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SUMMARY

In recent years, the development of simulation-based, often approximate, statistical
methods has been prompted by the challenges posed by complex models used in fields
such ecology, epidemiology and system biology. A common issue with such models is
that the likelihood function, so central to both Bayesian and classical approaches to
statistical inference, is often unavailable or intractable. While intractable models could
be dealt with using other methodologies, in this work we focus mainly on Synthetic
Likelihood (SL). This is a simulation-based method based on summary statistics, rather
than on the full data, and it is closely related to Approximate Bayesian Computation
(ABC) methods.

The purpose of this thesis is twofold. First, we compare SL, ABC and other, less
approximate, methods in the context of highly non-linear ecological and epidemiological
models. We do this using a wide range of models, with both simulated and real data.
The second part of the thesis is dedicated to improving SL. In particular, we address
the computational cost of SL by proposing an efficient Maximum Synthetic Likelihood
(MSL) algorithm, which exploits the Gaussian assumption used by SL. Finally, we relax
this distributional assumption by proposing an original density estimator which, while
being more flexible than a Gaussian estimator, scales well with the number of statistics
used by SL.
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CHAPTER 1

INTRODUCTION

In this chapter we describe some of the challenges faced by statistical ecologists and
we point out that some of these can be addressed by approximate methods, which
use summary statistics rather than the full data. In addition, we describe how many
ecological models are characterized by unavailable or intractable likelihood functions.
We define one class of such models, namely State Space Models, which will appear
several times in the rest of this thesis. Finally, we give an outline of the thesis.

1.1 Intractable ecological models

Ecology aims to understand the abundance and distribution of organisms. This essen-
tially quantitative task is made difficult by the complex web of interactions that exist
between living things. In the face of such daunting ecological complexity, dynamic
models play an important role in separating fundamental mechanisms from matters
of detail. In particular, they allow theoretical ideas to be sharpened into well de-
fined quantitative hypotheses, and this in turn opens up the possibility of testing these
hypotheses using data.

But there is a catch. To be useful, ecological dynamic models must often resort
to ‘cartooning’ of some ecological processes. Simplification is essential if the model is
not to become a ‘model-of-everything’, hence a reasonably parsimonious model may
not be intended to reproduce the full data, y0, in all its features. For example, while
the full data might be characterized by a spatial structure, it is often convenient to
use a lumped model that ignores this dimension. Similarly, when the data contains
several classes of organisms, computational considerations might lead to a model that
aggregates key statistics, such population counts, over different classes. Under these
circumstances, reducing the full data to a set of summary statistics, s0 = S(y0), might
not lead to any loss of information during parameter estimation or model selection
(Hartig et al., 2011).

Basing statistical inference on aggregate summary statistics might be necessary
also when working with Individual Based Models, which are often used to understand
ecological outcomes that depend intricately on the interactions of individuals within a
population. Forest stand growth models are an example. In these models individual
trees of many species may be grown to maturity, all competing continuously for light
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and nutrients as they do so. Here the mismatch between data and model is of a different
kind. For example, in a real forest we would obtain data consisting of measurements
on individual trees. The same measurements can often be made on the model trees,
but a particular model individual does not correspond to any real individual. We are
left with no choice but to base inference on summary statistics, as done by Hartig et al.
(2014) who uses Synthetic Likelihood (SL), an approximate method proposed by Wood
(2010), to fit the Formind individual-based forest model to Ecuadorian tropical forest
field data. While the model deals with individual trees, its output is summarized using
112 statistics such as biomass, growth rate and tree counts, obtained by aggregating
trees over several diameter classes.

Other reasons for considering the use of summary statistics relate to highly non-
linear dynamics, of the sort that are often found in populations of small animals, with
high rates of fecundity and mortality. Indeed, even if our models are perfect descriptions
of the driving ecological mechanisms, dynamic irregularity can make reliable inference
very difficult to achieve by conventional means. If our models are less perfect, the
interaction of such irregularity with small infelicities in the model’s ability to match
the data can lead to substantial inferential errors. Wood (2010) shows that these
problems can arise in ecological systems as simple as the Ricker map (May, 1976),
and illustrates how the extreme sensitivity of near chaotic systems to small changes in
dynamically important parameters can cause minuscule moves in the parameter space
to result in massive changes in likelihood values. In this circumstance, it is obviously
appealing to base inference on summary statistics of the data that the model should
be able to reproduce, rather than on the full data. Indeed, Wood (2010) argues that
approximate methods can offer an appealing robustness here, provided that they are
used in conjuction with appropriately robust statistics.

Even in the absence of the difficuties just discussed, ecological models can have
tractability problems. Most of the conventional statistical tools used to find the pa-
rameter values or models that are most consistent with the data (and possibly with
prior knowledge), rely on the likelihood function, p(y0|θ). Unfortunately, for many
models of ecological interest, p(y0|θ) is not available directly or it is otherwise prob-
lematic, thus posing an obstacle to the whole inferential process. This difficulty can
occur for several possible reasons, but one common problem is the presence of hidden
or latent states. Specifically, we often know that the dynamics of an observed process
y0 are related to those of other processes n, which are hidden from us. In such cases
the likelihood could ideally be obtained by integrating the latent states out of the joint
probability density of data and hidden states

p(y0|θ) =
∫

p(y0,n|θ) dn. (1.1)

In practice this integration problem is usually analytically intractable, while the effi-
cient implementation of numerical or Monte Carlo integration schemes often require
additional assumptions, such as those detailed in Section 1.2.

Classical examples of partially observed systems of ecological interest are predator-
prey systems, where the abundance of one of the two components is often completely
unknown. For instance, in Chapter 3 we consider the prey-predator model proposed by
Turchin and Ellner (2000), which has been used to describe the population dynamics
of Fennoscandian voles. In that example trap data provides noisy estimates of voles
abundance, but no such proxy is available for predatory weasels. A similar example is
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provided by Kendall et al. (2005), who evaluate alternative explanations for the regu-
lar oscillations in population density of insect pest pine looper moths. They consider,
among others, a parasitoid and a food quality model and they fit them using only data
on moth population density. Given that ecological systems are observed with noise in
most cases, the issue of hidden states is widespread and it appears in studies concerned
with animal movement (Langrock et al., 2012; Morales et al., 2004), population abun-
dance estimation (Farnsworth et al., 2007), and essentially whenever remote tracking
data is available (Jonsen et al., 2005).

The rapid growth in computational resources has supported the development of
several approaches meant to tackle the issue of intractable likelihoods. Some of these
approaches exploit the fact that faster computation makes forward model simulation,
that is simulation of data y from p(y|θ), cheap enough that it can be repeated many
thousands of times. In particular, it is possible to use forward simulations to find
the set of parameter values or models that are able to closely reproduce the full data,
y0, or more often some of its most informative features, s0. Approximate Bayesian
Computation (ABC) (Beaumont, 2010) represents one class of such methods which,
being based on a Bayesian framework, generally try to address questions regarding
parameter estimation or model selection by approximately sampling the corresponding
posteriors p(θ|s0) and p(M |s0).

In this thesis we will deal mainly with a particular family of intractable models:
State Space Models. This very popular class of partially observed models will be
described in Section 1.2.

1.2 State Space Models

State Space Models (SSMs) represent a special class of models with hidden or partially
observed states. In these models the hidden states follow Markov processes, whose
conditional pdf has the following property

p(nt|n1, . . . ,nt−1,θ) = p(nt|nt−1,θ), (1.2)

where t ∈ {1, . . . , T} and θ is a vector of static parameters. Property (1.2) implies
that the future states are statistically independent of the past, upon conditioning on
the present. Generally, the hidden ecological processes are coupled with an observation
process according to which observed data points are conditionally independent, given
the underlying states (King, 2014)

p(y0t |nt,y
0
1 , . . . ,y

0
t−1,θ) = p(y0t |nt,θ). (1.3)

Typically the term SSMs is used to indicate partially observed Markov processes
with continuous state spaces, while models with discretely valued states are called
Hidden Markov Models (HMMs). In this thesis we focus mainly on SSMs, but most
considerations apply also to HMMs.

As for most partially observed systems, the likelihood of SSMs is generally not
available directly. Indeed, for such models p(y01:T |θ), where y01:T = {y01 , . . . ,y0T }, is
available analytically only if both p(nt|nt−1,θ) and p(y

0
t |nt,θ) are linear and Gaussian

(Kalman, 1960). Fortunately, the Markov property (1.2) mitigates the intractability of
these models, because it allows estimation of the likelihood by performing the required
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T -dimensional integration efficiently. In particular, the Markov property is exploited
by particle filters (Doucet and Johansen, 2009) to break down the integration problem
into T sequential integration steps. These computational tools will be described in
Chapter 2.

1.3 Objectives of thesis and outline

This first objective of this thesis is to compare approaches based on summary statistics,
such as ABC and SL, with less approximate methods, such as particle filters. In
particular, in Chapter 2 we consider simple SSMs with highly non-linear dynamics
and we compare ABC and SL with two methods based on particle filters. We show
that the full likelihood of these models can be highly multimodal in certain areas of
the parameter space, and that approximate methods might be more robust than full
likelihood methods under such circumstances. However, we illustrate that, when the
likelihood is sufficiently smooth, particle filters generally outperform ABC and SL in
terms of accuracy in parameter estimation.

The comparison work continues in Chapter 3, where we restrict our attention to
SL and to Particle Marginal Metropolis Hastings (PMMH), a particle-filtering-based
method described by Andrieu et al. (2010). We compare SL and PMMH on three
complex models, using both simulated and real data. First, we consider the blowfly
model of Gurney et al. (1980), modified by Wood (2010), and we fit it to Nicholson’s
experimental datasets (Nicholson, 1954, 1957). Second, we use the prey-predator model
of Turchin and Ellner (2000) to analyse the dynamics of Fennoscandian voles. Third,
we modify the compartmental model of King et al. (2008), and we fit three versions
of it to a dataset concerning cholera-related deaths in the Bay of Bengal. The first
two examples demonstrate that, when simulated data is used, PMMH is generally
more accurate than SL for the purpose of parameter estimation. However, we show
that SL can be more robust than PMMH in the presence of outliers or under model
mis-specification.

While Chapters 2 and 3 focus on comparing existing methods, subsequent chapters
are dedicated to improving the Synthetic Likelhood method. In Chapter 4 we propose a
Maximum Synthetic Likelihood (MSL) procedure, aimed at reducing the computational
cost of SL. More specifically, we describe how the synthetic likelihood can be maximized
efficiently, by approximating its first and second derivatives using local regressions.
We also discuss the relation between SL and the Continuous Updating Generalized
Method of Moments (CUGMM), and we describe how CUGMM can make use of local
regressions analogous to those used by MSL. We then compare MSL, CUGMM and a
Metropolis Hastings implementation of SL (SLMH) on a sequence of simple examples.
In all examples MSL and CUGMM outperfom SLMH, in terms of Mean Squared Error
reduction of the parameter point estimates, as a function of the number of simulations.

In Chapter 5 we relax the distributional assumption made by SL. In particular,
rather than modelling the summary statistics using a Multivariate Gaussian distribu-
tion, as suggested by Wood (2010), we propose to use a new, more flexible, density
estimator. More specifically, we develop a modified version of the Empirical Saddle-
point approximation of Davison and Hinkley (1988), which we refer to as the Extended
Empirical Saddlepoint approximation (ESA). We discuss how ESA’s tuning parame-
ter can be estimated by cross-validation and, within the context of SL, we prove the
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consistency of the resulting parameter estimates. We then use a toy example and the
Individual Based forest model of Dislich et al. (2009) to demonstrate that the new
estimator clearly outperforms a Gaussian approximation, when the summary statistics
are far from normal.

Chapters 2, 3 and 5 of this thesis are based on the following papers:

• Fasiolo M., Wood S. N., Approximate methods for dynamic ecological models.
To appear in the Handbook of Approximate Bayesian Computation.

• Fasiolo M., Pya N., Wood S. N., Statistical inference for highly non-linear dy-
namical models in ecology and epidemiology. To appear in Statistical Science.

• Fasiolo M., Wood S. N., Hartig F., Bravington M. V., An Extended Empirical
Saddlepoint Approximation for Intractable Likelihoods. Submitted to Biomet-
rics.

The approach proposed in Chapter 4 has reached its current form only recently, hence
the results discussed therein will require some additional work, before they can lead to
a publication.

The work behind this thesis was performed by Matteo Fasiolo, who has benefited
from the comments and ideas of the co-authors of the above papers. Hence, all the
content of this thesis, and the code behind it, has been produced by Matteo Fasiolo,
with the following exceptions:

• The code that calculates the exact likelihood of the discretize Ricker map (Chap-
ter 2) was written by Simon N. Wood.

• The code that produces Figure 2-8 was written by Natalya Pya.

• The compiled object implementing the Formind forest model was provided by
Florian Hartig.
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CHAPTER 2

METHODS PRESENTATION AND A FIRST COMPARISON

ON SIMPLE CHAOTIC MAPS

Highly non-linear, chaotic or near chaotic, dynamic models are important in fields
such as ecology and epidemiology: for example, pest species and diseases often display
highly non-linear dynamics. However, such models are problematic from the point of
view of statistical inference. The defining feature of chaotic and near chaotic systems
is extreme sensitivity to small changes in system states and parameters, and this can
interfere with inference. There are two main classes of methods for circumventing these
difficulties: information reduction approaches, such as Approximate Bayesian Compu-
tation or Synthetic Likelihood, and state space methods, such as Particle Markov chain
Monte Carlo, Iterated Filtering or Parameter Cascading. The purpose of this Chapter
is to present and compare the methods, in order to reach conclusions about how to ap-
proach inference with such models in practice. We show that state space methods can
suffer multimodality problems in settings with low process noise. Information reduction
methods avoid this problem but, under the correct model and with sufficient process
noise. state space methods lead to substantially sharper inference than information
reduction methods.

2.1 Introduction

Non-linear or near-chaotic dynamical systems represent a challenging setting for sta-
tistical inference. The chaotic nature of such systems implies that small variations in
model parameters can lead to very different observed dynamics. This characteristic
alone is enough to invalidate many conventional statistical methods, but in most cases
additional complications are present. Firstly, the process under study is generally ob-
served with errors. In addition, many models include a further layer of uncertainty,
which we call process stochasticity. In ecology this is often environmental noise, driving
the system dynamics. Process stochasticity increases the complexity of the model in
a non-trivial way: apart from being unobservable, its presence makes every realized
trajectory of the system essentially unique. This is particularly true for chaotic models
where any amount of process noise will cause rapid divergence of two paths generated
using identical parameters and initial conditions, in sharp contrast to the situation in
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which dynamics lie on a stable attractor.
Developing statistical methods that can deal effectively with highly non-linear sys-

tems is not simply a matter of theoretical interest, since examples of non-linear or
near-chaotic behaviour in ecological systems abound: lemmings (Kausrud et al., 2008),
voles (Turchin and Ellner, 2000), mosquitos (Yang et al., 2008), moths (Kendall et al.,
2005) and fish (Anderson et al., 2008). Similar degrees of non-linearity have been
observed in experimental settings, for example: blowflies (Nicholson, 1957) and flour
beetles (Desharnais et al., 2001).

The focus of epidemiologists often differs from that of ecologists. Both groups are
concerned with explaining the persistence of the species under study, but epidemiolo-
gists and ecologists are often aiming respectively at causing and avoiding its extinction
(Earn et al., 1998). Despite this divergence in objectives, the mathematical struc-
tures used to study population dynamics are often very similar. Hence, the role of
non-linearities in the population dynamics of infectious diseases has attracted much
attention in epidemiology as well. In the context of measles, Grenfell (1992) and Gren-
fell et al. (1995) describe how the interaction between seasonal forcing and observed
heterogeneities, such as age structure or spatial coupling, can result in chaotic or stable
dynamics, while Grenfell et al. (2002) address the issue of predictability under a time-
series Susceptible Infected Recovered model. More recently King et al. (2008), Lavine
et al. (2013) and Bhadra et al. (2011) use non-linear stochastic models with multiple
compartments to analyse cholera, pertussis and malaria epidemics, respectively.

The relation between chaos, statistics and probability theory has been discussed by
Berliner (1992) and Chan and Tong (2001), among others. We have a quite different
focus, which is to review and compare the state of the art statistical methods for highly
non-linear dynamic models in ecology and epidemiology, investigating the difficulties
involved in their use, and attempting to establish the best approach to take in practical
applications.

The chapter is organized as follows: in Section 2.2 we show that the likelihood
function of simple dynamic models can be intractable in certain areas of the parameter
space, while in Section 2.3 we briefly review the set of statistical methods most useful in
the context of non-linear dynamic systems. Section 2.5 illustrates how these methods
deal with the issue discussed in Section 2.2, while Section 2.6 discusses the relative
merits and drawbacks of Synthetic Likelihood and Approximate Bayesian Computation
methods. In Section 2.7 we compare the relative performance of these methodologies
on an array of simple ecological maps that can show chaotic dynamics. Section 2.8
draws some initial conclusions, which we will expand upon in Chapter 3, in light of the
results obtained therein.

2.2 Chaos and the likelihood function

To provide a simple example illustrating how the dynamics of an ecological model can
challenge conventional statistical approaches, let us consider the noisily observed Ricker
map

yt ∼ Pois(φnt), (2.1)

nt+1 = rnte
−nt+zt+1 , zt ∼ N(0, σ2), (2.2)

which can be used to describe the evolution in time t of a population nt. Parameter r
is the intrinsic growth rate of the population, controlling the dynamics of the system;
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Model Name Process Equation

Generalized Ricker nt+1 = rnte
−nθt+zt

Pennycuick nt+1 =
rnt

1+e−a(1−nt)
ezt

Maynard-Smith nt+1 =
rnt

(1+nbt )
ezt

Varley nt+1 =















rnte
zt if nt ≤ c;

rn1−b
t ezt if nt > c.

Table 2.1: Five simple maps that can show chaotic dynamics. In each case yt ∼ Pois(φnt)
and zt ∼ N(0, σ2).

φ is a scale parameter. The process noise zt can be interpreted as environmental noise.
Denote with y01:T = {y01 ,y02 , . . . ,y0T } and n1:T = {n1,n2, . . . ,nT } the observa-

tions and hidden state sequence up to time T , where y0t ∈ R
dy and nt ∈ R

dn for
t ∈ {1, . . . , T}. Equations (2.1) and (2.2) define a simple State Space Model (SSM),
for which parameter inference is non-trivial: defining θ = {r, φ, σ}T , the likelihood
p(y01:T |θ) is intractable in certain areas of the parameter space. For example, when
σ = 0, the likelihood is analytically available, but extremely irregular for high values
of r. The plot on the top left of Figure 2-1 shows a transect of the log-likelihood w.r.t.
log(r), obtained using 50 observations, yt, simulated using parameters log(r) = 3.8,
σ = 0 and φ = 10. Given the ragged shape of the log-likelihood, estimating the param-
eters by maximum likelihood would be very challenging computationally, while having
only limited theoretical motivation. Similarly, any standard MCMC algorithm target-
ing the parameter posterior distributions would hardly mix at all. This behaviour is
generic to highly non-linear dynamic systems: Figure 2-1 shows likelihood transects for
three more dynamic models, defined in Table 2.1, any of which could be used to make
the same points made using the Ricker map.

Figure 2-1 reflects the extreme sensitivity of the likelihood of chaotic models to mi-
nuscule changes in parameters or process noise. The bifurcation diagram of the Ricker
map (grey) shows the possible long term values nt of the map, as a function of log(r).
While the trajectories oscillate between two values for log(r) ≈ 2, increasing log(r)
above 2.5 leads to a sequence of closely spaced bifurcations, each doubling the period-
icity of the map. This period-doubling cascade has a direct effect on the likelihood.
Notice that this function is smooth again for values of log(r) where stable periodic os-
cillations are recovered. Further increasing log(r) leads to more period-doubling phases
and eventually to chaos.

Figure 2-2 illustrates the origin of this extreme multimodality. We generated two
state paths, n1:50, using σ = 0 and the same initial value n1 = 7, but different values of
log(r): 3.8 (black) and 3.799 (red). The two paths are close to each other for the first
steps, but the mismatch between them increases with time, and by t = 15 the peaks and
troughs of the paths do not coincide any more. This sort of divergence of neighbouring
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trajectories is the defining feature of chaotic dynamics (measured formally in terms of
Lyapunov exponents).

The choice σ = 0 is quite peculiar. What does the likelihood look like when the
process dynamics are stochastic?

Algorithm 1 Sequential Importance Re-Sampling (SIR) for likelihood estimation

This algorithm, originally proposed by Gordon et al. (1993), exploits the Markov prop-
erty to approximate integral (2.3) in T sequential steps. Let n1:M

0 be a sample of
particles from the prior distribution p(n0). Then p(y

0
1:T |θ) is estimated as follows.

For t = 1 to T:

1: For i = 1, . . . ,M :
propagate the i-th particle forward

ni
t ∼ p(ni

t|ni
t−1,θ),

and weight it using the t-th observation

wi = p(y0t |ni
t,θ).

2: Estimate the t-th likelihood component

p̂(y0t |y01:t−1,θ) =
1

M

M
∑

i=1

wi.

3: Re-sample n1:M
t with replacement, using probabilities proportional to w1:M .

4: Estimate the likelihood by using

p̂(y01:T |θ) = p̂(y01 |θ)
T
∏

t=2

p̂(y0t |y01:t−1,θ).

As explained in Chapter 1, the likelihood of SSMs, p(y1:T |θ), must be obtained by
integration

p(y01:T |θ) =
∫

p(y01:T ,z1:T |θ) dz1:T

=

∫

p(y01:T ,n1:T |θ) dn1:T ,

(2.3)

where the second integral is generally the more computationally tractable version. The
plot on the right of Figure 2-2 shows a transect of the estimated log-likelihood of the
Ricker map w.r.t. parameter log(r), obtained using the Sequential Importance Re-
sampling (SIR) particle filter with 5×105 particles. Algorithm 1 details the main steps
of this procedure, but we refer to Doucet and Johansen (2009) for a more detailed
introduction to particle filters. The observed path y01:50 has been simulated using
log(r) = 3.8, σ = 0.3 and φ = 10. In sharp contrast with the deterministic case (Figure
2-1), it appears that the injection of process noise (σ > 0) into the system has made the
likelihood smooth and unimodal. At this point several questions arise: is the likelihood
really smooth, as Figure 2-2 suggests, or is it possible that the particle filter is hiding
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Figure 2-1: Slices of the log-likelihoods of four simple models w.r.t different parameters (black).
In each case σ = 0, hence the likelihoods are analytically available. For the Ricker map a
bifurcation diagram is included (gray).

the extreme multimodality of Figure 2-1, so that what we observe in Figure 2-2 is an
artefact of Monte Carlo integration? If the likelihood is indeed smooth, how did the
transition from Figure 2-1 to Figure 2-2 occur? How much noise σ should be present
in order to obtain a smooth likelihood?

Checking the reliability of the estimates provided by a particle filter is difficult
because, for non-linear and/or non-Gaussian models, Monte Carlo or numerical inte-
gration are the only ways to get an approximation to (2.3). To obtain a benchmark
against which to compare the estimates of the likelihood provided by the filter, we
have therefore discretized the state space of the Ricker map in 500 intervals. In this
way we can calculate the likelihood exactly, since the integrations are replaced by effi-
ciently computable summations over all the possible values of the states, as detailed in
Appendix A.1. Obviously, we do not propose discretization as a viable alternative to
particle filters, but we want to use a discretized SSM to compare the performance of a
particle filter with the true likelihood. It is interesting to check whether the injection
of any amount of noise is sufficient to smooth the likelihood, or whether there is a slow
transition from the intractable likelihood shown in Figure 2-1 to the unimodal case of
Figure 2-2. Perhaps unsurprisingly, Figure 2-3 shows that the latter is the case, since
as we reduce the process noise the likelihood becomes firstly multimodal and then (for
any practical purpose) non-differentiable for very low σ. SIR estimate of the likelihood
deteriorates as multi-modality sets in: we will investigate this more fully in Section 2.5.
Notice that the likelihood estimates shown here were obtained by running SIR on the
discretized version of the Ricker map.

This suggests that there is an area of the parameter space, corresponding to high
log(r) and low σ, where the likelihood is essentially intractable. For practical purposes
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Figure 2-2: Left: two trajectories n1:T of the hidden state, generated using the same initial-
ization, but slightly different values of log(r). Right: transect w.r.t. log(r) of the log-likelihood
of the Ricker map with σ = 0.3, estimated using the SIR particle filter. The irregularities at
log(r) ≈ 2.6 are due to Monte Carlo noise.

it is therefore important to compare the robustness of alternative statistical methods
across the parameter space, and to understand how alternative methods behave in the
face of this difficulty. In particular, we need to avoid the possibility of concluding that
a system’s dynamics are relatively stable and noisy, not because they really are, but
because that is the only case in which the likelihood is numerically tractable.

2.3 Available statistical methods

The literature contains two main classes of statistical methods for non-linear dynamical
systems:

1. Information reduction: methods that discard the information in the data that is
most sensitive to extreme divergence of trajectories, so that fitting objectives be-
come more regular. Two methodologies belonging to this group will be described
in Section 2.3.1.

2. State space: these work on the hidden states, n1:T , in order to estimate model
parameters and/or the hidden states themselves. Some of these approaches work
without modifying the model or the data in any way, by using advanced compu-
tational techniques based on particle filtering. We describe two members of this
family in Section 2.3.2.

Given that the main purpose of this chapter and of Chapter 3 is to consider the
applicability and relative performance of these methods in the context of near-chaotic
dynamic systems, we will skip over the technical detail whenever they are not essential
for the discussion. Obviously our analysis is by no means exhaustive, as we do not
examine all the approaches that could be applied in this context. In Section 2.3.3 we
briefly describe some of the alternatives to the methods considered here.
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Figure 2-3: Transects of the true log-likelihood (black) of the discrete Ricker map w.r.t. log(r)
for decreasing values of σ. The red lines are SIR’s estimates, using 1000 particles.
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2.3.1 Approaches based on information reduction

Since the trajectories of near chaotic systems are extremely sensitive to perturbations of
parameters or system state, statistical methods that rely on recovering the true system
state face a difficult task. At the same time it is often the case that the true state itself
is only a nuisance for parameter estimation, and discarding some information regarding
the particular observed trajectory might ease the inferential process.

To make this point clearer consider again the Ricker paths in Figure 2-2. Even
though the two trajectories, which we indicate with y1:T and x1:T , are very different
in terms of Euclidean distance ||y1:T −x1:T ||, it is clear that they share some common
features. A way around the impossibility of replicating the observed path, even when
the simulations use the true or “best-fitting” parameters and initial value, is focusing
on the relationship between some characteristic features of the data and the unknown
parameters. One way of doing this is to transform the observed and simulated data
into a set of summary statistics and to base subsequent inferences on these.

