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Abstract

This thesis considers one-dimensional moving mesh (MM) methods coupled with semi-
Lagrangian (SL) discretisations of partial differential equations (PDEs) for meteoro-
logical applications. We analyse a semi-Lagrangian numerical solution to the viscous
Burgers’ equation when using linear interpolation. This gives expressions for the phase
and shape errors of travelling wave solutions which decay slowly with increasing spatial
and temporal resolution. These results are verified numerically and demonstrate qual-
itative agreement for high order interpolants. The semi-Lagrangian discretisation is
coupled with a 1D moving mesh, resulting in a moving mesh semi-Lagrangian (MMSL)
method. This is compared against two moving mesh Eulerian methods, a two-step
remeshing approach, solved with the theta-method, and a coupled moving mesh PDE
approach, which is solved using the MATLAB solver ODE45. At each time step of the
SL method, the mesh is updated using a curvature based monitor function in order
to reduce the interpolation error, and hence numerical viscosity. This MMSL method
exhibits good stability properties, and captures the shape and speed of the travelling
wave well. A meteorologically based 1D vertical column model is described with its
SL solution procedure. Some potential benefits of adaptivity are demonstrated, with
static meshes adapted to initial conditions. A moisture species is introduced into the
model, although the effects are limited.
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Chapter 1

Introduction

Weather Prediction Accurate weather prediction is an important aspect of the
modern world. In centres such as the Met Office, a major aspect of this process is nu-
merical weather prediction (NWP), where the state of the atmosphere is approximated,
modelled and predicted on large supercomputers.

Each day Meteorological centres around the world create and distribute weather
forecasts. Data collected from satellites, buoys, observation stations, weather balloons,
boats and aeroplanes is combined with advanced numerical algorithms in order to
deliver weather charts, forecasts and weather warnings. A vital step in the numerical
weather prediction process is the dynamical core, where the large scale movements of
air masses, energy, and moisture are simulated and predicted. In the dynamical core,
the physical laws dictating the interactions between energy, mass and momentum are
approximated and used to predict future states of the atmosphere based on the best
estimates to the present and previous state of the atmosphere.

The physical laws take the form of partial differential equations expressing the
conservation of mass, energy and momentum. These equations are discretised in time
and space, and the resulting equations, along with initial conditions, boundary data,
and any coupling to other models, such as oceanic forcing, are solved with appropriate
algorithms on computers.

A popular technique for discretising these laws is using a Lagrangian frame of
reference, whereby the temporal derivatives in the PDEs are represented at idealised
reference points which track the movement of the general advective flow, or in the
case of the atmosphere, with the wind. This is in contrast to an Eulerian method
where time derivatives are considered at a number of fixed points in space, as would be
observed by a network of stationary sensors, such as weather stations. Semi-Lagrangian
(SL) methods, as considered in this thesis, take aspects of both of these methods,
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considering reference points which are advected with the flow, but arrive at, or depart
from, specified points in space. The Met Office have been using a semi-implicit semi-
Lagrangian (SISL) dynamical core in their Unified Model (UM) for NWP since 2002,
and for climate forecasting since 2004 [10].

In order for a forecast to be relevant, these computations must be performed quickly.
Therefore we are limited in the discretisation to resolutions where we may not be able
to represent the full spectrum of behaviour permitted by the PDEs. This can result in
certain weather phenomena not being represented by the model. A potential solution
to this is to allow the spatial resolution to dynamically change as such features form
and disappear. Such a strategy is known as mesh adaptivity.

Mesh Adaptivity Mesh adaptivity has been successfully applied to many problems
in fluid mechanics. There are three main types of mesh adaptivity: mesh refinement,
where mesh points are added and removed to achieve the required resolution, is known
as h-refinement [1]; p-refinement where the mesh is fixed and the order of the numerical
method is increased locally, developed in the context of the finite element method; and
r-adaptivity, which is the method we adopt here, where the mesh points move as the
numerical solution evolves [23, 5, 4]. It is not uncommon to use a combination of
refinement techniques, such as hp-refinement [46] or hr-refinement [25].

The aim of this thesis is to study both semi-Lagrangian methods and mesh adap-
tivity. We start by looking at an idealised model, Burgers’ equation, and finish by
considering a more meteorologically motivated model, a vertical column model.

1.1 Outline of the Thesis and Main Results

In Chapter 2 we review the current theory and practice of SISL methods, particularly
in the context of NWP. We also discuss the viscous Burgers’ equation which will be a
key example for much of this thesis.

In Chapter 3 we study the semi-Lagrangian (SL) method applied to travelling wave
solutions of Burgers’ equation on a fixed mesh. In this chapter we perform a back-
ward error analysis to identify the nature of the equation actually being solved by the
SL method. This analysis clearly demonstrates that the SL calculation acts to both
broaden the width of the travelling wave and to change its speed. We show that this
is critically dependent on the CFL value. The error appears to be dominated by the
interpolation errors of SL methods and we explore the effect of different interpolation
strategies. Good agreement is found between numerical and asymptotic calculations.
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One conclusion from this is that a very small mesh size is required for good speed
resolution. This motivates the adaptive mesh methods used later.

In Chapter 4 we outline the theory of one dimensional moving mesh methods based
on equidistribution. We conduct a series of numerical experiments with these methods.
The methods are then generalised to 1+1 dimensional systems and are used to look
at meteorological type flows over orography. The effect of different strategies on mesh
quality is discussed.

In Chapter 5 we demonstrate the benefits of using mesh adaptivity for both Eulerian
and semi-Lagrangian discretisations for Burgers’ equation. In particular, we show that
due to the use of interpolation in semi-Lagrangian methods, the application of moving
meshes to semi-Lagrangian advection schemes is simple and effective at reducing the
errors identified in Chapter 3.

In Chapter 6 we consider a set of meteorological problems to which the methods
of the previous chapters can be applied. In particular we consider the vertical column
meteorological problem and apply a static SISL method to it. This shows that SISL
is effective but that mesh smoothness is vital to achieve an effective resolution. We
then consider the application of various adaptive mesh strategies to the resolution
and evolution of an inversion layer in the vertical column. The key result is that
adaptive meshes based on a-priori grids tend to reduce accuracy, but that adapting to
the curvature of the solution gives a much better resolution of the solution. Finally
in this chapter we consider the application of SISL type methods to problems with a
high moisture content in hopes of including more forcing. Unfortunately this did not
behave as expected, but the derivations are included.

Finally in Chapter 7 we draw conclusions from our findings and discuss potential
avenues for future work.

Code for some of the algorithms described is included in the Appendix.
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Chapter 2

Review of Semi-Lagrangian

Methods in Numerical Weather

Prediction and Burgers’ Equation

2.1 Literature review

A semi-implicit semi-Lagrangian (SISL) scheme is a method for numerically integrating
partial differential equations (PDEs) which has found widespread use in numerical
weather prediction (NWP) and climate modelling. In terms of modelling fluids, one
can think of a Lagrangian scheme as having a frame of reference moving with the fluid
flow, as opposed to an Eulerian scheme, which uses a fixed frame of reference. A purely
Lagrangian scheme would be equivalent to releasing a number of particles into a fluid
and tracking their properties over time. The drawback to this approach is that, after
enough time, the “particles” might start to cluster and leave areas devoid of particles,
and hence information. A semi-Lagrangian method avoids this potential short-coming
by only considering fluid trajectories which arrive at a mesh-point after a short amount
of time, typically one or two time steps.

Semi-Lagrangian (SL) schemes usually have small time truncation errors. Fur-
thermore Robert (1981,1982) [42, 43] showed that in combining a SL scheme with a
semi-implicit scheme, one can take large time steps and retain good accuracy of the
numerical solution.

In this chapter we present some of the history and implementation choices for SISL
schemes in NWP, in particular the discretisation in time, discretisation in space, choice
of interpolant and general solution procedure. Following this, we give a brief introduc-
tion to Burgers’ equation, a nonlinear advection PDE which we use as a motivating
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example for SL methods and later for moving meshes.

2.2 Time Discretisation

We now look at a few time-discretisations used in semi-Lagrangian schemes: three-
time-level, two-time-level and semi-implicit schemes, off-centring, and iterative-implicit
schemes.

We are looking to find numerical solutions to advection dominated PDEs with an
advective velocity given by V. Such a PDE can be expressed using a Lagrangian
derivative of the form

DF
Dt
−G(x, t) = R(x, t) . (2.1)

The terms G(x, t) and R(x, t) represent terms that require implicit and explicit treat-
ment respectively. Here the Lagrangian derivative of F is given by

DF
Dt
≡ ∂F

∂t
+ (V · ∇)F , (2.2)

which is the derivative along a fluid trajectory ~x(t). To find this fluid trajectory we
can look at the Lagrangian derivative of x,

Dx
Dt

=
∂x
∂t

+ V · ∇x

= V(x, t) . (2.3)

The trajectories ~x(t) are then solutions to the equation

d~x
dt

(t) = V(~x(t), t) . (2.4)

Equation (2.3) is the kinematic equation and will be the subject of Section 2.4.
We will consider solving these problems on a fixed mesh in time and space. In this

mesh we have time levels tn, n = 0, 1, . . . , and spatial points xj , j = 0, 1, . . . , with
∆t = tn+1 − tn and ∆x = xj+1 − xj .

We can integrate equation (2.1) along a trajectory ~x(t) from tn to tn+1 to give

F
(
~x(tn+1), tn+1

)
− F (~x(tn), tn) =

∫ tn+1

tn
[G (~x(t), t) +R (~x(t), t)] dt . (2.5)

Typically, we consider trajectories which start at time tn−1 or tn and which arrive at
known fixed grid points at time tn+1. We call these grid points the arrival points of
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the trajectories, denoted by
xA := ~x(tn+1) . (2.6)

Such trajectories start at points ~x(tn−1) or ~x(tn).
Early work on semi-Lagrangian methods [54, 45] was based around three-time-level

(3TL) schemes, where the Lagrangian equation (2.5) with G(x, t) = 0 is discretised at
time levels tn−1, tn and tn+1 as

F (xA, tn+1)− F (xA − 2αx, t
n−1) = 2∆tR(xA − αx, t

n) . (2.7)

Here 2αx is the displacement over the time step from tn−1 to tn+1 along a fluid trajectory
which arrives at xA at time tn+1. It follows that

2αx = xA − ~x(tn−1) (2.8)

and

αx ≈ xA − ~x(tn) . (2.9)

Figure 2-1 shows a 1D trajectory with xA, xA − αx and xA − 2αx. Note that αx is at
this stage unknown and will be approximated as part of the solution process. We delay
discussion of the calculation of the fluid trajectories x(t) (and hence αx) from V until
Section 2.4.

