloid (A) plaques (Colović et 

al., 2013) and reduced tau hyperphosphorylation (Noh et al., 2013). Donepezil has 

been further reported to exert homeostatic neuroprotective effects, by reducing 

microglial inflammatory cytokine release (Giunta et al., 2004; Hwang et al., 2010). In 

clinical trials the competitive, rapidly reversible, AChE inhibitor galantamine improved 

attention (Galvin et al., 2008) and has further been shown to block A-induced 

glutamate excitotoxicity (Kihara et al., 2004) and boost A clearance by microglia 

(Takata et al., 2010), another central mechanism in AD pathogenesis. Galantamine 

is known to further boost cholinergic signalling by acting as an 7nAChR-selective 

PAM (Maelicke et al., 2001; Dajas-Bailador et al., 2003). Rivastigmine acts at both 

AChE and the pseudocholinesterase butrylcholinesterase to enhance the 

endogenous level and temporal effect of ACh, and has been reported to lower A 

levels in degenerating primary neurons (Bailey et al., 2011). Rivastigmine is approved 

for the treatment of both AD and Parkinson’s disease (Colović et al., 2013). Boosting 

cholinergic signalling is a widely used treatment in a number of neurological disorders. 

This stems from attempts to recover a loss of ACh signalling, following a wealth of 

evidence indicating cholinergic dysfunction in the early stages of AD onset, termed 

the cholinergic hypothesis of AD. 

 



 

 56 

1.10 Hypotheses and aims  
 

The hypotheses of this thesis were that:  

1. 7nAChR activation would enhance non-amyloidogenic APP processing in an 

ERK-dependent manner in primary cortical neurons and  

2. 7nAChR activation would modulate inflammatory cellular behaviour of primary 

cortical microglia. 

 

To investigate these hypotheses, specific aims were outlined: 

1. To characterise the primary cortical neuronal and microglial model systems 

2. To assess the 7nAChR-mediated contribution to APP processing, using an 

7nAChR-selective agonist and PAM, in primary cortical neurons 

3. To determine the 7nAChR contribution to inflammatory cell behaviour using 

7nAChR-selective agonist and PAM, in primary cortical microglia. 
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Chapter 2 
 
2. Materials and Methods 
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2.1 Materials 
 

All bench chemicals were purchased from Sigma Aldrich, unless otherwise stated. All 

pharmacological compounds were purchased from Tocris, unless otherwise stated 

and were made up as 1000x concentrated stock solutions in either purified water or 

DMSO for long-term storage at -20°C. Compounds were added directly into culture 

medium to achieve a working concentration, unless otherwise stated, refer to Table 

2.1 for all pharmacological compounds. All tissue culture reagents were purchased 

from Invitrogen, Paisley, UK. For primary and secondary antibody working 

concentrations and suppliers, as used in Western blotting and/or 

immunocytochemistry, refer to Table 2.2. A custom-made (Eurogentec) rabbit 

polyclonal antibody CT20 raised against the C-terminus of human APP (residues 676-

695: NGYENPTYKFFEQMQN) was optimised and used for both Western blotting and 

immunocytochemistry. 
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Compound Supplier Stock 
concentration 

Working 
concentration 

Solvent Information 

α-bungarotoxin (BTX) Tocris 100μM 100nM dH2O Irreversible α7nAChR antagonist 

α-bungarotoxin Alexa 

Fluor-488 (BTX-488) 

Invitrogen 100μM 100nM dH2O Irreversible α7nAChR antagonist 
conjugated to AlexaFluor-488 

AMPA Tocris 10mM 50M dH2O Selective agonist of AMPA-type 
glutamate receptors 

β-secretase inhibitor 
(BSI) 

Calbiochem 10mM 10μM dH2O Peptide inhibitor sequence: H-Lys-
Thr-Glu-Glu-Ile-Ser-Glu-Val-Asn-
Stat-Val-Ala-Glu-Phe-OH 

Choline bitartrate Sigma Aldrich 30mM 3mM Neurobasal 
medium 

Weak α7nAChR-selective agonist 

DAPT Sigma Aldrich 10mM 10μM DMSO γ-secretase inhibitor 

Dynasore Gift from Dr Paul 
Whitley (Bath) 

50mM 100M DMSO Dynamin inhibitor, blocks 
endocytosis 

Ethylene glycol 
tetraacetic acid (EGTA) 

Sigma Aldrich 0.25M 2.5mM dH2O Free calcium chelator 

Lipopolysaccharide 
(LPS) 

Sigma Aldrich 1mg/ml 100ng/ml DMEM-F12 
medium 

Prototypical endotoxin purified 
from gram-negative bacteria 

(-)-Nicotine hydrogen 
tartrate 

Sigma Aldrich 10mM 10μM Neurobasal 
medium 

Broad nAChR agonist 

MK-801 Tocris 2.5mM 2.5M dH2O Selective open channel NMDA 
receptor antagonist  

NMDA Tocris 10mM 50μM dH2O Selective NMDA-type glutamate 
receptor agonist 

PNU-120596 Tocris 10mM 10μM DMSO Selective type II positive allosteric 
modulator of α7nAChR 

PNU-282987 Tocris 100mM 10M DMSO Potent and selective agonist of 

7nAChR 
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TAPI-1 Enzo Life Sciences 10mM 50μM DMSO Broad spectrum TACE and 
metalloprotease inhibitor 

Tetrodotoxin (TTX) Tocris 1mM 1M dH2O Potent neurotoxin, blocks voltage-
gated sodium channels 

U0126 Tocris 5mM 5μM DMSO MEK inhibitor 

 

Table 2.1: Pharmacological compounds used to assess 7nAChR at the glutamatergic synapse in vitro. 
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Target Supplier Species  Working concentration 
     Western blot           ICC 

Information 

ADAM10 Sigma Aldrich Rabbit Not used 1:1,000 
N/A 

Raised against C-terminal residues 732-748 of 
human ADAM10  

ADAM17 Chemicon Rabbit Not used 1:400 
2.5μg/ml 

Raised against residues 807-823 of human 
ADAM17 

AlexaFluor-
488/546 

Invitrogen Goat Not used 1:1,000 
2.0μg/ml 

Goat anti-mouse/rabbit IgG secondary antibody 
used for immunofluorescence 

APP Eurogentec Rabbit 1:2,000 
1:5,000 (CTF blots) 

1:1,500 
N/A 

Custom made, raised against C-terminal residues 
680-695 of human APP695 

APP Alpha Diagnostics Mouse Not used 1:100 
10μg/ml 

Raised against the N-terminus of APP (clone 13-M) 

-tubulin Chemicon Mouse 1:5,000 
N/A 

Not used Used as a loading control for Western blotting 

CD11b Serotec Mouse Not used 1:1000 
1.0μg/ml 

Recognises cluster of differentiation molecule 11B, 
used as a specific marker for microglia 

ERK2 Santa Cruz Rabbit 1:5,000 
0.4ng/ml 

Not used Recognises both phosphorylated and un-
phosphorylated ERK2 

ppERK1/2 Cell Signalling 
Technologies 

Rabbit 1:1,000 
N/A 

Not used Recognises individually or dually phosphorylated 
ERK1 and ERK2 at Thr202 and Tyr204 (ERK1) or 
Thr185 and Tyr187 (ERK2) 

GFAP Dako Rabbit Not used 1:10,000 
0.1μg/ml 

Recognises glial fibrillary acidic protein, used as a 
specific marker of astrocytes  

GluA1 Millipore Rabbit Not used 1:500 
N/A 

Recognises GluA1-containing AMPA receptors. 
Raised against the cytoplasmic domain of GluA1 

GluA2 Millipore Rabbit Not used 1:300 
N/A 

Recognises GluA2-containing AMPA receptors. No 
cross-reactivity with GluA1, GluA3 or GluA4 

HRP-
conjugated 

Millipore Goat 1:2,500 
0.8μg/ml 

Not used Goat anti-mouse/rabbit-HRP secondary antibody 
used for Western blotting chemiluminescence 

MAP-2 Chemicon Rabbit Not used 1:1,000 
N/A 

Recognises all MAP-2 isoforms (MAP2A, MAP2B, 
MAP2C and MAP2D) 

PSD-95 Millipore Mouse 1:500 
N/A 

1:500 
N/A 

Anchoring protein located at the postsynaptic 
density (PSD) 
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Table 2.2: Antibodies used for Western blotting and immunocytochemistry (ICC).

Synaptophysin Sigma Aldrich Mouse 1:500 
N/A 

1:200 
N/A 

Pre-synaptic marker. Clone SVP-38 

Tau-1 Chemicon Mouse 1:2,000 
5.0μg/ml 

1:500 
2.0μg/ml 

Recognises all species of Tau 
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2.2 Methods 

2.2.1  Primary cortical neuron cell culture 
 

All animal work was carried out in accordance with UK Home Office guidelines. 

Pregnant CD1 mice were sacrificed by cervical dislocation following a schedule 1 

procedure. Primary cortical neurons were produced from mouse embryos at 

embryonic day 15-16. Embryonic brains were dissected and cortices dissociated in 

phosphate buffered saline (PBS) (Mg2+ and Ca2+-free, pH 7.4) supplemented with 

33mM glucose, using a heat-inactivated foetal bovine serum-coated fire-polished 

pipette. Subsequently, cells were centrifuged at 1,800 x g for 5 min and resuspended 

in Neurobasal medium, without phenol red and supplemented with B-27, 2mM 

glutamine, 100μg/ml streptomycin and 60μg/ml penicillin. During cortical dissection, 

care was taken to remove the striatum and meninges; these cultures also contained 

hippocampus precursor cells and hence are not 100% pure cortical neurons. Cells 

were plated (at 600,000 cells/ml for Western blotting or 300,000 cells/ml for all other 

uses) onto plastic Nunc multiwell (6- or 12- well) dishes coated with 20μg/ml poly-D-

lysine and maintained for up to 18 days in vitro (DIV) in an incubator kept at 37°C with 

5% CO2. Morphological assessment of cell viability was made by phase contrast 

microscopy. Cells were visualised with a Nikon Eclipse TS100 microscope and phase 

contrast images taken using a Nikon Coolpix 5000 camera. 

2.2.2 Primary cortical glial cell culture  
 

All animal work was carried out in accordance with UK Home Office guidelines. 

Newborn P0-P2 CD1 mouse pups were sacrificed by cervical dislocation following a 

schedule 1 procedure. Cortices were dissected from brains in cold Mg2+ and Ca2+-

free PBS supplemented with 33mM glucose. During cortical dissection, care was 

taken to remove the striatum and meninges and resulting cortical sections were 

minced before centrifugation at 200 x g for 3 min. Cells were resuspended in warm 

0.25% Trypsin-EDTA and incubated for 15 min in a 37°C 100rpm shaking water bath. 

Trypsinisation was halted with addition of 0.5ml DNase I (7,500 units in PBS) plus 

DMEM/F12 medium supplemented with HEPES, 10% heat-inactivated foetal bovine 

serum, 2mM glutamine, 100μg/ml streptomycin and 60μg/ml penicillin and mixed by 

inversion and pipetted to a single cell suspension (as per Saura et al., 2003), before 
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centrifugation at 200 x g for 7 min. Cells were resuspended in DMEM-F12 

supplemented with HEPES, 10% heat-inactivated foetal bovine serum, 2mM 

glutamine, 100μg/ml streptomycin and 60μg/ml penicillin and were filtered with a 

100m mesh cell strainer (Fisher) and brought to a final density of 300,000 cells/ml. 

Full media changes were done to the primary mixed glial cultures (microglia and 

astrocytes) at 5 DIV and every subsequent 7 d until 4-6 weeks in vitro when 

confluency was reached.  

2.2.3 Primary microglia purification 
 

Removal of contaminating astrocytes from microglia was carried out 24 h prior to 

experimental use. Conditioned medium was removed and kept at 37°C whilst cells 

were incubated in 0.0625% Trypsin-EDTA in DMEM-F12 supplemented with HEPES, 

2mM glutamine, 100μg/ml streptomycin and 60μg/ml penicillin for 15-25 min at 37°C. 

Multiwell plates were knocked every 5 min to aid complete astrocyte layer detachment 

and Trypsin activity halted with DMEM-F12 supplemented with 10% heat-inactivated 

foetal bovine serum, HEPES, 2mM glutamine, 100μg/ml streptomycin and 60μg/ml 

penicillin. Medium and astrocytes were aspirated and conditioned medium replaced 

onto microglia, maintained in an incubator kept at 37°C with 5% CO2.  

2.2.4 Immunocytochemistry 

2.2.4.1 Immunocytochemistry staining 
 

Visualisation of specific proteins of interest was carried out by immunocytochemistry 

on primary cells grown on 20g/ml poly-D-lysine coated 13mm round glass coverslips 

in Nunc 12-well plates and used following 5-10 DIV. Cells were washed in fresh 

culture medium before fixation with 4% paraformaldehyde in PBS for 20 min at room 

temperature, washed with PBS three times. Non-specific primary antibody blocking 

was performed using 10% bovine serum albumin (BSA) in PBS (supplemented with 

0.1% Triton X-100 for intracellular epitopes) for 30 min at room temperature. Primary 

antibodies were incubated overnight at 4°C in antibody buffer (3% BSA (with 0.1% 

Triton X-100 for intracellular epitopes) in PBS) on a rocking platform. Cells were 

washed three times with PBS before 1 h incubation with Alexa-Fluor conjugated 

secondary antibodies (1:1,000, Molecular Probes) in antibody buffer at room 

temperature. Finally, cells were washed with PBS three times and incubated with 
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DAPI (600nM, Invitrogen) for 10-30 min before coverslips were mounted onto glass 

slides using Mowiol.  

2.2.4.2 Image acquisition 
 

Immunofluorescence labelled cells were visualised using a Zeiss 510 META confocal 

laser-scanning microscope at either 40x or 63x. Images were analysed using Zeiss 

Image Browser software and ImageJ (NIH). Scale bars were applied following 

calibration of microscope-captured image size to relative image resolution. 

2.2.5 Fluorescent labelling of 7nAChR 
 

For α7 nicotinic acetylcholine receptor (7nAChR) visualisation, live cells were 

incubated at 37°C with 100nM Alexa Fluor-488 conjugated α-bungarotoxin (BTX-

488, Invitrogen) for 45 min and subsequently washed in warm PBS (Kawai et al., 

2002). The most commonly used primary antibodies directed to 7nAChR are 

unsuitable as they have shown immunoreactivity in 7nAChR knock out transgenic 

mice (Herber et al., 2004). Non-specific BTX-488 binding was assessed by 10 min 

pre-incubation with 1mM nicotine or 5M -bungarotoxin. Cells were fixed with 4% 

paraformaldehyde in PBS for 20 min at room temperature and washed with PBS three 

times and incubated with DAPI (600nM, Invitrogen) for 10-30 min. For subsequent 

immunofluorescence antibody labelling, cells were subjected to the 

immunocytochemistry protocol listed above, following the fixation stage. Coverslips 

were mounted onto glass slides using Mowiol and visualised using a Zeiss 510 META 

confocal laser-scanning microscope at either 40x or 63x. Images were analysed using 

Zeiss Image Browser software and ImageJ (NIH).  

2.2.6 Intracellular calcium microfluorimetry imaging 
 

Measurement of calcium ion influx into primary cortical neurons was carried out using 

the ratiometric calcium chelator and fluorescent indicator Fura-2-acetoxymethyl ester 

(AM). Primary cortical neurons were grown on glass coverslips for 7 DIV and dye 

loaded for 45 min at 37C. 5M Fura-2 AM was incubated in combination with 0.02% 

Pluronic F-127 (Invitrogen) in assay buffer (140mM sodium chloride, 5mM potassium 

chloride, 1mM magnesium chloride, 1.8mM calcium chloride, 10mM glucose and 

5mM HEPES in distilled water at pH 7.4). Following dye incubation, cells were washed 

in assay buffer and coverslips applied to the Concord microscope-based live imaging 
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platform (Perkin Elmer, UK) and maintained at 37C with a constant supply of assay 

buffer (rate of 5ml/min) supplemented with 1M TTX (Tocris) to limit background 

action potential spectral noise. Following baseline image recording, drugs were 

applied (in assay buffer) to the neurons by microperfusion, followed by a washout 

period with assay buffer. Fields of view with 30-40 cells were captured live every ~1 

sec by dynamic video imaging and Fura-2 AM excited at 340 and 380nm wavelengths 

(SpectroMaster I), with emission detected at 510nm (Ultrapix PDCI low light CCD 

camera). Analyses of emission spectra were performed using Ultraview Concord 

software (Perkin Elmer, UK) and F340:380nm ratios plotted in Graphpad Prism 6. 

Values expressed are mean F340:380nm ± SD or SEM. 

2.2.7 SDS-PAGE and Western blotting  

2.2.7.1 Sample preparation for SDS-PAGE 
 

After 5-18 DIV primary cells (neurons or microglia) were treated with drugs as 

indicated in figure legends. Cells were subsequently washed with ice-cold PBS (Mg2+ 

and Ca2+-free, pH 7.4), lysed in 200μl RIPA buffer (50mM Tris, 150mM NaCl, 1% 

NP40, 0.5% sodium deoxycholate, 0.1% SDS, in dH2O at pH 7.4) containing 

Complete Protease and Phosphatase Inhibitor Cocktails (Roche) and kept on ice for 

45-60 min. Samples were scraped into Eppendorf tubes and centrifuged at 2,000 x g 

for 2 min before dilution of the supernatant in sample boiling buffer (62.5mM Tris, pH 

6.8, 2% SDS, 5% 2-mercaptoethanol, 10% glycerol and 0.0025% bromophenol blue) 

before boiling for 5 min. Samples were stored at -20C until required for Tris-Glycine 

SDS-PAGE. 

2.2.7.2 Tris-Glycine SDS-PAGE 
 

Tris-Glycine polyacrylamide resolving gels (8-12%) were prepared (375mM Tris (pH 

8.8), 0.1% SDS, 8-12% acrylamide, 0.5mg/ml ammonium persulphate and 0.06% 

TEMED) and overlaid with 4% Tris-Glycine stacking gels (125mM Tris (pH 6.8), 0.1% 

SDS, 4% acrylamide, 0.5mg/ml ammonium persulphate, 0.06% TEMED) and stored 

at 4C in SDS-PAGE running buffer (25mM Tris, 0.192M glycine and 0.01% SDS, 

National Diagnostics) for 24-48 h before use. Cell lysates were resolved by SDS-

PAGE at 140V for ~1 h, alongside a See Blue protein molecular weight ladder 

(Invitrogen) in SDS-PAGE running buffer.  
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2.2.7.3 Western blotting  
  

Acrylamide gel proteins were transferred onto 0.45μm nitrocellulose membranes (GE 

Healthcare) using a semi-dry transfer immunoblotting apparatus (Hoefer SemiPhor) 

at 1.5mA/cm2 for 1 h. Nitrocellulose membranes were pre-soaked in distilled water 

before equilibration in blotting buffer (20% methanol plus SDS-PAGE running buffer), 

with Whatman filter papers equilibrated in blotting buffer placed either side of the gel 

and membrane. Non-specific antibody binding to membranes was blocked using 5% 

milk powder in TBS (20mM Tris, 150mM NaCl, pH 7.4) for 60 min. Membranes were 

rinsed quickly in TBS-T (20mM Tris, 150mM NaCl, 0.5% Tween-20, pH 7.4) before 

incubation with primary antibody in TBS-T and 1% milk powder overnight at 4°C on a 

rocking platform. Subsequent removal of unbound primary antibody occurred through 

quickly rinsing membranes once and subsequently three times for 5 min in TBS-T 

before 1 h incubation with a HRP-conjugated secondary antibody (1:2,500, Millipore) 

in TBS-T and 1% milk powder. Membranes were again washed three times for 5 min 

in TBS-T and finally once with TBS before protein band detection.  