In the following we denote with y01:T the observed path, and with s0 = S(y01:T )
the vector of observed summary statistic. Often methods based on summary statistics
involve two main approximations of the likelihood function. The first is implied by
the use of p(s0|θ) as a proxy for p(y01:T |θ). The second approximation arises from the
fact that p(s0|θ) itself is generally not available analytically and hence it has to be
approximated or estimated by simulation.

We will focus on two approaches based on information reduction: Approximate
Bayesian Computation (ABC) (Beaumont et al., 2002) (Fearnhead and Prangle, 2012)
and Synthetic Likelihood (SL) (Wood, 2010).

Approximate Bayesian Computation

The main purpose of ABC algorithms is approximating the posterior density p(θ|y01:T ) ∝
p(y01:T |θ)p(θ), where p(θ) is the prior distribution of the model parameters, when the
likelihood p(y01:T |θ) is unavailable or intractable. Given that the data is often trans-
formed into a vector of summary statistics, these methods are generally aiming at
sampling from p(θ|s0) rather than p(θ|y01:T ).

An elementary ABC algorithm iterates the following rejection procedure (Toni et al.,
2009):

1. Sample a vector of parameters θi from p(θ).

2. Simulate a path yi1:T from the model p(y1:T |θi).

3. Transform yi1:T to a vector of summary statistics si = S(yi1:T ).

4. Compare si to the observed statistics s0 using a pre-specified distance measure
d(·, ·). If d(si, s0) ≤ ǫ, where ǫ ≥ 0, accept θ∗ otherwise reject it.

The output of this algorithm will be distributed according to

p(θ)p{d(s, s0) < ǫ|θ} ∝ p
{

θ|d(s, s0) < ǫ
}

,

which approximates the posterior density, p(θ|s0), for sufficiently small ǫ.
In order to obtain higher computational efficiency it is possible to implement ABC

through Monte Carlo Markov Chain (MCMC) or Sequential Monte Carlo (SMC) algo-
rithms, such as those described by Beaumont (2010). In Section 2.7 we use the MCMC
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implementation of ABC which was firstly proposed by Marjoram et al. (2003), and that
uses the following iteration:

1. Let θi−1 be current position in the parameter space and propose a new parameter
vector θ∗, according to the transition kernel K(θ∗|θ).

2. Simulate a single dataset y∗1:T ∼ p(y1:T |θ∗) and transform it to a vector of sum-
mary statistics s∗ = S(y∗1:T ).

3. If d(s0, s∗) ≤ ǫ proceed to step 4, otherwise set θi = θi−1 and return to step 1.

4. Calculate the acceptance probability

α = min

{

1,
p(θ∗)K(θ|θ∗)
p(θ)K(θ∗|θ)

}

5. Set θi = θ
∗ with probability α, otherwise set θi = θi−1. Return to step 1.

This algorithm, which we refer to as ABC-MCMC, generally leads to an higher accep-
tance rate than the rejection sampler described above, but it produces a dependent
sample.

Synthetic Likelihood

Similarly to ABC, Synthetic Likelihood (SL) (Wood, 2010) can be used for problems
where the likelihood is intractable, but it is still possible to simulate from the model.
The main difference between ABC and SL is how p(s0|θ) is approximated. While ABC
does not rely on any distributional assumption on s, SL assumes that

S(y) ∼ N(µθ,Σθ), (2.4)

at least approximately. In addition, while ABCmethods explicitly aim at sampling from
the approximate posterior p(θ|s0), SL uses assumption (2.4) to provide a parametric
approximation, pSL(s

0|θ), to p(s0|θ). This synthetic likelihood can then be used within
a Bayesian or a classical context.

A point-wise estimate of the synthetic likelihood at θ can be obtained as follows:

1. Simulate N datasets y11:T , . . . ,y
N
1:T from the model p(y1:T |θ).

2. Transform each dataset yi1:T into a d-dimensional vector of summary statistics
Si = S(yi1:T ).

3. Estimate the sample mean µ̂θ and covariance matrix Σ̂θ, using standard estima-
tors

µ̂θ =
1

N

N
∑

i=1

Si,

Σ̂θ =
1

N − 1

N
∑

i=1

{

Si − µ̂θ

}{

Si − µ̂θ

}T
,

or possibly more robust alternatives.

14
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4. Estimate the synthetic likelihood

p̂SL(s
0|θ) = (2π)−

d
2 |Σ̂θ|−

1
2 exp

{

− 1

2
(s0 − µ̂θ)

T Σ̂−1
θ (s0 − µ̂θ)

}

.

Hence, SL explicitly provides point estimates of pSL(s
0|θ), which can, for instance, be

used within a Metropolis-Hastings algorithm, targeting an approximation to p(θ|s0).
We refer to this procedure as the Synthetic Likelihood Metropolis Hastings (SLMH)
algorithm. Alternatively, the point estimates can be used within an optimizer aiming
at maximizing the synthetic likelihood (see Chapter 4).

Notice that there exists a strong relationship between SL and the simulation-based
approach of Diggle and Gratton (1984), who proposed to estimate the full likelihood
p(y0|θ) point-wise, by simulating data from the model and approximating its distribu-
tion using a non-parametric density estimator.

2.3.2 State space methods

If discarding information through the use of summary statistics is not desirable, then
it is necessary to deal with the hidden states explicitly. As previously stated, calculat-
ing the likelihood of SSMs involves integrating the hidden states n1:T out of the joint
density p(y01:T ,n1:T |θ). The SIR particle filter can be used to obtain a Monte Carlo
estimate of the likelihood, by employing a sequential integration scheme. The use of
a sequential approach allows filters to direct the simulated trajectories of the hidden
states toward values that are consistent with the observations. This feature is partic-
ularly attractive in the context of near-chaotic models, where simulated paths diverge
rapidly (recall Figure 2-2). In this work we mainly focus on algorithms based on the
SIR scheme, but many other approaches are available. For example, it is possible to
use algorithms that sample directly from the joint posterior density of parameters and
hidden states, thus circumventing the estimation of the likelihood. For overviews, see
Andrieu et al. (2010) and Doucet et al. (2000).

Here we consider three state space approaches, two of which are based on particle
filtering. In particular, we describe in turn: a sampler belonging to the family of
Particle Markov chain Monte Carlo (PMCMC) methods (Andrieu et al., 2010), the
Iterated Filtering (IF) algorithm (Ionides et al., 2011) and the Parameter Cascading
approach, proposed by Ramsay et al. (2007).

Particle Marginal Metropolis-Hastings sampler

Filters such as the SIR algorithm can provide point estimates, p̂(y01:T |θ), of the like-
lihood, which ideally converge to the true likelihood as the number of simulations
increases. Andrieu et al. (2010) proposed to use these estimates of the likelihood to set
up a Particle Marginal Metropolis-Hastings (PMMH) algorithm, which can be used to
sample from the posterior distribution of the parameters. The algorithm is formed by
the following steps:

• Step 1: Initialization i = 0.
Given an estimate or a guess of the parameters θ0, estimate the likelihood
p(y01:T |θ0) using a particle filter.

• Iteration i ≥ 1:
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1. Sample a new vector of parameters θ∗ from a transition kernel K(θ∗|θi−1).

2. Using a particle filter estimate the likelihood p̂(y01:T |θ∗).
3. With probability

min

{

1,
p̂(y01:T |θ∗)p(θ∗)

p̂(y01:T |θi−1)p(θi−1)

K(θi−1|θ∗)
K(θ∗|θi−1)

}

,

set θi = θ
∗, otherwise set θi = θi−1.

This algorithm is exact in the sense that, despite the use of noisy estimates of p(y01:T |θ)
in the acceptance step, it will generate a dependent sample from p(θ|y01:T ). The con-
ditions under which this occurs are discussed in Section 2.4.

Iterated filtering

The IF algorithm uses particle filters to provide approximate Maximum Likelihood es-
timates of the unknown parameters. As shown by Ionides et al. (2006), by including the
unknown parameters in the state space and running a filtering operation, it is possible
to estimate the gradient of the likelihood function, which can then be used within an
optimization routine. In more detail, Ionides et al. (2006) treat the parameters as if
they were following a multivariate random walk

θt = θt−1 +ψt with ψt ∼ N(0, σ2Σ). (2.5)

With this choice we have that

E(θt|θt−1) = θt−1, V ar(θt|θt−1) = σ2Σ,

E(θ0) = θ̂ and V ar(θ0) = c2σ2Σ,

where σ and c2 are two variance multipliers, θ̂ is an initial estimate, while Σ is typically
a diagonal matrix, giving the respective scale of the parameters.

The main result underlying the IF algorithm is

lim
σ2→0

T
∑

t=1

V −1
t (θ̂t − θ̂t−1) = ∇ log p(y01:T |θ), (2.6)

where
θ̂t = E(θt|y01:t) and Vt = V ar(θt|y01:t),

can be estimated using the SIR particle filter. The IF algorithm is composed of the
following steps:

• Choose initial value θ̂
(0)
0 , parameters σ2, c2, Σ, α ∈ (0, 1) and number of iterations

M .

• Iterate for j in 1, . . . ,M :

1. Set σj = αj−1. Estimate θ̂
(j)
t and V

(j)
t , for t = 1, . . . , T , using a particle

filter.
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2. Update the parameter estimate

θ̂
(j+1)
0 = θ̂

(j)
0 + V

(j)
1

T
∑

t=1

(V
(j)
t )−1(θ̂

(j)
t − θ̂(j)t−1).

• Then θ̂
(M+1)
0 is an approximate Maximum Likelihood estimate of the parameters.

Notice that, as long as σ > 0, IF will not be fitting the original model, which will
be recovered as σ → 0. Ionides et al. (2011) give results concerning the theoretical
foundation of IF and describe how slowly σ has to decrease to assure convergence.

Parameter Cascading

In the context of Ordinary Differential Equations (ODEs), Ramsay et al. (2007) pro-
posed an approach to parameter estimation which can be adapted to the discrete-time
models, such as the Ricker map. The estimation procedure is a nested optimization
problem with three levels. Given λ and θ, the hidden states are estimated by minimiz-
ing an inner criterion

nθ
1:T = argmin

n1:T

J(n1:t|θ, λ)

= argmin
n1:T

{

−∑T
t=1 log p(y

0
t |nt,θ) + λψ(n1:T |θ)

}

,

where

ψ(n1:T |θ) =
T
∑

t=1

{

nt − E(nt|nt−1,θ)
}2
,

quantifies deviations of the estimated state from the model, while λ determines the
trade-off between data fitting and model compliance. The parameters are estimated
using the higher level criterion

θ̂ = argmin
θ

H(θ|nθ0
1:T , λ)

= argmin
θ

{

−
∑T

t=1 log p(y
0
t |nθ0

t ,θ)
}

.

A further level can be added in which an outer grid search is used to select λ. This
method is especially useful for exploring multimodality problems in Section 2.5.

2.3.3 Alternative approaches

The methods described in the preceding sections represent a subset of those that could
be used in the context of parameter estimation for non-linear state space models. Here
we discuss some of the alternatives, describe their relation with the methods described
above and detail our reasons for not including them in this work.

There exist a large variety of particle-filtering-based methods that can be used to
obtain approximate Maximum Likelihood (ML) estimates of the static parameters, such
as Andrieu et al. (2005), Andrieu and Doucet (2003), Malik and Pitt (2011), Poyiadjis
et al. (2011) and Nemeth et al. (2013). IF belongs to this class of methods, and we
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chose to include it, rather than some of the alternatives, in this work because (i) it is
theoretically justified, as detailed in Ionides et al. (2011), (ii) it is has been tested on
a variety of complex models, such as those described in King et al. (2008), He et al.
(2010) and Bhadra et al. (2011), which are of direct interest to applied researchers in
ecology and epidemiology, and (iii) the computational cost of a score function estimate
is O(M) in the number of particles, which, to our best knowledge, is the state of the
art. Hence we argue that, by including IF, this work should adequately cover this class
of methods.

Notably, this work does not include MCMC methods for parameter identification,
such as those proposed by Carlin et al. (1992), Geweke and Tanizaki (2001), Polson
et al. (2008) and Niemi and West (2010). One reason for this is that highly non-linear
models, such as those considered here, are often characterized by strong dependencies
between states and static parameters. Under such circumstances, implementing an
efficient MCMC sampler requires the design of adequate conditional proposal densities,
which is not trivial for non-linear non-Gaussian models (Andrieu et al., 2010; Kantas
et al., 2014). In addition, the cholera model presented in Chapter 3 is a discretized
version of a continuous time model, where the discretization error was limited by using
a large number of intermediate states between each pair of observations. Sampling this
enlarged state space using standard MCMC methods would be challenging, because the
convergence rate of such schemes can be arbitrarily slow if the amount of augmentation
is large (Roberts and Stramer, 2001). With the exception of Parameter Cascading,
all the methods described in our work are less affected by this problem, because the
intermediate states are simply simulated forward using p(nt|nt−1,θ). This “plug-and-
play” property is one of the reasons behind popularity of these methods (Ionides et al.,
2011).

Apart from PMCMC and MCMC algorithms, the methods proposed by Kitagawa
(1993) and Liu and West (2001) could also be used to sample the posterior distribution
of θ. Analogously to IF, these filters include the parameters in the state space, and
perturb them using an artificial noise process. Even though Liu and West (2001)
counteract the resulting over-dispersion of the posterior by shrinking the perturbed
parameters toward their mean, this does not entirely eliminate the information loss, if
the posterior is far from Gaussian. Hence, in this work we preferred to target p(θ|y1:T )
using PMMH, because of the convergence guarantees detailed in Andrieu and Roberts
(2009). However, the computational cost of PMMH is fairly high, and the filter of Liu
and West (2001) might be able to sample a close approximation to p(θ|y1:T ), using far
fewer filtering operations.

Finally, the versions of IF and PMMH used here are based on the SIR algorithm,
as described in Gordon et al. (1993) and Doucet et al. (2000). More sophisticated
filters, such as those proposed by Pitt and Shephard (1999) and Klaas et al. (2012),
might provide more accurate estimates of the likelihood, or of ∇p(y1:T |θ) in the context
of IF. Similarly, it might be possible to improve upon the MCMC implementation of
ABC and SL used in Section 2.7, by using more sophisticated SMC samplers (Toni
et al., 2009) or Gaussian Processes (Meeds and Welling, 2014), respectively. We do not
explore these possibilities here, because doing so would increase the complexity of this
work, without adding much to its main results.
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2.4 Synthetic Likelihood and exact-approximate methods

As discussed in Sections 2.3.1 and 2.3.2, SLMH and PMMH use estimates of, respec-
tively, pSL(s

0|θ) and p(y0|θ) at each Metropolis Hastings (MH) step. In this section
we discuss the conditions under which these samplers will target the corresponding pos-
terior densities exactly. In particular, in Section 2.4.1 we describe exact-approximate
samplers, which provide samples from the correct posterior, despite being based on
noisy likelihood estimates. This class of algorithms includes PMMH but, for reasons
explained in Section 2.4.2, not SLMH. In Section 2.4.3 we propose a simulation-based
approach meant to alleviate this problem.

2.4.1 PMMH as an exact-approximate sampler

The use of noisy likelihood estimates within MH algorithms appeared firstly in Lin et al.
(2000) and Beaumont (2003), while the theoretical conditions under which the resulting
noisy MH sampler targets the correct posterior distribution were later described in
Andrieu and Roberts (2009). To explain their results, we consider PMMH and assume
that p̂(y0|θ) = p(y0|θ)z, where z is a strictly positive random variable, with density
p(z|θ). If this noisy estimate of the target density is used within MH, the acceptance
ratio becomes

α =
p̂(y0|θ∗)p(θ∗)
p̂(y0|θ)p(θ)

K(θ|θ∗)
K(θ∗|θ) =

z∗p(y0|θ∗)p(θ∗)
z p(y0|θ)p(θ)

K(θ|θ∗)
K(θ∗|θ) ,

where θ and θ∗ are the current and the proposed parameter vectors, while K(·|·) is
transition kernel. Notice that the acceptance ratio can be written as

α =
z∗p(y0|θ∗)p(z∗|θ∗)p(θ∗)
z p(y0|θ)p(z|θ)p(θ)

p(z |θ)K(θ|θ∗)
p(z∗|θ∗)K(θ∗|θ) ,

which shows that the sampler is targeting a density proportional to z p(y0|θ)p(z|θ)p(θ).
Now, if we assume that E(z|θ) = E(z) = c = const, which implies that the bias of
p̂(y0|θ) is constant, we have that the marginal density of θ is proportional to

∫

z p(y0|θ)p(θ)p(z|θ) dz = c p(y0|θ)p(θ),

which implies that the MH algorithm is sampling the correct posterior, even though
noisy estimates of the target density are being used at each step. Hence, this sampler,
us can be said to be “exact-approximate”. It is important to highlight that the sampler
will target the correct density, as long as the the expected value of the noise z does
not vary with θ. Hence, other features of the distribution of z, such as higher order
moments, might depend on θ without compromising the exactness of the sampler.

Andrieu and Roberts (2009) consider unbiased likelihood estimators, which are of-
ten obtained through importance sampling or particle filters. They call the resulting
MH samplers “pseudo-marginal”, to indicate that the likelihood estimates are often
obtained by marginalizing a joint density using Monte Carlo methods. This is pre-
cisely what happens under PMMH, where the hidden states, n1:T , are approximately
integrated out of the joint density, p(y01:T ,n1:T |θ), to provide unbiased likelihood es-
timates. This demonstrates that PMMH is an exact approximate algorithm targeting
p(θ|y0).
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2.4.2 Obtaining unbiased synthetic likelihood estimates

In order to simplify the notation, in the remaining part of Section 2.4 we temporarily
suppress the dependencies on θ and the use of the subscript SL to indicate the synthetic
likelihood. Hence, we indicate the synthetic likelihood estimates with p(s0) rather than
with pSL(s

0|θ). As we discuss here, the pointwise synthetic likelihood estimates, p̂(s0),
obtained as described in Section 2.3.1, are generally biased, hence an SLMH algorithm
based on them cannot be considered an exact-approximate sampler.

We start by assuming that the summary statistics are normally distributed, with
mean vector µ and covariance matrix Σ. From Braun and McAuliffe (2010) we have
that

E
{

log |Σ̂|
}

= d log 2 + log |Σ|+
d

∑

i=1

ψ

(

N − i

2

)

− d log(N − 1).

where ψ is the digamma function and, as before, N is the number of simulations used
to estimate mean and covariance matrix. In addition, we have that (Hartlap et al.,
2007)

E
[

(s0 − µ̂)T Σ̂−1(s0 − µ̂)
]

= E
[

(s0 − µ̂)T
]

E
(

Σ̂−1
)

E
[

(s0 − µ̂)
]

= N−1
N−d−2(s

0 − µ)TΣ−1(s0 − µ).

where the first equality holds due to Basu’s Theorem (Basu, 1955). Hence, we can
derive an unbiased estimator of log p(s0), which is

log p̃(s0) = −d
2 log(2π)− 1

2

{

log |Σ̂|+ d log(N − 1)− d log 2−
∑d

i=1 ψ

(

N−i
2

)}

− 1
2
N−d−2
N−1 (s0 − µ̂)T Σ̂−1(s0 − µ̂).

(2.7)

Unfortunately, this does not direclty lead to an unbiased estimator of p(s0), due
to the non-linearity of the transformation. In particular, let us make the assumption,
to be justified later, that log p̃(s0) is approximately normally distributed, with mean
log p(s0) and variance σ2. This implies that

E{p̃(s0)} = E{elog p(s0)+v} = p(s0)e
σ2

2 ,

where v ∼ N(0, σ2). Hence, if σ2 varies with θ, the bias of the synthetic likelihood
estimates will also depend on the parameters, and the corresponding SLMH algorithm
will not target the correct posterior density. We mitigate this issue in Section 2.4.3,
where we correct p̃(s0) using a simulation-based approach.

2.4.3 Bootstrapped synthetic likelihood

Under the assumptions detailed in the previous section, an unbiased estimator of p(s0)

is p̄(s0) = p̃(s0)e−
σ2

2 . The problem with this estimator is that σ2 = var{log p̃(s0)|µ,Σ}
depends on µ and Σ, which are unknown. Following a parametric boostrap approach
(Efron and Tibshirani, 1994), we propose to approximate var{log p̃(s0)|µ,Σ} with an
estimate of var{log p̃(s0)|µ̂, Σ̂}. To reduce the computational effort, we exploit the
fact that, if the summary statistics are normally distributed, then µ̂ ∼ N(µ,Σ/N) and
(N − 1)Σ̂ ∼ Wish(Σ, N − 1).
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Given a sample S1, . . . ,SN of simulated summary statistics, with empirical mean
vector µ̂ and covariance matrix Σ̂, we obtain an approximately unbiased estimate of
the synthetic likelihood as follows:

1. simulate M mean vectors, µ̃1, . . . , µ̃M , and covariance matrices, Σ̃1, . . . , Σ̃M ,
from N(µ̂, Σ̂/N) and Wish(Σ̂/(N − 1), N − 1), respectively.

2. Given the M mean vectors and covariance matrices, calculate the corresponding
densities p̃(s0)1, . . . p̃(s

0)M .

3. Estimate p(s0) using p̄(s0) = p̃(s0)e−
σ̂2

2 , where σ̂2 is the empirical variance of
p̃(s0)1, . . . p̃(s

0)M .

In order to implement this bootstrapping procedure efficiently, it is critical to notice
that evaluating p̃(s0) requires only the Cholesky decompositions of Σ̃. More precisely,
indicate with L the unique lower triangular matrix with positive diagonal elements such
that LLT = Σ̃. Then |Σ̃| = |L|2 = ∏d

j=1L
2
jj and (s0 − µ̃)T Σ̃−1(s0 − µ̃) = ||L−1(s0 −

µ̃)||2, where L−1(s0 − µ̃) can be evaluated in O(d2) by forward-substitution. Hence,
it would be advantageous to simulate L directly, rather than simulating Σ̃ and then
calculating its Cholesky decompositions, which is an O(d3) operation. This is easily
achieved by noticing that, if A is a lower triangular matrix such that Ajk ∼ N(0, 1),
for 1 ≤ j < k < d, and Ajj ∼ χ2(N − j), for j = 1, . . . , d, then Σ̃ = DAATDT ∼
Wish(Σ̂/(N −1), N −1), whereD is the lower triangular Cholesky factor of Σ̂/(N −1)
(Smith and Hocking, 1972). Hence, L =DA is the lower Cholesky factor of Σ̃, whose
computation requires generating d(d − 1)/2 standard normal, d chi-squared random
variables and evaluating the product of two lower triangular matrices, which is O(d3/3)
(Golub and Van Loan, 2012). Fortunately, the matrix multiplication does not need to be
performed, because to evaluate ||L−1

i (s0− µ̃i)||2 = ||A−1D−1(s0− µ̃i)||2 it is sufficient

to use two forward sustitutions, while |L|2 = |DA|2 = |D|2|A|2 =
∏d

j=1D
2
jjA

2
jj.

Hence, simulating p̃(s0) is an O(d2) operation, if we follow this numerical recipe.
The derivation of the corrected estimator, p̄(s0), is based on a normality assumption

on log p̃(s0), which requires some justification. As N → ∞, log |Σ̂| is asymptotically
normally distributed, as proven by Cai et al. (2015) under three different regimes for
d = d(N): limN→∞ d(N)/N = 0, limN→∞ d(N)/N = c and, remarkably, d(N) = N .
Unfortunately, as N → ∞, the distribution of (s0 − µ̂)T Σ̂−1(s0 − µ̂) is not asymptoti-
cally normal. Indeed, under normality of S, we have that

u =
N − d

d(N − 1)
(s0 − µ̂)T Σ̂−1(s0 − µ̂) ∼ F (d,N − d),

where F (ν1, ν2) is a non-central F distribution. As N → ∞, we have that d × u
converges to a non-central χ2 distribution, with d degrees of freedom. This should
guarantee the asymptotic normality of log p̃(s0) in the limN→∞ d(N)/N = 0 regime,
as long as limN→∞ d(N) = ∞. If we expect the number of statistics used to grow
proportionally toN , the limN→∞ d(N)/N = c regime might be more interesting. Under
this regime, Pan and Zhou (2011) proved the asymptotic normality of u, under the
special case E(S) = E(µ̂) = s0. Analogous results might be expected to hold also in
the non-centred case (i.e. E(S) 6= s0), but we have not found them in the literature.
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Figure 2-4: ERBR (see Section 2.4.4 for a definition) as a function of the Mahalanobis
distance between s0 and µ. The vertical axis uses a logarithmic scale.

2.4.4 Toy example

To test whether the bias of p̄(s0) is lower than that of p̂(s0), we have considered the
following scenario. The summary statistics are normally distributed with mean vector
µ = 0, where 0 is a d-dimensional vector of zeros, and covariance matrix Σ, which is
a symmetric Toeplitz matrix with first row Σ1i = 1 − (i − 1)/d, for i = 1, . . . , d. We
chose d = 10. We simulated K = 12 different locations, s01, . . . s

0
K , from a Gaussian

density with mean µ and covariance matrix Σ. We then re-estimated p(s01), . . . , p(s
0
K)

L = 100 times, using both p̂(s0) and p̄(s0), with N = 1000 and M = 1000.
We quantified the improvement brought about by using p̄(s0), rather than p̂(s0),

in terms of Empirical Relative Bias Reduction (ERBR), which we define as follows

ERBR(s0) =
| ˆBias{p̂(s0)}| − | ˆBias{p̄(s0)}|

p(s0)
,

where

ˆBias{p̂(s0)} =
1

L

L
∑

i=1

{p̂(s0)− p(s0)},

with ˆBias{p̄(s0)} being defined analogously.
Figure 2-4 show how ERBR varies with the Mahalanobis distance between s0 and

µ. The plot uses a logarithmic scale for the y-axis, and it shows an almost linear
relation between ERBR and the Mahalanobis distance from the mean vector. This
suggest that using p̄(s0) should lead to substantial gains, in terms of bias reduction,
when p(s0) is estimated deep in the tails.
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2.5 Multimodality and state space methods

If the presence of process noise smooths the likelihood sufficiently, then methods that
discard information should be outperformed by those that retain it. However, we can
not generally prove that the likelihood for any particular model is smoothed and, as
shown in Section 2.2, there exist models for which smoothing is only partial, and may
be inadequate, when process noise is low. In this section we further investigate the
impact of multimodality on state space methods, and show that information reduction
methods can reduce the associated problems.

