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Abstract 

Due to the complex adaptive costs and benefits of large brains and large neocortical 

volume, mammalian species exhibit huge variation in brain size. However, the precise 

nature of the genomic changes accounting for these variations remains poorly 

understood. Using genome-wide comparative analysis of gene family size of more than 

39 fully sequenced mammalian species, I studied whether changes in the number of 

copies of genes involved in distinct cellular and developmental functions has contributed 

to shaping the morphological, physiological and metabolic machinery supporting brain 

evolution in mammalians. My results reveal an overrepresentation of gene families 

displaying a positive association between GFS and level of encephalization. This bias 

occurs most prominently in families associated with specific biological functions, such 

as cell-cell signalling, chemotaxis and immune system. Moreover, I find that most gene 

family size variations associated with increased brain size are mostly explained by the 

link between neocortex ratio and gene family size variations. The results in this study 

suggest that variations in gene family size underlie morphological adaptations during 

brain evolution in mammalian lineages. 

Lastly, using comparative transcriptomics analysis across different human tissue types 

with cellular longevities ranging from 120 days to over 70 years, I set out to identify the 

molecular signature of long term post-mitotic cell maintenance. I found that genes down 

regulated in Alzheimer’s and Parkinson’s disease are significantly enriched in genes 

whose expression levels are associated with increased post-mitotic cellular longevity 

(PMCL). This holds true also for genes down regulated in Hutchinson-Gilford progeria-

derived fibroblasts. The work here presented suggest that PMCL-associated genes are 

part of a generalized machinery of post-mitotic maintenance and functional stability in 

both neural and non-neural that becomes compromised in two specific neurodegenerative 

conditions and supports the notion of a common molecular repertoire for cell 

maintenance differentially engaged in different cell types with differing survival 

requirements. 
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1 Introduction 

 

1.1 The genomic basis of complex phenotypes 

 

What at the genomic level underlies the evolution of complex phenotypes and the changes 

that lead to disease states are key questions in genomics science. Early studies in genotype-

phenotype led to the discovery of genes with large, dramatic effects on traits, which led to 

"a gene for" and “genetic blueprint” paradigms that are still pervasive across certain circles 

in biology, and limited the success of this endeavour to relevant but simple phenotypic 

traits, such as regulatory switches. It is now recognised however that complex phenotypes 

are driven and modulated by tens and sometimes hundreds of genes acting in concert.  

Phenotype evolution can result from various types of mutations including single nucleotide 

substitutions, insertions and deletions which can affect coding regions and non-coding 

regulatory elements. Classically, quantitative genetics methods have been used for the study 

of the genetic basis of phenotypes and their evolution (Falconer and Mackay 1996; Hill 

2010; Lynch and Walsh 1998). The development of genomics techniques to associate 

regions of the genome with the variation of traits has had a huge impact on this approaches 

by increasing the resolution and sensitivity of analysis; permitting to integrate expression 

profiling, marker-based fingerprinting, chromatin, and methyl-DNA immunoprecipitation 

among other sources of high-throughput data; and exploiting and developing many 

statistical tools used in the analysis of quantitative trait loci.(Jansen and Nap 2001; Perez-

Enciso et al. 2007; Prins et al. 2012). One of the most widespread applications of this 

methods are genome-Wide Association Studies (GWAS), which, since the first GWAS in 

2002 (Ozaki et al. 2002) followed by its popularization with a 2005 study on age-related 

macular degeneration (Klein et al. 2005), have identified thousands of genes and genetic 

variants (mainly SNPs) that contribute to phenotypic variations in many traits in different 

systems and species and have broadened our understanding of many diseases and 

phenotypes.  
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Nevertheless, association-based approaches have several important limitations. To begin, 

only a small fraction of SNPs/genes and their functional mechanisms have been 

functionally characterized. In most cases, loci found by GWAS have a very weak, additive 

predictive power which only explains a small fraction of the phenotypic variance (Kraft 

and Hunter 2009; Marjoram et al. 2014; Visscher et al. 2012; Ward and Kellis 2012), and 

inferring causal polymorphisms that account for such a tiny fraction of the variance requires 

a huge sample size (Long and Langley 1999). The low variance explain by predicted loci 

resulting from GWAS suggests that rare genetic variants or structural variants poorly 

captured by current technology account for most of the heritability of traits; or that these 

kind of analysis suffers from low power to detect epistatic interaction (Manolio et al. 2009), 

crucial in the case of complex traits where SNPs are unlikely to act alone. Moreover, many 

of the variants fall in noncoding regions of the genome, and due to linkage disequilibrium, 

can encompass many variants; and as such their functional effect is not immediately 

discernible (Ward and Kellis 2012). Furthermore, GWAS are marred with polymorphisms 

falsely identified as associated to a trait, in many cases due to confounding variables, such 

as environmental factors (e.g., geographic origin in a structured population) (Platt et al. 

2010).  

With the sequencing and transcriptomic profiling of an ever growing list of non-model 

species, comparative genomics approaches have increasingly proven invaluable in the 

efforts to characterize the conservation and variation in genomic features such as genomic 

sequence, genes, gene order, amino acid usage, protein rates of evolution, gene family size, 

regulatory motifs, in order to trace their origin and changes across evolution, the 

mechanisms and evolutionary forces shaping them, and their relationships to functional 

phenotypes. For example, the comparison of the human genome with that of our closest 

extant relative, the chimp, revealed how two non-synonymous changes in a single gene, the 

Fork head box protein P2 (FOXP2), are partially responsible for the control of orofacial 

movement that allowed humans to develop a spoken language (Enard et al. 2002). Studies 

using comparative genomics have even allowed us to understand more of the function of 

the non-coding regions of the genome; many cis and trans acting regulatory elements have 

been identified and characterized based on the evolutionary conservation of their sequence 

or transcription level across species (Boyle et al. 2014; Consortium et al. 2007; Gerstein et 

al. 2014; Ho et al. 2014; Marques and Ponting 2014; Prabhakar et al. 2008; Visel et al. 

2007). 
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Comparative genomic studies on longer evolutionary ranges have permitted us to detect 

patterns of changes in the genome, such as chromosomal rearrangements, and granted us a 

view into how these rearrangements characterize differentiation and speciation, likely 

through their effect on recombination and gene flow (Faria and Navarro 2010; Feder et al. 

2014; Kirkpatrick and Barton 2006; Yeaman 2013). Similarly, scans for regions on the 

genome that display signatures of positive selection can highlight the genes underlying 

phenotypic adaptations (Bustamante et al. 2005; Capra et al. 2013; Gaya-Vidal and Alba 

2014; Hubisz and Pollard 2014; Kelley and Swanson 2008; Nielsen et al. 2007; Pritchard 

et al. 2010).  

By extending our understanding of the genomic basis of phenotypes and their evolution 

over time, comparative studies have also advanced our understanding of disease states. A 

good example of the power of comparative genomics approaches can be found on a study 

comparing the human genome to those of model plant Arabidopsis, and the ciliated single 

cell organism Chlamydomonas (Li et al. 2004). This study allowed researchers to identify 

key genes involved in the formation of cilia in several cell types. Further characterisation 

of these genes led to the discovery of a cilia disease causing gene in humans. 

In this thesis I use comparative approaches and transcriptome analyses to shine a light on 

the genomic basis of brain evolution and the mechanisms enabling the long term post-

mitotic maintenance of neurons and other long lived cell types in the human body. Together 

my findings revealed that genes involved in a distinct set of cellular processes are likely to 

underlie the adaptations of the human brain which enabled our species to evolve a high 

cognitive ability. 

1.2 Trade-offs in the evolution of large brains 

 

One of the most distinctive features of hominid species is the increase in brain size with 

modern humans possessing one of the largest brains compared to body size. When 

compared to other vertebrates, mammalian species in general tend to have larger brain to 

body size ratios and this relationship is particularly pronounced in some primate and 

cetacean species (Roth and Dicke 2005). Larger brains have long been associated with 

higher cognitive capabilities, higher social interaction complexity and better ability to cope 
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with unstable environmental conditions (Dunbar 1992; Jerison 1973, 1985; R. D. Martin 

1983). 

The organisms who possess large brains, undoubtedly enjoy great cognitive advantages 

which should translate in a reduction in extrinsic mortality and favour a longer 

reproductive life, thereby compensating, at least partially, for the underlying fitness costs 

(Allman et al. 1993; Gonzalez-Lagos et al. 2010; Isler and van Schaik 2009; Sol 2009b). 

Whether it is by an expansion of the neocortex, relative brain size, encephalization, number 

and size of neurons, number of synaptic connections, or any of the other brain related traits 

the scale with an increase in brain size, a larger brain comes with increased cognitive 

abilities, which can confer a higher behavioural plasticity to a species and facilitate the 

construction of novel or altered behavioural patterns, which in turn could provide a buffer 

against socioecological challenges (Allman et al. 1993; Barrickman et al. 2008; Deaner et 

al. 2003; Ricklefs 2004; Sol 2009b). This cognitive buffer would enable an animal to do 

such things as track variations in the availability of resources, use tools in order to include 

hard-to-eat foods in their diets, colonize new ecological niches, deal with environmental 

complexity, avoid unfamiliar predators and collect information from conspecifics (Dukas 

2004; Sol 2009a). Evidence on this regard comes from the observed association between 

innovation rate and relatively larger brains in both birds (Louis Lefebvre et al. 1997; L. 

Lefebvre et al. 2004) and primates (L. Lefebvre et al. 2004; S. M. Reader and Laland 

2002), together with the fact that species with larger brains show lower adult mortality 

rates in the wild when compared with the species with smaller brains (Sol et al. 2007) and, 

importantly, that large-brained species are more successful than small-brained species 

when introduced by humans to novel environments (Sol et al. 2002; Sol et al. 2005; Sol et 

al. 2008). Furthermore, successful invaders display a high behavioural innovation rate in 

their native ranges and are less likely to experience population decline due to alterations 

of their habitat (Shultz et al. 2005) and are more tolerant to climatic variability (Schuck-

Paim et al. 2008; van Woerden et al. 2012). These observations have led to the suggestion 

that the relatively large brain of the Neornithes compared to other archaic birds and 

pterosaurs might be partially responsible for their survival during the mass extinction event 

at the Cretaceous–Tertiary boundary, when all other flying Ornithodira groups became 

extinct (Milner and Walsh 2009). 
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Large brains are also associated with qualitative differences in mating system across birds 

and mammals, with species that live in pair-bonded social systems having the largest brains 

(Shultz and Dunbar 2007). In anthropoid primates the relationship between social system 

and brain size, particularly neocortex size, become quantitative with species with larger 

social groups having larger brains (Dunbar 1992; Dunbar and Shultz 2007a; Dunbar 2009). 

This has led to the hypothesis that bigger groups exert a selective pressure towards large 

brains and larger neocortices, through the demands of behavioural coordination, in order to 

manage complex social relationships (Byrne and Whiten 1988; Dunbar 1992; Dunbar and 

Shultz 2007a; Dunbar 2009; Shultz and Dunbar 2007). This social complexity might 

increase fitness by allowing groups to better defend against predation (Dunbar 1992; 

Dunbar and Shultz 2007a; Dunbar 2009; Shultz et al. 2004) and by permitting the social 

transmission of survival, reproduction and foraging skills (S. M. Reader and Laland 2002; 

van Schaik and Burkart 2011). In species with large group sizes, cooperative breeding 

might also alleviate part of the high maternal investment cost associated with a larger brain 

in the offspring (Burkart et al. 2009; Isler and van Schaik 2009; Isler 2011; Navarrete et al. 

2011).  

As previously mentioned, all these cognitive advantages would ultimately have an adaptive 

impact by incrementing survival rate and allowing selection to favour individuals with a 

longer lifespan (Allman et al. 1993; Gonzalez-Lagos et al. 2010), but the selective forces 

acting on a greater longevity can also, in turn, exert pressure towards a larger brain. For 

instance, long lived species are more likely to be exposed to environmental changes 

throughout their life, and as such would be benefited more from information acquisition 

and flexible behavioural flexibility than short lived species (Deaner et al. 2003; Sol 2009a, 

2009b). Moreover, a longer life may favour a delay in reproductive cycles, allowing 

progenitors to invest more resources in their offspring (Covas and Griesser 2007). If 

individuals living in stable social groups face higher cognitive demands than that 

individuals living alone, this might lead to an increase in brain size (Charvet and Finlay 

2012; Connor 2007; Dunbar and Shultz 2007a; Gonzalez-Lagos et al. 2010; Shultz and 

Dunbar 2007). Large brains, however, represent an evolutionarily costly adaptation, which 

require organisms to undergo various trade-offs to maintain. To begin, the brain is a 

metabolically expensive tissue. In vertebrates, between 2% and 8% of the basal metabolic 

rate (BMR) is used by the central nervous system. In primates, this load can rise to over 

10% of the BMR and, in the case of human, 20%, escalating to 80% during development 
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(Mink et al. 1981). Certainly, increments in brain size result in a higher metabolic load on 

the organisms, which poses an important constraint on brain expansion (R. D. Martin 1981). 

Nevertheless, variations in BMR in mammals can only explain a small proportion of the 

variance in the relative brain size in these species (between 13.3% in mammals and 20% in 

non-human primates (Isler and van Schaik 2006a)).  

A reduction in the relative size of one or more metabolically active organs, such as the liver, 

kidney, testes, heart, or intestine could partially alleviate the metabolic cost imposed by 

increments in the relative brain size (Aiello and Wheeler 1995; Barrickman and Lin 2010; 

Fish and Lockwood 2003; Kozlovsky et al. 2014; Tsuboi et al. 2015). In this respect, it has 

been shown that there is a negative correlation between the brain size and the gut size in 

anthropoid primate species (Aiello and Wheeler 1995; W. R. Leonard et al. 2003). Similar 

patterns have been observed in fish (Kaufman et al. 2003; Tsuboi et al. 2015), but not in 

birds (Isler and van Schaik 2006b) or bats (K. E. Jones and MacLarnon 2004). Regardless, 

in this last clade, there is an inverse relationship between brain size and testis size (Lemaitre 

et al. 2009; Pitnick et al. 2006). Additionally, humans, the mammalian species with the 

largest relative brain size, have substantially lower levels of muscle mass when compared 

with other primates (W. R. Leonard et al. 2003; W. R. Leonard et al. 2007). Furthermore, 

the whole of the Primata order, which generally has undergone several events of brain 

expansion along its evolutionary history, has relatively less muscle mass when compared 

to other mammals (W. R. Leonard et al. 2007; Snodgrass et al. 2009). When taken together, 

these findings suggest the possibility that different trade-offs occur in different groups 

(Barton 2006). 

Energetic trade-offs between the brain and other abundant, yet less expensive tissues may 

also account for part of the variations in brain size. For instance, Dror and Hopp propose a 

metabolic trade-off between hair and brain in human evolution, based on the fact that these 

are two of the three organs with the greatest essential amino acid requirement from a whole 

body perspective, and hair contains large amounts of several amino acids that are essential 

for brain development and function (methionine, cysteine, tyrosine, phenyl alanine and 

arginine), but are in limited quantity in food (Dror and Hopp 2014). Another example of a 

possible energetic trade-off between the brain and other profuse tissue is posed by adipose 

depots, which account for a considerable proportion of the body mass of some mammalian 

species (Pond 1998), and imposes an energetic and adaptive cost due to the fact that it needs 
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to be carried around and may increase extrinsic mortality by predation (Navarrete et al. 

2011). Indeed, Navarrete et al. showed that there is a negative correlation between relative 

brain size and the size of adipose depots in a sample of 100 mammals, although this 

relationship is not significant in primates (Navarrete et al. 2011). Conversely, fat depots 

could act as a buffer against starvation and enable to stabilize the energy supply available 

for a larger brain (Kuzawa 1998; W. R. Leonard et al. 2003; Wells 2006), which would also 

face important seasonality-induced energetic constraints (Jiang et al. 2015; van Woerden et 

al. 2010). Furthermore, adiposity might alleviate more than only the energetic requirements 

of the brain. For instance, cognitive ability of a child has been shown to be associated with 

a lower waist to hip ratio in the mother, suggesting that gluteo-femoral adiposity might 

provide neurodevelopmental resources in the shape of fatty acids needed for foetal brain 

development (Lassek and Gaulin 2008). 

Another non-excluding strategy which can lead to an increase in the net energy available 

for a larger brain consists on the adoption of a higher quality diet, energy-dense and high 

in structural carbohydrates and proteins. (Aiello and Wheeler 1995; Fish and Lockwood 

2003; W. R. Leonard et al. 2003; W. R. Leonard et al. 2007; Verginelli et al. 2009). A shift 

in diet towards greater meat consumption, would also provide for increased levels of fatty 

acids necessary for the evolution of a large brain (Cordain et al. 2001; Crawford et al. 1999; 

W. Leonard et al. 2011). In particular during the evolution of the Homo genus, tool-assisted 

processing of food, followed by development of cooking also helped to increase diet quality 

and promote brain evolution (W. Leonard et al. 2011; Plummer 2004; Wrangham 2009). 

Other trade-offs are present in the shape of an impact of the brain size on life history traits. 

Due to the costly, complicated and long developmental processes of large brains, both 

neonatal and adult brain size has been found to be associated with gestation length in 

mammals, even when controlling for the overall size of the body (Finarelli 2010; Isler and 

van Schaik 2006b; Isler and van Schaik 2009; R. Martin 1996; Sacher and Staffeldt 1974). 

Furthermore, Barton and Capellini found that evolutionary changes in pre- and postnatal 

brain growth correlate with duration of both gestation and lactation phases in placental 

mammals, strongly suggesting the large maternal investment required for a larger brain 

size, which inevitably leads to a reduction on the annual fertility rate of species with large 

brains due to longer inter-birth periods (Barton and Capellini 2011). This long 

developmental periods result in increased offspring mortality risk (Barrickman et al. 2008; 
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Deaner et al. 2003; Sacher and Staffeldt 1974) and delayed age of first reproduction 

(Barrickman et al. 2008; Deaner et al. 2003). The large maternal investment requirements 

imposed by large brains can also be offset by a reduction in litter size (Finarelli 2010; Isler 

and van Schaik 2009) or by an increase in the BMR of the mother during pregnancy (R. 

Martin 1996). All of these trade-offs impose a fitness cost which should be compensated 

for by an increased reproductive lifespan if a species is to maintain demographic viability 

(Isler and van Schaik 2009).  

In any case, the plethora of cost and adaptive impacts and trade-offs of larger brains has 

resulted in a high variation in brain size even across closely related species (e.g. 

(Barrickman et al. ; Harvey et al. 1980; Huber et al. 1997; Kotrschal et al. 1998; Sol and 

Price)), yet the exact nature of the molecular changes accounting for variations in 

encephalization across mammalian species is at present poorly understood. 

 

1.4 Genetic signatures of brain evolution 

 

One of the goals of evolutionary neurobiology is to underpin the molecular changes 

accounting for the extraordinary expansion in brain size observed across mammalian 

evolution. Changes in brain size can be associated with changes at any molecular level, 

from a single nucleotide in a particular gene or regulatory elements, to evolutionary patterns 

on protein domains, whole proteins, gene families or pathways.  

One approach used to discover these changes consist on measuring the strength of selective 

pressure acting on a gene or set of genes, in taxa that display the phenotype of interest and 

compare it against those who do not. Most studies in this regard take a candidate based 

approach, with a focus on genes involved in neural proliferation, cell death, energy 

metabolism or any other process closely associated with the development and function of 

the brain, as well as genes involved in neurological disorders. One of the most prominent 

examples of this comes from studies on the rates of evolution of genes involved in primary 

microcephaly, a developmental disease which results in a small but, otherwise generally 

normal brain (Woods et al. 2005). There are twelve known genes that cause this 
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neurodevelopmental disorder (reviewed in (Faheem et al. 2015)), and five of these (ASPM, 

CDK5RAP2, CENPJ, SHH and MCPH1) have been found to display signatures of positive 

selection in the primates relative to other mammals, and this acceleration seems to be 

particularly prominent in the primate lineage leading to humans (reviewed in (S. L. Gilbert 

et al. 2005)). Furthermore, there is a significant correlation between the rates of protein 

evolution and neonatal brain size for ASPM and CDK5RAP2 (Montgomery et al. 2011; 

Montgomery and Mundy 2012b, 2014). Protein rates of evolution of the gene NIN, a 

centrosome maturation factor integral for neurogenic division of radial glial cells (X. Wang 

et al. 2009), also display an association with brain mass across anthropoids (Montgomery 

and Mundy 2012a), suggesting that all of these genes evolved adaptively during anthropoid 

evolution and may have a role in the evolution of brain size in this taxa. 

Other genes that show accelerated rates of evolution that may underlie the evolution of 

brain size, through their involvement in neurogenesis include ADCYAP1, which encodes 

a secreted protein that regulates transcriptional activation of key mediators of 

neuroendocrine stress responses and cortical neurogenesis and underwent an accelerated 

evolution in the human lineage since the divergence from chimpanzee (Y. Q. Wang et al. 

2005). The glutamate receptors GRIN3A and GRIN3B, which regulate excitatory synaptic 

transmission in the brain; and the Fork head box protein P2 (FOXP2), a transcription factor 

with mutations associated to severe speech and language disorder (Lai et al. 2001) also 

displays signatures of positive selection in the primate lineage leading to human (Enard et 

al. 2002; Goto et al. 2009), an in which two amino acid substitution that occurred after the 

split between human and chimp fixated, conferring this gene the ability to regulate new 

targets involved in guiding neuronal morphology, dendritic length and plasticity in cortico-

basal ganglia, suggesting that this mutations contributed to increased fine-tuning of motor 

control and vocal learning during human evolution (Enard et al. 2009; Enard 2011; 

Konopka et al. 2009). AHI1 (Abelson helper integration site 1), one of the genes associated 

with a rare brain malformation called Joubert syndrome and involved in directing axons 

from the brain to the spinal cord, also shows an accelerated rate of evolution along the 

human lineage since its split from the chimp (Ferland et al. 2004). 

A complementary approach utilized to understand the genetic components of brain 

evolution consists in identifying non-coding regions conserved across primates or 

mammals with an accelerated substitution rate in a particular lineage. (Bush and Lahn 2005; 
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Pollard 2006) One of the most prominent loci derived from this kind of analysis is the 

human accelerated region 1 (HAR1), the conserved non-coding region with the higher 

evolutionary rate along the human lineage (Pollard 2006). HAR1, is part of an RNA gene 

(HAR1F) that is expressed highly and specifically in Cajal–Retzius neurons in the human 

neocortex early in human embryonic development, particularly during stages characterized 

by cortical neuron specification and migration (Pollard 2006). HAR1F is co-expressed with 

reelin, a product of Cajal–Retzius neurons that is of fundamental importance in specifying 

the six-layer structure of the human cortex. Furthermore, HAR1F has been shown to be 

downregulated in neurodegeneration in Huntington's disease (Johnson et al. 2010). Changes 

in non-coding regions by mutations in regulatory elements could also translate in variations 

in gene expression and these have been suggested as an important contributor to the 

evolution of uniquely human biological traits, such as our oversized brain (Rakic 2009; 

Sholtis and Noonan 2010). 

Changes in gene expression resulting in phenotypic changes can also be derived from 

posttranslational histone modifications (Allfrey et al. 1964). Genome-wide profiling of 

these modifications has been used to compare regulatory element activities across species 

to identify promoters and enhancers that have gained activity in humans. Using this 

approach, Reilly et al. found that such gains are significantly enriched in modules of 

coexpressed genes in the cortex that function in neuronal proliferation, migration, and 

cortical-map organization, suggesting that these regulatory changes might be an important 

driving force of human cortical evolution (Reilly et al. 2015). 

Among the mechanisms by which our DNA may alter the evolution of the brain, one of the 

most relevant is through duplication of protein coding genes. These may arose from 

segmental duplications and potentially leaded the origin of new functions. Even if the 

number of gene duplications that are retained during evolution is small given the large 

frequency with which these events occurs through evolutionary time, the strong selection 

acting on those that remain may have a considerable effect in driving the differences we 

observe between species (Gokcumen et al. 2011; Lynch and Conery 2000), and of particular 

interest those reflecting brain size (Supplementary Table 1.1). ARHGAP11B encodes a Rho 

GTPase and is a clear example of human specific partial duplication that has been recently 

described to promote the expansion of the neocortex through increasing basal progenitor 

cell population (Florio et al. 2015). ARHGAP11B role in brain evolution was identified by 



11 
 

its particular expression pattern at basal progenitor cells and the lack of orthologous 

counterparts in mice and chimp (Florio et al. 2015). Another human specific lineage 

duplication possibly associated with the evolution of the brain occurred at the SLC6A13 

gene, a transporter of the main neurotransmitter, GABA (Fortna et al. 2004). Changes in 

the number of copies of this gene have been linked to higher cognitive functions and its 

loss has been associated to anxiety disorders (Saus et al. 2010). Among the most prominent 

variations in number that has occurred after the chimp split is the expansion of DUF1220 

gene family, also known as the neuroblastoma breakpoint family (NBPF). The ancestral 

DUF1220 domain can be found in the centrosomal protein myomegalin, and both the 

number of copies of the NBPF family members and DUF1220 domains on them are highly 

correlated to brain size between primate species and within human populations (Dumas 

2012; Keeney et al. 2014a; Keeney et al. 2014b). It is worth mentioning that, as the copy 

number increases in autistic persons, the individuals show a more extreme severity of 

impaired social reciprocity, communicative ability and increased repetitive behaviours. 

While total gene number has remained relatively constant throughout the past 800 million 

years of metazoan evolution (Ponting 2008), there exist large variations among organisms 

in the number of copies of genes involved in a variety of biological functions, and changes 

in this genotypic trait have shown to occur frequently (Demuth et al. 2006; Fortna et al. 

2004; Hahn et al. 2007; Hughes and Friedman 2004; Rubin et al. 2000). As mentioned 

above, changes in gene family size are of summary importance as a driver of phenotypic 

evolution, since gene duplications offer material for the origin of new functions and 

expression patterns, whilst gene loss acts as response to selective pressures (Krylov et al. 

2003; Lynch and Conery 2000). In spite of this, whether changes in the size of gene families 

involved in distinct processes has contributed to shaping the machinery driving brain 

evolution in mammalian lineages remains an interrogate. While candidate gene studies have 

undeniably contributed to our understanding of the molecular mechanisms underlying the 

complex process that is brain evolution, generally these studies have been marred by an 

anthropocentric view of this process, and as such focus only in a few primate species at 

most. In Chapter 2, I examined the association between changes in gene family size (GFS) 

and degree of encephalization in 39 fully sequenced mammalian species using a genome-

wide comparative approach with aims to further our understanding of the genomic 

correlates of encephalization across the whole Mammalia class.  
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1.5 Neocorticalization, differential scaling of large brains 

 

While encephalization is a significantly variable trait across mammalian species 

(Barrickman et al. 2008; Harvey et al. 1980; Kaas 2006), not all brain structures have scaled 

up proportionally along the evolutionary history of this taxa. In this taxa, most variations in 

relative brain size can be explained by changes in the size of the neocortex (Jerison 1973, 

1990; Kaas 2006). 

The neocortex is a structure uniquely present in mammals that surrounds the cerebral 

hemispheres. This structure is the newest part of the mammalian cerebral cortex, and has 

an origin approximately 220 million years ago with the origin of this lineage (Kaas 2011; 

Meredith et al. 2011; Northcutt and Kaas 1995; M. A. O'Leary et al. 2013). The neocortex 

is likely derived from the thin dorsal ridge of reptiles (Kaas 2011; Northcutt and Kaas 1995; 

M. A. O'Leary et al. 2013), and has been greatly modified into six layers of cells, which 

differ in density and size of neural cell bodies and axons, and contains around 24 billion 

neurons and 33 billion glial cells on average in humans (Pelvig et al. 2008). While evidence 

points towards little change in the size of the neocortex of mammals until around 60 million 

years ago, the major radiations of marsupials and placental mammals after the Cretaceous-

Paleogene (K-Pg) mass extinction brought with many independent neocorticalization 

events across different mammalian groups (Northcutt and Kaas 1995). 

Traditionally, the neocortex has been regarded as the seat for the neurobiological 

mechanisms of higher cognitive abilities, such as self-awareness, consciousness, abstract 

reasoning and planning, in mammals (Crick and Koch 1990; Eccles 1994; P. Gilbert et al. 

1995; Grober et al. 1992; Steven M. Platek et al. 2004; S. M. Platek et al. 2008; Sugiura et 

al. 2005). Specific areas in the human neocortex have been found to drive the understanding 

and production of language (Aiello and Dunbar 1993; Letinic et al. 2002). Other highly 

specialised areas, such as those for recognizing faces (Allison et al. 1994; Nestor et al. 

2011), or places (V. M. Miller and Best 1980; Poucet et al. 2003), have also been identified 

in the neocortex. Neocortex to brain size ratio is correlated with social group size (R. I. M. 

Dunbar 1992), and it has been theorized that the quantity of neocortical neurons is a 

constraining factor in determining the number of social relationships which an animal can 

manage (R. I. M. Dunbar 1992), and in the hominid lineage, the expansion of the neocortex 
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is thought to have played a key role for the evolution of modern humans (DeFelipe 2011). 

Furthermore, mirror-neurons which have been implicated in social learning (they respond 

both to doing an action or seeing it be done by other individuals, and seem to play a part in 

action understanding, speech perception, emotion recognition and imitation) (Adolphs et 

al. 1994; Enticott et al. 2008; Iacoboni 2005; Schulte-Ruther et al. 2007; Spaulding 2013; 

van der Gaag et al. 2007; Wicker et al. 2003), have been identified in the neocortex (Gallese 

et al. 2002; Molenberghs et al. 2009; Rizzolatti et al. 1996).  

In spite of the highly significant part that the evolution of the neocortex has played in 

mammalian evolution, the genomic features underlying their evolution remain poorly 

understood (de Sousa and Proulx 2014; Hawrylycz et al. 2012). Thus far, there have been 

few studies attempting to identify signatures of the impacts of brain evolution on the 

genome. While a previous effort to detect a genomic signature of the bran evolution 

reported that genes involved in different aspects of nervous system biology displayed 

accelerated sequence evolution on the lineage leading from ancestral primates to humans 

(Dorus et al. 2004), this claim was heavily contested soon after (Kosiol et al. 2008; Shi et 

al. 2006). A recent study showed that the degree of encephalization is significantly 

associated with overall protein amino acid composition., perhaps mirroring the selective 

demands imposed by a larger brain, by conducting a genome-wide analysis of amino acid 

composition across 37 fully sequenced mammalian genomes (Gutierrez et al. 2011). 

Changes in gene family size are one of the main forces driving many evolutionary changes. 

Duplication events provide source of material for the origin of novel gene functions and 

expression patterns, whereas gene loss is suggested to act as response to selective pressures 

(Krylov et al. 2003; Lynch and Conery 2000). Marked differences in gene family size have 

been identified in drosophila and vertebrates with families involved in particular functions 

being enriched in those experiencing the largest changes, suggesting that lineage-specific 

changes in gene family size play a large role in adaptation (Demuth et al. 2006; Demuth 

and Hahn 2009; Hahn et al. 2005; Hahn et al. 2007; Han et al. 2009). A recent study found 

that encephalization in mammalian lineages is associated with significant variations in gene 

family size (see chapter 2 and (Castillo-Morales et al. 2014)) with the most positively 

associated gene families significantly enriched in several functional categories including 

immune system response, chemotaxis and cell-cell signalling, however part of these 
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observations could be a by-product of the high degree of association between 

encephalization and neocorticalization. 

In chapter 3 we investigate if the variations in neocortex to brain ratio in mammalian 

lineages are associated with changes in gene family size. By tracing back events of gene 

gain and loss per gene family we are able to distinguish gene family expansion and gene 

family contraction in association with neocorticalization. We further explore the extent to 

which any changes in gene family size associated with neocortex explain previously 

reported variations in gene family size and encephalization. 

 

1.6 Neurodegeneration and cellular longevity 

 

Intelligence has evolved independently many times among vertebrates (Emery and Clayton 

2004; Simon M. Reader et al. 2011; Roth and Dicke 2005), yet excluding humans, few 

other vertebrates suffers from an age-related neurodegenerative syndromes, such as 

Alzheimer’s and Parkinson’s disease (Heuer et al. 2012; Vite and Head 2014). This suggest 

that susceptibility to Alzheimer’s evolved recently in human evolution, likely coinciding 

with the rapid expansion of brain and neocortex size occurred in this lineage, and possibly 

as a by-product or trade-off of this evolutionary process. A larger and more complex brain, 

with its attached high metabolic costs, could become less efficient with age as a result of 

changes in gene expression that affect normal neural functions such as synaptic 

transmission, axonal integrity and myelination (Bishop et al. 2010; Loerch et al. 2008). In 

this respect, a direct comparison between the aging brain transcriptomes of mouse, macaque 

and human revealed a major evolutionary divergence in dysregulation of many neural 

related genes with aging, with genes involved in functions such as regulation of 

axonogenesis, neurogenesis and GABA signalling showing a marked downregulation 

unique to old humans (Loerch et al. 2008). These changes could potentially reveal the 

genetic basis of vulnerability to neurodegeneration. 

Although the need for long term survival is common to many cell types, nowhere is cell 

maintenance more critical than in neurons as mature post-mitotic neurons need to survive 

and preserve their functional complexity during the entire lifetime of an individual 
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(Magrassi et al. 2013), with failure at any level in the underlying supporting mechanisms 

resulting in a wide range of neurodegenerative conditions (Drachman 1997; Fishel et al. 

2007; Mattson and Magnus 2006).  

Post-mitotic neuron maintenance, as well as that of other cell types, must be the result of 

an interplay of a wide network of interacting molecular mechanisms that act at several 

levels of the cell’s physiology to ensure its functional and structural stability (Lanni et al. 

2010; Mattson and Magnus 2006). Identifying these networks should allow us to understand 

both cell survival as well as degeneration. 

Until recently, our knowledge regarding post-mitotic cell longevity in human tissues has 

been limited due to the lack of means to accurately measure cell turnover in human subjects. 

However, recent attempts at estimating cell turnover rate based on 14C-based retrospective 

birth dating have proven more successful (Bhardwaj et al. 2006; K. L. Spalding et al. 2005). 

Using a comparative transcriptomic approach we attempt to identify the molecular 

signature of long term post-mitotic maintenance in 7 tissues with measured post-mitotic 

cellular longevity (PMCL) ranging from 120 day to over 70 years, by measuring the degree 

of association of expression patterns with this measurement of PMCL. In chapter 4, we 

identify a set of PMCL associated genes whose expression levels consistently mirror the 

differences in cell longevity across 7 different tissues. Furthermore, we show that these 

genes display concerted expression patterns in nerve cells and other long living tissues 

suggesting a functional association between these genes. We also found that PMCL-

associated genes are down regulated in the cerebral cortex and substantia nigra of 

Alzheimer’s and Parkinson’s disease patients respectively, as well as Hutchinson-Gilford 

progeria-derived fibroblasts, further cementing their possible involvement on regulating 

cell survival. Finally, we found that sexual dimorphism in the patterns of gene expression 

of PMCL-associated genes in the brain reflects known differences between sexes in lifespan 

of humans and macaques.  

1.7 Objectives & approach of this thesis  

The overall objective of this thesis is to attempt to find the molecular basis underlying two 

complex phenotypes; the evolution of the mammalian brain, and the differences in long 

term post-mitotic cell maintenance across different cell types, using a comparative 

genomics and comparative transcriptomics approach.   
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Supplementary Table S1.1.  

Genes with evolutionary patterns associated with the evolution of the central 
nervous system. 

Gene/Element Name Mechanism of 

Change 

Proposed Phenotype Possible Gene-

Associated Disease 

Refs. 

Fork head box P2 

(FOXP2) 

Amino acid 

change/Positive 

Selection 

Language/speech 

development and 

increased length of 

dendrite spines 

Speech-language 

disorder-1 

(Enard 

2002) 

Glutamate receptor, 

ionotropic, N-methyl-

D-aspartate 3A 

(GRIN3A) 

Amino acid 

change/Positive 

Selection 

Learning and memory Unknown (Goto et 

al. 2009) 

Glutamate receptor, 

ionotropic, N-methyl-

D-aspartate 3B 

(GRIN3B) 

Amino acid 

change/Positive 

Selection 

Higher brain function Unknown (Goto et 

al. 2009) 

Cholinergic receptor, 

nicotinic alpha 7 and 

FAM7A fusion 

(CHRFAM7A) 

Copy number 

increase 

Higher brain function P50 sensory gating 

deficit 

(Fortna et 

al. 2004) 

Dopamine receptor 

D5 (DRD5) 

Copy number 

increase 

Regulation of mood, 

memory, learning, 

attention, movement 

DRD5 deficiency, 

ADHD, primary 

cervical dystonia 

(Fortna et 

al. 2004) 

p21 protein 

(Cdc42/Rac)-activated 

kinase 2 (PAK2) 

Copy number 

increase 

Neuronal differentiation 3q29 microdeletion 

syndrome 

(Fortna et 

al. 2004) 

Peripheral myelin 

protein 2 (PMP2) 

Copy number 

increase 

Myelin 

stabilization/Protection 

from demyelination 

Charcot-Marie-

Tooth peroneal 

muscular atrophy 

(Fortna et 

al. 2004) 

Phosphodiesterase 4D 

interacting protein 

(PDE4DIP) 

Copy number 

increase 

Higher brain function Myeloproliferative 

disorder associated 

with eosinophilia 

(Fortna et 

al. 2004) 
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Solute carrier family 6 

(facilitated glucose 

transporter) member 

13 (SLC6A13) 

Copy number 

increase 

Higher brain function Schizophrenia (Fortna et 

al. 2004) 

SLIT-ROBO Rho 

GTPase activating 

protein 2 (SRGAP2) 

Copy number 

increase 

Increased neuronal 

branching 

Early infantile 

epileptic 

encephalopathy 

(Fortna et 

al. 2004) 

Rho GTPase 

Activating Protein 

11B (ARHGAP11B) 

Copy number 

increase 

Neocortical expansion/ 

promotes basal 

progenitor generation 

Unknown (Florio et 

al. 2015) 

Glutamate 

dehydrogenase 2 

(GLUD2) 

Copy number 

increase/ 

positive 

selection 

Metabolic changes in 

brain 

Parkinson's disease (Burki 

and 

Kaessman

n 2004) 

MAS-related gene 

(MRG) family 

Copy number 

increase/ 

positive 

selection 

sensitivity and/or 

selectivity of 

nociceptive neurons to 

aversive stimuli 

Unknown (Choi and 

Lahn 

2003) 

Protocadherin 11 X Y 

linked (PCDH11XY) 

Copy number 

increase/Express

ion change 

Cerebral 

asymmetry/Language 

development, 

neuroendocrine 

transdifferentiation 

Klinefelter’s 

syndrome, 

Alzheimer’s 

disease, prostate 

cancer 

(Fortna et 

al. 2004) 

Growth arrest and 

DNA-damage-

inducible, gamma 

(GADD45G) 

Deletion of 

regulatory 

DNA/Expressio

n change 

Expansion of human 

forebrain 

Thyroid carcinoma (McLean 

2011) 

Transforming Growth 

Factor, Beta Receptor 

III (TGFβR3) 

Epigenetic 

gains  

Neocortical expansion Familial cerebral 

saccular aneurysm 

(Reilly et 

al. 2015) 

Collagen, type XIII, 

alpha-1 (COL13A1) 

Epigenetic 

gains  

Neocortical expansion Embryo lethal 

mutant 

(Reilly et 

al. 2015) 

Ephrin receptor 

EphA2 (EPHA2) 

Epigenetic 

gains  

Neocortical expansion Cataract (Reilly et 

al. 2015) 
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LIM Homeobox 

transcription factor 1, 

beta (LMX1B) 

Epigenetic 

gains  

Neocortical expansion Nail-patella 

syndrome, 

genitopatellar 

syndrome 

(microcephaly) 

(Reilly et 

al. 2015) 

Creatine kinase brain 

(CKB) 

Expression 

change 

Metabolic changes in 

brain 

Multiple sclerosis (Pfefferle 

2011) 

Solute carrier family 2 

(facilitated glucose 

transporter) member 1 

(SLC2A1) 

Expression 

change 

Metabolic changes in 

brain and skeletal 

muscle/Brain size 

GLUT1 deficiency 

syndrome 1 and 2, 

susceptibility to 

HTLV infection 

(Fedrigo 

et al. 

2011) 

Solute carrier family 2 

(facilitated glucose 

transporter) member 4 

(SLC2A4) 

Expression 

change 

Metabolic changes in 

brain and skeletal 

muscle/Brain size 

Noninsulin-

dependent diabetes 

mellitus 

(Fedrigo 

et al. 

