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Abstract 

Early diagnosis of cancer is crucial for the successful treatment of the disease. Highly 

sensitive methods are urgently needed for measuring cancer diagnosis markers present 

at ultra-low levels during early stages of the disease. Such methods should facilitate 

early detection and an adequate selection of the treatment of diseases in order to 

achieve increased patient survival rates. Existing diagnostic tests (e.g., ELISA) are not 

sensitive enough, detecting proteins at levels corresponding to advanced stages of the 

disease. Smaller, faster, and cheaper (one-step) devices are highly desired for 

replacing time-consuming laboratory analyses. Making analytical results available at 

the patient’s bedside within a few minutes will greatly improve the monitoring of 

cancer progress and patient therapy. 

Advances in molecular biology have led to a deeper understanding of potential 

biomarkers that can be used for cancer diagnosis. The realisation of point-of-care 

cancer diagnostics thus requires proper attention to the major challenge of multi-target 

detection. Arrays of biosensors, detecting protein signature patterns or multiple DNA 

mutations, can be used to help screening and guide treatment. Innovative biosensor 

strategies would allow cancer testing to be performed more rapidly, inexpensively, 

and reliably in a decentralised setting. This particular thesis will discuss the use of 

electrochemical biosensors for molecular detection and the prospects and challenges 

of using such devices for point-of-care (POC) cancer diagnostics.  
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 Introduction 

A significant increase in interest related to biosensors has been observed since the end 

of the 1980s. Biosensors are small intricate devices utilising biochemical recognition 

for the selective analysis of specific molecules. The key roles of a biosensor include: 

recognition of analytes, signal transduction and electronic signal readout. Biosensors 

are an exciting area of opportunity; promising advanced specificity, speed, portability 

and low cost. This offers an important opportunity for multiple decentralised clinical 

tests, e.g., physician’s offices, emergency clinics, bedside monitoring and self-testing. 

Research in the field of biosensors has seen a literature bias specifically towards 

electrochemical sensors (Turner et al., 1986; Wang, 2000a). Possibly due to the 

inexpensive nature of the device, while offering a superior accuracy and sensitivity for 

efficient patient diagnoses. An electrochemical biosensor is any device that utilises a 

combination of a biological recognition event and electrode transducer, in order to 

produce a useful electrical signal. The most frequently used transducers found in 

combination with electrochemical devices are amperometric and potentiometric. In an 

amperometric device, a signal is obtained by applying a constant potential and 

observing the current associated with the reduction or oxidation of a reactive species 

involved in a bio-recognition event. A potentiometric transducer converts a bio-

recognition event into a potential signal related to the use of ion-selective electrodes 

(ISE). Amperometric devices are likely to be viewed as a more efficient option due to 

higher sensitivity and a wider linear range. Leading research on sensing concepts along 

with recent technological advancements has made possible the wide range of clinical 

applications of amperometric devices (Wang, 1999). The advantages of electrical 

bioassays in modern use allow a strong potential rivalry between the most advanced 

optical protocols already in place. For example, miniaturisation allows for the high-

density packing of microscopic electrode transducers on such a small footprint as a 

biochip device, giving higher-density arrays.  

This thesis will focus on the development of multiple electrochemical devices utilising 

a number of bio-recognition molecules as DNA aptamers and affimers for label-free 
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detection of cancer biomarkers. Significant detection results were obtained by 

optimising the recognition layer surface chemistry of these devices. Specifically 

focusing on the structure of the self-assembled monolayer (SAM) and the distribution 

of molecular probes on the electrodes surface. 

Primarily, this work details the development of the binding structures in order to 

prevent non-specific binding during analyte detection. The key electrochemical assays 

used for analysis were electrochemical impedance spectroscopy (EIS) (Faradaic and 

non-Faradaic configurations) for impedimetric detection as well as square wave 

voltammetry (SWV) for amperometric detection. Additionally, cyclic voltammetry 

(CV) was utilised for the analysis of the formation of layers and quantification of the 

volume of the probe on the surface of an electrode. Two sensing electrodes were used 

within this research, covered with a gold surface, including interdigitated electrodes 

and macroelectrodes.  

The contained chapters will comprise the work of several scientific publications which 

is the result of previously carried out research. The first investigates the redox 

activated self-assembled monolayers which have always been a key idea in the 

fabrication of biosensors. To make the biosensor more effective and sensitive, a 

number of nanoparticles, such as Au nanoparticles (AuNPs) have been utilised. Given 

that the optimisation of redox marker species and probes has been a key focus for the 

detection of analytes, there has been a continuing interest in methods implementing 

redox markers. Here, a novel method for the assembly of a label-free impedimetric 

and amperometric aptasensors will be reported, using surface chemistry to utilise 

AuNPs and attach them to a Au planar surface.  

 

Outline: 

As mentioned earlier, this thesis is a presentation of the development of multiple 

electrochemical detection platforms for molecular diagnostic applications. This 

project is a sub-project of the Marie Curie Initial Training Network-PROSENSE, 

where the focus is on parallel sensing for cancer diagnostics. The thesis could be 
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broadly divided into three major sections describing three different biosensors for the 

detection of three different biomarkers for either prostate and breast cancer. 

 The main objectives of the thesis are: 

1. Development of an impedimetric aptamer-based biosensor for the detection of 

prostate specific antigen; a biomarker for prostate cancer. 

2. Development of an aptamer-based biosensor for the detection of Her2; a 

biomarker for breast cancer 

3. Development of an affimer-based biosensor for the detection of Her4; a 

biomarker for gastrointestinal stromal tumour 

To begin with, the current chapter will detail and describe the fundamentals and theory 

of biosensing. It will present all the techniques that have been utilised for the 

development of biosensors. It will also highlight the types of bio-recognition probes 

that have been utilised along with surface chemistry techniques. 

Both DNA aptamers and affimers are synthetic alternatives to antibodies, which can 

be generated with high affinity and specificity to a wide range of molecules. Chapter 

3  will discuss the development of an impedimetric aptasensor for the detection of 

prostate specific antigen (PSA), a biomarker for prostate cancer. This particular study 

is a progressive study from the previously reported aptasensor that was based on a 

standard binary SAM on planar Au surface. An anti-PSA DNA aptamer was co-

immobilised with either 6-mercapto-1-hexanol (MCH) or 6-(ferrocenyl) hexanethiol 

(FcSH) for both impedimetric or amperometric detection, respectively. It was shown 

that the use of AuNPs enables a significant improvement in the limit of impedimetric 

detection as compared to a standard binary self-assembled monolayer aptasensor. A 

PSA detection of as low as 10 pg/ml was achieved with a dynamic range from 10 

pg/ml to 10 ng/ml, well within the clinically relevant values, whilst retaining the high 

specificity of analysis in both physiological buffer and human plasma spiked samples. 

A new approach can, therefore, be reported to pattern ferrocene crowned Au 

nanoparticles to create redox environments for the development of aptasensors. 
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The following two chapters will detail electrochemical detection by monitoring the 

changes in the capacitance of the system. Such an approach was realised by 

performing electrochemical impedance spectroscopy (EIS) technique. Special 

attention is given to the surface chemistry, which has a very simple configuration 

involving DNA aptamers and affimers as probes. New DNA aptamer-modified and 

affimer-modified interdigitated electrodes for use as capacitive biosensors have been 

developed for detection of Her2 (breast cancer biomarker) and Her4 (gastrointestinal 

stromal tumour biomarker) in undiluted serum. It is important to mention that unlike 

the previous chapters, these two chapters are based on the use of interdigitated 

electrodes for increased sensitivity.  

A thiol-terminated DNA aptamer with an affinity for Her2 and a pre-modified 

cysteine-terminated affimer with a high affinity for Her4 were used as bio-recognition 

probes via self-assembly on interdigitated Au electrodes. Non-specific binding was 

prevented by blocking free spaces on the surface, starting with phosphate-buffered 

saline-tween20 blocker. Sensors were characterised using cyclic voltammetry (CV), 

electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM) and 

contact angle studies. Non-Faradic EIS measurements were utilised to investigate the 

sensor performance by monitoring the changes in capacitance.  

The aptasensor exhibited linear detection for Her2 from 1 pM to 100 nM in 

physiological buffer and undiluted serum with a limit of detection of 0.86 pM and 0.89 

pM in buffer and serum, respectively. An association constant of 0.066 (pM)-1 

indicated high affinity of the surface bound aptamer for Her2. 

The affi-sensor demonstrated high sensitivity with a broad dynamic range from 1 pM 

to 100 nM with a limit of detection of 0.33 pM and 0.97 pM in buffer and serum, 

respectively. Furthermore, the affi-sensor demonstrated excellent specificity for other 

serum proteins, suggesting possible resilience to non-specific binding. The sensing 

ability of the affi-sensor in undiluted serum suggests its potential for a new range of 

affimer based sensors. 

The results may open the way to develop other DNA aptamer- and affimer-based 

biosensors for protein biomarker detection in undiluted serum. The results and the 
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advantages of the adopted systems will be discussed in detail and will also be 

discussed alongside possible solutions for future work and utility of these 

electrochemical sensors. 

The final chapter will summarise the work presented in this thesis and will draw light 

on the future work. 

 

1.1 Electrochemical biosensors 

In general, a device that registers and converts physical, biological or chemical 

changes into a measurable signal is called a sensor. A sensor typically contains a 

recognition element that enables a very selective response to a target, or at least with 

minimal interferences from other sample components. The transducer or a detector 

device is a primary component of a sensor that registers the recognition event and 

converts it into a signal. Lastly, a signal processor processes the signal and often 

amplifies it before converting and displaying a user-friendly data output. 

 

Figure 1.1 A schematic of a biosensor with an electrochemical transducer 

Among various kinds of sensor, the electrochemical sensor can be considered a 

subclass of chemical sensors. An electrochemical sensor coupled with a biological 

recognition unit (Figure 1.1) is usually employed to enhance the sensitivity with the 

high specificity of biological recognition processes. Such a device is termed an 

‘electrochemical biosensor’. These biosensors contain a specific biological 

recognition element (which can comprise of enzymes, proteins, antibodies, nucleic 

acids, cells, tissues or receptors) that can selectively react or bind with their respective 
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target analyte in the sample solution and produce an electrochemical signal that can 

be directly or indirectly related to the concentration of the analyte under study. 

Based on the kind of biological recognition event, electrochemical biosensors could 

be further subdivided into two main categories; biocatalytic devices and affinity 

sensors. For instance, biocatalytic-based biosensors consist of enzymes, whole cells 

or tissue slices as a recognition element that can selectively recognise the target analyte 

and produce electroactive species as a product of the reaction. A well-established 

example of an enzyme-based biosensor is the glucose sensor. Here the enzyme 

‘glucose oxidase’ oxidises the glucose such that hydrogen peroxide is released as a 

product of the reaction which in turn are oxidised on the surface of the electrode, 

producing electrons which are detected as an electrical current (Hammond et al. 2016). 

On the other hand, affinity-based biosensors rely on biological components such as an 

antibody, nucleic acid, or a receptor that can selectively interact and bind with its 

specific target with high affinity. Some examples of affinity-based sensors are 

Immunosensors and DNA hybridization biosensors. This thesis will focus on affinity-

based sensors with two different kinds of receptors, namely aptamers and affimers. As 

a field of study, biosensors comprise of an interdisciplinary field of study that is 

currently one of the most active areas of research in analytical chemistry. There are 

many advantages of employing a biosensor. For instance, biosensors could eliminate 

the need for pre-sample preparation and therefore, reduce both time and cost. In 

general, the performance of a biosensor is experimentally evaluated based on its 

sensitivity, limit of detection, linear and dynamic ranges, reproducibility or precision 

of the response, selectivity and its response in the presence of interferences. 

1.2 Electrochemical detection techniques 

This section will present the different types of electrochemical techniques that have 

been employed in the biosensor development. Although electrochemical impedance 

spectroscopy has been used as the main detection technique, other techniques such as 

square wave voltammetry (SWV) and cyclic voltammetry (CV) has also been 

presented. 
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1.2.1 Electrochemical Impedance Spectroscopy (EIS) 

Electrochemical impedance spectroscopy (EIS) is a label-free and sensitive 

electrochemical technique that has been extensively used as a detection technique to 

develop novel biosensors for various applications including molecular diagnostics. In 

brief, it measures the changes in the impedance caused by the binding event that occurs 

at the interface of the electrode surface and the electrolyte caused by the change in 

electrical properties due to the target. (Bond and Scholz 2010; Lasia 2002).  

EIS measurements are based on Faradaic processes that employ a redox couple in an 

equimolar concentration of both reduced and oxidised forms in order to simplify the 

analysis. In principle, a Faradaic process is one where an electrochemical reaction 

results in the transfer of charge (electrons) across the interface of the working electrode 

and the bulk electrolyte solution. Typically, to perform an EIS measurement, a small 

alternating current (AC) voltage is applied which is superimposed onto a formal 

potential of the respective redox couple. 

By utilising a redox couple, charge transfer resistance can be measured using EIS. This 

is an indicator of how easily the redox couple can reach the electrode surface from the 

electrolyte solution. An EIS measurement is usually performed by scanning in a broad 

range of frequencies. In this thesis, we have used a frequency range spanning from 

100 mHz to 100 kHz. Such a measurement was performed using a potentiostat 

comprising of a frequency response analyser (FRA). It is worth mentioning that 

although EIS measurements presented in this thesis investigates the full frequency 

span response, it is possible to monitor a single frequency which could be easily 

implemented in a practical low-cost biosensor.  

 

EIS is a measure of the current flowing between the electrodes (working electrode and 

the counter electrode) into the electrolyte solution of the cell. Moreover, 

‘spectroscopy’ is a term that refers to the measurements that have been recorded by 

scanning a range of frequencies of the AC signal. As mentioned earlier, a small AC 

voltage (equal to the formal potential of the redox couple) is applied between the 

electrodes, to maintain a thermodynamic equilibrium at the electrochemical interface. 
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As a result, there is an easy separation of the contributions from mass transfer and 

electron transfer. A typical sinusoidal voltage signal as a function of time (V(t)) and 

can be expressed as: 

 

Equation 1.1 

Where, V0 is the amplitude of the voltage and is the angular frequency (=2πf, 

where f refers to the frequency in Hertz (Hz)). Because of the applied voltage V(t), an 

AC current signal is produced and recorded (I(t)) as a function of time. I(t) recorded 

can be further expressed as: 

 

Equation 1.2 

Where I0 is the amplitude of the current and is the phase angle which depends on 

the respective impedance of the system under investigation. Moreover, the process of 

applied voltage and the measured current output can be represented as shown in Figure 

1.2: 

 

 

Figure 1.2 AC signal of applied voltage and obtained current response 
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The impedance measured is represented by both the real and the imaginary parts of 

the impedance. Using Ohms’ law, the impedance (Z) can be determined from Equation 

1.1.and Equation 1.2:  

 

Equation 1.3 

However, since the impedance measured is a complex impedance, Euler’s expression 

is employed as:  

 

Equation 1.4 

Where j is an imaginary number equal to (-1)
1/2

. Furthermore, both Equation 1.1 and 

Equation 1.2 can be further processed as a function of time and represented as: 

 

Equation 1.5 

 

Equation 1.6 

As a result, and by using equations Equation 1.5, Equation 1.6 and Equation 1.4 in 

Equation 1.3, the impedance can be expressed as: 

 

Equation 1.7 

Where, the real part of impedance (Z’) is typically an outcome of the resistance to the 

flow of current by the circuit (also associated with resistive part), whereas the 
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electrical energy storage ability of the circuit forms the imaginary part (also referred 

to the capacitive part) of the impedance (Z”).  

Furthermore, for a specific system, the impedance of the electrochemical interface can 

be interpreted using a specific equivalent electrical circuit. Among many types of 

circuits available, Randles equivalent circuit (Figure 1.3) is the most common circuit 

used. A Randles circuit typically includes the resistance of the solution (Rs), the 

resistance for electron transfer (also called charge transfer resistance, Rct), the double 

layer capacitance (Cdl) and a Warburg impedance element (W). Although the Warburg 

element only provides information about the diffusion of the redox couple, the Rs 

values depend only on the solution together with the distance between the working 

electrode (WE) and the counter electrode (CE). In a biosensor employing a biological 

element, the ideal capacitor element (n=1) is replaced by a Constant Phase Element 

(CPE) which models the capacitive behaviour of the double layer; however, the 

deviations from an ideal capacitance are reasonably small.  