In order to evaluate the accuracy of the likelihood estimates given by the SIR
algorithm for different levels of noise, we used the discretized SSM described in Section
2.2 and in Appendix A.1. We chose ten levels of process noise in the interval σ ∈
[0.01, 0.3]. For each level we simulated 1000 paths using the Ricker map, with log(r) =
3.8, φ = 0.5, and evaluated the likelihood of each of them at the true parameters.
Figure 2-5 shows the results.

The plot on the top shows that, as the process noise decreases, the average bias of
the likelihood estimated by the filter (solid) increases in absolute value. Indeed, while
the true log-likelihood (not shown) is roughly constant (≈ −70) for different levels of
σ, the mean filter’s estimates drop from -65 for σ = 0.3 to -140 for σ = 0.01. The
strong dependence between likelihood bias and σ suggests that a sampler using these
likelihood estimates will never explore areas of the parameter space where σ is low. In
addition, any model comparison criterion based on the biased likelihood estimates is
unreliable.

On the bottom of Figure 2-5 we plotted the ratios between sample variance of the
likelihood estimated by the filter and the sample variance of the true likelihood for each
value of σ, that is

V̂ar
{

log p̂(y1:50|θ)
}

V̂ar
{

log p(y1:50|θ)
} .

From the plot we see that the variance of the estimated log-likelihood increases ex-
ponentially as σ decreases, suggesting that Monte Carlo variability of the integration
procedure dwarfs sampling variation for low σ. This has implications for algorithms
based on particle filters: with such noisy likelihood estimates the PMMH algorithm will
have an extremely low acceptance rate (Doucet et al., 2012), while the IF procedure
will become quite unstable, due to the high variability of the estimated gradients.

The broken lines in Figure 2-5, show corresponding quantities for the synthetic
likelihood, obtained using the set of 13 summary statistics proposed by Wood (2010)
and reported in Appendix A.2. Interestingly, both the average and the variance of the
synthetic likelihood estimates remain roughly constant for different degrees of process
noise. This suggests that the SL approach is quite robust to the level of process noise
in the system, as it gives stable estimates also when the process dynamics are near-
deterministic. On the other hand, the variance of the synthetic likelihood is lower than
that of the true likelihood for any σ, which might be a consequence of the information
loss.

Note that to use synthetic likelihood when the system is (close to) deterministic,
the initial values of the simulated paths have to be randomized (N1 ∼ Unif(0.1, 5)),
otherwise the variances of the summary statistics can be close to zero for very low
process noise. Random initial values are consistent with the information reduction
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Figure 2-5: Top: average difference between the full likelihood and the estimated full (solid)
or synthetic likelihood (dashed) as a function of σ, obtained using respectively the SIR filter
and SL. Bottom: ratio between the sample variance of estimated full (black line) or synthetic
(broken red line) likelihoods and the true likelihood for several values of σ.
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philosophy: inference should be robust to the particular values of the hidden states.
In this context we are confident that ABC, being based on summary statistics, would
perform similarly to SL.

Figure 2-6 shows why the SIR algorithm is struggling to estimate the log-likelihood
when σ is very low. Each of the 20 columns in the top image represents the true
filtering density p(nt|y1:t,θ) at each time step, when σ = 0.3. Areas of high density are
represented in yellow, while area of lower density are coloured in red. With this level
of process noise the filtering densities are smooth and unimodal, so the filter places
the particles around each mode, thus providing a reliable estimate of the likelihood. In
contrast, the image on the bottom of Figure 2-6 shows that for very low process noise
the filtering densities are unimodal in the first couple of time step, but then they break
into narrow multiple modes. Because of the irregularity of the filtering densities, the
quality of the particle approximation is poor in this case (see time 19 in particular).
The filter struggles to explore all the important modes of the filtering distributions,
and hence the resulting estimates of the log-likelihood are very variable.

So Figure 2-6 helps to explain the variability in performance of the particle filter
approach seen in Figures 2-3 and 2-5 as the process noise level changes. For mod-
els capable of showing chaotic or near-chaotic dynamics, there will be areas of the
parameter space where the likelihood is highly multimodal. In these areas particle
filtering methods will struggle to estimate the likelihood. In such situations most of
the likelihood-based asymptotic theory will not be applicable, and even if it was possi-
ble to sample the corresponding parameter posterior exactly, it would not be obvious
how the results should be interpreted. Hence, we argue that in such situations the use
of approaches based on information reduction, which can provide a smooth proxy to
likelihood, might be preferable from both a methodological and practical point of view.

To emphasise that the issue of multimodality is generic to the state space approach,
rather than being specific to filtering, or a particular filtering implementation, or our
discretized state space example, we illustrate how Parameter Cascading can encounter
similar problems on the unmodified Ricker model. Figure 2-7 shows transects of the
parameter fitting objective function, H(θ|nθ

1:T , λ), (see Section 2.3.2) with respect to
log(r) for four values of λ, and show that this function becomes more irregular as λ
increases. For large λ, which is appropriate when σ is low, this hinders the optimization
and makes estimating θ problematic. In the following we illustrate that jumps in the
objective function correspond to transitions between modes of the objective function
for the state, J(n1:T |θ, λ).

The upper plot of Figure 2-8 shows other transects of H(θ|nθ
1:T , λ), for λ = 65.

The solid line was obtained using the same initial value nθ
1:T = y1:T /φ for each value of

log(r). The dashed lines show the H(θ|nθ
1:T , λ) curves corresponding to two different

modes of J(n1:t|θ, λ) and have been obtained by carefully tracking of the modes. We
refer to these modes as A and B. The plots on the bottom of Figure 2-8 represent the
estimated hidden states nθ

1:T corresponding to two values of log(r) and to each mode.
This shows that the same value of log(r) leads to two different modes in the state space,
depending on the initialization. The similarity between the pairs A1-A2 and B1-B2
shows that these initialization-dependent modes are persistent along log(r).
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3.8, φ = 10 and σ = 0.3 (top) or σ = 0.01 (bottom).
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2.6 SL versus tolerance-based ABC

The choice of summary statistics is crucial for the performance of information reduction
methods, hence the topic has been the subject of much research. For instance, see Blum
et al. (2013) for a comprehensive review of methods for dimension reduction or statis-
tics selection, in the context of ABC. SL and ABC methods share some requirements
regarding the choice of summary statistics. More specifically, in parameter estimation
problems the summary statistics should contain as much information as possible about
the parameters, so that p(θ|s0) will be approximately proportional to p(θ|y0).

Beside this common ground, SL differs from ABC methods in several ways, and
this entails some diverging requirements on the summary statistics. In particular,
reducing the number summary statistics is more critical to ABC methods than to SL.
In fact, the non-parametric approach followed by most ABC methods, implies that
the convergence rate of the resulting posterior distributions slows down rapidly as the
dimension of the statistics vector increases (Blum, 2010). On the other hand, the
parametric likelihood estimator used by SL, ensures that this method is much less
sensitive to the number of summary statistics used. This difference in scalability has
important practical implications. In particular, SL allows practitioners to focus on the
challenging task of identifying informative summary statistics, without having to worry
too much about keeping their number low. Obviously SL’s scalability in the number
of statistics does not come without a cost, but it has to be paid for in parametric
assumptions, whose effect might be hard to quantify.

Another potential issue with ABC algorithms is that they often measure the dis-
tance between the observed and simulated statistics using a quadratic form, that is

d(s0,S) = ||s0,S||2A = (s0 − S)TA(s0 − S),

where A is a positive-definite scaling matrix. This distance function was adopted by,
for instance, Fearnhead and Prangle (2012). The choice of A is fundamental when
the summary statistics have very different scales or when there are subsets of highly
correlated statistics. A possible solution is to simulateN vectors of summary statistic at
some location θp in the parameters space and use the inverse of the empirical covariance

matrix of the simulated summary statistics as scaling matrix A = Σ̂−1
θp

. Alternatively,

it is possible to use a diagonal scaling matrix, such as A = diag{Σ̂θp}−1. Because of
the strong correlations between the summary statistics used in this section, we scale
them using the full precision matrix. This simple choice works well in many cases,
but it can lead to unsatisfactory results when the covariance of the summary statistics
varies strongly with model parameters.

As an illustration of this problem, we consider the stochastic version of the Ricker
map (2.1, 2.2) and the set of 13 summary statistic proposed by Wood (2010). To
quantify the importance of the scaling matrix A in this setting, we performed the
following simulation experiment:

• Define a sequence of equally space values vk, for k = 1, 2, . . . , 50, ranging from
2.8 to 3.8.

• For each value vk:

1. Simulate a path y1:T from the Ricker map, using T = 50 and parameter
values log r = 3.8, σ2 = 0.3 and φ = 10. Define s0 = S(y1:T ).
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Figure 2-9: Lowest achievable tolerance ǫ versus value of log r at which the scaling matrix is
estimated. The red line is a quadratic regression fit.

2. Set the initial parameter vector θp to log r = vk, σ
2 = 0.3 and φ = 10.

3. Simulate 104 paths from the model using parameters θp, transform each of
them into a vector summary statistics and calculate their empirical covari-
ance Σ̂θp .

4. Approximately sample p(θ|s0) using the ABC-SMC routine proposed by
Toni et al. (2009), where Σ̂−1

θp
is used as scaling matrix. We refer the reader

to Toni et al. (2009) for details about this algorithm, but we point out that
this is a sequential scheme where the tolerance ǫ is reduced at each step and
that we terminated the algorithm when the acceptance ratio of the most
recent iteration was below 1%.

We repeated the whole experiment 7 times and the results are illustrated in Figure 2-9.
Here the x-axis represents the value of log (r) at which the scaling matrix was estimated,
while the y-axis represents the lowest tolerance ǫ achieved before the termination of
the ABC-SMC algorithm. This plot shows how crucial is the choice of scaling matrix
in situations where Σθ varies widely with θ: if the scaling matrix is not adequate the
tolerance cannot be reduced enough. In an applied ecological setting, where the true
parameters are unknown and the model of interest is more complex than the one used
here, this means that a practitioner might struggle to find either a reasonable guess
for the scaling matrix or a set of summary statistics whose covariance is not strongly
dependent on θ.

Another choice that has to be made, in order to use tolerance-based ABC proce-
dures, is the selection of ǫ. The tolerance can be a small scalar constant as in the
ABC-MCMC algorithm of Marjoram et al. (2003), or it can be a vector of decreasing
tolerances as in the ABC-SMC algorithm of Toni et al. (2009). In order to obtain a
better approximation to p(θ|s0), ǫ should be chosen to be as small as possible, but the
acceptance probability will decrease with the tolerance. A common choice is to select
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a tolerance that allows a predetermined acceptance ratio to be achieved, but in some
cases this strategy can lead to invalid results, as detailed in Silk et al. (2013).

The regression adjustment of Beaumont et al. (2002) can be used to mitigate the
discrepancy between the observed and the simulated statistics, which is proportional
to the tolerance ǫ. However, the result of this correction is generally still dependent on
ǫ, which controls the bias-variance trade-off of the regression (Beaumont et al., 2002).
Hence, using this procedure does not necessarily lead to higher accuracy in parameter
estimation. For example, Fearnhead and Prangle (2012) obtained worse results with
the regression correction than from the raw ABC output, using the Ricker model and
the same summary statistics considered here.

In this section we used A = Σ̂−1
θp

to scale the summary statistic. This was done for
the purpose of illustrating that the scaling the summary statistics correctly is critical to
the performance of the ABC methods. A more commonly used approach is to simulate
N parameters vectors, θ1, . . . ,θN , from p(θ) and the corresponding statistics vectors,
s1, . . . , sN , from p(s|θ), and to use the empirical covariance matrix of the simulated
statistics as scaling matrix. In the context of ABC-MCMC, it is then possible to
calculate the distances d(si, s

0), for i = 1, . . . , L, and to chose ǫ so that only 0.1%
of the distances fall below this threshold. This approach worked relatively well with
the simple models used in Section 2.7. However, the tuning tends to be much more
laborious under more complex models, such as described those presented in Chapter
3. In particular, when the number of unknown parameters is high, training ǫ and A
using simulations from the prior can be very inefficient, especially if the prior contains
little information. Hence, for complex models, tuning ǫ and A might require a more
sophisticated approach, possibly involving some degree of manual intervention.

SL is not afflicted by the difficulties just described, because it is tolerance-free
and the summary statistics are scaled automatically and dynamically by the empirical
covariance matrix Σ̂θ. Obviously this robustness comes at a cost: a single point-wise
synthetic likelihood estimate requires a number of simulations sufficient to estimate
the covariance matrix. In addition, even though for many commonly used statistics
the Central Limit Theorem (CLT) assures asymptotic normality, in small samples the
normal approximation might be crude, while in some contexts it might be difficult to
devise asymptotically normal statistics.

As a simple example of the former problem, let us consider a sample of size N from
an exponential distribution with rate α. Here the Maximum Likelihood (ML) estimator
of α is given by the reciprocal of the sample average

s =
1

x̄
=

(∑N
i=1 xi
N

)−1

.

Given that s is a sufficient statistic for α, the likelihood function can be factorized as
follows

p(x|α) = h(x)f(s, α) ∝ f(s, α),

hence the likelihood is proportional to a function of only s and α. By the CLT,
the distribution of s is asymptotically normal, but we want to verify how well we can
approximate the likelihood using SL when N = 10. Figure 2-10 shows the log-likelihood
(dashed) and the estimated synthetic log-likelihood (black) for α ∈ [0.5, 2]. The true
value of α is 1. With such a small sample size the distribution of the simulated statistic
is far from normal, and in fact the synthetic log-likelihood is quite off target. In cases
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Figure 2-10: Synthetic log-likelihood function (black line) vs true log-likelihood function (bro-
ken line) for a Exp(α = 1) distribution.

such as this, where the number of summary statistics is low, it is straightforward to
use transformations to improve to normality assumption, as proposed by Wood (2010).
However, in an higher dimensional setting approximate multivariate normality might
be difficult to assess or improve. More importantly, achieving multivariate normality
for a certain set of parameter values does not assure that this approximation will hold
elsewhere in the parameter space.

2.7 Comparison on simple chaotic maps

Here we consider the models summarized in Table 2.1, in addition to the Ricker map.
The parameter values of each model, reported in the Appendix A.2, have been chosen
so that the simulated paths show similar chaotic dynamics (Figure 2-11).

The data consist of 50 simulated paths y1:T , where T = 50, from each model. All
paths were used to estimate the parameters using each method. For SLMH and for
the ABC-MCMC algorithm of Marjoram et al. (2003) we have used 3× 104 iterations
to sample the posterior of each path. The PMMH algorithm had an extremely low
acceptance rate unless the likelihood of the latest accepted position was re-estimated at
each MCMC step. This doubled the computational effort, and hence we used only 1.5×
104 iterations for this method. To check if recomputing the likelihood was biasing the
results in favour of PMMH, we have implemented a version of SLMH (labelled SLMH-
R) that uses the same approach. For SLMH and ABC-MCMC we have discarded 5000
iterations as burn-in, while for PMMH and SLMH-R 2500 iterations were discarded.
For IF we have used 3000 optimization steps.

At each MH step, SLMH and PMMH estimated the (synthetic) likelihood by using
500 simulations from the model, while IF used 5000 simulations at each step of opti-
mization step. ABC simulates only one sample at each step, but we stored an iteration
every 500. Notice that, with this set-up, SLMH, SLMH-R, PMMH and ABC used the
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Figure 2-11: Trajectories simulated using the four models described in Table 2.1.

same number of simulations (1.5 × 107) from the model in order to fit each of the 250
simulated datasets. Given that the methods have very different implementation, basing
the comparison on the number of simulations from the model, rather than CPU time,
ensures fairness.

We used proper uniform priors for all parameters. IF does not support the use of
priors, so we interpreted the priors as box constraints for the optimization. All methods
were initialized at the same starting values which, together with the priors and other
details, are included in Appendix A.2.

We evaluated the accuracy of different approaches in term of squared errors between
point estimates and the true parameters. While IF provided point estimates directly,
ABC-MCMC, SLMH and PMMH give dependent samples from the (approximate) pa-
rameter posteriors. Hence, for the latter group of methods, we have used the posterior
means as point estimates.

Appendix A.2 reports the median squared errors for each model-method-parameter
combination. Here we have summarized the results in Figure 2-12 which represents, for
each model and method, the median and Inter-Quartile Range of the squared errors,
averaged geometrically across the parameters. More precisely, let m, k, j and i be
the indexes of model, method, dataset and parameter respectively, the average squared
errors are then given by

ēm,k
j =

{ pm
∏

i=1

(

θ̂m,k
j,i − θmi

)2
}

1
pm

,

where pm is the parameter count for model m.
Figure 2-12 shows that, on this set of simple models, methods based on particle

filtering consistently outperform methods based on information reduction. The per-
formance of IF and PMMH is quite similar, and the differences in average squared
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Figure 2-12: Medians and Inter-Quartile Ranges of the averaged squared errors for each model
and method.
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errors between these two methods might be due to the different type of point estimates
used. ABC-MCMC seems to perform better that either SLMH or SLMH-R for all mod-
els. This performance gap might be attributable to the normal approximation used by
SLMH, to the bias entailed by estimating p(s0|θ) using a finite sample or simply to
particular set-up we have used for the experiment. The clear result here is that, given
sufficient noise, the information reduction methods have noticeably worse performance
than the state space methods for these simple toy models.

In this section we compared the accuracy of the point estimates produced by SLMH,
ABC-MCMC, IF and PMMH, while giving the same computational budget to each
method. However, given that PMMH is an exact-approximate method, as explained in
Section 2.4, it is likely that the performance gap between PMMH and the remaining
methods, all of which are approximate in nature, would increase with the computational
budget.

2.8 Conclusions

In this chapter we described some of the difficulties that can be encountered when
working with highly non-linear dynamical models, and we have shown how these is-
sues influence the performance of some popular inferential approaches. In particular,
in Section 2.5 we provided strong experimental evidence suggesting that, when the
dynamics of the system are chaotic or near-chaotic, the likelihood function becomes in-
creasingly multimodal as the process noise is reduced. While this directly undermines
the performance of state space methods aiming at estimating the full likelihood, as in
PMMH, or its derivatives, as in IF, approaches based on information reduction are less
affected. This has practical implications because, in an applied setting, it is generally
not known whether the best fitting parameters lay in an area of the parameter space
where the stochasticity is too low for state space methods to work adequately. Beside
the practical problem of obtaining reliable likelihood estimates, the existence of highly
multimodal likelihood functions has deeper implications. Indeed, even if the likelihood
were analytically available, as it is for the models in Table 2.1 in the absence of process
noise, it is not clear whether it could be used to perform any meaningful statistical
inference. Leaving aside the practical issue of the maximizing this multimodal likeli-
hood, most of the likelihood-based asymptotic theory would not be applicable under
such circumstance, and even if it were possible to sample the corresponding parameter
posterior efficiently, it would not be obvious how the results should be interpreted. It
is difficult to answer to these concerns in general, but it seems desirable to obtain a
smoother, more interpretable, proxy to the likelihood. As we demostrated in Section
2.5, this can be achieved using information reduction methods, which focus on features
of the data that are phase-independent.

So Figure 2-6 helps to explain the variability in performance of the particle filter
approach seen in Figures 2-3 and 2-5 as the process noise level changes. Figure 2-3
demonstrates that the likelihood of a chaotic model might be highly multimodal in
certain areas of the parameters space. In these areas particle filtering methods will
struggle to estimate the likelihood. In such situations most of the likelihood-based
asymptotic theory will not be applicable, and even if it was possible to sample the
corresponding parameter posterior exactly, it would not be obvious how the results
should be interpreted. Hence, we argue that in such situations the use of approaches
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based on information reduction, which can provide a smooth proxy to likelihood, might
be preferable from both a methodological and practical point of view.

The results reported in Section 2.7 suggest that reducing the data to a set of sum-
mary statistics generally entails a loss of accuracy in parameter estimation. Indeed,
SLMH and ABC-MCMC are consistently outperformed by PMMH and IF in terms of
MSEs. In Chapter 3 we will provide futher examples demonstrating that, when sim-
ulated data is used, this is generally the case. However, we will we show that when
real data is used, and hence the true data generating process is unknown, the use of
approximate methods might be appealing, due to their robustness properties.

All the methods described in this chapter, with the exception of Parameter Cas-
cading, are computationally intensive. In particular, obtaining pointwise estimates of
p(y01:T |θ) or ∇p(y01:T |θ) requires MT simulations from p(nt|nt−1, θ), where M is the
number of particles, under SIR and IF respectively. Similarly, SL uses N simulations
from p(y1:T |θ) to estimate pSL(s

0|θ). Within PMMH and SLMH, this price has to be
paid at each iteration and the efficiency of the sampler will depend on the trade-off
between the variance of likelihood estimates and the number of simulations used to ob-
tain them (Sherlock et al., 2014). Similar considerations hold for IF, but the optimizer
generally needs much fewer iterations to reach convergence. On the other hand IF
does not directly provide parameter uncertainty estimates, which have to be obtained
through an expensive likelihood profiling procedure (see Ionides et al. (2006)). On
first sight ABC samplers seem more efficient than the above approaches, because they
target p(θ|s0) directly, by simulating a single statistics vector at the time. However,
ABC samplers generally have a very low acceptance rate, because the latter increases
with the tolerance ǫ, while their accuracy is inversely proportional to it.
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CHAPTER 3

REAL DATA EXAMPLES

In Chapter 2 we compared SL, ABC, PMMH and IF using simple chaotic models and
simulated data. Here we consider more realistic ecological and epidemiological models,
using both simulated and real data. Hence, the content of this chapter is the natural
continuation of the comparison work started in Chapter 2.

3.1 Introduction

In order to limit the computational and programming effort we will restrict our at-
tention to PMMH and SLMH: that is, one method from each of the two inferential
philosophies described in Chapter 2. We chose SL rather than ABC, because the for-
mer method does not require tuning of the tolerance and scaling matrix. We selected
PMMH over IF, because PMMH and SLMH have very similar Metropolis-Hastings im-
plementations, which should limit the influence of other implementational confounders
on the results of the comparison.

In each of the first three sections of this chapter we compare SLMH and PMMH on
a different model. In particular, in Section 3.2 we consider Wood’s (2010) discretized
version of the blowfly model of Gurney et al. (1980), and we fit it to simulated and
experimental datasets. In Section 3.3 we propose a modified version of the Susceptible-
Infected-Recovered-Susceptible (SIRS) model of King et al. (2008) and we fit it to real
epidemiological data, concerning cholera-related deaths in the Bay of Bengal. The last
example is the prey-predator model of Turchin and Ellner (2000), which we use to
compare SLMH and PMMH on simulated and on Fennoscandian voles’ trapping data.
Section 3.5 interprets and discusses the results obtained in earlier sections, and expands
upon the conclusions drawn at the end of Chapter 2.

3.2 Nicholson’s blowflies

In this section we consider the results, reported by Nicholson (1954) and Nicholson
(1957), of a series of laboratory experiments meant to elucidate the population dy-
namics of sheep blowfly Lucilia cuprina under resource limitation. Blowflies develop
in four successive stages: eggs, larvae, pupae and adults. Feeding occurs only in the
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Figure 3-1: Left column: the datasets reported by Nicholson (1954) and Nicholson (1957).
Central and right columns: paths simulated from model 3.1 using parameters equal to the pos-
terior means, obtained by fitting the four datasets using SLMH and PMMH.

larval and adult stages. In two of the experiments (E1 and E2) the larvae had unlimited
resources, while the adults had unlimited access to sugar and water, but were provided
with a limited amount of protein, which is required for egg production. In another two
experiments (E3 and E4) the larvae were supplied respectively with a moderately and
severely restricted amount of food, while adults had unlimited resources. The resulting
population dynamics are shown in the left column of Figure 3-1.

3.2.1 The model

A model potentially capable of explaining the observed dynamics of this population
was proposed by Gurney et al. (1980), and it is represented by the following delayed
differential equation

dn(t)

dt
= Pn(t− τ)e

−
n(t−τ)
n0 − δn(t), (3.1)
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where n represents the adult population, while P , τ , n0 and δ are parameters. In order
to fit the model to the available datasets, Wood (2010) proposed a discretized version of
equation (3.1) and added a stochastic component to its deterministic structure. More
precisely, he proposed the following model

nt = rt + st, (3.2)

where

rt ∼ Pois(Pnt−τ e
−
nt−τ
n0 et),

represents delayed recruitment process, while

st ∼ binom(e−δǫt , nt−1),

denotes the adult survival process. Finally, et and ǫt are independent gamma dis-
tributed random variables, with unit means and variances equal to σ2p and σ2d respec-
tively.

3.2.2 Comparison using simulated data

In order to verify the accuracy of SLMH and PMMH for the blowfly model, we have
tested them on simulated data. Firsly, notice that model (3.2) does not include any
measurement noise: the number of blowflies, nt, is assumed to be perfectly observed.
This means that the model is not a SSM, hence it cannot be fitted using methods
based on particle filtering directly. Our solution has been to introduce an artificial
measurement process, when fitting the model using PMMH. More precisely, we use the
following log-normal observational process

log yt ∼ N(log nt, σ
2
o),

where the value of σo was predetermined, not estimated. Notice that, because of this
modification, PMMH is fitting the wrong model and this procedure can be seen as an
importance sampling ABC procedure, where σo plays the role of the tolerance. See
Dean et al. (2011) for more details about the use ABC procedures in the context of
SSMs with intractable observational processes. Despite having introduced an artificial
measurement process, we decided to avoid estimating the initial values n1, . . . , nτ when
using PMMH, but we have fixed their values to that of the first τ observations.

Before moving to the results, it is important to point out that the likelihood of model
(3.2) could be estimated, without modifying the model in any way, using the Monte
Carlo integration approach described in Appendix B.1. In its current formulation this
approach is fairly expensive to compute, but it might lead to more accurate results than
the PMMH approach described here. However, an MCMC algorithm using the resulting
likelihood estimates could not be considered to be a PMMH sampler, and given that
the purpose of this chapter is comparing SLMH and PMMH, we have decided not to
include it in the comparison.