2011) 

Thrombospondin 4 

(THBS4) 

Expression 

change 

Synaptic organization 

and plasticity 

Familial premature 

coronary heart 

disease 

(Caceres 

et al. 

2007) 

Prodynorphin 

(PDYN) 

Expression 

change 

Metabolic changes in 

brain 

Spinocerebellar 

ataxia 23, 

dissociative 

amnesia 

(Rockman 

et al. 

2005) 

Sialic acid-binding Ig 

superfamily lectin 11 

(SIGLEC11) 

Gene 

conversion/Expr

ession change 

Alleviation of 

neurotoxicity from 

activated microglia. 

Potential neurotrophic 

effects. 

Unknown (X. Wang 

2011) 

Fork head box D4 

(FOXD4) 

Novel Gene 

Variant 

Nervous system 

development 

Dilated 

cardiomyopathy, 

suicidality, OCD 

(Cooper 

and 

Kehrer-

Sawatzki 

2011) 

Survival of motor 

neurone2, centromeric 

(SMN2) 

Novel Gene 

Variant 

Motor neuron 

maintenance, neuronal 

growth 

Spinal muscular 

atrophy severity 

(Fortna et 

al. 2004) 
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Asp (abnormal 

spindle) homolog, 

microcephaly 

associated (ASPM) 

Positive 

selection 

Brain expansion Microcephaly (P. D. 

Evans 

2004) 

CDK5 regulatory 

subunit associated 

protein 2 

(CDK5RAP2) 

Positive 

selection 

Brain expansion Microcephaly (Bond et 

al. 2005) 

Human accelerated 

region 1 forward 

(HAR1f) 

Positive 

Selection 

Development of 

neocortex 

Huntington's 

disease 

(Pollard 

2006) 

Microcephalin 1 

(MCPH1) 

Positive 

Selection 

Brain expansion Microcephaly (Rimol 

2010) 

Abelson helper 

integration site 1 

(AHI1) 

Positive 

selection 

Higher motor function Joubert syndrome (Ferland 

et al. 

2004) 

Centromere protein J 

(CENP-J) 

Positive 

selection 

Brain expansion Microcephaly (Bond et 

al. 2005) 

Sonic hedgehog 

(SHH) 

Positive 

selection 

Brain expansion Microcephaly. 

Holoprosencephaly, 

other developmental 

disorders 

(Dorus et 

al. 2006) 

Ninein (NIN) Positive 

selection 

Increase in neuron 

number 

Microcephaly (Montgo

mery and 

Mundy 

2012a) 

Adenylate Cyclase 

Activating 

Polypeptide 1 

(ADCYAP1) 

Positive 

selection 

Brain expansion Post-traumatic 

stress disorder 

(X. Wang 

2011) 

Cernunnos-XLF  Positive 

selection 

Brain expansion Microcephaly (Pavlicek 

and Jurka 

2006) 
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DUF1220/Neuroblast

oma breakpoint factor 

(NBPF) family 

Protein domain 

copy number 

increase 

(hyperamplificat

ion) 

Brain expansion Microcephaly, 

macrocephaly 

(Fortna et 

al. 2004) 

Myosin, heavy chain 

16 (MYH16) 

Pseudogeneizati

on 

Under-developed 

masticatory system 

releasing cranium from 

geometric constraint 

Unknown (Stedman 

et al. 

2004) 
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2.1 Abstract 

 

Genomic determinants underlying increased encephalization across mammalian lineages 

are unknown. Whole genome comparisons have revealed large and frequent changes in the 

size of gene families, and it has been proposed that these variations could play a major role 

in shaping morphological and physiological differences among species. Using a genome-

wide comparative approach, we examined changes in gene family size (GFS) and degree 

of encephalization in 39 fully sequenced mammalian species and found a significant over-

representation of GFS variations in line with increased encephalization in mammals. We 

found that this relationship is not accounted for by known correlates of brain size such as 

maximum lifespan or body size and is not explained by phylogenetic relatedness. Genes 

involved in chemotaxis, immune regulation and cell signalling-related functions are 

significantly over-represented among those gene families most highly correlated with 

encephalization. Genes within these families are prominently expressed in the human brain, 

particularly the cortex, and organized in co-expression modules that display distinct 

temporal patterns of expression in the developing cortex. Our results suggest that changes 

in GFS associated with encephalization represent an evolutionary response to the specific 

functional requirements underlying increased brain size in mammals. 
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2.2 Introduction 

 

Mammalian species in general tend to have larger brain to body size ratios compared with 

other vertebrates and in some primate and cetacean species this relationship is particularly 

pronounced (Roth and Dicke 2005). Large brains represent an evolutionarily costly 

adaptation as they are metabolically expensive, demand higher parental investment than in 

species with smaller brains and impose a substantial delay in reproductive age (Gonzalez-

Lagos et al. 2010; Isler and van Schaik 2006b; W. R. Leonard et al. 2003; Roth and Dicke 

2005; Weisbecker and Goswami 2010). In spite of the cost and adaptive impact of larger 

brains, the precise nature of genomic changes accounting for variations in encephalization 

across mammalian species is at present poorly understood (Dorus et al. 2004; Shi et al. 

2006). 

Whole-genome sequencing efforts have made it possible to study not just individual 

variations in specific sequences, but also large-scale differences in gene complements 

between species. Although overall gene number has changed little over the past 800 million 

years of metazoan evolution, comparative genomic studies have found large disparities 

among organisms in the number of copies of genes involved in a variety of cellular and 

developmental processes, and analyses of gene family evolution have shown that instances 

of gene family expansion and contraction are frequent (Demuth et al. 2006; Fortna et al. 

2004; Hahn et al. 2007; Hughes and Friedman 2004; Rubin et al. 2000). In a recent analysis 

of Drosophila species, for instance, large numbers of gains and losses have been described, 

with over 40% of all gene families differing in size among the analysed species. 

Importantly, the fact that, in these species, rapid gene family size (GFS) evolution is 

accentuated in some functional categories strongly suggests that changes in gene number 

within gene families may reflect evolutionary responses to specific adaptive demands 

(Hahn et al. 2007). In this regard, gene duplication events specifically linked to distinct 

aspects of vertebrate evolution have been described. Examples include the expansion, 

during early evolution of the vertebrate lineage, of HOX and PAX gene families which are 

widely believed to have played a key part in the evolution of many known vertebrate 

innovations (Holland and Short 2008; Soshnikova et al. 2013). 
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A major goal in evolutionary neurobiology is to understand the molecular changes 

underlying the extraordinary expansion in brain size observed in mammalian evolution. 

Whether changes in the number of copies of genes involved in distinct cellular and 

developmental functions has contributed to shaping the morphological, physiological and 

metabolic machinery supporting brain evolution in mammalian lineages is not known. 

By conducting a genome-wide analysis of 39 fully sequenced mammalian species, we set 

out to establish whether changes in GFS can be linked to increased encephalization. Our 

results reveal a proportion of gene families displaying a positive association between GFS 

and level of encephalization significantly larger than expected by chance. This bias occurs 

most prominently in families associated with specific biological functions. By examining 

expression data in human tissues, we further found that gene families displaying the highest 

association between encephalization and GFS are also statistically enriched in genes that 

are prominently expressed in the brain, with maximal expression in the cortex and 

displaying an expression signature distinctly associated with cortical development. 

 

2.3 Methods 

 

2.3.1 Gene family annotations 

 

Annotated gene families encompassing 39 fully sequenced mammalian genomes were 

obtained from ENSEMBL (Flicek et al. 2012). In the context of this annotation, a given 

gene family constitutes a group of related genes that include both paralogues within the 

same species and orthologues and paralogues from other species. Any given gene can only 

be assigned to a single gene family. GFS represents the total number of genes per gene 

family. In order to maximize the number of families covered in this study (more than 10 

000), we included all gene families with members present in no less than six of the 39 

mammalian species. 
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2.3.2 Encephalization index 

 

Because larger species have larger brains, it is necessary to estimate brain mass controlling 

for the allometric effect of body size. We therefore adopted residuals of a log–log least-

squares linear regression of brain mass against body mass as this is the most widely 

accepted index of encephalization (Ei; supplementary material, table S2.1) (Herculano-

Houzel et al. 2007; Herculano-Houzel 2011). While direct estimates of the ratio of brain 

mass to body mass have also been used as an alternative encephalization index (Deaner et 

al. 2000; Gonzalez-Lagos et al. 2010), this measure is known to be poorly related to brain 

complexity across taxa (Herculano-Houzel et al. 2007; Herculano-Houzel 2011). Accurate 

estimates of brain residuals based on a sample of 493 mammalian species were kindly 

provided by Gonzalez-Lagos et al. (Gonzalez-Lagos et al. 2010). 

 

2.3.3 Correlation coefficients of gene family size and encephalization index 

 

Simple Pearson correlations between Ei and GFS as well as multiple regressions (where 

maximum lifespan (MLSP) was included as covariate, see below) were carried out using 

R-based statistical functions. Numerical randomizations to determine statistical 

significance were conducted using specially written R-based scripts. 

 

2.3.4 Gene ontology terms analysis 

 

Gene ontology (GO) annotations were obtained from the Gene Ontology database 

(www.geneontology.org). In this study, a particular GO term was associated with a family 

whenever that term was linked to any of its members in any species. Only terms found to 

be linked with more than 50 families were examined. 
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For each GO category, the average Pearson correlation coefficient was calculated. 

Statistical significance and expected average Pearson correlation per GO was measured 

using at least 10 000 equally sized random samples taken from the whole gene family 

population to directly determine the corresponding p-values. Bonferroni correction was 

used in all analyses to correct for multiple tests. 

 

Enrichment analysis of GO categories was carried out by counting the number of families 

assigned to each GO term within the analysed set of gene families. However, any bias in 

family counts per GO within a set of families could be owing to a bias in the overall density 

of GO annotation events within that sample. In order to adjust for differences in the density 

of GO annotations between the test and background samples, we divided the family counts 

per GO from each sample, by the samples' average number of GO annotations per family. 

Statistical significance was numerically assessed by obtaining the expected (adjusted) 

number of families per GO in 10 000 equally sized random samples derived from the overall 

population of gene families. 

 

2.3.5 Maximum lifespan and partial correlation coefficients 

 

MLSP recorded for each species was obtained from the animal ageing and longevity 

database (AnAge) (Tacutu et al. 2013). To correct for the potential contribution of MLSP 

to the association between GFS and Ei, partial correlation coefficients were calculated for 

each gene family, including MLSP as covariate. The resulting partial coefficient represents 

the contribution of Ei to the variance in GFS which is not explained by variations in MLSP. 

Only those gene families displaying a significant partial correlation coefficient (p < 0.01) 

between GFS and Ei were considered further. 

 

2.3.6 Phylogenetic relatedness test 
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Phylogenetic generalized least-square approach (PGLS) and maximum-likelihood 

estimation of λ-values were carried out using the CAPER module in R. Because the 

parameter λ measures the degree to which the phylogeny predicts the pattern of covariance 

of a given trait across species (where λ-values close to 0 represent no phylogenetic 

autocorrelation while values close to 1 represent full phylogenetic autocorrelation) 

(Freckleton et al. 2002; Garland et al. 2005; Pagel 1999), this approach allows us to obtain 

a single accurate measure of phylogenetic autocorrelation for each individual gene family. 

In order to remove the effect of phylogenetic relationships from our analysis, we determined 

the parameter λ for each of the 713 gene families with significant partial correlation 

coefficients for Ei and GFS (correcting for MLSP) and eliminated all gene families with a 

significant phylogenetic interdependence (p < 0.05 of λ = 0, and p > 0.05 of λ = 1). This 

filtering resulted in 501 gene families on which GO enrichment analyses were subsequently 

carried out as described above. 

 

2.3.7 Gene expression in human brain 

 

RNA-seq data were obtained for 18 052 genes in a total of 16 human tissues, including 

brain, derived from the Illumina human body map dataset (ENSEMBL v. 62) (Flicek et al. 

2012). Individual genes were categorized as prominently expressed in the brain if their 

expression level in this tissue was the highest or second highest among all 16 tissues 

included (top 12.5th percentile). Over-representation was assessed by counting the number 

of these genes within a given sample. Statistical significance was assessed by comparing 

this count with those observed in 10 000 equally sized random samples drawn from the 

wider pool of gene families. 

 

2.3.8 Co-expression network analysis 

 

Weighted gene co-expression network analysis was carried out based on pairwise Pearson 

correlations between the expression profiles obtained from the BrainSpan database 
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(http://www.brainspan.org) for over 21 000 genes. Unsupervised hierarchical clustering 

was used to detect groups, or modules, of highly co-expressed genes following the method 

described by Zhang & Horvath (B. Zhang and Horvath 2005). 

2.4 Results 

 

2.4.1 Gene family size variations in line with encephalization are over-represented in 

mammals 

 

In order to assess the relationship between encephalization and GFS variations in 

mammalian taxa, gene family annotations for 39 fully sequenced mammalian genomes 

were obtained from ENSEMBL (Flicek et al. 2012). We included in this study all families 

with members present in no less than six of the 39 mammalian species (see Methods). This 

resulted in a total of 12 373 non-overlapping gene families encompassing 595 535 genes, 

with a mean number of 48.13, and a number of copies per gene family per species ranging 

from 0 to 448. 

Ei for each species was defined as the residual of a log–log least-squares linear regression 

of brain mass against body mass (see Methods). We obtained correlation coefficients for 

GFS and Ei for each gene family and the resulting distribution of correlation coefficients 

showed a distinct shift towards positive values (figure 2.1a). A Monte Carlo simulation of 

the expected distribution based on random permutations of GFS values across species 

revealed that the observed bias is highly significant (Embedded Image). In total, we found 

8789 families with r > 0, representing a shift of 2602 gene families from the negative to the 

positive tail of the distribution relative to the expected equal number of positively and 

negatively correlated families (χ2 = 2189.608, p ≈ 0; figure 2.1a, inset). This result 

demonstrates a highly pronounced over-representation of gene families displaying a 

positive association between GFS and Ei. This observation is not explained by an overall 

expansion in gene number across species in line with Ei (r = 0.251, p = 0.127), but rather 

by an over-representation of small gene families among those highly associated with 

encephalization, combined with few larger gene families displaying decreases in size. 
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Figure 2.1.Enrichment of gene family size variations in line with increased 

encephalization in mammals. 

 (a) Histogram showing the distribution of correlation coefficients for GFS and Ei in 12 373 

gene families encompassing 39 mammalian genomes. A randomization-based estimation 

of the expected distribution is represented by the dashed line. Inset: distribution of positive 

and negative correlations relative to the expected distribution (dashed line). (b) Deviations 

from random expectations in the mean correlation coefficient of gene families associated 

with individual GO terms (expressed as −log(p-value)). Only GO categories with a 

significant bias are shown. (c) Over-representation of GO terms among gene families most 

significantly associated with encephalization (p < 0.05, n = 1292). (d) GO enrichment 
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analysis among the families displaying the most significant correlation with 

encephalization after removing all families with a stronger association with MLSP than 

with Ei (n = 927). (e) GO-terms enrichment analysis among gene families with the most 

significant positive partial correlation coefficients for Ei after controlling for the 

contribution of MLSP in a multiple regression analysis (n = 713). (f) GO-terms enrichment 

analysis among gene families with the most significant positive partial correlation 

coefficients for Ei with no significant phylogenetic interdependence (n = 501). Bonferroni-

corrected significance thresholds are indicated with a dashed line. Dark bars indicate 

common GO terms across all five analyses. 
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We next asked whether the observed enrichment of Ei-related GFS variations was 

unspecific in terms of the gene populations involved or, alternatively, if this enrichment 

occurred in gene families specifically associated with certain biological functions. To this 

end, we used functional GO annotations for ‘biological processes’ and carried out two 

complementary tests to assess deviations (from random expectations) in the distribution of 

GO terms associated with gene families displaying a high correlation between GFS and Ei. 

First, we examined whether there were any significant deviations in the mean correlation 

coefficient of gene families associated with individual GO terms (see Methods). Out of all 

260 functional categories included, only gene families associated with cell–cell signalling, 

immune response, chemotaxis, neuropeptide signalling pathways and regulation of immune 

response displayed a significantly higher than expected average correlation values, between 

GFS and Ei, after Bonferroni correction (figure 2.1b). By contrast, no significant bias was 

observed in functional categories containing families with negative average correlations 

(not shown). 

Second, we measured over-representation of GO terms among the gene families whose GFS 

variations were most significantly associated with Ei (r > 0, p < 0.05, n = 1292). Among 

these families, we found that GO terms for immune response, chemotaxis, regulation of 

immune response, female pregnancy, cell–cell signalling, signal transduction, energy 

reserve metabolic processes, positive regulation of peptidyl-tyrosine phosphorylation and 

neuropeptide signalling pathways were significantly over-represented after Bonferroni 

correction (figure 2.1c). No GO terms were found to be significantly over-represented 

among gene families with the highest negative covariance between GFS and Ei (not shown). 

Taken together, these results show that the observed collective variation in GFS in line with 

encephalization is not randomly distributed across functional categories but is significantly 

pronounced in families associated with specific biological functions. 

 

2.4.2 Association between gene family size and encephalization is not explained by 

lifespan variations 

 

A number of studies on brain evolution have uncovered a robust relationship between 

relative brain size and lifespan (Allen et al. 2005; Barrickman et al. 2008; Gonzalez-Lagos 
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et al. 2010). In agreement with this, we found a strong association between MLSP and Ei 

among the species included in this study (r = 0.7912, p < 10−8). Thus, the observed 

associations between Ei and GFS could be secondary to an underlying association between 

MLSP and GFS. Of the 1292 most significantly correlated families (r > 0, p < 0.05), 927 

displayed a stronger association with Ei than with MLSP (r(Ei, GFS) > r(MLSP, GFS)), 

thereby suggesting a preferential contribution of Ei to the observed bias in the correlation 

distribution (χ2 = 858.74, p = 3.3572e−187, relative to a random equal distribution of 

stronger associations). GO enrichment analysis was then repeated including only these 927 

families revealing a significant over-representation of gene families associated with 

immune response, chemotaxis, regulation of immune response, energy reserve metabolic 

processes, female pregnancy, cell–cell signalling, positive regulation of peptidyl-tyrosine 

phosphorylation and activation of cysteine-type endopeptidase activity involved in 

apoptotic processes (figure 2.1d). It is worth noting that the complementary GO enrichment 

analysis carried out on gene families with both the most significant association between 

MLSP and GFS (r > 0, p < 0.05) and a stronger association with MLSP than Ei (r(MLSP, 

GFS) > r(Ei, GFS), n = 1321), resulted in no significant enrichment of any GO category. 

These results shows that enrichment of specific GO terms occurred only among gene 

families preferentially associated with degree of encephalization, whereas GFS variations 

potentially associated with increased MLSP showed no significant association with any 

particular functional category. 

Because MLSP may still partly explain the covariance between GFS and Ei even if the 

correlation coefficient of GFS with Ei is higher than with MLSP, we used multiple 

regression analysis to obtain partial correlation coefficients between GFS and Ei after 

controlling for the contribution of MLSP (see Methods). GO terms enrichment analysis was 

then carried out only among those gene families with the most significant positive partial 

correlation coefficients (partial r > 0, p < 0.05, n = 713). This analysis revealed a significant 

enrichment of families functionally associated with regulation of immune response, 

chemotaxis, cell–cell signalling and neuropeptide signalling pathways (figure 2.1e). These 

results show that variations in GFS specifically associated with encephalization (i.e. not 

accounted for by variations in MLSP) are also specifically associated with distinct 

biological functions. 
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2.4.3 Phylogenetic relatedness does not explain the observed bias in the distribution of 

gene families associated with encephalization 

 

For a given gene family, any association between Ei and GFS could be the secondary to 

existing phylogenetic relationships among the species analysed, as in the absence of any 

selective forces, closely related species will tend to have both similar degrees of Ei and 

similar GFS (Freckleton et al. 2002; Pagel 1999). In order to determine the degree to which 

phylogenetic effects contribute to the observed shift in the correlation distribution, we used 

a PGLS approach (see Methods) (Freckleton et al. 2002; Pagel 1999). Out of 713 gene 

families with the most significant positive partial correlation coefficients between Ei and 

GFS (after correcting for MLSP, see previous analysis), we found a total of 501 gene 

families for which phylogenetic relationships among species could not account for the 

covariance between GFS and Ei. Among these families, we observed a significant over-

representation of gene families associated with regulation of immune response, cell–cell 

signalling, energy reserve metabolic processes, female pregnancy and activation of 

endopeptidase activity involved in apoptosis (figure 2.1f). These findings demonstrate that 

the over-representation of specific biological functions among those gene families most 

strongly associated with higher Ei is neither explained by the known association between 

MLSP and Ei nor by existing phylogenetic relationships among the species analysed. 

 

2.4.4 Gene families with size increases in line with encephalization show expression 

signatures consistent with brain functions 

 

To assess whether gene family variations in line with encephalization were directly 

associated with brain function, we characterized the potential relationship between Ei-

associated GFS variations and patterns of gene expression in the human nervous system. 

For this analysis, we selected the top 501 Ei-associated gene families with both the most 

significant partial correlation coefficient between Ei and GFS and no significant 

phylogenetic effects (figure 2.1f). Using available expression data from the Illumina human 

body map (see Methods), we looked at the possible over-representation of genes highly 
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expressed in the human brain within the selected 501 gene families. Individual genes were 

categorized as prominently expressed in the brain if their expression level in this tissue was 

the highest or second highest among all 16 tissues included (top 12.5th percentile). 

Statistical significance was assessed by comparing with equally sized random samples 

drawn from the wider pool of gene families (see Methods). This analysis revealed a 

significant enrichment, within these gene families, of genes prominently expressed in the 

brain (figure 2.2a). By contrast, no significant enrichment of genes prominently expressed 

in the brain was detected among those gene families with the strongest association with 

MLSP and no significant phylogenetic effects (figure 2.2a). 
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Figure 2.2. Relationship between Ei-associated GFS variations and patterns of gene 

expression in the human nervous system.  

(a) Over-representation of genes prominently expressed in the human brain (top 12.5th 

percentile) among the top 501 Ei -associated or the top MLSP-associated gene families 

compared to random expectations. (b) Over-representation of genes displaying the highest 

expression variance during human cortical development relative to adulthood among the 

top Ei-associated or the top MLSP-associated gene families. (c) Percentage of genes 

maximally expressed in the cortical (CX), subcortical (SC) and cerebellar (CB) regions 

respectively. Expected values (mean ± s.e.m.) were numerically determined using sized-

matched random samples of genes drawn from the wider pool of gene families. *p < 0.01; 

**p < 0.001; ***p < 0.0001. 
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Genes involved in cortical development have been shown to display higher variance in 

expression level during the developmental period of the cerebral cortex compared with 

adulthood (Sterner et al. 2012). We therefore looked at the possible representation of genes 

displaying the highest expression variance during human cortical development relative to 

adulthood, as defined by Sterner et al. (Sterner et al. 2012), within the same 501 gene 

families and found a significant enrichment of genes displaying this pattern of expression 

(figure 2.2b). By contrast, no significant enrichment of these same genes was observed 

among the top MLSP-associated gene families (figure 2.2b). 

We next asked whether there was any statistical bias in the relative expression of Ei-

associated gene families across different brain regions. Using human brain RNA-seq data 

from the BrainSpan dataset (see Methods), we obtained the average expression for each 

gene in the cortex, subcortical regions or cerebellum and split them into three categories 

according to the region where the highest average expression was found. This analysis 

revealed a statistically significant enrichment, among those genes contained within the top 

501 Ei-correlated gene families, of genes maximally expressed in the cortex (figure 2.2c). 

No significant enrichment of genes maximally expressed in subcortical regions was 

observed among these families. By contrast, genes maximally expressed in the cerebellum 

were found to be significantly under-represented among the top Ei-correlated gene families. 

Taken together, these results reveal that gene families displaying the highest association 

between Ei and GFS are enriched in genes that are prominently expressed in the brain, with 

maximal expression in the cortex and display an expression signature distinctly associated 

with cortical development. 

In order to characterize further the cortical expression profile of Ei-associated gene 

families, we used a weighted gene co-expression network analysis approach to identify 

modules of co-expression among genes contained within the top 501 Ei-correlated gene 

families. Using human developmental expression data derived from the BrainSpan dataset, 

we identified 18 modules (figure 2.3a) associated with distinct temporal patterns of 

expression. Figure 3b shows the time course of expression of six of these modules 

summarized by the eigengene associated with each module's co-expression matrix. Some 

of these modules showed the highest expression levels during the early or late foetal period 

followed by a progressive decline in expression levels with age. This trend may reverse in 
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some instances in late-adult stages (black module, figure 3b) or show a progressive increase 

throughout development as illustrated by the yellow module. 
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Figure 2.3. Temporal patterns of cortical expression of Ei-associated gene families. 

 (a) Weighted gene co-expression network analysis was used to detect co-expression 

modules among genes contained within the top 501 Ei-associated gene families using 

human brain temporal expression data, revealing 18 co-expression modules (coloured). (b) 

Developmental time course of expression of six representative modules summarized by the 

level of expression of the eigengene associated with each module's co-expression matrix. 

Birth point is indicated with a dashed line. 
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2.5 Discussion 

 

Our results reveal a highly significant over-representation of gene families displaying a 

positive association between GFS and level of encephalization. This bias occurs most 

prominently in families associated with specific biological functions. The most robust and 

consistent bias was observed in gene families associated with cell signalling, immune 

regulation and chemotaxis. 

While chemotaxis and cell signalling functions are known to play central roles in the 

nervous system, the significance of the observed enrichment of immune system-associated 

functions among gene families displaying the highest association between GFS and Ei is 

less clear. In recent years, however, signalling and regulatory mechanisms originally 

described in the immune system have increasingly been found implicated in key neural-

specific roles both in the developing and adult nervous system (Crampton et al. 2012; 

Gavalda et al. 2009; Gutierrez et al. 2005; Gutierrez et al. 2008; McKelvey et al. 2012; 

Nolan et al. 2011; O'Keeffe et al. 2008). In addition, in the human cerebral cortex, immune 

system-related functions have been found to be significantly over-represented among genes 

displaying higher expression variability in the developing cerebral cortex than in the adult 

(Sterner et al. 2012), suggesting a substantial involvement of immune-related signals during 

cortical development. 

Our results, showing a significant over-representation of immune-related functions among 

Ei-associated gene families, support the notion of an underlying and substantial overlap in 

the regulatory and signalling machinery shared by both the immune and nervous system 

and in particular during development of the latter. 

One possible interpretation is that the observed enrichment of immune-related functions 

among Ei-associated gene families reflects an underlying expansion of immune 

surveillance in mammals that could be in some way permissive to increased 

encephalization. While we cannot rule out this possibility, at present, there is little evidence 

in support of any systematically pronounced and sustained expansion of immune 

functionalities in mammalian lineages (Boehm 2012). An alternative interpretation is that 

signalling and regulatory molecular components that were originally involved in immune-
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specific functions became gradually recruited by the nervous system in response to the 

developmental and functional demands of increasingly more complex brains. 

The observed association between degree of encephalization and variations of GFS in a 

large number of gene families is further supported by our finding that Ei-associated gene 

families display a transcriptional signature consistent with brain-specific functions. Indeed, 

among the gene families most highly correlated with encephalization with no significant 

phylogenetic effects, we found a statistically significant enrichment of genes prominently 

expressed in the brain, strongly indicating that these genes are under comparably higher 

demand in the nervous system relative to other tissues. When restricting the analysis to the 

relative expression levels within central nervous system regions, we found that these 

families are enriched in genes prominently expressed in the cortex, suggesting that Ei-

correlated changes in GFS may have played a substantial role supporting key aspects of 

cortical evolution. In this regard, it is worth noting that brain evolution in mammalian 

lineages is characterized by a disproportional expansion of the brain cortex (Kaas 2013; 

Nomura et al. 2013). Analysis of the developmental pattern of expression of these families 

in the human cortex showed that these genes are organized in co-expression clusters or 

modules with distinct temporal profiles suggesting a substantial involvement of these 

families in the developmental organization of the brain. 

Genes with the highest degree of connectivity within a module are termed hub genes and 

are expected to be functionally important within the module. By way of illustration, we 

examined the turquoise module (figure 2.3b) and identified a member of a zinc finger gene 

family (gene family ID: ENSFM00620000999432) as its main hub gene. Interestingly, all 

but two of the 20 members of this gene family in humans are contained within the same co-

expression module. Because genes contained within a co-expression module are thought to 

be functionally related (Lee et al. 2004; B. Zhang and Horvath 2005), the fact that most 

members of this zinc finger family are found within the same co-expression module 

strongly suggests that these genes are functionally related during brain development. We 

reconstructed the phylogenetic tree of this family and found that the observed pattern is the 

result of a combination of events of gene loss and gene gain from an original set of four 

ancestral proteins at the base of the mammalian evolution, overall resulting in a steady 

increase in the number of gene family members in line with increased level of 

encephalization (r = 0.7547, p = 2.86 × 10−8). 
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2.6 Conclusion 

 

In this study, we have found a significant over-representation of GFS variations in line with 

increased encephalization in mammals. Importantly, this relationship is not accounted for 

by known correlates of brain size and is not explained by phylogenetic relatedness. The 

observed bias occurs most prominently in families preferentially expressed in the brain, in 

particular the cortex, and significantly associated with distinct biological functions. 

Based on our results, we propose that variations in GFS associated with encephalization 

provided an evolutionary support for the specific cellular, physiological and developmental 

demands associated with increased brain size in mammals. 
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Supplementary Table S2.1 

 
  Brain Body  

Species MLSP1 Mass2-13 Mass2-13 Ei14 
Ailuropoda melanoleuca 36.8 235.1 117920 -2.01376 
Bos Taurus 20 456 520000 -2.30092 
Callithrix jacchus 16.5 7.24 280 -1.62664 
Canis familiaris 24 100.9 19240 -1.69931 
Cavia porcellus 12 4.28 971 -2.94818 
Choloepus hoffmani 37 28.5 4000 -1.95829 
Dasypus novemcinctus 22.3 12 3700 -2.77339 
Dipodomys ordii 9.9 1.97 54 -1.87492 
Echinops telfairi 19 0.52 60 -3.27431 
Equus caballus 57 650.03 441175 -1.84119 
Erinaceus europaeus 11.7 3.77 697 -2.86287 
Felis catus 30 28.4 2500 -1.661 
Gorilla gorilla 55.4 438.18 122500 -1.41552 
Homo sapiens 122.5 1300 65000 0.151656 
Loxodonta africana 65 4480 2750000 -1.08197 
Macaca mulatta 40 97.45 8250 -1.19216 
Macropus eugenii 15.1 23.7 4425 -2.20734 
Microcebus murinus 18.2 1.68 50 -1.9849 
Monodelphis domestica 5.1 0.95 100 -2.9986 
Mus musculus 4 0.45 24 -2.83246 
Myotis lucifugus 34 0.175 8 -3.07381 
Nomascus leucogenys 44.1 7000 119.4 -0.88387 
Ochotona princeps 7 2.39 169 -2.41184 
Ornithorhynchus anatinus 22.6 9.22 1030.3 -2.21869 
Oryctolagus cuniculus 9 9.14 1411.8 -2.42902 
Otolemur garnettii 18.3 10.45 946.7 -2.03931 
Pan troglodytes 59.4 371.05 45500 -0.94796 
Pongo pygmaeus 59 343 36900 -0.89249 
Procavia capensis 14.8 20.5 3800 -2.25494 
Pteropus vampyrus 20.9 9.53 1060 -2.20381 
Rattus norvegicus 5 2.38 339 -2.86154 
Sarcophilus harrisii 13 16.24 6126.8 -2.79237 
Sorex araneus 3.2 0.23 8.4 -2.83174 
Spermophilus tridecemlineatus 7.9 3.2 175 -2.14231 
Sus scrofa 27 180.2 158320 -2.46825 
Tarsius syrichta 16 3.5 117 -1.79503 
Tupaia belangeri 11.1 3.1 150 -2.0754 
Tursiops truncatus 51.6 1679.6 180910 -0.32137 
Vicugna pacos 25.8 188 50000 -1.68822 
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1) AnAge database (http://genomics.senescence.info/species/). 2) Domaradzka-Pytel et al., 2007. 

3) Dunbar and Shultz, 2007b. 4)Garwicz et al., 2009. 5) Gilmore et al., 2000. 6) Gittleman, 

1986. 7) Herculano-Houzel et al., 2007. 8) Leonard et al., 2007. 9) McNab and Eisenberg, 

1989. 10) Sacher and Staffeldt, 1974. 11) Stephan et al., 1981. 12) Wang et al., 2008. 13) 
Weisbecker and Goswami, 2010. 14) Gonzalez-Lagos et al., 2010 
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3.1 Abstract 

 

Enlarged brain size in humans and other mammals is a key trait and is related to behavioural 

complexity. Most of the observed variations in brain size are the result of neocorticalization: 

the expansion, relative to the rest of the brain, of the neocortex, a key mammalian specific 

brain structure which has been associated with higher cognitive processes. What at the 

genomic level underlies the morphological evolution of the neocortex remains poorly 

understood. By comparing the genomes of 28 mammalian species, we show that neocortical 

expansion is associated with variations in gene family size which are significantly enriched 

in cell-cell signalling and immune response functional annotations. Moreover, we find that 

previously reported gene family size variations associated with increased brain size are 

largely accounted for by the link between neocortex ratio and gene family size variations. 

These results suggest that variations in gene family size underlie morphological adaptations 

during brain evolution in mammalian lineages. 
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3.2 Introduction  

 

Increased brain size represent a key innovation of mammals and is thought to have played 

an important role in the expansion of these clade. Brain size is a key zoological trait and 

has been related to increased behavioural complexity and the ability to cope with changing 

environment (Deaner et al. 2007; S. M. Reader and Laland 2002) . Larger brains however, 

are associated with high metabolic cost (Aiello and Wheeler 1995; Fish and Lockwood 

2003; Isler and van Schaik 2006a; Navarrete et al. 2011) and are often associated with 

longer times to reach maturity and higher parental investment (Barrickman et al. 2008; 

Barton and Capellini 2011; Deaner et al. 2003; Finarelli 2010; Isler and van Schaik 2009).  

Brain size is a highly variable trait both among mammalian and non-mammalian species 

with marked differences observed even between relatively close species (e.g. (Aristide et 

al. ; Harvey et al. 1980; Huber et al. 1997; Kotrschal et al. 1998; Sol and Price)). Brain size 

closely scales with variations in body mass across species (R. D. Martin 1990). Calculating 

an encephalization index -correcting brain size by body mass in order to express the 

increase in brain size beyond that expected due to the brain-body allometric relationship- 

ranks humans, apes and some cetaceans at the top of the list as the most enchephalised 

mammalian species, aligning more closely with behavioural capacity (Jerison 1985; R. D. 

Martin 1983).  

Encephalization is not associated with proportional expansion of all brain structures. In 

mammals, most variations in encephalization indexes are largely explained by changes in 

the size of the neocortex (Jerison 1973, 1990) .  

The neocortex is a brain structure unique to the mammalian brain that envelops the 

cerebrum and plays a key role in higher cognitive functions. Also known as the isocortex, 

the neocortex is the newest part of the cerebral cortex, and shares a common origin with the 

dorsal cortex in reptiles (Kaas 2011; Medina and Reiner 2000; Molnár et al. 2007; Northcutt 

and Kaas 1995), perhaps originating between 220 and 280 mya, after the split between 

synapsids and sauropsids, and before this latter group gave rise to the mammalian lineage 

(Kaas 2011; Northcutt and Kaas 1995; M. A. O'Leary et al. 2013). It is composed of six 

layers of cells, mainly excitatory pyramidal neurons, inhibitory interneurons and glial cells, 
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which differ in density and size of neural cell bodies and axons, and in humans contains on 

average around 24 billion neurons and 33 billion glial cells (Pelvig et al. 2008).  The 

neocortex encompasses most primary motor and sensory areas, as well as association areas 

which together process and regulate sensory perception and motor commands. 

The increase in the size of the neocortex relative to the rest of the brain, called 

neocorticalization, a process that appears to have taken strength noticeably around 60 

million years ago, when the major radiations of marsupial and placental mammals began 

(Northcutt and Kaas 1995), has long been a leading consideration when evaluating the 

evolution of mammalian brain form (Anthony 1938; Sawaguchi and Kudo 1990; Wirz 

1950). These changes have been associated with more complex cortical processing thus 

allowing the emergence of new behaviours (Kaas 1989). Neocortex to brain size ratio is 

correlated with social group size (Dunbar 1992), and it has been speculated that the number 

of neocortical neurons is a limiting factor in determining the number of social relationships 

which an animal can monitor(Dunbar 1992) .  

Neocortex size has been associated with the diversification of highly specialised association 

areas (Changizi 2001). In the hominid lineage, the expansion of the neocortex is thought to 

have played a key role for the evolution of modern humans (DeFelipe 2011): The neocortex 

constitutes 90% of the cerebral cortex in humans (Noback et al. 2005) and has been the 

focus for studies investigating the neurocorrelates of human-specific behaviour (Aiello and 

Dunbar 1993; Barker 1995; Barton 1996; Dunbar 1993; Passingham and Wise 2012). 

Classically, the neocortex has been regarded at least partially, as the seat for the 

neurobiological mechanisms of so called higher cognitive abilities, such as self-awareness, 

consciousness, abstract reasoning and planning, in mammals (Crick and Koch 1990; Eccles 

1994; P. Gilbert et al. 1995; Grober et al. 1992; Steven M. Platek et al. 2004; S. M. Platek 

et al. 2008; Sugiura et al. 2005). Particular areas in the human neocortex have been found 

to drive the understanding and production of language (Aiello and Dunbar 1993; Letinic et 

al. 2002). Other highly specialised areas, such as those for identifying faces (Allison et al. 

1994; Nestor et al. 2011), or places (V. M. Miller and Best 1980; Poucet et al. 2003), have 

also been identified in the neocortex. Furthermore, mirror-neurons which have been 

implicated in social learning (they respond both to doing an action or seeing it be done by 

other individuals, and seem to play a part in action understanding, speech perception, 

emotion recognition and imitation) (Adolphs et al. 1994; Enticott et al. 2008; Iacoboni 
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2005; Schulte-Ruther et al. 2007; Spaulding 2013; van der Gaag et al. 2007; Wicker et al. 

2003), have been identified in the neocortex (Gallese et al. 2002; Molenberghs et al. 2009; 

Rizzolatti et al. 1996).  

Despite the importance of the neocortex in mammalian evolution, molecular mechanisms 

controlling the development of brain structures and the genomic features underlying their 

evolution remain poorly understood (de Sousa and Proulx 2014; Hawrylycz et al. 2012). So 

far, there have been few efforts to identify features reflecting the genomic impact of brain 

evolution. While a previous attempt to detect a genomic signature of the evolution of brain 

reported a widespread accelerated sequence evolution of genes functioning in the nervous 

system during human origins (Dorus et al. 2004), this claim was heavily contested soon 

after (Kosiol et al. 2008; Shi et al. 2006). By conducting a genome-wide analysis of amino 

acid composition across 37 fully sequenced mammalian genomes, Gutierrez et al. showed 

that encephalization is significantly correlated with overall protein amino acid composition, 

possibly reflecting the selective demands imposed by a larger brain (Gutierrez et al. 2011). 

Changes in gene family size can reflect changes in the relative relevance of specific 

functions in an organism. Duplication events have been proposed to be a vital driving force 

for many evolutionary changes by providing source of material for the origin of novel gene 

functions and expression patterns, whilst gene loss is suggested to act as response to 

selection (Krylov et al. 2003; Lynch and Conery 2000). Marked differences in gene family 

size have been identified in drosophila and vertebrates with families experiencing the 

largest changes being enriched in specific functions (Demuth et al. 2006; Hahn et al. 2005; 

Hahn et al. 2007). Among mammals, marked variations in the number of olphactory 

receptors likely reflecting variations in the reliance of different lineages in their sense of 

smell to find food and or avoid predators (Hoover 2013; Kajiya et al. 2001; Malnic et al. 

1999; Niimura et al. 2014). A recent study found that encephalisation in mammalian 

lineages is associated with significant variations in gene family size (Castillo-Morales et al. 

2014) with the most positively associated gene families were significantly enriched in 

several functional categories including immune system response, chemotaxis and cell-cell 

signalling. Here we investigate if the variations in neocortex to brain ratio in mammalian 

lineages are associated with changes in gene family size. By tracing back events of gene 

gain and loss per gene family we are able to distinguish gene family expansion and gene 

family contraction in association with neocortification. We further explore the extent to 
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which any changes in gene family size associated with neocortex explain previously 

reported variations in gene family size and encephalisation. . 