  

Figure 1.3: representation of the electric double layer (Hammond 2017) and the Randles equivalent circuit, 

where Rs is the solution resistance, Rct is the charge transfer resistance (impedance), Cdl is the double layer 

capacitance and W is the Warburg impedance element 

 

Furthermore, the impedance of the CPE can be expressed by Equation 1.8: 

 

Equation 1.8 
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Where Y0 is the magnitude of admittance, α is an exponent with a value between 0 and 

1 (For a CPE, α < 1). Using ZCPE, an estimation of the Cdl  can be obtained by using 

the following relationship (Hsu and Mansfeld 2001): 

 

Equation 1.9 

As mentioned earlier, the Warburg impedance element (W) represents the pseudo-

impedance which is due to the mass transfer effect (the diffusion of ions from the bulk 

solution to the electrode surface). Since Faradaic currents are affected by diffusion 

effects,  the value of W at lower frequencies becomes predominant with a phase angle 

of 45 ̊ for a diffusion-controlled Faradaic process.  

The results of an EIS measurement are typically represented in a Nyquist plot (Figure 

1.4) showing both real and imaginary part of the impedance. Such a plot enables a 

direct comparison of the charge transfer resistance value given by the diameter of the 

semicircle along the Z’ axes.  

 

Figure 1.4 Typical Nyquist Plot 
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1.2.1.1 Faradaic EIS 

A redox couple utilised in a typical Faradaic EIS experiment contains both the reduced 

and oxidised forms (e.g., [Fe(CN)6]3-/4-
 which was used in this study). The redox probes 

are employed to facilitate the charge transfer (the Faradaic current) that can flow through 

the working electrode and easily detected by the potentiostat. It is worth mentioning that 

the equilibrium potential (also termed the formal potential) across the working electrode 

(WE) and the reference electrode (RE) is not only dependent upon the ratio between the 

concentrations of the oxidised and reduced forms of the redox couple, but also on the type 

of reference electrode employed. In the current studies presented in this thesis, a 

(Ag/AgCl) RE was used. 

Typical Faradaic EIS experiments consist of recording the variations caused due to a 

binding event that can either produce a higher or lower blocking effect. As a result, there 

are changes to the accessibility of the redox markers from the electrolyte solution (bulk 

electrolyte) to the electrode surface. For instance, the impedance of a probed system can 

increase because of the blocking effect generated due to the binding of a bulky target that 

can result in an increased electrostatic barrier that obstructs the redox probes from 

approaching the electrode surface. On the other hand, a reduction in the impedance can be 

due to a decrease in the electrostatic barrier from other target molecules (e.g., if molecules 

having opposite sign with respect to the redox probes are bound on the surface). However, 

due to the complexity of the biological probes and their respective binding events, more 

complicated situations can arise due to a combination of different effects (for instance, 

binding of bulky target and screening of charges near the electrode surface can occur at 

the same time).  

 

1.2.1.2 Non-Faradaic EIS 

Unlike Faradaic EIS, non-Faradaic EIS is performed in the absence of redox markers. 

It is important to outline that in the case of non-Faradaic processes, the focus is given 

to the analysis of the double layer Cdl rather than 𝑅ct. Indeed, in non-Faradaic 

experiments the charge transfer can be neglected as there are no redox markers in the 

solution and the main contribution to the impedance is given by the capacitive 
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component which is due to the charging and discharging effects (Tsouti et al., 2011). 

In such cases, a generic EIS experiment will have an impedance described as:  

 

Equation 1.10 

a complex capacitance can be defined and is represented by the following relationship: 

 

Equation 1.11 

Such a relationship defines the changes in capacitance at the single frequency. As a 

result, a lot of information is lost. To address this, research groups have reported an 

alternative approach for calculating the capacitance of the electrochemical cell 

(Formisano et al., 2015; Jolly et al., 2015) termed a complex capacitance and can be 

expressed by using Equation 1.10 in Equation 1.11 to produce: 

 

Equation 1.12 

Calculating 𝐶′ and 𝐶′′ from the respective measured values of 𝑍′ and 𝑍′′, the complex 

capacitance can be plotted (Figure 1.5). As a result, the diameter of the semicircle 

provides the estimate of the capacitance of the system. 
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Figure 1.5 Example of complex capacitance plot. The circled point indicates the relative minimum of the 

imaginary part of capacitance at which the real part of the capacitance can be sampled 

Another approach that has been reported in the literature for the Cdl calculation in the 

non-Faradaic experiment is often based on the assumption where the Rct and the 

diffusion effects can be neglected (Couniot et al., 2015). Therefore, the equivalent 

electrical circuit of the system under study is simplified (a resistor in series with a 

capacitor) as shown in Figure 1.6: 

 

Figure 1.6 Electrical equivalent circuit for non-Faradaic measurements based on the assumption that charge 

transfer processes and diffusion contributions can be neglected 

As a result of the simplification, the total impedance is given by: 

 

Equation 1.13 

There is a handful of studies that are based on the use of non-Faradaic EIS experiments 

to monitor the changes in capacitance of the system (Tsouti et al., 2011; Berggren et 

al., 2001, Daniels and Pourmand, 2007). These studies were stimulated by the first 
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capacitive biosensor to be reported in 1986 by Newman and co-workers. The biosensor 

was based on interdigitated electrodes (IDEs). At present, most capacitive sensors are 

based on a combination of IDEs and electrode-electrolyte interfaces. Sensors based on 

electrode-solution interfaces (as those reported in the present dissertation), instead, 

exploit the changes in the distance between the separation planes of the pseudo-

capacitor and the displacement of ions and solvated molecules from the sensing 

surface (Tsouti et al., 2011; Daniels and Pourmand, 2007).  

One key aspect of capacitive sensors based on electrode-electrolyte interfaces is to 

provide a homogeneous and compact layer on the surface of the electrode providing 

an enhanced insulation effect. Such a layer can be achieved by fabricating a compact 

and defect-free self-assembled monolayer (SAM) that massively prevents leakage 

current. The reason behind minimising leakage currents is to avoid short-circuiting the 

metal and solution phases resulting into a loss of sensitivity (Berggren et al., 2001).  

Literature has reported multiple reasons that attribute the signal changes obtained to 

various factors such as changes in the dielectric properties, the displacement of water 

molecules, electrostatic repulsions between immobilised samples and ions in solution, 

the change of the molecular conformation onto the surface electrodes and so on. It is 

worth highlighting that there has been no self-contained explanation to the changes in 

the capacitance and therefore, different research groups have also reported 

contradicting results which are supported by their own explanations and references. 

 

1.2.2 Square Wave Voltammetry 

This thesis will also present square wave voltammetry (SWV) as a detection technique. 

Together with EIS, an amperometric technique like SWV has been used to provide a dual-

mode detection platform. SWV is a technique that can circumvent the capacitive currents 

and monitors only Faradaic current, thus increasing the sensitivity of the system (Bard and 

Faulkner 1980) Figure 1.7: 
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Figure 1.7 Square Wave voltammetry potential variation waveform 

In a typical SWV experiment, The excitation signal consists of repetitive symmetrical 

square wave pulses of a fixed amplitude Vsw . Such pulses are superimposed on a staircase 

wave of step height of a fixed potential (ΔV) and with a defined pulse period (t). As a 

result, the forward pulse of the square wave coincides with the staircase step in a SWV 

experiment. Using such a system, the net current, inet, is calculated by the system by taking 

into consideration, the difference between the forward and reverse current (itotal – ireverse). This 

net current is calculated at the end of each half cycle respectively. Using a subtraction 

process, the background current is suppressed. As a result, the peak current height 

obtained can be considered to be a result of the redox reaction (Faradaic process) which 

is directly proportional to the concentration of the electroactive species.  

 

1.2.3 Cyclic voltammetry 

Another technique that has been presented in this thesis is Cyclic voltammetry (CV). 

It is worth mentioning that CV is widely adopted as a characterization technique. Such 

a measurement is performed by imposing a varying electrode potential at the WE 

(potential sweep) between two set potential limits as shown in Figure 1.8 (Bard and 

Faulkner 1980). 
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Figure 1.8 Potential plot of a redox reaction diffusing in solution (a); Cyclic voltammetry of a fully reversible 

redox reaction at the gold working electrode in 10 mM PBS, pH 7.4 containing 10 mM ferro/ferricyanide 

[Fe(CN)6]3-/4- vs. Ag/AgCl reference electrode 

By sweeping the potentials, the electroactive molecules in the solution can lose 

electrons (oxidation) or gain electrons (reduction) at their respective potential and 

peaks can be realised in a CV scan. This technique often allows recognition along with 

quantification (Faradaic peak) of a large number of compounds under study. For 

instance, in Figure 1.8 when there is an increase in the applied potential across the 

working electrode (WE) and reaches closer to the reduction potential of the redox 

marker ([Fe(CN)6]3-/4-), WE loses an electron which is picked up by the redox marker 

([Fe(CN)6]3-/4- ) and therein, is reduced. Such a reaction causes a flow of electrons from 

the electrode to the bulk electrolyte solution resulting in the appearance of a reduction 

peak in the cyclic voltammogram. The opposite reaction occurs when the electrode 

potential is decreased. Moreover, such a process in the presence of the redox couple 

where both oxidation and reduction peaks are observed are often associated to a 

reversible process. A reversible system can be further described by the Randles-Sevčik 

law: 

 

Equation 1.14 
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Where A is the active area of the working electrode, n is the number of electrons 

involved in the redox process, F is the Faraday’s constant, 𝐷 is the diffusion coefficient 

of the redox species, 𝑆 is the scan rate, T is temperature and 𝑐 is the bulk concentration of 

the redox species. In a CV, certain parameters such as the scan rate, can account for the 

reversibility of some reactions. In other words, the potential scan can produce a peak 

current for all analytes that can be reduced in the range of the potential sweep. The current 

(I) of the system which is measured either continuously or at specific times, is mainly the 

sum of Faradaic current, If, and non-Faradaic current, Ic. 

In fact, the current (I) is a function of both potential (E) and time (t). On the other hand, 

Ic is due to the Cdl (charging and discharging of the layer) represented by the interface 

between the surface layer of the electrode and the adjacent layer of the electrolyte solution 

given by: 

 

Equation 1.15 

Where 𝑣 is the potential applied to the electrode surface. Unlike Faradaic current, the 

capacitive current depends on the surface of the electrode, scan rate and the composition 

of the medium. Therefore, it is suggested to have a reasonable low scan rate to avoid non-

Faradaic signals. In this dissertation, CV has been employed as a characterisation 

technique as well as a fabrication technique for the development of the biosensor. 

 

1.3 Other characterisation techniques 

For the development of biosensors mentioned in this thesis, techniques like Surface 

Plasmon Resonance (SPR), atomic force microscopy (AFM), Scanning Electron 

Microscopy (SEM) and contact angle measurements were also used for characterisation 

studies. 

1.3.1 SPR 

In order to understand the efficiency of the probe (molecular interactions) coupled with 

the surface chemistry employed on a solid surface, Surface Plasmon Resonance (SPR) 
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offers a powerful tool. SPR comes with an added advantage of not only being a label-free 

detection but also provides a real-time quantitative data for the molecular interactions 

under investigation. Typically, an SPR measurement consists of specific probes which are 

immobilised on the SPR chip (for instance DNA aptamers specific to PSA, Figure 1.9) 

and the analyte in the buffer solution which is flowed over the SPR chip surface (e.g., 

PSA). Lastly, the molecular binding events are measured by in real-time by monitoring 

the changes in the refractive index (RI) near the sensor surface using optical methods. 

SPR is an optical phenomenon that takes place when a polarised light hits a thin metal 

film (in SPR, it is a thin layer of Au on SPR chips) at the interface of media with different 

RI. At a particular wavelength of light, all the energy is absorbed by the metal and results 

in the generation of plasmons through proper coupling of incident light to free electrons 

of the gold metal. Such a phenomenon is established by using an attenuated total reflection 

technique (ATR). In principle, ATR is a phenomenon where the plasmons are generated 

by an induced evanescent wave under a specific condition of total internal reflection. This 

evanescent wave penetrates into the gold metal and decays exponentially, perpendicular 

to the metal surface into the medium. Usually, the evanescent wave is observed within 

300 nm from the sensor surface depending on the Au thickness and RI of the medium over 

the metal surface. SPR uses this evanescent field to monitor the changes due to the binding 

event and registers it as a change in RI (Van Der Merwe 2001). SPR technique, in theory, 

excite and detect oscillations of free electrons which are also known as surface plasmons, 

using the Kretschmann configuration. Such a configuration employs an incident light 

which is focused onto a thin metal film through a glass prism and the subsequent reflection 

is detected by a detector as shown in Figure 1.9. 
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Figure 1.9 Surface Plasmon Resonance schematics (SPR) (Jolly 2016). 

As mentioned earlier, at a certain incident angle (total internal reflection), the plasmons 

resonate with light which is as a result of the absorption of light at that particular angle. 

This creates a dark band line in the reflected beam (Figure 1.9). This respective dark band 

line detected can be observed as a dip in SPR reflection intensity. A shift in the reflectivity 

curve Figure 1.9 represents a binding event taking place either or a conformational change 

in the molecules bound to the film (like in the case of DNA aptamers). By monitoring this 

shift vs. time, researchers can study molecular binding events and draw conclusions on 

affinity constants of the probe. 

In this dissertation, SPR is used mostly as a characterisation technique to investigate the 

binding characteristics of probes when restricted to the electrode surface especially for the 

affimers for Her4 described in Chapter 5. 

 

1.3.2 AFM 

The atomic force microscope (AFM) is one kind of scanning probe microscopes 

(SPM). SPMs are designed to measure local properties, such as height, friction, 
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magnetism, with a probe. To acquire an image, the SPM raster-scans the probe over a 

small area of the sample, measuring the local property simultaneously. 

AFMs operate by measuring the force between a probe and the sample. Normally, the 

probe is a sharp tip, which is a 3-6 m tall pyramid with 15-40 nm end radius, 

meanwhile, the used one loses its sharpness (Figure 1.10). Though the lateral 

resolution of AFM is low (~30 nm) due to the convolution, the vertical resolution can 

be up to 0.1 nm. 

 

Figure 1.10 New AFM tip (a); Used AFM tip (b) 

 

In the case of an AFM, the vertical and lateral deflections can be measured by the 

cantilever using the optical lever in order to acquire a good image resolution. The 

optical lever is operated by reflecting a laser beam on the cantilever. The reflected 

laser beam later strikes a position-sensitive photodetector consisting of four-segments. 

Finally, the differences are recorded and presented between the segments of photo-

detector of signals. As a result, the signal obtained indicates the position of the laser 

spot on the detector and thus the angular deflections of the cantilever (Figure 1.11). 
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Figure 1.11 AFM is working with an optical lever 

 

When a contact mode AFM is used, a feedback is generated which is used to regulate 

the force on the sample. As a result, the AFM not only measures the force on the 

sample under study but also regulates it, allowing acquisition of images at very low 

forces. The feedback loop consists of the tube scanner that controls the height of the 

tip; the cantilever and optical lever, which measures the local height of the sample; 

and a feedback circuit that attempts to keep the cantilever deflection constant by 

adjusting the voltage applied to the scanner.  

 

1.3.3 SEM 

Another surface characterisation technique is the use of a scanning electron 

microscope (SEM) which uses a focused beam of high-energy electrons. Such a beam 

is used to generate a variety of signals at the surface of solid specimens under study. 

The signals that are generated from the electron-sample interactions provides detailed 

information on external morphology (texture), chemical composition, and crystalline 

structure and orientation of materials of the sample specimen. Again, data is collected 

over a selected area of the surface of the sample under study, and a 2-dimensional 
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image is generated. Typically, areas ranging from 1 cm to 5 m in width can be imaged 

in using conventional SEM techniques.  

With SEM, a significant amount of kinetic energy is carried by accelerated electrons. 