A Courant number is a dimensionless parameter which, for a typical speed u, spatial
step ∆x and time step ∆t is given by

νCFL =
u∆t
∆x

. (2.10)

The Courant-Friedrichs-Lewy (CFL) condition states that for an explicit finite differ-
ence scheme applied to an advection dominated PDE to be stable, we require that
νCFL < 1. In a typical global circulation model used for NWP, we have a horizontal
mesh width of ∆x ≈ 100 km, vertical mesh width of ∆z ≈ 100 m, horizontal wind speed
typically around u ≈ 100 m s−1 and vertical wind speed around w ≈ 0.1 m s−1. The
CFL condition used when considering horizontal or vertical winds, implies that

u∆t
∆x

< 1 and
w∆t
∆z

< 1 (2.11)
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xA

2αx

αx

tn+1

tn

tn−1

x

~x(tn−1)

Figure 2-1: Example of arrival and departure points for a 3TL scheme in 1D. For
equations (2.7) and (2.15), the terms in R require interpolating at xA − αx and the
terms in F and G at xA − 2αx.

respectively. Both of these conditions give an approximate restriction on the time step
as

∆t < 1000 s . (2.12)

Acoustic waves have a typical speed of us ≈ ws ≈ 340 m s−1. For horizontal acoustic
waves, the CFL condition gives

∆t <
1000
3.4

s , (2.13)

but for vertical acoustic waves, we have

∆t <
1

3.4
s , (2.14)

a severe restriction on the time step.
Robert [42, 43] presented the semi-implicit semi-Lagrangian (SISL) scheme, whereby

fast terms (such as acoustic and gravity waves) are treated implicitly, while slower terms
(such as the advective terms) can be treated explicitly, improving the stability of semi-
Lagrangian methods.

If we collect the terms allowing for an explicit treatment into R(x, t) and the terms
requiring an implicit treatment into G(x, t), then a 3TL SISL discretisation of equa-

12



tion (2.1) is

F (xA, tn+1)− F (xA − 2αx, t
n−1)− 2∆t

(
θuG(x, tn+1) + (1− θu)G(x, tn−1)

)
= 2∆tR(xA − αx, t

n) , (2.15)

where θu is the semi-implicit time-weighting coefficient.

These ideas were later successfully extended to give two-time-level (2TL) schemes
[52],[49, §2c] taking the form

F (xA, tn+1)− F (XD, t
n)−∆t

(
θuG(xA, tn+1) + (1− θu)G(XD, t

n)
)

= ∆tR
(

xA + XD

2
, tn+1/2

)
. (2.16)

Here,
αx = xA −XD , (2.17)

where XD is the numerical approximation to the departure point,

XD ≈ ~x(tn) (2.18)

where ~x(tn) corresponds to the trajectory that arrives at the arrival point xA = ~x(tn+1).
A 2TL trajectory is shown in Figure 2-2 with an arrival point xA and departure point
XD.

A 2TL scheme has the potential advantage of being twice as fast as the 3TL scheme,
using double the time step of a corresponding 3TL scheme. However, an important
factor of such a 2TL scheme is making sure that the trajectory computations are
second-order accurate in time [52].

When the semi-implicit weighting coefficient is taken as θu = 1
2 , the 2TL formulation

(2.16) gives an implicit Crank-Nicholson integration of G(x(t), t) with respect to t.
Rivest, Staniforth and Robert (1994) [41] showed that, in the presence of orography,

the choice of θu = 1
2 , i.e. a centred explicit time-weighting, leads to spurious resonance,

non-physical numerical waves which grow in time. The solution to this is to off-centre
the implicit time-weighting, and to take θu > 1

2 , with the authors suggesting a value of
θu = 0.7.

13



xA

XD

~x(t)

tn+1

tn

x

Figure 2-2: Example of arrival and departure points for a 2TL scheme in 1D. For equa-
tion (2.16), the terms in F and G are interpolated at XD, the numerical approximation
to ~x(tn), and the terms of R, if used, are interpolated at the midpoints 1

2(xA + XD).

In formulating the Canadian Climate Model, Côté et al. (1998) [8] use a 2TL
scheme, treating all terms in a time-centred way. This results in all terms being included
in G, hence R = 0, and we can rearrange equation (2.16) as

Fn+1
A − θu∆tGn+1

A = FnD − (1− θu)∆tGnD , (2.19)

where subscripts A and D denote evaluation at xA and XD respectively, and superscript
n and n + 1 denote evaluation at time tn and tn+1 respectively. This is solved by
linearising the fields about static states and iterating, giving an iterative-implicit semi-
Lagrangian scheme.

Finally, the Met Office’s dynamical core uses an iterative-implicit scheme, though
some terms are iteration lagged [56, §5.1], where certain terms in G are updated less
frequently. This reuse of such terms in G leads to computationally cheaper code. A
1D example using such a scheme, showing the linearisation and an iterative solution
procedure will be presented in Chapter 6.

We have presented a brief review of the development of SL methods, with some
options available when discretising PDEs with advection in time.

Next we briefly look at some of the options available for discretising any spatial
derivatives in the expression for G in equations (2.15) and (2.19).
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2.3 Spatial Discretisation and Resulting Equation

For problems in NWP, G and R contain terms involving derivatives, so we need a
method for calculating these numerically. There are a number of options for spatial
discretisation. In this thesis we use finite differences which is the principal method
used for approximating derivatives in ENDGame [56], which is the numerical scheme
employed by the Met Office to simulate the large-scale movements of air masses in
our atmosphere, their dynamical core. Finite differences are described in [33] and
implemented here in Sections 3.3 and 5.2 with the truncation error for non-uniform
finite differences in Section 5.2.1.

In finite volume (FV) methods a differential equation is expressed as an integral
equation, and the numerical method is derived by considering fluxes at the boundaries
of cells. Semi-Lagrangian FV methods are sometimes called cell-integrated SL methods
(CISL) [26, 27]. Finite volume methods are described in [30] for general hyperbolic
problems and in relation to meteorology with SL advection in [31]. In ENDGame the
continuity equation uses a finite volume discretisation in order to conserve mass [60].

In finite element methods (FEM) and spectral element methods (SEM) space is
discretised by a set of approximating functions. The problem is then formulated as
finding the best solution in that approximation space.

For FEM the approximating functions are defined locally. Examples of SL methods
with FEM can be seen in [28] and [14]. In SEM the approximating functions are
orthogonal and usually global [12, §6]. The European Centre for Medium-Ranged
Weather Forecasts (ECMWF) employ a 2TL spectral method for their global model
[51].

2.4 Departure Point Calculation

An important aspect of semi-Lagrangian schemes is accurately calculating the trajec-
tories which arrive at grid-points, in order to determine where to interpolate the fields.
In all but the simplest of cases, the advection will be time dependent, and will often
depend on the solution of the PDE. To determine the trajectory, we need to solve the
kinematic equation (2.3),

Dx
Dt

= V(x, t) . (2.20)
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For 3TL schemes, we can integrate this with xA = ~x(tn+1) to determine the departure
points ~x(tn−1),

xA − ~x(tn−1) =
∫ tn+1

tn−1

V(~x(t), t)dt . (2.21)

The common choice for approximating this integral, solving for X(tn−1), a numerical
approximation to ~x(tn−1), is the implicit midpoint rule [49],

X(tn−1) := xA − 2∆tV
(

xA + X(tn−1)
2

, tn
)
, (2.22)

This formulation is explicit in time, but implicit in space. The usual approach [49, (5)]
is to iterate this equation as

X(tn−1){k+1} := xA − 2∆tV

(
xA + X(tn−1){k}

2
, tn

)
, (2.23)

where k is the iteration index, in order to find an approximation to the final departure
point. This method requires a starting guess of the departure points X(tn−1){0}, which
we can take as

X(tn−1){0} = xA − 2∆tV(xA, tn) . (2.24)

For 2TL schemes, an equivalent approach, and that used by [52, 49], is

XD = xA −∆tV
(

xA + XD

2
, tn+1/2

)
, (2.25)

where XD is a numerical approximation to ~x(tn), again iterating to find XD as in
equation (2.23). There is a slight complication in finding an expression for V(x, tn+1/2),
since we don’t readily have V here. In [49] and references within, they use a time
extrapolation to get

ṽ(x, tn+1/2) =
3
2
V(x, tn)− 1

2
V(x, tn−1) , (2.26)

then
xA −XD = ∆tṽ

(
xA + XD

2
, tn+1/2

)
. (2.27)

In [27], the authors use a similar process, but include acceleration terms when deter-
mining the extrapolated winds ṽ(x, tn+1/2).

Following the work of [59] where the solutions were iterated (described above),
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Cullen [9] proposed also iterating the departure points. The extrapolation to the half-
time level can then be replaced with a time interpolation, namely

ṽ(x, tn+1/2) =
1
2
(
V(x, tn) + V(x, tn+1)

)
, (2.28)

xA −XD = ∆tṽ
(

xA + XD

2
, tn+1/2

)
. (2.29)

This was later shown to be beneficial, since using extrapolated winds for the departure
point calculation was shown to lead to instabilities in a vertical column model by
Cordero, Wood and Staniforth (2005) [7].

Cullen (2001) [9] uses a trapezium-rule discretisation of the kinematic equation
(2.20),

xA −XD =
∆t
2
(
V(xA, tn+1) + V(XD, t

n)
)
. (2.30)

Wood, White and Staniforth (2010) [58, §3] compare this ‘doubly implicit’ discretisation
(2.30) with the midpoint discretisation (2.29), and suggest the former is preferable for a
number of reasons, including good stability properties and exhibiting improved results
in trials. This is what we will use in this thesis.

From this point onwards we opt to use a semi-Lagrangian method which closely
mirrors that used by the Met Office in the ENDGame dynamical core [57]. It will be
a two-time-level, off-centred, iterated-implicit semi-Lagrangian scheme. The departure
points will be calculated with a centred doubly implicit trapezium rule calculation,
and all spatial derivatives will be computed with finite differences. We will apply this
scheme to Burgers’ equation in Chapter 3 and to a vertical column model in Chapter 6.
In Figure 2-3 we present a pseudo-algorithm which describes the solution procedure we
shall adopt here, loosely mirroring the implementation of ENDGame. It describes 3
loops, a time loop, an outer loop (iterating the departure points) and an inner loop
(iterations for the solutions for a fixed departure point).

2.5 Interpolation

It is recognised that a key aspect of the SISL method is the interpolation of the data
at the departure point XD [47]. There are many different approaches, and we present
and review some that have found favour in NWP. In Chapter 3 we will make a detailed
analysis of this error for linear interpolation.

First we present a number of techniques for constructing polynomial interpolants.
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1: for n := 1 to nmax (Time loop) do
2: Make an initial estimate of XD from Vn

3: for k := 1 to K (Outer loop) do
4: Interpolate Fn and Gn onto XD

5: Iteratively solve

Fn+1 − θu∆tGn+1 = FnD + (1− θu)∆tGnD (2.19′)

for Fn+1 and Gn+1 (Inner loop)
6: Use new Vn+1 to iteratively solve

XD = xA −
∆t
2
(
Vn+1 + Vn

D

)
(2.30′)

for XD

7: end for
8: end for

Figure 2-3: Solution procedure for a semi-Lagrangian method as implemented by the
Met Office.

Then we discuss monotonicity and a few strategies for enforcing local monotonicity on
an interpolant. Finally we talk about other issues, such as the interpolation error and
treatment at the boundaries.

