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Summary

Traditional phylogenetic inference assumes that the history of a set of taxa can

be explained by a tree. This assumption is often violated as some biological

entities can exchange genetic material giving rise to non-treelike events of-

ten called reticulations. Failure to consider these events might result in incor-

rectly inferred phylogenies, and further consequences, for example stagnant

and less targeted drug development. Phylogenetic networks provide a flexi-

ble tool which allow us to model the evolutionary history of a set of organisms

in the presence of reticulation events. In recent years, a number of methods

addressing phylogenetic network reconstruction and evaluation have been in-

troduced. One of such methods has been proposed by Moret et al. (2004). They

defined a phylogenetic network as a directed acyclic graph obtained by posit-

ing a set of edges between pairs of the branches of an underlying tree to model

reticulation events. Recently, two works by Jin et al. (2006), and Snir and Tuller

(2009), respectively, using this definition of phylogenetic network, have ap-

peared. Both works demonstrate the potential of using maximum likelihood

estimation for phylogenetic network reconstruction. We propose a Bayesian

approach to the estimation of phylogenetic network parameters. We allow

for different phylogenies to be inferred at different parts of our DNA align-

ment in the presence of reticulation events, at the species level, by using the

idea that a phylogenetic network can be naturally decomposed into trees. A

Markov chain Monte Carlo algorithm is provided for posterior computation of

the phylogenetic network parameters. Also a more general algorithm is pro-

posed which allows the data to dictate how many phylogenies are required

to explain the data. This can be achieved by using stochastic search variable

selection. Both algorithms are tested on simulated data and also demonstrated

on the ribosomal protein gene rps11 data from five flowering plants. The pro-

posed approach can be applied to a wide variety of problems which aim at

exploring the possibility of reticulation events in the history of a set of taxa.
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Chapter 1

Introduction

1.1 Motivation

Phylogenenies are the main tool for representing evolutionary histories of species.

Reconstructing phylogenies is a major component of modern research pro-

grams in many areas of biology and medicine. Real-world interest is strong

in determining such relationships. For example, pharmaceutical companies

may use phylogeny reconstruction in drug discovery for finding plants with

similar gene production or use phylogeny reconstruction to develop vaccines,

antimicrobials and herbicides. Also, the reconstruction of phylogenies is a cru-

cial tool as it allows the researcher to test new models of evolution.

Biologists, mathematicians, statisticians, and computer scientists have de-

veloped a number of methods for reconstructing these relationships, with the

usual model being a phylogenetic tree. However, it is widely understood and

accepted that the evolutionary history of some species is not really a tree (see

Linder et al., 2004 and references therein). Rather it is a network in which there

have been a large number of reticulate evolutionary events (i.e. exchange of

genetic material between two or more taxa). These are among the fundamen-

tal processes creating diversity at the gene level, particularly among bacteria

(Heuer and Smalla, 2007) and plants (Bergthorsson et al., 2003, 2004; Linder

and Rieseberg, 2004), and causing antibiotic resistance genes in the environ-

ment (see Martı́nez et al., 2007 and references therein) which is a major factor

that limits the effectiveness of antibiotics. Failure to detect reticulation might

result in incorrectly inferred phylogenies and hence invalidate the conclusions

of research studies. As a consequence, appropriate tools for inferring robust

phylogenies are required.

In recent years many researchers have introduced a number of tools to ad-

1



dress phylogenetic network reconstruction and evaluation, leading to a variety

of methods. In particular, one of these methodologies for network reconstruc-

tion has been proposed by Moret et al. (2004). They defined a phylogenetic

network as a directed acyclic graph (DAG) obtained by positing a set of edges

between pairs of the branches of an underlying tree (species tree) to model

reticulation events. Recently, two works by Jin et al. (2006), and Snir and Tuller

(2009), respectively, using this definition of phylogenetic network, have ap-

peared. Both works demonstrate the potential of using maximum likelihood

(ML) estimation for phylogenetic network reconstruction. To date, no equiv-

alent Bayesian method for phylogenetic network estimation has been devel-

oped. Here we propose a Bayesian approach to phylogenetic networks which

is a promising alternative to the above methods. In fact a Bayesian framework

can produce more straightforward statistical measures of phylogeny, can be

made computationally faster at least if compared to a ML approach with boot-

strap replicates, and careful prior specification can take into account biological

information that is otherwise inadmissible with any other approach.

1.2 Contribution of the thesis

The objective of this thesis is the development of a Bayesian modelling frame-

work for phylogenetic networks. Throughout the thesis we extensively test

and investigate the performance of this approach. We show that this frame-

work can recover the true synthetic parameter values, and can be robust to

several model specifications. We apply it to the ribosomal protein gene rps11

of flowering plants (Bergthorsson et al., 2003). The findings show that signifi-

cant variation caused by reticulation events in this phylogeny is detected.

Another contribution of the thesis is the development of a more flexible

and general algorithm which allows the data to dictate how many phyloge-

nies are required to explain the data. This is achieved by using a sampling

scheme based on a variable selection method, originally introduced and de-

veloped by George and McCulloch (1993) for linear regression models. The

good performance of the proposed method is illustrated on simulations and

the rps11 data.

We also conduct a review of the current state of the art in phylogenetic net-

works which provides an accessible introduction to the lastest developments

in this field hoping that it can serve as an impetus to inspire further research

and creativity in this fascinating area.
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Most of the material of the thesis will serve as the basis for journal articles.

1.3 Organization of the thesis

The contents of the present dissertation can be summarised as follows. In

Chapter 2 we introduce some notation and definitions which are essential tools

in later chapters, and describe some results which are used throughout the the-

sis. In particular we recall some basic concepts of phylogenetics and related

statistical tools such as Markov models and likelihood function of a phyloge-

netic tree.

In Chapter 3 we begin by providing a background for reticulation events,

discussing the consequences of unmodelled reticulation events, and giving

some references of works in related problems. Then, we describe the biol-

ogy underlying reticulation events. In particular we review the concept of

horizontal gene transfer (HGT) and hybrid speciation (HS). We also review ex-

isting methods to model these events in the literature, specifically the naive

ML estimation, ML with hidden Markov models (HMMs), and maximum par-

simony (MP). The aim is to provide an accessible introduction to this field of

research, trying to achieve a good balance between mathematical tractability

and intuition. We conclude by discussing advantages and limitations of these

methods.

Chapter 4 presents a Bayesian approach to phylogenetic networks to model

reticulation events at the species level. Markov chain Monte Carlo (MCMC)

techniques are employed to compute all posterior quantities of the evolution

model, and allow inferences to be made regarding the number of different phy-

logenies for different parts of DNA sequences. In particular, to model different

phylogenies at each site two approaches are considered: naive, where the sites

are modelled independently and a structure of HMMs, which accounts for the

fact that reticulation events generally affect a number of adjacent sites. Also,

the stochastic forward-backward algorithm, which is a single component block

procedure is contrasted to the Gibbs sampler, which is a large component block

procedure.

Chapter 5 investigates the performance of the method described in the pre-

vious chapter on simulated data. Specifically we test the algorithm on its abil-

ity to recover the true synthetic parameter values, and correctly classify tree

topologies along aligned sequences. We also contrast the naive prior for the

sequence of topologies to the hidden Markov model. Then we compare the
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performance of Gibbs sampling and the forward-backward algorithm for the

sequence phylogenies in terms of convergence and mixing. Finally we present

several scenarios and misspecifications with the aim of gaining insight in terms

of practical implications.

In Chapter 6 we apply the method to real data. We first introduce the con-

cept of lateral gene transfer in plants, explain the reason way this is an interest-

ing and important topic, particularly for biotechnologists. Then, we estimate

all the quantities of the phylogenetic network, and show some connections

with the simulation results.

Chapter 7 presents a more flexible and general algorithm for the cases

where the reticulation events are many, and hence the tree topologies are not

easily enumerated, in order to avoid exploring the entire space of tree topolo-

gies. In order to restrict the set of reticulations, since many of them would

contribute little to the likelihood of the data, a sampling scheme based on a

variable selection method is used. Specifically, we first describe the concept of

this selection method in regression models, and then adapt it to our framework

by turning the problem from a variable selection setting into a tree topology

selection setting. Finally, we show the performance of the algorithm on simu-

lated data, and apply it to the ribosomal protein gene rps11 data.

Chapter 8 ends with a final summary on the study and with recommenda-

tions for future research.
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Chapter 2

Preliminaries

2.1 Introduction

This preliminary chapter introduces some notation and definitions which are

essential tools in later chapters, and describes some results which are used

throughout the thesis. In particular here we recall some basic concepts of phy-

logenetics and related statistical tools such as Markov models and likelihood

function of a phylogenetic trees. The material covered here, except for the phy-

logenetic networks, is fairly standard and can be found in one form or another

in most phylogenetic texts. I wish to acknowledge two books, however, which

have served as basic references: the excellent book by Felsenstein (2004), In-

ferring Phylogenies, as well as the more concise Yang (2006), Computational

Molecular Evolution.

2.2 Phylogenetic trees

Phylogenetics is the study of evolutionary relationships among biological enti-

ties based on the analysis of biomolecular data such as DNA, RNA, or amino-

acids. We shall concentrate on DNA sequences although the methods can be

applied to amino acid sequences of proteins as well. A DNA sequence is made

up of four nucleotides containing the bases adenine (A), guanine (G), cytosine

(C), and thymine (T), arranged in sequences that are unique for each species.

The most convenient way of presenting relationships among a group of organ-

isms is through phylogenetic trees.

A phylogenetic tree is a DAG whose topology conveys information about

the evolutionary variation among taxa (Semple and Steel, 2003). A DAG is

a directed graph that does not contain paths starting and ending at the same
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node. An example of phylogenetic tree is illustrated in Figure 2-1 where leaf

nodes, placed at the bottom of the tree, represent present-day species, while

nonleaf nodes represent ancestral species which no longer exist with the most

recent common ancestor placed at the top (root) of the tree. The edge lengths

indicate the amount of genetic divergence.
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Figure 2-1: An example of phylogenetic tree T of four extant species. 5 and 6
represent internal nodes (extinct species) and 7 the root (the most recent com-
mon ancestor of all the taxa). Edge lengths t1-t6 are measured by the expected
number of substitutions along the edge.

Formally, let T = (V,E) be a tree, where V and E are the tree nodes and tree

edges, respectively, and let F (T ) denote its leaf set and I (T ) its internal nodes.

Additionally, let χ be a set of taxa (species). Then, T is a phylogenetic tree over

χ if there is a bijection between χ and F (T ). A tree T is said to be rooted if

the set of edges E is directed and there is a single distinguished internal node

with in-degree 0 and out-degree 2 (the most recent common ancestor). Nodes

with in-degree 1 and out-degree 2 correspond to extinct species and nodes

with in-degree 1 and out-degree 0 correspond to the extant species. With each

edge e ∈ E an edge length t, indicating the amount of evolution along the

edge, expressed in terms of the average number of mutations per site, and a

substitution probability P (t), indicating the probability of observing different

states at the two endpoints of t, can be associated.
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Many algorithms have been designed for the inference of phylogenetic

trees, by modelling the sequence of evolution by a Markov process (e.g. Felsen-

stein, 1981; Yang and Rannala, 1997; Mau et al., 1999; Larget and Simon, 1999).

However, in the presence of reticulation events (see next chapter for details), it

is unrealistic that the history of a set of taxa can be explained by a phylogenetic

tree. In fact, in these circumstances phylogenetic networks are a more flexible

tool to model biomolecular data. The next section introduces the reader to the

definition of phylogenetic network.

2.3 Phylogenetic networks

Phylogenetic networks are a generalisation of phylogenetic trees. They allow

us to model evolutionary history of a set of species in the presence of biological

events that are not consistent with tree-like evolution. As extensively shown

by Moret et al. (2004) they can be represented by DAGs. Here we consider

the definition of phylogenetic network given by Moret et al. (2004). Notice,

however, that other definitions are present in the literature (see Huson and

Bryant 2006).

A phylogenetic network N = N (T ) = (V ′, E ′) over the taxa set χ is de-

rived from a rooted tree T = (V,E) by adding a set R of reticulation edges to

T , where each r ∈ R is added as follows: (1) split an edge e ∈ E by adding

a new node, ve, s.t. the lengths of the newly created edges sum to the length

of e; (2) split an edge e′ ∈ E by adding new node, ve′ (again by preserving

lengths); and (3) finally, add a directed reticulation edge r from ve to ve′ . No-

tice that the substitution probability (and hence the length) of r is zero as these

events are instantaneous in time. The resulting network is a rooted directed

acyclic graph. Figure 2-2 shows an example of phylogenetic network obtained

by adding the edge (5,6) to the underlying species tree shown in Figure 2-3a.

Assuming that the species tree is available is not completely unreasonable. In

fact for many taxa the underlying organismal tree can be inferred with high de-

gree of probability or confidence. The tree in Figure 2-3a models the evolution

of all genetic material that is vertically inherited from the species tree, whereas

the tree in Figure 2-3b models the evolution of horizontally transferred genetic

material. Denote by T (N) = (T1, . . . , TK) the set of all trees contained inside

network N . Each such tree is obtained by the following two steps: (1) for each

node with in-degree 2, remove one of the incoming edges, and then (2) for

every node w of in-degree and out-degree 1, whose parent is u and child v,
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remove node w and its two adjacent edges, and add a new edge from u to v

(while summing the edge lengths). For example, the set T (N) of the network

N in Figure 2-2 contains only the two trees that are shown in Figure 2-3. In

general, a network N with R reticulation events can induce up to K = 2R

trees. Note that sometimes the number of possible trees in the network is less

than 2R (see section 6.3). Finally, as shown in Figures 2-2 and 2-3, there may be

common edge lengths among the trees induced by the network.
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Figure 2-2: An example of phylogenetic network N of four taxa with one retic-
ulation edge (R = 1). (5-8) represent internal nodes and 9 the root. Edge
lengths t1-t8 are measured by the expected number of substitutions along the
edge.

2.4 Markov models of sequence evolution

As we will shortly see, phylogenetic models, as considered here, define a

stochastic process of substitution that operates independently at each site in

DNA sequences. In the assumed process, a character is first drawn at random

from the background distribution and assigned to the root of the tree; charac-

ter substitutions then occur randomly along the trees branches, from root to

leaves. The characters that remain at the leaves when the process has com-
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(a) The underlying species tree T1, that is, the tree that does not
include the reticulation edge (5,6).
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(b) The horizontally transferred gene tree T2, that is, the tree that
includes the reticulation edge (5,6).

Figure 2-3: Trees induced by the network N .
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pleted define an alignment column. Thus, a phylogenetic model induces a dis-

tribution over alignment columns having a correlation structure that reflects

the phylogeny and substitution process. Notice that here we just describe the

stochastic process of substitution for one single site.

Consider the representation of site evolution in Figure 2-4. Over a time pe-

riod t, the state G at the site is replaced by the state T . There are three random

mutation events that are randomly distributed through the time period. One

of these is redundant, with G being replaced by G. These redundant muta-

tions are considered more for mathematical convenience than anything else.

The mutations from G to A and from A to T are said to be silent. The change

to A is not observed, only the beginning and end states. Let Σ denote the set

of states (e.g. for nucleotide data, |Σ| = 4). The mutation events occur accord-

� � � � � � � �

�

Figure 2-4: Redundant and hidden mutations. Over time t, the site has a re-
dundant mutation, followed by a mutation to A and then to T. The mutation
to A is not detectable (silent mutation). The number of the events is modelled
by a Poisson process.

ing to a continuous time Markov chain with state set Σ. The number of these

events has a Poisson distribution: the probability of k mutation events is

P (k) =
(µt)ke−µt

k!
.

Here µ is the rate of these events, so that the expected number of events in

time t is µt. When there is a mutation event, we let Mxy, (x, y ∈ Σ) denote

the probability of changing to state y given that the site was in state x. Since

redundant mutations are allowed, Mxx > 0. Putting everything together, the

probability of ending in state y after time t given that the site started in state x

is given by the xyth element of P(t), where P(t) is the matrix valued function

P(t) =
∞∑

k=0

Mk (µt)
ke−µt

k!
= e−µt

∞∑

k=0

(Mk)
(µt)k

k!
(2.1)

and M is the matrix whose entry is Mxy. The probability matrix, P(t), is known

as the transition probability matrix. This formula just expresses the probabili-
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ties of change summed over the possible values of k, the number of mutation

events. The sum in (2.1) has the same form as the series approximation of the

matrix exponentiation

eA =
∞∑

k=0

Ak

k!

and so (2.1) can be rewritten as

P(t) = e−µteMµt = e−µtIeMµt = e(M−I)µt = eQµt (2.2)

where I is the 4 × 4 identity matrix and Q = M − I is the instantaneous sub-

stitution rate matrix. So, as shown in 2.2, the transition probabilities P(t) over

some time period t can be obtained by exponentiating the Q matrix. There is a

standard trick to compute it.

First, diagonalise the matrix Q as

Q = SΛS−1

where S is a matrix whose columns are the right eigenvectors of Q and Λ is

a diagonal matrix containing the eigenvalues (λx). For any integer k we have

that

(Q)k =
(
SΛS−1

) (
SΛS−1

)
. . .
(
SΛS−1

)

= S (Λ)k S−1.

Taking the powers of diagonal matrices is just a matter of taking the powers of

its entries. It follows that

eQµt = eµtSeΛS−1,

where eΛ is a diagonal matrix and, for each x,
(
eΛ
)
xx

= eΛxx . The transition

probability matrix is known in closed form for simple instantaneous rate ma-

trices but not for the more complex ones. In the latter cases it is common to

use routines for numerically determining the eigenvalues and eigenvectors to

derive the transition probabilities. However, the eigenvalue decomposition

methods can occasionally be numerically inaccurate, in which case Golub and

van Loan (1996) recommend using the Padé approximation. The Padé approx-

imation to eQ is

eQ ≈ R (Q) ,
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with

Rpq (Q) = (Dpq (Q))−1 Npq (Q)

where

Dpq (Q) =

p∑

j=1

(p+ q − j)!p!

(p+ q)!j! (p− j)!
Qj

and

Npq (Q) =

q∑

j=1

(p+ q − j)!q!

(p+ q)!j! (q − j)!
Qj .

Several functions in R perform matrix exponentiation. Here we use the func-

tion expm in the package expm with default parameters p = q = 8.