Such a huge amount of energy is dissipated as a variety of signals as a result of the 

electron-sample interaction due to deceleration of the incident electrons in the solid 

sample. The secondary electrons generated because of the interaction constitutes the 

signals and also include backscattered electrons (BSE), diffracted backscattered 

electrons (EBSD that are used to determine crystal structures and orientations of 

minerals), photons (characteristic X-rays that are used for elemental analysis and 

continuum X-rays), visible light (cathodoluminescence–CL), and heat. Typically, for 

imaging samples, secondary electrons and backscattered electrons are used. Briefly, 

secondary electrons are important for showing morphology and topography on 

specimen samples and backscattered electrons are important for illustrating contrasts 

in the composition in the multiphase sample.  Furthermore, generation of X-rays is 

mainly due to the inelastic collisions of the incident electrons with electrons in discrete 

orbitals (shells) of atoms in the specimen sample. Since the electrons which have been 

raised to the excited levels have to return to lower energy states, such a process yields 

X-rays that are of a fixed wavelength (difference in energy levels of electrons in 

different shells for a given element). As a result, characteristic X-rays are produced 

for each element in a mineral. It is worth mentioning that the SEM analysis is 

considered to be ‘non-destructive’; because the X-rays generated by electron 

interactions do not lead loss of volume in the sample, so it is possible to analyse the 

same materials repeatedly without any degradation of the sample. 

In SEM analysis, sample preparation is often minimal, depending on the nature of the 

specimen and the output data required. By minimal preparation, it may include the 

acquisition of a sample that will fit into the SEM chamber and some surface 

modification to prevent charge build-up on insulating samples. In general, most 

insulating samples for SEM analysis are coated with a thin layer of conducting 

material, commonly carbon, gold, or some other metal or alloy to avoid charging of 

the sample. On the other hand, an electrically insulating sample can be examined 

without any coating in a SEM instrument capable of ‘low vacuum’ operation. 
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1.3.4 Contact angle 

Finally, the thesis will also present contact angle measurements, this technique has 

been used to understand the characteristic of the sensor surface, Contact angle 

measurements provide the wetting properties of the surface under study. It is worth 

mentioning that every surface has a specific characteristic surface tension. The surface 

tension of the substrate makes it either hydrophobic or hydrophilic in nature. Upon 

modification of sensor surfaces, or upon binding of biomolecules to a sensor surface, 

there are changes in the surface tension of the sensor surface material that can be 

monitored by observing the spread of a water droplet on it. The angle that the water 

droplet makes with the sensor surface while it spreads is known as contact angle. 

Typically, contact angle measurements are simple and employ only simple 

instrumentation as it requires just a camera, optical lens and a light source to provide 

the correct contrast. Although information can be attained after surface modification 

or binding, contact angle measurements do not provide any information on the number 

of the molecules present on the sensor surface. Therefore, in order to understand 

whether the changes are due to the specific or non-specific interactions of the 

molecules on the sensor surface needs to be determined by other detection 

mechanisms. 

 

1.4 Oligonucleotide and protein-based recognition layer 

This section will cover the two different types of probes that were used to develop 

biosensors that are presented in the following chapters. This thesis will present the use 

of DNA aptamers (oligonucleotide-based) specific to PSA and Her2 protein biomarker 

and Affimer (protein-based) specific to Her4 protein biomarker. 

1.4.1 DNA aptamers (Oligonucleotide-based probe) 

DNA aptamers are simply short single-strand DNA strands (oligonucleotides) that can 

bind to their target with both high specificity and affinity. In the last two decades, 

DNA aptamers have gained huge interest as bioreceptors in the development of novel 

biosensors (aptasensors) or for medical therapeutic applications (Hianik and Wang 

2009; Iliuk et al. 2011). DNA aptamers have specificity which is akin or higher than 
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those of their biological counterpart (antibodies) with dissociation constants (Kd) in 

the range from micromolar (µM) to picomolar (pM) levels. One of the most important 

advantages of DNA aptamers in the development of biosensor devices is their high 

affinity to not only proteins but also to other molecules with very low molecular 

weight, for example, toxins and drugs (Castillo et al. 2012; Evtugyn et al. 2009). There 

are a number of advantages of aptamers over antibodies, for example, higher stability. 

High stability helps aptamers to be suitable for applications in special conditions such 

as high temperature or extreme pH. 
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Figure 1.12 Example of aptamer structures: (A) Two-dimensional stem-loop structure of anti-PSA DNA aptamer 

(Savory et al. 2010); (B) multiple stem-loop structure of anti-AMACR DNA aptamer (Yang et al. 2014); (C) 

quadruplex structure of anti-thrombin DNA aptamer 

 

Another advantage is that DNA aptamer-based biosensors can be regenerated without 

loss of integrity and selectivity (Mairal et al. 2008; Tombelli et al. 2005). What is very 

interesting is that an aptamer can undergo conformational changes upon recognition 

of its specific target, this property has been widely utilised in the development of novel 

biosensing applications (Jolly et al. 2015; Radi et al. 2006). Until now, DNA aptamers 

are known to form loops, stems, hairpins, triplexes or quadruplex structures. Figure 
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1.12A and Figure 1.12B shows a DNA aptamer specific to PSA in its stable loop 

configuration and a DNA aptamer raised for AMACR with multiple loop structures, 

respectively (Savory et al. 2010; Yang et al. 2014). The stem loops’ formation is due 

to the specific interactions between nucleotides which are adenine, and thymine or 

guanine and cytosine present in DNA aptamer sequence chains. Quadruplexes are 

formed in DNA aptamer sequences that are rich in guanine and are able to form a four-

stranded structure (Figure 1.12C). The quadruplex structure is further stabilised by the 

presence of a cation, especially potassium, which sits in a central channel between 

each pair of tetrads.  

Furthermore, DNA aptamers can be easily chemically modified by various functional 

groups, such as thiols, amines or azides as well as biotin groups leading to flexibility 

in the type of immobilisation to various solid supports. For example, modification of 

DNA aptamers with thiols allows their attachment onto the Au surface using Au-S 

(thiol chemistry) interactions (Jolly et al. 2015). In another case, there could be more 

than one modification. For instance, one end of DNA aptamers can be modified with 

biotin molecule and binding of these biotin modified DNA aptamers could be easily 

realised on a solid support via avidin, streptavidin or neutravidin bridges while, the 

other end can be modified with ferrocene for electrochemical detection (where 

ferrocene can be used as a redox marker) (Cavic and Thompson 2002; Centi et al. 

2007; Liss et al. 2002; Ostatná et al. 2008). 

Since aptamers can be raised with high specificity against different binding sites of 

the target analyte, it can therefore provide high variability in the development of assay 

configuration (Figure 1.13) (Hianik and Wang 2009; Song et al. 2008). For example, 

a simple aptamer-based assay consists of the attachment of aptamers onto a support 

(in our case it will be the metal surface of the biosensor) and the interactions of 

aptamer/analyte can be directly monitored (Figure 1.13) (Formisano et al. 2015). With 

the development in the field of novel assay configuration, classical antibody ELISA 

has been replaced with aptamer-based ELISA. For instance, sandwich assays could be 

developed using aptamers which consist of capturing the target analyte by its specific 

aptamer followed by interactions with another aptamer or antibody as a reporter probe 

(Figure 1.B, Figure 1.C, and Figure 1.D). Similar to antibody-based (immune sensing) 
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assays, aptamers can also be modified with nanoparticles (Pavlov et al. 2004) or 

electrochemical markers (Kang et al. 2008) which enhance the electric signal or allow 

amplification of the signal. 

 

Figure 1.13 Examples of different assays based on aptamers. (A) Capture of analyte by immobilised aptamers. 

(B) Sandwich type assay with aptamers using two aptamers specific to two different sites of the analyte. (C) 

Capture of the analyte by the immobilised aptamer while a secondary antibody is used to detect in a modified 

ELISA format. (D) Capture of analyte by an immobilised antibody while aptamer is used as a secondary probe in 

a modified ELISA format. 

 

1.4.2 Affimers (protein-based probes) 

Affimer molecules typically small, highly stable recombinant proteins that are raised 

to bind to their respective target molecules (analyte) with similar or higher specificity 

and affinity to that of antibodies (Figure 1.14). These proteins are engineered non-

antibody binding proteins that are basically designed to mimic the role of molecular 

recognition similar to monoclonal antibodies in multiple applications (Woodman et al. 

2005).  With the technology developed by protein engineers, it is an attempt to 

improve the experimental properties of affinity reagents, in order to increase their 

stability,  making them more robust across a range stringent conditions (temperatures 

and pH),  and offer small volumes of the reagent. Moreover, they can be easily 

expressed to produce high yields in  E.coli  and mammalian cells. 

https://en.wikipedia.org/wiki/Proteins
https://en.wikipedia.org/wiki/Antibody_mimetic
https://en.wikipedia.org/wiki/Monoclonal_antibody
https://en.wikipedia.org/wiki/Aptamer
https://en.wikipedia.org/wiki/Escherichia_coli
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Figure 1.13 The Affimer protein scaffold – showing the two loops and the amino terminus where designer or 

random peptides can be inserted to create a target-specific binding surface 

 

Affimer proteins typically displays two peptide loops on the protein surface and an N-

terminal peptide sequence which is all present in a randomised fashion to bind to the 

desired target proteins with high affinity and specificity. A protein scaffold is 

employed to constrain the two peptide sequences in its possible conformation so that 

there is an increase in the binding affinity and specificity when compared to libraries 

of free peptides. 

To date, a large number of affimer binders have been produced to a number of targets 

including ubiquitin chains,  immunoglobulins,  C-reactive protein,  interleukin-8,  

complement C3  and magnetite nanoparticles for their use in molecular recognition 

applications. 

Furthermore, affimers can also be modified to provide different tags and fusion 

proteins, such as fluorophores, histamine-tag and c-Myc for their use in various 

research applications including biosensing. Specific cysteine residues have also been 

introduced to the scaffold protein of the affimer which allows the use of thiol 

chemistry to bind the affimers to the gold surfaces in the development of biosensors 

(Sharma et al. 2016).  

Affimer technology has been commercialised and developed by Avacta Life Sciences, 

who are developing these affinity reagents as tools for research and diagnostics and as 

https://en.wikipedia.org/wiki/Ubiquitin
https://en.wikipedia.org/wiki/Immunoglobulin_superfamily
https://en.wikipedia.org/wiki/C-reactive_protein
https://en.wikipedia.org/wiki/Interleukin-8
https://en.wikipedia.org/wiki/Magnetite
https://en.wikipedia.org/wiki/Nanoparticles
https://en.wikipedia.org/wiki/Molecular_recognition
https://en.wikipedia.org/wiki/Fluorophore
https://en.wikipedia.org/wiki/His_tag
https://en.wikipedia.org/wiki/C-Myc
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biotherapeutics. Chapter 4 will describe the use of affimers on interdigitated Au 

electrodes for the development of a novel biosensor for the detection of the stromal 

tumour. 
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 Cancer 

The aim of the work in this thesis is to develop the electrochemical biosensors able to 

detect different cancer biomarkers. For the fabrication of these kind of sensors, it is 

important to understand the physiology of cancer in patients. In this chapter, I will 

describe prostate, breast and gastrointestinal cancer, their current diagnosis status, and 

their potential biomarkers. 

The main cause of the cancer is the uncontrolled proliferation of cells in certain tissues 

of the human body. The reasons for this proliferation can be different: long-term 

exposure to certain types of viruses, various chemical carcinogens or simply age. The 

result of this abnormal behaviour is a disruption of the life balance in the cells of the 

involved tissue. Cancer can be considered as an infection which is transmittable from 

the foreign invader, but it arises from the cells within our own body.  

The tumours are very complex tissues with different cell types which allow the 

possibility to grow and to develop as a normal tissue. The cell behaviour depends on 

the internal and external signals that the cell receives from the nervous system and it 

can be compared to an electronic circuit, where there are different switches that affect 

the behaviour of the entire connection network. The malfunction of the circuit can 

affect the entire organism bringing in the worst of cases, death.   

2.1 Prostate cancer 

As mentioned previously, cancer is a disease caused by the abnormal proliferation of 

the cells in the human body. This uncontrolled phenomenon could be caused by 

different carcinogens, genetic and environmental factors. It is these mutations within 

the cell that are responsible for prostate cancer (PCa) (Lilja et al. 1987). 

Prostate cancer is related to the prostate gland, which is a male reproductive organ that 

weighs between 7-16 g depending on the person (Leissner and Tisell 1979). The gland 

is located below the bladder and surrounds the urethra which carries urine from the 

bladder to the penis Figure 2.1. 
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Figure 2.1 Prostate gland. Source internet: Cancer Research UK 

 

2.1.1 Current status and detection techniques 

The problem associated with prostate cancer is that it develops very slowly and that 

symptoms are not always evident during the first disease stages. Another crucial point 

of PCa diagnosis is the presence of the false readings in the test results of the principal 

detection techniques used in the laboratories and hospitals.  

Currently, there are three commonly used techniques which are practised worldwide. 

The first is a digital rectal examination (DRE), where the irregularities in terms of 

bumps of the prostate gland are examined by a doctor by inserting a sterilised gloved 

finger through the rectum (Carvalhal et al. 1999). The second technique is the 

transrectal ultrasound (TRUS) which involves an ultrasound probe that is inserted into 

the rectum of the patient to image the prostate gland which is used to examine the 

pathology of the tumour. TRUS is also used for biopsy applications by guiding a 

needle together with the ultrasound probe for sampling tissues (Hara et al. 2008). 

Nevertheless, the most common technique used for PCa screening is a blood test where 

the altered levels of prostate specific antigen (PSA) are measured (Walter et al. 2006). 

The clinical cutoff level of PSA in blood is 4 ng/ml (Catalona et al. 1991). Prostate 
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specific antigen (PSA) was discovered in 1971, and soon became the foundation and 

gold standard of PCa detection and monitoring (Balk et al. 2003; Hara et al. 1971). 

PSA is a protein that belongs to the family of kallikrein proteins which are also called 

serine proteases. There are about 15 kallikrein proteins present in the human body 

where PSA (hK3) is the only kallikrein protein specific to the prostate (Balk et al. 

2003).  

The active PSA is a 30 kDa protein and is found in both semen and serum of men. 

 

Figure 2.2 Model of PSA biosynthesis in normal and cancer prostate gland (Balk et al. 2003) 

The physiological role of PSAin semen is to de-coagulate semen (range 0.5-2 mg/ml) 

by breaking down the proteins semenogelin I and II (Lilja et al. 1987; Lövgren et al. 

1999). 

It is worth mentioning that in semen, about 30% of PSA is enzymatically active, while 

only 5% of PSA is complexed to protein inhibitors. Furthermore, the remaining PSA 

often becomes inactive by internal cleavages catalysed by hK proteases. Some of the 

active PSA also escapes into the blood stream of the human body where it is rapidly 

bound to inhibitors and becomes such as alpha chymotrypsin (ACT) and α2-
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microglobulin (A2M) (Hara et al. 1971). However, in PCa patients, both active PSA 

and pro-PSA leaks into the blood stream due to rupture of the basal membrane of the 

prostate gland leading to fluctuations of blood PSA levels. Moreover, internally 

cleaved forms of PSA also enter the blood stream and remain uncomplexed and are 

taken into free PSA (fPSA) count. fPSA together with complexed PSA is termed as 

total PSA (tPSA) (Takayama et al. 1997). 

It is worth mentioning that with the introduction of PSA testing, there has been an 

increase in the early detection of PCa (Balducci et al. 1997).  

 

2.2 Breast cancer 

Cancer that develops in the breasts of the female is called breast cancer (Siegel et al. 

2013). Like any other cancer, there are specific markers in the body fluids that are 

released. The fluctuation of these markers could be potentially used for the prognosis 

and diagnosis of breast cancer. One of the most important biomarkers for breast cancer 

is the human Epidermal growth factor receptor 2 (Her2). Her2 is typically a 

transmembrane receptor tyrosine kinase (protein-based) and is a member of the 

Epidermal growth factor receptor (EGFR) family, which also includes EGFR (Her1), 

Her3, and Her4 (Patris et al. 2014).  

Her2 acts as an oncogene in breast cancer. The regulation of Her2 is often a signal for 

the clinicians to proceed with a further investigation to confirm cancer. Her2 

overexpression results in the ligand-independent dimerization which often leads to the 

constitutive activation of its cytoplasmic kinase domain. This constitutive activation 

of Her2 further leads to unregulated activation of the PI3K/AKT/mTOR and MAPK 

pathways, which promotes uncontrolled cell proliferation, leading to tumour growth 

and progression. 

 

2.2.1 Her2 Expression in Breast Cancer 

From the expression level, 15-20% of overexpression is commonly observed in 

patients with primary breast cancers and in approximately 10% of oestrogen-receptor-
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positive (ER+) breast cancers. As a result of the high-level expression, it drives the 

basal level of Her2 activity above a threshold that can stimulate tumour growth. 