 

3.3 Methods 

 

3.3.1 Gene Family annotations 

 

Annotated gene families encompassing 28 fully sequenced mammalian genomes were 

obtained from Ensembl release 76 (Cunningham et al. 2015; http://www.ensembl.org).  In 

the context of this annotation, Ensembl families are defined by clustering all Ensembl 

proteins along with metazoan sequences from UniProtKB. Any given gene family 

constitutes a group of related genes that includes both paralogs within the same species and 

orthologues and paralogs from other species. Any given gene can only be assigned to a 

single gene family. Gene family size (GFS) represents the total number of genes per gene 

family. In order to maximize the number of families covered in this study we included all 

gene families with members present in no less than six of the 28 mammalian species 

(n=11943). We excluded any family with no variance in GFS across this species. 

 

3.3.2 Encephalization index, Neocortex ratio and Maximum Lifespan 

 

Because larger species have larger brains, it is necessary to estimate brain mass controlling 

for the allometric effect of body size. Size-corrected values of brain mass (Ei) were 

computed as log [brain mass/body massb]. The slope (b) was estimated as 0.64 by Gonzalez-

Lagos et al. (Gonzalez-Lagos et al. 2010) based on a log–log least squares linear regression 

of brain mass against body mass over 493 mammalian. Neocortex volumes, taken from the 

literature, included the grey and white matter of the cerebral cortex; the grey matter of the 

paleocortex (entorhinal cortex, schizocortex, hippocampus and amygdala) was segmented 

out.  Neocortex ratio (Nr) was defined as (neocortex volume in cm3)/(brain volume in cm3 
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- neocortex volume in cm3) after Dunbar (Dunbar 1992) . Maximum lifespan (MLSP) for 

each species was obtained from the animal ageing and longevity database (Tacutu et al. 

2013). Raw values of brain and body mass, as well as neocortex and non-cortical brain 

volume and maximum life span (MLSP) for the analysed species with their corresponding 

references are presented in Supplementary Table 3.1. 

 

3.3.3 Correlation coefficients of gene family size and phenotypes 

 

Simple Pearson correlations between GFS and Ei, Nr or MLSP were carried out using R -

based statistical functions. Ten thousand (10 000) Monte-Carlo randomizations of the 

phenotypes to determine statistical significance of the distribution of Pearson correlation 

coefficients were conducted for each phenotypic variable.  

In order to control the potential contribution of each of the other confounding variables on 

the relationship with each phenotype and GFS, partial correlation coefficients were 

computed for each gene family including the other two as co-variates. The resulting partial 

coefficient represents the contribution of each phenotype to the variance in gene family size 

which is not explained by variations in the other two phenotypes.  

 

3.3.4 Gene Ontology terms enrichment 

 

Biological Process Gene Ontology annotations for each species were obtained from 

Ensembl’s Biomart release 76 (Cunningham et al. 2015). In the present study, a particular 

GO term was associated to a family whenever that term was linked to any of its members 

in any species. To minimise the effect of very small functional categories, only terms linked 

with more than 200 families were examined (n=116). Gene families annotated to any GO 

term with less than 200 families were assigned to a “Small biological process GO terms” 

category. Gene families not annotated to any GO term in any species were grouped into a 

“Not annotated” category. Enrichment analysis of these GO terms was carried out as 

described in (Castillo-Morales et al. 2014). In brief, over-representation of genes associated 
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to specific GO terms was assessed by counting the number of gene families assigned to 

each GO term within the analysed set of gene families.  Statistical significance was 

numerically assessed by obtaining the expected number of families per GO in 1000 equally 

sized random samples derived from the overall population of gene families. Because genes 

vary in the number of GO terms associated to them, we adjusted for differences in the 

density of GO annotations between the test and background samples, by dividing the family 

counts per GO from each sample, by the samples’ average number of GO annotations per 

family.  

 

3.3.5 Phylogenetically controlled regression 

 

Further to unpicking the contribution of each phenotype to GFS, in order to account for the 

phylogenetic non-independence of taxa on the relationships of morphological traits with 

size, we used phylogenetic independent contrasts (PIC) analysis (Felsenstein 1985). First, 

for each phenotype we obtained a residual by regressing it against the other two in a 

multivariate lineal model. The same regression was performed on GFS of each family for 

each variable, again, using the other two as predictors.  

PIC for both the partial correlation coefficients for both the  phenotype and GFS of each 

family were computed using the ape package in R. Pearson correlation coefficients were 

then assessed between each of these partial correlation coefficients for phenotypes and 

phenotypes and GFS for each family. This correlation coefficient reflects the degree of 

association between each phenotype and GFS when both confounding variables and 

phylogenetic non-independence are controlled.  

Ultrametric phylogeny of the 28 analysed mammalian species obtained from TimeTree 

website (http://www.timetree.org/ ; S. Kumar and Hedges 2011) 

 

3.3.6 Gene expression prior and after peak in neocortex thickness. 
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RNA-seq RPKM normalized expression data summarized to genes was obtained from 

NIMH Transcriptional Atlas of Human Brain Development (http://brainspan.org ; J. A. 

Miller et al. 2014). A selection of 143 samples corresponding to 11 cortical regions and 13 

different ages were chosen. The cortical regions include primary auditory cortex (core) 

(A1C), Dorsolateral prefrontal cortex (DFC), Posteroinferior (ventral) parietal cortex (IPC), 

inferolateral temporal cortex (area TEv, area 20) (ITC), primary motor cortex (area M1, 

area 4) (M1C), Anterior (rostral) cingulate (medial prefrontal) cortex (MFC), Orbital frontal 

cortex (OFC), Primary somatosensory cortex (area S1, areas 3,1,2) (S1C), Posterior 

(caudal) superior temporal cortex (area TAc) (STC), Primary visual cortex (striate cortex, 

area V1/17) (V1C) and Ventrolateral prefrontal cortex (VFC). The sample covered 

developmental stages 16, 24, 37 post conception weeks, 4 months after birth and 1, 3, 8, 

13, 19, 21, 30, 36 and 37 years old. Gene expression data was further normalized against 

the total expression per sample, and divided in two groups, corresponding to the periods 

prior and after the peak in cortical thickness occurs (around 13 years) (Shaw et al. 2008). 

For each gene, we average the expression across stages and structures of the same group 

and compare the differences between matched samples via a Wilcoxon test. P values were 

adjusted for multiple testing using a Bonferroni correction 

 

3.4 Results 

 

In order to assess the association between gene family size and neocortex expansion, we 

compiled data on neocortex to brain volume ratio (Nr) from the literature for 28 mammalian 

species with fully sequenced genomes (Table 1). Gene family size (GFS) was assessed for 

a total of 11943 non-overlapping families. Correlation coefficients between GFS and Nr 

were then calculated for each gene family. We found an excess of positive associations 

between GFS and Nr (Figure 3.1) (χ2 = 2973.263083, p < 1x10-20). A Monte Carlo 

simulation showed that the shift towards positive values is significant (ZNr = 2.225819868, 

p = 0.013). This result shows a high over-representation of gene families displaying a 

positive association between GFS and Nr. This observation could result from combined 
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duplications of gene families in lineages undergoing neocorticalization, as well as gene 

losses in species with a low neocortex ratio. 

 

 

Figure 3.1. Enrichment of gene family size variations in line with increased 

encephalization index and neocortex ratio in mammals. (a) Histogram showing the 

distribution of correlation coefficients for GFS and Ei in 11943 gene families encompassing 

28 mammalian genomes. (b) Histogram showing the distribution of correlation coefficients 

for GFS and Ei in 11943 gene families encompassing 28 mammalian genomes. In each 

figure, an estimation of the expected distribution derived from 10000 Monte Carlo 

simulations is represented by the blue line. Inset: distribution of positive and negative 

correlations relative to the expected distribution (dashed line).  

 

In order to assess whether this shift in the distribution involved unspecific gene populations 

or instead involves genes associated with specific functional categories we examined 

functional annotations for the 1607 gene families whose sizes are most strongly associated 

with Nr (r > 0 and p < 0.05). For this, we obtained Gene Ontology (GO) functional 

annotations (Cunningham et al. 2015) and assessed the over-representation of individual 

GO terms among gene families with the strongest associations to Nr. A total of 17 GO 

functional categories were found to be significantly enriched (after correction for multiple 

tests (Benjamini-Hochberg correction) ) among the gene families, with the strongest size 
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associations with Nr being immune response, chemotaxis and cell-cell signalling among 

the top most overrepresented functional categories (Figure 3.2). Notably, genes with no 

functional annotations showed the highest over-representation.  

As the Nr is known to be highly correlated to overall brain size, it is possible that the 

variations in gene family size with this variable are explained by the previously reported 

association between GFS and encephalization quotient (Ei), an index of brain size corrected 

by body mass (Castillo-Morales et al. 2014).  We calculated correlation coefficients 

between GFS and Ei for each gene family in the same set of 28 species (Figure 3.1).We 

found a similar shift in the distribution favouring positive associations using the set of 28 

species for which Nr could be calculated as that previously reported using a larger set of 39 

species (Castillo-Morales et al. 2014). When contrasting Nr to Ei, we observed that the shift 

in the distribution of values is stronger for Nr (Significance of the deviation showed in line 

with encephalization is lower, ZEi = 1.70943, p = 0.044). When examining the functional 

associations for the set of gene families most significantly associated with encephalization 

quotient, 15 GO functional categories were found to be significantly enriched (Figure 3.2). 

As could be expected from the strong relatedness between Nr and Ei, we observed a high 

overlap in the sets of gene families most significantly associated with Nr and Ei with 75% 

of the gene families most significantly associated with Nr also being found among those 

most significantly associated with Ei. Of the 17 GO categories significantly enriched among 

families most associated with Nr, 14 were also found to be overrepresented among the gene 

families most significantly associated with Ei. 
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Figure 3.2. Gene Ontology enrichment analysis of families with GFS variations in line 

with Encephalization index and Neocortex ratio. Heatmap of the significance of the 

overrepresentation of GO terms (expressed as Benjamini-Hochberg-corrected p-value) 

among gene families most significantly associated with encephalization index and 

neocortex ratio. First two columns correspond to gene families with the most significant 

association between GFS and Ei or Nr respectively (r Ei GFS > 0, p < 0.05, n = 1323 and r Nr 

GFS > 0, p < 0.05, n = 1607). Third and fourth columns represent GO terms enriched among 
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gene families whose GFS variations display the most significant association with one of the 

brain phenotypes after accounting for the shared variance with the other neural phenotype 

using partial correlation and MLSP (rEi GFS.Nr MLSP >0, p < 0.05, n = 132 and r Nr GFS.Ei MLSP 

>0, p < 0.05, n = 502). Fifth and sixth columns show enrichments after accounting for 

confounding variables, as well as the phylogenetic relationship of the analysed species 

using independent contrast analysis (r PIC(Ei Nr MLSP) PIC(GFS.Nr MLSP)  >0, p < 0.05, n = 251 and 

r PIC(Nr Ei MLSP) PIC(GFS.Ei MLSP)  >0, p < 0.05, n = 1144 respectively).  Only GO terms 

significantly enriched after B-H multiple testing correction are shown in the figures.  

 

In order to discern the associations of Nr and Ei with GFS, we carried out a partial 

correlation analysis to correct for the association between Nr and Ei as well as the known 

dependence of both variables with maximum lifespan (MLSP) (Dunbar and Shultz 2007b; 

Gonzalez-Lagos et al. 2010). The number of gene families with strong associations was 

reduced for both Nr and Ei (r > 0 and p < 0.05; n= 132 and 502, respectively). However, 

the strongest reduction in the set of gene families was observed for Ei suggesting that a 

significant proportion of the association between Ei and GFS is explained by the association 

between Nr and GFS but not the other way around. Moreover, while most (n = 13) enriched 

functional GO terms for Nr remain enriched when correcting for the variance explained by 

Ei; this is not the case for the functional categories enriched when examining Ei. In fact, 

after accounting for the variance explained by Nr, only six GO terms are found to be 

significantly enriched among the gene families with the strongest associations with Ei. 

Moreover, the strength of the enrichment is lower and involves a different set of GO terms 

to those found enriched before correcting for Nr (Figure 3.2). This is consistent with Nr 

having a stronger association with GFS compared to Ei with most observed covariance with 

GFS being explained as a by-product of the by the correlation between Nr and both Ei and 

GFS.  

 

Both morphological traits as well as gene family size have a phylogenetic component with 

most closely related species being more likely to have a higher similarity in their 

morphological traits as well as in their gene sets. Thus, in order to eliminate the effect of 

phylogenetic relatedness from the associations between Nr and GFS we carried out a 
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correction of independent contrasts on both the gene family sizes and the morphological 

traits examined. Accounting for the phylogenetic signal uncovered a stronger association 

between Nr and GFS: We found that while the number of gene families with significant 

associations with Ei increases just slightly (n = 251), there was a huge increase in the 

number of gene families with a strong association with Nr (n = 1144). Most GO term 

enrichment related to Ei is lost after the removal of the effect of Nr and MLSP and the 

phylogenetic signal, with only ATP catabolic process and RNA splicing remaining 

significantly enriched (Figure 3.2).  

In contrast, a total of 11 GO terms were found to be enriched among the gene families 

whose size was most significantly correlated with Nr after correcting for Ei and MLSP as 

well as removing the phylogenetic signal, with inflammatory response, chemotaxis and 

cell-cell signalling being among those categories consistently found to be enriched. 

Interestingly, a number of developmental and cell proliferation GO terms were also found 

to be significantly enriched in this set of gene families (Figure 3.2).  

Although the structure of the layers in the neocortex is stablished during early development 

(Greig et al. 2013), the neocortex show differing levels of complexity and keeps 

experiencing growth in childhood and adolescence, reaching a peak in thickness on average 

around 13 years of age (Shaw et al. 2008). If the association between gene family size and 

neocorticalization respond to functional demands imposed by the development of a large 

neocortex, we should expect the genes that compose them to have a particularly high level 

of activity before this cortical thickness peak is reached. To assess this we made use of 

neocortex derived expression data BrainSpan Atlas of the Developing Human Brain (J. A. 

Miller et al. 2014)(see Methods). We found that gene members of this set of families 

showed higher expression levels during human development prior to the neocortex reaching 

maximum thickness (before 13 years old) compared to later stages, reflecting a potential 

involvement of some of these genes in the development of the neocortex (Figure 3.3). 
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Figure 3.3. Comparison between the cortical expression levels prior and after maximal 

neocortex thickness is reached of genes within the families more significantly 

associated with neocortex ratio after correcting for con founding variables. Bars 

indicate the mean expression for the Neocortex and Encephalization-associated gene 

families before and after the peak cortical thickness occur, while error bars denote standard 

error. Wilcoxon signed rank test p values were Bonferroni adjusted for multiple testing 

comparison (p-valueNr = 9.508343x10-9, p-valueEi = 0.02667157). 

 

 

3.5 Discussion 

 

The finding that GFS has a strong association with Nr highlights the importance of 

neocorticalization in the already uncovered relationship between Ei and GFS. The 

association between Ei and GFS is largely explained by the association between Nr and 

GFS. The relationship between Nr and GFS is probably due to a shared evolutionary 

response to specific functional requirements which are also responsible for Ei.   

The neocortex is held up as the seat of the highest brain functions, including self-control, 

consciousness, and thinking. A key aspect of the neocortex is that it is divided into 

functionally discrete regions.  The structure, size and occurrence of these regions is not 
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universal across mammalian species, with variation being related to species’ specific 

functional demands (Krubitzer and Huffman 2000). The process by which the neocortex is 

subdivided into functional fields is called arealization, and has its basis in a combination of 

epigenetic and genetic mechanisms (Alfano and Studer 2013; Dehay et al. 1996; D. D. 

O'Leary et al. 2007). It has further been suggested that in large-brained species “new” areas 

arise to take on new functions; thus the demands for the molecular mechanisms of 

arealization might increase as brains get larger.   

Gene family size in particular should be related to gene duplication events which result in 

new genes to perform more diverse functions.  Likewise, increase in neocortex size is linked 

to a proliferation of new cortical areas to perform new functions (Changizi 2001; Kaas et 

al. 2013). (The duplication of association areas is probably achieved pretty easily, as even 

within humans duplications arise (Sereno and Huang 2006)). How might GFS and NR then 

be related? One hints at the molecular basis of neocorticalization comes from the signalling 

molecule FGF8, whose ectopic expression can lead to duplication of the primary 

somatosensory area (S1) to create of a new neocortical area (Fukuchi-Shimogori and Grove 

2001).  

The analysis of GO category function annotation unveiled an association between Nr and 

gene families. In line with increased Nr, there is an excess of gene families which are 

significantly enriched in cell-cell signalling, chemotaxis and immune response functional 

annotations. Both cell-cell signalling and chemotaxis are categories of processes which 

have important functions throughout the nervous system, and thus the association seems to 

reflect the increasing demands on this system due to neocorticalization. For example, cell-

cell signalling encompasses functions including synaptic signalling and neurotransmission. 

The enlarged association areas, in the human in particular, may be enriched in the number 

and distribution of synapses, as indicated by increased density of dendritic spines and more 

elaborate dendritic branching patterns; for example neocortically-enlarged humans have 

evolved specific paralogs of the spine maturation promotor SRGAP2 (Charrier et al. 2012). 

Also, cell-cell signalling by agents such as the chief mammalian inhibitory neurotransmitter 

GABA.  GABAergic neurons comprise one of the two major classes of neurons in the 

mammalian neocortex, have a role in cortical plasticity, and increase in number and 

complexity in human evolution (E. G. Jones 1993; Letinic et al. 2002). As we have 

previously suggested, the enrichment of immune response functional annotations may be 
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due to the gradual integration of an immune signalling system into the mammalian nervous 

system, to meet the demands of an increasingly large brain (Castillo-Morales et al. 2014). 

Also, because Nr is positively related to group size, perhaps it is increased exposure to 

pathogens coincident with increased exposure to conspecifics which has increased demands 

on the immune system (Pasquaretta et al. 2014). 

As seen in Figure 3.2 there is an excess of gene families with no functional category 

annotations. This may reflect the fact that gene families which are specifically involved in 

driving the evolution of a larger brain and/or neocortex will be missed from 

characterisations in rodent models. By using a comparative approach it is possible to 

uncover sets of genes which may play an important role in the development of key 

structures such as the neocortex. 
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Supplementary Table S3.1 

Species Common 
Name 

Ei Non neocortex brain 
Volume cm3 

Neocortex 
Volume cm3 

Nr MLSP 

Ailuropoda 
melanoleuca 

Giant Panda -2.014 211.80935 136.43571 1.81 36.8 

Callithrix jacchus Marmoset -1.627 7.241 4.371 1.52 16.5 

Canis familiaris Dog (poodle) -1.699 458.273 177.753 0.63 24 

Cavia porcellus Guinea Pig -2.948 4.671815 1.5798 0.51 12 

Echinops telfairi Lesser 
Hedgehog 
Tenrec 

-3.274 0.566 0.0515 0.1 19 

Erinaceus 
europaeus 

Hedgehog -2.863 3.05 0.522 0.21 11.7 

Gorilla gorilla Gorilla -1.415 470.359 341.444 2.65 55.4 

Homo sapiens Human 0.152 1251.847 1006.525 4.1 122.5 

Loxodonta 
africana 

Elephant -1.082 3886.7 2460.1 1.72 65 

Macaca mulatta Macaque -1.192 87.896 63.482 2.6 40 

Macropus eugenii Wallaby -2.207 11.6637 4.3987 0.61 15.1 

Microcebus 
murinus 

Mouse Lemur -1.985 1.68 0.74 0.79 18.2 

Mus musculus Mouse 
(C57BL/6J) 

-2.832 0.48 0.12 0.32 4 

Mustela putorius 
furo 

European 
Polecat 

-2.548 8.8996 4.147 0.87 11.1 

Ornithorhynchus 
anatinus 

Platypus -2.219 8.57145 4.09928 0.92 22.6 

Ovis aries Sheep -1.961 100.332 53.793 1.16 22.8 

Pan troglodytes Chimpanzee -0.948 382.103 291.592 3.22 59.4 

Papio anubis Olive baboon -1.178 190.957 140.142 2.76 37.5 

Pongo abelii Orangutan -0.892 304.2 219.8 2.6 59 

Procavia capensis Hyrax -2.255 12.68 5.54 0.78 14.8 

Pteropus 
vampyrus 

Megabat -2.204 8.89 3.61 0.68 20.9 

Rattus norvegicus Rat -2.861 1.69 0.58 0.52 5 

Sarcophilus 
harrisii 

Tasmanian devil -2.792 15.1517 3.7334 0.33 13 

Sorex araneus Shrew -2.832 0.188 0.0264 0.16 3.2 

Sus scrofa Pig -2.468 106.660 54.3913 1.04 27 

Tarsius syrichta Tarsier -1.795 3.393 1.768 1.09 16 

Tursiops truncatus Dolphin -0.321 1376.976 1088.615 3.78 51.6 

Vicugna pacos Alpaca -1.688 181.467 101.81 1.28 25.8 
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4.1 Abstract  

 

Different cell types have different post-mitotic maintenance requirements. Nerve cells, 

however, are unique in this respect as they need to survive and preserve their functional 

complexity for the entire lifetime of the organism. These differences across different 

tissues could in principle arise from the differential engagement of a general molecular 

repertoire involved in general maintenance mechanisms. However, whether the onset of 

certain neurodegenerative conditions is associated to an overall failure at any level of 

these general supporting mechanisms is not known. By comparing whole genome 

transcriptome data derived from Alzheimer’s and Parkinson’s disease patients we found 

that genes abnormally down regulated in these two conditions are significantly enriched 

in genes whose expression levels are closely associated with increased post-mitotic 

cellular longevity (PMCL) across a variety of human tissues ranging in longevity from 

120 days to over 70 years. PMCL-associated genes are enriched in specific biological 

processes and transcription factors targets compared to randomly selected gene samples, 

and, in addition to being down regulated in the cerebral cortex and substantia nigra of 

Alzheimer’s and Parkinson’s disease patients, these genes are also down regulated in 

Hutchinson-Gilford progeria-derived fibroblasts. We demonstrate that the observed down 

regulation of PMCL-associated genes in these degenerative conditions is specifically 

linked to their underlying association with cellular longevity.  Moreover, we found that 

sexually dimorphic brain expression of PMCL-associated genes reflects sexual 

differences in lifespan in humans and macaques, indicating a link between differential 

demands in neuronal maintenance between males and females and level of engagement of 

PMCL-associated genes. Taken together our results suggest that PMCL-associated genes 

are part of a generalized machinery of post-mitotic maintenance and functional stability in 

both neural and non-neural cells, that becomes compromised in two specific 

neurodegenerative conditions and support the notion of a common molecular repertoire 

differentially engaged in different cell types with different survival requirements.  

 

Keywords:  post-mitotic cell maintenance, cell longevity, neuronal survival, 

neurodegeneration, transcriptomics.  
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4.2 Background 

 

In multicellular organisms most cells have a shorter lifespan than the organism and are 

continuously replaced. However not all cell types are replaced at similar rates. 

Differential demands in turnover across different cell types are necessarily matched by 

corresponding differences in post-mitotic maintenance. When measured in terms of post-

mitotic rate of survival, these differences in requirements range in humans from a few 

days in skin cells and gut epithelium, to several months or years in the case of bones and 

muscles (K. L. Spalding et al. 2005).  

Although the need for long term survival is common to many cell types, nowhere is post-

mitotic cell maintenance more critical than in neurons as mature post-mitotic neurons 

need to survive and preserve their functional complexity during the entire lifetime of an 

individual (Magrassi et al. 2013).  More importantly, failure at any level in the underlying 

supporting mechanisms is likely to play a central role in the onset of a wide range of 

neurodegenerative conditions (Drachman 1997; Fishel et al. 2007; Mattson and Magnus 

2006).  

Cellular maintenance in neurons and other cell types is likely to be the result of a wide 

network of interacting molecular mechanisms that act at several levels of the cell’s 

physiology to ensure its structural and functional stability (Lanni et al. 2010; Mattson and 

Magnus 2006). Identifying these molecular networks is critically important in order to 

understand both cell survival and its pathological counterpart, cell degeneration. 

Current research on neuronal long term survival and maintenance mainly focuses in the 

study of the signalling events that regulate programmed neuronal death during 

development or the abnormal reduction in cellular support leading to cell death in models 

of injury or neurotoxicity (Harrington and Ginty 2013; Jaiswal et al. 2012; Lanni et al. 

2010). During development, neurons freely activate cell death pathways to fine-tune the 

number of neurons that are needed during the precise formation of neural networks. These 

cell death pathways are remarkably active during early development, and although they 

become highly restricted as neurons mature, negative regulation of cell death alone is 

unlikely to account for the characteristic long-term survival potential of nerve cells (Kole 

et al. 2013).  
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Specific regulatory events directing post-mitotic survival are known to vary across cell 

types. Thus, for instance, in developing neurons post-mitotic survival is mostly regulated 

by neurotrophins and their associated receptors and signalling networks (Cole and 

Frautschy 2007; Harrington and Ginty 2013; Lanni et al. 2010; Mattson and Magnus 

2006). In other cell types, such as plasma B cell, post-mitotic survival is known to 

respond to the regulatory control of a different array of extrinsic signals including 

member of the TNF superfamily of ligands, interleukin 4,5 and 6, CXCL12 and others 

(Benson et al. 2008; Cassese et al. 2003; Mattson and Magnus 2006; O'Connor et al. 

2004).   

Regardless of the specific regulatory mechanisms engaged by different terminally 

differentiated post-mitotic cell types, the basic molecular events ensuring appropriate 

levels of DNA repair, protein stability, protein turnover capacity and organelle integrity 

are likely to recruit a common repertoire of molecular mechanisms with the only 

difference being the level of activation of these mechanisms in response to the survival 

requirements of different cell types and tissues.  

Because little is known of the molecular determinants specifically accounting for long 

term neuronal maintenance, whether the unique long term demands of functional stability 

in neurons result from the activation of distinct neural-specific maintenance mechanisms 

or the enhanced activation of an otherwise common molecular repertoire across cell types 

is not known. Here we asked whether transcriptional alterations in two neurodegenerative 

conditions, Alzheimer’s and Parkinson’s disease,  are associated with genes that display 

increasing levels of expression in line with variations of post-mitotic survival or cellular 

longevity (PMCL) demands in other tissues.   

In human tissues, our knowledge regarding post-mitotic cell longevity and turnover has 

been scarce in the past due to the lack of means to accurately measure cell turnover in 

human subjects. In recent years, however, 14C-based retrospective birth dating has been 

successfully used to estimate the rate of cell turnover in several human tissues (Bhardwaj 

et al. 2006; K. L. Spalding et al. 2005).  Taking advantage of the availability of these 

estimates for seven human tissues ranging in longevity from 120 day to over 70 years, 

here we set out to identify the molecular signature of long term post-mitotic maintenance. 

To this end, we conducted genome-wide comparisons of human transcriptome data 

derived from these tissues and screened for genes whose expression patterns are closely 

associated with changes in post-mitotic cell longevity. 
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We identified a set of post-mitotic cell longevity (PMCL)- associated genes whose 

expression levels are robustly and consistently associated with increased cell longevity.  

Using expression data from six independent sources (Table 4.1), we further found that: 1) 

genes abnormally down regulated in the cerebral cortex and substantia nigra of 

Alzheimer’s and Parkinson’s disease patients respectively, are significantly enriched in 

genes whose expression levels are closely associated with increased post-mitotic cellular 

longevity (PMCL) across a variety of human tissues ranging in longevity from 120 days 

to over 70 years. 2) conversely, genes robustly associated with PMCL across different 

tissues  are also down regulated in brain tissue of Alzheimer’s and Parkinson’s disease 

patients respectively; 3) down regulation of PMCL-associated genes in Alzheimer’s and 

Parkinson’s disease is specifically linked to their underlying association with cellular 

longevity; 4) these genes also significantly enriched in specific biological processes and 

transcription factors targets further supporting the notion that these genes share related 

biological functions in addition to common regulatory pathways; 5) sexually dimorphic 

brain expression of PMCL-associated genes reflects sexual differences in lifespan in 

humans and macaques. Our results demonstrate that two neurodegenerative conditions, 

AD and PD, are associated to the abnormal expression and dysregulation of PMCL-

associated genes and provide the first evidence of a generalised cell longevity pathways in 

human tissues differentially engaged in different cell types with different survival 

requirements. 

 

4.3 Results 

 

As the vast majority of genes expressed in the nervous system are also expressed in most 

tissues, we started by asking whether genes differentially expressed in AD and PD have a 

particular tendency to show increased levels of expression in line with variations of post-

mitotic survival or cellular longevity (PMCL) demands in across different neural and non-

neural tissues. To this end, we first identified  differentially expressed genes in AD and 

PD using available microarray expression data derived from 87 samples from Alzheimer’s 

disease patients comprising five different cortical regions and hippocampus and 24 

biological samples of substantia nigra from Parkinson’s disease patients, with 



67 
 

corresponding controls for each condition (n = 74 and 11 respectively, Dataset 1, Table 

4.1). Using linear models of microarray analysis (LIMMA) we identified 2935 and 1019 

genes displaying significant down regulation in AD and PD respectively, relative to the 

corresponding control microarrays.  

For each gene in the lists of down-regulated genes in each condition, we measured the 

degree of association between their level of expression across a number of reference 

tissues and PMCL estimates in these same tissues.   

To this end we used available accurate cell longevity estimates obtained from 14C-based 

retrospective birth dating for cerebellum, cardiac myocyte, pancreatic islet, small intestine 

(parenchyma), skeletal muscle, adipocyte and leukocytes, ranging in longevity from 120 

days to over 70 years (Supplementary table 4.1) (Bergmann et al. 2009; Perl et al. 2010; 

K. L. Spalding et al. 2005; Whitehouse et al. 1982). Expression data for these tissues was 

obtained from the Affymetrix GeneChip HG-133U part of the Human U133A/GNF1H 

Gene Atlas data set, which compiles microarray gene expression data for 79 human tissue 

samples and cell lines (Dataset 2, Table 4.1; see methods).  To obtain an unbiased 

estimator of the degree of association between the expression level across the above seven 

tissues and the cellular longevity estimates for the same tissues, we computed a jack-knife 

correlation for each gene. That is, a sequence of seven pseudovalues is calculated by 

obtaining the Pearson correlation coefficient while dropping in turn each of the tissues 

from the analysis. The jack-knife correlation is then defined as the mean of these pseudo-

values. This process was repeated for each of the 11 449 genes for which expression data 

were available in all seven tissues (Dataset 2, table 4.1). We then compared the average 

jack-knife correlation of either AD or PD-associated genes with the distribution of 

average jack-knife correlations derived from 1000 000 equally sized random samples of 

background genes.  As shown in figure 4.1, genes found down-regulated in the brain of 

AD and PD patients show a statistically significant increase in their average correlation 

with PMCL estimates across all seven reference tissues. In other words, AD and PD-

downregulated genes, display a significant tendency towards increased levels of 

expression in progressively longer living tissues. These results strongly suggest that a 

substantial proportion of genes displaying abnormal down regulation in two 

neurodegenerative conditions could also be part of a wider cell-maintenance machinery 

normally present in human tissues and differentially engaged in different cell types with 

different survival requirements.   
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Figure 4.1. Genes down regulated in brain tissue of Alzheimer’s and Parkinson’s 

disease patients normally display increased level of expression in longer living 

tissues. Using available microarray expression data derived from 87 samples from 

Alzheimer’s disease patients comprising five different cortical regions and hippocampus, 

and 24 biological samples of substantia nigra from Parkinson’s disease patients, with 

corresponding controls for each condition (n = 74 and 11 respectively, Dataset 1, Table 

4.1), we identified 2935 and 1019 genes displaying significant down regulation in AD and 

PD respectively. To obtain an unbiased estimator of the level of association between 

expression of these genes and post-mitotic cell maintenance in different tissues, we 

computed the average jack-knife correlation between accurate estimates of post-mitotic 

cellular longevity in seven reference tissues (ranging in longevity from 120 days to over 

70 years) and the normal level of expression of AD and PD-downregulated genes in these 

same reference tissues. A) Histogram showing the distribution of mean jack-knife 

correlations of one million independent samples of 2935 random background genes. Blue 
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arrow indicates the average jack-knife correlation of the actual 2935 AD-associated 

genes. B) Histogram of the mean Jack-knife correlation of one million independent 

samples of 1019 random background genes, with blue arrow indicating the mean Jack-

knife correlation of the actual PD associated genes. Numerically estimated p values are 

indicated. 

Table 4.1. Sources of gene expression data. 

Dataset Source Platform Reference 

1 GSE5281(cortex/hippocampus) 

GSE8397-GPL96 (Substantia nigra) 

RNA Microarray 

RNA Microarray 

(Liang et al. 2008) 

 (Moran et al. 2006) 

 

2 BioGPS RNA Microarray (Su et al. 2004) 

 

3 GSE13162 (Normal frontal brain) 

GSE11681–GPL96(Control muscle) 

GSE42114 (Normal skin) 

RNA Microarray 

RNA Microarray 

RNA Microarray 

 

(Chen-Plotkin et al. 2008)  

(Saenz et al. 2008) 

(Gulati et al. 2013) 

4 GSE24487 (Fibroblasts) RNA Microarray (Liu et al. 2011) 

 

5 Brawand et al. (supplementary 

material) 

RNA-seq (Brawand et al. 2011) 

6 Brainspan RNA-seq (http://brainspan.org ; J. A. 

Miller et al. 2014Miller) 

7 GSE11291 RNA Microarray (Barger et al. 2008) 

 

8 GSE38012 RNA Microarray (Mercken et al. 2013) 

 

 

In order to directly test this hypothesis, we conducted the following reverse analysis: First 

we independently looked for genes whose pattern of expression were closely and robustly 

associated with changes in post-mitotic cell longevity across different tissues and then 

looked at whether these same genes show abnormal expression in the brain of AD and PD 

patients.  

In order to specifically identify gene expression correlates of enhanced cellular 

maintenance across  different tissues, we screened for genes that met two independent 
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criteria: First using our previous unbiased estimates of degree of association between 

expression and PMCL we only selected genes with an absolute Jack-knife correlation 

coefficient value greater than 0.8. Second, because complex phenotypes are usually the 

result of an assembly of molecular and genetic components acting in concert (Hartwell et 

al. 1999)  and genes involved in related biological pathways display correlated expression 

patterns reflecting their functional association (Eisen et al. 1998; Homouz and Kudlicki 

2013), we selected, among  genes meeting the first criterion, those that displayed a 

consistent association with each other across a wider range of tissues and cell types.   

By screening for genes meeting the first criterion we initially identified a set of 98 genes 

with Jack-knife values ranging from 0.801 to 0.972. Interestingly, no genes were 

identified in the negative tail of the resulting distribution.  

To meet the second criterion, from this original set of 98 candidate genes we removed 

those that failed to display a strong correlation with at least other two genes from the 

same set when examining their collective pattern of co-expression across a wider set of 

tissues. To this end, we took advantage of the fact that Dataset 2 also compiles expression 

data for a total of 28 separate tissues, and extracted the Pearson correlation values of all 

possible pairs of these genes across all 28 samples and looked for a single connected 

component or network linked by strong correlations (R > 0.8). This analysis revealed a 

single cluster of 81 genes leaving 17 isolated genes. Figure 4.2A shows the average 

expression of our selected set of 81 PMCL-associated genes across the initial seven 

tissues used in their selection (Table 4.2 and Supplementary table 4.1). 
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Figure 4.2. Detection of a transcriptional signature of long term post-mitotic 

maintenance.  In order to independently identify a transcriptional signature of post-

mitotic cellular longevity (PMCL), we compared whole genome transcriptome data from 

seven reference tissues and found a set of 81 genes whose expression levels are robustly 

associated with increased cell longevity (Jack-knife R > 0.8) and highly correlated with 

each other (see methods).   A) Regression plot showing the average normalized 

expression of 81 PMCL-associated genes as a function of cell longevity in seven separate 

reference tissues for which carbon dating estimations are available. Expression data used 

corresponds to dataset 1 and each individual data point represents the average normalized 

expression of all 81 genes. Pearson correlation coefficient and associated p-value are 

indicated. B) Fold-change in gene expression for each PMCL-associated gene comparing 

skin vs muscle expression and muscle vs brain expression respectively. Each arrow 

represents the direction in –log2 (fold change) for each particular PMCL-associated gene 

in each indicated pair of tissues. P-values for the observed average differences in 

expression of PMCL-associated genes based on paired t-test per comparisons.   
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Table 4.2. PMCL-associated genes 

SYMBOL GENE NAME JACKKN
IFE R 

SYMBOL GENE NAME JACKK
NIFE R 

CCT7 T-complex protein 1 subunit 

eta 

0.968 MEA1 male-enhanced antigen 1 0.802 

UCHL1 ubiquitin carboxyl-terminal 

hydrolase isozyme L1 

0.934 PAPSS1 3'-phosphoadenosine 5'-

phosphosulfate synthase 1 

0.944 

PSMC4 26S protease regulatory 

subunit 6B 

0.933 TPI1 triosephosphate isomerase 1 0.811 

HSP90AB1 heat shock protein HSP 90-

beta 

0.933 COL13A1 collagen, type XIII, alpha 1 0.855 

COPZ1 coatomer subunit zeta-1 0.901 NES nestin 0.825 

PFDN2 prefoldin subunit 2 0.875 MYH10 myosin-10 0.821 

COPS6 COP9 signalosome subunit 6 0.834 ITM2C integral membrane protein 2C 0.883 

USP14 ubiquitin specific peptidase 

14 

0.83 ATXN2 ataxin 2 0.881 

CDC37 cell division cycle 37 0.813 ATXN10 ataxin 10 0.865 

TUBB4B tubulin beta-4B chain 0.818 TMEM132A Heat Shock 70kDa Protein 5 

Binding Protein 1 

0.836 

MZT2B mitotic spindle organizing 

protein 2B 

0.972 XRCC6 X-ray repair cross-complementing 

protein 6 

0.832 

TUBGCP2 gamma-tubulin complex 

component 2 

0.879 TEK angiopoietin-1 receptor 0.821 

FAM96B family with sequence 

similarity 96, member B 

0.861 TRIM28 tripartite motif containing 28 0.817 

CKAP5 cytoskeleton associated 

protein 5 

0.861 SLC7A5 large neutral amino acids 

transporter small subunit 1 

0.801 

MAPK6 mitogen-activated protein 

kinase 6 

0.857 ARL3 ADP-ribosylation factor-like 3 0.916 

DCTN3 dynactin 3 (p22) 0.84 UNC5B netrin receptor UNC5B 0.91 

NUDC nuclear migration protein 

nudC 

0.828 GPI glucose-6-phosphate isomerase 0.867 

ACTR1A alpha-centractin 0.815 SMARCA4 transcription activator BRG1 0.931 

PPP1R7 protein phosphatase 1 

regulatory subunit 7 

0.804 SSRP1 structure specific recognition 

protein 1 

0.84 

YWHAE 14-3-3 protein epsilon 0.803 STIP1 stress-induced-phosphoprotein 1 0.866 

EID1 EP300 interacting inhibitor 

of differentiation 1 

0.818 SLC3A2 4F2 cell-surface antigen heavy 

chain 

0.889 

PPM1G protein phosphatase 1G 0.808 EPM2AIP1 EPM2A-interacting protein 1 0.833 

PAPD7 PAP associated domain 

containing 7 

0.836 PTS 6-pyruvoyltetrahydropterin synthase 0.95 

CBX5 chromobox homolog 5 0.964 PFKP 6-phosphofructokinase type C 0.863 

ATP13A2 ATPase type 13A2 0.895 COX8A cytochrome c oxidase subunit 8A 0.834 

PNMA2 paraneoplastic antigen Ma2 0.891 ATP6V1H V-type proton ATPase subunit H 0.801 

RRAGA Ras-related GTP binding A 0.814 CHCHD2 coiled-coil-helix-coiled-coil-helix 

domain containing 2 

0.809 

UBE2Z ubiquitin-conjugating 

enzyme E2Z 

0.832 NHP2L1 NHP2-like protein 1 0.959 
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YARS tyrosyl-tRNA synthetase 0.853 EXOSC10 exosome component 10 0.819 

MAGED1 melanoma antigen family D, 

1 

0.946 NHP2 NHP2 ribonucleoprotein 0.901 

NPDC1 neural proliferation, 

differentiation and control, 1 

0.901 GTF3C4 general transcription factor 3C 

polypeptide 4 

0.816 

AKT3 RAC-gamma 

serine/threonine-protein 

kinase 

0.869 VDAC2 voltage-dependent anion channel 2 0.837 

NR2F1 COUP transcription factor 1 0.868 EEF1E1 eukaryotic translation elongation 

factor 1 epsilon 1 

0.875 

HDGFRP3 Hepatoma-derived growth 

factor-related protein 3 

0.866 HARS histidyl-tRNA synthetase 0.824 

RBFOX2 RNA binding protein fox-1 

homolog 2 

0.837 SARS seryl-tRNA synthetase 0.812 

PDXK pyridoxal kinase 0.825 NUCKS1 nuclear casein kinase and cyclin-

dependent kinase substrate 1 

0.891 

FLNB filamin-B 0.814 BRD9 bromodomain containing 9 0.842 

FEV protein FEV 0.813 GPKOW G patch domain and KOW motifs 0.825 

IFT46 intraflagellar transport 

protein 46 homolog 

0.81 SETD5 SET domain containing 5 0.816 

PFN2 profilin 2 0.807 FAM171A1 protein FAM171A1 0.809 

LARP1 la-related protein 1 0.803    

 

It is to be noted that, in identifying these 81 PMCL-associated genes, multiple testing 

corrections where not carried out due to the low statistical power derived from using only 

seven tissues. However, if our candidate set of genes was the random outcome of a 

multiple testing artefact we would expect these genes not to display a consistent pattern of 

association with cellular longevity when examining independent expression data. 