As an example, consider the general time reversible model (GTR) which

was first described by Tavaré (1986). This is the most general model in that

it allows different nucleotides to be substituted at different rates as well as

different equilibrium frequencies. Assuming that the states in Σ are ordered

A,C,G, T , the model defined in terms of its rate matrix is

Q =




−QAA rACπC rAGπG rATπT

rACπA −QCC rCGπG rCTπT

rAGπA rCGπC −QGG rGTπT

rATπA rACπC rGTπG −QTT




(2.3)

where r = {rAC , rAG, . . . , rGT} is the vector of the rate parameters and π =

{πA, πC , πG, πT} the vector of stationary frequencies. The entries of the ma-

trix Q are given by Qxy = rxyπy,(x, y ∈ Σ, x 6= y). Each row sum of the ma-

trix is zero and hence Qxx =
∑

y∈Σ,y 6=xQxy. The entries of P(t), Pxy(t), satisfy

Pxy(t) ≥ 0 and
∑

y∈Σ Pxy(t) = 1. In addition the transition probabilities satisfy

the Chapman-Kolmogorov equations:

∑

k∈Σ

Pxk(s)Pky(t) = Pxy(s+ t), ∀s, t ≥ 0

and the initial condition Pxy(0) = 1 if x = y and Pxy(0) = 0 if x 6= y. To under-

stand the Chapman-Kolmogorov equation think of Σ = {A,C,G, T} and the

process being in state A reaching state T in time s+t. The transition probability

PAT (s+ t) is
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PAT (s+ t) = PAA (t)PAT (s+ t)

+ PAC (t)PCT (s+ t)

+ PAG (t)PGT (s+ t)

+ PAT (t)PTT (s+ t)

=
∑

k∈Σ

PAk(s)PkT (t).

The substitution process is also assumed to be time reversible, that is

πxPxy(t) = πyPyx(t).

Note that πx is the proportion of time the Markov chain spends in state x, and

πxPxy(t) is the amount of flow from state x to state y, while πyPyx(t) is the flow

in the opposite direction. This equation is known as detailed balance condi-

tion and means that the flow between any two states in the opposite direction

is the same. There is no biological reason to expect the substitution process to

be reversible, so reversibility is a mathematical convenience (Yang, 2006).

By introducing extra constraints on the nucleotide frequencies (πx, x ∈ Σ)

and/or on the relative substitution rates (rxy, x, y ∈ Σ, x 6= y), different substi-

tution models can be obtained. The simplest one, described by Jukes and Can-

tor (1969), assumes that the stationary frequencies of all nucleotides and all the

relative substitution rates are equal (πA = . . . = πT ) and (rAC = . . . = rGT ), and

hence the rate matrix simplifies to

Q =




−3rπ rπ rπ rπ

rπ −3rπ rπ rπ

rπ rπ −3rπ rπ

rπ rπ rπ −3rπ




(2.4)

where r = rAC = . . . = rGT and π = πA = . . . = πT .

It is important to mention that the rate µ and time t occur in the transition

probabilities only in the form of a product µt. With no external information

about either the time or the rate, we can estimate only the distance as given

by the product of these two quantities, but not them individually. This means

the absolute rate of change cannot generally be estimated but only the amount

of change. Therefore, typically the branch lengths in phylogenetic trees are
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measured in terms of the amount of change. In particular, a branch length unit

corresponds to one expected change per site at stationarity. This requires the

scaling of the Q matrix by a standardising factor µ, namely that:

µ
∑

x∈Σ

−Qxxπx = 1.

2.5 Likelihood function of a phylogenetic tree

Consider an alignment D of p DNA sequences, n nucleotides long. Let each

column in the alignment be represented by di, where the subscript i represents

the site, 1 ≤ i ≤ n. Hence di is a column vector of length p containing the

nucleotides {A,C,G, T} at the ith site of the alignment, and D = (d1, . . . ,dn).

Each column of the alignment is a realisation of a continuous time Markov

evolutionary process on phylogenetic tree topology T , with branch lengths t,

where t are expressed in terms of amount of evolutionary change. This process

is governed by the infinitesimal rate matrix Q. Denote the set of unknown pa-

rameters of the phylogenetic tree (the branch lengths t, the parameters of the

nucleotide substitution model π and r, and the tree topology T ) by θ and the

likelihood function for the observed DNA sequences from a Markov evolu-

tionary process by L(D|θ). Because of the assumption of independent evo-

lution among sites, the overall likelihood L(D|θ) of the aligned sequences D

given the parameters θ is obtained by the product of the probabilities of data

at individual sites P (di|θ)

L (D|θ) = L (D|t,π, r, T ) =
n∏

i=1

P (di|θ) . (2.5)

Equivalently the log likelihood is a sum over sites in the sequence:

` = log (L) =
n∑

i=1

log {P (di|θ)}.

Felsenstein (1981) introduced a dynamic programming procedure, called the

pruning algorithm, in order to compute the likelihood function L(D|θ) in a

fast and efficient way. Its essence is to calculate successively probabilities of

data on many subtrees. Let v be an internal node of the tree, and let Lv
i (x),

x ∈ Σ, denote the probability of observing data at the tips that are descendants
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of node v, given that the nucleotide at node v is x, that is:

Lv
i (x) = P{dv

i |θ, d̂i(v) = x},

where dv
i is the restriction of di to the descendants of node v and d̂i(v) is the

ancestral state for site i at node v. In other words, the value Lv
i (x) is the proba-

bility at site i for the subtree underlying node v, conditional on state x at v. In

the literature, the conditional probability Lv
i (x) is often confusingly referred to

as either the ‘partial likelihood’ or ‘conditional likelihood’.

The probability of the complete character di can be expressed as:

P (di|θ) =
∑

x∈Σ

P{d̂i(v0) = x}Lroot
i (x),

where v0 is the root node. P{d̂i(v0) = x} is the (prior) probability that the

nucleotide at the root is x, and is usually given by the equilibrium frequency

of the nucleotide under the model (πx, x ∈ Σ).

The function Lv
i (x) satisfies the recurrence:

Lv
i (x) =

(
∑

y∈Σ

Pxy(t1)L
v1
i (y)

)(
∑

y∈Σ

Pxy(t2)L
v2
i (y)

)
(2.6)

for all internal nodes v, where v1 and v2 are the children of v and t1, t2 are the

lengths of the branches connecting them to v. Equation (2.6) results from the

independence of the processes in the two subtrees below node v. For leaf l, we

have

Ll
i(x) =

{
1 if di (l) = x

0 if di (l) 6= x
.

Note that (2.6) can be easily extended to nodes v with more than two children.

The transition probabilities Pxy(t1) and Pxy(t2) are determined from (2.2) which

requires, as observed above, the diagonalisation of the rate matrix Q.

Savings on computation

The pruning algorithm is the major time-saver. Some other obvious savings

may also be made:

1. The same transition-probability matrix is used for all the sites in the se-

quence and may be calculated only once for each branch.

2. If two sites have the same data, the probabilities of observing them (pro-
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vided the share a common tree) will be the same and need to be calcu-

lated only once. Collapsing sites into site patterns thus leads to a sav-

ing in computation, especially if the sequences are highly similar so that

many sites have identical patterns.

2.6 Hidden Markov models

In Section 2.4 we discussed probabilistic models that consider the way substi-

tutions occur through evolutionary history at each site of a sequence, and in

Section 2.5 we assumed that evolution is independent among sites. Of course

this assumption can be too restrictive in practice, as adjacent sites are not nec-

essarily independent for example with respect to reticulation events. HMMs

are probabilistic models that consider not only how substitutions occur along

the branches of a phylogenetic tree at each site of a sequence, but also the way

this process changes from one site to the next. By treating molecular evolu-

tion as a combination of two Markov processes (one that operates in the di-

mension of space, along sequences, and one that operates in the dimension of

time, along the branches of a phylogeny) these models allow aspects of both

sequence structure and sequence evolution to be captured.

Informally speaking, with HMMs, a sequence of observations D is avail-

able to be analysed, but the sequence of states by which the observations were

generated is ‘hidden’ (hence the name hidden Markov model). More precisely,

an HMM, can be described as a model in which a sequence of observations

(d1, . . . ,di, . . . ,dn), is modelled by specifying a probabilistic relation between

observations and a sequence of hidden states Si, and a Markov transition struc-

ture linking the hidden states. The model assumes two sets of conditional

independence relations: that di is independent of all other observations and

states given Si, and that Si is independent of S1 . . . Si−2 given Si−1 (the first-

order Markov property). Using these independence relations, the joint proba-

bility for the sequence of states and observations can be factored as

P (S,D) = P (S1)P (d1|S1)
n∏

i=2

P (Si|Si−1)P (di|Si) . (2.7)

The conditional independencies specified by equation (2.7) can be expressed

graphically in the form of Figure 2-5. The state is a single multinomial random

variable that can take one of K discrete values, Si ∈ {1, . . . , K}. P (Si|Si−1)

are the state transition probabilities and P (di|Si) the probabilities of the data
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given the hidden states. For a rigorous treatment of HMM in phylogenetics

see Siepel and Haussler (2005).

Another possibility would be to use Markov random fields (MRFs). The

key idea behind MRFs is that the distribution of the process at a particular lo-

cation depends only on the values of the process at neighboring locations. In

this sense, it is Markovian; points outside the neighborhood are conditionally

independent given the neighborhood. One of the degrees of flexibility in the

model is the specification of the neighborhood. Often, only the immediately

adjacent points will constitute the definition of the neighborhood (first-order

neighborhoods). However, more extended neighborhoods are easily incorpo-

rated into the structure if desired. On a regular grid in two dimensions, this

would be the four lattice points (or grid cells) that are horizontally or verti-

cally adjacent. In one dimension, there are only two neighbors. First order

MRFs might be a more realistic tool as compared to first order HMMs, in that

they would allow us to model dependencies between sites accounting for both

neighbors. Future research could explore this possibility; we refer the reader

to Rue and Held (2005) and Besag (1974) for a detailed and more general in-

troduction.

di-1 di+1di

S i-1 S i+1S i

Figure 2-5: DAG representing the dependence structure of (2.7). The di repre-
sent the columns in the DNA data and the Si hidden states.
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Chapter 3

Phylogenetic networks in general

3.1 Introduction

We begin by providing some background on reticulation events, discussing

the consequences of failing to model reticulation events, and giving some ref-

erences of works in related problems. Then, we describe the biology under-

lying reticulation events. In particular we review the concept of horizontal

gene transfer (HGT) and hybrid speciation (HS). We also look at the existing

methods to model these events in the literature, specifically the naive ML esti-

mation, ML with HMMs, and MP. We conclude by discussing advantages and

limitations of these methods and discuss an alternative approach for this area

of research.

3.2 Background

As previously discussed, phylogenetic trees, which are the most used tool for

representing evolutionary relationships among species, may oversimplify our

view of evolution as they cannot account for reticulate evolutionary events

(i.e. exchange of genetic material between two or more taxa), such as hori-

zontal gene transfer (HGT) and hybrid speciation (HS)(see Linder et al., 2004

and references therein). These are among the fundamental processes creat-

ing diversity at the gene level, particularly among bacteria (see Heuer and

Smalla, 2007) and plants (Bergthorsson et al., 2003; Bergthorsson et al., 2004;

Linder and Rieseberg, 2004; Richardson and Palmer, 2007), and causing an-

tibiotic resistance genes in the environment (see Martı́nez et al., 2007 and refer-

ences therein) which is a major factor that limits the effectiveness of antibiotics.

HGT and HS are potential confounding factors in inferring phylogenetic trees;
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failure to consider these events might result in incorrectly inferred phyloge-

nies. For example, given two distantly related species that have exchanged a

gene (or part of it), a phylogenetic tree including those taxa will show them

to be closely related because that gene (or part of it) is the same, even though

most other genes (or part of them) are dissimilar. This is illustrated in Figure

3-1. In this respect, accounting for reticulation events is crucial as it allows

for improved phylogenetic inference. For these reasons, it is often ideal to use

alternative tools to infer robust phylogenies.
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Figure 3-1: An example of an incorrectly inferred phylogenetic tree due to
a reticulation event: (a) contains the underlying species tree of four taxa with
taxon 2 transferring genetic material to taxon 4. (b) is the inferred phylogenetic
tree which wrongly relates taxon 2 and taxon 4 because of the unmodelled
reticulation event.

In recent years many researchers have introduced a number of tools to

model evolutionary relationships among taxa in the presence of reticulations.

Most of these methods fall under the general umbrella of phylogenetic net-

works. Broadly, two categories of phylogenetic networks can be distinguished.

These are split networks and reticulate networks.

Split networks are representations based on bipartitions (splits) that cap-

ture conflicting signals in the data due to various factors, not necessarily retic-

ulation events. In such a network, parallel edges, rather than single branches,

are used to represents the splits computed from the data. To be able to accom-

modate incompatible splits, it is often necessary that a split network contains

nodes that do not represent ancestral species. Thus, split networks provide

only an implicit representation of evolutionary relationships. In fact, they are

largely employed to display incompatibilities in data. However, this is of-
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ten not the scope of reticulate analysis. As pointed out by Huson and Bryant

(2006) split networks provide only an implicit representation of evolutionary

history and do not construct a model for phylogenetic inference. Rather, they

construct a model for graphical representation of data sets when trees fail to

be the appropriate model. This is why, split networks are generally employed

as a tool to represent and explore data in the same way as a scatter plot can

be used to explore the relationship between two variables. Some of the better

known and used networks belonging to this class of methods are: median net-

works, consensus networks, split decomposition and neighbour-net methods.

A very brief overview of these networks is given.

In the median network method (Bandelt et al., 1995; Bandelt et al., 2000)

biomolecular sequences are first converted into binary data and then, constant

sites are eliminated. Each split is encoded as a binary character with states 0

and 1. Sites that support the same split are grouped in one character, which

is weighted by the number of sites grouped. Median vectors are calculated

for each triplet of vectors until the median network is finished. Such networks

can become very complex due to the presence of high dimensional hypercubes.

Fortunately, there exist techniques that can reduce this complexity preserving

the underlying phylogenetic signals (see for example Bandelt et al., 1995).

There are many situations in phylogenetics where the methods employed

produce a collection of trees. For instance, the trees might be the result of a

bootstrap analysis, samples from a posterior distribution, or might come from

a multigene analysis. Large collections of trees can be difficult to interpret and

draw conclusions from. Therefore, it is common practice to summarise the in-

formation contained in all of the trees by using a consensus tree. However, this

practice suffers from a limitation: by summarising all of the given trees by a

single output tree, information about conflicting hypotheses can be lost. Com-

mon methods for computing a consensus tree are the strict consensus method,

which outputs the tree displaying only those bipartitions that appear in all the

source trees, and the majority consensus method, which outputs the tree dis-

playing only those splits that appear in more than half of the input trees. These

two methods can be viewed as members of a one parameter family consensus

method which associates a split system to a collection of phylogenetic trees

consisting of those splits that are displayed by more than a given proportion

of the trees. In case the proportion is less than one half, it may no longer be

possible to associate a tree to the split system, as it may contain some pairs

of incompatible splits. However it is still possible to represent the split sys-

tem by a phylogenetic network. Such a network is called a consensus network
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(Holland and Moulton, 2003).

There also exist a number of methods that generate incompatible splits di-

rectly from a distance matrix. The split decomposition (Bandelt and Dress,

1992) is one of those. It takes as input a distance matrix on a set of taxa and

produces a set of weighted splits, where the sum of weights of all splits that

separate two taxa is an approximation of the given distance. This method has

the nice property that it produces a tree, whenever the distance matrix is a tree,

and otherwise it produces a treelike splits network that potentially displays

different and conflicting signals in a given data set. Although split decompo-

sition is useful for visualising conflicting signals in a data set, it is sensitive to

noise and only has good resolution for data sets of up to about 20 taxa.

The neighbor-net method (Bryant and Moulton, 2004) is a generalisation

of the tree building method neighbor-joining (NJ). It is applicable to data sets

containing hundreds of taxa. NJ is a cluster algorithm based on the minimum

evolution criterion. It starts with a star tree and then joins two nodes, choos-

ing the pair to achieve the greatest reduction in tree length. A new node is

then created to replace the two nodes joined, reducing the dimension of the

distance matrix by one. The procedure is repeated till the tree is fully resolved.

Neighbor-net has one important difference. When pairs of nodes are selected,

they are not combined and replaced immediately. Instead, the method waits

until a node has been paired up a second time, at which stage three linked

nodes are replaced with two linked nodes. In case a node linked to two others

remains, a second agglomeration and reduction is performed.

In contrast to split networks, reticulate networks give an explicit picture

of evolution and can be thought of as an extension of phylogenetic trees able

to directly model reticulations. Roughly speaking, they can be grouped into

two categories: reticulate networks at the population level (which model sex-

ual recombination) and reticulate networks at the species level (which model

HGT and HS). As for the reticulate networks at the population level, Strim-

mer et al. (2001) and Husmeier and McGuire (2002) gave important contri-

bution to the field. In particular, Strimmer et al. (2001) propose a stochastic

network based on the concept of the ancestral recombination graph (Hudson,

1983; Griffiths and Marjoram, 1996) as a way to model phylogenetic networks.

This is a rooted graph that provides a way to represent a linked collection of

clock-like trees by a single network. They also describe how the likelihood

of the data under a genealogy based on these graphs can be computed. Hus-

meier and McGuire (2002) model recombination at the population level in a

Bayesian fashion. They present a statistical model for detecting recombina-

21



tion, whose objective is to accurately locate the recombination breakpoints in

DNA sequence alignments. Their approach explicitly models the sequence

of phylogenetic tree topologies along a multiple sequence alignment. Infer-

ence under this model is done in a Bayesian way using Markov chain Monte

Carlo. The algorithm returns the site-dependent posterior probability of each

tree topology, which is used for detecting recombinant regions and locating

their breakpoints.

One methodology for network reconstruction at the species level has been

proposed by Moret and collaborators (2004) who defined a phylogenetic net-

work as a DAG obtained by positing a set of edges between pairs of the branches

of an underlying tree (species tree) to model reticulation events (see previous

chapter). Recently, three works (Jin et al., 2006; Snir and Tuller, 2009; Nakhleh

et al., 2005) using this definition of phylogenetic network, have appeared. In

particular, the first one demonstrates the potential of using ML estimation for

phylogenetic network reconstruction. The second is an extension of the previ-

ous work in that ML is combined with HMMs. The third uses an MP approach

for inferring evolutionary networks. All these methods have been published

in advanced computational biology journals, where the arguments are not al-

ways fully developed, and hence easy to follow. Other methods for phyloge-

netic networks at the species level have been proposed by Suchard (2005) and

Linz et al. (2007). However these latter works suggest approaches to estimate

an overall rate of HGT, rather than reconstructing phylogenetic networks. In

Section 3.4 we review the three reticulate network methods at the species level

with the aim of providing an accessible introduction to this fascinating field of

research. Other reviews are available in the literature (e.g. Posada and Cran-

dall, 2001; Morrison, 2005; Huson and Bryant, 2006; Makarenkov et al., 2006);

the majority of them discuss split networks without distinguishing between

reticulations at different levels, and do not describe methods based on the idea

that a phylogenetic network can be naturally and intuitively decomposed into

trees.

3.3 Understanding the biology behind reticulation

events

Biologists indicate by the term reticulation the dependence between two or

more evolutionary lineages. In fact, when reticulation occurs, two (or more)

independent evolutionary lineages are combined at some biological level. Be-
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cause life is organized hierarchically, reticulation can occur at three different

levels: chromosomal, population, and species.

At the chromosomal level reticulation is called meiotic recombination which

is a process by which two chromosomes, paired up during one phase of meio-

sis (process of reductional division in which the number of chromosomes per

cell is cut in half) exchange some portion of their DNA. In other words, meiotic

recombination occurs when two chromosomes break and then reconnect but

to different end pieces.