Her2 is often reported as a potential prognostic biomarker for breast cancer which was 

first reported in 1987. It has been reported that its amplification is usually associated 

with reduced time to progression and reduced overall survival. Thereafter, many 

subsequent research studies that have confirmed this link. With poor prognosis Her2 

is also considered as an important predictive biomarker to the response to Her2-

targeted therapies (Chun et al. 2013; Hung et al. 1995).  

In central laboratories, Her2 testing is performed by either immunohistochemistry 

(IHC), or in situ hybridization (ISH) using either fluorescent (FISH), chromogenic 

(CISH) or silver (SISH) detection methods. Such tests often involve core biopsy or 

resected tumour tissue samples that are fixed in buffered formalin and embedded in 

paraffin wax. Since is an invasive technique, it leads to patients suffering and is also 

time-consuming and can only be performed by well-trained specialists.  

IHC detects Her2 protein expression which employs antibodies which are easily 

available commercially for this type of assay. On the other hand, ISH can detect the 

addition or deletion of specific DNA sequences on chromosomes by using 

complementary probes that are able to hybridise to the particular region of interest. As 

mentioned earlier, not only are these tests are done in centralised laboratories, these 

tests are time-consuming, costly and require trained professionals. Therefore, by 

developing a point-of-care device using biosensors, the costs and time could be greatly 

reduced and also help the physicians take necessarily mode of action.  

This thesis is a step towards the development of a sensitive and selective aptamer-

based biosensor for the detection of Her2. Chapter 4 will detail such an approach and 

demonstrate the detection of Her2 in undiluted human serum samples. 

2.3 Gastrointestinal stromal tumour 

Another type of cancer under study in this thesis is a gastrointestinal stromal tumour 

(GIST) which is the most common (80%) form of cancer among mesenchymal 

tumours. GIST represents an extensive spectrum of tumours with different clinical, 
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locations, histology and prognosis. GIST can also occur throughout the 

gastrointestinal tract and may also have involvement in extragastrointestinal. With the 

discovery of molecular biology, the clinical relevance of GIST was generated. 

(Mucciarini et al. 2007; Nilsson et al. 2005; Sandvik et al. 2011; Steigen and Eide 

2009)  

 

Figure 2.3 Computed tomography scan revealed a partially exophytic, dumbbell shaped solid mass (arrow) 

arising from the posterior aspect of the gastric fundus along the greater curvature, measuring approximately 6.7 

cm × 4.5 cm 

To date, there are no blood tests to detect GIST. This thesis is also a step towards the 

development of a biosensor that could detect Her4 marker which is associated with 

GIST. Chapter 5 will present an Affimer-based electrochemical sensor targeting Her4. 

It is worth mentioning that most GIST remains ‘silent’ until reaching a large size 

which often leads to the late diagnosis. Moreover, the symptoms associated with GIST 

vary depending on the location and size. Some of the symptoms include abdominal 

pain, fatigue, dyspepsia, nausea, anorexia, weight loss, fever and obstruction. Patients 

with chronic GIST can show over bleeding due to mucosal ulceration which can lead 

to life-threatening intraperitoneal haemorrhage. Also, some GIST patients may have 

externally palpable masses (Zhao et al. 2012).  

The current diagnostic tests for GIST is based on imaging techniques (Figure 2.3), 

with involves a special role of well trained endoscopic examiner because it is usually 
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accessible when tumours are in the stomach, oesophagus and large intestine. In 

addition, endoscopic ultrasonography (EUS) also plays an important role in the 

diagnosis of GISTs. 
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Abstract 

A label-free dual-mode impedimetric and amperometric aptasensor platform was 

developed using a simple surface chemistry step to attach gold nanoparticles (AuNPs) 

to a gold planar surface. As a case study, the strategy was employed to detect prostate 

specific antigen (PSA), a biomarker for prostate cancer. An anti-PSA DNA aptamer 

was co-immobilised with either 6-mercapto-1-hexanol (MCH) or 6-

(ferrocenyl)hexanethiol (FcSH) for both impedimetric or amperometric detection, 

respectively. We show that the use of AuNPs enables a significant improvement in the 

limit of impedimetric detection as compared to a standard binary self-assembled 

monolayer aptasensor. A PSA detection of as low as 10 pg/mL was achieved with a 

dynamic range from 10 pg/mL to 10 ng/mL, well within the clinically relevant values, 

whilst retaining the high specificity of analysis. The reported approach can be easily 

generalised to various other bioreceptors and redox markers in order to perform 

multiplexing. 

Keywords: aptamer, aptasensor, gold nanoparticles, prostate cancer, PSA 

 

3.1 Introduction 

There is an increasing demand for the simple, low-cost, reliable and rapid screening 

of biomarkers for the early detection of diseases such as cancer and this has led to a 

scurry of activity towards label-free biosensors. Removing the labelling step can 

provide significant savings in cost and time, making point-of-care sensing more viable 

than labelled alternatives. However, the removal of the label can lead to a more 

difficult determination of the analyte due to non-specific interactions in complex 

https://doi.org/10.1016/j.snb.2017.05.040
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media, resulting in decreased sensitivity and sometimes a system incapable of meeting 

the clinical requirements.  

Given that a biosensor’s signal is generally proportional to the surface coverage, most 

methods for increasing the sensitivity of label-free biosensors revolve around surface 

modifications to increase probe loading. Forming meso- and micro-porous surfaces 

with methods such as electrodeposition can provide increased surface area whilst still 

maintaining detection with low sample volumes. However, it is often easier and more 

controllable to increase surface area by anchoring nanoparticles to the surface. 

Nanoparticles may be formed from metals, oxides, semiconductors and conducting 

polymers, but it is the use of gold nanoparticles (AuNPs) which has attracted most 

attention for biosensing applications, in particular for biosensors based on optical and 

electrochemical transduction [1, 2]. 

The wide adoption of AuNPs has in part been down to their excellent biocompatibility, 

conductivity, and catalytic properties. AuNPs offer an important structural surface, 

amplifying the resulting electrical response. They can act as electroactive 

intermediates between electrodes and solution and hence increase the sensitivity of 

biosensors. AuNPs offer also a suitable platform for multi-functionalization with a 

wide range of organic or biological ligands for the selective detection of small 

molecules and biological targets [3-5]. Whilst antibodies remain the molecular 

recognition workhorse of choice for many biosensing devices, their use can impose 

limitations on both technology adoption and resulting applications [6]. One long-

championed alternative to antibodies has been DNA aptamers. DNA aptamers are 

short, stable oligonucleotide sequences possessing high affinity and specificity for 

particular targets. DNA aptamers have many advantageous properties compared to 

their biological antibody counterparts such as long-term stability, affordability and 

ease of development compared to antibodies [7, 8]. They can also be regenerated 

without loss of integrity or selectivity [9] providing a platform to develop multi-use 

sensors. Aptamers are however prone to protein fouling in serum due to DNA binding 

proteins [10] which mean that the surface chemistry should be considered to provide 

optimal performance.  
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The use of both AuNPs and aptamers for improved specificity and signal amplification 

have been previously demonstrated for electrochemical [11-13], optical [14, 15] and 

mass-based [16] biosensors. In this work, we show how a simple step to attach AuNPs 

to a planar gold surface results in a significant amplification of the biosensor response. 

The key focus of this work is to keep the number of fabrication steps to a minimum 

with low complexity. By doing this, we ensure a robust surface chemistry is achieved. 

Such an approach has been demonstrated by using a prostate cancer (PCa) biomarker 

as a case study. PCa is the most commonly diagnosed cancer amongst men worldwide. 

One of the key issues surrounding PCa diagnosis is that it develops very gradually 

over time and the absence of symptoms often results in a late diagnosis of the tumour 

which puts pressing needs on the development of reliable and sensitive diagnostic 

platforms. Currently, changes in levels of prostate specific antigen (PSA), a biomarker 

for PCa, in the blood can be used for PCa screening; levels higher than the cut-off 

level of 4 ng/mL prompt biopsy procedures to be considered [17-20]. PSA is a 30–33 

kDa serine protease secreted by the prostate gland. Despite well-documented 

controversies linked with PSA testing [21-23], PSA still remains the most commonly 

used biomarker for PCa screening, monitoring the effectiveness of treatment and post-

treatment [22, 24]. 

Taking a previous system based on an impedimetric aptasensor which used a planar 

gold surface with co-immobilised DNA aptamer / 6-mercapto-1-hexanol (MCH) 

probe layer [25], we show how sensitivity can be significantly improved by the 

addition of a single fabrication step to attach AuNPs to the planar gold electrode. As 

a result, we shift the limit of quantification from 60 ng/mL to 10 pg/mL, i.e. nearly 4 

orders of magnitude improvement, so that it aligns with the clinically relevant range 

of 1 to 10 ng/mL. The fabricated aptasensor was successfully tested with spiked human 

serum samples and a detection of PSA as low as 10 pg/mL was achieved. Furthermore, 

simply by replacing MCH with 6-(ferrocenyl)hexanethiol (FcSH), a thiolated redox 

marker, during the co-immobilisation of the aptamer, the aptasensor could be similarly 

used for sensitive amperometric detection of PCa at clinically relevant concentrations. 

Such a dual-detection approach could potentially reduce false positives, providing 

additional validation of the signals. 
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3.2 Experimental 

3.2.1 Reagents 

Thiolated anti-PSA aptamer, 5’-HS-(CH2)6-TTT TTA ATT AAA GCT CGC CAT 

CAA ATA GCT TT-3’ and a random DNA sequence non-specific to PSA (5’- HS -

(CH2)6-AAA AAT TAA TTT CGA GCG GTA GTT TAT CGA AA-3’) used as 

control DNA probe were obtained from Sigma-Aldrich (UK). Prostate specific antigen 

(PSA) from human semen was obtained from Fitzgerald (MA, USA). Human serum 

albumin (HSA), human serum, 11-aminoundecanethiol hydrochloride, 6-mercapto-1-

hexanol (MCH), 6-(ferrocenyl)hexanethiol (FcSH), potassium buffer saline tablets 

(pH 7.4), potassium hexacyanoferrate (III), potassium hexacyanoferrate(II), gold 

nanoparticles (20 nm, stabilized suspension in 0.1 mM PBS, reactant free) were all 

purchased from Sigma-Aldrich (UK). All other reagents were of analytical grade. All 

aqueous solutions were prepared using 18.2 MΩ cm ultrapure Milli-Q water with a 

Pyrogard® filter (Millipore, MA, USA). For binding studies, different concentrations 

of PSA were prepared in 10 mM PBS, pH 7.4. The specificity of the aptamer was 

evaluated by studying its interaction with 10 ng/mL HSA as a control protein dissolved 

in 10 mM PBS, pH 7.4. For experiments with serum, different concentrations of PSA 

were prepared in 1:10 diluted human serum (diluted in 10 mM PBS, pH 7.4). 10 times 

diluted human serum solution was further filtrated through a 0.22 µm pore filter. 

3.2.2 Apparatus 

The electrochemical measurements were performed using a µAUTOLAB III / FRA2 

potentiostat (Metrohm Autolab, Netherlands) using a three-electrode cell setup with 

an Ag/AgCl reference electrode (BASi, USA) and a Pt counter electrode (ALS, Japan). 

The impedance spectrum was measured in 10 mM PBS (pH7.4) containing 4 mM 

ferro/ferricyanide [Fe(CN)6]3-/4- in a frequency range from 100 kHz to 100 mHz, with 

a 10 mV AC voltage superimposed on a bias DC voltage of 0.2 V vs. Ag/AgCl. Cyclic 

voltammetry was performed in 10 mM PBS (pH 7.4) containing 10 mM 

ferro/ferricyanide [Fe(CN)6]3-/4- and scanning the potential between -0.3 V to 0.5 V vs. 

Ag/AgCl. Square wave voltammetry was performed in 10 mM PBS (pH 7.4) in the 

potential range from -0.4 V to 0.65 V vs. Ag/AgCl with a conditioning time of 120 s, 

modulation amplitude of 20 mV and frequency of 50 Hz.  
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Surface characterisation of gold electrodes modified with gold nanoparticles was 

performed using a scanning electron microscopy (JSM-6480 Jeol, Japan) on gold 

evaporated chips at 100,000× magnification with an acceleration voltage of 5 kV. 

Ambient contact mode (tapping mode) atomic force microscopy (AFM) imaging was 

carried out with a MultiMode NanoScope with IIIa controller in conjunction with 

version 6 control software (Bruker, Germany). Gold evaporated chips modified as 

described in the fabrication section for gold electrodes were imaged with a 10 nm 

diameter AFM ContAl-G tip (BudgetSensors®, Bulgaria), images were then 

processed by the NanoScope Analysis software, version 1.5.  

3.2.3 Electrode preparation 

Prior to functionalisation, gold disc working electrodes with a radius of 1.0 mm (ALS, 

Japan) were cleaned by mechanical polishing for 5 minutes with 50 nm alumina slurry 

(Buehler, UK) on a polishing pad (Buehler, UK) followed by 5 minutes sonication in 

ethanol and then in water. The electrodes were then subjected to chemical cleaning 

with piranha solution (3 parts of concentrated H2SO4 with 1 part of H2O2 for 5 

minutes). The electrodes were then rinsed with Milli-Q water. Thereafter, electrodes 

were electrochemically cleaned in 0.5 M H2SO4 by scanning the potential between 0 

V and +1.5 V vs. Ag/AgCl for 50 cycles until no further changes in the voltammogram 

were observed. After electrochemical cleaning, electrodes were extensively washed 

with MilliQ water to remove any acid residues. Finally, electrodes were cleaned with 

ethanol and were left to dry in an air-filtered environment for several minutes. 

3.2.4 Sensor fabrication 

An overview of the aptasensor fabrication for both impedimetric and amperometric 

determination is illustrated in Figure 3.1. The protocol for the modification of planar 

gold electrodes with gold nanoparticles was adapted from Bertok et al. [26]. Briefly, 

clean gold electrodes were immersed in 150 µL of 1 mM solutions of 11-amino 

alkanethiol dissolved in pure ethanol for 16 hours at ~4°C. This step was performed 

to provide a high-density monolayer. After incubation, electrodes were washed with 

pure ethanol followed by MilliQ water to remove any unattached thiols. To ensure 

complete thiol coverage of the gold surface, the electrodes were backfilled with 1 mM 



51 

 

MCH for 1 hour at room temperature. Thereafter, the electrodes were incubated with 

100 µL of 20 nm gold nanoparticle (AuNP) solution (undiluted stock solution) in an 

inverted position overnight.  

 

Figure 3.1 Schematic of the AuNP-modified aptasensor showing how either impedimetric or amperometric 

detection can be used depending on whether the DNA aptamer is co-immobilised with MCH or FcSH 

 

A second mixed SAM layer was deposited on the AuNP-modified electrodes with 

different ratios of thiolated DNA aptamer to MCH (1:10, 1:50, 1:75 and 1:100) in 10 

mM PBS (pH 7.4) for 2 hours at room temperature. High concentrations of MCH were 

prepared in ethanol and then diluted to working concentrations in buffer solutions. 

Prior to the addition of MCH, DNA aptamers were activated by heating to 95°C for 

10 minutes and allowed to cool gradually to room temperature over 30 minutes [4]. 

MCH was included in order to alter the lateral density of thiolated DNA on the surface; 

this was to passivate the gold surface and reduce non-specific binding as well as 

minimise steric hindrance and facilitate the charge transfer during the EIS 

measurements [25]. After immobilisation, the electrodes were rinsed with ultra-pure 

water to remove any unbound DNA aptamers. Finally, the electrodes were placed in 

the measurement buffer for 1 hour to stabilise the SAM prior to measurements. For 
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amperometric detection, the same fabrication protocol was adapted but MCH was 

replaced with FcSH.  

 

3.3 Results and discussion 

3.3.1 Characterisation of the AuNP-modified surface fabrication 

The morphology of the AuNP-modified surface was characterised using both scanning 

electron microscopy (SEM) and atomic force microscopy (AFM). Figure 3.1 shows 

an SEM image showing a homogeneous distribution of AuNPs on the electrode 

surface. Moreover, Figure 3.2 shows AFM images of the planar gold surface before 

(a) and after (b) the attachment of 20 nm AuNPs. The modified surface is shown to 

have a well-ordered assembly of AuNPs on the surface. Analysis of the AFM images 

of a gold electrode before AuNP attachment showed a mean roughness (Ra) value of 

0.64, root means square roughness (Rq) value of 0.87 with a maximum roughness 

depth (Rmax) value of 8.32. On the other hand, gold electrodes modified with AuNPs 

showed a high mean roughness (Ra) value of 5.56, root means square roughness (Rq) 

value of 6.71 with a maximum roughness depth (Rmax) value of 35.8.  