For the comparison we simulated 24 datasets of length T = 200, using parameter
values δ = 0.16, P = 6.5, n0 = 400, σ2p = 0.1, τ = 14, σ2d = 0.1. We then estimated the
parameters with both methods, using 2 × 104 MCMC iteration and 1000 simulation
from the model at each step. The choice of σo was critical for the performance of
PMMH. Obviously, we would like σo to be as small as possible, but lowering it increases
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δ P n0 σ2p τ σ2d

SLMH0 0.08(0.83) 0.13(0.83) 0.102(0.79) 0.24(1) 0.035(0.92) 0.43(0.96)

PMMH0 0.06(0.67) 0.11(0.88) 0.071(0.88) 0.55(0.58) 0.02(0.92) 1.32(0.17)

p-value 0.414 0.197 0.01 0.359 0.03 < 0.001

Best PMMH0 PMMH0 PMMH0 SLMH0 PMMH0 SLMH0

SLMH1 0.054(0.83) 0.14(0.75) 0.09(0.88) 0.25(1) 0.03(0.96) 0.43(1)

PMMH1 0.04(0.88) 0.06(0.92) 0.03(0.92) 0.18(1) 0.003(1) 0.17(0.96)

p-value 0.123 0.006 < 0.001 0.058 0.006 < 0.001

Best PMMH1 PMMH1 PMMH1 PMMH1 PMMH1 PMMH1

Table 3.1: Root MSEs(coverage) of the log-parameters for SLMH and PMMH for the blowflies
model for realistic (0) and optimistic (1) starting values. The p-values for the differences in
log-absolute errors have been calculated using t-tests.

the variance of the importance weights and, in turn, of the estimated likelihood. In
particular, if PMMH was initialized far from the true parameters, σo had to be increased
in order to avoid particle depletion. Hence, we decided to include the results (PMMH0
and SL0) obtained using a realistic initialization (δ = 0.1, P = 4, n0 = 200, σ2p = 0.2,
τ = 10, σ2d = 0.2) and the results obtained by initializing the chains at the true
parameters. In the first case σo was fixed to 0.05, while in the second to 0.01. For all
parameters we used flat priors and for SLMH we used the set of 16 summary statistics
proposed by Wood (2010) for this model. We report these details in Appendix B.1.

The resulting Mean Squared Errors (MSEs) of the log-parameters are reported in
Table 3.1. The table includes the p-values for differences in MSEs, which clearly show
that PMMH is more accurate when the lower value of σo is used. On the other hand,
in the more realistic setting the performance of the two procedure is more comparable,
as PMMH underestimates both σ2p and σ2d, while SLMH performs slightly worse than
PMMH on the remaining parameters.

3.2.3 Results using Nicholson’s datasets

Fitting Nicholson’s datasets was relatively straightforward with SLMH, and we used
the same initial values (δ = 0.16, P = 6.5, n0 = 400, σ2p = 0.1, τ = 14, σ2d = 0.1)
for each dataset. Using this initialization was not possible for PMMH, as we would
be forced to use values of σo as high as 0.2, in order to avoid failures in the Monte
Carlo integration step. In particular, when this initialization was used, the dynamics
simulated from the model were very different from the observed ones. This is due to
two facts: this initialization is quite distant from the MLE and, as we will discuss later,
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Figure 3-2: Stability plots for the blowfly model, obtained by fitting Nicholson’s datasets using
SLMH and PMMH. The black dots are 2000 values of the Pτ and δτ randomly sampled from
each MCMC chain. The white circle represents the initial value used for SLMH. Notice that
Pτ and δτ indicate simply the product between these parameters.
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model (3.2) is probably misspecified. Hence, most of the particles simulated by SIR
were very far from the corresponding observations and, when σo was set to a small
value, they ended up being attributed almost zero weight. This lead to extremely
noisy likelihood estimates. To avoid this problem, we initialized PMMH using values
obtained through preliminary runs of SLMH on the four datasets. Still, we were forced
to use values of σo equal to 0.1 for the second dataset and 0.05 for the others. For
each dataset we used 3× 104 MCMC iterations, of which the first 5000 were discarded
as burn-in. The (synthetic) likelihood was estimated using 1000 particles or simulated
paths at each step.

Figure 3-2 shows the stability diagrams for model (3.2), for each combination of
dataset and fitting procedure. These plots show how the stability properties of the sys-
tem depend on the parameter combinations Pτ and δτ . All posterior samples obtained
through SLMH lay strictly in the cyclic region of the parameter space, indicating that
observed oscillation of blowfly population are due to intrinsic blowfly biology, rather
than stochastic perturbation of the system (Wood, 2010). On the other hand, the
posteriors samples given by PMMH, in particular those corresponding to datasets E2
and E4, are closer to the under-damped region, where the oscillations are driven by the
stochasticity rather than intrinsic effects. With the exception of E1, the PMMH poste-
riors are more dispersed, which is attributable to the high estimates of noise parameters
σ2d and σ2p, as shown in Table 3.2.

δ P n0 σ2p τ σ2d

E1 SLMH 0.17 7.57 395.30 0.70 14.44 0.47

E1 PMMH 0.19 4.45 653.93 1.54 14.82 0.30

E2 SLMH 0.22 8.70 407.61 0.21 15.95 1.77

E2 PMMH 0.37 6.26 576.30 2.35 15.02 3.47

E3 SLMH 0.29 10.48 184.38 0.64 14.62 0.55

E3 PMMH 0.28 7.71 229.32 1.56 15.18 0.53

E4 SLMH 0.22 12.81 59.16 0.71 12.91 0.55

E4 PMMH 0.30 12.10 88.33 2.42 14.46 1.23

Table 3.2: Posterior means for model (3.2), obtained by fitting each of Nicholson’s dataset
using either SLMH or PMMH.

Figure 3-1 compares the observed trajectories with those simulated from the model,
using parameter values equal to the posterior means estimated by SLMH and PMMH.
While using parameter values estimated through SLMH gives trajectories that are
qualitatively similar to the observed ones in all cases, using the parameters estimated
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Figure 3-3: Dynamics of the ESS (black line) for the E2 dataset (red points), using parameters
equal to the posterior means given by SLMH (top) and PMMH (bottom). For the first τ steps
the ESS is equal to the number of particles, because we have set ni = yi, for i = 1, . . . , τ , as
stated in the main text.

through PMMH gives a poor match for datasets E2 and E4.
To understand what happened, we ran a filtering operation using dataset E2, 104

particles and parameters equal to the posterior mean given by SLMH and PMMH. Fig-
ure 3-3 shows the dynamics of the Effective Sample Size (ESS) using either parameter
set. From the top plot we see that the ESS drops to practically zero around the 25th,
95th and 250th observation, if SLMH estimates are used. On the other hand, PMMH
gives much higher estimates of σp and σd and this keeps the ESS from dropping to zero
in those occasions. This suggests that few idiosyncrasies or outliers in datasets E2 and
E4 might be pushing PMMH toward the underdamped region. This is supported by
the fact that, if PMMH is run using a log Student’s t-distribution for the observational
process

log yt − log nt
σo

∼ Student(ν = 2),

the resulting posterior estimates for E2 and E4 lay strictly inside the cyclic region, as
shown in Figure 3-4. We comment on these results in Section 3.5.
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Figure 3-4: Stability plots for datasets E2 and E4 using PMMH with log Student’s t observa-
tional error.

3.3 Cholera epidemics in the Bay of Bengal

In this section we consider a modified version of the Susceptible-Infected-Recovered-
Susceptible (SIRS) model used by King et al. (2008) to explain cholera epidemics in
the regions north of the Bay of Bengal. The dataset considered here corresponds to
cholera-related mortality records in the former Dacca district of British East Indian
province of Bengal, which is available within the pomp R-package (King et al., 2014).
The data, depicted in Figure 3-5, consists of monthly deaths counts occurring between
1891 and 1941. See King et al. (2008) for additional details regarding the data.

3.3.1 The model

The model proposed by King et al. (2008) is composed of several classes, all of which
are completely unobserved apart from the infected class, which is observed indirectly
through the deaths count. In King et al. (2008) the model was represented by a
system of differential equations, which was solved numerically using a Euler-Maruyama
scheme. The main issue with their formulation is that the positivity of the states is not
guaranteed. To address this problem, we propose an alternative model formulation, to
be justified later, which results in the following system of difference equations

st+1 = st − sot +
roktkǫ

kǫ+ δ
+

yot ρ

ρ+ δ
+ bt+1,

it+1 = it − iot + c
sotλt
λt + δ

,

yt+1 = yt − yot + (1− c)
sotλt
λt + δ

,

r1t+1 = r1t − ro1t +
iotγ

m+ γ + δ
,

rit+1 = rit − roit +
roi−1tkǫ

kǫ+ δ
, for i = 2, . . . , k,
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Figure 3-5: Cholera-related monthly death count in the Dacca district between 1891 and 1941.

where

bt+1 = pt+1 − pt +
sot δ

λt + δ
+

iot δ

m+ γ + δ
+

yot δ

ρ+ δ
+

k
∑

i=1

roitδ

kǫ+ δ
,

sot = st(1− e−(λt+δ)∆t),

iot = it(1− e−(m+γ+δ)∆t),

yot = yt(1− e−(ρ+δ)∆t),

roit = rit(1− e−(kǫ+δ)∆t), for i = 1, . . . , k.

(3.3)

Here bt+1 represents the number of births between time t and t+1, while pt is the total
population of the Dacca district at time t, characterized by constant birth-death rate
δ. Susceptible individuals s are infected by cholera at time-varying rate λt, which will
be explained in detail later. Parameter c determines the fraction of infected individuals
that will undergo a full blown infection, represented by class i, rather than an asymp-
tomatic infection, represented by class y. Individuals in i suffer from an excess death
rate m and transition to the first Recovered class r1 with rate γ. On the other hand,
individuals in y have the same death rate as susceptible individuals and do not acquire
any long term immunity, as they rejoin the s class directly at rate ρ. The duration of
immunity is gamma distributed, with mean 1/ǫ and variance k/ǫ2.

The rationale behind our discretized model needs to be clarified. Consider, for
instance, yt. To obtain yt+1 we model inputs and outputs involving y in turn, rather
than simultaneously. Firstly, we obtain the number of individuals, yot , leaving the
asymptomatic infected class by solving

dys = −(ρ+ δ)ysds,

between t and t + 1. The resulting solution is an exponential decay, which ensures
the positivity of yt+1. Then yot is divided between bt+1 and st+1, with proportions
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determined by the output rates δ and ρ. This solution preserves the positivity of
all classes and mass-balance, both of which are essential for a realistic model. In
addition, our formulation becomes equivalent to the Euler-Maruyama scheme of King
et al. (2008), as ∆t→ 0.

The force of infection λt is given by

λt = ωt + eβtβt
it
pt

∆w

∆t
, (3.4)

where ∆w ∼ Γ(∆t/σ2, 1/σ2), so that ∆w/∆t represents multiplicative gamma noise
with unit mean and variance equal to σ2. We preferred this choice to the additive
Gaussian noise originally used by King et al. (2008), because the multiplicative version
assures the positivity of λt.

In (3.4), ωt and βt represent respectively the environmental and human feedback
components of the force of infection

ωt = exp

( 6
∑

i=1

ωigi(t)

)

,

βt = exp

( 6
∑

i=1

βigi(t)

)

,

where gi(t), for i = 1, . . . , 6, are a periodic B-spline basis. Parameter β is the long term
trend in human-to-human transmission.

The observed number of deaths registered during the n-th month, is assumed to
follow a negative binomial distribution

en ∼ NB

(

qn,
1

τ2

)

,

with mean qn and variance qn+ q
2
n/τ

2, where qn is the accumulated number of cholera-
related deaths between the previous and the current month

qn =

tn
∑

s=tn−1

mis.

In the original model en was normally distributed around qn, but that choice often
produces negative death counts when the model is simulated. See King et al. (2008)
for further model details.

In the Section 3.3.2 we fit three versions of model 3.3 to the Dacca dataset. Our
results roughly agree with those of King et al. (2008), with some notable exceptions,
which will be illustrated in Section 3.3.2. Given that the version of the model presented
here has the desirable property of enforcing the positivity of all the states and of the
force of infection, we argue that the results presented here, in particular those obtained
under PMMH, should be preferred to those of King et al. (2008).

3.3.2 Set-up and results using the Dacca dataset

Similarly to King et al. (2008), we do not fit the full model, but we consider:
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• a seasonal model where the y class is not included (c = 1);

• a two-path model were the environmental force of infection is constant (ωs(t) =
ωs);

• a basic SIRS model where c = 1, ωs(t) = ωs and βs(t) = βs.

We fitted each model to the Dacca dataset using SLMH and PMMH. For both methods
we used 1.4 × 106 MCMC iterations, the first half of which was discarded as burn-in
period, and 2000 simulations to estimate the (synthetic) likelihood at each step. We
used uniform or diffuse priors for all parameters. We report them, together with the
26 summary statistics used by SLMH, in Appendix B.2.

Table 3.3 reports the estimated Akaike Information Criterion (AIC) for each model
and method. SLMH and PMMH agree in selecting the seasonal reservoir model, while
the two paths mechanisms does not improve the fit enough, relatively to the SIRS
model, to justify the additional complexity. This is in contrast with the results of King
et al. (2008), whose second-order AIC estimate was lower for the two paths than for
the SIRS model.

Almost all the marginal posterior variances were higher when SLMH was used, with
a median increase equal to 7.2, 2.6 and 2.2 for the seasonal, two paths and SIRS model,
respectively. The variance increases were highest for the seasonal coefficients, ω1:6, of
the force of infection, which suggest that the amount of information lost through the
use of summary statistics is sizeable.

Method Seasonal Two Paths SIRS

AICSLMH -38.4 -31.6 -34.6

AICPMMH 7458 7532.6 7528.2

Table 3.3: Estimated AICs for each model, using SLMH and PMMH.

One important hypothesis examined by King et al. (2008) was that the mean du-
ration of immunity, dL := 1/ǫ, might be much shorter than previously thought. Our
analysis partially supports this conclusion, as shown by Figure 3-6. The plots in the top
row show the marginal densities of dL under each model. Under the seasonal model,
most of the posterior mass lies close to the lower prior boundary, corresponding to
unrealistically low periods of immunity (shorter than one week). The posterior given
by SLMH under the SIRS model is slightly less extreme, but it still suggests period of
immunity of one to three months, which is much shorter than the 3 to 10 years time-
scale suggested by several sources (Cash et al., 1974; Glass et al., 1982; Koelle et al.,
2005). One surprising result is that, under the two paths model, dL is still estimated to
be lower than one month. This is in contrast with the results of King et al. (2008), who
estimates dL to be around 1.4 years, under the same model and dataset. The mean
duration of immunity after mild infections dS = 1/ρ is estimated to be shorter than
three weeks under PMMH, while SLMH seems to have lost information regarding dS ,
as the corresponding marginal posterior is bimodal and highly dispersed.
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Figure 3-6: Posterior marginal distributions from PMMH (solid) and SLMH (dashed). The
estimates of King et al. (2008) correspond to the vertical dotted lines, substituted by annotations
when out of range. The first three rows contain the marginals of immunity duration after full-
blow infections, fatality and basic reproductive number for the seasonal (a, d, g), two paths (b,
e, h) and SIRS (c, f, i) model. The last row shows the marginals of immunity duration after
mild infections (j) and of the fraction of severe infections (k) for the two paths model.
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Figure 3-7: Joint posterior samples for fraction of symptomatic infections vs fatality and
duration of short term immunity under PMMH (a, c) and SLMH (b, d).

Figure 3-6 shows also the marginal distributions of the cholera-related death prob-
ability f = m/(δ + γ + m). Under the seasonal and the SIRS models our estimates
roughly agree with those of King et al. (2008), but our fatality estimate is much higher
than theirs when asymptomatic infections are included in the model. Similarly to King
et al. (2008), we estimate the fraction of infection that are symptomatic to be very low
under the two path model.

Our results suggest that including asymptomatic infections does not improve the fit
and does not provide more realistic estimates of immunity duration, following full-blown
infections. In addition, this model is difficult to identify, because there is a trade-off
between parameters c, dS and m, which is captured by Figure 3-7. The correlations
observed in the PMMH joint posterior sample are explained by the fact that an increase
in the fraction of individuals with full infection can be compensated by decreasing
their mortality rate or by increasing the duration of long short term immunity (thus
delaying individuals with mild infection from rejoining the susceptible). Under SLMH
this identifiability issue is more severe, and the corresponding posteriors are bimodal
and more dispersed.

Another question addressed by King et al. (2008) is the relative importance of the
environmental reservoir and of the human habitat for V.Cholerae persistence. They
found that the basic reproductive number, R0, which quantifies the strength of human-
to-human transmission, was consistently low (around 1.5) across model and geographic
area. Figure 3-6 shows that our estimates of R0 are very low under all models and
methods, thus supporting the hypothesis that humans might be only a marginal habitat
for V.Cholerae.
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3.4 Fennoscandian Voles

Here we consider a modified version of the prey-predator model proposed by Turchin
and Ellner (2000), which has been used to describe the dynamics of Fennoscandian
voles (Microtus and Clethrionomys). More specifically, the model was an attempt
at explaining the shift in voles abundance dynamics from low-amplitude oscillations
in central Europe and southern Fennoscandia to high-amplitude fluctuations in the
north. One of the possible drivers of this shift is the absence of generalist predators
in the north, where voles are hunted primarily by weasels (Mustela nivalis) (Turchin
and Ellner, 2000). According to this hypothesis, the lack of the stabilizing effect of
generalist predators is the main factor determining the observed instability of voles
abundances in the north.

The predator-prey dynamics are given by the following system of differential equa-
tions (Turchin and Ellner, 2000)

dN

dt
= r(1− e sin 2πt)N − r

K
N2 − GN2

N2 +H2
− CNP

N +D
+
N

K

dw

dt
,

dP

dt
= s(1− e sin 2πt)P − sQ

P 2

N
, (3.5)

where dw(t2)− dw(t1) ∼ N [0, σ2(t2 − t1)], with t2 > t1, is a Brownian motion process
with constant volatility σ. The model is formulated in continuous time, because voles
do not reproduce in discrete generations (Turchin and Hanski, 1997). Here N and
P indicate voles and weasels abundances, respectively. In the absence of predators,
voles abundance grows at a seasonal logistic rate. Parameters r and s represents the
intrinsic population growth rates of voles and weasels, while K is the carrying capacity
of the former. These parameters are averaged over the seasonal component, which is
modelled through a sine function with amplitude e and period equal to one year, with
peak growth achieved in the summer. Generalist predation is modelled through a type
III functional response, under which generalists progressively switch from alternative
prey to hunting voles, as voles density increases. The maximal rate of mortality inflicted
by generalists is G, while H is the half saturation parameter.

Predation by weasels follows a type II response, where C is the maximal predation
rate of individual weasels and D is the half saturation prey density. No prey-switching
behaviour occurs under this functional response, which is consistent with weasels being
specialist predators. Weasel abundance grows at a seasonal logistic rate, where the
carrying capacity depends on prey density. Parameter Q specifies the number of voles
needed to support and replace an individual weasel and it determines the ratio of prey
to predator densities at equilibrium.

Differently from Turchin and Ellner (2000), who include environmental stochastic-
ity in the system by randomly perturbing all model parameters using Gaussian noise
with pre-specified volatility, we choose to explicitly perturb the prey equation using
a Brownian motion process and to include its volatility σ in the vector of unknown
parameters.

Vole abundance is not observed directly, but a proxy is provided by trapping data.
We assume that the number of trapped voles is Poisson distributed

Yt ∼ Pois(ΦNt),
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where t ∈ {1, . . . , T} is the set of discrete times when trapping took place. No such
proxy is available for weasels density, hence predator abundance represents a completely
hidden state.

Following Turchin and Ellner (2000) model (3.5) is not fitted directly to data, but
it is rescaled to a dimensionless form first. In particular, if we define

n =
N

K
, p =

QP

K
, d =

D

K
, a =

C

K
, g =

G

K
, h =

H

K
and φ = ΦK,

the reduced system is given by

dn

dt
= r(1− e sin 2πt)n− rn2 − gn2

n2 + h2
− anp

n+ d
+ n

dw

dt
,

dp

dt
= s(1− e sin 2πt)p − s

p2

N
,

Yt ∼ Pois(φnt). (3.6)

While Turchin and Ellner (2000) implicitly re-scaled the simulations from the model
in order to match their means with that of the observed data, we formally estimate the
scaling parameter φ.

Turchin and Ellner (2000) fitted the model by using a method which they call
Non Linear Forecasting (NLF), which is an instance of Simulated Quasi-Maximum
Likelihood (SQML) method (Smith, 1993). One of the drawbacks of their estima-
tion procedure is that it does not take into account the fact that trapping data pro-
vides noisy estimates of voles density. Another issue is that their method could not
be used to estimate parameters that affect the variance of conditional distributions
p(nt|nt−1, nt−2, . . . ), but not their mean (Turchin and Ellner, 2000).

3.4.1 Description of data and priors

While Turchin and Ellner (2000) consider several datasets, here we focus on the time
series concerning voles abundance (mainly Clethrionomys rufocanus) in Kilpisjarvi,
Finland. The data, shown in Figure 3-8, consists of 90 data points collected during the
springs (mid-June) (triangles) and autumns (September) (stars) of each year, between
1952 and 1997. Each data point represents the number of voles trapped in a specific
trapping season, divided by the number of hundred trap-nights used in that season.
After 1980 the number of trap-nights was fixed to around 1000, but in earlier years this
number is not available: it varied from a minimum of 500 to more than a thousand
(Perry, 2000). This correction for the sampling effort implies that, if the number of the
trapped voles in each season is approximately Poisson distributed, the trapping index
is not.

We have dealt with this problem by multiplying the data in Figure 3-8 by 10 and by
rounding each data-point to the nearest integer. This solution should give near-exact
results for data collected after 1980, and a good approximation for all data-points
representing a considerable population, thanks to the normal approximation to the
Poisson distribution.

A useful source of prior information is represented by Turchin and Hanski (1997),
where life history and data from short experiments were used to estimate the parameters
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Figure 3-8: Top: observed voles trapping index in Kilpisjarvi, between 1952 and 1997. Middle
and bottom: two realization (solid and dashed) of model 3.5, using parameters equal to the
posterior means given by SLMH and PMMH.

of model (3.6). We report the prior distributions for each parameter in Table 3.4. The
expected values of the prior distributions has been chosen on the basis of the remarks of
Turchin and Hanski (1997), and we refer the reader to this reference for further details.
The specific distributions and variabilities used for the priors have been chosen based
on an attempt at quantifying the remarks of Turchin and Hanski (1997) regarding their
confidence in their independently derived estimates. Admittedly, this process entails a
certain degree of arbitrariness. No prior information was available for φ and σ, hence
we have used improper uniform priors for both parameters. For SLMH we used the set
of 17 summary statistics reported in Appendix B.3.

3.4.2 Comparison using simulated data

In order to verify the accuracy of SLMH and PMMH for this prey-predator model, we
have simulated 24 datasets of length T = 90, using parameters values r = 4.5, e = 0.8,
g = 0.2, h = 0.15, a = 8, d = 0.06, s = 1, σ = 1.5 and φ = 100. We have then
estimated the parameters with both methods, using 2.5 × 104 MCMC iteration, the
first 5 × 103 of which were discarded as burn-in period, and 103 simulation from the
model at each step. All the chains were initialized at the same parameter values. The
resulting Root Mean Squared Errors (RMSEs) and variance-to-squared-bias ratios are
reported in Table 3.5. While the RMSEs are quite similar for most parameters, the
Table suggests that PMMH gives more accurate estimates for the scaling parameter φ
and possibly for the generalist predation rate g. Indeed, SLMH estimates of φ are biased
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Parameter Prior distribution

r N(µ = 5, σ = 1)

e N(µ = 1, σ = 1)

g Exp(λ = 7)

h Gamma(κ = 4, θ = 40)

a N(µ = 15, σ = 15)

d N(µ = 0.04, σ = 0.04)

s N(µ = 1.25, σ = 0.5)

σ Unif(0.5,∞)

φ Unif(0,∞)

Table 3.4: Priors used for the voles-weasels model.

downward and are around ten times more variable than the estimates obtained with
PMMH. In the case of g the significance of the t-test should not be over-interpreted,
given that it is attributable to PMMH achieving almost zero error on a single run.

3.4.3 Results from the Kilpisjarvi dataset

We fitted the Kilpisjarvi dataset using 1.5 × 105 MCMC iteration, of which the first
104 were discarded as burn-in period. At each step we used 103 simulations from the
model (SLMH) or particles (PMMH). The resulting posterior means are reported in
Table 3.6, while the marginal posterior densities of the parameters as shown in Figure
3-9.

SLMH and PMMH give similar estimates for most parameters, with substantial
differences only for σ and φ. Indeed, PMMH’s estimate of the former parameter is much
higher than that obtained using SLMH. Interestingly, we encontered a similar pattern in
Section 3.2, when fitting the blowfly model of Wood (2010) to Nicholson’s experimental
datasets (Nicholson, 1954, 1957). In that context, the process noise estimates were
much higher under PMMH than under SLMH, on all datasets. This biased PMMH’s
estimates of the remaining parameters towards stability, particularly on two of the
datasets. As we will show later in this section, this stabilizing effect of high process
noise estimates on the dynamics is less noticeable here.

Figure 3-8 compares the observed data with trajectories simulated from model
(3.5), using parameters equal to the posterior means given by SLMH and PMMH.
Both methods seem to produce dynamics that are qualitatively similar to the observed
ones, with the paths simulated using PMMH’s estimates being slightly more irregular,
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Parameter RMSE SLMH RMSE PMMH P-value Best

r 0.33(3.3) 0.25(9.9) 0.49 PMMH

e 0.19(0.1) 0.2(0.1) 0.78 SLMH

g 0.09(0.2) 0.08(0.5) 0.05 PMMH

h 0.04(0.2) 0.03(0.4) 0.15 PMMH

a 2.12(1.3) 1.97(1) 0.48 PMMH

d 0.02(0.5) 0.02(0.6) 0.57 SLMH

s 0.07(18.6) 0.08(10.9) 0.22 SLMH

σ 1.97(2.5) 0.71(2.1) 0.36 PMMH

φ 16.04(3.9) 4.85(7.4) < 0.001 PMMH

Table 3.5: RMSEs and variance-to-squared-bias ratios (in brackets) for SLMH and PMMH.
P-values for differences in log-squared errors have been calculated using t-tests.

which is attributable to the higher process noise estimate.
One of the main scientific questions model (3.5) was meant to address was whether

the observed dynamic in voles densities can be classified as chaotic. To answer this
question, we have randomly sampled 103 parameters sets from posteriors samples ob-
tained by SLMH and PMMH. We have then used each parameters set to simulate a
trajectory from the deterministic skeleton of model (3.5) for 105 months, which were
discarded in order to let the system leave the transient, and used additional 104 months
of simulation to estimate the maximal Lyapunov exponent as in Wolf et al. (1985). By
doing this, we obtained the two approximate posterior densities of the Lyapunov ex-
ponent shown in Figure 3-10. Notice that the posterior produced by PMMH is slightly
more skewed to the left relatively to that obtained with SLMH, which suggests that
the system dynamics are estimated to be more stable under the former methods. To-
gether with the high estimate of σ2, this confirms the tendency of PMMH to inflate
the noise and to bias the estimated dynamics toward stability. While this effect was
very pronounced under the blowfly model studied described in Section 3.2, in this case
it is very mild. Indeed, the median Lyapunov exponent is equal to −6 × 10−4 for
SLMH and −0.015 for PMMH. These estimates are very close to each other and to
the one (−0.02) reported by Turchin et al. (2003) for this dataset, and provide more
model-based evidence supporting the hypothesis that this system lives on the edge of
chaos.
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r e g h a

SLMH 4.85(0.63) 0.78(0.12) 0.11(0.11) 0.1(0.05) 8.0(3.3)

PMMH 5.11(0.7) 0.84(0.14) 0.14(0.11) 0.1(0.05) 6.3(2.1)

d s σ φ

SLMH 0.07(0.03) 1.04(0.21) 8.4(2.3) 270.5(63.5)

PMMH 0.08(0.03) 1.04(0.23) 14.8(1.7) 184.2(26.9)

Table 3.6: Estimated posterior means (standard deviations) for model 3.5.
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Figure 3-9: Marginal posterior densities for voles model using SLMH (black) and PMMH
(broke). The vertical lines correspond to estimates reported by Turchin et al. (2003), obtained
using NLF (available only for 5 parameters).
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Figure 3-10: Approximate posterior densities of Lyapunov exponents for SLMH (black) and
PMMH (broken).