At the population level reticulation takes the name of sexual recombina-

tion. During this process half of one parent’s genes are combined with half of

the other parent’s genes in the offspring, which results in a gene combination

that did not previously exist.

At the species level, events such as HS (two species recombine to form one

new species) and HGT (one species horizontally transfers genetic material to

another species) are the main causes of reticulate evolution. Figure 3-2, taken

from Linder et al. (2004), provides an excellent and illustrative example of

reticulation event at the three levels. The tree depicted in Figure 3-2a illustrates

a scenario of hybrid speciation, in which species 2 and species 4 recombine to

create species 3. Zooming in on a lineage of the tree gives a picture of reticulate

event at the population level, as shown in Figure 3-2b. Finally, zooming in on

an individual in each population, meiotic recombination can be viewed, as

illustrated in Figure 3-2c. Since the aim of the chapter is to review existing

methods for modelling reticulation events at the species level, the next section

will describe in more detail the concept of horizontal gene transfer and hybrid

speciation. For a formal and comprehensive discussion of reticulation events

at the chromosomal and population level, the reader is referred to Linder and

colleagues (2004), and references therein.

3.3.1 Reticulation at the species level

Horizontal gene transfer

Horizontal (also called lateral) gene transfer occurs when genetic material is

horizontally transferred from one species to another (see Figure 3-3a where

taxon 2 horizontally transfers genetic material to taxon 3). In an evolutionary

scenario involving horizontal transfer, some sites are inherited through lateral

transfer from another species (Figure 3-3c), while all others are inherited from

the parent (Figure 3-3b). Thus, each site evolves down one of the trees con-
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1 2 3 4 5

(a)                                                     (b)                                                       (c)

Figure 3-2: Reticulation at the (a) species, (b) population, and (c) chromosomal
level.

tained inside the network. HGTs are extremely frequent in bacteria, although

this view has recently been challenged (see Linder et al., 2004 and references

therein). There are three common mechanisms for lateral gene transfer in bac-

teria: transformation, that is the genetic alteration of a cell resulting from the

introduction, uptake and expression of foreign genetic material; conjugation,

a process in which a living cell transfers genetic material through cell-to-cell

contact; transduction the process in which bacterial DNA is moved from one

bacterium to another by a bacterial virus.
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Figure 3-3: An example of HGT. The phylogenetic network N of four taxa with
one HGT in (a) and the two possible trees T (N) = (T1, T2) induced by N in (b)
and (c). In particular (b) contains the underlying species tree T1, that is the tree
that does not include the HGT edge and (c) the horizontally transferred gene
tree T2, that is the tree that includes the HGT edge.
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Hybrid speciation

In hybrid speciation, two lineages recombine to create a new species (see Fig-

ure 3-4a where taxon 1 and taxon 3 recobine giving rise to taxon 2). This non-

treelike event is very common in some group of organisms (plants, fish, fungi

for example) and is virtually absent in others (mammals and most arthropods).

Similarly to HGT, in an evolutionary scenario of HS, certain sites are inherited

from the parent (Figure 3-4b), while others are inherited through hybrid speci-

ation (Figure 3-4c). We can distinguish different ways of HS: diploid hybridiza-

tion, in which the new species inherits one of the two homologs (i.e., chromo-

somes having the same genes at the same loci but possibly different alleles) for

each chromosome from each of its two parents so that the new species has the

same number of chromosomes as its parents; polyploid hybridization, in which

the new species inherits the two homologs of each chromosome from both par-

ents so that the new species has the sum of the numbers of chromosomes of

its parents. Under this last heading, we can further distinguish allopolyploidiza-

tion, in which two lineages hybridize to create a new species whose ploidy

level (which refers to the number of complete sets of chromosomes in each

cell) is the sum of the ploidy levels of its two parents, and autopolyploidiza-

tion, a regular speciation event that does not involve hybridization, but which

doubles the ploidy level of the newly created lineage.
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Figure 3-4: An example of HS. The phylogenetic network N of four taxa with
one HS event in (a) and the two possible trees T (N) = (T1, T2) induced by N in
(b) and (c). In particular (b) contains the underlying species tree T1, that is the
tree that does not include the hybrid speciation edge and (c) the horizontally
transferred gene tree T2, that is the tree that includes the hybrid speciation.
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3.4 Models for reticulation events at the species level

At the species level three reticulate network models are available: naive ML es-

timation, ML with HMMs, and MP. All these methods are based on the general

model of phylogenetic networks formalised by Moret et al. (2002).

3.4.1 Maximum likelihood approaches

Here we discuss two ML approaches for phylogenetic networks: naive ML and

ML with an HMM.

Naive maximum likelihood

Likelihood in the framework of phylogeny-based reticulation detection and

reconstruction was suggested for the first time by Jin and colleagues (2006). In

this work, they extended the ML criterion to handle specifically HGT-oriented

networks. Their extension is based on the fundamental observation that, bar-

ring reticulation, the evolutionary history of a gene is modeled by a tree, so that

a phylogenetic network can be modeled by its constituent trees. This means

that, the likelihood of a network LN (D|θ) is obtained as a function of the like-

lihoods of the trees contained in it, that is:

LN (D|θ) =
n∏

i=1

PN (di|θ) (3.1)

where

PN (di|θ) =
K∑

k=1

P (Tk)P (di|θk) (3.2)

with k = 1, . . . , K indicating the number of trees within the network N , P (Tk)

denotes the probability of observing tree Tk, and P (di|θk), as explained in Sec-

tion 2.5, is the probability of data at site i for a particular tree Tk. The mathe-

matical expression of P (Tk) is given by

P (Tk) =
∏

r∈re(T )

pr
∏

r∈H(N)\re(T )

(1− pr) (3.3)

where pr is the probability of a DNA segment being transferred along a generic

edge r, re(T ) denotes the set of reticulation edges used to obtain tree T in the

network N , and H(N) the set of all reticulation edges in N . To illustrate (3.3),
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consider, once again, the example of Figure 3-3; equation (3.3) for tree T1 is

P (T1) = 1 − pr as re(T ) is empty and H(N)\re(T ) contains one element, and

for tree T2 is P (T2) = pr as re(T ) contains one element and H(N)\re(T ) is

empty.

Notice that an alternative choice to (3.2) is given by the following equation

PN
max (di|θ) = max

Tk∈(T1,...,TK)
P (Tk)P (di|θk) . (3.4)

In this way we seek for each site that tree such that the likelihood of the

leaf labels is maximised. However, the most used criterion is the summa-

tion, although the two approaches generally yield similar results. The au-

thors consider three kind of problems: (a) the tiny problem (which means that

the network topology, transition probabilities and reticulation probabilities are

given), (b) the small problem (the network topology is given but not the tran-

sition and reticulation probabilities), and (c) the big problem (an initial tree is

given and a set of reticulation edges is sought). Depending on the problem

there is a different algorithm. For the tiny problem Jin and colleagues (2006)

propose a component-wise naive algorithm. For the small version the prob-

abilities are estimated by using hill climbing and expectation maximization

(EM) algorithm. Finally for the big version a branch and bound heuristic is

used.

The findings of Jin et al. (2006) indicate that the ML framework to model

reticulation events at the species level is a promising approach, although the

techniques employed are not computationally efficient and this does not allow

the researcher to analyse large data sets. Also, this model does not account for

dependence among sites. The next ML approach can overcome this issue by

employing a more advanced model. However, if from one side it is certainly

true that a more complicated model can make the method more accurate, on

the other side this can impose a higher computational burden.

The ML method described in this section is implemented in NEPAL which

is available in the form of executable code from http://bioinfo.cs.rice.edu.

Maximum likelihood with HMMs

ML with HMMs to model reticulation events at the species level was proposed

for the first time by Snir and Tuller (2009). This new approach, called by the

authors NET-HMM, captures the biologically realistic assumption that, as il-

lustrated in Figure 2-5 of Section 2.6, neighboring sites of genomic sequences
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are not independent and are more likely to belong to the same tree, which in-

creases the accuracy of the inference. The model describes the phylogenetic

network as an HMM, where each hidden state is related to one of the net-

work’s trees. Specifically, the NET-HMM is defined as a tuple M = {N,H}

where N is the usual phylogenetic network, and H is an HMM. The evolu-

tionary history that is a tree in T(N) of every site in D is not known, thus a

hidden state Si ∈ {1, . . . , K} for each site in D is assigned. The hidden states

correspond to the states of H . The meaning of relating the state Si of the ith

site to a state of the HMM is that this site evolves on the tree Tk ∈ T(N) (that

is the ith column was emitted by tree Tk). Let P (Si|Si−1) denote the transition

probability between state Si−1 and Si, and I be an initial state that is not related

to a tree (so S 6= I). The likelihood of a NET-HMM model when observing a

set D of n-long sequences, is defined as the probability of observing D which

is the sum of probabilities of all length-n paths of states from {1, . . . , K}. Thus

the likelihood function in (3.1) becomes

LN (D|θ,S) =
∑

S1,S2,...,Sn

P (d1|θ, S1)P (S1|I)
n∏

i=2

P (Si|Si−1)P (di|θ, Si) . (3.5)

where P (di|θ, Si) is the probability of data at site i for a particular hidden state

Si. A different variant of (3.5) is to replace the sum by a maximum relation

similarly to equation (3.4). The parameters of the NET-HMM are inferred by

an algorithm which combines hill climbing in conjunction with EM.

Comparing this method to ML, the authors show in a simulation study

that the NET-HMM, which accounts for dependencies among sites, performs

significantly better in terms of tree allocation than the model with indepen-

dence assumption. In fact, the main advantage of using the NET-HMM is

its accuracy, although the computational cost is prohibitive for large data set.

Hence, future work should concentrate on developing more efficient heuris-

tics for computational optimization. Currently, the NET-HMM algorithm is

not available in any user-friendly software.

3.4.2 Maximum parsimony

This approach, as the other two, is based on the same definition of phyloge-

netic network decomposition but, differently from the other two frameworks,

is not likelihood-based. However, given its popularity, we decided to devote

this section to illustrate the MP method in the phylogenetic network context.
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MP is one of the most commonly used criteria for phylogenetic tree infer-

ence. Roughly speaking this method is based on the assumption that evo-

lution is parsimonious, that is, the best evolutionary trees are the ones that

minimise the number of changes along the edges of the tree. This criterion has

been successfully used to study the evolution of various data sets for almost

30 years, and despite a heated debate concerning its performance, it is one of

the most commonly used criteria for phylogeny reconstruction. Nakhleh and

colleagues (2005) extended the MP criterion to phylogenetic network by using

the idea that, as previously shown, a network N can be decomposed in trees.

Before giving any detail of the MP method for networks, we describe MP for

phylogenetic trees so that the extension to networks will be easier.

Consider two strings x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) of the same

length n. The Hamming distance H(x, y) is defined as the number of positions

j such that xj 6= yj . For example, given two DNA sequences, x = AAGGCTAC

and y = AGGGCTAT, the Hamming distance H(x, y) = 2. Given a multiple

alignment of sequences D and a corresponding fully-labeled tree T , i.e., a tree

in which each node u is labeled by a sequence du, define the Hamming dis-

tance of an edge e ∈ E(T ), denoted by H(e), to be H(du,dv), where u and v

are the two endpoints of e. Notice that du and dv have a different meaning

from di, (i = 1, . . . , n), as the former indicate a row vector and the latter a col-

umn vector of D. The parsimony score of a tree T , indicated by TCost(T,D), is
∑

e∈E(T )H(e). A maximum parsimony tree for D is a tree which minimises the

parsimony score. This definition is illustrated in Figure 3-5 where two trees, T1

and T2 are considered. For this case the parsimony score for each tree is calcu-

lated and is given by T1Cost(T1,D) = 3 and T2Cost(T2,D) = 4. Obviously, the

maximum parsimony tree is T1. In general computing the parsimony score of

a given phylogenetic tree can be done using the Fitch’s algorithm (Fitch, 1971,

and Hartigan, 1973).

A natural way to extend the tree-based parsimony score to fit a data set that

evolved on a network is to define the parsimony score for each site as the mini-

mum parsimony score of that site over all trees contained in the network. This

extension was first introduced by Hein (1990, 1993) in the context of meiotic

recombination and then by Nakhleh et al., (2005) in the context of reticulation

at the species level. The expression of the parsimony score of a network N leaf

labeled by a set D of taxa is

NCost(N,D) =
n∑

i=1

min
Tk∈(T1,...,TK)

TkCost (Tk,di) (3.6)
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AAG

(a)

AAA AGAGGA AAG

(b)

AGA GGAAAA

AAA

AAA

AAAAAA

AAA

AGA

Figure 3-5: An example of MP of phylogenetic trees. The two trees in
(a) and (b) are labeled by a sequence of length 3. T1Cost(T1,D) = 3 and
T2Cost(T2,D) = 4. Based on the definition of maximum parsimony, tree T1

in (a) is the optimal tree.

where Cost (Tk,di) is the parsimony score of sequence di at site i on tree Tk.

The calculation of the parsimony score of a network is illustrated in Figure 3-6

where a network N of four taxa with one hybrid speciation event is decom-

posed in two trees, T1 and T2. Given the data D = (d1,d2), the parsimony

score is equal to

NCost(N,D) = min {T1Cost(T1,d1), T2Cost(T2,d1)}

+ min {T1Cost(T1,d2), T2Cost(T2,d2)}

= 1 + 1 = 2

This means that tree T1 in Figure 3-6b is the optimal tree for site d1 and tree

T2 in Figure 3-6c is the optimal tree for site d2. In other words, under the MP

criterion, site d1 evolved under tree T1 and site d2 evolved according to tree T2.

Notice that as usually large segments of DNA, rather than single sites,

evolve together, expression (3.6) can be extended easily to reflect this fact, by

partitioning the sequences D into non-overlapping blocks bi of sites, rather

than sites di, and replacing di by bi in it, that is

NCost(N,D) =
n∑

i=1

min
Tk∈(T1,...,TK)

TkCost (Tk, bi) .

The algorithm used by the Nakhleh et al. (2005) is inapplicable to large

datasets due to its demanding computational requirements. Jin and colleagues

(2007a, 2007b, and 2009) devise computationally efficient solutions aimed at

reconstructing and evaluating the quality of phylogenetic networks under the

MP criterion. The authors show that MP currently outperforms ML, in terms
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GG

(a)

GC AGAC GG

(b)

GC AGAC GG

(c)

GC AGAC

GG

GG

AG

GG

GG

GC

Figure 3-6: A phylogenetic network N with one HS event on 4 taxa (a), each
labeled by a sequence of length 2 so that there are 2 sites d1 and d2. An MP
labeling of the internal nodes of the 2 trees T1 in (b) and T2 in (c) contained in-
side N are shown. T1Cost(T1,d1) = 1, T1Cost(T1,d2) = 2, T2Cost(T2,d1) =
2, and T2Cost(T2,d2) = 1. Based on equation (3.6), NCost(N,D) =
min {T1Cost(T1,d1), T2Cost(T2,d1)} + min {T1Cost(T1,d2), T2Cost(T2,d2)} =
1 + 1 = 2. In this case, tree T1 is the optimal tree for site d1 and tree T2 is
the optimal tree for site d2.

of computational requirements as well as accuracy of the inferred reticulation

events. However, it is important to note that the NET-HMM is as accurate as

the MP approach, although the former is computationally slower than the lat-

ter. Also, since phylogenetic trees are a special case of phylogenetic networks,

parsimony’s shortcomings on trees are expected to be extended to phyloge-

netic networks. For example, long branch attraction (phenomenon that occurs

when rapidly evolving lineages are inferred to be closely related, regardless

of their true evolutionary relationships) could become a serious concern when

employing MP. This method is implemented in NEPAL.

3.5 Discussion

It is well accepted and generally known that the evolutionary history of some

species is not a phylogenetic tree. Rather it is a phylogenetic network, in which

there have been a number of reticulate evolutionary events such as HGT and

HS. Here we have reviewed three approaches for phylogenetic network recon-

struction at the species level: naive ML, ML with HMMs, and MP. Each of these

methods has strengths and weaknesses, but they can be used advantageously

to combine all the information, complement one another’s findings with the

aim of obtaining less biased results of where reticulation events occurred. One

major advantage of the first approach is its accuracy in estimating reticulation

events; however its biggest problem is that it suffers from the computational
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complexity of searching through the space of possible phylogenetic networks.

As for the second approach, the employment of a more sophisticated model

makes the method even more accurate, although the computational issue be-

comes more severe. The primary advantage of the last method is the computa-

tional speed, whereas the real problem is that tree estimates may have wrong

branches, which result in false positive estimates of reticulation events. Yet an-

other concern with the ML approaches and MP regards the measure of accu-

racy of the reticulation events. In particular MP does not give any measure of

variability associated with the estimated reticulation events, whereas the two

ML approaches can provide measures of accuracy via bootstrap procedures

although the computational burden would increase substantially.

An alternative model which is statistically accurate and computationally

fast at the same time should be developed. A Bayesian approach to phylo-

genetic networks seems to be a promising method for these requirements. In

fact, a Bayesian method would have the advantage over the ML approaches

and MP that it produces more straightforward statistical measures of phy-

logeny; is computationally faster, at least if compared with a maximum likeli-

hood approach with bootstrap replicates, and the priors can take into account

biological information that is otherwise inadmissible with any other approach.

Hence, the next chapter will concentrate on the development of computation-

ally efficient Markov chain Monte Carlo-based algorithms, and on the robust-

ness of this method to model specification. This alternative approach is not

directly comparable with the above methods since the input, and hence the in-

formation taken from the data is different; in our procedure all the quantities

are estimated from a unique data set, whereas in the other approaches some of

the parameters are estimated from previous analyses. Also, they do not infer

tree topologies along a multiple DNA sequence alignment, rather they seek a

set of reticulation edges.
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Chapter 4

A Bayesian approach to

phylogenetic networks

4.1 Introduction

Here, we present a Bayesian approach to phylogenetic networks to model

reticulation events at the species level. Reticulation events in a sequence can

be based on topological inference because they can lead to different topologies

supported in alternative segments of the alignment. In particular, our method

is based on the idea that, barring reticulation, the evolutionary history of a

gene is modeled by a tree, so that a phylogenetic network can be modeled by

its constituent trees (Moret et al., 2004). MCMC techniques (Gilks et al., 1996)

are employed to estimate all the unknown quantities of the model and, allow

inferences to be made regarding the number of different phylogenies for dif-

ferent parts of DNA sequences. Specifically, to model different phylogenies at

each site two approaches are considered: naive, where the sites are treated as

independent and an underlying structure of HMMs, which accounts for de-

pendencies among adjacent sites. Also, the stochastic forward-backward algo-

rithm, which is a single component block procedure is contrasted to the Gibbs

sampler, which is a large component block procedure.