2.2.7.4 Protein detection 
 

Primary and secondary antibody-incubated membranes were exposed to standard 

ECL reagent (GE Healthcare) for 1 min according to manufacturer’s instructions. Blots 

were exposed to Hyperfilm ECL (GE Healthcare) in an autoradiography film cassette 

in the dark, and developed by X-ray film processor (OPTIMAX). Alternatively, ECL-

exposed membranes were imaged by a Fusion SL (Vilber Lourmat) 

chemiluminescence camera and digital images captured directly for analysis. 

2.2.7.5 Analysis of protein densitometry 
 

Densitometry quantification of bands on Hyperfilm-exposed blots was carried out after 

scanning films (Epson V700 scanner) at a resolution of 1200 dots/inch (dpi) and mean 

background optical density (OD) of bands interpolated from an OD calibration curve, 

calculated from an OD step tablet using ImageJ software (NIH). Fusion SL acquired 

digital images were analysed with FUSION software (Vilber Lourmat). Mean OD data 

were expressed relative to a loading control ± SEM and were subjected to statistical 

analysis in GraphPad Prism 6 software. 

 



 

 68 

2.2.8 APP C-terminal fragment Western blotting 
 

To assess the modulation of APP processing, intermediate APP695 cleavage products 

(C-terminal fragments (CTF)) analyses was carried out by Tris-Tricine SDS-PAGE. 

2.2.8.1 APP-CTF sample preparation 

After 10-18 DIV neurons were treated with drugs as described in figure legends. 

Neurons were subsequently washed with ice cold PBS (Mg2+ and Ca2+-free, pH 7.4), 

lysed in sample boiling buffer for 30-60 min (62.5mM Tris pH 6.8, 2% SDS, 5% 2-

mercaptoethanol, 10% glycerol and 0.0025% bromophenol blue) and scraped into 

Eppendorf tubes. Samples were centrifuged at 2,000 x g for 5 min before boiling for 

5 min.  

2.2.8.2 Tris-Tricine SDS-PAGE 

Tris-Tricine polyacrylamide resolving gels (16.5%) were prepared (1M Tris (pH 8.45), 

16.5% acrylamide, 0.5mg/ml ammonium persulphate and 0.06% TEMED) and 

overlaid with 4% Tris-Tricine stacking gels (1M Tris (pH 8.45), 4% acrylamide, 

0.5mg/ml ammonium persulphate, 0.06% TEMED) and stored at 4C in SDS-PAGE 

running buffer (25mM Tris, 0.192M glycine and 0.01% SDS, National Diagnostics) for 

24 h before use. Lysates were resolved by gel electrophoresis at a constant 105V 

using a defined inner/cathode gel tank buffer (100mM Tris, 100mM Tricine, 0.1% SDS 

pH 8.2) and outer/anode tank buffer (0.2M Tris pH 8.9) and run for 3-4 h, alongside a 

See Blue protein molecular weight ladder, until adequate separation of the low 

molecular weight ladder bands was reached.  

2.2.8.3 Western blotting for APP-CTFs  

Tris-Tricine gel-resolved samples were transferred to 0.2μm PVDF membranes 

(Millipore) using semi-dry transfer at 1.5mA/cm2 for 1 h. PVDF membrane was pre-

soaked in methanol before equilibration in CTF blotting buffer (20% methanol plus 

SDS-free running buffer, 25mM Tris and 0.192M glycine, National Diagnostics) with 

Whatman filter papers equilibrated in CTF blotting buffer placed either side of the gel 

and membrane. Non-specific antibody binding was blocked using 4% ECL Advance 

(GE Healthcare) blocking powder in TBS (20mM Tris, 150mM NaCl, pH 7.4) for 1 h. 

Membranes were rinsed three times for 20 min in TBS-T (20mM Tris, 150mM NaCl, 

0.5% Tween-20, pH 7.4) before incubation with primary antibody in TBS-T and 4% 
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ECL Advance blocking powder overnight at 4°C on a rocking platform. Removal of 

unbound primary antibody followed through quickly rinsing membranes once and 

subsequently 3 times for 20 min in TBS-T before 1 h incubation with a HRP-

conjugated secondary antibody (1:150,000, Millipore) in TBS-T and 4% ECL Advance 

blocking powder. Membranes were again washed at least 4 times for 20 min in TBS-

T and finally once with TBS before exposure to ECL Advance reagent (GE 

Healthcare) for 1 min according to manufacturer’s instructions. Blots were exposed to 

Hyperfilm ECL (GE Healthcare) and developed for densitometry quantification using 

ImageJ software (NIH), as detailed above. 

2.2.9 Synaptosome preparation and treatment 
 

Synaptosomes are a useful tool for studying nerve terminals, free of axons and 

postsynaptic connections. Synaptosomes are resealed nerve terminals, and closely 

resemble functional nerve terminals found in vivo. 

2.2.9.1 Tissue preparation 
 

All animal work was carried out in accordance with UK Home Office guidelines. Adult 

CD1 mice were sacrificed by cervical dislocation following a schedule 1 procedure. 

Cortices were rapidly dissected, washed in isotonic homogenisation buffer (0.32M 

sucrose, 1mM EDTA, 5mM Tris, 0.25mM DTT, pH 7.4), before being weighed and 

homogenised in 10% w/v homogenisation buffer. All brain material was carefully 

stored on ice for the duration of the preparation and centrifuges and rotors cooled to 

4C in advance. The crude homogenate was centrifuged at 1000 x g for 10 min in 

polycarbonate tubes and the S1 supernatant diluted 1.5x in homogenisation buffer 

before being flowed onto the top of a discontinuous Percoll gradient. 

2.2.9.2 Percoll gradient preparation 
 

Discontinuous Percoll gradients were used to separate and purify organelles, 

including synaptosomes, by their differential density (as per Dunkley et al., 2008). 

Percoll slurry was filtered through 0.45m syringe filter units (Millipore) before diluting 

in gradient buffer (1.28M sucrose, 4mM EDTA, 20mM Tris, 0.1mM DTT, pH 7.4) to 

produce 3%, 10%, 15% and 23% (w/v) Percoll gradient buffers. 2ml of each gradient 

buffer was flowed, using a peristaltic pump (Gilson Minipuls 2), at a rate of 0.5ml/min, 

through a 12 gauge needle constantly placed at the top of the meniscus whilst 
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touching the wall of an angled polycarbonate tube, to minimise Percoll layer 

disruption. Percoll gradient buffers of 15%, 10% and 3% were sequentially layered 

onto the bottom 23% Percoll gradient buffer to create the discontinuous gradient 

required for density gradient centrifugation of mouse brain material. Gradients were 

made 15-20 h before use and carefully stored on ice at 4C until S1 supernatants 

were prepared. 

2.2.9.3 Synaptosome preparation and purification 

S1-layered Percoll gradients were centrifuged at 31,000 x g for exactly 5 min 

(excluding acceleration and deceleration times) with rotor breaking disabled, thus 

ensuring optimal interface separation. Fractions 3 and 4 (synaptosomes plus 

membranes and pure synaptosomes, respectively) were pooled to increase yield. 

Synaptosomes were diluted at least 4-fold with ice-cold sucrose/EDTA buffer (0.32M 

sucrose, 1mM EDTA, 5mM Tris, pH 7.4) before centrifugation at 20,000 x g for 30 min 

at 4C to remove Percoll. The synaptosomal pellet was carefully resuspended (using 

a fire-polished glass pipette) in 1-2ml physiological buffer (118mM sodium chloride, 

2.4mM potassium chloride, 1.2mM magnesium chloride, 1.2mM sodium dihydrogen 

orthophosphate 1-hydrate, 2.4mM calcium chloride 2-hydrate, 20mM HEPES, 10mM 

glucose, pH 7.4) before a final spin at 18,000 x g for 10 min and the pellet of viable 

synaptosomes resuspended in a required volume (typically 0.5-1ml) of physiological 

buffer and subjected to Bradford protein assay.  

2.2.9.4 Synaptosome drug treatments 
 

Synaptosomes (at 2-3mg/ml protein concentration) were incubated in a water bath at 

37C for 10 min pre-treatment with vehicle or 10M PNU-120596, before a 30 min 

vehicle or agonist (10M PNU-282987 or 50M NMDA) treatment. Following drug 

treatments, synaptosomes were spun at 10,000 x g for 5 min before addition of lysis 

buffer to the pellet (0.5% Triton X-100, 150mM sodium chloride, 10mM HEPES, 

complete protease and phosphatase inhibitor tablets (Roche), pH 7.4) and sample 

boiling buffer (62.5mM Tris pH 6.8, 2% SDS, 5% 2-mercaptoethanol, 10% glycerol 

and 0.0025% bromophenol blue) before boiling for 5 min. Denatured synaptosome 

samples were stored at -20C until required for SDS-PAGE and Western blotting, as 

detailed above.  
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2.2.10 APP-Gal4 cleavage luciferase reporter assay 
 

To study APP cleavage using a high-sensitivity molecular gene reporter assay, 

primary neurons (following 5 DIV) were transfected with 0.5g APP695-Gal4 fusion 

construct, 0.5g pC1-CMV-Fe65 construct, 0.5g pFR-Luciferase construct (firefly 

luciferase gene from Photinus pyralis) and 0.5g phRL-Renilla construct (luciferase 

gene from Renilla reniformis) using Lipofectamine 2000 (0.5l/well; Invitrogen). 

Transfection mixes were made up in OptiMEM I medium (Invitrogen) 25 min in 

advance of application onto neurons. 10M DAPT was added 30 min prior to 

transfection mix and left for 24 h in a 37C incubator before application of drugs. 

Following 6 h 10M PNU-120596 and 10M PNU-282987 drug treatments neurons 

were lysed for 15 min with Glo Lysis Buffer (Promega) and Dual-Glo luciferase activity 

measured using a FluorBMG microplate luminometer, according to the 

manufacturer’s instructions. Firefly luciferase reporter activity was normalised to 

constitutive Renilla luciferase activity to control for transfection rate efficiency between 

repeat conditions and expressed as fold change of vehicle-treated control. Following 

APP695-Gal4 cleavage by -secretase, APP-CTF-Gal4 is produced, which is further 

cleaved by -secretase, giving rise to AICD-Gal4. AICD-Gal4 binds to the upstream 

activating sequence (UAS) of Firefly/Renilla luciferase DNA and promotes its 

transcription within transfected primary cortical neurons. Subsequent translation of 

luminescent luciferase peptide is detected through the Dual-Glo luciferase assay 

(Promega). A schematic of the luciferase APP cleavage reporter assay can be found 

in figure 4.7. 

2.2.11 Egr-1 transcription luciferase reporter assay 
 

1x105 plaque forming units (pfu)/ml Ad5-Egr1-luciferase plasmid was transduced into 

primary cortical neurons at 6-7 DIV in 24 well plates. For transduction, conditioned 

media was removed from the neurons and fresh media containing viral particles was 

added to the cells and incubated at 37C for 3 h. Media was then removed and original 

conditioned media replaced onto the neurons. Neurons were subsequently treated as 

detailed in figure legends. 6 h post-treatment, media was removed from the cells and 

cells lysed in Glo Lysis Buffer (Promega) and incubated at room temperature whilst 

rocking for 15 min. Lysed cells were transferred to a white 96-well plate and Dual Glo 

substrate was added, the plate was incubated in the dark for 10 min followed by 
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measurement using a FluorBMG microplate luminometer. Luciferase activity was 

expressed as fold change of vehicle-treated control. 

2.2.12 Microglial bead uptake assay 
 

To observe microglial phagocytic activity, purified primary microglia were cultured on 

20g/ml poly-D-lysine coated 13mm round coverslips. Latex (amino-modified 

polystyrene) 1.0m beads with fluorescent green-yellow tag (excitation/emission: 

470/540nm) were used as quantifiable phagocytosis targets. Drugs were added, as 

indicated in figure legends, to a 0.5l/ml bead stock solution of PBS supplemented 

with 0.1% bovine serum albumin (BSA), and were incubated on the microglia for 2 h 

at 37C. Following a 2 h bead ± drug incubation, cells were washed 3 times with ice 

cold PBS (Mg2+ and Ca2+-free, pH 7.4) and fixed with warm 4% paraformaldehyde in 

PBS for 20 min at room temperature. Following fixation, cells were washed a further 

three times with PBS, nuclei counter-stained with 600nM DAPI and coverslips 

mounted onto glass slides using Mowiol for fluorescence microscopy. Cells were 

examined under a Zeiss 510 META confocal laser-scanning microscope at 20x 

magnification. Z-stack images indicated beads were engulfed by cells and not merely 

surface-bound. Numbers of ingested beads were counted manually and used to 

determine mean bead uptake across randomly selected fields of view containing 40+ 

cells. 

2.2.13 Statistical analyses 
 

Mean data ± SEM/SD were graphed and analysed using GraphPad Prism 6 software. 

Data were analysed using one-way ANOVA with Bonferroni post-test and considered 

statistically significant when p<0.05. Levels of significance between indicated 

conditions were: * = p<0.05, ** = p<0.01, *** = p<0.005, **** = p<0.001.  
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Chapter 3 
 

3. Characterisation of 7nAChR at 
the glutamatergic synapse 
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3.1  Introduction 
 

Glutamatergic synapse development is an essential and fundamental part of brain 

development, requiring communication between major excitatory and inhibitory 

receptor types, namely, N-methyl-D-aspartic acid (NMDA), α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid (AMPA) and gamma-aminobutyric acid (GABAA) 

receptors (Wang and Kriegstein, 2008). Synaptic activity is required for synapse 

formation, and in the developing synapse initial activity is mediated by NMDA 

receptors (NMDAR) (Durand et al., 1996; Wu et al., 1996). Immature neurons initially 

lack surface-expressed AMPA receptors (AMPAR), and the NMDAR pore is blocked 

by Mg2+ ions, rendering synapses silent until maturation occurs. During postnatal 

development, ACh signalling from the basal forebrain activates cortical presynaptic 

7nAChR, which regulate glutamate release. Glutamate release subsequently 

activates postsynaptic NR2B-containing NMDAR, the activation of which contributes 

to enhanced insertion of AMPAR into the postsynaptic membrane (Metherate, 2004).  

 

The importance of cholinergic input into the cortex has been reinforced by selective 

cholinergic input depletion in primates, through immunotoxin exposure. Cholinergic 

pathway-depleted monkeys retained episodic memory and decision-making 

capability, but displayed severely impaired working memory (Croxson et al., 2011), 

consistent with the cholinergic hypothesis of AD (Bartus et al., 1982; Perry, 1986; 

Francis et al., 1999) and the key role of ACh signalling to the cortex. The role of 

presynaptic 7nAChR in modulating cortical postsynaptic receptor function has 

largely focussed on neurotransmitter release, with 7nAChR playing a homeostatic 

role in modulating the subtleties of glutamate release at the glutamatergic synapse 

(Huang et al., 2010; Gomez-Varela and Berg, 2013; Cheng and Yakel, 2014), 

postsynaptic glutamate receptor expression (Wang et al., 2013), cell survival, 

neuronal plasticity, LTP and learning and memory (Zolles et al., 2009). 

 

Much of what we currently understand about 7nAChR function comes from 

electrophysiology studies of overexpressing cell lines and exogenous receptor 

expression in Xenopus oocytes. Such data have paved the way for our in-depth 

understanding of the molecular and structural functionality of nAChR, but lack the 

physiological relevance and insight into downstream cellular signalling, following 

7nAChR activation. Thus, the results described in this chapter are from experiments 
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utilising primary mouse cortical neurons as a model system for studying 7nAChR 

activity at glutamatergic synapses.  

 

This chapter aims to thoroughly characterise this model system, first with respect to 

the expression and function of ionotropic glutamate receptors (GluR) before probing 

the expression and concomitant functionality of α7nAChR in vitro.    
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3.2  Results 

3.2.1 Primary cortical cultures display a neuronal phenotype and 
express neuron-specific proteins 

 

Initial characterisation of primary mouse cortical neuron cultures from e15-16 CD1 

mice following 5 days in vitro (DIV) appeared neuronal under phase contrast 

microscopy, with extensive dendrites and axonal projections from the cell body (figure 

3.1A). To further validate these cells were neuronal, the distribution of neuron-specific 

proteins Tau and MAP-2 was examined by fluorescence immunocytochemistry. Tau 

is known to be most abundant in axons, but can also be localised to somatodendritic 

compartments (Morris et al., 2011). MAP-2 is mainly expressed in neurons, where it 

is found specifically localised to dendrites; but is also expressed in oligodendrocytes 

(Dehmelt and Halpain, 2004). Double immunofluorescence showed distinct (non-

colocalised) subcellular localisation of these proteins, revealing axonal Tau and 

dendritic MAP-2 (figure 3.1B) consistent with the expected neuronal phenotype of 

these cultures. Further immunocytochemistry with an anti-GFAP antibody showed 

minimal glial contamination suggesting cultures were 95-99% neuronal (data not 

shown). 

3.2.2 Primary cortical neurons express postsynaptic AMPAR that 
couple to calcium influx 

 

To initially determine whether the primary cortical neurons possessed the cellular 

components expected within glutamatergic synapses, 7 DIV neurons were used to 

assess expression and distribution of -amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA)-type glutamate receptor (AMPAR) subunits, GluA1 

and GluA2. Immunofluorescence labelling of the cortical neurons revealed 

widespread expression of GluA1 (figure 3.2Ai) and GluA2 (figure 3.2Bi) throughout 

both the cell body and projections of neurons, consistent with the glutamatergic nature 

of the model system. Double immunofluorescence labelling of the AMPAR subunits 

with the nerve terminal marker synaptophysin revealed little colocalisation of either 

GluA1 or GluA2 with synaptophysin (figure 3.2Aii and 3.2Bii, respectively). However, 

GluA1 and GluA2 expression extensively colocalised with the postsynaptic marker 

PSD-95 (figure 3.2Aiii and 3.2Biii, respectively), indicating AMPAR are predominantly 

postsynaptic in primary cortical neurons, in accordance  
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Figure 3.1: Cortical neurons display a classical neuronal phenotype and express neuron-specific proteins. A: Phase 
contrast imaging of primary cortical neurons at 5 DIV and 40x magnification. Classical morphological features of neurons are 
observed, with networks of axons and dendrites extending from cell bodies. B: Neuron-specific immunofluorescence labelling of 
primary cortical neurons at 5 DIV at 40x magnification. Double immunostaining for the axonal marker Tau (red) and dendritic 
marker MAP-2 (green) reveals distinct subcellular localisation of the proteins. Nuclei are counterstained with DAPI (blue). Scale 

bars indicate 20m.  
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Figure 3.2: Cortical neurons express postsynaptic and functional AMPAR. A: 
AMPAR GluA1 subunit-specific immunofluorescence of 7 DIV primary cortical 
neurons shows GluA1 (Ai, green) is expressed throughout the cell body and neuronal 
projections. Double staining with nerve terminal synaptophysin (Aii, red) reveals little 
overlap but a strong postsynaptic colocalisation of AMPAR with PSD-95 (iii, red). B: 
Similarly, GluA2 immunofluorescence (Bi, green) reveals widespread (~90%) 
neuronal expression, minimal nerve terminal expression (Bii) with no overlap with 
synaptophysin (red) and strong postsynaptic expression (Biii, colocalisation with 
PSD-95, red). GluA staining reveals 80-90% of the neuronal population express 

AMPAR. A-B scale bars indicate 20m. C: Fura-2 AM microfluorimetry ratiometric 
trace reveals an AMPA-induced increase in intracellular calcium, across all n=11 
cells, mean F340:380nm ±SD. Neurons were microperfused with assay buffer before 

a 20 sec pulse of 50M AMPA (indicated by black line). Cells were imaged every ~1 
sec by dynamic video imaging to capture live pseudocoloured images. D: 
Representative pseudocoloured images of baseline intracellular calcium influx (top) 
and maximal AMPA-induced calcium influx at 50 sec (bottom) are shown. 