2.5.1 Lagrange Interpolants

We now present some of the methods available for forming polynomial interpolants, in
particular cubic interpolants. As we shall see, the order of the leading error term in
polynomial interpolants of an odd degree interpolant is even, whilst the order of the
leading error term for even degree polynomial interpolants is odd. Odd order errors
lead do a dispersive error, whilst even order errors lead to diffusive errors, which is
preferable for numerical simulations [29, §11.1.1]. Linear interpolation is considered to
generate too much diffusion [12, §7.1.1.3], hence many of these methods will be based
around cubic interpolants.

It is well known that for m + 1 distinct points z0, z1, . . . , zm and m + 1 values
w0, w1, . . . , wm, there is a unique degree m polynomial pm(z) with

pm(zi) = wi , i = 0, 1, . . . ,m . (2.31)

A simple method for calculating such a polynomial is given by the Lagrange inter-
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polation formula [11, §2.5]

πi(z) =
m∏
j=0
i 6=j

z − zj
zi − zj

. (2.32)

It is easy to verify that

pm(z) =
m∑
i=0

πi(z)wi (2.33)

satisfies equation (2.31) at zi.
We assume that we are approximating a function f(z) with a Lagrange interpolant.

The Cauchy Remainder Theorem for polynomial interpolation [11, §3] tells us that for
an interpolating polynomial of degree m defined by points z0, . . . , zm and data from a
function f(z), the error is given by

f(z)− pm(z) =
(z − z0)(z − z1) · · · (z − zm)

(m+ 1)!
f (m+1)(ξ) , (2.34)

for mini=0,...,m(zi) < ξ < maxi=0,...,m(zi), where f (m+1)(z) is the m+ 1-th derivative of
f(z). For example, the error for the piecewise linear interpolant on [zi, zi+1] is

f(z)− p1(z) =
(z − zi)(z − zi+1)

2
f ′′(ξ) . (2.35)

When approximating a function f(z) with a piecewise linear interpolant, we can reduce
the interpolation error by reducing the grid spacing zi+1−zi in regions where the second
derivative is high. This partially motivates our use of moving meshes in Chapter 5,
where we aim to reduce the interpolation error in a SL scheme with linear interpolation.

Another useful way of constructing an interpolating polynomial is with the Newton
formula [11, §2.6],

pm(z) = [w0] +
m∑
k=1

[w0, w1, . . . , wk](z − z0)(z − z1) · · · (z − zk−1) , (2.36)

making use of the divided difference notation

[wi, wi+1, . . . , wi+j ] :=
[wi+1, wi+2, . . . , wi+j ]− [wi, wi+1, . . . , wi+j−1]

zi+j − zi
,

[wi] = wi .

(2.37)

We can use cubic Lagrange interpolants to interpolate over m > 4 points by simply
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taking the cubic Lagrange interpolant constructed by the 4 points surrounding each
interval. This gives a piecewise cubic and globally continuous interpolant which is
cheap to compute and evaluate. Near the boundaries we must either take the 4 nearest
points, or reduce the order of the interpolant.

2.5.2 Essentially Non-Oscillatory Interpolation

A disadvantage of polynomial interpolation is that it can lead to oscillatory interpolants.
This will be addressed below in the context of monotonic cubic interpolants, but we
can reduce the effect by being more selective of which points we use to determine the
interpolating polynomial. Such a selection process can be implemented via essentially
non-oscillatory (ENO) interpolation [17], described in Smith (2000) [47, §4.1]. The
process for ENO interpolation is relatively simple. We start with the linear interpolant,
given in the form of its Newton interpolating polynomial,

p(z) = [wi] + [wi, wi+1](z − zi) . (2.38)

Next we compare the divided difference for the points to either side, then form the
quadratic Newton interpolant for the point which gave the lowest divided difference. If
the current points are zi and zi+1, we denote

z− : = zi−1 , w− : = wi−1 ,

z+ : = zi+2 , w+ : = wi+2 ,
(2.39)

then the new point and value is given by

(z∗, w∗) :=

(z+, w+) if |[wi, wi+1, w+]| < |[wi, wi+1, w−]| ,

(z−, w−) otherwise ,
(2.40)

and we form the ENO quadratic interpolant as

p(z) = [wi] + [wi, wi+1](z − zi) + [wi, wi+1, w∗](z − zi)(z − zi+1) . (2.41)

We then repeat this process, comparing the two new surrounding points: if in forming
the quadratic interpolant we used (zi+2, wi+2), then (z+, w+) becomes (zi+3, wi+3);
otherwise, we used (zi−1, wi−1) and so the new (z−, w−) becomes (zi−2, wi−2). The
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new point will then be

(z∗∗, w∗∗) :=

(z+, w+) if |[wi, wi+1, w∗, w+]| < |[wi, wi+1, w∗, w−]| ,

(z−, w−) otherwise ,
(2.42)

and the cubic ENO interpolant is given by

p(z) = [wi] + [wi, wi+1](z − zi) + [wi, wi+1, w∗](z − zi)(z − zi+1)

+[wi, wi+1, w∗, w∗∗](z − zi)(z − zi+1)(z − z∗) .
(2.43)

A graphical example is given in Figure 2-4, showing the ENO process for an interval
[1, 2]. As described above, first [f(1), f(2), f(z−)] is compared with [f(1), f(2), f(z+)].
In this example,

|[f(1), f(2), f(3)]| < |[f(1), f(2), f(0)]| , (2.44)

so the quadratic ENO interpolant is given by the values of f at {1, 2, 3}: Next, it can
be shown that

|[f(1), f(2), f(3), f(4)]| < |[f(1), f(2), f(3), f(0)]| , (2.45)

and so the cubic ENO interpolant is given by the values of f at {1, 2, 3, 4}.

2.5.3 Cubic Hermite and Spline Interpolation

A cubic Hermite interpolant can be used to specify the values and first derivatives at
both ends of an interval. For values wi and wi+1, and derivatives w′i and w′i+1, the
cubic Hermite interpolant over [zi, zi+1] is given by

p(z) = wiH1(z) + wi+1H2(z) + w′iH3(z) + w′i+1H4(z) , (2.46)

with the four cubic Hermite basis functions (shown in Figure 2-5) given by

H1(z) =
(zi+1 − z)2

(zi+1 − zi)2
+

2(z − zi)(zi+1 − z)2

(zi+1 − zi)3
,

H2(z) =
(z − zi)2

(zi+1 − zi)2
+

2(zi+1 − z)(z − zi)2

(zi+1 − zi)3
,

H3(z) =
(z − zi)(zi+1 − z)2

(zi+1 − zi)2
,

H4(z) = −(z − zi)2(zi+1 − z)
(zi+1 − zi)2

.

(2.47)
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Figure 2-4: Demonstration of ENO interpolation for the interval [1, 2]: (top left) Linear
interpolant; (top right) Comparison of quadratic interpolants for {0, 1, 2} and {1, 2, 3}.
(bottom left) Comparison of cubic interpolants for {0, 1, 2, 3} and {1, 2, 3, 4}. (bottom
right) Resulting cubic ENO interpolant over [1, 2].
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With a method for estimating the gradient at every point, we can construct cubic
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Figure 2-5: The cubic Hermite basis functions (2.47) defined over z = [0, 1].

Hermite interpolants on each interval, giving a globally smooth interpolant.
Cubic spline interpolation [35, §3.3] involves forming piecewise cubic polynomials,

chosen such that the first and second derivatives are continuous at all points, and at
the end points either the second derivatives are zero (natural cubic spline) or the first
derivatives are prescribed (clamped spline).

Most of the methods discussed in [49] use some form of Lagrange interpolation,
mostly cubic Lagrange interpolation depending on the 4 points surrounding the de-
parture point. The authors conclude from careful numerical experiments that linear
interpolation leads to an unacceptable amount of damping, and cubic Lagrange has a
good trade-off of accuracy and computational cost. Linear interpolation is found to be
sufficient when determining the departure points.

Non-interpolating schemes as demonstrated by [39] are briefly discussed in [49],
where the advection is separated into two parts: a trajectory from the grid point nearest
to the departure point, and a trajectory between this grid point and the departure point.
The nearest grid point is then used as a shifted frame of reference for an Eulerian scheme
with a guaranteed Courant number less than unity.
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2.5.4 Monotonicity

We now address the issue of monotonicity and interpolation limiters.
Polynomial interpolation procedures of order higher than 1 are prone to develop

oscillations near to sharp jumps (or low-smoothness points) called Gibbs phenomenon.
We see an example of oscillations near a low-smoothness point in Figure 2-6, where we
see a 7-th degree polynomial approximating a step function.

0 1 2 3 4 5 6 7
-1

-0.5

0

0.5

1

1.5

2

Figure 2-6: Oscillations of a 7-th degree polynomial being used to represent a low-
smoothness point with a non-uniform mesh.

When interpolating data associated with physical quantities, there may be situa-
tions where the oscillatory behaviour can lead to interpolants which violate physical
restrictions, such as negative densities or masses. One solution to this is to ensure local
monotonicity, so there are no turning points within any interval (zi, zi+1), and no new
extrema are created.

Monotonic interpolants are discussed with general application in atmospheric fluid
dynamics in [48], then for SISL schemes in [2], [55] and [37].

Fritsch and Carlson [15] derived the conditions on the gradients such that a cubic
interpolant is monotonic on a given interval. Hyman [22] presents an algorithm which,
given points-values and gradients, alters them to give a piecewise monotonic interpolant
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where the data are monotonic.
For local monotonicity of non-monotonic data with extrema zi, such that

(fi+1 − fi)(fi − fi−1) < 0 ,

the only choice of gradient which preserves piecewise monotonicity is f ′i = 0, i.e. all
turning points coincide with a grid-point. Hyman removed the condition of local mono-
tonicity in the intervals to either side of these turning points in the data, leading to
better looking interpolants. Such an interpolant is no longer monotonic in the presence
of extrema in the data, but no new extrema can be created.

Bermejo and Staniforth [2] present an alternative monotonic scheme which can
be applied to any interpolation scheme, whereby the values of the interpolant are
restricted to the range of the values at the surrounding grid-points. If we approximate
a function f(z) by an interpolating polynomial pm(z), then a monotonic interpolant
for z ∈ [zi, zi+1] is easily implemented as

pmlim(z) =


f− pm(z) < f− ,

f+ pm(z) > f+ ,

pm(z) f− ≤ pm(z) ≤ f+ ,

(2.48)

where

f− = min(f(zi), f(zi+1)) (2.49)

and

f+ = max(f(zi), f(zi+1)) , (2.50)

or more compactly

pmlim(z) = max
{

min(f(zi), f(zi+1)),min
[

max(f(zi), f(zi+1)), pm(z)
]}
. (2.51)

This process sacrifices smoothness for monotonicity, but has the advantage of being easy
to implement for any interpolation scheme. This is the scheme described in Section 2 of
Bermejo and Staniforth [2]: a more thorough description is given in the Appendix of [2]
which has been extended to conserve mass when possible [36]. A 1D example using this
method is shown in Figure 2-7. We refer to this process as flux-limited interpolation,
or using a flux limiter.
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Figure 2-7: Example of a 1D piecewise cubic interpolant with a flux limiter applied.
This is a simple method for ensuring local monotonicity.

