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Summary  

 

Hybrid models are those containing continuous and discontinuous behaviour. In 

constructing dynamic systems models, it is frequently desirable to abstract 

rapidly changing, highly nonlinear behaviour to a discontinuity. Bond graphs 

lend themselves to systems modelling by being multi-disciplinary and reflecting 

the physics of the system. One advantage is that they can produce a mathematical 

model in a form that simulates quickly and efficiently. Hybrid bond graphs are a 

logical development which could further improve speed and efficiency. A range 

of hybrid bond graph forms have been proposed which are suitable for either 

simulation or further analysis, but not both. None have reached common usage. 

 

A Hybrid bond graph method is proposed here which is suitable for simulation as 

well as providing engineering insight through analysis. This new method features 

a distinction between structural and parametric switching. The controlled 

junction is used for the former, and gives rise to dynamic causality. A controlled 

element is developed for the latter. Dynamic causality is unconstrained so as to 

aid insight, and a new notation is proposed.  

 

The junction structure matrix for the hybrid bond graph features Boolean terms 

to reflect the controlled junctions in the graph structure. This hybrid JSM is used 

to generate a mixed-Boolean state equation. When storage elements are in 

dynamic causality, the resulting system equation is implicit. 

 

The focus of this thesis is the exploitation of the model. The implicit form 

enables application of matrix-rank criteria from control theory, and control 

properties can be seen in the structure and causal assignment. An impulsive 

mode may occur when storage elements are in dynamic causality, but otherwise 

there are no energy losses associated with commutation because this method 

dictates the way discontinuities are abstracted.  

 

The main contribution is therefore a Hybrid Bond Graph which reflects the 

physics of commutating systems and offers engineering insight through the 

choice of controlled elements and dynamic causality. It generates a unique, 

implicit, mixed-Boolean system equation, describing all modes of operation. This 

form is suitable for both simulation and analysis. 
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Nomenclature  

 

A The A-matrix in the standard Linear Time Invariant system equations 

B The B-matrix in the standard Linear Time Invariant system equations 

BGD Bond graph in preferred derivative causality 

C The C-matrix in the standard Linear Time Invariant system equations 

D The D-matrix in the standard Linear Time Invariant system equations 

D The vector of all input/output variables to the resistance field 

outD̂      The input vector to the system from the resistance field in static causality  

             (composed of e or f from the dissipative elements) 

oute _D
~

  The effort input vector to the system from the resistance field in dynamic          

             causality (composed of  e from the dissipative elements) 

outf _D
~

 The flow input vector to the system from the resistance field in dynamic          

             causality (composed of  f from the dissipative elements) 

inD̂       The output vector from the system to the resistance field in static   

             causality (composed of e or f to the dissipative elements) 

ine _D
~

  The effort output vector from the system to the resistance field in dynamic   

             causality (composed of e to the dissipative elements) 

inf _D
~

  The flow output vector from the system to the resistance field in   

             dynamic causality (composed of f to the dissipative elements) 

d Subscript denoting derivative causality 

E The E-matrix in the standard Linear Time Invariant system equations 

e Generalised effort variable on a bond 

f Generalised flow variable on a bond 

F The matrix characterising the storage field. In the LTI case, this is a 

diagonal matrix of the linear coefficients for storage elements (relating 

the states to their complements) 

G Ground  

G Gain 

i Subscript denoting integral causality 

in Subscript denoting input 

k Number of zero (structurally null) modes 

L The matrix relating the outputs to inputs of the resistance field. In the LTI 

case, this is a diagonal matrix of the linear coefficients for resistance 

elements. 

L The linear coefficient for a single Inertia (I-element)  

M Mass 

MTF Modulated Transformer element 
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n Model order 

out Subscript denoting output 

p Generalised Momentum 

q Generalised Displacement. Also used to denote bond-graph rank in  

structural analysis. 

R  The linear coefficient for a single Resistance (R-element) 

S The junction structure matrix 

T The vector of input/output variables to switched sources 

t Time. Also used to denote the number of dynamical elements in the BGD 

U The input vector to the system 

V The vector of complementary variables to the inputs 

V Voltage 

W Weight 

X The vector of all state variables 

iX̂


  The input vector to the system from storage elements in static integral 

causality (composed of p  and q ) 

iX
~

  The input vector to the system from storage elements in dynamic integral 

causality (composed of p  and q ) 

dX
̂

  The output vector from the system to storage elements in static derivative 

causality (composed of p  and q ) 

dX
~

  The output vector from the system to storage elements in dynamic 

derivative causality (composed of p  and q ) 

Y The output vector from the system 

Z  The vector of all complementary variables to the time-derivatives of the 

states 

dẐ    The input vector to the system from storage elements in static derivative 

causality (composed of f  and e ) 

dZ
~

  The input vector to the system from storage elements in dynamic 

derivative causality (composed of f  and e ) 

iẐ  The output vector from the system to storage elements in static integral 

causality (composed of f  and e ) 

iZ
~

  The output vector from the system to storage elements in dynamic 

integral causality (composed of f  and e ) 

Δ Graph Determinant 

 Boolean parameter indicating the state of a single switch / controlled 

junction 
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  The vector of eigenvalues for a system. Also a vector of Boolean 

parameters. 

Φ A nonlinear function: used to denote a nonlinear constitutive equation in 

a compliance, inertia or resistance element (with subscript C, I or R 

respectively) 

 Switching law. In this thesis, it is the diagonal matrix of Boolean 

functions governing whether a mode of operation is active.  

 ̂ Denotes static causality 

~  Denotes dynamic causality 
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Chapter 1: Introduction 

 

1.1 Background 

 

Modelling and simulation is a vital part of any engineering design process. 

Conceptual models and virtual prototypes aid in ensuring a design is fit for 

purpose before any physical models or prototypes are built, and this can 

significantly reduce time and costs. Models can also be used in assessing and 

understanding any behaviour observed later in the design phase or in operation of 

the physical product. Increasingly, computer models are used for hardware- and 

model-in-the-loop testing, online fault detection and isolation activities, and 

health and usage monitoring.  

 

Historically, mathematical modelling relied on hand calculations. ‘Models’ were 

constructed using standard equations pertaining to a particular domain or 

discipline: Euler, Newton, Lagrange, Bernoulli or Kirchhoff equations (for 

example). As the use of computers became more commonplace, these divisions 

between engineering disciplines remained. Hence, the current state of the art with 

computer aided engineering software is that a package usually specialises in a 

particular domain, and often incorporates the same assumptions and 

simplifications that were once needed to make hand calculations possible. A 

classic example is the linearisation of systems and use of linear time-invariant 

model forms. This is unnecessary, since the analysis of nonlinear systems using 

the work of Routh or Lyapunov can easily be handled by a modern computer. 

Likewise, discontinuous behaviour such as switching or contact is typically 

poorly handled (resulting in stiff continuous models) despite the inherently 

discrete nature of computers and a wealth of work into the treatment of 

discontinuous behaviour. 

 

As modelling and simulation plays an increasingly important role in the design 

process and maintenance of engineering systems, more accurate models are 

required. It is no longer sufficient to model subsystems in isolation, since they 

can interact and produce significant coupled dynamics. The use of novel and 

‘smart’ materials and structures, and passive and active control devices, 

necessitates models which can describe the dynamic behaviour of a complex, 

possibly nonlinear system spanning several engineering domains. These system 

models are referred to as mechatronic, multi-disciplinary or multi-physics 

systems models.  
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Hence there are two important areas for improvement in modelling and 

simulation. The first is the construction of multi-disciplinary systems models. 

The second is the correct modelling of increasingly complex nonlinear and 

discontinuous systems: this can be achieved using hybrid modelling.  

 

 

1.2 Systems Modelling 

1.2.1 Multi-Disciplinary Models 

 

In order to construct a multi-disciplinary model using current industry-standard 

tools, different software packages are either co-simulated (i.e. submodels are 

built in their respective ideal software packages and the packages are then 

virtually linked so as to simulate the submodels together) or are used to generate 

some code or an element which can be embedded in another software package. 

This approach is prone to difficulties, because models may need to be simplified 

further and/or simulated using non-ideal solvers in order to make these software 

packages compatible. Alternatively, separate systems models are constructed, 

which naturally involves some duplication of modelling effort and may lack the 

detail of the original subsystem models. 

 

Systems modelling has its roots in electrical and control engineering, and the 

current industry standard approach is the use of block diagrams (in control 

engineering software packages such as SIMULINK) or signal-flow graphs, and 

linear time-invariant (LTI) models. A major limitation of this approach is the 

input/output thinking endemic in control engineering, i.e. the user must define 

the inputs and outputs to a model as it is being constructed, which necessitates 

knowing the mathematics beforehand. This makes sense in signal processing and 

feedback control tasks, but is not suited to physical system modelling where 

cause and effect may be unclear, and a modeller can unwittingly create 

physically meaningless or computationally inefficient models. Åström refers to 

this as the “control/physics barrier” [1]. 

 

Alternative tools and proposals for Idealised Physical Systems Modelling, 

Behavioural Modelling, and Object-Orientated modelling have been well-

documented and available for some years, but have yet to become the standard 

approaches in the engineering community. These approaches revolve around 

using the physical system and/or its behaviour to develop a mathematical model. 

A common feature is acausality i.e. the model is constructed from reversible 

equations rather than statements, or submodels with energy- or power-conserving 

ports rather than inputs and outputs. Causality is then assigned after the model is 

built. This facilitates the reuse of models and parts, which can have a different 
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causality assigned in different situations. For example, the commercially 

available physical modelling package Dymola uses the acausal, object-orientated 

language Modelica. 

 

For multi-disciplinary models in particular, port-based physical modelling is 

advantageous because energy and power exist across all disciplines, and can 

therefore be used to intuitively link submodels describing different engineering 

domains. This is facilitated by the use of generalised variables. The use of 

generalised momentum and generalised displacement can ensure that 

conservation of energy and conservation of momentum are respected. The 

standard equations used in classical mathematical modelling – Newton, Lagrange, 

Kirchoff – can all be derived in terms of generalised variables [2]. 

 

Bond graphs are a method which encompasses the above ideas. They describe 

the power in a system, in terms of effort and flow (the time derivatives of 

generalised momentum and displacement). As a lumped-parameter approach 

(routinely used in the modelling of dynamical systems) they relate effort and 

flow using generalised inertia, compliance and resistive elements, modulation 

elements, and ideal sources, which all have the same basic form irrespective of 

engineering domain. The model construction phase is acausal, and causality is 

then assigned using a visible notation of causal strokes: this allows causality to 

be exploited, providing insight to the model and the form of the underlying 

equations. The derivation of equations (state equations, transfer functions, 

Lagrange and Hamiltonian equations) is well documented.  Although LTI state 

equations are frequently derived in the literature, bond graphs elements can 

easily take nonlinear constitutive equations and yield nonlinear mathematical 

models. For more information on Bond Graphs the reader is directed to Karnopp, 

Margolis and Rosenberg’s standard text on the subject [3]. 

 

 

1.2.2 Hybrid Models 

 

Hybrid mathematical models are models which incorporate both continuous and 

discontinuous equations. They include any behaviour that can be abstracted to a 

discontinuity, such as contact, or a nonlinear element with a piecewise 

continuous relationship. A discontinuity is a change in behaviour which occurs 

so rapidly as to be considered instantaneous. In a mathematical sense, a hybrid 

system is a set of continuous equations linked by discontinuous movements in 

state space. 

 

All systems can be described by continuous equations. In software packages, 

these are usually in the form of differential algebraic equations (DAEs) which are 
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integrated by a solver. When rapidly-changing behaviour is described by a 

continuous differential equation, it must be integrated using very small time steps 

in order to achieve any level of accuracy. Replacing rapidly-changing behaviour 

with a discontinuous equation can therefore aid solvability and improve 

computer simulation times.  

 

In addition, a user may find it intuitive to think of certain elements (like an 

electrical switch or hydraulic valve) or phenomena (such as contact, dry friction 

or breakage) as discontinuous. 

 

 

1.2.3 Hybrid Bond Graphs 

 

A hybrid bond graph has the potential to model complex multi-disciplinary 

nonlinear systems by encompassing the advantages of bond graph modelling (as 

a tool for intuitive, acausal, port-based, multi-disciplinary modelling) and hybrid 

modelling (as a method for treating highly nonlinear and discontinuous 

problems). 

 

The standard bond graph notation has been extended by several authors to 

describe highly nonlinear systems (via field elements) and ideal switches. The 

latter is particularly interesting since it gives rise to the Switched or Hybrid Bond 

Graph.  

 

The Switched or Hybrid Bond Graph is achieved using an ideal switch with some 

kind of Boolean modulation or control. A variety of methods for formalising this 

have been proposed in the literature, but no single method has reached common 

usage or inclusion as a standard element in a bond graph software tool. An issue 

which provokes discussion is that of dynamic causality, which occurs when the 

causality assignment differs according to the states of the switches. Another is 

the treatment of variable topology problems such as contact, where the size of the 

mathematical model literally changes. Some methods have been proposed for 

computer simulation, which sacrifice the insight gained from the idealised 

physical bond graph model by using parasitic elements or transferring the model 

to another environment. Other methods have been proposed which give a 

mathematical model for each mode of operation (defined by the states of the 

switches) but cannot yield a simulation, or require additional computation to link 

the models of each mode.   
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1.3 Problem Formulation 

 

The goal of this research is to show how bond graphs could be used to analyse 

aircraft systems such as a landing gear, which are inherently highly nonlinear and 

would normally be abstracted to include discontinuous behaviour. In order to 

achieve this, the existing proposals for a Hybrid Bond Graph had to be reviewed 

to find a method which facilitated simulation as well as reflecting the physics of 

the system and providing some engineering insight.  

 

The following objectives were therefore defined: 

 

1. To propose a method for constructing a Hybrid Bond Graph which 

reflects the physics of the system, and is suitable for analysis and 

simulation purposes.  

 

2. To validate this approach by deriving standard forms of mathematical 

model for the Hybrid Bond Graph, and comparing them to the existing 

literature on mathematical models. 

 

3. To exploit the Hybrid Bond Graph and its causality assignment to derive 

information about the mathematical model.  

 

4. To apply the method to a selection of illustrative case studies. 

 

 

 

1.4 Outline  

 

This thesis falls naturally into three parts: Background, Construction & Analysis 

of Hybrid Bond Graphs, and Case Studies.  

 

The background to the project covers an extensive volume of existing literature, 

detailed in Chapter 2. An overview of hybrid modelling is given, followed by the 

development of switched and hybrid bond graphs. There are several variations on 

the latter, which are discussed with reference to the necessary considerations of 

dynamic / static causality assignment, impulses on commutation, and the 

graphical advantages of bond graphs. Aspects of classical and modern Control 

theory (which will be used in the analysis of bond graph models) are presented, 

along with their use on standard and hybrid bond graphs to date.  
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Chapter 3 presents a method for constructing a Hybrid Bond Graph, which 

includes two different kinds of discontinuity and a notation for dynamic causality. 

From this, the mixed-Boolean junction structure, and implicit state equations are 

derived. These are compared to the equations derived from other types of hybrid 

bond graph.  

 

Chapter 4 presents some observations on the hybrid bond graph, derives further 

equations (output equation and transfer function) and exploits it for structural 

analysis (drawing parallels with matrix-rank criteria established in control 

theory). 

 

Chapter 5 gives three case studies which show the range of applications for this 

method.  

 

Chapter 6 discusses the method presented in this thesis and draws some 

conclusions about its validity and usefulness. 

 

 

1.5 Novelty & Contributions 

 

There are several novel aspects presented in this thesis:  

 The classification of discontinuities into structural and parametric. 

 The use of controlled junctions for the structural discontinuities and 

controlled elements for the parametric discontinuities. Although there are 

many proposed methods for constructing a Hybrid Bond Graph, including 

the use of controlled junctions, the method presented here is designed to 

be more intuitive and usable.  

 The derivation of a new controlled element from a mode-switching ‘tree’ 

of controlled junctions and elements. 

 The use of the controlled junction to place Boolean parameters in the 

Junction Structure Matrix, and hence generate mixed-Boolean equations.  

 The dynamic causality notation, designed to aid construction and 

qualitative analysis. Dynamic causality is a hotly debated topic in the 

bond graph community (at the time of writing) and notation has been 

proposed before. This thesis argues the case for allowing dynamic 

causality in order to gain engineering insight. 

 The adaptation of pseudo-state variables to describe storage elements in 

dynamic causality. 

 The unique, implicit, mixed-Boolean system equation derived from the 

Hybrid Bond Graph and describing all modes of operation.   

 



17 

 

1.6 Publications 

 

Margetts, R. and Ngwompo, R.F., Comparison of Modeling Techniques for a 

Landing Gear. ASME IMECE 2010, pp. 329-335 Vancouver, Canada, November 

2010. (ASME Conference Proceedings, 2010). 

 

Margetts, R., Ngwompo, R.F. and Fortes da Cruz, M., Construction and 

Analysis of Causally Dynamic Hybrid Bond Graphs. Proceedings of the 

Institution of Mechanical Engineers Part I – Journal of Systems and Control 

Engineering, March 2013, vol. 227 no. 3 pp. 329-346. 

 

Margetts, R., Ngwompo, R.F. and Fortes da Cruz, M., Modelling a Drop Test 

of a Landing Gear using a Hybrid Bond Graph. IASTED MIC 2013, Innsbruck, 

Austria, February 2013. (Proceedings of the IASTED Multiconferences, 2013). 



18 

 

Chapter 2: Literature Review 

 

2.1 Preliminaries 

 

This research brings together several fields and ideas, and consequently a variety 

of topics were reviewed in the literature.  

 

The bond graph is briefly reviewed as the chosen method for constructing a 

systems model. Hybrid modelling is then also introduced because it is 

fundamental to understanding the hybrid bond graph. The development of hybrid 

and switched bond graphs is reviewed in some detail, as there has been a 

substantial body of work conducted and several methods proposed.  

 

The analysis of systems models is then addressed. Again, methods from classical 

control theory are overviewed, before demonstrating how control properties have 

been applied to both standard and hybrid bond graphs. 

 

 

2.2 The Bond Graph 

 

Bond Graph modelling was developed in the late 1950s by Paynter and 

formalised into a methodology by Karnopp, Margolis and Rosenberg. Their 

definitive textbook ‘System Dynamics’ was first published in 1971 and is still 

widely used today [3]. The concept of using generalised variables to model 

mechatronic systems is an important one in teaching dynamics, and is not limited 

to bond graphs. Parallels have been drawn with linear graph theory and 

combinatorics [4-7], and object-orientated computer programming [8]. A number 

of modelling and simulation software packages are either underpinned by, or 

explicitly support, bond graph modelling.  

 

In essence, the bond graph consists of ‘bonds’ (drawn as half-arrows) which 

represent the power between standard elements. These standard elements are the 

point masses, compliances and resistances familiar to users who practise lumped-

parameter modelling in mechanical engineering. The power across these 

elements is given as generalised effort and flow, and the method can therefore be 

extended to any engineering domain. The set of standard elements is completed 

by ideal sources (of effort and flow), junctions (about which either effort or flow 

is common), and transformer and gyrator elements (which modulate effort and 

flow to transform power between engineering domains). The method is acausal 
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(i.e. the inputs and outputs to each element are not defined, they are simply 

assigned a power-conserving port), and causality is assigned after the 

construction phase is complete, shown on the bond graph by causal strokes. 

Several causality assignment procedures have been proposed but the most widely 

used is SCAP (Sequential Causality Assignment Procedure). SCAP assigns 

computational causality so that the maximum possible number of elements is in 

integral causality, i.e. inertia and compliance elements are assigned an output so 

as to put the underlying equations in terms of the integral of the input. This is 

known as integral causality and the reverse situation (where there is a derivative 

term in the constitutive equation) is known as derivative causality. Placing a 

model in integral causality allows a computer to solve the model quickly and 

accurately using standard integrator routines. Solutions to any derivative terms 

are typically estimated using an iterative process, which can be inaccurate and 

slow down a simulation significantly. 

 

Despite being assigned so as to aid computation, causality can be used to derive 

information about the model and the form of its underlying equations: this will 

be discussed further under the topic of bond graph structural analysis. 

 

 

2.3 Hybrid Models 

2.3.1 Hybrid Systems 

 

A hybrid system is a system containing both continuous and discontinuous 

behaviour. This can be visualised as continuous modes on areas of state space 

linked by a discontinuous state mapping [9].  

 

Definition 1: Hybrid Model 

A Hybrid Model is any model which describes both continuous and 

discontinuous behaviour. 

 

 

A system model can be described as a hybrid automaton i.e. one that contains 

both finite and continuous state spaces [10]. The dynamics consist of discrete 

transitions plus an evolution of the continuous part in each location.   

 

The terms hybrid and switched system are used almost interchangeably in the 

bond graph literature, but there is a subtle difference. Switching systems 

“comprise a family of dynamical subsystems together with a switching signal 

determining the active system at a current time” [11]. They are a subset of 

hybrid systems, where there is some discontinuous behaviour modelled by an 
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on/off switch or other binary signal. Switched models can be used to describe 

multimodal systems and variable-structure systems, and it will be shown in this 

thesis that the Hybrid Bond Graph always gives a switched system. 

 

Definition 2: Switched Model 

A Switched Model is a subset of Hybrid Model, which contains continuous 

equations and binary switching devices. The ‘switches’ select the active 

continuous equation(s) or behaviours at a given time. 

 

 

Branicky et al [12] categorise hybrid models into Switching and Impulse models, 

which can be Controlled or Autonomous. Switching models are defined as those 

where the vector field changes discontinuously when the state hits a boundary. 

Impulse models are those where the continuous state changes impulsively on 

hitting prescribed regions of state space. The classic example is Newton’s 

Collision law, where the state of a body changes from positive to negative 

velocity on impact, and any dissipative effects are accounted for by a coefficient 

of restitution. These types of models have been created by some hybrid bond 

graph practitioners [13, 14] and are discussed here for completeness. 

 

Definition 3: Impulse Model 

An Impulse Model is a subset of Hybrid Model where the state changes 

impulsively, i.e. there is an impulse loss on commutation. 

 

 

2.3.2 Boolean Algebra in Control 

 

The technique developed in this thesis uses Boolean algebra and yields mixed-

Boolean mathematical models. This is a new concept in bond graph analysis. 

However, there has been some work on Boolean control in general. 

 

It is well established that a discontinuous control action – typically in the form of 

a switching input – causes the system’s structure to vary, and these models are 

therefore referred to as Variable-Structure Systems. A subspace or hyperplane 

called the switching surface divides the state space of the model into two regions, 

each with a different control law (or form of). When the system operates on the 

switching surface, it is said to be in sliding mode and sliding control utilises this 

idea to give robust control in discontinuous and nonlinear systems. This method 

can be extended to variable-structure systems where the parameters – and not just 

the control inputs – are discontinuous [15]. 
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Holderbaum [16] develops a Boolean control law for a power converter, directly 

from the Boolean input vector to the system, and assesses the system’s stability. 

This work is in contrast to earlier work on control of switching electronic 

systems which uses mean values of inputs, such as Pulse Width Modulation 

(PWM). Boolean input systems – controlled by thyristors or transformers – are 

widely used in electrical industrial applications [17]. 

 

There is a significant body of work on hybrid models as Boolean Control 

Networks, particularly with bioscience applications. Boolean control networks 

are essentially linear graphs and are therefore closely related to bond graphs in 

principle. They have been analysed for control properties such as stability and 

observability [18-21]. The nodes in a Boolean network each represent a state 

variable which takes a value of 0 or 1 depending on whether it is ‘active.’ A 

regulation rule for each node is given as a Boolean function [20].  

 

Other than a superficial similarity, this work does not directly influence the 

development of the hybrid bond graph.  

 

 

2.4 Hybrid Bond Graphs 

2.4.1 Development of the Hybrid Bond Graph 

 

A number of methods have been proposed to model discontinuities in the bond 

graph framework. From early on in the development of bond graphs, there was a 

need to model discontinuities in the form of elements like switches and valves. 

This motivated Thoma’s time-dependant junction (tdj) [22], and the use of 

modulated resistance elements to represent hydraulic valves [22, 23].  

 

There was a significant interest in hybrid modelling using bond graphs in the 

1990s, no doubt aided by the increased availability of computing power. At this 

point, the terms ‘mode-switching,’ ‘switched bond graph’ and ‘hybrid bond 

graph’ were all coined. The switching transformer element [24] which evolved 

into the Boolean-modulated transformer and resistor combination [25], switching 

bond [26] and switched source (sometimes known as a switched element) [27-

30] were introduced. Shortly afterwards Mosterman and Biswas proposed the 

controlled junction (similar in principle to Thoma’s earlier time dependent 

junction) [31] and Gawthrop presented the switched storage element [32]. 

Borutzky suggested the use of Petri-nets to link a collection of continuous 

models (one for each mode of operation) [33]. Later work on hybrid bond graphs 

has seen variations on these methods such as Samantaray’s use of switched 

elements (which includes a switched resistance) [34], Umarikar and Umanand’s 
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Switched Power Junction [35] and Low et al’s version of the controlled junction 

[36]. Table 1 compares the main bond graph switching mechanisms.  

 

These bond graph switching mechanisms generally work by imposing null flow 

or effort on the adjacent structure. This would be consistent with an ideal 

electrical switch (across which there is zero current when it is off), or ideal clutch 

(across which there is zero torque when it is disconnected), for example. In 

addition, Soderman [29] formalises the modelling of mode-switching systems 

(e.g. parts with piecewise continuous behaviour, where the system switches 

between modes of operation as opposed to on/off behaviour) using ‘trees’ of 

ideal switches and elements. 

 

Throughout the latter half of the 1990s a body of work on the simulation of 

hybrid bond graph models was produced in which the key figures were Edström 

(working with switched sources) and Mosterman (working with controlled 

junctions). This work included ontologies, semantics, and methods for 

reinitialising state variables after a discontinuity occurs [9, 37-44]. Mosterman in 

particular establishes types of mode change, and investigates impulses occurring 

on commutation using implicit models of collisions [45].  

 

Two later variations on the hybrid bond graph are interesting to note despite not 

reaching common use. The first is the Quantized Bond Graph [46] which, by 

being inherently discrete, neatly avoids variable causality and can be solved by 

Discrete Event Simulation (DEVS) [47, 48]. Kofman correctly asserts that, since 

computers inherently discretize models anyway, there is little advantage in 

placing too much importance on the continuous parts of a hybrid model. The 

second is the Impulse Bond Graph [14] which explicitly considers Dirac pulses 

by introducing the impulse bond and impulse switch (ISw – not to be confused 

with Gawthrop’s switched inertia) element. 

 

Switched sources and controlled junctions have fallen into more common usage 

than the other methods. This appears to be because they can model ideal 

switching, whereas the use of switched or modulating resistance and transformer 

components wrongly implies that switching is dissipative [41]. These methods 

also avoid some of the problems associated with others, such as ‘hanging 

junctions’ and computational difficulties. However, most recently, non-ideal 

switching using Boolean modulated transformers and resistance elements [25] 

has been revisited by Borutzky (who adapts it to a causally static form) for the 

purposes of FDI [49]. 
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Table 1: Overview of Bond Graph Switching Mechanisms 

 

Method Bond Graph Representation Description 

Element Equivalent ON Equivalent OFF 

Switched 

source 

(Switched 

element) 

Sw  0Sf  0Se  
Commutates between a 

source of null flow and 

null effort, imposing zero 

flow/effort at the 

connecting junction when 

OFF. 

1Se  Sf 1  

Boolean-

modulated 

transformer 

and resistor 

combination 

 RMTF  RMTF  
m is Boolean (1 when ON 

and 0 when OFF),  

Resistor commutates 

between conductance 

and resistance causality. 

Controlled 

junction 
0

or 
X0

 

0

 
(for example) 

Se

SeSe

 

Is a regular 0- or 1- 

junction when ON and a 

null source on each bond 

when OFF 

1

 or 

X1

 

1

 
(for example) 

Sf

Sf

Sf

 

Controlled 

storage 

element 

ISw  I  Sf  
This is a compound 

element, acting as a 

regular storage element  

when ON and a Switched 

Source (i.e. null source) 

when OFF.  