Microfluorimetry scale bars indicate 100m. 
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with previous studies both in vitro (Lozada et al., 2012) and in vivo (Ehrlich and 

Malinow, 2004). The subunit composition of AMPAR determines the level of calcium 

ion permeability, and so to establish the calcium permeability properties of the primary 

cortical neurons, AMPA-mediated changes in intracellular calcium were probed, using 

a chemical calcium indicator FURA-2 AM and single cells visualised live by dual-

emission microfluorimetry. As AMPA-induced calcium fluxes in neurons can be 

indirect, as result of the opening of voltage-dependent calcium channels, all 

microfluorimetry recordings were undertaken or performed in the presence of 1M 

tetrodotoxin (TTX). Initial baseline recordings (0 to 20 sec) indicated little, if any, 

spontaneous action potential firing in the primary cultures (figure 3.2C), with no visible 

fluorescence change observed across the field of view (figure 3.2D, top). 50M AMPA 

application for 20 sec induced a rapid increase in intracellular calcium, with the 

F340:380nm ratio recorded adopting a classical trace, as observed across many 

previous studies (Rainey-Smith et al., 2010; Hoey et al., 2013). The observation of 

rapid and strong intracellular calcium influx was reinforced by dynamic video imaging-

captured images showing increased fluorescence intensity (blue/green to 

orange/white) within pseudocoloured images (figure 3.2D, bottom). These data 

suggest that widespread AMPAR expression in cultured cortical neurons enables 

calcium influx through calcium-permeable postsynaptic AMPAR. 

3.2.3 Neuronal AMPAR are functional and couple to ERK 
phosphorylation 

 

Having demonstrated glutamatergic components of the primary cortical neurons, 

through probing the expression and calcium-permeability of GluA1/2-composed 

AMPAR, AMPA-mediated neuronal activity was further assessed by examining 

modulation of a known downstream effector of AMPAR activation, ERK 

phosphorylation. 5-10 DIV neurons were treated with 50M AMPA for up to 1 h, and 

lysates immunoblotted for dual-phosphorylated (Thr202 and Tyr204) active pERK2 

and total ERK2. AMPAR activation caused a robust and significant ~2-fold increase 

in ERK2 phosphorylation, as rapidly as 3 min and was sustained over 15 min of AMPA 

treatment (figure 3.3). Over a longer AMPA treatment time course (30-60 min), the 

variation in AMPA-mediated ERK phosphorylation increased, likely due to AMPAR 

desensitisation, activity of ERK phosphatases and natural biological variation of the 

neurons between cultures. The AMPA-mediated change in pERK2 density was not 

due to varied levels of protein loaded into gels, as no change was  
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Figure 3.3: AMPA-induced ERK phosphorylation is time-dependent. 50M 
AMPA treatment of 5-10 DIV primary cortical neurons induces rapid ERK 

phosphorylation. Neurons were treated with vehicle (control) or 50M AMPA for 3, 
10, 15, 30 or 60 min, followed by immunoblotting lysates with antibodies to dual 
phosphorylated ERK (ppERK) and total ERK2. Protein band densitometry 
quantification was expressed as the ratio of pERK2 to total ERK2 and indicates a 
significant time-dependent elevation in MAP kinase (ERK) activation. Data expressed 
as mean fold change of control pERK2:ERK2 ratio ± SEM, n=3 independent 
experiments, with representative ppERK1/2 and ERK2 blots shown. ** indicates 
p<0.01, control (white bar) vs AMPA (grey bars) subjected to one-way ANOVA with 
Bonferroni post-test.   
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total ERK2 levels was observed (figure 3.3). In order to establish the selectivity of 

AMPAR -dependent ERK phosphorylation, primary cortical neurons were pre-treated 

for 10 min with the MEK inhibitor U0126 (5M), before application of 50M AMPA for 

3 min, observed to induce significant ERK phosphorylation (figure 3.3). Application of 

U0126 abolished baseline ERK phosphorylation levels (figure 3.4), indicating a tonic 

level of cellular activity in the primary neuronal cultures. U0126 also significantly 

abolished AMPA-induced ERK phosphorylation, indicating AMPAR signal to ERK in 

a classical MEK-dependent manner. 

3.2.4 Neuronal NMDAR couple to cellular activation and ERK 
phosphorylation 

 

To further establish the functional nature of the synapses present in the primary 

cortical neuron model system, assessment of the functionality of NMDA receptors 

(NMDAR) was carried out. As glutamatergic synapse development, maturation and 

plasticity is controlled by NMDAR, displaying the functionality of these receptors in 

vitro was essential. 5-10 DIV neurons were subjected to 50M NMDA treatment for 

up to 1 h, and lysates immunoblotted for dual-phosphorylated (Thr202 and Tyr204) 

active pERK2 and total ERK2. NMDAR activation caused a rapid and significant ~9-

fold increase in ERK2 phosphorylation, over vehicle treated control samples (figure 

3.5). Over a time course of 1 h, ERK phosphorylation was significantly elevated 

following acute (3-10 min) periods of stimulation, with phosphorylation status returning 

to baseline levels over longer periods of treatment (15-60 min), in agreement with 

previously published findings from NMDAR-mediated ERK activation time course 

analyses in primary hippocampal neurons (Sala et al., 2000). Again, the NMDA-

mediated change in pERK2 density was not due to varied levels of protein loaded into 

gels, as no change was observed in total ERK2 levels (figure 3.5).  

To establish the selectivity of the NMDAR activation-dependent ERK phosphorylation, 

neurons were pre-treated for 10 min with either the NMDAR-selective antagonist 

MK801 (2.5M) or the MEK inhibitor U0126 (5M), before application of 50M NMDA 

for the maximal ERK activation time of 3 min (figure 3.6). Application of MK801 alone 

had no effect on basal levels of ERK phosphorylation, indicating the tonic signalling 

activity in the cultures was mediated by another receptor population, most likely being 

AMPAR. MK801-mediated inhibition of NMDAR currents significantly abolished 

NMDAR-mediated ERK phosphorylation,   
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Figure 3.4: AMPAR-induced ERK phosphorylation is MEK-dependent. The 
selective MEK inhibitor U0126 blocks AMPA-mediated ERK phosphorylation. 5-10 

DIV primary cortical neurons were treated with vehicle (control), U0126 (5M, 10 min 

pre-treatment) or AMPA (50M) alone or in the presence of U0126 for 3 min, followed 
by imunoblotting lysates with antibodies to dual phosphorylated ERK1/2 (ppERK) and 
total ERK2. Protein band densitometry quantification was expressed as the ratio of 
pERK2 to total ERK2 and indicates a significant AMPA-dependent elevation in MAP 
kinase (ERK) activation, selectively blocked by U0126. Data expressed as mean fold 
change of control pERK2:ERK2 ratio ± SEM, n=3 independent experiments, with 
representative ppERK1/2 and ERK2 blots shown. ** indicates p<0.01, **** indicates 
p<0.001, control (white bar) vs AMPA ± U0126 (grey bars) subjected to one-way 
ANOVA with Bonferroni post-test. 
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Figure 3.5: NMDA-induced cellular activation is time-dependent. 50M NMDA 
treatment of 5-10 DIV primary cortical neurons induces rapid ERK phosphorylation. 

Neurons were treated with vehicle (control) or 50M NMDA for 3, 10, 15, 30 or 60 
min, followed by immunoblotting lysates with antibodies to dual phosphorylated ERK 
(ppERK) and total ERK2. Protein band densitometry quantification was expressed as 
the ratio of pERK2 to total ERK2 and indicates a significant time-dependent elevation 
in MAP kinase (ERK) activation. Data expressed as mean fold change of control 
pERK2:ERK2 ratio ± SEM, n=3 independent experiments, with representative 
ppERK1/2 and ERK2 blots shown. ** indicates p<0.01, control (white bar) vs NMDA 
(grey bars) subjected to one-way ANOVA with Bonferroni post-test. 
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Figure 3.6: NMDA-induced ERK phosphorylation is NMDAR- and MEK-
dependent. The selective NMDAR antagonist MK801 and the MEK inhibitor U0126 
blocks NMDA-mediated ERK phosphorylation. 5-10 DIV primary cortical neurons 

were treated with vehicle (control), MK801 (2.5M, 10 min pre-treatment), U0126 

(5M, 10 min pre-treatment) or NMDA (50M) alone or in the presence of MK801 or 
U0126 for 3 min, followed by immunoblotting lysates with antibodies to dual 
phosphorylated ERK1/2 and total ERK2. Protein band densitometry quantification 
was expressed as the ratio of pERK2 to total ERK2 and indicates a significant NMDA-
dependent elevation in MAP kinase (ERK) activation, selectively blocked by MK801 
and U0126. Data expressed as mean fold change of control pERK2:ERK2 ratio ± 
SEM, n=3 independent experiments, with representative ppERK1/2 and ERK2 blots 
shown. *** indicates p<0.005, **** indicates p<0.001, control (white bar) vs NMDA ± 
MK801/U0126 (grey bars) subjected to one-way ANOVA with Bonferroni post-test.  
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returning pERK to baseline level, reinforcing the selectivity of NMDAR-mediated 

cellular activation. U0126 abolished both baseline ERK phosphorylation (figure 3.6) 

and 50M NMDA-induced ERK phosphorylation, indicating NMDAR signal to ERK in 

a classical MEK-dependent manner. 

3.2.5 Primary cortical neurons express calcium-permeable 7 
nicotinic acetylcholine receptors 

 

In order to assess 7nAChR expression, primary cortical neurons were incubated 

with the 7nAChR-selective antagonist -bungarotoxin (BTX), labelled with a 

fluorescent AlexaFluor-488 tag (BTX-488) to enable direct visualisation. The 74 

amino acid 8kDa -neurotoxin extracted from snake venom, BTX, has been shown 

to bind to the agonist-binding pocket of nAChR -subunits (Samson et al., 2002). The 

antagonist binds with high affinity to 7nAChRs (Chen and Patrick, 1997) and thus 

acts as a useful tool to study 7nAChR expression and pharmacology. Staining intact 

live primary cortical neurons with BTX-488 yielded a subpopulation of fluorescently 

labelled cells, possessing the classical morphological phenotype of neurons (figure 

3.7A). Parallel visualisation of all cell nuclei counterstained with DAPI revealed ~10-

15% were fluorescently labelled with BTX-488. The observed staining appeared 

selective for 7nAChRs as the fluorescence signal was blocked by pre-incubation 

with an excess of nicotine (1mM) before application of BTX-488 (figure 3.7B), in 

accordance with other studies (Kawai et al., 2002; Chang and Fischbach, 2006; 

Shelukhina et al., 2009).  

Upon establishing primary cortical neurons expressed 7nAChR, investigation into 

the functionality of these receptors was subsequently undertaken. As nAChR-

mediated influx of calcium ions is known to influence a variety of cellular processes, 

from neurotransmitter release to postulated mechanisms of learning and memory, 

characterisation of the in vitro nAChR functionality was essential. 7nAChRs are 

distinguished from other nAChRs by their high relative permeability to calcium (Dajas-

Bailador and Wonnacott, 2004), so in order to probe 7nAChR calcium permeability, 

the calcium-sensitive chemical indicator FURA-2 AM was used in dual emission 

microfluorimetry live imaging of primary cortical neurons.  

As calcium fluxes in neurons can be indirect, such as through other voltage-gated 

calcium channels, all microfluorimetry recordings were done in the presence of 1M 

tetrodotoxin (TTX). Prior to agonist treatment, the neurons were microperfused for 3 
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min with the positive allosteric modulator (PAM) PNU-120596 (10M). Initial baseline 

recordings (0 to 40 sec) indicated little, if any, spontaneous action potential firing in 

the primary cultures (figure 3.7C), with no visible fluorescence change observed 

across the field of view (figure 3.7D, top), confirming PNU-120596 (10M) application 

does not directly activate 7nAChRs. Subsequent PNU-282987 (3M) agonist 

application for 20 sec induced a rapid increase in intracellular calcium, as observed 

from the recorded F340:380nm ratio trace (figure 3.7C). The observation of rapid 

intracellular calcium influx was reinforced by dynamic video imaging-captured images 

showing increased fluorescence intensity, as a surrogate marker of calcium ion influx 

(blue to light blue), within a number of cells within pseudocoloured images (figure 

3.7D, bottom).  

3.2.6  Neuronal nAChR couple to ERK phosphorylation 
 

To further establish the nature of the nicotinic acetylcholine receptors (nAChR) 

present in the primary cortical neuron model system, assessment of their functionality 

was carried out. 5-10 DIV neurons were treated with the non-selective nAChR agonist 

nicotine (10M) for up to 30 min, in the presence of 10M PNU-120596, and lysates 

immunoblotted for dual-phosphorylated (Thr202 and Tyr204) active pERK2 and total 

ERK2. Nicotine-induced nAChR activation caused a rapid and significant ~2.5-fold 

increase in ERK2 phosphorylation, over vehicle treated control samples (figure 3.8A). 

Over the time course of 30 min, ERK phosphorylation was significantly elevated 

across all periods of stimulation, in agreement with previously published findings from 

nicotine-treatment of primary cortical neurons (Steiner et al., 2007). The nicotine-

mediated change in pERK2 density was not due to varied levels of protein loaded into 

gels, as no change was observed in total ERK2 levels (figure 3.8A). To establish the 

relative 7- and non-7nAChR component of nicotine-induced ERK phosphorylation, 

nicotine was applied to the cortical neurons for the maximal ERK activation time of 3 

min, in the absence of the 7nAChR-selective PAM PNU-120596. 3 min nicotine 

treatment did not significantly increase ERK phosphorylation above vehicle treated 

(control) samples (figure 3.8B), but a slight increase was observed, and can be 

attributed to the expression of rapidly desensitising 7- and 34 nAChR subtypes 

(Fenster et al., 1997) predominantly expressed in cortical neurons (Alkondon et al., 

2007). Incubation with10M PNU-120596 alone had no effect on cellular activation; 

with no observed   
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Figure 3.7: Primary cortical neurons express functional calcium-permeable  

7nAChR. A: Imaging of 7nAChR using 100nM AlexaFluor-488 labelled -
bungarotoxin (green) of 5 DIV neurons reveals ~10-15% of neurons express 

7nAChR. B: To assess specificity of 7nAChR:-bungarotoxin labelling, neurons 
were pre-incubated with an excess of the broad nAChR agonist nicotine (1mM) to 

probe non-specific -bungarotoxin labelling. Nicotine pre-incubation blocked all 

fluorescent labelling of 7nAChR, confirming specificity of -bungarotoxin 

AlexaFluor-488 labelling. Fluorescence images scale bars indicate 20m. C: Fura-

2 AM microfluorimetry ratiometric F340:380nm trace reveals an 7nAChR 
activation-induced increase in intracellular calcium, n=3 cells, mean F340:380nm ± 
SEM. Neurons were microperfused with assay buffer before a 3 min incubation with 

10M PNU-120596 and subsequent 20 sec pulse of 10M PNU-282987 (indicated 
by black lines). Cells were imaged every ~1 sec by live dynamic video imaging to 
capture pseudocoloured images. D: Representative pseudocoloured images of 

baseline intracellular calcium influx (top) and maximal 7nAChR activation-induced 
calcium influx at 60 sec (bottom) are shown. Microfluorimetry scale bars indicate 

100m. 
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change in ERK phosphorylation indicating the PAM requires the presence of agonist 

to activate 7nAChRs.  The negligible PNU-120596 effect on ERK activation 

suggested that there was little if any tonic acetylcholine release in the cultures, which 

in the presence of a PAM could activate nAChRs. When pre-treatment (10min, 10M) 

with PNU-120596 was combined with a 3 min nicotine (10M) application, a 

significant increase in ERK phosphorylation was again observed (figure 3.8B), 

reinforcing the benefit of using PNU-120596, to enhance and unmask 7nAChR-

activation-dependent signals in vitro. To determine the specificity of the PNU-120596-

potentiated nicotine-induced increase in ERK phosphorylation, primary cortical 

neurons were incubated with the 7nAChR-selective antagonist BTX (100nM). 

BTX had no effect on basal levels of ERK phosphorylation (figure 3.8B); indicating 

no acetylcholine-mediated tonic signalling was present within these cultures. Cells 

were pre-treated for 10 min with BTX (100nM), before application of 10M PNU-

120596 for a further 10 min, prior to 3 min nicotine treatment (figure 3.8B). BTX-

mediated inhibition of 7nAChR significantly inhibited 7nAChR-induced ERK 

phosphorylation, returning phospho-ERK to baseline level, reinforcing the specificity 

of PNU-120596-mediated potentiation of 7nAChR in nicotine-induced ERK 

phosphorylation.  

Nicotine is a weak and non-selective agonist of nAChR, typically binding to the 42 

nAChR subtype with significantly higher affinity (40-1000x) than at 7nAChR (Jensen 

et al., 2003) and significantly (10-100x) lower functional potency than other nAChR 

isoforms (Gopalakrishnan et al., 1995; Eaton et al., 2003). Thus to selectively 

investigate the effects of 7nAChR, without other nAChR isoforms confounding 

analyses, the 7nAChR-selective agonist PNU-282987 was used (Bodnar et al., 

2005; Hajos et al., 2005; del Barrio et al., 2011), in combination with PNU-120596. 

5-7 DIV neurons were treated with PNU-120596 (10M, 10 min pre-incubation) and 

PNU-282987 (10M) for up to 1 h, and lysates immunoblotted for dual-phosphorylated 

(Thr202 and Tyr204) active pERK2 and total ERK2. 7nAChR activation caused a 

rapid and significant ~3-fold increase in ERK2 phosphorylation, over vehicle treated 

control samples (figure 3.8C). Over a time course of 1 h, ERK phosphorylation was 

significantly elevated following acute (3 min) stimulation, with phosphorylation status 

returning to baseline levels over longer periods of treatment (10-60 min). The 

7nAChR-mediated change in pERK2 was not due to varied levels of protein loaded 

into gels, as no change was observed in total ERK2 levels (figure 3.8C). No clear 



 

 89 

effect was observed with 10M PNU-282987 beyond an acute (3 min) treatment time. 

This cannot be attributed to 7nAChR desensitisation, due the presence of the PAM 

PNU-120596, which is known to reduce receptor desensitisation and to greatly 

prolong agonist-evoked cellular responses (Hurst et al., 2005), but instead can be 

likely ascribed to phosphatase-mediated deactivation of ERK. The agonist activity of 

PNU-282987 has previously been shown to more than double the frequency of 

synaptic activity, when compared to nicotine (Hajos et al., 2005), however, when 

comparing the relative effect of nicotine and PNU-282987 in the presence of PNU-

120596, on ERK phosphorylation, no significant difference in peak ERK 

phosphorylation level was observed (figure 3.8A and B versus figure 3.8C and D). To 

determine the specificity of the PNU-282987-induced increase in ERK 

phosphorylation, via 7nAChR activation, primary cortical neurons were incubated 

with either the 7nAChR-selective antagonist BTX (100nM), the MEK inhibitor 

U0126 (5M) or the free calcium chelator EGTA (2.5mM), alone or before application 

of (PNU-120596 and) PNU-282987 for the maximal ERK activation time of 3 min. 

BTX pre-treatment had no effect on basal levels of ERK phosphorylation (figure 

3.8D). Application of BTX (100nM), before PNU-120596 (10M), prior to 3 min PNU-

282987 agonist treatment (figure 3.8D) significantly attenuated PNU-282987-induced 

ERK phosphorylation, returning pERK to baseline level. U0126-mediated MEK 

inhibition abolished baseline ERK phosphorylation (figure 3.8D) and also PNU-

282987-induced ERK phosphorylation. Finally, to investigate the extracellular 

calcium-dependence of the 7nAChR-mediated ERK activation, EGTA was applied 

in excess (2.5mM) to the cortical neurons. EGTA alone had no effect on baseline ERK 

phosphorylation, indicating extracellular calcium does not maintain basal ERK levels. 