Williamson and Rasch looked looked at a number of monotonic interpolants and
applied them to meteorologically motivated test problems in 1D [37] and 2D [55].
They found that cubic Hermite interpolation with the derivative restrictions proposed
by Hyman gave the best results, especially when smoothness was not enforced at the
points zi.

2.5.5 Higher Dimensional Interpolation

While higher dimensional interpolants exist, we can successively use the 1D interpolants
described above in an interpolation cascade. This is described in [55, §3c] as a tensor
product approach and is demonstrated in a 2D advection test problem with a mono-
tonic Hermite interpolant. Using a tensor product cubic Lagrange interpolant in 2D
requires 5 1D cubic interpolants, dependant on 16 points, and in 3D this increases to 21
cubic interpolants using 64 data points. For the ECMWF forecast model the interpo-
lation for any points not directly surrounding the departure point is replaced by linear
interpolation [40, §3a]. This is described as quasi-cubic interpolation. A 2D quasi-cubic
interpolant uses 3 cubic and 2 linear interpolants, depending on 12 surrounding points,
and a 3D quasi-cubic interpolant uses 7 cubic and 10 linear interpolants, depending on
32 surrounding points.
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2.6 Viscous Burgers’ Equation

In this thesis we will be considering problems with semi-Lagrangian schemes in the
presence of sharp jumps. The viscous Burgers’ equation with a small viscosity ε is a
canonical nonlinear PDE with advection which, with the exception of monotonically
increasing initial conditions, forms sharp fronts of width of order ε in finite time. This
makes it an ideal model problem for us and we will focus much of our attention on it.
Burgers’ equation is used as a core example in LeVeque (1992) [29], and many of its
properties are presented there, some of which we shall repeat.

The viscous Burgers’ equation is given by

ut + uux = εuxx , (2.52)

u(x, t0) = u0(t) , (2.53)

where ε is taken here to be a small positive “viscosity parameter”, and subscripts t and
x are taken to mean the partial derivatives with respect to t and x respectively.

It can be verified that

u(x, t) = c− α tanh
( α

2ε
(x− ct)

)
(2.54)

is a travelling wave solution to Burgers’ equation with speed c and height parameter
α. The travelling wave solution (2.54) satisfies the asymptotic boundary conditions

u(−∞, t) = c+ α ,

u(∞, t) = c− α .
(2.55)

Solutions corresponding to other specific boundary and initial conditions can be found
using the Cole-Hopf transformation [13], which transforms Burgers’ equation into the
linear heat equation.

Taking ε to zero in Burgers’ equation leads to the inviscid Burgers’ equation [29,
(3.14)]

ut + uux = 0 . (2.56)

For this equation the characteristics i.e. curves along which the solution is constant, are
straight lines with gradient u0(x) for each x [29, (3.17)]. In other words, the solution
is constant with value u0(s) along the characteristics which are given for each s by the
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straight lines (x, t) with the equation

x = s+ u0(s)t . (2.57)

When two characteristics intersect for the first time, a shock forms at that point and
there is a discontinuity in the solution u(x, t) [29, §3.3].

With a non-zero viscosity term, solutions to Burgers’ equation (2.52) instead form
fronts with a width of order ε: for example the travelling wave solution (2.54) jumps
from c+ 0.95α to c− 0.95α about the point

x∗ = ct (2.58)

over a distance of

w =
4 tanh−1(0.95)ε

α

≈ 7.3ε
α

,

(2.59)

shown in Figure 2-8.

x
∗

−

w

2
x
∗

+
w

2

c− α

c+ α

Figure 2-8: A travelling wave solution to the viscous Burgers’ equation. The solution
jumps from c + 0.95α to c − 0.95α over a front width w of order ε and travels in the
positive x direction with speed c.

Reducing ε to zero in the travelling wave solution (2.54) gives a vanishing viscosity
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solution to equation (2.56),

u(x, t) =

c+ α , x < ct ,

c− α , x > ct .
(2.60)

LeVeque [29, §3.5] shows how the solution in equation (2.60) is the unique weak solution
to the Riemann Problem

ut + uux = 0 ,

u(x, 0) =

c+ α x < 0

c− α x > 0
,

(2.61)

for α > 0. When α < 0, there are infinitely many weak solutions [29].

The speed of a shock can be determined from the Rankine-Hugoniot jump condition
[29, (3.33)]: for a 1D conservation problem of the form

ut + (f(u))x = 0 , (2.62)

with a shock at x∗ with left and right limits ul and ur respectively, the shock moves
with speed c, where

f(ul)− f(ur) = c(ul − ur) . (2.63)

We note that we can rewrite the inviscid Burgers’ equation in the form of (2.62), as

ut +
(
u2

2

)
x

= 0 , (2.64)

so that f(u) = u2

2 . This implies that [29, (3.26)]

c =
ul + ur

2
. (2.65)

This is in agreement with limit of the speed of the travelling wave solution in (2.60)
with ε taken to 0.

The second half of LeVeque (1992) [29] is dedicated to numerical methods, such
as conservative methods (§12.1), discrete conservation (§12.3) and Roe’s approximate
Riemann solver (§14.2), appropriate for inviscid Burgers’ equation.

Here we shall be concentrating on using semi-Lagrangian methods to solve the
viscous Burgers’ equation.
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Burgers’ equation (2.52) can be expressed with a Lagrangian derivative (2.1) as

Du
Dt

= εuxx , (2.66)

with kinematic equation

Dx
Dt

=
∂x

∂t
+ u

∂x

∂x

= u(x, t) . (2.67)

This will be the subject of Chapter 3.

As stated earlier, Burgers’ equation is a common test problem for advective schemes.
Kuo and Williamson (1990) [24] used a 3TL semi-Lagrangian scheme applied to the

inviscid Burgers’ equation. They used cubic spine interpolation, but reported seeing
similar results when using the monotonicity preserving Hermite interpolants introduced
by [22]. The initial conditions were chosen such that a singularity forms at t = 1, and
show that leading up to this time, the errors are localised around the shock.

Bermejo and Staniforth (1992) [2, §3d] repeat these experiments, again with cubic
splines, but also with their flux-limiter (as discussed above in Section 2.5.4). They track
the solution past shock-formation using a shock-tracking algorithm, effectively imposing
the Rankine-Hugoniot condition on the numerical solution. They show improvements
on results obtained with the methods in [24].

Smith (2000) [47, §7.4] uses a 2TL SL scheme applied to the inviscid Burgers’ equa-
tion up to front formation, and to the viscous Burgers’ equation tracking a travelling
wave solution using cubic Lagrange, quintic Lagrange and centred quadratic inter-
polants. The author observes a travelling wave but with a distorted front, showing the
cubic interpolant to give the least error.
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Chapter 3

Semi-Lagrangian Methods

Applied to Burgers’ Equation

3.1 Introduction

In this chapter we apply SL methods to Burgers’ equation with a fixed spatial mesh
and linear interpolation. We are primarily interested in analysing the performance of
the method in this context. We achieve this by using a backwards error analysis of
the modified equations which solve the discretised Burgers’ equation. This correctly
predicts a number of issues observed with SL methods. In particular our analysis
accounts for the diffusive effect related to its interpolation error, and the change in
wave speed when considering travelling wave solutions to Burgers’ equation. Later in
Chapter 5 we show how both these errors can be reduced by using a moving mesh
method.

3.1.1 Structure of Chapter

This chapter is structured as follows: In Section 3.2 we remind ourselves of the 1D
viscous Burgers’ equation and travelling wave solutions, and the Semi-Lagrangian dis-
cretisation. In Section 3.3 we provide details of an implementation of the SL method
for Burgers’ equation and show a motivating example highlighting the different front-
width ε̂ and front-speed ĉ. In Section 3.4 we analyse the SL discretisation with linear
interpolation, find the modified equation which the numerical solution satisfies to lead-
ing order, and provide equations for ε̂ and ĉ. In Section 3.5 we show good agreement
between the expressions for ε̂ and ĉ, and numerical experiments for small fronts, and
qualitative agreement when using cubic Lagrange interpolation. Finally in Section 3.6
we present our conclusions and discuss the implications of this work on moving meshes
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for SISL NWP.

3.2 Background

Burgers’ equation in 1D,
ut + uux = εuxx , (3.1)

where ε is a small positive parameter is a nonlinear PDE with advection which can
develop steep fronts from smooth initial conditions, making it an ideal candidate for
use as a test problem.

As described in equations (2.66) and (2.67) Burgers’ equation can be expressed with
Lagrangian derivatives from (2.1) as

Du
Dt

= εuxx , (3.2)

Dx
Dt

= u . (3.3)

3.2.1 Travelling Wave (TW) Solution

A solution to Burgers’ equation which is also a travelling wave is

u(x, t) = c− α tanh
( α

2ε
(x− ct)

)
. (3.4)

This travelling wave solution has a number of key properties which make it extremely
useful as a test problem with an exact solution. An appropriate set of asymptotic
boundary conditions which agree with this exact travelling wave solution are

lim
x→±∞

[u(x, t)] = c∓ α . (3.5)

The solution (3.4) varies from c+ 0.95α to c− 0.95α over a front-width of

w =
4ε
α

tanh−1(0.95) , (3.6)

centred around x = ct, where the gradient is

ux(ct, t) =
−α2

2ε
. (3.7)

Away from the front at x = ct, the solution rapidly approaches the boundary values
given by (3.5). Hence it is simple to implement the boundary conditions to machine
precision on finite domains enclosing the front.
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In addition to this, we can explicitly solve the trajectory equation (3.3) for the
travelling wave solution, giving

~x(t) =
2ε
α

tanh−1

(
φ0 exp

(
−α2t

2ε

))
+ ct , (3.8)

where
φ0 = tanh

(
α~x(0)

2ε

)
. (3.9)

For convenience, some derivatives of Burgers’ equation and the travelling wave
solution can be found in Appendix B.1.

3.3 Implementation and Results

The SL method, as described in Chapter 2, was applied to Burgers’ equation in [47,
§7.4]. It was noted that it gives errors in wave speed and shape, which depend on
the choice of interpolant and the departure point calculation. We now implement a
semi-Lagrange method for Burgers’ equation and give an analytical theory for these
errors when using linear interpolation. These errors are compared to the errors from
numerical experiments, and we show that the errors are qualitatively similar for higher
order interpolants.

We consider a SL discretisation of Burgers’ equation, as described in detail in Chap-
ter 2. The discretisation is a two-time-level finite difference scheme. Since Burgers’
equation is linear in a Lagrangian frame of reference, there is no requirement for an
inner loop. The two-time-level off-centred temporal discretisation of Burgers’ equation
(3.10) is

Un+1
A − θu∆tε(Uxx)n+1

A = UnD + (1− θu) ∆tε(Uxx)nD , (3.10)

and the kinematic equation (3.3) is discretised as

XD = xA −∆t
[
θxU

n+1
A + (1− θx)UnD

]
. (3.11)

We have included the off-centring parameter θu, as in equation (2.15), and an inde-
pendent off-centring parameter for the kinematic equation, θx, which was taken in
equation (2.30) as θx = 1/2.