CSw  C  Se  

Switched 

Power Junction 

1

 

1

 
1  

There are two mutually  

exclusive causal inputs to 

the junction, s denotes 

the active input bond. 0

 

0

 

0  

Boolean-

modulated 

transformer 

and resistor 

combination 

(modified) 

 RMTF  RMTF  
m is Boolean (1 when ON 

and 0 when OFF), the 

Resistor is in fixed 

conductance causality 

Controlled 

Junction 

(modified) 

0

 

0

 
(for example) 

[deleted] Is a regular 0- or 1- 

junction when ON and 

deleted (along with 

adjacent bonds) when 

OFF. This usually - but  

not always – gives the 

same effect as the 

original controlled 

junction. 

1

 

1

 
(for example) 

[deleted] 

 

 

 

 

RMTF

RMTF

m 1/m 

1/m 1/m 

n 

n 

s 

s 

n 

n 

0 

: 

0 

: 

0 

: 

0 

: 
: : 

: : 
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2.4.2 Dynamic Causality in the Hybrid Bond Graph 

 

It is immediately clear from Table 1 that the ideal causal assignment of the bond 

graph can change with commutation of the switching parts. The phenomena of 

variable topology and dynamic (or variable) causality were addressed separately 

by Asher [27], Cellier et al. [50], Stromberg et al. [30] and Bidard et al. [51], the 

latter proposing a notation for dynamic causality which is infrequently used. 

Dynamic causality is a feature of ideal switching, while variable topology is the 

case where the model changes significantly with commutation (e.g. a contact 

problem where the state equations change size). Cellier et al. [50] note that there 

can be impulse losses on commutation which must be considered. 

 

Dynamic causality can be minimised and controlled using ‘Causality Resistance’ 

as originally proposed by Asher [27]. This is significant because it facilitates the 

modelling of hybrid systems in a commercial software package. Breedvelt and 

others have produced a body of work modelling contact in the commercial bond 

graph package 20Sim. They use controlled junctions with causality resistance to 

model friction [52], a Newton’s Cradle [53] and a copier machine [54]. While 

this work is of tremendous practical relevance to the engineer and 20Sim user, 

causality resistance can cause problems by creating an overly complex model 

[28], and is open to abuse in that there is a danger resistances may be added 

purely to aid computation with no consideration of the physical system. 

 

Dynamic causality can also be minimised by revising the causality assignment 

procedure. For example, Low et al [36] propose Hybrid-SCAP for use with their 

version of the controlled junction which gives causally static hybrid bond graphs. 

 

The debate regarding static versus dynamic causality is ongoing at the time of 

writing. The body of work using switched sources and controlled junctions 

generally accepts dynamic causality, but many practitioners use methods that 

give static or near-static causality for ease of representation and computation in a 

bond graph environment.  

 

2.4.3 Variable Topology and the Hybrid Bond Graph 

 

Variable topology systems are those where the size of the state equation matrices 

changes, such as contact. They are frequently represented by impulse models 

[12] such as Newton’s Collision Law with restitution. This type of model 

exhibits an impulsive ‘jump’ in state space on commutation, which violates the 

conservation of energy fundamental to the bond graph. The Impulse Bond Graph 

[14] was developed to explicitly show the impulse of energy (or Dirac pulse) 

released on commutation. Mosterman asserts that it is conservation of 
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momentum, not energy, that is important and this is maintained in the hybrid 

bond graph. The state variables are unknown after commutation, hence the use of 

pseudo-Kroenecker form for state reinitialisation [13, 45] and state estimation 

techniques [55].  

 

The hybrid bond graph produced in this thesis does not yield an impulsive model  

(although one can be subsequently derived). They are included here for 

background and comparison. 

 

 

2.4.4 Computation of the Hybrid Bond Graph 

 

The bulk of research on structural analysis and control of hybrid models uses 

switched sources. This is possibly because of the resemblance to a physical 

switch, the widespread use of binary / Boolean input devices in the electric 

industry, and for consistency with advances in control theory which assume 

discontinuous control inputs. However, the use of switched sources has been 

criticised because it implies the switch is an energy-processing element (like the 

other bond-graph elements) when it is, in fact, a control element [31, 56]. Hence 

Controlled junctions are used extensively by computer scientists and those 

interested in simulation.  

 

There has been a move towards simulating hybrid systems using other techniques 

such as the acausal modelling language Modelica [57], its commercial GUI 

Dymola [58], and formalising the transformation of bond graph models into 

block diagrams for simulation in SIMULINK [59-62]. The potential for 

cosimulation of bond graphs and block diagrams has been explored [63], as has 

deriving input/output port-Hamiltonian models which allow the bond graph 

model to be embedded in or cosimulated with other environments [64-66]. This 

move makes sense from a computational point of view (and much of the research 

here was conducted by computer scientists) but loses the graphical advantages 

and relation to the physical system which are important to the user. 

 

This work in other software packages – typically using controlled junctions – 

also yielded results in the field of FDI [67, 68] but the focus was on efficient 

simulation rather than exploiting the bond graph [55, 69, 70].  

 

Hybrid bond graphs are tied to the developments in hybrid modelling in general, 

notably Hybrid Process Algebra (HyPA) which sought to bridge the gap between 

discrete modelling (as used by computer scientists) and continuous modelling (as 

used by control scientists and engineers), and formalise the initialisation of 

variables after a discontinuous event (which is necessary in causally dynamic 
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models) [71]. HyPA was developed with the principles of behavioural modelling 

in mind and does not rely on a rigorous input-state-ouput definition (for example, 

states can be outputs): this makes it a natural choice for application to hybrid 

bond graphs as proposed by Cuijpers, Broenink and Mosterman [72]. 

 

 

 

2.5 Control Properties 

 

Before the qualitative analysis of bond graphs is investigated in more detail, it is 

imperative to outline the analysis of systems in general using tools from control 

theory. In this thesis, the term ‘control properties’ refers to those properties 

obtained from the model which can benefit the control engineer. These are 

typically stability, controllability/observability, solvability and related properties, 

which can aid the engineer in assessing a design and defining instrumentation 

and stabilising controllers. 

 

 

2.5.1 State and Implicit Models 

 

In the field of control theory, control properties are found from the state space 

representation of the model with causality assigned (i.e. the input/output model). 

This method originates from Kalman’s General Theory of Control Systems  [73] 

and a subsequent body of work carried out in response to problems generated by 

developments in communications and computers in the 1960s [74]. An overview 

is given by most standard textbooks such as Sontag [75]. Although there have 

been significant developments in control theory since that time, these basic 

parameters are still widely taught and used today, often in the context of the 

explicit linear time-invariant (LTI) state space equation (1): 

 

UXX BA   (1) 

 

Where X is a vector of system state variables, U is a vector of inputs, and A and 

B are standard matrices of linear coefficients. The method developed in this 

thesis yields an implicit system model (2).  

 

UXX BAE   (2) 

 

Where E is an additional standard matrix of linear coefficients.  
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Authors typically strive to obtain the explicit regular state space system for ease 

of both computation and analysis. However, Implicit systems in various forms 

appear to arise naturally when looking at interconnected systems, and Lewis [76] 

argues that they are more suitable for signal processing and modelling tasks than 

explicit state space models. 

 

Specific implicit forms which have been investigated in detail are singular 

systems, semistate systems and descriptor systems. Although they were originally 

coined for specific cases, the terms are used interchangeably in the literature. 

 

Yip and Sincovec [77] establish properties of the descriptor system, and 

Verghese, Levy and Kailath [78] develop a generalised theory for singular 

systems: both essentially present control properties for implicit systems which 

mirror those established for explicit ones. Lewis [76, 79, 80] gives a useful 

review of implicit systems and techniques for analysing them, and Dai [81] looks 

specifically at matrix-rank criteria for singular systems. Their results will be 

extended to the equations generated by the hybrid bond graph in this thesis. 

 

The main considerations for a singular system are the presence and treatment of 

impulsive modes, and of causality. Causality in this sense refers to whether a 

value can be calculated from past values (causal) or depends on both past and 

forward values (noncausal): implicit systems are by nature noncausal. This 

allows them to be manipulated into a state space form and – perhaps more 

significantly – they can be considered as behavioural models. Behavioural 

modelling [82], using port-based rather than input/output models, has become an 

established branch of control engineering despite the prevalence of input/output 

thinking in industry and commercially available software packages. Willems [1, 

83] demonstrates that control can be studied from a behavioural point of view 

without introducing inputs and outputs. Lewis and Ozcaldiran [84] therefore 

investigate the geometric properties of implicit models referencing Willems, 

arguing that they give increased engineering insight.  

 

 

2.5.2 Transfer Function & Canonical Forms  

 

The transfer function was used extensively prior to state equations, and is still 

used as a way of understanding SISO (single-output-single-input) systems. The 

numerator and denominator give the poles and zeros of the system, and can be 

used to identify system dynamics, estimate stability margins and plot Bode or 

Nyquist diagrams by hand. 
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Various canonical forms of the state equations can be found which reveal more 

of the model’s dynamics. For example, the Jordan Canonical form can be used in 

finding eigenvalues and establishing the matrices for the Popov-Belevich-Hautus 

test (for controllability). Popular forms include Control Canonical Form, 

Kroenecker Form and Smith Form. The latter two have been used to investigate 

bond graph dynamics.  

 

 

2.5.3 Solvability & Rank 

 

Rank refers to the number of linearly independent columns (or rows; column and 

row ranks are equal) in a matrix.  It is an indication of whether the model is 

under- or over-defined, and hence whether it is solvable. Many of the standard 

control properties for descriptor systems are defined using matrix-rank criteria 

[81].  

 

 

2.5.4 Controllability 

 

Two of the most important results in the analysis of linear systems are 

controllability and observability matrices, usually given as functions of the A, B 

and C matrices of the standard LTI form, where C is obtained from the standard 

output equation: 

 

UXY DC   or XY C  (3) 

 

Where Y is the vector of output variables and C and D are standard matrices of 

linear coefficients. Controllability is a widely used concept with numerous 

definitions, broadly referring to whether the system can be manipulated from its 

initial trajectory to a desired one. The definitions used in classical control theory 

– usually referred to as state controllability - originate from Kalman’s 

observations.  

 

Definition 4: State Controllability [74] 

“A real, continuous-time, n-dimensional, constant, linear dynamical system Σ 

has the property ‘every set of n eigenvalues may be produced by suitable state 

feedback’ if and only if Σ is completely controllable.”  
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Willems argues that state controllability is a property of the state representation 

rather than the system. He defines behavioural controllability, of which state 

controllability is a special case:  

 

Definition 5: Behavioural Controllability [1] 

“A behaviour is defined to be controllable if it is possible to transfer from any 

past trajectory to any future trajectory, while obeying the dynamical laws of the 

system … This definition is applicable to nonlinear, discrete event and delay-

differential systems without having to introduce a state representation.”  

 

 

Controllability is closely related to the concepts of reachability (the property that 

any state be reachable from the initial conditions i.e. zero) and stabilizability (the 

property that any state can be controlled to bring it to a trajectory that tends to 

zero with time) [75]. 

 

A number of tests for behavioural controllability [1] offer the opportunity to 

develop a general test for nonlinear hybrid bond graphs. However, linear time-

invariant models are the initial focus of this research. Considering the LTI 

assumption, and reverting to state controllability, the Popov-Belevich-Hautus test 

may be used to assess controllability: 

 

   idimrank Xλ  BIA  for all ∈ℂ (4) 

 

Where A and B are the matrices from the LTI state-space form (equation 1), λ is 

the vector of system eigenvalues, and iX  is the vector of state variables relating 

to dynamical elements in integral causality. This test is known to be equal to the 

well-known test for state controllability, using the controllability (or reachability) 

matrix: 

 

  nrank n  BABAABB 12   (5) 

 

Where n is the order of the model. Since controllability is closely related to 

stabilizablity, the controllability matrix can be used for pole assignment. It is also 

possible to assess infinite structure and input/output paths for disturbance 

rejection [85] 
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2.5.5 Observability 

 

Observability is the dual property of Controllability, and criteria for observability 

are usually linked to those for controllability.  

 

This is embodied in the Duality Principle: 

 

Definition 6: Duality Principle [74] 

“Every problem of controllability in a real, (continuous-time, or discrete-time), 

finite dimensional, constant, linear dynamical system is equivalent to a 

controllability problem in a dual system.”  

 

 

Just as controllability is established by solving the state equation for the input 

(control function), observability is established by solving for the output y(t). In 

classical control theory, the A and C matrices are inspected in much the same 

way as the A and B matrices are inspected for controllability. Hence the 

observability matrix: 

 

nrank

n

























1

2

CA

CA

CA

C


 

 (6) 

 

 

 

2.5.6 Asymptotic Stability: Eigenvalues & Zero Modes 

 

Asymptotic stability is the property by which a system’s behaviour will reach a 

steady state condition with time, for example the classic ‘ring down’ response 

seen in a damped system after an impulsive input.  

 

Asymptotic stability can be established for each mode of operation by finding the 

roots of the system, which are the solutions of the characteristic equation. This is 

typically the characteristic polynomial set equal to zero (i.e. assuming an 

unforced system). Hence, for the descriptor system, the inputs are neglected and 

the characteristic polynomial of A is given by (7) [86]: 
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  AE  ssP  or   EA ssP 
  

(7) 

 

Which, for an explicit state space system, reduces to [87]: 

 

  AI  nssP  
  

(8) 

 

The solutions are found by taking eigenvalues λ, which are the solutions to (9): 

 

AE  λ0  
  

(9) 

 

The eigenvalues are usually complex and can be plotted: positive real parts 

indicate unstable behaviour. This is not strictly a structural analysis since the 

values of the roots will depend on the values of the system’s parameters. 

However, structurally null modes (i.e. zero eigenvalues) can be identified, and 

the effects of structural changes (such as commutation) on roots and poles can be 

assessed. 

 

 

2.5.7 Impulse Modes 

 

Impulse modes (also referred to as infinite frequency modes) are a feature of 

hybrid systems. They occur where a storage element switches from integral to 

derivative causality, giving a step change in the value of the state. When all 

elements are in integral causality, E is an identity matrix and the model is in the 

explicit state-space form. When an element changes to derivative causality with 

commutation, an algebraic constraint is typically set up and a non-diagonal term 

manifests in E. This term, which changes instantaneously from zero to a finite 

factor of a state variable on commutation, is what gives the impulse mode [78]. 

 

 

2.6 Analysis of Model Structure 

 

In the previous section, several developments in the analysis of systems were 

outlined. This section investigates the exploitation and analysis techniques used 

specifically on bond graphs. This includes both standard bond graphs and hybrid 

bond graphs incorporating switched sources, and their relationship to classical 

systems control theory. 
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2.6.1 Terminology 

 

There are several forms of qualitative analysis which can be conducted on a bond 

graph prior to simulation. The term ‘Exploiting Causality’ was used early on by 

Margolis and Rosenberg, and refers specifically to information obtained from the 

causal assignment in the bond graph [88, 89]. ‘Structural Analysis’ refers to 

information that can be obtained from the bond graph structure, either by 

investigating the graph or the junction structure matrix. This information 

includes the form of the state equations, solvability, etc. and is analogous to the 

structural analysis of state matrices in control engineering. ‘Equation 

Generation’ typically refers to obtaining the implicit or explicit state space 

equation(s) from the bond graph, which can then be manipulated into various 

forms and used to obtain information about the system. Although this is not 

strictly an analysis of the bond graph, it is imperative that the bond graph can 

yield equations suitable for this kind of analysis. 

 

 

2.6.2 Why Qualitative Analysis?   

 

There are a number of advantages to conducting a qualitative analysis of a model. 

The model can be manipulated to solve more accurately and efficiently. There is 

the potential to troubleshoot or improve a model prior to a lengthy simulation 

(which could be days, or even months, on large complex models), or to create 

simulations running in real time for online fault diagnosis and hardware/model-

in-the-loop testing. In-depth understanding of the system – such as identifying 

structural parameters and interactions between subsystems - can also facilitate 

conceptual design, designing controllers, identifying interactions between 

subsystems and defining test strategies.  

 

Initially the analysis must distinguish between system properties that are 

determined by the system structure (i.e. structural properties), and those 

determined by the parameter numerical values. Structural analysis yields 

structural properties. 

 

The most basic structural analyses arise from looking at the causality assignment. 

An element in derivative causality is easily spotted, and there may be some 

computational problems associated with solving the model. Computer software 

typically uses integration methods (such as Euler or Runge-Kutta), and any 

derivative terms must be estimated by an iterative process which can be both 

slow and inaccurate. Furthermore, if an inertia element is in derivative causality 

and there is a causal path between it and another inertia element, a kinematic 
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constraint exists. The two inertias form a single rigid body, and the analyst may 

choose to include some compliance or lump the masses together if appropriate. 

Causal paths can also be traced between other elements to identify algebraic 

dependencies or loops in the underlying equations, which may also slow a 

simulation. Frequently the causality is investigated to determine the correctness 

of a model: an analyst can easily see derivative causality and algebraic loops 

where they were not intended. 

 

Rosenberg [89] further exploits causality to give the engineer insight into the 

model or design. Causality can guide the engineer in assembling submodels and 

suggesting suitable test conditions. There is also the potential to look at 

interaction between nonlinear constitutive equations and uniqueness of system 

response. 

 

Since state equations are easily derived from the bond graph, it follows that 

control properties normally found from the state equations are reflected in the 

bond graph’s structure and causal assignment. A body of work by Sueur, 

Dauphin-Tanguy and others brings the notions of structural analysis and 

exploiting causality closer together. These properties (controllability, stability, 

(in)finite structure, etc.) aid with instrumentation for experimentation and fault 

diagnosis and identification (FDI).   

 

During equation generation, a range of canonical forms of the state equations can 

be reached which can be used to look at further dynamic properties. These are 

generally a manipulation of the state equation, and outside the scope of bond 

graph analysis. 

 

Finally, there is the opportunity to analyse the structural properties of a bond 

graph model in order to assess the feasibility of control strategies. It should be 

remembered that the analysis of systems with respect to control is still an active 

topic of research itself, and only a subset of established analysis techniques are 

discussed here.  

 

 

2.6.3 Exploiting Causality Assignment  

 

From the method’s first publication in the 1970s there was immediately an 

interest in exploiting the bond graph’s structure. The junction structure matrix 

(describing the bond graph’s structure as a matrix of 1’s and 0’s relating system 

inputs to outputs) was defined and its properties (such as duality between effort 

and flow) discussed [90-93]. The state space equations [94], transfer function 
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[95] and Lagrangian Equations [96] were found from the bond graph, allowing 

comparison with classical control and dynamics theory. This work inherently 

involved looking at the way causality is assigned in the bond graph, and 

prompted the development of various causality assignment procedures, the best 

known of which is SCAP (Sequential Causality Assignment Procedure) [3]. 

Margolis and Rosenberg in particular showed how the bond graph’s causal 

assignment (using SCAP) can be exploited to aid its computation, systematically 

derive state equations and gain insight into the system [88, 89].  

In exploiting causality it is important to note that computational causality is used, 

which is applied according to a procedure such as SCAP (Sequential Causality 

Assignment Procedure). These procedures apply causality in a way that is 

beneficial to computation or analysis. Usually a model will be simulated at some 

point in a computer language or environment which uses an integrator, and this is 

why causality is typically assigned to put storage elements in integral causality. 

It is crucial to understand that causality is not a physical property of the system: 

it is something that the user applies, and could easily choose to apply differently. 

It is fundamentally a study of how to fit the underlying mathematical equations 

together to form a solvable set [88]. 

However, the causal assignment can tell the user something of the properties of 

the model. The classic example is that of the causal path existing between two 

lumped masses, rigidly coupled. Using SCAP, one lumped mass will be in 

integral causality and the other in differential causality. This is because there is a 

real kinematic constraint between the two bodies, and the causal path between 

them reflects an algebraic loop in the underlying equations. If the state equations 

are obtained, they will be in the implicit form. The user may decide to lump the 

masses together, or add some compliance if appropriate (as in the classic 

example of two railway carriages connected by a compliant link), to aid 

computation. This type of preliminary design assessment is an established 

advantage of bond graphs, and there are abundant examples of how an instance 

of derivative causality might provoke the engineer to revise their design 

assumptions (e.g. the Denny Theoretical Drive example provided by Rosenberg 

[89]).  

 

2.6.4 Deriving the Transfer Function 

 

A transfer function for a system can be found directly from the Bond Graph 

using Shannon-Mason Loop Rule [95]. The causal paths between elements in the 

bond graph are indicative of loops in a signal flow graph, and have gains related 

to the elements on those paths. In a bond graph, ‘flat’ loops are associated with 
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causal paths between passive 1-port elements and open loops associated with 

causal loops. 

 

The general form of the transfer function between the jth input and ith output (the 

kth path transmittance) is: 
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 is the sum of the loop 

gains of sets of two loops that do not touch, 
lj

lji

i GGG
,,

 is the sum of the loop 

gains of sets of three loops that do not touch, etc. Loops are considered to be 

‘touching’ if they share a node.  

 

k is a reduced graph determinant, i.e. the determinant of the reduced graph, 

which results when the kth path is removed from the graph. 

 

 

2.6.5 Equation Generation from Bond Graphs 

 

In defining the control properties of the bond graph model, it is important to 

establish how equations are obtained from the bond graph. Karnopp et al [3] 

describe how to find the state space equations by hand from a bond graph 

(acknowledging that the integrals of the inputs to storage elements are the state 

variables). On larger models, this method can become impractical and the 

equations can be derived from the junction structure matrix instead.  

 

The junction structure is the body of a model, relating the inputs from and 

outputs to the fields of elements: dissipative, storage, input and transformer fields. 

The junction structure matrix is a matrix representation of the bond graph’s 

structure: 1’s and 0’s relate the inputs and outputs to the structure from each 

element. Some authors have a Transformer Field external to the structure, but it 

is common practise to bring any modulation terms a from transformer or gyrator 

elements inside the matrix to give terms other than 0 and 1. This is illustrated in 

Figure 1.  
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Figure 1: The Junction Structure of the General Bond Graph 
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Where X is a vector of state variables, and the subscripts i and d denote integral 

and derivative causality. Z is the complement of the state variables, and D is the 

inputs and outputs (denoted in and out) from the resistance elements. U is the 

external inputs. 

 

Once the bond graph is represented in a matrix format, model equations in more 

familiar forms can be derived from it, as demonstrated by Rosenberg [89] and 

Sueur and Dauphin-Tanguy [97]. The former gives general equations and the 

latter gives the familiar LTI form.  

 

In establishing control properties for bond graphs, the submatrices of S will be 

referred to. These submatrices establish whether relationships exist between the 

storage, resistance and source elements.  

 

 

2.6.6 Use of Canonical Forms from Bond Graphs 

 

A popular analysis in the Bond Graph literature is the use of Kroenecker 

Canonical Form, which can split the system into known and unknown dynamics, 

for which there is an analytical answer [56]. Mosterman uses a pseudo-

Kroenecker form in HyBrSim to reinitialise state variables after commutation 

[45]. It is a useful form because the Dirac pulses manifest. Buisson et al [98] use 
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the Smith Form of their implicit state equation to give an ODE and algebraic 

constraint, which can be used in defining hybrid automata.  

 

The canonical forms are not found directly from the bond graph: they are found 

by manipulating the implicit state equation. In this thesis the canonical forms are 

not used, as the reinitialisation of variables or development of hybrid automata 

are not necessary. This is considered to be an advantage over other varieties of 

hybrid bond graph. 

 

 

2.6.7 Structural Analysis of Bond Graphs 

Sueur and Dauphin-Tanguy [97, 99-101] revisited the junction structure matrix 

and established the structural analysis of bond graphs using concepts from 

control theory. Since many well-known results from control theory typically use 

the LTI state space representation, and this representation can be obtained from 

the junction structure matrix of a bond graph, it follows that control properties 

are reflected in the bond graph itself. There has been further fundamental work 

on structural analysis of the bond graph with regard to decoupling and stability 

[102, 103], infinite structure [104], controller design [87] and extracting 

input/output equations for a generalized junction structure [105]. 

Once hybrid and switching bond graphs were defined, their control needed to be 

addressed. As has been noted already, the bulk of work on structural analysis of 

hybrid bond graphs assumes the use of a switched source element. Abadie et al 

[106] extended structural analysis of the standard bond graph to the ‘switching 

system.’ Buisson [28] looked at equation generation from a switched bond graph 

and computed the amplitudes of impulse losses on commutation as early as 1993, 

which led to a body of work on descriptor systems from hybrid bond graphs [107, 

108]. In this work the junction structure matrix includes additional rows 

describing a switching law in terms of each switched source’s input and output 

variables. A state equation for the reference mode of operation can be obtained 

from this, and other modes of operation derived in turn.  

 

From this version of the hybrid bond graph, the use of bond graphs for control 

has been simplified [109] and extended to more complex, hierarchical systems 

[110]. A body of work applying structural analysis techniques to the hybrid bond 

graph was produced [98, 111-115] which had a focus on FDI and control.  

 

The structural analysis of hybrid bond graphs containing controlled junctions was 

neglected until recently. Low et al [36, 116, 117] produced a series of papers 

looking at hybrid bond graphs for FDI, and defining a causality assignment 
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procedure for hybrid bond graphs. Although they initially used switched sources, 

they adopted controlled junctions and developed Hybrid-SCAP for them to give 

static causality assignments. While their research signifies a logical move 

towards analysis of bond graphs with controlled junctions, it is narrowly 

focussed on FDI and treats the controlled junction in an oversimplified manner.  

 

 

2.6.8 Control Properties of Standard Bond Graphs 

2.6.8.1 Order & Rank 

 

The order of the model will be referred to throughout this thesis. 

 

Definition 7: Bond Graph Order (n) [113] 

The number of storage elements in integral causality when a preferred integral 

causality is assigned to the bond graph model. 

 

 

The order n of a mathematical model is given by the number of state variables, 

and in a bond graph this is given by the inertia and compliance elements in 

integral causality. Hence the above definition is logical.  

 

Rank is an important concept in establishing matrix rank criteria for a 

mathematical model, and it is reflected in the bond graph. Rank of the A matrix 

is an indication of solvability. Dauphin-Tanguy et al [87] define a ‘bond graph 

rank’ which corresponds to numerical rank because it takes parameter 

dependency (through the causal assignment) into account. 

 

Definition 8: Bond Graph Rank (bg_rank) of the A-Matrix [113] 

The number of storage elements in derivative causality when the bond graph is 

placed in preferred derivative causality. 

 

 

The definition for rank is a little less obvious, but essentially shows those 

elements that are not independent, and therefore indicates linear dependency in 

the underlying matrix equations.  

 

The preferred derivative causality bond graph - referred to as the BGD – 

essentially inverts the system matrices. It generates the system’s mathematical 

model in the following alternative form [118]: 

 

UXX BAA 11      (13) 



39 

 

 

When storage elements take integral causality in the BGD, A is not invertible i.e. 

it is singular and its determinant is therefore zero. If the system matrix A is 

singular then, by Cramer’s Rule, the system of linear equations does not have a 

unique solution [119]. Hence, in order for A to be full rank and solvable, there 

must be no storage elements in integral causality in the BGD. 

 

 

2.6.8.2 Controllability 

 

In the field of bond graphs, the concept of structural controllability has been 

used as a more physically meaningful parameter than classical state 

controllability. Sueur and Dauphin-Tanguy [97, 99] have made the following 

observations for standard bond graphs. 

 

Definition 9: Structural Controllability of a Bond Graph [99] 

“The model is structurally state controllable iff:  

1. There is a causal path between each dynamical element [in integral 

causality] and a source, i.e. all states (nodes) are input-reachable.  

2. Struct_Rank [A B] = n … Where the structural rank of [A B] is equal to  

a. the rank of (S11 S13 S14) or  

b. n- ts  

 

Where ts is “the number of the number of dynamical elements remaining in 

integral causality when : 

(a) a derivative causality assignment is performed, 

(b) a dualization of the maximal number of input sources is performed in 

order to eliminate these integral causalities” [99].” 

  

 

Point 1 is intuitive. Point 2 ensures that there are sufficient inputs for each 

independent state.  