Chelation of extracellular calcium with EGTA prevented an increase in 7nAChR-

mediated pERK, following stimulation with PNU-282987 (figure 3.8D). When taken 

together, these data suggest that α7nAChR-mediated calcium influx stimulates robust 

MEK-dependent ERK phosphorylation in cultured cortical neurons  
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Figure 3.8: nAChR couple to cellular activation and ERK phosphorylation. A: 
Nicotine treatment (in the presence of PNU-120596) induces rapid time-dependent 
sustained ERK phosphorylation. B: Nicotine-induced ERK phosphorylation requires 

the presence of the 7nAChR-selective PAM PNU-120596 and is selectively blocked 

by the 7nAChR antagonist BTX. C: PNU-282987 treatment (in the presence of 
PNU-120596) induces rapid but non-sustained ERK phosphorylation. D: Agonist-

mediated ERK phosphorylation is blocked by BTX, the MEK-inhibitor U0126 and the 
extracellular calcium chelator EGTA. 5-10 DIV primary cortical neurons were treated 

with vehicle (control) or agonist (10M nicotine/PNU-282987) for 3, 10, 15, 30 or 60 

min, following 10 min pre-treatment with 10M PNU-120596 and/or 20 min pre-

treatment with antagonist or signalling inhibitors (100nM BTX, 5M U0126 or 2.5mM 
EGTA) followed by immunoblotting lysates with antibodies to dual phosphorylated 
ppERK1/2 and total ERK2. Protein band densitometry quantification was expressed 
as the ratio of pERK2 to total ERK2. Data expressed as mean fold change of control 
pERK2:ERK2 ratio ± SEM, n=3 independent experiments, with representative 
ppERK1/2 and ERK2 blots shown. * indicates p<0.05, ** p<0.01, *** p<0.005, control 
(white bar) vs agonist/PAM treatment (grey bars) or antagonist/inhibitor (black bars) 
subjected to one-way ANOVA with Bonferroni post-test.  
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3.2.7 7nAChR-activation has no effect on Egr-1 promoter-
driven luciferase expression 

 

Assessment of the levels of pERK protein as a marker of ERK activity is a commonly 

used measure of cellular activation. However, analyses of 7nAChR activation-

induced changes in pERK1/2 protein levels do not give an indication as to whether 

7nAChR stimulation can recruit ERK-driven gene transcription, a known mediator of 

long-term cellular processes, such as cell survival, learning and memory and memory 

consolidation. Given the proposed distinct spatial distribution of 7nAChR 

populations, being presynaptic and/or postsynaptic, the ability of 7nAChR to drive 

effective transcriptional changes within the nucleus of primary neurons is unknown. 

Given the relatively insensitive technique of immunoblotting, coupled with the low 

expression level of 7nAChR observed in primary cortical neurons, a highly sensitive 

viral transduction method was used to further probe 7nAChR activation-mediated 

network effects in vitro. Primary neurons (at 6-7 DIV) were transduced with an Ad5-

Egr-1 reporter plasmid, to measure ERK-dependent transcription of early growth 

response gene-1 (Egr-1), as measured by luciferase readout. Following transduction, 

neurons were treated with BDNF (50ng/ml), U0126 (5µM), PNU-120596 (10M), 

PNU-282987 (10M) or BTX (100nM) for 6 h. A 6 h treatment time was required to 

allow sufficient detectable transcription of the Egr-1 gene product (Dr Carla Cox, 

personal communication and unpublished data). BDNF treatment induced a 

significant 2-fold increase in Egr-1-mediated luciferase expression (figure 3.9), which 

was blocked by pre-treatment with the selective MEK inhibitor U0126. Neither the 

7nAChR-selective PAM PNU-120596 nor the agonist PNU-282987 had a significant 

effect on Egr-1 transcription of the entire neuronal population, either alone or in 

combination (figure 3.9). Inhibition of 7nAChR with BTX had no effect on basal 

levels of Egr-1 transcription. This suggests that despite stimulating ERK 

phosphorylation chronic 7nAChR activation does not modulate transcription of the 

ERK target gene Egr-1.   



 

 92 

  

Figure 3.9: Activation of 7nAChR does not stimulate ERK-dependent 
transcription of Egr-1 in primary cortical neurons. 6 DIV primary cortical neurons 
were transduced with an Ad5-Egr1-luciferase plasmid. Neurons were treated with 

vehicle (control), BDNF (50ng/ml), U0126 (5M), PNU-120596 (10M), PNU-282987 

(10M) or BTX (100nM) for 6 h. Luciferase activity was measured post drug 
treatments and is expressed as mean fold change of control ± SEM (n=8-12 
individually transduced wells across 3 independent experiments, ns indicates not 
statistically significant, ** p<0.01, **** p<0.001, control (white bar) vs BDNF/U0126 
(black bars) or PNUs (grey bars), subjected to one-way ANOVA with Bonferroni post-
test. 
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3.3 Discussion 
 

The aim of this chapter was to characterise primary cortical neurons to determine their 

suitability as a model system for studying 7nAChR signalling at the glutamatergic 

synapse. Accordingly, this chapter has shown primary cortical neurons express 

functional glutamate receptors (NMDAR and calcium-permeable AMPAR) that couple 

to cellular activation (ERK phosphorylation). Furthermore, detailed characterisation 

was undertaken to demonstrate the presence of functional calcium-permeable 

7nAChR, which couple to ERK activation, but play no role in modulating ERK-

mediated gene transcription.  

3.3.1 Primary cortical neurons express functional glutamate 
receptors 

 

Initial results, using phase contrast imaging and immunofluorescence with neuron-

specific markers, showed that the primary cortical neuron model system possessed a 

neuronal phenotype. Furthermore, GluA-subunit immunofluorescence coupled with 

dual-emission microfluorimetry highlighted postsynaptic expression and functionality 

of calcium-permeable AMPAR, in accordance with previous literature (Rainey-Smith 

et al., 2010; Hoey et al., 2013). The widespread expression of AMPAR in primary 

cortical neurons was estimated as ~90%, in accordance with AMPAR expression in 

primary motor neurons (Damme, 2002) and primary cortical neurons (Hoey et al., 

2013). Furthermore, following 5-10 DIV, AMPAR and NMDAR were coupled to ERK 

phosphorylation as previously demonstrated (Sala et al., 2000; Ivanov et al., 2006; 

Domercq et al., 2011). AMPAR- and NMDAR-mediated ERK phosphorylation was 

time-dependent and MEK-dependent, with rapid kinetics of activation, peaking at 2-5 

and 5-10 min following treatment with NMDA (Sala et al., 2000) and AMPA (Domercq 

et al., 2011), respectively. Within the CNS, glutamate activates NMDAR, AMPAR and 

kainate receptors, which results in increases in intracellular calcium: a process that is 

a critical regulator of gene expression and long-term cell survival responses. Results 

described here show functionality of glutamate receptors in primary cortical neurons, 

reinforcing the use of these cells as an appropriate model system for the study of the 

glutamatergic synapse. 
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3.3.2 Primary cortical neurons express functional calcium-

permeable 7nAChR 
 

Using the 7nAChR-selective PAM PNU-120596, a clear 7nAChR activation effect 

was observed, through blocking receptor desensitisation (Hurst et al., 2005). 

Treatment of primary cortical neurons with the PAM and 7nAChR-selective agonist 

PNU-282987 enabled detection and measurement of a clear 7nAChR-mediated 

influx of calcium into a small population of BTX-488-positive (10-15%) primary 

cortical neurons, as measured by dual-emission microfluorimetry calcium imaging (in 

accordance with Hu et al., 2009; Brown and Wonnacott, 2014). Previous literature 

has shown 7nAChR radiolabelling and immunoreactivity within primary neurons 

increases over time in culture, correlating with synapse formation and maturation 

(Samuel et al., 1997). When 7nAChR expression is compared to AMPAR expression 

and functionality, these data suggest a much lower expression level of 7nAChR than 

AMPAR in cultured primary cortical neurons. Immunofluorescence imaging of 

GluA1/2-containing AMPAR and FURA-2 AM microfluorimetry indicated widespread 

(~90%) AMPAR expression. Conversely, fluorescent BTX-488 labelling of 7nAChR 

and FURA-2 AM dual-emission microfluorimetry indicated a modest (10-15%) cortical 

7nAChR expression, in accordance with previously published findings (Liu et al., 

2001; Poorthuis et al., 2013; Brown and Wonnacott, 2014; Genzen et al., 2014). As 

such, these results indicate a lower expression level of 7nAChR in a more 

representative and physiological model system than cell lines, which are currently 

favoured by many research groups. 7nAChR expression level may play a role in the 

differences and discrepancies observed between nAChR studies undertaken in cell 

lines, overexpressing transgenic mouse models and primary CNS tissues.  

3.3.3 Primary cortical neuronal 7nAChR couple to ERK 
phosphorylation without effecting ERK-dependent 
transcription 

 

Few studies have examined 7nAChR-mediated downstream signalling cascades, 

specifically ERK phosphorylation. Historically, this has arisen due to a lack of sensitive 

detection methods, owing to the rapid kinetics of activation and desensitisation of 

7nAChR and also the relatively new emergence of 7nAChR-subtype selective 

ligands. Recent studies have highlighted both nicotine- and 7nAChR-selective 
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agonist-mediated ERK phosphorylation in primary cortical neurons, SH-SY5Y cells 

and PC12 cells. Accordingly, a similar kinetic was observed between PAM-

potentiated PNU-282987-mediated ERK phosphorylation in PC12 cells (El Kouhen et 

al., 2009), with ERK phosphorylation peaking at 3-7 min, and also in nicotine-treated 

SH-SY5Y cells and primary cortical neurons, with ERK phosphorylation peaking 

rapidly between 1-5 min (Dajas-Bailador et al., 2002; Steiner et al., 2007). Similarly, 

the data presented here highlight a rapid 3 min maximal kinetic of ERK 

phosphorylation, mediated by PNU-120596-potentiated nicotine- and PNU-282987-

mediated 7nAChR activation, which were blocked by BTX and was both MEK- and 

extracellular calcium-dependent. Thus, these data presented in this chapter reinforce 

the published literature and combine distinct observations between nicotine and 

7nAChR-selective ligands in a physiological cellular model.  

Furthermore, data presented here highlight for the first time, that 7nAChR activation 

only couples to transient ERK phosphorylation and not ERK-dependent gene 

transcription. A limited number of studies have reported nAChR activation leads to c-

Fos gene expression (Greenberg et al., 1986) following secondary activation of L-type 

voltage-dependent calcium channels. Neuronal activity-dependent gene transcription 

has been well documented for NMDAR and AMPAR, with ionotropic glutamate 

receptor activation tightly coupled to gene expression (West and Greenberg, 2011). 

So, why is this not the case for 7nAChR, which are also highly calcium-permeable? 

This may be a result of both the spatial localisation of presynaptic 7nAChR, with only 

postsynaptic receptors (such as NMDAR and AMPAR) capable of modulating 

transcription (Mokin and Keifer, 2005; Mittelbronn et al., 2009), or the low 7nAChR 

expression level observed in primary cortical neurons. Previous reports conform to 

this hypothesis, with in vivo data showing gene expression changes require neuronal 

signalling above a threshold level, met by a balance between the number of excitatory 

and inhibitory input signals (Mann and Paulsen, 2007). Overexpression of 7nAChR 

in cell lines is capable of prolonged and sustained ERK phosphorylation (Utsugisawa 

et al., 2002) and gene transcription, including the Egr-1 gene (Dunckley and Lukas, 

2003). Conversely, data presented here show natively expressed 7nAChR are not 

able to bring about effects on gene transcription, but instead play a modulatory role 

in transiently activating intracellular (MAPK) signalling cascades. 
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3.3.3 Summary 
 

Using a combination of an 7nAChR-selective PAM and agonist, this chapter 

highlights the activation of native 7nAChR within well-characterised primary cortical 

glutamatergic synapses induced rapid and robust ERK phosphorylation, in 

accordance with the published literature, but showed no effect on ERK transcription. 
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Chapter 4 
 

4. 7nAChR-dependent regulation 
of APP processing 
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4.1 Introduction 
 

There is a strong link between cholinergic signalling  (at both muscarinic and nicotinic 

receptors) and APP metabolism (Hellström-Lindahl, 2000; Fisher, 2012) and section 

1.8.2.2). A number of studies in cell lines have demonstrated that 7nAChR 

activation, with nicotine enhances sAPP release (Kim et al., 1997; Lahiri et al., 2002; 

Mousavi and Hellström-Lindahl, 2009; Nie et al., 2010), inhibits soluble A production 

(Hellström-Lindahl et al., 2004; Hedberg et al., 2008) and reduces Aβplaque levels in 

vivo (Nordberg et al., 2002; Nie et al., 2010). These effects, which might be due to an 

α7nAChR-mediated reduction in BACE-1 protein levels, prevent A-induced synaptic 

transmission defects and neurotoxicity (Zamani et al., 1997; Shimohama and Kihara, 

2001; Picciotto and Zoli, 2008; Yu et al., 2011). Despite this body of evidence, the 

ability of 7nAChR to couple to APP processing in neurons has not been thoroughly 

investigated.  

As reviewed in section 1.8.2.2, NMDAR activation can potentially exhibit contrasting 

effects on APP processing. Hyperactivation and stimulation of extrasynaptic NMDAR 

is implicated in excitotoxicity, enhanced pro-amyloidogenic APP processing and A 

production, resulting in neurodegeneration (Hardingham et al., 2002; Léveillé et al., 

2008; Bordji et al., 2010, 2011; Talantova et al., 2013; Parsons and Raymond, 2014; 

Rush and Buisson, 2014). In contrast, physiological signalling through synaptic 

NMDAR enhances non-amyloidogenic APP processing and is neuroprotective, 

playing a role in synaptic plasticity and neurotrophic processes (Hardingham et al., 

2002; Léveillé et al., 2008; Hoey et al., 2009; Bordji et al., 2010). Ionotropic glutamate 

receptor-mediated non-amyloidogenic APP processing has been strongly linked to 

ERK phosphorylation (Verges et al., 2011; Wan et al., 2012; Hoey et al., 2013), with 

AMPAR activation-induced ERK phosphorylation following the same kinetic as APP 

processing (Hoey et al., 2013). Generally, the MAPK pathway has been shown to 

regulate neuron activity-dependent APP processing (Mills et al., 1997; Desdouits-

Magnen et al., 1998) and enhanced -secretase activity (Cisse et al., 2011), 

reinforcing the potential of 7nAChR to directly mediate non-amyloidogenic APP 

processing, given the data presented in Chapter 3, showing 7nAChR-induced ERK 

activation.  

Furthermore, given the well-characterised capacity for presynaptic 7nAChR-

mediated glutamate release (section 1.4.2.3), activation of this receptor population 
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may indirectly enhance non-amyloidogenic APP processing, via activation of synaptic 

ionotropic glutamate receptors, as well as directly through 7nAChR-mediated 

calcium influx and ERK-1/2 phosphorylation. As such, reduced glutamate signalling 

(by tetanus toxin application to primary hippocampal neurons) has been shown to 

increase 7nAChR dwell time at the nerve terminal. Accordingly, cell-surface 

immobilised 7nAChR enhanced the likelihood of glutamate release by increasing the 

size of the readily releasable pool of glutamate-containing vesicles (Gomez-Varela 

and Berg, 2013), thus reinforcing the potential for nerve terminal 7nAChR to 

modulate APP processing indirectly, through 7nAChR-induced glutamate release 

and postsynaptic glutamate receptor activation. 

 

Given the calcium-permeability properties and activation-induced ERK 

phosphorylation of both ionotropic glutamate receptors and 7nAChR, this indicates 

7nAChR are endowed with equal properties, and potentially capable of directly 

mediating non-amyloidogenic APP processing, or also indirectly via 7nAChR-

mediated glutamate release and subsequent NMDAR/AMPAR activation. Therefore, 

the results described in this chapter aim to probe the in vitro APP processing 

functionality of 7nAChR natively expressed by primary cortical neurons, and 

compared to a known non-amyloidogenic APP processing-modulator, NMDAR. 

Through investigating whether 7nAChR couple to APP processing in primary cortical 

neurons, via a direct or indirect mechanism, secondary to NMDAR activation and 

calcium influx, will provide a new mechanistic insight into the physiological control of 

APP processing at the glutamatergic synapse and reinforce our understanding of the 

beneficial effect of targeting 7nAChR with agonists and PAMs, with a view to 

regaining control of A production in aging and neurodegeneration. 
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4.2  Results 

4.2.1 APP is predominantly expressed at postsynaptic sites in 
primary cortical neurons  

 

Under basal homeostatic conditions, APP has been shown to be equally distributed 

across axonal and somatodendritic compartments of neurons (Back et al., 2007), but is 

most extensively expressed postsynaptically (Hoe et al., 2009; Hoey et al., 2009, 2013). 

To establish the expression and distribution of APP within our own primary cortical 

cultures, neurons at 5-7 DIV were used to examine physiological expression of 

endogenous APP holoprotein. APP immunofluorescence, using a custom-made primary 

antibody raised against the C-terminus of human APP, revealed widespread 

intracellular expression (figure 4.1A), with APP found throughout the cell body and 

neuronal projections. Double immunofluorescence of APP with the nerve terminal 

marker synaptophysin revealed little colocalisation (figure 4.1B). However, APP 

extensively colocalised with the postsynaptic marker PSD-95 (figure 4.1C), indicating 

APP is predominantly postsynaptic in primary cortical neurons, in accordance with 

previous studies.  

4.2.2. Primary cortical neurons express putative -secretase 
enzymes, ADAM-10 and ADAM-17 

 

To assess the capability of this model system to undergo non-amyloidogenic cleavage 

of APP, the expression of the constitutive -secretase ADAM-10 and stimulated -

secretase ADAM-17 was established. To probe whether the primary cortical neurons 

express the putative -secretase proteins, commercially available primary antibodies 

were used in fluorescence immunostaining to investigate the expression and 

trafficking of ADAM-10 and ADAM-17. Under non-stimulated conditions, both ADAM-

10/-17 were expressed (figure 4.2) throughout neurons. Double immunostaining of 

both ADAM-10 (figure 4.2A) and ADAM-17 (figure 4.2B) with the postsynaptic marker 

PSD-95 revealed notable, but not total overlap, indicating ADAM-10 and ADAM-17 

are both trafficked postsynaptically. This data is in accordance with previous 

biochemical and immunolabelling studies, which highlights ADAM-10 is enriched 

postsynaptically and shows punctate expression on PSD-95-positive spine-like 

structures (Marcello et al., 2007).  
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Figure 4.1: APP is mainly trafficked to postsynaptic neuronal compartments. A: Single immunofluorescence staining of 5-10 DIV 
primary cortical neurons reveals APP (green) is expressed throughout the cell body and neuronal projections. B: Double labelling of APP 
(green) with the presynaptic marker synaptophysin (red) indicates little colocalisation. Higher magnification (inset) of the indicated (dashed 
box) region suggests very little overlap between APP and synaptophysin (arrow). C: Double labelling of APP (green) with the postsynaptic 
marker PSD-95 (red) revealed extensive colocalisation, indicating APP is mainly postsynaptically expressed. All nuclei were counter stained 

with DAPI (blue) and scale bars show 20m. 
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Figure 4.2: Primary cortical neurons express 

putative -secretase proteins ADAM-10 and 
ADAM-17. A: Double immunofluorescence 
staining of 7 DIV primary cortical neurons reveals 
ADAM-10 (red) shows punctate expression 
throughout the neurons and is partly colocalised 
with the postsynaptic marker PSD-95 (green). B: 
Double immunofluorescence staining of 7 DIV 
primary cortical neurons reveals ADAM-17 (red) 
punctate expression throughout the neurons and 
is partly colocalised with the postsynaptic marker 
PSD-95 (green). Nuclei were counter stained with 

DAPI and scale bars represent 20m.  
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4.2.3 NMDAR activation reduces levels of full-length APP 
 

Having demonstrated expression of APP and two of secretase enzymes within 

primary cortical neurons, the kinetics of APP processing was investigated, first using 

a known APP processing enhancer, NMDA (Hoey et al., 2009; Hu et al., 2009b; Bordji 

et al., 2010; Verges et al., 2011). Neurons were treated with 50M NMDA for up to 2 

h and lysates immunoblotted using a custom-made primary antibody raised against 

the C-terminus of human APP and a loading control house keeping protein -tubulin. 

