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Summary

Geometric integration concerns the analysis and construction of structure-preserving

numerical methods for the long-time integration of differential equations that pos-

sess some geometric property, e.g. Hamiltonian or reversible systems. In choosing

a structure-preserving method, it is important to consider its efficiency, stability, or-

der, and ability to preserve qualitative properties of the differential system, such as

time-reversal symmetry, symplecticity and energy-preservation. Commonly, the sym-

metric or symplectic Runge–Kutta methods, or the symmetric or G-symplectic linear

multistep methods, are chosen as candidates for integration. In this thesis, a class

of structure-preserving general linear methods (GLMs) is considered as an alternative

choice.

The research performed here includes the construction of a set of theoretical tools for

analysing derivatives of B-series (a generalisation of Taylor series). These tools are then

applied in the development of an a priori theory of parasitism for GLMs, which is used

to prove bounds on the parasitic components of the method, and to derive algebraic

conditions on the coefficients of the method that guarantee an extension of the time-

interval of parasitism-free behaviour. A computational toolkit is also developed to help

assist with this analysis, and for other analyses involving the manipulation of B-series

and derivative B-series.

High-order methods are constructed using a newly developed theory of composi-

tion for GLMs, which is an extension of the classical composition theory for one-step

methods. A decomposition result for structure-preserving GLMs is also given which

reveals that a memory-efficient implementation of these methods can be performed.

This decomposition result is explored further, and it is shown that certain methods

can be expressed as the composition of several LMMs.

A variety of numerical experiments are performed on geometric differential systems

to validate the theoretical results produced in this thesis, and to assess the competi-

tiveness of these methods for long-time geometric integrations.
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Chapter 1
Introduction

General linear methods (GLMs) are a class of iteration-based numerical methods for

the integration of ordinary differential equations (ODEs). They were introduced by

Butcher [5], Gear [28], Gragg and Stetter [31] as a framework to unify Runge–Kutta

methods (RKMs) and linear multistep methods (LMMs); a simple illustration of this

relationship is given in Figure 1-1.

Euler Method

RKMs

+derivative evaluations

LMMs

+ past information

GLMs

+derivative evaluations + past information

Figure 1-1: Illustration of the relationship between classical numerical methods.

In addition to unifying classical numerical methods, the GLM framework also in-

corporates non-trivial examples such as the cyclic composition of LMMs [25], the class

of two-step RKMs [18], predictor-corrector methods [31], and, from meteorology, the

RAW filter [61] to name but a few.
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CHAPTER 1. INTRODUCTION 7

History of GLMs: Early examples of GLMs (though not known by that name)

were given in the mid-sixties, where Butcher [5], Gear [28], Gragg and Stetter [31] con-

sidered generalised multistep methods; a prominent example being predictor-corrector

methods. Shortly after, Butcher [6] introduced a unifying framework for analysing the

convergence of these methods, as well as RKMs and LMMs.

Since then, a wide variety of GLMs have been developed. For example, diagonally

implicit multistage integration methods (a.k.a. DIMSIMs) form a subclass under GLMs

where each method is assigned a ‘type’ that identifies the class of problems for which it

is ideally suited for, i.e. non-stiff or stiff problems, and whether it has a parallelizable

element to its implementation (see e.g. [7, 12]). Almost Runge–Kutta methods form

another subclass under GLMs (see e.g. [8, 49]). Here, methods are designed such

that they retain the desirable stability properties of explicit RKMs whilst overcoming

some of their associated disadvantages, such as low stage order. Similarly, the subclass

of methods with inherent Runge–Kutta stability [10] are subject to the same stability

analysis as RKMs (in the language of GLMs, these methods have a stability matrix

with a single non-zero eigenvalue). The final subclass we mention is the subject of this

thesis, that is, structure-preserving GLMs. These methods possess properties analogous

to those of conservative differential systems, e.g. time-reversal symmetry, symplecticity

of the flow, energy-preservation.

For further reading on GLMs, see Butcher’s 2006 monograph [9], and Chapter 5 of

[10], where many examples of above methods can be found.

Structure-preserving methods: A numerical method can be viewed as a map that

approximates the evolution operator (also known as the flow map) of some differential

system. Classical methods such as RK4 achieve a high-order approximation to this

operator and are often used in practical applications. While high-order is an attrac-

tive property for a method to possess, it alone is not enough to guarantee that other

qualitative properties of the differential system are preserved. Methods that satisfy a

discrete (or otherwise related) analogue of one of these qualitative properties are called

structure-preserving, or equivalently, geometric integrators.

Symmetry of the evolution operator (with respect to time) is a property of reversible

systems. Here, the state of the system after a forward evolution followed immediately

by a backward evolution remains unchanged (see e.g. [36, Ch. V]). Numerical meth-

ods that are capable of reproducing this behaviour (to machine precision) are called

symmetric. Examples include the implicit midpoint rule, Gauss methods, Lobatto

IIIA/IIIB which are symmetric RKMs (see e.g. [36, Ch. II]). All of these methods

are implicit (though the Lobatto methods permit a single explicit stage), which can be
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computationally expensive for large-dimensional systems. This cost can be mitigated

to some extent by considering the subclass of symmetric, diagonally-implicit RKMs

(DIRKs)1. Other examples include LMMs based on open/closed Newton–Cotes formu-

lae such as Leapfrog and Simpson’s rule (see e.g. [36, Ch. XV]). Here, methods may be

either explicit or implicit. Unfortunately, they are prone to parasitic instability which

becomes significant in a time t = O(1) [33].

For Hamiltonian systems, the evolution operator is a symplectic transformation

[47],[36, Ch. VI], which implies that the variational equation conserves quadratic quan-

tities [1, 51]. Only one-step methods (OSMs), such as RKMs, are capable of satisfying

the discrete analogue of symplecticity [44, 50]. Examples of symplectic RKMs include

the implicit midpoint rule, Gauss methods, Lobatto IIIC (see e.g. [36, Ch. II]). As with

symmetric RKMs, these methods are necessarily implicit [50], though the associated

cost can again be mitigated through consideration of symplectic DIRKs. Such methods

were investigated in [53], and were found to be compositions of the implicit midpoint

rule.

An r-step LMM, with inputs approximating the ODE solution at times tn+r, . . . , tn,

cannot be symplectic in the usual sense [60], that is, its underlying one-step method

(UOSM) is not a symplectic transformation. However, since LMMs operate in a higher-

dimensional phase space, then it is natural to question what the appropriate definition

of a symplectic multistep method should be. This leads to the alternative definition

of G-symplecticity, an idea based on the work of Dahlquist’s theory of G-stability [22],

which essentially describes the higher-dimensional analogue of a symplectic transfor-

mation. Hairer [34] has explored the connection between G-symplecticity and standard

symplecticity of LMMs, and has shown that the UOSM is conjugate-symplectic. In other

words, there exists (as a formal B-series) a similarity transformation for the UOSM such

that the corresponding method is symplectic. Other connections have been investigated

by Eirola and Sanz-Serna [26], who have shown that a LMM is G-symplectic if and

only if it is symmetric. Unfortunately, this also means that G-symplectic LMMs are

susceptible to parasitic instability over very short time intervals.

Other classes of structure-preserving methods include those designed for the inte-

gration of second-order differential equations (i.e. for problems of the form y′′ = f(y).)

and separable Hamiltonian systems. For example, there are partitioned RKMs, such

as the symplectic Euler method which admits an explicit implementation for these

problems. Also, there is the class of partitioned LMMs. Here, a popular example is

the Störmer–Verlet method (see e.g. [36, Ch. I]) which is symmetric, symplectic and

1These methods have a lower-triangular stage matrix which means internal stages can be solved
sequentially, and in the space of the differential system.
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explicit. There are also symmetric multistep methods for second-order Hamiltonian

systems, which have been shown to possess excellent energy preservation behaviour

[35, 33],[36, Ch. XV], as demonstrated by long-time integrations of the outer solar

system [43, 48].

In summarising the methods discussed above, we remark that while there exist a

number of excellent choices for the integration of second-order differential equations,

and separable Hamiltonian systems, there is no clear consensus on the best choice for

the integration of general, first-order geometric problems: structure-preserving LMMs

suffer from parasitism, and structure-preserving RKMs are necessarily implicit. Since

many real-world problems are of this form (cf. Chapter 7), accurate and efficient meth-

ods are still highly sought after. Thus, this motivates the search for new methods that

overcome the destructive effects of parasitism, whilst keeping the level of implicitness

in the method to a minimum.

Structure-preserving GLMs can be symmetric or G-symplectic, and can be designed

such that they have the DIRK property, i.e. diagonally-implicit, with some methods

permitting a mixture of implicit and explicit stages. Furthermore, it has been shown

that methods can be constructed such that they do not suffer from parasitic instability

over intervals of length O(h−2), where h denotes the time-step [16, 13, 17]. This is

an important result for multivalue methods as the presence of parasitism is usually

enough to discourage the use of them in practical applications (see below for more on

the topic of parasitism). In this thesis, it will be shown that GLMs can be designed

with even longer intervals of parasitism-free behaviour (cf. Chapter 3), and that the

geometric invariants of a given problem are well-preserved over long times (cf. Chap-

ter 7), therefore providing strong support for the consideration of these methods as

alternative candidates for geometric integration.

Parasitism: An important topic in this thesis, and in the analysis of multivalue

methods in general, is parasitism. Loosely speaking, parasitism describes the unac-

ceptable growth of perturbations, e.g. rounding error, that can arise in methods with

multiple inputs2. Dahlquist [21] studied this phenomenon for LMMs by decomposing

the truncation error of a method into parasitic and non-parasitic terms, each of which

is the solution to some differential system (see also [33]). For weakly-stable methods,

such as Leapfrog, it was found that the parasitic solution may grow without bound for

problems that are stable for both positive and negative time, e.g. Hamiltonian systems.

Since Dahlquist’s work, the analysis of parasitism in multistep methods, as well as

2One-step methods do not suffer from parasitism as perturbations can only be made along the
trajectory of the solution, and are therefore subject to standard stability analysis.
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explaining the long-time preservation of invariants, is usually performed using backward

error analysis [32, 35, 33][36, Ch. XV]. This involves the study of the solution to a

modified ODE that the method satisfies exactly. Using this analysis, it can be shown

that the parasitic components of structure-preserving LMMs will only remain bounded

on intervals of length t = O(1), which is in agreement with Dahlquist’s earlier work.

This is an unfortunate result as these methods would otherwise be excellent candidates

for the long-time integration of geometric problems.

In contrast, Hairer and Lubich [35],[36, Ch. XV] have studied symmetric multistep

methods for second order Hamiltonian systems, and have shown that the parasitic

components of an r-step method can remain bounded over intervals of length t =

O(h−r−2). Furthermore, they have shown that the total energy, and other quadratic

invariants, are preserved up to O(hr) over this interval.

In recent work, D’Ambrosio and Hairer [23] have used backward error analysis to

study parasitism in structure-preserving GLMs. In particular, they derive a bound for

the parasitic components which explains the good behaviour of these methods over

modest intervals. In Chapter 3 of this thesis, we take an a priori approach to the

analysis of parasitism in a fashion similar to [11]. This yields a framework for proving

bounds on the parasitic components (which agrees with that obtained using backward

error analysis), as well as enabling the derivation of algebraic conditions for extending

the interval of parasitism-free behaviour.

1.1 Outline of the thesis

This thesis is organised as follows. In Chapter 2 we provide the mathematical back-

ground for GLMs. We begin by covering the fundamental aspects of GLMs, e.g. no-

tation, tableau representation, starting and finishing methods. We then move on to

introduce B-series, the underlying one-step method for GLMs, as well as giving an intro-

duction to parasitism analysis. Finally, we introduce the class of structure-preserving

GLMs, i.e. symmetric and G-symplectic GLMs, and explain the derivation behind the

corresponding algebraic conditions on the method coefficients.

In Chapter 3, we develop a set of theoretical tools for analysing derivatives of

numerical methods. In particular, we construct a formal power series, that we call a

derivative B-series, which is built using ideas from B-series analysis (see e.g. [36, Ch.

III]). These tools are then used to develop an a priori theory of parasitism for GLMs.

Here, we prove bounds on the parasitic components of the method, and derive algebraic

conditions that guarantee an extension of the interval of parasitism-free behaviour. A

demonstration that these conditions can be satisfied is given in the form of two fourth-
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order, symmetric GLMs.

In Chapter 4, we develop a computational toolkit for assisting the analysis of GLMs.

Here, we take an object-oriented approach to programming and describe how to rep-

resent rooted trees, B-series and derivative B-series as objects. The implementation

details behind some of the advanced operations performed on these objects are also

discussed. Applications are given at the end of the chapter where we demonstrate how

to use the tools to determine the order of the method, derive its underlying one-step

method and perform a parasitism analysis in line with the theory of Chapter 3.

In Chapter 5, we investigate composition of GLMs as a technique for obtaining high-

order methods. Two approaches are considered: In the first, we consider a subclass

of GLMs where the methods are assumed to take Nordsieck inputs. In the second

approach, we consider a generalisation of the composition formulae used for OSMs [63,

58, 45]. The results of this latter approach can be applied to symmetric GLMs as a way

of obtaining methods of arbitrarily high order. This is demonstrated computationally

in Chapter 7 where methods of order 6 and 8 are constructed.

In Chapter 6, we present a result on the decomposition of structure-preserving

GLMs into single-stage GLMs. The connection between these latter methods and

LMMs is explored and conditions are found such that a structure-preserving GLM can

be written as the composition of several (possibly symmetric) LMMs.

In Chapter 7, we perform a variety of numerical experiments to illustrate some of

the key results of this thesis. In particular, we estimate the interval of parasitism-free

behaviour for a given set of structure-preserving GLMs, and we make several efficiency

comparisons with structure-preserving RKMs on various geometric problems. We also

perform long-time integrations using GLMs with the best parasitism-free behaviour,

and assess how well they preserve invariants of geometric problems. Finally, we verify

computationally that a theoretical order increase can be attained using of the compo-

sition formulae given in Chapter 5.



Chapter 2
Background

General linear methods (GLMs) are a class of time-stepping methods for the integration

of ordinary differential equations (ODEs). Throughout this thesis, we consider the

application of these methods to first order, autonomous, initial value problem (IVPs)

of the form
dy

dt
(t) = f(y(t)), y(0) = y0, t ∈ [−T, T ], (2.1)

where y : [−T, T ] → X, f : X → X, T > 0, and it is assumed that X = R
d, d ∈ N is

an open subset. Furthermore, we assume that the standard Lipschitz condition holds:

There exists an L > 0 such that

||f(y)− f(z)|| ≤ L||y − z||, for all y, z ∈ X.

and we express the solution of (2.1) in terms of the initial data y0 and the flow map

(also known as the evolution operator) ϕt : X → X such that

y(t) = ϕt(y0).

Of particular interest will be Hamiltonian IVPs. These are described by an even-

dimensional system of first order ODEs of the form

d

dt

[
p(t)

q(t)

]
=

[
−∇qH(p(t), q(t))

∇pH(p(t), q(t))

]
,

[
p(0)

q(0)

]
=

[
p0

q0

]
, t ∈ [−T, T ], (2.2)

where H : X → R is the Hamiltonian, q, p : [−T, T ] → R
m, and p0, q0 ∈ R

m, m ∈ N.

12



CHAPTER 2. BACKGROUND 13

2.1 Introduction to GLMs

The GLM framework incorporates a wide variety of numerical methods, including the

classical Runge–Kutta methods (RKMs) and linear multistep methods (LMMs) [6, 9].

Below, we introduce the essential components and theoretical tools that make up this

framework.

2.1.1 Notation

A GLM is formed of s-many stage equations and r-many update equations, with r, s ∈ N.

At time t = nh, where n ∈ N0 denotes the step number and h ∈ R\{0} denotes the

time-step, the method acts upon a set of inputs y
[n]
1 , . . . , y

[n]
r ∈ X and generates outputs

y
[n+1]
1 , . . . , y

[n+1]
r ∈ X via the following equations:

Yi = h
s∑

j=1

aijf(Yj) +
r∑

j=1

uijy
[n]
j , i = 1, . . . , s, [Stage Equations],

y
[n+1]
i = h

s∑

j=1

bijf(Yj) +

r∑

j=1

vijy
[n]
j , i = 1, . . . , r, [Update Equations],

where aij ∈ R, bij, uij , vij ∈ C denote the method coefficients and Yi ∈ X are the stage

values. To simplify notation, we define super-vectors

y[n+1] =




y
[n+1]
1

y
[n+1]
2
...

y
[n+1]
r



, y[n] =




y
[n]
1

y
[n]
2
...

y
[n]
r



, Y =




Y1

Y2
...

Ys



, F (Y ) =




f(Y1)

f(Y2)
...

f(Ys)



,

where y[n], y[n+1] ∈ Xr and Y, F ∈ Xs, and we also define matrices

A = [aij ] ∈ R
s×s, B = [bij ] ∈ C

r×s, U = [uij] ∈ C
s×r, V = [vij] ∈ C

r×r.

Then, the stage and update equations may be compactly written as

[
Y

y[n+1]

]
=

[
A⊗ IX U ⊗ IX

B ⊗ IX V ⊗ IX

][
hF (Y )

y[n]

]
. (2.3)

Here, ⊗ denotes a Kronecker product and IX is the identity matrix defined on X.
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Often, explicit reference to the stage and update equations is not required. Instead,

it is more convenient to use the map determined by equations (2.3), i.e. we define

Mh : Xr → Xr, such that y[n+1] = Mh

(
y[n]
)
.

Tableau representation: Every GLM is essentially characterised by its coefficient

matrices. Thus, we refer to a method by its GLM tableau,

[
A U

B V

]
.

This representation is particularly useful for verifying properties of the method, as

well as giving an indication of computational cost, e.g. a strictly lower triangular stage

matrix A immediately implies an explicit method.

Example 2.1. Consider the forward Euler (FE) and backward Euler (BE) methods:

y[n+1] = y[n] + hf
(
y[n]
)
, y[n+1] = y[n] + hf

(
y[n+1]

)
.

[FE] [BE]

Expressed in terms of stage and update equations, these are written as

Y1 = y[n],

y[n+1] = y[n] + hf (Y1) ,

Y1 = y[n] + hf(Y1),

y[n+1] = y[n] + hf (Y1) .

[FE] [BE]

The coefficient matrices are obtained from reading off the coefficients of the y[n] and

hf(Y1). Thus, the GLM tableaux for these methods are respectively given as

[
0 1

1 1

]
, and

[
1 1

1 1

]
.

⋄

Example 2.2. The RAW time filter presented in [61] is a special technique for suppress-

ing the spurious computational mode1 of the Leapfrog method. It works by applying

a standard Leapfrog update followed by two filter operations. The numerical scheme

1In meteorology, parasitic components of multivalue methods are usually referred to as the spurious,
computational modes.
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is presented below

yn+1 = yn−1 + 2hf(yn),

yn+1 = yn+1 −
ν(1− α)

2
(yn−1 − 2yn + yn+1),

yn = yn +
να

2
(yn−1 − 2yn + yn+1),

where α, ν ∈ [0, 1] are filter parameters, yn, yn, yn ≈ y(nh) and yn is chosen as the

appropriate solution. Typical values for the filter parameters are ν = 0.2, α = 0.53.

The above scheme determines the two-step map (yn−1, yn) 7→ (yn, yn+1) and may

be written in terms of a GLM: Let y[n] := [y
T
n−1, y

T
n ]

T , and recast the scheme into

matrix-vector form, i.e.

Y1 = eT2 y
[n],

y[n+1] =

[
να 1− να

1− ν(1− α) ν(1− α)

]
y[n] + h

[
να

2− ν(1− α)

]
f (Y1) ,

where e2 = [0, 1]T and Kronecker products have been applied implicitly. Then, we can

read off the coefficient matrices to give the corresponding GLM tableau,




0 0 1

να να 1− να

2− ν(1− α) 1− ν(1− α) ν(1− α)


 .

Notice that if we set ν = 0, we obtain the Leapfrog method expressed as a GLM:




0 0 1

0 0 1

2 1 0


 . (2.4)

⋄

2.1.2 Convergence, consistency and stability

Let us now introduce the key concepts of convergence, consistency and stability that

play a fundamental role in numerical analysis. The following definitions closely resemble

those introduced in [10]:
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Definition 2.3 (Consistency and stability). Let (A,U,B, V ) denote the coefficient

matrices of a GLM. Then, the method is said to be

(a) Preconsistent, if ζ1 = 1 is an eigenvalue of V , i.e. there exist preconsistency vectors

u,w ∈ C
r\{0}, satisfying wHu = 1, such that V u = u.2

(b) Consistent, if it is preconsistent, and

Uu = 1, for 1 = [1, 1, . . . , 1]T ∈ R
s,

B1+ V v = u+ v, for some v ∈ C
r\{0},

where u is the (right) preconsistency vector given in (a).

(c) Stable, if it is zero-stable3, i.e. supn≥0 ||V n|| <∞.

(d) Strictly-stable, if it is strictly zero-stable, i.e.

ζ1 = 1, |ζi| < 1, i = 2, . . . , r,

where ζi, i = 1, . . . , r are the eigenvalues of V .

The necessity for the definitions (a)-(c) can be seen by considering the following

problems: For consistency, we consider a GLM applied to the IVP

dy

dt
= 1, y(0) = y0 ∈ R, t ∈ [0, 1].

Suppose that we fix y[0] = uy0 + hv, where v is as given in Definition 2.3(b). Then, for

n ≥ 1, a consistent GLM will yield

y[n] := Mn
h(y

[0]) = u(y0 + nh) + hv = uy(nh) + hv.

This simple example also highlights an important feature of GLMs, namely, inputs do

not necessarily have to be approximations of y(nh). In such a case, extra work at the

end of the iteration is required to obtain the actual numerical approximation to the

solution. Further discussion on this topic is covered in the following sections.

To see the necessity of stability, we instead study the homogeneous IVP

dy

dt
= 0, y(0) = y0 ∈ R, t ∈ [0, 1].

2The choice of w is usually made such that u1 = 1, i.e. the first component is equal to one.
3Dahlquist’s work on the stability of multistep methods (see e.g. [33]) revealed that an instability

can arise when the method possesses double roots. Thus, for GLMs, we usually assume that the
unimodular eigenvalues of V are distinct.
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Here, we note that the power-boundedness of V arises from the fact that y[n] = V ny[0].

Definition 2.4 (Convergence [10]). A GLM is convergent if for any IVP of the form

(2.1), there exists a u ∈ C
r\{0} and a map Sh : X → Xr such that

1. Sh(y0) −→ u⊗ y0 as h −→ 0,

2. y[n] := Mn
T
n

◦ST
n
(y0) −→ u⊗ y(T ) as n −→ ∞,

for any T > 0. (Note: Future usage of the Kronecker product shall be applied implicitly,

unless otherwise stated.)

It has been shown, for example in [10], that a consistent and stable GLM is conver-

gent. Conversely, we also have that a convergent GLM is both consistent and stable.

2.1.3 Starting and finishing methods

Every GLM requires a set of starting values y[0] to initialise the method. To obtain

these values, a starting method is implemented. As inputs to a GLM belong to the

product space Xr, a finishing method is also required to obtain approximations to the

solution y(nh) ∈ X.

Definition 2.5. A starting method is defined to be the map Sh : X → Xr, where

Sh(y0) = y[0], y0 ∈ X.

A finishing method is defined to be the map Fh : Xr → X such that

Fh(y
[n]) ≈ y(nh), Fh◦Sh(y0) = y0, y0 ∈ X.

Remark 2.6. It is not a necessary requirement that Fh◦Sh(y0) = y0 exactly, though

many theoretical results assume this is the case. Instead, we could impose that

Fh◦Sh(y0) = y0 + O(hp+1), where p ∈ N corresponds to the order (cf. Section 2.1.4)

of the method. This relaxation affords greater freedom in the design of the finishing

method.

Definition 2.7. A pair of starting and finishing methods are called consistent if

Sh(y0) = uy0 + hvf(y0) +O(h2), y0 ∈ X,

Fh(y) = wHy +O(h), y ∈ Xr,

where u,w, v are as in the definition of consistency, with w free except for wHu = 1.



CHAPTER 2. BACKGROUND 18

Assuming that neither starting nor finishing method is expressed as a formal power

series in h (cf. Section 2.3 for such a case), then both may be expressed in terms of

stage and update equations (like a GLM). In particular, a consistent starting method

is written as

[
YS

Sh(y0)

]
=

[
AS ⊗ IX 1S ⊗ IX

BS ⊗ IX u⊗ IX

][
hF (YS)

y0

]
,

and a consistent finishing method as

[
YF

Fh

(
y[n]
)
]
=

[
AF ⊗ IX UF ⊗ IX

BF ⊗ IX wH ⊗ IX

][
hF (YF )

y[n]

]
,

where

AS , AF ∈ R
s̃×s̃, BS ∈ C

r×s̃, BF ∈ C
1×r, UF ∈ C

s̃×r, s̃ ∈ N,

and it is assumed that

UFu = 1S , BS1S = v, where 1S = [1, . . . , 1]T ∈ R
s̃. (2.5)

As with a GLM, we refer to these methods by their tableaux:

[
AS 1S

BS u

]
, and

[
AF UF

BF wH

]
. (2.6)

Lemma 2.8. Consider a pair of consistent starting and finishing methods, Sh and Fh,

determined by the tableaux in (2.6). If the coefficient matrices satisfy (2.5),

AF = AS − UFBS , and BF = −wHBS,

then Fh◦Sh(y0) = y0 exactly.

Proof. First, let us consider the stage equations of Fh◦Sh(y0):

YS = hASF (YS) + 1Sy0,

YF = hAFF (YF ) + UFSh(y0),

= hAFF (YF ) + hUFBSF (YS) + UFuy0.

For sufficiently small h, there exist unique solutions to both sets of stage equations.

Now, suppose YS is the solution to the first set of equations. Then, forAF = AS−UFBS ,
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we observe that YF = YS is a solution for the second set, i.e. observe that

YS − hAFF (YS)− hUFBSF (YS)− UFuy0 = YS − hASF (YS)− 1Sy0 = 0,

where we have used UFu = 1S from (2.5). By uniqueness of solutions, YF = YS is the

only solution to the second set of equations.

Now, let us consider the update equations of Fh◦Sh(y0):

Fh◦Sh(y0) = wHSh(y0) + hBFF (YF ) = wHuy0 + hwHBSF (YS) + hBFF (YF ).

If we set BF = −wHBS, it then follows from YF = YS and wHu = 1 that

Fh◦Sh(y0) = y0 + hwHBSF (YS)− hwHBSF (YS) = y0,

as required.

Hereafter, it shall be assumed that starting and finishing methods are consistent

and are determined respectively by the tableaux

[
AS 1S

BS u

]
, and

[
AS − UFBS UF

−wHBS wH

]
. (2.7)

Remark 2.9. Note that if wHBS = 0 then the finishing method reduces to wH. In this

situation we call it trivial. This is a desirable property for a finishing method to possess

as it implies that no further function evaluations are made. This is particularly useful

whenever we are interested computing dense output since this requires the finishing

method to be applied frequently.

Example 2.10. Consider the following GLM from [10, p. 416]:




3+
√
3

6 0 1 −3+2
√
3

3

−
√
3
3

3+
√
3

6 1 3+2
√
3

3
1
2

1
2 1 0

1
2 −1

2 0 −1



. (2.8)

The starting values y[0] for the method are required to be of the form

[
y0

h2
√
3

12
d2y
dt2

(0)− h4
(√

3
108

d4y
dt4

(0)− 9+5
√
3

216 f ′(y0)
d3y
dt3

(0)
)
]
,
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which can be approximated using a starting method with the following tableau




0 0 0 1
1
3

1
3 0 1

−
√
3
4

6+3
√
3

4 −1+
√
3

2 1

0 0 0 1

−5
√
3

24
3
√
3

8 −
√
3
6 0



.

For this particular method, the finishing method is trivial (observe that the first row

of BS in the starting method is exactly zero).

⋄

Approximation to the solution: Having introduced the notation for GLMs, and

their starting and finishing methods, we can now demonstrate how to obtain numerical

approximations to the solution of the IVP under consideration.

Definition 2.11. The numerical method as a whole is written as the composite map

Fh◦Mn
h◦Sh(y0) =: yn, (2.9)

where yn denotes the numerical approximation to y(nh).

Notice here that the finishing method is a passive procedure; that is, it does not feed

back into the following update step. Thus, for applications that only require a sample

of numerical approximations (as opposed to dense output), the finishing method is only

applied occasionally.

Note also that the starting method is only applied once. This is important from

a practical point of view as it usually means its computational cost can be neglected.

Moreover, we can attempt to minimise the cost of the associated finishing method by

choosing a more expensive starting method, i.e. by considering an AS matrix that is

full, we can attempt to make AF =: AS − UFBS strictly lower-triangular, resulting in

an explicit finishing method.

2.1.4 Order

As can be seen in Example 2.10, not all inputs to a GLM are an approximation to the

exact solution. Thus, when attempting to the define the order of a GLM, a greater

degree of flexibility is required to cover the case of general inputs.
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Definition 2.12. The pair (Mh,Sh) is of order p ∈ N if

Mh◦Sh(y0) = Sh◦ϕh(y0) + C(y0)h
p+1 +O(hp+2), (2.10)

where ϕh(y0) is the time-h evolution of the IVP, and C(y0) ∈ Xr\{0} is a vector

depending on the method coefficients and various derivatives of f evaluated at y0.

Definition 2.13. The maximal order of a GLM is given by the highest order over all

feasible Sh.

The order of the method essentially describes the accuracy of the update step.

Closely related to this is the stage order of the method, i.e. the accuracy of the stage

equations.

Definition 2.14. The pair (Mh,Sh) is of stage order q ∈ N if

ϕch(y0)− hAF (ϕch(y0))− USh(y0) = O(hq+1), with ϕch(y0) :=




ϕc1h(y0)

ϕc2h(y0)
...

ϕcsh(y0)



,

where c := A1+ v, and v is as in the definition of consistency.

Stage order is particularly important for stiff problems where it possible to observe

a reduction in the order of a method to the value of its stage order [19].

2.1.5 Operations

There exist various operations that can be performed on GLMs. Here, we introduce

two important operations that will be used frequently throughout this thesis.

Composition: There are many situations in which we must consider a composition

of GLMs (cf. Section 2.1.3 where we computed the composition of Fh◦Sh(y0)). Below,

a formula is given in terms of coefficient matrices that shows how to perform this

operation: Consider the composition of two GLMs M(2)
h ◦M(1)

h (y). The corresponding

update equation is written as

M(2)
h ◦M(1)

h (y) = hB(2)F (Y (2)) + V (2)M(1)
h (y),

= hB(2)F (Y (2)) + hV (2)B(1)F (Y (1)) + V (2)V (1)y,
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with stage equations given by

Y (1) = hA(1)F (Y (1)) + U (1)y,

Y (2) = hA(2)F (Y (2)) + U (2)M(1)
h (y),

= hA(2)F (Y (2)) + hU (2)B(1)F (Y (1)) + U (2)V (1)y,

where the Kronecker products have been applied implicitly. The tableau of the com-

posed method is then given by




A(1) 0 U (1)

U (2)B(1) A(2) U (2)V (1)

V (2)B(1) B(2) V (2)V (1)


 . (2.11)

This formula can be applied repeatedly for compositions of many different methods.

Equivalence: There are times where, based on tableaux alone, GLMs appear to be

distinct. However, after a practical application they yield identical numerical results

(up to rounding error). In such cases, these methods are said to be equivalent.

Definition 2.15. Consider a pair of GLMs M(1)
h , M(2)

h . Then, the two are said to be

(T, P )-equivalent if there exists an invertible matrix T ∈ C
r×r and an s×s permutation

matrix P such that their coefficient matrices satisfy

[
A(2) U (2)

B(2) V (2)

]
=

[
P−1A(1)P P−1U (1)T

T−1B(1)P T−1V (1)T

]
.

(P)ermutation-equivalence arises from the fact that

F (Y ) = PP−1F (Y ) = PF (P−1Y ).

(T)ransformation-equivalence arises from studying the numerical method as a whole:

Fh◦Mn
h◦Sh(y0) = Fh◦(TT−1)Mn

h◦(TT−1)Sh(y0) = (Fh◦T )(T−1Mh◦T )n(T−1Sh)(y0).

Remark 2.16. Here, it should be noted that T does not necessarily have to be a linear

transformation. Instead, we could replace T with the nonlinear map Th : Xr → Xr.

This type of transformation is considered in Chapter 5.
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Notice that under the transformation T , both the starting and finishing methods

are also altered. This results in the following tableaux

[
AS 1S

T−1BS T−1u

]
, and

[
AS − UFBS UFT

−wHBS wHT

]
.

2.2 B-series

A key theoretical tool in the analysis of GLMs are B-series, which are a generalisation

of the classical Taylor series. They are used frequently in the analysis of RKMs (see

e.g. [36, Ch. III]). For example, with backward error analysis to explain the long-time

energy preservation associated with structure-preserving methods [36, Ch. IX].

As was shown in the previous section, we can expect a GLM to take very general

inputs, i.e. described in terms of h, y, f and its various derivatives. These types of

inputs are known as B-series. Before we formally introduce them, let us first look at a

simple example: Consider the second and third derivatives of the solution to IVP (2.1),

subject to a scaling by time-step h:

h2
d2y

dt2
= h2

d

dt

dy

dt
= h2

d

dt
f(y) = h2f ′(y)f(y),

h3
d3y

dt3
= h3

d

dt

d2y

dt2
= h3

d

dt
f ′(y)f(y) = h3f ′′(y)(f(y), f(y)) + h3f ′(y)f ′(y)f(y),

where ′ denotes differentiation with respect to y, and f ′′(y) is a bilinear map. The

right-hand side gives an alternative representation of these derivatives, in terms of h,f

and its derivatives. Such a representation is known as a B-series.