 

Alternatively, structural controllability can be deduced from the junction 

structure matrix: 
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Definition 10: Structural Controllability of a Bond Graph (JSM) [97] 

“A linear system is structurally controllable iff both the following conditions are 

satisfied: 

1. There is at least one non-zero term in S14 or S24, for any independent 

decoupled subsystem constituting the global system; 

2. There is no linear combination between the rows of (S11 S13 S14)”  

 

 

These observations amount to an alternative method for establishing paths 

between the dynamical and source elements, and ensuring the dynamical 

elements in integral causality are independent. 

 

 

2.6.8.3 Observability 

 

Typically, detector elements are added to the bond graph to give an output field 

(adding a fourth row to the Junction Structure Matrix), and these are used to 

observe the system. Observability is the dual property of controllability, and the 

criteria for structural observability of the bond graph are therefore similar to 

those for structural controllability.  

 

Definition 11: Structural Observability of a Bond Graph [99] 

The model is structurally state observable iff:  

1. There is a causal path between each dynamical element [in integral 

causality] and a detector.  

2. Struct_Rank [A, C] = n. Where the structural rank of [A, C] is equal to  

a. the rank of (ST
11 S

T
21 S

T
31)

 T or  

b. n- td  

 

Where td is “the number of the number of dynamical elements remaining in 

derivative causality when : 

(a) a derivative causality assignment is performed, 

(b) a dualization of the maximal number of output detectors is performed 

in order to eliminate these integral causalities” [99].  

 

 

Definition 12: Structural Observability of a Bond Graph (JSM)  [97] 

“A linear system is structurally observable iff both the following conditions are 

satisfied: 

1. There is at least one non-zero term in (S31 S32 S33) for any independent 

decoupled subsystem constituting the global system; 

2. There is no linear combination between the columns of (ST
11 S

T
13 S

T
14)

 T”  
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Alternatively, the dual bond graph could be constructed and assessed for 

controllability to give observability [120]. 

 

 

2.6.8.4 Asymptotic Stability 

 

Where asymptotic stability does not exist, it indicates the presence of ‘zero 

modes’ (eigenvectors with vanishing eigenvalues). Dauphin-Tanguy and Sueur 

give the number of ‘structurally null modes’ (i.e. eigenvalues which are zero, or 

the poles at the origin) as:  

 

Definition 13: Number of Structurally Null Modes in a Bond Graph [111] 

“the number of I and C elements which have to stay in integral causality when a 

preferred derivative causality is assigned to the bond graph model.”  

 

 

Recall that the characteristic polynomial, and hence eigenvalues, of A are found 

from the determinant of  AI s . Furthermore, recall that the BGD effectively 

inverts A and can be used to assess the rank. When storage elements remain in 

integral causality, A loses rank: it is singular and its determinant is known to be 

zero. 

 

Specifically, the characteristic polynomial can be expanded to identify k 

structurally null modes which correspond to those elements remaining in integral 

causality [87]: 

 

   01
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1 asasassssP q

q
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 AI   (14) 

 

Where q is the bond graph rank. The k structurally null modes have no steady 

state [118] and are therefore not asymptotically stable.  

 

 

2.6.8.5  Lyapunov Stability 

 

Lyapunov stability – which is typically derived from the physical model rather 

than numeric computation – is frequently used to inspect bond graph stability and 

there have been several papers on deriving the Lyapunov function from bond 

graphs or port-Hamiltonian systems (which can be found from bond graphs) [64, 
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121, 122].  It is particularly useful for nonlinear systems, where asymptotic 

stability using laws with an LTI assumption cannot be established. 

 

Since LTI systems are the focus of this thesis, Lyapunov stability will not be 

used. However, it is important to note that it is an option for further work using 

nonlinear systems. 

 

 

2.6.9 Control Properties of Hybrid Bond Graphs 

2.6.9.1 Impulse Modes  

 

Sueur and Dauphin-Tanguy [100] suggest the use of a ‘pseudo-state variable’ 

when analysing models with elements in derivative causality. This is not a 

conventional state variable, but the input to the junction structure from an 

element in derivative causality. When it is included in the state space matrices, it 

generates an algebraic constraint in the lower portion of the implicit form, which 

relates to the other state equations. The general form is shown in (15): 
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An impulse mode occurs where dynamic behaviour changes instantaneously. 

They can be clearly seen in the implicit state equations as rows where the time 

derivative term is zero i.e. the rows relating to elements in derivative causality. 

Where there is a cross coupling term in E (i.e. E12 is nonzero) these equations are 

differentiated, and since there is a step change between a zero initial value and a 

finite value at that time step, this differentiation yields an impulse [78]. It follows 

that the number of impulse modes is equal to the number of elements which are 

sent into derivative causality by commutation.  

 

Impulse modes can therefore be assessed by inspecting E and A, as demonstrated 

by Buisson et al [108] and Rahmani et al [113]. The maximum number of finite 

modes (and hence minimum impulse modes) occurs in the reference mode, taken 

as the mode of operation where most elements are in integral causalities.  

 

Rahmani’s definition of impulse modes [113] is that they exist after commutation. 

Buisson et al [28, 98] also describe impulse modes as occurring after 

commutation: they define the model for the reference mode at its origin by 

converting it into Smith form, and then calculate the maximum possible 

impulsive modes assuming all switches commutate. These observations make 

sense for the implicit equations obtained by these authors, which describe a 
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reference mode and switching law(s) obtained from the use of switched sources. 

For the unique hybrid model developed here, it shall be seen that the situation is 

a little more complex.  

 

 

2.6.9.2 Controllability 

 

For the purposes of switched systems, Rahmani and Dauphin-Tanguy decompose 

structural controllability into complete controllability, R-controllability and 

impulse controllability [113]. Complete Controllability refers to models which 

are both R- and Impulse Controllable. 

 

R-controllability refers to controlling the finite dynamic modes, i.e. the system is 

controllable within the set of reachable states [77]. Rahmani proposes the 

condition:  

 

Definition 14: Structural R-Controllability of a Hybrid Bond Graph [113] 

A Hybrid Bond Graph is R-Controllable iff: 

1. All storage elements are causally connected to a source, and 

2. Bond Graph Rank   ns  BAE , , i.e. number of finite modes is equal 

to the model order.  

 

 

Where Bond Graph Rank [sE − A, B] is given by causal manipulations in the 

model. 

 

Definition 15: Bond Graph Rank of [sE − A, B] [113] 

“Bg-rank [sE − A, B] = n-tc where tc is the number of dynamical elements 

remaining in integral causality when a dualisation of the maximal number of 

input sources is performed in the BGD in order to cancel these integral 

causalities.”  

 

 

Where BGD denotes the bond graph in preferred derivative causality. Note, 

therefore, that Point 2 of Definition 14 does not necessarily resolve to tc =0. 

 

Impulse controllability refers to whether impulse modes can be controlled (or 

excited) by non-impulsive inputs [123].  

 

Both Rahmani et al [113] and Buisson et al [121] propose that impulse modes 

occur after commutation, and hence define a mode of operation in which every 

switch has commutated from the reference. Rahmani’s observations for impulse 
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controllability establishes causal paths between switched sources and dynamical 

elements:  

 

Definition 16: Structural Impulse Controllability of a Hybrid Bond Graph 

[113] 

“A switched system is impulse controllable if and only if the number of impulse 

modes is equal to the number of disjoint causal paths between input sources and 

switches passing through (I,C) elements in derivative causality in the BGI.”  

 

 

Where BGI denotes the bond graph in preferred integral causality. 

 

 

2.6.9.3 Observability 

 

As observability is the dual property of controllability it follows that a hybrid 

system exhibits R- and Impulse Observability, again relating to the finite and 

impulse modes respectively. Rahmani defines these as: 

 

Definition 17: Structural R-Observability of a Hybrid Bond Graph [113] 

A Hybrid Bond Graph is R-Observable iff: 

1. All storage elements are causally connected to a detector, and 
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Definition 19: Structural Impulse Observability of a Hybrid Bond Graph 

[113] 

“A switching system is structurally impulse observable if and only if, the number 

of impulse modes is equal to the number of disjoint causal paths between the 

switches and the output detectors passing through (I,C) elements in derivative 

causality in the BGI.” 

 

 

Where BGI denotes the bond graph in preferred integral causality. 

 

 

 

2.7 Summary 

 

What becomes clear from the developments in bond graph modelling – 

especially with regard to hybrid bond graphs – is that developments have been 

made in a fragmented manner, with different techniques developed for different 

uses and applications. In order to bring hybrid models into more common usage 

and implement them in a commercial software package, a single method must be 

developed which is suitable for efficient simulation and structural analysis, 

whilst retaining the original principles of offering engineering insight via 

physical, behavioural modelling. Such a method must allow dynamic causality in 

order to facilitate engineering insight and prevent artificially stiff models. It must 

complement the standard bond graph method by representing disconti nuities in a 

graphically intuitive way, and it must generate a concise, usable mathematical 

model.   

 

There has been a body of work on the analysis of systems. Exploitation of 

causality and application of Shannon-mason loop rule are well-documented for 

the standard bond graph, but have not yet been extended to the Hybrid Bond 

Graph. Structural analysis using matrix-rank criteria from classical control theory 

are directly reflected in the bond graph. This type of analysis has been 

established on both standard and – in part – hybrid bond graphs (using switched 

sources). Qualitative analysis using both causality assignment and structural 

analysis techniques need extension to be applied to the Hybrid Bond Graph 

developed in this thesis.  
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Chapter 3: The Causally Dynamic Hybrid Bond 

Graph 

 

3.1 Preliminaries 

 

This chapter proposes a new method for constructing a hybrid bond graph. In 

order to do this, discontinuities are classified as structural and parametric. The 

controlled junction is proposed to represent structural discontinuities. Guidelines 

for constructing the hybrid bond graph are given, along with a new causality 

assignment procedure.  

 

Parametric discontinuities are then described using a new controlled element, 

derived from a ‘tree’ of controlled junctions and elements. It will become evident 

that structural discontinuities will significantly affect the structural analysis of 

the model, whereas parametric discontinuities do not (and should not). 

 

The general hybrid bond graph is then investigated. A mixed-Boolean junction 

structure matrix is obtained, and this is used to derive an implicit, mixed-Boolean 

system equation describing all possible modes of operation. 

 

The method for constructing a causally dynamic hybrid bond graph with 

structural switching, and consequent derivation of the LTI implicit system 

equations, forms a separate paper available at http://online.sagepub.com [124]. 

The final, definitive version of this paper has been published in the Proceedings 

of the IMechE, Part I: Journal of Systems and Control Engineering, Vol. 227 

Issue 3, March 2013 by SAGE Publications Ltd., All rights reserved. © IMechE 

2013. 

 

 

3.2 Constructing a Hybrid Bond Graph 

3.2.1 Discontinuities and Hybrid Bond Graphs 

 

Recall that a hybrid model is a mathematical model which contains both 

continuous and discontinuous behaviour.  

 

A discontinuity is an abstraction made in order to simplify a model: it is possible 

to model any system using continuous functions. They are artificial, and made at 

the discretion of the user. Their purpose is to simplify the equations used to 

describe a system’s behaviour; where a system’s behaviour changes rapidly with 

http://online.sagepub.com/
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time, describing that change as a discontinuity can improve simulation time, and 

aid engineering insight and analysis. They usually describe highly nonlinear 

behaviour which would be difficult to describe and time-consuming to compute 

using continuous functions. They can also describe variable topology problems, 

which are where the equations used for each mode of operation change 

significantly, with varying numbers of states and boundary conditions (for 

example, contact). 

 

The variety of approaches to switching and hybrid bond graphs are a result of the 

variety of types of behaviour they can describe. Initially, a distinction must be 

made between the Hybrid Bond Graph and Switching Bond Graph. 

 

Definition 20: Hybrid Bond Graph 

A Hybrid Bond Graph is any bond graph that describes both continuous and 

discontinuous behaviour.  

 

 

Recall that hybrid models can be categorised into switching and impulse models 

[12]. Likewise, Hybrid Bond Graphs can be categorised as Switching Bond 

Graphs and Impulse Bond Graphs. The term ‘Hybrid Bond Graph’ is widely 

applied to bond graphs featuring switching or Boolean-controlled elements, 

sources or junctions, which usually results in a switching bond graph.  

 

Definition 21: Switching Bond Graph 

A Switching Bond Graph is an extension of the standard bond graph method, in 

which some form of switching element is introduced to model instantaneous 

changes. They can be viewed as a collection of classical bond graphs, each one 

describing a mode of operation [44].  

 

 

However, there are some varieties of hybrid bond graphs which describe 

impulsive rather than switching behaviour. The term ‘impulse bond graph’ refers 

to a specific method [14] but some other hybrid bond graphs can be developed 

which yield an impulse model. 

 

The terms ‘switching’ and ‘hybrid’ bond graph have been used interchangeably 

in the literature. For consistency, the term Hybrid Bond Graph is used throughout 

this thesis because the general method should encompass all kinds of 

discontinuity. 
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3.2.2 Classification of Hybrid Behaviour 

 

The term ‘discontinuity’ is fairly vague, and so a classification is made to aid 

application to engineering problems. Discontinuities are often classified as ideal 

(no losses) or non-ideal (associated with an energy loss) [113], switching or 

impulse [12] or according to whether they are autonomous or externally 

controlled. If they are assumed to be controlled by some form of automaton, they 

can be classified according to whether the controlling automata are time-scale 

dependant or parameter dependent [125]. For the purposes of this thesis, an 

additional distinction is made between structural and parametric discontinuities. 

This distinction is necessary to describe where in the model (and underlying 

equations) the discontinuity should occur: between elements or internal to an 

element. 

 

Definition 22: Structural Discontinuities 

Structural Discontinuities occur when parts of the model are connected or 

disconnected, interrupting power flow between components. These 

discontinuities often give rise to variable topology models.  

 

 

Engineering examples of this type of discontinuity are the hydraulic valve, 

mechanical clutch, ideal electrical switch, or contact between bodies. 

 

Definition 23: Parametric Discontinuities 

Parametric Discontinuities occur when an element has a highly nonlinear 

constitutive equation, which has been abstracted to a piecewise continuous 

function. The structure of the model is unchanged, it is the equation describing 

the behaviour of an element which changes.  

 

 

Common examples of parametric discontinuities are dry friction, tyre forces, a 

nonlinear damper ‘breaking out,’ or saturation of an electrical capacitor or 

hydraulic accumulator. 

 

These two types of discontinuity can be represented differently in a hybrid bond 

graph: a controlled junction with dynamic causality for structural switching, a nd 

a controlled element for parametric switching. 

 

In many cases – particularly the mechanical domain - the distinction between 

structural and parametric switching is clear. However, there are cases where it is 

less so. An electrical switch is physically an element which the user inserts into a 

circuit, and is often visualised in control theory as a discontinuous input, hence 
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the use of switching sources and elements in the literature. There is a strong case 

for treating it as parametric switching.  Here the dynamic causal assignment is 

key: disconnecting a voltage or current source can force electrical storage 

elements to discharge, which is consistent with them switching to derivative 

causality. The controlled junction proposed for structural switching clearly shows 

where structure is disconnected and ideal causality assignment changes with 

commutation. 

 

 

3.2.3 The Controlled Junction for Structural Discontinuities 

 

Structural switching activates or deactivates part of a system, and a controlled 

junction can be used to (dis)connect or (de)activate part of the model 

accordingly. Controlled junctions, defined by Mosterman and Biswas [40], are 

recommended by other authors [36, 56] as an intuitive and physically correct 

representation for discontinuities. They were selected here to represent structural 

switching because they clearly show where structure connects and disconnects, 

and breaks the path of power flow. This is not only important from the point of 

view of engineering insight, but the controlled junction lends itself to being 

represented in the junction structure matrix and hence developing hybrid system 

equations. 

 

A controlled junction behaves as a normal 1- or 0-junction when ON and a 

source of zero flow or effort (respectively) when OFF. A controlled 1-junction is 

therefore used to break or inhibit flow (for example, an electrical switch which 

breaks the flow of current) and a controlled 0-junction is used to inhibit effort 

(for example, a clutch or other physical non-contact in a mechanical system). 

This always gives rise to dynamic causality on one of the attached bonds. The 

commonly accepted notation for controlled junctions is X1 and X0, which will 

be used in this paper.  

 

Based on the above description, controlled junctions X1 and X0 can be formally 

defined as 2-port elements with associated Boolean parameters  . They are 

initially defined as 2-ports for clarity, and it can be seen that they bear a striking 

resemblance to the Boolean modulated transformer. However, the definition can 

easily be extended to more than 2 ports. The bond graph representations of 

controlled junctions X1 and X0 are as shown in Figure 1, and their defining 

relationships are given by Equations (16) and (17), respectively. 



50 

 

 

 

 

 

 

Figure 2: Bond graph representation of switched junctions X1 and X0 
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The Boolean parameter   selects the set of equations that are valid given the 

state of the switch: 1 when the switch is ON and  0  when the switch is 

OFF. For each controlled junction, the defining equations (16) and (17) lead to 3 

possible causal configurations: 

 

- 2 causal configurations when the switch is ON i.e. 1  (first two 

equations equivalent to a normal 1 or 0 junction) 

- a unique causal configuration when the switch is OFF i.e. 0  (last two 

equations equivalent to null sources of flow or null sources of effort 

imposed by the element to both power ports with conjugate variables 

externally imposed to the element). 

 

In switching between ON and OFF states, the causal assignment around a 

controlled junction must change. In the ON state, where it behaves as a regular 

junction, there must be a causal input (i.e. a bond with a causal stroke defining 

the common effort for a 0-junction or common flow for a 1-junction). In the OFF 

state, where the controlled junction becomes a null source on each incident bond, 

there is no causal input and the causal assignment on that one bond changes. This 

is known as dynamic causality, and – using this definition of a controlled 

junction – it is unavoidable. 

 

Controlled junctions and their associated assignment statements are summarised 

in Table 2.  

 

Dynamic causality will be discussed further in section 3.2.5, where it is clear that 

dynamic causality is necessary and representative of systems with structural 

discontinuities. 

 

 

X1: 
1e

1f

2e

2f
X0: 

1e
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3.2.4 Model Simplification with Controlled Junctions 

 

If a bond graph is constructed from the schematic diagram of a system, there is 

often potential to simplify the bond graph model. Since a controlled junction 

only behaves as a junction in one state, it cannot be eliminated and the rules for 

simplifying bond graphs must be augmented as follows. 

 

 

Rule  1: 2-Port Controlled Junctions 

A controlled junction with only two ports cannot be removed and replaced with a 

single bond (whereas a regular junction could).  

 

 

A regular junction with 2-ports can be replaced by a single bond, since the efforts 

and flows on the two incident bonds are equal. A controlled junction with 2-ports 

connects and disconnects its incident bonds with commutation: in principle like a 

switching bond or Boolean-modulated transformer (with dynamic causality). 

Removing the controlled-junction would result in the surrounding structure being 

connected at all times. 

 

 

Rule  2: Neighbouring Junctions – Controlled and Regular Junctions 

When a regular junction and controlled junction of the same type are 

neighbouring, they can be merged into a single controlled junction.  

I.e. When a 1-junction and X1-junction are next to each other, they can be 

merged into a single X1-junction .  

Likewise, a 0-junction and X0-junction next to each other can be merged into a 

single X0-junction. 

 

 

When two like regular junctions are next to each other, they can be merged into a 

single junction. When one of those junctions is controlled, the commutating 

behaviour must be retained. This simplification results in elements being 

disconnected with commutation, whereas they would have remained connected 

to some substructure without the simplification (shown in Figure 3). 
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a) Unsimplified Model b) Simplified Model 

 

Figure 3: An Example Subsystem with Neighbouring Regular and 

Controlled Junctions 

 

 

 

Rule  3: Neighbouring Junctions – Multiple Controlled Junctions 

When neighbouring controlled junctions have two ports only, they can be 

combined into a single controlled junction. This controlled junction is ON only 

when the states of both the constituent controlled junctions are ON. 

When neighbouring controlled junctions have more than two ports, they cannot 

be combined. This is because the power to the incident elements or subsystems 

depends on the state of the individual controlled junction. 

 

 

Figure 4 demonstrates how two neighbouring 2-port controlled junctions can be 

combined: the power source is only connected to the resistor when controlled 

junction 1 AND controlled junction 2 are ON. The causal conflict arising 

between the junctions when both are OFF may be ignored.  

 

However, when the controlled junctions have additional elements attached, it is 

no longer appropriate to combine them. There is power flow across each junction 

when it is ON and the other is OFF. The two controlled junctions cannot be 

combined in any manner which would reflect this behaviour. 

 

Structure which adds nothing to the model can frequently be removed. This often 

happens in the case of electrical and hydraulics circuits where there is a return 

line to a zero ground or open tank. Ground parts are source elements which also 

act as a sink. For example, a mechanical ground is represented by a Sf-element 

(which has zero velocity and is a sink for force), and grounds in other domains 

are represented by Se-elements (e.g. an electrical ground, which is a source of 0V 

and a sink for current). They are usually null sources, but can have nonzero 

values (such as a pressurised hydraulic tank or undulating mechanical ground). 
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Rule  4: Removal of Ground Parts 

When a controlled junction is positioned between a dissimilar ground and the 

main structure, it is not appropriate to remove the ground. I.e. a null source of 

flow connected via a X0-junction cannot be removed. Likewise, a null source of 

effort connected via a X1-junction cannot be removed. 

 

 

 

 

 

 

 

a) 2-Port Junctions, simplified to a 
single junction which is ON when λ1 

AND λ2 are true 

b) Additional Elements giving 3-Port 

Junctions 

 

Figure 4: An Example Subsystem with Neighbouring Controlled Junctions. 

 

 

When the ground or tank is a null source, and it is not a causal input to the 

structure of interest, it can be deleted. An example is given in Figure 5: the 

ground is a source of zero effort, and it adds nothing to the 1-junctions it is 

attached to (about which efforts are summed).  

 

When a controlled junction exists between the ground and the main structure, it 

may not be appropriate to remove the ground. For example, in the system in 

Figure 6, an electrical switch (represented by a X1-junction) could be inserted so 

that the resistance is now a non-ideal switch, shown in Figure 6. In real terms, 

this breaks the circuit and changes its behaviour. In bond graph terms, this means 

that incident structure has a zero flow imposed on it when the X1-junction is 

OFF, rather than a zero effort (from the ground) which will have implications for 

the causal assignment. In simplifying the bond graph, the controlled junction and 

null source group must therefore be kept, because they can have a significant 

effect on the system.  

 

λ1 
λ1 

λ2 

λ2 

(λ1   λ2) 
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a) Full model b) Simplified 

  

Figure 5: An Example System with a Ground. 

 

 

 

 

 

 

a) Full model b) Simplified 

 

Figure 6: An Example System with a Ground and a Controlled Junction. 

 

 

 

3.2.5 A Dynamic Causality Assignment Procedure 

 

Causality in a bond graph is typically assigned using the Sequential Causality 

Assignment Procedure (SCAP) [3]. Using controlled junctions, dynamic causality 

is unavoidable. However, dynamic causality can be minimised (without 

artificially constraining it) in order to generate the smallest possible set of 

equations. Low et al [36] observe that dynamic causality can be minimised when 

a 1-port element is on the junction and propose SCAPH for hybrid bond graphs. 

However, their assertion that static causality can be maintained only applies to 

their method of deleting the controlled junction when it is OFF, potentially 
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giving rise to hanging junctions/elements and a different causality assignment 

(see Figure 7).  

 

 

Table 2: Definition, causal configuration and equations of controlled 

junctions. 
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representation 

and defining 

equations 
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switch 
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configurations 
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(a) The junction in the ON 

(reference) mode 
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(b) The junction shown by null 

sources in the OFF position 
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(c) The causality assignment gained 

when the switch is deleted in the 

OFF position (I remains in integral 

causality) 

 

I

 

R

 

1

 

TF

 

X1

 

Se

 

1

 

Sf

 

Sf

 

I

 

R

 

1

 

TF

 

Se

 

I

 

R

 

1

 

TF

 

Se

 

I

 

R

 

1

 

TF

 

X1

 

Se

 
(d) The proposed method for 

showing dynamic causality 

  

Figure 7: An Example of Causality Assignments and their Effect around a 

Controlled Junction  

 

 

 

The causality assignment procedure for the hybrid bond graph proposed in this 

paper starts with a reference mode of operation. This is defined with a maximum 

number of elements in integral causality, and controlled junctions preferably ON. 

This is the mode which should be easiest to simulate. Deviations from this 

reference due to dynamic causality are marked as dashed causal strokes. This 

enables the user to see the effects of commutation on causality, and aids in 

equation generation. The Dynamic Sequential Causality Assignment Procedure 

(DSCAP) to represent all modes of a hybrid bond graph model can be 

summarised in the following procedure. 
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Procedure 1: Dynamic Sequential Causality Assignment Procedure 

(DSCAP) for hybrid bond graph 

 

Step 1)  Assign causality according to SCAP with preferred integral causality, 

stopping when a controlled junction is reached. i.e. start by assigning 

causality to a source element, and propagate causality throughout the  

bond graph as far as any controlled junctions. Repeat for other source 

elements, and then for any storage elements which have not yet been 

assigned causality. If causal conflict occurs in this stage, the model 

should be changed. 

 

The causal assignment from step 1 may dictate whether some switches are ON or 

OFF. 

 

Step 2)  Choose a controlled junction which does not have its causality fully 

assigned. Assign causality around the controlled junctions assuming the 

switch to be ON (as indicated in Table 1) and propagate as far as possible. 

Repeat this stage until all controlled junctions have their causality fully 

assigned.   

 

Step 3)  Finish propagating causality throughout the bond graph to any resistance 

elements or remaining bonds and propagate as far as possible.   

 

Step 4)  Taking each controlled junction in turn, consider the causality 

assignment when it is in the other state to the reference configuration. 

Mark this causality assignment with a dashed causal stroke, and 

propagate throughout the bond graph (Figure 7d). If causal conflict occurs 

in this stage, then the other state of the controlled junction is not allowed. 

 

Remark: Causal propagations in step 2 and step 4 of the algorithm above may 

dictate the state (ON or OFF) of some controlled junctions as a result of the 

assigned state of others. This reveals some constraints in the state of switches 

indicating the allowed configurations or physically feasible modes of operation. 

   

 

Figure 7 shows a simple example of the effect of the causality assignment around 

a controlled junction when ON and OFF. The representation is compared in this 

example with the method of deleting the switch when OFF as proposed by Low 

et al [36].   
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3.2.6 The Controlled Element for Parametric Discontinuities 

 

This section proposes a new controlled element for the modelling of parametric 

switching. They should not be confused with the existing switched element, 

which has an on/off behaviour [32].  

 

Parametric switching has been defined as the case where an element has a 

piecewise continuous constitutive equation. These may be hard nonlinearities, 

where the behaviour of an element changes so quickly that it can be considered 

instantaneous. Alternatively, they can occur where some relationship (gained via 

empirical data or a high-order function) is best described using a piecewise 

continuous function. Classic examples are [coulomb and static] friction, and tyre 

lateral stiffness, shown in Table 3. 

 

 

Table 3: Examples of Piecewise-Continuous Equations 

 

‘Hard’ Friction Generic Tyre Static Load / Deflection 

Curves 

  

 vFF N sgn  

Where FN is normal force and μ is 

friction coefficient 

 
  threshold

threshold

fF

fF









2

1
 

Where α is slip angle, related to linear 

deflection 

 

 

Parametric switching can be considered as mode switching, i.e. a collection of 

continuous modes of operation. These are controlled by an automaton, petri-net 

or similar, which allows the system to switch between modes of operation. Mode 

switching is historically modelled by a ‘tree’ of ideal switches and elements. 

Each element gives the constitutive equation for a specific mode of operation, 

and the ideal switches (de)activate it as required. Naturally, only one ideal switch 

can be ON at any time during a simulation. Strömberg [126] formulates mode 

switching trees of switched sources, and Mosterman and Biswas [40] present a 

multi-bond controlled junction selecting a continuous bond graph element from a 

number of possibilities.   

 

Velocity v 

Force F 

Deflection 

 
threshold

Force F 
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Mode switching has a conceptual advantage in that it aids the development of 

finite state automata for simulation. However, the ‘tree’ notation means a model 

can rapidly grow to a vast size with multiple inputs and outputs for all possible 

modes of operation. This makes it less ideal for structural analysis and equation 

generation purposes. The multi-bond notation suggested by Mosterman and 

Biswas goes some way to controlling this, but is a little confusing because 

multibond notation is typically used for multiple degrees of freedom in a model. 