We now show a motivating example, numerically approximating a travelling wave
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solution to Burgers’ equation. We consider

ut + uux = εuxx , (x, t) ∈ [−1, 4]× [0, 1.5] , (3.12)

with boundary and initial conditions

u(x, 0) = c− α tanh
(αx

2ε

)
, (3.13)

u(−1, t) = c− α tanh
(
α(−1− ct)

2ε

)
≈ c+ α , (3.14)

u(4, t) = c− α tanh
(
α(4− ct)

2ε

)
≈ c− α . (3.15)

The boundary condition approximations in (3.14) and (3.15) are accurate to within
machine precision for t ∈ [0, 3] provided α > 40ε, hence in practice we use these.

We discretise u(x, t) in time and space as

Uni ≈ u(−1 + i∆x, n∆t) (3.16)

with

∆x =
5

Nx + 1
, (3.17)

∆t =
1.5
Nt

. (3.18)

We use finite difference and linear interpolation to evaluate Un and (Uxx)n at the
departure point XD. Relative to a coarse mesh-width, the travelling wave solution has
a low-smoothness point at x = ct. As stated in Section 2.5.4 this can lead to oscillations
in higher-order interpolants, hence our analysis will be focused on linear interpolation,
though we also show numerical results for other interpolants.

The 2TL semi-Lagrangian discretisation with finite difference in space is

Un+1 − θu∆tε(δ2
xU

n+1 + bδ2x) =
[
Un + (1− θu)∆tε(δ2

xU
n + bδ2x)

]
D
, (3.19)

where δ2
x is the tridiagonal second order finite difference matrix

δ2
x =

1
∆x2


−2 1

1
. . . . . .
. . . . . . 1

1 −2

 , (3.20)

34



and bδ2x is the boundary condition correction

bδ2x = ∆x−2(u(−1, t) 0 . . . 0 u(4, t))T . (3.21)

This discretisation (3.19) is augmented by the discrete kinematic equation

XD = xA −∆t
(
θxUn+1 + (1− θx)Un

D

)
. (3.22)

The solution procedure is given in Figure 3-1, and implemented in the code burg2.m
in Appendix A.1.

1: for n := 1 to Nt do
2: estimate XD from Un

3: for k := 1 to K do
4: Interpolate Un and δ2

x(Un) onto XD

5: Solve the Nx-by-Nx tridiagonal system (3.19) to find an esti-
mate to Un+1 for the given departure point

6: Update estimate to XD from the kinematic equation (3.22)
7: end for
8: end for

Figure 3-1: Solution procedure for the Semi-Lagrangian Burgers’ equation code.

The code was run with ε = 10−4, c = 1, α = 0.1, Nx = 100, Nt = 40 and
θu = θx = 0.5. The solution at t = 1.5 with the exact travelling wave solution can be
seen in Figure 3-2.

For the front speed, we look at the centre of the front, x∗(t), which we define to be
the point on the piecewise linear interpolant of U such that

U(x∗(t), t) = c , (3.23)

and observe it has travelled further than the centre of the analytic front. We can
obtain an estimate of the numerical speed ĉ by tracking x∗(t) and calculating the
gradient of the line of best fit. This results in a value of ĉ ≈ 1.0102. A finite difference
approximation to the speed with the gradient of the line of best fit is seen in Figure 3-3.

For the numerical viscosity ε̂, we use the gradient of U at x∗ and equation (3.7) to
obtain

ε̂ =
−α2

2Ux(x∗(t), t)
, (3.24)

which gives us a value of ε̂ ≈ 0.0052, larger than the analytic parameter ε = 10−4. We
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Figure 3-2: Comparison of the numerical and analytic fronts at time t = 1.5. We
observe a tanh-like profile for the numerical solution, but with a slightly faster wave
speed and a larger front-width.
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Figure 3-3: Comparison of the speed of the centre of the front
dx∗

dt
and the estimate

ĉ = 1.0102. The trend is slightly faster than the speed of the exact solution c = 1.
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could alternatively use the front-width ŵ and equation (3.6) to obtain

ε̂ =
αŵ

4 tanh−1(0.95)
, (3.25)

which, in this case, gives ε̂ = 0.0048.

3.4 Analysis

We assume that there is a travelling wave solution to the SL discretisation v(x − ĉt),
and that the numerical solution U is a discrete sampling of this solution. Our approach
is to find, to leading order, the equation for v which satisfies the SL discretisation. We
then analyse this equation, looking for the discrepancies observed in Figure 3-2.

Before this analysis, we first look at just the departure point error associated with
the implementation of the kinematic equation.

3.4.1 Departure Point Error

Before looking at smooth solutions to the discretised equation we look at the error
from the departure point discretisation on its own. The discretisation of the kinematic
equation (3.11) with θx = 1/2 is

xA −XD =
∆t
2
[
un+1
A + unD

]
. (3.26)

We can look at the error after a single time step by substituting in the exact
travelling wave solution (3.4) and comparing with the exact solution for ~x(t) from
equation (3.8),

ED(xA) = xA −X0
D −

∆t
2

[u(xA,∆t) + u(xD, 0)] . (3.27)

For ε = 0.002, ∆t = 0.01, c = 3 and α = 1, we see the absolute error in departure
points in Figure 3-4. This is simply a demonstration of the availability of ED; we do
not analyse this error by itself, as it will be included in the full SL analysis later in this
section.

We now analyse the full SL discretisation of both Burgers’ equation and its associ-
ated kinematic equation.
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Figure 3-4: Departure point error, ED.

3.4.2 Solution of the Modified Equation

We assume that the numerical solution U(x, t) is a travelling wave, such that

U(x, t) = v(z) (3.28)

with
z = x− ĉt . (3.29)

where the profile v(z) and the wave speed ĉ are to be found.
The terms ∆x and ∆t are assumed to be of the same order. Our analysis accounts

for the departure point error and interpolation error up to order O((∆x+ ∆t)2). The
finite difference discretisation error from the viscosity term ∆tεUxx is, to leading or-
der on the uniform grid −(ε/12)∆t∆x2Uxxxx. We assume that Uxxxx is bounded as
∆x,∆t→ 0, hence we do not consider it in our analysis.

Our approach involves taking Taylor expansions of v(z) about (xA, tn), substituting
these terms into (3.10) and (3.11), then analysing the resulting equation for v, a modified
equation (see [29, §11.1]).

Taylor Expansion at (xA, tn+1)

Let xj be a grid-point coinciding with an arrival point xA. Now

UnA = v(xj − ĉtn) = v(znj ) where znj := xj − ĉtn , (3.30)
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and for a travelling wave with speed ĉ,

Un+1
A = v(znj − ĉ∆t)

= v − ĉ∆tv′ + (ĉ∆t)2

2
v′′ +O(∆t3) . (3.31)

Here v is assumed to be evaluated at z = znj , and v′ represents derivative of v with
respect to its argument, again evaluated at z = znj . Similarly to (3.31),

(Uxx)n+1
A = v′′ − ĉ∆tv′′′ +O(∆t2) , (3.32)

and we can express the left-hand side of (3.10) as

Un+1
A −∆tθuε(Uxx)n+1

A = v + ∆t
(
−ĉv′ − εθuv′′

)
+

∆t2

2
(
ĉ2v′′ + 2ĉεθuv′′′

)
+O(∆t3) . (3.33)

Taylor Expansion at (XD, t
n)

For simplicity we assume that the solution is uniformly non-negative and that we have
a uniform mesh. For a trajectory from XD to xA, we consider a non-dimensional
advection Courant number

νCFL =
u∆t
∆x

. (3.34)

Note that, as stated above, ∆x and ∆t are of a similar order, but νCFL will often be
larger that 1. To first order, the kinematic equation (3.3) gives

xA −XD = U∆t

= νCFL∆x .
(3.35)

We split up the advection relative to the mesh into an integer partN ∈ Z, and fractional
part y ∈ [0, 1), so that

xA −XD = (N + y)∆x . (3.36)

It is also useful to observe that N = bνCFLc, where b·c represents the floor function, and
that departure point XD lies in the interval (xj−N−1, xj−N ]. Two examples are given in
Figure 3-5, which shows a sketch of two potential advection trajectories corresponding
to N = 2 and N = 0. Using linear interpolation to evaluate u(xD, tn) in the right-hand
side of (3.10), we get

UnD = (1− y)U(xj−N , tn) + yU(xj−N−1, t
n) . (3.37)
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Figure 3-5: Example of advection Courant numbers. For the trajectory arriving at x3,
we have N = 2, whilst the trajectory arriving at x5 has N = 0.

In terms of v, we have

U(xj−N , tn) = v(znj −N∆x) , (3.38)

U(xj−N−1, t
n) = v(znj − (N + 1)∆x) , (3.39)

and taking Taylor expansions about z = znj and substituting into (3.37) gives

UnD = v − (N + y)∆xv′ +
(
(N + y)2 + (1− y)y

) ∆x2

2
v′′ +O(∆x3) . (3.40)

We now want to replace the Courant number (N + y)∆x with an expression involving
v. Rewriting the departure point equation (3.11) as

xA −XD = ∆t
[
θxu

n+1
A + (1− θx)unD

]
, (3.41)

and using the expressions for un+1
A and unD from (3.31) and (3.40), (3.36) gives

(N + y)∆x = ∆t
(
θx

(
v − ĉ∆tv′ + ĉ2∆t2

2
v′′
)

+ (1− θx)
(
v − (N + y)∆xv′ +

(N + y)2∆x2

2
v′′ +

(1− y)y∆x2

2
v′′
))

+O((∆x+ ∆t)4) . (3.42)

We can truncate this further and substitute in a first order approximation

(N + y)∆x = ∆tv +O(∆t2) , (3.43)

to get

(N + y)∆x = ∆t
(
v − (θxv + (1− θx) ĉ) ∆tv′

)
+O((∆x+ ∆t)3) , (3.44)
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and

UnD = v −∆tvv′ +
∆t2

2
(
2(θxĉ+ (1− θx)v)v′2 + v2v′′

)
+

∆x2

2
(1− y)yv′′ +O((∆x+ ∆t)3) . (3.45)

We take a moment to remark that the last ∆x2 term is equal to the leading order error
for linear interpolation from equation (2.35).