Trees and differentials: In the example above, the f -terms on the right-hand side

are called elementary differentials. Associated with each one of these is a rooted tree.

Definition 2.17. The set of rooted trees T is recursively defined as follows:

• the graph with only one node (root) belongs to T ;

• if τ1, . . . , τm ∈ T , then the graph obtained by grafting the roots of τ1, . . . , τm to a

new node also belongs to T . It is denoted by τ = [τ1, . . . , τm], and the new node

is the root of τ .

Definition 2.18. The order of a tree τ , denoted |τ |, is given its total number of nodes.

Definition 2.19. The children of a tree τ = [τ1, . . . , τm] are given by {∅, τ1, . . . , τm}.
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The recursive definition of a tree introduces some redundancy in the construction of

T . For example, let τ1, τ2 ∈ T be two distinct trees, then [τ1, τ2] and [τ2, τ1] would also

be classified as distinct trees. However, in the applications we consider, the ordering of

the children is not important. Thus, we introduce the following concept of equivalence

among trees.

Definition 2.20. Two trees are said to be equivalent if they share the same children.

Another concept closely related to equivalence is the symmetry of a tree, which

describes the total number of permutations of all children (including the children’s

children, and so on) such that the tree is left unchanged. For example, suppose that

τ1 = τ2 = , τ3 = [ ], then τ = [τ1, τ2, τ3] = [ , , [ ]] = [τ2, τ1, τ3].

Definition 2.21. The symmetry coefficients σ : T → R are recursively defined by

σ( ) = 1 and, for τ = [τ1, . . . , τm],

σ(τ) = σ(τ1) · · · σ(τm) · µ1!µ2! · · · µl!, l ≤ m,

where the integers µ1, µ2, . . . , µl count equivalent trees among τ1, . . . , τm.

The primary application for the set of rooted trees is in distinguishing between the

various derivatives of f . These are called elementary differentials and are defined as

follows:

Definition 2.22. For a given tree τ ∈ T , the elementary differential is a mapping

F (τ) : X → X, defined recursively by

F ( )(y) = f(y),

F (τ)(y) = f (m)(y)(F (τ1)(y), . . . , F (τm)(y)), for τ = [τ1, . . . , τm].

Here, notice that the f (m)(y) are m-linear operators. Thus, the ordering of the

terms F (τ1)(y), . . . , F (τm)(y) does not affect the computed output. It is for this reason

that we say the ordering of the children of a tree is not important.

B-series: Using the definitions given above, we formally define a B-series as follows:

Definition 2.23. For a mapping a : T ∪ {∅} → C, a formal series of the form

B(a, y) = a(∅)y +
∑

t∈T

h|τ |

σ(τ)
a(τ)F (τ)(y),

is called a B-series.
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|τ | τ -string τ F (τ)(y) σ(τ) γ(τ)

1 f(y) 1 1

2 [ ] f ′(y)f(y) 1 2

3 [ , ] f ′′(y)(f(y), f(y)) 2 3

3 [[ ]] f ′(y)f ′(y)f(y) 1 6

4 [ , , ] f ′′′(y)(f(y), f(y), f(y)) 6 4

4 [[ ], ] f ′′(y)(f ′(y)f(y), f(y)) 1 8

4 [[ , ]] f ′(y)f ′′(y)(f(y), f(y)) 2 12

4 [[[ ]]] f ′(y)f ′(y)f ′(y)f(y) 1 24

Table 2.1: B-series trees, graphs, elementary differentials and coefficients.

Example 2.24. Let the mapping γ : T ∪ {∅} → R be defined by γ(∅) = 1, γ( ) = 1,

and for τ = [τ1, . . . , τm],

γ(τ) = |τ |γ(τ1) · · · γ(τm).

Then, the B-series given by B(1/γ, y) describes the Taylor series expansion of y(t+h).

The functions γ(τ) and σ(τ) are important for identifying multiple occurrences of

elementary differentials. For example, the B-series for the fourth order derivative of

y(t) contains the term 3f ′′(f ′f, f). This elementary differential is associated with the

tree τ = [[ ], ], and its coefficient is computed using the formula (see [36, p. 58] ):

|τ |!
σ(τ)γ(τ)

=
|[[ ], ]|!

σ ([[ ], ]) γ ([[ ], ])
=

4!

1 · 8 = 3.

⋄

For trees of order |τ | ≤ 4, the graphs, elementary differentials and coefficients are

given in Table 2.1. Further details on B-series can be found in Chapters 3 and 4.

2.3 Underlying one-step method

Questions regarding the long-time behaviour of multivalue methods are often tack-

led through study of a closely connected one-step method (OSM), referred to as the

underlying one-step method (UOSM).



CHAPTER 2. BACKGROUND 26

Definition 2.25 (Underlying one-step method). The map Φh : X → X is called

an underlying one-step method (UOSM) of a GLM if

Mh◦S∗
h(y0) = S∗

h◦Φh(y0), ∀ y0 ∈ X. (2.12)

for some consistent, ideal starting method S∗
h : X → Xr.

Remark 2.26. In general, it is understood that Φh and S∗
h hold formally as B-series

which may be truncated at some large power of h, where terms are smaller than machine

precision, in a similar way to (possibly divergent) asymptotic series.

A result formulated by Kirchgraber [42] states that all strictly-stable LMMs possess

a UOSM. This result was generalised to strictly-stable GLMs by Stoffer [57], where it

was also shown these GLMs possess the property of asymptotic phase, that is,

||yn − y∗n|| ≤ Const · ρn, ∀ n ≥ 0,

where ρ ∈ (0, 1), yn are given by the numerical method as a whole and y∗n := Φn
h(y0).

This property explains why strictly-stable GLMs have the same long-time behaviour

as RKMs, and other OSMs.

For stable GLMs in general, we cannot guarantee that the property of asymptotic

phase holds. However, the formal existence of a UOSM may be proved.

Theorem 2.27 ( [36, pp. 610-611] ). Let Mh be a consistent GLM with V possessing

a simple eigenvalue ζ1 = 1, Fh a consistent finishing method, and let u,w be as in the

definition of preconsistency. Then, there exists a unique formal one-step method

Φh(y0) = y0 + hφ1(y0) + h2φ2(y0) + . . . ,

where each hiφi : X → X, i ≥ 1 is a B-series; and a unique formal starting method

S∗
h(y0) = uy0 + hS1(y0) + h2S2(y0) + . . . , (2.13)

where each hiSi : X → Xr, i ≥ 1, is an r-dimensional vector of B-series, such that

Mh◦S∗
h(y0) = S∗

h◦Φh(y0),

Fh◦S∗
h(y0) = y0,

hold as formal power series in h.
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Proof. Expanding S∗
h◦Φh(y0)−Mh◦S∗

h(y0) = 0 in powers of h, and comparing quanti-

ties of O(hi) in the order i = 1, 2, . . ., we find

O(1) : (Ir − V )uy0 = 0,

O(h) : (Ir − V )S1(y0) + uφ1(y0) = B1f(y0),

O(h2) : (Ir − V )S2(y0) + uφ2(y0) = BA1f ′(y0)f(y0)+

(BU ⊗ f ′(y0))S1(y0)− S ′
1(y0)φ1(y0),

...

Similarly, we expand Fh◦S∗
h(y0)− y0 = 0 in powers of h:

O(1) : (wHu− 1)y0 = 0,

O(h) : wHS1(y0) = wHBS1Sf(y0),

O(h2) : wHS2(y0) = wHBS(AS − UFBS)1Sf
′(y0)f(y0)+

(wHBSUF ⊗ f ′(y0))S1(y0),

...

In general, a comparison of terms of O(hi) will lead to a system of equations of the

form [
I − V u

wH 0

][
Si(y0)

φi(y0)

]
=

[
Gi(y0)

gi(y0)

]
, i ≥ 1,

where the RHS terms Gi(y0), gi(y0) depend on the known functions Sj(y0), φj(y0) for

j < i. Now, since ζ1 is a simple eigenvalue of V and wHu = 1, the LHS matrix is

invertible (by the ABCD Lemma [55]). Thus, we may uniquely determine each Si(y0)

and φi(y0), for i ≥ 1.

Note, that it now follows from the definition of the UOSM and Theorem 2.27 that

Φh(y0) = Fh◦Mh◦S∗
h(y0).

Other connections can also be made between Φh and the flow map ϕh, as well as S∗
h

and the practical starting method Sh. This is explained in the following corollary.

Corollary 2.28. Suppose the pair (Mh,Sh) is of order p. Then,

S∗
h(y0) = Sh(y0) +O(hp+1),

Φh(y0) = ϕh(y0) +O(hp+1).
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Proof. Consider an arbitrary truncation of the ideal starting method and UOSM:

S̃h(y0) = S∗
h(y0) +O(hN ), Φ̃h(y0) = Φh(y0) +O(hN ),

for some integer N ≥ 2. Then, the pair (S̃h, Φ̃h) uniquely satisfy (2.12) and

Fh◦S̃h(y0) = y0, up to terms of O(hN ). Now, fixing N = p + 1 and recalling the

definition of GLM order (2.10), we note that the pair (Sh, ϕh) also satisfy (2.12) and

Fh◦Sh(y0) = y0, up to terms O(hp+1). The result now follows from uniqueness of S∗
h

and Φh.

Example 2.29. Consider solving the linear test equation

dy

dt
= λy, y(0) = 1, λ ∈ C, (2.14)

with the Leapfrog method (2.4), initialised using the Euler starting method

y[0] =

[
y0

y0 + hf(y0)

]
.

Note here that finishing method is given by the first component.

Defining z := hλ, we may write the update step as follows

y[n+1] =

[
y
[n+1]
1

y
[n+1]
2

]
=

[
0 1

1 2z

][
y
[n]
1

y
[n]
2

]
=:M(z)y[n].

Here, we observe that the problem of determining the UOSM and ideal starting method

is equivalent to finding the eigenvalue-eigenvector pairs of M(z) i.e. find S(z) ∈ C
2

and φ(z) ∈ C such that

M(z)S(z) = S(z)φ(z), eT1 S(z) = S1(z) = 1.

The solutions to this problem are given below

φ1(z) = z +
√
1 + z2, S1(z) =

[
1

z +
√
1 + z2

]
,

φ2(z) = z −
√
1 + z2, S2(z) =

[
1

z −
√
1 + z2

]
.
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Notice for z = 0, we have that S1(0) = [1, 1]T and S2(0) = [1,−1]T . Since S2(0) does

not correspond to the preconsistency vector u = [1, 1]T , we conclude that (S(z), φ(z)) =

(S1(z), φ1(z)).

⋄

2.4 Parasitism

Parasitism is a phenomenon that generally occurs in multivalue methods. It describes

the unacceptable growth of perturbations made to the non-principal components of the

method (i.e. those not associated with the ζ1 = 1 eigenvalue of V ), which inevitably

leads to the corruption of the numerical solution. In contrast, a one-step method will

not suffer from parasitism as there is only a single (principal) component approximating

the solution.

Example 2.30. Consider the following result due to Hairer: The simple pendulum

problem, formulated as a first-order differential system, is given by

d

dt

[
p(t)

q(t)

]
=

[
− sin(q(t))

p(t)

]
,

[
p(0)

q(0)

]
=

[
p0

q0

]
, t ∈ [0, T ]. (2.15)

This problem is Hamiltonian, with

H(p, q) =
1

2
p2 − cos(q).

For T = 100 and (p0, q0) = (0, 1.3), we solve this problem using GLM (2.8) with a

time-step h = 0.1. Figure 2-1a displays the error made in the Hamiltonian at every

step of the integration. Here, the error is small and remains bounded over the interval,

indicating no parasitic growth. However, if we repeat the experiment with initial data

(p0, q0) = (0, 2.3), the influence of parasitism is obvious, as is illustrated in Figure 2-1b.

⋄

An introduction to parasitism analysis: Consider a stable and consistent GLM

applied to the linear test equation (2.14). Furthermore, assume that the eigenvalues

of V are unimodular and distinct. For z := hλ taken to be small, the update equation

can be written as

y[n+1] =M(z)y[n], where M(z) = V + zB(Is − zA)−1U.
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Figure 2-1: Approximate Hamiltonian preservation in the simple pendulum problem over
[0, 100]. Numerical solutions are obtained using GLM (2.8) with a time-step h = 0.1. Ini-
tial data is taken to be (a) (p0, q0) = (0, 1.3). (b) (p0, q0) = (0, 2.3).

Denote the eigenvalues of M(z) by φi(z), for i = 1, . . . , r. Then, for parasitism-free be-

haviour, we require the non-principal eigenvalues to satisfy |φi(z)| ≤ 1 for i = 2, . . . , r.

If we consider expansions of the non-principal eigenvalues, it is possible to derive

necessary algebraic conditions for parasitism-free behaviour: Let Fi(z) and Si(z) re-

spectively denote the left and right eigenvectors of M(z) associated with eigenvalue

φi(z), and normalised such that Fi(z)Si(z) = 1, for i = 2, . . . , r. Then, we have that

φi(z) = Fi(z)M(z)Si(z), where Fi(z)Si(z) = 1,

for i = 2, . . . , r. Taking expansions about z = 0, we find

φi(z) = φi(0) + z
(
F ′
i (0)M(0)Si(0) + Fi(0)M

′(0)Si(0) + Fi(0)M(0)S′
i(0)

)
+O(z2),

= ζi + z
(
F ′
i (0)Si(0) + Fi(0)BUSi(0) + Fi(0)S

′
i(0)

)
+O(z2),
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where ′ denotes differentiation with respect to z, and

Fi(z)Si(z) = 1,

⇒ Fi(0)Si(0) + z
(
F ′
i (0)Si(0) + Fi(0)S

′
i(0)

)
= 1 +O(z2),

⇒ F ′
i (0)Si(0) = −Fi(0)S

′
i(0).

It now follows that |φi(z)| ≤ |ζi + zFi(0)BUSi(0)| + O(|z|2). Thus, to eliminate first-

order parasitic effects, we arrive at the following condition:

Definition 2.31 ([13]). A GLM is first-order parasitism-free if

wH

i BUui = 0, i = 2, . . . , r, (2.16)

where wi, ui respectively denote the left and right eigenvectors of V associated with

eigenvalues ζi.

Example 2.32. Let us again consider GLM (2.8). The left and right eigenvectors of

V associated with the non-principal eigenvalue ζ2 = −1 are given by u = w = [0, 1]T .

Checking condition (2.16), we find

wH

2BUu2 =
[
0 1

] [1
2

1
2

1
2 −1

2

][
1 −3+2

√
3

3

1 3+2
√
3

3

][
0

1

]
= −3 + 2

√
3

3
6= 0.

As the GLM fails to eliminate first-order parasitic effects, it will be particularly

susceptible to parasitism whenever the eigenvalues of the Jacobian possess non-zero,

positive real parts. For Hamiltonian systems, the eigenvalues of the Jacobian come in

plus-minus pairs. Thus, they need only have non-zero real parts for parasitism to arise.

Such is the case in Example 2.30, for initial data (p0, q0) = (0, 2.3), where for part of

the periodic orbit, the eigenvalues of the Jacobian are real pairs.

⋄

Later in Chapter 3, we develop an a priori parasitism theory that considers general

vector fields f(y). This is used to derive higher-order parasitism-free conditions.

2.5 Symmetry

Consider an IVP of the form (2.1), and assume that it is reversible [56], i.e. there exists

a matrix R ∈ R
d×d such that f(Ry) + Rf(y) = 0. Then, the flow map ϕt associated

with the solution y(t) is known to possess the property of time-symmetry.
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Definition 2.33. A forward-time evolution ϕt : X → X is symmetric if

ϕt(y0) = ϕ−1
−t (y0), y0 ∈ X. (2.17)

Fundamental properties such as symmetry are often considered in the design of

numerical methods. For OSMs, the definition for symmetry follows directly from (2.17).

Definition 2.34. Consider the one-step method Rh : X → X and its adjoint method

R∗
h : X → X defined such that R∗

h := R−1
−h. Then, Rh is symmetric if

Rh(y0) = R∗
h(y0), y0 ∈ X.

For GLMs, the action of computing the adjoint often rearranges the inputs of the

method (such is the case with the Leapfrog method). This incompatibility leads us to

define GLM-symmetry in terms of equivalence to the adjoint.

Definition 2.35. Consider the GLM Mh and its adjoint method M∗
h : Xr → Xr

defined such that M∗
h := M−1

−h. Then, Mh is symmetric if there exists an involution

matrix L ∈ C
r×r such that

Mh(y) = LM∗
h(Ly), y ∈ Xr. (2.18)

The requirement for L to be an involution arises from two applications of (2.18),

i.e. defining the symmetric adjoint to be the map M†
h : Xr → Xr, M†

h := LM∗
h◦L,

then we need L such that

(M†
h)

† = (LMh
∗◦L)† = L(LMh

∗◦L)∗L = L2M∗∗
h ◦L2 = Mh.

2.5.1 Algebraic conditions for symmetry

In order to determine symmetry conditions on the coefficient matrices of a GLM, we

first require expressions for the inverse method M−1
h : Xr → Xr, and the adjoint

method M∗
h := M−1

−h:

Let y[n] 7→ M−1
h (y[n]) in the stage and update equations (2.3), i.e.

[
Y

y[n]

]
=

[
A U

B V

][
hF (Y )

M−1
h (y[n])

]
,

where Kronecker products have been applied implicitly. Then, solving for M−1
h (y[n])

yields [
Y

M−1
h (y[n])

]
=

[
A− UV −1B UV −1

−V −1B V −1

][
hF (Y )

y[n]

]
.
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Thus, for methods where V is invertible, the corresponding inverse method is described

by the tableau [
A− UV −1B UV −1

−V −1B V −1

]
, (2.19)

and the corresponding adjoint method is given by reversing the sign of h, i.e.

[
UV −1B −A UV −1

V −1B V −1

]
. (2.20)

Theorem 2.36 ([16]). A GLM is symmetric if there exist an involution L ∈ C
r×r and

an s× s symmetric permutation matrix P such that

[
A U

B V

]
=

[
P (UV −1B −A)P PUV −1L

LV −1BP LV −1L

]
. (2.21)

Proof. The result follows from a comparison of the tableau for Mh and the (L,P )-

equivalent tableau of the adjoint method (2.20).

Similar algebraic conditions for symmetric GLMs are given in [36, pp. 612–614].

Example 2.37. Recall the coefficient matrices of the Leapfrog method (2.4):

A = 0, U =
[
0 1

]
, B =

[
0

2

]
, V =

[
0 1

1 0

]
.

If we choose

L =

[
0 1

1 0

]
, P = 1,

then we can see that the method is symmetric:

A− P (UV −1B −A)P = 0−
[
0 1

] [0 1

1 0

][
0

2

]
+ 0 = 0,

U − PUV −1L =
[
0 1

]
−
[
0 1

1 0

] [
0 1

1 0

] [
0 1

]
=
[
0 0

]
,

B − LV −1BP =

[
0

2

]
−
[
0 1

1 0

][
0 1

1 0

] [
0

2

]
=

[
0

0

]
,

V − LV −1L =

[
0 1

1 0

]
−
[
0 1

1 0

][
0 1

1 0

][
0 1

1 0

]
=

[
0 0

0 0

]
.
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It can also be verified that GLM (2.8) is symmetric for the choice

L =

[
1 0

0 1

]
, P =

[
0 1

1 0

]
.

⋄

Example 2.38. From symmetry conditions (2.21), we can derive the corresponding

conditions for RKMs. Since r = 1, we have that V = L = 1 and U = 1. Thus, the

symmetry conditions reduce to

1B − PAP = A, BP = B.

These agree with the standard conditions for RKMs (see e.g. [36, p. 147]), where P is

typically taken to be the time-reversal permutation.

⋄

2.5.2 Symmetric starting and finishing methods

Assuming that the adjoint method exists, it is important to note that it uses slightly

different starting and finishing methods, namely, S−h and F−h. With these, we ensure

that the order of the adjoint method matches that of the original.

Lemma 2.39 ([39]). If the pair (Mh,Sh) is of order p, then the pair (M∗
h,S−h) satisfies

M∗
h◦S−h(y0) = S−h◦ϕh(y0) + (−1)pV −1C(y0)h

p+1 +O(hp+2),

where C(y0) is as given in the definition of GLM order.

Proof. Since M∗
h◦M−h(y

[n]) = y[n], we write

M∗
h◦M−h◦S−h◦ϕh(y0) = S−h◦ϕh(y0).

From the definition of GLM order (2.10), it follows

M∗
h◦
[
S−h(y0) + (−1)p+1C(ϕh(y0))h

p+1 +O(hp+2)
]
= S−h◦ϕh(y0).

Using (M∗
h(y))

′z = V −1z +O(h||z||) and C(ϕh(y0)) = C(y0) +O(h) we obtain

M∗
h◦S−h(y0) + (−1)p+1V −1C(y0)h

p+1 +O(hp+2) = S−h◦ϕh(y0).

Re-arranging gives M∗
h◦S−h(y0) = S−h◦ϕh(y0) + (−1)pV −1C(y0)h

p+1 +O(hp+2).
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Since symmetry is defined in terms of equivalence to the adjoint method, there must

exist another set of starting and finishing methods, that can be applied to Mh, that

will also yield the same GLM order. This observation leads us to define symmetric

starting and finishing methods.

Definition 2.40. A starting method of an (L,P )-symmetric GLM is symmetric if

Sh(y0) = LS−h(y0), (2.22)

and the corresponding finishing method is symmetric if

Fh(y) = F−h(Ly). (2.23)

Theorem 2.41 ([16]). A starting method (2.7) is symmetric if there exists an s̃ × s̃

symmetric permutation matrix PS such that

AS = −PSASPS , BS = −LBSPS , Lu = u. (2.24)

A finishing method (2.7) is symmetric if the corresponding starting method is symmetric

and

UF = PSUFL, wHL = wH. (2.25)

Proof. The algebraic conditions follow from a comparison of the tableaux for Sh,Fh to

the permutation-equivalent tableaux of LS−h,F−h◦L. In particular,

[
AS 1S

BS u

]
=

[
−PSASPS 1S

−LBSPS Lu

]
,

[
AS − UFBS UF

−wHBS wH

]
=

[
PS(UFBS −AS)PS PSUFL

wHBSPS wHL

]
.

2.5.3 Necessity of even order

For a symmetric GLM, with symmetric starting and finishing methods, we find that

the numerical method as a whole is symmetric:

Fh◦Mn
h◦Sh(y0) = Fh◦(LL)Mn

h◦(LL)Sh(y0) = F−h◦(M∗
h)

n◦S−h(y0).

As a consequence, we can deduce that the method must be of even order.



CHAPTER 2. BACKGROUND 36

Theorem 2.42 ([16]). Consider a consistent, symmetric GLM with symmetric starting

and finishing methods. Then, the method is of even order p ∈ N. Furthermore, the error

at time T = nh of the numerical method as a whole has an expansion in even powers

of h, i.e.

Fh◦Mn
h◦Sh(y0)− ϕnh(y0) = hpcp+1(y0, nh) + hp+2cp+3(y0, nh) + . . . ,

where each ci(y0, nh) is a constant depending on n, h and various derivatives of f

evaluated at y0.

Proof. Let T ∈ R\{0} be fixed, and define

e(n) := FT/n◦Mn
T/n◦ST/n(y0)− ϕT (y0).

Then, it follows from the symmetry of the numerical method as a whole that e(n) =

e(−n). Thus, e(n) is an even function of n and the expansion

e(n) = (T/n)pcp+1(y0, T ) + (T/n)p+2cp+3(y0, T ) + . . . ,

must contain only even powers of n. The result follows after setting h = T/n.

2.5.4 Connection to the underlying one-step method

Let us now consider the UOSM of symmetric GLM, and in particular, address the

question of whether or not symmetry of the GLM implies symmetry of the UOSM.

Theorem 2.43. Consider an (L,P )-symmetric GLM such that V possesses a simple

eigenvalue ζ1 = 1. If the corresponding finishing method is symmetric, then the UOSM

and ideal starting method satisfy

S∗
h(y0) = LS∗

−h(y0),

Φh(y0) = Φ−1
−h(y0).

Proof. From Theorem 2.27, there exists a unique pair (S∗
h,Φh) such that

Mh◦S∗
h(y0) = S∗

h◦Φh(y0), and Fh◦S∗
h(y0) = y0,

hold formally as power series in h. Now, pre-multiplying through by M−1
h in the UOSM

condition, and letting y0 7→ Φ−1
h (y0), h 7→ −h, we find

M−1
−h◦S∗

−h(y0) = S∗
−h◦Φ−1

−h(y0).



CHAPTER 2. BACKGROUND 37

Symmetry of the GLM then implies

LMh◦LS∗
−h(y0) = S∗

−h◦Φ−1
−h(y0),

⇒ Mh◦LS∗
−h(y0) = LS∗

−h◦Φ−1
−h(y0),

and symmetry of the finishing method implies

y0 = F−h◦S∗
−h(y0) = F−h◦(LL)S∗

−h = Fh◦LS∗
−h(y0).

Thus, we deduce that the pair (LS∗
−h,Φ

−1
−h) is also a UOSM solution. Uniqueness then

implies that

S∗
h(y0) = LS∗

−h(y0), and Φh(y0) = Φ−1
−h(y0),

as required.

2.5.5 Non-existence of explicit, parasitism-free methods

Now, we present a negative result concerning the non-existence of explicit, parasitism-

free symmetric methods.

Theorem 2.44 ([16]). Consider a consistent, symmetric GLM with V having distinct

eigenvalues. Then, the method cannot be both first-order parasitism-free and explicit.

Proof. Firstly we note that symmetry condition V = LV −1L implies that V is invert-

ible, and distinct eigenvalues imply V is diagonalisable:

diag(1, ζ2, . . . , ζr) = T−1V T, T = [u1|u2| · · · |ur], T−1 =




wH

1

wH

2
...

wH

r



,

where u1 = u is the preconsistency vector, and wi, ui, for i = 1, . . . , r are respectively

the left and right eigenvectors of V corresponding to eigenvalues ζi. (Note that we do

not necessarily have that w1 = w).

Suppose that the method is first-order parasitism-free. It follows from consistency

and the parasitism-free condition (2.16) that

wH

i BUui =




1 for i = 1,

0 for i = 2, . . . , r.
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Thus, letting Tr denote the trace of a matrix, we have

1 =
r∑

i=1

wH

i BUui
1

ζi
= Tr(T−1BUT (T−1V −1T )) = Tr(BUV −1) = Tr(UV −1B).

Now, using symmetry condition A+ PAP = UV −1B, we obtain

1 = Tr(UV −1B) = Tr(A+ PAP ) = 2 Tr(A),

and it follows that Tr(A) = 1
2 .

Suppose now that the method is also explicit. Then, the stage matrix A must be

strictly lower triangular (or strictly upper triangular after a permutation of the stages).

Thus, we necessarily have Tr(A) = 0 and we arrive at a contradiction.

While we cannot have completely explicit, parasitism-free, symmetric GLMs, it is

possible to construct methods that only have one implicit stage, e.g. consider the

following 4th order GLM: 


0 0 0 1 1
1
2

1
2 0 1 −2

3
2

1
2 0 1 −2

2
3

1
6

1
6 1 0

2
3

1
6

1
6 0 −1



. (2.26)

This method is (L,P )-symmetric with

L =

[
1 0

0 −1

]
, P =



1 0 0

0 0 1

0 1 0


 .

2.6 Symplecticity

Consider a Hamiltonian IVP of the form (2.2). Letting y = [pT , qT ]T ∈ X, we may

alternatively express (2.2) as

dy

dt
= J−1∇H(y) =: f(y), y(0) = y0, t ∈ [T,−T ], J =

[
0 Id

−Id 0

]
,

where the Hamiltonian H : X → R is assumed to be twice-differentiable. (Here, we

note that X = R
2d, d ∈ N.)

In 1899, Poincaré [47] made the important discovery that the flow map ϕt of a

Hamiltonian IVP is a symplectic transformation. That is, for a bilinear map of the
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Figure 2-2: Demonstration of symplecticity of the flow map for the simple pendulum problem
(2.15). (Here, the exact flow has been approximated using the symplectic Euler method with
h≪ 1).

form

ω(ξ, η) = ξTJη, ξ, η ∈ R
2d,

then

ω(ϕ′
t(y0)ξ, ϕ

′
t(y0)η) = ω(ξ, η),

where ′ here denotes differentiation with respect to y0.

Definition 2.45 ([36, p. 183]). A differentiable map g : U → R
2d, where U ⊂ R

2d is

an open set, is called symplectic if the Jacobian matrix g′(y) is everywhere symplectic,

i.e.

g′(y)TJg′(y) = J, or ω(g′(y)ξ, g′(y)η) = ω(ξ, η).

Example 2.46. Consider the simple pendulum problem (2.15). Here, d = 1 and the

bilinear map ω(ξ, η) represents the area of a parallelogram. Thus, symplecticity of the

flow map implies that it is area-preserving. In Figure 2-2, we demonstrate this property

by evolving a set of initial data forward in time. Here, the initial data takes the form of

a cat’s face and evolution occurs in the clockwise direction. While each face undergoes

some distortion, the enclosed area remains constant.

⋄
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2.6.1 Symplectic numerical methods

As an introduction to symplectic numerical methods, we consider the class of OSMs.

Definition 2.47. A one-step method denoted by the map Rh : X → X is called

symplectic if

(R′
h(y0))

TJR′
h(y0) = J, y0 ∈ X,

where ′ denotes differentiation with respect to y0.

Example 2.48. Consider the forward Euler method Rh(y0) = y0 + hf(y0) applied to

the simple pendulum problem (2.15). The method is non-symplectic since

(R′
h(y0))

TJR′
h(y0) = J + h

{
(f ′(y0))

TJ + Jf ′(y0)
}
+ h2(f ′(y0))

TJf ′(y0),

=

[
0 1

−1 0

]
+ h

{[
−1 0

0 − cos(q)

]
+

[
1 0

0 cos(q)

]}

+ h2

[
0 cos(q)

− cos(q) 0

]
,

=

[
0 1

−1 0

]
+ h2

[
0 cos(q)

− cos(q) 0

]
.

To demonstrate the non-symplecticity of the method, we again consider the evo-

lution of a set of initial data in phase space, as was performed in Example 2.46. The

result of this experiment, when using a time-step h = π/12, is given in Figure 2-3 and

clearly shows each face increasing in size, indicating a lack of area-preservation.

⋄

For multivalue methods, there exist various definitions for symplecticity. For exam-

ple, we might call a method symplectic if its UOSM is also symplectic. This approach

was considered by Tang [60] who has shown that the UOSM of a LMM (with inputs

approximating the solution) cannot be symplectic. Closely related studies have been

performed on GLMs [14],[36, p. 612], where it has been shown that methods can only

be symplectic if they are equivalent to OSMs.

Alternatively, we can instead consider a generalisation of Definition 2.45 to Xr.

This is known as G-symplecticity.
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Figure 2-3: Demonstration of non-symplecticity of the Euler method for the simple pendulum
problem (2.15).

Definition 2.49. A GLM denoted by the map Mh : Xr → Xr is G-symplectic if there

exists a symmetric, non-singular matrix G ∈ C
r×r such that

(M′
h(y

[0]))H(G⊗ J)M′
h(y

[0]) = G⊗ J, y[0] ∈ Xr,

where ′ denotes differentiation with respect to y[0].

Interestingly, it can be shown that the UOSM of a G-symplectic GLM is conjugate-

symplectic [24]. In other words, there exists, as a formal B-series, an invertible trans-

formation χh : X → X such that the composite map χ−1
h ◦Φh◦χh is symplectic. This

result suggests that with the correct inputs to the method, i.e. Sh(y0) 7→ Sh◦χh(y0),

the overall behaviour of the method will be symplectic. However, since χh is expressed

as a formal series, a practical implementation of this map cannot be achieved.

Other notable results concerning G-symplecticity are that of Eirola and Sanz-Serna

[26] where it was shown that every irreducible, symmetric LMM is also G-symplectic,

and Hairer [34] where the UOSM of a G-symplectic LMMs was shown to be conjugate-

symplectic.

2.6.2 Algebraic conditions for G-symplecticity

The approach we take here in deriving conditions for a G-symplectic GLM is based

on the work of Burrage and Butcher 1979 [3], and will require the use of the following

result.
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Lemma 2.50. Consider a Hamiltonian IVP where H(y) is assumed to be twice differ-

entiable. For all diagonal matrices D ∈ R
s×s, the following holds

(D ⊗ J)∇F (Y ) = −(∇F (Y ))T (D ⊗ J),

where ∇F (Y ) = diag(f ′(Y1), . . . , f ′(Ys)) is a block-diagonal matrix with Yi ∈ X, for

i = 1, . . . , s.

Proof. Since the Hessian of a scalar field is symmetric and JT = −J , we find

Jf ′(y) = JJ−1∇2H(y) = ∇2H(y) = (∇2H(y))TJ−TJT = −(f ′(y))TJ.

Now, we observe

(D ⊗ J)∇F (Y ) =




D11Jf
′(Y1)

...

DssJf
′(Ys)


 =




−(f ′(Y1))T (D11J)
...