Their idea is used as a basis for the controlled element defined here. 

 

Consider an element with a piecewise-continuous constitutive function. A mode-

switching tree can be constructed using the controlled junctions with associated 

Boolean terms (as used for structural switching), as shown in Figure 8. Note that 

a resistance element is shown, but the principle holds true for inertia and 

compliance elements. 

 

In this tree, controlled junctions (de)activate the modes of operation, which are 

given by resistance elements on each branch. These ‘branches’ are then 

connected by a regular junction which sums the output values. 
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a) A ‘Tree’ of X0-Junctions b) A ‘Tree’ of X1-Junctions 

Figure 8: Bond Graph ‘Trees’ for a Piecewise Linear Resistance Element, 

Assuming Three Modes of Operation. 

 

 

 In Figure 8a) efforts are summed about a 1-junction: these efforts are the 

effort exerted by the resistance when a junction is ON plus the zero 

efforts exerted by the XO-junctions when they are OFF.  

 In Figure 8b), it is flows which are summed around a zero junction: these 

flows are the flow exerted by the resistance when a junction is ON plus 

the zero flows exerted by the X1-junctions when they are OFF. 

 

In a bond graph tree it is important to note that the controlled junctions are 

constrained so that only one may be ON at any time.  
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In order to condense the ‘tree’ into a single controlled element, consider the 

underlying equations. Quantities are shown in Figure 9, which also includes 

some source elements in order to obtain the equations. A reference configuration 

of 1 = 1, 2 = 0, 3 = 0 is arbitrarily assumed. Note that dynamic causality is 

internal to the tree: there is static causality on the resistance elements and the 

input bond. 
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Figure 9: The Piecewise Linear Resistance Element Subsystem, showing 

quantities used in Equation Generation. 
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Looking at the summation, we can write: 
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And, since flow is constant,    And, since effort is constant, 
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 FRRRf 1

33

1

22

1
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       vRRRe 332211    

   

 

This principle will hold true for ‘trees’ of compliance and inertia elements. A 

general definition for the controlled element can therefore be defined as shown in 

Table 4. 

 

 

Proposition 1: A Controlled Element for Parametric Switching 

A mode-switching tree of controlled junctions and elements can be condensed 

into a single controlled element. This controlled element has the general 

constitutive function: 

 



i

n

nn inputoutput
1

       (18) 

Where n is the number of branches to the tree, λn is the Boolean term associated 

with nth controlled junction and Φn is the constitutive function of the nth 

element. 

 

 

 

 

Table 4: Controlled Elements and their Constitutive Equations (Causally 

Static, Linear Case) 

 

 

XR    or    

 

XR   eRf   1 or   fRe    

 

XC  
 

    dtfCe 1  

 

XI      dteIf 1  

 

 

The controlled element may be in dynamic causality (i.e. the output is effort in 

some modes and flow in others) it can be treated in the same way as a standard 

element in dynamic causality i.e. having two input/output pairs for the two causal 

assignments. This would occur where a storage element saturates. For example, a 

hydraulic accumulator is a compliance element with an effort output in normal 

operation, but when it saturates it becomes a source of zero flow. 

 

Table 5 overviews the possible controlled elements, defining them as elements 

with a Heaviside function as their constituent equations (which can be controlled 

either internally or by an external modulation signal).  
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Table 5: Proposed Constituent Equations for Controlled Elements (General 

Case) 
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3.3 Implicit Formulation of the Hybrid Junction Structure Relation 

3.3.1 Pseudo-States and Dynamic Causality 

 

Recall that, for a regular (causally static) bond graph, the inputs and outputs to 

the system from the various elements are used in generating equations. 

Specifically, the inputs to the system from the storage fields (i.e. the outputs of 

the compliance and inertia elements in integral causality) are usually taken as the 

time-derivatives of the state variables. The state variables are consequently 

displacement (for compliance elements) and momentum (for inertia elements). 

When elements are in derivative causality, the state equations are no longer 

independent: there are dependent states associated with the elements in 
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derivative causality which yield algebraic equations. Sueur and Dauphin-Tanguy 

[97] associate a pseudo-state variable with each element in derivative causality to 

generate an implicit mathematical model containing the relevant algebraic 

constraints. 

 

When causality is dynamic, the underlying equations change. Storage elements 

may switch from integral to derivative causality, and the inputs and outputs of 

the resistance elements may reverse. The resulting state space matrices may 

change size depending on the mode.  

 

Storage elements in dynamic causality can be described using a variable for each 

of the two possible causal assignments: a state variable for the integral causality 

case, and a pseudo-state variable for derivative causality. Buisson et al [98] do 

this to recover the implicit state equations from a single mode of operation. The 

philosophy of using two variables, a state and a pseudo-state, to represent the two 

modes of storage element can be extended here. The model describes all possible 

modes of operation by including input and output variables for both possible 

states of an element in dynamic causality. These are (de)activated in the 

appropriate modes of operation. The LTI form remains valid because the 

switching behaviour is not necessarily a function of time: the equations capture 

the model at all time points.  

 

 

3.3.2 The General Hybrid Bond Graph 

 

A causal bond graph model can be represented in matrix format, as a Junction 

Structure Matrix (JSM) consisting of ones and zeros which relate the system 

inputs and outputs. The JSM based on the Paynter Junction Structure is used 

here, since it has reached common use in bond graph structural analysis. The 

coefficients in the transformer field (representing any transformer or gyrator 

elements, sometimes expressed outside the junction structure matrix) are brought 

inside the JSM to give terms other than one and zero.  

 

The General Bond Graph structure is shown in Figure 10, with a modified 

‘hybrid’ version to capture structural switching behaviour and the induced 

dynamic causality. There are two significant differences: 

 

1. Using the Dynamic Sequential Causality Assignment Procedure 

(DSCAP) proposed in section 3.2, the causal hybrid bond graph would 

display some elements with static causality and some with dynamic 

causality (represented by dashed causal strokes, as shown in Figure 10b). 
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The Hybrid Junction Structure Matrix (relating all possible system inputs 

and outputs) and state equation can be derived from this representation.  

 

2. The Hybrid Junction Structure Matrix S contains Boolean parameters  

indicating the state of controlled junctions (used to describe structural  

switching). These Boolean ‘switching terms’ in the submatrices of S will 

therefore be carried through into the state equations derived from it.  

 

 

 

  
  

(a) General Junction Structure  (b) Hybrid Junction Structure 

incorporating switching ( ) 

coefficients and dynamic causality 

  

Figure 10: The Junction Structure Matrix and Generalised Bond Graph.  

 

 

Note that the Boolean terms  appearing in the Junction Structure Matrix reflect 

controlled junctions between elements, and indicate where casual paths are 

severed or connected with commutation. There may be additional Boolean terms 

in the storage and resistance fields where parametric discontinuities exist within 

controlled elements. 

 

 

3.3.3 Notation  

 

Figure 11 represents the block diagram derived from the hybrid causal bond 

graph and the key variables used, which are defined as follows. Note that the 

inputs to the elements are the outputs from the junction structure, and vice versa. 
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i) Elements with static causality have the usually defined variables:  

o Input vectors denoted iX
̂

 composed of p  and q  on I and C elements in 

integral causality,  dẐ   composed of f  and e  on I and C elements in 

derivative causality and outD̂  composed of  effort or flow variables into 

dissipative elements 

o Output vectors denoted iẐ  and dX
̂

 for storage elements and inD̂  for 

dissipative elements 

 

ii) However, dynamic causality is captured in the block diagram by specifying 

two sets of inputs and output variables: 

o Two input vectors. For storage elements in dynamic causality, these 

inputs are iX
~

 for the integral causality case and dZ
~

 for the dynamic 

causality case, and are composed of p , q , f  and e   For dissipative 

elements in dynamic causality, there is an effort output oute _D
~

 and flow 

output outf _D
~

. In any single mode of operation, one input is active and 

the other is redundant. 

 

o Two output vectors which are the complements of the inputs above. For 

storage elements in dynamic causality, these are dX
~

 and iZ
~

 composed of 

p , q , f  and e  . For dissipative elements in dynamic causality, there is 

an effort output ine _D
~

 and flow output inf _D
~

. Again, in any single mode 

of operation, one output is active and the other is redundant. 

 

 

It is worth noting that an element can only have two modes of operation (flow 

input / effort output and effort input / flow output), although a model can have 

several modes of operation overall if it contains multiple controlled junctions. 

 

Controlled junctions in the bond graph are assigned Boolean variables  in the 

Junction Structure (which has a value of 1 when the junction is ON and 0 when 

OFF), signifying that there is a connection between two quantities when the 

junction is ON. A single bond graph therefore represents all possible modes of 

operation and causal assignments. Vectors 
T~ˆ






 iii XXX
  and 

T~ˆ





 ddd XXX
   

are the state and pseudo-state of the storage fields in integral and derivative 

causality respectively.   T~ˆ
iii ZZZ   and  T~ˆ

ddd ZZZ   are the complementary 

vectors of these states (shown in Figure 10), related by iii XZ F  and 
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ddd XZ F . Resistive field also have inputs and outputs  T~ˆ
ininin DDD   and 

 T~ˆ
outoutout DDD    related by  outin DD L . 

 

 

 

 
 

Figure 11: Quantities used in Hybrid Junction Structure Matrix and 

Subsequent Development 

 

 

 

 

3.3.4 Comparison of Standard and Hybrid Model Equations 

 

The process of deriving a Junction Structure Matrix, and then an implicit state 

equation, from a standard bond graph is well established [97], as is the process 

for equation generation from a bond graph using switched sources [97, 98, 113]. 

For the Hybrid bond graph (with controlled junctions) defined here, a similar 

procedure is followed with two important differences:  

 

 The matrices obtained are functions of Boolean variables representing the 

controlled junctions parameters. The 1’s and 0’s in the junction structure 

matrix establish whether a causal path exists, and a Boolean term denotes 

that the path is dependent on the state of a switch(es).  

 

 There is an additional matrix () which manages dynamic causality. 

Recall that an element in dynamic causality has two possible inputs and 

outputs.  ( ) multiplies the output vector by 0 or 1 (depending on the 
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state of the Boolean term) to (de)activate outputs depending on whether 

they occur in a given mode of operation (Table 6).  

 

Hence, a single set of equations is generated which encompasses all possible 

modes of operation and caters for dynamic causality.  

 

In the following development it will be assumed that the system elements are 

linear for ease of comparison with classical control theory. If the linear time-

invariant (LTI) state space / implicit representation is derived from the junction 

structure matrix, Boolean factors  naturally appear in the A and B matrices of 

the state equations, shown in Table 6. The LTI model is frequently used because 

no time is associated with the structural switching: it is simpl y acknowledged 

that there are different modes of operation. Note that this development assumes 

that each element has a linear, continuous constituent equation: a similar 

development could be followed for nonlinear elements. 

 

Although the input and output vectors of the junction structure for both the 

standard bond graph and the hybrid bond graph in the concatenated form junction 

look similar, the difference in the dimensions should be noted. For the standard 

bond graph: 

 

  RIC

T
nndim outdi DZX   (19) 

 

And for the hybrid bond graph: 

 

  dynoutdi nnndim  RIC

T
DZX   (20) 

 

Where ICn  is the total number of storage elements, Rn  is the number of 

dissipative elements and dynn  is the number of elements with dynamic causality 

(and hence the number of alternative outputs occurring in different modes of 

operation). Similar remarks can be made for the input vector. 
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Table 6: Junction structure and state space matrices forms for the standard 

and hybrid bond graphs 

 

 
Standard Bond Graph Hybrid Bond Graph with Dynamic 

Causality 
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3.3.5 The Hybrid Junction Structure Matrix 

 

As shown in section 3.3.4, there is one input and one output variable for each 1-

port element in static causality. There are two inputs and two outputs for each 1-

port element in dynamic causality. The input/output sets are exclusive of each 

other, and the Boolean terms in the Hybrid Junction Structure Matrix (HJSM) 

will activate one of these for each mode of operation.  

 

In order to establish which outputs of the junction structure are active, the vector 

of outputs must be multiplied by a diagonal matrix of Boolean expressions Λ(). 

In any one mode of operation, some rows of the matrices will be set to zeros and 

others will give the Junction Structure for that mode. Therefore, outputs which 



69 

 

are in static causality are assigned a ‘1’ in the diagonal of the matrix Λ() 

because they are fixed outputs, while variables associated with elements in 

dynamic causality are assigned a Boolean function  λf  determined by the 

combination of the switch parameters   that dictates the output status of the 

variable. For each Boolean term  λf , there will always be a NOT term  λf  

present in the matrix Λ( ) which activates another row to describe the dynamic 

element’s behaviour in its other state.  

 

 

Table 7: Example Truth table for two switches 

 

Switch 1 Switch 2 Causality on 1-

port Element 

Output 

Variable 

Associated 

term in 

Λ( ) 

0 0 Derivative 

dZ   21    0 1 Derivative 

1 0 Derivative 

1 1 Integral 
iX   21    

 

 

In order to construct the matrix Λ( ), consider each 1-port element in dynamic 

causality in turn, determine any causal paths between this elements and the 

controlled junctions and report the state of the switch and the output variable in a 

truth table. The truth table can therefore be used to construct the combination of 

states, and hence function of Boolean variables, that result in each causal change. 

For example, if a storage element is in integral causality only when two switches 

are ON, this could be expressed by assigning the state variable a term in Λ( ) of 

 21    i.e. switch 1 AND switch 2 are true or ON (Table 7). The pseudo-state 

complementary variable dZ  would therefore be assigned  21    because the 

element is in derivative causality when switch 1 AND switch 2 is NOT true i.e. 

OFF.  

 

Often a controlled junction simply creates a path of dynamic causality between it 

and a nearby element, and the term in Λ( )  can be quickly and easily assessed. 

There is the potential to reduce the amount of work required to obtain the 

equations by modularising and reusing sub-models for larger systems. 

 

The S-matrix is constructed in the same way as for a regular bond graph, by 

considering which inputs give each output (assigning a 1 to true relationship and 

a 0 otherwise). Where the path between input and output crosses a controlled 
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junction, a Boolean term  expresses that the relationship holds true when that 

junction is ON. Where causal paths are created when the junction is OFF, or are 

affected by the commutation of a controlled junction(s), additional functions of  

will appear. The outputs of the hybrid dynamic junction structure can therefore 

be related to the inputs by Equation (21) 

  

 
       
   
      






















































U

D

X

Z

D

Z

X

in

d

i

T

T

out

d

i 










343313

2412

14131211

SS0S

S00S
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Λ  (21) 

 

Where the matrices   Λ  and  ijS  are functions of the controlled junctions’ 

Boolean parameters  . To simplify the notation, these matrices will simply be 

denoted Λ  and ijS  from this point forward. 

 

The S matrix in Equation (21) is simplified since some properties always hold.  

 The matrix is skew-symmetric, so S21 and S31 are equal to minus the 

transposes of S12 and S13. This is because of duality. Bonds represent 

power as the sum of flow and effort: if the flow input of one element is 

the flow output of another, then the efforts must also be connected.  

 The complementary variable of the input (which would give row 4) can 

be ignored.  

 When preferred integral causality is assigned, there can be no relation 

between the derivative causality and resistor fields, because this would 

imply a causal path that could be inverted to give integral causality [98]. 

There is also no relation between the derivative field and itself for the 

same reason. Hence S22, S23 and S32 are all 0.  

 

Note that Λ only needs to be applied to the left side of the equation because the 

terms in the Junction Structure Matrix have been found by inspecting the causal 

paths in the model and therefore already contain Boolean values where needed.  

 

 

3.3.6 The Reference Configuration and Other Configurations 

 

A reference configuration has been used to aid the construction of the causally 

dynamic bond graph, and to act as a basis for the proposed dynamic causality 

notation. However, the Junction Structure matrix encapsulates all possible modes 

of operation and it is therefore of little consequence which mode is selected for 

the reference. This is in contrast to previous work on Bond Graphs with switched 
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sources, which gives a Junction Structure Matrix for a given reference mode, and 

other modes of operation are to be derived from it. As a consequence, other ideal 

approaches define the state of switches in each mode of operation relative to the 

reference mode (i.e. if   is the parameter associated to a switch, 1  if the 

switch has commutated with respect to the reference configuration and 0  

otherwise) whereas the present approach suggests that the parameter   of a 

switch indicates the absolute state of the switch i.e. 1  when the switch is ON 

and 0  when the switch is OFF. 

 

 

3.4 The Unique Hybrid Implicit Equation 

 

The state equations express the time-derivatives of the states and (where there is 

derivative causality) the pseudo-states - iX  and dX - in terms of their integrals, 

and the system inputs U . An implicit form can be derived from the junction 

structure matrix using the following procedure.  

 

Equation (21) can be written as: 
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  (22) 

 

Looking at row 3 of equation (22), an expression for inD  in terms of the other 

elements in the system can be derived: 

 

UDZD 3433
T
1333 SSS  iniout  (23) 

 

The constitutive equation for the dissipative field is: 

 

outin DD L  (24) 

 

For linear elements, L is a diagonal matrix of linear coefficients R or R-1 

pertaining to each element. If there were any piecewise linear resistance elements 

– represented by a controlled R-element – the terms would be  R or  1R . 

For nonlinear models, L could contain any number of functions and off-diagonal 

terms; the following derivation would not be appropriate in this case because the 

LTI form would be invalid, but a similar derivation to obtain some nonlinear 

equations could be followed.  
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Substituting (24) into (23) and solving for inD  gives: 

 

 UZD 34
T
13

1
3333 )( SSLSL  

iin          (25) 

 

This allows the inD  terms can be eliminated from the system equations. Starting 

with row 1 of equation (22) for iX : 

 

UDXZX 1413121111 SSSS  indii
         (26) 

 

Substituting (25) into (26) gives: 

 

   UUZ)(XZX 1434

T

13

1

333313121111 SSSLSLSSS  

idii      (27) 

 

Define 
1

3333

 )( LSLH   in order to simplify (27): 

 

   UXZX 14341312

T

13131111 SSHSSSHSS  dii
  (28) 

 

Now consider row two of equation (22) and rearrange: 

 

 UZZ 24

T

1222 SS  id  

 UZZ 2422

T

120 SS  di          (29) 

 

Writing equations (28) and (29) in a matrix form gives: 
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The complementary state variables are related to the states by the constitutive law 

for the storage elements. Just as L contained the constitutive law of the resistance 

elements, the constitutive law of the storage elements can be given in matrix 

format.  

 

 For linear elements in integral causality, Fi is a diagonal matrix of linear 

coefficients C-1 or L-1 and any piecewise-linear storage elements (XC- or 

XI-elements) would yield the terms  1C or  1L .  

 For linear elements in derivative causality, Fd is a diagonal matrix of 

linear coefficients C or L and any piecewise-linear storage elements (XC- 

or XI-elements) would yield the terms  C or  L . 
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 Cross-coupling matrix F is always a matrix of zeros in a linear model. 

 

Again, linear coefficients are assumed in order to derive the LTI form. These 

matrices could contain any number of functions and off-diagonal terms 

(including terms in F) in a nonlinear model, and a similar derivation process can 

be followed to obtain nonlinear system equations. 
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Substituting (31) into (30) leads to the general implicit state equation: 
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Where 
1

3333

 )( LSLH   and 311311 SHSSK  . 

 

To obtain the implicit system equation (32), the following procedure is proposed. 

 

 

Procedure 2: A Procedure for finding the implicit system equations of a 

hybrid bond graph 

 

1. Construct the diagonal matrix Λ  

a.  Consider each 1-port element in dynamic causality in turn, and 

determine all paths of dynamic causality between these elements and 

the controlled junctions.  

b. Use a truth table to construct the combination of states, and hence 

function of Boolean variables, that result in each causal change. 

2. Construct the Hybrid Junction Structure Matrix (HJSM) in form of 

equation (22).  

a. The HJSM relates system inputs to outputs. For elements in static 

causality, there will be one input and one output. For elements in 

dynamic causality, there are two inputs (effort and flow) and two 

outputs.  

b. For static causality, the HJSM is constructed by using 1’s and 0’s to 

denote whether quantities are related or not.  

c. Where a path between two elements crosses a TF or GY element, a 

variable or function other than one may appear in the Hybrid Junction 

Structure Matrix. 

d. Where a path between two elements crosses a controlled junction, a  
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(or function of ) is used to show that the relationship only occurs 

when the junction is ON (or OFF). 

d. Where an element is in dynamic causality (shown by a dotted causal 

stroke in addition to the solid one) each variable will only be an input 

to the system in certain modes of operation. Referring to the truth table 

constructed in step 1, assign a function of   which denotes the modes 

in which the variable is an input.  

e. Recall that the matrix should be skew-symmetric, and sub-matrices 

S22, S23 and S32 should be zeros. 

3. Derive the LTI Implicit form. 

a. Find matrices L and F from the (linear) relationships in the 1-port 

elements. 

b. Take the sub-matrices of S and Λ from the Junction Structure Matrix 

equation, and insert them into the general implicit LTI form in 

equation (32).  

c. Simplify this equation to give the state equations plus some additional 

equations relating to the pseudo-states. 

 

 

3.5 Properties of the Implicit Model  

3.5.1 Properties of the Model in one Mode 

 

Recall equation (32), which gives the model for all potential modes of operation. 

To assess a single mode of operation, the Boolean terms in Λ and the Junction 

Structure Matrix S must be set to ones and zeros (denoting where each controlled 

junction is ON or OFF). There will be some redundancy in the equation, where 

some lines are zeros and can be deleted. This will give equation (33): 
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Where the matrices ijS  are evaluated for the parameters   of the controlled 

junctions in the mode of operation and all null rows are removed. 

 

For a reference mode where all storage elements are in integral causality, Λ11 is 

an identity matrix and –S12 is a matrix of zeros. The second rows of Λ and S also 

become zero, since this line would relate to elements in derivative causality. 

Equation (32) therefore becomes an ordinary state equation: 
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   UX)(X 341314311311 SHSSFSHSS  iii
  (34) 

 

The resulting state equation for one mode can be manipulated and analysed for 

the properties of that mode as already described extensively in the literature.  For 

example, it can be put into Smith or Kroenecker Canonical forms to allow 

inspection of the dynamics.  

 

 

3.5.2 Properties of the General Model 

 

Equation (32) is comparable to the upper rows of the implicit state equation 

derived by Buisson et al [98] using switched sources. In their model, the 

additional lower rows relate to the switch states whereas here the switching 

manifests in the submatrices of S.  

 

It follows that structural properties (observability and controllabil ity, asymptotic 

stability, and dynamic properties such as gain and the number of zeros and 

poles), can be functions of structural switching. This is investigated in more 

detail in chapter 4. 

 

 

3.6  Comparison with Switching Sources and the Non-Ideal 

Approach  

 

The Literature Review (Chapter 2) highlighted that the bulk of work to date on 

hybrid bond graph structural analysis has been conducted using switching 

sources. This section compares equation generation from a switched bond graph 

as developed by Buisson et al [98] with the one obtained in this paper and also 

investigates how the ideal controlled junction can be modified to account for 

dissipative effect on commutation.  

 

 

3.6.1 Implicit State Equations 

 

The methods differ significantly in that hybrid bond graphs constructed using 

switching sources are built for an initial (reference) mode, and subsequent modes 

of operation are derived from it. By contrast, the method presented here builds a 

model for all modes, and derives the equations for a single mode after.  
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For a model with switched sources, the junction structure matrix and standard 

implicit state equation contain extra states (Ti and To) relating to the input and 

output to the switch(es). These rows contain the constitutive relation for the 

switches in terms of a commutation matrix . Note that the indices of S are 

slightly different, because the Junction Structure Matrix also has additional terms 

due to Ti and To, and that  is a square diagonal matrix with terms that are 1 or 0 

depending on whether a switch has commutated.  Buisson et al [98] note that this 

form is not suitable for simulation.  
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where 1
33 )(  LSLH    and 311311 SHSSK   

 

This standard implicit form compares well to the model derived here to give 

equation (32). The different indices of the submatrices reflect the smaller 

Junction Structure Matrix, and Boolean variables occur throughout the equation 

in the S and  submatrices.  

 

Whereas the implicit state equation (35) by Buisson et al [98] is obtained using 

straightforward standard bond graph techniques, the model is derived and valid 

for a reference configuration only. Recovering the implicit form for any other 

configuration requires complex matrix operations because of elements changing 

causality and the dimension and components of key vectors iX , dX ,… changing 

accordingly. In the approach proposed in this paper, non-standard techniques are 

used to generate the unique implicit state equation (32) that encompasses all 

configurations. Once the model (32) is obtained, any configuration can easily be 

obtained by evaluating Boolean expressions for the associated combination of 

switches. Due to the fact that the method exploits the graphical properties of 

causal bond graphs combined with some symbolic operations, it is believed the 

method can be conveniently implemented in existing software packages. 

 

 

3.6.2 Ideal and Non-Ideal Approaches 

 

Both switching sources and controlled junctions are ideal approaches, i.e. no 

energy is dissipated on commutation. This is in contrast to earlier work using 

non-ideal approaches, i.e. switches modelled by modulated resistors, or resistors 

associated with modulated transformers (which gives a unique, causally static 
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bond graph). Buisson et al [98] discuss ideal and non-ideal modelling, and show 

that the ideal approach is a limit case of the non-ideal approach. 

 

In some cases a system cannot be assumed to be ideal (for example, a hydraulic 

valve which acts as an orifice when open) and dissipation needs to be modelled. 

Buisson et al [98] propose a semi-ideal approach, where the switching source is 

modelled as a variable resistance, and the constitutive relationship for the 

switching variables includes a resistance term.  

 

Controlled junctions can be easily made semi-ideal in a similar manner, by 

simply adding a resistance element so as to dissipate energy when the junction is 

ON. This coincidentally acts as a ‘causality resistance,’ limiting dynamic 

causality. 

 

An interesting feature of the Hybrid Bond Graph presented in this paper is that 

the non-ideal case is remarkably similar to the Boolean MTF and Resistor 

representation proposed by Dauphin-Tanguy and Rombaut [25] and used most 

recently in a causally static form by Borutzky [49] A comparison of an example 

system is shown in Figure 12, which is typical of an electrical switch.  

 

 

 

 

 

a) The Switch represented by a 

Boolean MTF and Resistor 

b) The Switch represented by a 

Controlled Junction and additional 

Resistance 

  

Figure 12: An Example of causality assignment around a Non-Ideal [Flow] 

Switch 

 

 

In both cases, the R-element imposes flow on the junction when ON. When 1  

(i.e. the switch is ON) the flow is governed by the R-element as a function of 

effort. When 0 (i.e. the switch is OFF), the flow is zero and the effort 

associated with the resistance is disconnected from the system. The dynamic 

causality associated with the controlled junction is limited to the R-element.  
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(a) A Switch represented by a 

Boolean MTF and Resistor 

(b) A Switch represented by a 

Controlled Junction and additional 

Resistance 

  

Figure 13: An Example of causality assignment around a Non-Ideal [Effort] 

Switch 

 

 

The similarity holds for switching parts where effort commutates between zero 

and a finite quantity (shown in Figure 13), typical of mechanical and hydraulic 

switching devices. 

 

However, the similarity between the two techniques does not always hold true: 

there are cases where the R-element does not govern the flow on a 1-junction (or 

effort on a 0-junction). In these cases, the MTF-R representation would not act as 

a switch (because it would not be imposing a null quantity on the system: it 

would simply disconnect the R-element): parasitic elements may need to be 

added to the model to manipulate the causal assignment, as shown in Figure 14. 

This would be the case for systems where the non-ideal switch is modelled using 

a modulated resistance too.  The controlled junction, however, works regardless 

of the casual assignment on the incident bonds. Note that a kinematic constraint 

exists between the controlled junction and the I-element when the switch is ‘off:’ 

the analyst may now make an informed decision whether to revise the modelling 

assumptions, break this constraint using parasitic elements or allow it to remain. 
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(a) The Switch 

represented by a 

Boolean MTF and 

Resistor 

(b) A Parasitic Element 

added to control Causality 

and ensure the MTF-R acts 

as a switch 

(c) The Switch 

represented by a 

Controlled Junction 

   

Figure 14: An Example System with a Non-Ideal [Flow] Switch 

 

 

 

3.7  Summary 

 

A method has been proposed with classifies discontinuities as structural and 

parametric and represents them in the hybrid bond as controlled junctions and a 

new controlled element respectively. The controlled element is derived from a 

mode-switching ‘tree’ of controlled junctions.  