 

Figure 3.2 Images created from AFM data showing the difference in surface morphology for the original planar 

gold surface (a) and the AuNP-modified surface (b) 

3.3.2 Optimisation of probe surface using electrochemical impedance 

spectroscopy 

The probe density can play an important role in biosensor performance, providing a 

trade-off between surface coverage and analyte capture efficiency. Notably, the 

conformation change occurring as a result of the aptamer to PSA binding can lead to 

significant steric hindrance for high-density coverage [25]. As surface coverage and 
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spacing of the probe molecules are dependent on the concentrations of co-immobilised 

molecules, a range of ratios was tested to see whether the sensor response was affected. 

The AuNP-modified gold substrates were co-immobilised with the thiolated DNA 

aptamer and MCH in ratios of 1:20, 1:50, 1:75 and 1:100 and their impedimetric 

response to increasing PSA concentration in 10 mM PBS (pH 7.4) were characterised 

using electrochemical impedance spectroscopy (EIS). 

Typical Nyquist plots for the system are presented in Figure 3 (a), where the charge 

transfer resistance (Rct) of the prepared SAM (co-immobilized DNA aptamer and 

MCH) was determined by fitting the data to a Randles equivalent circuit, with a 

constant phase element (non-ideal capacitance), in parallel with Rct and a Warburg 

element that models diffusion [25]. The Nyquist plots in Figure 3 (a) show the effect 

of increasing PSA concentration on the charge transfer resistance for a 1:50 ratio of 

thiolated probe to MCH. By comparing the responses for the 1:10, 1:50, 1:75 and 

1:100 ratios, it can be seen in Figure 3 (b) that the response is not hugely affected by 

the density of surface-bound probe on AuNPs. To further highlight this, the response 

to the lowest (10 pg/mL) and highest (10 ng/mL) concentrations of PSA were 

compared with the response to a 10 ng/mL HSA control. The aptasensor demonstrated 

excellent selectivity response with less than 2% of signal variation upon incubation 

with HSA, which is present in abundance in human blood. A full dose response for 

different ratios has also been examined for a range of PSA concentrations from 0.01 

ng/mL until 10 ng/mL and has been presented in supplementary information, Figure 

S-1. From all the ratios tested, the 1:50 ratio provided a slight improvement in 

reproducibility along with better discrimination against the HSA control compared to 

the higher probe density 1:20 ratio. This demonstrates the trade-off between surface 

coverage and efficacy of analyte capture.  
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Figure 3.3 (a) EIS response for 0.01 ng/mL to 10 ng/mL PSA in 10 mM PBS (pH 7.4) for a surface density of 

1:50. (b) Percentage increase of Rct for a range of aptamer: MCH concentrations for the detection of 0.01 

ng/mL and 10 ng/mL PSA compared to the response for the 10 ng/ml HSA control (all in 10 mM PBS, pH 7.4) 

with standard mean errors from 4 independent samples. 

3.3.3 Analytical performance 

3.3.3.1 Amperometric performance 

To verify that the aptasensor’s electrochemical response was specific to PSA target 

binding to the aptamer probe rather than non-specific interactions caused by the 

presence of the surface-bound FcSH molecules, we replaced the PSA probe with a 

random DNA sequence and tested the response using square-wave voltammetry (see 

Supplementary Information, Figure S-2). With the random sequence a mean shift of 

1.03 + 0.37% was observed, attributed to non-specific interactions, compared to a 

mean shift of nearly 28.00 + 2.10% for the correct anti-PSA probe. The difference in 

the response indicates that the specificity of the surface chemistry developed for PSA 

detection is good. 

With the probe surface ratio optimised and the selectivity of the probe confirmed, an 

amperometric dose response to PSA was carried out for concentrations increasing 

from 10 pg/mL to 500 ng/mL. The square wave voltammograms are shown in the inset 

of Figure 5 with the FcSH redox marker’s characteristic oxidative peak at 0.27 V. On 

incubation with different concentrations of PSA, a reduction in peak current was 

observed. Such a response could be attributed to the change in the electrochemical 
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environment around the redox marker on the binding of the target and the change in 

the conformation of the DNA aptamer [27]. The current was measured at a constant 

peak potential of 0.27 V after incubation with different concentrations of PSA. The 

percentage change in peak current was plotted against logarithmic concentration and 

shown in Figure 4. A logarithmical response between 1 ng/mL and 100 ng/mL was 

achieved, which aligns with the clinically relevant range of 1– 10 ng/mL. 

 

Figure 3.4 Electrochemical dose response of the aptasensor for increasing concentrations of PSA in 10 mM PBS 

(pH 7.4) with standard mean errors from 3 independent samples. Inset: Square wave voltammograms for 

increasing concentrations of PSA showing the decrease i in the oxidative peak current of FcSH. 

3.3.3.2 Impedimetric performance 

Reverting from the redox-modified FcSH co-immobilised probe layer to the MCH co-

immobilised probe layer, the impedimetric performance was assessed in both 10 mM 

PBS (pH 7.4) and 1:10 diluted human serum against the original planar gold platform 

on which this work is based on [25]. The performance in human serum provides a 

good indicator for the aptasensor’s feasibility for practical application. In order to 

negate any non-specific interactions, the aptasensor was incubated in serum sample 

without any PSA. The response of the sensor measured in the form of Rct was used as 

a reference signal.  



56 

 

Figure 3.5 shows the aptasensor’s percentage shift in Rct plotted against a logarithmic 

scale of PSA concentration. The results illustrate how the detection range is shifted 

from 60 ng/mL – 1 µg/mL in the case of the planar gold surface to 10 pg/mL – 10 

ng/mL for the AuNP-modified surface. The efficiency in terms of signal output has 

also been drastically improved from a signal change of 2.59 + 1.19% for 60 ng/mL 

PSA using a planar gold surface to 8.22 + 0.88% for 10 pg/mL PSA using the AuNP-

modified surface. Improved sensitivity of the AuNP-modified surface is evident as the 

aptasensor performs well in human serum to concentrations well below the lower point 

of clinical interest. The fabricated sensor demonstrated an excellent improvement in 

the sensitivity, which is better or comparable to the existing state of art PSA biosensors 

reported to date. With this new method, we have been able to shift the detection range 

from outside the clinical grey zone (1 ng/mL to 10 ng/mL), indicated in Figure 6, to 

below and across this grey zone in both buffer and human serum spiked samples. 

 

Figure 3.5 Comparison of the performance originally achieved with a planar gold surface as per previous work 

[25] with that of the AuNP-modified surface in both 10 mM PBS (pH 7.4) and 1:10 diluted human serum. The 

simple addition of AuNPs shifts the detection into the clinically relevant 1-10 ng/mL range (shaded area). The 

data for planar gold surface has been taken from Formisano et al. [25]. 

In order to further demonstrate the practical application of the developed aptasensor, 

the signal changes obtained from serum samples were used to calculate the recovery 

of the system from below the clinical range of PSA (0.1 ng/mL) to its upper limit (10 
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ng/mL). The recovery was calculated as the ratio of the sensor performance in spiked 

human serum samples to that obtained in the buffer for the same concentrations of 

PSA. The results are presented in Table 1, where it can be seen that the sensor 

performance in serum samples is in good accordance with the response in a buffer. 

The sensor demonstrated a minimum recovery of 74.46% at 0.1 ng/mL PSA and a 

maximum of 97.64% at 10 ng/mL PSA. It is probable that protein-protein interactions 

within the sample matrix are causing a small loss in sensitivity, with similar behaviour 

reported for aptamer ELISA assays [20]. Specifically, this assay used free PSA derived 

from seminal fluid, which may interact with complementary anti-chymotrypsin and 

albumin proteins present in plasma, thus preventing the desired interactions with the 

aptasensor. In comparison, the free PSA in patient blood is internally cleaved and 

therefore avoids interactions with anti-chymotrypsin [28] and this could result in an 

improved limit of detection for clinical samples. 

PSA added (ng/mL) PSA found (ng/mL) R.S.D. (%) R.E. (%) Recovery (%) 

0.1 0.07 6.99 0.74 74.46 

1 0.85 5.96 0.90 85.01 

3 2.60 7.7 1.43 86.71 

5 4.26 9.27 1.94 85.11 

10 9.76 4.10 1.08 97.64 

Table 3.1Detection of PSA in human serum. The amount of PSA found in spiked plasma corresponds to the 

percentage signal calculated on basis of PSA detection in PBS buffer. Results represent mean ± SD (standard 

deviation) obtained from three independent experiments s; R.S.D. (relative standard deviation) = standard 

deviation/mean × 100; R.E. (relative error) = [(true value-measured value)/true value] × 100; n = 3 

An overview of existing electrochemical PSA aptasensors is presented in Table 2. It 

is important to distinguish between results obtained in human serum with those 

obtained in buffers. Whilst Kavosi et al. [29] produced an aptasensor with very low 

detection limits (10 fg/mL for DPV) with a wide dynamic range (0.1 pg/mL - 90 

ng/mL), the mechanism is enzymatic and utilises a complex composite. Most recently 

Rahi et al. [30] have reported a relatively simple system based on electrodeposited 

gold nanospheres using an arginine template to achieve a 50 pg/mL detection limit. 
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However, the surface morphology and control is more complex due to the mechanism 

of electrodepositing of gold nanospheres using an arginine template. 

Regardless of achieving a slightly lower detected concentration of PSA, we feel the 

real strength of our approach is the simplicity and flexibility of the fabrication process. 

Simply switching the MCH for FcSH during co-immobilisation of the aptamer probe 

allows for amperometric detection. Most importantly modifying the planar gold 

surface with AuNPs can be extended to many other metallic substrates and the simple 

process of controlling surface coverage of the aptamer probe through co-

immobilisation provides mechanisms to achieve robust anti-fouling properties for 

improved surface chemistry.  

 

Table 3.2 Comparison of existing electrochemical PSA aptasensors performance 
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3.4 Conclusions 

We have shown how the detection limit of a previously reported methodology using a 

planar gold surface can be significantly improved with the addition of a simple step to 

attach AuNPs. Co-immobilising the anti-PSA aptamer with either FcSH or MCH 

provides a platform for the amperometric or impedimetric detection of PSA, 

respectively within the clinically relevant 1-10 ng/mL range. The aptasensor 

performed markedly better in its impedimetric guise, with PSA concentrations down 

to 10 pg/mL detected in diluted human serum with a dynamic range up to 10 ng/mL. 

The sensitivity and specificity of the aptasensor make it applicable for clinical analysis 

of PCa. We believe the simplicity of the fabricated aptasensor offers several 

advantages compared to other current PCa detection techniques. 
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Table 3.3 Graphical abstract 

Supplementary Information 

S-1: Selectivity study with control protein using electrochemical impedance 

spectroscopy 

By overlaying the dose responses for the 1:10, 1:50, 1:75 and 1:100 ratios, it can be 

seen in Figure S-1 that the response is not hugely affected by the density of surface-

bound probe on AuNPs. An attempt to fit the dose responses data from different ratios 

was performed. The ΔRct versus [PSA] curves roughly follow a Hill dose-response 

equation of the type y = y0 +  (ymax-y0) cn/(kn + cn) where c is the concentration. Fitting 
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demonstrated good root mean square (RMS) values of 0.94, 0.99, 0.99, 0.91 for 1:10, 

1:50, 1:75 and 1:100 respectively.  However, without having demonstrated the 

saturation phase, no accurate values of the parameters can be extracted from the fits. 

From all the ratios tested, the 1:50 ratio provided a slight improvement in 

reproducibility along with better discrimination against the HSA control compared to 

the higher probe density 1:20 ratio. This demonstrates the trade-off between surface 

coverage and efficacy of analyte capture.  

 

Figure 3.6 Dose response for 0.01 ng/mL to 10 ng/mL PSA in 10 mM PBS (pH 7.4) for the aptasensor with 

different MCH to probe ratios with standard mean errors from 4 independent samples 

S-2: Electrochemical surface selectivity test using a random probe sequence 

To verify that the aptasensor electrochemical response was caused by the PSA target 

binding to the aptamer probe rather than non-specific interactions caused by the 

presence of the surface-bound FcSH molecules, we replaced the PSA probe with a 

random DNA sequence and tested the response using square-wave voltammetry.  

Figure 3.7 (a) shows the voltammogram for the blank response of the random DNA 

sequence attached to the AuNP-modified planar gold surface and with the addition of 

50 ng/mL PSA target. Changes in peak current for both the random and anti-PSA 

systems were calculated and shown in Figure 3.7 (b). With the random sequence a 



65 

 

mean shift of ~1% was observed, attributed to non-specific interactions, compared to 

a mean shift of ~28% for the correct anti-PSA probe. The difference in the response 

indicates the specificity of the surface chemistry developed for PSA detection is 

acceptable. 

 

Figure 3.7 (a) Forward sweep of the square-wave voltammograms (in 10 mM PBS, pH 7.4) showing the blank 

response of the random DNA sequence (blue) and the response after the addition of 50 ng/mL PSA (red). (b) 

Comparison of the PSA aptasensor (blue) and the control surface (red) with an addition of 50 ng/mL PSA (n=3) 
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Abstract 

We report the development of a simple and powerful capacitive aptasensor for the 

detection and estimation of Her2, a biomarker for breast cancer, in undiluted serum. 

The study involves the incorporation of interdigitated gold electrodes, which were 

used to prepare the electrochemical platform. A thiol terminated DNA aptamer with 

affinity for Her2 was used to prepare the bio-recognition layer via self-assembly on 

interdigitated gold surfaces. Non-specific binding was prevented by blocking free 

spaces on surface via starting block phosphate buffer saline-tween20 blocker. The 

sensor was characterized using cyclic voltammetry, electrochemical impedance 

spectroscopy (EIS), atomic force microscopy and contact angle studies. Non-Faradic 
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EIS measurements were utilised to investigate the sensor performance via monitoring 

the changes in capacitance. The aptasensor exhibited logarithmically detection for 

HER2 from 1 pM to 100 nM in the buffer and undiluted serum with limits of detection 

lower than 1 pM in both buffer and serum, respectively. The results pave the way to 

develop other aptamer-based biosensors for protein biomarkers detection in undiluted 

serum. 

 

Keywords: Aptamer; impedimetric; capacitance; biosensor; HER2; breast cancer 

4.1 Introduction 

Breast cancer is one of the most common cancers and the second major cause of deaths 

in women worldwide (Diaconu et al. 2013; Siegel et al. 2013). More than 90% of these 

deaths are related to metastatic growth (Siegel et al. 2013). Therefore, early stage 

detection of cancer is crucial to increase the chances of survival. Human epidermal 

growth factor receptors (Her/erbB) are involved in normal growth and cell 

differentiation, however, a malignant growth can be related with Her2 overexpression 

and it is present in some cases of breast, ovarian, lung, gastric, oral, prostate and other 

cancers (Patris et al. 2014). Her2 has also been shown to be overexpressed in around 

20–30% of aggressive breast cancers and associated with poor prognosis (Diaconu et 

al. 2013). Breast cancer patients possess high Her2 concentrations in their blood (15–

75 ng/ml) compared to normal individuals (2–15 ng/ml) and can be utilised for 

diagnosis (Chun et al. 2013; Hung et al. 1995). To evaluate these concentrations, 

various Her2 detection techniques have been reported, including fluorescence in situ 

hybridization (FISH) assays and immunohistochemical (IHC) assays (Press et al. 

2002). However, these techniques require sophisticated instrumentation, special 

training, are labour-intensive and time-consuming. 

To satisfy these unmet clinical needs, several biosensors that recognise enzymes, 

receptors and antibodies have been reported (Camacho et al. 2009; Wang et al. 2009b). 

One of the disadvantages of using antibodies is their instability due to irreversible 

denaturation. Therefore, alternative bio-recognition elements are desirable to develop 

stable biosensors. Synthetic molecules such as oligonucleotide aptamers have shown 
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great promise to fulfil these gaps associated with biomarkers. Aptamers, single strand 

oligonucleotides (DNA or RNA), that are designed and develop synthetically in the 

laboratory have been shown to bind to specific targets, such as proteins (Qureshi et al. 

2015). Aptamers are known to be more stable, cheaper, are easily modified chemically 

and can be easily produced in bulk. Furthermore, the unique binding properties of 

aptamers have shown great potential for biosensors using optical, electrochemical, and 

mass-sensitive approaches (Cho et al. 2009; Qureshi et al. 2015). 