Over the 2 h time course, NMDAR activation induced a time-dependent reduction in 

full-length APP695 holoprotein, reaching significance at 1 h and a maximal ~60% 

reduction in APP level by 2 h (figure 4.3), in accordance with reports (Hoey et al., 

2009, 2013). A reduction in full-length APP is indicative of secretase-mediated 

cleavage of the holoprotein. The NMDA-mediated change in APP density was not due 

to varied levels of protein loaded into gels, as no change was observed in -tubulin 

levels (figure 4.3) and was not due to cellular toxicity, as measured by MTT and LDH 

assays (data not shown). 

4.2.4 7nAChR activation has no effect on full-length APP levels 
 

Upon establishing that endogenous APP undergoes NMDAR-dependent cleavage, 

the potential for 7nAChR to similarly couple to APP cleavage was investigated. 

Activation of 7nAChR has been reported to induce non-amyloidogenic cleavage of 

APP, (Kim et al., 1997; Hellström-Lindahl, 2000; Lahiri et al., 2002; Xiu et al., 2005; 

Mousavi and Hellström-Lindahl, 2009; Nie et al., 2010) in immortalised cell lines but 

this has not been tested in differentiated neurons. Therefore, to establish whether this 

effect is also observed in primary cortical neurons, cells were treated with the 

7nAChR-selective agonist PNU-282987 (10M), following a 10 min pre-incubation 

with the 7-PAM 10M PNU-120596 for up to 2 h and lysates immunoblotted for full-

length APP and a loading control house keeping protein -tubulin. Over the 2 h time 

course 7nAChR activation had no effect on the overall levels of APP695, relative to 

the -tubulin loading control (figure 4.4). Further detailed analysis of the immunoblots 

revealed no change to the high molecular weight form of APP, known to be 

glycosylated mature APP, which is typically the first pool of APP to be cleaved by 

secretase enzymes acting at the plasma membrane (Hoey et al., 2009, 2013).   
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Figure 4.3: NMDAR activation induces cleavage of APP. 5-10 DIV primary cortical 

neurons were treated with vehicle (control) or 50M NMDA for either 3, 10, 30, 60 or 
120 min followed by immunoblotting for endogenous full-length APP695 and the 

loading control -tubulin. Data expressed as relative mean fold change of control 

APP:-tubulin ratio ± SEM, n=3 independent experiments. * indicates p<0.05 and ** 
p<0.01, control (white bar) vs NMDA treatment (grey bars) subjected to one-way 
ANOVA with Bonferroni post-test.  
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Figure 4.4: 7nAChR activation does not affect APP levels. 5-10 DIV primary 
cortical neurons were treated with vehicle (control) or 10 min pre-treatment with PNU-

120596 prior to 10M PNU-282987 for either 3, 10, 30, 60 or 120 min followed by 

immunoblotting for endogenous full-length APP695 and the loading control -tubulin. 

Data expressed as relative mean fold change of control APP:-tubulin ratio ± SEM, 
n=3 independent experiments. No significant difference over control (white bar) vs 
PNU-1/2 treatment (grey bars) was observed, as subjected to one-way ANOVA with 
Bonferroni post-test.  
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4.2.5 Isolation and activation of presynaptic 7nAChR has no 
effect on full-length APP levels  

 

Given the distribution of 7nAChR at both presynaptic and postsynaptic sites, probing 

the functionality of these receptor populations individually requires separation of the 

distinct bodies of receptors. Given the relatively low number of 7nAChR within 

glutamatergic synapses (~10-15% cells, as stated in Section 3.2.5), combined with 

the low-sensitivity of whole cell lysate immunoblotting, a synaptosome approach was 

adopted to purify and concentrate mature cortical presynaptic 7nAChR and thereby 

assess APP densitometry, following receptor activation. Using Percoll density 

gradient centrifugation, whole adult mouse brain homogenates were separated into 

four distinct fractions (F1-F4, figure 4.5), where F3 is enriched with synaptosomes 

and membranes and F4 is enriched with pure synaptosomes (Dunkley et al., 2008). 

F3 and F4 were pooled to ensure sufficient viable synaptosomal material, which was 

subjected to vehicle, 50M NMDA or 10M PNU-282987 treatment (following a 10M 

PNU-120596 10 min pre-treatment) for 30 min at 37C. Following drug treatments, 

synaptosomes were lysed and denatured for immunoblotting. Through Western 

blotting, synaptosomes were assessed for expression of the nerve 

terminal/presynaptic marker synaptophysin, the postsynaptic marker PSD-95, dual-

phosphorylated (Thr202 and Tyr204) active pERK2 and total ERK2, APP695 and a 

loading control of -tubulin. Analysis of the immunoblotting bands revealed the purity 

of the synaptosome preparation and hence its validity for use in presynaptic assays. 

Lysates were positive for the presynaptic marker synaptophysin and negative for the 

postsynaptic marker PSD-95, figure 4.5 top two panels, which were unchanged 

following either NMDA- or PNU-1/2-treatment. Furthermore, the level of protein 

loaded across gel lanes was identical, as judged by -tubulin (figure 4.5 fifth panel), 

and further suggested no toxicity or viability issues as a result of drug treatment. 

Furthermore, following 30 min NMDAR activation, a very minor increase in phospho-

ERK levels was observed over basal (figure 4.5 third panel), which can be attributed 

to either very minimal contamination of the synaptosomes with some postsynaptic 

density and thus native NMDAR, or the presence of functional presynaptic NMDAR, 

which remains a highly controversial topic (Berg et al., 2013). In contrast to NMDA-

treatment, 30 min 7nAChR activation resulted in a large increase in ERK 

phosphorylation, reinforcing the well-documented presence of functional presynaptic 

7nAChR, which when  
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Figure 4.5: Density gradient centrifugation produces viable synaptosomes with functional presynaptic 7nAChR. Homogenised 
brain supernatant was applied atop a discontinuous Percoll density gradient. Five subcellular fractions (F1-F5) were produced, with the 
photograph identifying typical (white) gradient bands post-centrifugation. Small membranous material in F1; myelin, membranes and 
vesicles in F2; synaptosomes and membrane vesicles in F3; purified synaptosomes in F4 and extrasynaptosomal mitochondria in F5. 
Experimental synaptosomes were obtained from pooling F3 and F4 (*) and resuspending in isotonic physiological buffer before drug 

treatments. Synaptosomes were equilibrated at 37C for 10 min (the duration of PNU-12596 pre-treatment, where required) and 

subsequently treated with vehicle (control), 50M NMDA or 10M PNU-282987 for 30 min before denaturing and lysates prepared for 
Western blot analyses. Typical immunoblots show purified synaptosomes positive for the nerve terminal marker synaptophysin and negative 

for the postsynaptic marker PSD-95. Activation of 7nAChR significantly increased ERK phosphorylation, unlike NMDAR activation, with 

no effect on either full-length APP or the loading control -tubulin. 
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activated couple to the downstream activation of ERK (Dineley et al., 2001; Bitner et 

al., 2007; Steiner et al., 2007; Dickinson et al., 2008; El Kouhen et al., 2009). Purified 

presynaptic nerve terminals yielded low APP levels, relative to whole cell lysates, 

further reinforcing the mainly postsynaptic expression of APP, in accordance with 

Marcello et al., 2007. As detailed above, NMDAR activation induces robust APP 

processing in primary cortical neuronal whole cell lysates; however, in synaptosomes, 

NMDA treatment had no effect on APP holoprotein levels (figure 4.5 fourth panel). 

Also despite the isolation and activation of functional presynaptic 7nAChR, no effect 

on presynaptic APP levels was observed (figure 4.5 fourth panel), further reinforcing 

the lack of a measurable 7nAChR-mediated effect on APP processing in mature 

rodent cortex, as well as primary cortical neurons.  

4.2.6 7nAChR activation has no effect on APP-CTF production 
 

In neurons, the constitutive cleavage of APP under basal/homeostatic conditions is 

carried out by an -secretase enzyme (Kuhn et al., 2010) likely to be ADAM-9 (Koike 

et al., 1999), ADAM-10 (Lammich et al., 1999) or ADAM-17 (Slack et al., 2001), and 

results in the production of a C-terminal fragment (CTF), termed C83, along with 

soluble APP- (sAPP). Alternatively, under pathological conditions or following APP 

endocytosis (Cirrito et al., 2008), APP is cleaved by a -secretase enzyme (BACE-1), 

and produces the CTF, termed C99, and soluble APP- (sAPP) (Buxbaum et al., 

1998). CTFs (8-12kDa) can be phosphorylated at Thr668 and Tyr682 (Sano et al., 

2006; Barbagallo et al., 2010; Matrone et al., 2011), which may regulate APP 

processing (Barbagallo et al., 2010) and APP interaction with adaptor proteins 

(Schettini et al., 2010), however the definitive physiological role of CTF 

phosphorylation is yet to be determined. Following CTF production from APP695, by 

-/-secretase, subsequent cleavage occurs by the transmembrane -secretase 

complex (Selkoe and Wolfe, 2007) to yield the APP intracellular cellular domain 

(AICD) and either A (initial -secretase cleavage) or p3 fragment (initial -secretase 

cleavage). Thus, in order to further assess the potential for 7nAChR-mediated APP 

processing, APP-CTF profiles were analysed, to gain a more sensitive readout of APP 

cleavage by -/-secretase following 7nAChR activation. Using 16.5% Tris-Tricine 

SDS-PAGE, primary cortical neuron lysates were immunoblotted using a custom-

made primary antibody raised against the C-terminus of human APP to probe the CTF 

profile. To characterise the profile of CTF bands, commercially available inhibitors 
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were used to target each secretase enzyme family individually (through TAPI-1-, BSI-

, or DAPT-mediated inhibition of -/-/-secretase, respectively) to modulate the 

relative levels of - and -CTFs. Primary cortical neurons were subjected to vehicle, 

50M TAPI-1, 10M BSI, or 10M DAPT for 3 h, and the CTF profile compared to 1 

h 10M PNU-1/2 treatment and 20 min 50M NMDA treatment, figure 4.6A. Under 

vehicle-treated (control) conditions, primary cortical neurons predominantly produced 

C83 -CTFs under basal conditions (* lower molecular weight bands), in accordance 

with previously investigated APP-CTF profiles and constitutive -secretase activity in 

primary neurons (Hoey et al., 2009, 2013; Kuhn et al., 2010). Inhibition of -secretase 

with 50M TAPI-1 () appeared to have little effect on C99 -CTF production, likely 

due to the broad-spectrum profile of the peptide-based inhibitor and it’s relatively low 

efficacy at ADAMs. Conversely, inhibition of -secretase with 10M -secretase 

inhibitor () shifted the CTF profile to reflect enhanced -secretase-mediated APP 

processing, with increased density of lower molecular weight -CTF bands, as 

expected. Inhibition of -secretase with 10M DAPT induced accumulation of CTFs, 

as they could no longer subsequently be cleaved to yield AICD and A/p3 peptides. 

Thus the initial characterisation of CTF profiles in primary neurons mirrored that of 

previously published literature (Hoey et al., 2009, 2013; Kuhn et al., 2010) and the 

effects of 7nAChR activation could therefore be compared to NMDA treatment which 

enhances -CTF production (Hoey et al., 2009; Tampellini et al., 2009; Bordji et al., 

2010; Verges et al., 2011; Wan et al., 2012). Neurons were treated with 10M PNU-

120596 and 10M PNU-282987 for 1 h and lysates analysed for their CTF profile, 

alongside the secretase inhibitors (figure 4.6A). 7nAChR activation for 1 h produced 

no change in CTF profile over control, indicating 7nAChR has no effect on -

secretase activity. Conversely, 20 min 50M NMDA-treated samples mirrored the 

CTF profile of -secretase inhibition, with increased -CTF bands as a result of 

enhanced -secretase activity (figure 4.6A). Previous studies have shown a time-

dependent NMDAR-mediated enhancement of -secretase-mediated APP 

processing, thus a time course of 50M NMDA treatment was performed to establish 

the optimal time for -CTF production (figure 4.6B). Neurons were treated with vehicle 

(control) or 50M NMDA for up to 2 h, and lysates immunoblotted for APP-CTFs. 

NMDAR-stimulation produced a time-dependent increase in -CTF  
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Figure 4.6: NMDAR-stimulation increases time-dependent APP processing, whilst 7nAChR-stimulation has no effect over basal 
CTF production. A: APP C-terminal fragment (CTF) profiles under secretase enzyme activity-modulating conditions. Vehicle-treated 

(control) samples predominantly produced -CTFs under basal conditions (* bottom bands), whilst inhibition of -secretase with 50M TAPI-

1 (), appeared to modestly modulate -CTF production and inhibition of -secretase with 10M -secretase inhibitor () shifted the CTF 

profile to reflect enhanced -secretase-mediated APP processing, with increased -CTF. Conversely, inhibition of -secretase with 10M 

DAPT induced accumulation of CTFs, as they can no longer subsequently be degraded. Samples with activated 7nAChR (following PNU-

120596 and PNU-282987 treatment) showed no change in CTF profile from control and 50M NMDA-treated samples mirrored the CTF 

profile of -secretase inhibition, with increased -CTF bands. B: NMDAR-stimulation increases time-dependent non-amyloidogenic APP 

processing. NMDAR activation with 50M NMDA increased -CTF bands (* bottom bands), peaking around 20 min and returning to baseline 
by 2 h. 
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bands (* lower molecular weight bands, figure 4.6B), peaking around 20 min and 

returning to baseline by 2 h. Thus confirming primary cortical neurons are capable of 

stimulated non-amyloidogenic APP processing following NMDAR activation, but not 

7nAChR activation. 

4.2.7 7nAChR activation has no effect on -/-secretase activity 
 

An APP-Gal4 gene reporter assay that can be used to very sensitively measure 

regulated APP processing has been previously described (Hoey et al., 2009, 2013; 

Cox et al., 2014). The assay requires transfection of primary cortical neurons with four 

plasmids: pRC-APP-Gal4, encoding full-length human APP695 fused to the yeast 

transcription factor Gal4 (APP-Gal4) via a glycine linker; pC1-CMV-Fe65; pFR-

luciferase, encoding the Firefly luciferase gene and pRL-TKRenilla, encoding the 

constitutively expressed Renilla luciferase gene. Upon chemical transfection of 

primary neurons, APP-Gal4 is trafficked to the plasma membrane as an endogenous 

type I glycoprotein. Following secretase-mediated cleavage of APP-Gal4, AICD-Gal4 

is released into the cytoplasm where it is bound directly by Fe65 and promotes AICD 

stabilisation (Kimberly et al., 2001). Upon translocation to the nucleus, AICD-Gal4 can 

bind to the promoter of the Firefly luciferase gene promoter of the pFR-luciferase 

plasmid and induce transcription of the Firefly luciferase gene. Both constitutive 

Renilla and APP cleavage-mediated Firefly luciferase gene expression is detected 

utilising a commercial luminescence assay kit (Section 2.2.10) and quantified Firefly 

luciferase data expressed as a ratio of Renilla luciferase expression, to account for 

differences in transfection efficiency between primary neurons. This sensitive 

molecular tool has been extensively characterised in mouse primary cortical neurons 

(Hoey et al., 2009; Cox et al., 2014) and has been validated as a preferential readout 

of pro-amyloidogenic --secretase-mediated APP processing. This APP cleavage 

luciferase assay was utilised to further probe the potential of 7nAChR-mediated APP 

processing, in response to 7nAChR activation and compared to -secretase 

inhibition using a pharmacological inhibitor, DAPT. Following 24 h 10M DAPT 

treatment, a ~70% reduction in APP-Gal4-dependent luciferase gene expression was 

found relative to (vehicle-treated) control, indicating the assay was indeed a readout 

of -secretase-mediated APP processing. No significant effect over basal luciferase 

expression was observed following 6 h 7nAChR activation, by 10M PNU-120596 

and PNU-   
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Figure 4.7: 7nAChR activation does not affect APP-Gal4 cleavage in a 

luciferase reporter assay measuring -secretase-mediated APP processing. 
Human APP695 fused to the yeast transcription factor Gal4 (APP-Gal4) is cleaved by 

endogenous -secretase, following -secretase cleavage, to yield AICD-Gal4. AICD-
Gal4 binds to the UAS and TATA box of the promoter of the Firefly luciferase plasmid 
and drives transcription of the luciferase reporter gene. Firefly luciferase signals are 
normalised to independently transfected Renilla luciferase plasmid signals, to account 
for transfection efficiency. 5 DIV primary cortical neurons were transfected with pRC-
APP-Gal4, pC1-CMV-Fe65, pFR-Luciferase and pRL-TKRenilla plasmids and treated 

with either vehicle, -secretase inhibitor DAPT (10M) for 24 h or PNU-120596 and 

PNU-282987 (both 10M) for 6 h, before Dual-Glo and Stop-and-Glo luciferase 

activity measurement. DAPT treatment blocked -secretase-mediated APP 

processing, whilst 7nAChR activation had no effect on APP processing. Data 
expressed as mean fold change of control Firefly:Renilla luciferase activity ratio ± 
SEM, n=3 independent experiments, with 6 internal repeats for each independent 
experiment. ** indicates p<0.01, control (white bar) vs DAPT (black bar) subjected to 
one-way ANOVA with Bonferroni post-test.  
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282987 treatment. Thus, 7nAChR activation does not modulate α-/ or -/-

secretase activity and therefore 7nAChR do not modulate APP processing in 

cultured cortical neurons. In contrast, NMDAR and AMPAR activation-suppressed -

-secretase-mediated cleavage of APP, as measured by APP cleavage luciferase 

assay, has been previously reported by our lab (Hoey et al., 2009, 2013; Cox et al., 

2014). This APP cleavage luciferase assay further reinforces the data observed in 

figures 4.4-4.6; indicating 7nAChR activation has no effect on secretase-mediated 

APP cleavage, as detected by APP695 and CTF cleavage product immunoblotting. 

4.2.8  7AChR stimulation does not modulate full length Tau 
 

Neuronal activity is known to regulate APP processing (section 1.8.2.2); similarly, very 

recent emerging evidence suggests neuronal activity may also control Tau release 

(Pooler et al., 2013; Yamada et al., 2014) before its subsequent conformation switch 

(Nakamura et al., 2012), aggregation, seeding and pathological spread (de Calignon 

et al., 2012; Jucker and Walker, 2013) from cell-to-cell as a prion-like entity 

(Nakamura et al., 2012; Sanders et al., 2014) before inducing neurodegeneration 

(Lewis et al., 2001; Lei et al., 2012). The microtubule-stabilising protein Tau is the 

major constituent of neurofibrillary tangle (NTF) deposits, the hallmark of tauopathies. 

A exacerbates tau NFT formation, and tau mediates A toxicity thus understanding 

the interplay between neuronal activity, activation of postsynaptic receptors and A-

induced Tau/NFT toxicity at synapses is crucial (Ittner et al., 2010). As the relationship 

between activity-dependent Tau and A production, aggregation and tangle/plaque 

formation is coming to the fore; we reasoned activation of 7nAChR might play a role 

in the activity-dependent regulation of Tau phenotypes. Unpublished data from our 

lab strongly suggests NMDAR activation can induce re-localisation of Tau (data not 

shown) from the axon to dendrites (in accordance with Frandemiche et al., 2014). 