 

A new dynamic causality notation and Dynamic Sequential Causality 

Assignment Procedure (DSCAP) are proposed. This is used to generate a mixed-

Boolean Junction Structure Matrix and implicit system equation. The latter is 

compared to equations generated from existing variations on the hybrid bond 

graph, and they are shown to be similar. The hybrid bond graph proposed here 

essentially yields the same model in a more usable form. 
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Chapter 4: Analysis of the Hybrid Bond Graph 

 

4.1  Preliminaries 

 

This chapter identifies the structural properties of the hybrid bond graph with 

dynamic causality.  

 

It is well-documented that system properties can be established from the 

structure of the mathematical model (e.g. matrix-rank criteria) and the structure 

of the bond graph and its causal assignment. However, this work has been 

conducted on regular bond graphs and, to a limited extent, on hybrid bond graphs 

featuring switched sources. It is therefore not directly applicable to the hybrid 

bond graph proposed here, and must be reviewed with special consideration 

given to the dynamic causal assignment.  

 

A number of observations on the dynamic causal assignment and its implications 

with regard to exploitation are made. This leads naturally onto deriving the 

transfer function by inspecting causal paths, and other equation generation such 

as the output equation (to complement the unique implicit system equation and 

give a full LTI Descriptor System). The matrices from this equation will be used 

in the subsequent chapters. 

 

Where storage elements are in dynamic causality, there will be an impulsive 

mode. This is shown to only have a value in one of two types of structural 

discontinuity. State variables do not need to be reinitialised in this model. 

 

The control properties (normally found by matrix-rank criteria) are then 

reviewed, using the matrices of the full LTI Descriptor System to confirm the 

properties indicated by the bond graph. 

 

Variable structure systems and their associated impulse losses are addressed. It is 

demonstrated that the controlled junction yields a switching system with no 

inherent impulsive loss. 

 

Control engineering is a continuously evolving field, and this chapter covers only 

the basics of what may be observed on the bond graph. There is tremendous 

scope for future work on nonlinear models, stability, defining observers, and 

other aspects of dynamic analysis and control. 
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4.2  Observations on the Dynamic Causality Assignment 

 

The dynamic causality notation was designed to give some insight into the model 

and be more usable than existing notation [51].  This section presents a series of 

observations on dynamic causality manifesting in the hybrid bond graph. 

 

An immediate observation is that paths of dynamic causality between controlled 

junctions and elements can be identified, and these clearly show the elements 

affected by commutation of a controlled junction. This means that compiling a 

truth table for the model and constructing the -matrix for any subsequent 

equation derivation is greatly simplified. Rather than constructing a truth table 

for the whole model with 2i  possible modes of operation (where i is the number 

of controlled junctions), a series of smaller truth tables can be constructed for 

each segment of the model in dynamic causality. 

 

Additional observations on the paths of dynamic causality can be made in line 

with those already made for causally static bond graphs, such as Margolis and 

Rosenberg’s work on exploiting causality [88, 89] and Rosenberg and Andry’s 

work on solving causal loops [93]. 

 

The number of storage elements in dynamic causality is a measure of the 

variation in model size. Recall that elements in integral causality provide the 

state variables in deriving the state equations. Therefore, when all of storage 

elements are in integral causality, the maximum number of states is active. In a 

well-constructed model, there are no elements in static derivative causality and 

this mode (the reference mode) gives a fully explicit state space model. Likewise, 

the mode of operation where most storage elements are in derivative causality 

gives the minimum number of state variables (and the maximum number of 

pseudo-states which yield additional algebraic equations).  

 

Dynamic causality on resistance elements does not affect the model size. The 

notation allows the user to see how ‘causality resistance’ elements can restrict the 

propagation of dynamic causality and control model size. 

 

If dynamic causality is not controlled, it can be exploited in much the same way 

as static causality. Causal paths between elements (in the reference or other 

modes) can be traced, and signify various types of algebraic or kinematic 

constraint. In addition to identifying these paths in the case of dynamic causality, 

it is possible to further classify them.  

 

The classic variable topology problem – ideal ‘hard’ contact resulting in 

coalescence – is visible via a controlled junction which is OFF in the reference 
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mode and results in a kinematic constraint between rigid bodies (i.e. a causal 

path between two I-elements, one of which will be in derivative causality) when 

it is ON. This usually manifests as a path of dynamic causality between a 

controlled junction and I-element, shown in Figure 15. It is also possible for 

compliance elements to become kinematically constrained.  

 

 

 
 

a) ‘Hard’ Contact resulting in a Kinematic Constraint (shown by the 

arrow) between Bodies 1 and 2. 
 
 

 
 

b) Compliant Contact 

 

 

 
 

c) Compliant Contact with Resistance 

 

Figure 15: Example of a Type 1 Structural Discontinuity 

 

 

A user may choose to break the kinematic constraint by revising modelling 

assumptions: the classic approach is to redefine a hard contact problem as stiff 

contact, by adding a stiff compliance between the inertia elements. This may not 

always be appropriate, especially if a ‘proper model’ or model devoid of high 

frequency stiff dynamics is required. If the mode(s) of operation for which the 

constraint exists were to be considered in isolation, the constrained storage 
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elements could be lumped together: this may be laborious by hand, but a 

computer programme could feature an algorithm for lumping constrained 

elements or using relaxed causalities [3] in the appropriate modes of operation.  

 

Where there is compliant contact, the inertia elements will remain in integral 

causality and there is no kinematic constraint. There will be a path of dynamic 

causality between the junction and a compliance element instead. There is 

typically some dissipation associated with this type of contact, and a resistance 

element may be added which will act as causality resistance: in this case the path 

of dynamic causality will be between the controlled junction and resistance 

element. The advantage of using causality resistance is that the number of state 

equations remains constant with commutation, which greatly facilitates 

computation. Indeed, bespoke subsystems describing controlled junction and 

causality resistance elements have already been used successfully in 20Sim (as 

outlined in Chapter 2), although coding bespoke subsystems can lose the 

graphical advantages of the bond graph notation and is open to abuse by novice 

users. It is important that causality resistance is only used where there is  

dissipation in real life, and a known or representative coefficient can be assigned 

to the element. The use of parasitic elements to aid simulation violates the 

principles and advantages of idealised physical modelling, and can result in 

overly complex and inaccurate models.  

 

Definition 24: Type 1 Structural Discontinuity 

A Type 1 structural discontinuity is OFF in the reference configuration. When it 

is ON, two subsystems are joined and a kinematic constraint may result. 

   

 

The alternative situation is a controlled junction which is ON in the reference 

configuration, and divides the model into subsystems when it is OFF, as shown 

in Figure 16. Disconnecting a power source – for example, in an electrical or 

hydraulic circuit - can result in storage elements discharging, and this is reflected 

by them switching to derivative causality. As with the type 1 structural 

discontinuities, parasitic elements (additional compliance, causality resistance) 

can be used to control this dynamic causality but must be used with caution.  

 

Definition 25: Type 2 Structural Discontinuity 

A Type 2 structural discontinuity is ON in the reference configuration. When it is 

OFF, the system is divided into subsystems, and storage elements may discharge 

to compensate for a lack of power source in a subsystem. 
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Figure 16: Example of a Type 2 Structural Discontinuity 

 

 

As dynamic causality occurs, various other paths and loops may be created or 

broken with commutation. These are not a feature of the type of discontinuity. 

 

Some observations may be made regarding the control properties of the system. 

Assume a system is [structurally] controllable and observable in the reference 

mode. If the system contains type 1 discontinuities, the system’s finite dynamics 

remain controllable and observable after commutation. If it contains type 2 

discontinuities, the model may be subdivided into uncontrollable and 

unobservable subsystems with commutation. Control properties will be discussed 

in more detail in section 4.6. 

 

In assigning the causality around a controlled junction, the user may make an 

arbitrary decision regarding which element to place in dynamic causality. 

Consider Figure 15a: dynamic causality was assigned to Body 2 but could just as 

easily have been assigned to Body 1. The basic effects on the system are the 

same:  

 

 When the controlled junction is OFF the I-elements  

o are both in integral causality and  

o both yield a state variable and equation.  

 

 When the controlled junction is ON,  

o one of the I-elements switches to derivative causality,  

o the order of the model is reduced by one, and  

o the elements yield one state variable and equation, and an 

additional pseudo-state providing an algebraic constraint between 

the two bodies.  

 

The only time that the choice of element to place in derivative causality may be 

significant is when there is an existing causal path between an element and some 

other structure. This will still be captured via the new causal paths, but may be 

less immediately obvious to the user and computationally inefficient. An 

example is shown in Figure 17.  
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The causality assignment in Figure 17a) results in a static causal path between 

Body 1 and the spring. The equally legitimate causality assignment in Figure 

17b) does not have this static causal path. Instead, there is a causal path between 

the spring and Body 1 only when the controlled junction is OFF. When the 

controlled junction is ON, this path no longer exists but another causal path 

appears between the spring and Body 2. Inspecting the structure and causality of 

the systems (using the notation in Figure 18) yields the equations in Table 8. It 

can be seen that the first set of equations is more elegant and concise. The second 

set still relates the spring to Body 1, but when the controlled junction is ON this 

is done via the algebraic constraint between the bodies.  

 

 

 

 
 

a) Body 2 in Dynamic Causality 

 

 

 
 

b) Body 1 in Dynamic Causality 

 

Figure 17: Hard Contact with a Causal Path (indicated by arrow) affected 

by Causality Assignment 

 

 

 

 

 
 

Figure 18: Notation used in Equation Derivation for the Hard Contact 

Example 
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Table 8: Junction Structure & Implicit State Equations for the Hybrid Bond 

Graph in Figure 17 

 

Body 2 in Dynamic Causality Body 1 in Dynamic Causality 
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In Step 4 of the Dynamic Sequential Causality Assignment Procedure (Procedure 

1) it was noted that a causal conflict may occur for some isolated modes of 

operation. These have the property of indicating a forbidden mode of operation. 

For example, in the Case Study of the power converter (section 5.2) a causal 

conflict occurs when both electrical switches are ON and the voltage source is 

short-circuited.  

 

 

Property 1: Casusal Conflict in the Dynamic Causal Assignment 

 

Where a causal conflict occurs in the dynamic causal assignment, this indicates a 

conflict in a specific mode of operation, and the mode is a ‘forbidden mode.’ 

Forbidden modes may be a consequence of the modelling assumptions, or reflect 

a real case such as a short-circuit.  

  

A mode in which there is a causal conflict is ‘forbidden’ in the sense that 

causality cannot be assigned, and hence the mathematical model cannot be 

constructed for that mode, and the model cannot be simulated. An interesting 

property of the hybrid bond graph presented in this thesis is that causal conflicts 

reflect modes that would be undesirable or impossible in reality. This is because 

the method was developed to reflect the physics of the system.  
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4.3 Further Equation Derivation 

 

It has already been shown in Chapter 3 that an implicit state equation can be 

found from the Junction Structure Matrix. It was also shown in Section 4.2 that 

the causal assignment can be exploited to give insight to the system. In this 

section, some additional equation derivation activities are carried out to provide 

more information about Hybrid Bond Graph with dynamic causality. 

 

 

4.3.1 Transfer Function Using Shannon-Mason Loop Rule  

 

It is well-documented that causal paths in a bond graph are equivalent to signal 

loops, and a transfer function can therefore be found directly from the causal 

bond graph using Shannon-Mason loop rule [95]. In the hybrid bond graph 

proposed here, commutation clearly affects the causal paths in the model (where 

they cross a controlled junction), and commutation will therefore also clearly 

manifest in the transfer function. By looking at the causal paths present in the 

reference configuration, and then each path of dynamic causality, a transfer 

function for all possible modes of operation can be obtained. Where the paths 

cross a controlled junction, or are induced by a certain combination of operations, 

the relevant Boolean term can be inserted into the expression for gain in the 

transfer function as follows.  

 

 

Property 2: Gain of a Causal Path crossing a Controlled Junction 

 

Where a causal path crosses a controlled junction, the Boolean variable related to 

that controlled junction is a factor of the gain.  

  

 

In constructing the transfer function, causal paths between elements and sources 

are used to generate gain terms in the determinant. Where that path crosses a 

controlled junction, it only exists in the ON state. Multiplying the gain term by 

the Boolean factor ensures it is sent to zero when OFF. An example of this 

situation is shown in Figure 19, where the causal path indicated by the arrow has 

a gain of 
ICs2

 . 
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Figure 19: A Causal Path crossing a Controlled Junction. 

 

 

Property 3: Gain of a Causal Path in Dynamic Causality 

 

Where a causal path is dynamic or partially dynamic, the gain is factored by the 

Boolean function (term in Λ) which activates the path to give the signal loop 

under consideration.  

  

 

Where a path between two elements is in dynamic causality, the complete path 

only exists in a certain mode of operation. For the example in Figure 20, the 

causal path between the I- and R-elements (shown by the arrow) is partially in 

dynamic causality. This means that there is a path between the two elements in 

some modes of operation only (those where the I-element is in integral causality). 

Hence, the Boolean function associated with activating integral causality of the I-

element must be used as a factor in the gain, giving 
 

sI
R21  

. When the I-

element is in derivative causality, there is no causal path and the gain term is sent 

to zero. 
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Figure 20: A Causal Path in Dynamic Causality. 

 

 

The general form of the transfer function is therefore identical to that of the 

standard bond graph: 

λ1 

λ2 

port 



89 

 

 



k

kkij Gh
1

 (36) 

 

Where k denotes the kth path between input and output, and the graph 

determinant is:   

 

   
i ji kji

kjijii GGGGGG
, ,,

1  

(37) 

 

However, for the Hybrid Bond Graph G is not only a function of any resistance, 

inertia or compliance coefficients relating to elements in the loop, but can also 

contain Boolean terms. 

 

Where a controlled junction breaks/joins the causal paths in a model, the 

dynamic behaviour of the system is affected with commutation. The following 

points follow logically: 

 If a controlled junction is in a path, then a Boolean term will be present in the 

graph determinant and hence the denominator of the transfer function. The 

roots of the denominator are the eigenvalues of the system, so it follows that 

the system will lose/gain one or more poles with commutation.  

 If a controlled junction is in a path which does not ‘touch’ the input-output 

path (i.e. the paths do not share any nodes), then the ‘reduced determinant’ 

and hence the numerator of the transfer function will also contain a Boolean 

term. It follows that the system will lose/gain zeros with commutation. 

 If a controlled junction is on the input-output path, the gain of the system will 

be affected. The numerator of the transfer function will again contain a 

Boolean and the system will lose/gain zeros with commutation. 

 Where elements are in derivative causality, a path will only be present in 

some modes of operation and a Boolean function will denote this. Some 

paths will never touch because they are in exclusive modes of operation, and 

this must be taken into account when calculating the determinants.  

 

 

 

4.3.2 The LTI Full Descriptor System 

 

It was seen in chapter 3 that the states of the bond graph model can be used to 

generate an implicit system equation from the junction structure. For models 

where all storage elements are in integral causality, E = I (i.e. E is non-singular) 
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and the well-known explicit or regular state space equation is generated. For 

models where some storage elements are in derivative or dynamic causality, E is 

singular and the system is an implicit, singular, semistate or descriptor system 

[80]. Hybrid Bond Graphs with storage elements in dynamic causality will 

always generate implicit equations, because the derivative causality cases 

generate algebraic equations with no differential term (and hence a zero term in 

E) and the constraints they represent give off-diagonal coupling terms in E.  

 

The LTI implicit equation gained in Chapter 3 forms one part of a descriptor 

system (equation 38), the other part being given by the output equation (equation 

39).  

 

UXX BAE   (38) 

 

UXY DC   (39) 
 

 

 

The A, B, C, D and E matrices of these equations are used in defining control 

parameters such as controllability and observability, usually using matrix-rank 

criteria [81].  

 

There is no standard output element in the bond graph framework. Some authors 

take an output as being the complementary variable of an input, which is logical 

in systems where source-elements are also used as sinks. A fairly common 

notation is that of Detector-elements (De- or Df-elements) which are essentially 

null sources added to junctions. These act in precisely the same manner as a 

source/sink, and simply have a different notation for clarity. However, output is 

not a property of a system, and the use of detector elements with a power flow 

suggests that sensors are energy-processing.  

 

Consequently, Signal Detectors similar to those in the commercial package 

20Sim are used here, shown in Figure 21. These are not power elements, but take 

a reading from the bond graph via a signal output (marked by a full-arrow), 

usually taken from a common-flow or common-effort junction. There is no 

power flow to or from the detector: it simply takes a flow or effort reading.   

 

Detectors inherently yield outputs that are always efforts and flows, whereas a 

real system may have other output devices such as measured displacements, 

accelerometers or strain gauges, for example. The associated readings can be 

obtained by integrating or differentiating the output signal from a detector 

element. In principle, the output can be any quantity (such as a state) and should 

not be limited to effort or flow variables: the notation (and associated signal 
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integration/differentiation blocks to give other quantities) is proposed for use 

where a detector needs to be recorded on the bond graph. 

 

 

 
 

 

a) The Effort Detector Element b) The Flow Detector Element 

Figure 21: The Detector Element shown taking a Signal from a Bond Graph 

Junction. 

 

 

 

Outputs can be added to the junction structure, shown graphically in Figure 22, 

and hence expressed in terms of the junction structure and system inputs, shown 

in Equation (40): 
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 (40) 

 

Note that signals are inherently causal (i.e. they have an input and output defined, 

indicated by the direction of the arrow) and an output is always an output. Hence 

detectors are never in dynamic causality and I44 . Following the same 

derivation as for the implicit state equation, an expression for Din in terms of the 

other elements in the system can be derived: 

 

 UZ)(D 34

T

13

1

3333 SSLSL  

iin   (41) 

 

Hence the inD  terms can be eliminated from the system equations. From row 4 of 

(40): 

 

  UUZ)(XZY 4434

T
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1

3333434241 SSSLSLSSS  

idi   (42) 

 

Since 
1

3333

 )( LSLH   this can be simplified to: 

 

   UXZY 44344342

T

134341 SSHSSSHSS  di
  (43) 
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Figure 22: The General Hybrid Bond Graph with Signal Detectors giving 

Outputs. 

 

 

 

Considering the constitutive law for the storage elements: 
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Substituting (44) into (43) leads to the general implicit state equation: 

 

     UXXXY 44344342

T

134341 SSHSSFFSHSS  ddii
  (45) 

 

Assume T

134341 SHSSJ   and reorganise to give: 

 

 UXXXY 44344342 SSHSSJFJF  ddii
  (46) 

 

This is a rather unorthodox form of the output equation, since it is a function of 

dX rather than taking the expected UXY DC   form. When all storage 

elements are in static causality, this is of little consequence, since 0dX . The 

expected descriptor system can then be found, and standard matrix-rank criteria 

can be used to analyse the hybrid bond graph. 
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iẐ

dX
̂

outD̂

inD̂

iX
~

dZ
~

inD
~

outD
~

dX
~

iZ
~

Detector 
Field 

Y 



93 

 

 

 

Property 4: Output Equation for a Hybrid Bond Graph with Causally Static 

Storage Elements 

 

The output equation takes the usual LTI Descriptor System form iff there is static 

causality on the storage elements.  

 

 

 

However, in a hybrid bond graph, storage elements can take dynamic causality 

and the dX  term must be considered. Impulse modes (where there is a step 

change in state on commutation) occur, where dX  has a value that tends to 

infinity. This concept is elaborated on in section 4.4. Storage elements only take 

dynamic causality in the case of ideal switching: i.e. there is no dissipation 

(otherwise a dissipative R-element would act as a ‘causality resistance,’ and there 

would be no dynamic causality and hence no impulse mode). Since ideal 

switching is instantaneous, the impulse loss has infinite frequency but no width, 

and hence there is no energy loss. So, although dX  in some cases, there is 

no energy loss. Ignoring the dX42S  will have no effect on the control properties 

of the model.  

 

 

Property 5: Output Equation for a Hybrid Bond Graph with Causally 

Dynamic Storage Elements 

 

If there is dynamic causality on one or more storage elements, there is  an 

dX term in the output equation which can tend to infinity. Since there is no real 

energy loss associated with this term, it does not affect the control properties and 

can be neglected. 

 

 

 

The Hybrid Bond Graph can be used to generate the standard LTI Descriptor 

System form. This allows comparison with control properties using established 

techniques such as matrix-rank criteria. 
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Definition 26: LTI Descriptor System for a Hybrid Bond Graph  

 

The LTI Descriptor System is: 

UXY

UXX

DC

BAE




 (47) 
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4.4  Impulse modes 

 

Recall the implicit equation derived in chapter 3, and compare it to the standard 

implicit equation. 
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There is a time-varying term dX  in the algebraic equations yielded by the 

pseudo-states of the storage elements in derivative causality. This is multiplied 

by zero (by the lower portion of E) to give an algebraic constraint. However, 

where storage elements in derivative causality are coupled to the states (i.e. S12, 

and therefore E12 in the implicit equation, are nonzero), a dX  term is present and 

the pseudo state is differentiated across the commutation. The pseudo-state is 

nominally assumed to have a zero initial value, and take a non-zero value on 

commutation. This means that there is a step increase in the pseudo-state 

between the initial condition (incrementally before commutation) and the finite 

value it holds at time t (incrementally after commutation). The first row of (48) 

after commutation therefore gives: 

 

 UXXXX 3413141211 SHSSFKFKS  diidi
  (49) 
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Where:  

 

   
dt

dtd
d

0
XX

X


  and 0dt therefore dX   (50) 

 

Differentiating this step change over zero time yields a mode of infinite 

frequency: this is the impulse mode. 

 

Commutation does not always result in a step change and subsequent impulse 

mode. Recall that the states and pseudo-states are intimately connected: each 

energy-storage element in dynamic causality has both a state variable (active 

when the element is in integral causality) and a pseudo-state (active when it is in 

derivative causality). By considering the type of discontinuity, some observations 

can be made on the relationship between states and pseudo-states. 

 

 

Property 6: Impulses on Type 1 Structural Discontinuities 

 

A type 1 structural discontinuity yields an impulse on initial commutation as two 

subsystems with different dynamic properties become joined and constrained 

(setting a storage element to derivative causality).  

 

When the system returns to its original state on subsequent commutation, there is 

no impulsive mode. 

 

 

For a type 1 structural discontinuity, where bodies are disconnected (OFF) in the 

reference mode and the commutation connects them, the initial value of the 

pseudo-state may indeed be zero if that body was at rest. Alternatively, it may 

have another value if it is controlled by another source or subsystem. There is 

typically an energy loss as the body changes its behaviour suddenly (for example, 

a falling rigid body hitting the ground, or a truck clutch being engaged: both of 

which give an audible loss). In real life - which is continuous - this is a 

measurable dissipation occurring over a finite time (albeit a small one). The 

abstraction to a discontinuity with no resistance is responsible for the impulse 

loss. The equations for an example system are shown in Table 9. 
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Table 9: Equations for Modes in Isolation, Type 1 Discontinuity 

 

a) Reference Mode b) After Commutation of the X1-

Junction 
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Assume that a commutation occurs at time t during a simulation. Prior to 

commutation (at time t-1) the system is in the reference mode and both storage 

elements are in integral causality. After commutation, Body 2 is in derivative 

causality. The second row of the implicit equation gives an algebraic term 

for dp2
~ , but there is also a differential dp2

~
 term in the first row. Looking at the 

differentiation across the commutation: 
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   (51) 

 

Where 
)(

~
12 tip is known from the previous time-step’s calculation, and 

)()(
ˆ~

titd pp 12  because the two inertia elements are now rigidly constrained. Note 

that all values are known, so there is no need to reinitialise the variables using 

canonical forms. The time step is also nonzero and known, and governed by the 

integrator parameters used for computation. A large step change (compared to 

the time step) may cause computational difficulties at this point as the left hand 

side of the state equation can become large. In this case it may be advantageous 

to set 02 )(

~
tdp , )()(

ˆ~
titd pp 12   and neglect the impulse. This naturally violates 

conservation of energy but would ease computation considerably.   

 

If the reverse situation is true, i.e. there is a type 2 structural discontinuity where 

the bodies are connected in the reference mode and the commutation disconnects 

them, the initial value of the pseudo state is not zero.  
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Property 7: Impulses on Type 2 Structural Discontinuities 

 

A type 2 structural discontinuity does not yield an impulse on initial 

commutation. In this case, the state of the storage element which switches to 

derivative causality is identical to its value immediately before commutation. 

Hence there is no step change in state variable and no energy loss. 

 

When the system returns to its original state on subsequent commutation, there is 

a step change in state variable. However, this does not manifest as an impulsive 

off diagonal term in the E matrix: it is simply the newly activated iX term. This 

term is the output calculated from the state variables and inputs at the current 

time, and there has been no differentiation over a zero time step. Hence there is 

no impulse. 

 

 

In this case, the initial value of the pseudo-state is equal to the [usually finite] 

value of the corresponding state variable immediately before commutation. 

Furthermore, after commutation the pseudo-state is not sent to zero. The 

behaviour of the element may be controlled by some other system, or may tend 

to zero over time (for example, a clutch disconnecting a load which freewheels 

until it finally reaches rest). In this case there is no step change in variable and no 

impulse. However, when commutation occurs again and the disconnected body is 

reconnected to the system (going from zero to a finite value), a step change in 

state variable may then occur. Consider a system with one element in dynamic 

causality, which has just commutated back to the mode in which it is in integral 

causality. Row 1 of the implicit equation (which is now explicit) gives: 

 

 UXX 341314 SHSSFKI  iii
  (52) 

 

Here, iX is the output, stated in terms of the state variables and input at the 

current time step. Although a step change may have occurred, there is no 

impulsive term in the equation. 

 

Hence each term in E12 potentially represents an impulse mode, but in reality 

there is only an impulse loss where there are type 1 discontinuities. Any 

algorithm for computing impulsive modes must take the variety of possible cases 

into account.  

 

The use of pseudo-states means that the state variable never needs to be 

reinitialised using the algorithms developed by Mosterman [45] or Podgursky 

[55]. In type 1 systems, the pseudo-state variable arises because there is a 

kinematic constraint between two elements, and the pseudo-state of one is equal 
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to the state of the other.  In type 2 systems, there is no step change on the initial 

commutation, but a subsequent commutation may result in a step change: this 

does not result in an impulsive term in the equations because the differential term 

is explicit. 

 

A mathematical impulse has infinite magnitude and zero width, hence there is no 

actual energy loss. In reality, there can be dissipation in the form of an audible 

noise, spark or heat loss. This can be represented on the bond graph via a 

resistance element, or neglected in which case conservation of energy does not 

hold true. Mosterman [42] suggests that conservation of state is the important 

concept in system modelling, and the impulse energy dissipated during 

discontinuous events is ‘free energy.’  

 

Each mode change is a sliding mode change and the implicit equation can always 

be used because one side of it is always known. The use of impulse models like 

Newton’s collision law (i.e. restitution) are a different case. In impulse models 

there is a jump in state space between modes of operation and an associated 

energy loss. This type of impulsive loss should not be confused with the impulse 

modes described above. Impulse models are discussed in section 4.5. 

 

 

4.5  Impulse Losses 

 

A key concept in variable topology systems is that of impulsive losses. The term 

‘impulse’ is used in conjunction with two subtely different issues which must be 

distinguished here. The first is the impulse modes associated with the causally 

dynamic model and the initial value of the pseudo-state: i.e. the mathematical 

treatment of ideal switching. The second is the abstraction of the modes of 

operation themselves: much of the existing work on the subject investigates 

collisions using restitution, where the contact phase itself (and consequent 

dissipation) is so short as to be abstracted to a discontinuity. 