−(f ′(Ys))T (DssJ)


 = −(∇F )T (Y )(D ⊗ J).

Theorem 2.51. Consider a GLM with coefficient matrices (A,U,B, V ). The method

is G-symplectic if there exists a symmetric, non-singular matrix G ∈ C
r×r and a non-

singular, diagonal matrix D ∈ R
s×s, such that

DA+ATD = BHGB, (2.27)

DU = BHGV, (2.28)

G = V HGV. (2.29)

Proof. First note that the Fréchet derivative of Mh(y
[0]) is found by differentiation

with respect to y[0], i.e.

M′
h(y

[0]) = V + hB∇F (Y )
∂Y

∂y[0]
,

∂Y

∂y[0]
= hA∇F (Y )

∂Y

∂y[0]
+ U

∂y[0]

∂y[0]
,

where each coefficient matrix implicitly multiplies IX in a Kronecker product.

Now, we observe that the product

(M′
h(y

[0]))H(G⊗ J)M′
h(y

[0]) = T1 + hT2 + h2T3,
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where

T1 = V H(G⊗ J)V,

T2 =

(
∂Y

∂y[0]

)T

(∇F (Y ))TBH(G⊗ J)V + V H(G⊗ J)B∇F (Y )
∂Y

∂y[0]
,

T3 =

(
∂Y

∂y[0]

)T

(∇F (Y ))TBH(G⊗ J)B∇F (Y )
∂Y

∂y[0]
.

Using the properties of the Kronecker product and introducing ∂y[0]

∂y[0]
= IXr into the

expression for T2, we find

T1 = V HGV ⊗ J,

T2 =

(
∂Y

∂y[0]

)T

(∇F (Y ))T (BHGV ⊗ J)
∂y[0]

∂y[0]
+

(
∂y[0]

∂y[0]

)T

(V HGB ⊗ J)∇F (Y )
∂Y

∂y[0]
,

T3 =

(
∂Y

∂y[0]

)T

(∇F (Y ))T (BHGB ⊗ J)∇F (Y )
∂Y

∂y[0]
,

and after applying the G-symplectic conditions we obtain

T1 = G⊗ J,

T2 =

(
∂Y

∂y[0]

)T

(∇F (Y ))T (DU ⊗ J)
∂y[0]

∂y[0]
+

(
∂y[0]

∂y[0]

)T

(UHD ⊗ J)∇F (Y )
∂Y

∂y[0]
,

T3 =

(
∂Y

∂y[0]

)T

(∇F (Y ))T ((DA+ATD)⊗ J)∇F (Y )
∂Y

∂y[0]
.

Now, in the expression for the Fréchet derivative, we multiply ∂Y
∂y[0]

by (D ⊗ J) and

re-arrange for (DU ⊗ J)∂y
[0]

∂y[0]
, to deduce that

T2 =

(
∂Y

∂y[0]

)T

(∇F (Y ))T (D ⊗ J)
∂Y

∂y[0]
+

(
∂Y

∂y[0]

)T

(D ⊗ J)∇F (Y )
∂Y

∂y[0]
− hT3.

After an application of Lemma 2.50, it follows that T2 = −hT3. Thus,

(M′
h(y

[0]))H(G⊗ J)M′
h(y

[0]) = T1 = G⊗ J,

and the method is G-symplectic by Definition 2.49.
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Example 2.52. Recall the coefficient matrices of the Leapfrog method (2.4):

A = 0, U =
[
0 1

]
, B =

[
0

2

]
, V =

[
0 1

1 0

]
.

If we choose

D = 2 G =

[
0 1

1 0

]
,

then we can see that the method is G-symplectic:

DA+ATD −BHGB = 0 + 0−
[
0 2

] [0 1

1 0

][
0

2

]
= 0,

DU −BHGV =
[
0 2

]
−
[
0 2

] [0 1

1 0

][
0 1

1 0

]
=
[
0 0

]
,

G− V HGV =

[
0 1

1 0

]
−
[
0 1

1 0

][
0 1

1 0

] [
0 1

1 0

]
=

[
0 0

0 0

]
.

It can also be verified that GLM (2.8) is G-symplectic for the choice

D =

[
1
2 0

0 1
2

]
, G =

[
1 0

0 3+2
√
3

3

]
.

⋄

Example 2.53. From the GLM G-symplectic conditions, we can derive the symplectic

conditions for an RKM. Since r = 1, we have that G = 1, V = 1 and U = 1. It follows

that D = diag(B), and we are then left to satisfy

diag(B)A+ATdiag(B) = BTB.

This agrees with the standard symplectic condition (see e.g. [36, p. 192]).

⋄

2.6.3 Non-existence of explicit, parasitism-free methods

As was the case with symmetric methods, we also have a non-existence result on ex-

plicit, parasitism-free, G-symplectic GLMs:

Theorem 2.54. Consider a consistent, G-symplectic GLM with V having distinct

eigenvalues. Then, the method cannot be both first-order parasitism-free and explicit.
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Proof. The proof is similar to that given for symmetric methods: Firstly we note that

G-symplectic condition (2.29) implies that V is invertible. Now, we assume the method

is first-order parasitism-free. As in the proof of Theorem 2.44, we find

1 = Tr(UV −1B).

Combining G-symplectic conditions (2.27) and (2.28), we obtain

1 = Tr(UV −1B) = Tr(A+D−1ATD) = 2Tr(A),

and it follows that Tr(A) = 1
2 . Now, suppose the method is also explicit. Here, we

must have Tr(A) = 0, and we arrive at a contradiction.

Similar again to symmetric methods, it is possible to construct G-symplectic GLMs

that are parasitism-free and possess only a single implicit stage. For example, the

following method given in [17] is G-symplectic, parasitism-free and 4th order:




0 0 0 1 1
2
3 0 0 1 −1
2
5 − 3

10
1
2 1 −1

5
1
3 −3

8
25
24 1 0

1
3

3
8 − 5

24 0 −1



.



Chapter 3
Theoretical toolkit

B-series analysis is a fundamental theoretical tool used to understand various prop-

erties of GLMs. For example, it is used to a determine a method’s order, long-time

stability behaviour, UOSM and ideal starting method (see e.g. [33, Ch. III]). It is

also an important component in backward error analysis which has been used to study

parasitism in multivalue methods [35, 23][36, Ch. XV].

In the first half of this chapter, we use ideas from B-series analysis to develop a new

power series, that we call a derivative B-series, for the study of derivatives of GLMs,

i.e. allowing for a series representation of M′
h(y)v, v ∈ Xr. These objects naturally

arise in perturbation analysis, and in the analysis of parasitism. Thus, in the second

half of this chapter, we present a new a priori theory of parasitism as a complementary

approach to backward error analysis. This yields a framework that is used to bound the

parasitic components of a GLM, and to derive higher-order parasitism-free conditions

on the coefficients of a method.

3.1 B-series and rooted trees

Earlier in section 2.2, we gave a basic introduction to B-series and the set of rooted

trees. Here, we develop the material further by discussing some of the elementary and

advanced operations that are performed on these objects.

46
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3.1.1 Tree operations

Recall that the set of rooted trees T is defined recursively as follows:

let τ = ∈ T,

then also τ = [τ1, . . . , τm] ∈ T, where τ1, . . . , τm ∈ T.

Definition 3.1 (Butcher product). The Butcher product of two trees is defined as

v ◦ ∅ = v,

◦ v = [v],

u ◦ v = [u1, . . . , um, v], where u = [u1, . . . , um].

Definition 3.2 (Pruning). The pruning operation is defined as

u \ ∅ = u,

u \ u = ∅,
u \ v = [u1, . . . , um], where u = [u1, . . . , um, v].

The Butcher product can be applied to any pair of rooted trees. Whereas, pruning

of a tree u is only valid if there exists a ũ such that u = ũ ◦ v, i.e.

u \ v = (ũ ◦ v) \ v = ũ.

As neither operation is associative nor commutative, expressions involving multiple

product or pruning operations should be evaluated from left to right, e.g.

u ◦ v1 ◦ v2 ◦ · · · ◦ vm = (((u ◦ v1) ◦ v2) ◦ · · · ) ◦ vm,
u \ v1 \ v2 \ · · · \ vm = (((u \ v1) \ v2) \ · · · ) \ vm.

Note here that, while the operations are not commutative, a permutation of the

v1, . . . , vm in the above expressions does not affect the final tree. For example, let

u = , v1 = and v2 = . Then,

u ◦ v1 ◦ v2 = ◦ ◦ = ◦ = = ◦ = ◦ ◦ = u ◦ v2 ◦ v1.

See Table 3.1 for more examples of the Butcher pruning operations.
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u v u ◦ v u v u \ v

Table 3.1: Applications of the Butcher product and pruning on some trees of up to order 4.

3.1.2 B-series and its properties

Recall that a B-series, with coefficients given by a : T ∪ {∅} → C, is written as

B(a, y) = a(∅)y +
∑

τ∈T

h|τ |

σ(τ)
a(τ)F (τ)(y),

where F (τ), σ(τ) respectively denote the elementary differential and symmetry coeffi-

cient corresponding to tree τ . As shown below, a B-series is linear in its first argument.

Lemma 3.3 (Linearity). A B-series B(a, y) is linear in its first argument.

Proof. Let c1, c2 ∈ R and a1, a2, a3 : T ∪ {∅} → C where a3(τ) := c1a1(τ) + c2a2(τ).

Then,

B(a3, y) = a3(∅)y +
∑

τ∈T

h|τ |

σ(τ)
a3(τ)F (τ)(y)

= c1a1(∅) + c2a2(∅) +
∑

τ∈T

h|τ |

σ(τ)
(c1a1(τ) + c2a2(τ))F (τ)(y)

= c1a1(∅) + c1
∑

τ∈T

h|τ |

σ(τ)
a1(τ)F (τ)(y) + c2a2(∅) + c2

∑

τ∈T

h|τ |

σ(τ)
a2(τ)F (τ)(y)

= c1B(a1, y) + c2B(a2, y).

While the second argument is non-linear, a substitution of the form B(a,B(b, y))

will yield another B-series (see e.g. [36, pp. 61–64]). This is known as composition and

is based on the following result:
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Lemma 3.4 ([36, pp. 57–58]). Let a : T ∪ {∅} → C be a mapping satisfying a(∅) = 1.

Then,

hf(B(a, y)) = B(a′, y),

where a′(∅) = 0, a′( ) = 1 and

a′(τ) = a(τ1) · · · a(τm), τ = [τ1, . . . , τm].

Proof. It follows from a(∅) = 1, that B(a, y) = y + O(h). Thus, one can perform a

Taylor series expansion of hf(B(a, y)) about y:

hf(B(a, y)) = h
∑

m≥0

1

m!
f (m)(y)(B(a, y)− y)m.

Now, since f (m)(y) is an m-linear map, we can express the term f (m)(y)(B(a, y)− y)m

as a sum of elementary differentials, i.e.

f (m)(B(a, y)−y)m =
∑

τ1∈T
· · ·

∑

τm∈T

h|τ1|+···+|τm|

σ(τ1) · · · σ(τm)
a(τ1) · · · a(τm)f (m)(F (τ1), . . . , F (τm)),

where we have suppressed the y arguments. Using the definitions of the symmetry

coefficients and the a′(τ), we simplify this expression to

f (m)(B(a, y)− y)m =
∑

τ1∈T
· · ·

∑

τm∈T

h|τ |−1

σ(τ)
µ1! · · · µl!a′(τ)F (τ),

where τ = [τ1, . . . , τm] and the µj count equal trees among τ1, . . . , τm. Returning to

the expansion, we find

hf(B(a, y)) =
∑

m≥0

∑

τ1∈T
· · ·

∑

τm∈T

h|τ |

σ(τ)

µ1! · · ·µl!
m!

a′(τ)F (τ)(y).

Finally, we note that there are
( m
µ1,µ2,...,µl

)
possibilities of expressing the tree τ in the

form τ = [τ1, . . . , τm]. Thus,

hf(B(a, y)) =
∑

τ∈T

h|τ |

σ(τ)
a′(τ)F (τ)(y) = B(a′, y).
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There is a formula available for computing the coefficients of a B-series composition

(see [36, p.62]). However, in Chapter 4, we demonstrate that the above lemma is

sufficient for the practical implementation. Thus, additional results on composition are

regarded as unnecessary.

3.1.3 Extension to vector B-series

Since GLMs act on the product space Xr, we will find it convenient to work with B-

series that also belong to this space. Consequently, a slight re-wording of the definition

of B-series is required to fit into this situation:

Definition 3.5 (Vector B-series). For a mapping a : T → C
r, a formal series of the

form

B(a, y) = a(∅)y +
∑

τ∈T

h|τ |

σ(τ)
a(τ)⊗ F (τ)(y),

is called a vector B-series.

Example 3.6. Recall from Section 2.1, that GLM (2.8) requires starting values of the

form

y[0] =

[
y0

h2
√
3

12
d2y
dt2

(0) − h4
(√

3
108

d4y
dt4

(0)− 9+5
√
3

216 f ′(y0)
d3y
dt3

(0)
)
]
.

Before expressing this input as a vector B-series, we must first re-write the second

component in terms of elementary differentials:

h2
√
3

12
F
( )

− h4
√
3

108
F
( )

− h4
√
3

36
F

( )
+
h4(3 +

√
3)

72

(
F

( )
+ F

( ))
.

Now, with both components of y[0] taking the form of B-series, we see that the vector

a-coefficients are given by

a(∅) =
[
1

0

]
, a

( )
=

[
0√
3

12

]
, a

( )
=

[
0

−
√
3

18

]
,

a

( )
=

[
0

−
√
3

36

]
, a

( )
=

[
0

3+
√
3

36

]
, a

( )
=

[
0

3+
√
3

72

]
.

⋄
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3.2 Derivative B-series and derivative trees

In this section, we introduce a formal series that will be called a derivative B-series, or

DB-series for short. As the name suggests, this series can describe the differentiated

form of a B-series, e.g. the object ∇yB(a, y) · v, for some v ∈ X, is a DB-series.

3.2.1 Derivative trees

Following the approach used in constructing B-series, we require each term of a DB-

series to be associated with a tree. To avoid confusion with the set of rooted trees T ,

we introduce the set of derivative trees to be associated with DB-series.

Definition 3.7 (Derivative trees). Consider a tree u ∈ T ∪ {∅} written as u =

[u1, . . . , um]. Then, the set of derivative trees corresponding to u are given by the set

Dτ (u) :=
⋃

v1∈ch(u)

⋃

v2∈ch(v1)

· · ·
⋃

vk∈ch(vk−1)

(u\ v1) ◦ ((v1\ v2) ◦ (· · · (vk−1\ vk) ◦ )),

where ch(u) denotes the children of u, i.e. ch(u) = {∅, u1, . . . , um}, and k ∈ N denotes

the height of the root of u. The set of all derivative trees, DT , is then defined as

DT := {Dτ (u)|∀ u ∈ T ∪ {∅}}.

Definition 3.8 (Order). The order of a derivative tree dτ ∈ DT , denoted |dτ |, is
given by the total number of nodes.

Remark 3.9. The construction of Dτ (u) may also be performed recursively:

Dτ (∅) := { },
Dτ ( ) := {[ ]},
Dτ (u) := {u ◦ } ∪

⋃

du1∈Dτ (u1)

{(u \ u1) ◦ du1} ∪ · · · ∪
⋃

dum∈Dτ (um)

{(u \ um) ◦ dum}.

Example 3.10. Consider computing the derivative trees associated with u = :

Dτ ( ) =
{
( \ ∅) ◦

}
∪
{
( \ ) ◦ (( \∅) ◦ )

}
∪
{
( \ ) ◦ (( \∅) ◦ )

}
,

=
{ }

∪
{

◦
}
,

=

{
,

}
.

⋄



CHAPTER 3. THEORETICAL TOOLKIT 52

In less formal language, derivative trees are found by grafting a node to a node

of a given tree τ . Repeating this procedure for all the nodes of τ , and again for all

τ ∈ T , we obtain the complete set of derivative trees. Each tree will take the form

dτ = [τ1, . . . , τm−1, dτ0], for some τ1, . . . , τm−1 ∈ T, dτ0 ∈ DT,

equally, dτ = τ ◦ dτ0, for τ = [τ1, . . . , τm−1].

The construction process described above implies that each derivative tree is associ-

ated with a single rooted tree. This tree can be computed by the mapping oτ : DT → T ,

defined recursively as

oτ ( ) = ∅,
oτ (dτ) = τ ◦ oτ (dτ0), for dτ = τ ◦ dτ0.

Example 3.11. Consider computing the original tree corresponding to :

oτ

( )
= ◦ oτ

( )
= ◦

(
◦ oτ ( )

)
= ◦ = .

⋄

Conversely, a single rooted tree can be associated with various derivative trees, i.e.

those belonging to the set Dτ (τ). Associated with each dτ ∈ Dτ (τ) is a multiplicity -

the number of ways dτ can be obtained from τ .

Definition 3.12 (Multiplicity). The multiplicity of a derivative tree dτ ∈ DT is

given by the mapping ν : DT → R, defined recursively by

ν( ) = 1,

ν(dτ) = µ(oτ (dτ0), oτ (dτ))ν(dτ0), for dτ = [τ1, . . . , τm−1, dτ0],

where µ(τj , τ) counts the occurrence of τj in τ = [τ1, . . . , τm] with µ(∅, ·) = 1.

Example 3.13. Consider the computation of ν

( )
:

ν

( )
= µ

(
,
)
ν
( )

= µ
(
,
)
µ (∅, ) ν ( ) = 2 · 1 · 1 = 2.

This arises from the equivalence of the trees

and .
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|dτ | dτ -
string

dτ oτ (dτ) J(dτ)(y, v) ν(dτ) Lem. 3.16

0 ∅ v 1 irreducible

1 [ ] f ′(y)v 1 irreducible

2 [ , ] f ′′(y)(f(y), v) 1 irreducible

2 [[ ]] f ′(y)f ′(y)v 1 ⊗

3 [ , , ] f ′′′(y)(f(y), f(y), v) 1 irreducible

3 [ , [ ]] f ′′(y)(f(y), f ′(y)v) 2 ⊗

3 [[ ], ] f ′′(y)(f ′(y)f(y), v) 1 irreducible

3 [[ , ]] f ′(y)f ′′(y)(f(y), v) 1 ⊗

3 [[[ ]]] f ′(y)f ′(y)f ′(y)v 1 ⊗ ⊗

Table 3.2: Examples of derivative trees up to order 3.

⋄

Examples of derivative trees and the various quantities associated with each are

given in Table 3.2 for trees up to order 3.

3.2.2 Operations and properties of derivative trees

The purpose of the node of a derivative tree is to act as a placeholder, where another

derivative tree or rooted tree may be inserted at a later time. This substitution property

is described by the following tree operation.

Definition 3.14 (Substitution). Let du ∈ DT and v be either a derivative or rooted

tree. Then, the substitution operation is defined recursively as

⊗ v = v,

du⊗ v = (du \ du0) ◦ (du0 ⊗ v), for du = [u1, . . . , um−1, du0].

The substitution operation is not commutative, but it is associative (for multiple

substitutions of derivative trees). A simple example is given below:

(
⊗

)
⊗ = ⊗ = = ⊗ = ⊗

(
⊗

)
.
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This example also demonstrates that higher order derivative trees can be formed after

a substitution of lower order trees. This observation leads to the following definition.

Definition 3.15 (Irreducible derivative trees). A derivative tree dτ ∈ DT is irre-

ducible if dτ = τ ◦ , for some τ ∈ T ∪ {∅}. Otherwise, it is reducible.

Lemma 3.16. Let du ∈ DT be reducible. Then, there exists a unique decomposition

du = du1 ⊗ du2 ⊗ · · · ⊗ duk, for some k ≤ |du|,

where each du1, du2, . . . , duk ∈ DT is irreducible.

Proof. Writing du = u(1)◦du(1)0 for some u(1) ∈ T ∪{∅}, du(1)0 ∈ DT\{ }, then it follows

from the definition of the substitution operation that

du = u(1) ◦ du(1)0 = (u(1) ◦ x)⊗ du
(1)
0 , where |du(1)0 | = |du| − |u(1)| < |du|.

By definition, u(1) ◦ x =: du1 is an irreducible derivative tree. Thus, du = du1 ⊗ du
(1)
0 .

Now, if du
(1)
0 is also irreducible then we obtain the desired result. Assuming that

du
(1)
0 = u(2) ◦ du(2)0 is reducible, we re-apply the above argument to find

du = du1 ⊗ du2 ⊗ du
(2)
0 , where |du(2)0 | = |du(1)0 | − |u(2)| < |du(1)0 |.

Again, if du
(1)
0 is irreducible we are finished. Otherwise, we continue repeating the above

argument until du
(k)
0 is irreducible. Since 0 ≤ |du(k+1)

0 | < |du(k)0 |, it follows that there

exists some k ≤ |du| such that du
(k)
0 will be irreducible. Thus, du = du1⊗du2⊗· · ·⊗duk.

For uniqueness, suppose there exist irreducible trees dv1, . . . , dvl, l ≤ k such that

du1 ⊗ · · ·⊗ duk = dv1 ⊗ · · ·⊗ dvl, and there exists an i ∈ {1, . . . , l} such that dui 6= dvi.

Then, writing d̃u = du2 ⊗ · · · ⊗ duk and d̃v = dv2 ⊗ · · · ⊗ dvl, we observe that

du1 ⊗ d̃u = (du1\ ) ◦ d̃u = (dv1\ ) ◦ d̃v = dv1 ⊗ d̃v.

Now, suppose we prune d̃u from both sides of the above equation. This leaves a single

rooted tree on the LHS, and it follows that the RHS operation must also leave a single

rooted tree, i.e. it must remove d̃v from the RHS. This can only occur if d̃u = d̃v.

Comparing the remaining terms, we deduce that du1 = dv1.

Recursively applying the above argument on d̃u = d̃v, we conclude that duj = dvj

for j = 1, . . . , l. Now, if l = k, then we arrive at a contradiction since there is no

i ∈ {1, . . . , k} such that dui 6= dvi.
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If l < k, then we also arrive at a contradiction since

|dv| = |dv1⊗· · ·⊗dvl| < |dv1⊗· · ·⊗dvl|+ |dul+1⊗· · ·⊗duk| = |du1⊗· · ·⊗duk| = |du|,

which implies that du1 ⊗ · · · ⊗ duk 6= dv1 ⊗ · · · ⊗ dvl.

3.2.3 Derivative B-series and its properties

With the set of derivative trees now defined, we move on to consider derivatives of

B-series. A key component of this will be the elementary Jacobian; an object related

to the differentiated form of an elementary differential F (τ)(y).

Definition 3.17 (Elementary Jacobian). For a tree dτ ∈ DT , the elementary Ja-

cobian is a mapping J(dτ) : (X,X) → X, defined recursively by

J( )(y, v) = v,

J(dτ)(y, v) = f (m)(y)(F (τ1)(y), . . . , F (τm−1)(y), J(dτ0)(y, v)),

for dτ = [τ1, . . . , τm−1, dτ0].

An elementary Jacobian without a fixed v-argument is essentially a square matrix

with elements depending on y. Consequently, a product of elementary Jacobians can

be written as

J(dτ1)(y, J(dτ2)(y, v)) = J(dτ1)(y, ·)J(dτ2)(y, ·)v.

In other words, an elementary Jacobian can be seen as a linear operator. Unless

further clarification is required, we hereafter adopt the notation J(dτ) = J(dτ)(y, ·)
and F (τ) = F (τ)(y), i.e. omitting all arguments.

Lemma 3.18. The elementary Jacobian of a reducible tree dτ ∈ DT , can be written

as

J(dτ) = J(dτ1)J(dτ2) · · · J(dτk), where dτ = dτ1 ⊗ dτ2 ⊗ · · · dτk.

Proof. From Lemma 3.16, we know dτ1, . . . , dτk are all irreducible. Now, we write

dτ = dτ1 ⊗ du2 where dτ1 = [τ1, . . . , τm−1, ], du2 = dτ2 ⊗ · · · ⊗ dτk. Then, from the

definitions of the substitution operation and the elementary Jacobian,

J(dτ1 ⊗ du2) = J((dτ1\ ) ◦ ( ⊗ du2)) = J((dτ1\ ) ◦ du2),
= f (m)(F (τ1), . . . , F (τm−1), J(du2)) = f (m)(F (τ1), . . . , F (τm−1), ·)J(du2),
= J(τ ◦ )J(du2) = J(dτ1)J(du2).
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If k = 2, then du2 = dτ2 is irreducible and we are finished. Otherwise, du2 is trivially

reducible, and we can reapply the above argument k − 2 more times until we find

duk = dτk, at which point we obtain the desired result.

A simple application of Lemmas 3.16 and 3.18 is given below:

J

( )
= J

(
⊗

)
= J( )J( ) = f ′f ′′(f, ·).

Here, we see that the non-commutativity of the substitution operator is important as

it ensures the non-commutativity of elementary Jacobian products.

Lemma 3.19. Consider the tree τ = du⊗ v, for some du ∈ DT\{ }, v ∈ T . Then,

F (τ) = J(du)F (v).

Proof. First, let us assume that du is irreducible. Then, for du = u ◦ where u =

[u1, . . . , um−1],

J(du)F (v) = f (m)(F (u1), . . . , F (um−1), ·)F (v),
= f (m)(F (u1), . . . , F (um−1), F (v)) = F (u ◦ v).

Now, by the definition of the substitution operator: du ⊗ v = (du\ ) ◦ ( ⊗ v) =

(du\ ) ◦ v = u ◦ v. Thus, F (u ◦ v) = F (du⊗ v) = F (τ).

Suppose now that du is reducible. Then, applying Lemma 3.18, we replace J(du) in

the above equation with J(du1)J(du2) · · · J(duk) and apply the same argument k-times

to find F (du1 ⊗ · · · ⊗ duk ⊗ v) = F (du⊗ v) = F (τ).

Let us now consider more general combinations of elementary Jacobians, and in

particular define the derivative B-series.

Definition 3.20. For a mapping a : DT → C, a formal series of the form

DB(a, y, v) =
∑

dτ∈DT

h|dτ |a(dτ)J(dτ)(y, v),

is called a derivative B-series, or more compactly, a DB-series.

Lemma 3.21. The first and third arguments of a DB-series DB(a, y, v) are linear.

Proof. The method of proof for linearity of the first argument is the same as that given

for Lemma 3.3. Linearity of the elementary Jacobian implies linearity in the third

argument.
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As a consequence of linearity in the third argument, we can consider the product

of a DB-series with either another DB-series or even a B-series.

Theorem 3.22. The product of two DB-series is again a DB-series. That is, for the

mappings a, b, c : DT → C, we have

DB(c, y, v) = DB(a, y,DB(b, y, v)), where c(dτ) :=
∑

du⊗dv=dτ

a(du)b(dv).

Proof. From the definition of a DB-series:

DB(a, y,DB(b, y, v)) =
∑

du∈DT

h|du|a(du)J(du)DB(b, y, v),

=
∑

du∈DT

h|du|a(du)J(du)
∑

dv∈DT

h|dv|b(dv)J(dv).

Using linearity in the third argument and applying Lemma 3.18:

DB(a, y,DB(b, y, v)) =
∑

du∈DT

∑

dv∈DT

h|du|+|dv|a(du)b(dv)J(du)J(dv),

=
∑

du∈DT

∑

dv∈DT

h|du⊗dv|a(du)b(dv)J(du ⊗ dv).

Making the substitution dτ = du⊗ dv, then

DB(a, y,DB(b, y, v)) =
∑

dτ∈DT

h|dτ |c(dτ)J(dτ) = DB(c, y, v).

Theorem 3.23. The product of a DB-series and B-series is a B-series. That is, for

the mappings a : DT → C, b, c : T → C, where b(∅) = 0, we have

B(c, y) = DB(a, y,B(b, y)), where c(∅) := 0,
c(τ)

σ(τ)
:=
∑

du⊗v=τ

a(du)b(v)

σ(v)
.

Proof. The proof is similar to that given above: By linearity and Lemma 3.19,

DB(a, y,B(b, y)) =
∑

du∈DT

∑

v∈T
h|du|+|v|a(du)

b(v)

σ(v)
J(du)F (v),

=
∑

du∈DT

∑

v∈T
h|du⊗v| a(du)b(v)

σ(v)
F (du⊗ v).



CHAPTER 3. THEORETICAL TOOLKIT 58

|dτ | dτ c (dτ)

0 a ( ) b ( )

1 a ( ) b
( )

+ a
( )

b ( )

2 a ( ) b
( )

+ a
( )

b ( )

2 a ( ) b

( )
+ a

( )
b
( )

+ a

( )
b ( )

3 a ( ) b
( )

+ a
( )

b ( )

3 a ( ) b

( )
+ a

( )
b
( )

+ a

( )
b ( )

3 a ( ) b
( )

+ a
( )

b ( )

3 a ( ) b

( )
+ a

( )
b
( )

+ a

( )
b ( )

3 a ( ) b

( )
+ a

( )
b

( )
+ a

( )
b
( )

+ a

( )
b ( )

Table 3.3: Substitution formulae up to order 3 for two DB-series. (cf. Theorem 3.22).

Making the substitution τ = du⊗ v, then

DB(a, y,B(b, y)) =
∑

τ∈T

h|τ |

σ(τ)
c(τ)F (τ) = B(c, y).

Remark 3.24. The assumption b(∅) = 0 in the above theorem is important from both

an algebraic and physical perspective as it prevents the generation of terms such as

f ′(y)y, f ′′(y)(f(y), y), etc. These terms are not classified as elementary differentials

nor do they make any sort of physical sense.

Tree formulae for the product with DB-series up to order 3, and for the product

with B-series up to order 4 have been computed and are displayed respectively in Tables

3.3 and 3.4.

Now, we move onto the main result of this section: establishing the connection

between the derivative of a B-series and the DB-series itself.

Theorem 3.25. The derivative of a B-series is a DB-series. That is, for the mappings

a : T ∪ {∅} → C, b : DT → C. Then,

DB(b, y, ·) = ∇yB(a, y), for b(dτ) :=
a(oτ (dτ))

σ(oτ (dτ))
ν(dτ).
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|τ | τ c (τ) /σ (τ)

0 ∅ 0

1 a ( ) b ( ) /σ ( )

2 a ( ) b
( )

/σ
( )

+ a
( )

b ( ) /σ ( )

3 a ( ) b
( )

/σ
( )

+ a
( )

b ( ) /σ ( )

3 a ( ) b

( )
/σ

( )
+ a

( )
b
( )

/σ
( )

+ a

( )
b ( ) /σ ( )

4 a ( ) b
( )

/σ
( )

+ a
( )

b ( ) /σ ( )

4

a ( ) b

( )
/σ

( )
+ a

( )
b
( )

/σ
( )

+

a

( )
b ( ) /σ ( ) + a

( )
b ( ) /σ ( )

4

a ( ) b

( )
/σ

( )
+ a

( )
b
( )

/σ
( )

+

a

( )
b ( ) /σ ( )

4

a ( ) b

( )
/σ

( )
+ a

( )
b

( )
/σ

( )
+

a

( )
b
( )

/σ
( )

+ a

( )
b ( ) /σ ( )

Table 3.4: Substitution formulae up to order 4 for DB-series and B-series. (cf. Theorem 3.23).
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Proof. Let us first consider the differentiation of an elementary differential:

∇yF (τ) = ∇y(f
(m)(F (τ1), . . . , F (τm))),

= f (m+1)(F (τ1), . . . , F (τm), ·),

+

m∑

j=1

f (m)(F (τ1), . . . , F (τj−1), F (τj+1), . . . , F (τm), ·)∇yF (τj).

Recalling the definition of the elementary Jacobian, this can be written as

∇yF (τ) =
∑

u1∈ ch(τ)

J((τ\u1) ◦ )∇yF (u1).

Since ∇yF (∅) = IX and ∇yF ( ) = J( ) = f ′, it follows that the RHS is given as

∇yF (τ) =
∑

u1∈ ch(τ)

J((τ\u1) ◦ )
∑

u2∈ ch(u1)

J((u1\u2) ◦ ) · · ·
∑

uk−1∈ ch(uk)

J((uk\uk−1) ◦ ).

It now follows from Definition 3.7 and Lemma 3.18 that this sum can be compactly

written as

∇yF (τ) =
∑

dτ∈Dτ(τ)

ν(dτ)J(dτ).

Here, the multiplicity ν(dτ) accounts for the multiple occurrences the elementary Ja-

cobian J(dτ) that may have arisen in the previous summation.

Now, we differentiate the B-series to find

∇yB(a, y) =
∑

τ∈T

h|τ |

σ(τ)
a(τ)∇yF (τ) =

∑

τ∈T

h|τ |

σ(τ)
a(τ)

∑

dτ∈Dτ(τ)

ν(dτ)J(dτ).

As each dτ is associated with exactly one τ , and |τ | = |oτ (dτ)| = |dτ |, we may re-write

the above as

∇yB(a, y) =
∑

dτ∈DT

h|dτ |b(dτ)J(dτ) = DB(b, y, ·),

as required.
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Example 3.26. At the beginning of Section 2.2, the derivative h3 d3y
dt3 was expressed

as a B-series:

h3
d3y

dt3
= h3f ′′(f, f) + h3f ′f ′f =: B(a, y),

where the corresponding B-series coefficients are

a (∅) = a ( ) = a
( )

= 0, a
( )

= 2, a

( )
= 1, a (τ) = 0, ∀ |τ | > 3.