Accordingly, in a first test of consistency, we used data from occipital lobe and skin 

which were also present in dataset 2 but not originally used to identify our set of PMCL-

associated genes. While we lacked radio carbon-based estimates of skin cell turn-over, 

other methods place this value between the 39-61 days range in humans (Bergstresser and 

Taylor 1977; Iizuka 1994; Weinstein et al. 1984). On the other hand, since little or no 

neuronal turnover has been observed in human brain cortex and up to 50% of cortical 

cells are neurons (Azevedo et al. 2009; Bhardwaj et al. 2006; K. L. Spalding et al. 2005), 

we should expect the expression of PMCL-associated genes to reflect that of a long and 

short living tissue for occipital cortex and skin respectively.  We found that 61 out of 81 

of our PMCL-associated candidates displayed higher expression in the occipital cortex 

than in the skin. As all expression data was originally normalized to mean expression 

levels, this expression bias was significantly stronger than expected by chance (X2 = 
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20.75, p = 5.22x10-6), demonstrating that PMCL-associated genes collectively display a 

higher level of expression in the long living occipital cortex than in the skin. 

Using a separate approach, we used additional expression data from a separate microarray 

dataset containing at least 8 biological replicates of gene expression measures derived 

from normal human brain, skeletal muscle and skin (Dataset 3, Table 4.1), and compared 

the differences  in average expression level of PMCL-associated genes across these 

tissues. As shown in Figure 4.2B, the expression of PMCL-associated genes was 

systematically higher in the brain relative to skeletal muscle (paired t test = 2.23, p = 

0.014), while expression in the latter was also systematically higher relative to skin 

(paired t test = 18.02, p = 2.2x10-16), further supporting a robust association between the 

level of expression of this set of genes and post-mitotic cellular longevity. 

PMCL-associated genes are down regulated in Alzheimer’s and Parkinson’s disease.  

Having independently identified a robust set of PMCL-associated genes, we went on to 

determine if these genes are collectively down-regulated in the brain Alzheimer’s and 

Parkinson’s disease patients.  Using microarray data from Dataset 1, a paired t-test 

comparison of PMCL-associated genes between each condition and their corresponding 

controls revealed a statistically significant decrease in the average expression of PMCL-

associated genes in each of these conditions relative to their healthy counterparts (Figure 

4.3A).  

Using a complementary approach, we used the list of previously identified down-

regulated genes in each condition to conduct an enrichment analysis aimed at detecting 

overrepresentation of disease-related down regulated genes among PMCL-associated 

genes. As shown in Figure 4.3B, the observed proportion of PMCL-associated  genes that 

are also down regulated in the cerebral cortex of Alzheimer’s disease patients  is 

significantly higher than expected by chance (p < 1x10 -6). Because Dataset 1, contains at 

least nine biological replicas for each of six separate cortical regions (entorhinal cortex, 

superior frontal gyrus, posterior cingulate cortex, visual cortex and medial temporal 

gyrus) as well as hippocampus plus corresponding healthy controls, we were able to 

assess down regulation of PMCL associated genes in each region separately, and found  

that the proportion of PMCL-associated genes down-regulated in AD was significantly 

higher than random expectations in all  regions except the primary visual cortex and 

superior frontal gyrus. Likewise, the proportion of PMCL-associated genes that were also 
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down-regulated in the substantia nigra of Parkinson’s disease patients was significantly 

higher than expected by chance  (p = 3x10-6 ,  Figure 4.3B).  

  

 

Figure 4.3. PMCL-associated genes are down regulated in Alzheimer’s and 

Parkinson’s disease.  A) fold-change in gene expression for each PMCL-associated gene 

relative to their control counterpart for each indicated condition. Each arrow represents 

the direction in  –log2 (fold change) for each particular PMCL-associated gene in each 

condition. P-values for the observed average differences in expression of PMCL-

associated genes, between control and disease samples, were obtained using paired t-test.  

B) Microarray data from brain cortex (n = 161) and  substantia nigra (n = 35) obtained 

from Alzheimer’s disease (AD) and  Parkinson’s disease (PD) patients respectively, was 

used along with corresponding controls to identify genes significantly down regulated in 

each condition.  The chart shows the distribution of expected proportion of disease-related 

down-regulated genes for each condition, using 1 000 000 random samples of 

81background genes each. Blue arrow indicates the actual proportion and associated 

probabilities of PMCL-associated genes that are also down-regulated in each indicated 

condition. Inset: significance of enrichment of down-regulated genes (expressed as –log(P 

value)) for each separate brain region in AD patients with the dashed line representing the 

adjusted significance threshold (EC: entorhinal cortex; PC: posterior Cingulate cortex; 

MTG: medial temporal gyrus; HIP: hippocampus; SFG: superior frontal gyrus and VCX: 

visual cortex). Note that the proportion of PMCL-associated genes down-regulated in AD 
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was significantly higher than expected in all regions except the primary visual cortex and 

superior frontal gyrus.    

 

Taken together, these results demonstrate that, collectively, PMCL-associated genes are 

significantly down regulated in the cerebral cortex and substantia nigra of Alzheimer’s 

disease and Parkinson’s disease patients. 

However, if the level of activation of PMCL-associated genes is functionally linked to 

changes in long term post-mitotic maintenance, we should also expect these genes to be 

downregulated in degenerative conditions not necessarily related to the nervous system 

but also involving reduced cell survival or compromised functional stability.  To this end 

we looked at Hutchinson-Gilford progeria syndrome (HGPS), a condition involving a 

systemic failure of cell maintenance mechanisms liked to normal ageing, such as 

compromised DNA repair, genome instability and premature senescence (Burtner and 

Kennedy 2010; Coppede and Migliore 2010; Kudlow et al. 2007; Musich and Zou 2011) 

and used available microarray expression data derived from 2 biological samples derived 

from fibroblasts of HGPS patients with corresponding controls for each condition (n = 2, 

Dataset 4, Table 4.1). As shown in figure 4.4A, a paired t-test comparison between 

affected and control-derived fibroblasts revealed a statistically significant decrease in the 

average expression of PMCL-associated genes in affected samples, relative to their 

healthy counterparts. Using the same complementary approach described above, the 

proportion of PMCL-associated genes that were also down-regulated in HGPS-derived 

fibroblasts was also significantly higher than expected by chance (1.35x10-4 respectively, 

Figure 4.4B) 
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Figure 4.4. PMCL-associated genes are down regulated in Hutchinson-Gilford 

Progeria syndrome.  We used available microarray expression data derived from 2 

biological samples derived from fibroblasts of HGPS patients with corresponding controls 

for each condition (n = 2, Dataset 4, Table 4.1). A)  Paired t-test comparison between 

affected and control-derived fibroblasts revealing a statistically significant decrease in the 

average expression of PMCL-associated genes in affected samples, relative to their 

healthy counterparts. B) Microarray data from HGPS-derived fibroblasts was also used 

along with corresponding controls to identify genes significantly down regulated in this 

condition.  The chart shows the distribution of expected proportion of disease-related 

down-regulated genes using 1 000 000 random samples of 81background genes. Blue 

arrow indicates the actual proportion and associated probabilities of PMCL-associated 

genes down-regulated in HGPS (p= 1.35x10-4 ). 

 

 

PMCL-associated genes display a reduced level of concerted expression in 

Alzheimer’s and Parkinson’s disease. 

Genes involved in related biological pathways display correlated expression patterns 

reflecting their functional association (Eisen et al. 1998; Homouz and Kudlicki 2013). 

Gene co-expression analysis has been widely used to gain insights into the functional 

organization of transcriptomes across tissues, conditions and species (Obayashi and 

Kinoshita 2011; Oldham et al. 2006; Oldham et al. 2008; Saris et al. 2009; Torkamani et 

al. 2010; Usadel et al. 2009; J. Zhang et al. 2012). But apart from revealing functional 

interactions among groups of genes, gene co-expression could also reveal alterations of 

the underlying regulatory architecture associated to a global expression profile of a set of 

genes under particular pathological conditions. Accordingly, we used gene co-expression 

as an index of regulatory coordination to determine whether PMCL –associated genes 

display altered levels of correlated expression in AD and PD.  

Using expression data derived from  substantia nigra of PD and six cortical regions from 

AD patients and corresponding controls for each condition (Dataset 1) , we obtained the 

Pearson correlation coefficient between all possible pairs of PMCL-associated genes for 

each condition and associated controls (see methods) and carried out a paired Wilcoxon 

test comparison . As shown in figure 4.5A,  this analysis reveals a strong and  statistically 
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significant reduction in the collective co-expression PMCL-associated genes in brain 

samples of AD patients relative to the coexpression of the same genes in control samples 

(p = 1.369x10 -34).  The same analysis carried out with PD data, reveals an equally strong 

reduction in correlated expression of  PMCL-associated genes in the substantia nigra of 

PD patients relative to control samples (Figure 4.5B; p = 7.0x10 -7). 

 

 

Figure 4.5. PMCL-associated genes display a reduced level of co-expression in in 

Alzheimer’s and Parkinson’s disease. Using expression data derived from substantia 

nigra of PD and six brain regions from AD patients and corresponding controls for each 

condition (Dataset 1), we obtained the Pearson correlation coefficient between all possible 

pairs of PMCL-associated genes for each condition and associated controls and carried 

out a paired Wilcoxon test comparison. A) Chart showing the average correlation 

coefficient (±S.E.M) between PMCL-associated genes in control and AD samples. B) 

Chart showing the average correlation coefficient (±S.E.M) between PMCL-associated 

genes in control and PD samples. Associated p values are indicated. 

It is worth noting that the observed reduction in the overall level of co-expression of 

PMCL-associated genes in PD and AD is not the result of a general reduction in the level 

of coexpression of the background transcriptome as no significant reduction in 

coexpression was observed in 10 000 equally-sized random samples of background genes 

(not shown). 

Together, these results demonstrate that PMCL-associated genes display significant 

reduction in their levels of regulatory coordination in in the brain of PD and AD patients 

relative to their control counterparts. 
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Down regulation of PMCL-associated genes in degenerative conditions is specifically 

linked to their association with cellular longevity.  

The above results offer the opportunity to assess whether the observed down regulation of 

PMCL-associated genes in degenerative conditions is specifically linked to their 

underlying association with cellular longevity. Because the seven reference tissues used to 

identify these genes differ in more than one aspect, it is conceivable that alternative 

selections based on different cellular traits could have led to the exact same results, 

thereby demonstrating a lack of association between post-mitotic cellular longevity and 

the down regulation of these genes in degenerative conditions. Because different cellular 

traits would be typically associated to different rankings or orderings of the reference 

tissues, one way to assess the effect of potentially different phenotypes in the selection of 

genes and their down regulation in these conditions, is by looking at the effect of different 

permutations of these tissues on the resulting gene sets. 

To these end, using the same strategy employed to identify PMCL-associated genes, we 

selected alternative sets of genes derived from each 5 040 possible permutations of the 

original cellular longevity values. For each permutation, we defined the degree of 

similarity with the original ordering as the correlation coefficient between the original 

longevity values and the permuted one. For all permutations above any given similarity 

value, we measured the proportion of permutations leading to gene sets significantly 

down regulated in each of the two neurodegenerative conditions examined. As shown in 

Figure 4.6, the proportion of down regulated gene sets remains close to zero for low 

minimal similarity values, suddenly increasing as the similarity value approaches one. 

These results demonstrate that the only permutations leading to the detection of gene sets 

significantly down regulated in degenerative conditions are those closely aligned with the 

real post-mitotic cell longevity values. In other words, these results demonstrate that the 

observed down regulation of PMCL-associated genes in degenerative conditions is 

specifically linked to their underlying association with cellular longevity. 
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Figure 4.6. Down regulation of PMCL-associated genes in degenerative conditions is 

specifically linked to their association with cellular longevity. Following the same 

strategy to identify PMCL-associated genes, we identified alternative sets of genes highly 

correlated with each of the 5 040 possible permutations of the original seven cell 

longevity values. For each permutation, we defined the degree of similarity with the 

original ordering by means of their correlation coefficient.  A-C; Each graph shows for all 

permutations above a given similarity value (x axis), the proportion of permutations 

leading to gene sets as significantly down regulated in each of the indicated degenerative 

conditions as the real ordering. Note that the proportion of significantly down regulated 

gene sets only increases when the minimal similarity between the permuted and the 

original ordering of longevity values approaches 1. AD: Alzheimer disease; PD: 

Parkinson’s disease. 

 

 

PMCL-associated genes are enriched in specific biological processes and 

transcription factors targets.   

If our candidate PMCL-associated genes are functionally related, we would expect them 

to share common pathways and biological processes. In order to identify possible 

pathways and biological processes significantly overrepresented among these genes, we 

conducted a gene ontology (GO) term enrichment analysis. We specifically looked at 

biological process categories contained in the GO slim subset of terms 

(http://geneontology.org) and Benjamini-Hochberg multiple testing corrections were 

carried out against the number of categories tested. Eight biological processes were found 

overrepresented: cytoskeleton-dependent intracellular transport, tRNA metabolic process, 
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cell cycle, cell morphogenesis, protein folding, cell division, cellular amino acid 

metabolic process and ribosome biogenesis (Table 4.3). 

If PMCL-associated genes are functionally related, we should also expect them to display 

a higher level of transcriptional coordination with each other in longer living tissues and 

should therefore be, to a significant extent, under concerted transcriptional regulation. 

Transcription factors (TF) are key components of regulatory cascades involved in 

coordinating gene expression. Enrichment of specific TF targets among PMCL-associated 

genes can provide additional insights into the general regulation of post-mitotic 

maintenance and functional stability. To this end, we used Transcription factor target 

annotations obtained from the Molecular Signatures Database (MSigDB v4.0) and found 

that our set of PMCL-associated genes is significantly enriched in genes with binding 

sites for HSF, ELK1, EFC (RFX1),  USF and USF2 (Table 4.3), in addition to genes 

containing the SP1 binding motif V.SP1_01 (adj. p = 0.043). Taken together, these results 

demonstrate that distinct biological processes as well as specific transcription factors 

targets are statistically overrepresented among genes whose expression patterns are 

closely associated with changes in post-mitotic cell longevity and that these PMCL-

associated genes are specifically down-regulated the brain cortex and hippocampus on the 

one hand, and substantia nigra, on the other, of AD and PD patients respectively.  

4.4 Discussion 

Terminally differentiated post-mitotic cells have different turnover and survival 

requirements. Whether these differences arise from equally different cell maintenance 

mechanisms engaged by different cell types or the differential activation of an otherwise 

common molecular repertoire is not known. Nowhere are these supporting mechanisms as 

critical as in the nervous system where the vast majority of nerve cells cannot be replaced 

and need to survive as long as the organism, reaching in humans even 100 years or more.   

The specific regulatory or signalling events directing long term post-mitotic survival are 

known to differ across different tissues. However, the basic molecular events ensuring 

appropriate levels of DNA repair, protein turnover and stability as well as organelle 

integrity could, at least in principle, potentially recruit a common repertoire of molecular 

mechanism with the only difference being the level of activation of these same 

mechanisms in response to the survival requirements of different cell types and tissues. In 
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this study, we have asked whether transcriptional alterations associated with two 

neurodegenerative conditions are associated with a potentially general cell longevity 

pathway in human tissues differentially engaged in different cell types with different 

survival requirements.  

Along this lines, we found that genes downregulated in AD and PD also have a significant 

tendency to show increased levels of expression in line with variations of post-mitotic 

maintenance demands in other tissues.  Following a reverse approach, we conducted a 

genome wide screening to identify a transcriptional signature of long term post-mitotic 

maintenance to determine whether these genes are also down regulated in AD and PD.  

Because of the inevitable noise in the existing expression data and the limited number of 

tissues for which accurate  data on cellular longevity is available, our ability to identify a 

hypothetical cell maintenance machinery specifically linked to variations in long term 

post-mitotic survival is necessarily limited. In spite of this limitation, by comparing 

genome-wide expression data in seven tissues ranging in cell longevity from 120 days to 

over 70 years in combination with Jack-knife correlations to rule out spurious effects of 

strong outliers, we detect at least 81 genes whose levels of expression are robustly 

correlated with cellular longevity. While a conceptually similar strategy has been 

previously used to scan for genes associated with increased cancer incidence in several 

tissues (Silva et al. 2011), using large scale expression data to scan for genes potentially 

involved in post-mitotic cell longevity has never been attempted before.  

Given the low statistical power associated to the use of only seven tissues, our selection of 

PMCL-associated genes was based on their associated high Jack-knife correlation value 

rather than significance. In spite of this, we demonstrate that the resulting set of PMCL-

associated genes and their specific nature is not the result of a potential multiple testing 

artefact. Indeed, using additional data from tissues not included originally in the 

identification of these genes as well as two additional independent expression databases, 

we found that PMCL-associated genes systematically display higher expression in 

progressively longer-living tissues. This result is, by no mean consistent with the expected 

random outcome of a multiple testing artefact.   

Having identified a robust set of PMCL-associated genes, we found that these genes are 

significantly down regulated in the cerebral cortex and substantia nigra of Alzheimer’s 

disease and Parkinson’s disease patients respectively. Interestingly, PMCL associated 
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genes showed no significant enrichment of down regulated genes in the visual cortex of 

Alzheimer’s disease patients (Figure 4.4B). This result is particularly significant given the 

fact that the visual cortex is known to show the least changes and is relatively spared from 

Alzheimer’s disease pathologies (Liang et al. 2007; Liang et al. 2008).  In addition to the 

observed collective down regulation of PMCL-associated genes in AD and PD, an 

additional analysis of their level of concerted regulation (or co-expression) revealed a 

statistically significant reduction in average co-expression in these degenerative 

conditions relative to the average correlation of these genes in normal controls, further 

revealing an overall disruption of the concerted regulation of these genes in 

neurodegenerative pathologies. 

We further demonstrate that the observed down regulation of our set of genes in each of 

these conditions is specifically related to their underlying association with cellular 

longevity. We did this by following the exact same procedure we followed to identify our 

PMCL-associated genes and obtained all possible alternative gene sets resulting from all 

possible permutations of cell longevity values in the original seven tissues. We showed 

that only those permutations that match the original PMCL-based ranking of the reference 

tissues lead to gene sets that are also down regulated in these conditions. 

These results demonstrate that the down regulation of PMCL-associated genes in three 

separate degenerative conditions is specifically linked to the PMCL-associated ranking of 

the reference tissues originally used to identify these genes. In other words the collective 

down regulation of these genes in degenerative conditions, is the result their specific 

underlying association with post-mitotic cell longevity.  

Transcriptome analyses allowed us to uncover a set of genes with a distinct pattern of 

expression cell types of increasing post-mitotic maintenance in the human body. These 

genes are enriched among deregulated genes in disease states. Importantly, our results are 

consistent with the existence of a generalised common molecular mechanism controlling 

basal post-mitotic maintenance. Because nerve cells survive as long as the organism, any 

consistent and systematic differences in overall life expectancy between individuals are 

likely to be accompanied by differential post-mitotic survival demands in nerve tissue. In 

this respect, the known sex dimorphism in life expectancy humans, with females living 

6% longer lives than males (Clutton-Brock and Isvaran 2007; Kinsella 1998; Vina et al. 

2005; Vina and Borras 2010) is likely to translate into corresponding differences in long-

term neuronal maintenance. While the cellular and genetic mechanisms underlying sexual 
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lifespan dimorphism are still poorly understood, proposed mechanism include differences 

in telomere dynamics (Barrett and Richardson 2011; Jemielity et al. 2007), differential 

response to oxidative stress (Ballard et al. 2007) and asymmetric inheritance of sex 

chromosomes and mitochondria (Camus et al. 2012; Gemmell et al. 2004). In order to test 

whether brain expression of PMCL associated genes reflect sexual dimorphism in life 

expectancy, we compared their expression using existing RNA-seq data from both male 

and female human individuals. Along the same lines we also investigated gene expression 

profiles for male and female macaques, as this species displays a more pronounced sexual 

lifespan dimorphism than humans; with females living on average 72% more than males 

in the wild (Clutton-Brock and Isvaran 2007), a difference potentially entailing 

substantially higher neuronal survival and functional stability demands in female 

macaques compared to males. RNA-seq data for both male and female individuals from 

these two species was obtained from the study performed by Brawland et al in 2011 

(Brawand et al. 2011) (Dataset 5, Table 4.1). A paired t-test comparison of the expression 

levels of all PMCL-associated genes between males and females in humans revealed a 

statistically significant increase in the average expression difference of PMCL-associated 

genes in human females relative to males (Figure 4.7A). Interestingly, the same 

comparison of the expression levels of all PMCL-associated genes between females and 

males in macaques revealed a much more pronounced expression of PMCL-associated 

genes in female relative to males (Figure 4.7A). It is worth noting that dimorphic 

expression of PMCL-associated genes was much more pronounced in macaques where 

differences in lifespan between females and males in the wild are also much greater than 

in humans. It should be mentioned, however, that the pronounced dimorphic lifespan in 

macaques has been observed predominantly in wild populations and some studies in 

captivity have actually reported an inverse relationship (Mattison et al. 2012). This 

suggests that captivity conditions could have a detrimental effect in survival specifically 

affecting females (or a beneficial effect, specifically affecting males).  
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Figure 4.7. Sexual expression dimorphism of PMCL-associated genes in the brain 

reflects sexual differences in longevity in human and macaque. A) fold-change in gene 

expression for each PMCL-associated gene comparing males and females in human and 

macaque. Each arrow goes from –log2 (♂/♂ expression) to log2 (♀/♂ expression) for each 

particular PMCL-associated gene. p-values for the observed average differences in brain 

expression of PMCL-associated genes between the two sexes for each species were 

obtained using paired t-tests.  B) Distribution of the expected proportion of genes up-

regulated in females relative to males using 1 000 000 random samples of 81 genes. A 

linear model was used to detect genes significantly up-regulated in females using RNA-

seq data from 30 different brain samples of 40 year old human subjects obtained from the 

BrainSpan dataset. The blue arrow indicates the actual proportion of PMCL-associated 

genes up-regulated in females relative to males.   

 

Using a complementary approach based on a separate source of  RNA-seq expression data 

derived from 15 brain regions from a 40 year old man and woman obtained from the 

Brainspan database, Dataset 6 (Table 4.1) we extracted the list of genes significantly up 

regulated  in the female transcriptome (see methods). We then used this list to conduct an 

enrichment analysis aimed at detecting over-representation of female up-regulated genes 

among our set of PMCL-associated genes. The expected proportion was numerically 

calculated based on 1 000 000 equally-sized random gene samples drawn from the overall 
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gene population. As shown in Figure 4.7B, the observed proportion of PMCL-associated 

genes up regulated  in  females relative to males is significantly higher than expected by 

chance (p = 0.003). These results demonstrate that in the female nervous system, where 

cell survival-related requirements are likely to be higher than in males, PMCL-associated 

genes are significantly up-regulated relative to their male counterpart.  

In all, our results demonstrate that in the female nervous system, PMCL-associated genes 

are significantly up-regulated relative to their male counterpart possibly reflecting 

corresponding sex-related differences in long term neuronal maintenance requirements.  

Both the down-regulation of PMCL-associated genes in Alzheimer’s disease and 

Parkinson’s disease as well as Progeria, together with their up-regulation in the female 

brain of both humans and macaques, suggest that these genes could constitute a potential 

signature of either enhanced or compromised functional stability both in neurons as well 

as other cell types. 

Using gene ontology functional annotations and enrichment analysis we found that 

biological processes such as cytoskeletal-dependent transport, cell morphogenesis and 

protein folding are statistically overrepresented among our PMCL-associated even after 

correcting for multiple testing against all 69 functional categories tested. Crucially these 

genes are also enriched in targets of specific transcription factor further supporting the 

notion of these genes being part of a common pathway involved in long term cell survival 

and functional stability. Similar results were obtained when using a standard GO 

enrichment analysis tool such as WebGestalt.   

Our screening captured genes involved in resistance against protein misfolding including 

prefoldins (PFDN2), ubiquitin esterases (UCHL1), chaperonins (CCT7), chaperons 

(HSP90AB1) and associated adaptor proteins (STIP1) as well as proteosomal subunits 

(PSMC4).  The fact that these genes are increasingly up-regulated in long living tissues 

points towards the sustained activation of the unfolded protein response (UPR) and/or the 

proteasome pathway as a central component of the long-term survival machinery of long 

living tissues such as the nervous system.  Along these lines, both UPR and the 

ubiquitin/proteasome system (UPS) have been proposed to be important players in the 

aging process in different species (Durieux et al. 2011; Kimata et al. 2006; Kruegel et al. 

2011; Min et al. 2008; Morley and Morimoto 2004; Perez et al. 2009). Oxidative stress 

can cause protein misfolding and improperly folded proteins that are either retained 
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within the lumen of the endoplasmic reticulum (ER) in complex with molecular 

chaperones or degraded through the 26S proteasome or through autophagy. Accumulation 

of misfolded proteins is also known to cause ER stress, which in turn can exacerbate 

oxidative stress (Gregersen and Bross 2010; Malhotra and Kaufman 2007).  HSP90 is 

known to modulate the unfolded protein response (UPR) (Marcu et al. 2002) and targeting 

HSP90 can destabilise UPR induced cell death (Barrott and Haystead 2013; Davenport et 

al. 2008; Jackson 2013). Interestingly, mutants of HSP90 are known to affect lifespan in 

C. elegans, D. melanogaster and S. cerevisiae (Chen and Wagner 2012; Morley and 

Morimoto 2004; Sakurai and Ota 2011).  

Organismal ageing is a process that involves a progressive decrease in the capacity to 

adequately maintain tissue homeostasis (Bernardes de Jesus and Blasco 2012; Burton 

2009; de Magalhaes and Faragher 2008; de Magalhaes et al. 2012; Dutta et al. 2012; 

Manayi et al. 2014; Terman et al. 2010). Being such a complex process, ageing involves a 

large number of changes at various physiological levels and could, at least in principle 

also involve the gradual breakdown in post-mitotic cell maintenance. With this in mind 

we looked into any potential overlaps between post-mitotic cell longevity genes and genes 

known to be associated with ageing. To this end, we examined the GenAge database of 

genes related to ageing (Tacutu et al. 2013), and after comparing with PMCL-associated 

genes a number of functional links between both sets of genes were apparent. For 

example, GenAge lists a number of genes, including E2F1, p53, CDKN1A, PPP1CA, 

known to be regulated by the transcriptional intermediary factor TRIM28 which we found 

among our PMCL-associated genes and is involved in development and DNA repair. 

Conversely, GenAge lists transcription factor SP1 and we found a significant 

overrepresentation of genes with a particular SP1 binding site among our gene set. We 

also identified COX8A, a cytochrome c oxidase, while GenAge includes cytochrome c 

oxidase (MT-CO1) and COXPD6, a pro-apoptotic factor involved in its release from the 

mitochondria. While GenAge contains the gene encoding for the catalytic subunit of the 

protein phosphatase 1 (PPP1CA) and several of its regulators (BRCA1, BCL2 and PTK2; 

all of them members of the PPP1R family) we identify another regulator, PPP1R7 among 

our PMCL- associated genes. Furthermore, both gene sets contain genes involved in the 

ubiquitin mediated proteolysis pathway (e.g. UCHL1, UBE2I, UBB, and USP14). We 

also identified HSP90AB1 and its co-chaperones CDC37 and STIP1, whereas GenAge 
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points towards chaperones HSP90AA1, HSPD1, HSPA1A, HSPA1B, HSPA8, and 

STUB1 (Apweiler et al. 2014; Stelzer et al. 2011).  

Prompted by the potential association  between PMCL-associated genes and aging-related 

processes we looked at differentially expressed genes in the brain of mice subjected to 

caloric restriction (CR), an experimental dietary regime known to slow down ageing-

related changes in many animal models  (Barger et al. 2008). Using available expression 

data in mice we found a statistically significant overrepresentation of PMCL-associated 

genes among CR up-regulated genes (Dataset 7; p = 0.041). An even more pronounced 

effect was found when using human data (Mercken et al. 2013) derived from skeletal 

muscle of human individuals subjected to CR (Dataset 8; p = 0.0082).   

Differences among neuronal populations in the production and/or clearance of abnormal 

proteins are thought to be key determinants of age-related neuronal vulnerability in 

Alzheimer's disease, Parkinson's disease (PD) and Huntington's disease (HD) (Lam et al. 

2000; Mattson and Magnus 2006; McNaught et al. 2001). In this regard, several of the 

adverse consequences of ageing and neurodegenerative disorders on neuronal function, 

morphology and survival, as well as behavioural alteration, can be mimicked by 

pharmacological inhibition of proteasomes (Romero-Granados et al. 2011; Sullivan et al. 

2004). Interestingly, loss of function of UCH-L1 in mice is known to cause gracile axonal 

dystrophy (gad) phenotype resulting in sensory–motor ataxia (Saigoh et al. 1999). 

Importantly, these mutants also showed axonal degeneration and formation of spheroid 

bodies in nerve terminals and an accumulation of amyloid β-protein (Aβ) and ubiquitin-

positive deposits, suggesting that UCH-L1 is involved in neurodegenerative disorders. On 

the other hand, in amyloid pathogenesis, overexpression of Hsp70 and Hsp90 has been 

shown to decrease Aβ aggregation (C. G. Evans et al. 2006), reduce Aβ-mediated 

neuronal toxicity, and appears to enhance the chaperone-mediated clearance of amyloid 

precursor protein (APP) and its amyloidgenic Aβ derivatives (P. Kumar et al. 2007). 

Indeed, modulation of HSP90 has been proposed as a therapeutic tool against Alzheimer’s 

disease (Zhao et al. 2012). 

4.5 Conclusions 

Taken together, our results show that genes abnormally down regulated in AD/PD are 

significantly enriched in genes whose expression levels are closely associated with 
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increased post-mitotic cellular longevity across a variety of human tissues. In this regard, 

our results support the notion of a common molecular repertoire of cellular maintenance 

mechanisms shared by all terminally differentiated post-mitotic cells and show that these 

same mechanisms are differentially engaged in different cell types with different survival 

requirements. In addition, the observed down regulation of these genes in models of 

neuronal degeneration and reduced lifespan and/or compromised functional stability, 

identify PMCL-associated genes as robust molecular markers of either compromised or 

enhanced cell survival both in neural and non-neural tissues. This is the first genome-wide 

analysis suggesting the existence of generalised cell longevity pathways in human tissues 

that becomes compromised in neurodegenerative conditions. Identifying the underlying 

maintenance mechanisms that allow long living tissues, such as nerve cells, to preserve 

their functional and structural integrity for the entire lifetime of the organism is essential 

to understand both aging and neurodegeneration in addition to the unique cell survival 

capabilities of the human nervous system.    

 

4.6 Materials and Methods 

4.6.1 Cellular longevity estimates.  

 

Cellular longevity estimates based on quantification of 14C in genomic DNA from 7 

somatic tissues (adipocyte, cardiac myocytes, cerebellum, pancreatic islet, skeletal 

muscle, leukocytes and small intestine) were obtained from Spalding et al (2005), and 

associated literature sources (Supplementary table 4.1). 

4.6.2 Human tissues gene expression data. 

 

 GCRMA normalized cell type specific patterns of mRNA expression for seven tissues for 

which cell longevity data is available, were extracted from the Affymetrix GeneChip HG-

133U part of the Human U133A/GNF1H Gene Atlas dataset, which comprises 

transcriptome data for 79 human tissue samples and cell lines (Dataset 2). While occipital 

cortex expression data was also available, only data from cerebellum was initially 

included in order to avoid unnecessary overrepresentation of nervous tissue in our initial 
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tissue samples. Probe sets were mapped to Ensembl gene IDs via probe set annotations 

downloaded from the Ensembl’s Biomart database (release71). Where more than one 

probe mapped to a single gene ID, expression measurements were averaged. Any probe 

matching more than one gene ID was eliminated from the analysis. Probes with zero 

variance in expression levels across tissues were excluded together with non-protein 

coding genes. This reduced our background population of genes to a total of 11 449 

genes. In order to correct for variations in total signal across tissues, individual expression 

values were renormalized against the total expression signal per tissue. All the expression 

data obtained from the sources listed in Table 1 was processed in a similar way. Briefly, 

expression data from brain, muscle and skin from Gene Expression Omnibus (GEO) 

(GSE13162, GSE11681 and GSE42114 respectively, Dataset 3, Table 4.1) were selected 

due to the similarity of the microarray platforms and the availability of several normal 

replicas allowing a reliable assessment of co-expression. As before, we summarized to 

Ensembl gene ID all RMA-normalized expression values which were then normalized by 

the total intensity per sample. RNA-seq expression data (RPKM-normalized and 

summarized to gene ID as described above) was downloaded from Brainspan database ((J. 

A. Miller et al. 2014) http://www.brainspan.org/, Dataset 6, Table 4.1). Data for all 12 

cortical areas present in this database across 20 different ages were extracted from this 

source for subsequent analyses. We further normalized individual expression values 

within samples against the total level of gene expression in each sample. Where more than 

one sample was available for the same age, expression values from equivalent samples 

were averaged. The same procedure was followed for the transcriptome data of the 15 

cortical areas present for both 40 year old male and female samples used in Figure 4.5. 

RPKM normalized RNA-seq expression levels for human and macaque orthologous genes 

from both male and female individuals were obtained from Brawand et al. dataset 

(Brawand et al. 2011). Individual expression values were again normalized against total 

signal per sample (Dataset 5, Table 4.1). Microarray derived, RMA normalized values of 

gene expression values derived from substantia nigra of Parkinson’s disease patients or 

Hutchinson Gilford Progeria Syndrome-derived fibroblasts and their corresponding 

controls were obtained from NCBI’s GEO (Dataset 1 and 4, Table 4.1). Raw CEL files 

for arrays with gene expression levels in tissues with Alzheimer’s disease were also 

downloaded from GEO. The later were RMA-normalized for consistency. We 

summarized per probe expression levels to ensemble gene IDs in the same manner as with 

the Human Gene Atlas data set and renormalized against the total expression signal in 
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each array/sample. Finally, RMA-normalized microarray data from neocortex mice under 

CR and Z-normalized microarray data for skeletal muscle of individuals subject to CR 

were downloaded from GEO (Dataset 7, Table 4.1) and processed as previously 

described. 

4.6.3 Co-expression analyses.  

 

Co-expression analyses were carried out by obtaining the correlation coefficient across all 

possible pairs of PMCL-associated genes in brain samples of Alzheimer’s and 

Parkinson’s disease as well as corresponding control samples. To evaluate whether 

PMCL-associated genes were highly co-expressed, relative to background gene 

population, using any given dataset, the corresponding p-value was numerically 

determined by comparing the mean co-expression of PMCL-associated genes with the 

expected distribution of mean co-expression values computed from 100 000 random gene 

samples of the same size. Comparisons of mean co-expression of PMCL-associated genes 

across tissues and/or samples were carried out using paired t-tests.  

4.6.4 Enrichment of disease down regulated genes. 

 

 Differential expression analysis was carried out using the disease expression datasets to 

compare disease against control conditions for each case of study using the LIMMA 

package in R (Smyth 2005). Significant biases in the proportion of disease-related down-

regulated genes among our set of PMCL-associated genes was assessed by contrasting the 

observed proportion of these genes with the ones observed in at least 1 000 000 equally 

sized random sampled obtained from the background gene population. The test involving 

differentially down-regulated genes in 40 years old human males when compared to 

females was done following the same approach.  

4.6.5 Functional enrichment analysis.  

 

Biological Process GO Slim annotations where obtained from Ensembl’s (release 71) 

Biomart. Entrez IDs and Gene symbols annotations for Transcription factor target sites 

where obtained from the Molecular Signatures Database v4.0 (MSigDB) 

(http://www.broadinstitute.org/gsea/msigdb/index.jsp). These annotations are based on 
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transcription factor binding sites defined in the TRANSFAC (version 7.4, 

http://www.gene-regulation.com/) database. Entrez IDs and Gene symbols where mapped 

to Ensembl IDs with a correspondence table downloaded from Ensembl’s Biomart. Gene 

sets sharing a binding site labelled as UNKNOWN where excluded from this analysis. To 

measure the enrichment in genes with any target binding site for a given transcriptional 

factor, we summarized TRANSFAC annotations by assigning a gene to a transcription 

factor if it contains any target for that TF in TRANSFAC annotations. 

For consistency across all different enrichment analyses carried out, and in order to 

facilitate the use of the same Ensembl version throughout the study, we employed our 

own numerical methods to assess significant over-representation. Briefly, statistical 

enrichment of each analysed category (i.e., gene ontology, disease-down regulated genes, 

transcription factor targets, sex-specific differentially expressed genes, caloric restriction-

associated genes etc.) among our set of PMCL-associated genes was assessed by 

performing a Z–test, where the expected representations and their standard deviations 

were obtained from 1 000 000 Monte Carlo simulations using random samples of 81 

genes drawn from our curated set of 11 449 genes. Benjamini-Hochberg multiple testing 

corrections against the number of categories tested in each analysis was done (GO slim 

functional categories, n = 69, TRANSFAC specific factor target binding site, n = 501, 

TRASFAC summarized to transcription factors, n = 283). Categories with a resulting adj. 

p < 0.05 and with an excess of more than 1 PMCL-associated gene than expected, were 

deemed significantly enriched.  

4.6.7 Statistical analysis.  

 

All statistical analyses were carried out using the R statistical software package. 
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Supplementary Table S4.1 

Tissue Age (years) Reference 

Occipital cortex 72 (Bhardwaj et al. 2006) 

Cerebellum 69.1 (K. L. Spalding et al. 2005) 

Cardiomyocytes 66 (Occipital 

lobe - 6) 

(Bergmann et al. 2009) 

Pancreatic islets 42 (Perl et al. 2010)  

Intestine (non 

epithelial cells) 

15.9 (K. L. Spalding et al. 2005) 

Intercostal 

skeletal muscle 

15.1 (K. L. Spalding et al. 2005) 

Adipocytes 9.5 (Kirsty L. Spalding et al. 2008) 

Blood 0.33 (120 days 

Erythrocytes) 

(K. L. Spalding et al. 2005; Whitehouse et al. 1982) 
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Table 4.3. GO slim terms and transcription factor target significantly enriched 

among PMCL-associated genes (Adjusted p-value < 0.05) 

 

Gene ontology 

accession 
Gene ontology term O/E Adj. p 

GO:0030705 
cytoskeleton-dependent intracellular 

transport 
3 / 0.36 0.0003 

GO:0006399 tRNA metabolic process 4 / 0.69 0.0013 

GO:0007049 cell cycle 15 / 6.17 0.0024 

GO:0000902 cell morphogenesis 11 / 4.41 0.0101 

GO:0006457 protein folding 4 / 1.12 0.0491 

GO:0051301 cell division 6 / 2.27 0.0491 

GO:0006520 cellular amino acid metabolic process 6 / 2.25 0.0491 

GO:0042254 ribosome biogenesis 3 / 0.80 0.0491 

    

 

Transcriptional Factor Site 
O/E Adj. p 

HSF 6 / 1.55 0.0416 

USF2 5 / 1.27 0.0416 

USF 10 / 3.93 0.0416 

ELK1 15 / 6.87 0.0416 

EFC (RFX1) 5 / 1.34 0.0494 
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5. General Discussion 
 

While the detailed mechanisms in how a large brain underlies elevated cognitive capacity 

are still a matter of debate (Deary et al. 2010), one of its indubitable consequences is the 

ability to ponder on reasons and origins of this organ. The evolution of the brain is a process 

that has fascinated scientists for decades. Large brains confer cognitive advantages which 

can result in an increase in survival and a longer reproductive life, making them potentially 

advantageous for species (Allman et al. 1993; Gonzalez-Lagos et al. 2010; Isler and van 

Schaik 2009; Sol 2009a). On the other hand, large brains carry with them a high adaptive 

costs resulting from such factors as high metabolic demand, higher parental investment, 

diminished annual fertility and delayed reproductive age (Gonzalez-Lagos et al. 2010; Isler 

and van Schaik 2006a; W. R. Leonard et al. 2003; Roth and Dicke 2005; Weisbecker and 

Goswami 2010). Due to the complex interplay of factors both allowing for or resulting from 

a larger brain the precise nature of the genomic changes that account for differences in the 

size of the brain remain poorly understood (Dorus et al. 2004; Shi et al. 2006). 