 

Considerable work has been dedicated to the question of impulse losses on 

commutation, including Mosterman’s work on implicit modelling [45] and 

Zimmer & Cellier’s proposal for an Impulse Bond Graph [14]. Mosterman’s 

work in particular gave rise to a body of work where state variables are 

reinitialised after each discontinuous event. These authors use the classical case 

study of Newton’s Collision Law with restitution. Collision is an example of a 

subset of hybrid model called the Impulse model [12]. Here, the continuous state 

changes impulsively on hitting prescribed regions of state space. The ‘jumps’ in 

state space are not energy conserving: and hence an impulse loss must be 

accounted for. In the case of collision, the continuous state changes from positive 
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to negative velocity with any energy loss accounted for via the coefficient of 

restitution.  

 

The use of a Boolean controlled junction in the hybrid bond graph dictates the 

way a discontinuity is abstracted: a switch must be ON or OFF, contact TRUE or 

FALSE, etc. In the case of a collision (see Section 5.4), this means that the short 

‘in contact’ phase is modelled (whereas Newton’s collision law neglects this). 

Any energy dissipation is modelled on the bond graph during this phase: there is 

no restitution. The hybrid bond graph with structural switching is always a 

‘Switching model’ as defined by Branicky et al [12] i.e. the vector field changes 

discontinuously when the state hits a boundary, but these changes are not 

impulsive.   

 

It was seen in Section 4.4 that where an impulse mode occurs there is a 

discontinuous change in the value of a state variable, but the state does not need 

to be reinitialised (it can be computed from the rest of the system) and there is no 

energy loss. The leads to the following property: 

 

Property 8: Impulse Losses in a Hybrid Bond Graph 

 

This Hybrid Bond graph does not undergo impulsive discontinuous state 

changes. There are no energy losses on commutation. 

 

 

 

The case study in Section 5.4 investigates a collision in more detail and show 

that Newton’s collision law and an associated coefficient of restitution can be 

derived from a Hybrid Bond Graph. 

 

 

4.6  Control Properties 

 

Analysis of the state and implicit equations using matrix rank criteria – with or 

without transforming the model to various canonical forms – is well established 

and perhaps the most common form of system analysis. Some background is 

given in the literature review, and results are therefore quoted in this chapter 

without proof.  

 

The use of matrix rank criteria necessitates an input-output model, i.e. they must 

be applied after causality has been assigned. The validity of this approach has 

been called into question, as discussed in the literature review. A more promising 

approach, in keeping with the ideals of physical and behavioural modelling, 
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would be a geometric one as proposed by Lewis [80] and Willems [83]. This is 

recommended as a topic for further study.   

 

 

4.6.1 Controllability 

 

It is well established that a controllability matrix can be constructed for an LTI 

descriptor system, which has rank equal to model order when the system is 

controllable. This controllability matrix is a function of the A and B matrices, 

which are in turn comprised from the submatrices of S. Controllability can hence 

be seen on the bond graph by analysing the causal paths, or established from the 

junction structure matrix S.  

 

Previous work on hybrid bond graphs (using switched sources) has investigated 

R-Controllability and Impulse-Controllability, relating to the finite and impulse 

modes respectively.  The same distinction is made here. 

 

Recall that the order of the model, and hence the number of finite modes of the 

system, are given by the number of storage elements in integral causality. It 

therefore follows that the maximum number of finite modes occurs when most 

storage elements are in integral causality, i.e. the reference mode. 

 

 

Property 9: Finite Modes of a Hybrid Bond Graph 

 

The maximum number of finite modes is given by the order of the model in the 

reference mode. This is the maximum number of storage elements in integral 
causality: dim[Xi].  

 

 

 

R-controllability of these finite modes is an intuitive concept, fundamentally the 

same as the structural controllability defined for a continuous LTI system. The 

model is R-controllable when independent relationships in the equations – 

corresponding to causal paths on the bond graph which exist both when preferred 

integral and preferred derivative causality are applied – are present between each 

storage element and a source element.  

 

When there is a controlled junction in a causal path, that path is severed or ceases 

to exist when the junction is OFF. It is intuitive that when a controlled junction 

occurs between the storage element in integral causality and a source element:  
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 a Boolean term occurs in the underlying equations which sets the 

relationship to zero when the junction is OFF, and  

 the dynamic causality around the junction clearly shows that the causal 

path is broken when the junction is OFF. 

 

There are two possible outcomes when this happens. The first is that the storage 

element remains in integral causality, in which case it may be controlled by 

another source, or it may be uncontrolled i.e. there is an uncontrolled finite mode. 

The other outcome is that the storage element changes its causal assignment and 

the finite mode ceases to exist: in this case the impulse controllability must be  

assessed. 

 

There may also be instances where a nearby controlled junction(s) results in 

dynamic causality on a causal path between the storage element in integral 

causality and a source element. The controlled junction(s) does not physically 

sever the causal path, but still clearly affects controllability because the 

relationship between the source and storage elements is nonexistent in some 

modes of operation. 

 

 

Property 10: Structural R-Controllability of a Hybrid Bond Graph 

 

A Hybrid Bond Graph is structurally R-Controllable iff: 

1. There is a causal path between each storage element in integral causality 

and a source element in all modes of operation i.e.:  

a. the causal path does not cross a controlled junction or,  

b. there is another path between it and a storage element crossing a 

controlled junction which operates in a mutually exclusive manner 

with the first, or, 

c. the causal path crosses a controlled junction which forces the 

storage element into derivative causality when it is OFF. 

2. In the reference mode, the rank of the controllability matrix is equal to the 

model order: i.e. the number of storage elements in integral causality 

when preferred integral causality is applied is equal to the number of 

storage elements in derivative causality when preferred derivative 

causality is applied (allowing dualisation of source elements).  

 

 

 

This is an extension of R-controllability for a static bond graph, acknowledging 

the observations made for structural switching and dynamic causality i.e. that 

relationships in the model can be dependent on commutation. 
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Impulse controllability has been established by hybrid bond graph practitioners 

such as Rahmani et al. [113] by inspecting the switching sources, which is 

clearly not applicable here as there are none. An equivalent criteria of 

establishing causal paths between controlled junctions and storage elements 

could be stated. However, the impulse modes in the underlying equations no 

longer relate to the switching laws present in the hybrid bond graph with 

switching sources. In this Hybrid Bond Graph, the impulse modes relate solely to 

storage elements in dynamic causality. Impulse controllability, in the classical 

sense, is whether these impulse modes can be controlled by a non-impulsive 

input, verified by the algebraic tests which involve inspecting the ranks of the E, 

A and B matrices. In the discussion of impulse modes (section 4.4) it was noted 

that an impulse does not always occur in the model: it depends on the type of 

discontinuity and commutation.  

 

Recall that impulse modes occur when a storage element is in dynamic causality 

i.e. it switches between integral and derivative causality with commutation. In a 

well-constructed model there would not normally be any elements in static 

derivative causality. 

 

Property 11: Impulse [Infinite] Modes of a Hybrid Bond Graph 

 

The maximum number of impulse modes is given by the number of storage 

elements in dynamic causality:  ddim X
~

.  

 

 

 

This is an extension of the property for switched bond graphs (using switched 

sources). The number of impulse modes in any single mode of operation is given 

by the number of storage elements in derivative causality. It therefore follows 

that the maximum possible number of impulse modes is given when all possible 

storage elements are in derivative causality, and this is in turn given by the 

storage elements in dynamic causality. Note that this is the maximum for the 

overall model: when some modes are mutually exclusive, there may not be a 

single mode of operation where all impulse modes occur. 

 

Since the impulsive modes only exist when the respective storage element is in 

derivative causality, impulse controllability could be established by a causal path 

(and algebraic relation) between the element and a source (either directly or via 

another element which is controlled) in that mode of operation. Looking at the 

hybrid bond graph, since impulse modes relate to storage elements in dynamic 

causality, this manifests as a causal path (at least part of which will be dashed, i.e. 

dynamic) between a storage element in derivative [dynamic] causality and a 
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source element. Hence, Rahmani et al’s criterion for impulse controllability [113] 

is adapted and reused here. 

 

Property 12: Structural Impulse Controllability of a Hybrid Bond Graph 

 

The model is impulse controllable iff there exists a causal path between an input 

source and a controlled junction passing through a storage element in derivative 

causality.  

 

 

 

An uncontrolled impulse mode would indicate an element which has been 

severed from the sources in the system and switched to derivative causality, such 

as an accumulator or capacitor discharging when the pump/battery is 

disconnected. 

 

 

4.6.2 Observability 

 

Observability is assessed in much the same way as controllability, as it is the 

dual property. The difference is that the observability matrix is a function of the 

C matrix relating the outputs to the model states (as opposed to the B matrix 

relating the inputs to the model states). A standard output equation including a C 

matrix is derived for the hybrid bond graph in section 4.3.2. 

 

Impulsive terms can occur when storage elements take derivative causality with 

commutation. Impulse observability is assumed to be the dual property of 

impulse controllability. Consequently R-observability for finite modes also exists 

and is assumed to be the dual of R-controllability. The following properties are 

therefore presented without proof. 

 

 

Property 13: Structural R-Observability of a Hybrid Bond Graph 

 

A Hybrid Bond Graph is structurally R-Observable iff: 

1. There is a causal path between each storage element in integral causality 

and a detector element in all modes of operation i.e.:  

a. the causal path does not cross a controlled junction or,  

b. there is another path between it and a detector element crossing a 

controlled junction which operates in a mutually exclusive manner 

with the first, or, 

c. the causal path crosses a controlled junction which forces the 

storage element into derivative causality when it is OFF. 
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2. In the reference mode, the rank of the observability matrix is equal to the 

model order: i.e. the number of storage elements in integral casuality 

when preferred integral causality is applied is equal to the number of 

storage elements in derivative causality when preferred derivative 

causality is applied (allowing dualisation of detector elements).  

 

 

 

Property 14: Structural Impulse Observability of a Hybrid Bond Graph 

 

The model is impulse observable iff there exists a causal path between an 

detector and a controlled junction passing through a storage element in derivative 

causality.  

 

 

 

4.6.3 Asymptotic Stability 

 

Asymptotic stability is typically established by finding the solutions of the 

characteristic polynomial. The roots for all possible modes of operation can be 

obtained and plotted: roots with positive real parts indicate unstable behaviour. 

This is a numeric approach rather than a structural one, and outside the scope of 

structural analysis. 

 

Where asymptotic stability does not exist, it indicates the presence of ‘zero 

modes’ (eigenvectors with vanishing eigenvalues). Recall that ‘structurally null 

modes’ (i.e. eigenvalues which are zero, or the poles at the origin) are given by 

the storage elements which are in integral causality when preferred derivative 

causality is assigned [111].  

 

For the Hybrid Bond Graph this philosophy can be extended to the number of I 

and C elements which have to stay in [static] integral causality plus the number 

of I and C elements in dynamic causality when a preferred derivative causality is 

assigned to the bond graph model.  
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Property 15: Structurally Null Modes of a Hybrid Bond Graph 

 

The maximum possible number of structurally null modes is given by the number 

of storage elements which can take integral causality when preferred derivative 

causality is assigned to the bond graph.  

 

This is the number of storage elements in [static] integral causality, plus the 

number of storage elements in dynamic causality in the BGD. 

 

    
BGDii dimdimD X

~
X̂ 0    (53) 

 

 

 

 

This property is a logical extension of the procedure for finding structurally null 

modes in a static bond graph. Recall that placing the bond graph in preferred 

derivative causality yields a mathematical model in an alternative form including 

the inverse of the system matrices (as described in section 2.5.6). When storage 

elements remain in integral causality, it means that A is singular and there are no 

unique solutions to the system of equations. In particular, inspection of the 

characteristic equation reveals that there are k structurally null modes relating to 

the rows of A in which the causal constraints (in the BGD) exist, and these in 

turn relate to the storage elements that remain in integral causality in the BGD. 

The characteristic polynomial for the hybrid system is shown in (54): 

 

       01

1

1 asasassssP q

q

qk  

 AE   (54) 

 

The k structurally null modes may not be obvious from the Hybrid Bond Graph 

in integral causality. Consider a simple example of two rotating bodies connected 

by a shaft with a clutch fitted. The Hybrid Bond Graph in preferred derivative 

causality is shown in Figure 23. 

 

 

 
 

Figure 23: Example System in Preferred Derivative Causality, with Ideal 

Clutch. 

ON 
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In preferred derivative causality, the reference mode (the mode with most 

elements in derivative causality) occurs with the clutch engaged (ON), in which 

case body 1 is still in integral causality. When the clutch is OFF, body 2 is also 

sent to integral causality. Hence there are two possible structurally null modes, 

with one of them dependent on commutation of the clutch. 

 

 

4.7  Summary 

 

The structural switching and dynamic causality in this proposed hybrid bond 

graph naturally affects structural analysis and exploitation of causal assignment. 

This chapter revisits some of the most common results from these fields with 

respect to the hybrid bond graph.  

 

The dynamic causality assignment has been investigated, and it can be shown 

that there are two types of discontinuities (type 1 and type 2), reflecting the 

algebraic constraints which occur with commutation.  

 

The presence of structural discontinuities can give mixed-Boolean transfer 

function and output equations. These are used in control engineering to 

determine dynamic and control properties so it becomes clear that system 

dynamics (poles and zeros, stability) and controllability / observability can vary 

with commutation. Since matrix-rank criteria can be reflected in the bond graph 

itself, some revised criteria for commonly used control properties are proposed. 

 

Mathematical impulses occur where storage elements are in dynamic causality, 

but these only have magnitude in the case of type-1 discontinuities. In type-2 

discontinuities, there is no step change in the value of a state variable as the 

storage element switches from integral to derivative causality.  

 

Variable structure systems and impulse modes are discussed. An important 

observation is that this hybrid bond graph dictates that discontinuities are 

abstracted to sliding modes. This is an important result because it dispenses with 

the need to reinitialise state variables after commutation or allow for unknown 

impulsive losses. 
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Chapter 5: Case Studies 

 

5.1  Preliminaries 

 

This chapter presents a number of case studies to demonstrate the proposed 

hybrid bond graph method. 

 

The power boost converter is used as a widely-used example in the literature, and 

therefore enables comparison with other methods. The implicit state equation is 

derived for this purpose. This case study was used to illustrate structural 

switching in a journal paper on the subject [124], available on 

http://online.sagepub.com. The final, definitive version of this paper has been 

published in the Proceedings of the IMechE Part I: Journal of Systems and 

Control Engineering, Vol. 227 Issue 3, March 2013 by SAGE Publications Ltd., 

All rights reserved. © IMechE 2013. 

 

The drop test case study is presented as a model with several types of 

discontinuity, which can be problematic to compute efficiently. Using controlled 

junctions and elements, a model can be constructed in the commercial software 

package 20Sim and simulated. A version of this model and results form a paper 

which was presented at IASTED MIC 2013 [127]. The final, definitive version of 

this paper has been published in Proceedings of the IASTED Multiconferences: 

Modelling, Identification, and Control (MIC 2013), Vol. 794, February 2013 by 

ACTA Press. 

 

A study of contact between bodies is presented in order to investigate impulse 

models and their associated losses on commutation. The hybrid bond graph 

produces a switching model which considers the ‘in contact’ phase of a collision 

and conservation of momentum holds true. Newton’s collision law can be 

obtained from this model, including the systematic derivation of a coefficient of 

restitution from the bond graph elements. 

 

http://online.sagepub.com/
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5.2  Power Converter 

5.2.1 Overview  

 

A boost converter is shown in Figure 24, as an example incorporating both 

electrical switches and a mechanical clutch. Buisson et al [98] use this example 

to demonstrate the use of switching sources, as do Edström et al [37] on a 

simplified version. Here, controlled junctions will be used.  

 

 

Load (L3)

+ -

Inductor (L1)

Electrical Reference (G)

P
S

Elec Switch 2

PS

Elec Switch 1

DC Voltage Source (V)

+
-

R
C

DC Motor (L2)

R C

Clutch (Switch 3)

 
 

Figure 24: Schematic Diagram of a Boost Converter Supplying a D.C. 

Motor with Load 

 

 

5.2.2 Hybrid Bond Graph 

 

The bond graph of the power converter is shown in Figure 25. Note that some 

resistance elements have been added (R1 and R2) to model losses in the circuit 

and friction in the moving parts. The full bond graph, incorporating the ground, 

is shown for completeness, and then systematically simplified by removing 

bonds to the ground (which is 0V) where appropriate. The ground still needs to 

be represented and attached to switch 2; it is worth noting that this source and 

controlled junction arrangement is remarkably similar to the switching source in 

principle. 
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(b) Simplified Model 

 

Figure 25: Hybrid Bond Graph Model of the Boost Converter. 

 

 

The solid causal strokes in Figure 25 show the reference configuration, which is 

the configuration in which the most storage elements are in integral causality. 

This is given by switch 1 being ON and switches 2 and 3 being OFF. Note that it 

would also be given if switch 1 was OFF and switch 2 was ON; in this case a 

reference mode can be selected arbitrarily.  

 

 

5.2.3 Deriving the Junction Structure and Implicit State Equations 

 

In order to construct the Junction Structure Matrix, the modes of operation and 

any consequential dynamic causality must be identified. This gives the functions 

of  used in the JSM and state equations. These are in turn used to construct a 

matrix Λ, which multiplies the equation by zeros and ones to ensure that state 

variables disappear from the model when they are not part of a mode of operation.  

 

ON 

OFF 

OFF 

 

ON 

OFF 

OFF 
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Dashed causal lines show the alternative causality assignment where causality is 

dynamic (i.e. it changes with mode of operation). Controlled junctions become a 

source of zero flow/effort when they are ‘OFF,’ which means that they do not 

take any other flow/effort inputs in that mode of operation. ‘Paths’ of dynamic 

causality can be traced, showing the effect of switches on other elements (noted 

in Table 10). It can be seen that switches 1 and 2 both affect the causal 

assignment of L1, while switch 3 solely governs the assignment of L3. In order to 

derive a switching rule for inclusion in the junction structure matrix (and, 

subsequently, the state space matrices), a truth table can be used. Looking at 

Table 11 it can be seen that L3 is in integral causality when switch 3 is OFF. The 

state variable must therefore be ‘active’ when switch 3 is OFF: this can be 

achieved by multiplying the relevant row of the junction structure matrix by a 

Boolean 3 (equal to 1 when switch 3 is not on, and otherwise equal to 0). The 

pseudo-state variable is likewise activated when the switch is on by multiplying 

the relevant row of the junction structure matrix by the Boolean 3 (equal to 1 

when switch 3 is on). 

 

 

Table 10: Effects of Switches on Causality of 1-Port Elements 

 

Switch Dynamic Causal Path to 

Storage Element?  

Dynamic Causal Path to 

Resistor Element?  

Sw1 L1 - 

Sw2 L1 - 

Sw3 L3 - 

 

 

Table 11: Truth Table of the effect of switches on dynamic causal elements 

 

Sw1 Sw2 Sw3 Causality on L1 Causality on L3 

0 0 - Derivative - 

0 1 - Integral - 

1 0 - Integral - 

1 1 - Causal Conflict - 

- - 0 - Integral 

- - 1 - Derivative 

 

 

Looking at Table 11 a slightly more complex Boolean expression must be 

defined. L1 is in integral causality when switch 1 or switch 2 is on. The element 

is in derivative causality when both switches are OFF. The case where both are 

on is a forbidden mode since the voltage source is short circuited, and this is 
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reflected by a causal conflict. The state variable can therefore be activated using 

a Boolean factor of 21    where the symbol ‘’ denotes an ‘exclusive or’ 

(XOR) operation. The pseudo-state variable is activated when this is not true, i.e. 

21   . 

 

The junction structure matrix (given below) is constructed as for a regular system, 

but includes further Booleans where an input/output depends on the state of a 

switch. The subscript ‘d’ denotes derivative causality. 
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Figure 26: Hybrid Bond Graph Model of the Boost Converter with Notation 
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  (55) 

Where:  

 

 11)(1)( 321321   diagΛ  (56) 

 

Remember that switches are thought of as null sources when they are ‘OFF.’ The 

input flows and efforts representing the switches in the OFF position could be 

explicitly shown as inputs, but since these are inherently zero, it is sufficient to 

imply them by sending terms in the JSM to zero.  

 

The state space matrices for this system seem a little complicated, since there is a 

causal path between L2 and L3 (in derivative causality) when the clutch is 

engaged. This can be seen from the coefficient in submatrices S21 and S12 of the 

junction structure matrix. If the classical state equations were to be found, there 

)(1 dLp
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may be a motivation here for adding a parasitic element to break the causal path. 

Instead, the use of pseudo-states for those elements in derivative causality 

handles the loop.  

 

The constitutive law of the R-field is: 
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The constitutive law for the storage elements: 
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The implicit equation for the power converter example is therefore: 
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For the reference configuration (1 = 1, 2 = 0, 3 = 0), this gives: 
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Giving an explicit state space model with the equations: 
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There are state equations for each of the three storage elements in integral 

causality, as expected. With the clutch disengaged, the load L3 is clearly 

disconnected from the rest of the system.   

 

For the case where most elements are in derivative causality (i.e. 1 = 0, 2 = 0, 

3 = 1): 
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Giving an implicit model with the equations: 
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With both electrical switches off and the clutch engaged, the inertia of the DC 

Motor exerts no torque on the system and the load is not free to rotate. This is 

consistent with what would be expected. 

 

An interesting case occurs in the mode where both switches 1 and 2 are ON. This 

is a ‘forbidden’ mode, which short-circuits the voltage source and sets up a 

causal conflict in the bond graph. The implicit state equations are (assuming 

clutch is disengaged). 
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The first line gives GV   i.e. the input voltage is equal to 0V (Ground voltage). 

This clearly reflects the short circuit. The forces on the inertia components 

transpire to be zero. 

 

 

5.2.4 Discontinuities on Variables at Commutation 

 

Consider the case where the system is in the reference mode, and then the clutch 

(Switch 3) engages. Recalling the reference configuration: 
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After the clutch connects: 
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The equations are: 
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Clutch engaged 
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The system changes from having three differential state equations, to having two 

differential equations and an associated algebraic relationship. The equation for 

1Lp  remains unchanged with commutation. The equation for 2Lp  becomes a 

function of 2Lp and pseudo-state dLp 3
 in addition to 1Lp , and the algebraic 

relation can be rearranged to give dLp 3  in terms of 2Lp . If the clutch commutes 

back from engaged to disengaged, the state of L3 just after commutation is equal 

to the state just before i.e. 33 LdL pp   and 33 LdL pp   , and there is no need to 

reinitialise the state. 

 

In this model, any slippage occurring between fully engaged and fully 

disengaged would be modelled by resistance element R2. Some authors would 

define slippage as an extra mode of operation. Here the controlled junction 

purely represents whether contact has been made or not. Any additional non-

linear dissipation can be modelled using a resistance element, which could itself 

be abstracted to discrete modes of operation (i.e. parametric switching) and 

captured in a controlled element.  

 

 

5.2.5 Structural Analysis of the Power Converter 

 

The order of the model varies, since two of the storage elements are in dynamic 

causality. The reference mode gives the highest order, which in this case is 3. It 

is possible to achieve a mode of operation where the order is only 1.  

 

The rank of the model is 2 or 3, again depending on the mode of operation: this 

is clearly seen if a causally dynamic hybrid bond graph with preferred derivative 

causality is constructed (Figure 27).  Alternatively, the maximum number of 

linearly independent columns in (S11 S13) can be seen to vary between 2 and 3. 

This is because the second column of S13 is linearly independent when switch 3 is 

OFF but not when it is ON. 
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Figure 27: Hybrid Bond Graph Model of the Boost Converter in Preferred 

Derivative Causality 

 

 

Asymptotic stability is also established from the bond graph with preferred 

derivative causality assigned (Figure 27). There are no storage elements in 

integral causality and hence no structurally null modes in the [preferred 

derivative causality] reference mode. This means that the model is 

asymptotically stable in this mode of operation. However, L2 is in dynamic 

causality and can take integral causality if the switches commutate, yielding a 

possible structurally null mode. Hence the model is unstable when the clutch 

(Sw3) is OFF.  

 

Structural controllability is assessed by revisiting the bond graph in preferred 

integral causality. When switch 3 is OFF the subsystem formed by L3 and R2 is 

not controllable: there is no causal path between L3 and either of the sources, 

shown in Figure 28. This may or may not be important depending on whether 

that subsystem needs to be controlled or can be ignored when OFF. In addition, if 

both switches 1 and 2 are OFF, there are no causal paths between any of the 

elements and the sources. Note that null sources (applied by controlled junctions 

when OFF) are not considered as sources for the purposes of controllability, 

since they literally add nothing to the system. There is a case for ignoring sinks 

and grounds (when they are zero – note that they are sometimes non-zero) for the 

same reason: a user would not normally change the value of a ground source in 

order to manipulate desired results. 

 

This assessment of structural R-controllability is fairly intuitive. If the L3-R2 

subsystem needs to be controlled when it is disconnected from the rest of the 

system, an additional source element can be added. 

OFF 

OFF 

ON 
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Figure 28: Static Bond Graph of the Boost Converter showing a mode with 

least structural R-Controllability 

 

 

Impulse controllability is assessed by looking at whether there are causal paths 

between input sources and controlled junctions, passing through storage elements 

in dynamic causality in their derivative causality cases.  Revisiting Figure 25, it 

can be seen that causal paths can be traced throughout the model when all 

switches are ON and L3 is in derivative causality, indicating controllability of the 

impulse mode associated with L3 provided switches 1 or 2 are ON. However, L1 

is only in derivative causality when both switch 1 AND switch 2 are OFF, which 

means there is never a causal path between a source element and L1 in derivative 

causality: hence this impulse mode is uncontrollable.  This is intuitive: when the 

sources are disconnected, the inductance represented by L1 discharges 

uncontrollably. 

 

In order for the model to be observable, detectors must be placed so as to satisfy 

the criteria for structural R-observability and impulse observability. The logical 

way to achieve structural R-observability is to add detector-elements to the 

system close to the storage elements so that the causal paths do not cross any 

controlled junctions. Rank and order of the obervability matrix should then be 

checked. Impulse observability is likewise ensured by positioning detector 

elements so that the path between them and a controlled junction passes through 

a storage element in derivative causality.  

 

The four detectors added in Figure 29 ensure both R-observability and impulse 

observability.  

‘off’ 

‘off’ 

‘off’ 

Uncontrolled 
subsystem: no 
causal path 
between L3 and 
a source 

No causal path between sources 
and rest of system 
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a) Reference Mode for R-Observability 

 

 
b) L1 & L3 in Derivative Causality for Impulse Observability 

 

Figure 29: Adding Detector Elements to the Model in Preferred Integral 

Causality, with Causal Paths marked 

 

 

In order to verify the properties of the model, the output equation can be found 

for the system. The junction structure matrix can be revised to include the 

detector elements: 
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The Transfer function can now be found. Take, as an example, the transfer 

function between the voltage source and a detector measuring the angular 

velocity of L2. There are four possible causal paths, and hence four possible flat 

loops, shown in Figure 30. Two are ‘touching,’ because they share junctions and 

1-port elements in the same mode.  
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Figure 30: Hybrid Bond Graph in Preferred Integral Causality, Causal 

Paths representing Flat Loops Marked. 

 

 

The gains of these flat loops are: 

1. between R1 and L1 in integral causality, marked in blue 
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2. disjoint path across the gyrator, between L1 and L2 in integral causality, 

marked in red  
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3. between L3 in derivative causality and L2 in integral causality, marked in 

green 
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4. between R2 and L3 in integral causality, marked in blue 
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This gives a graph determinant  of: 
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Assume we want to find the transfer function between the applied voltage V and 

a flow sensor: the path, marked in orange on Figure 30, has a gain: 
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  (72) 

 

Note that this path only exists when switch 1 is ON. The first three loops (blue, 

red and green) touch this path, so a reduced graph determinant can be defined by 

eliminating them. 
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By Shannon-Mason Loop rule: 
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The poles and zeros of the system can be seen to depend on commutation and a 

simplified transfer function can be obtained for any single mode of operation. 
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5.3  Landing Gear Drop Test 

5.3.1 A High-Level Bond Graph of the Landing Gear 

 

The landing gear on the ground compresses under load and cannot be modelled 

as a rigid body. A landing gear is similar in principle to the standard quarter car 

model used extensively in automotive engineering. They usually have an oleo-

pneumatic strut in place of the mechanical suspension (spring and damper 

mounted in parallel) found on a typical car. A spring-mass-damper diagram is 

shown in Figure 31, and a high level model is presented in Figure 32.  