3.5 Conclusions

Information reduction methods, such as ABC and SL, have become popular tools for
dealing with complex phylogeographic (Hickerson et al., 2010), phylogenetic (Rabosky,
2009) and individual based (Hartig et al., 2014) models, but they do not seem to have
been equally successful for dynamical SSMs of ecological interest. The main reasons
for this might be that particle filters represent an obvious alternative, and that at
the moment it is not clear whether information reduction methods can outperform
them along any dimension of the inferential process. In fact, particle filters have the
important advantage of using the full data, y0, thus avoiding both the information
loss and the issue of choosing the summary statistics. On the other hand, this use of
all the data makes filtering more susceptible to model mis-specification problems, in
which failures to capture the data generating mechanism exactly can have a substantial
negative impact on inference.

The robustness properties of methods based on summary or “intermediate” statis-
tics, in particularly the protection they can offer against model mis-specification and
outliers, has been widely recognized and exploited in econometrics, but it seems to
have attracted less attention in the wider statistical community (Jiang et al., 2004).
The blowflies example in Section 3.2, highlights the robustness of information reduc-
tion methods in the context of highly non-linear SSMs. Indeed, careless application of
PMMH would have classified the dynamics of the system as nearly-underdamped under
two of Nicholson’s datasets, with the corresponding simulations from the model being
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clearly inconsistent with the data (see Figure 3-1). On the contrary, SLMH reliably
classifies the dynamics as cyclic. In this example using a fat-tailed observation density
mitigated the problem, but we argue that these results have deeper practical implica-
tions. Model 3.2 has sufficient flexibility to reproduce the main features (quantified by
the summary statistics) of Nicholson’s datasets, as demonstrated by Figure 3-1. On
the other hand, the model struggles to explain certain nuances of Nicholson’s datasets,
which leads to most of the particle filter’s importance weights being close to zero at
several time steps, as illustrated by Figure 3-3. This suggests that, in situations in
which the model has a clear scientific interpretation, but lacks the ability to explain
the observed dynamics in all their complexity, focusing on some salient features of the
data might be a reasonable approach. Conversely, if the model is believed to be an
accurate description of the system under study, or if it is meant to be used for the
purpose of state estimation or forecasting, then it is compelling to fit it using the full
data.

Another lesson learned from the blowflies example is that, for particle-filtering-
based methods to work properly, a good initialization is often indispensable. This
is because these methods are generally based on some form of importance sampling,
hence when the initial estimates are far from the best fitting parameters most of the
importance weights go to zero (particle depletion). In this context, methods based
on information reduction can be useful, because they are robust to bad initializations.
Methods that can provide reliable initial estimates, to be fed to more accurate but less
robust methods, are of high practical value, but often under-represented in the litera-
ture. Exceptions are Lavine et al. (2013) who, in the context of pertussis epidemics, use
SLMH to initialize a IF algorithm and Owen et al. (2014), who proposes to initialize
PMMH using the output of preliminary ABC runs.

One recurrent theme in the examples presented in this chapter and in Chapter 2 is
that using summary statistics might lead to a loss of accuracy in parameter estimation.
Mild losses of accuracy are often acceptable when parameter estimation is not the main
focus of analysis, but the aim is, for example, to determine whether the dynamics of
the system are stable, oscillatory or chaotic, as in the blowflies and the voles examples.
On the other hand, when dealing with models that are weakly identified even under
the full data, as in Section 3.3, any further loss of information can lead to unreliable
estimates. Hence, an important drawback of information reduction methods is that,
in the absence of a benchmark, quantifying inferential inaccuracies require running
simulation studies, which can be prohibitively expensive for complex models, such as
those presented in Section 3.3. While in all the examples presented here a benchmark
(PMMH) was available, this not always the case.

From a computational point of view, SLMH and PMMH performed similarly under
the models considered in this chapter. For instance, a single point-wise estimate of
p(y0|θ) or pSL(y0|θ), under the voles model and on a single 2.50GHz Intel i7-4710MQ
CPU, costs around 1.55 and 1.35 seconds, when 103 particles or simulated statistics
vectors are used. This time difference is marginal, and probably highly dependent on
implementation details. However, it is worth pointing out that is it much easier to
parallelize the computation of p̂SL(s

0|θ) than that of p̂(y0|θ). This is because of SIR’s
resampling step, which breaks the parallelisms at each time-step t (see Algorithm 1 in
Chapter 2). For a review of parallelization strategies for the resampling step, see Li
et al. (2015). A possibly simpler solution is to compute several estimates p̂1(y

0|θ), . . . ,
p̂C(y

0|θ) in parallel, by running SIR with a fraction of the total number of particles M
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on each of the C cores, and then average them at each PMMH step to obtain a single
estimate of p(y0|θ).

Summary statistics selection is, in our opinion, an open problem, as many ap-
proaches proposed in the literature require the user to specify an initial set of summary
statistics which can then be refined upon (see for example Blum et al. (2013), Fearn-
head and Prangle (2012) or Nunes and Balding (2010)). While some fairly general
approaches exist (Drovandi et al., 2014), finding a set of initial statistics under which
the model is identifiable is, at the time of writing, a time consuming, problem depen-
dent and largely non-automated process. In the context of models with several hidden
states, devising summary statistics is particularly difficult, because these have to cap-
ture the relation between all the states, while being based only on (noisy proxies of) a
subset of them. The two-path cholera model is a perfect example of this problem: out
of seven state variables only one, the number of infected, is observed with noise.

Taken together our results lead us to some very practical conclusions. When faced
with a real non-linear dynamic system for which good models are available, one should
ideally use a state space method for final parameter estimation, combined with a mini-
mum tuning information reduction approach for exploration of alternative model struc-
tures, initialization and checking of conclusions. Using state space methods alone may
bias conclusions towards noise driven stable dynamics, while using information reduc-
tion alone may lead to inference that is less precise than it could be. If the model is
only attempting to explain some features of the system, and not every detail of the
data then information reduction is probably essential.
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CHAPTER 4

FAST APPROXIMATE INFERENCE FOR INTRACTABLE

MODELS

In chapters 2 and 3 we used the Metropolis-Hastings implementation of Synthetic
Likelihood, which we refered to as Synthetic Likelihood Metropolis-Hastings (SLMH).
An important issue with SLMH is its computational cost. Indeed, a new estimate,
p̂SL(s

0|θ), has to generated by simulation at each MH step. This can be very expensive
for complex models. In addition, the mixing of the sampler is typically quite poor, due
to the noise in the synthetic likelihood estimates.

Here we propose an alternative algorithm, which provides parameter estimates by
maximizing the synthetic likelihood, rather than by sampling the parameters posterior
distribution.

4.1 Introduction

In this chapter we propose more computationally efficient approaches to statistical in-
ference with Synthetic Likelihood. Gutmann and Corander (2015), Wilkinson (2014)
and Meeds andWelling (2014), propose to reduce the computational costs of simulation-
based approximate methods, which include Synthetic Likelihood, using Gaussian Pro-
cesses (GPs). In particular, Gutmann and Corander (2015) and Wilkinson (2014) use
GPs to smooth pointwise (synthetic) likelihood estimates, to obtain an approximation
the likelihood function. The aim is limiting the number of likelihood estimates, which
are generally expensive to compute. Meeds and Welling (2014) use GPs to approximate
how the first two moments of the summary statistics vary with model parameters, thus
obtaining a smooth proxy to the synthetic likelihood. In this chapter we do not use
GPs, but we adopt a gradient-based approach. In particular, we aim at maximizing the
synthetic likelihood function efficiently, using local estimates of its gradient and Hessian
to set-up a stochastic Newton-Raphson optimization algorithm. The approach we use
to estimate gradient and Hessian of the synthetic likelihood, and the way we use them
to maximize this function are, to our best knowledge, novel. Our solution is specific
to Synthetic Likelihood and it explictly exploits the parametric Gaussian assumption
on the distribution of the statistics. Thus our proposal is different from the Bayesian
Optimization in Likelihood-Free inference (BOLFI) of Gutmann and Corander (2015),
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which could be used in conjunction with either parametric or non-parametric likelihood
estimators. The approaches proposed by Wilkinson (2014) and Meeds and Welling
(2014) aim at approximating the main mass of the posterior density using Gaussian
Processes, hence they are different from the current proposal and from BOLFI, which
aim at approximating the synthetic likelihood function in the vicinity of its mode.

By approximately maximizing the synthetic likelihood function, the optimization
approach proposed here provides point estimates of the unknown parameters. As part
of the optimization, the approach also produces estimates of the Hessian matrix in
the vicinity of the (synthetic) MLE. These estimates could clearly be used to derive
asymptotic information about parameter uncertainty. As pointed out in Section 1.3,
the algorithm proposed in this chapter has reached its current form only recently, hence
we leave the (computationally intensive) task of verifying the quality of its parameter
uncertainty estimates to future work.

The rest of the chapter is structured as follows. In Section 4.2 we explain how the
synthetic likelihood can maximized efficiently, by modelling the mean and covariance
matrix of the summary statistics using local regressions. Section 4.3 describes a version
of the Generalized Method of Moments that is very similar to SL, and explains how
the optimizer described in Section 4.2 can be used in the context of this method.
We illustrate the performance of proposed algorithms on the three simple examples
presented in Section 4.4. Finally, Section 4.5 briefly outlines some possible extensions
of the proposed approach, while Section 4.6 discusses the results obtained so far.

4.2 Maximizing the Synthetic likelihood

To simplify the notation, in this chapter we will often indicate log pSL(s
0|θ) with l(θ).

Similarly, we will often use the notation µ and Σ in place of µθ and Σθ.
As mentioned previously, the SLMH algorithm is quite simple to implement, but

is quite computationally inefficient, because at each MH step the synthetic likelihood
has to estimated by simulation. This can be expensive when the model is complex
and/or when the number of statistics used is large. Indeed, the number of entries in
Σθ is O(d2), so if d is increased the number of simulations N has to be increased too,
in order to keep the variance of the estimated likelihood constant. Doucet et al. (2012)
provides results regarding how the variance of the unbiased likelihood estimates affects
the performance of the resulting MH sampler. Their results are directly relevant to SL,
provided that the bias-corrected synthetic likelihood estimator, presented in Section
2.4.3, is being used.

To limit the number of simulations, we propose a stochastic optimization algorithm
which aims at maximizing the synthetic likelihood function efficiently.

4.2.1 Approximating gradient and Hessian through local regressions

One possible way of maximizing l(θ) could be to set up a Gradient Descent (GD) or
Newton-Raphson (NR) algorithm, using finite differences to estimate gradient ∇l(θ)
and Hessian ∇2l(θ) of the synthetic likelihood. However, such algorithms would need
substantial modifications and tuning, relative to the deterministic case, in order to
guarantee convergence when only noisy estimates of l(θ) are available. An example of
this approach is the Simultaneous Perturbation Stochastic Approximation, described
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by Spall (2000) and employed by Ehrlich et al. (2013) in the context of ABC inference
for Hidden Markov Models (HMMs) with intractable likelihoods.

In this work we propose a different approach, which exploits the Gaussian assump-
tion made by Synthetic Likelihood. In particular, notice that the gradient and Hessian
of log l(θ) are

∇l(θ)k =
∂l(θ)

∂θk
(4.1)

=
∂µT

∂θk
Σ−1(s0 − µ) + 1

2
(s0 − µ)TΣ−1 ∂Σ
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2
tr
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∂θk

)

,

and
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where k, l = 1, . . . , p and p is the dimension of θ.
In general, both µθ andΣθ are unknown functions. Algorithm 2, below, details how

local linear regressions can be used to estimate the first and second order derivatives
of µθ and Σθ wrt θ, at a position θ0 in the parameter space. These estimates can
then be plugged into (4.1) and (4.2), to provide estimates of ∇l(θ)|θ0 and ∇2l(θ)|θ0 ,
respectively.

Algorithm 2 deserves some comments. The accuracy of local models (4.3) and (4.4)
depends on choice of bandwidth matrix P . We briefly discuss this issue in Section
4.2.2. Even though Σθ is not diagonal in general, the linear models in step 3 can
be fitted independently by Ordinary Least Squares without loss of efficiency, because
all the regressions include the same explanatory variables (Davidson and MacKinnon,
1993).

In step 4 we model only the marginal variances of the summary statistics, while
assuming that the correlation structure is constant. Originally, we intended to model
each elements Σθ independently, but this lead to estimates that often violated positive-
definiteness constraints. An alternative, but much more elaborate, approach would be
to model the whole covariance matrix using, for instance, the unconstrained parametriza-
tion of Pourahmadi (1999). While that approach might lead to more accurate estimates,
we fear that it would slow down the optimization drastically.

According to Ruppert et al. (1997), assuming that the variances vary linearly at
a local level is reasonable in most situation. Empirically, we have found that mak-
ing this assumption improved the stability of the estimates, relatively to higher order
polynomials.
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Algorithm 2 Estimating ∇l(θ)|θ0 and ∇2l(θ)|θ0

1: Simulate N of parameter vectors from Gaussian density

θ′i ∼ N(θ0,P ), for i = 1, . . . , N,

where P is an user-defined covariance matrix, determining the domain of the local
model.

2: For each of the N parameter vectors, θ′i, simulate a dataset, yi, from the model
and transform it to vector of statistics, si = S(yi).

3: Define θi = θ
′
i − θ0 and fit one quadratic regressions for each of the d statistics

sij = µj +
∑

k

αjkθik+
1

2

∑

k

βjkθ
2
ik +

∑

k<l

γjklθikθil+ ǫij, ǫij ∼ N{0,Σ(θi)}, (4.3)

where sij is the j-th element of vector si. These d regressions aim at approximating
µθ , locally. The estimated regression coefficients provide us with

E(sj |θ0) = µj
∣

∣

θ=0
≈ µ̂j,

∂µj
∂θk

∣

∣

∣

∣

θ=0

≈ α̂jk,
∂2µj
∂θ2k

∣

∣

∣

∣

θ=0

≈ β̂jk and
∂2µj
∂θk∂θl

∣

∣

∣

∣

θ=0

≈ γ̂jkl (k < l).

4: The residuals of the previous regressions can be used to estimate the local behaviour
of Σθ. Define Di = ǫiǫ

T
i , where ǫTi = (ǫi1, . . . , ǫid), and regress the diagonal

elements of Di non-linearly on the parameters

Di,jj = exp

(

φj +
∑

k

νjkθik

)

zij, zij ∼ χ2(1), for j = 1, . . . , d. (4.4)

This provides the estimates

E(Djj |θ0) = Σjj

∣

∣

∣

∣

θ=0

≈ exp
(

φ̂j
)

and
∂Σjj

∂θk

∣

∣

∣

∣

θ=0

≈ ν̂jk exp
(

φ̂j
)

.

Now, let Ψ = Ψ(θ) be the correlation matrix of the statistics, and assume that

∂Ψjl

∂θk
≈ 0, for every j, l ∈ 1, . . . , d, and k ∈ 1, . . . , p, (4.5)

which, together with (4.4), implies that

∂Σjl

∂θk

∣

∣

∣

∣

θ=0

≈ Ψjl
∂

∂θk

(

ΣjjΣll

)
1
2

∣

∣

∣

∣

θ=0

≈ Ψ̂jl exp

{

1

2
(φ̂j + φ̂l)

}(

ν̂jk + ν̂lk
2

)

. (4.6)

In addition

Σ

∣

∣

∣

∣

θ=0

≈ Φ̂ Ψ̂Φ̂,

where

Ψ̂ = diag(Σ̂)−
1
2 Σ̂diag(Σ̂)−

1
2 , Σ̂ =

∑

iDi

N − 1
,

and Φ̂ is a d× d diagonal matrix such that Φ̂jj = exp (φ̂j/2), for j = 1, . . . , d.
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Model (4.4) can be fitted by maximizing, wrt {φj ,νj}, the log-likelihood

N
∑

i=1

log p(Di,jj|φj ,νj ,θ) =
N
∑

i=1

[

log p(zij |φj ,νj ,θ)−
{

φj +

p
∑

k=1

νjkθik

}

]

,

where p(zij |φj ,νj ,θ) is the density of a χ2(1) r.v., while the second term on the
r.h.s. is the log-Jacobian of the transformation. Notice that p(Di,jj|φj ,νj ,θ) can
be re-expressed as the density of a Gamma-distributed r.v. with shape 1/2 and scale
2 exp(φj +

∑

k νjkθik). Hence, in practice, it is convenient to fit (4.4) as a Gamma-
distributed Generalized Linear Model (GLM) with log-link function. Finally, if the
estimates obtained in step 4 suggest diagonal entries of Σθ might be strongly depen-
dent on the parameters, model (4.3) can be re-fitted using Weighted Least Squares.

4.2.2 A Stochastic Newton-Raphson algorithm

Assuming that the estimates provided by Algorithm 2 are reliable, they can be used
to maximize the synthetic likelihood. In particular, we propose a stochastic Newton-
Raphson scheme, whose main recursion is similar to that of the Simultaneous Pertur-
bation Stochastic Approximation (SPSA) algorithm of Spall (2000). For k = 1, 2, . . .
we use the following iteration

θk+1 = θk − akA
−1
k Ĝk,

H̄k =
bk

bk + 1
H̄k−1 +

1

bk + 1
Ĥk,

where Ĝk and Ĥk are estimates of ∇l(θ)|θk and −∇2l(θ)|θk , obtained by plugging the
estimates of the derivatives of µθ and Σθ, given by Algorithm 2 with θ0 = θk, in (4.1)
and (4.2). Also, ak is a positive decreasing gain sequence

ak =
a0
kη
, η ∈ [0.602, 1],

where the lower and upper bounds for η are respectively its slowest possible (in order
to guarantee convergence) and asymptotically optimal values (Spall, 2005), while bk is
a positive integer. In order to assure the positive definiteness, symmetry and stability
of Ak we calculate it as follow

Ak = (H̄kH̄k)
1/2 + δI,

where the square root indicates the positive semidefinite matrix square root, δ is a small
constant and I is the identity matrix. Notice that −UĜk is assured to be a descent
direction of −l(θ) for any positive definite matrix U , hence, for optimization purposes,
it is not necessary for Ak to be an extremely accurate estimate of −∇2l(θ)|θk .

At each iteration of this Newton-Raphson scheme, we have to simulate N param-
eters from N(θk,Pk), which is the first step of Algorithm 2. The issues involved in
the choice of Pk are related to those described by Fan et al. (1998) in a smoothing
context. The authors consider the use of local regression for scatter-plot smoothing,
and what they name the “bandwidth” plays a role similar to that of Pk in our frame-
work. In both contexts, as we increase the bandwidth or the diagonal entries of Pk,
the local regressions become more biased, because higher order terms become more
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important. On the other hand, if we narrow too much the neighbourhood of θk within
which we simulate, the variance of the estimated gradient and Hessian will increase,
and the noise will overwhelm the information available as such a local level. We have
found that a good trade-off can been achieved by adopting the intuitively appealing
choice Pk = A−1

k . In particular, this leads to Pk ≈ −{∇2l(θ)|θk}−1, which implies
that Pk will be an approximation to the Fisher information matrix, if θk is close to the
maximizer of l(θ).

In the following we will refer to the Newton-Raphson procedure introduced in this
section as the Maximum Synthetic Likelihood (MSL) algorithm.

4.3 Continuous Updating Generalized Method of Moments

We now discuss the relation between SL and a particular version of the Method of
Moments. In particular, let us consider the objective function

f(θ) = (s0 − µθ)
TΣ−1

θ (s0 − µθ), (4.7)

which, apart from the missing log-determinant of Σθ, is proportional to the synthetic
log-likelihood, log pSL(s

0|θ). The following estimator

θ̂ = argminθ f(θ), (4.8)

is analogous to what Hansen et al. (1996) calls the Continuous Updating Generalized
Method of Moments (CUGMM). In Section 4.3.1 we discuss the asymptotic properties
of this estimator.

4.3.1 Asymptotic properties of CUGMM

The asymptotic properties of a more general version of estimator (4.8) have been studied
by Pakes and Pollard (1989), who proved the consistency and asymptotic normality
of θ̂. Under the assumption that S0 is asymptotically normal, their results guarantee
that √

n(θ̂ − θ0) d→ N
{

0, (ΓT
θ0
Σ−1

θ0
Γθ0)

−1
}

, (4.9)

where

(Γθ0)ij =
∂µi
∂θj

∣

∣

∣

∣

θ=θ0

,

and n is the number of underlying observations, Y1, . . . ,Yn, used to calculate S0. We
are particularly interested in this result, because asymptotic normality does not gen-
erally hold for the MSL estimator, as shown by Wood (2010). Hence, in the Appendix
C, we assume the consistency of θ̂ and we use it to provide an informal derivation of
(4.9).

The striking aspect of (4.9) is that the asymptotic covariance matrix of θ̂n does not
depend on ∂Σθ/∂θk. However, this quantity appears in the gradient of (4.7)

∇f(θ)k =
∂f(θ)

∂θk
=
∂µT

θ

∂θk
Σ−1

θ (s0 − µθ) +
1

2
(s0 − µθ)

TΣ−1
θ

∂Σθ

∂θk
Σ−1

θ (s0 − µθ), (4.10)

hence it might still be needed in order to compute (4.8), using a gradient-based opti-
mizer. As we will show in the following section, this might not be not necessary as long
as the initialization of the optimizer is good enough, in a sense to be clarified shortly.
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4.3.2 Practical optimization

Consider the approximate gradient

∇̃f(θ)k =
∂f(θ)

∂θk
=
∂µT

θ

∂θk
Σ−1

θ (s0 − µθ),

which is obtained by imposing ∂Σθ/∂θk = 0 in (4.10). In addition, make the following
assumption

∃ θ̂ : µ
θ̂
= s0, (4.11)

which implies that the model is able match the expected value of the statistics with the
observed statistics vector, for some parameter value θ̂. Notice that θ̂ is a stationary
point of (4.7), the CUGMM objective. Then

∃ r > 0 : ∇f(θ)T ∇̃f(θ) > 0 ∀ θ : ||θ − θ̂|| < r, (4.12)

that is, ∇̃f̂(θ) will provide a descent direction on (4.7), provided that θ is sufficiently
close to the local minimum θ̂. The proof of (4.12) is very simple, in fact

∇f(θ)T ∇̃f(θ) =
{

∇̃f(θ) +O(||s0 − µθ||2)
}T ∇̃f(θ) = ||∇̃f(θ)||2 +O(||s0 − µθ||3),

which tends to zero from above as θ → θ̂, because of (4.11) and of the fact that ∇f(θ)
is O(||s0 − µθ||).

Assumption (4.11) is quite strong, and it will probably hold only approximately
in an applied setting. However, given a parameter estimate θ̂, is it straighforward to
check, by simulation, how well this assumption holds.

To summarize, the derivatives ∂Σθ/∂θk do not appear in the distributional result
(4.9) and are not essential for minimizing (4.7), at least under assumption (4.11) and in
the vicinity of the minimizer θ̂. These facts have important practical implications, if we
are interested in using Algorithm 2 to estimate gradient and Hessian of the CUGMM
objective (4.7). Indeed, in the following we impose ∂Σθ/∂θk = 0, when using Algorithm
2 in conjunction with CUGMM, which allows us to skip step 4 of that algorithm.

4.4 Examples

In this section we test MSL, CUGMM and SLMH on three simple examples.

4.4.1 Exponential distribution

As a first example we consider a d-dimensional vector X, such that

Xi ∼ Exp(λi), for i = 1, . . . , d.

Hence, each entry of X is marginally distributed according to an exponential distribu-
tion with rate λi. In order to estimate λ = {λ1, . . . , λd}, we used the sample mean as
a summary statistic

s =
1

m

d
∑

k=1

Xk,

where m is the number of observed or simulated random vectors.
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Figure 4-1: Log-MSE for λ as a function of the number of iterations and of simulated statistics
vector for MSL, CUGMM and SLMH. Notice that for MSL and CUGMM we used only 200
iterations, hence their log-MSE is depicted as constant after that.

We estimated λ using MSL, CUGMM and SLMH. In particular, we chose d = 10,
λi = 2, for i = 1, . . . , d, and m = 200. Under MSL and CUGMM we used N =
200 simulated statistics to estimate gradient and Hessian at each step, and we used
200 optimization steps. Under SLMH we used N = 200 simulations to estimate the
synthetic likelihood at each step, 5000 MCMC iterations and flat priors. We repeated
the estimation 40 times, with the initial values of each run being randomly simulated
from a uniform distribution on [1, 3].

Figure 4-1, shows how the log Mean Squared Error (log-MSE), averaged over each
of the 10 dimension and over the 40 runs, changes with the number of simulations,
for each method. For MSL and CUGMM we used the latest position of the optimizer
as point estimate of λ, while for SLMH we used the sample mean of the most recent
half of the chain. Notice that the log-MSE is reduced much faster using MSL and
CUGMM, rather than SLMH. In particular, the first two methods have effectively
converged after around 15 iterations, while the log-MSE of SLMH is still higher at
5000 iterations. Notice that CUGMM seems to converge slightly faster than MSL in
early iterations, possibly because the latter is affected by higher variability brought
about by the estimation of the derivatives of Σθ wrt θ.