Consider now the problem of computing h4 d
4y
dt4

as a B-series. Since

h4
d4y

dt4
= h

d

dt
B(a, y) = ∇yB(a, y) · hf,

the B-series can be obtained using the formulae for differentiation and product with a

B-series. Firstly, let us compute DB(b, y, ·) = ∇yB(a, y); the non-zero coefficients are

given below

b
( )

= a
( )

ν
( ) /

σ
( )

= 1, b

( )
= a

( )
ν

( )/
σ
( )

= 2,

b
( )

= a

( )
ν
( )/

σ

( )
= 1, b

( )
= a

( )
ν

( )/
σ

( )
= 1,

b

( )
= a

( )
ν

( )/
σ

( )
= 1.

Next, we compute the B-series B(c, y) = DB(b, y, hf(y)) using the product formulae

given in Table 3.4. The non-zero coefficients are given below

c
( ) /

σ
( )

= b
( )

= 1, c

( )/
σ

( )
= b

( )
+ b

( )
= 3,

c

( )/
σ

( )
= b

( )
= 1, c

( )/
σ

( )
= b

( )
= 1.

Thus, these coefficients tell us that h4 d4y
dt4

can be written as

h4
d4y

dt4
= h4f ′′′(f, f, f) + 3h4f ′′(f ′f, f) + h4f ′f ′′(f, f) + h4f ′f ′f ′f.

⋄
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3.2.4 Extension to matrix DB-series

Similar to vector B-series, it will be also be convenient to consider DB-coefficients that

map to C
m×n:

Definition 3.27 (Matrix DB-series). For a mapping a : DT → C
m×n, a formal

series of the form

DB(a, y, v) =
∑

dτ∈DT

h|dτ | (a(dτ)⊗ J(dτ)(y, ·)) v, v ∈ Xn,

is called a (m× n)-matrix DB-series.

All of the results in the previous sections extend straightforwardly to the matrix

formulation of a DB-series. For example, the product of an (m× n)-matrix DB-series

with an n-vector B-series yields an m-vector B-series.

3.3 A priori parasitism analysis

In this section, we shall focus our attention on developing an a priori analysis of

parasitism1. In particular, we shall address the following issues:

1. Modelling parasitism.

2. Bounding parasitic growth.

3. Deriving algebraic conditions that delay the onset of parasitism.

3.3.1 Modelling parasitism

The first problem to tackle in the modelling process is clarifying the definition for

parasitism. In Section 2.4, we loosely defined this as follows:

[Parasitism] describes the unacceptable growth of perturbations made to the

non-principal components of the method.

Here, we see that the interpretation of ‘perturbations’ is important as it will essentially

determine the type of model we consider. For example, if we are concerned with the

influence of rounding error on our numerical solution, then we assume perturbations

are small and arbitrary, and apply them to our solution at some time t = nh. Alterna-

tively, we might investigate the divergence of our numerical solution from some fixed

1Backward error analysis is used to obtain a posteriori bounds on the parasitic components of a
method by studying a modified differential equation, the solution of which exactly satisfies the method.
Here, we will consider a direct (a priori) approach that does not use the modified equation.
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trajectory. In which case, the perturbation would be taken as the initial difference

between trajectories at time t = 0.

Adopting the view that parasitism describes the divergence from some fixed tra-

jectory, we would like to consider how the numerical solution of a GLM diverges from

that which would be obtained using the underlying one-step method (UOSM). Recall

that the UOSM Φh satisfies

Mh◦S∗
h(y0) = S∗

h◦Φh(y0).

Then, in other words, we seek an understanding of how

||Mn
h◦Sh(y0)− S∗

h◦Φn
h(y0)||, and ||Fh◦Mn

h◦Sh(y0)− Φn
h(y0)||,

grow with increasing n. As the UOSM is a one-step method, it does not suffer from

parasitism. Thus, for as long as the GLM solution stays close to the UOSM solution,

it will also remain parasitism-free.

For this model, we take the initial perturbation to be the difference in starting

methods, i.e. δh(y0) := Sh(y0)− S∗
h(y0) where Sh denotes the starting method used in

practice. Since S∗
h exists as a formal series, δh(y0) is generally non-zero. Furthermore,

if the pair (Mh,Sh) is of order p, then it follows from Corollary 2.28 that δh(y0) =

O(hp+1); significantly larger than rounding error.

Let us now consider the outcome of introducing the above perturbation at time

t = 0: Writing O(δ2) := O(||δh(y0)||2), we have

Mn
h◦Sh(y0) = Mn

h(S∗
h(y0) + δh(y0)),

= Mn
h◦S∗

h(y0) + [Mn
h(S∗

h(y0))]
′δh(y0) +O(δ2),

= S∗
h◦Φn

h(y0) + [Mn
h(S∗

h(y0))]
′δh(y0) +O(δ2),

where ′ denotes a Fréchet derivative. Applying the chain rule, and using the notation

F ′
h,k := F ′

h(S∗
h◦Φk

h(y0)), and M ′
h,k := M′

h(S∗
h◦Φk

h(y0)), k ∈ N0,

we find

Mn
h◦Sh(y0) = S∗

h◦Φn
h(y0) +M ′

h,n−1M
′
h,n−2 · · ·M ′

h,0δh(y0) +O(δ2), (3.1)

Fh◦Mn
h◦Sh(y0) = Φn

h(y0) + F ′
h,kM

′
h,n−1M

′
h,n−2 · · ·M ′

h,0δh(y0) +O(δ2). (3.2)

Assuming terms of O(δ2) can be neglected, then this model attributes parasitism to
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the following product:

M ′
h,n−1M

′
h,n−2 · · ·M ′

h,0δh(y0). (3.3)

3.3.2 Derivative UOSMs

Having settled on an appropriate model for parasitism, we would now like to apply the

theory of derivative B-series to better understand the product (3.3). Let us begin by

introducing the concept of derivative UOSMs - the derivative analogue of the UOSM.

Definition 3.28. The map Ψh : (X,X) → X is called a derivative UOSM (DUOSM)

if

M′
h(S∗

h(y0))Sh(y0, v) = Sh(Φh(y0),Ψh(y0, v)), ∀ y0, v ∈ X, (3.4)

for some derivative starting method Sh : (X,X) → Xr.

Here, we remark that both of the maps Sh and Ψh are linear in their second argu-

ment. We also note that to leading order (3.4) is equivalent to finding an eigenpair of V .

Thus, in the case that V has distinct eigenvalues, there will be r distinct DUOSMs, i.e.

let (ζP , uP ) be an eigenpair of V , then ΨP
h (y0, ·) = ζP +O(h) and SP

h (y0, ·) = uP+O(h),

for P = 1, . . . , r.

Theorem 3.29. The derivative of the UOSM Φh, is a DUOSM, i.e.

Ψ
(1)
h (y0, v) := Φ′

h(y0)v, and S
(1)
h (y0, v) := (S∗

h(y0))
′ v, v ∈ X,

satisfy (3.4). Furthermore, for F
(1)
h (y0, ·) := F ′

h(S∗
h(y0)), then

F
(1)
h (y0, S

(1)
h (y0, v)) = v.

Proof. Differentiation of the UOSM condition (2.12) with respect to y0, and post-

multiplication by some v ∈ X yields

M′
h(S∗

h(y0)) (S∗
h(y0))

′ v = (S∗
h(Φh(y0)))

′Φ′
h(y0)v.

Defining Ψ
(1)
h (y0, v) := Φ′

h(y0)v and S
(1)
h (y0, v) := (S∗

h(y0))
′ v gives the first result.

Differentiation of Fh◦S∗
h(y0) = y0, with respect to y0, and post-multiplication by

some v ∈ X gives the second result.

The DUOSM of the above theorem shall be called the trivial DUOSM - that which

is associated with the principal component of the method. The existence of non-trivial

DUOSMs, i.e. those associated with the non-principal components of the method, is

considered in the following theorem.
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Theorem 3.30. Consider a consistent GLM Mh such that V possesses distinct eigen-

values. Then, for each mapping fP : DT → C
1×r, P ∈ {1, . . . r}, that defines the

(row-vector) DB-series

FP
h (y0, ·) := DB(fP , y0, ·) = wH

P +O(h), such that wH

PuP = 1,

where uP is the right-eigenvector of V corresponding to eigenvalue ζP , there exist a

unique ψP : DT → C that defines the DB-series

ΨP
h (y0, v) := DB(ψP , y0, v) = ζP v + hψP ( )J( )(y, v) + . . . ,

and a unique sP : DT → C
r that defines the (vector) DB-series

SP
h (y0, v) := DB(sP , y0, v) = uP v + hsP ( )⊗ J( )(y, v) + . . . ,

such that

M′
h(S∗

h(y0))S
P
h (y0, v) = SP

h (Φh(y0),Ψh(y0, v)),

FP
h (y0, S

P
h (y0, v)) = v,

hold for all v ∈ X, as formal power series in h.

Proof. The method of proof is similar to that applied to Theorem 2.27: Firstly, we

expand M′
h(S∗

h(y0)) about uy0 to obtain an (r× r)-matrix DB-series and SP
h (Φh(y0), ·)

about y0 to obtain an r-vector DB-series. Then, we perform a DB-series substitution

(cf. Theorem 3.22) such that we can evaluate the expression SP
h (Φh(y0),Ψh(y0, v)) −

M′
h(S∗

h(y0))S
P
h (y0, v) = 0 as an r-vector DB-series. Comparing the coefficients of

elementary Jacobians, and re-arranging such that only the highest order unknowns

appear on the LHS, we find

O(1) : (ζP Ir − V )uP = 0,

O(h) : (ζP Ir − V )sP ( ) + uPψP ( ) = BUuP ,

O(h2) : (ζP Ir − V )sP

( )
+ uPψP

( )
= BUsP ( ) +BAUuP − sP ( )ψP ( ),

O(h2) : (ζP Ir − V )sP ( ) + uPψP ( ) = BCUuP − ζP sP ( )φ( ),

...

where C := diag(c), c := US∗( ) + A1 and φ( ), S∗( ) respectively correspond to the

hf -coefficient of the UOSM Φh and the ideal starting method S∗
h.
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We do the same for FP
h (y0, S

P
h (y0, v)) − v = 0. Here, we need only apply the

substitution formula from Theorem 3.22 and re-arrange:

O(1) : wH

PuP = 1,

O(h) : wH

P sP ( ) = −fP ( )uP ,

O(h2) : wH

P sP

( )
= −fP ( )sP ( )− fP

( )
uP ,

O(h2) : wH

P sP ( ) = −fP ( )uP ,

...

As in the proof of Theorem 2.27, these comparisons generally lead to a system of

equations of the form

[
ζP Ir − V uP

wH

P 0

][
sP (dτ)

ψP (dτ)

]
=

[
G(dτ)

g(dτ)

]
, |dτ | ≥ 1,

where the RHS terms G(dτ) and g(dτ) depend on the known quantities sP (du), ψP (du)

for all du ∈ DT such that |du| < |dτ |.
Now, since the eigenvalues of V are distinct and wH

PuP = 1, each system is uniquely

solvable (by the ABCD Lemma [55]). Thus, the maps SP
h (y0, v) and ΨP

h (y0, v) deter-

mined by sP and ψP uniquely satisfy the DUOSM condition (3.4) and FP
h (y0, S

P
h (y0, v)) =

v, as required.

3.3.3 Decomposition of parasitism product

It is now our intention to make a connection between the parasitism product (3.3) and

DUOSMs by means of decomposition. An important part of this will be understanding

the structure of the perturbation δh(y0).

Theorem 3.31. Let the assumptions of Theorem 3.30 hold and consider the mappings

fP : DT → C
1×r, P = 1, . . . , r, that define the (row-vector) DB-series:

FP
h (y0, ·) := DB(fP , y0, ·) = wH

P +O(h), for P = 1, . . . , r,

where wH

P is chosen to be the left eigenvector of V corresponding to eigenvalue ζP .

Then, there exist unique B-series B(c1, y0), . . . , B(cr, y0) such that

δh(y0) =

r∑

P=1

SP
h (y0, B(cP , y0)). (3.5)
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Proof. It follows from Theorem 3.30 that for each FP
h , there exists a unique, formal,

SP
h that satisfies the DUOSM condition (3.4) and FP

h (y0, S
P
h (y0, v)) = v. Now, suppose

δh(y0) =
r∑

P=1

SP
h (y0, B(cP , y0)),

for some B-series B(c1, y0), . . . , B(cr, y0) as yet to be determined. Then, for P =

1, . . . , r, we have

FP
h (y0, δh(y0)) = FP

h (y0, S
(1)
h (y0, B(c1, y0))) + · · ·

+B(cP , y0) + · · ·+ FP
h (y0, S

(r)
h (y0, B(cr, y0))).

Recall that, to leading order, FP
h = wH

P and SP
h = uP , i.e. the left and right eigenvectors

of V . It then follows that

FP
h (y0, δh(y0)) = B(cP , y0) +O(h),

for P = 1, . . . , r. These r-many equations determine the following square system:

Writing F
(i)
h (y0, S

(j)
h (y0, v)) =: F

(i)
h S

(j)
h , and F

(i)
h (y0, δh(y0)) =: F

(i)
h δh(y0) we then have




IX F
(1)
h S

(2)
h · · · F

(1)
h S

(r)
h

F
(2)
h S

(1)
h IX · · · F

(2)
h S

(r)
h

...
...

. . .
...

F
(r)
h S

(1)
h F

(r)
h S

(2)
h · · · IX







B(c1, y0)

B(c2, y0)
...

B(cr, y0)



=




F
(1)
h δh(y0)

F
(2)
h δh(y0)

...

F
(r)
h δh(y0)



.

As the LHS matrix is IXr + O(h), it follows that it is invertible. Furthermore, since

each element of the inverse matrix is a DB-series, and each element of the RHS vector is

a B-series, it follows that we may uniquely solve for each B(c1, y0), . . . , B(cr, y0) using

the substitution formula of Theorem 3.23.

Remark 3.32. The requirement that all wH

P are left-eigenvectors of V is a sufficient one.

For example, we can allow a single wH

P to a be linear combination of left-eigenvectors

and still find a unique decomposition for δh(y0) of the form (3.5).

The existence of a δh(y0) decomposition in terms of derivative starting methods is

necessary for expressing the parasitism product in terms of DUOSMs.
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Corollary 3.33. The parasitism product (3.3) may be equivalently written as

M ′
h,n−1 · · ·M ′

h,0δh(y0) =

r∑

P=1

SP
h,0Ψ

P
h,n−1 · · ·ΨP

h,0B(cP , y0),

where, for some k ∈ N0,

M ′
h,k := M′

h(S∗
h◦Φk

h(y0)), SP
h,k := SP

h (Φ
k
h(y0), ·), ΨP

h,k := ΨP
h (Φ

k
h(y0), ·).

Proof. Consider a fixed P ∈ {1, . . . , r} and note that

M ′
h,0S

P
h,0 = M′

h(S∗
h(y0))S

P
h (y0, ·) = SP

h (Φh(y0),Ψ
P
h (y0, ·)) = SP

h,1Ψ
P
h,0.

Pre-multiplying through by M ′
h,1 and applying the DUOSM condition with y0 7→

Φh(y0), we find

M ′
h,1M

′
h,0S

P
h,0 =M ′

h,1S
P
h,1Ψ

P
h,0 = SP

h,2Ψ
P
h,1Ψ

P
h,0.

Repeating the above procedure, each time pre-multiplying by M ′
h,k and applying the

DUOSM condition with y0 7→ Φk
h(y0) for k = 2, . . . , n − 1, we obtain

M ′
h,n−1M

′
h,n−2 · · ·M ′

h,0S
P
h,0 = SP

h,nΨ
P
h,n−1Ψ

P
h,n−2 · · ·ΨP

h,0.

The result now follows from writing δh(y0) in the form given by equation (3.5) and

applying the above result for each P ∈ {1, . . . , r}.

The above result is not yet complete as the sum still contains a term that evolves in

the principal direction, i.e. in the direction of S
(1)
h . Throughout, we have insisted that

perturbations made in the non-principal directions contribute are responsible for par-

asitism. In the following theorem, we demonstrate why perturbations in the principal

direction can be essentially neglected.

Theorem 3.34. Expansions (3.1)-(3.2) may be written as

Mn
h◦Sh(y0) = S∗

h◦Φn
h(y0 +B(c1, y0)) +

r∑

P=2

SP
h,nΨ

P
h,n−1 · · ·ΨP

h,0B(cP , y0) +O(δ2),

Fh◦Mn
h◦Sh(y0) = Φn

h(y0 +B(c1, y0)) + F
(1)
h,n

r∑

P=2

SP
h,nΨ

P
h,n−1 · · ·ΨP

h,0B(cP , y0) +O(δ2).
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Proof. Let us make the choice that F
(1)
h (y0, ·) := F ′

h(S∗
h(y0)) = wH +O(h). Then, from

Theorems 3.29 and 3.30 it follows that Ψ
(1)
h (y0, ·) = Φ′

h(y0) and S
(1)
h (y0, ·) = (S∗

h(y0))
′.

For the remaining FP
h (y0, ·), P = 2, . . . , r, define the mappings fP : DT → R

1×r

such that

fP ( ) = wH

P , fP (dτ) = arbitrary, ∀ |dτ | > 0,

and let FP
h (y0, ·) := DB(fP , y0, ·). Then, we apply Theorem 3.31 and Corollary 3.33

to give

M ′
h,n−1 · · ·M ′

h,0δh(y0) =

r∑

P=1

SP
h,nΨ

P
h,n−1 · · ·ΨP

h,0B(cP , y0),

= S
(1)
h,nΨ

(1)
h,n−1 · · ·Ψ

(1)
h,0B(c1, y0)+
r∑

P=2

SP
h,nΨ

P
h,n−1 · · ·ΨP

h,0B(cP , y0).

Now, substituting the above into (3.1) and writing Φ′
h,k := Φ′

h(Φ
k
h(y0)), we find

Mn
h◦Sh(y0) = S∗

h◦Φn
h(y0) + S

(1)
h,nΦ

′
h,n−1 · · ·Φ′

h,0B(c1, y0)+
r∑

P=2

SP
h,nΨ

P
h,n−1 · · ·ΨP

h,0B(cP , y0) +O(δ2),

and since B(c1, y0) = O(δ), which follows from the proof of Theorem 3.31, we may

write

Mn
h◦Sh(y0) = S∗

h◦Φn
h(y0 +B(c1, y0)) +

r∑

P=2

SP
h,nΨ

P
h,n−1 · · ·ΨP

h,0B(cP , y0) +O(δ2),

to obtain the first result. The second result follows from applying the finishing method

and noting that F
(1)
h,nS

(1)
h,n = I.

3.3.4 Parasitic bounds

With Theorem 3.34 revealing that only the non-trivial DUOSMs contribute towards

parasitism, we proceed now by determining a bound on the parasitic components.
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Theorem 3.35. Suppose that there exist constants L > 0 and M ∈ N0 such that

max
2≤P≤r

||ΨP
h (y, ·)|| ≤ 1 + LhM+1, holds for all y ∈ X, (3.6)

and there exist constants C0, C1, C2 > 0, k1 ∈ N0, and k2 ∈ N such that

max
2≤P≤r

||SP
h (y, ·)|| ≤ C0, max

2≤P≤r
||F ′

h(y, S
P
h (y, ·))|| ≤ C1h

k1 , max
2≤P≤r

||B(cP , y)|| ≤ C2h
k2 ,

hold for all y ∈ X. Then, for t = nh,

∣∣∣∣∣

∣∣∣∣∣

r∑

P=2

SP
h,nΨ

P
h,n−1 · · ·ΨP

h,0B(cP , y0)

∣∣∣∣∣

∣∣∣∣∣ ≤ K1(h, r) exp(th
ML),

∣∣∣∣∣

∣∣∣∣∣F
′
h,n

r∑

P=2

SP
h,nΨ

P
h,n−1 · · ·ΨP

h,0B(cP , y0)

∣∣∣∣∣

∣∣∣∣∣ ≤ K2(h, r) exp(th
ML),

where K1(h, r), K2(h, r) are constants dependent on h and r.

Proof. Taking norms we find

∣∣∣∣∣

∣∣∣∣∣

r∑

P=2

SP
h,nΨ

P
h,n−1 · · ·ΨP

h,0B(cP , y0)

∣∣∣∣∣

∣∣∣∣∣ ≤ (r − 1)max
P

∣∣∣∣SP
h,nΨ

P
h,n−1 · · ·ΨP

h,0B(cP , y0)
∣∣∣∣ ,

≤ (r − 1)max
P

∣∣∣∣SP
h,n

∣∣∣∣ · ||ΨP
h,n−1|| · · ·

||ΨP
h,0|| · ||B(cP , y0)||,

= (r − 1)C0C2h
k2(1 + LhM+1)n.

As 1 + x ≤ exp(x), for x ≥ 0, we can put K1(h, r) = (r − 1)C0C2h
k2 to obtain

∣∣∣∣∣

∣∣∣∣∣

r∑

P=2

SP
h,nΨ

P
h,n−1 · · ·ΨP

h,0B(cP , y0)

∣∣∣∣∣

∣∣∣∣∣ ≤ K1(h, r) exp(nh
M+1L).

Setting t = nh gives the first result.

The second result can be deduced using the same approach given above. This yields

∣∣∣∣∣

∣∣∣∣∣F
′
h,n

r∑

P=2

SP
h,nΨ

P
h,n−1 · · ·ΨP

h,0B(cP , y0)

∣∣∣∣∣

∣∣∣∣∣ ≤ K2(h, r) exp(th
ML),

where K2(h, r) = (r − 1)C1C2h
k1+k2 .
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Remark 3.36. Below is a collection of essential observations and conclusions arising

from the previous theorem:

• In order for the constants L,C0, C1, C2 to exist, we require that the series for

S∗
h,Φh, S

P
h and ΨP

h all convergence for sufficiently small h. In some cases, con-

vergence cannot be guaranteed (see e.g. [36, p.576]).

• Throughout we have assumed that nonlinear contributions from the O(δ2) terms

can be neglected. Note that under the regularity conditions of the above theorem,

such an assumption does not compromise the validity of the results, i.e. it also

possible to derive bounds on the O(δ2) terms.

• The result implies that the GLM solution stays close to the UOSM solution (of

a slightly perturbed problem) over the interval 0 ≤ t ≤ h−ML−1:

||yn − y(nh)|| ≤ ||Φn
h(y0 +B(c1, y0))− y(nh)||+ ||yn − Φn

h(y0 +B(c1, y0))||,
≤ ||Φn

h(y0 +B(c1, y0))− y(nh)||+K2(h, r) exp(th
ML),

= ||Φn
h(y0 +B(c1, y0))− y(nh)||+O(hk1+k2).

A similar result, using backward error analysis, is given in [23].

• If the IVP is Hamiltonian, ||H ′(y)|| ≤ C3, C3 > 0 and Mh is either symmetric or

G-symplectic, then for 0 ≤ t ≤ h−ML−1, we have

|H(yn)−H(y0)| ≤ |H(Φn
h(y0 +B(c1, y0))) −H(y0)|+

|H(yn)−H(Φn
h(y0 +B(c1, y0)))|,

≤ |H(Φn
h(y0 +B(c1, y0))) −H(y0)|+ C3K2(h, r) exp(th

ML),

≤ |H(y0 +B(c1, y0))−H(y0)|+O(hp) +O(hk1+k2),

≤ O(hp) +O(hk1+k2),

where the bound on H(Φn
h(·)) is discussed in [23, 24].

• If the pair (Mh,Sh) is of order p, then the value of the k2 exponent is at least

p+ 1. This follows from the fact that each B(cP , y0) = O(δ) = O(hp+1).

• If the finishing method satisfies Fh(y) = wHy+O(h), where wH is a left eigenvector

of V , then k1 ≥ 1.
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3.3.5 Higher-order parasitism-free conditions

It appears that the value of M in assumption (3.6) essentially determines the length of

the interval over which the parasitic components remain bounded (cf. experiments in

Chapter 7). This observation leads to the following definition.

Definition 3.37. A GLM is Mth-order parasitism-free if ΨP
h (y0, ·) = ζP + O(hM+1)

for all P ∈ {2, . . . , r}, where each ζP is a distinct eigenvalue of V satisfying |ζP | ≤ 1,

and ζP 6= 1.

Theorem 3.38. For P ∈ {2, . . . , r}, define DP = (ζP Ir − V + uPw
H

P )
−1, and let

C := diag(c), c := A1+ US∗( ), C2 := diag(c2), c2 := Ac+ US∗ ( ) ,

where S∗( ) and S∗( ) respectively correspond to the hf -coefficient and the h2f ′f -

coefficient of the ideal starting method. Then, a GLM is third-order parasitism-free

if the following conditions are met

ψP

( )
:= wH

PBUuP = 0,

ψP

( )
:= wH

PB(A+ UDPB)UuP = 0,

ψP

( )
:= wH

PBCUuP = 0,

ψP

( )
:= wH

PB(A+ UDPB)2UuP = 0,

ψP

( )
:= wH

PB(A+ UDPB)CUuP − ζPw
H

PBUD
2
PBUuP = 0,

ψP

( )
:= wH

PBC(A+ UDPB)UuP = 0,

ψP

( )
:= wH

PBC2UuP = 0,

ψP

( )
:= wH

PBC
2UuP = 0,

(3.7)

for all P ∈ {2, . . . , r}.

Proof (sketch). For P ∈ {2, . . . , r}, let us make the arbitrary choice that F
(P )
h (y0, ·) =

wH

P , where w
H

P is the left eigenvector of V corresponding to eigenvalue ζP . Then, we

follow the constructive proof of Theorem 3.30 to obtain a set of square systems in terms

of sP (dτ), ψP (dτ), for all |dτ | ≤ 3. As there are 9 derivative trees up to order 3, we

must solve a total of 8 systems (since there is no condition corresponding to dτ = ).
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Recall that each system is of the form

[
ζP Ir − V uP

wH

P 0

] [
sP (dτ)

ψP (dτ)

]
=

[
G(dτ)

g(dτ)

]
.

In particular, our choice of FP
h ensures g(dτ) = 0 for all |dτ | ≥ 1. By inverting the

left-hand matrix, we find

[
sP (dτ)

ψP (dτ)

]
=

[
DP uP

wH

P 0

][
G(dτ)

0

]
.

Thus, ψP (dτ) = wH

PG(dτ), where the G(dτ) are as determined in the proof of Theorem

3.30. Repeating the above process for each P ∈ {2, . . . , r} yields the complete set of

conditions.

The above result requires 8(r − 1) conditions to be satisfied to ensure 3rd order

parasitism-free behaviour. However, in many cases of practical interest, a reduction

occurs.

Theorem 3.39. Consider a consistent r-input GLM, with real coefficient matrices and

V possessing distinct, uni-modular eigenvalues. Then, the total number of conditions

required for 3rd order parasitism-free behaviour is equal to

4r if r = even,

4(r − 1) if r = odd.

Proof. Since the coefficient matrices of the GLM are real, it follows that M′
h(S∗

h(y0)) =

M′
h(S∗

h(y0)). Thus, if the pair (SP
h ,Ψ

P
h ) is a solution to the DUOSM condition (3.4),

then so is the pair (SP
h ,Ψ

P
h ). Furthermore, if ΨP

h = ζP +O(h4) then we automatically

have ΨP
h = ζP + O(h4). In other words, for every pair of complex conjugate pairs of

DUOSMs, we need only satisfy 8 parasitism-free conditions.

Now, consider the case that r is odd. As the eigenvalues of V are unimodular

and distinct, it follows that there will be (r − 1)/2 complex conjugate pairs, with the

remaining eigenvalue at ζ1 = 1 by consistency. Consequently, there will be (r − 1)/2

complex conjugate pairs of DUOSMs. Thus, we need only satisfy a total of 8(r−1)/2 =

4(r − 1) conditions.

Similarly for the case r is even, there will be (r − 2)/2 complex conjugate pairs of

DUOSMs, and a single DUOSM corresponding to the eigenvalue ζ2 = −1. Thus, we

will have to satisfy 8(r − 2)/2 + 8 = 4r conditions.
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Symmetry: The situation of real coefficient matrices and distinct, uni-modular eigen-

values arises frequently for symmetric GLMs (cf. Section 2.5). In this case, it can be

shown that an additional reduction in the number of conditions required forMth order

parasitism-free behaviour occurs.

Theorem 3.40. Consider a consistent, symmetric GLM with an involution matrix L,

real coefficient matrices, and V possessing distinct eigenvalues. If the pair (SP
h ,Ψ

P
h ),

P ∈ {2, . . . , r}, is a DUOSM solution of (3.4), and

LS∗
h(y0) = S∗

−h(y0), and LSP
h (y0, ·) = λLS

P
−h(y0, ·), λL ∈ C\{0}, (3.8)

then (
ΨP

−h(Φh(y0), ·)
)−1

= ΨP
h (y0, ·).

Proof. Recall from Section 2.5 that a GLM is symmetric if Mh satsifies

M−1
−h(y) = LMh(Ly), or alternatively, M−h◦LMh(Ly) = y,

for some involution L. Differentiation with respect to y yields the following derivative

identities:

(
M−1

−h

)′
(y) = LM′

h(Ly)L, and M′
−h(LMh(Ly))LM′

h(Ly)L = I.

Together, these imply

{(
M−1

−h(y)
)′}−1

= M′
−h(M−1

−h(y)).

Now, using the above derivative identities, we find

M′
h(S∗

h(y0))S
P
h (y0, ·) = SP

h (Φh(y0),Ψ
P
h (y0, ·)),

⇒ L
(
M−1

−h

)′
(LS∗

h(y0))LS
P
h (y0, ·) = SP

h (Φh(y0),Ψ
P
h (y0, ·)),

⇒ LSP
h (y0, ·)

(
ΨP

h (y0, ·)
)−1

= M′
−h(M−1

−h◦LS∗
h(y0))LS

P
h (Φh(y0), ·).

Using the symmetry assumptions (3.8), this becomes

λLSP
−h(y0, ·)

(
ΨP

h (y0, ·)
)−1

= λLM′
−h(M−1

−h◦S∗
−h(y0))S

P
−h(Φh(y0), ·),

= λLM′
−h(S∗

−h◦Φ−1
−h(y0))S

P
−h(Φh(y0), ·),
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and letting h 7→ −h, y0 7→ Φh(y0), we obtain

SP
h (Φh(y0), ·)

(
ΨP

−h(Φh(y0), ·)
)−1

= M′
h(S∗

h(y0))S
P
h (Φ−h◦Φh(y0), ·).

Symmetry of both the GLM and the ideal starting method implies that the UOSM is

symmetric, i.e. Φ−h◦Φh(y0) = y0. Note also that since (SP
h ,Ψ

P
h ) is a DUOSM solution,

so is (SP
h ,Ψ

P
h ), as the GLM coefficient matrices are real. Thus,

SP
h (Φh(y0), ·)

(
ΨP

−h(Φh(y0), ·)
)−1

= M′
h(S∗

h(y0))S
P
h (y0, ·) = SP

h (Φh(y0), ·) ΨP
h (y0, ·).

The result then follows after applying FP
h (Φh(y0), ·).

Corollary 3.41. Let ζ2 = −1 be an eigenvalue of V . Then, Ψ
(2)
h (y0, ·) is real. Fur-

thermore, if Ψ
(2)
h (y0, ·) = −1 +O(hM+1), then M is necessarily even.

Proof. Since V and ζ2 are both real, it follows that the corresponding left and right

eigenvectors w2, u2 are also real. Now, from the proof of Theorem 3.30, the coefficients

of Ψ
(2)
h (y0, ·) are found by solving the system

[
ζ2Ir − V u2

wH

2 0

][
s2(dτ)

ψ2(dτ)

]
=

[
G(dτ)

g(dτ)

]
,

for each |dτ | ≥ 1. Given that the left-hand matrix is real-valued, and that the coefficient

matrices of the method are also real-valued, it follows that each ψ2(dτ) is real (see e.g.

the conditions for third-order parasitism-free behaviour (3.7)).

Now suppose that Ψ
(2)
h (y0, ·) = −1 + ψ

(k+1)
2 (y0)h

k+1 + O(hk+2), where k is odd

and ψ
(k+1)
2 (y0) is a constant depending the elementary Jacobians corresponding to

derivative trees of order k + 1, evaluated at y0. Then,

1 = Ψ
(2)
−h(Φ(y0), ·)Ψ

(2)
h (y0, ·) = (−1 + ψ

(k+1)
2 (Φh(y0))h

k+1)·
(−1 + ψ

(k+1)
2 (y0)h

k+1) +O(hk+2),

= 1− 2ψ
(k+1)
2 (y0)h

k+1 +O(hk+2),

where we have used Φh(y0) = y0 +O(h). Comparing powers of h gives ψ
(k+1)
2 (y0) = 0.

Thus, the result follows after we define M = k + 1.

The above theorem implies that for symmetric GLMs only conditions corresponding

to derivative trees of odd order need to be satisfied. Furthermore, if the method has

only two inputs, only 6 conditions are required for 4th order parasitism-free behaviour.
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Example 3.42. Consider the symmetry matrices

L =

[
1 0

0 −1

]
, P1 =




1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0



, P2 =




1 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0



.