Furthermore, NMDAR activation-induced cleavage and/or dephosphorylation of Tau 

is evident, which may give rise to the distinct early-stage Tau strains involved in 

propagation of Tau pathology (Sanders et al., 2014). These effects are all strongly 

calcium dependent and given 7nAChR-mediate glutamate release to potentially act 

on NMDAR and AMPAR, it seemed reasonable to hypothesise that 7nAChR 

activation might modulate Tau. To this end, the effect of 7nAChR activation on Tau 

protein phenotype was examined, and compared with NMDAR activation. To prevent 

7nAChR desensitisation, neurons were treated with 10M PNU-120596 for 10 min 
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prior to a 1 h agonist treatment of PNU-282987 across a range of concentrations 

(300nM-30M) and compared to the dose-dependent effect of 1 h NMDA treatment 

(1-100M). Lysates were immunoblotted for Tau (figure 4.8) and the resultant 

molecular weight profiles analysed. Activation of NMDAR for 1 h induced the 

formation of lower molecular weight bands with 10-100M NMDA, as a result of 

cleavage and/or dephosphorylation of Tau isoforms. The NMDA treatment was not 

excitotoxic, and the same protein concentration was loaded across the gel, and no 

change in -tubulin loading control band profile was observed (figure 4.8A). In 

contrast, activation of 7nAChR with doses as high as 30M PNU-282987 showed 

no effect on Tau or -tubulin (figure 4.8B). PNU-282987 was restricted to a maximal 

dose of 30M as higher concentrations activate non-7nAChR (del Barrio et al., 

2011). Therefore, activation of 7nAChR has no effect on either of the two key AD 

hallmarks, APP and Tau, whereas NMDAR promote both non-amyloidogenic APP 

processing and activity-dependent modulation of Tau. 
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Figure 4.8: NMDAR-stimulation induces concentration-dependent Tau cleavage 

and/or dephosphorylation, whilst 7nAChR-stimulation has no effect on Tau. A: 

5-10 DIV primary cortical neurons were treated with vehicle (control, 0M) or 1, 3, 10, 

30 or 10M NMDA for either 1 h followed by immunoblotting for endogenous full 

length Tau and the loading control -tubulin. Concentration-dependent (10-100M) 
NMDA treatment revealed the appearance of lower molecular weight Tau bands. B: 

5-10 DIV primary cortical neurons were treated with vehicle (control, 0M) or 0.3, 1, 

3, 10 or 30M PNU-282987 for 1 h following 10 min 10M PNU-120596 pre-treatment, 

followed by immunoblotting for endogenous full length Tau and the loading control -

tubulin. Sustained 7nAChR activation had no effect on Tau protein profile, over 
control.  
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4.3 Discussion 
 

The aim of this results chapter was to assess the 7nAChR-mediated contribution to 

APP processing, with the hypothesis that 7nAChR activation in primary cortical 

neurons would directly enhance non-amyloidogenic APP processing in an ERK-

dependent manner, or indirectly via 7nAChR-mediated glutamate release and 

concomitant activation of postsynaptic glutamate receptors. Accordingly, this chapter 

has shown primary cortical neurons express predominantly postsynaptic APP, along 

with the putative -secretases ADAM-10 and ADAM-17; but that 7nAChR-specific 

activation had no effect on whole cell APP levels, presynaptic APP levels, CTF 

production, -/-secretase activity or full length Tau levels, when compared to NMDAR 

activation. 

4.3.1 7nAChR activation does not modulate APP processing 
 

7nAChR-mediated cellular activation with PNU-282987, in the presence of the PAM 

PNU-120596, is insufficient to promote non-amyloidogenic APP processing, as 

7nAChR activation had no effect on full-length APP protein levels or APP cleavage 

product CTF levels. Given the limitations of low sensitivity biochemical 

immunoblotting, the highly sensitive measurement of --secretase-regulated APP 

processing by APP cleavage luciferase assay was used to validate the lack of 

7nAChR effect. Again, 7nAChR activation showed no effect on --secretase 

activity-dependent production of Gal4-AICD, reinforcing the negligible effect on APP 

processing. Conversely, the majority of studies have shown the non-selective nAChR 

agonist nicotine enhances non-amyloidogenic sAPP release from neuron-like cell 

lines (Kim et al., 1997; Lahiri et al., 2002; Mousavi and Hellström-Lindahl, 2009; Nie 

et al., 2010). This discrepancy may have arisen due to the cell lines expressing high 

levels of 7- and non-7 nAChR, which are capable of coupling to non-amyloidogenic 

APP processing via nAChR-mediated calcium-influx. In contrast, the low physiological 

expression level of 7nAChR within the primary cortical neurons, coupled with the 

spatial separation of presynaptic 7nAChR being segregated from the large pool of 

postsynaptic APP may explain the opposing findings. Nonetheless, using 

synaptosomes, this study shows 7nAChR activation cannot couple directly to APP 

processing at the presynaptic nerve terminal. Furthermore, the lack of 7nAChR-

mediated non-amyloidogenic processing is in agreement with the in vivo use of the 
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7-selective agonist A-582941, in the treatment of 3xTg-AD transgenic mice, which 

display robust AD pathology and cognitive deficits. A-582941-mediated 7nAChR 

activation had no effect on AD pathology (Medeiros et al., 2014), in accordance with 

native physiological 7nAChR having no effect on APP processing and thus plaque 

deposition.  

Furthermore, published data from 7nAChR-expressing SH-SY5Y and PC12 cell 

lines (Hellström-Lindahl et al., 2000; Hu et al., 2008), in vivo in wildtype and AD 

transgenic Tg2576 mice and validated in 7nAChR-knock-out mice, showed 

7nAChR-selective activation reduced Tau phosphorylation (Bitner et al., 2009), 

through reduced GSK-3 activation (Cavallini et al., 2013). Conversely, data 

presented in this chapter highlighted 7nAChR activation in primary neurons had no 

effect on Tau phosphorylation. This contrasting effect may again be the result of a 

difference in 7nAChR expression level between cell types, especially following 

chronic in vivo activation of 7nAChR following a 2-week infusion of 7nAChR-

selective agonist (Bitner et al., 2009). Chronic nAChR agonist treatment dramatically 

up-regulates nAChR receptor expression (Peng et al., 1994; Molinari et al., 1998; Liu 

et al., 2001; Vallejo et al., 2005; Fu et al., 2009; St John, 2009; Goriounova and 

Mansvelder, 2012; Mazzo et al., 2013), and subsequently leads to up-regulation of 

ionotropic glutamate receptor expression, following enhanced nAChR-mediated 

glutamate release both in vitro and in vivo (Risso et al., 2004; Wang et al., 2007; 

Lozada et al., 2012). Increased ionotropic glutamate receptor expression and 

activation thus modulates and attenuates Tau phosphorylation, indirect of subsequent 

nAChR activation. 

4.3.2 NMDAR activation promoted non-amyloidogenic APP 
processing 

 

Numerous previous studies have reported an NMDA-induced effect on APP 

processing, although whether NMDAR activation mediates non-amyloidogenic or pro-

amyloidogenic APP processing remains somewhat controversial. Using SDS-PAGE 

and Western blot analyses; NMDAR activation was shown to reduce the levels of full 

length APP695, indicative of cleavage, whilst also enhancing the production of -CTF, 

thus promoting non-amyloidogenic APP processing. The findings presented here are 

in agreement with previous findings from our lab (Hoey et al., 2009), that NMDAR 

activation promotes non-amyloidogenic APP processing, and also in agreement with 
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independent findings (Tampellini et al., 2009; Bordji et al., 2010; Verges et al., 2011; 

Rush and Buisson, 2014). 

Conversely, previous studies have reported functional APP processing and A 

release from synaptosomes (Kim et al., 2010b), mediated by activation of 

metabotropic glutamate receptors. Given this study showed nerve terminal activation 

of ionotropic NMDA-type glutamate receptors had no effect on APP processing, this 

suggests NMDAR-mediated APP processing requires intact postsynaptic NMDAR-

associated components (for downstream signalling cascades and/or direct 

modulation of postsynaptic APP cleavage); and further reinforces the previous 

evidence of postsynaptic NMDAR-mediated non-amyloidogenic APP processing 

(Hoey et al., 2009; Tampellini et al., 2009; Bordji et al., 2010; Verges et al., 2011; 

Rush and Buisson, 2014). 

Furthermore, synaptic AMPAR and NMDAR activation both in this study and others 

in primary neurons indicate activation of ionotropic glutamate receptors modulates 

Tau phosphorylation (Mattson, 1990; Pooler et al., 2013) and cleavage (Garg et al., 

2011). As with APP processing, memantine-mediated blockade of extrasynaptic 

NMDAR attenuates A-induced tau hyperphosphorylation and toxicity (Song et al., 

2008). This reinforces the protective effect of synaptic NMDAR activation, over the 

toxic repercussions of extrasynaptic NMDAR activation. 

4.3.3 Non-amyloidogenic APP processing is not guaranteed 
following activity-dependent ERK phosphorylation 

 

Given the data described in chapter 3, treatment with PNU-282987 and PNU-120596 

selectively activates 7nAChR in primary cortical neurons, resulting in increased ERK 

phosphorylation. Thus, 7nAChR-induced cellular activation and resultant ERK 

phosphorylation is insufficient to induce APP processing, in contrast to ERK-

dependent non-amyloidogenic APP processing following activation of other ligand-

gated ion channels, such as NMDAR (Mills et al., 1997; Desdouits-Magnen et al., 

1998; Kamenetz et al., 2003), AMPAR (Hoey et al., 2013) and P2X7 receptors 

(Delarasse et al., 2011); whereas mAChR-mediated non-amyloidogenic APP 

processing has been shown to be ERK phosphorylation-independent (Cissé et al., 

2011). Furthermore, in accordance with the opposing effects of non-amyloidogenic 

versus pro-amyloidogenic APP processing following synaptic versus extrasynaptic 

NMDAR activation, a similar effect on ERK phosphorylation is also well documented. 

Synaptic NMDAR activation enhances ERK activation, whilst extrasynaptic NMDAR 
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activation inactivates ERK (Ivanov et al., 2006; Hoey et al., 2009). This further 

reinforces and validates the experimental conditions used in this thesis to characterise 

and investigate 7nAChR- and NMDAR-dependent ERK-mediated non-

amyloidogenic APP processing. 

4.3.4 Summary 
 

When taken together, the findings of this chapter are relevant as contrary to published 

literature; activation of 7nAChR cannot promote APP processing. Furthermore, 

functional nerve terminal 7nAChR were spatially separated from the majority of 

neuronal APP, localised postsynaptically. Following activation of synaptosome-

isolated nerve terminal 7nAChR, ERK phosphorylation resulted but could not directly 

promote APP processing. In whole-cell primary cortical neurons, 7nAChR activation 

was incapable of directly modulating APP processing, nor indirectly via a validated 

non-amyloidogenic APP processing mediator: activation of postsynaptic ionotropic 

glutamate receptors.  
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Chapter 5 
 

5. 7nAChR modulation of 
microglial behaviour 
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5.1 Introduction 

5.1.1 7nAChR and modulation of microglial function 
 

Microglia, derived from erythromyeloid precursors, are found uniformly distributed 

throughout the CNS and form the innate defence as the resident CNS immune cells  

(Ginhoux et al., 2010; Prinz and Priller, 2014). Microglia are highly versatile in 

assuming either a protective or neurotoxic state in response to environmental 

changes, through switching from their default ‘resting’ state of scanning the local 

environment, to a specialised ‘activated’ state in a diseased environment (Gordon, 

2003; Mosser and Edwards, 2008; Kettenmann et al., 2013), where they proliferate 

to expand the population of immunoresponsive cells (Gómez-Nicola et al., 2013). 

Recent data suggests there are not merely two phenotypic states, as originally 

perceived, but a spectrum of microglial activation states (Xue et al., 2014). Activated 

microglia can immediately remove damaged cells and synapses by phagocytosis, 

termed ‘phagoptosis’ and ‘synaptic stripping’, respectively, along with foreign and 

infectious agents. A balance must be struck with immune cell phagocytic activity 

(Brown and Neher, 2014), with basal phagocytosis processes controlling debris and 

bacterial clearance, whilst overactive phagocytosis induces widespread neuron death 

(Neher et al., 2011; Emmrich et al., 2013). Neuron-secreted signalling molecules and 

downstream microglial cellular cascades result in neuron-microglia cellular contact 

and induction of phagocytosis, which can influence the pathological processes 

involved in disease onset and progression. Understanding the distinct microglial-

neuronal communications involved in regulating CNS development during 

synaptogenesis (Parkhurst et al., 2013), synapse pruning (Kettenmann et al., 2013) 

and synapse maturation (Salter and Beggs, 2014) is crucial for targeting aberrant glia-

neuron signalling observed in chronic disease (Zhan et al., 2014). A recent study 

highlighted early (24 h post-injury) microglia-neuron contact following CNS damage, 

whilst subsequent infiltrating macrophages were shown to persist (up to 42 d post-

injury). This suggests microglia phagocytose initial damaged material, whilst 

infiltrating peripheral macrophages may contribute to the secondary CNS damage 

following injury (Greenhalgh and David, 2014). Using RNA sequencing, the microglial 

transcriptome was shown to change over the course of aging, with transcripts shifting 

from an initial endogenous ligand recognition phase to adopt a neuroprotective 

microbe recognition and host defence state (Hickman et al., 2013), thus indicating a 

heightened capacity for phagocytosis with age. Microglial phagocytosis controls CNS 
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homeostasis, through removal of cellular debris and neurotoxic foreign contaminants. 

Reduced in vitro and in vivo microglial phagocytosis results in enhanced inflammation 

and neurodegeneration, with impaired phagocytic capacity observed in AD patient 

brain samples (Lucin et al., 2013). Excessive release of microglial pro-inflammatory 

cytokines reduced A phagocytosis (Koenigsknecht-Talboo and Landreth, 2005), 

further emphasising the need to understand and subsequently control microglial 

hyperactivation in chronic neurodegenerative disease states.  

Activation of microglial 7nAChR has been shown to reduce cytotoxicity, mediated 

by various extracellular insults (Kawamata and Shimohama, 2011). Much of the initial 

literature to date has focussed on 7nAChR-mediated attenuation of A toxicity, 

through enhanced microglial phagocytosis, to explain the anti-inflammatory properties 

of 7nAChR activation. Accordingly, excessive levels of A result in microglial 

conversion to the ‘activated’ state. Microglial phenotype conversion results in 

production and release of neurotoxic cytokines, chemokines and reactive oxygen 

species, with deleterious effects on the CNS. Pro-inflammatory cytokine release 

triggers Tau hyperphosphorylation (Rojo et al., 2008), with implications for the etiology 

of AD, as previously discussed. Interestingly, 7nAChR immunoreactivity was 

observed to increase in glial cells throughout AD, representative of a compensatory 

mechanism to lower A (Teaktong et al., 2003). Activation of 7nAChR prevented A-

induced reactive oxygen species secretion by microglia (Moon et al., 2008). 

Furthermore, the AChE inhibitor donepezil reduced pro-inflammatory microglial 

activation, with attenuated TNF and reactive oxygen species production and release 

(Hwang et al., 2010). The 7nAChR-selective partial agonist GTS-21 restored the 

phagocytic activity of compromised macrophages; to enable enhanced bacterial 

clearance (Sitapara et al., 2014), whilst the AChE inhibitor galantamine has also 

shown enhanced microglial phagocytic activity, with increased A clearance (Takata 

et al., 2010).  

The current favoured signalling mechanism behind microglial phagocytosis involves 

the ligand-activated nuclear receptor peroxisome proliferator-activated receptor- 

(PPAR, Heneka and Landreth, 2007), which acts in a metabolic cycle to increase 

brain apolipoprotein E (ApoE) levels (Mandrekar-Colucci et al., 2012), with ApoE 

promoting the clearance of unwanted cellular material, such as A (Heneka et al., 

2005). Both in vitro and in vivo PPAR activation enhanced microglial phagocytosis 

and resulted in reduced soluble and insoluble A in the cortex and hippocampus of 
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AD transgenic mice (Yamanaka et al., 2012), inhibited excessive pro-inflammatory 

cytokine gene expression and reduced A- and cytokine-mediated neurotoxicity 

(Heneka and Landreth, 2007) and improved cognition (Cramer et al., 2012). In vivo 

application of a PPAR agonist improved hippocampal-dependent cognitive deficits in 

humans and ameliorated cognitive deficits in AD transgenic mice. The mechanism of 

cognitive enhancement was purported to be through convergence of PPAR signalling 

and the MAPK-ERK cascade, strongly implicated in memory consolidation (section 

1.4.2.3). PPAR agonism induced a PPAR-phospho ERK complex, with PPAR 

activation facilitating recruitment of activated ERK (Jahrling et al., 2014).  

 

Based on these published data, this chapter aims to show 7nAChR activation 

modulates microglial phagocytic behaviour. The results described within this chapter 

involve the characterisation of primary cortical microglia, analyses of functional 

expression of 7nAChR with respect to ERK phosphorylation and determination of 

microglial 7nAChR activation-induced phagocytosis.  
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5.2 Results 

5.2.1 Primary cortical glia mature in vitro, with microglia adopting 
a basal ‘resting’ phenotype 

 

Many studies attempting to understand CNS inflammation and the molecular 

mechanisms underlying neurodegeneration, use cell lines or microglia derived from 

embryonic tissue. As such, these in vitro models are less suitable in the study of aging 

and neurodegeneration (Stansley et al., 2012). In this study, we used neonatal P1-P2 

CD1 mouse pups, to isolate primary mixed glia (astrocytes and microglia) from the 

cortex, which were grown and matured in vitro for 4-6 weeks (Saura et al., 2003). 

Photographed phase contrast microscopy of the mixed glial population revealed 

cellular maturation and proliferation in vitro over time (figure 5.1). The time-lapse 

sequence of images revealed significant cellular proliferation between 1 and 6 DIV 

(figure 5.1A and B, respectively), with a confluent monolayer by 14 DIV (figure 5.1C) 

that became dense by 22 DIV (figure 5.1E). Analysis of the surface characteristics of 

the culture revealed distinct morphologies at different microscopic focal planes. The 

top layer of cells possessed a round, flat and cobblestone morphology, typical of 

resting astrocytes (figure 5.1C and E), whilst the bottom layer of cells possessed the 

irregular, spiked and ramified morphology of resting microglia, (figure 5.1E) (Glenn et 

al., 1992) clearly visible at higher magnification (figure 5.1F).  

5.2.2 Microglia are purified from a mixed glial population through 
mild trypsin incubation 

 

Upon microglial cells reaching confluency, following 4-6 weeks in vitro, the 

contaminating astrocytes were removed from on top of the microglia through mild 

trypsin incubation. 0.0625% trypsin application onto mixed glia (figure 5.2A) resulted 

in the detachment of an intact layer of cells, starting at the periphery of the well and 

spread across the entire monolayer with time (figure 5.2B). The detached monolayer 

contained all the astrocytes and lifted away from the underlying microglia in one sheet 

(figure 5.2B, arrow). The trypsin isolation procedure was minimally invasive and 

resulted in a highly enriched and dense layer of microglia on the bottom of plastic 

wells or on glass coverslips (figure 5.2C).  
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Figure 5.1: Morphological assessment of primary cortical mixed glia 
over time in vitro. A: Freshly isolated and plated glial cells following 1 DIV. 
B: Proliferation gives rise to a mixed glial monolayer by 6 DIV. C: Astrocyte 
confluency was reached by ~14 DIV, with a dense and uniform top layer of 
astrocytes visible. D: A bottom layer of microglia was clear by 14 DIV. E: With 
increasing time (22 DIV), the astrocyte layer became increasingly dense. F: 
High magnification of 22 DIV microglia, beginning to reach confluency. Scale 

bars represent 20m. 
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Figure 5.2: Purification of microglia from a mixed glial population. A: Confluent mixed glial cells following 35 DIV. B: Trypsin-EDTA 
(0.0625%) solution in DMEM-F12 medium was incubated on mixed glia for 15-25 min at 37°C, and the top astrocyte cell layer detached as a 
sheet (arrow). C: The remaining microglia monolayer was left in mixed glia-conditioned medium for 24 h, before use in immunofluorescence, 
biochemical assays or Western blotting. 
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5.2.3 Purified microglia are free from astrocytic contaminants 
and display microglia-specific protein expression 

 

Both mixed glia and purified microglia were subjected to immunofluorescence 

staining, to determine expression of cell type-specific markers. Astrocytes are the 

major glial cell present within the CNS and selectively express glial fibrillary acidic 

protein (GFAP) (Brahmachari et al., 2006), figure 5.3A. Following trypsinisation of the 

mixed glial population, resulting in microglial purification and isolation, GFAP 

expression was completely abolished (figure 5.3B), indicating no contaminating 

astrocytes were present in the remaining microglial population. Microglia selectively 

express the -integrin variant cluster of differentiation molecule 11B (CD11b) (Roy et 

al., 2006), figure 5.3C. Primary cortical microglia were positive for CD11b expression, 

which was localised to the cytoplasm and expressed throughout population of cells, 

indicating 100% microglial purity. 