Using a similar process, we get

(Uxx)nD = v′′ −∆tvv′′′ +O((∆x+ ∆t)2) . (3.46)

Accordingly we express the right-hand side of (3.10) as

UnD + (1− θu) ∆tε(Uxx)nD = v −∆t
(
vv′ − (1− θu) εv′′

)
+

∆t2

2
(
2 (θxĉ+ (1− θx) v) v′2 + v2v′′ − 2 (1− θu) εvv′′′

)
+

∆x2

2
(1− y)yv′′ +O((∆t+ ∆x)3) . (3.47)

Forming the Modified Equation

With the left- and right-hand side equations, (3.33) and (3.47), we can express the
SISL discretisation (3.10) in terms of v, as

∆t
(
(v − ĉ)v′ − εv′′

)
=

∆t2

2
(
(ĉ+ v)v′2 + (v2 − ĉ2)v′′ − (ĉ+ v)εv′′′

)
+

∆t2

2
(ĉ− v)

(
(2θx − 1) v′2 − (2θu − 1) εv′′′

)
+

∆x2

2
(1− y)yv′′ +O((∆t+ ∆x)3) , (3.48)

with boundary conditions

v(−∞) = c+ α , (3.49)

v(∞) = c− α . (3.50)

Equation (3.48) is our full modified equation for a numerical travelling wave solution
to the semi-Lagrangian discretisation of Burgers’ equation with linear interpolation.
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Using the first order approximation (3.43), we can instead express the interpolation
term (the ∆x2 term) in (3.48) as

∆x2

2
(1− y)yv′′ =

(
((2N + 1)∆x− v∆t) v∆t− (N 2 +N )∆x2

) v′′
2
. (3.51)

We have now achieved our desired objective of obtaining the modified equation
satisfied by v. The next step is to analyse equation (3.48) to get estimates of the
numerical viscosity parameter and the numerical wave speed.

3.4.3 Asymptotic expansion of the modified equation

To analyse the modified equation, we shall perform a rescaling, followed by an expansion
argument and isolate the modified viscosity ε̂ and modified wave speed ĉ. We simplify
our analysis by only considering the case of a Crank-Nicholson-like discretisation with
θx = θu = 1

2 .
The full modified equation is

∆t
(
(v − ĉ) v′ − εv′′

)
=

∆t2

2
(ĉ+ v)

(
v′2 + (v − ĉ) v′′ − εv′′′

)
+

1
2
[
((2N + 1) ∆x− v∆t) v∆t−

(
N 2 +N

)
∆x2

]
v′′

+O
(
(∆x+ ∆t)3

)
. (3.52)

Motivated by the exact solution (3.4)

u(x, t) = c− α tanh
(
α(x− ct)

2ε

)
, (3.53)

we introduce the scaling

v(z) = c+ αW (s) , (3.54)

where

s = αz . (3.55)

We now consider the leading order modified equation, ignoring the O((∆x+ ∆t)3)
terms. The modified equation (3.52) can be expressed in the rescaled variables W (s)
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and takes the form

∆t
(
α2 (c− ĉ+ αW )W ′ − α3εW ′′

)
=

∆t2

2
(c+ ĉ+ αW )

(
α4W ′2 + α3 (c− ĉ+ αW )W ′′ − α4εW ′′′

)
+
α3∆t

2

[
((2N + 1) ∆x− (c+ αW )∆t) (c+ αW )−

(
N 2 +N

) ∆x2

∆t

]
W ′′ , (3.56)

where a prime now represents a derivative with respect to the rescaled variable s. This
gives an equation for the modified equation in terms of ĉ and W (s) with varying powers
of α.

We investigate this rescaled modified equation by formally expanding ĉ and W (s)
in terms of α:

ĉ = ĉ0 + αĉ1 + α2ĉ2 + · · · , (3.57)

W (s) = W0(s) + αW1(s) + α2W2(s) + · · · . (3.58)

The boundary conditions of the modified equation

lim
z→∓∞

v(z) = c± α , (3.59)

give boundary conditions for the terms of the expansion as

lim
s→∓∞

W0(s) = ± 1 ,

lim
s→∓∞

Wi(s) = 0 , for i > 0 .
(3.60)

In searching for a heteroclinic solution, as with the exact solution, we also observe that
all derivatives of Wi(s) tend to zero as s tends to ±∞ for all i = 0, 1, . . . .

Substituting the expansions (3.57) and (3.58) into equation (3.56), we can consider
terms in successive powers of α.

Terms of order O(α2)

With the above expansions for W (s) and ĉ in the rescaled modified equation (3.56),
considering only terms of order O(α2), we have

α2∆t(c− ĉ0)W ′0(s) = 0 . (3.61)
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For non-trivial solutions in W0(s), this leads to

ĉ0 = c . (3.62)

Terms of order O(α3)

Considering terms of order O(α3), we see that

α3∆t
(
(W0 − ĉ1)W ′0 − ε̃W ′′0

)
= 0 , (3.63)

where

ε̃ := ε+
1
2

(
((2N + 1)∆x− c∆t) c− (N 2 +N )

∆x2

∆t

)
. (3.64)

Integrating equation (3.63) over [−∞,∞] gives[
W0(s)2

2
− ĉ1W0(s)− ε̃W ′0(s)

]∞
−∞

= 0 . (3.65)

Substituting in the boundary conditions (3.60) gives

ĉ1 = 0 . (3.66)

The equation (3.63) together with the boundary conditions (3.60) has the well known
heteroclinic solution

W0(s) = − tanh
( s

2ε̃

)
. (3.67)

This gives the numerical solution v(z), to leading order of α

v(z) = c− α tanh
(αz

2ε̃

)
+O(α2) , (3.68)

suggesting a tanh-profile similar to the exact solution, but with a front-width parameter
ε̃. This is in agreement with the results observed in Section 3.3.

Terms of order O(α4)

We consider the next next order of the modified equation (3.56), O(α4):

α4∆t
(
(W1 − ĉ2)W ′0 +W0W

′
1 − ε̃W ′′1

)
=

α4∆t2c
(
(W ′0)2 +W0W

′′
0 − εW ′′′0

)
+ α4 ∆t

2
((2N + 1)∆x− 2c∆t)W0W

′′
0 . (3.69)
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Integrating this equation over [−∞,∞] leads to the expression

[
−ĉ2W0(s) +W1(s)W0(s)− ε̃W ′1(s)

]∞
−∞ =

∆tc
[
W0(s)W ′0(s)− εW ′′0 (s)

]∞
−∞

+
1
2

((2N + 1)∆x− 2c∆t)
∫ ∞
−∞

W0(s)W ′′0 (s)ds . (3.70)

We can explicitly evaluate the integral using the solution from (3.67). Using this result
and rearranging gives

ĉ2 =
−1
6ε̃

((2N + 1)∆x− 2c∆t) , (3.71)

Hence, we can reconstruct the expansion for ĉ (3.57) from (3.62), (3.66) and (3.71),
giving

ĉ = c− α2

6ε̃
((2N + 1)∆x− 2c∆t) +O(α3) . (3.72)

Considering again the O(α4) equation, with a bit of calculus we can explicitly find
an expression for W1(s). Equation (3.69) can be rearranged as

(W0W1)′ − ε̃W ′′1 = ∆tc(W0W
′
0 − εW ′′0 )′ + ĉ2(W ′0 − 3ε̃W0W

′′
0 ) . (3.73)

With the observations that

W ′0 =
1
2ε̃

(W 2
0 − 1) (3.74)

and

W ′′0 =
1
ε̃
W0W

′
0 , (3.75)

after integrating equation (3.73) and some careful manipulation, we get

W ′1 −
W0

ε̃
W1 =

1
ε̃

(
2ĉ2 −∆tc

ε̃− ε
ε̃2

)
W0W

′
0 + constant . (3.76)

If we consider s going to∞ then we have the constant is 0. Using the integrating factor

I = exp
(
−
∫
W0(s)
ε̃

ds
)

=
−1

2ε̃W ′0
,

(3.77)
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we can integrate equation (3.76) to get

W1

W ′0
=
(

2ĉ2 −∆tc
ε̃− ε
ε̃2

)(
ln
(

cosh
( s

2ε̃

))
+ d
)
. (3.78)

If W1(s) makes no contribution to the error at s = 0, then d = 0. Using the equations
for W0(s) and ĉ2, (3.67) and (3.71), we arrive at

W1(s) =
−1
3ε̃

(
(2N + 1)∆x+ ∆tc

ε̃− 3ε
ε̃

)
ln
(

cosh
( s

2ε̃

))
sech2

( s
2ε̃

)
. (3.79)

3.4.4 Further correction to ε

Before summarising our analysis, we consider a further restriction on the numerical
viscosity parameter due to the mesh spacing. Assuming a tanh profile, we have a
relationship from equation (3.24) between m, the gradient of the numerical solution
and ε̂ the numerical viscosity term, namely

ε̂ =
−α2

2m
. (3.80)

When attempting to represent a tanh profile on a mesh with ε � ∆x, provided we
create no new extrema, the front almost surely jumps from c + α to c − α in a single
interval, since the width of the moving front is small compared to the mesh width. This
gives a maximum gradient −2α/∆x. As such, this gradient corresponds to a minimum
distinguishable viscosity parameter which we can represent with mesh spacing ∆x,

εmin =
α∆x

4
. (3.81)

Taken with the above estimate for ε̃ in equation (3.64), we predict the numerical vis-
cosity to be

ε̂ = max
(
ε+ ((2N + 1)∆x− v∆t)

v

2
− (N 2 +N )

∆x2

2∆t
,
α∆x

4

)
. (3.82)

We refer to this restriction on the minimum of ε̂ as an aliasing problem.

3.4.5 Summary of Analysis

Using Taylor series we produced a modified equation for travelling wave solution of
the SISL discretisation of Burgers’ equation with linear interpolation. After a rescaling
motivated by the exact travelling wave solution to Burgers’ equation, we considered
expansions in terms of α. By considering terms of orders of α we arrived at expressions
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for v(z), ε̃ and ĉ. Finally, referring to the minimum measurable viscosity parameter on
a given spatial mesh, we arrive at expressions for v(z), ε̂ and ĉ as

v(z) = c− α tanh
(αz

2ε̂

)
+O

(
α2
)
, (3.83)

ε̂ = max
(
ε+ ((2N + 1)∆x− v∆t)

v

2
− (N 2 +N )

∆x2

2∆t
,
α∆x

4

)
, (3.84)

ĉ = c− α2

6ε̂
((2N + 1)∆x− 2c∆t) +O

(
α3
)
. (3.85)

To compare this with our numerical experiments we consider the model parameters
as used in the motivational examples in Section 3.3, namely c = 1, α = 0.1, ε = 10−4,
∆x = 5

Nx+1 and ∆t = 1.5
Nt

. In Figure 3-6 we see the theoretical numerical viscosity
parameter ε̂ for different values of Nx and Nt. In each case u(x, t) is assumed to be
sufficiently close to c, (i.e. α is small) such that in the equation (3.82) we have

v ≈ c , (3.86)

N ≈
⌊
c∆t
∆x

⌋
. (3.87)
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Figure 3-6: Theoretical approximation to ε̂ from equation (3.82), with c = 1, α = 0.1
and ε = 10−4. The “fingers” correspond to νCFL passing through integer values.
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Using the same parameters as Figure 3-6, c = 1, α = 0.1, ε = 10−4, ∆x = 5
Nx+1 and

∆t = 1.5
Nt

, and taking N ≈
⌊
c∆t
∆x

⌋
we can plot the theoretical wave speed ĉ for different

Nx and Nt, which we see in Figure 3-7.
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Figure 3-7: Theoretical estimate of ĉ from equation (3.72) for c = 1, α = 0.1 and
ε = 10−4. We see a periodic behaviour as νCFL passes through integer values, although
these peaks are getting smaller as Nx is increasing (next figure).