4.2 General method set up

Consider the following posterior probability distribution

P (θ|D) = P (t,π, r,S|D) =
P (t,π, r,S)× P (D|t,π, r,S)

P (D)
, (4.1)
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where P (t,π, r,S) is the joint prior distribution of parameters, P (D) is a nor-

malising constant, and P (D|t,π, r,S) the likelihood function (2.5) given by

P (D|t,π, r,S) = L(D|t,π, r,S). (4.2)

S = (S1, . . . , Si, . . . , Sn) indicates a sequence of topologies, where Si ∈ {1, . . . , K}

represents the tree topology at site i induced by N ; t is the vector of the branch

lengths, and π and r the parameters of the nucleotide substitution model. In

other words, Si is a multinomial random variable indicating the tree topology

on which the nucleotide configuration enhances. Recall that phylogenetic net-

work N can be decompsed into trees. As an illustration consider once again

the example of Figure 2-2. In this case R = 1 (one reticulation event) and so

there are K = 2 trees induced by the network (see Figure 2-3). Hence, Si can

assume values 1 or 2 at each site. Each of these values identifies a particular

tree. Indeed Si = 1 refers to the underlying species tree T1 that models the

evolution of all genetic material that is vertically inherited from the ancestral

organism and Si = 2 identifies tree T2 that models the evolution of horizon-

tally transferred genetic material. Notice that the proposed method allows us

to estimate a sequence of tree topologies (and other model parameters), rather

than constructing a network. Estimating a network can be really challenging

as different networks may display the same trees (Willson, 2010).

It is worth briefly discussing two relevant differences between the likeli-

hood function in (2.5) and that in (4.2). First, in (4.2) the single tree topology T

is replaced by a sequence of topologies S to account for the presence of reticu-

lation events. The second difference is in the edge lengths t. In (2.5) t contains

the branch lengths of T , whereas in (4.2), t can be thought of as a vector con-

taining only the independent branch lengths of the trees rather than all the

edge lengths of the trees within N . In fact in our example t has eight edge

lengths not twelve.

Computing (4.1) is generally mathematically intractable. MCMC techniques

can be used to approximate this probability distribution and hence to estimate

the parameters of the model.

4.3 Prior probabilities

Inherent to the Bayesian framework is the choice of prior probabilities for

all the parameters of interest (t, π, r and S). For these parameters we make

the assumption of parameter independence (Husmeier and McGuire, 2002):
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P (t,π, r,S) = P (t)P (π)P (r)P (S). There is no biological reason to expect the

parameters to be independent, so independence is a mathematical convenience.

4.3.1 Branch lengths

The branch lengths t are defined in the usual way (Yang, 2006), that is, they

represent the average number of nucleotide substitutions per site. A priori,

they are assumed to be exponentially distributed with mean 1/λ:

P (t|λ) ∝ exp (−λt), λ > 0.

The choice of this prior is well justified in the literature and seems to work well

for most analyses (e.g. Ronquist et al., 2005).

4.3.2 Nucleotide substitution model parameters

The priors on π and r depend on the model of nucleotide substitution. In the

present study, the GTR model which has eight free parameters is adopted: the

nucleotide frequencies πA, πC , πG and πT (three free parameters because of the

constraint
∑

x∈Σ πx = 1), and relative substitution rates (rxy; x, y ∈ Σ, x 6= y)

(five free parameters because of the constraint
∑

xy∈Σ,x 6=y rxy = 1). In this ap-

proach nucleotide frequencies and substitution rates are assumed to be the

same for all trees. This is quite plausible since the trees are induced by the

same network. For both the nucleotide frequencies and the relative substi-

tution rates a Dirichlet prior distribution is chosen. Notice that the Dirichlet

parametrisation for the substitution rates is appropriate because here the sub-

stitution rates are given as a proportion of the rate sum, rather than to be scaled

to the rGT rate.

4.3.3 Tree topologies

For the prior probability for a sequence of topologies S = (S1, . . . , Si, . . . , Sn)

two alternatives are considered: naive approach and HMM structure.

Naive approach

We model the sites independently assuming a uniform prior on the sequence

of topologies:

P (Si) = 1/K, ∀i = 1, . . . , n. (4.3)
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HMM structure

To capture dependencies between neighboring sites of the sequence we adopt

a first order spatial correlation via an HMM as used by Husmeier and McGuire

(2002)

P (S) =
n∏

i=2

P (Si|Si−1, ν)P (S1), (4.4)

with

P (Si|Si−1, ν) =

{
ν if Si = Si−1

1−ν
K−1

if Si 6= Si−1

, (4.5)

where ν ∈ (0, 1) is the probability of not changing topology between sites.

For the initial state, S1, a uniform distribution, P (S1) = 1/K, is chosen. The

parameter ν is a binomial random variable, for which the conjugate prior is a

beta distribution with hyperparameters α and β

P (ν|α, β) ∝ να−1(1− ν)β−1, α, β > 0. (4.6)

4.4 Markov chain Monte Carlo sampling

If sites are modelled independently the joint distribution of the DNA sequence

alignment and model parameters is given by

P (D, t,π, r,S) =
n∏

i=1

P (di|t,π, r, Si)

× P (t)P (π)P (r)P (Si)

(4.7)

where P (Si) is equal to (4.3). P (t), P (π), and P (r), are the prior probabilities

discussed above and P (di|t,π, r, Si) is the probability of the ith column of nu-

cleotides in the alignment, which is computed using the pruning algorithm

discussed in Section 2.5. A convenient way to understand the model’s depen-

dence structure in (4.7) is via the DAGs given in Figure 4-1.

The aim is to obtain estimates of the parameters of interest. So the idea is

to sample from the joint posterior distribution

P (t,π, r,S|D). (4.8)

To sample from (4.8), a Gibbs sampling procedure is adopted (see, e.g., Casella

and George, 1992). Specifically if the superscript (j) denotes the jth sample of
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d1 dnd2

S 1 S nS 2

Figure 4-1: DAG representing the dependence structure of (4.7) with a uniform
prior for S. The di represent the columns in the DNA sequence alignment, ω =
(t,π, r) where (t,π, r) are described in the text, Ω is the parameter vector that
defines the prior distributions of t,π and r; the Si represent the tree topologies,
and K is the parameter defining the prior distribution of Si.
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the Markov chain, the (j + 1)th sample is obtained as follows:

t(j+1) ∼ P (·|π(j), r(j),S(j),D)

π(j+1) ∼ P (·|t(j+1), r(j),S(j),D)

r(j+1) ∼ P (·|t(j+1),π(j+1),S(j),D)

S(j+1) ∼ P (·|t(j+1),π(j+1), r(j+1),D).

(4.9)

The order of these steps is arbitrary but with the superscripts changed accord-

ingly.

If the dependency between neighboring sites is modelled, then the joint

distribution of the data and the parameters is given by

P (D, t,π, r,S, ν) =
n∏

i=1

P (di|t,π, r, Si)

× P (t)P (π)P (r)P (S)P (ν).

(4.10)

The structure is similar to that of the naive approach, but with P (S) equal to

(4.4), and the additional prior P (ν) given by (4.6). Figure 4-2 represents the

model’s dependence structure in (4.10).

Because of the dependence structure between adjacent sites the joint poste-

rior distribution is given by

P (t,π, r,S, ν|D). (4.11)

Similarly to (4.9), sampling from (4.11) is obtained as follows:

t(j+1) ∼ P (·|π(j), r(j),S(j), ν(j),D)

π(j+1) ∼ P (·|t(j+1), r(j),S(j), ν(j),D)

r(j+1) ∼ P (·|t(j+1),π(j+1),S(j), ν(j),D)

S(j+1) ∼ P (·|t(j+1),π(j+1), r(j+1), ν(j),D)

ν(j+1) ∼ P (·|t(j+1),π(j+1), r(j+1),S(j+1),D).

(4.12)

4.4.1 Branch lengths and nucleotide substitution model pa-

rameters

For sampling the parameters t, π and r the Metropolis-Hastings algorithm is

applied (Chib and Greenberg, 1995). Let θ(j) denote the parameter configura-

tion in the jth sampling step. A new parameter configuration θ∗ is sampled
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d1 dnd2

S 1 S nS 2

Figure 4-2: DAG representing the dependence structure of (4.10) with an
HMM for S. The di represent the columns in the DNA sequence alignment,
ω = (t,π, r) where (t,π, r) are described in the text, Ω is the parameter vec-
tor that defines the prior distributions of t,π and r; the Si represent the tree
topologies, ν is a parameter that defines the priori distributions of the Si, and
α and β are hyperparameters defining the prior distribution of ν.
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from a proposal distribution Q(θ∗|θ(j)), and then accepted with probability:

a(θ∗) = min

{
P (θ∗)Q(θ(j)|θ∗)

P (θ(j))Q(θ∗|θ(j))
, 1

}
, (4.13)

in which case θ(j+1) = θ∗, otherwise θ(j+1) = θ(j). The distribution P is given

by (4.8) or (4.11), depending on the prior choice of S. In theory the algorithm

converges to the posterior distribution irrespective of the choice of the pro-

posal distribution (Gilks et al., 1996). However, in practice the choice of the

proposal distribution is crucial to achieve convergence within a reasonable

number of iterations.

For the components t of the vector of branch lengths t, a new value is

selected with a proportional shrinking and expanding method (Yang, 2006).

This means that the proposed branch length t∗ is given by t∗ = t(j)c, where

c = exp {ε(U − 0.5)} and U is uniformly distributed on [0, 1], with ε > 0 to be

a small tuning parameter. The proposal ratio Q(θ(j)|θ∗)/Q(θ∗|θ(j)) in (4.13) is

c. To see this, derive Q(t∗|t(j)) through variable transform, considering t∗ as a

function of U while treating ε and t(j) as fixed. Since U = 1/2 + log (t∗/t(j))/ε,

and dU/dt∗l = 1/(εt∗), we have

Q
(
t∗|t(j)

)
= f {U (t∗)} ×

∣∣∣∣
dU

dt∗

∣∣∣∣ =
1

ε |t∗|
.

Similarly Q(t(j)|t∗) = 1/(ε|t(j)|), so the proposal ratio is

Q
(
t(j)|t∗

)

Q (t∗|t(j))
= c.

For the nucleotides frequencies and rates of substitution, new values are

sampled from a Dirichlet distribution. This ensures that the normalisation

constraints,
∑

x∈Σ πx = 1 and
∑

x,y∈Σ,x 6=y rxy = 1, are satisfied. The param-

eters of the Dirichlet distribution are chosen proportional to the current val-

ues of the nucleotides frequencies and the rates of substitution. In partic-

ular, if the current values are z
(j)
1 , . . . , z

(j)
k where

∑
i z

(j)
i = c, we let z∗ =

cY where Y is randomly chosen from a Dirichlet distribution with parame-

ters (δz
(j)
1 , δz

(j)
2 , . . . , δz

(j)
k ), with δ to be a tuning parameter (Larget and Simon,

1999). The proposal ratio is the ratio of two Dirichlet densities:

Q
(
z(j)|z∗

)

Q (z∗|z(j))
=

k∏

i=1

Γ(δz
(j)
i )z

δz∗i −1
i

Γ (δz∗i ) z
∗δz

(j)
i −1

i

.
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Note that, because of the existence of computational trapping states, there

might be some problems with this updating mechanism. As explained by

Loza-Reyes (2010), a drawback with this proposal is that as zi → 0 the chain

may fall into a trap near the zero-boundary (that is, the proposal will gen-

erate very small steps, all within the neighbourhood of 0) as E(zi) → 0 and

V ar(zi) → 0. To overcome this issue, Loza-Reyes (2010) shifts the centre of the

Dirichlet proposal by a small quantity ε > 0. The ε-corrected algorithm can

hence escape from trapping states at the zero-boundary, without resorting to

sophisticated tempered schemes which create extra computational burden.

4.4.2 Tree topologies

For sampling the state sequences S two approaches can be adopted:

1. the Gibbs sampling algorithm;

2. the stochastic forward-backward algorithm.

Gibbs sampling algorithm

Within the Gibbs sampling scheme each state Si can be sampled separately

conditional on the others:

S
(j+1)
1 ∼ P (·|S

(j)
2 , S

(j)
3 , . . . , S

(j)
n , t(j+1),π(j+1), r(j+1), ν(j),D)

S
(j+1)
2 ∼ P (·|S

(j+1)
1 , S

(j)
3 , . . . , S

(j)
n , t(j+1),π(j+1), r(j+1), ν(j),D)

. . .

S
(j+1)
n ∼ P (·|S

(j+1)
1 , S

(j+1)
2 , . . . , S

(j+1)
n−1 , t(j+1),π(j+1), r(j+1), ν(j),D).

(4.14)

The computational complexity of (4.14) is reduced considerably by assump-

tion (4.3) which implies that

P (Si|S1, . . . , Si−1, Si+1, . . . , Sn, t,π, r, ν,D) =

P (Si|t,π, r,di) ∝ P (di|t,π, r, Si).
(4.15)

Note that (4.15) can be easily normalised to give a proper probability, from

which sampling is straightforward.

By considering the first order spatial correlation structure for the sequence

of the topologies, (4.14) looks a little more complicated but is still relatively
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simple. In fact:

P (Si|S1, . . . , Si−1, Si+1, . . . , Sn, t,π, r, ν,D) =

P (Si|Si−1, Si+1, t,π, r, ν,di) ∝

P (Si+1|Si, ν)P (Si|Si−1, ν)P (di|t,π, r, Si),

(4.16)

where P (Si+1|Si, ν) and P (Si|Si−1, ν) are given by (4.5). Again, (4.16) can be

easily normalised to give a proper probability, from which sampling is easy.

However the Gibbs sampling algorithm with HMM might encounter slow

convergence and poor mixing problems due to the large number of compo-

nent blocks. The former means that it takes a very long time for the chain to

reach stationary. The latter means that the sampled states are highly correlated

over iterations and the chain is inefficient in exploring the parameter space.

Stochastic forward-backward algorithm

The stochastic forward-backward algorithm is an alternative simulation strat-

egy which makes use of a different conditional independence property of the

model (Boys et al., 2000). It has the advantage of being a single component

block, i.e. simulating a full sequence each time, which helps the convergence

of the sampler.

Let us define

αm = P (d1, . . . ,dm, Sm) (4.17)

where the dependence on t, π, r and ν is dropped in order to simplify the

notation. (4.17) can be written as

αm = P (d1, . . . ,dm, Sm)

=
∑

S1

. . .
∑

Sm−1

P (d1, . . . ,dm, S1, . . . , Sm−1, Sm)

=
∑

S1

. . .
∑

Sm−1

m∏

i=1

P (di|Si)P (Si|Si−1)

=
∑

S1

. . .
∑

Sm−1

P (dm|Sm)P (Sm|Sm−1)
m−1∏

i=1

P (di|Si)P (Si|Si−1)

= P (dm|Sm)
∑

Sm−1

P (Sm|Sm−1)
∑

S1

. . .
∑

Sm−2

m−1∏

i=1

P (di|Si)P (Si|Si−1)

= P (dm|Sm)
∑

Sm−1

P (Sm|Sm−1)αm−1(Sm−1),

(4.18)
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which is the function computed in the forward pass of the forward-backward

algorithm for HMMs. In practice, for i = 1, α1 is calculated using P (d1|S1)

only, which in turn is computed via the pruning algorithm (see Section 2.5).

All quantities in 4.18 are easy to calculate; the first term is the probability of the

data at site m, the second term the HMM prior, and the last can be calculated

from the previous value of α. To calculate the function in the backward pass,

we can write

P (Si|Si+1, . . . , Sn,d1, . . . ,dn)

∝ P (Si, Si+1, . . . , Sn,d1, . . . ,dn)

= P (di+1, . . . ,dn, Si+1, . . . , Sn, |Si,di,d1, . . . ,di)P (Si,d1, . . . ,di)

= P (di+1, . . . ,dn, Si+1, . . . , Sn, |Si)αi(Si)

= P (di+1, . . . ,dn, Si+2, . . . , Sn, |Si+1)P (Si+1|Si)αi(Si)

∝ P (Si+1|Si)αi(Si).

(4.19)

The simplifications carried out in (4.19) follow directly from the independence

relations in HMMs (see Figure 4-2). The last step follows from the fact that

the first term in the second last line is independent of Si. Hence, the function

computed in the backward algorithm, derived from (4.19), can be written as

P (Si = k|Si+1, . . . , Sn,d1, . . . ,dn) =
P (Si+1|Si = k)αi(Si = k)∑
l P (Si+1|Si = l)αi(Si = l)

. (4.20)

Obviously, any scaling constant also cancels out in the normalisation; hence

replacing αi(Si) by some scaled version for numerical stabilisation of the for-

ward algorithm will not affect the result. The backward algorithm is initialised

by drawing the initial state, Sn, from the following distribution:

P (Sn = k|d1, . . . ,dn) =
αn(Sn = k)∑
l αn(Sn = l)

. (4.21)

The overall algorithm can thus be summarised as follows:

1. For i = 1, α1 = P (d1|S1).

2. For i = 2, . . . , n run the (scaled) forward algorithm (4.18).

3. Sample Sn from (4.21).

4. Sample the remaining states Sn−1, Sn−2, . . . , S2, S1 recursively from (4.20).

Below is a sketch of the structure of the stochastic forward-backward algo-

rithm which has been implemented in R:
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n <- sequence length

alpha[1] <- probability of observing the data at site 1

for(i in 2:n){

alpha[i] <- equation (4.18)

}

ProbS[n] <- equation (4.21)

Sample S_n from ProbS[n]

for(i in (n-1):1){

ProbS[i] <- equation (4.20)

Sample S_n-1, S_n-2,..., S_1 from ProbS[n-1], ProbS[n-2],..., ProbS[1]

}

Notice that the the algorithm described here is not applicable to MRFs be-

cause it requires the prior for the tree topologies to depend on one neighbor

only, P (Si|Si−1), whereas an MRF prior models dependencies between sites

accounting for both neighbors, P (Si|Si−1, Si+1).

4.4.3 Probability of not changing topology ν

Let us define Ψ =
∑n

i=2 δ(Si−1, Si), where δ(Si−1, Si) denotes the Kronecker

delta function, which is 1 when Si−1 = Si and 0 otherwise, from (4.5) and (4.6)

it is easy to show that writing the joint probability distribution in function of ν

gives P (D, t,π, r,S, ν) ∝ νΨ+α−1(1− ν)n−Ψ+β−2. Upon normalisation this gives

a beta distribution

P (ν|t,π, r,S,D) ∝ νΨ+α−1(1− ν)n−Ψ+β−2 (4.22)

from which sampling is straightforward.

4.5 Discussion

In this chapter a Bayesian approach to phylogenetic networks based on the def-

inition of network by Moret et al. (2004) has been presented. The idea behind

this approach is to introduce a (hidden) state representing the tree topologies

induced by the network at a given site. A state transition from one topol-

ogy into another corresponds to a single or multiple reticulation events. To
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model the tree topologies at each site two approaches have been considered:

(1) naive, where the sites are modelled independently, and (2) a first order hid-

den Markov chain to account for the dependency structure of adjacent sites.

MCMC techniques are employed to compute all posterior quantities of inter-

est and allow inferences to be made regarding the number of topology types

along a multiple DNA sequence alignment. Specifically, two procedures for

sampling the state sequences S have been contrasted: the Gibbs sampler and

the forward-backward algorithm. To compute the posterior quantities of the

remaining parameters Metropolis-Hastings algorithms have been proposed.