 

A rigid body with mass and weight equal to the effective vertical load and inertia 

effects of the aircraft fuselage is attached to the upper end of the gear. The gear is 

assumed to act as a lumped mass with a centre of gravity coincident with that of 

the wheel. The oleo strut is attached via a [common effort] 0-junction, because it 

is known that there is common effort and a difference in velocities across the 

strut. The behaviour of the tyre and its contact with the ground, and of the oleo 

strut will be covered in sections 5.3.2 and 5.3.3. This model is implemented in 

the commercial software package 20Sim. 

 

 

   
 

a) In-Situ on an Aircraft [128] 

 

b) Spring-Mass-Damper Diagram 

 

Figure 31: A Typical Aircraft Landing Gear 
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Figure 32: A High Level Bond Graph of a Landing Gear 

 

 

 

5.3.2 Structural Discontinuities: Contact with the Ground 

 

Contact is represented here using a controlled junction, in an identical way to the 

contact between bodies discussed in Chapter 4. Contact gives a variable topology 

system, which can lead to dynamic causal assignment and/or a change in the size 

of the underlying equations. It is implemented in this study via a bespoke coded 

element in 20Sim, where the displacement of the gear and ground are compared 

to establish whether contact occurs. The ideal causal assignment for the model 

changes with commutation. In this case, the tyre resistance prevents the dynamic 

causality from propagating throughout the model significantly, which means that  

the model can be simulated with a standard commercial software package. The 

model is shown in Figure 33.  
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Figure 33: The Tyre & Contact Model, with Dynamic Causality Notation 

 

 

In this model the tyre stiffness and resistance were given typical approximate 

linear values. 

 

 

5.3.3 Parametric Discontinuities: The Oleo Strut 

 

A typical oleo strut consists of a chamber filled with a fluid and gas mixture 

(which acts as a fluid spring), and an orifice plate which controls the rate at 

which the strut is compressed (adding damping). The use of ‘2-stage’ oleo struts 

is commonplace (especially for the main landing gear of heavier aircraft) where 

there are two chambers of fluid and the second becomes active after a 

‘breakover’ load is reached. A great many designs for oleo-pneumatic shock 

absorber exist [129] and Figure 34 details a typical configuration. 

 

The constitutive equation for the fluid compliance varies depending on the 

volume of fluid displaced (i.e. the stroke of the oleo). When the aircraft is in the 

air, the oleo is fully extended and no load is applied: the piston rests on its end 

stops. When the aircraft first touches down, the oleo compliance is that of the 

fluid in the primary chamber. As load on the oleo increases, it reaches a breakout 

point and the second chamber starts to compress. There are therefore three modes 

of operation. The compliant modes are modelled by equation (76).  
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To Gear 
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Figure 34: Detail of a Typical Two Stage Oleo-Pneumatic Strut 
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Each mode of operation could be described by a standard compliance element in 

bond graph notation, and activated by a controlled junction. In the ‘rigid’ mode 

the strut simply reacts the weight of the gear and could be represented as a 

modulated effort source. A ‘tree’ arrangement of controlled junctions is shown in 

Figure 35. The controlled 1-junctions – denoted X1 – become a source of zero 

flow when OFF. Switching coefficients n are mutually exclusive. 

 

Since the switching coefficients are mutually exclusive, and the causality on the 

bond connected to the rest of the system is static, the ‘tree’ could be concatenated 

into a single controlled element as proposed in Figure 36. The constitutive 

equation for this element is given by equation (77). 
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It is worth noting that the resistance provided by the orifice plate is also non-

linear, in this case modelled using the standard equation for an orifice. 
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Figure 35: A 2-Stage Oleo represented by a ‘Tree’ of Bond Graph Elements. 

 

 

 

 

 
 

Figure 36: A 2-Stage Oleo represented by a Controlled Element 

 

 

5.3.4 Determination of the State Equations 

 

Some of the elements in this case study have nonlinear constitutive relations, 

rendering any Linear Time-Invariant (LTI) assumptions invalid. However, in this 

case the derivation can still be followed with nonlinear functions in place of 

linear coefficients. 

 

The bond graph of the full model, including the detail of the contact and 2-stage 

oleo compliance, is given in Figure 37. A transformer (TF-element) with piston 

area as its modulation coefficient is inserted to formalise the transition between 

mechanical and hydraulic domains.  

 

Inspection of this graph yields the junction structure equation (79) which relates 

all inputs and outputs, and this is turn can be used to derive the implicit state 

equations (80).  

 

It can be seen that the switching term for the contact manifests in the equations, 

clearly disconnecting the ground velocity from the gear. The tyre resistance and 
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compliance also cease to have any effect on the gear when it is not in contact 

with the ground, which is consistent with expectation. The switching terms inside 

the controlled element representing the oleo fluid compliance do not manifest in 

the equations: they are contained inside the compliance function. 

 

 

 
 

Figure 37: Complete Model of the Gear, Control Signals omitted for clarity 

 

 

Deriving the state equations yields a mathematical model which can be 

transported to other modelling environments for simulation purposes. This would 

be necessary if the model is to be used as part of a larger programme or on a 

Model-in-the-loop apparatus which uses a specific code.   

 

In Matlab, for example, a descriptor state-space model object can be defined 

from the explicit or implicit state and output equations (provided all elements 

have linear relationships). Some code would be required to establish the mode of 

operation at each time-step and hence values of the Boolean switching 

parameters n. The nonlinear nature of this model means that nonlinear 

techniques must be used rather than relying on the LTI functionality in most 

common software packages.  
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5.3.5 Results & Discussion 

 

The model was populated with approximate data for a typical aircraft and a 

simulation was run in 20Sim. The oleo was sized for the applied load. Since the 

model does not relate to any production aircraft, the results are assessed against 

subjective engineering experience. 

 

Initially the model did not run due to the highly nonlinear constitutive 

relationship of the orifice plate. Linearising this element relieved this problem. 

The model could be improved by implementing a more representative piecewise-

continuous relationship, which could be formalised by a XR-element (in the 

same way that the piecewise-continuous fluid compliance was formalised using a 

XC-element). 

 

The results are presented in Figure 38 - Figure 41. The system is in free-fall for 

the initial fraction of a second (shown by the not-in-contact portion of Figure 41). 
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On contact, the system exhibits a ring-down response as expected. Discontinuous 

behaviour is evident in the plot for oleo pressure (Figure 38) where the oleo 

reaches its ‘breakover load’ and the second stage becomes active.  

 

The model was populated with parameters roughly typical of an airliner. 

Although the model could not be correlated to experimental data, it does exhibit 

a response consistent with expected behaviour.  Figure 38 shows that the oleo 

compresses instantly on contact, and there are discontinuities evident where the 

oleo ‘breaks out.’ There is some ‘chattering’ at ~3.5s where the oleo is operating 

very close to the breakover point. Figure 40 indicates that the tyre absorbs the 

remainder of the force on contact. Contact itself is verified by Figure 41, and it is 

clear that the gear ‘bounces’ before coming to rest on the ground.  The ‘aircraft’ 

effective load (Figure 39) exhibits a typical ‘ring-down’ response and comes to 

rest in 6s.  

 

The state equations (80) could be used to inspect the system a little further. The 

parametric switching relationship used to describe the fluid compliance is 

contained in the nonlinear compliance function. Only the switching coefficient λ 

denoting contact with the ground affects the form of these equations by 

multiplying terms by 1 or 0. 

 

 

 
 

Figure 38: Simulation of the Drop Test, Pressure in Oleo Strut 
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Figure 39: Simulation of the Drop Test, Fuselage Vertical Displacement xAC 

 

 

 
 

Figure 40: Simulation of the Drop Test, Vertical Compression of Tyre 
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Figure 41: Simulation of the Drop Test, Contact 
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5.4  Variable Topology Systems 

 

Variable topology systems have attracted specific attention over the years, 

forming the basis for developments such as HyBrSim [13] and the Impulse Bond 

Graph [14]. Cellier stated at the 2012 ‘International Conference on Bond Graph 

Modelling and Simulation’ that developing a bond graph method to handle 

variable topology systems remained the next big challenge for bond graph 

modelling.  

 

Variable topology systems are those where the size of the state equation matrices 

changes, such as contact. The classic case studies are the bouncing ball and 

Newton’s Cradle, usually modelled using Newton’s collision law with restitution. 

This model is an impulse model rather than a switched model, and impulse 

models require special attention to ensure that the impulse of energy released on 

impact is included.  

 

Variable topology systems can be modelled using the hybrid bond graph 

developed here, and mechanical contact is an example of structural switching 

with a type 1 discontinuity. That is to say that the structure of the system changes 

with commutation, and when contact is made some constraints will typically be 

set up. In the mixed Boolean implicit model derived from the Hybrid Bond 

Graph described here, this change manifests as rows being set to zeros in some 

modes of operation and given nonzero values in others. 

 

The main difference between the Hybrid Bond Graph presented here and the use 

of Newton’s collision law is that the contact problem is abstracted to a switched 

model, rather than an impulsive one. The controlled junction dictates that the 

short ‘in contact’ phase is considered.  The following case studies illustrate this 

and demonstrate that the switching model can be simplified to an impulsive one 

if required. 

 

 

5.4.1 Collision of Rigid Bodies: Newton’s Cradle 

 

Consider the case of rigid bodies colliding, such as snooker balls or a Newton’s 

cradle (Figure 42). For simplicity, consider the one-dimensional problem i.e. the 

snooker balls acting in-line on a flat table, or the portion of the Newton’s cradle 

acting horizontally. This is shown in Figure 43. 
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Figure 42: Examples of Rigid Contact, Snooker Balls [130] (left) and 

Newton’s Cradle [131] (right) 
 

 

 

 

 
 

Figure 43: Schematic of Rigid Balls acting in one-dimension 
 

 

 

Figure 43 shows the initial condition of the Newton’s cradle, or a common 

situation in snooker. For clarity, snooker terms are used here. There are some 

balls in contact. The cue ball approaches under a force F, applied by the cue. If F 

is sufficiently large, the cue ball halts on contact with the middle ball, the middle 

ball remains stationary, and the black ball departs with an initial velocity equal to 

the final velocity of the cue ball. There is an audible dissipation of energy on 

contact. The Hybrid Bond Graph is given below in Figure 44. 

 

 

 
 

Figure 44: Hybrid Bond Graph of Rigid Balls acting in One Dimension 

 

 

 

From this bond graph the following mathematical model can be derived: 

F 

1 2Cp
Rp

Bp
F

To Pot the Red by Michael Maggs / CC-BY-SA-3.0 
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A dynamic causality assignment has been chosen such that the red ball is in static 

causality. It is immediately apparent that the reference mode (all balls not 

touching) is different to the initial condition of the problem outlined in Figure 43. 

In order to look at the impulsive behaviour more closely, consider the regular 

bond graph and model for the single modes of operation before and after 

commutation (Table 12). At this point, F=0 and can be neglected because the cue 

ball has left the cue (another controlled 0-junction could be used to express 

contact with the cue). However, the cue ball is travelling with a velocity v as a 

result of having been pushed by the cue. 

 

When the cue ball was hit by the cue, Cp was equal to F. The momentum Cp can 

be used to give the velocity of the cue ball, since CCC vmp  . The velocity 

remains constant because there are no losses. The velocity of the red and black 

balls is known to be zero. 

 

On collision, Cp instantaneously changes from vc to zero, giving an impulsive 

term: 

 

 
dt

vvm
p CdCC

C


  where 0 RCd vv  and 0dt   (83) 

 

For a brief moment, all the balls are in contact and both the cue ball and black 

ball are constrained to the red.  

 

BdCdR ppp    where CCd pp     (84) 
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This means that incrementally after contact, the initial value of Bp is: 

 

CRCdRBdB pppppp     (85) 

 

And consequently:  

 

CRB ppp    (86) 

 

This is an important result as it establishes conservation of momentum. 

Assuming the balls have equal mass, the black ball departs after contact with an 

initial velocity equal to the final velocity of the cue ball prior to contact. This is 

consistent with Newton’s Collision Law. 
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Table 12: Individual Modes of Operation for the Snooker Balls Study 
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5.4.2 Collision of Elastic Bodies 

 

A problem which has received a lot of attention with hybrid bond graph 

modellers is the application of Newton’s collision law to elastic bodies, such as a 

bouncing ball. There are two modes of operation - before and after collision – 

and a coefficient of restitution is used to give the difference in velocities.   

 

   vv    (87) 

 

The hybrid bond graph developed here abstracts the collision differently, into 

contact = TRUE and contact = FALSE. This gives three sliding modes of 

operation: before contact, during contact and after contact. The ‘during contact’ 

mode is so short as to be negligible. However, during this mode, energy storage 

and dissipation may occur, which is what causes the ball to bounce until it 

reaches rest. Restitution is used to give faster simulation times than would be 

achieved by forcing a computer to calculate behaviour during the contact phase.  

It has already been shown that this hybrid bond graph conserves momentum, so it 

now remains to use the hybrid bond graph to establish a coefficient of restitution. 

 

The classic bouncing ball problem is described in Figure 45, with the associated 

bond graph in Figure 46. 

 
 

 
 

 

 
 

 

  
   

a) before Contact b) in Contact with 

Ground 

c) after Contact i.e. 

rebound 

 

Figure 45: Motion of a Bouncing Ball  
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Figure 46: Hybrid Bond Graph of a Bouncing Ball 

 

 

 

The equations for the bouncing ball can be obtained: 

























































































v

W

f

e

e

f

e

f

q

p

r

r

c

m

r

r

c

m

00000

0000

000

0100

000

000

0010

0001

















  (88) 

 




















 





































v

W
R

q

p

C
R

m

CmR
q

p

c

m

c

m









0

1




  (89) 

 

 

Consider each mode of operation in isolation, as shown in Table 13. Before 

contact, the ball falls under its own weight. The velocity associated with the 

compliance (i.e. the velocity of deformation) cq  is zero because the ball has not 

yet been compressed, i.e. cq  (the deformation of the ball) is zero. Note that the 

velocity of the ball itself is not explicitly expressed by the state equation. 

 

On contact, the force on the ball (row 1 of equation (89)) changes from simply 

the weight of the ball to become a function of deformation and inertia. The ball 

deforms with a velocity which is equal to the velocity of the ball (row 2). The 

initial momentum on contact is equal to the final momentum before, so the state 

does not need to be reinitialised.  

 

Immediately after contact, the ball is travelling upwards as a result of the forces 

applied during the contact phase. The initial momentum of the ball is equal to the 

final momentum incrementally before losing contact. 

W 

v 

mp

cq
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Table 13: Static Bond Graphs and Equations for Each Mode of Operation 
 

Mode 1: Before Contact Mode 2: Contact Mode 3: After Contact 
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Inspection of the contact phase in more detail could yield the coefficient of 

restitution which amends the velocity (and hence momentum) of the ball after 

contact.  

 

Consider the local minima where velocity tends to zero and deformation is at its 

greatest. Assume that this occurs at point ti. I.e.  The contact phase is assumed to 

be taking place over a time period (ti-1 to ti+1.), during which the body compresses 

linearly between ti-1 and ti, and decompresses linearly between ti and ti+1. 

 

At the point of maximum compression ti, mm mvp  , ground velocity v is zero, 

and vm → 0 at the local mimina. 
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where  
icq is the maximum deformation of the ball. 
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Now consider the point incrementally before losing contact, at point ti+1: the 

deformation qc → 0 but the ball is still just in contact. The momentum of the ball 

at this point is the initial value of 
mp in the next mode of operation. Recall that 

mm mvp  , ground velocity v is zero, qc → 0 and vm ≠ 0. 
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and  
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11 


imic vq  (92) 

 

Since the duration of the contact phase is so small, assume: 
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Which gives: 
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q
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The maximum deformation is given by rearranging equation (90): 

 

   
imic pCq   

 

And this can be substituted into (94): 
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Recall that  
imp is the change in momentum between the initial state on contact 

at ti-1 and full contact at ti.  
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Assuming the time steps are equal, substitute in eqn. (95) to give: 
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This result is important because it gives the final force on the body in terms of 

the initial velocity. Neglecting weight, which is assumed to be small compared to 

the other forces, and integrating to obtain the velocities: 

 

111 


 ii v
tR

C
v  (98) 

 

Comparing this equation to Newton’s collision law with restitution yields: 

 

tR

C




1
  (99) 

 

This could be used to simplify the mathematical model for simulation, with the 

benefit of having obtained the coefficient of restitution systematically from the 

model instead of using generic or estimated values. 



141 

 

 

Chapter 6: Discussion & Conclusions 

6.1  Discussion 

 

The goal of this research was to propose a Hybrid Bond Graph which could be 

used to gain engineering insight (through structural analysis and exploiting 

causal assignment) and be suitable for simulation activities. In doing so, it was 

important to retain the graphical advantages of bond graph modelling and the 

principles of idealised physical, acausal model construction. This has been 

achieved by classifying discontinuities so that they can be represented in the 

most intuitive way, developing a causally dynamic general Hybrid Bond Graph 

(with a new dynamic causality notation and novel application of pseudo-state 

variables), and deriving a unique mixed-Boolean implicit system equation which 

describes the model in all possible modes of operation. 

 

The original objectives have been satisfied by proposing a new method for 

representing the Hybrid Bond Graph. The use of controlled junctions and 

elements is not novel, but the way they are applied here is new.  

 

Classifying discontinuities as structural or parametric immediately shows 

whether the hybrid assumptions will affect the structural analysis of the model or 

not, and the use of controlled junctions and elements (respectively) is often 

intuitive.  

 

The use of the controlled junction, with its inherent dynamic causal assignment, 

clearly shows how structural commutations (dis)connect submodels and form 

algebraic constraints. This is reflected in the junction structure matrix by the use 

of Boolean variables, which denote connections between elements dependent on 

the state of a controlled junction.  

 

The Dynamic causality notation is designed to facilitate analysis of the model’s 

structure, as well as aiding in equation generation (which describes all modes of 

operation). Elements in dynamic causality reverse inputs and outputs depending 

on the mode of operation (i.e. they have an effort input and flow output in some 

modes, and a flow input and effort output in others). Hence elements in dynamic 

causality are assigned two inputs and two outputs during equation generation. 

During any single mode of operation, one input/output pair is active and the other 

is redundant.  

 

If a storage element is in dynamic causality, it only yields a state output in some  

modes of operation (when it is in integral causality). In other modes it is in 
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derivative causality, in which case it can be assigned a ‘pseudo-state’ variable 

which generates an algebraic equation.  

 

A model describing all possible modes of operation is generated. The dynamic 

causality offers engineering insight, for example when two rigid bodies contact 

and a kinematic constraint exists indicating that they behave as a single rigid 

body. This can be preferable to constraining causality through the addition of 

parasitic elements, which not only overcomplicates the model but can even mask 

an issue or give incorrect behaviour.  

 

The dynamic causality notation offers a unique new way of visualising variable 

causality and variable topology problems: the latter is no longer strictly variable 

topology because all system elements are described; they are just not necessarily 

connected. Dynamic causality can be exploited in the same way as static 

causality notation, showing how system properties vary with commutation and 

enabling graph-based structural analysis. 

 

Variable topology problems – notably impact – have received much attention 

with regard to hybrid bond graphs, due to concerns over whether losses are 

treated correctly. Using the hybrid bond graph developed here, conservation of 

momentum holds true because the impact is abstracted to capture the short 

contact phase, and, in addition, the parameters for Newton’s Collision Law can 

be derived and the model simplified to a classical collision problem.  

 

Likewise, state reinitialisation has received some attention in the context of 

hybrid bond graphs. The way that discontinuities are abstracted using this 

method allows the initial value of each state to be logically deduced.  

 

The unique model describing all possible modes of operation is suitable for both 

equation-based structural analysis (which is well-established for implicit 

descriptor systems) and simulation. Simulation would require the use of solvers 

developed for implicit descriptor systems, or the use of some model 

simplification or symbolic manipulation to produce an explicit equation for each 

mode of operation: both are readily available in commercial packages such as 

Matlab but have not been fully explored here.   

 

The derivations and analyses presented in this thesis largely assume a linear 

time-invariant model, in order to facilitate comparison with existing control 

literature. However, the same derivations can be followed with nonlinear 

functions in place of the linear coefficients during equation generation. This has 

been demonstrated in the case studies.  
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In conducting this research, it was important to preserve the ideals of idealised 

physical modelling and port-based, acausal model construction. The use of 

intuitive switching devices for structural and parametric switching, and the 

proposed dynamic causality notation, are central to this.  

 

 

6.2  Conclusions 

 

A General Hybrid Bond Graph and a method for constructing it have been 

defined. This Hybrid Bond Graph features:  

 

 Controlled junctions and controlled elements describe structural and 

parametric discontinuities respectively.  

 Commutation (i.e. the state of controlled junctions) is assigned a Boolean 

parameter. This manifests in the junction structure matrix and subsequent 

equations for structural discontinuities, and can be used to derive the 

constituent equations of controlled elements for parametric 

discontinuities. 

 Dynamic causality is represented using a new proposed notation.  

 System equations are generated acknowledging that elements in dynamic  

causality have two possible inputs and outputs, depending on the mode of 

operation. In a single mode of operation, one input/output pair will be 

active and the other redundant. A vector of Boolean parameters activates 

the outputs accordingly, and sets rows of the system equation to zeros 

when they are redundant. 

 Storage elements in dynamic causality are assigned pseudo-states for the 

case where they are in derivative causality, and this yields an algebraic 

constraint.   

 The model generates a unique mixed-Boolean system equation, which 

will be implicit if any storage elements are in dynamic causality. This 

equation easily yields the system equation for a single mode of operation 

by assigning 1’s and 0’s to the Boolean parameters (to denote whether 

they are ON or OFF). The models for each constituent mode may change 

size, but all are captured in the unique system model. 

 

This model is not only a more intuitive and holistic way of representing a hybrid 

system, but is also suitable for both analysis and simulation purposes. 

 

The model has been compared to existing hybrid bond graphs and it can be seen 

that the switching mechanisms are very similar, and the equation derived for a 

single mode essentially the same. The novelty here is that commutation manifests 
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as state switching (rather than a switching input, or a collection of linked models 

for each mode) and a unique system model is produced which requires no extra 

derivations to obtain the equation for a single mode of operation. 

 

The dynamic causality notation can be exploited to show how system properties 

vary with commutation: notably the transfer function and hence the poles and 

zeros of the system. It is clear that structural discontinuities directly affect 

structural system properties, whereas parametric ones do not. Established matrix-

rank criteria can be applied to the implicit system equation, and the rank is 

reflected in the graphical model. 

 

Finally, a selection of case studies is presented to demonstrate the method. These 

consist of the boost converter (widely used in the literature), landing gear drop 

test (a highly nonlinear contact problem, known to be problematic to simulate)  

and an investigation of collisions (contact between rigid bodies, and a bouncing 

ball: both widely used case studies in the literature). The latter demonstrates the 

derivation of an impulse model from the switched model generated by the hybrid 

bond graph. 

 

 

6.3  Further Work 

 

There is tremendous scope to extend and develop this hybrid bond graph.  

 

The Hybrid Bond Graph is suitable for non-linear models, as demonstrated by 

the case study of a landing gear drop test in section 5.3. The derivations in 

Chapters 3 and 4 assume a Linear Time Invariant model for ease of development 

and comparison with the literature. A full study of the nonlinear case and its 

properties is recommended. 

 

It can be laborious to derive the truth tables and Boolean vector Λ in order to 

obtain the system equations. Incorporating this method into a software tool is 

therefore recommended. The dynamic causality notation shows that models can 

be segmented to derive truth tables for isolated areas of dynamic causality, and 

some similarities between types of discontinuity can be observed, dispensing 

with the need to consider a vast array of possible modes of operation for the 

entire model. The procedures for a dynamic sequential causality assignment 

procedure (DSCAP) and deriving the system equations have been written so as to 

facilitate their adoption as algorithms for a computer programmer. 
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An algorithm for the systematic derivation of an impulse model from the 

[switched] hybrid bond graph could also be developed for a software package, 

and would aid efficient simulation. 

 

The control properties observed here are a basic set in line with those already 

documented for standard bond graphs and hybrid bond graphs utilising switching 

sources. Further properties such as closed-loop stability and the definition of 

observers could be developed. Since bond graphs lend themselves to behavioural 

modelling, control properties could also be established in terms of geometric 

properties. 

 

The use of this hybrid bond graph in developing hierarchical and port-

Hamiltonian systems should be investigated, as dynamic causality may 

necessitate causally dynamic ports.  

 

 

 



146 

 

References 

 

 

[1] Willems, J. C., "The Behavioural Approach to Open and Interconnected 

Systems," IEEE Control Syst. Mag., iss. Dec. 2007. 

[2] Hogan, N. 2.141 Modelling and Simulation of Dynamic Systems Fall 

2002. (Massachusetts Institute of Technology: MIT OpenCourseWare) 

http://ocw.mit.edu [Accessed 8th February 2010]. License: Creative 

Commons BY-NC-SA 

[3] Karnopp, D. C., et al., System Dynamics Modeling and Simulation of 

Mechatronic Systems, Fourth ed. Hoboken, N.J.: John Wiley & Sons, Inc., 

2006. 

[4] Birkett, S. H. and Roe, P. H., "The Mathematical Foundations of Bond 

Graphs — I. Algebraic Theory," J. Franklin Institute, vol. 326, iss. 3 pp. 

329-350, 1989. 

[5] Birkett, S. H. and Roe, P. H., "The Mathematical Foundations of Bond 

Graphs — II. Duality," J. Franklin Institute, vol. 326, iss. 5 pp. 691-708, 

1989. 

[6] Birkett, S. H. and Roe, P. H., "The Mathematical Foundations of Bond 

Graphs — III. Matroid Theory," J. Franklin Institute, vol. 327, iss. 1 pp. 

87-108, 1990. 

[7] Birkett, S. H. and Roe, P. H., "The Mathematical Foundations of Bond 

Graphs — IV. Matrix Representations and Causality," J. Franklin 

Institute, vol. 327, iss. 1 pp. 109-128, 1990. 

[8] Borutzky, W., "Bond Graphs and Object-Oriented Modelling - A 

Comparison," Proc. IMechE Part I - J. Syst. and Control Eng., vol. 216, 

iss. 11 pp. 21-33, 2002. 

[9] Mosterman, P. J., et al., "An Ontology for Transitions in Physical 

Dynamic Systems," in 15th Nat. Conf. on Artificial Intelligence (AAAI 

98), Madison, WI, 1998, pp. 219-224. 

[10] Van Der Schaft, A. J. and Schumacher, J. M., An Introduction to Hybrid 

Dynamical Systems (Lecture Notes in Control and Information Sciences) 

vol. 251. London: Springer, 1999. 

[11] Vu, L. and Liberzon, D., "Invertibility of switched linear systems," 

Automatica, vol. 44, iss. 4 pp. 949-958, 2008. 

[12] Branicky, M. S., et al., "A Unified Framework for Hybrid Control: Model 

and Optimal Control Theory," Ieee Transactions on Automatic Control, 

vol. 43, iss. 1 pp. 31-45, 1998. 

[13] Mosterman, P. J., "HyBrSim - A Modelling and Simulation Environment 

for Hybrid Bond Graphs," Proc. IMechE Part I - J. Syst. and Control 

Eng., vol. 216, iss. 11 pp. 35-46, 2002. 

[14] Zimmer, D. and Cellier, F. E., "Impulse-Bond Graphs," in Proc. 2007 Int. 

Conf. on Bond Graph Modeling (ICBGM 2007), San Diego, California.  , 

2007, pp. 3-11. 

[15] Marghitu, D. and Irwin, J., Mechanical Engineer's Handbook (Materials 

& Mechanical): Elsevier Academic Press, 2001. 

http://ocw.mit.edu/


147 

 

[16] Holderbaum, W., "Control strategy for Boolean input systems," in Proc. 

2002 American Control Conf., Anchorage, AK, 2002, pp. 1260-1265. 

[17] Holderbaum, W., "Control of Binary Input Systems," IOSR Journal of 

Engineering, vol. 2, iss. 12 pp. 1-15, Dec. 2012. 