This error decays slowly with ∆x and ∆t. This can be seen for ∆x by repeating the
plot for ĉ from Figure 3-10, but with Nx taken larger, and plotted with a logarithmic
scale in Nx, as seen in Figure 3-8.

3.5 Numerical Comparisons

We now run numerical simulations of Burgers’ equation with a SL discretisation for
different numbers of spatial and temporal points, with Nx from 10 to 1000, and
Nt as 40, 80 and 160. In all cases we use viscosity parameter ε = 10−4, domain
(x, t) ∈ [−1, 4]× [0, 1.5], initial conditions u(x, 0) = c− α tanh(αx/(2ε)) and boundary
conditions u(−1, t) = c+ α, u(4, t) = c− α. We run these experiments with a number
of configurations, starting with the parameters and settings used in the motivating
examples and analysis.

48



Nx

102 103 104

k

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

N
t
 = 40

N
t
 = 80

N
t
 = 160

Figure 3-8: Theoretical estimate of ĉ, as in Figure 3-7, but for more values of Nx and
a logarithmic x–axis. The tend of the peaks decreasing is now apparent.

We run the experiments with c = 1, α = 0.1, θx = θu = 1
2 , ∆x = 5

Nx+1 and
∆t = 1.5

Nt
, and use piecewise linear interpolation.

The numerical viscosity is presented in Figure 3-9. We observe very good agreement
with the theoretical estimate of ε̂ seen in Figure 3-6, including the periodicity with
respect to Nx as the Courant number increases through integer values, the symmetry
for an identical Courant number, and the minimum viscosity εmin from equation (3.81).
The two graphs from Figures 3-9 and 3-6 are plotted on the same axes in Figure 3-11,
and we observe smaller error than predicted for small Nx, and slightly larger errors
than the minimum aliasing errors.

From the same numerical experiments, we show the numerical wave speed in Fig-
ure 3-10. Again, qualitatively we see good agreement with the theoretical estimate,
see in Figure 3-7. For Nt = 40 and Nx < 200 we have a larger wave-speed error than
predicted. For larger Nx we see smaller peaks in the wave speed error, and less sharp
jumps from faster-than to slower-than c than the theoretical estimate. These differ-
ences from the theory could be due to the weakening of the assumption that u(x, t) ≈ c
and N is constant,

N =
⌊
c∆t
∆x

⌋
∀x, t . (3.88)

The theory assumes that all departure points have the same N for a given Nx. In
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Figure 3-9: Numerically calculated viscosity parameter ε̂ for α = 0.1, θx = θu = 1
2

using linear interpolation. Except for small Nx this is in good agreement with the
theoretical results in Figure 3-6 (plotted together in Figure 3-11).
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Figure 3-10: Numerically calculated ĉ for α = 0.1, θx = θu = 1
2 using linear interpo-

lation. We observe similar behaviour to the theoretical wave speed, but the peaks are
smeared over more Nx and decay with Nx faster than predicted.
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practice, when νCFL is close to an integer value (fixed νCFL), some departure points
will lead to the linear interpolation underestimating the true value, whilst others will
lead to an overestimate. This would explain the increased decay of the maximum
deviation of the speed from c, and the apparent smearing over Nx of the numerically
calculated speed. Again, the theoretical and numerical wave speeds are plotted on the
same axes in Figure 3-11.
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Figure 3-11: Numerically calculated and theoretical viscosity parameter ε̂ (left) and
speed ĉ (right) for α = 0.1, θx = θu = 1

2 , with linear interpolation. In both cases the
numerical results are solid and the theoretical results are dashed. See Figures 3-6, 3-9,
3-7 and 3-10 for detail.

Plots for ε̂ and ĉ with θu = θx = 0.55 are practically indistinguishable (under visual
inspection) from those in Figures 3-9 and 3-10.

Next, we repeated the experiments using cubic-Lagrange interpolation, described
in Section 2.5, both with and without a flux limiter, described in Section 2.5.4. The
results are in Figures 3-12, 3-13, 3-14 and 3-15.

Each of these graphs shows good qualitative agreement with those for the linear
interpolant. The error in wave speed is slightly worse, while the numerical viscosity
has better convergence with respect to ∆x.

In Figures 3-16 and 3-17 we see the numerical viscosity and wave speed for α = 0.25
and α = 0.5, with linear interpolation. The aliasing error becomes the dominant term
in the numerical viscosity term, whilst there is considerable slowing in the wave speed
for Courant number νCFL > 1. In these cases, the speed U varies in the domain from
1.5 to 0.5, and hence the value of N changes by a factor of 3, further weakening the
assumption that N is approximately constant throughout the domain.
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Figure 3-12: Calculated ε̂, as in Figure 3-9, but with cubic Lagrange interpolation.
The aliasing minimum as described in Subsection 3.4.4 is reduced when no flux limiter
is used, since the numerical solution increases above c+ α to the left of the front, and
decreases below c− α to the right of it.
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Figure 3-13: Calculated ĉ, as in Figure 3-10, but with cubic Lagrange interpolation.
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Figure 3-14: Calculated ε̂, using a flux limited cubic Lagrange interpolant, as in
equations (2.48–2.51).
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Figure 3-15: Calculated ĉ, using a flux limited cubic Lagrange interpolant. Speeds are
very similar to the case where no flux limiter is used.
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Figure 3-16: Numerical viscosity ε̂ and wave speed ĉ for c = 1, α = 0.25 using linear
interpolation. The results are qualitatively similar to those presented above for α = 0.1,
but with ĉ consistently slower than the actual speed c = 1 as Nx increases.
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Figure 3-17: Numerical viscosity ε̂ and wave speed ĉ for c = 1, α = 0.5 using linear
interpolation. The numerical viscosity ε̂ is dominated by the aliasing limit and the
speed is exhibiting drastically different behaviour, possibly due to the breakdown in
the assumption that U ≈ c throughout the spatial domain.

55



3.6 Conclusions

We have analysed the SL discretisation of Burgers’ equation for travelling wave solu-
tions, including the discretisation of the kinematic equation and the linear interpolation,
arriving at expressions for ε̂ and ĉ. We have shown good agreement between the the-
ory and numerical results, and have demonstrated that they exhibit similar behaviour
when using off-centring and cubic-Lagrange interpolation.
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Chapter 4

Review of Moving Mesh Methods

As observed in the previous chapter, the error in the SL method is largely dependent
on ∆x. In addition to this, the departure point error, interpolation error and finite
difference error can all be shown to be small away from the front. It is thus desirable
to have a high density of mesh points near to the front, and for this high density to
track its movement as it advances. This motivates the use of adaptive moving meshes.

In this section we describe monitor function based techniques for moving a mesh
in 1D, reducing the mesh width ∆x locally to reduce errors. We then extend these to
2D problems by using a 1+1D mesh in (x, z), where the horizontal mesh width ∆x is
fixed, but the vertical mesh width in ∆z can change.

4.1 Maps and Equidistribution

In this section we will show how the use of a monitor function can generate a mesh
which equidistributes that function. The size of the monitor function controls the mesh
in a regular manner.

4.1.1 Maps and Monitor Functions

In the problems considered here, we hope to resolve issues which arise from numerical
errors being accumulated in a limited localised area. In such situations the error could
be reduced by having more mesh points in these areas.

This section is motivated by the idea of mesh densities specifying areas where we
want more mesh points. This will be developed from the idea of maps.

We consider a bijective mapping between two 1D domains, a computational domain
Ωc and a physical domain Ωp such that the image of any mesh in Ωc is a mesh in Ωp,
retaining the same number of points and the same ordering.
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As an example, we consider expressing a mesh in a physical domain Ωp = [a, b] with
a computation domain Ωc = [0, 1] and a map

x : Ωp → Ωc (4.1)

ξ 7→ x(ξ) , (4.2)

which satisfies

x(0) = a , x(1) = b , and
dx
dξ

(ξ) > 0 ∀ξ ∈ [0, 1] . (4.3)

If we consider a uniform mesh in Ωc

ξi =
i

N
, i = 0, 1, . . . , N , (4.4)

then unless x(ξ) is linear, we can define a non-uniform mesh in Ωp as

xi = x(ξi) , i = 0, 1, . . . , N , (4.5)

with
a = x0 < x1 < . . . < xN = b . (4.6)

The mesh spacing xi+1 − xi is small when dx
dξ is small.

Figure 4-1: Some monotonic continuous maps with positive derivatives. The horizontal
and vertical lines show the image of a uniform mesh.

Any such map has a corresponding positive monitor functions

M : Ωp → R+ , (4.7)
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which, as we shall see below, is inversely proportional to the gradient of x and hence
the mesh spacing. We call a monitor function which has been normalised over Ωp a
mesh density function (MDF), denoted by ρM .

A monitor function M corresponding to x, integrated over some volume can be
thought of as telling us what proportion of Ωc will be mapped into that area. The
integral of M(x) over the image of two equal intervals under x will be equal. If we
again consider a map x(ξ) from Ωc = [0, 1] onto Ωp = [a, b], and ξ1, ξ2 ∈ Ωc, then this
relationship between M and x can be expressed as∫ x(ξ2)

x(ξ1)
M(x′) dx′ = (ξ2 − ξ1)θM , (4.8)

where

θM =
∫ b

a
M(x′) dx′ . (4.9)

Alternatively this can be expressed as∫ x(ξ)

a
M(x′) dx′ = ξθM , (4.10)

or for a mesh density function ∫ x(ξ)

a
ρM (x′) dx′ = ξ . (4.11)

We can differentiate equation (4.10) to get a more direct relationship between the map
and the monitor function

dξ
dx

=
1
θM

M(x) . (4.12)

This is the 1D equidistribution equation. If this equation is satisfied, then we say that
x equidistributes M .

In Figure 4-1 we see two such maps which have associated mesh densities seen in
Figure 4-2. The thin lines and crosses have been added to show the link with meshes;
In each case the image of a uniform mesh is shown, partitioning Ωp into intervals on
which the integral of M is constant.

We will use the principle of equidistribution (4.12) to place our mesh points in
our physical domain to have a desired distribution. This is useful when solving PDEs
numerically, where we may want to spread some numerical error evenly across our do-
main, e.g. interpolation or discretisation error. The general idea is that if the numerical
error is high in a region, we can try to locally reduce this error by increasing the mesh
density function, and hence the number of mesh points present in that region.
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Figure 4-2: Some MDFs corresponding to the maps in Figure 4-1. The crosses represent
the image of a uniform mesh in Ωc under x, and hence the integral between all pairs
of adjacent crosses is equal.

For now we introduce some idealised monitor functions to help look at how equidis-
tribution behaves when calculated numerically.