The GLM given below is 4th order and (L,P1)-symmetric:




1
2 0 0 0 1 1
1
2

1
26

1/3 0 0 1 0
1
2 61/3 −61/3 0 1 0
1
2 61/3 −2 · 61/3 1

26
1/3 1 0

1 61/3 −2 · 61/3 61/3 1 0

0 61/3 −2 · 61/3 61/3 0 −1




. (3.9)

Another 4th order example, with rational coefficients, is given by the (L,P2)-symmetric

GLM below: 


1
2 0 0 0 0 1 1
7
12

5
24 0 0 0 1 0

− 1
12

1
2

1
24 0 0 1 0

13
12

1
2 −1

2 −13
24 0 1 0

5
12

1
2 −1

2 −1
2

7
24 1 0

1 1
2 −1

2 −1
2

1
2 1 0

0 1
2 −1

2 −1
2

1
2 0 −1




. (3.10)

Substituting each set of coefficient matrices into (3.7), and noting that w2 = u2 =

[0, 1]T , we find that both methods satisfy the order conditions for 3rd-order parasitism-

free behaviour. It follows from the symmetry of the methods and Corollary 3.41 that

both are actually 4th-order parasitism-free.

In Chapter 7, several numerical experiments are performed on GLM (3.10) to

demonstrate its 4th-order parasitism-free behaviour.

⋄



Chapter 4
Practical toolkit

In this chapter we discuss the development of a set of computational tools for as-

sisting the study of GLMs. These tools have been designed using an object-oriented

approach to programming. An important aspect of this has been deciding suitable ma-

chine representations for the set of rooted and derivative trees; B-series and DB-series,

and GLMs themselves. Similar developments in this area of computer-aided analysis

include Ketcheson’s NodePy Python package [41] for analysing and testing numeri-

cal methods on IVPs, and the Wolfram Mathematica Numerical Differential Equation

Analysis Package [62] which is used in the study of RKMs. Note that while these

packages provide similar tools for analysis, the code we have developed here differs in

that it has been designed specifically for GLMs and the manipulation of B-series and

DB-series. As a by-product of this approach, we automatically obtain computational

tools for the analysis of RKMs, LMMs and other more exotic numerical methods.

4.1 Machine representation of trees

As a typical GLM analysis involves the manipulation of various B-series or DB-series

expressions, we begin by discussing the machine representation of trees. In particular,

those belonging to either the set of rooted trees T or the set of derivative trees DT .

Recall that the set T is defined recursively as follows:

let τ = ∈ T,

then also τ = [τ1, . . . , τm] ∈ T, where τ1, . . . , τm ∈ T.

By this definition, it naturally follows that a rooted tree should be written as a string

consisting of only commas, dots, and left and right square brackets. A similar observa-

77
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tion can be made for derivative trees: Recall from Section 3.2.1 that, for a given u ∈ T ,

the set of derivative trees Dτ (u) is given by appending a × node to each node of u.

Thus, we see that a derivative tree string can be written using the same characters of

a rooted tree with the addition of a single 'x'.

These tree definitions also imply the following set of rules should be obeyed when

constructing strings:

• All strings begin with '[' and end with ']', except for '.', or 'x'.

• There must be an equal number of '[' and ']' characters.

• Each derivative tree must contain exactly one 'x' character.

• '.' follows either ',' or '['.

• ',' follows either '.' or 'x' or ']'.

• ']' follows either '.' or 'x' or ']'.

• '[' follows either ',' or '['.

• 'x' follows either ',' or '['.

Following these rules, we find that the set of rooted trees, up order 4, are given by the

strings

'' '.' '[.]' '[[.]]' '[.,.]'

'[[[.]]]' '[[.,.]]' '[.,[.]]' '[.,.,.]'

where the empty string represents the empty tree. Similarly, the set of derivative trees,

up to order 3, are given by the strings

'x' '[x]' '[[x]]' '[x,.]'

'[[[x]]]' '[[x,.]]' '[[x],.]' '[x,[.]]' '[x,.,.]'

Note here that the action of appending a × node to a node is equivalent to replacing

either a '[' by '[x,', or a '.' by '[x]'.

Tree operations: Earlier in Section 2.2 and throughout Chapter 3 we introduced a

variety of operations that are performed on trees. By taking the string representation

of a tree, we have been able to implement these operations in MATLAB. A list of those

common to both rooted and derivative trees is given in Table 4.1. Operations unique

to rooted and derivative trees are given respectively in Tables 4.2 and 4.3.
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Command Description Output

trees.children(t) Extract the children of t. cell
(strings)

trees.compare(t1,t2) Check whether t1 and t2 are equivalent.
Note, two trees are equivalent if they share
the same children.

logical

trees.bprod(t1,t2) Perform a Butcher product on t1 and t2. string

trees.order(t) Compute the order of t. integer

Table 4.1: Fundamental tree operations implemented in MATLAB.

Command Description Output

trees.symmetry(t) Compute the symmetry of t. integer

trees.density(t) Compute the density of t. integer

Table 4.2: Rooted tree operations implemented in MATLAB.

Command Description Output

trees.underlying(dt) Compute the underlying rooted tree of dt. string

trees.multiplicity(dt) Compute the multiplicity of dt. integer

trees.substitution(du,v) Perform a substitution of v into du . string

Table 4.3: Derivative tree operations implemented in MATLAB.

Examples on the usage of these commands are given below:

Command: Output:

trees.children('[[.,[.]],[.,.]]') {'[.,[.]]','[.,.]'}

trees.compare('[[.],.]','[.,[.]]') 1

trees.compare('.','[.,.]]') 0

trees.bprod('.','[.]') '[[.]]'

trees.bprod('[.]','.') '[.,.]'

trees.order('[[.,[.]],[.,.]]') 8

trees.symmetry('[[.,.]]') 2

trees.density('[[.,.]]') 12

trees.underlying('[[x,.]]') '[[.]]'

trees.multiplicity('[[x],.]') 2

trees.substitution('[x,.]','[.]') '[[.],.]'
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Lookup tables: Several of the tree operations mentioned above are defined recur-

sively. As a result, they often repeat many of the same computations. For example, to

determine the symmetry of the tree-string '[[.],[[.]]]' we must also determine the

symmetry of the tree-string '[.]', which ends up being computed twice.

In order to avoid this type of redundancy, we have constructed the lookup table

rooted_trees that contains precomputed lists of the various quantities associated with

rooted trees:

>> S = load('rooted_trees.mat'); disp(S)

index: [487x1 double]

order: [487x1 double]

tree: {487x1 cell}

children: {487x1 cell}

children_idx: {487x1 cell}

symmetry: [487x1 double]

density: [487x1 double]

fstr: {487x1 cell}

This approach has also been applied to derivative trees where precomputed data is

stored in the lookup table derivative_trees:

>> S = load('derivative_trees.mat'); disp(S)

index: [1141x1 double]

order: [1141x1 double]

tree: {1141x1 cell}

underlying_tree: {1141x1 cell}

underlying_idx: [1141x1 double]

rchildren_idx: {1141x1 cell}

dchildren_idx: {1141x1 cell}

dbxb_idx: {1141x1 cell}

dbxdb_idx: {1141x1 cell}

transpose_idx: [1141x1 double]

multiplicity: [1141x1 double]

fstr: {1141x1 cell}

In the absence of a well-defined ordering on either set of trees, it was necessary

that we build an index to uniquely associate each tree to a positive integer. This was

achieved using an iterative procedure.



CHAPTER 4. PRACTICAL TOOLKIT 81

As is indicated in the tables above, we currently hold information on 487 rooted

trees and 1141 derivative trees (that is, on rooted trees up to order 9 and derivative

trees up to order 8). Note that equivalent trees have been removed from both sets.

4.2 Object representation for B-series and DB-series

Our approach to the machine representation of B-series and DB-series is to consider

them both as objects, i.e. data-structures with certain properties and methods. This

approach has many advantages, including the ability to customise programming syntax

which can be used to simplify the process of translating mathematical expressions into

the appropriate programming language.

4.2.1 Representation

First, let us consider the object representation of a B-series: Recall that, for some

mapping a : T ∪ {∅} → C, a B-series is defined as

B(a, y) = a(∅)y +
∑

τ∈T

h|τ |

σ(τ)
a(τ)F (τ)(y).

In practice, we are usually only interested in a finite set of coefficients and tend to

neglect those associated with trees above a certain order. In other words, for some

q ∈ N, we consider a truncated B-series given by

Bq(a, y) = a(∅)y +
∑

|τ |≤q

h|τ |

σ(τ)
a(τ)F (τ)(y).

This series leads us to define a (truncated) B-series object as a data-structure with the

following properties:

• coeffs: a complex-valued row vector corresponding to the coefficients a(τ).

• sym_coeffs: a complex-valued row vector corresponding to the coefficients
a(τ)

σ(τ)
.

• truncation: a positive integer specifying the order of truncation.

• num_coeffs: an integer value for the number of coefficients associated with the

order of truncation.
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Here, it is important to note that each element of a coefficient vector uniquely

corresponds to a tree in T ∪ {∅}. For example, coeffs(5) is the B-series coefficient

corresponding to the 5th tree in T ∪{∅}, as ordered in the lookup table rooted_trees.

That is, it corresponds to the coefficient a( ).

The approach used above also applies to derivative B-series, i.e. we seek an object

representation of the truncated DB-series

DBq(a, y, v) =
∑

|dτ |≤q

h|τ |a(τ)J(τ)(y, v),

where a : DT → C and q ∈ N. This leads us to define the series as a data-structure

with the properties coeffs, truncation and num_coeffs, as described above. Again,

each element of the coefficient vector maps to a unique tree, this time in DT .

Construction: Displayed in Table 4.4 is a list of MATLAB commands for the con-

struction of B-series and DB-series objects. This list also includes special constructors

for the commonly occurring B-series such as

zero: B(a, y0) = 0, trivial: B(a, y0) = y0, evolution: B(a, y0) = ϕh(y0),

and for DB-series such as

zero: DB(a, y0, v) = 0, trivial: DB(a, y0, v) = v.

Example 4.1. Suppose we would like to express the following B-series as an object:

y + hf(y) +
1

2
h2f ′(y)f(y) +

1

6
h3f ′(y)f ′(y)f(y) +

1

6
h3f ′′(y)(f(y), f(y)).

While this expression is finite, it can also be interpreted as an infinite series with the

higher order coefficients set to zero. Thus, we must still specify the order to which we

truncate this series. Here, we arbitrarily set this to be order 4.

Next, we extract the B-series coefficients and store them in a row vector (ordered

such that they agree with the index specified in rooted_trees). Since there are 9 trees

up to order 4, we find that this vector is given by [1, 1, 1/2, 1/6, 1/3, 0, 0, 0, 0]. Now, we

create the object using the following command
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Command Description Output

bseries(a) Construct a B-series from the row vector
of coefficients a.

B-series

bseries('zero',q) Construct the zero B-series truncated to
order q.

B-series

bseries('trivial',q) Construct the trivial B-series truncated to
order q.

B-series

bseries('evolution',q) Construct a B-series corresponding to the
time-h evolution, truncated to order q.

B-series

dbseries(a) Construct a DB-series from the row vector
of coefficients a.

DB-series

dbseries('zero',q) Construct the zero DB-series truncated to
order q.

DB-series

dbseries('trivial',q) Construct the trivial DB-series truncated
to order q.

DB-series

Table 4.4: MATLAB Commands for constructing B-series and DB-series objects.

>> B = bseries([1,1,1/2,1/6,1/3,0,0,0,0]); disp(B)

bseries with properties:

coeffs: [1 1 1/2 1/6 1/3 0 0 0 0]

sym_coeffs: [1 1 1/2 1/6 1/6 0 0 0 0]

truncation: 4

num_coeffs: 9

Note that if we specified a 3rd order truncation, we could have alternatively gener-

ated the B-series using the command bseries('evolution',3).

⋄

Example 4.2. Using the commands in Table 4.4 we can also represent vector B-series

as objects: A trivial vector B-series example is given by

[
y

0

]
.

As in the previous example, we arbitrarily set the order of truncation to 4. Then, the

object is built using the following commands:
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>> B1=bseries('trivial',4);

>> B2=bseries('zero',4);

>> vecB = [B1;B2];

⋄

4.2.2 Operations

The next stage in the development of an object is the implementation of its operations

(or rather, its methods to use object-oriented terminology). For B-series and DB-

series these include the elementary algebraic operations, expansions, compositions and

inversion, to name but a few. Below, we discuss some of the implementation details

behind these operations. The corresponding MATLAB commands can be found in

Tables 4.5 and 4.6.

Algebraic operations: Since both series are linear in their first argument, we have

chosen to refine the + and - operators to reflect this property. In addition, we have

also redefined the * operator to allow for the left multiplication by a scalar or matrix.

Note: caution is advised when dealing with several series where the y-arguments differ

as there is currently no way to distinguish between them.

B-series composition: An expression of the form B(a,B(b, y)) is called a B-series

composition and these operations typically arise when attempting to determine the

order of a numerical method. The problem of implementing this operation for B-series

objects can be approached in several of ways. For example, we could directly compute

the coefficients from known composition formulae (see e.g. [36, p. 64]). However, to

do this for all trees in the lookup table rooted_trees would require 487 individual

formulae to be computed.

Instead, we choose to reformulate the composition operation as a matrix-vector

multiplication: Let us begin by writing the first few terms of B(a,B(b, y)) out explicitly,

B(a,B(b, y)) = a(∅)B(b, y) + h
a( )

σ( )
f(B(b, y)) + h2

a( )

σ( )
f ′(B(b, y))f(B(b, y)) +O(h3).
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Command Description Output

scale(Ba,x) Scale h by the constant x ∈ R. B-series

hf(Ba) Compute the B-series hf(B(a, y)). Note, we
must have a(∅) = 1.

B-series

compose(Ba1,Ba2) Compute the B-series of the composition
B(a1, B(a2, y)). Note, we must have a2(∅) = 1.

B-series

inverse(Ba) Compute the inverse B-series B(a−1, y). Note,
we must have a(∅) = 1.

B-series

diff(Ba) Differentiate a B-series, i.e. compute
∇yB(a, y).

DB-series

Table 4.5: B-series operations in MATLAB.

Command Description Output

scale(DBa,x) Scale h by the constant x ∈ R. DB-series

hdf(Ba) Compute the DB-series hf ′(B(a, y)). Note, we
must have a(∅) = 1.

DB-series

compose(DBa1,Ba2) Compute the DB-series of the composition
DB(a1, B(a2, y), v). Note, we must have
a2(∅) = 1.

DB-series

inverse(DBa) Compute the inverse DB-series DB(a−1, y, v).
Note, we must have a( ) = 1.

DB-series

sub(DBa1,DBa2) Compute the product of two DB-series
DB(a1, y,DB(a2, y, v)).

DB-series

sub(DBa1,Ba2) Compute the product of a DB-series and B-
series, i.e. DB(a1, y,B(a2, y)). Note, we must
have a2(∅) = 0.

B-series

Table 4.6: DB-series operations in MATLAB.

Observe that we can equivalently express this as the inner product

B(a,B(b, y)) =
[
a(∅) a( ) a( ) · · ·

]




B(b, y)
h

σ( )f(B(b, y))
h2

σ( )
f ′(B(b, y))f(B(b, y))

...



. (4.1)
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For this composition to hold, we must have B(b, y) = y + O(h). Assuming this to

be true, we perform a Taylor series expansion on the elementary differentials, about y,

to obtain

B(a,B(b, y)) =
[
a(∅) a( ) a( ) · · ·

]
C(b)




y
h

σ( )f(y)
h2

σ( )
f ′(y)f(y)

...



,

where C(b) is an upper-triangular matrix with elements depending on the b(τ). The

B-series coefficients of the composed method are then given by a multiplication of the

vector of a-coefficients and the C(b) matrix.

Constructing C(b): Note the following observation: Consider the jth element in

the column vector of (4.1). This element is a B-series, and may written as a kth-order

derivative of f acting on k-many (possibly different) B-series. Each of which also belong

to the column vector, and have an associated index that is strictly less than j. In other

words, each row of C(b) corresponds to a set of coefficients describing the B-series

hkf (k)(B(b, y))(B(c1, y), . . . , B(ck, y)), for some k ∈ N0, (4.2)

where the coefficients of B(c1, y), . . . , B(ck, y) are each given by some row in C(b) (with

row-index less than j).

This observation leads us to define the following algorithm for constructing C(b):

1. Set the first row equal to the coefficients of b.

2. Determine the coefficients for the second row, i.e. for hf(B(b, y)), up to the order

of truncation.

3. Loop over each remaining row in the order j = 3, 4, 5, . . ., and

(a) for row j, determine the arguments of (4.2), i.e. find the rows corresponding

to the c1, . . . , ck,

(b) compute the coefficients of (4.2), up to the order of truncation.

For step 2, recall that the coefficients for this B-series are given by the formula described

in Lemma 3.4. This result has been implemented for B-series objects and may be

applied using the command hf.
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For step 3(a), we note that the jth row corresponds to the jth tree in the lookup

table rooted_trees. Thus, indexes for the children of this tree directly correspond to

the row indexes for c1, . . . , ck.

For step 3(b), we have written a code DFxBk that computes the B-series coefficients

of hkf (k)(y)(B(c1, y), . . . , B(ck, y)), where B(c1, y), . . . , B(ck, y) are given as inputs.

Then, by performing a Taylor series expansion, we can compute (4.2) via

∑

i≥0

hi+k 1

i!
f (i+k)(y)(B(c1, y), . . . , B(ck, y), B

i(c0, y)),

where Bi(c0, y) should be read as i-many copies of B(c0, y) := B(b, y)− y.

The above algorithm has been successfully implemented in MATLAB and can be

used to construct the C(b) matrix using the command constructBCMatrix. The com-

plete composition operation is given by the command compose.

Example 4.3. Recall that the evolution operator of an ODE, ϕt, possesses the sym-

metry property ϕ−t◦ϕt(y0) = y0, t ∈ R. This can be verified (up to the order of

truncation) using the B-series operations given in Table 4.5:

>> eh = bseries('evolution',4);

>> emh = scale(eh,-1); disp(emh)

bseries with properties:

coeffs: [1 -1 1/2 -1/6 -1/3 1/24 1/12 1/8 1/4]

sym_coeffs: [1 -1 1/2 -1/6 -1/6 1/24 1/24 1/8 1/24]

truncation: 4

num_coeffs: 9

>> C = constructBCMatrix(eh.coeffs); disp(C)

1 1 1/2 1/6 1/3 1/24 1/12 1/8 1/4

0 1 1 1/2 1 1/6 1/3 1/2 1

0 0 1 1 2 1/2 1 3/2 3

0 0 0 1 0 1 2 1 0

0 0 0 0 1 0 0 1 3

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1
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>> disp(compose(emh,eh))

bseries with properties:

coeffs: [1 0 0 0 0 * * * 0]

sym_coeffs: [1 0 0 0 0 * * * 0]

truncation: 4

num_coeffs: 9

Here, we notice that the vector emh.coeffs is orthogonal to columns 2− 9 of C. Thus,

the composition compose(emh,eh) corresponds to the trivial B-series truncated to or-

der 4, as expected. (MATLAB note: the * symbol seen above denotes a rational

approximation to zero due to rounding error).

⋄

DB-series composition: An expression of the form DB(a,B(b, y), v) is called a

DB-series composition. The approach we have taken in implementing this opera-

tion is identical to that described for B-series. That is, we reformulate the opera-

tion as a matrix-vector product where the matrix is constructed using the command

constructDBCMatix and the vector is given by the a-coefficients.

DB-series substitution: Expressions of the form

DB(c, y) = DB(a, y,DB(b, y, v)) and B(c, y) = DB(a, y,B(b, y)),

are called substitutions or products. These were considered in Section 3.2.3, where the

formulae for computing the coefficients were respectively found to be

c(dτ) =
∑

du⊗dv=dτ

a(du)b(dv) and
c(τ)

σ(τ)
=
∑

du⊗v=τ

a(du)b(v)

σ(v)
.

As with the composition operations, these substitutions can be viewed as a matrix-

vector multiplication. Here, the matrix is constructed from special indexes stored

in the lookup table derivative_trees. In particular, associated with each deriva-

tive tree is an index for building a single row of the matrix. If we are considering a

DB(a, y,DB(b, y, v)) substitution, then these indexes are found in the field dbxdb_idx.

For DB(a, y,B(b, y, v)) substitutions, these indexes are given in the field dbxb_idx. Ei-

ther type of substitution can be applied using the command sub(Ba,Bb).
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B-series differentiation: The differentiation of a B-series B(a, y) was considered in

Section 3.2.3 where the formula for the DB-series coefficients was found to be

b(dτ) =
a(oτ (dτ))

σ(oτ (dτ))
ν(dτ).

The implementation of this operation is relatively simple as, for each derivative tree, we

only require information on the index and symmetry of its underlying rooted tree and

its multiplicity. This information is readily accessible in lookup tables rooted_trees

and derivative_trees.

Example 4.4. Recall from Example 4.3 that the ODE evolution operator satisfies the

symmetry property ϕ−t◦ϕt(y0) = y0. Fixing t = h, and differentiating with respect to

y0, we find
∂ϕ−h

∂y0
(ϕh(y0))

∂ϕh

∂y0
(y0) = I.

This result can be verified (up to the order of truncation) using the operations described

above: Choosing a B-series truncation of order 9 (and consequently a DB-series trun-

cation of order 8), we find

>> eh = bseries('evolution',9);

>> emh = eh.scale(-1);

>> deh = diff(eh);

>> demh = diff(emh);

>> test = sub(compose(demh,eh),deh) - dbseries('trivial',8);

>> disp(norm(test.coeffs,1))

1/152496068182400

Thus, neglecting the effects of rounding error, we confirm that the result holds (up to

a truncation of order 8).

⋄

Inverse B-series: An advantage to using the matrix-vector formulation for the com-

position operation is the ability to compute B-series inverses: Let a−1 : T ∪ {∅} → C

be a mapping describing the coefficients of the inverse of the B-series B(a, y), where

a(∅) = 1. Then, B(a−1, B(a, y)) = y. In matrix-vector form this corresponds to

[
a−1(∅) a−1( ) a−1( ) · · ·

]
C(a) =

[
1 0 0 · · ·

]
.
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As both a and C(a) are known, the inversion operation amounts to performing a back-

solve on an upper-triangular matrix to determine the coefficients for a−1(τ).

Inverse DB-series: While a DB-series inverse can be computed using a similar ap-

proach to that described above, we have found that a fixed-point iteration is more

efficient, particularly when we consider the inverse of a matrix DB-series. This itera-

tion is described as follows: For a given DB-series where a( ) 6= 0, let x = 1/coeffs(1)

and rhs = dbseries('trivial',q) for some q ∈ N. Then, the following code sample

will generate the DB-series inverse,

inv = x*rhs;

for i = 1:q

e = sub(inv,obj)-rhs;

inv = inv - x*e;

end

4.3 Object representation for GLMs

Having discussed the implementation of B-series and DB-series objects, we now move

on to consider the representation of GLMs on a machine. Here, we continue to use the

idea of objects for representing these methods.

4.3.1 Representation

As GLMs are characterised by their coefficient matrices, we define a GLM object to be

a data-structure with the following properties:

• A: a real-valued square matrix corresponding to the A matrix.

• U: a complex-valued matrix corresponding to the U matrix.

• B: a complex-valued matrix corresponding to the B matrix.

• V: a complex-valued matrix corresponding to the V matrix.

In addition to the above, we also define several dependent properties, i.e. those that

depend directly on the coefficient matrices:

• stagetype: a string describing the structure of the stage matrix, e.g.

'empty' 'explicit' 'diagonal' 'implicit'



CHAPTER 4. PRACTICAL TOOLKIT 91

Command Description Output

glm(A,U,B,V) Construct a GLM object for the coefficient
matrices (A,U,B, V ).

glm

starter(As,Bs,u) Construct a starting method object for the
coefficient matrices (AS , BS , u).

starter

starter(u) Construct the trivial starting method object
for Sh = u.

starter

finisher(Af,Uf,Bf,w) Construct a finishing method object for the
coefficient matrices (Af , Uf , Bf , w).

finisher

finisher(sh,w) Construct a finishing method object that sat-
isfies the condition Fh◦Sh(y0) = y0, where
Sh is given by the starting method object sh.
The vector w should be chosen to satisfy the
preconsistency condition wHu = 1.

finisher

finisher(w) Construct the trivial finishing method object
for Fh = wH.

finisher

Table 4.7: GLM constructors implemented in MATLAB.

• stages: a non-negative integer specifying the number of stages.

• inputs: a non-negative integer specifying the number of inputs.

• outputs: a non-negative integer specifying the number of outputs.

The creation of a GLM object is performed by a call to one of the constructors given

in Table 4.7. Also in this table are constructors for starting and finishing methods. As

objects, these methods fit the classification of a GLM, i.e. they share the properties

given above. However, they differ in that their coefficient matrices are subject to certain

restrictions. For example, a starting method object must have the V matrix as a column

vector, and the U matrix as a column vector of ones.

Example 4.5. Let us consider the machine representation of the Leapfrog method

(2.4) with its Euler starting method. Recall that the tableaux for these methods are

respectively given as 


0 0 1

0 0 1

2 1 0


 ,




0 1

0 1

1 1


 .
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Recall also that the finishing method is defined as Fh(y) = eT1 y, i.e. the first

input. Now, we build the Leapfrog method by passing its coefficient matrices to the

glm constructor:

>> mh = glm(0,[0,1],[0;2],[0,1;1,0]); disp(mh)

glm with properties:

A: 0

U: [0 1]

B: [2x1 double]

V: [2x2 double]

stagetype: 'explicit'

stages: 1

inputs: 2

outputs: 2

Similarly for the starting method, we pass only its A, B, V matrices to the starter

constructor:

>> sh = starter(0,[0;1],[1;1]); disp(sh)

starter with properties:

A: 0

U: 1

B: [2x1 double]

V: [2x1 double]

stagetype: 'explicit'

stages: 1

inputs: 1

outputs: 2
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Command Description Output

scale(mh,x) Compute the GLM object for Mxh, x ∈ R. GLM

compose(mhn,...,mh1) Compute the GLM resulting from the com-

position M(n)
h ◦ · · · ◦M(1)

h .

GLM

inverse(mh) Compute the GLM inverse. Note, V must
be invertible.

GLM

map(mh,y) Evaluate the expressionMh(y), for the given
B-series input y.

(Vector)
B-series

diff(mh,y) Evaluate the Fréchet derivative M′
h(y), for

the given B-series input y.
(Matrix)
DB-series

Table 4.8: GLM operations in MATLAB.

Finally, the finishing method is created by passing eT1 to the finisher constructor:

>> fh = finisher([1,0]); disp(fh)

finisher with properties:

A: []

U: [0x2 double]

B: [1x0 double]

V: [1 0]

stagetype: 'empty'

stages: 0

inputs: 2

outputs: 1

⋄

4.3.2 Operations

Below, we discuss the implementation of various operations that are performed on

GLMs. A compact list of these operations is given in Table 4.8.
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Algebraic operations: The only algebraic operation we consider is the left and right

multiplication by a matrix. This is motivated by the T -equivalent representation of a

GLM: Recall that for some invertible transformation T ∈ C
r×r, the maps

Mh and T−1Mh◦T

are said to be equivalent. Thus, in our implementation, the rules for multiplication are

defined as follows: A right multiplication by some complex-valued matrix X implies

that V 7→ V X and U 7→ UX, and a left multiplication by X implies B 7→ XB and

V 7→ XV .

Evaluation: A common operation in GLM analysis is the evaluation of the method

map Mh(y), where y is an approximation to some vector B-series. Our implementation

of this operation is broken down into two steps: Firstly, we compute a B-series solution

Y to the stage equation,

Y = hAF (Y ) + Uy.

This is performed using a fixed-point iteration described by the code sample below:

q = y.truncation;

Y0 = U*y;

for i = 1:q

Y = Y0 + A*hf(Y);

end

The second step is then to the compute the update, i.e. y = V*y + B*hf(Y), which

gives a vector B-series output. This entire operation can be performed using the com-

mand map(mh,y) where mh is a given GLM object and y is a vector B-series object.

Scale: Expressions that involve a re-scaling of the time-step, i.e. Mh 7→ Mxh, x ∈ R

can also be considered. Here, we note that scaling h implies that we scale the A and B

coefficient matrices of the GLM. Thus, in our implementation we simply update these

matrices by multiplying them by the specified scaling constant.
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Composition: Recall that the composition of two GLMs, M(2)
h ◦M(1)

h is again a GLM

with coefficient matrices determined by the composition formula (2.11):




A(1) 0 U (1)

U (2)B(1) A(2) U (2)V (1)

V (2)B(1) B(2) V (2)V (1)


 .

This operation is relatively straightforward to reproduce for GLM objects: First, we

extract the coefficient matrices from the two objects to be composed. Then, we compute

the new coefficient matrices from the formula given above. The output method is then

created by calling the GLM constructor on these matrices.

Inverse: Recall that the inverse of a GLM is given by the tableau (2.19):

[
A− UV −1B UV −1

−V −1B V −1

]
.

Our implementation of this operation is identical to the approach used for composition,

i.e. compute the new matrices from the given formula, then call the constructor on

these matrices to build the object output.

Differentiation: The Fréchet derivative of a GLM, M′
h(y), can also be evaluated for

a given B-series input: The derivative is defined by the following equations

Y = hAF (Y ) + Uy,

M′
h(y) = V + hBF ′(Y )

(
I − hAF ′(Y )

)−1
U.

To construct this as a matrix DB-series output, we proceed as follows:

1. Find the B-series solution to the stage equation.

2. Compute the matrix DB-series of hF ′(Y ).

3. Compute the DB-series inverse to I − hAF ′(Y ).

4. Compute the update.

Here, the first step is equivalent to that used for the evaluation operation. The

remaining steps are completed using the DB-series tools for composition, inversion and

substitution.
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4.4 Applications

In this section, we introduce several analytical tools that have been developed using

the object representations of GLMs, B-series and DB-series. In particular, we cover

how to

• determine the GLM order of the pair (Mh,Sh).

• compute the UOSM and ideal starting method of a GLM.

• compute the derivative UOSMs of a GLM (and the corresponding derivative

starting methods).

4.4.1 Computing the order of a GLM

Suppose we are given a pair (Mh,Sh) and would like to determine the GLM order, i.e.

find the largest p ∈ N such that

Mh◦Sh(y0) = Sh◦ϕh(y0) +O(hp+1),

holds. The following code sample demonstrates how we can use our computational

tools to achieve this:

>> mh = glm(A,U,B,V);

>> sh = starter(As,Bs,u);

>> y0 = bseries('trivial',9);

>> phi = bseries('evolution',9);

>> test = map(compose(mh,sh),y0) - map(sh,phi);

The order of the method is then determined by searching for the index of first non-zero

term in test.coeffs and then cross-referencing with the corresponding tree in the

lookup table rooted_trees. Note, however, that due to the current size of the lookup

table, we can only verify methods up to order 9.

The above process has been completely automated, and can be used on any pair of

GLM and starting method objects, mh, sh, with the command

analysis.find_order(mh,sh).
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4.4.2 Generating the UOSM and ideal starting method

In [46], a practical iterative algorithm for approximating the UOSM Φh and ideal

starting method S∗
h is given (see also [11] for a similar result). This algorithm is based

on the constructive proof of Theorem 2.27 given earlier in Section 2.3 and is described

as follows:

Let S [k]
h (y0), k ∈ N0, denote a kth-order approximation to S∗

h(y0) and define

ηk(y0) = Fh◦S [k]
h (y0)− y0,

εk(y0) = Mh◦S [k]
h (y0)− S [k]

h ◦Fh◦Mh◦S [k]
h (y0).

Then, the iterative starting method is given by

S [0]
h (y0) = uy0,

S [k+1]
h (y0) = S [k]

h (y0) +Dεk(y0)− uηk(y0), ∀ k ≥ 1,

where D = (Ir − uwH)(Ir − V + uwHV )−1. The kth-order approximation to Φh(y0),

denoted Φ
[k]
h (y0), is then given by the composition

Φ
[k]
h (y0) = Fh◦Mh◦S [k]

h (y0).

While the iterative starting method was originally developed to obtain practical

approximations to S∗
h(y0) (i.e. a numerical vector inXr), it may also be used to generate

kth-order truncated B-series of both Φh and S∗
h. Below, we discuss two implementations

of the iterative starting method to obtain B-series outputs:

1. Tableau: Using the tableau composition formula (2.11) we can write the iteration

in terms of the coefficient matrices of the method: Let (A[k], U [k], B[k], u) denote

the coefficient matrices corresponding to S [k]
h . Then, the tableau for S [k+1]

h is

given by




A[k] 0 0 0 0 U [k]

UB[k] A 0 0 0 1

UFV B
[k] UFB AF 0 0 1F

U [k]wHV B[k] U [k]wHB U [k]BF A[k] 0 U [k]

UFB
[k] 0 0 0 AF 1F

DB[k] DB 0 −DB[k] −uBF u




,
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where A,U,B, V are the matrices for Mh; AF , UF , BF , w the matrices for Fh;

and we have used Uu = 1, UFu = 1F . These matrices can be built using the

MATLAB command tableauSk.

The B-series for S∗
h(y0) and Φh(y0), truncated to order q, can then be computed

using the following code sample:

[Aq,Bq] = tableauSk(q,A,U,B,V,AF,UF,BF,w,u);

y0 = bseries('trivial',q);

Sh = starter(Aq,Bq,u);

Mh = glm(A,U,B,V);

Fh = finisher(Sh,w);

Phi = map(compose(Fh,Mh,Sh),y0);

where Aq, Bq are the matrices corresponding to A[q] and B[q].