Among various types, electrochemical biosensors have gained much interest due to 

their simplicity, miniaturizeability, faster and more sensitive response (Arya and 

Bhansali 2012; Bollella et al. 2017; Wang et al. 2017). Among electrochemical 

biosensors, electrochemical impedance spectroscopy (EIS)-based biosensors are 

recently gaining much attention (Arya et al. 2014; Gong et al. 2017). EIS based 

biosensors allow the label-free detection of an analyte binding to a bio-recognition 

layer at the electrode surface and can be measured in form of changes in capacitance 

and/or resistance (Ramón-Azcón et al. 2008). It has been shown in the literature that 

the use of interdigitated microelectrodes (IDµEs) to develop EIS-based biosensors 

present additional advantages of faster reaction kinetics, enhanced sensitivity and 

improved signal-to-noise ratio (Arya and Bhansali 2012; Ramón-Azcón et al. 2008; 

Wang et al. 2009a). Moreover, due to faster mass transport with a lower iR drop and 

double layer charging effects, IDµEs attain steady state faster, resulting in easier 

measurement than with conventional macroelectrodes (Arya and Bhansali 2012; 

Varshney and Li 2009). 

In impedimetric biosensors, the use of Faradaic impedance, where transduction 

happens via changes in the hindrance presented by surface interface to a solution phase 

probe is very common (Arya et al. 2014; Santos et al. 2014); however, the use of non-

Faradaic approaches, where capacitive changes are monitored (Berggren et al. 2001; 

Luo and Davis 2013), do not require the pre-addition of redox probes to the analytical 

solution and can be applied for highly sensitive detection of analytes (Berggren et al. 

2001; Qureshi et al. 2010). Furthermore, for practical applications, where the 

measurement in real samples is required, non-Faradaic measurements are desirable. In 

non-Faradaic impedance, where redox active probes are absent in the solution, 
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transduction occurs via changes in the hindrance presented by a surface dielectric, 

charge distribution or local conductance, and can be monitored through capacitance 

measurement (Berggren et al. 2001). Such capacitance change may arise when a target 

protein binds to the receptor immobilised onto the electrode surface, displacing water 

molecules and ions away from the surface (Tkac and Davis 2009), or due to varying 

protein conformation (Berggren et al. 2001). 

In this study, the combination of interdigitated microelectrodes (IDµE), aptamer and 

capacitive measurement has been utilised to develop a simple and sensitive biosensor 

for Her2 protein biomarker estimation. For biosensor development, gold IDµE chips 

were functionalized with DNA aptamers via self-assembly and used for specific 

capture of Her2 protein. The surface was further blocked using phosphate buffer 

saline-tween 20 based starting block (SB) to prevent non-specific binding and fouling 

of the surface. The non-Faradaic electrochemical impedance spectroscopy was utilised 

to quantify Her2 binding events in buffer and serum samples by monitoring the 

changes in capacitance. 

4.2 Experimental 

4.2.1 Materials 

Thiol-terminated Her2 specific DNA aptamer (5’-SH-(CH2)6-AAC CGC CCA AAT 

CCC TAA GAG TCT GCA CTT GTC ATT TTG TAT ATG TAT TTG GTT TTT 

GGC TCT CAC AGA CAC ACT ACA CAC GCA CA-3’) was procured from Sigma 

(UK). For binding studies, different concentrations of Her2 and other targets were 

prepared in 10 mM PBS, pH 7.4 or in undiluted serum. StartingBlock phosphate buffer 

saline-Tween 20; (SB) was procured from Fisher Scientific (UK); Dulbecco’s 

phosphate buffered saline and phosphate buffered saline with 0.05% Tween20 were 

procured from Sigma (UK). All other chemicals were of analytical grade and were 

used without further purification. All aqueous solutions were prepared using 18.2 MΩ 

cm ultra-pure water (milli-Q water) with a Pyrogard® filter (Millipore, MA, USA). 

4.2.2 Measurement and apparatus 

Blank and aptamer modified IDµE chips were characterised via atomic force 

microscopy (AFM) imaging in ambient tapping mode using a MultiMode NanoScope 
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with IIIa controller (Bruker, Germany) in conjunction with version 6 control software. 

AFM images were recorded using 10 nm diameter AFM ContAl-G tip 

(BudgetSensors®, Bulgaria), and then processed by the NanoScope Analysis 

software, version 1.5. Aptamer binding was also characterised via contact angle 

measurements using an in-house built optical angle measurement system (Miodek et 

al. 2015). For measurement, chips were placed on the stage and a 10 µl of water drop 

was dispensed on the electrode with the dispensing system. The wetting of surface was 

then captured using a Nikon p520 camera. The contact angle was measured using a 

screen protractor version 4.0 procured from Iconico. 

Biosensor fabrication was also characterised electrochemically via electrochemical 

impedance spectroscopy (EIS) and cyclic voltammetry (CV) in a three-electrode 

configuration with on-chip gold (2 m thick) as a counter and a pseudo reference 

electrode. EIS measurements were performed at open circuit potential (equilibrium 

potential), without external biasing in the frequency range of 105-0.1 Hz with a 25 mV 

amplitude using a µAutolab III / FRA2 potentiostat/galvanostat (Metrohm, 

Netherlands). EIS and CV measurements were carried out using 50 μl of PBS solution 

(10 mM, pH 7.4) containing a mixture of 5 mM Fe(CN)64− (ferrocyanide) and 5 mM 

of Fe(CN)63− (ferricyanide) as a redox probe. Non-Faradaic EIS measurements on 

IDµEs (in the absence of redox couple) using a two-electrode configuration were 

utilised for HER2 detection and estimation in 10 mM PBS (pH 7.4) in a frequency 

range from 0.1-105 Hz with a 200 mV amplitude. 

4.2.3 Electrode preparation and functionalization 

4.2.3.1 Gold electrode fabrication 

The deposition of interdigitated gold microelectrode arrays on Silicon/Silicon oxide 

wafer was performed using standard lithographic and micro-fabrication techniques as 

previously described (Pui et al. 2013) The 3200 μm long interdigitated fingers of 5 

μm, spaced at 10 μm and attached to single base of 5500 μm length were deposited 

and utilized for biosensor development. Prepared IDµEs were cleaned thoroughly with 

isopropyl alcohol, acetone and with excess amounts of milli-Q water followed by 30 

min UV-ozone treatment (ProCleaner, BioForce Nanosciences, USA) before aptamer 

functionalization.   
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4.3.3.2 Aptamer assembly and blocking 

For thiolated aptamer assembly and immobilisation on IDµEs, stock aptamer 

immobilisation solution (100 µM in tris buffer) was heated to 95°C for 5 min followed 

by ice-cooling to room temperature and thereafter, diluted to 2 µM solution in PBS 1x 

pH 7.4. Pre-cleaned IDµEs were then incubated with 2 µM aptamer solution for 120 

min at room temperature. Later, the chips were washed with PBST-20 (pH 7.4) and 

PBS (10 mM. pH 7.4) to remove any unbound Aptamers. The free spaces on the chip 

were blocked using SB incubation for 30 min, after which extra solution was removed 

and developed sensor electrodes were stored at 4 ˚C until further use. Figure 4.1 shows 

the schematic for aptasensor electrode preparation. 

 

Figure 4.1 Schematic for aptasensor electrode preparation 

4.3 Results and Discussion 

4.3.1 Characterisation of the biosensor fabrication 

4.3.1.1 Contact angle and AFM measurements 

Figures 4.2a and 4.2b show the variation of contact angle of blank gold and after 

aptamer immobilization. The clear decrease in contact angle value from 23º for blank 

gold (Au) to 10º for aptamer/IDµE suggests the successful formation of aptamer self-

assembled monolayer (SAM). Further, Fig. 2c and 2d shows the AFM images of blank 

gold and aptamer modified surface taken in tapping mode using a 10 nm AFM tip. The 

observed change in non-uniform morphology for blank gold (Fig 4.2c) surface to 

R

C
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uniformly distributed structure (Fig. 4.2d) for aptamer modified IDµE confirms the 

successful SAM formation by thiolated aptamer. 

 

Figure 4.2 Contact angle image for (a) blank cleaned gold surface, (b) after aptamer SAM formation and AFM 

image for (c) blank cleaned gold surface, (d) after aptamer SAM formation 

4.3.2 CV and EIS characterization for biosensor development 

Biosensor fabrication was characterised using cyclic voltammetry (CV) in PBS (1x) 

containing 5 mM potassium ferrocyanide 5mM potassium ferricyanide (FeCN6
3-/4-). 

Fig 3a decrease in peak current from 156 µA for blank IDµE to 132 µA for aptamer 

SAM indicate successful SAM formation. Further, reduction in peak current to 96 µA 

after blocking confirms the filling of free surface on IDµEs with blocker proteins. Inset 

in Fig 3a shows the Nyquist plots for each step, where an increase in charge transfer 

resistance (Rct) from 217 for the blank chip to 661  after aptamer SAM formation 

reveals successful immobilisation. Further, increase in Rct to 1021  after blocking 

can be attributed to adsorption of non-conducting blocker proteins in free areas on 

gold. 

Blank, aptamer modified and after blocking, electrodes were further investigated 

under different scan rates (30-100 mV/s), where observed oxidation and reduction 

peaks even after aptamer SAM formation and blocking suggested good redox activity 

of electrode. Moreover, the observed linear variation in oxidation peak currents with 
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the square root of scan rate (Fig. 4.3c) obey Equations 4.1 to 4.3 and suggest a 

diffusion-controlled process on sensor surface (Vasudev et al. 2013). 

Ioxi (Blank IDµE) (µA) = -21.62 µA + 796.85 (Scan rate)1/2 µA; r2 = 0.999             (4.1) 

I oxi (Aptamer/IDµE) (µA) = 18.99 µA + 504.33 (Scan rate)1/2 µA; r2 = 0.999         (4.2) 

I oxi (SB-Aptamer/IDµE) (µA) = 20.69 µA + 340.81 (Scan rate)1/2 µA; r2 = 0.991    (4.3) 

 

Figure 4.3 Characterization of biosensor electrode fabrication at each step via (a) CV, (b) EIS and (c) scan rates 

study showing oxidation peak current response as a function of square root of scan rate. 
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4.3.3 HeR 2 studies  

4.3.3.1 Capacitive measurement via electrochemical impedance for Her2 in PBS 

The SB-Aptamer/IDµE bio-electrodes were utilized to study aptamer-Her2 binding on 

the surface in 1 pM to 100 nM concentration range (Fig. 4.4). For measurement, the 

desired concentration of Her2 (50 µl) was poured onto bio-electrode and incubated for 

30 min, followed by washing with PBST20 and PBS to remove unbound HER2 

molecules. Non-faradic EIS spectra were then recorded for washed electrodes in 10 

mM PBS (pH 7.4) and then 1/(Freq)(imaginary part of impedance (-Z’’)) was utilised 

to convert obtained data to capacitance data. From capacitance curves (Fig. 4.4b), 

capacitance values were recorded at 2 Hz, where maximum phase angle was observed 

(Fig. 4.4a), indicating maximum capacitive effect.  

 

Figure 4.4 (a) phase data, (b) capacitance data for Aptamer-Her2 binding on biosensor surface in PBS and (c) 

calibration curve using capacitance data for different concentration at 2 Hz 
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Capacitive values at 2 Hz were then utilised to plot calibration curve for Her2 

concentrations in PBS (Fig 4c). Decreasing capacitance value observed in Fig. 4.4b 

for increasing Her2 concentration may be attributed to the successful capture of Her2 

proteins onto surface bound aptamer. Calibration graph generated using relative 

change in capacitance (Fig. 4.4c) suggested that bioelectrode can be used for linear 

detection of Her2 on a logarithmic scale at 1 pM to 100 nM range and can be 

characterised using Change in capacitance (µF) = 0.403 (µF) + 0.404 log CHER2 

(pM). Further, the bio-electrode exhibited sensitivity of 0.404 µF/ log([Her2] pM a 

correlation coefficient of 0.981. Different electrodes were found to exhibit similar 

response within 5% as shown by error bars in Fig 4c. 

 

4.3.3.2 Capacitive measurement via electrochemical impedance for Her2 in 

undiluted serum 

For real world application, SB-Aptamer/IDµE bio-electrodes were tested with Her2 

spiked in undiluted serum to study the effect of all types of serum proteins on the 

interaction between surface bound Aptamer and Her2 molecules (1 pM to 100 nM). 

(Fig. 4.5). Similar to Her2 in PBS, bioassay and measurements were carried out for 

Her2 in serum and obtained non-Faradaic EIS data was changed to capacitance for 

plotting capacitance graphs for different Her2 concentrations (Fig. 4.5b). Capacitance 

values at 1Hz, where maximum phase angle is observed (Fig. 4.5a), and indicating 

maximum capacitive effect was utilized for calibration curve (Fig. 4.5c).  Observed 

maxima in phase angle at slightly lower frequency may be attributed to the presence 

of all different types of serum proteins and different conductivity and ionic strength of 

Her2 in serum sample compare to Her2 samples in PBS. The graph in Fig 4.5b, shows 

a decrease in capacitance for increasing Her2 concentrations in serum, clearly 

suggesting that the bio-electrode can successfully be utilized for Her2 estimation in 

serum. Calibration graph plotted using relative change in capacitance (Fig. 4.5c) 

indicated that bio-electrode can be used for linear detection of Her2 in 1 pM to 100 

nM range at 1Hz and can be characterized using Change in capacitance (µF) = 0.414 

(µF) + 0.201 log CHER2 (pM). Further, bioelectrode exhibited sensitivity of 0.201 

µF/ log([Her2] pM with a correlation coefficient of 0.98. Different electrodes were 
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found to exhibit similar response within 5% as shown by error bars in Fig. 4.5c. As 

indicated by lower sensitivity, signal for Her2 in serum was found to be lower when 

compared to Her2 in PBS, which might be attributed to the presence of all serum 

proteins in sample causing hindrance in Aptamer-Her2 interaction. Further, other than 

serum proteins, bio-electrode was also tested for specificity against proteins like PSA 

(100ng/ml), thrombin (100 ng/ml) and Her4 (100ng/ml) spiked in serum (data not 

shown) and found to exhibit negligible signal when compared with signal for serum 

only sample, indicating good selectivity of developed electrode.  

Obtained data in this work was compared with other sensor used for Her2 estimation 

(Table 4.1) and found that present system exhibits better response and can be utilised 

for the real sample application. 

 

Figure 4.5 (a) phase data, (b) capacitance data for interaction between surface bound Aptamer with Her2 

concentrations in undiluted serum and (c) calibration curve using capacitance data for different concentration at 

1Hz 
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Technique Electrode/Surface Probe LOD Reference 

EIS Gold nanostructured 

screen-printed graphite 

Affibody 

cysteine-modified affibody 

6 ng/ml (Ravalli et 

al. 2015)  

Opto-fluidic ring 

resonator (OFRR) 

Silica glass capillaries 

modified with cross-linkers 

to bind protein G 

HER2 antibody 10 ng/ml (Gohring et 

al. 2010) 

Fluorescence Carbon nanotube wrapped 

anti-HER2 ssDNA 

aptamers 

Aptamer 

 

38 nM (4.75 

ng/ml) 

(Niazi et al. 

2015) 

Capacitance Interdigitated 

microelectrodes 

Aptamer 

 

0.2 ng/ml (Qureshi et 

al. 2015) 

 

Surface acoustic 

wave (SAW) 

SAW resonator with gold 

transducer 

Antibody 10 ng/ml (Gruhl et 

al. 2010) 

Microfluidic with 

fluorescence 

transduction 

Quantum Dots (QD) Immunoassay/ 

Antibody 

0.27 ng/ml (Jokerst et 

al. 2009) 

Amperometric (CV)  Carbon screen printed 

electrodes  

Immunoassay 

(nanoimmunoassay)/ 

Antibody 

 

1 µg/ml (Patris et 

al. 2014) 

Surface acoustic 

wave (SAW) 

SAW resonators based on 

36o YX-Li-TaO3 substrates 

Antibody 10 ng/ml (Gruhl and 

Länge 

2012) 

Surface plasmon 

resonance (SPR) 

spectroscopy 

Protein G based Antibody 11 ng/ml (Martin et 

al. 2006) 

Capacitance  Interdigitated electrodes Aptamer 1pM (0.1 

ng/ml) 

Present 

study 

Table 4.1 Comparison between present approach with the state-of-art technologies 

 

4.4 Conclusion 

An aptamer-based capacitive biosensor strategy has been demonstrated for the 

detection of Her2 in undiluted serum. The biosensor showed excellent selectivity when 

challenged with other serum protein. The prepared biosensor exhibited linear detection 

for Her2 at 1 pM to 100 nM range with a high sensitivity of 0.201 µF/ log([Her2] pM 
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in undiluted serum. Furthermore, the fabrication method is simple and can be applied 

for detection of other biomarkers in a serum sample, paving the way to a new platform 

for alternative low-cost and rapid biosensors. 