5.2.4 Primary microglia adopt a reactive ‘activated’ phenotype 
following exposure to LPS 

 

To determine the reactive nature of the primary microglia, the cells were exposed to 

the bacterial endotoxin lipopolysaccharide (LPS, 100ng/ml) for 20 min. LPS is a widely 

used and powerful activator of microglial cells both in vitro and in vivo (Sun et al., 

2008; Schmid et al., 2009; Chen et al., 2012), with LPS application triggering pro-

inflammatory gene expression, signalling cascades, pro-inflammatory cytokine 

release and cell death. To establish the functional responsiveness of the primary 

cortical microglia, LPS was used to examine the reactive phenotype of the cells 

through their potential to undergo well-characterised shape changes from the ‘resting’ 

to ‘activated’ state (Pocock and Kettenmann, 2007). Under basal conditions, microglia 

appear classically ramified through both phase contrast microscopy (figure 5.4A) and 

confocal immunofluorescence (figure 5.4C), with microglial processes constantly 

surveying their surroundings. Following microglial activation with LPS, the cells 

undergo the characteristic shape change transformation and subsequently appear 

amoeboid (figure 5.4B and D), indicative of responsive and functional primary cortical 

microglia.  

 



 

 130 

 

Figure 5.3: Purified primary microglia are free of astrocytic contaminants and express microglia-specific markers. A: 38 DIV mixed glial 
populations were subjected to single immunofluorescence staining, revealing GFAP (green) expression throughout the cytoplasm of 
approximately one third of the DAPI-positive total cell population. B: Purified microglia were negative for GFAP expression, indicating no 
astrocyte contamination post-purification. C: Immunofluorescence of 38 DIV purified microglia exhibited CD11b expression (green) throughout 
the cytoplasm of all DAPI-positive cells, indicating a pure microglial population. All glial cells were negative for the neuron-specific markers Tau 

and NeuN (data not shown). All nuclei were counter stained with DAPI (blue) and scale bars show 20m. 
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Figure 5.4: LPS exposure of primary microglia induces a reactive phenotype. A: 
Following purification and under homeostatic in vitro conditions, microglia appeared 
highly ramified with spiked processes by phase contrast microscopy. B: Following 
100ng/ml LPS treatment for 20 min, microglia appeared to adopt a round and 
amoeboid morphology. C: Single immunofluorescence staining of untreated microglia 
revealed APP expression (green) throughout the cytoplasm, with an additional strong 
peri-nuclear localisation. D: LPS-induced cellular activation revealed the microglial 
cell body increases in roundness, indicative of an activated microglial phenotype. 

Scale bars show 20m.  
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5.2.5 Primary microglia are functional and express 7nAChR 
that couple to ERK phosphorylation 

 

To test the hypotheses that 7nAChR activation is capable of modulating microglial 

behaviour, demonstrating functional 7nAChR in vitro was essential. Changes in ERK 

phosphorylation status have been documented following glial cell activation, but its 

role is yet to be well defined in terms of microglial inflammatory cell behaviour. The 

effect of glial 7nAChR activation has been shown to both enhance (Koyama et al., 

2004; Wang et al., 2013) and reduce (Shytle et al., 2004; Cui and Li, 2010) ERK 

phosphorylation, and is thus yet to be defined thoroughly. To establish the functional 

nature of the 7nAChR expressed by the primary cortical microglial model system, 

assessment of the ERK-coupling capacity of these receptors was carried out. 28-50 

DIV microglia were subjected to combinatorial treatment with 10M PNU-282987 for 

up to 1 h, following a 10 min pre-incubation with PNU-120596, and lysates 

immunoblotted for dual-phosphorylated (Thr202 and Tyr204) active pERK2 and total 

ERK2. Treatment with either the PAM (PNU-1) or agonist (PNU-2) alone had no 

significant effect over vehicle-treated control (figure 5.5A). However, PNU-1 

potentiated 7nAChR activation with PNU-2 caused a rapid and significant ~18-fold 

increase in ERK2 phosphorylation, over vehicle-treated control samples (figure 5.5A). 

Over a time course of 1 h, ERK phosphorylation was significantly elevated following 

acute (3 min) PAM-potentiated 7nAChR activation, with phosphorylation status 

returning to baseline levels over longer periods of treatment (10-30 min). Interestingly, 

following 60 min 7nAChR activation, a trend towards an increase in ERK 

phosphorylation was observed (~10-fold), which can be attributed to a non-7nAChR-

mediated effect, as it is also observed following BTX-mediated inhibition of 

7nAChR (figure 5.5B). To establish the selectivity of the 7nAChR activation-

dependent ERK phosphorylation, microglia were pre-treated for 20 min with BTX 

(100nM), before application of PNU-120596 and PNU-282987 for up to 1 h (figure 

5.5B). Application of BTX alone had no effect on basal levels of ERK 

phosphorylation, indicating the functional population of 7nAChR were not 

modulating baseline microglial signalling and activation state. BTX-mediated 

inhibition of 7nAChR currents significantly abolished PNU-282987-mediated ERK 

phosphorylation, returning phospho-ERK to baseline level, reinforcing the selectivity 

of 7nAChR-mediated microglial activation. Again, following 60 min 7nAChR   
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Figure 5.5: Cellular activation and stimulation of 7nAChR couples to ERK phosphorylation in 28-50 DIV primary microglia.                          A: 
PNU-282987 treatment in combination with PNU-120596 induces rapid ERK phosphorylation. B: PNU-mediated ERK phosphorylation is blocked by 

BTX. C: Cellular activation with treatment with the bacterial endotoxin LPS induces rapid ERK phosphorylation. Protein band densitometry 
quantification expressed as the ratio of pERK2 to total ERK2 and indicates a significant time-dependent elevation in MAP kinase (ERK) activation. Data 
expressed as mean fold change of control pERK2:ERK2 ratio ± SEM, n=3 independent experiments. Representative ppERK1/2 and ERK2 blots for 
each experiment A-C are shown. ** indicates p<0.01, control (white bar) vs agonist/PAM treatment (grey bars) subjected to one-way ANOVA with 
Bonferroni post-test. 
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activation, even in the presence of BTX, a trend towards a sight increase in ERK 

phosphorylation was observed, further reinforcing an 7nAChR-independent 

secondary effect of prolonged 7nAChR activation (figure 5.5B). To establish the 

selectivity of microglial activation and downstream ERK phosphorylation, 28-50 DIV 

microglia were subjected to treatment with 100ng/ml LPS for up to 1 h, and lysates 

immunoblotted for dual-phosphorylated (Thr202 and Tyr204) active pERK2 and total 

ERK2. LPS treatment is a well-characterised immune cell activator, but results in the 

release of pro-inflammatory cytokines. Acute LPS treatment for 3 min increased ERK 

phosphorylation ~20-fold over vehicle-treated control, whilst longer time points of 30-

60 min displayed a trend towards increased ERK activation (figure 5.5C). 

Furthermore, 50M NMDA treatment for up to 1 h had no effect (data not shown) on 

microglial ERK activation, consistent with a lack of functional NMDAR on microglia 

(Pocock and Kettenmann, 2007) and reinforcing the selectivity of the 7nAChR-

mediated cellular activation.  

5.2.6 7nAChR activation promotes microglial phagocytosis 
 

Phagocytosis is a specialised form of endocytosis by which large particles are 

ingested by specialised cell types (macrophages, neutrophils and microglia). 

Phagocytosis is a triggered process that requires activated receptors at the cell 

surface initiating a signalling cascade into the cell interior to start the process. The 

molecular mechanisms underlying phagocytosis are yet to be fully identified, but can 

occur by either a non-classical receptor-mediated mechanism via 1-integrins, or by 

classical phagocytosis mechanisms via Ig receptors or complement receptors 

(Koenigsknecht and Landreth, 2004). The phagocytic capacity of primary microglia 

was assessed by ingestion of fluorescently labelled beads (Hassan et al., 2014) upon 

LPS-mediated cellular activation or stimulation of 7nAChR. Under basal vehicle-

treated control conditions microglia phagocytosed 3 beads per cell, (figure 5.6A and 

5.6B) whilst LPS treatment increased phagocytosis ~2.5-fold, indicative of responsive 

and activated microglia (figure 5.6A). Treatment with PNU-120596 or PNU-282987 

alone had no significant effect on phagocytosis, reinforcing the previous observation 

for the requirement for PAM-potentiated 7nAChR activation to induce cellular 

activation and ERK phosphorylation. Combinatorial treatment with both PNU-1 and 

PNU-2 enhanced bead phagocytosis by 4-fold (figure 5.6A and 5.6C), in agreement 

with analogous published literature. For example, galantamine-mediated 7nAChR 
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activation enhanced microglial phagocytosis of A, and depletion of the 7nAChR-

selective agonist choline reduced A phagocytosis (Takata et al., 2010). Furthermore, 

7nAChR activation has previously been shown to enhance macrophage 

phagocytosis (Lee and Vazquez, 2013; Sitapara et al., 2014). Application of BTX 

had no effect on basal levels of phagocytosis, when applied alone, but completely 

abolished the 7nAChR-mediated phagocytosis with PNU-120596 and PNU-282987, 

highlighting the specificity of the 7nAChR effect (figure 5.6A). The contribution of 

phagocytosis versus endocytosis was determined through blocking endocytosis with 

dynasore. Dynasore is a cell-permeable inhibitor of dynamin GTPase activity (Macia 

et al., 2006), which blocks both dynamin-1 and dynamin-2, required for clathrin-

mediated endocytosis. Dynasore-mediated inhibition of endocytosis is well 

characterised (Macia et al., 2006; Hua et al., 2013; Xu et al., 2013). Pre-treatment 

with 100M dynasore prior to bead and drug application was not sufficient to attenuate 

7nAChR-mediated phagocytosis, suggestive that the bead uptake into microglia is 

not via endocytosis. Dynasore has previously been shown to reduce macrophage 

phagocytosis of parasitic protozoa (Barrias et al., 2010) and inhibits the formation of 

phagocytic cups in testicular Sertoli cells (Otsuka et al., 2009), but has not been tested 

as an inhibitor of microglial phagocytosis.   
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Figure 5.6: LPS-activated and 7nAChR-stimulated microglia display increased 
phagocytic behaviour. A: 28-60 DIV primary microglia were treated with fluorescently 
labelled latex beads for 2 h in 0.1% BSA in PBS, supplemented with vehicle (control), 

100ng/ml LPS, 10M PNU-120596, 10M PNU-282987, 100nM BTX or 100M 
dynasore, followed by fixation and DAPI counter-staining. Data expressed as number 
of beads ingested per cell ± SEM, validated by z-stack image analysis, n=3-5 
independent experiments with 40+ cells per field of view. * indicates p<0.05, ** p<0.01, 
*** p<0.005, **** p<0.001, control (white bar) vs LPS treatment (black bar) or vs PNU-
1/2 ± inhibitor (grey bars), subjected to one-way ANOVA with Bonferroni post-test. B: 
Representative fluorescence microscopy image of vehicle-treated (control) primary 
microglial bead uptake. C: Representative fluorescence microscopy image of PNU-
1/2-treated bead uptake into microglia. 



 

 137 

5.3 Discussion 
 

The previous results chapters of this thesis have shown that despite expression of 

7nAChR at the glutamatergic synapse, neuronal 7nAChR activation had no effect 

on APP processing. Given the extensive literature on 7nAChR-mediated 

neuroprotective effects in cognitive decline, learning and memory, aging, AD and 

inflammation, understanding the functional effects of 7nAChR activation in all CNS 

cell types is important. Accordingly, this chapter aimed to show 7nAChR activation 

could modulate microglial behaviour and as such, assessment of 7nAChR-mediated 

microglial phagocytosis was undertaken. Characterisation of the primary microglial 

model system highlighted the specificity of the microglial cell type and the validity of 

the purification protocol in eliminating astrocyte contamination. Further analysis 

showed the model system was able to switch from a ‘resting’ to ‘activated’ 

morphological phenotype, which when coupled with 7nAChR-mediated ERK 

phosphorylation highlighted the presence of functional cell surface receptors on 

primary microglia. 7nAChR stimulation resulted in enhanced microglial 

phagocytosis, although the precise mechanism underling 7nAChR-mediated 

modulation of microglial behaviour is still unclear. 

5.3.1 Trypsinisation of a primary cortical mixed glial population 
gives rise to pure microglia 

 

Using conditions to promote a glial cell fate, both astrocytes and microglia were 

isolated from postnatal mouse cortex and sustained in vitro for long-term use. Cells 

proliferated in a time-dependent manner and by ~1 week in vitro a confluent layer of 

astrocytes was observed, with microglia reaching confluency by ~4 weeks in vitro. 

The cells adopted the classic morphology of round, flat and cobblestone shaped 

astrocytes and smaller irregular microglia with ramified processes, consistent with 

published glial culture morphometric characteristics (Alliot et al., 1991; Kettenmann 

and Hanisch, 2011; Torres-Platas et al., 2014). The purification protocol used 

(optimised from Saura et al., 2003) isolated and enriched primary cortical microglia, 

by using mild trypsin to detach astrocytes in one sheet from on top of the microglia. 

Commonly used alternative isolation procedures for primary microglia include density 

gradient centrifugation of mixed glial populations (Moussaud and Draheim, 2010) and 

shaking off and collecting loosely adherent microglia from mixed glial cultures (Ni and 
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Aschner, 2010), but result in a significantly lower yield of microglial cells (Saura et al., 

2003), making these methods less favourable. Furthermore, the trypsin purification 

produced negligible astrocyte contamination, as judged by GFAP 

immunofluorescence, with retained residing cells shown to be microglia through 

expression of microglia-specific CD11b immunoreactivity, reinforcing the benefit of 

this culture method in producing high yields of pure primary microglia.  

5.3.2 Primary cortical microglia are responsive and express 

functional 7nAChR 
 

Primary microglia displayed a ramified morphology under resting conditions, and 

following an inflammatory activation signal, such as LPS, the cells adopted a round, 

large and flat amoeboid morphology, in accordance with previously published data 

(abd-el-Basset and Fedoroff, 1995), indicative of functional and responsive microglia. 

Upon inflammatory activation by LPS, microglia retracted and withdrew process 

branches, this process enables a transition to a motile state wherein the amoeboid 

shape aids locomotory actions required for CNS surveillance and tracking of 

pathogens (Stence et al., 2001). Transition from ramified to amoeboid morphology 

was not immediate, and an amoeboid state was not fully adopted following 20 min 

LPS treatment. Transition to a fully ‘activated’ state has been shown to require 

complete resorption of microglial cell processes before a fully motile amoeboid state 

can be adopted (Stence et al., 2001). Furthermore, LPS treatment induced acute ERK 

phosphorylation, further indicative of responsive microglia with functional cell surface 

receptors that are capable of transducing extracellular inflammatory signals to 

intracellular cell signalling cascades. Along with ERK activation, LPS treatment has 

also been shown to activate pro-inflammatory pathways, such as the p38 MAPK 

cascade (Pocock and Kettenmann, 2007; Bordji et al., 2010) that induce microglial 

hyperactivation, cytokine release and subsequent neuronal cell death. As both in vitro 

and in vivo microglia can adopt either pro-inflammatory or protective behaviours, 

mediated via activation of distinct cell surface expressed receptor populations, this 

highlights the critical need for further understanding of the functionality of 7nAChR 

in primary microglia, as 7nAChR activation has been shown to reduce microglial 

activation, cytokine release and inflammation. Having displayed the expression of 

functional 7nAChR that selectively couple to ERK phosphorylation, this reinforces 

the use of primary microglia as a model system to study the mechanisms underlying 



 

 139 

heterogeneous cell population activation, inflammation and their roles in 

neurodegenerative disease onset and progression.  

5.3.3 Primary cortical microglia are a good model system to 
study inflammatory cell phagocytic behaviour 

 

Using a simple bead uptake assay, the phagocytic potential of primary microglial was 

defined and was significantly enhanced by 2 h exposure to LPS and activation of 

7nAChR, blocked by the 7nAChR-selective antagonist BTX. Preliminary data 

highlighted the phagocytosis was time-dependent (data not shown, as per Hassan et 

al., 2014) and an optimal 2 h time point was adopted to probe maximal microglial 

phagocytosis. Published literature has shown microglial phagocytosis required at 

least 30 min to form vacuoles before engulfment of foreign matter (Stence et al., 

2001), in accordance with the 2 h timescale required for 7nAChR-mediated bead 

phagocytosis. The use of dynasore to block endocytosis is now a commonly used 

pharmacological tool in understanding cellular trafficking dynamics. The lack of a 

dynasore-mediated attenuating effect on phagocytosis highlights the distinct 

mechanisms underlying these cellular processes. Previous published data showed 

macrophage endocytosis required both clathrin and dynamin, whilst phagocytosis 

was unaffected by inhibition of dynamin or by reducing clathrin expression, conversely 

phagocytosis required actin assembly (Tse et al., 2003). This reinforces the relevance 

and selectivity of the observed 7nAChR-mediated bead uptake as a phagocytosis 

event.  

5.3.4 Summary 
 

When taken together, the findings of this chapter are relevant as selective activation 

of microglial 7nAChR enhanced both ERK phosphorylation and phagocytosis. 

Phagocytosis has previously been shown to be impaired in AD, through a loss of 

beclin-1 expression, which directly impaired phagocytic capacity (Lucin et al., 2013). 

Reduced phagocytosis results in increased cellular debris deposits, enhancing 

inflammation and resulting in neurodegeneration. Conversely, enhanced microglial 

phagocytosis, via PPAR agonism, ERK activation and PPAR-phospho ERK 

complex formation improved cognition in AD transgenic mice through enhanced A 

phagocytic clearance (Cramer et al., 2012; Mandrekar-Colucci et al., 2012; 

Yamanaka et al., 2012; Jahrling et al., 2014). Therefore, having shown 7nAChR 
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activation can induce ERK phosphorylation and also enhance phagocytosis, this 

reinforces pharmacological activation of 7nAChR is an excellent clinical target for 

cognitive enhancement, memory consolidation and A clearance in AD.  
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Chapter 6 
 

6. General Discussion 
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6. Discussion 
 

This thesis aimed to address the hypotheses that 7nAChR activation would both 

enhance non-amyloidogenic APP processing in primary cortical neurons and 

modulate inflammatory cellular behaviour of primary cortical microglia. Using a 

combination of immunofluorescence imaging, dual emission microfluorimetry and 

immunoblotting techniques, expression of APP and functional 7nAChR were 

demonstrated in primary cortical neurons. However, immunoblotting for full-length 

APP and APP C-terminal cleavage fragments, coupled with a highly sensitive APP 

cleavage luciferase reporter assay revealed that activation of 7nAChR with a 

subtype-selective agonist and PAM had no effect on APP processing, despite robust 

calcium influx and ERK phosphorylation. Stimulation of 7nAChR with a subtype-

selective agonist and PAM also resulted in robust ERK phosphorylation in primary 

cortical microglia. Following 7nAChR activation and ERK phosphorylation, microglia 

displayed enhanced phagocytic behaviour, as determined through a bead-uptake 

assay, via a mechanism distinct from endocytosis. This suggests 7nAChR activation 

selectively regulates immunoresponsive behaviour in microglia. Together, these data 

provide no evidence to support the concept that targeting α7nAChR could be used to 

promote non-amyloidogenic APP processing in primary cortical neurons, but do 

support the ability of α7nAChR to promote neuroprotective phagocytic behaviour in 

microglial cells, figure 6.1. 