Throughout this thesis I have used a combination of comparative genomic approaches and 

transcriptomic analyses in order to further our understanding of the genomic footprint of 

two complex phenotypes, brain evolution and cellular longevity. This compendium 

represents the first genome wide scan for the association of changes in size of gene families, 

one of the main genetic drivers of phenotypic evolution (Lynch and Conery 2000), with the 

evolution of larger brains and larger neocortex in mammals. I identified a significant over-

representation of GFS variations in line with increased encephalization and 

neocorticalization in mammals, and proved that this relationship is not accounted for by 

known correlates of these variables, nor is it a result of mere phylogenetic relatedness 

between the analysed species. I also found that these neural associated variations are 

particularly enriched in families with genes involved in processes such as immune system, 

cell-cell signalling and chemotaxis, and seem to be a response to the specific cellular, 

physiological and developmental demands of an increased brain size in mammals. These 

studies constitute a step in understanding the genetic footprints of the evolution of the brain 

and the neocortex in mammals. 

Using an approach borrowed from comparative genomics, I also compare differences in 

post-mitotic cell longevity of seven different tissues with their transcriptomes in an attempt 
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to shed a light on the basis of cellular longevity across tissues, particularly focusing on the 

genetic determinants of longevity in neurons. As a result, I identified a set of genes whose 

expression levels are closely associated with increased post-mitotic cellular longevity 

(PMCL) across a variety of human tissues ranging in longevity from 120 days to over 70 

years. These genes are down regulated in the cerebral cortex and substantia nigra of 

Alzheimer’s and Parkinson’s disease patients, as well as in Hutchinson-Gilford progeria-

derived fibroblasts, further suggesting their involvement in the regulation of cellular 

maintenance. Moreover, we found that sexual dimorphism in the expression patterns of 

PMCL-associated genes in the brain mirrors observed differences in average lifespan 

between sexes in humans and macaques, insinuating a link between differential demands 

in neuronal maintenance between males and females and level of activity of PMCL-

associated genes. These results provide an insight into the machinery of post-mitotic 

maintenance of neural and non-neural tissues. 

5.1 Variations in gene family size and encephalization 

Genomic determinants underlying increased encephalization across mammalian lineages 

remains an open question. In chapter 2 I investigate if the large and frequent changes in the 

size of gene families observed in mammalian taxa play a part in shaping the differences in 

relative brain size among species. Using a genome-wide comparative approach, we 

examined changes in gene family size (GFS) and degree of encephalization in 39 fully 

sequenced mammalian species and found a highly significant over-representation of gene 

families displaying a positive association between their size and encephalization. This bias 

is particularly pronounced in families associated with specific biological functions. The 

most robust and consistent bias was observed in gene families associated with cell 

signalling, immune regulation and chemotaxis. 

Both chemotaxis and cell signalling functions are known to play central roles in the 

development and function of the nervous system. Chemokines and their receptors play a 

crucial part in directing the proliferation and migration of immature neurons, glia and their 

precursors (reviewed in (Tran and Miller 2003)). Furthermore, chemokines and their 

receptors are important in neuroinflammatory diseases, strongly suggesting an important 

role in adult nervous system as well (De Groot and Woodroofe 2001). Chemokines where 

originally discovered and described in the immune system as regulators of leukocyte 

trafficking, inflammation, autoimmunity, angiogenesis and metastasis (Lira and Furtado 
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2012; Rossi and Zlotnik 2000); suggesting that this high overlap between chemotaxis and 

immune system could partially explain the observed enrichment of immune system-

associated functions among gene families displaying the highest association between GFS 

and Ei. However, in recent years many other signalling and regulatory mechanisms 

originally described in the immune system, such as cytokines and immune related 

transcriptional regulators, have increasingly been found implicated in key neural-specific 

roles both in the developing and adult nervous system (Crampton et al. 2012; Gavalda et 

al. 2009; Gutierrez et al. 2005; Gutierrez et al. 2008; McKelvey et al. 2012; Nolan et al. 

2011; O'Keeffe et al. 2008). Moreover, in the human cerebral cortex, immune system-

related functions have been found to be significantly over-represented among genes 

displaying higher expression variability in the developing cerebral cortex than in the same 

tissues in adult (Sterner et al. 2012), hinting to a substantial involvement of immune-related 

signals during cortical development. 

5.2 Changes in gene family size and neocorticalization. 

Higher cognitive abilities such as thinking, consciousness and self-control reside in the 

neocortex. One of the key features of the latest evolutionary addition of the mammalian 

brain, the neocortex, it is multi-layered structure. Neocortical regions change in size, 

structure and occurrence depending on the species specific functional demands and is not 

universal across mammalian species (Krubitzer and Huffman 2000). The neocortex can be 

partitioned into different fields, through a process termed arealization, which has its basis 

in a combination of epigenetic and genetic mechanism (Alfano and Studer 2013; Dehay et 

al. 1996; D. D. O'Leary et al. 2007). In large-brained species the emergence of new areas 

has been suggested to deal with new functions, thus the molecular mechanism that are 

necessary for the formation of new regions might increase as the species brains get bigger. 

 

Gene family size changes are the product of gene duplication and losses events, of 

particular importance are gene duplication events which may lead to the creation of new 

genes that perform a wider set of functions. Similarly, the increase in neocortical size has 

been linked to the creation of new areas in the neocortex, which are potentially areas that 

will perform new functions (Changizi 2001; Kaas et al. 2013). There has been propose 

that the duplication of association areas in the neocortex can be easily accomplished, so 

effortlessly, that even duplications may arise within the same species as it occurs among 
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humans (Sereno and Huang 2006). How GFS changes and NR may then be associated? A 

hint is provided from the signalling molecule FGF8, which has been previously identify 

as a mediator of brain patterning during early development, and whose ectopic expression 

cause the duplication of the primary somatosensory area (S1) to create a new neocortical 

area (Fukuchi-Shimogori and Grove 2001). 

 

As a general indication of the preferred gene function, the Gene Ontology enrichment 

analysis unveiled a connexion between Nr and gene family size. Along an Nr increased 

there has been found an increase in size of particular gene families that are significantly 

enriched in cell-cell signalling, chemotaxis and immune response biological processes. 

Cell-cell signalling and chemotaxis are functional sets of particular importance 

throughout the nervous system, and therefore is not difficult to think that the observed 

association between GFS and Nr reflects the functional demands that neocorticalization 

inflicts on the nervous system. If we look with further detail, cell- cell signalling 

annotations includes relevant biological functions such as synaptic signalling and 

neurotransmission. It is not surprising then that the enlarged association areas, in 

particular in human, are enriched in number synapses and preserve a particular 

distribution as indicated by increased density of dendritic spines and an elaborate 

dendritic branching pattern. As an example, among neocortically-enlarged hominids, 

there has been found a partial duplication event in the gene family of SRGAP2, which 

codes for a highly conserved protein expressed early in development required for spine 

maturation, neuronal migration, differentiation and neurite outgrowth (Charrier et al. 

2012). A recent human specific duplication event in the GABA receptor family has also 

been identified; being GABA one of the main inhibitory neurotransmitter whose role is 

central for cell-cell signalling interactions between neural cells in mammalian species. 

Within the mammalian cortex, GABAergic neurons encompass one of the two major 

neuronal classes, where they control cortical plasticity, and have been shown to increase 

in number and complexity during human evolution (E. G. Jones 1993; Letinic et al. 2002). 

Lastly, as we have suggested previously, the overrepresentation of immune response 

functional annotations could be due to the gradual integration of the immune signalling 

system to the mammalian nervous system in order to meet the demands of an increasingly 

large brain (Castillo-Morales et al. 2014). Alternatively and or complementarily, given 

that Nr is positively associated to group size, perhaps it is increased exposure to 



100 
 

pathogens corresponding with increased exposure to conspecifics which has increased 

demands on the immune system (Pasquaretta et al. 2014). 

5.3. Molecular basis of neuronal post mitotic maintenance. 

In Chapter 4 I explore the underlying mechanisms for sustaining post-mitotic cells in the 

human brain by comparing transcription profiles of cell types with different cell longevity. 

Terminally differentiated post-mitotic cells have different turnover and survival 

requirements. These differences can arise from differing cell maintenance mechanisms 

unique to each cell type or by the differential activation of a common molecular repertoire. 

Nowhere would these supporting mechanisms play a particularly critical role as in the 

human nervous system, where the vast majority of nerve cells cannot be replaced and need 

to survive as long as the organism, reaching even more than 100 years of age in some cases. 

In this regard, we found that genes downregulated in AD and PD show increased levels of 

expression in line with differences of post-mitotic cell lifespan in other tissues. We 

carried out a genome wide screening to identify a transcriptional signature of long term 

post-mitotic maintenance to determine whether these genes are also down regulated in 

AD and PD. We detect at least 81 genes whose levels of expression are robustly 

correlated with cellular longevity, providing the first attempt to scan for genes potentially 

involved in post-mitotic cell longevity. Conversely, we also found that these genes are 

significantly under expressed in the cerebral cortex and substantia nigra of Alzheimer’s 

disease and Parkinson’s disease patients respectively. Remarkably, PMCL-associated 

genes are not particularly enrichment on down regulated genes in the visual cortex of 

Alzheimer’s disease patients. This result is particularly significant due to the fact that this 

region of the brain is known to be relatively spared from Alzheimer’s disease pathologies 

(Liang et al. 2007; Liang et al. 2008). Additionally, PMCL-associated genes appear to be 

collectively dysregulated, as expressed by a strong reduction in their level of co-

expression in these degenerative conditions relative to the same tissues in non-affected 

people, further suggesting a general disruption of the cell maintenance machinery genes in 

neurodegenerative pathologies. 

The involvement of the PMCL-associated genes in cell homeostasis in neural and non-

neural cell types is also strongly supported by similar observations when analysing 

fibroblasts of Hutchinson-Gilford progeria syndrome patients, a genetic condition 
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characterized by the dramatic, rapid appearance of aging beginning in childhood, and in 

which cellular senescence and tissue homeostasis is particularly disrupted (Bridger and 

Kill 2004). These results are consistent with the existence of a generalised molecular 

mechanisms for post-mitotic maintenance common to all tissue types.  

Because neurons survive as long as the organism, any systematic differences in overall 

life expectancy between individuals are likely to be accompanied by differential activity 

of post-mitotic survival mechanisms. In this respect, the known sexual dimorphism in life 

expectancy in humans, with females living 6% longer lives than males (Clutton-Brock 

and Isvaran 2007; Kinsella 1998; Vina et al. 2005; Vina and Borras 2010) is likely to 

translate into corresponding variations in neuronal maintenance. In order to test whether 

brain expression of PMCL associated genes reflect the aforementioned sexual 

dimorphism in life expectancy, we compared their expression in both male and female 

human individuals and found that expression of PMCL-associated genes is significantly 

higher in human females relative to males. In the same manner we also studied gene 

expression profiles for male and female macaques, as this species displays a more 

pronounced sexual lifespan dimorphism than humans; with females living on average 

72% more than males in wild populations (Clutton-Brock and Isvaran 2007). 

Interestingly, our results revealed a much more pronounced expression dimorphism of 

PMCL-associated genes in macaque female relative to males than the one observed in 

humans, where differences in lifespan between females and males in the wild are also 

more noticeable. All these results taken together suggest that PMCL-associated genes 

could constitute a potential signature of enhanced functional homeostasis in both neural 

and non-neural cell types. 

Functional characterization of PMCL-associated genes carried out using Gene ontology 

enrichment analysis found that biological processes such as cytoskeletal-dependent 

transport, cell morphogenesis and protein folding are statistically overrepresented among 

these group of genes. Of particular interest are genes involved in resistance against 

protein misfolding identified among PMCL-associated genes, such as prefoldins 

(PFDN2), ubiquitin esterases (UCHL1), chaperonins (CCT7), chaperons (HSP90AB1) and 

associated adaptor proteins (STIP1) as well as proteosomal subunits (PSMC4); since both 

unfolded protein response (UPR) and the ubiquitin/proteasome system have been 

proposed to play an important part in the aging process in different species (Durieux et al. 

2011; Kimata et al. 2006; Kruegel et al. 2011; Min et al. 2008; Morley and Morimoto 
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2004; Perez et al. 2009). Oxidative stress can lead to improperly folded proteins that are 

either retained within the lumen of the endoplasmic reticulum (ER) in complex with 

molecular chaperones or degraded through the 26S proteasome or through autophagy. 

Accumulation of misfolded proteins is also known to cause ER stress, which in turn can 

exacerbate oxidative stress entering a positive feedback loop ending in increased cell 

death (Gregersen and Bross 2010; Malhotra and Kaufman 2007).  HSP90 is known to 

modulate UPR (Marcu et al. 2002) and targeting HSP90 can destabilise UPR induced cell 

death (Barrott and Haystead 2013; Davenport et al. 2008; Jackson 2013). Interestingly, 

mutants of HSP90 are known to affect lifespan in C. elegans, D. melanogaster and S. 

cerevisiae.  

Senescence at the cellular level is mostly studied in proliferating cells where the conditions 

under which cells stop dividing are assessed. In many tissues, however, cells have low 

turnover rates with neurons being required to live as long as the organism. The mechanisms 

enabling the maintenance of non-dividing cells remain largely unexplored as experimental 

models are impractical. Furthermore, as most animal models have short generation time 

and low lifespans it is possible that the molecular basis of post-mitotic cell maintenance in 

long lived species might not be shared in short lived organisms as rodent models. 

The approach used in this study took advantage of the characterisation of cell turnover 

obtained for a number of human cells. The characterisation of further cell turnover estimates 

for other tissues will allow to further refine the list of genes involved in the regulation of 

cell maintenance.  

Interestingly, my results are suggestive of the existence of a set of genes involved in post-

mitotic cell maintenance across cell types. This study is the first evidence supporting a 

general post-mitotic maintenance mechanism. 

Taken together, the results presented in this thesis provide insights into the molecular 

basis of brain size and morphology evolution as well as the underlying molecular 

mechanisms for post-mitotic cell which allows neurons in long lived organisms to 

survive.  

Gene duplications that give origin to an increment in GFS can result in three different 

outcomes: nonfunctionalization of one copy by degenerative mutations, 

neofunctionalization or subfunctionalization (Lynch and Conery 2000). While 
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nonfunctionalization represent the most common consequence of this phenomena due to 

the deleterious character of most mutations, the other two outcomes are the ones that are 

most likely to result in phenotype evolution, and as such restricting our analysis to these 

events might be key in order to capture functional changes in the genome deriving in the 

evolution of the brain. Furthermore, either due to positive selection, relaxed constrains or 

random drift, duplicated genes experience evolutionary rate acceleration that shapes 

subsequent evolution of gene duplicates. Tracking the rate of nonsynonymous to 

synonymous substitutions (dN/dS) of members of families with GFS associated to the 

evolution of the brain will permit us to evaluate functional consequences of these events. 

While most genome wide approaches to scan genes with evolutionary rates associated 

with larger brains focus on sets of relatively closely related taxa, such as primates or 

cetacean, executing this kinds of analysis along the whole of mammalian evolution will 

shed a light on the common genetic mechanisms that convergently contributed to shape 

the central nervous system in different mammalian taxa. Moreover, increase availability 

of both genomic data as well as measurements of other phenotypes more closely related to 

cognitive ability, such as total neuron number or neural connectivity will be of the utmost 

importance to the advancement of evolutionary neurobiology. 

While the transcriptome-wide analysis here presented suggests the existence of a 

generalised cell longevity pathways in human tissues that becomes compromised in 

neurodegenerative conditions, identifying the precise mechanisms that allow long living 

tissues, particularly neurons, to maintain homeostasis for the entire lifetime of the 

organism is essential to understand both aging and neurodegeneration. In order to achieve 

such a goal, experimental follow ups need to address the hypothesis built in these thesis. 

This could be achieved by experimentally altering the activity of PMCL-associated genes 

on an in vitro system such as hESC-derived neurons using RNAi transfection, or in a 

short lived in vivo system, such as the nematode C. elegans or the turquoise killifish 

(Nothobranchius furzeri) with genome editing tools such as CRISPR/Cas system. 
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Abstract

In female mammals most X-linked genes are subject to X-inactivation. However, in humans some X-linked genes escape
silencing, these escapees being candidates for the phenotypic aberrations seen in polyX karyotypes. These escape genes
have been reported to be under stronger purifying selection than other X-linked genes. Although it is known that escape
from X-inactivation is much more common in humans than in mice, systematic assays of escape in humans have to date
employed only interspecies somatic cell hybrids. Here we provide the first systematic next-generation sequencing analysis
of escape in a human cell line. We analyzed RNA and genotype sequencing data obtained from B lymphocyte cell lines
derived from Europeans (CEU) and Yorubans (YRI). By replicated detection of heterozygosis in the transcriptome, we
identified 114 escaping genes, including 76 not previously known to be escapees. The newly described escape genes
cluster on the X chromosome in the same chromosomal regions as the previously known escapees. There is an excess of
escaping genes associated with mental retardation, consistent with this being a common phenotype of polyX phenotypes.
We find both differences between populations and between individuals in the propensity to escape. Indeed, we provide
the first evidence for there being both hyper- and hypo-escapee females in the human population, consistent with the
highly variable phenotypic presentation of polyX karyotypes. Considering also prior data, we reclassify genes as being
always, never, and sometimes escape genes. We fail to replicate the prior claim that genes that escape X-inactivation are
under stronger purifying selection than others.

Key words: X-inactivation, rate of evolution, expression evolution.

Introduction
Mammals have evolved a mechanism to inactivate one of the
female X chromosomes. Although in humans the majority of
X-linked genes are subject to X-inactivation, at least 15%
(Carrel and Willard 2005) are thought to escape X-inactiva-
tion being expressed from both the active X (Xa) and inactive
X (Xi) chromosomes. Escape genes in human are distributed
in clusters (Tsuchiya et al. 2004; Carrel and Willard 2005) and
probably controlled at the chromatin domain level. The ma-
jority of escape genes have been shown to be located on the
short arm of the X chromosome (Disteche 1999). This may
reflect a mechanistic constraint, these genes being too distant
from the X-inactivation center (Xic) in the long arm to be
affected. They may also be protected from the spreading of
XIST RNA, coded for by the XIST gene within the Xic, by
centromeric heterochromatin.

Given the strong conservation of gene content on the
mammalian X chromosome, it has been possible to ask
whether the ability to escape X-inactivation might be an
evolvable trait. Principally, this has been addressed by

comparing mice and humans (Disteche et al. 2002; Carrel
and Willard 2005; Yang et al. 2010). For example, Yang et al.
(2010) used RNA sequencing technology, in combination
with single nucleotide polymorphism (SNP) identification,
to infer the escape profile in mice and compared this with
human data. The profiles of escape in mice and humans show
significant differences in the number of genes and overall
status of inactivation with escape being more prevalent in
humans for reasons unknown.

It is likely that this prevalence of escape from X-inactiva-
tion in humans is related to the relative severity of polyX
karyotypes in humans (Yang et al. 2010). PolyX karyotypes
are associated with numerous phenotypes, including men-
tal retardation and growth effects (Rooman et al. 2002).
Typically, when more than one X is present, all X chromo-
somes but one are inactivated (Lyon 1961; Belmont et al.
1986). Genes that escape X-inactivation are hence good
candidates for dosage-mediated phenotypic disruptions asso-
ciated with polyX karyotypes (Linden et al. 1995; Tartaglia
et al. 2010; Berletch et al. 2011). Determining which

� The Author 2013. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://
creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium,
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genes escape X-inactivation is thus of potential clinical
relevance.

Analysis of polyX karyotypes has also suggested that there
is variability in phenotypic presentation between individuals
with the same karyotype (Rooman et al. 2002; Otter et al.
2010; Tartaglia et al. 2010). Indeed although many XXX fe-
males go undiagnosed (Gustavson 1999; Tartaglia et al. 2010),
many have immediately evident phenotypes (Otter et al.
2010). This may reflect differing degrees of mosaicism
(Tartaglia et al. 2010). It might also, however, reflect variabil-
ity between individuals as regards which genes escape
X-inactivation. Consistent with this expectation, in humans
genes that escape X-inactivation can have different expression
levels in different individuals (Brown and Greally 2003; Carrel
and Willard 2005), these variably expressed genes estimated
to comprise 10% or more of X-linked genes.

In addition to clinical relevance, knowing which genes
escape X-inactivation is important for molecular evolutionary
inference, as genes escaping X-inactivation have different
mean dominance to those not escaping and may be under
different selective pressures (Park et al. 2010). Indeed,
Park et al. (2010) report that genes that always escape
X-inactivation have a lower Ka/Ks than those that sometimes
do or never do. This, they suggest, may reflect differences in
dominance. However, at first sight one might think that a
dominance argument would make the opposite prediction: if
most new mutations are recessive, as genes that never escape
are haploid expressed, new mutations should be under stron-
ger purifying selection than those diploid expressed (i.e., those
that escape X-inactivation). Moreover, the class with the high-
est Ka/Ks are those that sometimes escape. A priori, all else
being equal, one would expect this class to sit between
the extremes of those that never and those that always
escape. With these two caveats, it is worth asking whether
the prior result is robust to reclassification of genes on addi-
tion of new data. In addition, it is necessary to address
whether any result is robust to quantitative control for dif-
ferences in absolute expression level (Pal et al. 2001;
Drummond et al. 2006), the strongest predictor of rates of
evolution.

The largest prior effort to determine the status of
X-inactivation on human genes in a human cell line employed
a quantitative assay based on fluorescent, single-nucleotide
primer extension (Carrel and Willard 2005). This study exam-
ined a limited number (N = 94) of X-linked genes in fibro-
blasts, finding evidence for some form of escape for 35% of
them, with 15% showing escape in all samples (Carrel and
Willard 2005). Given the limited scale of this cell line-based
assay, the same authors used a more systematic somatic cell
hybrid system for more than 600 X-linked transcripts. This
identified 94 transcripts that always escape inactivation and a
further 61 that are heterogeneous.

Although the somatic cell hybrid data appear relatively
consistent with the fibroblast data (Carrel and Willard
2005), it is worthwhile asking whether cell line-based data
on a high-throughput scale can confirm or discover genes
that escape X-inactivation. We address this issue by examin-
ing the RNA-Seq data of immortalized B-cells looking for

evidence of heterozygosity within the transcriptome at
X-linked loci. We identify a further 76 genes sometimes sub-
ject to some degree of escape from X-inactivation. With the
same data we can also address the question of the level of
heterogeneity. Are some individuals hyper-escapees, permit-
ting significantly more genes to escape than others? Do pop-
ulations differ in their profile of escape? To address these
issues, we study the profile of escape between two popula-
tions, US residents with northern and western European an-
cestry (CEU) and Yoruban individuals of Nigeria (YRI). We
find strong evidence for heterogeneity in escape, finding both
between-population and between-individual differences. We
find no evidence that genes that always escape X-inactivation
have an unusually low rate of protein evolution, before or
after control for expression level. These results potentially
have ramifications for pharmacogenomics, for the etiology
of X chromosome ploidy disruption phenotypes, and for mo-
lecular evolutionary inference.

Results

Identification of 76 New X-Inactivation Escapees

We located the biallelic sites in annotated genes, for which the
transcript information was extracted from UCSC reference
genes. Because the expression from the inactive X chromo-
some should be no higher than that of the active X chromo-
some, we considered the version of the gene with a smaller
number of reads in heterozygosis to be the “silenced” allele
from the inactive X chromosome and those with larger num-
bers as the active alleles. Assuming that incidences where
fewer than 10% of alleles are from the silenced allele are
not trustworthy to call heterozygosity (Carrel and Willard
2005), we obtained a total of 103 genes displaying evidence
of escape from X-inactivation among 37 CEU individuals and
113 genes among 40 YRI individuals.

We consider only genes with replicate evidence as “vali-
dated” escapees. Replication means either two or more indi-
viduals or two or more SNPs within one individual, providing
evidence of escape (table 1) (for the set of 33 genes with
prima facie evidence of escape but without replication, see
supplementary table S1, Supplementary Material online).
Allowing for overlap between the methods for replications,
we find that we can replicate 38 of the previously reported
escape genes based on the rodent/human somatic cell hy-
brids assay and the primary human cell line assay (Carrel and
Willard 2005). In addition, we observed a further 76 validated
genes that escape inactivation in B lymphocyte cell lines from
normal individuals (table 1), giving a total of 114 robustly
described escape genes. Of the newly validated escape
genes, 62 were reported not to be escapees in the prior anal-
ysis (rather than simply not studied). Of these, 19 were doubly
replicated in our sample, both by escape being detected in
multiple individuals and through multiple SNPs within one
individual.

Considering instances where we could in principle have
provided additional support for escape (i.e., we have polymor-
phic markers passing transcriptome level quality control),
there are 23 genes at a minimum 7� coverage for which
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prior evidence (Carrel and Willard 2005) suggested escape
from inactivation to some degree that we could not confirm
(here we include our 33 nonreplicated escapees as providing
support). Even if we permit a minimum of 20� coverage to
consider a gene, we still find ten that we fail to replicate. As
coverage increases, so decreasing false-negative calls of hap-
loid expression, there is an approximately constant ratio of
the number of genes whose escape we can confirm to the
number we cannot confirm (with 7� coverage, the ratio of

the number of those we cannot replicate to the number we
can replicate is 0.47, whereas at 50� it is 0.45).

Of our 114 escapees, there are 110 incidences where two
or more individuals across the whole sample show evidence
that a given gene escapes X-inactivation. There are 60 that
escape in at least two different individuals within the CEU
population and 80 genes that escape in at least two different
individuals within the YRI population (fig. 1), a total of 103
different genes with within-population replication. There are

Table 1. The 114 Escape Genes and the Nature of the Replication Evidence.

Genes SNPs Persons Reported Genes SNPs Persons Reported Genes SNPs Persons Reported

ABCB7 Yes Yes Heter HAUS7 No Yes SEPT6 Yes Yes Inactive

AIFM1 No Yes Escape HCFC1 No Yes Heter SH3BGRL No Yes Escape

ALG13 No Yes Heter HDHD1 Yes Yes Escape SH3KBP1 Yes Yes Heter

APEX2 Yes Yes Inactive HUWE1 No Yes Inactive SLC25A43 Yes Yes

APOO No Yes Inactive IDS Yes Yes Inactive SLC25A5 No Yes Inactive

ARHGAP4 No Yes IGBP1 No Yes Inactive SLC38A5 No Yes Inactive

ARMCX3 No Yes Inactive IRAK1 Yes Yes Inactive SMC1A No Yes Heter

ATP6AP1 No Yes Inactive LAMP2 Yes Yes Inactive SNX12 No Yes Inactive

ATP6AP2 Yes Yes Inactive LOC550643 No Yes STS Yes Yes Escape

ATP7A No Yes Heter MAGED1 No Yes SUV39H1 No Yes Inactive

BCOR No Yes Heter MAGED2 Yes Yes Inactive SYN1 No Yes Inactive

BTK Yes Yes Heter MAGEH1 No Yes Inactive TAZ No Yes

CCDC22 No Yes Inactive MAP7D2 No Yes Inactive TBC1D25 No Yes Inactive

CD99L2 Yes Yes Inactive MAP7D3 Yes Yes Inactive TBL1X Yes Yes Heter

CDK16 No Yes Escape MBNL3 No Yes Inactive TCEAL4 No Yes Heter

CTPS2 No Yes Escape MED12 No Yes Inactive TLR7 No Yes

CXORF21 Yes Yes MED14 No Yes Escape TMEM187 Yes Yes Heter

CXORF38 Yes Yes Escape MID1IP1 No Yes Inactive TRAPPC2 No Yes Escape

CXORF40A No Yes Inactive MORF4L2 Yes Yes Heter TSIX Yes Yes

CYBB No Yes MPP1 No Yes Inactive TSR2 No Yes Inactive

DDX26B No Yes Inactive MSL3 Yes Yes Heter TXLNG Yes Yes Escape

DDX3X No Yes Escape MTMR1 No Yes Inactive UBA1 Yes Yes Escape

DKC1 No Yes Inactive NSDHL No Yes Inactive UBL4A Yes Yes Inactive

DMD Yes Yes Inactive P2RY10 No Yes USP9X Yes Yes Escape

DNASE1L1 Yes Yes Inactive PDHA1 Yes Yes Inactive UTP14A No Yes Heter

DOCK11 No Yes Heter PDK3 Yes No Inactive VBP1 Yes Yes Inactive

EBP No Yes Inactive PGK1 No Yes Inactive WWC3 Yes Yes Inactive

EDA2R No Yes Heter PIM2 No Yes Inactive XIAP No Yes Inactive

EIF1AX No Yes Escape PIN4 No Yes Heter XIST No Yes Escape

EIF2S3 Yes Yes Escape PIR Yes Yes Escape ZC4H2 No Yes Inactive

ELF4 Yes Yes PJA1 No Yes Inactive ZFX Yes Yes Escape

ELK1 No Yes Inactive PLXNA3 Yes No Inactive ZMYM3 No Yes Inactive

FAM3A No Yes Inactive PQBP1 No Yes Inactive ZNF275 Yes Yes Inactive

FLNA Yes Yes Inactive PRKX Yes Yes Heter ZNF75D Yes No Inactive

FTSJ1 No Yes Inactive RBM3 Yes Yes Inactive

G6PD Yes Yes Inactive RENBP Yes Yes Heter

GDI1 No Yes RNF113A No Yes Inactive

GEMIN8 No Yes Escape RPL10 Yes No Inactive

GPR174 No Yes SASH3 No Yes Inactive

GRIPAP1 No Yes Inactive SAT1 No Yes Inactive

NOTE.—The SNP column indicates whether genes have multi-SNPs within one individual that all support the hypothesis of X-inactivation escape. The Persons column indicates
whether genes have replication by being identified as escaping in multiple individuals. The Reported column indicates the reported state in previously reported rodent/human
somatic cells (Carrel and Willard 2005). Escape genes are those that escape X-inactivation in all females tested; Heter are heterogeneous genes, i.e., genes that exhibit XCI in some,
but not all, females assayed. For the cases with “No” in persons column, all of them are able to attempt verification. So, here No indicates that these cases are potentially able to
be replicated but actually not supported.
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in total 45 genes confirmed heterozygous with multiple
SNPs (see table 1) of which 27 were previously not known
to escape X-inactivation and 41 of which are confirmed by
between-individual replication as well. A few (three in CEU
and four in YRI) of the replicated 114 genes contain hetero-
zygosity with most, but not all, of the sites being consistent
across several individuals. We considered these as replicated
as 1) most sites were consistent and 2) as noted above, a lack
of evidence for consistency of heterozygosity within a gene is
not unexpected as it could reflect either SNPs having differ-
ent coverage (in some individuals some potentially hetero-
zygous sites could then not be interrogated) or owing to
some falling below the 10% threshold that we set, in which
case they would still be called homozygous.

Genes Newly Identified to Escaping X-Inactivation
Cluster in Known Domains of Escape

The previously described escapees tend to be distant from the
X-inactivation centre. The same is seen with the new

inventory of escapees, in which we also see that escapees
defined within each population locate to the same regions
of the X chromosome (fig. 1), with the majority of escape
genes being located in the short arm and the distal portion of
the long arm of the X chromosome (region of PAR2). This is
consistent with the previously reported control of chromatin
domains in human X-inactivation (Tsuchiya et al. 2004; Carrel
and Willard 2005; Yang et al. 2010) and with the related claim
(Lahn and Page 1999) that escape genes are more common in
the relatively recently added strata of the X chromosome
(strata 3–5) compared with the more ancient strata
(S1 and S2) (�2 test, P = 0.02; strata data from Kelkar et al.
[2009]). S1, the most ancient stratum, dominates the long
arm of the X and has the lowest proportion of genes escaping
X-inactivation. For a frequency plot of escapees by strata, see
supplementary figure S1, Supplementary Material online. The
difference in escape regularity between the short and long
arms of the X chromosome is not obviously explained as an
artifact of expression level, read coverage, or density of
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Xic domain.
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heterozygous sites, as there is no significant difference be-
tween genes on two arms of the X, neither in expression
level (Mann–Whitney U test, P = 0.3779), coverage at poly-
morphic sites (Mann–Whitney U test, P = 0.120), nor in den-
sity of heterozygous sites (229/391 in short arm vs. 363/619 in
long arm).

There may also be a small cluster of genes escaping inac-
tivation in the immediate vicinity of Xic (fig. 1). This cluster is
visible only in the YRI population but this population has a
greater extent of DNA heterozygosity, making it easier to
identify escape genes. If this cluster is real, it is associated
with few genes and, controlling for the degree of heterozygo-
sis, there is no significant difference between the two popu-
lations. However, a similar cluster of escape was observed in
prior analysis (Carrel and Willard 2005). The possibility that
Xist may have weaker effects in the immediate vicinity of the
X-inactivation center Xic (chrX: 65,000,000–80,000,000) (fig. 1)
is, we suggest, worthy of deeper scrutiny. As regard the issues
of sites in the vicinity of Xic, there is no significant expression
difference between genes closer to Xic and those on the short
arm (Mann–Whitney U test, P = 0.6558). Read coverage also
shows no difference in this region (Mann–Whitney U test,
P = 0.676).

Genes Escaping X-Inactivation Are Commonly Related
to Mental Impairment

It is notable that many X chromosome ploidy alterations
(including XXY and XXX, XXXX, XXXXX) are associated
with learning impairments (Rooman et al. 2002). Indeed,
this may be the only consistent feature of polyX karyotypes
(Rooman et al. 2002). As typically all but one X is inactivated,
the phenotype of X polysomies is often thought to reflect the
action of genes that escape X-inactivation. Do we find any
evidence that genes escaping inactivation are commonly
associated with mental retardation?

We can define X-linked mental retardation (XLMR) or in-
tellectual disability (ID) genes as those genes, mutation within
which are associated with disturbance of normal intellectual
functioning (Gecz et al. 2009; Stevenson and Schwartz 2009).
A list of such genes is available from Greenwood Genetic
Centre (Gecz et al. 2009). Among the 114 replicated
escape genes, there are 22 genes (supplementary table S2,
Supplementary Material online) involved in the diseases of
XLMR or ID. There are 833 examinable genes covered with
reads, including 91 XLMR/ID genes and 114 escapees. To de-
termine whether 22 is significantly greater than expected, we
randomly selected 114 of 833 and recorded how often the
number of XLMR genes found is �22. The observed number
is indeed more than expected by chance (P = 0.0025, from
10,000 simulants). These 22 genes would be good candidates
for further analysis in this context, as impaired intellectual
functioning may reflect higher dosage of these genes. There
is considerable between-individual variation in the number of
XLMR escape genes (supplementary fig. S2, Supplementary
Material online). It would be instructive to know whether this
variation correlates with any mental functioning parameters
in XX females as well as polyX subjects.

A common, but not universal, phenotype of X polysomies
is an effect on stature, typically manifested as rapid growth
(Rooman et al. 2002). In no small part this is owing to overex-
pression of the pseudoautosomal gene SHOX (Rao et al. 1997).
Linkage analysis has suggested, however, that Xq24 might also
harbor such stature genes (Deng et al. 2002; Liu et al. 2004).
This has been replicated in some (Liu et al. 2006) but not all
(Visscher et al. 2007) studies. We find 6 of the 50 genes that
reside within Xq24 escape X-inactivation (these being LAMP2,
SLC25A5, DOCK11, RNF113A, SEPT6, and SLC25A43). This is
no more than expected by chance (randomization test, as
above, P> 0.05). Text mining for any association with growth
phenotypes (via http://diseases.jensenlab.org/Search) suggests
no evident connections.

The Profile of Escape Differs between CEU and YRI

In this study, we find a total of 66 genes that escape
X-inactivation in both the CEU and YRI populations, includ-
ing several well-known escape genes (HDHD1, STS, ZFX,
EIF2S3, CXorf38, DDX3X). However, we are especially inter-
ested in the differences between populations rather than
the common escape genes of the two populations. Table 2
presents all of the replicated escapee genes that are genetically
polymorphic in both the populations and hence potentially
identifiable as escapees, as well as the escape status of these
genes.

We address whether there are differences between the
populations by a randomization test (see Materials and
Methods). The answer to the question as to whether the
difference in the profiles is due to chance is unambiguous:
the two groups of populations are considerably different (ob-
served �2 = 196.56, expected = 119.94 ± 16.07 [SD]; from ran-
domization P< 0.0001). This is unlikely to be an artifact of
coverage differences between the two populations as the
coverage is not significantly different between the two
(Mann–Whitney U test, P = 0.37). Moreover, if we exclude
from analysis any heterozygous sites with a less than 10�
coverage, so giving more confidence in calling a lack of
escape but also identifying fewer escaping genes, we still ob-
serve a significant difference between the populations (ran-
domization test described in Materials and Methods,
P = 0.016). P value is reduced not least because the sample
size is reduced. At this cutoff, 82 genes in CEU and 90 genes in
YRI are retained as escapees. Using only single-end data rather
than single-end and paired-end data also makes no difference
to the conclusion of between-population differences (ran-
domization test described in Materials and Methods,
P = 0.006). A difference in the profile of escape can be both
because the genes escaping in the two populations are differ-
ent and because the proportions of individuals showing
escape for a given gene are different.

Analysis of Which Genes Are Variable in Their
Propensity for Escape Is of Low Power

The analysis considering all genes en mass demonstrates strik-
ing variation between the populations. But can we identify
which genes are different between the two populations?
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Regarding the individual genes, we identified a number of
cases with significant differences between the two groups
(table 3 and supplementary fig. S3, Supplementary Material
online). Owing to the different numbers of informative indi-
viduals for each gene, the P values for each gene are not
strictly comparable. Importantly, with low sample sizes (few
heterozygous individuals), P can never be very low. As the
sample size varies between genes, the usual consideration of
how to estimate the true number of significant instances, by
examination of the form of the distribution of 1� P versus
rank order (Lai 2007), is not valid. As such we consider those
that are significant as candidates for genes showing differ-
ences between populations, but this would require experi-
mental confirmation, not least because no incidence passes
multi-test correction.

Despite the above caveats, there is one potentially notable
observation. In all examples of a potential difference between
the two populations (at P< 0.05), the prevalence of escape is
higher in CEU than in YRI. This remains true if we consider
also incidences where P lies between 0.05 and 0.1. This, how-
ever, is likely to be an artifact of higher diversity in YRI which
leads to more potentially informative samples (heterozygous
at the DNA level). In the samples where we detect a differ-
ence, the mean sample size in YRI is around 20 and around 10
in CEU. If we consider a case where 4/10 are escapees in CEU
and 2/20 are escapees in YRI (around the average that we
observe in the cases of significant difference) and compare
this with the symmetrical case (1/10 in CEU and 8/20 in YRI),
it is indeed the case that the �2 values are higher for the
former case (�2 = 3.75) than in the symmetrical case
(�2 = 2.85). Thus, with the sorts of sample sizes and the
sorts of ratios of escape to non-escape that we are looking
at, we might expect to see more significant examples when
the higher proportion of escapees is seen in the population
with the lower number of informative examples.

Although we cannot be confident in having identified
genes that show between-population within-species differ-
ences, it is worth asking whether there might be any com-
monality of those that are potentially different. On the X
chromosome, the six genes that have significant escape var-
iation (P< 0.05) are not clustered together (supplementary
fig. S3, Supplementary Material online). Some of their neigh-
boring genes with escape from X-inactivation do not have an
escape profile showing significant differences between the
two populations. This result might suggest that the be-
tween-population divergence, in regard to X-inactivation
escape, is not owing to chromatin domain regulation. It
could also mean, however, that owing to statistical limita-
tions, we have incorrectly classified genes as to whether
they differ in the escape propensity between different
populations.