2. Direct iteration: An alternative approach is to directly implement the iteration:

% Initialise

D = (I-u*w)/(I-V+u*w*V);

y0 = bseries('trivial',q);

ISM = u*y0;

% Iterate

for i = 1:q

eta = map(Fh,ISM) - y0;

MISM = map(Mh,ISM);

PHI = map(Fh,MISM);

SPHI = compose(ISM,PHI);

epsilon = MISM - SPHI;

ISM = ISM + D*epsilon - u*eta;

end

Here, it is assumed that the finishing method object Fh, the GLM object Mh and

the preconsistency vector u, are known. To apply the direct iteration to obtain

both the UOSM and ideal starting method we use the command

[ism,uosm] = analysis.computeUOSM(q,Fh,Mh,u).
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Example 4.6. In Example 4.5, we considered the object representation of the Leapfrog

method. Suppose now we would like to determine the coefficients of its UOSM, correct

to an order 4 truncation. This can be achieved (using the direct iteration approach) as

follows: Let Fh, Mh and Sh denote the objects corresponding to the finishing method,

Leapfrog method and starting method. Then, the UOSM computed to order 4 is given

by the command

>> u = Sh.V;

>> [ism,uosm] = analysis.computeUOSM(4,Fh,Mh,u); disp(uosm)

bseries with properties:

sym_coeffs: [1 1 1/2 0 1/8 -1/8 -1/16 0 1/48]

coeffs: [1 1 1/2 0 1/4 -1/8 -1/8 0 1/8]

num_coeffs: 9

truncation: 4

Here, we observe that the coefficients belonging to sym_coeffs indicate that the

method is of order 2, i.e. Φh(y0) = ϕh(y0) +O(h3).

⋄

4.4.3 Generation of derivative UOSMs

Recall that the map Ψh : (X,X) → X is called a derivative UOSM (DUOSM) of a

GLM if

M′
h(S∗

h(y0))S
P
h (y0, v) = SP

h (Φh(y0),Ψ
P
h (y0, v)), ∀ y0, v ∈ X,

for some derivative starting method SP
h : (X,X) → Xr. It was shown in Theo-

rem 3.30 that, for a given row vector DB-series FP
h (y0, ·), there exists a unique pair

(SP
h (y0, v),Ψ

P
h (y0, v)) such that the above holds, and FP

h (y0, S
P
h (y0, v)) = v. As was the

case for the generation of the UOSM, we can use the constructive proof of Theorem

3.30 to form the basis of an iterative algorithm for determining the derivative UOSM:

Let wP , uP denote the left and right eigenvectors of V corresponding to the eigen-

value ζP , scaled such that wH

PuP = 1. Also let SP
h
[k]
(y0) denote the kth-order ap-

proximation to SP
h (y0), and ΨP

h
[k]
(y0) := wH

PM′
h(S∗

h(y0))S
P
h
[k]

denote the kth-order

approximation to ΨP
h (y0), and define

εk(y0) = M′
h(S∗

h(y0))S
P
h
[k]
(y0)− SP

h
[k]
(Φh(y0))Ψ

P
h
[k]
(y0).
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Then, the iteration for computing the derivative starting method is given by

SP
h
[0]
(y0) = uP ,

SP
h
[k+1]

(y0) = SP
h
[k]
(y0) +DP εk(y0), ∀ k ≥ 1,

where DP = (Ir − uPw
H

P )(ζP Ir − V + uPw
H

PV )−1.

Remark 4.7. Here, we have made the choice that FP
h (y0, ·) = wH

P . Note that this

choice guarantees that wH

PS
P
h
[k]
(y0, v) = v, for all k, since wH

PDP = 0 and

wH

PS
P
h
[k]
(y0, v) = wH

PS
P
h
[k−1]

(y0, v) = · · · = wH

PS
P
h
[0]
(y0) = wH

PuP = 1.

The above algorithm can be implemented as a direct iteration as is demonstrated

in the following code sample:

% Compute the ideal starting method and UOSM

[ism,uosm] = analysis.computeUOSM(q+1,Fh,Mh,u)

% Initialise

Dp = (I-up*wp)/(zeta*I-V+up*wp*V);

DM = diff(Mh,ism);

DSM = up*dbseries('trivial',q);

% Iterate

for i = 1:q

DMDSM = sub(DM,DSM);

DUOSM = wp*DMDSM;

DSDUOSM = sub(compose(DSM,uosm),DUOSM);

epsilon = DMDSM - DSDUOSM;

DSM = DSM + Dp*epsilon;

end

To apply the iteration in practice, we use the command

[dsm,duosm] = analysis.computeDUOSM(q,Fh,Mh,u,up,wp,zeta).

Example 4.8. At the end of Chapter 3, we presented GLMs (3.9) and (3.10) that

we claimed are parasitism-free to 4th order, i.e. their derivative UOSM satisfies

Ψ
(2)
h (y0, v) = −v + O(h5). In the following piece of code, we use the direct iteration

described above to verify this claim for GLM (3.10):
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% Construct GLM coefficient matrices:

A = zeros(5);

A(1,1)= 1/2;

A(2,1)= 7/12; A(2,2)= 5/24;

A(3,1)= -1/12; A(3,2)= 1/2; A(3,3)= 1/24;

A(4,1)= 13/12; A(4,2)= 1/2; A(4,3)= -1/2; A(4,4)= -13/24;

A(5,1)= 5/12; A(5,2)= 1/2; A(5,3)= -1/2; A(5,4)= -1/2; A(5,5)= 7/24;

B = zeros(2,5);

B(1,:)= [1,1/2,-1/2,-1/2,1/2];

B(2,:)= [0,1/2,-1/2,-1/2,1/2];

U= [1,1;1,0;1,0;1,0;1,0];

V= [1,0;0,-1];

% Build method objects; finisher is trivial

Mh= glm(A,U,B,V); Fh= finisher([1,0]); u= [1;0];

% Store parasitc eigenvalue and directions

zeta= -1; up= [0;1]; wp= [0,1];

% Compute DUOSM to order 4

[dsm,duosm]= analysis.computeDUOSM(4,Fh,Mh,u,up,wp,zeta);

% Check for zero coefficients

test= duosm - zeta*dbseries('trivial',4); disp(norm(test.coeffs,1))

Running this test, we found norm(test.coeffs,1) evaluates to 3.3249e-16, i.e. zero

to rounding error. This confirms that the coefficients of orders 0-4 of the DUOSM are

zero.

Note: the above code can be easily modified to check that (3.9) is also parasitism-

free to 4th order by changing the coefficient matrices for A, U and B. Doing this, we

found that norm(test.coeffs,1) evaluates to exactly 0.

⋄



Chapter 5
Composition

Composition is a technique applied to numerical methods to construct new methods

with some desired property. For example, composition can be used to design a method

of higher order [20, 27, 63, 58, 59, 45], control parasitism [13], and increase stability for

stiff problems [29, 40]. High-order methods may also be constructed via extrapolation

[37, Ch. II.9]. However, this approach tends not to preserve the underlying geometric

properties of the base numerical method.

In this chapter, we shall focus on using composition to construct high-order GLMs.

In particular, we build upon the theory of composition for one-step methods which is

already well-developed (see e.g. [36, Ch II.4]).

5.1 Composition of one-step methods

Let Φh : X → X denote a one-step method (OSM). Then, a composition method

ψh : X → X is given by

ψh(y0) = Φαkh◦ · · · ◦Φα2h◦Φα1h(y0), y0 ∈ X, (5.1)

where k ∈ N, α1, . . . , αk ∈ R\{0} and it is assumed that α1 + · · · + αk = 1 to ensure

that ψh corresponds to a time-h evolution.

Composition methods are particularly useful in geometric integration as they tend

to preserve the structure-preserving properties of the base numerical method Φh.

102
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Theorem 5.1. [36, p. 190] If Φh is symplectic, then the composition method ψh is

also symplectic. If Φh is symmetric, then ψh is symmetric provided

αj = αk−j+1, for j = 1, . . . , k.

Proof. If Φh(y0) is symplectic, then it satisfies

(
∂Φh(y0)

∂y0

)T

J

(
∂Φh(y0)

∂y0

)
= J, J =

[
0 I

−I 0

]
,

for any value of h and y0. Now, defining

Φ′
j :=

(
∂Φαjh(y)

∂y

)∣∣∣∣
y=Φαj−1h

◦···◦Φα2h
◦Φα1h

(y0)

, j = 1, . . . , k,

we observe that

(
∂ψh(y0)

∂y0

)T

J

(
∂ψh(y0)

∂y0

)
= (Φ′

1)
T · · · (Φ′

k−1)
T (Φ′

k)
TJΦ′

kΦ
′
k−1 · · ·Φ′

1.

It follows from the symplecticity of Φh that (Φ′
j)

TJΦ′
j = J , for j = 1, . . . , k. Thus,

(
∂ψh(y0)

∂y0

)T

J

(
∂ψh(y0)

∂y0

)
= J,

and the method is symplectic as required.

If Φh is symmetric, then Φh(y0) = Φ−1
−h(y0) =: Φ∗

h(y0) (cf. Section 2.5). Now, we

observe that

ψ∗
h(y0) = (Φαkh◦ · · · ◦Φα2h◦Φα1h(y0))

∗ = Φ∗
α1h◦ · · · ◦Φ∗

αk−1h
◦Φ∗

αkh
(y0).

Using symmetry of Φh and recalling that αj = αk−j+1, for j = 1, . . . , k, we find that

ψ∗
h(y0) = ψh(y0), and the method is symmetric as required.

5.1.1 Higher order methods

For certain choices of α1, . . . , αk, the composed method ψh is of higher order than the

base method Φh. In particular, it has been shown (see e.g. [36, pp. 43–46]) that if Φh

is of even order p ∈ N, then the composed method is at least of order p+ 1 if

α1 + · · · + αk = 1,

αp+1
1 + · · ·+ αp+1

k = 0.
(5.2)
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It should be noted that for odd p, no real solution exists to the above conditions.

Definition 5.2 (Triple jump [20, 27, 63, 58]). Consider a OSM Φh of even order

p ∈ N. Then, the triple jump composition method is given by

ψh(y0) := Φα1h◦Φα2h◦Φα1h(y0),

where

α1 =
1

2− 21/(p+1)
, α2 = − 21/(p+1)

2− 21/(p+1)
. (5.3)

Definition 5.3 (Suzuki 5-jump [58]). Consider a OSM Φh of even order p ∈ N.

Then, the Suzuki 5-jump composition method is given by

ψh(y0) := Φα1h◦Φα1h◦Φα2h◦Φα1h◦Φα1h(y0),

where

α1 =
1

4− 41/(p+1)
, α2 = − 41/(p+1)

4− 41/(p+1)
. (5.4)

Both of these compositions will yield a method of at least order p+ 1. In the case

that Φh is symmetric, it follows from the preservation of symmetry and the necessity of

even order that the composition method is also symmetric and must be at least of order

p+2. Furthermore, we can use this new method as the basis for another composition.

Continuing in this fashion we can generate methods of arbitrarily high order.

Example 5.4. Let Φh represent a consistent RKM with defining matrices (A,B).

When viewed as a GLM, the method has a tableau given by

[
A 1

B 1

]
.

Recall that the tableau corresponding to the composition of two GLMs M(1)
h , M(2)

h ,

with coefficient matrices (A(1), U (1), B(1), V (1)) and (A(2), U (2), B(2), V (2)), can be found

using the formula (2.11):




A(1) 0 U (1)

U (2)B(1) A(2) U (2)V (1)

V (2)B(1) B(2) V (2)V (1)


 .
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By recursively applying this formula, we can express the triple jump method as a GLM:




α1A 0 0 1

α11B α2A 0 1

α11B α21B α1A 1

α1B α2B α1B 1



.

Here, if we consider the implicit midpoint rule with (A,B) = (12 , 1), which is both

symmetric and symplectic (see e.g. [36, pp. 3, 34]), as the base numerical method

then an order increase to p = 4 is obtained. Furthermore, the composed method is

also symmetric and symplectic (see Theorem 5.1). General compositions involving

the implicit midpoint rule have been studied by Sanz-Serna and Abia [53], who have

shown they essentially generate the family of the diagonally-implicit, symmetric and

symplectic RKMs.

⋄

Composition of arbitrary OSMs

Let us now consider an arbitrary, consistent OSM Φh that is of odd order p. As

mentioned above, no real solution exists to (5.2), thus we cannot consider compositions

of the form (5.1). However, if we consider a composition that involves a method and

its adjoint Φ∗
h(y0) := Φ−1

−h(y0) (see e.g. [59, 45]), then we can overcome this restriction.

In particular,

ψh(y0) = Φ∗
βkh

◦Φαkh◦ · · · ◦Φα2h◦Φ∗
β1h◦Φα1h(y0), y0 ∈ X, (5.5)

where α1 . . . , αk, β1, . . . , βk ∈ R and it is assumed that α1+β1+α2+ . . .+αk+βk = 1.

It can be seen that this form of composition is a direct generalisation of (5.1), where

the original is obtained for the choice β1 = β2 = · · · = βk = 0.

As with the original composition, conditions on αj, βj , j = 1, . . . , k, can be found

such that an order increase is obtained (see e.g. [36, p. 45]). In particular, if Φh is of

order p and

α1 + β1 + α2 + · · ·+ αk + βk = 1,

αp+1
1 + (−1)pβp+1

1 + · · ·+ αp+1
k + (−1)pβp+1

k = 0,
(5.6)

then ψh(y0) will be at least of order p+ 1.
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Example 5.5. Consider the composition

ψh(y0) = Φh
2
◦Φ∗

h
2

(y0),

where Φh is the RKM corresponding to the first order backward Euler method with

defining matrices (A,B) = (1, 1), and the adjoint Φ∗
h is given by the Euler method with

matrices (A∗, B∗) = (0, 1). Viewing the methods as GLMs, and using the composition

tableau formula (2.11) (see also Example 5.4), then ψh is described by the tableau




1
2 0 1
1
2 0 1
1
2

1
2 1


 .

Notice that the first and second stages are the same. This means we can combine them

to obtain the reduced, single-stage RKM (expressed as a GLM)

[
1
2 1

1 1

]
,

which is the implicit midpoint rule, known to be of order p = 2.

⋄

The order increase of the composed method in the above example can also be

explained by symmetry: First note that

ψ∗
h = (Φ∗

h
2

◦Φh
2
)∗ = Φ∗

h
2

◦Φ∗∗
h
2

= Φ∗
h
2

◦Φh
2
= ψh.

In other words, the action of composing a method with its adjoint (and with equally

weighted time-steps) yields a symmetric method. It then follows from the necessity of

even order that the composition method must also be of even order. Thus, any OSM of

odd order p, composed in this way, will yield a symmetric method of even order p+ 1.
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5.2 Composition of GLMs

In the following sections, we explore generalisations of the composition formulae (5.1)

and (5.5) to GLMs. An important part of this will involve understanding the rules for

the composition of methods with different time-steps. In particular, we will cover two

special cases:

1. GLMs with Nordsieck inputs,

2. GLMs with general inputs.

5.2.1 Composition of GLMs with Nordsieck inputs

Consider a GLM that takes Nordsieck inputs, that is, at step n ∈ N0 the GLM generates

approximations to the Nordsieck vector N
[n]
h , where

N
[n]
h :=




y|t=nh

hdy
dt |t=nh

h2 d2y
dt2

|t=nh

...

hr−1 dr−1y
dtr−1 |t=nh




.

Examples of methods that can be converted to Nordsieck form include the class of irre-

ducible LMMs [54] and the class of diagonally implicit multistage integration methods

(DIMSIMs) [12]. Methods of this type have been identified as suitable candidates for

variable time-step implementations since only a scaling of the input vector is required.

Thus, it is natural to consider this class of methods when attempting to generalise

composition formulae (5.1) and (5.5) to GLMs.

Nordsieck composition: Let us now consider a GLM generalisation of composition

formula (5.1) for methods with Nordsieck inputs. In particular, for an r-input GLM,

we define the diagonal matrix

D(a, b) := diag

(
1,
a

b
,
(a
b

)2
, . . . ,

(a
b

)r−1
)
, a, b ∈ R\{0}.

Then, for α1, . . . , αk ∈ R\{0}, the Nordsieck composition formula is given as

MN
h := D(α1, αk)Mαkh◦D(αk, αk−1)Mαk−1h◦ · · · ◦Mα2h◦D(α2, α1)Mα1h. (5.7)
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Theorem 5.6. Consider a consistent GLM Mh, where ζ1 = 1 is a simple eigenvalue

of V , and a corresponding starting method Sh such that the following assumptions are

satisfied:

(A1) (Mh,Sh) is of even order p ∈ N.

(A2) Sh(y0) = N
[0]
h +O(hp+2) and eT1 Sh(y0) = y0, where e1 = [1, 0, . . . , 0]T ∈ R

r.

(A3) eT1 V = eT1 .

Furthermore, let α1, . . . , αk be chosen such that (5.2) holds, i.e.

α1 + · · · + αk = 1,

αp+1
1 + · · ·+ αp+1

k = 0.

Then, there exists a starting method SN
h such that the pair (MN

h ,SN
h ) is at least of

order p+ 1.

Proof. Given (A1), it follows from the definition of GLM order (2.10) that

D(αi, αj)Mαjh◦Sαjh(y0) = D(αi, αj)
(
Sαjh(ϕαjh(y0)) + C(y0)α

p+1
j hp+1

)
+O(hp+2),

where C(y0) is some vector dependent on various derivatives of f evaluated at y0. It

follows from (A2) that D(αi, αj)Sαjh = Sαih +O(hp+2). Thus,

D(αi, αj)Mαjh◦Sαjh(y0) = Sαih(ϕαjh(y0)) +D(αi, αj)C(y0)α
p+1
j hp+1 +O(hp+2).

Using this result, and noting that M′
h(y)z = V z +O(h||z||), it follows that

MN
h ◦Sα1h(y0) = Sα1h(ϕ(αk+···+α1)h(y0)) +D(α1, αk)KC(y0)h

p+1 +O(hp+2),

K :=

k∑

m=1

V D(αk, αk−1)V D(αk−1, αk−2) · · · V D(αm+1, αm)αp+1
m .

Note that (A3), together with (5.2), implies that

eT1K =
k∑

m=1

eT1 V D(αk, αk−1)V D(αk−1, αk−2) · · · V D(αm+1, αm)αp+1
m ,

= eT1

k∑

m=1

αp+1
m = 0T .



CHAPTER 5. COMPOSITION 109

Now, define the matrix G := (V − I+ e1e
T
1 )

−1D(α1, αs)K. Here we note that since

ζ1 = 1 is a simple eigenvalue of V , with e1 the corresponding left and right eigenvector,

G is well-defined. Furthermore, (V − I)G = D(α1, αs)K since G satisfies eT1G = 0T .

Next, we fix SN
h (y0) := Sα1h(y0)−GC(y0)h

p+1, and observe that

MN
h ◦SN

h (y0)− SN
h (ϕh(y0)) = MN

h ◦Sα1h(y0)− Sα1h(ϕh(y0))−
V GC(y0)h

p+1 +GC(ϕh(y0))h
p+1 +O(hp+2),

= D(α1, αs)KC(y0)h
p+1 − V GC(y0)h

p+1+

GC(ϕh(y0))h
p+1 +O(hp+2).

Using ϕh(y0) = y0 +O(h) and (V − I)G = D(α1, αs)K, we find

MN
h ◦SN

h (y0)− SN
h (ϕh(y0)) = O(hp+2).

By the definition of GLM order, this implies the pair (MN
h ,SN

h ) is at least of order

p+ 1, as required.

Remark 5.7. Note in the above theorem that V can be singular. This implies that

composition methods can be constructed from strictly-stable, Nordsieck-input, GLMs.

As we shall see the following section, strictly-stable methods cannot be applied to the

GLM-generalisation of (5.5) as this requires that the adjoint method exists, i.e. when

V is invertible.

Example 5.8 (Nordsieck triple jump). Let α1 and α2 be given by the triple jump

parameters (5.3), and define D := D(α2, α1), then (5.7) with k = 2 yields

MN
h = Mα1h◦D−1Mα2h◦DMα1h. (5.8)

Recursively applying the composition of GLM tableau formula (2.11) gives




α1A 0 0 U

α1UDB α2A 0 UDV

α1UD
−1V DB α2UD

−1B α1A UD−1V DV

α1V D
−1V DB α2V D

−1B α1B VD−1V DV



.

⋄
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Preservation of symmetry: Recall that a composition of the form (5.2) involving

a symmetric OSM yields a method that is also symmetric. Below, we consider the

equivalent result for symmetric Nordsieck GLMs.

Theorem 5.9. Let Mh be an (L,P )-symmetric GLM, where L is an r × r diagonal

matrix with Lii = (−1)i+1, i = 1, . . . , r, and assume that αj = αk−j+1 ∈ R\{0}, for

j = 1, . . . , k. Then, composition (5.7) is also symmetric.

Proof. Recall that a GLM is symmetric if it satisfies M∗
h = LMh◦L, where the adjoint

method is defined as M∗
h := M−1

−h. Now, taking the adjoint of MN
h we find

(
MN

h

)∗
=
(
D(α1, αk)Mαkh◦D(αk, αk−1)Mαk−1h◦ · · · ◦Mα2h◦D(α2, α1)Mα1h

)∗
,

= M∗
α1h◦D−1(α2, α1)M∗

α2h◦ · · · ◦M∗
αk−1h

◦D−1(αk, αk−1)M∗
αkh

◦D−1(α1, αk).

Noting that D−1(a, b) = D(b, a) for a, b ∈ R\{0}, this becomes

(
MN

h

)∗
= M∗

α1h◦D(α1, α2)M∗
α2h◦ · · · ◦M∗

αk−1h
◦D(αk−1, αk)M∗

αkh
◦D(αk, α1).

By assumption, we have that αj = αk−j+1 ∈ R\{0}, for j = 1, . . . , k. This implies that

D(α1, αk) = I, and thus the expression above may be written as

(
MN

h

)∗
= M∗

αkh
◦D(αk, αk−1)M∗

αk−1h
◦ · · · ◦M∗

α2h◦D(α2, α1)M∗
α1h.

Since Mh is symmetric, it follows that

(
MN

h

)∗
= LMαkh◦LD(αk, αk−1)LMαk−1h◦ · · · ◦Mα2h◦LD(α2, α1)LMα1h◦L.

By the commutativity of diagonal matrices, we observe that LD(a, b)L = D(a, b) for

a, b ∈ R\{0} since L2 = I. Thus, we deduce that

(
MN

h

)∗
= LMαkh◦D(αk, αk−1)Mαk−1h◦ · · · ◦Mα2h◦D(α2, α1)Mα1h◦L = LMN

h ◦L,

and the method is symmetric as required.

Having shown that the symmetry is preserved under the Nordsieck composition, we

now move on to show that there exists a symmetric starting method that allows for an

additional order increase to p+ 2 to be achieved.
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Theorem 5.10. Consider an (L,P )-symmetric GLM, where L is an r × r diagonal

matrix with Lii = (−1)i+1, i = 1, . . . , r. Under the assumptions of Theorem 5.6, there

exists a symmetric starting method,

S̃N
h (y0) :=

1

2

(
SN
h (y0) + LSN

−h(y0)
)
,

where SN
h (y0) is as given in the proof of Theorem 5.6, such that the pair (MN

h , S̃N
h ) is

at least of order p+ 2.

Proof. Recall from Chapter 2, Theorem 2.43 that the ideal starting method S∗
h associ-

ated with a symmetric GLM and symmetric finishing method must also be symmetric,

i.e. S∗
h = LS∗

−h. From Theorem 5.9 we know that MN
h is symmetric, and since its

finishing method Fh = eT1 satisfies eT1 L = eT1 , it is also symmetric. Thus, we deduce

that the ideal starting method associated with MN
h must be symmetric.

Recall also from Chapter 2, Corollary 2.28 that if the pair (Mh,Sh) is of order p,

then Sh = S∗
h + O(hp+1). From Theorem 5.6, we know that the pair (MN

h ,SN
h ) is at

least of order p+ 1. Thus, we deduce that SN
h = S∗

h +O(hp+2).

Combining these results, we find that

S∗
h = S∗

h − 1

2

(
S∗
h − LS∗

−h

)
=

1

2

(
S∗
h + LS∗

−h

)
=

1

2

(
SN
h + LSN

−h

)
+O(hp+2).

It now follows that SN
h = S̃N

h +O(hp+2), and we deduce that the pair (MN
h , S̃N

h ) must

be at least of order p + 1. However, since Fh, MN
h , and S̃N

h are all symmetric, and

p + 1 is odd, it follows from the necessity of even order (cf. Theorem 2.42) that the

pair (MN
h , S̃N

h ) must be at least of order p+ 2, as required.

Remark 5.11. It cannot be guaranteed that the starting method S̃N
h (y0) will produce

Nordsieck inputs of the form S̃N
h (y0) = N

[0]
h +O(hp+4). Thus, for symmetric methods,

repeated compositions cannot be used to obtain methods of arbitrarily high order.
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i hi ∆yi := ||yT/hi
− yT/hi+1

||2 log2/3(∆yi/∆yi+1)

1
(
2
3

)4
1.4542e-5 -6.0189

2
(
2
3

)5
1.2670e-6 -5.9979

3
(
2
3

)6
1.1132e-7 -6.0881

4
(
2
3

)7
9.4304e-9 -6.4985

5
(
2
3

)8
6.7640e-10 -

Table 5.1: Verification of 6th order using the Nordsieck-triple jump method in Example 5.12.

Example 5.12. Consider a Nordsieck-GLM triple jump (5.8) of the following 4th

order, (L,P )-symmetric GLM:




113
1608 0 0 1 − 515

1608
157
3216 − 71

14791
9

134
71
402 0 1 −103

402
43
804 − 43

12864
145
402

769
804

407
1608 1 − 515

1608
247
3216 − 51

16715
2
27

23
27

2
27 1 0 0 0

4
9

10
9

4
9 0 −1 0 0

1
3 −2 −5

3 0 0 0 − 1
16

80
3 −32 −16

3 0 0 16 0




,

where

P =



0 0 1

0 1 0

1 0 0


 , L =




1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1



.

The preceding results indicate that we should obtain a 6th order method. To verify

this, we apply the composed method to the simple pendulum problem (2.15):

d

dt

[
p(t)

q(t)

]
=

[
− sin(q(t))

p(t)

]
,

[
p(0)

q(0)

]
=

[
p0

q0

]
, t ∈ [0, T ],

where we choose T = 1024, (p0, q0) = (1, 0), for various choices of time-step h. The

starting method was implemented using the iterative procedure introduced in [46] (see

also Chapter 4.4.2). The results displayed in Table 5.1 clearly demonstrate that 6th

order is achieved for this example.

⋄
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5.2.2 A canonical form for GLMs

In anticipation of our discussion on the composition of GLMs with arbitrary inputs,

we introduce a canonical form for GLMs.

Definition 5.13. A GLM is said to be canonical if its starting and finishing methods

are given by the preconsistency vectors u and wH.

Canonical methods have the important property that their inputs are independent

of h. Thus, we can compose multiple canonical methods of different time-steps provided

only the preconsistency vectors agree. As is shown below, any method can transformed

into canonical form provided that the tableaux for its starting method Sh and finishing

method Fh are given by (2.7), i.e.

[
AS 1S

BS u

]
and

[
AS − UFBS UF

−wHBS wH

]
,

and that UF satisfies UFu = 1S (cf. (2.5)). In other words, a method can be trans-

formed into canonical form provided that Fh◦Sh(y0) = y0 exactly.

Theorem 5.14. Every GLM Mh, with starting and finishing methods, Sh and Fh,

determined by the tableaux (2.7) such that Fh◦Sh(y0) = y0, is equivalent to a canonical

GLM defined by the composition

Ch = T−1
h ◦Mh◦Th,

where Th, T
−1
h : Xr → Xr are respectively determined by the GLM tableaux

[
AS UF

BS I

]
, and

[
AS − UFBS UF

−BS I

]
, (5.9)

where AS , UF , BS are the coefficient matrices of the starting and finshing methods, and

I is the r × r identity matrix.

Proof. Let the maps Th, T
−1
h : Xr → Xr be determined by the GLM tableaux (5.9).

Then, it follows from the formula for the inverse of a GLM (2.19) that

Th◦T−1
h (y) = T−1

h ◦Th(y) = y, for any y ∈ Xr.

Now, consider a nonlinear transformation of the numerical method as a whole, i.e.

Fh◦Mn
h◦Sh(y0) = (Fh◦Th)◦(T−1

h ◦Mh◦Th)n◦(T−1
h ◦Sh)(y0) = FC

h◦Cn
h◦SC

h(y0).
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Note that the corresponding starting and finishing methods of Ch are given by

SC
h := T−1

h ◦Sh and FC
h := Fh◦Th,

where the tableaux for Sh and Fh are given by (2.7). Observe that the composition

Th◦u yields a tableau of the form

[
AS UFu

BS u

]
=

[
AS 1S

BS u

]
,

where we have used UFu = 1S from (2.5). This agrees with the tableau for Sh and

thus it follows that SC
h (y0) = u · y0. Also observe that wHT−1

h yields a tableau of the

form [
AS − UFBS UF

−wHBS wH

]
,

which agrees with the tableau for Fh, thus FC
h (y) = wHy. It now follows from Definition

5.13 that Ch is a canonical method.

The tableau for the corresponding canonical method of a GLM may be obtained

using the tableau composition formula (2.11):




AS 0 0 UF

UBS A 0 U

UFV BS UFB AS − UFBS UFV

V BS B −BS V



. (5.10)

In general, performing a nonlinear change of coordinates runs the risk of destroying

certain properties of the base numerical method. Below, we show that a transformation

to canonical form does not affect the order of the method.

Theorem 5.15. Suppose (Mh,Sh) is of order p. Then, (Ch, u) is also of order p.

Proof. From order definition (2.10) we know Mh◦Sh(y0) = Sh◦ϕh(y0)+O(hp+1). After

pre-multiplying by T−1
h we find

T−1
h ◦Mh◦(Th◦T−1

h )◦Sh(y0) = T−1
h Sh(ϕh(y0)) +O(hp+1),

=⇒ Ch(uy0) = uϕh(y0) +O(hp+1).

Thus (Ch, u) is also of order p.
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Preservation of symmetry: Symmetry is generally not preserved under the canon-

ical transformation, unless the starting and finishing methods are also symmetric.

Theorem 5.16. Suppose that Mh is an (L,P )-symmetric GLM. If Sh and Fh are

symmetric, then Ch is symmetric.

Proof. Since Sh and Fh are symmetric, this implies that their coefficient matrices satisfy

conditions (2.24) and (2.25), i.e. there exists a permutation matrix PS such that

AS = −PSASPS , BS = −LBSPS , Lu = u,

UF = PSUFL, wHL = wH.

Upon substitution into the tableaux for Th and T−1
h we deduce that Th = LT−hL and

T−1
h = LT−1

−hL. Now, by the symmetry of Mh, we observe that

Ch = T−1
h ◦Mh◦Th = T−1

h ◦LM∗
h◦LTh = (T−1

h ◦LT−∗
h )◦C∗

h◦(T ∗
h◦LTh).

However,

T ∗
h◦LTh = T−1

−h◦LTh = T−1
−h◦T−h◦L = L.

Thus, Ch = LC∗
h◦L and the canonical method is symmetric as required.

Example 5.17. It has been shown by Gragg [30] that the Leapfrog method, when

initialised with the Euler starter, yields a global error expansion in even powers of h.

In the context of symmetric GLMs, we cannot directly explain this result as the Euler

starter is not symmetric, i.e. recall that this starter is given by

y[0] =

[
y0

y0 + hf(y0)

]
, or in terms of GLM tableau




0 1

0 1

1 1


 ,

then observe that this is not symmetric with respect to the L-involution of the Leapfrog

method, where L =

[
0 1

1 0

]
.

However, we can explain Gragg’s result using the canonical method: Recall that

the Leapfrog tableau (2.4) is given by




0 0 1

0 0 1

2 1 0


 .
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Then using (5.10), we find the canonical form is given by




0 0 0 1 0

1 0 0 0 1

1 0 0 0 1

1 0 0 0 1

0 2 −1 1 0



.

Here, we observe that the second and third stage equations are equivalent, which

implies there is a redundancy in the representation of the method. By removing one of

these redundant stages (e.g. combining the second and third columns together, then

removing the third row), we obtain the irreducible representation given by the tableau




0 0 1 0

1 0 0 1

1 0 0 1

0 1 1 0



.

It can now be verified using the symmetry conditions (2.21), that the canonical method

is (LC , PC)-symmetric where

LC =

[
1 0

0 1

]
, PC =

[
0 1

1 0

]
.

In addition, we observe that the starting and finishing methods, u and wH, are trivially

symmetric, i.e. LCu = u and wHLC = wH. Thus, since the Leapfrog method written

out in full is given by

Fh◦Mn
h◦Sh(y0) = wHCn

h◦uy0,

and wH, Ch and u are all symmetric with respect to LC , we can apply the necessity of

even order result (cf. Theorem 2.42) to conclude that the method has a global error

expansion in even powers of h.

⋄
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5.2.3 Composition of canonical methods

Consider a canonical GLM Ch with an invertible matrix V . As mentioned earlier, the

inputs to a canonical method are h-independent. Thus, we can consider a straightfor-

ward generalisation of the composition (5.5) to GLMs:

CA
h := C∗

βkh
◦Cαkh◦ · · · ◦C∗

β2h◦Cα2h◦C∗
β1h◦Cα1h. (5.11)

It can then be shown that the conditions on α1, . . . , αk, β1, . . . , βk required for an order

increase agree with those used for the composition of OSMs.