6.1 7nAChR-dependent regulation of APP processing 
 

Over the last ~20 years, a number of research groups have shown activation of 

7nAChR enhances non-amyloidogenic APP processing; resulting in increased 

sAPP release (Kim et al., 1997; Lahiri et al., 2002; Mousavi and Hellström-Lindahl, 

2009; Nie et al., 2010), reduced A release (Hellström-Lindahl et al., 2004; Hedberg 

et al., 2008; Nie et al., 2010) and reduced plaque deposition (Nordberg et al., 2002). 

The results from primary cortical neurons presented here conflict with these findings; 

by showing 7nAChR activation has no clear effect either at increasing -secretase 

activity or reducing -/-secretase activity. Due to the nature of the model system, 

primary cortical neurons can be considered more physiologically relevant than the 

‘neuron-like’ cell lines and overexpressing transgenic models used in previous 

studies. For example, chronic treatment of PC12 cells with the non-selective agonist 



 

 143 

nicotine, increased sAPP levels, derived from cleavage of the APP770 isoform (Kim 

et al., 1997), whilst SH-SY5Y cells chronically treated with nicotine also enhanced 

secretion of sAPP, which was not blocked by the 7-selective antagonists MLA and 

BTX (Mousavi and Hellström-Lindahl, 2009), suggestive of a contribution of other 

nAChR subtypes. Furthermore, transfected SH-EP1 cells stably overexpressing 

7nAChR and human APP695 were treated with nicotine for 24 h, increasing sAPP 

and CTF production and reducing A secretion, suggesting overexpression of 

7nAChR is sufficient to promote APP processing, but without nicotine-mediated 

increases in - and -secretase activity (Nie et al., 2010). In vivo studies of 7nAChR-

mediated effects on APP processing have assessed physiological sAPP release 

following high dose and chronic 14 d (Lahiri et al., 2002) or 16 week (Srivareerat et 

al., 2011) non-selective agonist infusion, reporting nicotine-mediated attenuation of 

A-induced behavioural deficits.  

There exists a wealth of research showing A accumulation alongside altered nAChR 

expression is significant in the progression of AD, as per the amyloid cascade and 

cholinergic hypotheses of AD (Parri et al., 2011). A-induced effects on 7nAChR 

may be mediated through direct A-7nAChR interactions (Wang et al., 2000a, 

2000b; Dineley et al., 2001; Nagele et al., 2002) or secondary to activation of NMDAR 

(Snyder et al., 2005; Abbott et al., 2008). This interaction may play a physiological 

role, as low concentrations of A peptide have been shown to enhance LTP via 

7nAChR activation (Dineley et al., 2002a; Dougherty et al., 2003; Puzzo et al., 2008; 

Khan et al., 2010). However, increased soluble A levels induce hyperexcitation of 

7nAChR (Liu et al., 2013) and in cognitively impaired AD transgenic mouse models 

and AD patient brain, the extent and affinity of A-7nAChR interaction is enhanced, 

resulting in desensitisation and functional inactivation of 7nAChR (Ren et al., 2007; 

Wang et al., 2009; Söderman et al., 2010), reduced nicotine-evoked calcium influx 

(Wang et al., 2000b), disruption of synaptic signalling (Wang et al., 2000b; Lilja et al., 

2011; Ni et al., 2013), and reduced ERK phosphorylation (Dineley et al., 2001). 

Interestingly, chronic A exposure (by exogenous A application or in APP 

overexpressing AD model transgenic mice) up-regulates 3- and 7nAChR 

expression in both the cortex and hippocampus (Dineley et al., 2001, 2002a; Bednar 

et al., 2002; Jones et al., 2006; Mousavi and Nordberg, 2006), hypothesised to be 

due to an nAChR-A interaction. Thus, AD-model transgenic mice are potentially 

endowed with the required nAChR expression level and thus the capability to mediate 
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nicotine-induced reductions in CSF A level in vivo (Nordberg et al., 2002; Hellström-

Lindahl et al., 2004; Unger et al., 2006). Given the on-going aim of both enhancing 

7nAChR expression and reducing A levels, agonist-mediated enhancement of 

7nAChR expression and any resultant non-amyloidogenic APP processing would 

thus be highly beneficial, reinforcing targeting 7nAChR as an attractive and viable 

clinical strategy.  

Given the low 7nAChR expression level coupled with the distinct spatial separation 

of presynaptic 7nAChR from the mainly postsynaptic APP, it is perhaps not 

unexpected that 7nAChR activation cannot couple directly to APP processing in 

these primary cortical neurons. Furthermore, the low level of natively expressed 

presynaptic 7nAChR appeared to be insufficient to promote indirect signalling 

through postsynaptic ionotropic glutamate receptors, to enhance ADAM-10 

expression (Marcello et al., 2007) and non-amyloidogenic APP processing (Hoey et 

al., 2009, 2013). The neuroprotection (from NGF- and serum-deprivation) proffered 

by nicotine-mediated 7nAChR activation has already been shown to be proportional 

to the 7nAChR expression level in PC12 cells (Jonnala and Buccafusco, 2001). 

Previous studies in primary neurons reported 95% of primary hippocampal neurons 

were positive for 7nAChR, as detected by rhodamine-BTX labelling, versus only 

36% of primary cortical neurons, which expressed half the number of hippocampal 

BTX binding sites per cell (Barrantes et al., 1995b). Results presented here support 

this finding; by showing primary cortical neurons do not express a sufficiently high 

level of 7nAChR (estimated at ~10-15% of neurons); thus 85-90% of cells were 

incapable of modulating 7nAChR-mediated APP processing.  

Further data presented in this thesis, supports previous findings that direct activation 

of neuronal synaptic NMDAR promotes non-amyloidogenic APP processing 

(Hardingham, 2006; Marcello et al., 2007; Léveillé et al., 2008; Hoey et al., 2009; 

Bordji et al., 2010), although this remains controversial (Cirrito et al., 2003, 2005, 

2008; Bero et al., 2011). The hypothesis that presynaptic 7nAChR activation would 

promote glutamate release and activate postsynaptic NMDAR and AMPAR, thus 

indirectly enhancing non-amyloidogenic APP processing has not been explored 

previously. Initially data from this thesis, highlighting 7nAChR plays no role even in 

indirect APP processing, seem difficult to reconcile, with numerous studies showing 

7nAChR activation promotes nerve terminal glutamate release (Cheng and Yakel, 

2014) and even glutamate synapse formation (Lozada et al., 2012). However, given 
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the low expression of 7nAChR in this model system, and the fact that an 

overwhelming majority of the previous literature used cell lines expressing high levels 

of nAChR, activated by the non-selective agonist nicotine, the relative contribution to 

glutamate release of highly expressed non-7 nAChR must be recognised. As such, 

increasing 7nAChR expression in primary cortical neurons might promote APP 

processing, through ionotropic glutamate receptor activation following 7nAChR-

mediated glutamate release. 

Activation of primary cortical neuronal 7nAChR directly induced ERK 

phosphorylation (observed in total neuronal lysates and nerve terminal synaptosome 

lysates), but did not modulate ERK-dependent transcription of Egr-1. Given that the 

MAPK pathway and ERK phosphorylation have been strongly linked to neuron 

activity-dependent APP processing (Mills et al., 1997; Desdouits-Magnen et al., 1998; 

Verges et al., 2011; Wan et al., 2012; Hoey et al., 2013), it was unexpected to observe 

no 7nAChR-mediated ERK-dependent APP processing. Expression of Egr-1 has 

been linked to NMDAR (Worley et al., 1991), AMPAR (Wang et al., 1994) and L-type 

voltage-gated calcium channel activity (Murphy et al., 1991); resulting in the 

hypothesis that Egr-1 expression is maintained by synaptic activity in response to 

physiological stimuli (Veyrac et al., 2014). Egr-1 expression plays a role in learning 

and memory induction and consolidation (Knapska and Kaczmarek, 2004). As such, 

one would expect 7nAChR activation to promote ERK-dependent transcription of 

Egr-1 in neurons, but data presented in this thesis indicate no 7nAChR-mediated 

effect. This again is likely to be due to the low expression level and spatial distribution 

of presynaptic 7nAChR in this model system, with previous literature highlighting 

gene expression changes require signalling above a threshold (Mann and Paulsen, 

2007), through receptor populations situated postsynaptically, and are thus optimally 

situated for induction of gene expression changes. Accordingly, overexpression of 

7nAChR in cell lines induces sustained ERK phosphorylation (Utsugisawa et al., 

2002) and Egr-1 gene transcription (Dunckley and Lukas, 2003), suggestive of an 

7nAChR-induced effect on ERK-dependent transcription with higher 7nAChR 

expression.  

6.2 7nAChR-dependent modulation of microglial behaviour 
 

The primary cortical microglia characterised here were observed as being highly 

responsive and capable of adopting classical morphological phenotypes, switching 
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between ‘resting’ and ‘activated’ states. This is in accordance with both primary 

microglia and microglial cell line studies (Kettenmann and Hanisch, 2011). Having 

shown the functional expression of 7nAChR on primary cortical microglia, this 

reinforces the extensive published literature on microglial neurotransmitter receptor 

expression, known to play diverse roles in the modulation of microglial behaviour. 

Microglial neurotransmitter receptors are akin to extrasynaptic receptors on neurons, 

which are not used for synaptic transmission, but instead play a regulatory role in 

modulating cell behaviour (Pocock and Kettenmann, 2007). For example, activation 

of 7nAChR (Giunta et al., 2004; Shytle et al., 2004) and GABAB receptor (Kuhn et 

al., 2004) populations are neuroprotective, reducing pro-inflammatory cytokine 

release; activation of AMPAR  is pro-inflammatory (Hide et al., 2000; Hagino et al., 

2004); metabotropic glutamate receptors induce mitochondrial depolarisation and 

microglial apoptosis (Taylor et al., 2002, 2005) and P2Y (Davalos et al., 2005; Haynes 

et al., 2006) and dopamine receptors (Färber et al., 2005) enhance microglial 

migratory behaviour. Furthermore, data presented here extends current knowledge 

reinforcing 7nAChR activation in microglia is protective (Wang et al., 2003; Cui and 

Li, 2010), through increased ERK phosphorylation and enhanced phagocytosis, in 

accordance with the 7nAChR-mediated ‘cholinergic anti-inflammation pathway’ 

(Giunta et al., 2004; Shytle et al., 2004; Moon et al., 2008; Hwang et al., 2010; Takata 

et al., 2010; Kawamata and Shimohama, 2011; Thomsen and Mikkelsen, 2012; 

Parada et al., 2013). Previous studies have shown 7nAChR-selective activation with 

PNU-282987 reduced TNF release from an 7nAChR overexpressing immune cell 

line (Li et al., 2009) and enhanced anti-inflammatory gene expression in primary 

hippocampal microglia (Parada et al., 2013). The non-selective agonist nicotine also 

reduced TNF release from primary microglia (Giunta et al., 2004; Shytle et al., 2004; 

Moon et al., 2008) and potentiation of 7nAChR on primary microglia and within AD 

transgenic mice with galantamine enhanced choline-mediated phagocytosis (Takata 

et al., 2010). 

The A phagocytosis capacity of microglia, has recently emerged as a topic of 

interest, with independent data showing A phagocytosis is a tightly regulated 

process (Bamberger et al., 2003; Koenigsknecht-Talboo and Landreth, 2005; Lee and 

Landreth, 2010; Mandrekar-Colucci et al., 2012) that is impaired in AD patients and 

AD-model transgenic mice (Lucin et al., 2013; Orre et al., 2014). Enhanced 

phagocytic behaviour by microglia, through PPAR activation has previously been 

shown to be neuroprotective and significantly lowers plaque burden in transgenic 
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Figure 6.1: Schematic of 7nAChR at the glutamatergic synapse. A: In primary cortical neurons 7nAChR are activated by the selective 

agonist PNU-282987, prevented from desensitising by the type II PAM PNU-120596 and antagonised by BTX. Activation of 7nAChR 

induces calcium (Ca2+) influx and MEK-dependent ERK phosphorylation (ERKP), which are inhibited by EGTA and U0126, respectively. 

Activation of 7nAChR does not drive ERK-dependent Egr-1 transcription or APP processing (red arrows, either directly or indirectly, via 
glutamate release and activation of postsynaptic NMDAR), but is sufficient for cognitive enhancement. NMDAR activation induces MEK-

dependent ERK phosphorylation, enhanced -secretase activity and promotes non-amyloidogenic APP processing (green arrows). Future 

experiments in primary neurons could probe the nicotine-mediated up-regulation of 7nAChR, with the aim of understanding whether nAChR 

expression level modulates APP processing (orange arrows). B: In primary cortical microglia 7nAChR activation with PNU-28987 and 
PNU-120596 is anti-inflammatory, enhancing ERK phosphorylation and phagocytosis of fluorescent latex beads. Phagocytosis is blocked 

by the 7nAChR-selective antagonist BTX, but not blocked by the endocytosis inhibitor dynasore (red bar-headed line). Future experiments 

in primary microglia could establish the MEK- and PPAR-dependence of phagocytosis (through U0126- and GW9662-mediated inhibition, 
respectively, orange bar-headed lines), whilst also characterising the physiologically relevant in vitro capacity of microglia to phagocytose 

A peptide (orange arrow). Further behavioural paradigms could also be investigated, such as 7nAChR-mediated modulation of microglial 
migration (orange arrow).  
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mice (Cramer et al., 2012). PPAR activation also reverses AD-like cognitive deficits 

(Yamanaka et al., 2012), but memory consolidation requires PPAR-pERK complex 

formation (Jahrling et al., 2014). Furthermore, nicotine has been shown to up-regulate 

PPAR expression in monocyte-derived human dendritic cells (Yanagita et al., 2012). 

Thus, data presented in this thesis corroborate with previous findings and extend our 

knowledge by showing 7nAChR-selective activation enhances ERK phosphorylation 

and promotes phagocytosis, which may be PPAR-mediated. 

Potential disadvantages and limitations of 7nAChR-mediated enhanced microglial 

phagocytosis exist. Aberrant and hyperactive phagocytosis can remove the synapses 

and processes of live neurons, termed ‘phagoptosis’ (Brown and Neher, 2014). 

Enhanced microglial phagoptosis has been implicated in the pathogenesis of 

Parkinson’s disease (Emmrich et al., 2013) and other neurological disorders, through 

release of microglial soluble pro-inflammatory mediators resulting in enhanced 

neuronal expression of cell-surface phagocytosis-promoting markers, such as 

phosphatidylserine (Neher et al., 2011). Previous studies have shown inhibition of 

cellular phagocytosis prevents inflammation-induced neuronal death, following a 3-

day LPS incubation (Neher et al., 2011), however long-term damage through 

prolonged phagocytosis of CNS debris was recently shown to be induced by 

infiltrating macrophages and not resident microglia (Greenhalgh and David, 2014). 

Therefore in future investigations, characterising the neuroprotective potential of 

microglial phagocytosis would benefit from cell type-selective 7nAChR ligands or 

their local administration, to eliminate confounding results from other peripheral 

nervous system cell types.  

 

Throughout this thesis, the 7nAChR-selective PAM PNU-120596 was used to reveal 

the effects of 7nAChR activity at the glutamatergic synapse. Given that the PAM 

alone had no effect on any cellular readout, such as ERK phosphorylation or 

microglial phagocytosis, this is found in contrast to in vivo examples of PAM use. For 

example, physiological concentrations of choline and PNU-120596 application 

activated 7nAChR-containing neurons within the hippocampus (Gusev and Uteshev, 

2010; Kalappa et al., 2010) to facilitate action potentials and enhance cognition in 

rodents (Timmermann et al., 2007). In contrast, in these primary cortical neuronal and 

microglial model systems, under defined medium conditions, cells were plated into 

20μM choline, a sub-maximal concentration for 7nAChR activation (Uteshev, 2014), 

given choline’s low potency (Papke and Porter Papke, 2002). Over time in vitro, the 
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concentration of choline will reduce, as it is taken into cells as an essential component 

of cell membranes and as an ACh precursor. Nonetheless, extracellular choline failed 

to activate native primary cortical 7nAChR in the presence of PNU-120596, and 

required application of the 7nAChR-selective agonist PNU-282987 to activate 

neurons and microglia to bring about 7nAChR-mediated cellular responses.  

6.3 Future work 
 

Given the wealth of literature on chronic nAChR stimulation up-regulating neuronal 

7nAChR expression in both in vivo and in vitro models (Peng et al., 1994; Barrantes 

et al., 1995b; Molinari et al., 1998; Kawai and Berg, 2001; Vallejo et al., 2005; Fu et 

al., 2009; St John, 2009; Goriounova and Mansvelder, 2012; Mazzo et al., 2013), 

further experiments could be conducted to definitively establish whether up-regulation 

of 7nAChR expression in primary neurons, previously shown to be enhanced by 

40% (Barrantes et al., 1995b; Jonnala and Buccafusco, 2001), through chronic 

nicotine treatment, enhances the potential for 7nAChR to directly and/or indirectly 

modulate non-amyloidogenic APP processing, figure 6.1. Looking further into the 

future, a greater understanding of the physiological role of APP is required; with 

particular focus on why APP processing and formation of neurotrophic (sAPP) and 

neurotoxic (A) APP cleavage products are so closely related to neurotransmission. 

Furthermore, understanding the role of cortical layers in the nAChR-mediated onset 

of various pro-cognitive outcomes, such as improved attention and working memory, 

will require a deeper understanding and characterisation of 7nAChR-selective 

ligands at a molecular, cellular and neuronal network level.  

 

Further minor experimental procedures, including characterising the ERK- and 

PPAR-dependence of microglial phagocytosis with U0126-meditated MEK inhibition 

and GW9662- mediated PPAR inhibition, respectively, would provide insight into the 

mechanism underlying microglial 7nAChR-induced phagocytosis. Of significant 

interest would be to establish whether A phagocytosis is also affected by 7nAChR 

activation, through exogenous application of fluorescently-labelled A into microglial 

culture medium, prior to 7nAChR stimulation. Such experiments could be coupled 

with characterisation of other microglial behavioural paradigms, such as 7nAChR-

mediated modulation of microglial migration and pro-inflammatory cytokine release, 

figure 6.1. Looking further into the future, gaining a deeper understanding of the 
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cholinergic anti-inflammatory pathway is required. Until recently, glial cells were 

thought to be passive bystanders in the onset of neurodegenerative disorders, but the 

molecular mechanisms underlying chronic inflammation are yet to be discovered. 

Significant research efforts are required to characterise the anti-inflammatory 

signalling cascades in microglia with a view to targeting systemic inflammation in the 

treatment of neurodegenerative disorders.  

6.4 Conclusion 
 

Given the evidence supporting 7nAChR play a role in the pathophysiology of a 

number of neurological disorders, from AD to Parkinson’s disease and schizophrenia, 

the use of 7nAChR-selective ligands as therapeutic agents presents an on-going 

research interest. Targeting the cholinergic system in the treatment of AD has proved 

to be the most successful strategy to date. Given the prolific clinical use of AChE 

inhibitors, which activate 7nAChR though boosting ACh levels and also through 

acting as 7nAChR PAMs, this highlights selective targeting of 7nAChR remains a 

viable clinical option in the treatment of neurological disorders. AChE inhibitors reduce 

pro-inflammatory cytokine release, boost microglial phagocytosis, reduce pro-

amyloidogenic APP processing and A production and enhance attention and working 

memory, reinforcing the multi-faceted benefits of enhanced 7nAChR expression and 

activation at the glutamatergic synapse.  

The major novel findings from this thesis highlight that activating natively expressed 

7nAChR with an 7nAChR-selective PAM and agonist cannot modulate ERK-

dependent transcription nor direct and indirect APP processing in a primary neuronal 

model system, unlike stimulation of NMDAR that have been validated as coupling to 

non-amyloidogenic APP processing. Furthermore, activation of microglial 7nAChR 

increases ERK phosphorylation and promotes neuroprotective behaviour through 

selectively enhancing phagocytosis. 
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