Evidence for Between-Individual Differences

The above data suggest that the two populations differ in
their propensity to permit escape from X-inactivation. But
might there also be females that are more or less prone to
permitting escape? To address this, we can ask how often anT
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individual has escape genes at potentially informative genes.
To this end we calculated how many genes show escape and
how many potential informative genes that could be hetero-
zygous, but not show transcriptome level heterozygosity, and
compared each individual with the total of others by the
�2-like test through simulation (see Materials and
Methods). Of the 77 individuals, 5 in CEU and 8 in YRI
show more escape than expected by chance, what we term
hyper-escapee females (P< 0.05) (table 4). After Holm’s cor-
rection, four in CEU and one in YRI remain as hyper-escapees.
This is consistent with the notion that even within popula-
tions individuals differ in their propensity to allow genes to
escape inactivation (Carrel and Willard 2005). If we look only
at these 13 individuals (significant before Holm’s correction),
we still detect the significant differences between the two
populations (from randomization, P = 0.028). As before, this
can be both because the genes escaping in the two popula-
tions are different and because the proportions of individuals
showing escape for a given gene are different. In addition, we
find evidence for five and six hypo-escapee females, in CEU
and YRI, respectively, but only one (in YRI) is significant after
multi-test correction (Holm’s correction). Taken together,
these results suggest that there are both between-individual
and between-population differences in the propensity to
escape.

Although these results prima facie suggest that 6–17% of
females are hyper-escapees and 1–14% are hypo-escapees,
this analysis comes with a caveat. As the individuals differ
as regards which genes are potentially informative (heterozy-
gous at the DNA level) and genes differ as regards their
propensity to escape inactivation, some of the

between-individual heterogeneity may reflect differences in
the set of informative genes rather than escape tendencies per
se. However, if for each person we consider only those genes
that are informative in other individuals, five and one inci-
dences of hyper- and hypo-escape are still evident after
Holm’s correction.

No Evidence That Permanently Escaping Genes Evolve
Slowly

It has been reported that genes that always escape X-inacti-
vation are under stronger purifying selection than either
those that sometimes escape and those that never escape
(Park et al. 2010), this being reflected in significantly lower
Ka/Ks values. This was interpreted as possibly being due to
differences in dominance. However, the group with the high-
est Ka/Ks were those that sometimes escape. A priori, all else
being equal, from dominance arguments one would expect
this class to sit between the extremes of those never and
always escaping. Moreover, if most mutations are recessive,
we might have expected that genes that never escape should
be the ones under the stronger purifying selection as they are
haploid expressed. With our new compendium of genes with
replicated evidence for escape from X-inactivation, we can
add to the prior data set to define new groupings of genes to
examine the robustness of the prior claim.

The new merged data set comprises 446 genes (supple-
mentary table S3, Supplementary Material online). We find
evidence for heterogeneity between the three classes in Ka/Ks

(Kruskall–Wallis test: P = 0.016). However, unlike what was
previously described, when comparing between the different
classes, the only robust result is that the heterogeneous group
has a higher Ka/Ks than either those that always escape or
those that never escape (fig. 2). Eliminating any genes for
which Ka/Ks> 1 does not affect these conclusions and if any-
thing makes the results more robust (Kruskal–Wallis test,
P = 0.010; P for comparison of heterogeneous to inac-
tive = 0.013, comparing heterogenous to escape = 0.019, and
escape to inactive = 0.37). We thus cannot replicate the prior
result that those genes that always escape have unusually low
Ka/Ks. Genes that are heterogenous in expression appear to
have higher Ka/Ks ratios.

Our data set requiring a minimum 7� coverage can legit-
imately report a new incidence of escape but may have a
false-negative problem, i.e., genes that really do escape are
categorized as not escaping just because coverage at the rel-
evant heterozygous sites was not high enough to detect the
rarely expressed allele. In this context, we would have forced
some genes into the “sometimes escape” class when they
should be in the “always escape” class. However, considering
genes that ever escape X-inactivation as a single class (the
union of sometimes and always, for which there should be no
classification issue), there is no evidence that these evolve any
slower than those that never escape (Mann–Whitney U test,
P = 0.11) with those escaping having the higher median rate
(Ka/Ks = 0.15 for genes that never escape and 0.22 for those
that always or sometimes escape). Moreover, if the slow evo-
lution of genes that always escape is real, then by miscalling

Table 3. Genes That Potentially Show Differences between the Two
Populations in Escape Profile.

Gene CEU YRI P Value

USP9X 4/14 0/34 0.00729

ATP6AP1 3/5 1/23 0.02046

MPP1 3/8 0/20 0.02228

SASH3 7/13 5/35 0.02229

TBL1X 4/17 0/21 0.03858

HUWE1 3/16 0/29 0.04549

MORF4L2 4/13 0/14 0.05364

CXorf21 7/9 3/14 0.05575

LOC550643 2/9 0/28 0.05874

LAMP2 3/12 1/33 0.06052

SMC1A 6/13 3/24 0.07425

VBP1 4/12 1/19 0.07787

SLC38A5 2/4 2/26 0.08774

BCOR 3/6 1/13 0.09626

SLC25A5 3/12 0/14 0.09837

CA5BP1 1/2 0/18 0.09976

NOTE.—The fractions in the CEU and YRI columns indicate the proportion of indi-
viduals with the gene escaping X-inactivation. The numerator is the number of
escape samples, and the denominator is the number of heterozygous individuals
at the DNA level. The differences between CEU and YRI were compared, and the P
values were calculated (here, only genes with P< 0.1 are shown, and those with
P< 0.05 are shown above the line). P values are from the randomization test as
described in Materials and Methods.
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some genes as being haploid expressed when before they
were considered to be escapees, we would have moved
slow evolving genes from the always escape class into the
sometimes escape class. This bias would make it less likely
that we would have obtained the result that the sometimes
escape class are the fastest evolving. Were the sample of genes
that were reclassified the faster evolving genes within the
always escape class (possibly because they are low coverage
hence lowly expressed and fast evolving), then this should
have acted to exaggerate the slow evolution of the always
escape class.

Our analysis and the prior one have a potential major
artifact problem. While Park et al. (2010) compared genes
that appear to show dosage compensation and those that
do not, there was no quantitative control for differences in
absolute expression level, the strongest predictor of rates of
evolution (Pal et al. 2001; Drummond et al. 2006). If we allow
for this covariate, can we recover any differences between the
three classes? To address this, we reconsidered the merged
data and obtained expression data from Su et al. (2004)
where available (see Materials and Methods). This resulted
in a data set of 262 genes (supplementary table S3,

Table 4. Females Differ in Their Propensity to Allow Genes to Escape Inactivation.

CEU YRI

ID Escape P Value Holm’s ID Escape P Value Holm’s

NA06985 3:32 0.018 0.522 NA18499 13:9 0.254 1

NA07000 0:26 0.006 0.192 NA18502 6:16 0.327 1

NA07037 3:13 0.495 1 NA18505 41:6 9.9e-6 3.7e-4

NA07055 6:19 0.598 1 NA18508 15:8 0.105 1

NA07056 7:20 0.728 1 NA18511 10:17 0.669 1

NA07345 39:5 9.9e-6 3.7e-4 NA18517 13:32 0.158 1

NA07346 1:11 0.194 1 NA18520 3:12 0.231 1

NA11830 31:16 9.9e-6 3.7e-4 NA18523 3:8 0.509 1

NA11832 8:16 0.852 1 NA18852 18:6 0.016 0.512

NA11840 12:19 0.511 1 NA18855 22:15 0.123 1

NA11882 2:26 0.023 0.644 NA18858 19:9 0.052 1

NA11894 1:3 1 1 NA18861 3:28 0.005 0.185

NA11918 1:6 0.54 1 NA18870 7:23 0.113 1

NA11920 2:17 0.138 1 NA18909 27:12 0.013 0.442

NA11931 4:28 0.071 1 NA18912 22:10 0.025 0.775

NA11993 5:30 0.088 1 NA18916 4:15 0.15 1

NA11995 6:9 0.621 1 NA19093 19:21 0.712 1

NA12004 18:3 9.9e-6 3.7e-4 NA19099 12:22 0.522 1

NA12006 3:33 0.014 0.42 NA19102 2:17 0.029 0.812

NA12044 4:19 0.27 1 NA19108 23:6 0.003 0.114

NA12057 6:27 0.201 1 NA19114 11:10 0.618 1

NA12145 9:24 0.75 1 NA19116 23:11 0.032 0.864

NA12156 11:4 0.008 0.248 NA19127 6:22 0.106 1

NA12234 9:12 0.305 1 NA19131 9:24 0.183 1

NA12249 4:16 0.421 1 NA19137 10:12 0.869 1

NA12287 3:15 0.298 1 NA19140 12:16 1 1

NA12489 0:13 0.064 1 NA19143 17:16 0.499 1

NA12717 6:15 1 1 NA19147 7:21 0.19 1

NA12751 5:20 0.372 1 NA19152 6:33 0.008 0.288

NA12761 4:8 1 1 NA19159 2:19 0.027 0.81

NA12763 2:13 0.252 1 NA19172 7:23 0.12 1

NA12776 7:19 0.858 1 NA19190 5:20 0.093 1

NA12813 31:3 9.9e-6 3.7e-4 NA19193 7:14 0.611 1

NA12815 13:25 0.767 1 NA19201 1:31 0.001 0.039

NA12828 5:14 0.837 1 NA19204 3:24 0.011 0.385

NA12873 2:15 0.19 1 NA19209 7:25 0.073 1

NA12892 0:23 0.005 0.165 NA19222 22:10 0.028 0.812

NA19225 14:13 0.551 1

NA19238 19:12 0.121 1

NA19257 22:8 0.013 0.442

NOTE.—In the escape column, there are two numbers N:M. N is the number of escape genes and M is the number of the other potentially informative genes that show no
evidence of escape. Significance after Holm’s correction is marked in red and blue, red for hyper-escape and blue for hypo-escape.
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Supplementary Material online). For each gene with expres-
sion data, we calculated the mean expression level across
tissues. As expected, median expression rate is a predictor
of Ka/Ks (Spearman correlation, �=�0.15, P = 0.017).
However, the three gene classes show no evidence of differing
in their median expression level (Kruskall Wallis test, P = 0.57).
In the smaller sample set for which expression data are avail-
able, the Kruskall–Wallis statistic, comparing Ka/Ks values be-
tween genes belonging to different X-inactivation status
classes, remains significant (P = 0.03). However, after control
for expression level (by considering the residuals from the
loess regression of Ka/Ks against log[expression level]), the
Kuskall–Wallis test is marginally weaker and nonsignificant
(P = 0.071). This result, however, is sensitive to the exclusion of
genes with Ka/Ks> 1 (P = 0.018).

Discussion
Our analysis increases by approximately 50% the number of
genes showing evidence of escaping X-inactivation in
humans. These escapees cluster with others in the domains
thought to be relatively protected from the spreading of XIST.
Consistent with a common finding of mental impairment in
polyX individuals, there is an excess of genes associated with
mental impairment among the escapees. We also found ev-
idence for between-individual and between-population dif-
ferences in the propensity to permit escape. This is consistent
with the observation that polyX karyotype bearers are highly
heterogeneous in presentation (Rooman et al. 2002).

The true extent of variation in escape from X-inactivation
is likely to be greater than that witnessed here. For example,
while we examined one high-resolution high-quality data set
from one cell lineage, variation between tissues/cells within an
individual (Lopes et al. 2010; Berletch et al. 2011) may also be
relevant. Assuming the variation to be real, it is not unex-
pected that we both find new candidates and fail to replicate
a few prior instances (even though we had informative sam-
ples). Indeed, it is striking that we report 62 new examples of
escape, where the prior effort had information but found no
evidence of escape, and only 23 examples where we could not
replicate escape.

Given the ability of RNA-Seq to falsely report haploid ex-
pression (DeVeale et al. 2012), false-negative calls of haploid
expression must be considered an alternative explanation for
our inability to replicate some instances of escape. Similarly, as
false inference of haploid expression is increasing unlikely as
coverage/expression level goes up, so too we might expect
that genes with haploid expression might be skewed toward
the low coverage end. Indeed, the coverage of genes whose
escape we can replicate (N = 38) is higher than that of genes
whose escape we could not replicate (N = 23) (Mann–
Whitney U test, P< 0.001). Although consistent with some
of the failure to replicate being an artifact of low coverage, the
same result is consistent with lower expression level owing to
haploid expression. Arguing against the latter is the evidence
that the genes that appear to be haploid expressed are, when
analyzed across multiple tissues, no different in median ex-
pression level than those presenting evidence of escape. Some
of the inability to replicate prior evidence for escape appears
relatively solid as many genes appear to be haploid expressed
even with >50� coverage.

While RNA-Seq artifacts (DeVeale et al. 2012) are less likely
to lead to false positives, can we be confident that we have
not overinterpreted the data? Our method to infer escape
from X-inactivation via heterozygosity could be misleading or
detecting something other than escape from X-inactivation.
We showed (see Materials and Methods) that mapping errors
appear not to be a serious issue with very few cases of X-linked
“heterozygosity” seen in males and few instances of there
being more than three alleles detected in any given female-
derived cell line (and these potentially misleading SNPs being
removed from analysis). However, as the analysis is done en
mass (not at the single cell level), it might be that our infer-
ence of escape from X-inactivation is wrong.

A key possibility is that each cell in a given cell culture is
not uniformly inactivating the same X chromosome (intra-
cell lineage heterogeneity). While eliminating SNPs at lower
than 10% frequency will eliminate any instances where there
is rare cell lineage heterogeneity, could it be that some higher
proportion of cells, at least in some samples, are inactivating
the paternally derived X but the remaining cells are inactivat-
ing the maternal X? In principle, this could lead us to
misclassify intra-lineage heterogeneity for escape from
X-inactivation. This is a priori unlikely, not least because the
silencing of X-linked genes is achieved during early embryo-
genesis (Brown et al. 1991; Heard and Disteche 2006), so in a
given cell line we would expect only one X to be active. More

FIG. 2. Ka/Ks ratios of genes in the three X-inactivation classes in the
merged data set. P values indicate significance on pairwise Mann–
Whitney U tests. There are 35 that always escape, 206 always inactivated,
and 205 heterogeneous (N = 446). Evolutionary rates are from the
human–macaque orthologous genes with numbers taken from
Ensembl or from Park et al. (2010). Outliners are not shown.
Transverse lines indicate the median value.
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importantly, the possibility of intra-cell lineage heterogeneity
in the filtered data is strongly rejected on three counts. First, if
a cell line is heterogeneous for which X chromosome is inac-
tivated, we should expect that all, or nearly all, genomically
heterozygous genes should show evidence of escape by our
method. This we never observe (see fig. 3). Second, and re-
lated, were any cell lines heterogeneous, we would not expect
to be unable to “replicate” all prior examples of escape. Third,
were there heterogeneity for which X to inactivate in the cell
population, we should detect escape genes all along the chro-
mosome and not in proximity to known escapees. In contrast
to this expectation, the great majority of our escapees map to
the same genomic locations, ones known previously to harbor
escapees and in evolutionarily modern strata, where escape is
expected (Lahn and Page 1999). As we noted, several more
cluster around Xic, a cluster hinted at before. For the above
reasons, we can confidently reject the possibility of false at-
tribution of escape owing to intra-cell lineage heterogeneity.

We note that our evidence for escape does not preclude
the possibility that the genes are haploid expressed in any
given cell. It is possible that our escape genes are subject to
allelic exclusion, permitting haploid expression in any given
cell, but with the two alleles being each expressed in different
cells within the cell lineage: some of the time the paternally
derived allele is expressed, sometimes the maternally derived
one, but not necessarily both in any given cell, at any given
time. In this instance, the genes escape X-inactivation, in the
sense that in some cells the genes are not subject to the usual
inactivation that affects the rest of the chromosome. As
these genes, although haploid expressed, are not subject to
X-inactivation, we consider them a bona fide possible in-
stance of escape. We note, however, that the inference of
escape (in this and prior en mass analyses) need not imply
diploid expression in any given cell. We suggest that single cell
transcriptomics would be a sensible follow-up analysis, both

FIG. 3. Location of escape genes and haploid expressed genes on the X chromosome of one individual of CEU (NA12004) and YRI (NA18511). Genes
marked as a “potential site” are those where there is exonic heterozygozity at the DNA level and transcripts that pass the coverage threshold but that do
not show evidence of escape (i.e., no evidence of biallelic expression). Those marked in blue/red show evidence of escape. The sum height of the colored
bar indicates the net read depth summing over both alleles. The proportion of blue to red indicates the proportion of expression from the inactive X
chromosome (blue) and the active X chromosome (we always presume the minority allele is from the inactive X chromosome). The data for the pattern
of escape from the remaining individuals are shown in supplementary figure S5, Supplementary Material online.
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to confirm our findings and to resolve whether escapees are
subject to mono- or bi-allelic expression within any given cell.

That the prior finding of strong purifying selection on
genes that always escape X-inactivation (Park et al. 2010) is
not robust to addition of one set of extra data (and that from
potentially more “natural” cell lines rather than inter-specific
hybrids) leads us to suggest that it is better to withhold firm
statements about the mode of evolution of genes in the three
classes until more cell types are sampled. We do not wish to
conclude that genes in the heterogeneous class are under
weaker purifying selection, just that with the limited data
available this is currently the best tentative conclusion. That
the between-class heterogeneity is possibly sensitive to con-
trol for gene expression level provides further reason to be
cautious in interpretation. We do wish to suggest that the
prior claims (Park et al. 2010) for especially strong purifying
selection on genes that always escape X-inactivation, and the
concomitant interpretation of this in terms of dominance,
should not be considered as robust. Given too that the some-
times escape class are not intermediate in their evolutionary
rate between the always and never class (in neither the orig-
inal nor this subsequent analysis) suggests that a simple in-
terpretation in terms of dominance is not immediately
attractive. The difference between the rate of evolution of
genes that sometimes escape and those that always escape
is unlikely to be owing to masking by Y-linked homologs as for
both cases the presence of a Y-linked homolog is equally
unlikely (supplementary table S4, Supplementary Material
online). Y linked homologs are considerably more common
for genes that always escape X-inactivation (supplementary
table S4, Supplementary Material online).

If the genes that sometimes escape are those fastest evolv-
ing why might this be? Here we can only conjecture. Given
that escape genes are strong candidates for sex-biased genes
(Ellegren and Parsch 2007) and given faster evolution of sex-
biased genes, differential strengths of purifying selection or
positive selection associated with differential involvement in
sex-biased expression would be a possibility worthy of future
scrutiny. A further quandary is why it is that the X-inactiva-
tion status can be variable within a species but classes of gene
appear to have characteristic evolutionary rates between spe-
cies. One possibility is that the classificatory status (always
escape, never escape, and sometimes escape) is relatively well
conserved. Park et al. (2010) assert from unpublished work
that X-inactivation status is conserved across primates. With
cross-species data on X-inactivation status, this suggestion
can be scrutinized further.

Materials and Methods

Data Collection

We used data generated by RNA sequencing of immortalized
B-cells obtained from CEU and YRI individuals (Cheung et al.
2010). The RNA sequencing data were downloaded from the
NCBI GEO database (Barrett et al. 2009) (CEU: GSE16921 and
GSE25030, YRI: GSE19480). We used all of female individuals
in the CEU and YRI data sets and randomly chose males
as controls. Single-end sequencing data of GSE16921 and

paired-end sequencing data of GSE25030 were aligned to
the genome, and mapped files were combined to identify
genes that escape inactivation. Samples NA10847 and
NA12414 in GSE25030 were removed because the genotypes
of these individuals were not available in the published ver-
sion of dbSNP provided by the HapMap project. Gene and
exon annotation data were obtained from the UCSC anno-
tation database (hg19, GRCh37).

Coverage Analysis

We used the program BEDtools (Quinlan and Hall 2010) to
calculate the genome-wide alignment coverage.

Mapping of the Reads to the Reference Genomes

Reads were mapped to the reference chromosomes sequence
(build hg19) using Tophat (Trapnell et al. 2009). The retrieved
reads were split so that they could be mapped against a col-
lection of splice junctions, by which the RNA sequencing data
can effectively be managed. We used the default settings of
Tophat to analyze reads produced by the Illumina Genome
Analyzer. These settings allowed no more than two mis-
matches on the high-quality (left) end of the reads with a
sum of the Phred quality values at all mismatch positions not
exceeding 70.

Heterozygous Allele Calling and Identification

We used the program SAMTOOLS (Li et al. 2009), which uses
Bayesian inference to detect SNP sites in one individual. All
possible bialleles at variant sites according to the reference
genome were collected, whereas heterozygous sites with a
QUAL value of 20 or less (Phred quality of sequencing) and
a mapped depth of 6 or less were excluded from
consideration.

Regarding the nonuniformity of single-end reads with dif-
ferent biases on the 50- and 30-end of fragments, we consid-
ered the regions in which the reads mapped to both the
forward and reverse strands to improve the accuracy of the
fragment tail determined by sequencing. The called biallelic
sites that appeared only at the tail of reads and with reads
mapped against only a forward or reverse strand were re-
moved because this variant site may have been produced
due to sequencing error. To improve the confidence of the
heterozygosis identification, genotype data published by the
International HapMap Project were used as a reference.

Strategy and Quality Control

As X-inactivation occurs early in embryogenesis (Brown et al.
1991; Heard and Disteche 2006), all cells from a given cell line
derived from a postpartum subject should express only one of
two alleles. This should be true regardless of whether the cell
line has one or multiple founding cells, so long as all founding
cells belong to the same lineage and the time to common
ancestry of cells within that lineage is post the time of
X-inactivation determination. Heterozygosity of X-linked
markers in the transcriptome of a cell line is thus a possible
indication of escape from X-inactivation. To identify genes
that express both the maternal and paternal X chromosomes,
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we used high-throughput RNA sequencing data from normal
female individuals in the CEU and YRI groups (see Materials
and Methods). RNA sequencing reads were mapped against
human reference genomes. The mapped reads reflected the
status of expression (Wang et al. 2009). Expression from both
alleles at an X-linked locus was evidenced from validated SNP
sites in the mapped reads. Homozygosity in the transcrip-
tome of genes heterozygous at the DNA level we define as
genes lacking evidence for escape from X-inactivation.
However, these genes could also be imprinted or subject to
allelic exclusion, these both being forms of haploid expression
that need not be mechanistically coupled to X-inactivation.

Although the approach is in principle straightforward, the
sequencing fold-coverage and breadth-of-coverage can, how-
ever, influence the reliability and apparent extent of biallelic
expression in our data. To minimize noise, information from
regions with an insufficient coverage of mapped reads should
be omitted. To this end, we calculated the coverage of the
mapped reads based on the exons of all genes on the X
chromosome (supplementary fig. S4, Supplementary
Material online). The coverage of the mapped reads in YRI
was slightly less than that in CEU (but not significantly so),
which could impede observation of the most informative sites
in YRI. However, the normalized abundance of the X chro-
mosome and autosomes did not show a significant bias. The
prior NGS study in mice (Yang et al. 2010) considered
5� coverage an adequate minimum to call escape from
X-inactivation. We prefer that 7� or greater depth of cover-
age is the minimum level sufficient to find transcript level
heterozygosis in our study, as, if a biallelic site is expressing
equally from both alleles, then 7� coverage is adequate to
incorrectly infer a lack of biallelic expression less than 5% of
the time. Regions with lower coverage were excluded.

To avoid the identification of false-positive heterozygosis
with low numbers of silenced alleles (potentially owing to cell
line heterogeneity with a rare cell lineage having the opposite
X-inactivation profile or owing to sequencing artifact), we
required at least a 10% ratio of rare transcript variant versus
common transcript variant, this being a previously employed
threshold used to identify escape genes in humans (Carrel
and Willard 2005). Note that rare/common here refers to the
frequency of the alleles in the transcriptome of an individual
not within the population. Although by this definition we
exclude leaky or artifactual signals of heterozygosity, we
may in turn incorrectly increase the number non-escapees
(false negatives).

The variant sites in CEU and YRI obtained from dbSNP134
published by the International HapMap Project (Altshuler
et al. 2010) were used as the validated variant sites to identify
our heterozygous sites detected in mapped reads based on
sequencing. A total of 73,792 and 89,732 X-linked SNP sites
were detected in the CEU and YRI, respectively. Of these
21,087 SNPs and 26,413 are SNPs inside genes in CEU and
YRI, respectively (31.24 and 37.41 SNPs per gene). However,
most of these are intronic and hence of no utility for detec-
tion of escape from X-inactivation. Of the 1,001 X-linked
genes (which include 823 known human protein-coding
genes and 178 non-protein-coding genes [Hsu et al. 2006]),

675 and 706 X-linked genes identified in CEU and YRI, respec-
tively, were considered to be potentially informative contain-
ing at least one well resolved exonic SNP in our sample.

Quality Control of Data: Mapping Errors are Rare

Before considering the derivation of genes potentially subject
to escape from X-inactivation, as evidenced by heterozygosity
in RNA-Seq samples, we investigate the quality of the data.
Even with the quality control that we impose mapping errors
may yet be an issue. This could be acute in the case of missing
duplicate genes. Imagine we focus on an X-linked gene.
Imagine too that this X-linked gene has, at least in some
individuals, a paralog elsewhere in the genome but that this
paralog does not feature in the reference genome. Under this
circumstance, we would be forced to map the transcript from
the non-focal gene back to the focal gene. If the two dupli-
cates are allelically different, then we might incorrectly infer
escape from X-inactivation. Ensuring that we employ only
well-described SNPs from HapMap for the focal genes
should mitigate this problem to a large degree (any random
mutation in the non-focal gene we would not consider as
evidence for heterozygosity) but need not necessarily elimi-
nate it entirely. This could be considered one specific mani-
festation of the more general problem of incorrect mapping
of RNA-Seq reads to the genome.

We can examine this problem by employing expression in
male-derived cell lines as a negative control. If incorrect map-
ping is the issue and both the focal X-linked gene and the
non-focal gene are expressed in males, then males too should
appear “heterozygous” on the X chromosome. We detect very
few instances (three polymorphic sites in CEU and two in YRI)
of heterozygosity for X-linked genes in males suggesting that
our female sample is largely free of mapping error. These sites
are found in genes STS, FTX, PLXNA3, CXorf4B, and MTMR1.
STS PLXNA3 and MTMR1 appeared in both of CEU and YRI
and CXorf40B appeared only in YRI. Only one site shows
heterozygosis in each of five males. This is most likely to be
a mapping error possibly resulting from reads being derived
from the undescribed areas or CNVs.

Note too that the presence of these heterozygous X-linked
genes in males need not imply a mapping issue. It could be
the case that there is one X-linked gene that within the cell
culture has mutated and is polymorphic for a previously iden-
tified SNP (although this is unlikely to explain repeated het-
erozygosity). As the RNA-Seq data are from cell cultures en
mass (not at the single cell), we therefore expect some low
residual rate of mutationally derived heterozygosity. We re-
moved from further analysis the sites that are heterozygous in
males and could have misled analysis in females.

The robust nature of the evidence is confirmed by a further
negative control. If mapping is a real problem, we should also
detect X-linked loci in females with three or more alleles. We
detect only 26 sites in 285 genes from 37 CEU females and
only 14 sites in 510 genes from 40 YRI females with more than
two alleles in a given female per X-linked gene. These sites too
were removed from further analysis.
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In principle, analysis of pseudoautosomal genes could pro-
vide a positive control. Unfortunately, the reference SNPs in
HapMap used as the validated sites were not represented by
any of 19 pseudoautosomal genes (Helena Mangs and Morris
2007), with the exception of XG; however, there was insuffi-
cient read coverage support for XG. Prior analysis of the same
RNA-Seq data set has demonstrated its ability to detect
autosomal heterozygosity (Cheung et al. 2010).

With the above quality controls we would, in addition,
expect that signals of heterozygosity or homozygosity
should be consistent between SNPs from the same gene. In
both populations, we have several examples (32 and 44 genes
in CEU and YRI, respectively) of instances where an individual
has more than one polymorphic site in each population.
Within the genes containing multiple informative sites, the
majority (90.3% in CEU and 90.9% in YRI) of the RNA-Seq
reads are consistent, i.e., the RNA-Seq reads were either all
heterozygous or all homozygous at all potentially heterozy-
gous sites. Many of the exceptions were instances where one
site is heterozygous but the other site is not called heterozy-
gous as the read coverage was not high enough. Considering
instances where there are multiple potentially informative
sites (read coverage high enough), there are 1,643 cases
(genes in individuals) which have multiple potential hetero-
zygous sites as well as sufficient read coverage. Of them, there
are only 75 cases (<5%) where at least one site is not con-
sistent with others.

Randomization to Determine Significance of
Between-Population Variation in X-Inactivation

To determine whether there is between-population variation
in escape tendency, in the two populations we calculated, for
each gene, how many individuals have escaped inactivation
(not necessarily replicated) and how many individuals could
have been informative because they are heterozygous at the
DNA level. The data from individuals whose genes lack cov-
erage of sufficiently supported reads were excluded. We per-
formed a �2-like test using P values derived from Monte Carlo
simulations. The significance test was based on the null
expectation that for any given gene the proportion of es-
capees is identical in CEU and YRI and dependent on the
amassed proportion of escapees for that gene. To this end, we
took the total observed number of escapees and randomly
reallocated them to the two groups as a function of the rel-
ative number of potentially informative individuals within
each group. For each gene we could then calculate a �2

value, which could be compared against the distribution
from the simulations. With low sample sizes in some in-
stances, this Monte Carlo method is preferable to derivation
of P from�2 tables. For the overall difference between the two
populations, we consider the sum �2 over all genes.

Molecular Evolutionary Rate Consideration and
Merging of Data Sets

We downloaded from Ensembl a list of human macaque
X-linked orthologs and associated Ka and Ks values. DAVID
(http://david.abcc.ncifcrf.gov/conversion.jsp, last accessed

September 20, 2013) was employed to convert Ensembl IDs
to Refgene names. We then considered the genes that were
informative in our sample (had SNPs and sufficient read cov-
erage) and asked for how many we had rate estimation. We
identified 291 such genes.

To consider the relationship between escape status and
rate of evolution, we merge our data with that from the prior
analysis (data from supplementary table S7, Supplementary
Material online, of Park et al. [2010]). We apply the rule that if
a gene has information from only one of the two data sets,
then that data are preserved. If both sets agree on the status
(always escape, heterogeneous, never escape), then the status
is preserved. If the data sets disagree, then the gene is regarded
as being in the heterogeneous class (i.e., sometimes escaping).
Thus, some of the genes previously considered to always es-
cape X-inactivation can now be considered in the sometimes
escape class and some previously in the “never escape” class
can also be reclassified as sometimes escape.

Rate of Gene Expression

The mean expression of 11,449 genes in 28 human tissues was
derived from BioGPS, this corresponding to the data from the
Affimetrix array analyzed by Su et al. (2004). We summarized
GCRMA normalized probe intensity levels to Ensembl IDs
corresponding to protein coding genes. All probes matching
to more than one Ensembl gene ID were removed. We ap-
plied a mask to all expression values lower than the average of
the expression of the negative controls in each tissue, trans-
forming them to 0. Any gene that had expression values lower
than the average of the negative controls in every tissue was
removed. Expression values were then normalized against the
total signal level in each tissue. Only after all the filtering did
we extract only those genes that are X-linked.

Supplementary Material
Supplementary figures S1–S5 and tables S1–S4 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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Abstract

The sequencing of multiple genomes of the same plant species has revealed polymorphic gene and exon loss. Genes
associated with disease resistance are overrepresented among those showing structural variations, suggesting an adaptive
role for gene and exon presence–absence variation (PAV). To shed light on the possible functional relevance of poly-
morphic coding region loss and the mechanisms driving this process, we characterized genes that have lost entire exons
or their whole coding regions in 17 fully sequenced Arabidopsis thaliana accessions. We found that although a significant
enrichment in genes associated with certain functional categories is observed, PAV events are largely restricted to genes
with signatures of reduced essentiality: PAV genes tend to be newer additions to the genome, tissue specific, and lowly
expressed. In addition, PAV genes are located in regions of lower gene density and higher transposable element density.
Partial coding region PAV events were associated with only a marginal reduction in gene expression level in the affected
accession and occurred in genes with higher levels of alternative splicing in the Col-0 accession. Together, these results
suggest that although adaptive scenarios cannot be ruled out, PAV events can be explained without invoking them.

Key words: exon deletion, presence–absence variation, whole genome evolution, transposable elements, adaptive
evolution, Arabidopsis.

Introduction
Intraspecies variation in gene content represents an impor-
tant source of heterogeneity in the genome of a species
and potentially contributes to an organism’s adaptability in
response to external pressures (Feuk et al. 2006). Cataloguing
significant gains and losses in coding regions within or
between species will allow a deeper understanding of the
mechanisms underlying the molecular evolution of genomes
and can assist in identifying functional variation in agronom-
ically elite varieties of staple crops (Wang, You, et al. 2013). To
this end, several studies have examined polymorphic full or
partial gene loss in several plant species. For instance, after
resequencing 50 rice genomes, up to 1,327 possible gene loss
events (2.4% of the total gene set) were detected relative
to the Nipponbare reference accession (Xu et al. 2012).
Significant intraspecies variation in gene content has also
been reported in maize (Swanson-Wagner et al. 2010), sor-
ghum (Zheng et al. 2011), and soybean (McHale et al. 2012).
Previous studies in the model plant Arabidopsis thaliana,
using resequencing microarrays and Illumina sequencing-by-
synthesis reads, have also shown significant variations in total
nuclear genome sequence among naturally occurring strains
(Clark et al. 2007; Ossowski et al. 2008). A more recent study
using 18 fully sequenced A. thaliana genomes found that,
relative to the reference accession Col-0, 93.4% of proteins

had intraspecies variation in their genes, inclusive of large
deletions (Gan et al. 2011) with around 775 genes per acces-
sion found to have deletions spanning 50% or more of their
coding region sequence (Gan et al. 2011). A comparison of
80 Arabidopsis genomes found that 9% of the total genes
in A. thaliana showed presence–absence variation (PAV)
averaging 444 absent genes per accession (Tan et al. 2012).

Characterization of coding region PAV has shown certain
gene categories to be significantly enriched. For instance, 52 of
the 154 nucleotide-binding site leucine-rich repeat (NBS-LRR)
R (resistance) genes were found to be deleted in at least 1
of 50 rice cultivars (Xu et al. 2012). Similar overrepresentation
of the R genes in A. thaliana has also been observed (Bakker
et al. 2006; Shen et al. 2006), while in the soybean, genes
enriched in structural variation are more likely to be involved
in nucleotide binding and biotic defense (McHale et al. 2012).
Enrichment of particular functional gene categories among
genes affected by structural polymorphism suggests these
structural polymorphisms may have a functional role, allow-
ing accessions to be better adapted to the environmental
conditions they face.

However, this hypothesis has not been explicitly tested. If
significant polymorphic deletions are adaptive, we would
expect that affected genes should show multiple signatures
of being under selection. On the other hand, if structural
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polymorphisms mostly affect genes evolving under relaxed
constraints, then their adaptive significance should be
questioned.

Here we characterize genes affected by PAV spanning
whole exons in A. thaliana, to investigate which genomic
features, if any, are associated with these polymorphisms.
Our results provide insights into the likely functional
impact of structural variation in protein-coding genes.

Results
In order to characterize PAV in A. thaliana, we examined
previously identified polymorphic deletions in 17 fully
sequenced Arabidopsis accessions for which transcriptome
data were available (Gan et al. 2011) (see Materials and
Methods). We compiled a set of deletions that spanned
entire exons in any of 17 accessions relative to the Col-0
reference genome. A subset of the annotated deletions was
experimentally validated (Gan et al. 2011). To further rule out
the possibility of wrongly identifying deletions due to differ-
ences between assemblies, exons were confirmed as missing
by searching for homology between the Col-0 exon on all
other accessions (see Materials and Methods).

A total of 794 exons were classified as missing in at least
one of 17 accessions, corresponding to 411 genes (~1.5% of
the total gene set) including 81 genes where the full coding
region was completely absent in at least one accession (sup-
plementary table S1, Supplementary Material online). Exon
losses are not uniformly distributed throughout the gene:
missing exon sequences are more often found near the
ends of each gene (supplementary fig. S1, Supplementary
Material online).

Overall, ~0.3% of the genes in each accession have at
least one missing exon, representing between 10 and 50 kb
of missing sequence per accession (supplementary table S2,
Supplementary Material online). A total of 200 genes had
exon loss affecting more than one accession, consistent
with a previous study reporting a “common history” to
deletion events in A. thaliana (Santuari et al. 2010).

Because partial deletions spanning whole exons might
have distinct functional implications compared with full
coding region deletions, the 330 genes with partial coding
region loss spanning at least one full exon in at least one
accession (exon PAV [E-PAV]) and the 81 genes with full
coding region polymorphic deletions affecting at least one
accession (full coding DNA sequence PAV [CDS-PAV])
were examined separately.

Genes Involved in Signal Transduction and Both
Nucleotide and Protein Binding Are Overrepresented
among PAV Genes

In order to characterize PAV genes, we first assessed whether
these genes were overrepresented in particular gene classes
or gene ontology (GO) categories. To do so, we used four
classification schemes: “GO,” a condensed set of GO terms
(GOslim), the Pfam protein domain database and the family
classification scheme of (Gan et al. 2011) (see Materials and
Methods). Of the 330 E-PAV genes, we found most to be
poorly characterized with 50% of them having no associated

GOslim term. The proportion of poorly characterized genes is
greater among CDS-PAV genes, with more than 60% having
no associated GOslim term for biological process. When
examining genes with associated GOslim terms we found
both E-PAV and CDS-PAV genes to be significantly enriched
in genes associated with signal transduction and nucleotide
binding (fig. 1 and supplementary fig. S2, Supplementary
Material online). Furthermore, E-PAV genes also appear
significantly enriched in genes associated with the GOslim
term “other binding,” which includes proteins that bind to
lipids, metal ions, and ATP, among other cofactors (fig. 1).
Significant overrepresentation of functional categories among
PAV genes is consistent with a previous assessment of large
coding region indels in the soybean genome (McHale et al.
2012) and of whole gene deletions in A. thaliana (Tan et al.
2012). This is also observed when classifying genes using a
broader set of GO rather than “GOslim” terms (supplemen-
tary fig. S3, Supplementary Material online).

When classifying genes by family, we observe an overrep-
resentation of members of the NBS-LRR family—involved
in pathogen detection (DeYoung and Innes 2006)—among
E-PAV genes (families “NBS-LRR active TNL,” adjusted
P value = 8.57� 10�35, and “NBS-LRR active CNL,” adjusted
P value = 4.63� 10�5; fig. 1), consistent with previous findings
(Shen et al. 2006). Furthermore, when examining the 3,753
Pfam ID gene associations (supplementary figs. S4 and S5,
Supplementary Material online), we observe an overrepresen-
tation of members of the NB-ARC (APAF-1, R proteins, and
CED-4) and LRR domain containing families (note that “NBS-
LRR” refers to a composite of the NBS and LRR domains and
that the NBS domain is also known as “NB-ARC” [McHale
et al. 2006]). No enrichment of any particular gene family was
observed among CDS-PAV genes (data not shown).

These significant enrichments in gene functional and
domain annotations are in line with previous findings in
Arabidopsis (Tan et al. 2012) and other plant species
(Swanson-Wagner et al. 2010; Zheng et al. 2011; McHale
et al. 2012) and have been proposed to reflect the adaptive
role of large polymorphic deletions.

Genes Affected by PAV Show Signatures Consistent
with Relaxed Selective Constraints

To determine whether PAV genes are generally associated
with fast evolving proteins potentially under positive selection,
we examined the rates of nonsynonymous to synonymous
changes per gene (dN/dS). Using a randomization test,
E-PAV genes were found to have a significantly higher dN/dS
ratio compared with genes with all exons present, but
only eight genes have a dN/dS ratio above 1 (fig. 2 and
supplementary tables S1 and S3, Supplementary Material
online). CDS-PAV genes had a nonsignificant increase in dN/
dS compared with intact genes (those not affected by dele-
tions spanning at least one exon in any accession; fig. 2 and
supplementary table S3, Supplementary Material online).

To further examine the selective pressures associated with
PAV genes, we examined nucleotide diversity. We considered
nucleotide diversity at both replacement sites and silent sites
(defined as noncoding sites and the synonymous sites of
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protein-coding regions) for each gene, according to Gan et al.
(2011). PAV genes were found to be associated with higher
nucleotide diversity in both silent and replacement sites (sup-
plementary table S3, Supplementary Material online).