Theorem 5.18. Suppose the pair (Ch, u) is of order p ∈ N and Ch is invertible. Then,

the pair (CA
h , u) is at least of order p+ 1 provided

α1 + β1 + α2 + β2 + · · ·+ αk + βk = 1, (5.12)

αp+1
1 + (−1)pβp+1

1 + αp+1
2 + (−1)pβp+1

2 + · · ·+ αp+1
k + (−1)pβp+1

k = 0. (5.13)

Proof. Since Ch is invertible, it follows that the adjoint method exists and, therefore, so

does composition (5.11). Now, recall Lemma 2.39 which states that if the pair (Mh,Sh)

is of order p, i.e.

Mh◦Sh(y0) = Sh◦ϕh(y0) + C(y0)h
p+1 +O(hp+2),

then the pair (M∗
h,S−h) satisfies

M∗
h◦S−h(y0) = S−h◦ϕh(y0) + (−1)pV −1C(y0) +O(hp+2).

For canonical methods, Sh = S−h = u. Thus, for each j ∈ {1, . . . , k}, we have

Cαjh(uy0) = uϕαjh + αp+1
j hp+1C(y0) +O(hp+2),

C∗
βjh(uy0) = uϕβjh + (−1)pβp+1

j hp+1V −1C(y0) +O(hp+2).

Composing these expressions, we find that

C∗
βjh◦Cαjh(uy0) = C∗

βjh(uϕαjh(y0) +C(y0)h
p+1αp+1

j +O(hp+2)),

= C∗
βjh(uϕαjh(y0)) + V −1C(y0)h

p+1αp+1
j +O(hp+2),

= uϕ(αj+βj)h(y0) + V −1C(y0)h
p+1

(
αp+1
j + (−1)pβp+1

j

)
+O(hp+2),

where we have applied (C∗
h(y))

′z = V −1z +O(h||z||), and C(ϕh(y0)) = C(y0) +O(h).
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Recursively applying the above result to each C∗
βjh

◦Cαjh in the order of j = 1, . . . , k

we find

CA
h (uy0) = uϕ(

∑k
j=1 αj+βj)h(y0) + V −1C(y0)h

p+1
k∑

j=1

(
αp+1
j + (−1)pβp+1

j

)
+O(hp+2).

Thus, if (5.12) and (5.13) are satisfied, it follows that the pair (CA
h , u) is at least of

order p+ 1.

To obtain an adjoint-free composition, i.e. a GLM-generalisation of (5.1), we set

βj = 0 for j = 1, . . . , k in (5.11). This choice replaces each C∗
βjh

by V −1 to give

CA
h = V −1Cαkh◦ · · · ◦V −1Cα2h◦V −1Cα1h.

Notice here that the final multiplication by V −1 will not affect the order of the method

as V u = u, i.e. if (CA
h , u) is of order p, then (V CA

h , u) is also of order p, since

V CA
h (uy0) = V (uϕh(y0) +O(hp+1)) = uϕh(y0) +O(hp+1).

Thus, we define the adjoint-free composition of canonical GLMs as

CB
h := Cαkh◦ · · · ◦V −1Cα2h◦V −1Cα1h. (5.14)

Theorem 5.19. Let the assumptions of Theorem 5.18 hold. Then, the pair (CB
h , u) is

at least of order p+ 1 provided

α1 + α2 + · · ·+ αk = 1, (5.15)

αp+1
1 + αp+1

2 + · · ·+ αp+1
k = 0. (5.16)

Proof. Follows from Theorem 5.18 with β1 = · · · = βs = 0 and noting that V u = u.

Remark 5.20. The route we have taken in deriving (5.14) is important, as a direct

application of (5.1) to canonical GLMs would fail to include the V −1 multiplications

between methods. So while the composition would be valid, an order increase under

conditions (5.15)-(5.16) would not necessarily be achieved.

Preservation of symmetry: Suppose now that the canonical method is (L,P )-

symmetric. Without loss of generality, we restrict our attention to compositions of the

form (5.14) as, by definition, a symmetric method is similar to its adjoint.
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Theorem 5.21. Let Ch be an (L,P )-symmetric, canonical GLM. Then, composition

(5.14) is symmetric if αj = αk−j+1, for j = 1, . . . , k.

Proof. Taking the adjoint of CB
h , we find

(
CB
h

)∗
=
(
Cαkh◦ · · · ◦V −1Cα2h◦V −1Cα1h

)∗
= C∗

α1h◦ · · · ◦V C∗
αk−1h

◦V C∗
αkh

.

By assumption, αj = αk−j+1, for j = 1, . . . , k. Thus, this becomes

(
CB
h

)∗
= C∗

αkh
◦ · · · ◦V C∗

α2h◦V C∗
α1h.

Since Ch is symmetric, we have that Ch = LC∗
h◦L and LV L = V −1. Therefore,

(
CB
h

)∗
= (LCαkh◦L)◦ · · · ◦V LCα2h◦LV LCα1h◦L,
= LCαkh◦ · · · ◦V −1Cα2h◦V −1Cα1h◦L = LCB

h ◦L,

and the method is symmetric as required.

5.2.4 Composition of non-canonical methods

Consider now a composition method based on an invertible GLM with arbitrary inputs.

The corresponding composition formulae and results all extend straightforwardly from

those given in the previous section after making the substitution Ch = Th◦Mh◦T−1
h .

In particular, the general form of (5.11) is written as

MA
h := (Tα1h◦T ∗

βkh
)◦M∗

βkh
◦(T−∗

βkh
◦T−1

αkh
)◦Mαkh◦(Tαkh◦T ∗

βk−1h
)◦ · · · ◦

Mα2h◦(Tα2h◦T ∗
β1h)◦M∗

β1h◦(T−∗
β1h

◦T−1
α1h

)◦Mα1h,
(5.17)

and for (5.14) this is

MB
h := (Tα1h◦T−1

αkh
)◦Mαkh◦(Tαkh◦V −1T−1

αk−1h
)◦ · · · ◦

Mα2h◦(Tα2h◦V −1T−1
α1h

)◦Mα1h.
(5.18)

In addition, the corresponding starting and finishing methods are given by

SA
h = SB

h = Sα1h and FA
h = FB

h = Fα1h,

where Sh and Fh are the starting and finishing methods of the base GLM Mh.
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Composition of symmetric GLMs: Suppose the αj are chosen to satisfy αj =

αk−j+1, for j = 1, . . . , k. Then, it follows from the discussion on canonical GLMs

and Theorem 5.21 that the method MB
h is also symmetric (provided the starting and

finishing methods are also symmetric). Furthermore, if the αj satisfy (5.15)-(5.16) then

an additional order increase is obtained, i.e. from p to p+2 where p is necessarily even.

As with OSMs, we can continue this composition indefinitely to construct methods of

arbitrarily high order.

Example 5.22. Let us define the nonlinear map

R(α2, α1) := Tα2h◦V −1T−1
α1h

, for α1, α2 ∈ R\{0}.

Then, from composition (5.18), we can obtain the GLM version of the triple jump:

MT
h := Mα1h◦R(α1, α2)◦Mα2h◦R(α2, α1)◦Mα1h, (5.19)

where, for Mh of order p,

α1 =
1

2− 21/(p+1)
, α2 = − 21/(p+1)

2− 21/(p+1)
.

Similarly, we obtain the GLM version of Suzuki 5-jump:

MS
h := Mα1h◦R(α1, α1)◦Mα1h◦R(α1, α2)◦ · · ·

Mα2h◦R(α2, α1)◦Mα1h◦R(α1, α1)◦Mα1h,
(5.20)

where

α1 =
1

4− 41/(p+1)
, α2 = − 41/(p+1)

4− 41/(p+1)
. (5.21)

⋄

It is possible to express the compositions in the previous example in terms of a

GLM tableau. To do this for the triple jump, we first assume that the UF matrix in

the Th and T−1
h maps is defined as UF = 1Sw

H

1 , where w1 is the left eigenvector of V

corresponding to eigenvalue ζ1 = 1. Then, through several applications of the tableau

composition formula (2.11), the GLM triple jump is written as
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


Aα1 0 0 0 0 0 0 U

UFBα1 (AS − UFBS)α1 0 0 0 0 0 UF

UFBα1 −UFBSα1 ASα2 0 0 0 0 UF

UV −1Bα1 −UV −1BSα1 UBSα2 Aα2 0 0 0 U

UFBα1 −UFBSα1 UFBSα2 UFBα2 (AS − UFBS)α2 0 0 UF

UFBα1 −UFBSα1 UFBSα2 UFBα2 −UFBSα2 ASα1 0 UF

UV −1Bα1 −UV −1BSα1 UBSα2 UV −1Bα2 −UV −1BSα2 UBSα1 Aα1 U

Bα1 −BSα1 V BSα2 Bα2 −BSα2 V BSα1 Bα1 V




.

A similar approach can used to obtain the tableau for the Suzuki 5-jump.

Stage reductions: For an efficient implementation of a GLM composition method,

we must ensure that any redundant stages are removed prior to integration. For exam-

ple, the nonlinear map R(a, b) := Tah◦V −1T−1
bh (cf. Example 5.22), performed between

method evaluations is expressed as the GLM with tableau:




(AS − UFBS)b 0 UF

−UFV
−1BSb ASa UFV

−1

−V −1BSb BSa V −1


 .

Let AS be an s̃× s̃ matrix, then this tableau suggests that a total of 2s̃ stage equations

must be solved for each R(a, b)-evaluation. However, assuming that UF = 1Sw
H

1 , then

in the case a = b (see Suzuki composition (5.20)) we find a reduction to s̃-many stages

occurs, i.e. the tableau for R(a, a) actually reads

[
ASa UF

(I − V −1)BSa V −1

]
.

As reductions of this type are both method and composition dependent, we suggest

that each (distinct) nonlinear map R(a, b) is coded as an individual GLM, with redun-

dant stages removed. Then, compositions such as the Suzuki 5-jump (5.20) should be

performed in the fashion

MS
h := Mα1h◦R1◦Mα1h◦R3◦Mα2h◦R2◦Mα1h◦R1◦Mα1h,

where R1 = R(α1, α1), R2 = R(α2, α1) and R3 = R(α1, α2) are each distinct, and

irreducible GLMs.
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Further comments: The overall efficiency of these composition methods will be de-

termined by the level of implicitness in both the base numerical method Mh, and in

the maps Th and T−1
h . Methods that are likely to permit the most efficient implemen-

tations will be those with trivial finishing methods since then both Th and T−1
h can be

designed to be entirely explicit.

Numerical experiments involving the non-canonical composition formulae can be

found in Chapter 7. There, we apply the triple and Suzuki 5-jump compositions to

construct symmetric methods of orders 6 and 8. In view of the above comments, these

compositions are only performed for GLMs with trivial finishing methods.



Chapter 6
Decomposition

Method decomposition arises as the natural complement to composition. For example,

a composition method written as M(c)
h = M(2)

h ◦M(1)
h has a trivial decomposition into

the methods M(1)
h and M(2)

h . Here, the tableau for the composed method is computed

using the composition formula (2.11):

[
A(c) U (c)

B(c) V (c)

]
=




A(1) 0 U (1)

U (2)B(1) A(2) U (2)V (1)

V (2)B(1) B(2) V (2)V (1)


 .

Notice that if the stage matrices A(1), A(2) are lower triangular, then it follows that

the stage matrix A(c) of the composed method is also lower triangular. Suppose now

that we are given a GLM with a lower triangular stage matrix. Then, we might ask

under what conditions, on the coefficient matrices, does a decomposition hold?

In this chapter, we address this question and present a result on the decomposi-

tion of a structure-preserving GLM into several single-stage GLMs. The connection

between single-stage GLMs and linear multistep methods (LMMs) is also explored and

a representation for LMMs as GLMs in terms of growth parameters and characteristic

roots is given.

123
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6.1 GLM decomposition

Suppose we are given an s-stage GLM with a lower triangular stage matrix. Then, we

are interested in the existence of a decomposition of the form

Mh(y) = TsM(s)
h ◦Ts−1M(s−1)

h ◦ · · · ◦M(2)
h ◦T1M(1)

h (T0y), (6.1)

where each M(i)
h is a single-stage GLM and Ti a linear transformation.

In order to derive algebraic conditions such that the above decomposition holds, we

first apply the tableau composition formula (2.11) to the RHS of (6.1). Then, we make

a direct comparison to the coefficient matrices on the LHS. This approach yields the

following decomposition conditions:

Aii = ai, 1 ≤ i ≤ s,

Aij = uH

i Ti−1Vi−1Ti−2Vi−2 · · ·Tj+1Vj+1Tjbj , 1 ≤ j < i ≤ s,

eTi U = uH

i Ti−1Vi−1Ti−2Vi−2 · · ·T1V1T0, 1 ≤ i ≤ s,

Bei = TsVsTs−1Vs−1 · · ·Ti+1Vi+1Tibi, 1 ≤ i ≤ s,

V = TsVsTs−1Vs−1 · · ·T1V1T0,

(6.2)

where (A,U,B, V ) are the coefficient matrices of the s-stage GLM, and (ai, u
H

i , bi, Vi)

are the coefficient matrices of the ith single-stage GLM, for i = 1, . . . , s.

Theorem 6.1. Let Mh be an s-stage GLM with coefficient matrices (A,U,B, V ). If

A is lower triangular, and the method is either

(a) (L,P )-symmetric, where P is the time-reversal permutation matrix,

(b) G-symplectic,

then, there exists a decomposition of the form

Mh(y0) = M(s)
h ◦V −1M(s−1)

h ◦ · · · ◦V −1M(2)
h ◦V −1M(1)

h (y0), (6.3)

where each M(i)
h is a single-stage method with coefficient matrices

[
ai uH

i

bi Vi

]
=

[
eTi Aei eTi U

Bei V

]
,

and where ei denotes the ith canonical basis vector of dimension s.
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Proof. The proposed decomposition (6.3) is of the form of (6.1). To see this, we set

T0 = Ts = Ir, Vi = V, uH

i = eTi U, bi = Bei, ai = eTi Aei,

for i = 1, . . . , s, and we set Ti = V −1, for i = 1, . . . , s− 1. Immediately, we notice that

the first and last three decomposition conditions of (6.2) are satisfied, provided V is

invertible. The second condition simplifies to

Aij = uH

i V
−1bj = eTi UV

−1Bej, 1 ≤ j < i ≤ s.

Case (a): Suppose that Mh is (L,P )-symmetric. Then, the symmetry condition

V = LV −1L implies that V is invertible, and from the condition A = UV −1B − PAP

we deduce that

Aij = eTi Aej = eTi UV
−1Bej − eTi PAPej = eTi UV

−1Bej, (6.4)

since A is lower triangular and P is the time-reversal permutation. Thus, the second

decomposition condition is automatically satisfied.

Case (b): Suppose that Mh is G-symplectic. Then, the G-symplectic condition

G = V HGV with G non-singular implies that V is invertible. Combining conditions

DA+ATD = BHGB and DU = BHGV we deduce

Aij = eTi Aej = eTi D
−1BHGBej − eTi D

−1ATDej ,

= eTi UV
−1Bej −

djj
dii
eTj Aei = eTi UV

−1Bej,

which satisfies the final decomposition condition since A is lower triangular.

Corollary 6.2. If Mh is G-symplectic, then each M(i)
h is G-symplectic, where G is

the same for each method. If Mh is (L,P )-symmetric, then

M(i)
−h

−1
= LM(s−i+1)

h L, for i = 1, . . . , s.

Proof. Consider the case Mh is G-symplectic, then

V H

i GVi = V HGV = G,

bHiGVi = eTi (DD
−1)BHGV = eTi DU = diiu

H

i ,

bHiGbi = eTi B
HGBei = eTi (DA+ATD)ei = 2diiai.
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Thus, each M(i)
h is G-symplectic. Suppose now that Mh is symmetric, then

V −1
i = V −1 = LV L = LVs−i+1L,

V −1
i bi = V −1Bei = LBPei = LBes−i+1 = Lbs−i+1,

uTi V
−1
i = eTi UV

−1 = eTi PUL = eTs−i+1UL = uTs−i+1L,

ai − uTi V
−1
i bi = eTi (A− UV −1B)ei = eTi PAPei = as−i+1,

which implies that M(i)
−h

−1
= LM(s−i+1)

h L.

6.1.1 Practical considerations of decomposition

In a näıve implementation of a GLM, we require the storage of r-inputs y
[n]
1 , . . . , y

[n]
r at

every step. In addition, we must also evaluate and store each f(Y1), . . . , f(Ys) to enable

computation of the outputs. Thus, at every step, we must effectively store s+r vectors

of size dim(X). For problems with only a few degrees of freedom, this is not usually

an issue. However, for large problems, the feasibility of the computation is governed

by available memory.

GLMs permitting a decomposition are only as expensive (in terms of storage) as an

r-input, single-stage GLM. An update is given by s-many applications of a single-stage

method with an effective storage cost of r + 1 vectors of size dim(X). For GLMs with

a large number of stages this can be particularly beneficial.

6.2 Connection to linear multistep methods

It has been shown that an irreducible1, r-step LMM may be equivalently expressed

as a single-stage, r-input GLM [54, 15]. Given the above the decomposition results,

it is possible that some structure-preserving GLMs may viewed as the composition of

LMMs. This connection is explored further in the remaining sections of this chapter.

6.2.1 Linear multistep methods as GLMs

Recall that an r-step LMM is given by

r∑

j=0

αjyn+j = h

r∑

j=0

βjf(yn+j),

1LMMs are said to be reducible, in the sense of Dahlquist, if their characteristic polynomials share
a common root. Otherwise, they are irreducible.
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where αj , βj ∈ R, αr 6= 0 and |α0| + |β0| > 0, and its corresponding characteristic

polynomials are given by

ρ(ζ) =
r∑

j=0

αjζ
j, σ(ζ) =

r∑

j=0

βjζ
j.

An equivalent formulation may be given in the form of a single-stage GLM [54, 15].

In particular, an r-step LMM in GLM form (abbreviated to LMM–GLM), denoted by

the map Lh : Xr → Xr, is determined by the tableau

[
βr

αr
eTr

b CT

]
, (6.5)

where

er =




0

0
...
...

0

1




, b =




αrβ0−βrα0

α2
r

αrβ1−βrα1

α2
r
...
...

αrβr−2−βrαr−2

α2
r

αrβr−1−βrαr−1

α2
r




, C =




0 1 0 · · · · · · 0

0 0 1 0 · · · 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

0 0 0 · · · · · · 1

−α0
αr

−α1
αr

−α2
αr

· · · · · · −αr−1

αr




.

Note that since C is a companion matrix, its characteristic polynomial is given by ρ(ζ)
αr

.

Thus, the eigenvalues of C are given by the roots of ρ(ζ).

Example 6.3. The family of 2-step, symmetric, second order, LMMs is written as

α2(yn+2 − yn) = h(β2f(yn+2) + 2(α2 − β2)f(yn+1) + β2f(yn)).

Expressed as a GLM, this family is written as




β2

α2
0 1

2β2

α2
0 1

2(α2−β2)
α2

1 0


 .

Note, that if we fix β2 = 0, α2 = 1
2 we obtain the familiar Leapfrog method (2.4). For

the choice β2 =
1
6 , α2 =

1
2 , we obtain Simpson’s rule.

⋄
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6.2.2 A diagonal form for the LMM–GLM

Suppose that the roots of the characteristic polynomial are distinct and non-zero (as is

the case with symmetric LMMs). Then, there exists an invertible transformation such

that the companion matrix C can be diagonalised. By the T -equivalence of a GLM,

this then implies there exists an equivalent GLM formulation in diagonal form, i.e. the

corresponding V matrix is diagonal.

Theorem 6.4. Consider an r-step LMM where the roots of ρ(ζ) are distinct and non-

zero. Then, there exists an invertible transformation T ∈ C
r×r such that the LMM–

GLM (6.5), is T -equivalent to the GLM LD
h := T−1Lh◦T with tableau




βr

αr
ζ1 ζ2 · · · ζr

µ1 ζ1 0 · · · 0

µ2 0 ζ2
. . .

...
...

...
. . .

. . . 0

µr 0 · · · 0 ζr




, (6.6)

where each ζi, i = 1, . . . , r, is a root of ρ(ζ) and

µi =
σ(ζi)

ζiρ′(ζi)
, 1 ≤ i ≤ r, (6.7)

are the growth parameters of LMM stability theory (see e.g. [36, p. 592]).

Proof. Let T ∈ C
r×r be written as the matrix product T = W−1D where W is a

Vandermonde matrix and D is a diagonal matrix defined as

W =




1 ζ1 ζ21 · · · ζr−1
1

1 ζ2 ζ22 · · · ζr−1
2

...
...

...
...

...

1 ζr ζ2r · · · ζr−1
r



, Dij =





1
αr
ζi · ρ′(ζi), for i = j,

0 for i 6= j.

Since the ζi are distinct and non-zero, it follows that both W and D are invertible, and

therefore, T is invertible also.

Now, let us consider the tableau of T−1Lh◦T :
[

βr

αr
eTr T

T−1b T−1CTT

]
.
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To show that this tableau simplifies to that given in (6.6), we first verify that T−1CTT =

Σr where Σr := diag(ζ1, . . . , ζr): Since C is a companion matrix, it is diagonalisable by

the Vandermonde matrix W . Thus, we deduce that

T−1CTT = D−1WCTW−1D = D−1ΣrD = Σr.

Next, we verify that eTr T = [ζ1, . . . , ζr]: Recall that the elements of an inverse

Vandermonde matrix (W−1)ij are given by the ζ i−1-coefficients of the jth Lagrange

basis polynomial

lj(ζ) =
αr

ρ′(ζj)

r∏

i=1
i 6=j

(ζ − ζi), j = 1, . . . , r.

Thus, it follows that eTr T = eTr W
−1D =

[
αr

ρ′(ζ1)
, . . . , αr

ρ′(ζr)

]
D = [ζ1, . . . , ζr] .

Finally, we verify that T−1b = µ where µ = [µ1, . . . , µr]
T is the vector of growth

parameters: Note that we may equivalently express (6.7) as an r×r linear Vandermonde

system: 


1 ζ1 ζ21 · · · ζr−1
1

1 ζ2 ζ22 · · · ζr−1
2

...
...

...
...

...

1 ζr ζ2r · · · ζr−1
r







β0

β1
...

βr−1



=




ζ1ρ
′(ζ1)µ1 − ζr1βr

ζ2ρ
′(ζ2)µ2 − ζr2βr

...

ζrρ
′(ζr)µr − ζrrβr



,

or more compactly as

Wβ = αrDµ− Σr
rβr, where β = [β0, . . . , βr−1]

T .

Writing b as

b =
1

αr
β − βr

α2
r

α, where α = [α0, . . . , αr−1]
T ,

we find

T−1b =
1

αr
D−1Wβ − βr

α2
r

D−1Wα =
1

αr
D−1(αrDµ− Σr

rβr)−
βr
α2
r

D−1Wα.

Since Wα = [ρ(ζ1)− αrζ
r
1 , . . . , ρ(ζr)− αrζ

r
r ]

T = −αrΣ
r
r, it follows that

T−1b = µ− βr
αr
D−1Σr

r −
βr
α2
r

D−1Wα = µ.

Thus, by a comparison of tableaux, (6.5) is T -equivalent to (6.6).
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Example 6.5. Reconsider the family of LMMs given in Example 6.3. The character-

istic polynomials are given by

ρ(ζ) = α2(ζ
2 − 1), σ(ζ) = β2ζ

2 + 2(α2 − β2)ζ + β2.

The roots of ρ are given by ζ1 = 1, ζ2 = −1, and the associated growth parameters

are computed to be µ1 = 1 and µ2 = 2(β2−α2)
α2

. Thus, this family may be equivalently

expressed in diagonal form as




β2

α2
1 −1

1 1 0
2β2−α2

α2
0 −1


 .

⋄

6.2.3 Reducibility

An important concept in the representation of numerical methods is reducibility. For

GLMs, we may question whether a given tableau can be equivalently expressed as one

with fewer stages or inputs. For single-stage GLMs, and similarly LMMs, we are only

concerned with the potential reducibility of their inputs.

Definition 6.6. A GLM with coefficient matrices (A,U,B, V ) is said to be U -reducible

if there exists a ui ∈ C
r such that ui is a right-eigenvector of V and Uui = 0. Otherwise

it is U -irreducible.

Definition 6.7. A GLM with coefficient matrices (A,U,B, V ) is said to be B-reducible

if there exists a wi ∈ C
r such that wi is a left-eigenvector of V and BHwi = 0. Otherwise

it is B-irreducible.

For a single-stage method GLM with diagonal V , U -irreducibility is equivalent to

imposing that U has no zero element. Similarly, B must have no zero element to avoid

B-reducibility.



CHAPTER 6. DECOMPOSITION 131

Example 6.8. Let us reconsider Example 6.5, and suppose we make the choice that

β2 = 1
2α2. Then, the second component of µ is zero and the method is B-reducible.

Removing this redundant input, we obtain the method

[
1
2 1

1 1

]
,

which is the GLM form of the implicit midpoint rule.

⋄

From the diagonal GLM formulation of a LMM (6.6), we observe that a LMM with

distinct, non-zero roots can never yield a U -reducible GLM. Similarly, a LMM with

non-zero growth parameters will never yield a B-reducible GLM.

Notice that if a LMM possesses a zero growth parameter, then (6.7) implies that

ρ(ζ) and σ(ζ) must share a common root. This is precisely Dahlquist’s definition of

a reducible LMM (see e.g. [36, Chap. XV]). Thus, a reducible LMM with distinct,

non-zero roots implies B-reducibility of the diagonal GLM representation.

6.2.4 Decomposition into LMMs

It has been shown that a LMM can be expressed as a single-stage GLM. Let us now

consider the converse result.

Theorem 6.9. Consider a U -irreducible, single-stage GLM Mh where V has distinct,

non-zero eigenvalues. Then, there exists an invertible matrix T ∈ C
r×r, such that the

method Mh is T -equivalent to a diagonal LMM–GLM of the form (6.6).

Proof. Since V has distinct eigenvalues, there exists an equivalent method where V is

diagonal. Thus, without loss of generality, we assume that V is diagonal.

Now, since Mh is U -irreducible it follows that diag(u1, . . . , ur), where ui = Uei for

i = 1, . . . , r and ei denotes the ith canonical basis vector of dimension r, is invertible.

Writing

T = diag(u1, . . . , ur)
−1diag(ζ1, . . . , ζr),

where ζ1, . . . , ζr are the eigenvalues of V , we find that Mh is T -equivalent to a GLM
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with tableau

[
A UT

T−1B T−1diag(ζ1, . . . , ζr)T

]
=




A ζ1 ζ2 · · · ζr
1
ζ1
eT1BUe1 ζ1 0 · · · 0

1
ζ2
eT2BUe2 0 ζ2

. . .
...

...
...

. . .
. . . 0

1
ζr
eTr BUer 0 · · · 0 ζr




.

Defining βr := Aαr and µi :=
1
ζi
eTi BUei for i = 1, . . . , r, we find the above tableau

agrees with (6.6), as required.

Using the above result, we can now state the conditions under which a structure-

preserving GLM yields a decomposition into s-many LMMs.

Theorem 6.10. Let Mh be an s-stage GLM where

(A1) A is lower-triangular,

(A2) Mh is either

(a) (L,P )-symmetric, where P is the time-reversal permutation matrix,

(b) G-symplectic,

(A3) U has no zero element,

(A4) V has distinct eigenvalues and is diagonal.

Then, there exists a decomposition of the form

Mh(y0) = D(s)L(s)
h ◦D(s−1)L(s−1)

h ◦ · · · ◦D(2)L(2)
h ◦D(1)L(1)

h (D(0)y0), (6.8)

where each L(i)
h corresponds to a diagonal LMM–GLM with tableau of the form (6.6),

and

D(0) := diag

(
U1,1

ζ1
, . . . ,

U1,r

ζr

)
,

D(i) := diag

(
Ui+1,1

ζ1Ui,1
, . . . ,

Ui+1,r

ζrUi,r

)
, for i = 1, . . . , s − 1,

D(s) := diag

(
ζ1
Us,1

, . . . ,
ζr
Us,r

)
.
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Proof. Given assumptions (A1) and (A2), it follows from Theorem 6.1 that Mh has a

decomposition of the form

Mh(y0) = M(s)
h ◦V −1M(s−1)

h ◦ · · · ◦V −1M(2)
h ◦V −1M(1)

h (y0),

where each M(i)
h is a single-stage GLM. Now, we deduce from assumptions (A3) and

(A4) that each M(i)
h is U -irreducible, and it then follows from Theorem 6.9 that each

is equivalent to a diagonal LMM–GLM, denoted by the map L(i)
h . Thus,

Mh(y0) = M(s)
h ◦V −1M(s−1)

h ◦ · · · ◦V −1M(2)
h ◦V −1M(1)

h (y0),

= T (s)L(s)
h ◦T (s)−1

V −1T (s−1)L(s−1)
h ◦T (s−1)−1◦ · · ·

T (3)−1
V −1T (2)L(2)

h ◦T (2)−1
V −1T (1)L(1)

h (T (1)−1
y0),

where T (i) = diag(Ui,1, . . . , Ui,r)
−1diag(ζ1, . . . , ζr), for i = 1, . . . , s. By the definition of

the D(i) matrices, it follows that

Mh(y0) = D(s)L(s)
h ◦D(s−1)L(s−1)

h ◦ · · · ◦D(2)L(2)
h ◦D(1)L(1)

h (D(0)y0),

as required.

Example 6.11. Consider the G-symplectic and symmetric GLM given in [13]:




1
12 0 0 0 1 1

2

−1
3

1
6 0 0 1 1

5
3 −2

3
1
6 0 1 −1

7
6 − 5

12
1
12

1
12 1 −1

2
2
3 −1

6 −1
6

2
3 1 0

1 −1
2

1
2 −1 0 −1




.

As this method satisfies the assumptions of Theorem 6.10 it can be decomposed into

several LMMs. In particular,

Mh(y0) = V D−1L(1)
h ◦DL(2)

h ◦L(2)
h ◦D−1L(1)

h (Dy0),

where D = diag(1,−1
2 ) and
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


1
12 1 −1
2
3 1 0

−1
2 0 −1







1
6 1 −1

−1
6 1 0
1
2 0 −1


.

L(1)
h L(2)

h

Here, we note that a simplification arises from T -equivalence (where T = D−1). The

result of which is that

Mh(y0) ∼ V L(1)
h ◦DL(2)

h ◦L(2)
h ◦D−1L(1)

h (y0).

Upon closer inspection of the tableaux for L(1)
h and L(2)

h , we find that each method

belongs to the family of 2-step, symmetric, second-order LMMs. To see this, we rescale

the time-step in both methods such that they correspond to a time-h evolution, i.e.




1
8 1 −1

1 1 0
−3

4 0 −1







−1 1 −1

1 1 0
−3 0 −1


.

L(1)
3
2
h
=: L

(1)
h L(2)

−6h =: L
(2)
h

Then, we make a comparison to the tableau given in Example 6.5. Doing so, we find

the corresponding LMMs are given by

L
(1)
h =⇒ yn+2 − yn =

h

8
(fn+2 + 14fn+2 + fn),

L
(2)
h =⇒ yn+2 − yn = −h(fn+2 − 4fn+2 + fn).

Finally, we note that the decomposition for Mh may also be written in terms of

L
(1)
h and L

(2)
h :

Mh(y0) ∼ V L
(1)
2
3
h
◦DL(2)

− 1
6
h
◦L(2)

− 1
6
h
◦D−1L

(1)
2
3
h
(y0).

In this form, it is clearer to see that the composition on the RHS corresponds to a

single time-h evolution.

⋄
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Concluding remarks: The decomposition result presented here provides an alter-

native approach to the implementation of structure-preserving GLMs, namely, as the

composition of several single-stage GLMs. Under certain conditions on the coefficient

matrices of the method, these single-stage GLMs can be equivalently expressed as

LMMs. Interestingly, this situation closely resembles that considered by Donelson and

Hansen [25] where the cyclic composition of LMMs was considered as a way to over-

come the first Dahlquist barrier of multistep methods. Thus, further developments

to the decomposition theory could look at incorporating the ideas behind this cyclic

composition in the design of high-order structure-preserving GLMs.



Chapter 7
Numerical experiments

In this chapter, we perform a variety of numerical experiments that demonstrate some

of the key results presented in the thesis. In particular, we will consider the

• verification of the predicted parasitism-free behaviour,

• implementation of higher-order composition methods,

• comparison of work/efficiency of GLMs with implicit RKMs,

• long-time preservation properties of symmetric/G-symplectic GLMs.

7.1 Geometric problems

In the following section, we introduce various classical problems that we will consider for

our numerical experiments. The chosen problems each possess at least one invariant so

as to provide a simple measure for the effectiveness of G-symplectic/symmetric methods

as structure-preserving integrators.

7.1.1 Hamiltonian

Recall the 2m-dimensional, m ∈ N, Hamiltonian IVP (2.2):

d

dt

[
p(t)

q(t)

]
=

[
−∇qH(p(t), q(t))

∇pH(p(t), q(t))

]
,

[
p(0)

q(0)

]
=

[
p0

q0

]
, t ∈ [−T, T ],

where H : X → R is the Hamiltonian, q, p : [−T, T ] → R
m, and p0, q0 ∈ R

m.

136
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Simple pendulum (SP): This problem describes the motion of a pendulum with

unit mass and length, and with time scaled such that gravity g = 1 (see e.g. [36, p.

5]). The corresponding Hamiltonian is written as

H(p, q) =
1

2
p2 − cos(q).