Acknowledgements 

S.K.A. was funded by a Marie Skłodowska-Curie Individual Fellowship through the 

European Commission’s Horizon 2020 Programme (grant no. 655176). P.Z and P.J. 

were funded by the European Commission FP7 Programme through the Marie Curie 

Initial Training Network PROSENSE (grant no. 317420, 2012-2016). M.R.B. is 

funded by FAPESP (process number 2015/14403-5). M.M. and P.E. acknowledge 

funding from FAPESP and the University of Bath through the SPRINT programme.  



80 

 

References 

Arya, S.K., Bhansali, S., 2012. Biosensors Journal 1, H110601, 110607 pages. 

Arya, S.K., Kongsuphol, P., Wong, C.C., Polla, L.J., Park, M.K., 2014. Sensors and 

Actuators B: Chemical 194, 127-133. 

Berggren, C., Bjarnason, B., Johansson, G., 2001. Electroanalysis 13(3), 173-180. 

Bollella, P., Fusco, G., Tortolini, C., Sanzò, G., Favero, G., Gorton, L., Antiochia, R., 

2017. Biosensors and Bioelectronics 89, Part 1, 152-166. 

Camacho, C., Chico, B., Cao, R., Matías, J.C., Hernández, J., Palchetti, I., Simpson, 

B.K., Mascini, M., Villalonga, R., 2009. Biosensors and Bioelectronics 24(7), 2028-

2033. 

Cho, E.J., Lee, J.-W., Ellington, A.D., 2009. Annual Review of Analytical Chemistry 

2(1), 241-264. 

Chun, L., Kim, S.-E., Cho, M., Choe, W.-s., Nam, J., Lee, D.W., Lee, Y., 2013. 

Sensors and Actuators B: Chemical 186, 446-450. 

Diaconu, I., Cristea, C., Hârceagă, V., Marrazza, G., Berindan-Neagoe, I., Săndulescu, 

R., 2013. Clinica Chimica Acta 425, 128-138. 

Gohring, J.T., Dale, P.S., Fan, X., 2010. Sensors and Actuators B: Chemical 146(1), 

226-230. 

Gong, Q., Wang, Y., Yang, H., 2017. Biosensors and Bioelectronics 89, Part 1, 565-

569. 

Gruhl, F.J., Länge, K., 2012. Analytical Biochemistry 420(2), 188-190. 

Gruhl, F.J., Rapp, M., Länge, K., 2010. Procedia Engineering 5, 914-917. 

Hung, M.-C., Matin, A., Zhang, Y., Xing, X., Sorgi, F., Huang, L., Yu, D., 1995. Gene 

159(1), 65-71. 



81 

 

Jokerst, J.V., Raamanathan, A., Christodoulides, N., Floriano, P.N., Pollard, A.A., 

Simmons, G.W., Wong, J., Gage, C., Furmaga, W.B., Redding, S.W., McDevitt, J.T., 

2009. Biosensors and Bioelectronics 24(12), 3622-3629. 

Luo, X., Davis, J.J., 2013. Chemical Society Reviews 42(13), 5944-5962. 

Martin, V.S., Sullivan, B.A., Walker, K., Hawk, H., Sullivan, B.P., Noe, L.J., 2006. 

Appl. Spectrosc. 60(9), 994-1003. 

Miodek, A., Regan, E., Bhalla, N., Hopkins, N., Goodchild, S., Estrela, P., 2015. 

Sensors 15(10), 25015. 

Niazi, J.H., Verma, S.K., Niazi, S., Qureshi, A., 2015. Analyst 140(1), 243-249. 

Patris, S., De Pauw, P., Vandeput, M., Huet, J., Van Antwerpen, P., Muyldermans, S., 

Kauffmann, J.-M., 2014. Talanta 130, 164-170. 

Press, M.F., Slamon, D.J., Flom, K.J., Park, J., Zhou, J.-Y., Bernstein, L., 2002. 

Journal of Clinical Oncology 20(14), 3095-3105. 

Pui, T.S., Kongsuphol, P., Arya, S.K., Bansal, T., 2013. Sensors and Actuators B: 

Chemical 181, 494-500. 

Qureshi, A., Gurbuz, Y., Niazi, J.H., 2010. Procedia Engineering 5, 828-830. 

Qureshi, A., Gurbuz, Y., Niazi, J.H., 2015. Sensors and Actuators B: Chemical 220, 

1145-1151. 

Ramón-Azcón, J., Valera, E., Rodríguez, Á., Barranco, A., Alfaro, B., Sanchez-Baeza, 

F., Marco, M.P., 2008. Biosensors and Bioelectronics 23(9), 1367-1373. 

Ravalli, A., da Rocha, C.G., Yamanaka, H., Marrazza, G., 2015. Bioelectrochemistry 

106, Part B, 268-275. 

Santos, A., Davis, J.J., Bueno, P.R., 2014. J Anal Bioanal Tech, S7:016. 

Siegel, R., Naishadham, D., Jemal, A., 2013. CA: A Cancer Journal for Clinicians 

63(1), 11-30. 



82 

 

Tkac, J., Davis, J.J., 2009. Chapter 7 Label-free Field Effect ProteinSensing. 

Engineering the Bioelectronic Interface: Applications to Analyte Biosensing and 

Protein Detection, pp. 193-224. The Royal Society of Chemistry. 

Varshney, M., Li, Y., 2009. Biosensors and Bioelectronics 24(10), 2951-2960. 

Vasudev, A., Kaushik, A., Bhansali, S., 2013. Biosensors and Bioelectronics 39(1), 

300-305. 

Wang, L., Xiong, Q., Xiao, F., Duan, H., 2017. Biosensors and Bioelectronics 89, Part 

1, 136-151. 

Wang, R., Wang, Y., Lassiter, K., Li, Y., Hargis, B., Tung, S., Berghman, L., Bottje, 

W., 2009a. Talanta 79(2), 159-164. 

Wang, X., Zhao, M., Nolte, D.D., 2009b. Analytical and Bioanalytical Chemistry 

393(4), 1151.  



83 

 

 Sensitive and selective Affimer-

modified interdigitated electrode-based 

capacitive biosensor for tumour markers 

 

 

 



84 

 

Pavel Zhurauski1, Sunil K. Arya1,*, Pawan Jolly1, Darren C. Tomlinson2, 

Paul Ko Ferrigno2, Pedro Estrela1,* 

1 Department of Electronic and Electrical Engineering, University of Bath, Bath BA2 

7AY, UK 

2 Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 

9JT, UK 

2 Avacta Life Sciences Ltd, Unit 20, Ash Way, Thorp Arch Estate, Wetherby, LS23 7FA, 

UK 

*Corresponding authors: Phone: +44 7405106621, Email: sunilarya333@gmail.com 

(Sunil K Arya), P.Estrela@bath.ac.uk (Pedro Estrela) 

The work in this chapter is submitted to ACS Sensors. The work included as a project 

leader Pavel Zhurauski and Dr Sunil Arya and Dr Pawan Jolly as his collaborators. 

The contribution included the creation and development of the experimental design, 

experimental performing, analysis of data and preparation of the manuscript.   

Abstract 

A novel Affimer-modified interdigitated electrode-based capacitive biosensor 

platform has been developed for detection and estimation of Her4, a tumour 

biomarker, in undiluted serum. A pre-modified cysteine-terminated Affimer with an 

affinity for Her4 was utilised to prepare the bio-recognition layer via self-assembly on 

gold interdigitated electrodes for the sensor fabrication. Electrochemical impedance 

spectroscopy (EIS) in the absence of redox markers was used to evaluate the sensor 

performance by monitoring the changes in capacitance. The Affimer sensor in the 

buffer and in undiluted serum demonstrated high sensitivity with a broad dynamic 

range from 1 pM to 100 nM and a limit of detection lower than 1 pM both in the buffer 

and in serum. Furthermore, the Affimer sensor demonstrated excellent specificity for 
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other serum protein, suggesting resilience to non-specific binding. The sensing ability 

of the present Affimer sensor in spiked undiluted serum suggest its potential for a new 

range of Affimer-based sensors. The fabricated Affimer sensor can thus be further 

adapted with other probes having affinities to other biomarkers for a new range of 

biosensors. 

 

Keywords: Affimer; impedimetric; capacitance; biosensor; Her4 

5.1 Introduction 

In recent years, there has been a huge turnover in the development of novel 

bioreceptors, which is mainly due to the emergence of different molecular cloning 

techniques along with simultaneous accessibility of varied development methods. The 

primary motivations behind these developments for the biochemists / molecular 

biologists have been not only the huge biological potential but also an enormous 

demand for synthetic bio-receptors. Whilst antibodies remain the workhorse choice 

for the molecular recognition for many biosensing devices and laboratory assays, their 

usage can still impose limitations on technology adoption (Song et al. 2008). One long-

championed alternative to antibodies has been DNA aptamers, which are single-

stranded oligonucleotide sequences possessing high affinity and specificity for its 

desired target. DNA aptamers, in their own right, have been extensively used for 

biosensing applications (‘Aptasensors’), yet the approach has had little impact as a 

viable bioanalytical tool till date (Rimmele 2003; Xu et al. 2009). Despite many 

advantages over antibodies, they still possess a number of limitations, for example, 

degradation by nucleases (DNAse and RNAse) or protein fouling in serum due to 

DNA binding proteins (Keum and Bermudez 2009; Sylvia et al. 1975). 

A new emerging class of bioreceptors inspired from the increasing understanding of 

antibodies are Affimers®, generically termed as peptide aptamers. Affimers are 

engineered from either human stefin A protein or a plant cystatin consensus that has 

been designed to mimic the molecular recognition characteristic of monoclonal 

antibodies for the detection of biomolecules. Affimers consist of a scaffold, which 
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works as a protein platform for the restriction of two variable recognition peptide 

region (Johnson et al. 2012; Straw et al. 2013; Tiede et al. 2014; Woodman et al. 2005). 

Unlike antibodies, Affimers display robust characteristics of low molecular weight, 

high thermostability, and resistance to extreme pH conditions (Tiede et al. 2014). Of 

key relevance, there is recent work demonstrating the application of Affimers for 

biosensing applications (Houseman et al. 2002; Klenkar et al. 2006; Seigel et al. 1997; 

Uchida et al. 2005; Woodman et al. 2005). 

This study aims to develop for the first time an Affimer-based electrochemical sensor 

targeting Her4. Her 4 belongs to the Her (human epidermal growth factor receptor 

related) family, which includes four transmembrane tyrosine kinase receptors named 

EGFR: Her1, (ErbB1), Her2 (ErbB2), Her3 (ErbB3) and Her4 (ErbB4) (Tebbutt et al. 

2013). The altered expression of the Her family have been implicated in many human 

diseases and has been proposed as a potential prognostic and diagnostic biomarker 

(Zhao et al. 2014). Her4, for example, is an emerging biomarker for the detection of 

gastrointestinal stromal tumours, which accounts for more than 80% of all 

gastrointestinal mesenchymal tumours and is the most common type of 

gastrointestinal tumours with increased incidence rate (Mucciarini et al. 2007; Nilsson 

et al. 2005; Sandvik et al. 2011; Steigen and Eide 2009). 

In the current study, a cysteine-terminated Affimer having an affinity towards HER 4 

has been used to form a self-assembled monolayer on gold interdigitated 

microelectrodes (IDµE). The surface was then blocked using phosphate buffer saline 

(PBS) based PBST20 starting block (SB) to prevent fouling of the surface. The 

fabricated SB/Affimer/IDµE based Affimer sensor was used to detect HER 4 both in 

the buffer and spiked human serum samples using non-Faradaic electrochemical 

impedance spectroscopy (EIS). The Affimer sensor was also characterised with 

Faradaic EIS, AFM and contact angle measurements. The fabricated Affimer sensor 

demonstrated excellent sensitivity and a wide dynamic range from 1 pM to 100 nM in 

both buffer and spiked undiluted human serum samples. When challenged with other 

serum proteins, the Affimer exhibited excellent specificity towards Her4. 
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5.2 Experimental 

5.2.1 Reagents 

Cysteine terminated Affimer binders to Her 4 were generated by Avacta Life Sciences 

Ltd (Wetherby, UK). For binding studies, different concentrations of HER4 and 

control molecules were prepared in 10 mM PBS, pH 7.4 or in undiluted serum. 

Phosphate buffer saline (PBS) based PBST20 starting block (SB) was procured from 

Fisher Scientific (UK); Dulbecco’s Phosphate Buffered Saline and Phosphate 

Buffered Saline with 0.05% Tween20 was procured from Sigma (UK). All other 

chemicals were of analytical grade and were used without further purification. All 

aqueous solutions were prepared using 18.2 MΩ cm ultra-pure water with a 

Pyrogard® filter (Millipore, MA, USA) 

5.2.2 Apparatus 

Biosensor fabrication was characterized using electrochemical impedance 

spectroscopy (EIS) in a three-electrode configuration with gold as counter and pseudo 

reference electrode at equilibrium potential (open circuit potential generated between 

electrodes dipped in electrolyte), without external biasing in the frequency range of 

100 kHz - 100 mHz, with a 25 mV amplitude using a CompactStat 

potentiostat/galvanostat (Ivium, The Netherlands). EIS measurements were carried out 

using 50 μL of PBS solution (10 mM, pH 7.4) containing a mixture of 5 mM 

Fe(CN)64− (ferrocyanide) and 5 mM of Fe(CN)63− (ferricyanide) as a redox probe. 

For HER4 detection and estimation, non-Faradaic EIS measurements (absence of 

redox couple) were performed in interdigitated two electrodes configuration in 10 mM 

PBS (pH7.4) in a frequency range 100 kHz - 100 mHz, with a 200 mV amplitude.  

Surface characterisation of gold electrodes modified with Affimer was performed 

using ambient contact mode (tapping mode) atomic force microscopy (AFM) imaging 

using MultiMode NanoScope with IIIa controller (Bruker, Germany) in conjunction 

with version 6 control software. Gold chips modified as described in the fabrication 

section for gold electrodes were imaged with a 10 nm diameter AFM ContAl-G tip 

(BudgetSensors®, Bulgaria), images were then processed by the NanoScope Analysis 

software, version 1.5. Contact angle measurements were performed using an in-house 
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built optical angle measurement system (Miodek et al. 2015). The electrodes were 

placed on the stage and a 5 µL drop was dispensed on the electrode with the dispensing 

system. The wetting of surface was then captured using a Nikon p520 camera. Contact 

angle was measured using a screen protractor version 4.0 procured from Iconico. 

5.2.3 Electrode preparation and functionalisation 

5.2.3.1 Gold electrode fabrication 

Gold interdigitated micro-electrode arrays (IDµE) on silicon/silicon oxide wafers were 

created using lithographic and micro-fabrication techniques as described in an earlier 

report (Pui et al. 2013). Interdigitated fingers of 5 µm thickness and 3200 µm length, 

spaced at 10 µm were deposited over a 5500 µm length. Prior to functionalisation, 

electrodes were pre-cleaned thoroughly with isopropyl alcohol, acetone and de-

ionized milli-Q water (Millipore, UK), followed by treating for 30 min using UV-

ozone (ProCleaner, BioForce Nanosciences, USA). For Affimer SAM formation, 100 

µg/mL solution of cys-HER4 Affimer containing 5 mM Tris (2-carboxyehyl) 

phosphine hydrochloride (TCEP 75259 Sigma, UK) was prepared in 10 mM PBS 

buffer (pH 7.4). and incubated for 30 min at 37 °C to reduce any di-sulphide bonds. 