4.4.2 Stable distribution

As a second example, we consider the 4-parameter, θ = {α, β, γ, δ}, α-stable family of
distributions. Here, parameter α is the index of stability or characteristic exponent, β
determines skewness, while γ and δ control respectively scale and location. As detailed
by Nolan (2001), performing Maximum Likelihood inference on this model is difficult,
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Figure 4-2: Clock-wise from top-left: log-MSEs for α, β, γ and δ, as functions of the number
of iterations and of simulated statistics vector for MSL, CUGMM and SLMH. Notice that for
MSL and CUGMM we used only 300 iterations, hence their log-MSEs are depicted as constant
after that.

hence Rubio and Johansen (2013) considered the use of ABC methods to approximate
the MLE.

The data consisted of 1000 random vectors, simulated from the model using α = 1.5,
β = 0.1, γ = 1 and δ = 2. As summary statistic we used 15 empirical quantiles,
corresponding to cumulative probabilities equally spaced between 0.1 and 0.9. All
methods where initialized at α = 1.7, β = −0.2, γ = 1.3 and δ = 1.5. For SLMH we
used flat priors for each of the parameters, N = 500 simulated summary statistics to
estimate the synthetic likelihood at each step and 5000 MCMC iterations. For MSL and
CUGMM we used N = 500 simulated statistics at each iteration and 300 optimization
steps. We repeated the whole process 12 times.

The log-MSEs, for each method and parameter, are plotted in Figure 4-2 as func-
tions of the number of iterations and of simulated statistics vectors. The point estimates
for each method were obtained as in Section 4.4.1. MSL and CUGMM seem to have
converge after around 50 iterations, and both algorithms decrease the log-MSE faster
than SLMH, particularly for parameter α and γ. Notice that, in early iterations, the
behaviour of MSL seems quite irregular and noisy. In addition, MSL does lightly worse
than CUGMM, in terms of log-MSE, for parameters α and γ. In a run not shown
here, we have verified that this problem can be solved by increasing the number of
simulations used at each step of MSL to N = 1000.
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Figure 4-3: Clock from top-left: log-MSEs for log r, log σ2, logφ and δ as functions of the
number of iterations and of simulated statistics vector for CUGMM and SLMH. Notice that for
CUGMM we used only 500 iterations, hence its log-MSE is depicted as constant after that.

4.4.3 Ricker map

As a further example, we considered the Ricker map. In particular, we simulated 24
path from the model, using parameter values log r = 3.8, log σ2 = −1.2 and log φ = 2.3.
To fit the model with MSL, CUGMM and SLMH, we used the 13 summary statistics
of Wood (2010) and the initial values log r = 3, σ2 = −0.6 and φ = 2.6. For each
method, we used 500 simulations from the model to estimate the likelihood (SLMH)
or its derivatives (MSL and CUGMM). For MSE and CUGMM we used 500 iterations
of the optimizer, while for SLMH we used 5000 iterations. We used flat priors for each
of the parameters.

Figure (4-3) shows the log-MSE for each parameter and method. MSL and CUGMM
reduce the log-MSE of log r and log φ much faster than SLMH, but all algorithm strug-
gle to estimate log σ2, which is barely identifiable using the statistics of Wood (2010).
The performance of MSL and CUGMM is essentially identical in this setting.

4.5 Possible extensions

Here we discuss some preliminary work regarding possible extensions of MSL and
CUGMM.

4.5.1 Additional regression step

A possible disadvantage of MSL and, to a lesser degree, CUGMM is that it they do
not scale well with the number of summary statistics, d. In particular, estimating
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the gradient and Hessian of CUGMM’s objective function requires running d linear
regressions. This is fairly cheap computationally but, in the case of MSL, it is also
necessary to fit d Generalized Linear Models to estimate how Σθ varies with θ.

In order to improve the scalability of the algorithm w.r.t. the number of summary
statistics, it might be possible to introduce an additional regression step. In particular,
similarly to what has been suggested by Fearnhead and Prangle (2012), we propose to
regress the parameters on the summary statistics, which have been simulated respec-
tively during step 2 and 1 of Algorithm 2. In practice, we introduce an additional step
(say 2a) which entails fitting the following linear models

θi = βsi + ǫi (4.13)

where β is an p × d matrix of regression coefficients, the errors ǫi are independently
distributed with mean zero and i is the index of the ith simulated pair of parameters
and statistics. This new step requires the computation of a linear regression for each
parameters, but this is the only additional computation that it entails.

After having computed the regressions, we propose to use the fitted values θ̂ as our
summary statistics, to be used in the subsequent steps of Algorithm 2. The rest of the
algorithm is left unchanged. Assuming that the additional regressions are reasonably
accurate and stable, this new step should allows us to reduce sharply the number of
summary statistics used, thus reducing the computational cost of the subsequent steps.

Obviously, we have to verify that the accuracy of the additional regression step, but
the way this is implemented in MSL or CUGMM should make it more accurate that in
the case of Fearnhead and Prangle (2012). This is because we are going to re-compute
β̂ at each step of the Newton-Raphson scheme, using the parameters and statistics
generated during steps 1 and 2 of Algorithm 2. A linear relation between parameters
and statistics should be more accurate on this local scale, than in the wider training
set used by Fearnhead and Prangle (2012).

As an example we used MSL, with this additional regression step, to fit the α-stable
distribution using 100 quantiles, corresponding to cumulative probabilities equally
spaced in [0.1, 0.9], as summary statistics. We used 500 simulated statistics to estimate
gradient and Hessian at each step. Figure 4-4 shows the convergence plots of 8 separate
runs. All the parameters seem to be well identified. We tried to use MSL, without the
additional regression, in this setting, but the resulting estimates (not shown) were too
noisy. The algorithm was also much more expensive to run: 100 GLMs had to be fitted
at each step, in order to estimate the derivatives of Σθ wrt θ. When the additional
regression was used, only four GLMs, one for each parameter, need to be fitted.

An additional benefit of regression (4.13) is that the resulting summary statistics,
θ̂, are generally close to normally distributed. To demonstrate this, we transformed
the 100 summary statistics used to fit the α-stable model, to disrupt their normality.
In particular, we used the cube of each quantile. Figure 4-5 shows the distribution of
one of the transformed quantiles, which is very far from normal. Then, we simulated
104 parameters and summary statistics vectors, and we used them to fit regression
(4.13). Figure 4-6 shows the distribution of the resulting predicted values θ̂ = { ˆlog α,
β̂, ˆlog γ, δ̂}. Even though many of the original statistics were highly non-normal, the
statistics provided by using regression (4.13) are very close to normally distributed.
This result is probably a consequence of the fact the the new statistics θ̂ are linear
combinations of the original ones. Even though the latter can be highly correlated,
some form of Central Limit Theorem might be in action here.
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Figure 4-4: Clock from top-left: convergence plots for logα, β, log γ and α using MSL with
the four summary statistics obtained using regression (4.13). The triangles indicate the initial-
ization used for each of the parameters.
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Figure 4-6: Diagnostic plots to compare the normal approximation with the empirical distribu-
tions of ˆlogα, β̂, ˆlog γ and δ̂, using the summary statistics proposed by Fearnhead and Prangle
(2012). The vertical dashed lines indicate the current position in the parameter space, around
which we are simulating parameters and statistics.
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4.5.2 A smoothing approach to Synthetic Likelihood

The MSL and CUGMM algorithms provide a sequence of estimates, θ̂1, . . . , θ̂k, where k
is the number of iteration of the optimization routine. These are obtained by estimating
the gradient and Hessian of the objective function using Algorithm 2, which is based
on a local quadratic model for µθ and a local linear model for the diagonal entries
of Σθ. The accuracy of these regressions depends critically on Pk, the covariance
matrix determining the size of the local regression. Indeed, given that µθ and Σθ can
potentially be highly non-linear, Pk determines the bias-variance trade-off involved in
fitting model (4.3) and (4.4).

For all the examples reported in Section 4.4, we chose Pk = A−1
k , as described

in Section 4.2.2. This choice is simple and intuitive, but it might be sub-optimal.
Indeed, it would be preferable to select Pk by optimizing some appropriate criterion.
However, it would be impossibly expensive to select Pk at each step by, for instance,
cross-validation. For this reason, we propose a scheme that aims at modelling µθ and,
potentially, Σθ, more accurately, by post-processing the output of MSL or CUGMM.

Assume that all the parameter vectors, θ1, . . . ,θM , and summary statistics vectors,
S1, . . . ,SM , simulated while running MSL, have been stored. We are interested in
approximating µθ = E(S|θ) and Σθ = cov(S|θ), using all the M samples available so
far. While one possibility is to use local linear regressions, as in Algorithm 2, here we
consider another approach. The reasons for this choice will be detailed later.

Regardless of the method used to obtain smooth estimates of µθ and Σθ, the
result of the fitting will be the approximate functions µ̂θ and Σ̂θ. Given that SL is
based on the assumption that the statistics are approximately normally distributed,
the value of the synthetic likelihood at any location of the parameter space is entirely
determined by the relation between the first two moments of the summary statistics and
the parameters. This entails that µ̂θ and Σ̂θ are sufficient to define an approximation to
the synthetic likelihood function, which we indicate with p̃SL(s

0|θ) = pSL(s
0|µ̂θ , Σ̂θ).

Notice that this is a global approximation, because it uses all the parameter values and
summary statistics simulated during the MSL run. Assuming that MSL successfully
converged to the vicinity of the mode of the synthetic likelihood, most of the parameter
values simulated by MSL will be located around this mode. Hence, we can expect
p̃SL(s

0|θ) to be a more accurate approximation to pSL(s
0|θ) close its mode, than in

its tails.
Before explaining how p̃SL(s

0|θ) can be exploited, we detail how we approximate
µθ and Σθ. For the mean vector, we use additive models of the form

E(Sj |θ) = µj +
∑

k

αjkθk +
∑

k

βjkθ
2
k +

∑

k

fjk(θk) +
∑

k<l

γjklθkθl, (4.14)

where j = 1, . . . , d and k, l = 1, . . . , p, while fjk(·) are are unknown smooth function,
with unknown degree of smoothness. In particular, they are represented by penalized
regression splines, as described by Wood (2006). The advantage of this approach is that
model (4.14) can be fitted to very large datasets, using the parallelization techniques
described in Wood et al. (2015). This is very important in the current context, because
M is generally fairly large and model (4.14) has to be fitted to each of the d summary
statistics. In addition, the smoothness of fjk(·) is estimated using the computationally
efficient techniques described in Wood et al. (2015). Most importantly, all of the above
is implemented by the mgcv R package (Wood, 2001). Having modelled µθ, it is still
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necessary to choose how to model Σθ. For the sake of simplicity, we propose to use
model (4.4) for the marginal variances, while keeping the correlation structure constant,
as done in Algorithm 2.

After µθ and Σθ have been estimated, the approximate synthetic likelihood func-
tion, p̃SL(s

0|θ), is fully defined. p̃SL(s
0|θ) can be considered to be a likelihood to all

effects, with the key advantage that evaluating it at any location, θ, does not require
any additional simulation. Hence, p̃SL(s

0|θ) can be exploited in a number of ways.
For instance, it can be maximized wrt θ, using a standard deterministic optimizer, to
obtain Maximum Synthetic Likelihood estimates, which might be more accurate than
those obtained by MSL. In the following we illustrate how p̃SL(s

0|θ) can be used to
obtain approximate synthetic likelihood profiles.

To provide a simple example, we consider the α-stable distribution of Section 4.4.2.
We fit a dataset, simulated using the same parameter values as in Section 4.4.2, using
MSL. In particular, we use 103 simulated statistics vector per step, 100 optimization
steps and the same 15 summary statistics as in Section 4.4.2. All the 105 statistics and
parameter vectors simulated by MSL were stored. Of these, only those simulated after
the 70th MSL iteration were used to fit models (4.14) and (4.4). Early iterations were
discarded to reduce the computational cost of fitting model (4.14).

The black lines in Figure 4-7 represent likelihood profiles for each of the parameters,
obtained using the p̃SL(s

0|θ). Hence, computing these curves did not require any
additional simulation. In constrast, computing these profiles, using MSL alone, is
extremely expensive. For example, the grey crosses in Figure 4-7 have been obtained
using MSL, without using p̃SL(s

0|θ). Each single estimate requires fixing the value of
the parameter being profiled, and running MSL to estimate the remaining parameters.
Using p̃SL(s

0|θ) is much cheaper computationally and leads to likelihood profiles that
are remarkably accurate in this example.

4.6 Conclusions

In this chapter we showed how the relation between first two moments of the sum-
mary statistics and model parameters can be approximated, using local regressions.
We explained how these local regressions can be exploited by two algorithms, MSL
and CUGMM, with the aim of producing computationally cheap parameter estimates.
Further, we argued that, under CUGMM, the covariance of the summary statistics can
be considered to be constant, without compromizing the optimization procedure.

In Section 4.4 we demonstrated that MSL and CUGMM outperform SLMH, in
terms of MSE reduction as a function of the number of simulations, using three simple
examples. Even though CUGMM performed slightly better than MSL in the α-stable
example, a more thorough comparison between these two methods is needed. In addi-
tion, in Section 4.4 we have evaluated MSL, CUGMM and SLMH in terms of the point
estimates they produce. However, all these methods provide also estimates of parame-
ter uncertainty. Hence, it would be useful to verify the accuracy of these estimates, for
example in terms of interval coverage.
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Figure 4-7: Likelihood profiles for each parameter of the α-stable distribution, using p̃SL(s
0|θ).

The grey crosses correspond to profiles obtained by re-running MSL for each value of the pa-
rameter being profiled. The vertical lines correspond to the true parameter values.
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CHAPTER 5

AN EMPIRICAL SADDLEPOINT APPROXIMATION FOR

INTRACTABLE LIKELIHOODS

An important advantage of SL is that it requires less tuning than some alternative
approaches, such as ABC methods. However, SL relies on the assumption that the
summary statistics are approximately normally distributed. In this chapter we relax
this assumption by proposing a novel flexible density estimator: the Extended Empiri-
cal Saddlepoint approximation. By illustrating its performance through two examples,
we show that this estimator is able to capture large departure from normality, while
being scalable to high dimensions.

5.1 Introduction

SL, as described by (Wood, 2010), uses a multivariate Gaussian density to approximate
the distribution of the summary statistics. Under this distributional assumption, a
pointwise estimate of the synthetic likelihood at θ can be obtained using Algorithm
3. This procedure has already been described in previous chapters, but we report it
also here for ease of reference. As discussed in Chapters 2 and 3, one advantage of

Algorithm 3 Estimating pSL(s
0|θ)

1: Simulate datasets Yi, . . . ,Ym from the model p(y|θ).
2: Transform each dataset Yi to a vector of summary statistics Si = S(Yi).
3: Calculate sample mean µ̂θ and covariance Σ̂θ of the simulated statistics, possibly

robustly.
4: Estimate the synthetic likelihood

p̂SL(s
0|θ) = (2π)−

d
2 |Σ̂θ|−

1
2 exp

{

− 1

2
(s0 − µ̂θ)

T Σ̂−1
θ (s0 − µ̂θ)

}

,

where d is the number of summary statistics used.

SL, over most ABC methods, is that it does not require the user to choose a tolerance
or an acceptance threshold and that the summary statistics are scaled automatically
and dynamically by Σ̂θ. In addition, Blum (2010) showed that the convergence rate
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of ABC methods degrades rapidly with d. This curse of dimensionality, brought about
by the non-parametric nature of ABC, forces practitioners to use dimension reduction
or statistics selection techniques, such as those described by Blum et al. (2013). SL
is less sensitive to the number of statistics used, due to the parametric likelihood
approximation.

We were led to propose saddlepoint approximations, among other multivariate den-
sity estimators, as a promising alternative to the Gaussian approximation, by the fol-
lowing considerations. In a multivariate setting the choice of density estimators is quite
restricted. Indeed, non-parametric (kernel) estimators typically have convergence rates
that are prohibitively low, even in moderate dimensions. For instance, multivariate

kernel estimators typically converge at rate O(n−
2

4+d ) (Scott, 2009). In contrast, Em-

pirical Saddlepoint approximations converge at the parametric rate O(n−
1
2 ), regardless

of d. In addition, while saddlepoint approximations are derived from asymptotic expan-
sions, they are often very accurate even in small samples and, in contrast to Edgeworth
approximations, they are strictly positive and do not show polynomial-like waves in
the tails. Further, their empirical version provides a close approximation to the density
of widely used statistics, such as M - (Ronchetti and Welsh, 1994) and L-estimators
(Easton and Ronchetti, 1986).

The above properties of SL are not without cost. In fact, although the Central
Limit Theorem assures asymptotic normality of many classes of statistics, improving
the quality of the normal approximation is not easy in a multivariate setting. Finding a
suitable normalizing transformation is particularly challenging in this context, because
such transformation would need to ensure approximate normality across the parameter
space. This motivates the main contribution of this work: we relax the multivariate
normality assumption, while maintaining the ease-of-use and scalability of SL. We
achieve this by proposing a flexible density estimator, namely an Extended Empirical
Saddlepoint approximation.

5.2 Saddlepoint approximations

The following discussion is valid beyond the context of SL, hence we temporarily sup-
press the dependencies on θ. We restore them in Section 5.4, which describes how the
proposed density estimator can be used within SL.

Saddlepoint expansions were introduced into the statistical literature by Daniels
(1954) and can be used to approximate the density function of a random variable,
starting from its moment or cumulant generating function. When S is a continuous
random vector its probability density function, p(s), is associated with the moment
generating function

M(λ) = E(eλ
TS) =

∫ +∞

−∞
eλ

T s p(s) ds,

while the cumulant generating function is defined as K(λ) = logM(λ). In the following
we assume thatM(λ) exists for λ ∈ I, where I is a nonvanishing subset of Rd containing
the origin. If S is a discrete random vector, the generating functions are obtained by
substituting the integrals with summations over the support of S.

Saddlepoint approximations rely on the one-to-one correspondence between the cu-
mulant generating function and the probability density function of S. For a continuous
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S, the saddlepoint density is

p̂(s) =
1

(2π)
d
2 |K ′′(λ̂)| 12

eK(λ̂)−λ̂T s ,

where λ̂ is such that
K ′(λ̂) = s. (5.1)

Condition (5.1) is often called the saddlepoint equation. The saddlepoint density is
defined only on the interior JVs

of the support Vs of the original density p(s). Another
important property of p̂(s) is that it is generally improper. A proper density can be
obtained through normalization

p̄(s) =
p̂(s)

∫

JVs
p̂(s)d s

.

For a discrete S analogous results hold and p̄(s) should be interpreted as an approxi-
mation to pr(S = s). For a comprehensive introduction to saddlepoint approximations,
see Butler (2007).

5.2.1 Empirical Saddlepoint approximation

Suppose that the analytic form of K(λ) is unknown, as it generally is for simulation-
based methods such as SL. If we can simulate from p(s), then it is possible to estimate
K(λ) using the estimator proposed by Davison and Hinkley (1988)

K̂m(λ) = log M̂m(λ) = log

(

1

m

m
∑

i=1

eλ
T si

)

, (5.2)

where m is the number of simulations used. Derivatives estimates of K̂(λ) are

K̂ ′
m(λ) =

∑m
i=1 e

λT sisi
∑m

i=1 e
λT si

, K̂ ′′
m(λ) =

∑m
i=1 e

λT sisis
T
i

∑m
i=1 e

λT si
− K̂ ′

m(λ)K̂ ′
m(λ)T .

These can be used to obtain an Empirical Saddlepoint approximation

p̂m(s) =
1

(2π)
d
2 |K̂ ′′

m(λ̂m)| 12
eK̂m(λ̂m)−λ̂Tms, (5.3)

where λ̂m is the solution of
K̂ ′

m(λ̂m) = s. (5.4)

Notice that K̂ ′(λ̂) is a convex combination of the simulated vectors si, hence (5.4) has
no solution if s falls outside the convex hull of the sis. This limitation is addressed in
Section 5.3.

Feuerverger (1989) provides asymptotic results regarding how well p̂m(s) approxi-
mates p̂(s) in a univariate setting. In Appendix D.1 we show how these carry over to
the current multivariate setting. In particular, p̂m(s) converges to p̂(s) at parametric
rate O(m−1/2) for λ ∈ I/2, where I/2 is the subset of I such that λ ∈ I/2 if 2λ ∈ I,
while the convergence is slower outside this region. Regardless of the distribution of S,
s = µ = E(S) corresponds to λ = 0 ∈ I/2, hence it might be advantageous to think
of K ′(I/2) as a region approximately centred around µ. In Section 5.3 we build upon
this interpretation.
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5.3 Extended Empirical Saddlepoint approximation

The aim of this work is to use the flexibility of the Empirical Saddlepoint approximation
to estimate densities for which the normal approximation is poor. The asymptotic re-
sults of Feuerverger (1989) suggest that the saddlepoint approximation should perform
reasonably well in the central part of the distribution, while its accuracy decreases in
the tails. More importantly, as stated in Section 5.2.1, the empirical saddlepoint equa-
tion (5.4) has a solution only if s lies inside the convex hull of the simulated data, so the
resulting Empirical Saddlepoint density is not defined outside this subset of Rd. This
is problematic in the context of SL because, whether we wish to estimate the unknown
parameters by Maximum Likelihood or Markov Chain Monte Carlo, we cannot gener-
ally expect s0 to fall inside the convex hull of the simulated statistics in early iterations.
In addition, if the model of interest is unable to generate summary statistics that are
close to the observed ones, its inadequacy should ideally be quantified by a low, rather
than an undefined, value of the synthetic likelihood. Hence, we need a remedy that
allows us to solve (5.4) for any s = s0.

To motivate our solution, notice that solving (5.4) is equivalent to minimizing

{K̂(λ)− λTs}2,
which would be guaranteed to have a unique minimum, if strong convexity held. That
is, if

∃ ǫ ∈ R+ such that zT K̂ ′′(λ)z > ǫ||z||2, ∀ λ,z ∈ Rd such that ||z|| > 0, (5.5)

then (5.4) could be solved for any s. Unfortunately, the following proposition states
that this in not the case.

Proposition 5.1. K̂(λ) is strictly, but not strongly, convex.

Proof. See Appendix D.2.

However, the fact that K̂(λ) is strictly convex assures that tilting this estimator
with a strongly convex function will produce a modified estimator that is strongly
convex itself, so that (5.4) could be solved for any s. Therefore, we propose to use a
modified estimator

K̂m(λ, γ, s) = g(s, γ)K̂m(λ) + {1− g(s, γ)}Ĝm(λ), (5.6)

where Ĝm(λ) is a strongly convex function, while g(s, γ) is a function of s, parametrized
by γ, which determines the mix between the two functions. Furthermore, we require

g(s, γ) : Rd → [0, 1], lim
||s−µ̂||→∞

g(s, γ) = 0. (5.7)

A natural choice for Ĝm(λ) is the parametric estimator of K(λ)

Ĝm(λ) = λT µ̂+
1

2
λT Σ̂λ, (5.8)

which is unbiased and consistent for multivariate normal random variables. This solu-
tion is related to that of Wang (1992), who modified the truncated estimator of Easton
and Ronchetti (1986), and to the proposal of Bartolucci (2007), in the context of Em-
pirical Likelihood (Owen, 2001). We refer to the density obtained by using estimator
(5.6) within (5.3) as the Extended Empirical Saddlepoint approximation (ESA). In
Section 5.3.1 we propose a particular form for g(s, γ).

77



Chapter 5. An Empirical Saddlepoint Approximation for Intractable Likelihoods

5.3.1 Choice of mixture function g(s, γ)

In the following we base our choice of g(s, γ) on the relative MSE performance of
estimators (5.2) and (5.8), under normality of S. Firstly notice that, irrespective of

the distribution of S, M̂ (λ) is unbiased. If S is normally distributed, eλ
TS follows a

log-normal distribution and

M(λ) = eµ+ 1
2
λTΣλ, var

{

M̂(λ)
}

=
1

m

(

eλ
T
Σλ − 1

)

e2µ+λTΣλ,

with the saddlepoint equation (5.1) being solved by

λ̂ = Σ−1(s− µ). (5.9)

In order to approximate the MSE of (5.2) as a function of λ, we firstly approximate
its expected value by Taylor expansion around M(λ)

E
{

K̂(λ)
}

= E

[

logM(λ) + 1
M(λ)

{

M̂(λ)−M(λ)
}

− 1
2M(λ)2

{

M̂(λ)−M(λ)
}2

+ · · ·
]

= logM(λ)− 1
2M(λ)2

var
{

M̂ (λ)
}

+O(m−2).

Similarly we have that

E
{

K̂(λ)2
}

= E

[

{

logM(λ)
}2

+ 2 log{M(λ)}
M(λ)

{

M̂(λ)−M(λ)
}

+

{

1
M(λ)2

− logM(λ)
M(λ)2

}

{

M̂(λ)−M(λ)
}2

+ · · ·
]

=
{

logM(λ)
}2

+

{

1
M(λ)2

− logM(λ)
M(λ)2

}

var
{

M̂(λ)
}

+O(m−2),

hence

var{K̂(λ)} = E
{

K̂(λ)2
}

− E
{

K̂(λ)
}2

= 1
M(λ)2

var
{

M̂(λ)
}

− 1
4M(λ)4

[

var
{

M̂(λ)
}

]2

+O(m−2).

Finally

MSE{K̂(λ)} = Bias{K̂(λ)}2 + var{K̂(λ)}

= 1
M(λ)2

var
{

M̂(λ)
}

+O(m−2)

= 1
m

(

eλ
TΣλ − 1

)

+O(m−2)

= 1
m

{

e(s−µ)TΣ−1(s−µ) − 1
}

+O(m−2),

(5.10)

where the last equality holds due to (5.9). The O(m−2) term in (5.10) derives from

E

[{

M̂(λ)−M(λ)

}3]

= E

[{

1
m

∑m
i=1 e

λTSi − E(eλ
TS)

}3]

= 1
m3

∑m
i=1E

[

{

eλ
TSi − E(eλ

T S)
}3

]

= 1
m2µ3

(

eλ
TS

)

,
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where µ3(X) is the third central moment of a random variable X and the second
equality is justified by independence.