Notice that our proposed method is related to the work by Song and Hein

(2005) in that both methods recover the actual site-specific evolutionary re-

lationships. However Song and Hein (2005) proposed this approach in the

context of ancestral recombination graphs.

The algorithm described here has been written in R (www.r-project.org).

Its validity will be tested on synthetic data in the next chapter. In Chapter 6

this approach will be used for analysing a biological dataset whose evolution

includes horizontal gene transfers.
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Chapter 5

Simulation study

5.1 Introduction

In this chapter we investigate the empirical performance of the method de-

scribed in Chapter 4 on simulated data. First, we test the algorithm on its

ability to 1) correctly classify tree topologies along aligned sequences and 2)

recover the true synthetic parameter values. For both points, we contrast the

naive prior for the sequence of topologies to the HMM prior. Then we compare

the performance of the Gibbs sampling and the forward-backward algorithm

for the sequence phylogenies in terms of convergence and mixing. Finally, we

present several scenarios and misspecifications with the aim of getting some

insights in terms of practical implications.

5.2 Data generating process

DNA sequences, 600 bases long, are evolved along the network shown in Fig-

ure 5-1, using the GTR model (2.3) of nucleotide substitution with:

• nucleotide frequencies π = (0.10, 0.40, 0.10, 0.40);

• rates of substitution r = (0.09, 0.22, 0.12, 0.14, 0.35, 0.040);

• branch edges

t = (0.09, 0.15, 0.10, 0.20, 0.10, 0.20, 0.15, 0.10, 0.25, 0.15, 0.10, 0.20, 0.30, 0.40).

This network contains two horizontal gene transfer events inducing four

tree topologies (see Figure 5-2) in four different regions; the first region (be-

tween nucleotides i = 1 − 150) does not include any HGTs, the second (be-

tween nucleotides i = 151 − 300) contains one HGT, the third (between nu-
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cleotides i = 301 − 450) includes another HGT, and the last (between nu-

cleotides i = 451 − 600) incorporates both HGTs. The sequence alignment

is generated with the program SEQ-GEN (Rambaut and Grassly, 1997). Specif-

ically, we generated the DNA sequences so that the first 150 sites have been

generated under tree T1, the second 150 sites under tree T2, the third under

tree T3, and the last 150 under tree T4.1
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Figure 5-1: Phylogenetic network of six taxa with two reticulation edges (R =
2) and fourteen branch lengths (t1-t14).

5.2.1 Choice of prior parameters

Branch lengths

A priori the branch edges are assumed to be exponentially distributed with

parameter λ = 10, a choice which seems to work well in practice (Ronquist et

al., 2005)

1The SEQ-GEN code lines used to generate the data are:
seq-gen -mREV -f 0.10,0.40,0.10,0.40 -r0.11,0.22,0.12,0.14,0.35,0.060 -p4 -l600 <network> data
where network contains the four tree topologies which in Newick format (Felsenstein, 2009) are defined as:
[150](((Taxon1:0.09,Taxon2:0.30):0.1,Taxon3:0.2):0.3,(Taxon4:0.45,(Taxon5:0.25,Taxon6:0.2):0.2):0.4)
[150](((Taxon1:0.09,Taxon2:0.30):0.1,Taxon3:0.2):0.3,((Taxon4:0.2,Taxon5:0.1):0.25,Taxon6:0.4):0.4)
[150]((Taxon1:0.09,(Taxon2:0.15,Taxon3:0.1):0.15):0.4,(Taxon4:0.45,(Taxon5:0.25,Taxon6:0.2):0.2):0.4)
[150]((Taxon1:0.09,(Taxon2:0.15,Taxon3:0.1):0.15):0.4,((Taxon4:0.2,Taxon5:0.1):0.25,Taxon6:0.4):0.4).
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(a) The underlying species tree T1, that is, the tree that does not
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(b) The horizontally transferred gene tree T2 that includes the
reticulation edge (9, 10).

Figure 5-2: Trees induced by the network described in Figure 5-1.
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(c) The horizontally transferred gene tree T3 that includes the
reticulation edge (7, 8).
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(d) The horizontally transferred gene trees T4 that includes both
the reticulation edges (7, 8) and (9, 10).

Figure 5-2: Trees induced by the network described in Figure 5-1 (con’t).
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Nucleotide substitution model parameters

As seen in Section 4.3 a natural prior for π and r is a Dirichlet distribution.

Specifically, for the nucleotide frequencies π we choose a Dirichlet(1,1,1,1),

which is a uniform distribution subject to the normalisation constraint and

thus non-informative. Similarly for the rates of substitution r, where we choose

a Dirichlet(1,1,1,1,1,1) distribution.

Tree topologies

As discussed in Section 4.3 for the prior probability of S two alternatives are

possible:

1. the naive approach where (4.3) is equal to 1/4;

2. the HMM where both α and β are set to 1 allowing (4.6) to be uniform

over the interval [0, 1], and thus defining a non-informative prior.

5.2.2 Tuning parameter setting

Branch lengths

To select new values of the branch lengths via the proportional shrinking and

expanding method described in Section 4.4, it is important that the tuning pa-

rameter ε is chosen to achieve a reasonable acceptance rate; too small a value

of ε means that the proposed states will be very close to the current state, and

most proposals will be accepted. However too large a value of ε might cause

most proposals to fail in unreasonable regions of the parameter space and to

be rejected. A number of runs, each with a different value for ε have been

performed. Table 5.1 displays the ergodic averages of the branch lengths cor-

responding to 100000 samples after 20000 iterations of burn-in. The worst-

performing samplers are those with ε = 0.01 and ε > 0.06. The reason for this

is that, as already explained, it is important to tune ε so that the acceptance

rate is neither to small nor too big.

Nucleotide substitution model parameters

In order to achieve a good acceptance ratio, the values of the tuning parameter

δ for the proposal distributions of π and r are set to 300 and 1000 respectively.

Other choices of parameter did not perform well. The bad estimation perfor-

mance is due to the zero-stickiness issue explained by Loza-Reyes (2010).
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Edge lengths ε = 0.01 ε = 0.02 ε = 0.04 ε = 0.06 ε = 0.07 ε = 0.08 True

t1 0.05 0.07 0.07 0.06 0.03 0.01 0.09
t2 0.16 0.14 0.13 0.14 0.10 0.10 0.15
t3 0.07 0.09 0.09 0.10 0.09 0.09 0.10
t4 0.21 0.21 0.20 0.20 0.18 0.22 0.20
t5 0.13 0.09 0.08 0.09 0.07 0.05 0.10
t6 0.23 0.19 0.19 0.19 0.18 0.25 0.20
t7 0.12 0.17 0.17 0.17 0.17 0.17 0.15
t̃8 0.24 0.20 0.21 0.20 0.22 0.26 0.20
t9 0.20 0.27 0.28 0.26 0.29 0.30 0.25
t̃10 0.29 0.26 0.27 0.26 0.30 0.20 0.25
t11 0.05 0.07 0.08 0.07 0.03 0.04 0.10
t12 0.22 0.23 0.23 0.22 0.23 0.15 0.20
t13 0.35 0.33 0.34 0.33 0.24 0.38 0.30
t14 0.32 0.37 0.36 0.37 0.45 0.47 0.40

Table 5.1: Ergodic averages for the branch lengths for 100000 samples after a
burn-in. These values are reported for 6 runs, each run with a different ε value.

5.3 Simulation results using naive approach

5.3.1 Inferring tree topologies

Algorithm (4.9) was run for 600000 iterations with the first 100000 discarded

as burn-in.

In this subsection we test the performance of the naive classifier that as-

signs the uniform prior on the sequence topologies (4.3). The first four plots

from the top in Figure 5-3 show the posterior probabilities for the four topolo-

gies against the site i in the multiple alignment where the four regions, dis-

cussed above, are framed by vertical dashed lines. The bottom row of Figure

5-3 shows the barplots obtained from the mean of the posterior probability of S

for the four topologies which summarise the information contained in the top

plots and can be used for classification purposes. Looking at this figure, the

probabilities exhibit very noisy patterns, and hence the classification perfor-

mance is rather disappointing. This is the result of the poor prior, P (Si) = 1/4,

which does not account for correlations between adjacent sites.
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Figure 5-3: Inferred HGTs with naive approach. The first four plots from the
top show the posterior probabilities for the four tree topologies (indicated for
simplicity by P (Si = k), k = 1, 2, 3, 4). The bar plots (bottom row) show the
mean of the posterior probabilities of S for the four topologies in each region.
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5.3.2 Parameter estimates

Table 5.2 reports the estimates for the fourteen branch lengths. The fact that

t̃8 = t3 + t8 and t̃10 = t5 + t10 implies that t̃8 > t3 and t̃10 > t5 (Snir and Tuller,

2009). From the point estimates we can see that this is the case, although a

constrained sampling scheme would be more appropriate to ensure that these

conditions are exactly met. In the context of phylogenetic networks, Jin et al.

(2006) stressed that the use of simpler models as opposed to more complicated

realistic ones can reduce considerably the running time and complexity of the

algorithm, while still providing reasonable important practical results. In the

same way, we did not pursue a more complicated approach whose feasibility

can be explored in future research.

From the results we can see that the algorithm does not recover well the

true synthetic parameter values; the estimates are not always close to the true

values and the credible intervals are wide. This comes as no surprise as this

algorithm does not properly allocate sites to trees. Different conclusions can be

drawn for the estimates of the nucleotide frequencies and rates of substitution.

In fact these estimates are close to the true vales which are well within the

credible intervals. This is consistent with the fact that within our approach

nucleotide frequencies and substitution rates are assumed to be the same for

all trees.

Edge lengths Naive-model True

t1 0.14 (0.02-0.26) 0.09
t2 0.10 (0.03-0.18) 0.15
t3 0.08 (0.02-0.15) 0.10
t4 0.30 (0.13-0.44) 0.20
t5 0.04 (0.01-0.09) 0.10
t6 0.11 (0.01-0.22) 0.20
t7 0.23 (0.02-0.38) 0.15
t̃8 0.20 (0.04-0.30) 0.20
t9 0.37 (0.10-0.50) 0.25
t̃10 0.11 (0.01-0.29) 0.25
t11 0.08 (0.01-0.20) 0.10
t12 0.15 (0.04-0.28) 0.20
t13 0.40 (0.17-0.50) 0.30
t14 0.21 (0.04-0.38) 0.40

Table 5.2: Posterior means (2.5% and 97.5% quantiles) for the branch lengths
when using algorithm (4.9), indicated for convenience by Naive-model, com-
pared to the true branch lengths.
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Naive-model True

Frequencies
πA 0.09 (0.04-0.11) 0.10
πC 0.42 (0.38-0.46) 0.40
πG 0.10 (0.06-0.13) 0.10
πT 0.39 (0.30-0.42) 0.40

Rates
rAC 0.10 (0.07-0.15) 0.09
rAG 0.21 (0.14-0.28) 0.22
rAT 0.14 (0.07-0.21) 0.14
rCG 0.16 (0.10-0.25) 0.16
rCT 0.36 (0.30-0.44) 0.35
rGT 0.03 (0.00-0.06) 0.04

Table 5.3: Posterior means (2.5% and 97.5% quantiles) for the nucleotide fre-
quencies and rates of substituion when using algorithm (4.9) compared to their
true values.

5.4 Simulation results using HMM structure

5.4.1 Inferring tree topologies

Algorithm (4.12) was run for 600000 iterations with burn-in as described be-

fore. Figure 5-4 shows the posterior probabilities for the four topologies against

the site i in the multiple alignment, and the means of the posterior probabil-

ity of S for the four regions. Looking at this figure, the probabilities show

a very clear signal, and hence the classification performance is pretty good.

This is the result of the HMM prior, which accounts for correlations between

neighboring sites. The use of the HMM shows a considerably improved clas-

sification performance as compared to the naive approach. Notice that the

breakpoint estimates are systematically shifted. Algorithm (4.12) was run sev-

eral times with different ν fixed at some smaller values, such as 0.90 and 0.80.

The asymmetry in the breakpoint locations did not disappear. The reason for

this could possibly be ascribed to the directionality effect of the HMM struc-

ture, as HMMs allow us to model dependencies between sites accounting for

one neighbor only.

5.4.2 Parameter estimates

Table 5.4 reports the estimates for the fourteen branch lengths. From the results

we can see that procedure (4.12) is able to recover the true synthetic parameter
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Figure 5-4: Inferred HGTs with HMMs. The first four plots from the top show
the posterior probabilities for the four states. The bar plots (bottom) show the
mean of the posterior probabilities of S for the four topologies in each region.
Notice the better performance of the HMM as compared to the naive prior.
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values. In fact, the estimates are close to the true vales which are well within

the credible intervals. The same considerations apply to the estimates of the

nucleotide frequencies, rates of substitution and probability of not changing

topology presented in Table 5.5.

Given the significantly better performance, the HMM prior will be used for

the rest of the chapter.

Edge lengths HMM-model True

t1 0.07 (0.04-0.10) 0.09
t2 0.14 (0.08-0.20) 0.15
t3 0.09 (0.04-0.14) 0.10
t4 0.21 (0.12-0.30) 0.20
t5 0.09 (0.04-0.15) 0.10
t6 0.19 (0.10-0.28) 0.20
t7 0.17 (0.07-0.26) 0.15
t̃8 0.20 (0.12-0.29) 0.20
t9 0.27 (0.18-0.40) 0.25
t̃10 0.27 (0.14-0.40) 0.25
t11 0.07 (0.03-0.11) 0.10
t12 0.23 (0.11-0.31) 0.20
t13 0.33 (0.23-0.44) 0.30
t14 0.37 (0.24-0.52) 0.40

Table 5.4: Posterior means (2.5% and 97.5% quantiles) for the branch lengths
when using algorithm (4.12), indicated for convenience by HMM-model, com-
pared to the true branch lengths.

Any MCMC algorithm can suffer from two problems: slow or lack of con-

vergence and poor mixing. There are several graphical and statistical methods

to check mixing and convergence (Brooks and Gelman, 1998; Cowles and Car-

lin, 1996). Here we use the time series (or trace) and autocorrelation function

plots as well as acceptance rate. A trace plot is a plot of the iteration number

against the value of the draw of the parameter at each iteration. A chain that

mixes well traverses its posterior space rapidly, and it can jump from one re-

mote region of the posterior to another in relatively few steps. Another way

to assess convergence is to assess the autocorrelations between the draws of

our Markov chain. We would expect the kth lag autocorrelation to be smaller

as k increases (our 2nd and 50th draws should be less correlated than our 2nd

and 4th draws). If autocorrelation is still relatively high for higher values of k,

this indicates high degree of correlation between our draws and slow mixing.

The acceptance rate is the percentage of accepted proposals. A good rate is be-

tween 30% and 70%. These diagnostic tests and many others are available in
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HMM-model True

Frequencies
πA 0.10 (0.08-0.12) 0.10
πC 0.40 (0.38-0.42) 0.40
πG 0.11 (0.10-0.12) 0.10
πT 0.39 (0.38-0.40) 0.40

Rates
rAC 0.11 (0.08-0.13) 0.09
rAG 0.20 (0.16-0.25) 0.22
rAT 0.14 (0.12-0.17) 0.14
rCG 0.16 (0.13-0.19) 0.16
rCT 0.36 (0.33-0.39) 0.35
rGT 0.03 (0.01-0.05) 0.04

Prob. of no HGT
ν 0.99 (0.97-1.00) 0.99

Table 5.5: Posterior means (2.5% and 97.5% quantiles) for the nucleotide fre-
quencies, rates of substituion and probability of not changing topology when
using algorithm (4.12) compared to their true values.

R (e.g. CODA package). The plots, in Figures 8-1–8-4 in the Appendix, indicate

that adequate mixing and convergence is achieved for all parameters; for all

the trace plots the center of the chain appears to be around the true value, with

very small fluctuations, and the chain is exploring the distribution by travers-

ing to areas where its density is very low. Also, the autocrrelation plots drop to

very small values as the time lag increases. The acceptance rates are between

40% and 65%. Not surprisingly, the autocorrelation function and trace plots

for the naive case (not reported here) are worse as the uniform prior fails to

capture the dependencies between adjacent sites.

5.4.3 Gibbs sampling versus forward-backward algorithm

Before illustrating the difference in convergence and mixing between the Gibbs

sampling scheme and forward-backward algorithm MCMC sampler, it is use-

ful to introduce the concept of integrated autocorrelation time which provides

a means for assessing the performance of a method in comparison to inde-

pendent sampling (Green and Han, 1992). This is often indicated by τ(f). If

τ(f) < 1 (τ(f) > 1) then the chosen method performs better (worse) than inde-

pendent sampling (τ(f) = 1). Here we use τ(f) to compare different MCMC

algorithms; the smaller the τ(f) the better the method in terms of accuracy

of estimation. Note that when comparing methods, one should also consider
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computational cost. τ(f) can be expressed as

τ(f) =
∞∑

t=−∞

ρt(f) (5.1)

where ρt(f) is the lag t autocorrelation of a stationary chain. We follow the

approach by Geyer (1992) to estimate (5.1). That is,

τ̂(f) = −1 + 2
G∑

i=0

Γ̂i (5.2)

where Γ̂i = ρ̂2i + ρ̂2i+1 is the sum of adjacent pairs of sample autocorrelations

and ρ̂t is the autocorrelation at lag t. Here G is chosen to be the largest integer

such that Γ̂i > 0, for i = 0, 1, . . . , G. Estimator (5.2) is known as the initial

positive sequence estimator.

The integrated autocorrelation time gives information about the correlation

structure of a chain; the smaller the τ(f), the smaller the correlation between

the samples. According to Geyer (1992), τ(f) can in fact be used as a means

to assess the mixing features of a chain. In particular, a chain which moves

quickly around the support of the target distribution (i.e. mixing is quick)

will have a smaller τ(f) as compared to when a chain moves slowly. In this

respect, more reliable estimates are obtained when a chain mixes rapidly as

compared to the case in which it mixes slowly. Obviously the former situation

is preferable as long as the computational cost associated to the rapidly-mixing

chain is not prohibitive.

To illustrate the difference in convergence and mixing between the Gibbs

sampling scheme and the forward-backward algorithm MCMC sampler was

run for 15000 iterations with burn-in equal to 20. The resulting posterior prob-

abilities and means of these probabilities for the four topologies are depicted in

Figures 5-5 and 5-6. For illustration purposes, we also provide the autocorrela-

tion function and the trace plots for S50, S350 and S500 of both procedures shown

in Figures 5-7 and 5-8. Table 5.6 reports the estimated integrated autocorrela-

tion times for the averaged sequence of tree topologies. Figures 5-5 and 5-6

show that the forward-backward algorithm outperforms the Gibbs sampling

in terms of posterior probabilities and hence tree allocation. Figure 5-7 high-

lights the very high parameter autocorrelations when using the Gibbs sampler

as compared to the forward-backward algorithm (see Figure 5-8). The esti-

mated integrated autocorrelation time of the forward-backward algorithm is

only 42 (see Table 5.6), which makes this method the one with the best estima-
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tion performance, relative to the Gibbs sampling. Table 5.6 also shows that the

forward-backward algorithm took nearly as long to run as the Gibbs sampling.