Although higher dN/dS and nucleotide diversity are
suggestive of relaxed selective constraints, this pattern is
also consistent with a scenario of positive and/or balancing
selection. To differentiate between these possible scenarios,
Tajima’s D was calculated for each gene (see Materials and
Methods). A threshold of ±2 was considered as the point
at which D significantly departs from the null expectation
of neutral evolution for any given gene. Of the 330 E-PAV
genes with E-PAV, 24 have D<�2 and only 2 have D> 2
(AT1G12180, D = 2.17, and AT5G35460, D = 2.05, both of
which are functionally uncharacterized). Among CDS-PAV
genes, only seven have D<�2 and none have D> 2.
Compared with the set of intact genes, there are no signifi-
cant differences in the proportion of PAV genes either with
D< 2 (randomization test P = 1 for both E- and CDS-PAV

genes) or D> 2 (randomization test P = 0.93 and P = 1 for E-
and CDS-PAV genes, respectively). As demographic charac-
teristics of the Arabidopsis population may result in a shift in
the average Tajima’s D among the general pool of genes, it is
possible that these hard thresholds may not be informative.
Indeed, we find that intact genes in Arabidopsis have the
average Tajima’s D estimate shifted toward negative values.
Thus, PAV genes could fall short of the hard threshold of + 2
and still have a higher D estimate than the general pool of
genes, suggestive of balancing selection. However, E-PAV
genes do not show significant differences in Tajima’s D esti-
mates compared with intact genes and CDS-PAV genes have;
in fact, a significantly lower estimate of D (fig. 2 and supple-
mentary tables S1 and S3, Supplementary Material online).
It is possible that PAV genes may have a higher range of
D values compared with intact genes, hiding a higher propor-
tion of genes under positive and balancing selection that
would not be reflected in overall changes in the mean. To
test this, we compared the distributions of Tajima’s D

(a) (b)

(c) (d)

FIG. 1. Distribution of E-PAV genes (n = 330)—those with at least one, but not all, exons missing in at least one accession—by GOslim categories for
molecular function (a), biological process (b) and cellular component (c), and by family (d). Both expected and observed number of E-PAV genes per
category represented on each bar. Where there is a significant enrichment (P� 0.05) between the amount of observed and expected E-PAV genes for a
particular category, an asterisk is shown over the bars. Only categories with at least one E-PAV gene are shown.
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estimates in the three sets of genes (intact, E-PAV, and CDS-
PAV). However, we did not observe any evidence for in-
creased dispersion in D among PAV genes (supplementary
fig. S6, Supplementary Material online). To further examine
this possibility, we examined the proportion of PAV genes
below the fifth and above the 95th percentile of the “intact”
distribution (D =�2.05 and 1.39, respectively). If a signifi-
cantly higher proportion of E-PAV or CDS-PAV genes are
found compared with the intact set at the positive end of
the distribution, we can infer the existence of a detectable
subset of PAV genes that may be undergoing balancing
selection. However, such a pattern is clearly not observed—
only 2.33% of E-PAV—and no CDS-PAV genes exceed the
threshold value. At the opposite end of the distribution, we
observe no overrepresentation in the proportion of E-PAV
genes whose estimates of D are lower than the threshold

(3.32%) although we do observe this for CDS-PAV genes
(8.82%). This finding would suggest that a significant propor-
tion of CDS-PAV genes might be undergoing stronger puri-
fying or positive selection relative to intact genes. Together,
these results suggest that although we cannot rule out the
effect of balancing selection acting on a few individual PAV
genes a general trend of balancing selection for PAV genes
does not readily apply. The excess of negative D values among
PAV genes coupled with the higher levels of nucleotide di-
versity and the significant increases in dN/dS ratios are con-
sistent with a scenario of weaker purifying selection but could
also be explained by positive selection.

We examined a number of parameters that have been
previously associated by some studies with gene essentiality
to further explore the functional importance of PAV genes,
including a gene’s age (Chen, Trachana, et al. 2012) and the
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number of paralogs it has (Hanada et al. 2009; Makino et al.
2009), along with weaker associations such as expression level
(Cherry 2010) and tissue specificity (Wolf et al. 2006).

Compared with newer genes, older genes are more likely to
be essential (Chen, Trachana, et al. 2012). After using the
phylogenetic relationships of plant genomes to create a
proxy for gene age, we observed that the 330 genes affected
by E-PAV are more likely to be newer additions to the
genome (fig. 2 and supplementary table S3, Supplementary
Material online). It is also possible that E-PAV genes have a
greater number of paralogous genes that might compensate
for any loss of function. Consistent with this, we find that
those genes with missing exons have higher number of para-
logs compared with those genes with all exons present (fig. 2
and supplementary table S3, Supplementary Material online).
However, the opposite result was observed when analyzing
CDS-PAV genes—these have an average of 4.2 paralogs when
compared with genes with no exon losses (fig. 2 and supple-
mentary table S3, Supplementary Material online), suggesting
their function is less essential. We then assessed the expres-
sion patterns of genes affected by exon presence–absence,
because broadly and highly expressed genes are typically as-
sociated with higher levels of selection (Yang 2009). Using a
randomization test, we found that genes with exon losses in
one or more accessions, when compared with intact genes,
had lower expression levels and higher tissue specificity (sup-
plementary table S3, Supplementary Material online). In ad-
dition, we also observed that exons missing in at least one
accession are, on average, shorter than exons present in all
accessions (170 bp vs. 284 bp, randomization test P = 9.9e�5;
supplementary table S3, Supplementary Material online).
However, although exons affected by polymorphic deletions
are shorter on average compared with nondeleted exons,
E-PAV genes are longer than unaffected genes (2,360 bp
compared with 2,142 bp, respectively; randomization test
P = 0.008; supplementary table S3, Supplementary Material
online). By contrast, CDS-PAV genes—where polymorphic
deletions encompass the gene’s entire coding region—were
found to be shorter than unaffected genes (640 bp compared
with 2,142 bp, randomization test P = 9.9e�5; supplementary
table S3, Supplementary Material online).

Overall, these findings show that although certain func-
tional categories are overrepresented among genes with exon
loss, more generally significant coding region loss is prevalent
among novel, lowly expressed and poorly functionally
characterized genes. These genes seem to have evolved
more recently in the Arabidopsis genome and are likely to
be under reduced selective constraint.

PAV Genes Are Located in Genomic Regions That
Are Gene-Poor and Transposable Element-Rich

When characterizing the genomic context of genes affected
by PAV, we found that genes with both exon and full coding
region loss are separated by longer intergenic distances (fig. 3
and supplementary table S3, Supplementary Material online).
Transposable element density around PAV genes was then
assessed as gene-poor areas have been associated with a
higher transposable element (TE) density (Wright et al.

2003). To do this, we used the reference accession (Col-0)
and calculated TE density for each gene in all intergenic
sequence in 1- to 100-kb windows centered on each gene’s
midpoint by counting the number of bases found within TE
annotations (see Materials and Methods). E-PAV genes were
found to have an approximately 2-fold increase in the
amount of bases annotated as a TE compared to genes
that are intact in all accessions (e.g., TE sequence accounts
for ~30% of the nongenic sequence within a 10-kb window
surrounding an E-PAV gene; fig. 3 and supplementary table
S4, Supplementary Material online). Significant enrichment of
specific TE superfamilies was also observed, notably, DNA
transposons and LTR retrotransposons (supplementary
table S4, Supplementary Material online).

In addition, we found that genes with missing exons
have, on average, a shorter distance from the gene boundary
to the nearest TE than those genes with all exons present
(2.5 kb compared to 5.7 kb; randomization test, P = 9.9e�5;
supplementary table S3, Supplementary Material online.
When calculating the minimum distance to the nearest TE,
classified by superfamily, E-PAV genes are significantly closer
to every TE type: rolling circle TEs, DNA transposons, LTR
retrotransposons, long interspersed elements (LINEs), and
short interspersed elements (SINEs) (supplementary table
S3, Supplementary Material online). Similar findings were
obtained when analyzing TE content in the surrounding
regions of CDS-PAV genes (supplementary table S3,
Supplementary Material online).

Certain TE sequence motifs have been associated with
recombination hotspots that could drive exon loss through
promoting ectopic recombination events (Oliver and Greene
2009; Horton et al. 2012). To explore whether genes affected
by PAV have a local enrichment for such hotspot motifs,
we examined the density of these motifs both in and
around genes (see Materials and Methods). However, we
observed no significant differences in hotspot motif occu-
pancy in the nongenic regions of windows surrounding E-
PAV genes compared with intact genes (in window sizes of
1 to 100 kb centered on the gene’s midpoint; supplementary
table S4, Supplementary Material online). Nevertheless, a sig-
nificant enrichment in hotspot motif occupancy was
observed in the genic sequence of all windows centered on
E-PAV genes compared with those centered on intact genes
(fig. 3 and supplementary table S4, Supplementary Material
online). When comparing CDS-PAV genes to the intact set,
we observed no consistent pattern of higher hotspot motif
density within genic regions and only a marginally higher
proportion of hotspot motifs in the nongenic regions that
surround them, in windows up to 3 kb in size (P< 0.01; sup-
plementary table S5, Supplementary Material online).

Taken together, these results show that PAV genes are
located in gene-poor and TE-rich regions of the genome,
further supporting the hypothesis that PAV is associated
with relaxed selective constraints. Enrichments of sequence
motifs previously associated with recombination hotspots
in or around PAV genes suggest that at least some exon
deletion events may have resulted from recombination
events involving these recombination hotspot motifs.
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Exon Loss Is Associated with a Marginal Reduction in
Expression Level

The aforementioned results suggest that E-PAV is associated
with reduced selective constraints. To assess whether exon
loss is likely to have resulted in reduced functionality for the
genes affected, we compared expression levels for genes with
and without missing exons across accessions. If exon loss
causes or follows from diminished functionality by previous
mutations, we would expect expression to be significantly
reduced in those accessions affected by E-PAV. Using
RNAseq transcription profiles for each Arabidopsis accession
(Gan et al. 2011), we compared the expression patterns of
individual genes in accessions affected by exon deletions with
those accessions where the gene remained intact. To do this,
we transformed expression data per accession to Z scores
(Cheadle et al. 2003). We then looked only at those genes
where exon loss had occurred in a single accession (210
genes). For each gene, we took 1) the expression level of
that gene in the affected accession and 2) the mean expres-
sion level of that gene across the 17 unaffected accessions
(the other 16 under study plus the reference genome, Col-0).
We found that half of the genes examined had an expression
level below this mean and 37% an expression level equal to it.
However, on average, expression levels in the affected acces-
sion departed little from mean expression in unaffected
accessions (0.15 standard deviations). In 27 genes (13% of
cases), expression level in a gene affected by an exon deletion
was higher than the mean expression across unaffected ac-
cessions with 14 cases showing a statistically significant dif-
ference (fig. 4 and supplementary table S6, Supplementary
Material online). These 27 genes are generally poorly charac-
terized with 12 having no functional category annotations.
Most genes affected by exon deletions had low expression
levels to begin with, although some exceptions are notable,
such as rotamase CYP4 (AT3G62030; involved in a variety of
cellular functions related to metabolism and response to sev-
eral types of stress), which has an average expression level in
the unaffected accessions of 400 rpkm, among the top 1% of
genes with detectable expression in Col-0.

It is possible that the moderate effect of exon loss on gene
expression levels is explained by an overrepresentation of
alternatively spliced exons among the set of missing exons.
This would allow for the production of viable protein prod-
ucts in their absence. In order to test this, we quantified
alternative splicing in 15,540 Arabidopsis genes, including
103 of the 330 E-PAV associated genes using a “comparable
alternative splicing index” (see Materials and Methods), which
corrects for the distorting effect of variation in transcript
coverage among genes (reviewed in Chen, Tovar-Corona,
et al. [2012]). E-PAV genes were found to have a significantly
higher number of alternative splicing events compared with
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FIG. 3. Genomic context for intact (having no exons under P/A
variation), E-PAV (having at least one, but not all, exons missing in at
least one accession), and CDS-PAV (having the entire CDS missing in at
least one accession) genes. Averaged values for the genes in each set are
given for, from top to bottom, the intergenic distance, the percentage of
TE bases in the nongenic sequence of a 10-kb window centered on that

FIG. 3. Continued
gene’s midpoint, and the percentage of recombinogenic motifs in the
genic sequence of a 1-kb window centered on that gene’s midpoint. See
also supplementary tables 3 and 4 (Supplementary Material online) for
the values of specific TE families and other window sizes.
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intact genes (3.35 and 1.13, respectively; randomization test
P = 0.046).

Overall, these findings suggest that exon losses only have a
marginal effect on the expression profile of genes in the
accessions affected. The higher levels of alternative splicing
among genes affected by exon loss raises the possibility that a
significant proportion of lost exons are normally alternatively
spliced, reducing selection pressure on these exons because
a functional protein product would be produced in their
absence anyway.

Discussion
Intraspecies structural variations in genes have been proposed
to play an important role in the adaptation of particular
populations to variation in environmental conditions (Feuk
et al. 2006). Here we have characterized presence–absence
coding sequence variation in 17 fully sequenced A. thaliana
genomes, relative to the reference accession Col-0, affecting
411 genes including 81 instances of whole coding region de-
letions. We found a significant enrichment of genes associ-
ated with the GO terms for protein and nucleotide binding as
well as signal transduction. Both gene family and Pfam anno-
tation enrichment analysis revealed significant enrichments
of gene members from the disease resistance associated NBS-
LRR gene families. Significant deviations from random expec-
tations have been observed in previous studies of PAV genes
in plants, with similar overrepresentation of resistance-asso-
ciated gene families among PAV genes. For instance, in sor-
ghum (Zheng et al. 2011), PAV genes are enriched in nine
Pfam categories, including the NB-ARC domain-containing
family. In soybean (McHale et al. 2012), PAV-affected genes
have also been found to be enriched for members of the NB-
ARC family, and within the GO category of “defense re-
sponse.” CDS-PAV genes have also been shown to deviate

from random expectations in Arabidopsis (Tan et al. 2012),
with the greatest significant enrichment in PAV genes also
reported for those with NB-ARC domains.

These functional and/or gene family enrichments can be
suggestive of an adaptive role for PAV events by aiding spe-
cific ecotypes in adapting to their local environment. Our
results—showing that genes associated with, for example,
resistance are more likely to be affected by PAV—are, at
first glance, consistent with this hypothesis. In addition, we
were able to confirm a previous report of CDS-PAV for three
members of the R gene family—the single-exon gene
AT5G05400 and the multiexon genes AT5G18350 and
AT5G49140 (Shen et al. 2006)—a family known to have sig-
natures of positive selection in A. thaliana (Mondragon-
Palomino et al. 2002). However, comprehensive analysis for
evidence of selection does not support this as a general
interpretation.

dN/dS ratios are one of the most widely used estimates of
selective pressure acting on protein coding genes with dN/dS
>> 1 indicative but not a definitive signature of positive
selection (Hurst 2002). Although there are, on average, a
higher number of substitutions in E-PAV genes compared
with intact genes, this is not a clear signature of adaptation
and can suggest comparatively relaxed negative, rather than
stronger positive, selection.

We further found that PAV genes have significantly higher
nucleotide diversity both at silent and replacement sites. Both
observations are suggestive of weaker purifying selection;
however, they can also be expected if PAV genes were
under higher balancing selection. Indeed, there is evidence
to suggest that the diversity of resistance-associated
genes is maintained by balancing selection (Van der Hoorn
et al. 2002), which are overrepresented among PAV
genes. Balancing selection has been proposed to stably main-
tain both the intact gene and the absent allele (Tan et al.
2012).

So, is balancing selection the most parsimonious explana-
tion for why PAV genes are associated with higher nucleotide
diversity? A classic scenario of transspecies polymorphism,
associated with balancing selection, cannot be assessed
given the limited sequence variation data available for
A. lyrata, A. thaliana’s closest sequenced relative. It is possible
that the “gene/exon present” and the “gene/exon absent”
alleles are under selection to be maintained in different
A. thaliana populations, allowing them to better adapt to
their local environment. This would be consistent with the
increase in nucleotide diversity, but this scenario cannot be
distinguished from alternative neutral models. Conditional
neutrality at PAV loci, where the functional gene has ceased
to be adaptive in some but not all environments, cannot be
ruled out (e.g., in the case of resistance genes where the cor-
responding pathogen is absent [Gos and Wright 2008]). In
this case, the absent allele would have no selective advantage
at any point but rather result from relaxed constraints asso-
ciated with PAV genes in some Arabidopsis populations.
Moreover, a model of generalized relaxed constraints affecting
the PAV loci would also lead to increased nucleotide diversity
and slight increases in dN/dS.

●● ●● ●●● ●●● ● ●● ● ●●● ● ● ●●● ● ●● ●●●● ●● ●● ●●● ●●● ● ●

−4 −2 0 2 4

Z−score per gene with 1+ missing exons in only 1 ecotype

FIG. 4. Distribution of Z scores for standardized transcript abundance
data in the affected accession. Data show that 210 genes that have one
or more missing exons in only one of 17 A. thaliana accessions (relative
to Col-0).
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Tajima’s D, a comparison of two estimators of � (the pop-
ulation mutation rate 4Nem)—the number of segregating
sites and the average number of pairwise differences between
sequences (Tajima 1989)—offers a more reliable estimate of
selective pressures acting on a gene as it incorporates infor-
mation about the distribution of segregating alleles in a
species. This allows more accurate estimations of the degree
and direction of departure of sequence evolution from a
neutral expectation (although nonselectionist interpretations
of D are also possible, such as recent population expansion or
bottlenecking for negative and positive D, respectively)
(Tajima 1989). Tajima’s D values do not provide evidence
for either E-PAV or CDS-PAV genes to be under balancing
selection. Taking dN/dS, nucleotide diversity, and D estimates
together, most PAV genes appear to be evolving under
relaxed constraints.

A signature of relaxed selection associated with PAV genes
is combined with a variety of features that have been associ-
ated with lower gene essentiality. We found that PAV genes
have lower expression levels and higher tissue specificity; both
of these features have been associated with higher rates of
substitutions and reduced gene essentiality (Wolf et al. 2006;
Cherry 2010). Older genes have been considered more essen-
tial (Chen, Trachana et al. 2012) and have been associated (in
humans, flies and Aspergillus) with a higher expression level
and stronger purifying selection (Wolf et al. 2009). We found
that PAV genes are, on average, newer additions to the
genome and that most exons affected by PAV do not have
an orthologous exon in A. lyrata (663/794). We note that
both E-PAV and CDS-PAV genes are enriched in reverse tran-
scriptase domains (supplementary figs. S4 and S5,
Supplementary Material online) and E-PAV genes for trans-
posase domains (supplementary fig. S4, Supplementary
Material online), suggesting exonization of TEs as the origin
of some PAV-affected exons.

In addition, the fact that gene expression is only marginally
reduced in accessions affected by exon deletion events sug-
gests that the lost exons may only have had a limited impact
on gene functionality. This is possibly explained in some cases
by alternative splicing, which has already been associated with
an increased frequency of exon loss in humans, mice, and
rats—alternatively spliced forms are less likely to be conserved
between species than constitutive exons (Modrek and Lee
2003). In A. thaliana, we found that genes with E-PAV are
under weaker purifying selection and have a greater number
of alternative splice events compared with intact genes. This
observation suggests that alternatively spliced exons are likely
to be under reduced selective constraints compared with con-
stitutive exons, and thus whole exon deletions would have less
of a detrimental effect than the loss of a constitutive exon. To
the best of our knowledge, this is the first time that exon loss
events have been associated with elevated alternative splicing
levels within a species rather than between species.

The genomic context of genes has also been linked to both
patterns of sequence evolution and features associated with
gene essentiality. A recent study in A. thaliana has correlated
the presence of TEs adjacent to genes with sequence variation
within that gene (Wang, Weigel, et al. 2013), suggesting TEs

tend to accumulate near genes under lower selective
pressures located in regions with less efficient purging of TE
sequence. Indeed, for our set of E-PAV genes, we find a higher
density of TEs in the vicinity. In addition, we also find that
genes undergoing PAV have an increased proportion of
motifs associated with recombination hotspots within their
sequence. Both findings are consistent with PAV events being
associated with genes located in genomic regions evolving
under reduced selective constraints. Moreover, higher TE con-
tent and hotspot motifs are consistent with the suggestion
that unequal recombination between homologs may be a
major mechanism for generating P/A polymorphisms (Tan
et al. 2012). However, it should be noted that no recombino-
genic motif is both necessary and sufficient for a recombina-
tion event to occur (Johnston and Cutler 2012), and as such,
their connection, if any, to PAV remains speculative.

All of these features considered together suggest that al-
though some individual deletions might have an adaptive
value, overall coding region loss disproportionally affects
genes under reduced selective pressures. So how are these
results reconciled with the enrichment of certain gene families
and GO functional terms? The enrichment of specific func-
tional categories and gene families among PAV genes (fig. 1)
leads to the implication of adaptive pressures favoring PAV on
genes related to specific biological processes (Tan et al. 2012).
However, as we have shown, PAV genes are associated with a
variety of features suggestive of lower selective constraints.
We argue that the enrichment of certain GO categories
and/or gene families among genes associated with a particular
genomic feature does not, by itself, allow us to draw conclu-
sions about any adaptive processes these genes may be
undergoing. Consistent with this, we find that intact genes
associated with the gene categories in which PAV genes are
enriched also show the same signatures of reduced selection
(supplementary table S7, Supplementary Material online).
This is notable for those sets of genes involved in, for example,
signal transduction, nucleic acid binding, and the NBS-LRR
family—categories enriched among PAV genes (fig. 1). For
instance, if we compare the set of E-PAV genes to the set of
genes with all exons present and the set of NBS-LRR genes to
the set of genes belonging to other families, we find that both
E-PAV and NBS-LRR genes are comparatively newer additions
to the genome, have a higher dN/dS ratio, a higher number of
alternative splicing events, a higher number of paralogs, a
higher proportion of SNPs, and are found closer to TEs (sup-
plementary table S7, Supplementary Material online). We
note that the proportion of polymorphic sites is higher not
only in PAV genes but in genes of that functional category. To
demonstrate that PAV genes do not bias the comparison of,
for example, the set of NBS-LRR genes to the set of genes
belonging to other families, we repeat the analysis restricted
to intact genes only and observe the same result (supplemen-
tary table S7, Supplementary Material online).

The fact that we observed fewer PAV genes than a previ-
ous study examining 80 fully sequenced Arabidopsis genomes
(n = 2,741; Tan et al. 2012) is likely due to differences in meth-
odology. First, our analysis uses 17 genomes assembled using a
combination of read-to-reference genome (Col-0) alignment
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and de novo approaches, and—importantly—for which tran-
scriptome data were available (Gan et al. 2011), rather than
the 80 accessions reported by Cao et al. (2011). Second, we
use a more conservative methodology for defining significant
deletions while Tan et al. (2012) define PAV genes using what
is referred to as the “broad definition”: “one being found at a
particular locus only in some genomes compared to the
others.” This allows a gene to be called as a PAV gene even
if a copy exists at a different locus. To minimize the inclusion
of rearrangement events as deletions, Tan et al. (2012) exam-
ined their predicted PAV genes using BlastN against a refer-
ence accession, excluding from the “absent” category any
gene with a counterpart that matches >50% of its length.
Our definition of PAV is more restrictive as we only deemed
an exon or gene to be deleted if genome alignments showed
that the deletion spanned at least a whole exon or whole gene
with not a single identifiable base remaining. Finally, the Tan
et al. (2012) study used genomes assembled according to the
TAIR8 annotated positions, whereas our data are assembled
according to TAIR10. There is a small risk, therefore, of having
incorporated now-obsolete gene models into their findings.
Regardless of the methodological differences and the result-
ing variation in sample size, it is worth noting that our
results are not in contradiction to those of previous studies
examining PAV both in Arabidopsis and other species, as
we find similar deviations from random expectations in the
functional annotations of genes. Our analysis of sequence
evolution and other genic features of PAV genes do not
rule out the possibilities of conditional neutrality at PAV
loci or that balancing selection may be acting on PAV
genes, allowing adaptation to the environmental conditions
of specific ecotypes. Instead, the findings presented show
that PAV events can be explained by a nonadaptive interpre-
tation where genes under reduced constraints are more
susceptible to the spread of allele variants containing signifi-
cant deletions.

In summary, our results suggest that although significant
enrichment in functional categories among PAV genes was
observed, most exon loss events are observed in newer, poorly
functionally characterized genes associated with signatures
linked to less essential genes evolving under lower purifying
or balancing selection. This may reduce the potential func-
tional relevance of structural variations within these genes.
We conclude that although an adaptive model for PAV
cannot be ruled out, the observed functional enrichments
among PAV genes and increased nucleotide diversity can
also be interpreted without invoking selection.

Materials and Methods

Genome Sequence and Annotations

Exon coordinates for A. thaliana strain Col-0 were obtained
from The Arabidopsis Information Resource (TAIR) (ftp://ftp.
arabidopsis.org/home/tair/Genes/TAIR10_genome_release/
TAIR10_gff3/TAIR10_GFF3_genes.gff, dated 20 March 2012
[last accessed October 8, 2013]). The genomes of 17
A. thaliana accessions (Bur-0, Can-0, Ct-1, Edi-0, Hi-0, Kn-0,
Ler-0, Mt-0, No-0, Oy-0, Rsch-4, Sf-2, Tsu-0, Wil-2, Ws-0, Wu-0,

and Zu-0) were obtained from Gan et al. (2011). We did not
use data from Po-0 because it has an unusually high frequency
of heterozygosity and high similarity to Oy-0 (Gan et al. 2011).
Each genome has been fully sequenced and assembled, using
a combination of de novo assembly and read mapping to the
reference accession, Col-0.

Detecting Missing Exons Relative to Col-0

For this analysis, we selected a set of deletions spanning at least
one full exon in at least one accession relative to the Col-0
reference genome from a wider set of deletion events de-
scribed by Gan et al. (2011). Exons absent in the Col-0 refer-
ence genome but present in other accessions are not included
in any analysis. Confirmation of these deletions is described by
the original authors who analyzed deletion breakpoints (Gan
et al. 2011). In this data set, deletion breakpoints were esti-
mated to within ~30 bp, with left and right consensus se-
quences established by growing inward from these
estimates using the read-mapping information. If there was
a deletion, these two ends would overlap. Gan et al. (2011)
confirmed this with alignments of the left and right consensus
sequences, thus excluding errors of sequencing or misassem-
bly. We further confirmed the presence or absence of each
individual exon in each of 17 accessions relative to the Col-0
genome annotation using BlastN with default parameters
(Altschul et al. 1990). Sequence alignments were obtained
using the best hit homolog and the Smith–Waterman algo-
rithm (fasta35 with parameters–a–A) (Pearson 2000). We
confirmed an exon as missing if both 1) alignment could
not be made and 2) if none of the nucleotide positions in
the Col-0 exon mapped to any nucleotide in the accession.

Functional Category Enrichment Analysis

Four gene classification schemes were obtained. GOslim terms
were obtained from TAIR (ftp://ftp.arabidopsis.org/home/tair/
Ontologies/Gene_Ontology/ATH_GO_GOSLIM.txt, dated 9
July 2013 [last accessed October 8, 2013]), excluding terms
unsupported by experimental or computational analysis,
that is, evidence codes ND, NR, and NAS. GO term annota-
tions were obtained from Ensembl BioMart (17 July 2013)
(Smedley et al. 2009). “Pfam” terms were obtained from
Pfam v27.0 (17 July 2013) (Punta et al. 2012). In addition,
7,119 genes were classified into 49 distinct families as in Gan
et al. (2011). Statistical significance of the enrichment of both
GOslim, GO terms, of Pfam class and family membership
among both E-PAV and CDS-PAV-affected genes was assessed
using Monte Carlo random sampling (1000 randomizations),
with the P value of the enrichment of each category obtained
using a Z test. The significance of individual categories was
corrected for multiple testing by the Benjamini–Hochberg
procedure.

Sequence Evolution Analysis

To approximate selective constraint on a gene, we calculated
dN/dS. For each gene, we obtained a local alignment of
the Col-0 CDS against its A. lyrata ortholog, using the
Smith–Waterman algorithm (fasta35 with parameters–a–A)
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(Pearson 2000). dN/dS was calculated using the Yang and
Nielson model, as implemented in the yn00 package of phy-
logenetic analysis by maximum likelihood (PAML) (Yang
2009). Using substitution estimates, as above, and SNP data
from (Gan et al. 2011), we also estimated Tajima’s D (Tajima
1989) per gene. Nucleotide diversity is calculated according to
Gan et al. (2011).

Paralog Number and Gene Age Annotations

Ortholog and paralog data were obtained from BioMart
(Vilella et al. 2009). A proxy for gene age was established
using taxonomic classifications, based on the phylostrati-
graphic method of (Domazet-Lošo et al. 2007). If a candidate
ortholog was identified for each A. thaliana gene in any of 15
plant and algal species at a minimum identity of 30%, the
gene was considered to be as old as the “broadest” taxonomic
category held in common (see supplementary table S8,
Supplementary Material online). This allowed us to make
use of ortholog data despite divergence times relative to
A. thaliana being known for only its closest relatives—at ~5
million years for A. lyrata (Kuittinen et al. 2004) and 20 million
years for Brassica rapa (Yang et al. 1999).

Gene Expression

Expression specificity was calculated as a tissue specificity
index (tau) (Yanai et al. 2005), using the massively parallel
signature sequencing (MPSS) database (Brenner et al. 2000;
Meyers et al. 2004; Nakano et al. 2006). Expression levels were
calculated using RNAseq transcript abundance data, as abso-
lute read values corrected by sequence length in each acces-
sion (known as rpkm values: per gene, the number of reads
per kilobase per million mapped reads) (Gan et al. 2011).

TE and Hotspot Motif Density

TE coordinates for A. thaliana strain Col-0 were obtained
from TAIR (file “TAIR10_Transposable_Elements,” dated 20
March 2012). For our analyses, we identified every instance of
all 25 hotspot-associated motifs (of 5–9 bp) described by
Horton et al. (2012) in the Col-0 reference genome. TE and
hotspot motif density for each gene were calculated as the
proportion of base pairs occupied by a TE or a hotspot motif
within windows of size 1 to 100 kb centered on the nucleotide
at the gene’s midpoint. Windows consist of both coding and
noncoding sequence within a region of length (window size)/
2 up- and downstream of the midpoint base. Both TE and
hotspot motif density were calculated as the number of TE or
motif bases, respectively, relative to the number of intergenic
or genic bases contained within the window, rather than the
total number of bases in the window.

Alternative Splicing Events

Alternative splicing events were identified using the methods
described in Chen et al. (2011). In brief, the number of
alternative splicing events per gene was identified by aligning
expressed sequence tag (EST) data obtained from dbEST
(Boguski et al. 1993) to the genome sequence (ftp://ftp.ncbi.
nih.gov/repository/dbEST, last accessed May 1, 2011). Those
ESTs aligning to regions with no annotated gene were

excluded from the analysis. EST alignments were then used
to create an exon template. Alternative splicing events per
gene were identified by comparing alignment coordinates for
each individual EST to exon annotations. As a low EST cov-
erage can increase the number of falsely positive claims that
an exon is constitutive, rather than spliced, we excluded genes
with 10 or fewer ESTs. ESTs were assigned to genes using gene
annotation coordinates. A comparable alternative splicing
index that avoids transcript coverage biases was obtained
using the transcript normalization method described in
Kim et al. (2007). Briefly, for each gene 100 random samples
of 10 ESTs were selected. Finally, the number of alternative
splicing events were calculated for each random sample (as
detailed earlier), with an overall average calculated per gene.

Randomization Test

A randomization test was used to obtain numerical P values
to assess the statistical significance of any variation in the
characteristics of PAV-affected genes compared with intact
genes. In brief, we contrasted genomic feature parameters
in E-PAV (n = 330) or CDS-PAV genes (n = 81) to the distri-
bution of means of the same genomic feature in s = 10,000
randomly generated subsets of an equal number of genes
drawn from the complete gene set. The numerical P value
was calculated as follows: let q be the number of times the
mean value of the PAV set exceeded the mean value of the
randomly generated subset. Letting r = s� q, then the P value
of this test is r + 1/s + 1.

Supplementary Material
Supplementary tables S1–S8 and figures S1–S5 are available
at Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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Abstract

What at the genomic level underlies organism complexity? Although several genomic features have been associated with
organism complexity, in the case of alternative splicing, which has long been proposed to explain the variation in
complexity, no such link has been established. Here, we analyzed over 39 million expressed sequence tags available for 47
eukaryotic species with fully sequenced genomes to obtain a comparable index of alternative splicing estimates, which
corrects for the distorting effect of a variable number of transcripts per species—an important obstacle for comparative
studies of alternative splicing. We find that alternative splicing has steadily increased over the last 1,400 My of eukary-
otic evolution and is strongly associated with organism complexity, assayed as the number of cell types. Importantly, this
association is not explained as a by-product of covariance between alternative splicing with other variables previously
linked to complexity including gene content, protein length, proteome disorder, and protein interactivity. In addition,
we found no evidence to suggest that the relationship of alternative splicing to cell type number is explained by drift due
to reduced Ne in more complex species. Taken together, our results firmly establish alternative splicing as a significant
predictor of organism complexity and are, in principle, consistent with an important role of transcript diversification
through alternative splicing as a means of determining a genome’s functional information capacity.

Key words: organism complexity, alternative splicing, genome evolution, transcriptome evolution, expressed
sequence tags.

Introduction
Prior to widespread genome sequencing, it was assumed that
organism complexity was proportional to gene content—
that more complex organisms encode a greater amount of ge-
netic information (Taft and Mattick 2003), the unit of which
is the gene (Bird 1995). However, the sequencing of the
human genome, revealing a lower than expected number
of genes (Fields et al. 1994), initiated a hunt to uncover the
genomic basis of organism complexity (Nilsen and Graveley
2010) as, despite two rounds of whole genome duplication at
the base of the vertebrate lineage (Ohno 1970; Dehal and
Boore 2005), the human genome contains almost as many
genes as that of a worm (Lander et al. 2001). Several genomic
features have been shown to have a significant association
with organism complexity, measured as the number of dis-
tinct cell types per species (cell type number [CTN]). These
variables include various measures of the potential number of
molecular interactions per protein: the number and propor-
tion of protein–protein interaction (PPI) domains in each
protein (Xia et al. 2008; Schad et al. 2011) and protein disorder
(flexibility in a protein’s 3D structure to adopt a variety of
conformations) (Romero et al. 2006; Dunker et al. 2008; Schad

et al. 2011). More recently, total coding region length in a
genome was shown to be positively associated with organism
complexity (Schad et al. 2011). This same study also showed
that when restricting the analysis to metazoans, gene number
becomes a significant predictor of organism complexity.

Alternative splicing, a posttranscriptional process in eu-
karyotes by which multiple distinct transcripts are produced
from a single gene, has the potential to boost the total
number of distinct proteins encoded in a genome in the
absence of increases in gene number (Nilsen and Graveley
2010). As such, an association between alternative splicing
and organism complexity has long been proposed. Under
an “adaptive" model, an increase in alternative splicing
could facilitate the evolution of higher organismal complexity,
by increasing proteome diversity (and thus, diversifying func-
tionality) at a level disproportionate to increases in the
number of protein-coding genes (Graveley 2001; Xing and
Lee 2007; Chen et al. 2012). Indeed, over the last decade,
alternative splicing prevalence (ASP; the proportion of multi-
exon genes that have at least one alternative splicing event)
has been successively revised upward for humans, with recent
deep sequencing transcriptome analyses estimating that

� The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommon-
s.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work
is properly cited. Open Access
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up to 94% of multiexon genes undergo alternative splicing
(Pan et al. 2008; Wang et al. 2008). However, assessing the
expansion of ASP through evolutionary time and establishing
a link between alternative splicing and organism complexity
have proved difficult (Nilsen and Graveley 2010). The main
barrier to comparative studies of ASP arises from the fact that
differences in transcript sequence coverage across species can
distort both the proportion of genes classified as undergoing
alternative splicing and the number of alternative splicing
events detected (Brett et al. 2002; Kim et al. 2004; Kim et al.
2007; Takeda et al. 2008; Mollet et al. 2010; Nilsen and
Graveley 2010; Schad et al. 2011). Kim et al. (2007) devised
a method of transcript number normalization to obtain com-
parable ASP indices involving the identification of alternative
splicing events from a random sample of 10 transcripts per
gene. Importantly, they showed that alternative splicing in
vertebrate species was higher than among invertebrates and
that this was not explained by the higher abundance of tran-
scripts available for vertebrate species. Although not directly
tested, these findings were suggestive of a link between alter-
native splicing and complexity as vertebrates are generally
considered to have a higher CTN compared with inverte-
brates. Surprisingly, there are still no current data sets for
comparable alternative splicing indices, and controlling for
transcript abundance in comparative analyses of ASP is the
exception rather than the rule. The resulting lack of compa-
rable estimates for the number of alternative splicing events
per gene has hampered efforts to quantify ASP across taxa
(Harrison et al. 2002), the accumulation of splicing events
over time (Warnefors and Eyre-Walker 2011), and the link
between alternative splicing rates and organism complexity
(Nilsen and Graveley 2010; Xue et al. 2012). The only attempt
to directly assess the relationship between alternative splicing
variation and CTN (Schad et al. 2011) was considered incon-
clusive by the authors because of the lack of comparable
alternative splicing measures.

Here, we assess the prevalence of alternative splicing in 47
eukaryotic genomes by calculating a comparable index of
alternative splicing, which corrects for differences in transcript
coverage (adapted from Kim et al. [2007]; see Materials and
Methods). The species examined include metazoans, plants,
fungi, and protists. We then examined how these alternative
splicing indices relate to organism complexity and compared
the strength of alternative splicing as a predictor of CTN to
previously described correlates, including the number of pro-
tein-interacting domains encoded per gene (Xia et al. 2008),
protein disorder (Romero et al. 2006; Dunker et al. 2008;
Schad et al. 2011; Xue et al. 2012), the number of PPIs, gene
number, and various measures of coding region length (Schad
et al. 2011).

We find that alternative splicing has steadily increased over
the last 1,400 My of eukaryotic evolution. We also find that
alternative splicing is strongly associated with CTN and that
this relationship is not a by-product of the relationship
between various genomic features and complexity.

It is important to note that if increases in the proportion of
alternatively spliced genes or the level of alternative splicing
these genes undergo are linked with CTN, such an association

would not constitute proof of causality. Under a “nonadap-
tive" model, the association of alternative splicing and or-
ganism complexity could be a by-product of the link
between complexity and a lower effective population size
(Ne). The passive emergence of “genomic complexity" and
even organismal complexity itself is suggested by the work of
Lynch and coworkers, who argue that nonadaptive pro-
cesses explain the majority of the variance in organism com-
plexity as “more complex" organisms have a smaller Ne

(Lynch and Conery 2003; Lynch 2007). As documented con-
sequences of a comparatively small Ne include the accumu-
lation of slightly deleterious mutations, both in coding
(Nikolaev et al. 2007; Popadin et al. 2007; Gayral et al.
2013) and regulatory (Keightley et al. 2005) sequences, as
well as an increase in average intron and coding region
lengths (Lynch and Conery 2003), it is reasonable to
expect that mutations impairing splicing regulation will ac-
cumulate more rapidly in more complex organisms resulting
in higher (but not necessarily functional) transcript diversity.
Consistent with this, single species studies have shown that a
significant proportion of alternative splicing events are prob-
ably the result of noncoding “noise" and not biologically
meaningful (Pickrell et al. 2010; Leoni et al. 2011).

Using a limited sample size, we do not find any evidence to
suggest that the association of alternative splicing and CTN is
explained by differences in Ne. To the best of our knowledge,
this is the most comprehensive assessment of alternative
splicing levels (ASLs) covering all major eukaryotic taxa, and
the first time in which the link between alternative splicing
and CTN has been assessed using a comparative index of
alternative splicing which corrects for differential transcript
coverage.

Results

ASP Has Increased throughout Evolutionary Time

To assess whether ASLs have changed over time, over 39
million publicly available partial transcripts, representing
112 eukaryotes (20 protists, 18 plants, 23 fungi and 51 meta-
zoans including 23 chordates), were aligned to their corre-
sponding genomes to identify alternative splicing events (see
Materials and Methods). To minimize the strong dependence
of alternative splicing event detection on transcript coverage
per gene (Brett et al. 2002; Kim et al. 2004; Kim et al. 2007;
Takeda et al. 2008; Mollet et al. 2010; Nilsen and Graveley
2010; Schad et al. 2011), we used a transcript normalization
protocol (Kim et al. 2007) where alternative splicing events
are identified in randomly selected samples of 10 expressed
sequence tags (ESTs) per gene. We obtained a comparable
alternative splicing index per gene by averaging the number of
alternative splicing events in 100 samples (Kim et al. 2007)
(supplementary fig. S1, Supplementary Material online).

Using the comparable alternative splicing index, we calcu-
lated for each species both ASP, defined as the proportion of
alternatively spliced genes in the sample of genes analyzed,
and ASL, defined as the average number of alternative splicing
events per gene. Genomes with comparable alternative splic-
ing estimates available for fewer than 500 genes were
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excluded from further analyses leaving, in total, 47 species
(6 protists, 10 plants, 6 fungi, and 25 metazoans; supplemen-
tary table S1, Supplementary Material online). We found
that both ASP and ASL vary among eukaryotic clades with
chordates having both the highest ASP and ASL compared
with nonchordate metazoans, fungi, plants, and protists (fig.
1 and supplementary table S1, Supplementary Material
online). Although our ASP estimates are higher in most
clades compared with a previous study based on eight spe-
cies using comparable alternative splicing indices, the
relative differences among clades are consistent (Kim et al.
2007).