Estimator (5.8) is unbiased and consistent, if S is normally distributed, hence

MSE{Ĝm(λ)} = var{Ĝm(λ)} = λTvar(µ̂)λ+
1

4
var

(

λT Σ̂λ

)

,

due to the independence between µ̂ and Σ̂ for normally distributed random variables
(Basu’s theorem). In addition, as m goes to infinity we have, from Rencher and Chris-
tensen (2012), that

(m− 1)Σ̂ =
m
∑

i=1

(Si − µ̂)(Si − µ̂)T →W , where W ∼ Wishart(Σ,m− 1),

and from Rao (2009)

λTWλ ∼ τ2Q, where τ2 = λTΣλ and Q ∼ χ2
m−1,

hence, by using (5.9), we obtain

mMSE{Ĝm(λ)} → λ̂TΣλ̂+ m
2(m−1)(λ̂

TΣλ̂)2

→ λ̂TΣλ̂
(

1 + 1
2 λ̂

TΣλ̂
)

= (s− µ)TΣ−1(s− µ)
{

1 + 1
2 (s− µ)TΣ−1(s− µ)

}

.

Having derived approximations to the MSEs of (5.2) and (5.8), we propose to base
the choice of mixture function on their relative sizes

g(s, γ) =

[

(s− µ̂)T Σ̂−1(s− µ̂)
{

1 + 1
2 (s− µ̂)T Σ̂−1(s− µ̂)

}

+ 1

exp
{

(s− µ̂)T Σ̂−1(s− µ̂)
}

]γ

with γ > 0.

(5.11)
Here γ is a tuning parameter, which determines the rate at which g(s, γ) varies from
1 to 0 as the distance between s and µ̂ increases. Function (5.11) fulfils requirement
(5.7).

Our choice (5.11) has two main shortcomings: it is based on a normality assumption
for S and, most importantly, it does not take the sample size m into account. In regard
to the former issue: using higher moments of the simulated statistics to determine (5.11)
might be attractive, but our experience suggests that this would result in very unstable
estimates. In Section 5.3.2 we describe a selection procedure for γ which addresses the
second problem.

5.3.2 Selecting γ by cross-validation

The choice of γ is critical for the performance of our method, and at first sight it not
clear on what principle this choice should be based. We interpret γ as a complexity-
controlling parameter, which determines the balance between two density estimators:
the empirical saddlepoint, which is characterized by higher flexibility and variance, and

79



Chapter 5. An Empirical Saddlepoint Approximation for Intractable Likelihoods

Algorithm 4 Cross-validation with nested normalization

1: Create a grid of possible values of γ.
2: Simulate m random vectors S1, . . . ,Sm from the true density p(s).
3: For each γi

· Estimate the normalizing constant of p̂m(s, γi) by importance sampling, that
is

p̄m(s, γi) =
p̂m(s, γi)

ẑm(γi)
.

where

ẑm(γi) =
1

l

l
∑

i=1

p̂m(Si)

q(Si)
, Si ∼ q(s), for i = 1, . . . , l.

A reasonably efficient importance density q(s) can be obtained by fitting a
multivariate normal density to S1, . . . ,Sm.

· For each of the k folds

· Calculate the negative log-likelihood of the validation data using
p̄m(s, γi) fitted to the training data.

4: Select the value γi that minimizes the negative validation log-likelihood, averaged
across the K folds.

the normal distribution, which generally has higher bias, but lower variance. Hence,
we propose to select γ by k-fold cross-validation, as detailed in the Algorithm 4.

In Appendix D.3 we show that, as m and l → ∞, Algorithm 4 consistently selects
the value of γ which minimizes the Kullback-Leibler divergence between p̄(s, γ) and
p(s). Saddlepoint approximations are exact for Gaussian densities (Butler, 2007), hence
the Gaussian case is recovered as γ → ∞.

5.4 Use within Synthetic Likelihood

This section describes how the proposed density estimator can be used within the
context of SL. To obtain an initial estimate, θI , of the unknown parameters it is
reasonable to maximize the synthetic likelihood based on the Gaussian approximation,
which is less computationally expensive. Then γ can be selected using Algorithm 4,
with p(s) = p(s|θI). Given γ, pointwise estimates of the synthetic likelihood can be
based on the new density estimator by using a procedure analogous to Algorithm 3,
which we describe in Appendix D.6.1.

Assuming that m, the number of summary statistics simulated from p(s|θ), is much
larger than d, the cost of evaluating the Gaussian synthetic likelihood is O(md2), which
is the cost of obtaining Σ̂θ. Calculating K̂

′′(λ) has the same complexity, but solving the
empirical saddlepoint equation (5.4) numerically implies that K̂ ′′(λ) will be evaluated
at several values of λ. The proposal described in Section 5.3 assures that the underlying
root finding problem is strongly convex, hence few iterations of a Newton-Raphson
algorithm are generally sufficient to solve (5.4) with high accuracy. The computational
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cost of a synthetic likelihood estimate is then O(lmd2), if the normalizing constant is
estimated using l importance samples.

Choosingm and l involves trading off the accuracy of the density estimator with the
computational effort. The solution to this problem depends on the inferential approach
followed. If the pointwise estimates of pSL(s

0|θ) are used within a Metropolis Hastings
algorithm, than the theoretically motivated guidelines provided by Doucet et al. (2012)
should be applicable. Under the Gaussian version of SL, Meeds and Welling (2014)
choose m adaptively by modelling the distribution of the acceptance ratio. It might
be possible to devise a similar approach to selecting m and l under the new density
estimator. We are not aware of analogous results in the context of maximizing noisy
likelihood functions, which is the approach we follow in Section 5.5 and 5.6. Our
experience suggests that the choice of m and l is not critically important, provided
that a robust stochastic optimizer is used and that convergence is assessed, possibly by
running parallel optimizations.

Let θ0 be the true parameter vector. In the following we prove that maximizing the
synthetic likelihood leads to consistent parameter estimates, under either the Gaussian
or the new density estimator. We start by making the following assumptions.

Assumption 5.2. The summary statistics depend on a set of underlying observations
Y1, . . . ,Yn, and have mean and covariance matrix

µn
θ = E(Sn|θ), Σn

θ = E
{

(Sn − µn
θ)(Sn − µn

θ)
T |θ

}

.

where Sn = S(Y1, . . . ,Yn). In addition there exists δ > 0 such that, for any θ

lim
n→∞

µn
θ = µθ and lim

n→∞
nδΣn

θ = Σθ.

Assumption 5.3. µθ = µ(θ) is one to one.

Theorem 5.4. If Assumption 5.2 and 5.3 hold, the synthetic likelihood, p̂SL(s
0|θ),

based on the Gaussian density is asymptotically maximal at θ0, as m, l, and n→ ∞.

Proof 5.5. See Appendix D.4.

To prove consistency under the new density estimator, we make an additional as-
sumption.

Assumption 5.6. For every n, the moment generating function of Sn exists for λ ∈ I,
where I is a nonvanishing subset of Rd containing the origin.

Assumption 5.7. Let γ̂nθI be the output of Algorithm 4, corresponding to simulation
effort m, l and sample size n. As m, l and n → ∞, γ̂nθI converges to γθI > 0, for any
initialization θI .

Theorem 5.8. Under Assumptions 5.2-5.7, the synthetic likelihood, p̂SL(s
0|θ), based

on the ESA density is asymptotically maximal at θ0, as m, l and n→ ∞.

Proof 5.9. See Appendix D.5.

In Section 5.5 we illustrate the performance of ESA on a simple example, while in
Section 5.6 we use it to fit a complex ecological model.
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Figure 5-1: a: Curves from 10-fold cross-validation, the black line is their average. b: True
Exp(1) density (black), ESA (dashed) and normal (dotted) approximation.

5.5 Multivariate shifted exponential distribution

Consider a d-dimensional random vector X, where each marginal follows a shifted
exponential distribution

Xk ∼ θk + Exp(β), for k = 1, . . . , d. (5.12)

The plot in Figure 5-1a contains the results of a 10-fold cross-validation run, obtained
using d = 10, l = 103, m = 104, β = 0.5 and θ1 = · · · = θd = 0. The cross-validation
curve is minimized by γ = 5 × 10−3, and the plot in Figure 5-1b shows the true and
approximate marginal densities of one component Xk. The ESA approximation to the
marginal, obtained by marginalizing the d-dimensional fit, is clearly more accurate than
a normal density.

To demonstrate the usefulness of ESA in the context of SL, we use it to estimate
the shifts θ1, . . . , θd, all of which have been fixed to 1. In particular, we choose s0 = x,
where a single vector x has been simulated from (5.12), and we maximize the resulting
synthetic likelihood, using either the Gaussian or the new density estimator. Notice
that if we take x, the true Maximum Likelihood Estimate, as the reference point
estimate, the bias of the Gaussian estimates is 1/β. By averaging the squared errors
across the 10 dimensions, we obtain MSEs equal to 3.8 and 0.56, using the normal
and the ESA approximation respectively. In an analogous 20-dimensional run, using
m = 5×104, the MSE was reduced from 4.1 to 1.26. P-values from t-test for differences
in log-absolute errors were around 10−6 in both runs.

5.6 Formind forest model

5.6.1 The model

To test our proposal in a realistic setting, we consider Formind, an individual-based
model describing the main natural processes driving forests dynamics. Here we describe
its basic features, while we refer to Hartig et al. (2014) for further details.
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Figure 5-2: Simulated total basal area of pioneers (brown) and late successionals (grey).

The model describes the growth and population dynamics of tree individuals in a
simulation area that is divided in 20×20m patches, with individual trees being assigned
explicitly to one patch. Tree species with similar characteristics are grouped into Plant
Functional Types (PFTs). A constant input of seeds deposits on average sj seeds of the
j-th PFT per hectare per year. The main factor determining both seed establishment
and growth is the light climate in the patch. For example, pioneer types will establish
only in patches relatively free of overshadowing trees, while late successional trees are
able to grow below a dense canopy. Trees are subject to a baseline mortality rates mj ,
which is specific to each PFT.

Figure 5-2 represents a typical model output. The two curves represent the dynam-
ics of the median and 90% quantiles of the total basal area of stems on one hectare

bj =

Nj
∑

k=1

2πd2jk, Nj = number of trees in the j-th PFT,

of pioneers (brown) and late successionals (grey), obtained using 100 model runs. In
the first years of simulation pioneer overgrow late successional trees, due to their higher
growth rate and to the favourable light conditions. As time passes late successionals
keep growing below the canopy, while pioneers are affected by higher baseline mor-
tality rate and their seedlings struggle to establish in the shade. Finally, a dynamic
equilibrium is reached, where both PFTs coexist.

In the context of Formind, the need for approximate simulation-based methods
comes from the complexity of this model. Indeed, Formind was developed with a focus
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Parameter True Value Normal ESA Scale P-value

µpio 5 4.7 (1.4) 5.4 (0.7) 10−2 0.002

µsuc 5 9.3 (6.5) 6.1 (1.6) 10−3 0.003

spio 80 108.4 (41.1) 91.6 (26.2) 1 0.07

ssuc 20 31.6 (15.7) 23.2 (4.7) 1 0.003

Table 5.1: The first three columns contain true parameters, means and Root MSEs (in paren-
theses) of the estimates obtained using the normal and the ESA estimator. These values should
be scaled using the factors contained in the fourth column. P-values for differences in log-
absolute errors have been calculated using t-tests.

on ecological plausibility, rather than statistical tractability, and most of its submod-
els describe highly non-linear biological processes, containing one or more sources of
randomness. Most importantly, the raw output of Formind is the collection of all the
characteristics of individual trees in the simulations area, which obviously do not cor-
respond to individuals present in the actual survey data. Hence, it is necessary to work
with summary statistics.

5.6.2 Simulation Results

We consider two PFTs, pioneer and late successional, and we reduce the model output
to 6 summary statistics. In particular, to verify whether then new density estimator can
deal with large departures from normality, we used the following transformed statistics

Sjk = α

Cjk−ψjk
σjk

jk , for j ∈ {1, 2}, k ∈ {1, 2, 3},

where Cjk is the number of trees of the j-th PFT falling in the k-th diameter class,
while αjk, ψjk, and σjk are constants, whose values are reported in Appendix D.6.3.
The diameter categories used for each PFT correspond to trees with small, medium or
large diameters.

We simulated 24 datasets from the model and estimated the baseline mortality rates
and seed input intensities of the two PFTs by maximizing the synthetic likelihood, using
both the normal and the ESA approximations. In both cases, we used l = 103 and m =
104 simulated summary statistics. When the ESA was used, γ was fixed to 5.5× 10−3,
chosen using Algorithm 4. Table 5.1 reports the true parameters, together with the
means and Root MSEs of the estimates, from the normal or the ESA approximations.
See Appendix D.6.2 and D.6.3 for more details about the optimization setting.

Using the ESA, rather than the normal approximation, leads to lower MSEs for
all model parameters. The plots in Figure 5-3 compare the marginal distributions of
the summary statistics, simulated from the model using the true parameter values,
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Figure 5-3: Marginal distributions of summary statistics corresponding to small, medium and
large pioneers (a, b, c) and successionals (d, e, f).

with those obtained by simulating random vectors from ESA, fitted to the simulated
statistics using the same values of γ and m used during the optimization. ESA gives
a good fit to the marginal distributions of the summary statistics, all of which are far
from normal.

5.7 Conclusions

We described a flexible density estimator and we illustrated its use in the context
of models with intractable likelihoods. We have shown that ESA scales well with
the number of dimensions and that it is able to model densities for which a normal
approximation is clearly inadequate.

The proposed density estimator requires little tuning, because its only parameter, γ,
can be selected using standard statistical tools, such as cross-validation. In the context
of SL, and of approximate methods in general, this is an important feature, since it
allows practitioners to focus on identifying informative summary statistics, rather than
on other aspects of the inferential procedure. An alternative approach would be to
select γ by optimizing the accuracy of the resulting parameter estimates, instead of
the predictive performance of the density estimator. In this work we have not followed
this approach, because a naive implementation of this idea would be computationally
expensive for any fairly complex model.

From a practical point of view, the computational efficiency of SL, relatively to
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ABC methods, is of critical importance. Indeed, producing pointwise estimates of the
synthetic likelihood might seem unnecessarily expensive, if the aim is obtaining an ap-
proximate sample from p(θ|s0). On the other hand, while ABC methods target an
approximation to p(θ|s0) directly, their accuracy is inversely proportional to the ac-
ceptance rate of the sampler. Gutmann and Corander (2015), Wilkinson (2014) and
Meeds and Welling (2014) proposed using Gaussian Processes to increase the compu-
tational efficiency of SL and ABC methods. The first two proposals, being based on
pointwise likelihood estimates, could be used in conjunction with ESA. The MSL al-
gorithm, described in Chapter 4, and the proposal of Meeds and Welling (2014) model
only the first two moments of the simulated statistics, hence it is not clear whether
either approach could be modified to take higher moments into account, as the new
density estimator does.

In this chapter we do not make any distributional assumption on the summary
statistics, apart from (5.6), and we present ESA as a non-parametric density estima-
tor, as suggested by Feuerverger (1989). However, previous contributions in the liter-
ature consider the use of Empirical Saddlepoint approximations for particular classes
of statistics such as M-estimators (Monti and Ronchetti, 1993; Ronchetti and Welsh,
1994) and L-statistics (Easton and Ronchetti, 1986). It would be interesting to study
the asymptotic performance of ESA for such statistics.
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CHAPTER 6

CONCLUSIONS AND FURTHER WORK

In Chapter 2 we illustrated some of the difficulties that might be encountered when
working with highly non-linear ecological and epidemiological State Space Models
(SSMs). In particular, we showed that the likelihood function can be highly multi-
modal when the dynamics are far from stable and the process noise is low. Through
simulated experiments, we demonstrated that approaches based on information reduc-
tion, such as SL and ABC, can deal with this issue better than methods based on
particle filtering, such as PMMH and IF. In particular, we illustrated that, by us-
ing summary statistics that discard the phase of the systems, SL can provided stable
synthetic likelihood estimates, even when the SIR’s likelihood estimates are extremely
noisy. However, this robustness does not come without cost. When the process noise is
sufficient to smooth out the likelihood function, PMMH and IF consistently outperform
ABC and SL in terms of accuracy in parameter estimation.

In Chapter 3 we continued the comparison work started in Chapter 2, by restricting
our attention to SLMH and PMMH and by considering more realistic examples. When
simulated data was used, the results of this chapter confirmed, though less dramati-
cally than in Chapter 2, that full likelihood methods are generally more accurate than
methods based on information reduction. However, new aspects of the robustness of
information reduction methods were highlighted. In particular, the blowfly example
(Section 3.2) clearly showed that SLMH is much more robust to bad initializations that
PMMH, even when simulated data is used. When Nicholson’s experimental datasets
were used to fit the model, this example also showed that information reduction meth-
ods can be more robust than particle filters to model mis-specification and outliers.
In particular, PMMH failed to classify the system’s dynamics as cyclic on two of the
datasets, which is attributable to the model’s failure to explain few idiosyncracies of
these datasets. PMMH’s estimates seemed to be slightly biased toward stable dynamics
also in the voles example (Section 3.4), when real data was used to fit the model.

Overall, the results obtained in Chapter 2 and 3 suggest that information reduction
and state space methods should be used in conjunction, even when working with highly
non-linear SSMs meant to reproduce the full data. In particular, information reduction
methods can be used in support of state space methods, by providing initial parameter
estimates and a robust benchmark, when model mis-specification and outliers might be
present. Future work might be aimed at verifying, possibly theoretically, whether ABC
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and SL share some of the robustness properties of other, more traditional, methods
based on summary statistics, such as those described in Jiang et al. (2004).

In Chapter 4 we described how the synthetic likelihood can be maximized efficiently,
by using local linear models and GLMs to describe how the first two moments of the
summary statistics vary with the parameters. We also described how the resulting
algorithm, MSL, is closely related to another approach, CUGMM, which can produce
parameter estimates by employing the same local models. Both MSL and CUGMM
outperformed SLMH in all the examples considered in Chapter 4, in terms of rapidity
of MSE reduction as a function of the number of simulated statistics. Further, we
showed that the CUGMM estimator has two important properties. First, the parameter
estimates are asymptotically normal, which is not the case for MSL (Wood, 2010).
Second, the derivatives of Σθ with respect to the θ are not needed to compute the
asymptotic covariance of θ̂ and they are not essential to minimize CUGMM’s objective
function, provided that the optimizer’s initialization is close enough to a local minimum.
This property seems to be very important from a practical point of view, because
modelling the covariance matrix of the statistics is challenging. The main issue is that
any model for Σθ needs to preserve its positive definiteness. In MSL, we dealt with
this requirement by modelling only the marginal variances of the statistics using GLMs,
while considering the correlation structure constant. Given that MLS and CUGMM
performed similarly in the examples described in Chapter 4, further comparison work is
needed. In particular, it is possible that, from a practical point of view, CUGMM should
generally be preferred, due to its lower computational costs and to the asymptotic
normality of its parameter estimates. A promising direction for future research would
be to use the derivatives estimates produced by the Algorithm 2 to create an adaptive
transition kernel for SLMH. In particular, it should be possible to set up a version of
the Riemannian Metropolis Adjusted Langevin Algorithm of Girolami and Calderhead
(2011), which uses the estimated derivatives to adapt to the local geometrical structure
of the synthetic likelihood.

In Chapter 5 we described a new density estimator, ESA, and we described how it
can be used within the context of SL, in place of a Gaussian density. Through simulated
experiments, we demonstrated that ESA scales well with the number of statistics, while
being able to capture sizeable departures from normality. Probably the main drawback
of ESA is that it is unnormalized. While we proposed to estimate its normalizing
constant by Importance Sampling, more efficient approaches should be possible. For
instance, it would be interesting to verify whether control variates could be used to
estimate the normalizing constant more accurately. In particular, Mira et al. (2013)
proposed a variance reduction scheme which uses control variates that are functions of
the gradient of the target density. Given that the gradient of ESA can be calculated
analytically, this approach might be directly applicable.
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APPENDIX A

DETAILS OF THE COMPARISON ON SIMPLE CHAOTIC

MAPS

A.1 Discretized SSM

The likelihood of a simple SSM can be written in the following form

p(y1:T |θ) = p(y1|θ)
T
∏

t=2

p(yt|y1:t−1,θ),

and, if m is the number of discrete levels of the hidden state, then

p(y1|θ) =
m
∑

i=1

p(y1|ni
1,θ)p(n

i
1|θ),

and

p(yt|y1:t−1,θ) =

m
∑

i=1

p(yt|ni
t,θ)p(n

i
t|y1:t−1,θ)

=

m
∑

i=1

p(yt|ni
t,θ)

m
∑

j=1

p(ni
t|nj

t−1,θ)p(n
j
t−1|y1:t−1,θ),

where

p(nj
t−1|y1:t−1,θ) =

∑m
k=1 p(y1:t−1,n

j
t−1,n

k
t−2|θ)

p(y1:t−1|θ)

= p(yt−1|nj
t−1,θ)

m
∑

k=1

p(nj
t−1|nk

t−2,θ)p(n
k
t−2|y1:t−2,θ)

p(y1:t−2|θ)
p(y1:t−1|θ)

= p(yt−1|nj
t−1,θ)

m
∑

k=1

p(nj
t−1|nk

t−2,θ)
p(nk

t−2|y1:t−2,θ)

p(yt−1|y1:t−2,θ)
.

These formulas can be used to calculate the likelihood of a discrete SSM exactly.
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A.2 Computational details

To fit the models described in this work we used the synlik (Fasiolo and Wood, 2014),
EasyABC (Jabot et al., 2013) and pomp (King et al., 2014) R-packages. The first two
provide implementations of SL and ABC respectively, while we used pomp to run the
IF and PMMH algorithms.

The data was simulated using the following parameter values:

• Generalized Ricker: r = 44.7, θ = 1, σ = 0.3, φ = 10.

• Pennycuick: r = 58, a = 0.1, σ = 0.3, φ = 1.

• Maynard-Smith: r = 18, b = 6, σ = 0.4, φ = 24.

• Varley: r = 15, b = 5.5, c = 1, σ = 0.45, φ = 20.

For SL and ABC-MCMC we used the set of 13 summary statistics proposed by
Wood (2010):

• the autocovariances of the path y1:T up to lag 5;

• the mean population ȳ;

• the number of zeros observed;

• the coefficients of the regression

y0.3t+1 = β1y
0.3
t + β2y

0.6
t + zt;

• the coefficients of a cubic regression of the ordered differences yt − yt−1 on their
observed values.

Tables A.1 to A.5 contain the limits of the uniform priors (or box constraints under
IF) and initial values used for each model and parameter.

Initial Lower Upper

r 2.80 2.00 5.00

σ -2.30 -3.00 -0.22

φ 1.79 1.61 3.00

Table A.1: Prior boundaries for Ricker

Tables A.6 to A.11 contain the root median squared errors (MSE) and coverage
frequencies for each parameter of the five models considered, using each method. The
last row indicates which method achieved the lowest mean squared error, for each model
parameter.
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Initial Lower Upper

r 2.80 2.00 5.00

θ 0.41 -0.69 0.41

σ -2.30 -3.00 -0.22

φ 1.79 1.61 3.00

Table A.2: Prior boundaries for Generalized Ricker

Initial Lower Upper

r 3.69 2.50 5.00

a -1.20 -4.61 -0.69

σ -0.69 -3.00 -0.22

Table A.3: Prior boundaries for Pennycuick

Initial Lower Upper

r 2.30 1.50 4.00

b 2.20 0.69 2.30

σ -0.69 -3.00 -0.22

φ 2.64 2.30 3.56

Table A.4: Prior boundaries for Maynard-Smith
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Initial Lower Upper

r 2.30 1.50 4.00

b 2.01 0.69 2.30

C 0.69 -2.30 0.69

σ -1.61 -3.00 -0.22

φ 2.71 2.30 3.40

Table A.5: Prior boundaries for Varley

r σ φ

SLMH 0.11(0.9) 0.34(0.92) 0.05(0.88)

SLMH R 0.12(0.9) 0.34(0.92) 0.05(0.88)

ABC-MCMC 0.14(0.96) 0.2(1) 0.04(1)

IF 0.11(-) 0.28(-) 0.03(-)

PMMH 0.1(1) 0.21(1) 0.02(1)

Best PMMH ABC-MCMC PMMH

Table A.6: RMSEs(coverage) for Ricker
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r θ σ φ

SLMH 0.24(0.92) 0.06(0.98) 0.4(0.86) 0.17(0.96)

SLMH R 0.23(0.96) 0.06(1) 0.41(0.92) 0.17(0.98)

ABC-MCMC 0.16(0.98) 0.04(1) 0.16(1) 0.13(1)

IF 0.13(-) 0.03(-) 0.3(-) 0.1(-)

PMMH 0.12(0.94) 0.03(1) 0.23(0.98) 0.11(0.98)

Best PMMH IF ABC-MCMC IF

Table A.7: RMSEs(coverage) for Generalized Ricker

r a σ

SLMH 0.14(0.9) 0.05(0.94) 0.34(0.98)

SLMH R 0.15(0.9) 0.04(0.94) 0.34(1)

ABC-MCMC 0.14(1) 0.07(1) 0.14(1)

IF 0.11(-) 0.03(-) 0.26(-)

PMMH 0.1(0.92) 0.02(0.98) 0.19(0.92)

Best PMMH PMMH ABC-MCMC

Table A.8: RMSEs(coverage) for Pennycuick
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r b σ φ

SLMH 0.13(0.92) 0.25(1) 0.43(0.88) 0.24(1)

SLMH R 0.13(0.94) 0.2(1) 0.44(0.88) 0.22(1)

ABC-MCMC 0.11(1) 0.25(1) 0.17(1) 0.23(1)

IF 0.12(-) 0.45(-) 0.29(-) 0.48(-)

PMMH 0.09(0.98) 0.13(1) 0.23(0.96) 0.12(1)

Best PMMH PMMH ABC-MCMC PMMH

Table A.9: RMSEs(coverage) for Hassell

r b σ φ

SLMH 0.16(0.9) 0.07(0.88) 0.61(0.78) 0.12(0.94)

SLMH R 0.15(0.96) 0.06(0.9) 0.67(0.92) 0.1(1)

ABC-MCMC 0.19(0.94) 0.06(1) 0.27(1) 0.09(1)

IF 0.11(-) 0.04(-) 0.26(-) 0.06(-)

PMMH 0.09(1) 0.04(1) 0.15(1) 0.05(1)

Best PMMH PMMH PMMH PMMH

Table A.10: RMSEs(coverage) for Maynard-Smith
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r b C σ φ

SLMH 0.16(0.96) 0.07(0.92) 0.16(1) 0.87(0.76) 0.1(0.92)

SLMH R 0.16(0.98) 0.07(0.96) 0.17(1) 0.8(0.88) 0.11(0.94)

ABC-MCMC 0.17(0.98) 0.06(1) 0.17(1) 0.32(1) 0.07(1)

IF 0.1(-) 0.05(-) 0.12(-) 0.34(-) 0.07(-)

PMMH 0.1(0.96) 0.04(0.96) 0.08(1) 0.2(0.94) 0.06(0.96)

Best IF PMMH PMMH PMMH PMMH

Table A.11: RMSEs(coverage) for Varley
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APPENDIX B

DETAILS OF THE REAL DATA EXAMPLES

B.1 Blowfly Model

Assuming that the population abundance n1:T is perfectly observed, the likelihood of
model 3.2 can be estimated as follows. Firstly notice that

p{n(τ+1):T } = p{nT |n1:(T−1)}p{nT−1|n1:(T−2)} · · · p{nτ+1|n1:τ},
= p(nT |nT−1, nT−τ )p(nT−1|nT−2, nT−1−τ ) · · · p(nτ+1|nτ , n1).

where, to simplify the notation, we have dropped the dependence on model parameters.
Then, consider a single likelihood component

p(nt|nt−1, nt−τ ) =

∫

pr(nt − st|nt−1, nt−τ )ps(st|nt−1)dst,

where τ + 1 ≤ t ≤ T , while pr and ps indicate the conditional densities of rt and st,
respectively. This integral can be estimated using

1

M1

M1
∑

i=1

pr(nt − sit|nt−1, nt−τ ),

where sit ∼ ps(st|nt−1). Evaluating each term of the above sum requires solving an
additional integral, in fact

pr(nt − sit|nt−1, nt−τ ) =

∫

pr(nt − sit|nt−1, nt−τ , et)p(et)det,

which can be approximated by

1

M2

M2
∑

j=1

p(nt − sit|nt−1, nt−τ , e
j
t ),

where ejt is a Gamma distributed random variable, with unit mean and variance equal
to σ2p.