Hence, we can conclude that the performance of the Gibbs sampler is poor as

compared to that of the forward-backward algorithm. In fact, while the Gibbs

sampler requires a considerable higher burn-in and suffers from very high pa-

rameter autocorrelations, the forward-backward approach requires very little

burn-in and convergence is achieved in about the same amount of time as the

Gibbs sampler. The forward-backward algorithm will be used throughout the

rest of the chapter.

τ̂ time in hours
GS 279 2.43

SFBA 42 2.58

Table 5.6: The estimated integrated autocorrelation time (τ̂ ) and the computa-
tional cost (measured as execution time in hours) for the Gibbs sampler (GS)
and the stochastic forward-backward algorithm (SFBA).

5.4.4 Different tree topology structures

We know that a phylogenetic network can be decomposed into trees. It may

happen that trees within a network can be more similar and hence more diffi-

cult to differentiate from data. This can cause distortion and instability of the

results, particularly of the posterior probabilities of the sequence of topolo-

gies, and ultimately affect the tree classification performance. To illustrate this

point consider DNA sequences, 600 bases long, which are evolved under two

different scenarios, using the GTR model with same nucleotide frequencies

and rates of substitution as described in Section 5.2.

• Scenario 1. The DNA sequences are evolved along the network drawn in

Figure 5-9, with branch lengths equal to (0.1, 0.2, 0.2, 0.4, 0.1, 0.1, 0.1, 0.1)

and hence along the tree represented in Figure 5-10a between nucleotides

i = 1−300 and the tree in Figure 5-10b between nucleotides i = 301−600.

• Scenario 2. The first 300 DNA sequences are evolved along the tree in

Figure 5-12a and the last under the tree in Figure 5-12b, both induced by

the network in Figure 5-11 with edges (0.2, 0.2, 0.1, 0.1, 0.1, 0.2, 0.3, 0.1).

The only difference between the two scenarios is where the horizontal gene

transfer is occurring. In fact, in scenario 1, Taxon 1 is horizontally transfer-

ring genetic material to Taxon 3, whereas in scenario 2, Taxon 4 is laterally
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Figure 5-5: Inferred HMM approach with Gibbs sampler. The first four plots
from the top show the posterior probabilities for the four tree topologies. The
bar plots (bottom row) show the mean of the posterior probabilities of S for
the four topologies in each region.
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Figure 5-6: Inferred HMM approach with forward-backward algorithm. The
first four plots from the top show the posterior probabilities for the four states.
The bar plots (bottom) show the mean of the posterior probabilities of S for the
four topologies in each region. Notice the better performance of this algorithm
as compared to the Gibbs sampler.
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Figure 5-7: Autocorrelation function and trace plots for Si, i = 50, 350, 500
with Gibbs sampling algorithm.
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Figure 5-8: Autocorrelation function and trace plots for Si, i = 50, 350, 500
with stochastic forward-backward algorithm. Notice the better performance
of this algorithm in terms of mixing and convergence as compared to the Gibbs
sampler.
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Figure 5-9: Scenario 1. Phylogenetic network of four taxa with one reticulation
event (R=1) and eight branch lengths.

transferring DNA material to Taxon 3. This means that the underlying species

trees for the two networks are the same as shown in Figures 5-10a and 5-12a

whereas the horizontally transferred trees are not (Figures 5-10b and 5-12b).

The MCMC algorithm was run for 15000 iterations with the first 100 discarded

as burn-in. By looking at the posterior probabilities in the first two top rows

of Figures 5-13 and 5-14 it can be easily seen that the values under scenario 1

are more noisy than those under scenario 2. Also the barplots under scenario

1 (bottom row of Figure 5-13) show a poorer classification as compared to that

of scenario 2 (bottom row of Figure 5-14).

To understand the reason for this, let us look in detail at the four trees.

Comparing the two trees within scenario 1, we see that their structure is more

alike as compared to that of trees in scenario 2. This means that in the presence

of little DNA site variability, under scenario 1, T1 is less distinguishable from

T2 (except for the branch lengths). Therefore algorithm (4.12) discriminates

less well between the two trees as compared to the case of scenario 2 where

the trees are more distinguishable, hence leading to better results in terms of

probabilities and tree classification.
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(b) The horizontally transferred gene tree T2 that includes the
reticulation edge under scenario 1.

Figure 5-10: Trees induced by the network in Figure 5-9.

65



T
a
x
o
n
1

T
a
x
o
n
2

T
a
x
o
n
3

T
a
x
o
n
4

5
6 7

8

9

t 1

t 8

t 2

t 4

t 6

t 7

t 5

t 3

Figure 5-11: Scenario 2. Phylogenetic network of four taxa with one reticula-
tion event (R=1) and eight branch lengths.

5.4.5 Some model misspecifications

The proposed method, as any other, is based on some assumptions. For exam-

ple we assume that the stochastic model from which the data have been gen-

erated, the number of reticulation events and hence the phylogenetic network

topology, are known. As in Jin et al. (2006) these are working assumptions

which might not be satisfied in the real world. So here, we assess the impact of

violation of these assumptions on the posterior probabilities and classification

of the tree topologies. To this end, the following three scenarios are consid-

ered. For all cases algorithm (4.12) was run for 15000 iterations with the first

100 discarded as burn-in.

• Misspecification 1. Data are generated as in Section 5.2 and the parame-

ters of interest estimated by using the Jukes Cantor model (2.4), which is

rather simple as compared to the GTR. The plots reported in Figure 5-15

show that this misspecification affects the classification of the tree topolo-

gies in a mild way. Indeed there are some spurious spikes in the posterior

probabilities but overall the pattern is clear and tree classification accept-

able: the choice of the model of evolution is important but not crucial,

unless we are directly interested in the nucleotide frequencies and rates

of substitution. This means that simpler models can still be employed
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Figure 5-12: Trees induced by the network in Figure 5-11.
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Figure 5-13: Posterior probabilities for the two tree topologies (first two top
rows) and bar plots (bottom) showing the mean of the posterior probabilities
of S for T1 and T2 in each region under scenario 1.

68



0.0

0.2

0.4

0.6

0.8

1.0

P
(S

i=
1)

1 300 600

0.0

0.2

0.4

0.6

0.8

1.0

P
(S

i=
2)

1 300 600

T1 T2 T1 T2

m
ea

n

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5-14: Posterior probabilities for the two tree topologies (first two top
rows) and bar plots (bottom) showing the mean of the posterior probabilities
of S for T1 and T2 in each region under scenario 2.
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for classification purposes, therefore decreasing the running time of the

method.
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Figure 5-15: Misspecification 1. The four top row plots show the posterior
probabilities for the four tree topologies. The bar plots (bottom) show the
mean of the posterior probabilities of S for the four topologies. The data are
generated under the GTR model but the parameters estimated using a Jukes
Cantor model. Notice the weak effect of this misspecification on the tree allo-
cations.

• Misspecification 2. The DNA sequences are evolved along the network

represented in Figure 5-1 but with just one HGT represented by edge

(9,10), that is the data are generated under T1 in Figure 5-2a for the sites

(1-300) and under T2 in Figure 5-2b for the remaining sites (301-600), us-

ing the GTR model of Section 5.2. The parameters are estimated by using
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a GTR model but under the network described in Figure 5-1, hence un-

der trees T1, T2, T3 and T4. The results, reported in Figure 5-16, show that

having more trees than those required by the data generating process

(DGP) is not problematic because the algorithm will give small or zero

probability to the nuisance trees, hence just select the most appropriate

ones. This means that if we are unsure about the number of reticulation

events, we can specify a more complex model with more HGTs and then

let the algorithm choose the trees with highest probabilities. This prob-

lem can be thought of as a kind of variable (tree) selection where only the

most important variables are chosen. However, given a species tree, for

high dimensional tasks, the use of all possible tree combinations will im-

pose a greater computational cost. In this case, more efficient numerical

algorithms are needed. This point is addressed in Chapter 7.

• Misspecification 3. The data are generated with the GTR model described

in Section 5.2 using the network in Figure 5-9. The parameters are esti-

mated using a different network (see Figure 5-17) and hence using the

trees reported in Figure 5-18a and 5-18b. The posterior probability distri-

bution of the Si and tree classification are reported in Figure 5-19. When

the network of the DGP is different from the network used in estimation,

the resulting probabilities are noisy but most importantly no tree can be

preferred over another. In other words, if the location of the HGTs is

wrongly placed on the species tree, then this is substantially reflected in

the bad posterior probabilities and tree classification. If such a case oc-

curs in applied work, then we can be confident that the chosen network

is wrong.

5.5 Discussion

The MCMC procedure has been applied to synthetic data showing that this

algorithm is able to recover the true synthetic parameter values.

The naive classifier has been contrasted to the HMM for the sequence of

topologies. The results have shown that as different sites are modelled inde-

pendently, a weak signal at a certain site will cause the inference of an erro-

neous tree at that site. The application of the HMM redeems this deficiency.

As for the Gibbs sampling and forward-backward algorithm comparison,

not surprisingly, the performance of the former is poor. In contrast the perfor-

mance of the latter is much better, requiring very little burn-in as convergence
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Figure 5-16: Misspecification 2. The four top row plots show the posterior
probabilities for the four tree topologies. The bar plots (bottom) show the
mean of the posterior probabilities of S for the four topologies. The data are
generated via GTR model using just two trees (one reticulation event) but pa-
rameters estimated with four tree topologies (two reticulation events).
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Figure 5-18: Trees induced by the network in Figure 5-17.
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Figure 5-19: Misspecification 3. The two top row plots show the posterior
probabilities for the two tree topologies. The bar plots (bottom) show the mean
of the posterior probabilities of S for the two topologies. The data are gener-
ated with a GTR model using the network in Figure 5-9 but the parameters
estimated with the network described in Figure 5-17.
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is achieved quickly.

Also several scenarios and misspecification cases have been presented with

the aim of obtaining some operational insights: (1) specifying the location

where HGTs occur is important as it produces different tree topologies that

the MCMC algorithm might or might not discriminate well; (2) depending on

the problem at hand the choice of the model of evolution may be not crucial

as acceptable tree classifications can be obtained by using simpler models; (3)

the MCMC algorithm could be generalised to do tree selection relaxing the as-

sumptions that the number and the position of the HGTs are known a priori.

This is known to be a very challenging task; (4) if HGTs are wrongly placed on

the species tree this might be reflected in bad posterior probabilities and tree

classification.
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Chapter 6

Analysis of the ribosomal protein

gene rps11 of flowering plants

6.1 Introduction

Here we apply the method of the previous chapter to real data. Specifically,

we first introduce the concept of HGT in plants, explain the reason why this

is an interesting and important topic, particularly for biotechnologists, and

describe the dataset. Then we estimate all the quantities of the phylogenetic

network and show some connections with the simulation results of Chapter 5,

explaining why some results are more plausible than others. Finally, we briefly

discuss the development of a more flexible algorithm that will be the focus of

the following Chapter 7.

6.2 Horizontal gene transfer in plants

Genome sequencing has revealed that HGT is fairly common and important in

certain unicellular microorganisms, bacteria in particular. However the preva-

lence and importance of HGT in the evolution of multicellular organisms re-

mains unclear. Recent studies indicate that plant DNAs are unusually active

in HGT. Specifically, the results of the studies by Bergthorsson et al. (2003,

2004) established for the first time that conventional genes are subject to evo-

lutionary HGT during plant evolution, and provided the first unambiguous

evidence that plants can donate DNA horizontally to other plants. Artefacts

of DNA contamination or mislabelled samples, always a concern when in-

voking HGT, could be ruled out in the HGT cases they found as multiple

sampling showed the results to be entirely reproducible. For several reasons,
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they believe the cases reported are merely the tip of a large iceberg of HGT in

plants. They suggest viruses, bacteria, fungi, insects, pollen, even meteorites

and grafting as vectors for this exchange.

These biological insights are emerging at a time when artificial transfer of

genes into food crops remains controversial and often resisted with the claim

that it would never occur in nature. Accurate knowledge of this aspect of plant

evolution is important to the ongoing controversy about transgenic plants pro-

duced by biotechnology.

We use the method described in Chapter 4 for analysing a biological dataset

whose evolution includes HGTs. The dataset consists of the ribosomal protein

gene rps11 of a group of flowering plants which was first analysed by Bergth-

orsson et al. (2003) who suggested that this genetic material underwent HGTs.

We investigate a subset of the ribosomal protein gene rps11 data which con-

sists of five DNA sequences each 350 bases long. The data are available from

GenBank (http://www.ncbi.nlm.nih.gov/genbank/) with the follow-

ing identifiers (accession numbers in square brackets): Cabomba [AY293024],

Tradescantia [AY293043], Annona [AY293025], Platanus [AY293033], Abelia

[AY293009].

6.3 Network set up

When using the method described in Chapter 4, the assumptions that the

species tree, position and number of reticulation events are known are re-

quired. The species tree for this application is reconstructed from various

sources of biological evidence (e.g. Bergthorsson et al., 2003; Snir and Tuller,

2009) and the edges between the tree branches rebuilt based on the work of

Bergthorsson et al. (2003). This enables us to construct the phylogenetic net-

work for the five taxa with R = 2 HGT events depicted in Figure 6-1, which

induce the trees presented in Figure 6-2. It is important to notice the number

of trees implied by the network. This network could induce up to 4 trees but as

already alluded to in Section 2.3, in some cases the number of possible trees in

the network is less than 2R. This is one of such case. In fact the trees within the

network are two instead of four. The justification for this is that: (1) it is unreal-

istic that the two HGT events will occur together since researchers believe that

it is unlikely that a taxon (Annona in this case) is transferring and receiving

genetic material at the same time; (2) as shown by Snir and Tuller (2009), the

resulting most likely paths do not include the species tree because the amount
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of DNA available only contains the regions with HGTs. In general, however,

is not easy to select a subsample of trees from the 2R trees. Like here, previous

findings and/or biological reasoning could give some directions for the selec-

tion. Also, some fast and low-resolution methods, such those described for the

split networks, could be used to identify a subset of trees.
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Figure 6-1: Phylogenetic network of the ribosomal protein gene rps11 data
with R = 2 reticulation events: (7,6) and (9,10).

6.4 Results using naive approach

6.4.1 Inferring tree topologies

Algorithm (4.9) with GTR model was run for 600000 iterations with the first

100000 discarded as burn-in. It is worth recalling that in this algorithm the

DNA sites are modelled independently. The results of this approach for the

sequence of tree topologies are reported in Figure 6-3 where the probabilities

appear to be quite noisy and the mean of the posterior probabilities of S for

T1 and T2 does not allow us to obtain a satisfactory tree allocation. This is in

line with the simulation results shown in Figure 5-3 of Chapter 5, where the

performance of the naive classifier is rather poor.
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Figure 6-2: Trees induced by the network in Figure 6-1.
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Figure 6-3: Inferred HGTs with naive approach for the ribosomal protein gene
rps11 data. The first two plots from the top show the posterior probabilities
for the two tree topologies (indicated for simplicity by P (Si = k), k = 1, 2).
The bar plots (bottom row) show the mean of the posterior probabilities of S
for the two topologies in each region.

81



6.4.2 Parameter estimates

Tables 6.1 and 6.2 contain the estimates of the twelve branch lengths and evolu-

tion model parameters. Notice that t̃6 = t1+t6, t̃7 = t3+t7, and t̃10 = t10+ t̃7−t3.

Edge lengths Naive-model

t1 0.017 (0.002-0.059)
t2 0.011 (0.009-0.120)
t3 0.059 (0.010-0.051)
t4 0.027 (0.005-0.040)
t5 0.040 (0.002-0.100)
t̃6 0.055 (0.007-0.150)
t̃7 0.040 (0.002-0.060)
t8 0.021 (0.003-0.050)
t9 0.025 (0.004-0.044)
t̃10 0.010 (0.005-0.034)
t11 0.015 (0.004-0.065)
t12 0.150 (0.060-0.150)

Table 6.1: Posterior means (2.5% and 97.5% quantiles) for the branch lengths
when using algorithm (4.9). Notice that t̃6 = t1 + t6, t̃7 = t3 + t7, and t̃10 =
t10 + t̃7 − t3.

Naive-model

Frequencies
πA 0.28 (0.25-0.36)
πC 0.17 (0.11-0.22)
πG 0.33 (0.25-0.36)
πT 0.22 (0.18-0.25)

Rates
rAC 0.28 (0.19-0.39)
rAG 0.20 (0.15-0.30)
rAT 0.09 (0.02-0.22)
rCG 0.05 (0.01-0.12)
rCT 0.20 (0.10-0.27)
rGT 0.18 (0.10-0.24)

Table 6.2: Posterior means (2.5% and 97.5% quantiles) for the nucleotide fre-
quencies and rates of substituion when using algorithm (4.9).
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6.5 Results using HMM structure

6.5.1 Inferring tree topologies

As for the previous approach, algorithm (4.12) with GTR model was run for

600000 iterations with the first 100000 discarded as burn-in. Notice that al-

though the forward-backward sampler requires few iterations and a little burn-

in to achieve convergence, we ran the algorithm for a bigger number of repli-

cates as some of the remaining parameters of the model can be more difficult to

sample (Ronquist, Huelsenbeck and van der Mark 2005). This algorithm con-

cerns the case where dependencies between neighboring sites of genomical

sequences are modelled by using a first order spatial correlation. The results

of this procedure are reported in Figure 6-4. It is evident that the performance

of the HMM classifier is improved in comparison with the naive; the pattern

is quite strong and the classification based on the mean of the posterior proba-

bilities satisfactory. The position of the two regions (one between nucleotides

1− 330 which includes edge (7, 6) and the other between 331− 350 which con-

tains edge (9, 10)) is represented in the figures by vertical dashed lines. The

choice of the breakpoint locations is arbitrary, in that the two regions are cho-

sen by looking at the posterior probabilities of S for the tree topologies. Of

course the breakpoint locations could be changed choosing for example 1−320

and 321−350, but the conclusions would still be the same. Looking in detail at

Figures 6-4 and 5-13, we spot a similarity; the trend coming out from the two

plots reporting the posterior probabilities of S is clear but with some spikes.

These spikes are present in all the figures reporting the estimated posterior

probabilities concerning the rps11 dataset. The reason for this is not entirely

clear, but may be related to the little DNA site variability of the data. Here,

further investigation is needed which is beyond the scope of the present work.

6.5.2 Parameter estimates

Tables 6.3 and 6.4 contain the estimates of the twelve branch lengths and pa-

rameters of the model of evolution. Comparing the nucleotide frequencies and

rates of substitution estimates with those of the naive approach, the results

match well, although the naive estimates appear more variable. However, the

branch length estimates differ from those of the naive approach. These results

confirm our simulation findings. In fact, the estimates of the branch lengths

for the naive approach are expected to be worse as the naive classifier does not
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Figure 6-4: Inferred HGTs with HMMs for the ribosomal protein gene rps11
data. The first two row plots show the posterior probabilities for the two states.
The bar plots (bottom) show the mean of the posterior probabilities of S for the
two topologies in each region.
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allow us to obtain satisfactory tree allocations.