Double pendulum (DP): The double pendulum problem describes the motion,

under gravity, of two connected pendulums (see e.g. [36, p. 233]). Here, we assume

both pendulums are of unit mass and length, with gravity rescaled to g = 1. The

corresponding Hamiltonian is written as

H(p1, p2, q1, q2) =
p21 + 2p22 − 2p1p2 cos(q1 − q2)

2[1 + sin2(q1 − q2)]
− cos(q2)− 2 cos(q1).

Kepler (KPL): The Kepler problem describes the motion of two celestial bodies

under mutual gravitational attraction (see e.g. [36, pp. 8–12]). Here, we centre our

coordinate system about the centre of mass, and assume unit masses and a scalar

potential of the form V (r) = −1
r such that the Hamiltonian may be written as

H(p1, p2, q1, q2) =
1

2

(
p21 + p22

)
+ V (||q2 − q1||2) .

In addition to the Hamiltonian, a second invariant is the angular momentum which is

defined as the quadratic function

L(p1, p2, q1, q2) = q1p2 − q2p1.

Hénon–Heiles (HH): The Hénon–Heiles model (see e.g. [36, p. 15]) describes

stellar motion inside a gravitational potential of a galaxy, with cylindrical symmetry.

The defining Hamiltonian is given by

H(p1, p2, q1, q2) =
1

2

(
p21 + p22

)
+

1

2

(
q21 + q22

)
+ q21q2 −

1

3
q32.

Bead on a wire (BOW): The motion of a bead on a rigid wire can be described as

a Hamiltonian system (see e.g. [2]) with

H(p, q) =
1

2(1 + U ′(q)2)
p2 + U(q), where U(q) =

1

10
q2(q − 2)2 +

8

1000
q3.
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Galactic dynamics (GD): The galactic dynamics problem describes the motion of

a single star in a galaxy under the potential of all the remaining stars (see e.g. [2],[38,

pp. 319–325]). The corresponding Hamiltonian is given by

H(p1, p2, p3, q1, q2, q3) =
1

2

(
p21 + p22 + p23

)
+Ω(p1q2−p2q1)+A ln

(
C +

q21
a2

+
q22
b2

+
q23
c2

)
,

where

Ω = 0.25, A = 1, C = 1, a = 1.25, b = 1, c = 0.75.

7.1.2 Non-Hamiltonian

The following problem is not Hamiltonian in the usual sense, but can be reformulated

as a constrained Hamiltonian system [36, Ch. VII.5].

Rigid Body (RB): This problem describes the motion of a rigid body, with its mass

centred at the origin (see e.g. [36, pp. 99–100]). Here, the governing equations are

given as

dy1
dt

= a1y2y3, a1 =
(I2 − I3)

I2I3
,

dy2
dt

= a2y3y1, a2 =
(I3 − I1)

I3I1
,

dy3
dt

= a3y1y2, a3 =
(I1 − I2)

I1I2
,

where we have chosen the principal moments of inertia to take the values of

I1 = 2, I2 = 1, I3 =
2

3
.

The problem possesses two quadratic invariants of the form

Q1(y1, y2, y3) = y21 + y22 + y23,

Q2(y1, y2, y3) =
1

2

(
y21
I1

+
y22
I2

+
y23
I3

)
.
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7.2 Numerical methods for experiments

For our numerical experiments several GLMs have been chosen, each of which possesses

at least one structure-preserving property. We have also chosen several RKMs to serve

as comparison methods. We note that symmetric LMMs for first order ODEs will not

be considered for comparison as these are known to suffer from parasitism on t = O(1)

intervals. Also, we do not consider multistep methods for second order differential

equations as these are not necessarily applicable to all of the test problems described

in the previous section.

Each method will be referred to by a four-digit number of the form pqrs which

corresponds to the order, stage order, number of inputs and stages of the method,

followed by additional characters describing the properties of the methods:

• G - denotes a G-symplectic/symplectic method,

• S - denotes a symmetric method.

7.2.1 GLMs

We have selected the following 4 GLMs for our experiments:

• GLM-4123G: G-symplectic GLM given in [17].

• GLM-4123S: Symmetric GLM with a single implicit stage (cf. (2.26)).

• GLM-4125S: Symmetric GLM that is parasitism-free to 4th order (cf. (3.10)).

• GLM-4124GS: G-symplectic and symmetric GLM given in [13].

The (A,U,B) coefficient matrices for each method are given in Table 7.1, and the

(AS , BS) coefficient matrices for each starting method are given in Table 7.2. Each

method shares the same V matrix, and preconsistency vectors u and w:

V =

[
1 0

0 −1

]
, u = w =

[
1

0

]
.

Remark 7.1. The principal component of the starting method for GLM-4123G is

non-trivial, i.e. wHBS 6= 0. Thus, we also require a finishing method. This is given by

the tableau below: 


0 0 0 1 0

−1 0 0 1 0

−25
81 −20

81 0 1 0

− 1
60 − 1

48
3
80 1 0



.
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The corresponding starting method was constructed such that this finishing method

is explicit and Fh◦Sh(y0) = y0 exactly. As a consequence, the stage equations of the

starting method suffer from a higher degree of implicitness. However, since this is

only applied once, the additional computational cost is often negligible over long-time

integrations.

It should be noted that if we allowed Fh◦Sh(y0) = y0+O(hp+1), then we could have

also constructed an explicit starting method. As this case is not covered elsewhere in

the thesis, we have not considered it for practical computations.

Verification of method properties: In Table 7.3, we list the (D,G) matrices of

the G-symplectic GLMs and the (L,P )-matrices of the symmetric GLMs, along with

the PS matrix corresponding to the (L,PS)-symmetric starting methods.

7.2.2 RKMs

For comparison, we have selected the following RKMs:

• RK-4212GS: Gauss method of order 4 (see e.g. [36, p. 34]).

• RK-4113GS: Triple-jump of the implicit midpoint rule (see e.g. [52]).

• RK-4113S: Lobatto IIIB method of order 4 (see e.g. [36, p. 37]).

• RK-6117: Explicit, 6th order method given in [4].

• RK-6313GS: Gauss method of order 6 (see e.g. [36, p. 34]).

The (A,B) coefficient matrices of each method are given in Table 7.4. Recall that for

an RKM, V = 1 and U = 1.
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Method A U B G-symplectic Symmetric

GLM-4123G




1
3 0 0
5
6

1
6 0

1
2

1
2 0






1 1

3
1 −1

3
1 1




[
3
4

3
8 −1

8
1
4 −1

8 −1
8

]
X ×

GLM-4123S



0 0 0
1
2

1
2 0

3
2

1
2 0






1 1
1 −2
1 −2




[
2
3

1
6

1
6

2
3

1
6

1
6

]
× X

GLM-4125S




1
2 0 0 0 0
7
12

5
24 0 0 0

− 1
12

1
2

1
24 0 0

13
12

1
2 −1

2 −13
24 0

5
12

1
2 −1

2 −1
2

7
24







1 1
1 0
1 0
1 0
1 0




[
1 1

2 −1
2 −1

2
1
2

0 1
2 −1

2 −1
2

1
2

]
× X

GLM-4124GS




1
12 0 0 0

−1
3

1
6 0 0

5
3 −2

3
1
6 0

7
6 − 5

12
1
12

1
12







1 1
2

1 1
1 −1
1 −1

2




[
2
3 −1

6 −1
6

2
3

1 −1
2

1
2 −1

]
X X

Table 7.1: Coefficient matrices of the chosen GLMs and their properties.
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Method AS BS Symmetric

GLM-4123G




1
60

1
48 − 3

80 0
−59

60
1
48 − 3

80 0
− 473

1620 − 293
1296 − 3

80 0
− 688

2825 − 491
8064 − 5531

362880 0




[
1
60

1
48 − 3

80 0
− 541

1020 − 11
444 −18

65
6804
8177

]
×

GLM-4123S




0 0 0 0
1
2 0 0 0

−1
2 0 0 0
0 − 1

10
1
10 0




[
0 0 0 0
5
12 −1

6 −1
6

5
12

]
X

GLM-4125S




0 0 0 0
1
4 0 0 0

−1
4 0 0 0
0 1

4 −1
4 0




[
0 0 0 0

−1
3

1
3

1
3 −1

3

]
X

GLM-4124GS




0 0 0 0 0 0 0
1
2 0 0 0 0 0 0

373
550

177
550 0 0 0 0 0

8233
50976 − 30749

152928
3025
76464 0 0 0 0

−1
2 0 0 0 0 0 0

−373
550 0 0 0 −177

550 0 0
− 8233

50976 0 0 0 30749
152928 − 3025

76464 0




[
0 0 0 0 0 0 0
0 − 383

1296
275
2592

1
2

383
1296 − 275

2592 −1
2

]
X

Table 7.2: Starting methods and their properties for the GLMs in Table 7.1.
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Method D G L P PS

GLM-4123G




3
4 0 0
0 3

8 0
0 0 −1

8




[
1 0
0 −1

]
× × ×

GLM-4123S × ×
[
1 0
0 −1

] 

1 0 0
0 0 1
0 1 0







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




GLM-4125S × ×
[
1 0
0 −1

]



1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




GLM-4124GS




2
3 0 0 0
0 −1

6 0 0
0 0 −1

6 0
0 0 0 2

3




[
1 0
0 −1

3

] [
1 0
0 1

]



0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0







1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0




Table 7.3: Structure-preserving matrices for the GLMs of Table 7.1.
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Method A B Symplectic Symmetric

RK-4212GS

[
1
4

1
4 −

√
3
6

1
4 +

√
3
6

1
4

]
[
1
2

1
2

]
X X

RK-4113GS




1
4−24/3

0 0
1

2−21/3
− 21/3

4−24/3
0

1
2−21/3

− 21/3

2−21/3
1

4−24/3




[
1

2−21/3
− 21/3

2−21/3
1

2−21/3

]
X X

RK-4113S




1
6 −1

6 0
1
6

1
3 0

1
6

5
6 0


 [

1
6

2
3

1
6

]
× X

RK-6117




0 0 0 0 0 0 0
1
2 0 0 0 0 0 0
2
9

4
9 0 0 0 0 0

7
36

2
9 − 1

12 0 0 0 0
− 35

144 −55
36

35
48

15
8 0 0 0

− 1
360 −11

36 −1
8

1
2

1
10 0 0

− 41
260

22
13

43
156 −118

39
32
195

80
39 0




[
13
200 0 11

40
11
40

4
25

4
25

13
200

]
× ×

RK-6313GS




5
36

2
9 −

√
15
15

5
36 −

√
15
30

5
36 +

√
15
24

2
9

5
36 −

√
15
24

5
36 +

√
15
30

2
9 +

√
15
15

5
36




[
5
18

4
9

5
18

]
X X

Table 7.4: Comparison RKMs and their properties.
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7.3 Parasitism

In the following experiments we look to confirm the theoretical parasitism results of

Chapter 3, i.e. for a given method, we estimate the interval over which the numerical

solution is computationally parasitism-free. From the conclusions of Theorem 3.35, we

expect this interval to be t = O(h−M ) for anMth-order parasitism-free GLM. It is also

expected that the invariants of the problems considered are to be preserved to O(hp),

where p denotes the order of the method, over this interval (see also [23]).

Experiments are performed on either the simple pendulum (SP) problem with

initial data (p0, q0) = (1, 2), or the bead on a wire (BOW) problem with initial data

(p0, q0) = (0.49, 0). As output, we monitor the error in the Hamiltonian, H(pn, qn) −
H(p0, q0), at every step.

GLM-4124GS: Using the practical toolkit (cf. Chapter 4), we find that the DUOSM

corresponding to the eigenvalue ζ2 = −1 is given by

Ψ
(2)
h (y, v) = −v − h3

144

(
f ′(y)f ′(y)f ′(y)v − 5f ′(y)f ′′(y)(f(y), v)+

5f ′′(y)(f(y), f ′(y)v) + 3f ′′(y)(f ′(y)f(y), v) +
39

2
f ′′′(y)(f(y), f(y), v)

)
+O(h4).

This implies that the method is 2nd-order parasitism-free, i.e. M = 2, and thus we

expect a parasitism-free interval of t = O(h−2). In order to numerically confirm this, we

first integrate the simple pendulum problem with a time-step h = 0.25 over the interval

[0, 2×104]. This is sufficient to capture the onset of parasitic growth, as is demonstrated

in Figure 7-1a. Next, we halve the time-step and repeat the experiment over the longer

interval [0, 8×104], as is shown in Figure 7-1b. These results demonstrate that halving

the time-step approximately increases the interval of parasitism-free behaviour by 4,

and therefore agrees with the predicted t = O(h−2). A similar experiment with this

method has been performed in [23] which also arrives at the same conclusion.

GLM-4123G: The DUOSM corresponding to the eigenvalue ζ2 = −1 is given by

Ψ
(2)
h (y0, v) = −v − h2

18
f ′′(y0)(f(y0), v) +O(h3).

This suggests that the method should remain parasitism-free for an interval of t =

O(h−1). However, the results in Figure 7-2 seem to suggest that it is actually closer to

t = O(h−2). To explain this, we make the following observation:
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Figure 7-1: Estimation of the interval of parasitism-free behaviour for GLM-4124GS applied to
(SP) with initial data (p0, q0) = (1, 2). (a) Hamiltonian error with h = 0.25 over [0, 2 × 104]
(b) Hamiltonian error with h = 0.125 over [0, 8× 104].

Recall that there exists a unique pair (SP
h (y0, v),Ψ

P
h (y0, v)), expressed as formal

DB-series, such that

M′
h(S∗

h(y0))S
P
h (y0, v) = SP

h (Φh(y0),Ψ
P
h (y0, v)), and FP

h (y0, S
P
h (y0, v)) = v,

hold for some fixed (row-vector) DB-series FP
h (y0, ·). Now, let χP

h (y0, v) be an arbitrary

invertible DB-series. Then, the following pair,

SP
h (y0, ·)[χP

h (y0, v)]
−1, and χP

h (Φh(y0), ·)ΨP
h (y0, ·)[χP

h (y0, v)]
−1,

is the corresponding unique solution when FP
h (y0, ·) 7→ χP

h (y0, ·)FP
h (y0, ·).

Suppose now that we fix χ
(2)
h (y0, v) = v − h

18f
′(y0)v, then

χ
(2)
h (Φh(y0), v) = v − h

18
f ′(y0)v −

h2

18
f ′′(y0)(f(y0), v) +O(h3),

[χ
(2)
h (y0, v)]

−1 = v +
h

18
f ′(y0)v +

h2

182
f ′(y0)f

′(y0)v +O(h3),
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Figure 7-2: Estimation of the interval of parasitism-free behaviour for GLM-4123G applied to
(SP) with initial data (p0, q0) = (1, 2). (a) Hamiltonian error with h = 0.25 over [0, 2 × 104]
(b) Hamiltonian error with h = 0.125 over [0, 8× 104].

and

χ
(2)
h (Φh(y0), ·)Ψ(2)

h (y0, ·)[χ(2)
h (y0, v)]

−1 = −v +O(h3).

Thus, if we instead choose to define F
(2)
h (y0, ·) = χ

(2)
h (y0, ·)wH

2 (as opposed to the original

choice of F
(2)
h (y0, ·) = wH

2 ) we find that method has a DUOSM that is parasitism-free

to order 2, which now agrees with the computational results.

Remark 7.2. Note that the modification made to F
(2)
h (y0, ·) above does not imply that

we have to alter the practical finishing method to achieve second-order parasitism-free

behaviour.

GLM-4125S: Recall from the end of Chapter 3 that this method was designed to

be parasitism-free to order 4. Thus, by performing a similar experiment to those

given above, we expect to observe a parasitism-free interval of t = O(h−4): Consider

the simple pendulum problem where the method is applied with a fixed time-step of

h = 0.25 over an interval of [0, 2.5×106 ]. The results in Figure 7-3a show no observable
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Figure 7-3: Estimation of the interval of parasitism-free behaviour for GLM-4125S. (a) Hamil-
tonian error for (SP) with initial data (p0, q0) = (1, 2), time-step h = 0.25 and an integration
interval of [0, 2.5×106]. (b) Hamiltonian error for (BOW) with initial data (p0, q0) = (0.49, 0),
time-step h = 0.25 and an integration interval of [0, 8.2×105]. (c) Hamiltonian error for (BOW)
with initial data (p0, q0) = (0.49, 0), time-step h = 0.2 and an integration interval of [0, 2×106].
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Figure 7-4: Demonstration of long-time parasitism-free behaviour for GLM-4123S. (a) Hamil-
tonian error for (SP) with initial data (p0, q0) = (1, 2), time-step h = 0.25 and an integration
interval of [0, 2.5×106]. (b) Hamiltonian error for (BOW) with initial data (p0, q0) = (0.49, 0),
time-step h = 0.25 and an integration interval of [0, 2.5× 106].

parasitic growth and we are therefore unable to quantify the interval of parasitism-free

behaviour for this problem.

Next, we consider the bead on the wire problem with a fixed time-step of h = 0.25

over an interval of [0, 8.2 × 105]. In this case, the onset of parasitism can be observed

in the plot of Figure 7-3b. Repeating this experiment with a fixed time-step of h = 0.2

over the interval [0, 2 × 106] we find that the onset occurs approximately 2.44 times

later. This agrees with the t = O(h−4) estimate since (0.2/0.25)−4 ≈ 2.44.

GLM-4123S: The DUOSM corresponding to eigenvalue ζ2 = −1 is given by

Ψ
(2)
h (y, v) = −v − h3

12

(
f ′(y)f ′(y)f ′(y)v − 2f ′(y)f ′′(y)(f(y), v)−

f ′′(y)(f(y), f ′(y)v) + 4f ′′(y)(f ′(y)f(y), v) + f ′′′(y)(f(y), f(y), v)

)
+O(h4),
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which suggests a parasitism-free interval of t = O(h−2). However, experiments on both

the simple pendulum and bead on a wire have failed to capture the onset of parasitic

behaviour (see Figures 7-4a and 7-4b). Due to the limitations of our computational

resources we have been unable to verify the length of the parasitism-free interval, though

the results seem to imply that this has been achieved.

We remark that, unlike GLM-4123G, no choice of χ
(2)
h (y0, v) will yield an alternative

DUOSM that is parasitism-free to a higher order. Thus, we suspect that the good

behaviour of this method is due to a significantly small constant in the t = O(h−2)

term.

7.4 Composition

In the following set of experiments, we apply the composition results of Chapter 5 to

construct higher order methods and then numerically verify that the theoretical order

increase has been achieved. The compositions we consider are the triple jump (5.19):

Mα1h◦R(α1, α2)◦Mα2h◦R(α2, α1)◦Mα1h,

where

α1 =
1

2− 21/(p+1)
, α2 = − 21/(p+1)

2− 21/(p+1)
,

and the Suzuki 5-jump (5.20):

Mα1h◦R(α1, α1)◦Mα1h◦R(α1, α2)◦Mα2h◦R(α2, α1)◦Mα1h◦R(α1, α1)◦Mα1h,

where

α1 =
1

4− 41/(p+1)
, α2 = − 41/(p+1)

4− 41/(p+1)
.

It is assumed that the base method, Mh, is symmetric. Given that all the symmetric

methods in Table 7.1 have trivial finishing methods, the transformations R(α2, α1) and

R(α1, α1) are described by the GLM tableaux




ASα2 0 1Sw
H

0 ASα1 1Sw
H

−V −1BSα2 BSα1 V −1


 ,

[
ASα1 1Sw

H

(I − V −1)BSα1 V −1

]
.

R(α2, α1) R(α1, α1)
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The tableau for R(α1, α2) is found by swapping the α1 and α2 in the tableau of

R(α2, α1). For each of these transformations, we identify and remove any reducible

stages prior to integration (cf. the end of Chapter 5 for details on stage reductions).

The numerical verification of order is performed on the Kepler problem (KPL)

with initial data

[p1(0), p2(0), q1(0), q2(0)] =

[
0,

√
1 + e

1− e
, 1− e, 0

]
, e = 0.6,

over an integration interval of [0, 7.5]. A similar composition experiment has been

conducted in [36, p. 46] where the solution at time t = 7.5, in quadruple precision, is

given as

p1(7.5) = −0.856384715343395351524486215030,

p2(7.5) = −0.160552150799838435254419104102,

q1(7.5) = −0.828164402690770818204757585370,

q2(7.5) = 0.778898095658635447081654480796.

This will be used as our reference solution for obtaining values on global error.

Triple jump: An order plot for the triple jump composition of the methods GLM-

4123S, GLM-4125S and GLM-4124GS is given in Figure 7-5a. On the y-axis we have

the log10 of the 2-norm of the global error evaluated at t = 7.5, and on the x-axis we

have the log10 of the time-step. As reference, we have also included order plots for

RK-6117 and RK-6313GS.

These results indicate that the composed methods achieve order p = 6. This agrees

with the symmetric composition theory covered in Chapter 5 since each method (and

its corresponding starting and finishing method) is known to be symmetric.

In Figure 7-5b, results of a triple jump of a triple jump are given where the composed

methods reach an order of p = 8. This again agrees with the symmetric composition

theory and demonstrates that the composition technique may be used to construct

methods of arbitrarily high order.

Suzuki 5-jump: Figures 7-6a and 7-6b give similar composition results for a Suzuki

5-jump. While a greater number of stage evaluations are required for these methods,

we note that the value of global error is significantly smaller than with the triple jump.

For the 8th order Suzuki methods, we observe that method accuracy is limited by

machine precision for time-steps h < 0.04.
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Figure 7-5: Order demonstration for 6th and 8th order triple jump methods on (KPL) (a)
triple jump for 6th order. (b) triple jump of a triple jump for 8th order. Reference lines of
gradients 6 and 8 are given by the grey dash-dot lines.
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Suzuki for 6th order. (b) A double Suzuki for 8th order. Reference lines of gradients 6 and 8
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7.5 Efficiency

In the following experiments, we make an efficiency comparison of GLMs to RKMs.

Here, efficiency is defined as the cost of the method versus the global error, where cost

is taken to be the total number of function evaluations made over an integration. For

fair comparison, the stage equations for each method are solved using a fixed point

iteration where termination occurs when the (absolute) difference of two successive

iterates is no greater than 10−12.

The problems we will consider are the simple pendulum (SP), Hénon–Heiles (HH)

and galactic dynamics (GD). These have been chosen so that we might also investigate

the impact of a problem’s dimension on the efficiency of a method.

Simple pendulum: For initial data (p(0), q(0)) = (1, 2), we compute the solution at

time t = 15 using RK-6117 with a time-step of h = 0.005:

p(15) = −0.661387597436204, q(15) = 2.342601503807022.

Here, the final time corresponds to a little over one period.

In Figure 7-7, we have efficiency plots for all 4th order methods applied to (SP).

The most efficient appears to be the RK-4212GS (Gauss) method which gives the best

global error for a fixed number of function evaluations. Of the GLMs, we find that

GLM-4123S performs the best due to having only one implicit stage to solve each

iteration. In contrast, GLM-4125S is poorest as result of having to solve 5 implicit

stage equations every iteration.

Hénon–Heiles: For initial data (p1(0), p2(0), q1(0), q2(0)) =
(
1
3 ,

1
10 , 0,

1
4

)
, we compute

the solution at time t = 38 using RKM-6117 with a time-step of h = 0.005:

p1(38) = 0.284229861508927, q1(38) = 0.142467969999536,

p2(38) = 0.009550106944305, q2(38) = 0.272937263697556.

This particular choice of initial data ensures that the solution is non-chaotic and, with

the given integration interval, almost forms a closed orbit when projected onto the

(q1, q2) plane.

The results given in Figure 7-8 show that RK-4212GS performs best overall, though

now only marginally when compared to GLM-4123S. Another notable observation is

that RK-4113GS performs poorest in terms of efficiency.
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Figure 7-7: Efficiency plots of 4th order methods applied to (SP).

.

Galactic Dynamics: For initial data (p1(0), p2(0), p3(0), q1(0), q2(0), q3(0)) =(
0, 711421 ,

1
5 ,

5
2 , 0, 0

)
, we compute the solution at time t = 10 using RKM-6117 with a

time-step of h = 0.005:

p1(10) = −0.962784812534641, q1(10) = −2.861219736261032,

p2(10) = −0.528445761422120, q2(10) = 0.425411261094871,

p3(10) = −0.003013803762495, q3(10) = 0.254721799516517.

The results of this experiment are given in Figure 7-9. Here we see a strong similarity

to the results of Figure 7-8, with the exception of GLM-4124GS which is now less

efficient than RK-4113S (Lobatto IIIB).

All results considered, it appears that the dimension of a problem is an important

factor on a method’s efficiency. We expect that, for larger problems, GLM-4123S will

hold an advantage over RK-4212GS, though the size of such problems has yet to be

determined.



CHAPTER 7. NUMERICAL EXPERIMENTS 156

10
4

10
5

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

log
10

 f−evaluations

lo
g 10

 ||
gl

ob
al

 e
rr

or
|| 2

 

 
RK−4113S
RK−4113GS
RK−4212GS
GLM−4123G
GLM−4123S
GLM−4125S
GLM−4124GS

Figure 7-8: Efficiency plots of 4th order methods applied to (HH).

.

7.6 Long-time integration

In the following experiments, we investigate the long-time preservation properties of

our GLMs on various geometric problems. In light of the earlier parasitism results,

we will only consider GLM-4123S and GLM-4125S for these simulations as these were

found to possess the best parasitism-free behaviour. For comparison, we have chosen

RK-4212GS (Gauss) and RK-4113S (Lobatto IIIB).

Hénon-Heiles: For initial data (p1(0), p2(0), q1(0), q2(0)) = ( 561
1346 ,

1
5 , 0,

3
10) and an

integration interval of [0, 2.5 × 106], we have a chaotic solution. In Figure 7-10, plots

for the Hamiltonian error, using a time-step of h = 0.25, are given for each method. In

each case, the Hamiltonian is well-preserved over the interval.

Kepler: Here, we use same initial data as given in Section 7.4, and consider an inte-

gration interval of [0, 105]. For each method, a small time-step of h = 0.01 is applied

such that the moderately large time-derivatives, arising from the close approach, are
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Figure 7-9: Efficiency plots of 4th order methods applied to (GD).

.

adequately resolved. The results in Figure 7-11 generally demonstrate good preser-

vation of the Hamiltonian across all methods. The exception is GLM-4123S where

it appears that either parasitism or a significant accumulation of rounding error has

resulted in an observable loss of preservation towards the end of the integration.

Similar conclusions can be made in Figure 7-12 where the preservation of angular

momentum is considered. We note that since RK-4212GS is a symplectic method, it

should exactly preserve quadratic invariants (in exact arithmetic). However, rounding

error inevitably dominates these computations over long-times. Hence, the results

appear to demonstrate a lack of preservation.

Double pendulum: For initial data (p1(0), p2(0), q1(0), q2(0)) = (0, 0, 3.14,−3.1)

and an integration interval of [0, 105], we have a chaotic solution. As with the Kepler

problem, we consider a small time-step of h = 0.01 to adequately resolve the large

time-derivatives. The Hamiltonian preservation results of this experiment are given in

Figure 7-13. Comparing the plots of RK-4113S and RK-4212GS, we deduce that the

eventual drift in the Hamiltonian when using methods GLM-4123S, GLM-4125S and
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RK-4113S is caused by the lack of symplecticity of the method rather than parasitism.

That being said, integration with GLM-4123S was terminated early as this drift grew

sufficiently large to trigger parasitism.

Galactic Dynamics: Here, we consider the same initial data as given Section 7.5

and an integration interval of [0, 106]. Each method uses a time-step of h = 0.1. The

plots given in Figure 7-14 demonstrate that the Hamiltonian is well-preserved for all

methods.

Rigid Body: Here, we take initial data (y1(0), y2(0), y3(0)) = (cos(1.1), 0, sin(1.1)),

an integration interval of [0, 2 × 106], and apply each method using a fixed time-step

of h = 0.2. The results detailing the preservation of the quadratics invariants Q1 and

Q2 are respectively given in Figures 7-15 and 7-16. Both GLM-4123S and RK-4113S

demonstrate good preservation of these invariants over the interval. As with the angular

momentum results in the Kepler computations, RK-4212GS should exactly preserve

these invariants. However, we again find that a significant accumulation of rounding

error gives the perception of a lack of preservation. The results for GLM-4125S show

a slight loss preservation towards the end of the integration. It is possible that this is

attributed to either parasitism or rounding error. However, given the limitations of our

computational resources, we are unable to give to a definitive conclusion as to which

one.
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Figure 7-10: Hamiltonian preservation for (HH). Each method is applied using a time-step of
h = 0.25 over the interval [0, 2.5× 106].
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Figure 7-11: Hamiltonian preservation for (KPL). Each method is applied using a time-step
of h = 0.01 over the interval [0, 105].
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Figure 7-12: Angular momentum preservation for (KPL). Each method is applied using a
time-step of h = 0.01 over the interval [0, 105].
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Figure 7-13: Hamiltonian preservation for (DP). Each method is applied using a time-step of
h = 0.01 over the interval [0, 105].
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Figure 7-14: Hamiltonian preservation for (GD). Each method is applied using a time-step of
h = 0.1 over the interval [0, 106].
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Figure 7-15: Q1-preservation for (RB). Each method is applied using a time-step of h = 0.2
over the interval [0, 2× 106].
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Figure 7-16: Q2-preservation for (RB). Each method is applied using a time-step of h = 0.2
over the interval [0, 2× 106].



Chapter 8
Conclusions

This thesis has considered the construction and analysis of structure-preserving general

linear methods (GLMs). Main contributions include:

1. The development of a theoretical toolkit for analysing derivatives of B-series.

Here, we have defined a set of derivative trees which acts as an analogue to the

set of rooted trees in B-series analysis. These have helped to construct algebraic

formulae for the various operations that are performed on derivative B-series.

The toolkit has been applied to develop an a priori theory of parasitism

for GLMs. Here, we have extended the idea of the underlying one-step method

(UOSM) to derivative UOSMs. The research outcomes of this work include a

bound on the parasitic components of the method that demonstrates the poten-

tial applicability of these methods for long-time integrations. Furthermore, we

have derived higher-order parasitism-free conditions guaranteeing that the para-

sitic components remain bounded over longer intervals. In addition, we give the

conditions for 3rd order parasitism-free behaviour and show that this increases

to 4th order with symmetric, 2-input methods. This has led to the construc-

tion of new symmetric methods that are 4th order parasitism-free. A variety of

numerical experiments have been performed at the end of the thesis that show

agreement with the theory.

2. The development of a computational toolkit for assisting the analysis of GLMs.

Here, we have taken an object-oriented approach to programming and explained

how to represent rooted trees, derivative trees, B-series, derivative B-series, and

GLMs as objects. In addition, we have implemented numerous operations that

are typically performed on these objects, e.g. composition, inversion, product,

addition, subtraction, to name but a few. Several important applications have
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been described that demonstrate the usefulness of this toolkit. In particular, we

have shown how to compute the order of a GLM with respect to a given starting

method. We have also shown how to derive the UOSM and the ideal starting

method of a given GLM. Finally, we have shown how to perform a parasitism

analysis on the methods by deriving the (parasitic) derivative UOSMs of a given

method.

3. A theory of composition for GLMs. Here, we have considered two approaches:

The first concerns GLMs that take Nordsieck inputs. The main advantage here

is that only a scaling of the inputs is required between compositions of the meth-

ods. However, the drawback is that this approach cannot be applied repeatedly to

obtain methods of arbitrarily high order. The second approach concerns a gener-

alisation of the composition formulae used for one-step methods to GLMs. Here,

if the method is symmetric, then it is possible to obtain methods of arbitrarily

high order. Several numerical experiments have been performed that computa-

tionally confirm this result. In particular, we have constructed methods of order

6 and 8, and computationally confirmed that the theoretical order increase has

been attained.

4. A decomposition result on structure-preserving GLMs. Here, we have shown

that many structure-preserving GLMs permit a decomposition into single-stage

GLMs. An important consequence of this is that methods can be implemented

in a memory-efficient manner. We have also explored the connection between

single-stage GLMs and linear multistep methods (LMMs) which has revealed that

certain stucture-preserving GLMs can be expressed as a composition of (possibly

symmetric) LMMs.

8.1 Considerations for future work

Below, we list possible directions for future work:

• The full breadth of the parasitism theory has yet to be explored:

– By considering alternative derivative finishing methods, i.e. different from

being strictly a left-eigenvector of V , it may be possible to achieve a re-

duction in the total number of 3rd order parasitism-free conditions. If this

is true, more efficient methods could be designed, i.e. with fewer/explicit

stages.
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– Being able to express the parasitic contributions as formal derivative B-

series motivates the investigation of filters for effective parasitism removal.

A simple idea would be to approximate the leading terms of these derivative

B-series by finite differences and then to subtract this contribution from the

numerical solution.

• The computational toolkit can be further developed to include other pieces of

analysis. In particular, the auto-detection of the (L,P ) matrices of symmetric

methods or the (D,G) matrices of G-symplectic methods would be useful. The

implementation of the tools used in backward error analysis would also be invalu-

able to the general analysis of these methods.

• Some measure of the efficiency of composition methods should be performed to

assess their impact in practical applications. This could be in the form of the

efficiency experiments performed on the GLMs at the end of this thesis.

• Other consequences of the decomposition theory into LMMs could include an

alternative approach to the construction of high-order GLMs, i.e. by combining

this theory with the ideas used in the cyclic composition of LMMs. This would

provide a third approach to the composition theory we have developed.
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