[18] Cheng, D. and Liu, J. B., "Stabilization of Boolean control networks," in 

Proc. 48th IEEE Conf. on Decision and Control Shanghai, China, 2009, 

pp. 5269-5274. 

[19] Qi, H. and Cheng, D., "Analysis and control of Boolean networks: A 

semi-tensor product approach," in Proc. 7th Asian Control Conf., ASCC 

2009, Hong Kong, China, 2009, pp. 1352-1356. 

[20] Kobayashi, K. and Imura, J. I., "Observability analysis of Boolean 

networks with biological applications," in Proc. ICCAS-SICE 2009 - 

ICROS-SICE Int. Joint Conf. 2009, Fukuoka, Japan, 2009, pp. 4393-4396. 

[21] Chaves, M., et al., "Methods of robustness analysis for Boolean models 

of gene control networks," IEE Proc. Systems Biology, vol. 153, iss. 4 pp. 

154-167, Jul. 2006. 

[22] Thoma, J. U., Introduction to Bond Graphs and their Applications, 1st ed. 

Oxford, UK: Pergamon Press, 1975. 

[23] Dransfield, P., Ed., Hydraulic Control Systems - Design and Analysis of 

Their Dynamics (Lecture Notes in Control and Information Sciences 33). 

Berlin, Germany: Springer-Verlag, 1981. 

[24] Castelain, A., et al., "Modelling and analysis of power electronic 

networks by bondgraph," in Proc. 3rd Int. Conf. Modelling and 

Simulation of Electrical Machines and Static Converters, IMACS-TCI 90 

Nancy, France., 1990, pp. 405-416. 

[25] Dauphin-Tanguy, G. and Rombaut, C., "Why a Unique Causality in the 

Elementary Commutation Cell Bond Graph Model of a Power Electronics 

Converter," in Proc. Int. Conf. on Systems, Man and Cybernetics: 

Systems Engineering In the Service of Humans, Le Touquet, France, 1993, 

pp. 257-263. 

[26] Broenink, J. F. and Wijbrans, C. J., "Describing discontinuities in bond 

graphs," in Proc. 1993 Western Simulation Multiconference - Int. Conf. 

on Bond Graph Modeling ICBGM'93, La Jolla, CA, 1993, pp. 120-125. 

[27] Asher, G. M., "The Robust Modelling of Variable Topology Circuits 

Using Bond Graphs," in Proc. 1993 Western Simulation Multiconference 

- Int. Conf. on Bond Graph Modeling ICBGM'93, La Jolla, CA, 1993, pp. 

126-131. 

[28] Buisson, J., "Analysis and Characterization of Hybrid Systems With 

Bond-Graphs," in Proc. Int. Conf. on Systems, Man and Cybernetics: 

Systems Engineering In the Service of Humans, Le Touquet, France, 1993, 

pp. 264-269. 

[29] Soderman, U., et al., "The Conceptual Side of Mode Switching," in Proc. 

Int. Conf. on Systems, Man and Cybernetics: Systems Engineering In the 

Service of Humans, Le Touquet, France, 1993, pp. 245-250. 

[30] Stromberg, J. E., et al., "Variable Causality in Bond Graphs Caused by 

Discrete Effects," in Proc. 1993 Western Simulation Multiconference - Int. 

Conf. on Bond Graph Modeling ICBGM'93, La Jolla, CA, 1993, pp. 115-

119. 



148 

 

[31] Mosterman, P. J. and Biswas, G., "Modeling Discontinuous Behavior 

with Hybrid Bond Graphs," in 9th Int. Workshop on Qualitative 

Reasoning about Physical Systems, Amsterdam, Netherlands, 1995, pp. 

139-147. 

[32] Gawthrop, P. J., "Hybrid Bond Graphs using Switched I and C 

Components," Centre for Systems and Control, University of Glasgow, 

Glasgow, UK. CSC Report 97005, 1997. 

[33] Borutzky, W., "Discontinuities in a bond graph framework," J. Franklin 

Institute - Eng. and Appl. Math., vol. 332B, iss. 2 pp. 141-154, Mar. 1995.  

[34] Samantaray, A. K., "Modeling and analysis of preloaded liquid 

spring/damper shock absorbers," Simulation Modelling Practice and 

Theory, vol. 17, iss. 1 pp. 309-325, 2009. doi: 

10.1016/j.simpat.2007.07.009 

[35] Umarikar, A. C. and Umanand, L., "Modelling of switching systems in 

bond graphs using the concept of switched power junctions," J. Franklin 

Institute, vol. 342, iss. 2 pp. 131-147, Mar. 2005. 

[36] Low, C. B., et al., "Causality assignment and model approximation for 

hybrid bond graph: Fault diagnosis perspectives," IEEE Trans. 

Automation Sci. and Eng., vol. 7, iss. 3 pp. 570-580, Jul. 2010. 

[37] Edstrom, K., et al., "Modelling and simulation of a switched power 

converter," Simulation Series, vol. 29, iss. 1 pp. 195-200, 1997. 

[38] Edstrom, K., et al., "Aspects on simulation of switched bond graphs," in 

Proc. 35th IEEE Conf. Decision and Control, Kobe, Japan, 1996, pp. 

2642-2647. 

[39] Mosterman, P. J., "An overview of hybrid simulation phenomena and 

their support by simulation packages," in Proc. 2nd Int. Workshop on 

Hybrid Systems: Computation and Control, HSCC'99, Berg en Dal, The 

Netherlands, 1999, pp. 165-177. 

[40] Mosterman, P. J. and Biswas, G., "Formal specifications for hybrid 

dynamical systems," in Proc. 15th Int. Joint Conf. Artificial Intelligence 

IJCAI-97, Nagoya, Japan, 1997, pp. 568-573. 

[41] Mosterman, P. J. and Biswas, G., "A Theory of Discontinuities in 

Physical System Models," J. Franklin Institute, vol. 335B, iss. 3 pp. 401-

439, Aug. 1996. 

[42] Mosterman, P. J. and Biswas, G., "A comprehensive methodology for 

building hybrid models of physical systems," Artificial Intelligence, vol. 

121, iss. 1-2 pp. 171-209, Aug. 2000. 

[43] Mosterman, P. J., et al., "Model Semantics and Simulation of Time Scale 

Abstractions in Collision Models," in 3rd Intl. Congr. Federation of 

EUROpean SIMulation Societies, Helsinki, Finland, 1998, pp. 230–237. 

[44] Edstrom, K., "Switched Bond Graphs: Simulation and Analysis" 

(Linköping Studies in Science and Technology Thesis No. 586), PhD. 

Dissertation, Dept. Electrical Engineering, Linköpings Universitet, 

Linköping, Sweden, 1999. 

[45] Mosterman, P. J., "Implicit Modeling and Simulation of Discontinuities 

in Physical System Models," in The 4th Intl. Conf. Automation of Mixed 

Processes: Hybrid Dynamic Systems ADPM2000, Dortmund, Germany, 

2000, pp. 35-40. 



149 

 

[46] Kofman, E. and Junco, S., "Quantized Bond Graphs: An Approach for 

Discrete Event Simulation of Physical Systems," in Proc. 2001 Int. Conf. 

on Bond Graph Modeling ICBGM'01, Phoenix, AZ, 2001, pp. 369-374. 

[47] Kofman, E., "Quantized-state systems: A DEVS approach for continuous 

system simulation," Trans. Soc. for Comput. Simulation, vol. 18, iss. 3 pp. 

123-132, 2002. 

[48] Kofman, E., "Discrete event simulation of hybrid systems," SIAM J. Sci. 

Comput., vol. 25, iss. 5 pp. 1771-1797, 2004. 

[49] Borutzky, W., "Bond-graph-based fault detection and isolation for hybrid 

system models," Proc. IMechE. Part I, J. Syst. and Control Eng., vol. 226, 

iss. 6 pp. 742-760, July 2012. 

[50] Cellier, F. E., et al., "Bond Graph Modeling of Variable Structure 

Systems," Simulation Series, vol. 27, iss. 1 pp. 49-49, 1994. 

[51] Bidard, C., et al., "Bond graph and variable causality," in Proc. Int. Conf. 

on Systems, Man and Cybernetics: Systems Engineering In the Service of 

Humans, Le Touquet, France, 1993, pp. 270-275. 

[52] Breedveld, P. C., "An alternative Model for Static and Dynamic Friction 

in Dynamic System Simulation," in 1st IFAC Conf. Mechatronic Systems, 

Darmstadt, Germany, 2000, pp. 717-722. 

[53] Breedveld, P. C., "Modelling & Simulation Of Bouncing Objects: 

Newton’s Cradle Revisited," in Mechatronics 2002, Twente, The 

Netherlands, 2002. 

[54] Van Kampen, D., "Paper path modeling case in 20-SIM" (Report 

2003CE025), M.Sc., Individual Design Assignment, Department of 

Electrical Engineering, University of Twente, Enschede, The Netherlands, 

2003. 

[55] Podgursky, B., et al., "Efficient Tracking of Behavior in Complex Hybrid 

Systems via Hybrid Bond Graphs," in Annu. Conf. Prognostics and 

Health Management Society, Portland, OR, 2010. 

[56] Borutzky, W., Bond Graph Methodology: Development and Analysis of 

Multi-disciplinary Dynamic System Models, 1st ed. London, UK: 

Springer-Verlag London Ltd., 2010. 

[57] Otter, M., et al., "Hybrid Models of Physical Systems and Discrete 

Controllers," AT - Automatisierungstechnik, vol. 48, iss. 9 pp. 35-40, Sept. 

2000. 

[58] Shiva, A., "Modeling Switching Networks Using Bond Graph 

Technique", M.Sc. Dissertation, Dept. Aerospace and Mechanical 

Engineering, University of Arizona, Tucson, AZ, 2004. 

[59] Beers, C. (2005, Accessed: Aug. 2010). Efficient Simulation Model for 

Hybrid Bond Graph  [Poster]. Available: 

http://fountain.isis.vanderbilt.edu/publications/BondITRReviewPoster.ppt 

[60] Beers, C. D., et al., "Building Effiecient Simulations from Hybrid Bond 

Graph Models," in 2nd IFAC Conf. on Analysis and Design of Hybrid 

Systems, Alghero, Italy, 2006, pp. 71-76. 

[61] Calvo, J. A., et al., "BONDSYM: Simulink based educational software 

for analysis of dynamic system," Comput. Applicat. in Engin. Educ., vol. 

18, iss. 2 pp. 238-251, Jun. 2010. 

http://fountain.isis.vanderbilt.edu/publications/BondITRReviewPoster.ppt


150 

 

[62] Geitner, G. H., "Power flow diagrams using a bond graph library under 

SIMULINK," in 32nd Annu. Conf. on IEEE Industrial Electronics 

IECON 2006, Paris, France, 2006, pp. 1359-1365. 

[63] Tudoret, S., et al., "Co-simulation of hybrid systems: Signal-Simulink," 

in Proc. 6th Int. Symp. Formal Techniques in Real-Time and Fault-

Tolerant Systems FTRTFT 2000, Pune, India, 2000, pp. 134-151. 

[64] Van Der Schaft, A. (2005, Accessed: May 2010). Theory of Port-

Hamiltonian Systems Chapter 1: Port-Hamiltonian formulation of 

network models; the lumped-parameter case  [Online: PhD-course for the 

Dutch Institute of Systems and Control (DISC)]. Available: 

http://www.math.rug.nl/~arjan/teaching.html 

[65] Van Der Schaft, A., "Port-Hamiltonian systems: an introductory survey," 

in Proc. Int. Congr. Mathematicians, Madrid, Spain, 2006, pp. 1339-1365. 

[66] Van Der Schaft, A. (2009, Accessed: May 2010). Port-Hamiltonian 

Systems: from Geometric Network Modeling to Control  [Online: Lecture 

notes for the EECI Graduate Course, LSS-Supelec, Gif-sur-Yvette]. 

Available: http://www.math.rug.nl/~arjan/teaching.html 

[67] Narasimhan, S., "Model-Based Diagnosis of Hybrid Systems", PhD. 

Dissertation, Dept. Computer Science, Vanderbilt University, Nashville, 

Tenessee, 2002. 

[68] Daigle, M. J., et al., "A Qualitative Event-Based Approach to Continuous 

Systems Diagnosis," IEEE Trans. Control Syst. Technol., vol. 17, iss. 4 

pp. 780-793, Jul. 2009. 

[69] Lattmann, Z., "A Multi-Domain Functional Dependency Modeling Tool 

Based on Extended Hybrid Bond Graphs", M.Sc. Dissertation, Dept. 

Electrical Engineeirng, Vanderbilt University, Nashville, TN, 2010. 

[70] Roychoudhury, I., et al., "Efficient simulation of hybrid systems: A 

hybrid bond graph approach," Simulation, vol. 87, iss. 6 pp. 467-498, Jun. 

2011. 

[71] Cuijpers, P. J. L. and Reniers, M. A., "Hybrid process algebra," J. Logic 

and Algebraic Programming, vol. 62, iss. 2 pp. 191-245, Feb. 2005. 

[72] Cuijpers, P. J. L., et al., "Constitutive Hybrid Processes: a Process-

Algebraic Semantics for Hybrid Bond Graphs," Simulation: Trans. Soc. 

for Modeling and Simulation Int., vol. 84, iss. 7 pp. 339-358, Jul 2008. 

[73] Kalman, R., "On the general theory of control systems," in Proc. 1st 

IFAC Congress Automatic Control, Moscow, 1960, pp. 481-492. 

[74] Kalman, R. E. (1968, Accessed: Dec. 2012). Lectures on Controllability 

and Observability  [Online: Reproduced by the Clearinghouse for Federal 

Scientific & Technical Information, Springfield Va. 22151]. Available: 

http://www.dtic.mil/cgi-bin/GetTRDoc?AD=AD0704617 

[75] Sontag, E. D., Mathematical Control Theory: Deterministic Finite 

Dimensional Systems (Textbooks in Applied Mathematics, Number 6), 

2nd ed. New York: Springer, 1998.  

[76] Lewis, F. L., "Review of 2-D implicit systems," Automatica, vol. 28, iss. 

2 pp. 345-354, Mar. 1992. 

[77] Yip, E. L. and Sincovec, R. F., "Solvability, Controllability and 

Observability of Continuous Descriptor Systems," Ieee Transactions on 

Automatic Control, vol. 26, iss. 3 pp. 702-707, Jun. 1981. 

http://www.math.rug.nl/~arjan/teaching.html
http://www.math.rug.nl/~arjan/teaching.html
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=AD0704617


151 

 

[78] Verghese, G. C., et al., "A Generalized State-Space for Singular 

Systems," Ieee Transactions on Automatic Control, vol. 26, iss. 4 pp. 

811-831, Aug. 1981. 

[79] Lewis, F. L., "Survey of Linear Singular Systems," Circuits, Systems and 

Signal Processing, vol. 5, iss. 1 pp. 3-36, 1986. 

[80] Lewis, F. L., "A Tutorial on the Geometric Analysis of Linear Time-

Invariant Implicit Systems," Automatica, vol. 28, iss. 1 pp. 119-137, Jan. 

1992. 

[81] Dai, L., "Impulsive modes and causality in singular systems," Int. J. 

Control, vol. 50, iss. 4 pp. 1267-1281, 1989. 

[82] Polderman, J. W. and Willems, J. C., Introduction to Mathematical 

Systems Theory: A Behavioral Approach (Texts in Applied Mathematics 

26), 1st ed. New York, NY: Springer Verlag, 1998. 

[83] Willems, J. C., "Modeling Interconnected Systems," in 2008 3rd Int. 

Symp. on Communications, Control and Signal Processing ISCCSP2008, 

St. Julians, Malta, 2008, pp. 421-424. 

[84] Lewis, F. L. and Ozcaldiran, K., "Geometric structure and feedback in 

singular systems," Ieee Transactions on Automatic Control, vol. 34, iss. 4 

pp. 450-455, 1989. 

[85] Rahmani, A., et al., "On the Infinite Structure of Systems Modelled by 

Bond Graph : Disturbance Rejection," in Proceedings of the 4th 

European Control Conference ECC’97, Brussels, Belgium, 1997. 

[86] Luenberger, D. G., "Time-Invariant Descriptor Systems," Automatica, vol. 

14, iss. pp. 473-480, 1978. 

[87] Dauphin-Tanguy, G., et al., "Bond graph aided design of controlled 

systems," Simulation Practice and Theory, vol. 7, iss. 5 pp. 493-513, Nov. 

1999. 

[88] Margolis, D. L., "Exploiting Causality for Structured Models Using Bond 

Graphs," in 1987 American Control Conf. , Minneapolis, MN, 1987, pp. 

1457-1461. 

[89] Rosenberg, R. C., "Exploiting Bond Graph Causality in Physical System 

Models," Trans. ASME J. Dynamic Syst., Measurement and Control, vol. 

109, iss. 4 pp. 378-383, 1987. 

[90] Ort, J. R. and Martens, H. R., "Properties of Bond Graph Junction 

Structure Matrices," Trans. ASME J. Dynamic Syst., Measurement and 

Control, vol. 95, iss. 4 pp. 362-367, 1973. 

[91] Perelson, A. S., "Bond Graph Junction Structures," Trans. ASME J. 

Dynamic Syst., Measurement and Control, vol. 97, iss. 2 pp. 189-195, 

1975. 

[92] Perelson, A. S., et al., "Discussion: The Properties of Bond Graph 

Junction Structure Matrices," Trans. ASME J. Dynamic Syst., 

Measurement and Control, vol. 98, iss. 2 pp. 209-211, 1976. 

[93] Rosenberg, R. C. and Andry Jr, A. N., "Solvability of Bond Graph 

Junction Structures with Loops," IEEE Trans. Circuits Syst., vol. CAS-26, 

iss. 2 pp. 130-137, 1979. 

[94] Rosenberg, R. C., "State-Space Formulation for Bond Graph Models of 

Multiport Systems," Trans. ASME J. Dynamic Syst., Measurement and 

Control, vol. 93, iss. 1 pp. 35-40, Mar. 1971. 



152 

 

[95] Brown, F. T., "Direct Application of the Loop Rule to Bond Graphs," 

Trans. ASME J. Dynamic Syst., Measurement and Control, vol. 94, iss. 3 

pp. 253-261, Sept. 1972. 

[96] Karnopp, D., "Lagranges Equations for Complex Bond Graph Systems," 

Trans. ASME J. Dynamic Syst., Measurement and Control, vol. 99, iss. 4 

pp. 300-306, Dec. 1977. 

[97] Sueur, C. and Dauphin-Tanguy, G., "Structural Controllability / 

Observability of Linear Systems Represented by Bond Graphs," J. 

Franklin Institute, vol. 326, iss. 6 pp. 869-883, 1989. 

[98] Buisson, J., et al., "Analysis of the bond graph model of hybrid physical 

systems with ideal switches," Proc. IMechE Part I - J. Syst. and Control 

Eng., vol. 216, iss. 1 pp. 47-63, Feb. 2002. 

[99] Sueur, C. and Dauphin-Tanguy, G., "Bond-Graph Approach for 

Structural Analysis of MIMO Linear Systems," J. Franklin Institute, vol. 

328, iss. 1 pp. 55-70, 1991. 

[100] Sueur, C. and Dauphin-Tanguy, G., "Bond Graph Approach to Multi-time 

Scale Systems Analysis," J. Franklin Institute, vol. 328, iss. 5-6 pp. 1005-

1026, 1991. 

[101] Sueur, C. and Dauphin Tanguy, G., "Bond graph determination of 

controllability subspaces for pole assignment," in Proc. Int. Conf. on 

Systems, Man and Cybernetics: Systems Engineering In the Service of 

Humans, Le Touquet, France, 1993, pp. 14-19. 

[102] Bertrand, J. M., et al., "On the finite and infinite structures of bond-graph 

models," in Proc. 1997 Int. Conf. on Systems, Man and Cybernetics: 

Systems Engineering In the Service of Humans, Orlando, FL, 1997, pp. 

2472-2477. 

[103] Bertrand, J. M., et al., "Bond-Graph for Modeling and Control: Structural 

Analysis Tools for the Design of Input-Output Decoupling State 

Feedbacks," Simulation Series, vol. 29, iss. 1 pp. 103-103, 1997. 

[104] Rahmani, A., et al., "On the Infinite Structure of Systems Modelled by 

Bond Graph: Feedback Decoupling," in Proc. 1996 IEEE Int. Conf. on 

Systems, Man and Cybernetics, Beijing, China, 1996, pp. 1617-1622. 

[105] Golo, G., et al. (2000, Accessed: Dec. 2010). Geometric formulation of 

generalized bond graph models Part I: Generalized junction structures 

[Memorandum No. 1555]. Available: 

http://www.math.utwente.nl/publications/2000/1555.pdf 

[106] Abadie, V. and Dauphin-Tanguy, G., "Control of switching continuous 

systems," in Proc. Int. Conf. on Systems, Man and Cybernetics: Systems 

Engineering In the Service of Humans, Le Touquet, France, 1993, pp. 

595-600. 

[107] Buisson, J. and Cormerais, H., "Modeling hybrid linear systems with 

Bond-Graph using an implicit formulation," The Bond Graph Digest, vol. 

1, iss. 1.1 Jul. 1997. 

[108] Buisson, J. and Cormerais, H., "Descriptor Systems for the Knowledge 

Modelling and Simulation of Hybrid Physical Systems," J. Européen des 

Systèmes Automatisés APII-JESA, vol. 32, iss. 9-10 pp. 1047-1072, Dec. 

1998. 

http://www.math.utwente.nl/publications/2000/1555.pdf


153 

 

[109] Yang, X., et al., "Controllability Analysis Based on Bond Graph," in 1st 

Int. Conf. Innovative Computing, Information and Control, 2006 (ICICIC 

'06), Beijing, China, 2006, pp. 356-359. 

[110] Galindo, R., et al., "Structural controllability and observability in closed 

loop for LTI stable systems," in Joint 2006 IEEE Conf. Control 

Applications (CCA), Computer-Aided Control Systems Design Symp. 

(CACSD) and Int. Symp. Intelligent Control (ISIC), Munich, Germany, 

2007, pp. 2623-2628. 

[111] Dauphin-Tanguy, G. and Sueur, C. (2002, Accessed: Dec. 2010). Bond 

Graph for Modelling, Analysis, Control Design, Fault Diagnosis  

[Presentation Slides]. Available: 

www.fceia.unr.edu.ar/~kofman/seminario/Argentine-nov02.ppt  

[112] Djeziri, M. A., et al., "Fault detection of backlash phenomenon in 

mechatronic system with parameter uncertainties using bond graph 

approach," in Proc. 2006 IEEE Int. Conf. Mechatronics and Automation 

(IEEE ICMA 2006), Luoyang, China, 2006, pp. 600-605. 

[113] Rahmani, A. and Dauphin-Tanguy, G., "Structural analysis of switching 

systems modelled by bond graph," Math. and Comput. Modelling of 

Dynamical Syst., vol. 12, iss. 2-3 pp. 235-247, Apr.-Jun. 2006. 

[114] Djeziri, M. A., et al., "Robust fault diagnosis by using bond graph 

approach," IEEE/ASME Trans. Mechatron., vol. 12, iss. 6 pp. 599-611, 

Dec. 2007. 

[115] Richard, P. Y., et al., "Bond graph modelling of hard nonlinearities in 

mechanics: A hybrid approach," Nonlinear Analysis: Hybrid Systems, vol. 

2, iss. 3 pp. 922-951, Aug. 2008. 

[116] Low, C. B., et al., "Monitoring ability analysis and qualitative fault 

diagnosis using hybrid bond graph," in Proc. 17th IFAC World Congress 

COEX, S. Korea, 2008, pp. 10516-10521. 

[117] Low, C. B., et al., "Fault Parameter Estimation for Hybrid Systems using 

Hybrid Bond Graph," in 2009 IEEE Control Applications (CCA) & 

Intelligent Control (ISIC) Saint Petersburg, Russia, 2009, pp. 1338-1343  

[118] Dauphin-Tanguy, G., et al., "Symbolic Determination of the Steady State 

due to Gravity Effects on Mechanical Systems Modelled by Bond 

Graphs," in Proc. 2005 Int. Conf. on Bond Graph Modeling (ICBGM 

2005), New Orleans, LA, 2005, pp. 101-106. 

[119] Weisstein, E. W. (Accessed: 15th March 2013). Determinant  

[MathWorld - A Wolfram Web Resource]. Available: 

http://mathworld.wolfram.com/Determinant.html 

[120] Sueur, C., "Structural analysis and duality for bond graph models," in 

2011 19th Mediterranean Conf. Control and Automation (MED 2011), 

Corfu, Greece, 2011, pp. 624-630. 

[121] Buisson, J., et al., "On the stabilisation of switching electrical power 

converters," in 8th Int. Workshop on Hybrid Systems: Computation and 

Control (HSCC 2005), Zurich, Switzerland, 2005, pp. 184-197. 

[122] Van Der Schaft, A., "Port-controlled Hamiltonian Systems: Towards a 

Theory for Control and Design of Nonlinear Physical Systems," J. Soc. 

Instrument and Control Engineers of Japan (SICE), vol. 39, iss. 2 pp. 91-

98, 2000. 

http://www.fceia.unr.edu.ar/~kofman/seminario/Argentine-nov02.ppt
http://mathworld.wolfram.com/Determinant.html


154 

 

[123] Losse, P. and Mehrmann, V. (2007, Accessed: Aug. 2012). Algebraic 

characterization of controllability and observability for second order 

descriptor systems  [Lecture Notes Preprint 2006/21]. Available: 

http://www3.math.tu-berlin.de/preprints/files/LosM06_ppt_updated.pdf 

[124] Margetts, R., et al., "Construction and Analysis of Causally Dynamic 

Hybrid Bond Graphs," Proc. IMechE Part I - J. Syst. and Control Eng., 

vol. 227, iss. 3 pp. 329-346, Mar. 2013. 

[125] Mosterman, P. J. and Biswas, G., "Hybrid automata for modeling discrete 

transitions in complex dynamic systems," in 7th IFAC Symp. Artificial 

Intelligence in Real-Time Control Grand Canyon Natl. Pk., AR 1998, pp. 

43-48. 

[126] Strömberg, J. E., "A Mode Switching Philosophy" (Dissertation No. 353), 

PhD Thesis Linköping University, Linköping, Sweden, 1994. 

[127] Margetts, R., et al., "Modelling a Drop Test of a Landing Gear using a 

Hybrid Bond Graph," in IASTED MIC 2013, Innsbruck, Austria, 2013. 

[128] Herzog, J., 2012, Airbus A380 Nose Landing Gear, (Own work) 

Wikimedia Commons. Available from: 

http://commons.wikimedia.org/wiki/File%3AAirbus_A380_Nose_Landi n

g_Gear.jpg [Accessed 29 January 2013]. License: GFDL 

(http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0-2.5-2.0-1.0 

(http://creativecommons.org/licenses/by-sa/3.0), © Julian Herzog / 

Wikimedia Commons / CC-BY-SA-3.0 / GFDL 

[129] Currey, N. S., Aircraft Landing Gear Design - Principles and Practices 

(AIAA education series). Washington D.C.: American Institute of 

Aeronautics and Astronautics, 1988. 

[130] Maggs, M., 2008, To Pot the Red, (Own Work) Wikimedia Commons. 

Available from: 

http://commons.wikimedia.org/wiki/File%3ATo_pot_the_red.jpg 

[Accessed 27 February 2013]. License: CC-BY-SA-3.0  

[131] Alsterdrache, 2011, Kugelstoszpendel, (Own Work) Wikimedia 

Commons. Available from: 

http://commons.wikimedia.org/wiki/File%3AKugelstoszpendel.jpg 

[Accessed 27th February 2013]. License: CC0 

 

 

http://www3.math.tu-berlin.de/preprints/files/LosM06_ppt_updated.pdf
http://commons.wikimedia.org/wiki/File%3AAirbus_A380_Nose_Landing_Gear.jpg
http://commons.wikimedia.org/wiki/File%3AAirbus_A380_Nose_Landing_Gear.jpg
http://www.gnu.org/copyleft/fdl.html
http://creativecommons.org/licenses/by-sa/3.0)
http://commons.wikimedia.org/wiki/File%3ATo_pot_the_red.jpg
http://commons.wikimedia.org/wiki/File%3AKugelstoszpendel.jpg