Edge lengths HGT-model

t1 0.026 (0.010-0.041)
t2 0.044 (0.010-0.075)
t3 0.020 (0.008-0.031)
t4 0.015 (0.010-0.020)
t5 0.026 (0.012-0.040)
t̃6 0.082 (0.055-0.110)
t̃7 0.070 (0.053-0.090)
t8 0.004 (0.002-0.006)
t9 0.035 (0.025-0.043)
t̃10 0.005 (0.002-0.007)
t11 0.023 (0.013-0.031)
t12 0.105 (0.080-0.125)

Table 6.3: Posterior means (2.5% and 97.5% quantiles) for the branch lengths
when using algorithm (4.12). Notice that t̃6 = t1 + t6, t̃7 = t3 + t7, and t̃10 =
t10 + t̃7 − t3.

HGT-model

Frequencies
πA 0.30 (0.27-0.34)
πC 0.18 (0.16-0.20)
πG 0.30 (0.26-0.34)
πT 0.22 (0.18-0.26)

Rates
rAC 0.28 (0.20-0.38)
rAG 0.23 (0.16-0.28)
rAT 0.10 (0.04-0.19)
rCG 0.05 (0.03-0.07)
rCT 0.18 (0.10-0.25)
rGT 0.16 (0.08-0.25)

Prob. of no HGT
ν 0.99 (0.97-1.00)

Table 6.4: Posterior means (2.5% and 97.5% quantiles) for the nucleotide fre-
quencies, rates of substituion and probability of not changing topology when
using algorithm (4.12).

Overall, looking at the autocorrelation function and trace plots of the branch

lengths, nucleotide frequencies, rates of substitution and probability of not

changing topology in Figures 8-5–8-8 in the Appendix the convergence of the

MCMC chains is satisfactory and the acceptance rates of the proposal mecha-

nisms range from 20% to 50%.
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6.5.3 Choice of the model of evolution

From the estimates of the nucleotide frequencies and rates of substitution, the

GTR looks a sensible choice for modelling these data. However using a simpler

model (for example Jukes Cantor), the results for the posterior probabilities of

the tree topologies are not changing significantly (see Figure 6-5). This is in

agreement with the simulation results presented in Figure 5-15 of Chapter 5.
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Figure 6-5: Inferred HGTs with Jukes Cantor model for the ribosomal protein
gene rps11 data. The first two row plots show the posterior probabilities for the
two states. The bar plots (bottom) show the mean of the posterior probabilities
of S for the two topologies in each region.
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6.5.4 Different types of phylogenetic networks

As already mentioned in Section 6.3 we assume that the species tree and, more

importantly, the location and number of reticulation events are known. As-

suming that the species tree is available is not completely unreasonable. In fact

for many species the organismal tree underlying the network is available or at

least can be inferred with high degree of probability or confidence. However,

it is less plausible that we know the location and number of all reticulation

events. In this section we assess:

1. the effect of choosing different reticulation events from those chosen in

Section 6.3 but with the underlying species tree fixed;

2. the effect of choosing more HGTs than those chosen in the previous sec-

tion.

Choosing different reticulation events

Suppose we have a new phylogenetic network (see Figure 6-6). This is differ-

ent from that in Figure 6-1 as the position of the two horizontal gene transfers

is not the same. In fact, in Figure 6-1 Annona is horizontally transferring ge-

netic material to Cabomba, and Tradescantia to Annona, whereas according to

Figure 6-6 Platanus is laterally transferring genetic material to Cabomba, and

Abelia to Cabomba: the trees in Figure 6-7 are different from those in Figure

6-2. Notice that the trees induced by the network in Figure 6-6 are two (not

four). As explained earlier, the amount of DNA available does contain only

the regions which include HGTs, hence the species tree is not present. Also,

since the ‘head’ of the two HGTs is in the same tree branch, it is impossible

that the two HGT events occur together, meaning that the tree containing both

the reticulation events is not included.

The case described here is similar to misspecification 3 in Section 5.4.5. We

ran algorithm (4.12) for 15000 iterations with the first 100 discarded as burn-in.

The results reported in Figure 6-8 clearly exhibit noisy probabilities with some

spikes for the two tree topologies. Importantly, they are centered about 0.5,

hence not preferring any of the two trees for all the alignment. This suggests

that the HGTs in Figure 6-1 are better supported by the data than the HGTs in

Figure 6-6.
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Figure 6-6: An alternative phylogenetic network of the ribosomal protein gene
rps11 data with R = 2 reticulation events: (7,6) and (9,8).
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(b) The horizontally transferred gene tree T2 including the edge
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Figure 6-7: Trees induced by the network in Figure 6-6.

89



0.0

0.2

0.4

0.6

0.8

1.0

P
(S

i=
1
)

1 330 350

0.0

0.2

0.4

0.6

0.8

1.0

P
(S

i=
2

)

1 330 350

T1 T2 T1 T2

m
e

a
n

0.0

0.2

0.4

0.6

0.8

Figure 6-8: Posterior probabilities for two tree topologies (first two top rows)
and bar plots (bottom) showing the classification on the ribosomal protein
gene rps11 with different HGTs.
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Choosing more reticulation events

Consider the phylogenetic network presented in Figure 6-9, with its constituent

trees depicted in Figure 6-10. Comparing this network with that in Figure 6-1,

the only difference is in the additional reticulation, represented by the hori-

zontal transfer of genetic material form Tradescantia to Platanus. The trees

induced by the network in Figure 6-10 are two and not 2R = 8, for the same

reasons discussed above and in Section 6.3 and because the first two trees are

exactly the same as those reported in Figure 6-2 (but with labels changed ac-

cordingly). Notice that here we chose the subset of trees looking at previous

works (Bergthorsson et al., 2003; Snir and Tuller, 2009). However, as already

mentioned, a heuristic method could also be used.

The case considered here is very close to that of misspecification 2 in Section

5.4.5. Algorithm (4.12) was run for 15000 iterations with the first 100 discarded

as burn-in. The results reported in Figure 6-11 show that between nucleotides

i = 1 − 330 tree T2 is always preferred to any other, whereas between i =

331 − 350 tree T1 has the highest posterior probability. So, by using a network

containing more HGTs, the results are not significantly different from those

when using the network in Figure 6-1, indicating once again, that the data

better support the HGTs in Figure 6-1 rather than those implied by the other

networks. However, it is worth noting that several different types of network

can be obtained by trying all possible combinations of reticulation events. This

can be a challenging task as computational cost can become burdensome.

6.6 Discussion

An application of the Bayesian phylogenetic network algorithm to the riboso-

mal protein gene rps11 data has been presented. In 2003 Bergthorsson et al.

provided the first unambiguous evidence that this dataset underwent HGTs.

On the basis of this work and others (e.g. Bergthorsson et al., 2004 and Snir

and Tuller, 2009) all the parameters of the phylogenetic network have been in-

ferred. The evidence of our study is that some HGTs seem more likely to have

taken place than others. Of course we made the simplistic assumption that we

know a priori where the HGTs are occurring. While this can be true for some

species, the same cannot be said for others. Great care has to be taken when

dealing with biological organisms which underwent reticulation events, and a

more flexible and general algorithm is needed in order to select a set of HGTs,

and hence a set of trees, from which the DNA sequences are thought to be
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and bar plots (bottom) showing the classification on the ribosomal protein
gene rps11 with more HGTs.
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evolved. This issue will be addressed in the next chapter where an improved

and more general algorithm will be proposed.
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Chapter 7

Stochastic search variable selection

for identifying tree topologies

7.1 Introduction

In this chapter we propose a Bayesian method for identifying tree topologies,

and hence reticulation events at the species level (HGT and HS) in multiple

DNA sequences. As alluded to previously, the Bayesian method developed

in Chapter 4 is not sufficiently flexible. In fact, for cases where HGT and HS

events are many, the tree topologies are not easily enumerated, and a more

flexible and general algorithm is needed in order to avoid exploring the entire

space of tree topologies. For this reason, we need to restrict the set of retic-

ulations (or of tree topologies) since many of them would contribute little to

the likelihood of the data. This can be achieved by using a sampling scheme

based on a variable selection method called stochastic search variable selection

(SSVS). We firstly describe the concept of SSVS in regression models, and then

adapt it to our framework by turning the problem from a variable selection set-

ting into a tree topology selection setting. Finally, we show the performance

of the algorithm on simulated data, and apply it to the ribosomal protein gene

rps11 data.

7.2 Stochastic search variable selection

In variable selection problems, the list of models under consideration corre-

sponds to the 2K possible subsets of a set of K candidate covariates. Clearly,

the number of models rapidly becomes enormous as K increases, so there is

a need for efficient methods in the search for high posterior probability mod-
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els. A strategy for addressing this problem is to use SSVS which was first

introduced and developed by George and McCulloch (1993) in the context of

linear regression models. SSVS is a procedure to select promising subsets of

predictor variables in the defined design matrix. This procedure is based on

embedding the entire regression setup in a hierarchical Bayes normal mixture

model, where latent variables are used to specify choices of subsets. The idea

behind this method is that statistical models can be represented by a set of bi-

nary latent indicator variables γ = (γ1, . . . , γK), where γk = 1 or 0 represents

the presence or absence of covariate k in the model, respectively. So only a set

of covariates dictated by the data is maintained. Variables with little proba-

bilistic support under the data are removed from inference avoiding the over-

whelming computational burden. Specifically, the canonical regression setup

and prior distributions of the model parameters are as follows:

Y|β, σ2 ∼ Nn

(
Xβ, σ2I

)

βk|γk ∼ (1− γk)N
(
0, τ 2

)
+ γkN

(
0, c2τ 2

)
, k = 1, . . . , K

σ2|γ ∼ Inv −Gamma(νγ/2, νγλγ/2)

γk ∼ Ber(0.5), k = 1, . . . , K.

Here, Y is a vector of response measurements, X is an n×K matrix which con-

tains K predictors and n observations. β is a mixture prior, with parameters τ 2

and c2 chosen so that τ 2 is small and c2τ 2 is large. If γk = 0, then the magnitude

of the effect βk is small and the prior distribution for βk forces this parameter

to be close to zero. If γk = 1, then the magnitude of the effect βk is large and a

nonzero estimate of βk should be included in the model and its posterior distri-

bution will largely be determined by the data. νγ and λγ are prior parameters

which may depend on γ to incorporate the dependence between β and σ2. On

the basis of the prior specifications described above a Gibbs sampler can be

used to generate samples from the posterior distribution on the set of possible

covariate subsets. Those subsets with higher probability can be identified by

their more frequent appearance in the Gibbs sampler.

SSVS has not been restricted to the linear regression context. In fact it

has been adopted for more sophisticated models such as generalized linear

(George et al., 1996), and additive models (Reich et al., 2009). SSVS has also

recently been applied to complex genetic modelling such as multiple quan-

titative trait loci (Yi et al., 2003), genome selection (Verbyla et al., 2009), and

recombinant phylogenetic models (Webb et al., 2009).
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7.3 Stochastic search tree selection

A problem with the approach proposed in Chapter 4 is that the state space of

the tree topologies can be vast for all the possible combinations of reticulation

events which can occur. To overcome this issue we adapt SSVS to our con-

text of phylogenetic networks by providing the stochastic search tree selection

(SSTV) algorithm. In this stochastic selection approach only a random sub-

set of topologies supported by the data is maintained. The idea behind this

approach is similar to that previously described, where statistical models can

be represented by a set of binary indicator variables γ = (γ1, . . . , γK), where

γk = 1 or 0 represents the presence or absence of topology (reticulations) k in

the model, respectively. Topologies with little probabilistic support under the

data are removed from the inference leading to massive computational sav-

ings.

In order to infer the topologies and the other parameters, we employ a

Markov chain Monte Carlo approach to find the posterior probability of topol-

ogy Si for each site in the data, and the evolution model parameters. In partic-

ular, the (j+1)th sample for all the parameters is obtained as shown in Chapter

4 but with the difference that before sampling the Si we first allow the topol-

ogy HMM to update, and then we sample a new path given the current states

using the stochastic forward-backward algorithm.

7.3.1 Methodology

Each time we update the topology HMM we may:

(a) add a new tree topology (birth step), i.e. select a tree topology such that

γk = 0 and propose to set γk = 1;

(b) delete an existing tree topology (death step), i.e. select a tree topology

with γk = 1 and set to γk = 0;

(c) make a rearrangement of an existing tree topology.

The new tree topology to add in step (a) is found by uniformly choosing

one of the topologies which is not included in the current model. The proposed

topology to delete in step (b) is simply chosen uniformly from the trees that are

currently in the model. Although theoretically we can produce samples from

the correct posterior using just birth and death moves this is often not the best

strategy. Combining moves (a) and (b) with move (c) have been shown to work
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well (see, for example, Denison et al., 1998). Hence we incorporate into the

algorithm step (c), which just resamples the tree topology. This step proposes

to alter a randomly chosen topology by swapping a tree topology chosen from

the current trees for a randomly chosen topology not included in the current

model. In order to jump between states with different tree topologies we need

a prior on the number of topologies
∑

k γk. A natural choice for this is a Poisson

distribution (with parameter λ). Let kT be the current number of topologies in

the model, kT =
∑

k γk, then

P (kT ) =
λkT exp(−λ)

kT !
. (7.1)

In practice, a Poisson distribution truncated to kT < kmax, for a suitable choice

of kmax, is adopted. In this case kmax = K, where K is total number if trees

contained in a network. The λ is chosen a priori as the expected number of tree

topologies in the data and, as in Webb et al. (2009), is set λ = 5. Viallefont

et al. (2002) show that in variable dimension problems, the use of a truncated

Poisson may lead to model sensitivity. For these reason is important to check

the robustness of the conclusions for different values of λ (see next section).

The moves described above occur with probabilities:





bkT = cmin {1, P (kT+1) /P (kT )}

dkT = cmin {1, P (kT−1) /P (kT )}

mkT = 1− bkT − dkT

(7.2)

where the tuning constant c controls the rate at which move types which change

dimension are proposed. Here we take c = 0.4 but other values are equally

valid, provided that c ∈ [0, 1
2
] as, if c > 1

2
, then the sum of the probabilities bkT

and dkT could be greater than 1 for same values of kT . The probabilities in (7.2)

are as in Webb et al. (2009) and satisfy the detailed balance condition

bkTP (kT ) = dkT+1
P (kT+1).

Using the notation of Green (1995), the acceptance probability for each move

types in our problem is

α = min (1, likelihood ratio × prior ratio × proposal ratio × Jacobian.) (7.3)

For the move step (c) the prior ratio and the proposal ratio are both 1 since

all collections of the same number of topologies have the same prior probabil-
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ity and the proposals are made from the same distribution.

For the birth step (a) the prior ratio is given by

prior ratio =
P (kT+1)

P (kT )
(7.4)

where P (kT+1) and P (kT ) are the priors given in (7.1) and the second term

assumes that each possible dimension kT ∈ 1, . . . , K is equally likely. The

corresponding proposal ratio is given by

proposal ratio =
dkT+1

kT+1

K − kT
bkT

. (7.5)

The proposal ratio involves understanding both the birth and the converse

death step. When adding a new tree topology we use the proposal density

bkT /(K − kT ). This is made up of the probability of actually attempting the

birth step in equation (7.2) together with that of choosing a particular new tree

topology. This can be done in K − kT ways as the new tree topology must be

distinct to the kT topologies and there are only K possibilities in total. The

probability of proposing the reverse move is equal to dkT+1
/(kT+1). This is

just the probability of proposing a death step and then choosing the proposed

tree topology as the one to remove. Since we do not propose parameters that

change across dimension, the Jacobian in (7.3) is equal to one.

So, it follows from equations (7.4) and (7.5) that the acceptance probability

(7.3) for a birth step is

α = min

{
1, likelihood ratio ×

K − kT
kT+1

}

and for the death step is the same except that the fraction is inverted. Notice

that for simplicity we assumed that the (true) values of the branch lengths are

known. This is a strong assumption and its robustness is assessed in the next

section.

7.3.2 Simulation study

In this section we investigate the performance of the SSTS algorithm on syn-

thetic data. DNA sequences, 600 bases long, are generated. The first 300 bases

are evolved along the underlying species tree shown in Figure 2-3a, and the

remaining are evolved along the tree that includes the transfer of genetic ma-

terial from taxon 2 to taxon 4. The data are simulated according to the model of
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evolution described in Section 5.2, but with branch lengths fixed to their true

values.

Estimation results

The parameters of interest are estimated by using the algorithm described in

Section 7.3. In particular, we considered eleven possible trees (that is the trees

that are consistent with all combinations of reasonable reticulation events), in-

cluding the two trees from which the data have been generated. These eleven

trees have been chosen at random. However a more objective way to select

the trees would be to use a more quick and dirty method, such as those de-

scribed for the split networks. The SSTS algorithm was run for 25000 itera-

tions with the first 5000 discarded as burn-in. Because the aim of this chapter

is to select the model containing the right tree topologies, we do not report the

estimates for the model parameter (nucleotide frequencies and rates of sub-

stitution) since the results are perfectly in line with those obtained in Chapter

5.

Model Frequency Model Frequency

M1,3 0.004 M1,2,5,10 0.001
M1,5 0.700 M1,2,5,11 0.001
M1,2,3 0.001 M1,3,4,5 0.006
M1,2,5 0.090 M1,3,5,6 0.008
M1,3,5 0.100 M1,3,5,7 0.002
M1,3,11 0.001 M1,3,5,8 0.002
M1,4,5 0.010 M1,3,5,9 0.001
M1,5,6 0.003 M1,3,5,10 0.002
M1,5,7 0.002 M1,3,5,11 0.001
M1,5,8 0.002 M1,4,5,10 0.001
M1,5,9 0.003 M1,2,3,4,5 0.002
M1,5,10 0.003 M1,2,3,5,7 0.001
M1,5,11 0.005 M1,2,3,5,9 0.001
M1,2,3,5 0.043 M1,2,3,5,11 0.001
M1,2,5,6 0.001 M1,2,3,5,9,10 0.001
M1,2,5,8 0.001 - -

Table 7.1: The frequencies indicate the proportion of times the SSTS algorithm
has visited the models.

Table 7.1 reports the proportion of times the models (states) have been vis-

ited by the SSTS algorithm. By model we mean here a particular combination

of trees, hence of reticulations, from which the data could potentially evolve.
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For example model M1,5,11 indicates that some sites evolved under tree T1, oth-

ers under tree T5, and the remaining under tree T11. The state that has been vis-

ited by the algorithm the most number of times is M1,5 (see Figure 7-1). This

means that the model with trees T1 and T5 (which are the two trees from which

the data have been generated) is better supported by the data than any other

model.

Iteration
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Figure 7-1: Traceplot of the HMM states. The plot shows which models (states)
the algorithm has visited. Notice, that M1,5 is the model visited by the algo-
rithm the most number of times.