After reduction, 50 µL of this mixture was poured onto the IDµE electrodes and 

incubated for 120 min at 37 °C. Thereafter, the chips were washed with PBST20 (10 

mM, pH 7.4) and PBS (10 mM, pH 7.4) to remove any unbound Affimer. The chips 

were finally blocked with SB for 30 min and after removing extra solution, chips were 

stored at 4 ºC until further use. Figure 5.1 shows the schematic for Affimer sensor 

electrode preparation. 
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Figure 5.1 Schematic for Affimer sensor preparation and HER4 capture 

5.3 Results and discussion 

5.3.1 Characterisation of the Affimer sensor fabrication 

5.3.1.1 Contact angle and Atomic force microscopic (AFM) characterization 

Figure 5.2a and Figure 5.2b show the variation of contact angle of blank gold and after 

Affimer immobilization. The clear increase in contact angle value from 23º for blank 

gold to 44º for Affimer/IDµE indicates the formation of an Affimer SAM. Figures 

5.2c and 5.2d show the AFM images of blank gold and Affimer-modified gold surface 

taken in tapping mode using a 10 nm AFM tip. The observed change in non-uniform 

morphology for blank gold surface to uniformly distributed globular structure for 

Affimer modified surface confirms the successful immobilization of cysteine modified 

Affimer onto the gold surface. 
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Figure 5.2 Contact angle images for (a) blank cleaned gold surface and (b) after Affimer SAM formation and 

AFM images for (c) blank cleaned gold surface and (d) after Affimer SAM formation 

5.3.1.2 Electrochemical impedance spectroscopy (EIS) and surface plasmon 

resonance (SPR) characterization 

Figure 3a shows the impedance vs. frequency plots for blank, Affimer SAM and 

blocker modified sensor surface. A change in impedance value from 680 Ω for blank 

to 50.7 kΩ shows the immobilization of Affimer in high density forming SAM. The 

large change in impedance can be attributed to the insulating nature and dense 

immobilization of pre-reduced Affimer solution onto the gold surface. A very small 

change in impedance is observed after the blocking step, further suggesting the dense 

coverage by Affimer, which leave very few free spaces on surface to be taken up by 

blocker protein molecules. 

To characterize the ability of surface attached Affimer molecules to capture Her4 

molecules, SPR gold chips were modified using the same procedure as that used for 

IDµE modification. The modified SPR chips were then utilized to investigate Her4 

capture in PBST20. Figure 3b shows the SPR binding curves for buffer, 100 pM, 10 
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nM and 100 nM Her4 in PBST20. Increasing SPR signal for increasing Her4 

concentration confirms the activity of Affimer molecules bound on surface. 

 

Figure 5.3 (a) Impedance vs. frequency plots for (i) blank IDµE, (ii) Affimer/IDµE and (iii) 

blocker/Affimer/IDµE. (b) SPR response for (i) PBST20, (ii) 100 pM HER4 in PBST20, (iii) 10 nM Her4 in 

PBST20 and (iv) 100 nM Her4 in PBST20 using Affimer sensor 

5.3.2 Her4 studies  

5.3.2.1 Capacitive measurement via electrochemical impedance for Her4 in PBS 

The SB/Affimer/IDµE based sensors were utilized to investigate the interaction 

between surface bound Affimer and Her4 concentrations from 1 pM to 100 nM (Figure 

5.4). For measurement of each concentration, the bio-electrode was incubated with a 

Her4 solution for 30 min, followed by PBST20 and PBS washing. Non-Faradaic EIS 

spectra was then recorded on washed electrode using PBS (10 mM, pH 7.4) and the 

obtained data was converted to capacitance values using C =  1/ωZ''. From the 

capacitance curves (Figure 5.4b), values were noted at 3 Hz, where a maximum in 

phase angle is observed (Figure 5.4a), corresponding to a maximum capacitive effect. 

The values were then plotted for different concentrations of Her4 for calibration curve 

(Figure 5.4c). It is clear from Figure 0.4c that the capacitance decreases linearly with 

increasing Her4 concentration, which can be attributed to the binding of Her4 proteins 

onto surface bound Affimer. The electrodes can be used for Her4 sensing in the 1 pM 

to 100 nM range and can be characterized using the linear equation ΔC (µF) = 3.0949 

+ 0.2207 log cHer4 (cHer4 is the concentration of Her4 in M) Affimer sensor thus 

exhibit a sensitivity of 0.22 µF/log cHer4 with a correlation coefficient of 0.996 and a 
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limit of detection lower than 1 pM. For relative changes, results of different electrodes 

were found to fall within a 4% error range as indicated by error bars in Figure 5.4c. 

 

Figure 5.4 (a) EIS phase angle vs. frequency; (b) capacitance data for interaction between surface bound Affimer 

with HER4 concentrations in PBS; (c) calibration curve using capacitance data for different concentration at 3 

Hz 

5.3.2.2 Capacitive measurement via electrochemical impedance for Her4 in 

undiluted serum 

To validate the electrode for real sample applications, Affimer sensor electrodes were 

tested with undiluted serum spiked with Her4 to investigate the interaction between 

surface bound Affimer and Her4 molecules (1 pM to 100 nM) in presence of all types 

of serum proteins (Figure 5.5). Bioassay and measurements were carried out in same 

manner as for PBS. Similarly, non-Faradaic EIS data was converted to capacitance 

and using capacitance curves (Figure 5.5b), capacitance values were noted at 1 Hz, 

where the maximum phase angle is observed (Figure 5.5a). The slight shift in the 

frequency for which a maximum phase occurs may be attributed to the presence of all 

different types of proteins in serum and to different conductivity and ionic strength of 



93 

 

the serum compared to PBS. The capacitance values were then plotted for different 

concentrations of Her4 for calibration curve (Figure 5.5c). It is clear from Figure 5b 

that undiluted serum in absence of Her4 shows negligible effects at 1 Hz and a linear 

decrease in capacitance was observed only in the presence of Her4 in serum indicating 

selective and successful interaction between Her4 proteins and surface bound Affimer. 

Again, for sensing application, the relative change in capacitance data was estimated 

and utilized for more significant information. Figure 5c shows that the electrodes can 

be used for Her4 sensing in the 1 pM to 100 nM range following linear equation ΔC 

(µF) = 4.074 + 0.284 log cHer4. Affimer sensor electrode thus exhibit sensitivity of 

0.28 µF/log cHer4 with a correlation coefficient of 0.977 and a limit of detection below 

1 pM. Results for different electrodes were found to fall within a 5% error range as 

indicated by the error bars in Figure 5.5c.  

The signal for Her4 was found to be higher in serum, which might be attributed to the 

better interaction of Her4 molecules in their natural environment of serum proteins. 

However, a slightly lower detection limit and deviation from linearity might be 

attributed to hindrance in Her4 interaction with bound Affimer caused by other protein 

molecules present in serum. Affimer sensor electrodes were also tested for serum 

spiked with the control proteins prostate specific antigen and thrombin and found to 

result in an insignificant effect on the signal. 
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Figure 5.5 (a) EIS phase angle vs. frequency; (b) capacitance data for interaction between surface bound Affimer 

with HER4 concentrations in undiluted serum; (c) calibration curve using capacitance data for different 

concentration at 1 Hz 

5.4 Conclusions 

In conclusion, a new Affimer-based alternative strategy has been demonstrated for the 

detection of HER4. The Affimer-based sensor shows better sensitivity as compared to 

antibody-based assays available commercially (LifeSpan BioSciences). The Affimer 

sensor also showed excellent selectivity when challenged with other serum protein. 

The prepared electrodes showed the high sensitivity of 0.284 µF/ log cHER4 in 

undiluted serum with a detection limit lower than 1 pM. The biosensor shows good 

selective measurement of Her4 in undiluted serum in the concentration range of 1 pM 

– 100 nM, with very low non-specific response to serum proteins. Furthermore, the 

fabrication method is simple and can be applied for detection of other biomarkers in a 

serum sample, paving the way to new platforms for alternative low-cost and rapid 

biosensors. 
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 Conclusions  

With the main aim of improving diagnosis and prognosis in the field of cancer 

detection, the work presented in this thesis is a step towards the development of novel 

biosensors for multiple protein biomarker detections. Interestingly, research groups 

around the globe are considering and developing novel synthetic probes for their 

enhanced application with biosensors to improve both reproducibility and sensitivity 

coupled with ease of modification and immobilisation. To highlight such an 

advancement, this dissertation focuses on the alternative probes to their biological 

counterparts, namely antibodies.  

In recent years, there has been a huge turnover in the development of novel 

bioreceptors, which is mainly due to the emergence of different molecular cloning 

techniques along with simultaneous accessibility of varied development methods. 

Whilst antibodies remain the workhorse choice for the molecular recognition for many 

biosensing devices and laboratory assays, their usage can still impose limitations on 

technology adoption. For instance, antibodies are often unstable in special conditions 

such as high temperature or extreme pH. One of the most important parameters of a 

reliable biosensor is its reproducibility which is significantly affected by the 

recognition element. Antibodies, which are known to be irreproducible from batch to 

batch adding on to the disadvantages. Furthermore, limited chemical modification of 

antibodies further limits their flexibility in the type of immobilisation to various solid 

supports. To address the drawbacks of antibodies, this thesis will demonstrate the use 

of synthetic probes like DNA aptamers and affimers for the development of 

biosensors.  

By combining the power of electrochemical detection techniques with novel probes 

(both DNA aptamers and affimers), modern, label-free and robust biosensors have 

been developed for cancer diagnostics and prognostic applications. It is worth 

mentioning that such a biosensor using relatively inexpensive instrumentation could 

be a step towards a future low-cost point-of-care (POC) device for medical diagnostic 

applications. One important aspect of the development of a biosensor is its application 

with clinical samples. The work presented in this thesis will further demonstrate and 
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evaluate the performance of both DNA aptamer-based and affimer-based biosensor 

with human serum and plasma samples.  

For example, the chapter on the development of PSA-aptasensor presented in this 

thesis shows how the detection limit of a previously reported methodology using a 

planar gold surface can be significantly improved with the addition of a simple step to 

attach AuNPs. In prostate cancer diagnosis, the testing of prostate-specific antigen 

(PSA) was introduced about 3 decades ago which led to the possibility of early 

detection of prostate cancer. Although PSA testing reduced the mortality rate, it is also 

associated with high risk of over diagnosis in patients with and without PCa. Despite 

the issues associated with PSA testing as a reliable PCa biomarker, this protein 

biomarker has been chosen for a proof of concept in the project demonstrating a DNA-

aptamer based approach for PSA detection. The aptasensor was developed by co-

immobilising the anti-PSA aptamer with either FcSH or MCH provides a platform for 

the amperometric or impedimetric detection of PSA. Due to the combined effect of 

aptamer and AuNPs modified gold surfaces, we shift the limit of quantification from 

60 ng/mL to 10 pg/mL, i.e. nearly 4 orders of magnitude improvement, so that it aligns 

with the clinically relevant range of 1 to 10 ng/mL. The fabricated aptasensor was 

successfully tested with spiked human serum samples and a detection of PSA as low 

as 10 pg/mL was achieved. The real strength of our approach is the simplicity and 

flexibility of the fabrication process. Simply switching the MCH for FcSH during co-

immobilisation of the aptamer probe allows for amperometric detection. Most 

importantly modifying the planar gold surface with AuNPs can be extended to many 

other metallic substrates and the simple process of controlling surface coverage of the 

aptamer probe through co-immobilisation provides mechanisms to achieve robust 

anti-fouling properties for improved surface chemistry. The aptasensor performed 

markedly better in its impedimetric guise, with PSA concentrations down to 10 pg/ml 

detected in diluted human serum with a linear response up to 10 ng/ml. The sensitivity 

and specificity of the aptasensor make it applicable for clinical analysis of PCa. We 

believe the simplicity of the fabricated aptasensor offers several advantages compared 

to other current PCa detection techniques. Moreover, such a dual-detection approach 

could potentially reduce false positives, providing additional validation of the signals. 
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Another approach using DNA aptamers have been presented for the detection of breast 

cancer by capturing Her2 protein (a protein biomarker). In such a device, the planar 

gold as mentioned in the previous study was replaced with interdigitated Au 

electrodes. Again, a thiol terminated DNA aptamer with an affinity for Her2 was used 

to prepare the bio-recognition layer via self-assembly on interdigitated gold surfaces. 

Non-specific binding was prevented by blocking free spaces on the surface via starting 

block phosphate buffer saline-tween20 blocker. Non-Faradic EIS measurements were 

utilised to investigate the sensor performance via monitoring the changes in 

capacitance. The aptasensor exhibited logarithmically detection for HER2 from 1 pM 

to 100 nM in the buffer and undiluted serum with limits of detection lower than 1 pM 

in both buffer and serum, respectively. The biosensor showed excellent selectivity 

when challenged with other serum protein. The prepared biosensor exhibited linear 

detection for Her2 at 1 pM to 100 nM range with a high sensitivity of 0.201 µF/ 

log([Her2] pM) in undiluted serum. Furthermore, the fabrication method is simple and 

can be applied for detection of other biomarkers in a serum sample, paving the way to 

a new platform for alternative low-cost and rapid biosensors. 

The trend towards the development of aptamer-based sensors for both PSA and her2 

requires further research into their usage as an alternative to antibodies. Overall, the 

expansion of aptasensors for biomarker detection is anticipated to draw increasing 

interest in the coming years, thanks to its advantages over antibodies. 

More recently, developments in the field of biochemistry and molecular biology have 

led to a deeper understanding of the role of peptide-based probes and demonstrated 

that the roles they play are far greater than originally expected. This led to the new 

horizons of biosensing applications, where oligonucleotide-based biosensing could be 

potentially be replaced by peptide-based approaches which can have an unparalleled 

impact on molecular diagnostics. The increasing demand for enhanced efficiency and 

to overcome some of the drawbacks of using oligonucleotides or antibodies, has 

enabled biochemists to come up with synthetic analogues of antibodies called 

Affimers, which have further amplified the projections of biosensing approaches. 
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The last chapter, a new probe (Affimer) has been investigated for the development of 

a biosensor for stromal tumours, by targeting Her4 protein. Affimer technology has 

been engineered to overcome many of the problems associated with aptamers or with 

antibodies and possess a number of unique key benefits. Sensitivity to the assay 

environment has been solved because the Affimer scaffold has evolved to be resistant 

to a wide pH range, making it suitable for an equally wide range of assay conditions. 

The Affimer scaffold has been engineered so that it no longer binds to proteins found 

in human cells, serum or plasma. The Biological half-life of Affimer molecules is also 

superior because they are biologically and biophysically stable. We have demonstrated 

that the Affimer-based sensor shows better sensitivity as compared to antibody-based 

assays available commercially (LifeSpan BioSciences). A pre-modified cysteine-

terminated Affimer with an affinity for Her4 was utilised to prepare the bio-

recognition layer via self-assembly on gold interdigitated electrodes for the sensor 

fabrication. Again, electrochemical impedance spectroscopy (EIS) in the absence of 

redox markers was used to evaluate the sensor performance by monitoring the changes 

in capacitance. The Affimer sensor also showed excellent selectivity when challenged 

with other serum protein. The prepared electrodes showed the high sensitivity of 0.284 

µF/ log cHer4 in undiluted serum with a detection limit lower than 1 pM. The 

biosensor shows good selective measurement of HER4 in undiluted serum in the 

concentration range of 1 pM to 100 nM, with very low non-specific response to serum 

proteins. Furthermore, the fabrication method is simple and can be applied for 

detection of other biomarkers in a serum sample, paving the way to new platforms for 

alternative low-cost and rapid biosensors. 

In conclusion, the development of both DNA aptamer-based and Affimer-based 

biosensor devices is an interdisciplinary field and many aspects such as probe design, 

surface chemistry, sensor design, microfluidics, etc. Several biosensing systems were 

analysed and practical applications with complex samples (serum and plasma) for 

cancer biomarker detection have been demonstrated. By a strategic coupling of 

biological probes to the electrode surfaces together with electrochemical techniques, 

effective and low-cost biosensors could be realised and could be easily integrated into 

multiplexed systems. These studies not only demonstrate the enormous potential of 
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synthetic receptors (DNA apatmers and Affimers) but how they can be used for a wide 

range of other biomarkers for various diseases that exploit target/probe features like 

those of the systems here reported. The studies demonstrated in the thesis is a step 

towards the development of a multiplexed sensing platform by monitoring various 

biomarkers or a single or multiple diseases. As a result, a more informed and reliable 

analysis could be attained by reducing the probability of false positives. Furthermore, 

such devices could be easily represented as a POC device that can give the first 

assessment of the health of patients which would help the clinician to take immediate 

actions. Not only these devices could be used for diagnosis and prognosis, it can also 

be used for surveillance purposes which can be used to monitor patient’s health post-

treatment. 
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