To fit this model with SL, we used the set of 16 summary statistics proposed by
Wood (2010):
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Parameter Prior

δ Unif(0.09, 0.4)

P Unif(3, 12)

N0 Unif(150, 800)

σ2p Unif(0.01, 1)

τ Unif(5, 25)

σ2d Unif(0.01, 1)

Table B.1: Priors used for the blowfly model in the simulated setting.

• the autocovariances of the path n1:T up to lag 11;

• the mean population n̄;

• the difference between mean and median population n̄− m̃;

• the number of zeros observed;

• the coefficients of the regression

nt+1 = β1nt + β2n
2
t + β3n

3
t + β4nt−6 + β5n

2
t−6 + zt;

• the coefficients of a cubic regression of the ordered differences nt − nt−1 on their
observed values.

• the number of turning points.

The priors used when fitting the simulated datasets are reported in Table B.1.
Table B.2 reports the priors used when fitting Nicholson’s datasets. Notice that for
τ we have used a non-uniform prior, based on information reported by Gurney et al.
(1980) concerning biologically plausible values of this delay parameter.

B.2 Cholera Model

One thing to notice about model (5.3) is that cholera-related deaths

Dt =
Iotm

γ + δ +m
,

are not offset by an equal number of births in the susceptible compartment St+1. Beside
not making sense biologically, this would introduce a strong feedback mechanism during
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Parameter Prior

δ Unif(0.02, 1)

P Unif(3, 30)

N0 Unif(10, 1000)

σ2p Unif(0.01, 5)

τ Norm(14, 5)

σ2d Unif(0.01, 5)

Table B.2: Priors used for the blowfly model when fitting Nicholson’s datasets.

epidemics. To offset this downward bias on total population, we tilt the number of
births at each step as follows

B∗
t+1 = Bt+1 + D̄∆t

where D̄ is the monthly average of the observed number of deaths during the whole
period and ∆t is the time step used. B∗

t is then used in place of Bt in (5.3). With
this choice the sum of the number individuals in each compartment does not match
the official census, but we have verified that the mismatch is minimal.

Let dt be the number of cholera-related deaths during the t-month, and define

rt = d
1/5
t . For SLMH we used the following set of 26 summary statistics:

• the coefficients (intercept excluded) of the regression

rt = α1 + α2t+

4
∑

i=1

α3isin(ψi2πt) + α4icos(ψi2πt) + zt;

where ψ1 = 0.12, ψ2 = 1, ψ3 = 2, and ψ4 = 3; Let et be the t-residual of such
regression;

• the autocovariances of e1:T at lag 2, 6, and 11;

• the mean d̄ and variance Var(d) of the number of deaths;

• the scaled difference between mean and median number of deaths (d̄− d̃)/Var(d);

• the coefficients of the auto-regression

et+1 = β1et + β2et−2 + β3et−3 + β4et−4 + β10et−10 + zt;

• the coefficients of a cubic regression of the ordered differences et − et−1 on their
observed values;
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Parameter Prior

γ Unif(1, 365)

ǫ Unif(0.1, 60)

c Unif(0, 1)

ρ Unif(1, 60)

m Unif(0, 140)

eβ N(0, 1000)

eβ1 , . . . , eβ6 N(0, 1000)

eω1 , . . . , eω6 N(0, 1000)

σ Unif(0, 1)

τ Unif(0, 1)

Table B.3: Priors used for the the Cholera model.

• the number of turning points in d1:T ;

• the median and inter-quartile range of e1:T .

Table B.3 reports the prior distributions used.
Calculating the AICs reported in the main text was not straightforward, because

the joint posterior distributions of the parameters are far from normal for each model,
hence the posterior mean is inadequate as a point estimate. In addition, for both
SLMH and PMMH the (synthetic) likelihood is estimated with noise, which makes
finding good point estimates more difficult. To work around this issue, for each model
and method, we restricted our attention to parameters corresponding to likelihood
estimates above the 99th quantile and we have re-estimated the likelihood at each
of those parameter values, using a 2 × 104 particles or simulations from the model.
Given that these estimates had very low noise, we have used the parameter vector
corresponding to highest likelihood estimate as a proxy for the MLE. Finally, we re-
estimated the likelihood at the MLE using 5× 104 simulations, and we have used it to
estimate the AIC.

B.3 Voles model

For SLMH we used the following set of 17 summary statistics:

• autocovariances of n1, . . . , nT up to lag 5;
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• mean population n̄;

• difference between mean and median population n̄− ñ;

• coefficients β1, . . . , β5 of the regression

nt+1 = β1nt + β2n
2
t + β3nt−6 + β4n

2
t−6 + β5n

3
t−6 + zt;

• coefficients of a cubic regression of the ordered differences nt − nt−1 on their
observed values.

• number of turning points, #n.
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APPENDIX C

PROOF OF ASYMPTOTIC NORMALITY OF THE CUGMM

ESTIMATOR

Assume that the observed summary statistics depend on an underlying set of obser-
vations Y1, . . . ,Yn. In the following, we use the subscript n to denote quantities that
depend on the sample size. In addition, assume that, as n→ ∞, the summary statistics
are asymptotically normal distributed, that is

√
n{Sn − µθn} d→ N(0,Σθ), (C.1)

for any θ, where µθn and Σθn are the expected value and variance of Sn at θ. Notice
that µθ and Σθ are the limiting values of µθn and nΣθn, respectively, and assume that

∂µT
θn

∂θk
→ ∂µT

θ

∂θk
,

∂2µT
θn

∂θk∂θl
→ ∂2µT

θ

∂θk∂θl
,

∂nΣθn

∂θk
→ ∂Σθ

∂θk
,

∂2nΣθn

∂θk∂θl
→ ∂2Σθ

∂θk∂θl
, (C.2)

for every k, l = 1, . . . , p.
Let θ̂n be the minimizer of fn(θ), while indicate with θ0 the true parameter vector.

We consider the Taylor expansion

∇fn(θ0) =
[
∫ 1

0
∇2fn{θ̂n + α(θ0 − θ̂n)} dα

]

(θ0 − θ̂n),

which implies that

√
n(θ̂n − θ0) = −

[
∫ 1

0

1

n
∇2fn{θ̂n + α(θ0 − θ̂n)} dα

]−1 1√
n
∇fn(θ0).

We have

1

2
√
n

∂fn(θ0)

∂θk
=

1√
n

∂µT
θ0n

∂θk
Σ−1

θ0n
(S0

n − µθ0n) +
1

2
√
n
(S0

n − µθ0n)
TΣ−1

θ0n

∂Σθ0n

∂θk
Σ−1

θ0n
(S0

n − µθ0n)

=
∂µT

θ0n

∂θk
zn +

1

2
√
n
zTn

∂nΣθ0n

∂θk
zn,
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Appendix C. Proof of asymptotic normality of the CUGMM estimator

where E(zn) = 0 and V ar(zn) = nΣ−1
θ0n

. Assumptions (C.1) and (C.2) imply that

1

2
√
n

∂fn(θ0)

∂θk

p→
∂µT

θ0

∂θk
z, with z ∼ N(0,Σ−1

θ0
),

hence
1

2
√
n
∇fn(θ0) d→ N(0,ΓT

θ0
Σ−1

θ0
Γθ0), (C.3)

where

(Γθ0)ij =
∂µi
∂θj

∣

∣

∣

∣

θ=θ0

.

To simplify the notation, let us define θαn = θ̂n + α(θ0 − θ̂n). We have that

1

2n

∂2fn(θ
α
n)

∂θk∂θl
=

1

n

{

∂2µT
θαnn

∂θk∂θl
Σ−1

θαnn
(S0

n − µθαnn)−
∂µT

θαnn

∂θk
Σ−1

θαnn

∂Σθαnn

∂θl
Σ−1

θαnn
(S0

n − µθαnn)

−
∂µT

θαnn

∂θk
Σ−1

θαnn

∂µθαnn

∂θl
−
∂µT

θαnn

∂θl
Σ−1

θαnn

∂Σθαnn

∂θk
Σ−1

θαnn
(S0

n − µθαnn)

− 1

2
(S0

n − µθαnn)
TΣ−1

θαnn

∂Σθαnn

∂θl
Σ−1

θαnn

∂Σθαnn

∂θk
Σ−1

θαnn
(S0

n − µθαnn)

+
1

2
(S0

n − µθαnn)
TΣ−1

θαnn

∂2Σθαnn

∂θk∂θl
Σ−1

θαnn
(S0

n − µθαnn)

}

=
1

n

∂µT
θαnn

∂θk
Σ−1

θαnn

∂µθαnn

∂θl
+O(n−

1
2 )

p→
∂µT

θ0

∂θk
Σ−1

θ0

∂µθ0

∂θl
,

due to (C.1), (C.2) and to the assumed consistency of θ̂n and hence of θαn , for α ∈ [0, 1].
This implies that

∫ 1

0

1

2n
∇2fn{θ̂n+α(θ0−θ̂n)} dα =

∫ 1

0

1

2n
∇2fn(θ

α
n) dα

p→
∫ 1

0
ΓT
θ0
Σ−1

θ0
Γθ0 dα = ΓT

θ0
Σ−1

θ0
Γθ0 ,

which, together with C.3, leads to

√
n(θ̂n − θ0) d→ N

{

0, (ΓT
θ0
Σ−1

θ0
Γθ0)

−1
}

.
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APPENDIXD

EMPIRICAL SADDLEPOINT APPROXIMATIONS

D.1 Asymptotics of the multivariate empirical saddlepoint

approximation

Here we follow Feuerverger (1989) but develop the results in a multivariate setting, and
with some changes in notation. For λ ∈ I, M̂m(λ) converges to M(λ) almost surely.
This convergence is uniform and extends to K̂m(λ):

sup
λ∈I

|M̂m(λ)−M(λ)| → 0, (D.1)

sup
λ∈I

|K̂m(λ)−K(λ)| → 0. (D.2)

Proof: Due to the Strong Law of Large Numbers M̂m(λ) converges to M(λ) almost
surely, for all λ in any countable collection {λi}. In addition M̂m(λ) and M(λ) are
both convex functions and, for such functions, convergence on dense subsets implies
uniform convergence on compact subsets (Roberts and Varberg, 1973). This proves
(D.1), while (D.2) follows by continuity of the logarithm.

For λ in the interior of I, these results extend to derivatives of both M̂m(λ) and
K̂m(λ):

sup
λ∈ int(I)

|DiM̂m(λ)−DiM(λ)| → 0, (D.3)

sup
λ∈ int(I)

|DiK̂m(λ)−DiK(λ)| → 0, (D.4)

where i =
{

i1, . . . , id
}

and:

DiM(λ) =
∂kM(λ)

∂λi11 · · · ∂λidd
, with

K
∑

z=1

iz = k ∈ N.

Proof: DiM(λ) is finite only for λ ∈ int(I). If all the elements of i are even, then
DiM̂m(λ) and DiM(λ) are convex and (D.3) follows as before. Otherwise, indicate
with λo the elements of λ for which the corresponding element of i is odd. If there is an
even number of components of λo which are negative, DiM(λ) is still convex, otherwise
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−DiM(λ) is. Applying the uniform convergence argument for convex functions to the

two sub-cases proves (D.3). In addition, DiK(λ) has the form P (λ)/M(λ)2
k
with P (λ)

being a polynomial function of DlK(λ), where l belongs to the set of all d-dimensional
vector such that:

lj ∈ N,
d

∑

j=1

lj ≤ k for j = 1, . . . , d.

Given that an analogous argument holds for DiK̂m(λ), (D.4) is proved by continuity.
After noticing that M̂m(λ) and its derivatives are unbiased estimators of M(λ) and

its corresponding derivatives, it is straightforward to show that:

mCov
{

DiM̂m(λ1),D
jM̂m(λ2)

}

= Di+jM(λ1 + λ2)−DiM(λ1)D
jM(λ2),

for λ1, λ2 such that λ1 + λ2 ∈ I. This entails that, if we define I/2 to be the subset
of I such that λ ∈ I/2 if 2λ ∈ I, than M̂m(λ) is a

√
m-consistent estimator of M(λ),

for λ ∈ I/2. An analogous, but asymptotic, result for K̂m(λ) is the following:

mCov
{

DiK̂m(λ1),D
jK̂m(λ2)

}

→ Di+j

{

M(λ1 + λ2)

M(λ1)M(λ2)
− 1

}

,

where λ1 and λ2 are further restricted to the interior of I/2 if any of the elements of i
or j is greater than zero. Finally, after noticing that on I/2:

λ̂ = K̂ ′
−1

(x) = λ+O(m− 1
2 ),

we have that:

p̂m(s)
p̂(s) = |K ′′(λ)|

|K̂ ′′

m(λ̂)|
exp

[

{

K̂m(λ̂)− λ̂T K̂ ′
m(λ̂)

}

−
{

K(λ)− λTK ′(λ)
}

]

= |K ′′(λ)|

|K ′′(λ)|+O(m−
1
2 )
exp

{

O(m−1/2)
}

= 1 +O(m− 1
2 ),

by Taylor expansions, which are justified by the differentiability of all the functions
involved. See Feuerverger (1989) for more details.

D.2 Proof of Proposition 1

Define

wi =
eλ

T si

∑m
i=1 e

λT si
, s̄ = K̂ ′(λ) =

∑m
i=1wisi

∑m
i=1wi

, i = 1, . . . ,m, (D.5)

and notice that K̂ ′′(λ) is positive semi-definite

zT K̂ ′′(λ)z = zT
m
∑

i=1

wi(si−s̄)(si−s̄)Tz =
m
∑

i=1

wiz
T (si−s̄)(si−s̄)Tz =

m
∑

i=1

wi

{

zT (si−s̄)
}2 ≥ 0,

for all z ∈ Rd such that ||z|| > 0. In addition, define qi = si − s̄ and assume that

r = rank [q1, . . . , qm] = d. (D.6)
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Then K̂ ′′(λ) is positive definite and K̂(λ) is strictly convex. In fact, suppose that
there exists a non-zero vector z such that zT K̂ ′′(λ)z = 0, which implies zTqi = 0 for
i = 1, . . . ,m. Given that z can be expressed as a linear combination of q1, . . . , qm, this
would imply that

zTz = (b1q1 + · · ·+ bmqm)Tz = 0,

which contradicts the fact that z is a non-zero vector. Now, define

J ⊂
{

1, . . . ,m
}

such that λTsi = α > 0 for all i ∈ J, λTsi < α for all i /∈ J,

examination of (D.5) shows that

lim
c→∞

wi =
limc→∞ ec(λ

T si−λT sj)

limc→∞
∑m

k=1 e
c(λT sk−λT sj)

=
0

Card(J)
= 0, for all i, j such that j ∈ J, i /∈ J,

lim
c→∞

wi =
limc→∞ ec(λ

T si−λT sj)

limc→∞
∑m

k=1 e
c(λT sk−λT sj)

=
1

Card(J)
, for all i, j such that i, j ∈ J.

Hence

lim
c→∞

s̄ = lim
c→∞

K̂ ′(cλ) = lim
c→∞

m
∑

i=1

wisi =
1

Card(J)

m
∑

i∈J

si,

and

lim
c→∞

λTqi = lim
c→∞

λT (si − s̄) = λT

{

si −
1

Card(J)

∑

i∈J

si

}

= α− α = 0, for all i ∈ J.

Finally, we choose z = λ and obtain

lim
c→∞

λT K̂ ′′(cλ)λ =

m
∑

i=1

lim
c→∞

wi lim
c→∞

(

λTqi
)2

=
1

Card(J)

∑

i∈J

lim
c→∞

(

λTqi
)2

= 0,

which implies that K̂(λ) is not strongly convex.

D.3 Optimality of the cross-validated Extended Empirical

Saddlepoint

Let p(s|θ) be the true density of the statistics and p̂SL(s|θ, γ) be the ESA density.
Assume that we have a training set of size m, a test set of size nT and that we have
used l simulations to normalize the density estimator. In this section we prove that, as
m, nT and l → ∞, Algorithm 4 consistently selects the value of γ which minimizes the
Kullback-Leibler divergence between p̂SL(s|θ, γ) and p(s|θ). When two folds are used,
cross-validation (Algorithm 4) selects γ as follows

γ̂ = argmin
γ

{

− 1

nT

nT
∑

i=1

log p̂SL(si|θ, γ)
}

with si ∼ p(s|θ),
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but the Weak Law of Large Numbers implies that

plim
m,l,nT→∞

− 1
nT

∑nT
i=1 log p̂SL(si|θ, γ) = −

∫

log pSL(s|θ, γ)p(s|θ)ds

∝
∫ {

log p(s|θ)p(s|θ) − log pSL(s|θ, γ)p(s|θ)
}

ds

=
∫

log p(s|θ)
pSL(s|θ,γ)

p(s|θ)ds

= KL

{

pSL(s|θ, γ), p(s|θ)
}

.

Hence pSL(s|θ, γ̂) is the member of the pSL(s|θ, γ) family with minimal Kullback-
Leibler distance from p(s|θ). This result can easily be extended to k-fold cross-
validation (k > 2).

D.4 Proof of Theorem 5.4

By the Weak Law of Large Numbers µ̂n
θ and Σ̂n

θ converge to µn
θ and Σn

θ, as m → ∞.
Then

n−δ log pSL(s
0|θ) ∝ −(s0 − µn

θ)
T
(

nδΣn
θ

)−1
(s0 − µn

θ)− n−δ log |Σn
θ |.

Assumption 5.2 implies that

n−δ log |Σn
θ | = n−δ log |Σn

θn
−δnδ| = n−δ

(

log |Σn
θn

δ| − dδ log n
)

= O(n−δ log n),

so
plim
n→∞

n−δ log pSL(s
0|θ) ∝ −(µθ0 − µθ)

T Σ−1
θ (µθ0 − µθ),

µθ0 being the asymptotic mean vector at true parameters θ0. If Assumption 5.3 holds

argmax
θ

{

− (µθ0 − µθ)
T Σ−1

θ (µθ0 − µθ)

}

= θ0,

which implies the consistency of SL under a Gaussian density estimator.

D.5 Proof of Theorem 5.8

Here we indicate with pG and pS the synthetic likelihoods based respectively on the
Gaussian and on the ESA approximation. Taylor expansions lead to

log p̂S(s
0|θ) = log p̂G(s

0|θ) +O
{

e−γ̂n
θ
(s−µ̂n

θ
)T
(

Σ̂
n
θ

)

−1
(s−µ̂n

θ
)}.

By multiplying both sides by n−δ, we obtain

n−δ log p̂S(s
0|θ) = n−δ log p̂G(s

0|θ) +O
{

n−δe−γ̂n
θ
nδ (s−µ̂n

θ
)T
(

nδΣ̂n
θ

)

−1
(s−µ̂n

θ
)},

and Assumption 5.2 and 5.7, together with the Weak Law of Large Numbers, imply

plim
m,l,n→∞

n−δ log p̂S(s
0|θ) = plim

n→∞

{

n−δ log pG(s
0|θ)+O(n−δe−γn

θ
nδ)

}

= plim
n→∞

n−δ log pG(s
0|θ).

Consistency follows from Theorem 5.4.
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D.6 Practical implementation

D.6.1 Saddlepoint version of Algorithm 3

In this section we illustrate how a pointwise synthetic likelihood estimate can be ob-
tained using the new density estimator, rather than a Gaussian density.

Algorithm 5 Estimating pSL(s
0|θ) using the Extended Empirical Saddlepoint ap-

proximation

1: Simulate datasets Yi, . . . ,Ym from the model p(Y |θ).
2: Transform each dataset Yi to a vector of summary statistics Si = S(Yi).
3: Calculate sample mean µ̂θ and covariance Σ̂θ of the simulated statistics.
4: Estimate the synthetic likelihood

p̂SL(s
0|θ) = p̂m(s0, γ) =

1

(2π)
d
2 |K̂ ′′

m(λ̂m, γ, s0)|
1
2

eK̂m(λ̂m,γ,s0)−λ̂Tms0 ,

where λ̂m is the solution of the empirical saddlepoint equation

K̂ ′
m(λ̂m, γ, s

0) = s0,

while K̂m(λ, γ, s) is given by equation (5.2) in Chapter 5.
5: Normalize p̂SL(s

0|θ) by importance sampling

p̄SL(s
0|θ) = p̂m(s0, γ)

ẑm(γ)
,

where

ẑm(γ) =
1

l

l
∑

i=1

p̂m(Si, γ)

q(Si)
, Si ∼ q(s), for i = 1, . . . , l.

A reasonably efficient importance density q(s) is a Gaussian density with mean
vector µ̂θ and covariance Σ̂θ.

D.6.2 Maximizing the synthetic likelihood

To maximize the synthetic likelihood we have used a special case of the Iterated Filter-
ing procedure, firstly proposed by Ionides et al. (2006). Very briefly, suppose that θ̂k is
the estimate of the unknown parameters at the k-th step of the optimization routine.
This estimate is updated as follows:

1. Simulate N parameter vectors θ1, . . . ,θN from a user-defined density p(θk+1|θ̂k)
such that

E(θk+1|θ̂k) = θ̂k, var(θk+1|θ̂k) = σ2kΣ and E(||θk+1 − θ̂k||3/2) = o(σ2k),
(D.7)

where σ2k is a cooling schedule and Σ is a covariance matrix.

2. For each θi, obtain an estimate p̂SL(s
0|θi) of the synthetic likelihood, using either

the multivariate normal density or the normalized ESA.
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3. Update the estimate

θ̂k+1 =

∑N
i=1 θip̂SL(s

0|θi)
∑N

i=1 p̂SL(s
0|θi)

.

The convergence properties of this procedure have been studied, in the context of
Hidden Markov Models, firstly by Ionides et al. (2006) and more in details by Ionides
et al. (2011). Doucet et al. (2013) explicitly pointed out that it can be used as a general
likelihood optimizer. While those papers considered situations where the likelihood
(pSL(s

0|θ) in our context) can be evaluated exactly, we have verified empirically that
the algorithm works well also when the likelihood is estimated with Monte Carlo error.
For both the shifted exponential and the Formind example we used the following cooling
schedule

σ2k = σ2k0 , σ20 = 0.95.

In the shifted exponential example we performed 4 separate runs of the optimizer,
using either the normal or the ESA approximation, in both the 10 and 20-dimensional
setting.

D.6.3 Formind settings

The summary statistic were obtained using the following constants

α1,1 = α1,3 = α2,1 = α2,3 = 1.5, α1,2 = 2, α2,2 = 2

while ψjk and σjk were estimates of mean and standard deviations of Cjk, obtained
by simulating tree counts at the true parameters. The 24 datasets were simulated
from Formind using the same parameter values as in Table 1 in the supplementary
material of Hartig et al. (2014). The chosen tree classes correspond to diameters at
breast height d < 0.2m, 0.2m ≤ d < 0.6m, d ≥ 0.6m for pioneer and d < 0.5m,
0.5m ≤ d < 1.4m, d ≥ 1.4m for late successional trees. To generate the datasets the
model was run for 105 years, and the final statistics vector was selected. The m = 104

summary statistics simulated to estimate pSL(s
0|θ) have been generated by simulating

the model for 5.1× 104 years, where the first 103 years of simulation were discarded to
avoid the transient, and by storing a vector of statistics every 5 years.

Starting from initial values µpio = 0.03, µsuc = 0.003, spio = 120 and ssuc = 40,
we ran the optimizations using N = 24 and 100 iterations. The estimates reported in
Table 1 in the main text were obtained by using the averages of the last 10 iterations of
each optimization run as point estimates. The whole experiment took around 10 days
on a quad-core Intel i7 3.6 GHz processor.

109





BIBLIOGRAPHY

Anderson, C. N. K., Hsieh, C., Sandin, S. A., Hewitt, R., Hollowed, A., Beddington,
J., May, R. M., and Sugihara, G. (2008). Why fishing magnifies fluctuations in fish
abundance. Nature, 452(7189):835–839.

Andrieu, C. and Doucet, A. (2003). Online expectation-maximization type algorithms
for parameter estimation in general state space models. In ICASSP (6), pages 69–72.
Citeseer.

Andrieu, C., Doucet, A., and Holenstein, R. (2010). Particle markov chain monte carlo
methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
72(3):269–342.

Andrieu, C., Doucet, A., and Tadic, V. B. (2005). On-line parameter estimation in gen-
eral state-space models. In Decision and Control, 2005 and 2005 European Control
Conference. CDC-ECC’05. 44th IEEE Conference on, pages 332–337. IEEE.

Andrieu, C. and Roberts, G. O. (2009). The pseudo-marginal approach for efficient
monte carlo computations. Annals of Statistics, 37(2):697–725.

Bartolucci, F. (2007). A penalized version of the empirical likelihood ratio for the
population mean. Statistics & probability letters, 77(1):104–110.

Basu, D. (1955). On statistics independent of a complete sufficient statistic. Sankhyā:
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