An increase in alternative splicing through evolutionary
time (fig. 1) is consistent with observations reporting links
between ASP and evolutionary time restricted to metazoan
species (Warnefors and Eyre-Walker 2011) and show that it is
not an artifact of differential transcript coverage among spe-
cies (Nilsen and Graveley 2010; Schad et al. 2011). The higher
prevalence and levels of alternative splicing in plant species
compared with fungi and protists suggest that AS levels have
independently increased in this lineage.

Overall, by using comparable alternative splicing esti-
mates from species covering all major eukaryotic clades and
correcting for differential transcript coverage, we show that
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FIG. 1. Variance in alternative splicing over evolutionary time. Bars show the average percentage of alternatively spliced genes per species grouped
according to their divergence from humans, as shown in the adjacent phylogenetic tree (data from Hedges et al. 2006), and their taxonomic category
(chordate, nonchordate metazoan, or nonmetazoan). The scatter plot shows changes in alternative splicing prevalance, that is, the percentage of
alternatively spliced genes per genome (blue) and in alternative splicing level, that is, the average number of alternative splicing events per gene for each
species (red). Trend lines represent the mean of all values at each divergence time. Although the relative positions of cephalochordates and tunicates on
this tree are disputed (Delsuc et al. 2006), this does not significantly alter the trend.
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alternative splicing has increased over the last 1,400 My of
eukaryotic evolution in the metazoan lineage with a more
moderate and potentially independent rise in alternative
splicing in plants.

Alternative Splicing Is a Strong Predictor of Organism
Complexity, Assayed as Cell Type Diversity

A previous attempt to assess the link between alternative
splicing and organism complexity, assayed as the number of
distinct cell types (Schad et al. 2011), was rendered inconclu-
sive because of the known bias caused by differential tran-
script sequence coverage among genes and species (Brett
et al. 2002; Kim et al. 2004; Kim et al. 2007; Takeda et al.
2008; Mollet et al. 2010; Nilsen and Graveley 2010; Schad
et al. 2011). As such, we assessed the relationship of ASP
and ASL with the number of distinct cell types per species
(CTN) as a proxy of organism complexity using the compa-
rable AS index (see Materials and Methods). We found that
both ASL and ASP are strongly associated with CTN (ASP:
r2 = 0.76, P = 9.36� 10�9; ASL: r2 = 0.83, P = 1.77� 10�10; sup-
plementary table S2, Supplementary Material online, and
fig. 2). This association remains strong when restricting the
analyses to the metazoan-fungi lineage (for ASP, r2 = 0.71,
P = 2.45� 10�5, and for ASL, r2 = 0.81, P = 1.28� 10�6;
supplementary table S3, Supplementary Material online).

Several genomic and functional parameters have previ-
ously been associated with organism complexity (using
CTN as a proxy). Xia et al. (2008) reported a strong link be-
tween CTN and PPI domain coverage. Other genomic vari-
ables found to have a more moderate association with CTN
include protein disorder (Romero et al. 2006; Dunker et al.
2008; Schad et al. 2011; Xue et al. 2012) and proteome size
(assayed as concatenated protein length) (Schad et al. 2011).
Gene number, previously found to be unrelated to CTN, has
recently been reconsidered as a significant predictor but only
after plant genomes are excluded from the analyses (Schad
et al. 2011).

How does alternative splicing compare to these previously
reported predictors of CTN? To address this, we compared
the relationship between CTN and alternative splicing with
that of 12 additional genomic measures of protein interactiv-
ity as well as proteome disorder, gene length, and number, all
previously linked to CTN (see Materials and Methods for
descriptions and sources of each variable assessed). Of all

parameters tested, ASL was found to have the strongest as-
sociation with CTN (r2 = 0.83, P = 1.77� 10�10) followed by
ASP and the average number of PPI domains per protein
(r2 = 0.76, P = 9.36� 10�9 and r2 = 0.64, P = 8.19� 10�11 re-
spectively; supplementary table S2, Supplementary Material
online). We then re-examined the relationship between each
parameter with CTN restricting the analyses to a set of 24
species for which data in all variables tested were available.
The mean number of interactions per protein was not in-
cluded in this or subsequent analyses due to the small
number of species for which data were available (n = 10).
ASL remained the top predictor of CTN (r2 = 0.87,
P = 2.80� 10�11) with ASP showing an increased (r2 = 0.80,
P = 2.66� 10�9) and the average number of PPI domains per
protein a decreased association with CTN (r2 = 0.59,
P = 6.42� 10�6; table 1).

As the relationship between genomic parameters and CTN
has been shown to increase after the removal of plant ge-
nomes (Schad et al. 2011), we reassessed the predictive power
of all parameters after restricting the analyses to the meta-
zoan-fungi lineage. This resulted in a stronger association
between CTN and many parameters with the two alternative
splicing indices remaining the best predictors of CTN (sup-
plementary table S3, Supplementary Material online).
Consistent with previous findings (Schad et al. 2011), when
plant genomes are excluded, gene number was found to be
significantly associated with CTN (r2 = 0.34, P = 1.74� 10�3;
supplementary table S3, Supplementary Material online).

Because of the tendency of related species to resemble one
another, it is also necessary to control for this nonindepen-
dence in a comparative analysis of patterns across species.
Pagel’s l measures the extent to which observed correlations
between traits reflect their shared evolutionary history assum-
ing an evolutionary model under Brownian motion (Pagel
1999). For the 24 species for which data in all variables
tested were available, we obtained estimates of l and
restricted log likelihood for the correlations between CTN
and each genomic variables, recalculating each correlation
to account for phylogenetic nonindependence of the vari-
ables by fitting a phylogenetic generalized least squares
(PGLS) model (see Materials and Methods). ASL remained
the top predictor of CTN even after taking into account
the strength of the phylogenetic signal (r2 = 0.87,
P = 1.59� 10�13, l= 0), followed by ASP (r2 = 0.77,
P = 8.38� 10�11, l= 0.052) and the percentage of PPI
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FIG. 2. Relationship between alternative splicing and organism complexity, assayed as CTN. Graphs show the relationship between CTN and ASP
(r2 = 0.76; P = 9.36� 10�9) and ASL (r2 = 0.83; P = 1.77� 10�10).
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domain sequence per protein (r2 = 0.60, P = 1.3� 10�7, l= 0;
table 1). This pattern holds true if we only take into account
metazoan and fungal species (supplementary table S3,
Supplementary Material online).

As most of the assessed parameters covary among them-
selves (supplementary tables S4 and S5, Supplementary
Material online), the association between some variables
with CTN may be secondary to their covariance with another
genomic feature which is in turn linked to CTN. To identify
the genomic parameters that significantly contribute to CTN,
we carried out a stepwise analysis (see Materials and
Methods). In the optimal stepwise regression model, the ma-
jority of the variance in CTN is explained by ASL, supported
by proteome size (supplementary table S6, Supplementary
Material online). Similar results are obtained when constrain-
ing the data to the metazoan-fungal lineage (supplementary
table S6, Supplementary Material online). In fact, contrasting
each variable directly against AS by including ASL/ASP in
multiple regression models with each additional variable
revealed that in all cases, only the AS parameter remained
significantly associated with CTN (supplementary table S2,
Supplementary Material online). The only exception was pro-
teome size that remained significantly associated with CTN
after correcting for either ASP or ASL, but only when fungi
and metazoans were included in the analysis (supplementary
table S3, Supplementary Material online).

To best capture the predictive value of sets of covarying
variables, we used a principal component analysis to reduce
the dimensionality among the 13 predictors of complexity.
This analysis was performed on a subset of species where data
were available for all predictors (n = 24). Interestingly, PC1 and
PC2 (which explain 35.2% and 31.4% of the variance in the
matrix, respectively) allow chordates to be differentiated from
all other species (fig. 3). Of all resulting principal components,
we found that PC1 is the only significant predictor of CTN
(r2 = 0.66, P = 8.58� 10�7). The two alternative splicing vari-
ables (ASP and ASL) and the three protein interactivity var-
iables (average number of PPI domains per protein, PPI
domain coverage, and the proportion of proteins with at
least one PPI domain) were found to be the main

contributors to PC1. Similar results were obtained when re-
stricting the analyses to the metazoan-fungi lineage (data not
shown). It is worth noting, however, that the value of r2 when
regressing PC1 against CTN, when including either all species
or only metazoans and fungi, is lower than that of ASL
(r2 = 0.83, P = 1.77� 10�10), suggesting that collapsing the di-
mensionality of the variables does not improve the prediction
of CTN beyond the variance explained by ASL alone.

The above results show that AS is significantly associated
with CTN and that this association is not explained as a by-
product of the relationship between AS and other genomic
features also related to CTN. However, it is possible that some
of these associations might be explained by ascertainment
bias resulting from the fact that humans and other closely
related species have been disproportionately studied. With
the exceptions of Caenorhabditis elegans and Drosophila mel-
anogaster, larger amounts of data exist for vertebrates than
other species. It is possible that the higher estimates of AS and
other genomic features, and even higher CTN among verte-
brates, might partly result from the greater availability of data
for these species. To address this possibility, we used the total
number of ESTs per species as a proxy for interest in a species
as higher transcript availability has a direct impact on the
quality of genome annotation. Compared with other proxies
of “research interest" such as “number of publications per
species," the number of ESTs approximates how much data
have accumulated rather than how many interpretations of it
there have been.

We established that the number of ESTs per species is
significantly associated with various genomic characteristics
(supplementary table S7, Supplementary Material online).
Notably, ASL and ASP, as well as CTN, were found to be
significantly related with transcript number per species
(ASL: r2 = 0.45, P = 7.29� 10�7; ASP: r2 = 0.39,
P = 8.01� 10�6; complexity r2 = 0.41, P = 5.01� 10�5). Thus,
we re-examined the relationship of CTN with AS and other
gene features using the residuals of a quadratic polynomial
regression with EST number. This correction resulted in a
marked reduction in the variance in CTN explained by
ASL and ASP (r2 = 0.47, P = 9.84� 10�5 and r2 = 0.57,

Table 1. Association between CTN and Genomic Features Before and After Phylogenetic Signal Correction in 24 Eukaryotic Species.

Category Variable Linear Regression PGLS Regression

r2 P r2 P k

Alternative splicing ASL 0.87 2.80� 10�11 0.87 1.59� 10�13 0
ASP 0.80 2.66� 10�9 0.77 8.38� 10�11 0.05

Sizes and lengths Number of genes �0.01 0.40 0.26 1.23� 10�3 0.76
Average protein length �0.05 0.97 0.12 0.03 0.79
Proteome information content 3.25� 10�3 0.31 0.09 0.05 0.65
Proteome size 0.31 2.59� 10�3 0.49 4.08� 10�6 0.75

Disorder Mean % of disordered binding sites �0.03 0.59 0.02 0.26 0.71
Mean number of disordered binding sites �0.04 0.78 �0.04 0.99 0.68
Total number of disordered binding sites 0.04 0.18 0.21 3.97� 10�3 0.69
Mean proteome disorder �0.03 0.64 6.45� 10�3 0.34 0.71

Interactivity % PPI domain seq per protein 0.60 5.36� 10�6 0.60 1.30� 10�7 0
Average number of PPI domains per protein 0.59 6.42� 10�6 0.59 1.61� 10�7 0
Proportion of proteins with 1 + PPI domains 0.54 2.33� 10�5 0.54 7.80� 10�7 0
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P = 8.82� 10�6, respectively; supplementary table S8,
Supplementary Material online). Correcting all variables by
transcript coverage also reduced the predictive value of
other gene features for CTN (supplementary table S8,
Supplementary Material online). However, the relative order
of gene feature parameters as predictors of CTN remained
unaltered with splicing and, to a lesser extent, the degree of
protein–protein interactivity the most strongly associated
with CTN (supplementary table S8, Supplementary Material
online). Furthermore, if considering all 13 variables, the opti-
mal stepwise regression model (see Materials and Methods)
explained 90% of the variance in CTN (P = 1.81� 10�5), with
the strongest of five predictors being ASP (supplementary
table S9, Supplementary Material online). When restricting
the analyses to the fungi-metazoan lineage, we found that
the optimal regression model contained only two regressors,
ASP and the mean percentage of disordered binding sites per
protein (see Materials and Methods for a description of this

variable) (supplementary table S9, Supplementary Material
online). In fact, only three parameters (average protein
length, the number of genes, and the total number of disor-
dered binding sites per protein) remained significantly asso-
ciated with CTN in a regression model directly comparing
each variable with either ASP or ASL (supplementary
table S8, Supplementary Material online). An alternative
transformation of the data, taking the natural log of EST
number, resulted in lower correlation coefficients, but the
relative strength of each variable in a regression against com-
plexity remained unchanged (supplementary table S10,
Supplementary Material online).

Our data span a diverse range of species with associated
variations in the number of available ESTs per species (sup-
plementary table S1, Supplementary Material online). For ge-
nomes with lower EST numbers (often those that also have a
lower CTN), highly expressed genes will make a dispropor-
tionate contribution to each species’ comparative alternative
splicing index as the number of genes with the minimum
required number of ESTs will be smaller. As such, we expect
lowly expressed genes to primarily contribute data for
genomes with a higher number of available ESTs.

Under the nonadaptive model, a reduced Ne among more
complex organisms (assayed as those with higher CTN) would
result in an accumulation of mutations detrimental to splic-
ing regulation, potentially resulting in the proliferation of
“noisy" alternative splicing events. Such neutral increases in
alternative splicing should be particularly pronounced among
lowly expressed genes, which, on average, are under lower
selective pressures compared with highly expressed genes.
Importantly for this study, if lowly expressed genes are
more highly spliced, then our data would overestimate ASL
for species with high EST numbers, artificially inflating the
correlation strength with CTN.

Using microarray data for four model species (human,
mouse, Caenorhabditis elegans, and Arabidopsis thaliana;
see Materials and Methods), we find that, as expected,
there is a strong correlation between the number of ESTs
per gene and gene expression level. However, contrary to
the prediction of the nonadaptive model, we found that
the more highly expressed genes are also more highly spliced
(supplementary figs. S2–S5, Supplementary Material online).
Therefore, our data might be underestimating ASP and ASL in
genomes with a higher number of available ESTs, as more
lowly expressed genes—with lower ASLs—disproportionately
contribute to the species’ alternative splicing indices. By ex-
tension, the relationship of AS with CTN might also be
underestimated.

Discussion
Here, we have assessed ASLs in 47 eukaryotic species and
showed that alternative splicing has increased over the last
1,400 My of evolution. Our data range from Plasmodium fal-
ciparum, in which 3% of genes are spliced with an average of
0.09 splice events per gene, to humans, where 88% of genes
are spliced with an average of 5.35 splice events per gene.
Consistent with the findings of Kim et al. (2007), we find that
chordates have higher levels of alternative splicing than any

FIG. 3. Biplot of the first two principal components built from 13 func-
tional genomic variables available for 24 species (see supplementary
table S1, Supplementary Material online). Graph shows the distribution
of species along PC1, which explains 35.2% of the variance in this data
set, and PC2, which accounts for 31.4%. Points represent each of 24
species for which data were available for all variables and are colored by
taxonomic category: chordates (red), nonchordate metazoans (black),
plants (green), fungi (blue), and protists (purple). Ellipses show the
clustering of species according to their dispersion along PC1 and PC2
(with confidence limit 0.95). Blue lines radiating from (0,0) represent
each variable included in the analysis. The direction of each line repre-
sents the highest correlation coefficient between the PC scores and the
variable, with the length of each line proportional to the strength of this
correlation. Letter codes for each variable: ASL (A), ASP (B), % PPI
domain sequence per protein (C), proportion of proteins with at least
one PPI domain (D), average number of PPI domains per protein (E),
average protein length (F), mean number of disordered binding sites per
protein (G), mean proteome disorder (H), mean % of disordered binding
sites per protein (I), number of genes (J), total number of disordered
binding sites per proteome (K), proteome information content (L), and
proteome size (M).
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other taxonomic group with mammals and birds having both
proportionately more genes that are alternatively spliced
(ASP) and a higher number of alternative splicing events
per gene (ASL). We observed significant increases over time
in ASP and ASL for the opisthokonts and show that past
claims for an increased level of alternative splicing along the
evolution of metazoans are not explained by differential tran-
script coverage (Warnefors and Eyre-Walker 2011). Our data
do not support a previous claim for lower ASLs among birds
compared with mammalian species (Chacko and
Ranganathan 2009), and in fact, ASLs in the chicken
genome were found to be among the highest of all species
tested.

Plant genomes were found to have higher levels of alter-
native splicing than both protist and fungal species, compa-
rable to those found among invertebrate species. This is
consistent with relatively low levels of alternative splicing in
the eukaryotic ancestor with independent rises in the plant
and metazoan lineages. None of the plant genomes we
examined, however, match the levels of alternative splicing
observed in the vertebrate lineage.

Our results demonstrate a strong association between
alternative splicing and organism complexity providing, to
the best of our knowledge, the first systematic evidence for
a link between these two variables. In this study, we have used
the number of cell types as a proxy for organism complexity.
CTN has been proposed as an indicator of an organism com-
plexity as the higher number of components or cell types in
more complex organisms should reflect, to some degree, their
higher number of functions (McShea 2000). We acknowledge,
however, that complexity is difficult to define and even more
difficult to measure and that all operational definitions for
“complexity" are, to various degrees, contentious (Adami
2002). Several proxies of organismal complexity have been
proposed; however, these measures are either relevant to
some taxonomic groups, such as encephalization coefficient,
or no measurements are available for a large number of spe-
cies, such as phenotypic complexity (Tenaillon et al. 2007).
Although accepting that “organism complexity" is likely to be
a multidimensional variable encompassing many other fea-
tures, we chose this measure as, compared with other proxies,
cell types are more easily quantifiable for organisms from
distant taxonomic groups. It is important to note that, as
CTN data are drawn from a diverse range of studies (see
Materials and Methods), more detailed characterizations of
CTN can appear anomalous. For example, we expect chim-
panzees to have a similar CTN to humans, but currently,
humans are the better characterized species and as such
the human CTN appears higher (supplementary table S1,
Supplementary Material online). To address whether this
type of outlier confounds our results, we repeat our analyses
using the average CTN for the order each species belongs to.
This makes the assumption that any variation in CTN be-
tween species of a given order reflects measurement noise,
rather than relevant biological information. Our results do
not significantly differ when using these alternate values of
CTN (supplementary tables S11 and S12, Supplementary
Material online).

Importantly, as most past studies analyzing the relation-
ship between various genomic features and organism com-
plexity have adopted CTN as a proxy (Xia et al. 2008; Chen
et al. 2011; Schad et al. 2011; Xue et al. 2012), its use allowed us
to contrast our results with those of others. Such comparisons
showed that the relationship of alternative splicing and CTN
is not secondary to other genomic features previously asso-
ciated with CTN, including proteome size (measured as total
protein coding sequence length [Schad et al. 2011]), protein
disorder (Schad et al. 2011; Xue et al. 2012), and protein
interactivity.

Before the full sequencing of nuclear eukaryotic genomes
became widespread, gene number was expected to have a
direct relationship with organism complexity as more genes
would encode a higher number of proteins boosting the
number of potential molecular interactions (Romero et al.
2006; Dunker et al. 2008). The sequencing of the human
genome, however, found no evidence for such an association
(Fields et al. 1994). The discrepancy between organism com-
plexity and gene content became known as the G-paradox
(Claverie 2001; Betran and Long 2002; Hahn and Wray 2002;
Taft and Mattick 2003). However, a recent study concluded
that gene number and organism complexity are related after
all, albeit only when plant species are removed from the
analyses (Schad et al. 2011).

Our findings also support a significant association be-
tween gene number and CTN in the absence of plant
genomes (r2 = 0.34, P = 1.74� 10�3; supplementary table S3,
Supplementary Material online). However, ASL has a stronger
association with CTN (r2 = 0.77, P = 1.09� 10�8) and is suffi-
cient to explain the relationship between CTN and gene
number.

Unlike alternative splicing and gene number, which di-
rectly impact on the number of interacting proteins, addi-
tional gene features linked to CTN can boost the interactivity
potential of individual proteins without expanding their
number. One of the simplest measures of the functional po-
tential of the proteome, total coding region length, has been
found to be significantly associated with CTN (Schad et al.
2011). Although we observed a similar association between
proteome size and CTN, this relationship is entirely explained
as a by-product of both variables’ covariance with alternative
splicing. Proteome size remains a marginal, albeit significant,
predictor of CTN in a stepwise regression model restricted to
the metazoan and fungi lineage where ASL was the strongest
variable (table 1). Moreover, proteome size was not a signif-
icant contributor to the only principal component found to
be significantly associated with CTN.

Protein disorder—the lack of equilibrium in a protein’s 3D
structure under physiological conditions (Romero et al.
2006)—has been proposed as a candidate predictor of organ-
ism complexity as higher intrinsic disorder allows individual
proteins to adopt a greater variety of conformations, increas-
ing the average number of interacting partners per protein
and potentially boosting functional diversification of the pro-
teome (Romero et al. 2006; Dunker et al. 2008). Nevertheless,
subsequent findings show the association between disorder
and CTN only explains any substantial amount of variance
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when bacterial species are included (Schad et al. 2011; Xue
et al. 2012). Our analyses of protein disorder using both step-
wise regressions and principal component analysis do not
provide any evidence of hidden covariance between protein
disorder and CTN. Moreover, despite the fact that past stud-
ies have found a higher than expected number of disordered
motifs in alternatively spliced areas at the gene level (Romero
et al. 2006; Buljan et al. 2012), we do not find a significant
association between protein disorder and alternative splicing
per species (supplementary tables S4 and S5, Supplementary
Material online).

Finally, a third measure of potential molecular interactions
per protein, the presence of PPI domains, has been shown to
be strongly associated with CTN (Xia et al. 2008). We found
three protein interactivity parameters—PPI domain coverage,
the average number of PPI domains per protein, and the
proportion of proteins with at least one PPI domain—to
be significantly associated with CTN regardless of the set
of species examined (supplementary tables S2 and S3,
Supplementary Material online). A head-to-head comparison
between predictors of CTN showed that protein interactivity
measures are better predictors of CTN than any other variable
with the exception of alternative splicing. After controlling for
alternative splicing, however, no protein interactivity param-
eter was found to be significantly associated with CTN (sup-
plementary tables S2 and S3, Supplementary Material online).
An additional measure of protein interactivity previously as-
sociated with CTN, the mean number of PPIs (Schad et al.
2011), was not included in most of our analyses as data were
limited to only 10 species in our set. These comparisons show
that although protein interactivity is significantly associated
with CTN, there is a great overlap between the variance in
CTN explained by protein interactivity and that explained by
alternative splicing.

Several studies have proposed an association between al-
ternative splicing and protein domain content, suggesting
that alternative splicing could act as a buffer against reduced
functionality because of “domain overload"—too many pro-
tein domains or domains in the wrong combination
(Kriventseva et al. 2003; Resch et al. 2004; Floris et al. 2008).
A large-scale analysis has shown that protein domains are
nonrandomly combined in functional proteins with fewer
protein domain co-occurrences observed than expected, sug-
gesting that certain protein domains “avoid" each other
(Parikesit et al. 2011), whereas other domains—including
PPI domains—are “promiscuous" and tend to coexist
within individual transcripts (Basu et al. 2008). Our analyses
of covariance among functional gene variables showed that
alternative splicing and PPI measures are positively corre-
lated—genomes with higher levels of alternative splicing
also have a higher PPI domain presence. We further examined
the association between ASL and PPI domain coverage within
species but found only a marginal association between the
two variables constrained to a few species (supplementary
table S13, Supplementary Material online). This finding sug-
gests that although genomes with a high level of alternative
splicing also tend to have a higher PPI domain coverage, there

is no support for a role for alternative splicing acting as a
buffer of PPI domain overload.

Overall, our results are consistent with a direct association
between alternative splicing and CTN, one which is not ex-
plained by other genomic features previously associated with
organism complexity. This finding is, in principle, consistent
with previous suggestions that alternative splicing may un-
derlie the rise in complexity during eukaryotic evolution
thanks to its potential to expand transcript diversity and
thereby increase the number of potential molecular interac-
tions and functions (reviewed in Xing and Lee 2007; Nilsen
and Graveley 2010; Chen et al. 2012).

Nevertheless, it is important to note that the rise in CTN
has been accompanied by a reduction in effective population
size (Lynch and Conery 2003). Classical nearly neutral theory
proposes that as effective population sizes diminish so too
does the efficiency of purifying selection, resulting in the ac-
cumulation of slightly deleterious mutations, both in coding
(Nikolaev et al. 2007; Popadin et al. 2007; Gayral et al. 2013)
and regulatory (Keightley et al. 2005) sequences. The in-
creased role of drift relative to selection has also been invoked
to explain the proliferation of a number of genomic features
among increasingly complex species (Lynch and Conery 2003;
Lynch 2007). Although more recent studies have disputed this
conclusion (Kuo et al. 2009; Whitney and Garland 2010;
Whitney et al. 2011), a significant proportion of alternative
splicing events have nevertheless been suggested to result
from noisy alternative splicing (Sorek et al. 2004; Pickrell
et al. 2010; Leoni et al. 2011). Thus, it is possible that the
observed increase in alternative splicing among more com-
plex species might be the result of increased genetic drift as a
result of reductions in effective population size, rather than
being directly associated with organism complexity. Using
estimates of effective population size for the 12 species rep-
resented in this study (Lynch and Conery 2003), we found
that a genome’s capacity for alternative splicing re-
mains strongly correlated with CTN even after controlling
for effective population size (partial Spearman’s correla-
tion coefficients: ASL = 0.71, P = 2.37� 10�3; ASP = 0.70,
P = 3.35� 10�3). Although based on a small sample of spe-
cies, this finding suggests that the association between CTN
and alternative splicing is not a by-product of reduced effec-
tive population sizes among more complex species. Future
studies should be able to assess the functional contribution of
increases in alternative splicing in the eukaryotic lineages we
report here.

In addition, it is worth noting that a significant correlation
of any genomic feature with CTN does not necessarily dem-
onstrate a causal role on the evolution of organism complex-
ity, that is, a higher CTN. It is beyond the scope of this study to
address this directly. Nevertheless, network theory provides
some clues, which allows us to speculate as to the likelihood
that increases in transcript diversification, facilitated by alter-
native splicing, have affected the evolution of organism com-
plexity. Boolean networks have been proposed as models for
genetic networks as the attractors, representing different
stable patterns of gene expression, correspond to different
cell types (Kauffman 1969; Serra et al. 2010). In Boolean
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networks, increases in the number of nodes leads to a higher
number of attractors within the network at a rate equal to or
exceeding the square root of the number of nodes in the
network (Samuelsson and Troein 2003). If we imagine each
distinct transcript as a node in the genetic network, we can
speculate that alternative splicing, by increasing the num-
ber of nodes (transcripts), would lead to an increased
number of attractors (cell types). Indeed, a previous study
that generated relational networks for seven species associ-
ated the number of functions in a proteome with the number
of polyform transcriptional units in the genome, those that
produce protein isoforms with different functional assign-
ments (which are strongly associated with the levels of splic-
ing). Various properties of these networks (such as the
number of nodes) were found to be strongly associated
with organism complexity, suggesting a link between splicing
and both multifunctionality and multicellularity (Kanapin
et al. 2010).

We conclude that alternative splicing increases over the
last 1,400 My of eukaryotic evolution are strongly associated
with CTN. Furthermore, this association is stronger and more
robust than other parameters previously associated with
CTN, although we cannot rule out the contributions of
other genomic features as many covary. Our findings are
consistent with an adaptive scenario whereby a genome’s
capacity for alternative splicing—with its resulting expansion
of the transcript pool—could constitute a critical component
of the underlying mechanisms explaining the diversification
of cell types and the rise in organism complexity over time.
Nevertheless, the data here presented do not allow us to
reach a conclusion on the functional relevance of increases
in alternative splicing or to establish causality regarding the
association of alternative splicing and organism complexity;
thus, it is possible that a “nonadaptive model" may account
for it.

To the best of our knowledge, our results represent the
first systematic assessment of the relationship between alter-
native splicing, evolutionary time, and CTN and provide ev-
idence for a strong association of alternative splicing and
CTN. Our results further constitute the most comprehensive
head-to-head comparison, to date, of variables associated
with CTN.

Materials and Methods

Organism Complexity

The number of unique cell types was used as a proxy of
organism complexity. Estimates of CTN per species were
compiled from previous studies (Valentine et al. 1994; Bell
and Mooers 1997; Hedges et al. 2004; Haygood and
Investigators 2006; Lang et al. 2010; Schad et al. 2011); data
in graph form from Valentine et al. (1994) as interpreted by
both Erwin (2009) and Vogel and Chothia (2006) were also
included. Following the methodology of Vogel and Chothia
(2006), where more than one estimate of CTN was available
for a species, the average of the minimum and maxi-
mum number was used. In addition, we included a revised
CTN estimate for humans (Vickaryous and Hall 2006).

Supplementary table S1, Supplementary Material online,
provides averaged complexity estimates for both pro- and
eukaryotic species, whereas supplementary table S14,
Supplementary Material online, shows the sources.

Identification of Alternative Splicing Events

Comparable alternative splicing events were obtained using
the following approach. Over 39 million EST sequences, ac-
counting for 112 species, were downloaded from dbEST
(Boguski et al. 1993) and matched to their corresponding
genome using GMAP (Wu and Watanabe 2005) (these spe-
cies are identified in supplementary table S1, Supplementary
Material online, by a positive value in the column titled “total
number of ESTs”). Genome sequences and annotations were
obtained from sources contained in supplementary table S1,
Supplementary Material online. Cancer-derived EST libraries
from human and mouse were removed from all analyses
presented. To ensure high-quality alignments, we only re-
tained those ESTs with 95% identity. ESTs were assigned to
genes using gene annotation coordinates. EST alignments
were then used to create an exon template. These templates
were generally in agreement with existing exon annotations
and also identify a small number of nonannotated exons and
discard orphan exons likely to be nested genes. Alternative
splicing events per gene were identified by comparing align-
ment coordinates for each individual EST to exon annota-
tions. A comparable alternative splicing index that avoids
transcript coverage biases was obtained using the transcript
normalization method described by Kim et al. (2007). Briefly,
for each gene with greater than 10 ESTs, 100 random samples
of 10 ESTs were selected. The number of alternative splicing
events were calculated for each random sample (as detailed
earlier), with an overall average calculated per gene. The abil-
ity of this method to correct for transcript coverage bias and
calculate an accurate number of alternative splicing events is
shown in supplementary figure S1, Supplementary Material
online. To estimate ASP, a gene was considered to be alter-
natively spliced if it had at least an average of one alternative
splicing event identified in each of the 100 random samples.

Additional Functional Genomic Parameters

Gene number per species was obtained from Ensembl
BioMart version 0.8 (March 2013) (Kinsella et al. 2011).
Proteome size (total amino acids encoded by all peptides),
proteome information content (total amino acids encoded
by primary transcripts only), and average protein length were
calculated from mRNA transcripts obtained from Ensembl
BioMart version 0.8 (March 2013) (Kinsella et al. 2011). The
exception is the lancelet, Branchiostoma floridae, where tran-
scripts were obtained from Putnam et al. (2008). PPI domains
per protein were identified using HMMER3 with default pa-
rameters (Finn et al. 2011) and the Pfam-A database (Finn
et al. 2008), with results parsed to consider matches to the
642 confirmed PPI domains as described by Xia et al. (2008).
Protein disorder data were obtained from Schad et al. (2011).
“Disordered sites" are those which are not at equilibrium in
the protein’s 3D structure under physiological conditions and
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can thus adopt a greater variety of conformations. We ob-
tained the mean number of disordered binding sites per pro-
tein, the total number of disordered binding sites across all
annotated proteins per species, and the mean percentage of
disordered binding sites per protein (i.e., the mean number of
disordered sites per protein as a percentage of the protein’s
length). The latter term is considered the disorder of the
protein. Mean proteome disorder is taken as the mean dis-
order per protein. The average number of PPIs per protein for
each species was also obtained from Schad et al. (2011). Data
on effective population size were obtained from Lynch and
Conery (2003).

Statistical Analysis

All statistical tests were performed in R, version 2.15.2 (Team
2012). For stepwise regression analysis, new regressors are
included at each step according to the Akaike Information
Criterion (Akaike 1974), estimated using the package “MASS"
(Venables and Ripley 2002). Principal component analysis was
performed using the R packages “FactoMineR" (Lê et al. 2008)
and “Vegan."

Correction for Phylogenetic Autocorrelation

To assess and control for the strength of the phylogenetic
signal on the correlation between CTN and the different ge-
nomic variables in this study, we computed Pagel’s l (Pagel
1999) based on maximization of the restricted log-likelihood
using the gls subroutine from the R-package nlme (Pinheiro
et al. 2013). Optimum negative values of Pagel’s l are
reported as l= 0. We used the subroutine PGLS in the R-
package Caper (Orme et al. 2012) to examine the “true" as-
sociations between the different genomic variables and CTN
after using the optimal l values to control for the strength of
the phylogenetic signal. This method implements generalized
least squares models, which account for phylogenetic nonin-
dependence by incorporating the covariance between taxa
into comparisons that determine the correlation between
dependent and independent variables. PGLS is an extension
of the independent contrasts methods proposed by
Felsenstein (1985) that provides a more general and flexible
approach for assessing correlations between traits while ac-
counting for phylogenetic divergence. An ultrametric phylo-
genetic tree for the analyzed species was created by obtaining
the divergence time between each pair of species from
Hedges et al. (2006).

Expression Level

Microarray data for four species (Homo sapiens, Mus muscu-
lus, A. thaliana, and C. elegans) were obtained from the fol-
lowing sources. For H. sapiens and M. musculus, Affymetrix
array data analyzed by Su et al. (2004) was obtained from
BioGPS (http://biogps.org, last accessed November 21, 2013).
For H. sapiens, we obtained the expression of 11,449 genes
across 28 tissues. We summarized gcRMA (GC robust
multiarray average) normalized probe intensity levels to
Ensembl IDs corresponding to protein coding genes. All
probes matching to more than one Ensembl gene ID were

removed. Expression values were then normalized against the
total signal level in each tissue. For M. musculus, we obtained
9,825 genes with one-to-one orthologs in the human across
79 different tissues and cell types. Where more than one array
exists for a given tissue, data were averaged. The per probe
expression signal was summarized to Ensembl gene IDs using
the average expression of all the probe sets matching a single
Ensembl ID. All probes matching to more than one Ensembl
gene ID were removed. Expression values were then normal-
ized against the total signal level in each tissue. For A. thaliana,
data were obtained from the Arabidopsis Development Atlas,
as generated by the AtGenExpress Consortium (Schmid et al.
2005) (NASCARRAYS reference numbers 149–154, together
representing 79 tissues, were downloaded from NASC
AffyWatch [http://affymetrix.arabidopsis.info/, last accessed
November 7, 2011]). Expression level was then quantified as
the average gcRMA across all 79 tissues (with each value itself
the mean of triplets) (Yang and Gaut 2011). For C. elegans,
tissue-specific expression for 13 tissues (germline, hypodermis,
intestine, muscle, neurons, pharynx, coelomocytes, distal tip,
excretory cells, spermatheca, spermatheca uterine valve,
uterus, and vulva) was obtained from Chikina et al. (2009)
(http://worm-tissue.princeton.edu, last accessed November
28, 2013), who analyzed a compendium of 916 microarray
experiments from 53 data sets. Expression values in this data
set are already normalized to have mean 0 and variance 1.
Expression level is taken as the mean across all tissues.

Supplementary Material
Supplementary tables S1–S14 and figures S1–S5 are available
at Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).

Acknowledgments

The authors thank Humberto Gutierrez, Laurence Hurst,
Nicolas Galtier, and an anonymous reviewer for comments.
This work was supported by a UK-China scholarship for ex-
cellence and University of Bath research studentship to L.C.,
University of Bath fee studentship to S.J.B., CONACyT schol-
arships to J.M.T.-C. and A.C.M., a Royal Society Dorothy
Hodgkin Research Fellowship (DH071902), Royal Society re-
search grant (grant number RG0870644), and a Royal Society
research grant for fellows (grant number RG080272) to A.O.U.

References
Adami C. 2002. What is complexity? Bioessays 24:1085–1094.
Akaike H. 1974. A new look at the statistical model identification.

Automatic Control IEEE Trans. 19:716–723.
Basu MK, Carmel L, Rogozin IB, Koonin EV. 2008. Evolution of protein

domain promiscuity in eukaryotes. Genome Res. 18:449–461.
Bell G, Mooers AO. 1997. Size and complexity among multicellular

organisms. Biol J Linn Soc. 60:345–363.
Betran E, Long M. 2002. Expansion of genome coding regions by acqui-

sition of new genes. Genetica 115:65–80.
Bird AP. 1995. Gene number, noise reduction and biological complexity.

Trends Genet. 11:94–100.
Boguski MS, Lowe TMJ, Tolstoshev CM. 1993. dbEST—database for

expressed sequence tags. Nat Genet. 4:332–333.
Brett D, Pospisil H, Valcarcel J, Reich J, Bork P. 2002. Alternative splicing

and genome complexity. Nat Genet. 30:29–30.

1411

Alternative Splicing and Organism Complexity . doi:10.1093/molbev/msu083 MBE
 at U

niversity of B
ath, L

ibrary on July 6, 2015
http://m

be.oxfordjournals.org/
D

ow
nloaded from

 

protein
-
protein interaction
as
`
'
s
`
'
`
'
`
'
non-
s
.
.
as
s
http://biogps.org
-
ue
as
 (ADA)
-
(
http://affymetrix.arabidopsis.info/
)
ere
http://worm-tissue.princeton.edu
datasets
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu083/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu083/-/DC1
http://www.mbe.oxfordjournals.org/
http://www.mbe.oxfordjournals.org/
http://mbe.oxfordjournals.org/


Buljan M, Chalancon G, Eustermann S, Wagner GP, Fuxreiter M,
Bateman A, Babu MM. 2012. Tissue-specific splicing of disordered
segments that embed binding motifs rewires protein interaction
networks. Mol Cell. 46:871–883.

Chacko E, Ranganathan S. 2009. Comprehensive splicing graph analysis
of alternative splicing patterns in chicken, compared to human and
mouse. BMC Genomics 10:S5.

Chen CH, Lin HY, Pan CL, Chen FC. 2011. The plausible reason why the
length of 5’ untranslated region is unrelated to organismal complex-
ity. BMC Res Notes. 4:312.

Chen L, Tovar-Corona JM, Urrutia AO. 2012. Alternative splicing: a po-
tential source of functional innovation in the eukaryotic genome. Int
J Evol Biol. 2012:10.

Chikina MD, Huttenhower C, Murphy CT, Troyanskaya OG. 2009.
Global prediction of tissue-specific gene expression and context-
dependent gene networks in Caenorhabditis elegans. PLoS Comput
Biol. 5:e1000417.

Claverie J-M. 2001. What if there are only 30,000 human genes? Science
291:1255–1257.

Dehal P, Boore JL. 2005. Two rounds of whole genome duplication in the
ancestral vertebrate. PLoS Biol. 3:e314.

Delsuc F, Brinkmann H, Chourrout D, Philippe H. 2006. Tunicates and
not cephalochordates are the closest living relatives of vertebrates.
Nature 439:965–968.

Dunker AK, Oldfield CJ, Meng J, Romero P, Yang JY, Chen JW, Vacic V,
Obradovic Z, Uversky VN. 2008. The unfoldomics decade: an update
on intrinsically disordered proteins. BMC Genomics 9(Suppl 2):S1.

Erwin DH. 2009. Early origin of the bilaterian developmental toolkit.
Philos Trans R Soc Lond B Biol Sci. 364:2253–2261.

Felsenstein J. 1985. Phylogenies and the comparative method. Am Nat.
125:1–15.

Fields C, Adams MD, White O, Venter JC. 1994. How many genes in the
human genome? Nat Genet. 7:345–346.

Finn RD, Clements J, Eddy SR. 2011. HMMER web server: interactive
sequence similarity searching. Nucleic Acids Res. 39:W29–W37.

Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz H-R, Ceric G,
Forslund K, Eddy SR, Sonnhammer ELL, et al. 2008. The Pfam protein
families database. Nucleic Acids Res. 36:D281–D288.

Floris M, Orsini M, Thanaraj T. 2008. Splice-mediated variants of pro-
teins (SpliVaP)—data and characterization of changes in signatures
among protein isoforms due to alternative splicing. BMC Genomics
9:453.
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