Figures 7-2 and 7-3 show the posterior probabilities for the two topologies,

when using the SSTS algorithm combined with the forward-backward proce-

dure, and for the eleven topologies, when using the algorithm described in

Section 4.4, respectively, against the sites. Specifically, the results for the case

with two tree topologies show a strong signal and an accurate change point

estimate. The results for the case with all trees show a clear pattern although

some noise is present between sites 300 − 400. The good performance of the

latter procedure comes as no surprise as we could already see in Section 5.4.5

where the MCMC algorithm could select the right tree topologies. However, in

this case there are more parameters to estimate and this might cause problems

of accuracy, efficiency and computational speed whereas in the SSTS algorithm
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only the trees which receive support from the data are selected allowing us to

estimate the parameters with more precision and accuracy. To assess the ro-

bustness of these findings, additional analyses have been conducted to test for

problems of model sensitivity. Specifically the following values of λ have been

chosen: 1, 3, 7 and 10. The results (not reported here) show that by changing

the value of λ the proportions of times the SSTS algorithm has visited the mod-

els change, although the final results reach the same conclusions as those for

λ = 5.
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Figure 7-2: HGTs with SSTS. The two plots show the posterior probabilities
(P (Si = k), k = 1, 5) for the two tree topologies T1 and T5.

The effect of wrong branch lengths on SSTS

For simplification in the simulation setting, the branch lengths have been fixed

to their true values. This can be justified by the fact that we are mainly inter-

ested in tree selection. However, given that in a real data setting the branch

lengths are not known, it is interesting to assess the robustness of the SSTS

algorithm with respect to the choice of wrong branch lengths.
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Figure 7-3: HGTs without SSTS. The plots show the posterior probabilities
(P (Si = k), k = 1, . . . , 11) for the eleven tree topologies T1-T11.
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Table 7.2 reports the proportion of times the models have been visited by

the SSTS algorithm with wrong branch length values chosen from a U [0, 1],

and satisfying the summation restrictions as described in the previous chap-

ters. The state that has been visited the most number of times is M1,5. This

means that the model with trees T1 and T5 is still better supported by the data,

showing that this simplification could be acceptable and reasonable. However,

it is important to notice that other models, such as M1,3 and M1,3,5, have non-

negligible support. Model M1,3,5 contains two of the three true trees T1 and

T5, whereas M1,3 includes just one. The high frequencies of these two models

can be justified by using the same argument of the previous two chapters. In

fact, the two trees T3 and T5 are similar in their structure, and hence more con-

founded and less distinguishable, given the wrong branch length assignment.

In other words the two trees can distort the results in the same way as highly

collinear covariates can cause regression parameters to be inefficient or make

them quite unstable. Comparing the results of Table 7.2 to those of Table 7.1

two points are worth emphasising; 1) the number of times the algorithm with

wrong branch lengths visits the right state is lower as compared to the case

where the branch lengths are set to the right values, although the conclusions

do not change; 2) there is more variability, hence a loss of efficiency when using

the procedure with wrong branch length values.

Figures 7-4 and 7-5 show the posterior probabilities for the two (when us-

ing the SSTS algorithm combined with the forward-backward procedure) and

eleven topologies (when using algorithm described in Section 4.4), respec-

tively, against the sites with wrong branch length values. The results with two

tree topologies show a clear pattern and a good tree allocation, whereas those

with eleven topologies allocate half of the sites to the wrong tree; the posterior

probability of T3 for sites 300−600 is systematically higher than that of T5. This

means that wrong branch length choices can have a detrimental impact on tree

allocations if we use the algorithm of Section 4.4, whereas the SSTS procedure

seems to be more robust to the choice of wrong branch length values. By look-

ing in more depth at Figure 7-4, and comparing it to Figure 7-2, it is clear that

the results with the wrong branch length values are slightly worse in terms of

estimated change point as compared to those with true branch length values,

but are still reliable and accurate.
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Model Frequency Model Frequency

M1,3 0.135 M1,3,5,9 0.012
M1,5 0.452 M1,3,5,10 0.014
M1,7 0.001 M1,3,5,11 0.002
M1,11 0.001 M1,3,7,9 0.003
M1,2,3 0.010 M1,3,7,10 0.005
M1,2,5 0.001 M1,3,5,11 0.001
M1,3,4 0.001 M1,3,9,10 0.001
M1,3,5 0.160 M1,3,9,11 0.002
M1,3,6 0.003 M1,5,7,9 0.004
M1,3,7 0.009 M1,5,7,10 0.003
M1,3,9 0.025 M1,5,7,11 0.002
M1,3,10 0.031 M1,5,9,11 0.001
M1,3,11 0.002 M1,5,10,11 0.001
M1,4,5 0.001 M1,9,10,11 0.001
M1,5,6 0.001 M1,2,3,7,9 0.001
M1,5,7 0.050 M1,3,4,5,7 0.002
M1,5,10 0.006 M1,3,4,5,9 0.001
M1,5,11 0.007 M1,3,4,9,10 0.001
M1,7,9 0.001 M1,3,5,7,9 0.004
M1,2,3,5 0.002 M1,3,5,7,10 0.002
M1,2,3,7 0.002 M1,3,5,8,10 0.001
M1,2,3,9 0.002 M1,3,5,9,10 0.001
M1,3,4,5 0.002 M1,3,5,9,11 0.001
M1,3,4,10 0.001 M1,3,5,10,11 0.001
M1,3,5,6 0.002 M1,3,7,10,11 0.001
M1,3,5,7 0.022 M1,2,3,5,7,9 0.001
M1,3,5,8 0.001 - -

Table 7.2: The frequencies indicate the proportion of times the SSTS algorithm
with wrong branch length values has visited the models.
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Figure 7-4: HGTs with SSTS and wrong branch lengths. The two plots show
the posterior probabilities (P (Si = k), k = 1, 5) for the two tree topologies T1

and T5 when using the SSTS algorithm with wrong branch length values.
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Figure 7-5: HGTs without SSTS and with wrong branch length values. The
plots show the posterior probabilities (P (Si = k), k = 1, . . . , 11) for the eleven
tree topologies T1-T11.
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7.3.3 Application

We apply the SSTS algorithm to the ribosomal protein gene rps11 data de-

scribed in Chapter 6. Given the underlying species which can be obtained

by removing the two HGTs from the network depicted in Figure 6-1, for sim-

plicity we consider a subset of all possible reticulation events, and hence a

subset of all possible tree topologies. Specifically twelve topologies includ-

ing those depicted in Figure 6-2, are considered. The branch lengths are fixed

to some values randomly chosen from a U [0, 1] with appropriate summation

restrictions. The results of the algorithm are reported in Table 7.3 and show

that the M1,2 is the model visited the most number of times. M1,2 is the model

which contains the two trees, T1 and T2, depicted in Figures 6-2a and 6-2b. The

selection of this model is in line with the results obtained in Chapter 6.

The results of the posterior probabilities for the two topologies, when us-

ing the SSTS algorithm combined with the forward-backward procedure, not

reported here, are also computed. They are quite close to those reported in

Figure 6-4.

7.4 Discussion

A more flexible and general algorithm called stochastic search tree selection

has been presented in order to avoid exploring the entire space of tree topolo-

gies when the reticulations are many and the tree topologies not easily enu-

merated. This procedure allows us to to restrict the set of reticulations (or of

tree topologies) since many of them would contribute little or nothing to the

likelihood of the data. The performance of the algorithm has been tested on

simulated data showing that this algorithm is able to recover the true model,

and has been applied to the ribosomal protein gene rps11 data, confirming the

results obtained in the previous chapter.

However, although this procedure is an extension of the previous one, the

flexibility of the algorithm could be improved. One possible idea to develop

a more flexible and realistic algorithm would be to allow us to estimate the

branch lengths, rather than fixing their values a priori. Another possibility

would be to make step (c), in the updating of the topology HMM, more flexi-

ble. This means that, instead of altering a randomly chosen topology by swap-

ping a tree topology chosen from the trees that are currently in the model for a

randomly chosen topology not included in the current model, we could make

a local rearrangement of an existing topology by selecting a branch in the tree
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Model Frequency Model Frequency

M1,2 0.430 M1,3,4,9 0.012
M1,3 0.100 M1,3,4,10 0.014
M1,5 0.002 M1,3,4,11 0.001
M1,7 0.001 M1,3,5,11 0.003
M1,12 0.001 M1,3,7,9 0.004
M1,2,3 0.010 M1,3,7,10 0.006
M1,2,5 0.001 M1,3,5,11 0.001
M1,2,4 0.001 M1,3,9,10 0.001
M1,2,5 0.025 M1,3,9,11 0.002
M1,2,12 0.001 M1,3,9,12 0.001
M1,3,6 0.003 M1,5,7,9 0.004
M1,3,7 0.009 M1,5,7,10 0.003
M1,3,9 0.026 M1,5,7,12 0.002
M1,3,10 0.032 M1,5,9,12 0.001
M1,3,12 0.002 M1,5,10,12 0.001
M1,4,5 0.001 M1,9,10,12 0.060
M1,5,6 0.001 M1,2,3,7,9 0.001
M1,5,7 0.050 M1,2,4,5,7 0.002
M1,5,10 0.006 M1,2,4,5,9 0.001
M1,5,12 0.007 M1,2,4,9,10 0.001
M1,7,9 0.001 M1,2,5,7,9 0.004
M1,2,3,5 0.046 M1,2,5,7,10 0.080
M1,2,3,7 0.002 M1,3,5,8,10 0.001
M1,2,3,9 0.002 M1,3,5,9,10 0.001
M1,2,4,5 0.002 M1,3,5,9,11 0.001
M1,2,4,10 0.001 M1,3,5,10,12 0.001
M1,2,5,6 0.002 M1,5,7,10,12 0.001
M1,2,5,7 0.022 M1,2,3,5,7,9 0.001
M1,3,4,8 0.001 M1,2,3,5,7,12 0.001

Table 7.3: The frequencies indicate the proportion of times the SSTS algorithm
with wrong branch length values has visited the models in the ribosomal pro-
tein gene rps11 data.
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and cutting it in a similar manner to that described by Webb et al. (2009) and

also implicit in the work by Song and Hein (2005). However some caution is

required when performing this step. In fact in our setting, not all trees would

be consistent with reticulations, and we should also account for the appropri-

ate summation restrictions on the branch lengths.
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Chapter 8

Conclusions and discussion

8.1 Summary

One of the aims of the thesis was to conduct a review of the current state

of the art in phylogenetic networks. We have presented a survey of three

reticulate network methods at the species level with the aim of providing an

accessible introduction to this fascinating field of research, trying to achieve

a good balance between mathematical tractability and intuition. In partic-

ular the ML estimation, ML combined with HMMs, and the MP approach

for phylogenetic networks reconstruction and inference have been reviewed.

All these methods are based on the definition of a phylogenetic network as

a DAG obtained by positing a set of edges between pairs of the branches of

the species tree to model reticulation events. This survey achieved two re-

sults: firstly, it offered an accessible introduction to phylogenetic networks

at the species level as all these methods have been published in advanced

bioinformatics/computational biology journals that cannot be easily accessed,

adapted, or applied given the complexity of the topic. Secondly, this review,

as opposed to others available in the literature (e.g. Posada and Crandall,

2001; Morrison, 2005; Huson and Bryant, 2006; Makarenkov et al., 2006, to

name a few), focuses on phylogenetic network methods at the species level

which are based on the simple idea that a network can be naturally and intu-

itively decomposed into phylogenetic trees. This review does not provide a

full overview of the existing literature, rather it provides an overview of more

recent methods which have not received much attention in this literature.

The main object of the thesis was the development of a Bayesian modelling

framework for phylogenetic networks. To achieve this goal MCMC techniques

have been employed. In particular to compute the posterior quantities of the
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branch lengths and evolution model parameters, Metropolis-Hastings algo-

rithms have been proposed, whereas to allow inferences to be made regarding

the number of different phylogenies for different parts of DNA sequences, two

approaches have been considered: naive, where the sites are modelled inde-

pendently and a first order HMM structure, where the sites are modelled de-

pendently. Also, the stochastic forward-backward algorithm, which is a single

component block procedure has been contrasted to the Gibbs sampler, which

is a large component block procedure. The performance of the approach has

been validated on synthetic data and applied to real data. The simulation re-

sults highlighted the importance to model sites dependently by using a first or-

der HMM structure as sites modelled independently might cause the inference

of an erroneous phylogenies at sites. Also, the results showed that the Gibbs

sampling performance is poor as compared to the forward-backward algo-

rithm in terms of convergence and mixing. To investigate the impact of some

model misspecifications and provide some practical insights, several simula-

tion scenarios have been presented. For example depending on the problem

at hand the choice of the model of evolution might not be so crucial as accept-

able tree classifications can still be obtained by using simpler models. Also

the MCMC algorithm might not work well when trees are confounded as they

distort the results in the same way as highly collinear covariates can cause

regression parameters to be inefficient or make them quite unstable. As for

the application to the rps11 data the findings showed that significant variation

caused by reticulation events is detected. Finally, a more general and flexible

algorithm which avoids exploring the entire space of tree topologies when the

reticulations are many has been proposed. The SSTS allows the data to dic-

tate how many phylogenies are required to explain the data. This has been

achieved by adapting the stochastic search variable selection algorithm to the

phylogenetic network framework. The performance of the algorithm has been

tested on simulated data showing that this algorithm is able to recover the true

model, and has been applied to the ribosomal protein gene rps11 data, confirm-

ing the previous results. When using the proposed algorithm, the selection of

a set of trees is of extreme importance; we saw that we can rely on previous

findings and biological reasoning. However sometimes a more automatic and

less ad hoc method could also be used; its advantage would be more evident

when 2K is a large number, and a priori one tree is not preferred over others.
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8.2 Extensions and future work

Although the SSTS procedure is a more general algorithm, its flexibility could

be further improved. As already discussed in Chapter 7 a more realistic ver-

sion could be developed to allow us to estimate the branch lengths, and to

update the topology HMM, using a local rearrangement of an existing topol-

ogy in the same way as that described by Webb et al. (2009). However some

caution is required when trying to generalise the algorithm as the appropriate

summation restrictions have to be imposed on the branch lengths.

Alternatively, the algorithm could be made more general and more realis-

tic by inferring the reticulation events, given an underlying species tree. This

could be achieved by using a birth and death MCMC (BDMCMC) formula-

tion. BDMCMC has been developed by Stephens (2000) in the context of mix-

ture models with unknown number of components. This technique simulates

a birth-death process in which parameters (components) are added (birth) and

deleted (deaths). This process is run for a fixed length of time within each

iteration in order to update the model. Thus, many models may be visited

during the continuous time process run within each iteration. An important

feature of the BDMCMC sampling is that a continuous time jump process is

associated with the birth-and-death rates: whenever a jump occurs, the cor-

responding move is always accepted. The acceptance probability of usual

MCMC methods is replaced by the differential holding times. In particular,

implausible configurations die quickly. By following this approach, we could

turn the problem of inferring mixture models with unknown number of com-

ponents into a problem of inferring phylogenetic trees with unknown number

of reticulations by making the necessary modifications. Alternative algorithms

to BDMCMC, such as the reversible jump MCMC (RJMCMC) algorithm, could

also be used. However, in contrast to RJMCMC, the BDMCMC moves take the

advantage of the natural nested structure of the models, removing the need

for the calculation of a complicated Jacobian, and making the implementation

more straightforward. Also, the BDMCMC moves do not make use of any

parameter constraint and of any missing data structure.

In conclusion, although several methodological improvements are neces-

sary to provide more general and reliable results, and this will be our direction

for future research, we should recognise that the modelling and estimation of

phylogenetic networks is a relatively young field of research; thus we still lack

a comprehensive theoretical framework and empirical investigation. Nonethe-

less we believe that the approach discussed in this thesis is a step forward in
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this direction, and our developments demonstrate the power and flexibility

of phylogenetic network modelling as a means of accounting for non-treelike

events, identifying the phylogenies underlying biomolecular data.
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(a) Autocorrelation function and trace plots for the branch edges t1-t4 compared to their
true values (red line).

Figure 8-1: Autocorrelation function and trace plots for the branch edges with
HMM on S.
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(b) Autocorrelation function and trace plots for the branch edges t5-t7 and t̃8 compared
to their true values (red line).

Figure 8-1: Autocorrelation function and trace plots for the branch edges with
HMM on S (con’t).
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(c) Autocorrelation function and trace plots for the branch edges t9, t̃10, t11 compared to their
true values (red line).

Figure 8-1: Autocorrelation function and trace plots for the branch edges with
HMM on S (con’t).
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(d) Autocorrelation function and trace plots for the branch edges t12-t14 and compared to their
true values (red line).

Figure 8-1: Autocorrelation function and trace plots for the branch edges with
HMM on S (con’t).
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Figure 8-2: Autocorrelation function and trace plots for the nucleotide frequen-
cies πA, πC , πG, πT compared to their true values (red line).
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(a) Autocorrelation function and trace plots for the rates of substitution rAC , rAG, rAT com-
pared to their true values (red line).

Figure 8-3: Autocorrelation function and trace plots for the rates of substitu-
tion.
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(b) Autocorrelation function and trace plots for the rates of substitution rCG, rCT , rGT com-
pared to their true values (red line).

Figure 8-3: Autocorrelation function and trace plots for the rates of substitu-
tion (con’t).
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Figure 8-4: Autocorrelation function and trace plots for the probability of not
changing topology ν.
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(a) Autocorrelation function and trace plots for the branch edges t1-t4.

Figure 8-5: Autocorrelation function and trace plots for the branch edges with
HMM on S.

125



0 50 100 150 200

0.0

0.2

0.4

0.6

0.8

1.0

lag

ac
f

0.00

0.01

0.02

0.03

0.04

0.05

Iteration

t 5

0 1e+05 2e+05 3e+05 4e+05 5e+05

0 50 100 150 200

0.0

0.2

0.4

0.6

0.8

1.0

lag

ac
f

0.04

0.06

0.08

0.10

0.12

0.14

Iteration

t~ 6

0 1e+05 2e+05 3e+05 4e+05 5e+05

0 50 100 150 200

0.0

0.2

0.4

0.6

0.8

1.0

lag

ac
f

0.04

0.06

0.08

0.10

Iteration

t~ 7

0 1e+05 2e+05 3e+05 4e+05 5e+05

0 50 100 150 200

0.0

0.2

0.4

0.6

0.8

1.0

lag

ac
f

0.002

0.004

0.006

0.008

Iteration

t~ 8

0 1e+05 2e+05 3e+05 4e+05 5e+05

(b) Autocorrelation function and trace plots for the branch edges t5, t̃6, t̃7 and t8.

Figure 8-5: Autocorrelation function and trace plots for the branch edges with
HMM on S (con’t).
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(c) Autocorrelation function and trace plots for the branch edges t9, t̃10, t11 and t12.

Figure 8-5: Autocorrelation function and trace plots for the branch edges with
HMM on S (con’t).
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Figure 8-6: Autocorrelation function and trace plots for the nucleotide frequen-
cies πA, πC , πG, πT .
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(a) Autocorrelation function and trace plots for the rates of substitution rAC , rAG, rAT .

Figure 8-7: Autocorrelation function and trace plots for the rates of substitu-
tion.
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(b) Autocorrelation function and trace plots for the rates of substitution rCG, rCT , rGT .

Figure 8-7: Autocorrelation function and trace plots for the rates of substitu-
tion (con’t).
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Figure 8-8: Autocorrelation function and trace plots for ν.
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