4.1.2 Monitor Functions Used

In problems where errors are localised in a small area, we want a monitor function
which is large locally. An example of such a function is the so called Witch of Agnesi,

Mε(x) =
ε

ε2 + x2
, (4.13)

for a small parameter ε > 0. The Witch of Agnesi makes a useful monitor function,
since it can be used to approximate singularities in blow up problems (2D example given
in [6, §5 Ex. 6]): Mε(x) has an integral over R of π and takes the value Mε(0) = ε−1,
with the majority of its density concentrated with a width of order ε centred on x = 0.
In the limit of ε→ 0, we get

lim
ε→0

(Mε(x)) = πδ(x) , (4.14)

where δ(x) is the Kronecker delta function.
The Witch of Agnesi (4.13) has an integral∫

Mε(x)dx = arctan
(x
ε

)
+ constant , (4.15)
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Figure 4-3: Mε(x) (equation (4.13), Witch of Agnesi) for different values of ε; 0.1
(circles), 0.5 (triangles) and 1 (squares).

and we can use the equidistribution equation (4.10) to get

θMξ =
∫ x(ξ)

a
Mε(x′)dx′

= arctan
(x
ε

)
− arctan

(a
ε

)
.

(4.16)

This can be rearranged to give an explicit expression for the corresponding map x(ξ),
as

x(ξ) = ε tan
(
θMξ + arctan

(a
ε

))
. (4.17)

Later, when using these methods to solve PDEs we use a solution dependent monitor
function, modified arc-length, or

Mu(x) =
√
b+ (ux)2 , (4.18)

for some parameter b giving a high density of mesh points around areas of high gradient.
In the case of b = 1 Mu(x) gives the arc-length, and would distribute points along the
curve u(x). This is particularly useful for piecewise constant interpolation.
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A curvature-based monitor function

Mu(x) =
√
b+ (uxx)2 (4.19)

would lead to a high density of mesh points about areas where uxx is high. This is useful
for reducing the error of a piecewise linear interpolant, since the linear interpolation
error (see equation (2.35) in Section 2.5) depends on the second derivative.

In the following sections we introduce two methods for numerically finding the set
of points that equidistribute a given monitor function.

4.1.3 Trapezium Equidistribution

As described above, we are looking for the points xi, i = 1, 2, . . . , N , which equidis-
tribute the monitor function M(x) on [a, b]. For the Witch of Agnesi monitor function,
we were able to use the equidistribution equation to find an explicit expression for x(ξ).
In general finding such an expression may not be possible. If M(x) is integrable such
that ∫ x

a
M(x′)dx′ = θMξ(x) , (4.20)

but the resulting function ξ(x) cannot be rearranged to give an explicit expression for
x, then we can numerically find the equidistributing xi by finding the roots of

θMξ(xi)−
iθM
N

= 0 , i = 1, . . . , N . (4.21)

This could be done using Newton’s method; given x(k), an estimate to xi, we can find
x(k+1) as

x(k+1) = x(k) − 1
M(x(k))

(
θMξ(x(k))− iθM

N

)
. (4.22)

If the integral of M(x) has no closed form, we can approximate M(x) by another
function, for example by a piecewise polynomial. Care must be taken to ensure that any
approximating function is strictly positive. If the approximating function is a piecewise
polynomial, it is sufficient to use a monotonic interpolating polynomial, such as those
discussed in Section 2.5.4.

A cheap and effective method for equidistributing for a discretely defined monitor
function, is to represent M by a piecewise linear function. It is then straightforward
to find the xi which equidistribute this approximation. This method has been imple-
mented in the code equidistribute.m in Appendix A.2.

If M(x) is available for all x in [a, b], then we could evaluate at N points, find the
xi, i = 1, 2, . . . , N which equidistribute the linear interpolant of M(x), then repeat
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with the linear interpolant over the xi. This process is not recommended since there
are situations where this process causes mesh points to oscillate around the desired
mesh, as in Figure 4-8. This approach could be dampened by taking a relaxation of
these meshes, i.e. when a new mesh is attained, average it with the previous mesh,
but it would be more beneficial to sample at more points and equidistribute to a more
accurate approximation to M(x).

A potential extension would be to take a polynomial interpolating function of higher
order and calculate exact equidistribution to this interpolant, but care would have to
be taken to ensure the interpolant of M(x) is strictly positive.

4.1.4 Equidistribution with MMPDEs

We consider a moving mesh PDE (MMPDE), where the movement is determined by
an elliptic time dependent PDE

xt =
1
τ

(Mxξ)ξ , (4.23)

known as MMPDE5 [19]. This has a steady state solution when equidistribution (4.12)
is satisfied, towards which x evolves [6]. We can use this equation (4.23) to find equidis-
tribution of points numerically for a given M by integrating it forward in time. There
are a number of other MMPDEs, some of which are described in [20].

Here there are two paths we can consider for evolving a mesh in a time dependent
PDE. One is to keep a solution constant and adapt in pseudo-time, either for a set
amount of time or until we are within tolerance of equidistribution as for trapezium
equidistribution.

The second is to solve (4.23) dynamically with the PDE, where we couple this
MMPDE with another time dependent PDE in transformed variables to get a moving
mesh solution to that PDE. The monitor function may depend on the solution of the
PDE with a view to increasing mesh resolution in regions deemed important, possibly
across a meteorological front where truncation error may be high. Figure 4-4 shows
Burgers’ equation solved with MMPDE5, as in [21]. This experiment is described in
detail in Chapter 5.

4.2 Mesh calculations for meteorogically relevant geome-

tries.

At the Met Office, much of the parametrisation relies on computational cells being
arranged in vertical columns, and all of the meshes in the dynamics calculations have

63



Figure 4-4: Burgers’ equation solved with moving mesh PDE. Initial conditions are
given as the sine curve, then the solution is shown at various points up to t = 1.5s.
The right image shows the movement of the mesh points with time.

this property. As a result of this, any vertical variation in the mesh will be decoupled
from horizontal variation, although different columns can have different meshes. We
call 2D meshes with this configuration 1 + 1D meshes, and we call a 3D mesh with
strictly vertical columns a 1 + 2D mesh.

Here we look at some of the ways we can numerically find a mesh which equidis-
tributes vertically and some horizontal-vertical slice meshes that result from these cal-
culations. We also look at some additional desirable properties that we can impose on
the mesh by modifying any monitor function.

We take an x-z slice through a domain with a gentle hill (smooth orography, here
a sinusoidal curve), with terrain following coordinates.

We then assign a temperature to every point in our domain with an “inversion
layer”, a line cutting the domain in two, represented in Figure 4-5 by the thick red line
with a high temperature above and a low temperature below, changing continuously
with a width parameter w. The temperature is taken to be

θ(z) = tanh
(
z − p(x)

w

)
, (4.24)
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Figure 4-5: A contrived model of an inversion layer; a sharp temperature change at
the interface of two air masses, the interface represented by the red line intersecting a
sinusoidal hill. The mesh here is based only on the orography.

where z = p(x) is the inversion layer.
We can now perform 1D adaptation purely in the z direction with fixed x, leading

to a 1 + 1D mesh. We use vertical arc-length from (4.18) along the temperature for
our monitor function,

M(z) =
√

1 + (θz)2 . (4.25)

Taking the cubic spline of this data at the initial mesh points (using the MATLAB im-
plementation of cubic spline) then we find the mesh which equidistributes this function.
We see the result of this adaptation in Figure 4-6.

Note in particular the large compression/expansion of mesh points where the in-
version enters and exits the domain. This is due to the sudden jump in θM (x) =∫
M(x, z)dz. For the remainder of this section we look at techniques for 1+1D meshes.

This particular method of equidistributing to the spline can lead to issues when
there are big jumps in the monitor function, as we see in Figure 4-7. The spline has
under-shot to capture the jump in M , leading to a grid with areas of negative density.
This is easily remedied by using a monotonic interpolant, as in Section 2.5.4.

We look at how we equidistribute numerically in more depth in the next section.
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Figure 4-6: The resulting mesh after equidistributing vertically with M =
√
b+ (θz)2.

The width of the inversion is of order w.
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Figure 4-7: Showing the dangers of using a cubic spline as a monitor function. The
lower pictures show the cubic spline used when the mesh leaves the domain (at x ≈ 0.25)
and the actual (positive) monitor function.
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4.2.1 Time-independent Monitor Functions

We consider an integrable monitor function to observe convergence of numerical equidis-
tribution.

For given maps and corresponding monitor functions, we can numerically solve
these via the methods described in Sections 4.1.3 and 4.1.4 and look at the convergence
towards equidistribution.

We consider 1D maps with monitor functions of the form

Mp,ε(z) =
1
π

ε

ε2 + (z − p)2
. (4.26)

This is chosen as an idealised inversion layer centred on p and changing over a width
of an order of magnitude ε.

We consider iterated trapezium equidistribution, where the monitor function is re-
sampled after each call to equidistribute.m, and MMPDE5 solved with the MATLAB
stiff ODE solver ODE15s.

Here we aim to to present trapezium equidistribution as an evolution operator with
fixed time step, attempting to solve directly in one step and try to get a comparable
relaxation form of this.
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ODE15s on MMPDE5; τ = 1

Iterate
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g
|E

|
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Trapezium Equidistribution
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lo
g
|E

|

-4

-2

0

2

ODE15s on MMPDE5; τ = 1

Iterate
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|E

|

-6
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0

2

Trapezium Equidistribution

Figure 4-8: Showing the convergence of monitor functions and methods with the 2-
norm of the error from exact equidistribution. Equidistributing 11 points across the
interval [0, 1] using a first-order finite difference scheme of MMPDE5 and iterated
equidistribution of piecewise linear approximation of M . Left plots show the monitor
function M(x) = 1/

√
2x+ 1/4, and right plots show the monitor function Mε(x) =

ε/(ε2 + (x− 1/2)2), ε = 0.01 (trapezium equidistribution does not converge).

In Figure 4-8 we see that with the exception of the iterated trapezium equidistribu-
tion and the Witch of Agnesi these methods reach a point where we have a numerical
steady state and the equidistribution “distance” measure is zero, i.e. the discretised
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form of (Mxξ)ξ = 0.
We have reached equidistribution relative to our discretisation; the remaining error

is discretisation error. We observe the convergence of this discretisation error with
Figure 4-9.
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Figure 4-9: Convergence of methods for monitor function 1/
√

2x+ 1/4 for (decreasing
steady state error) 11, 22, 44 and 88 grid points.

4.2.2 Element Quality

Once we have performed this 1D adaptation, we want some tools to look at the cells
created in the 1 + 1D vertical slice mesh.

Taken from [16] and [44] we have some quadrilateral measures whereby any quadri-
lateral in an x-z plane can be characterised by area, x-tapering, z-tapering, skewness
and aspect-ratio, with location and orientation fixing the remaining three degrees of
freedom. Examples of these properties can be seen in Figure 4-10.

In our case we are currently just considering z-adaptation, so we can consider the
orientation of the elements aligned with x constant, hence also no x-tapering.

These measures are calculated in the code included with [16] with minor alterations.
Colour-gradient plots are shown in Figure 4-11. Such measures could be employed to
analyse resulting 1 + 1D meshes, though care must be taken not attribute too much
importance to a single measure, as a “bad” mesh for one application might be considered
a “good” mesh for another.

4.2.3 Averaging

For a given monitor function we can impose a maximum grid-width by averaging the
monitor function with a constant.
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Figure 4-10: Visual example of Robinson quadrilateral measures showing, from left to
right: z-tapering, no skewness; skewness, no tapering; high aspect ratio, no skewness
or tapering.

To see the effects of averaging we consider N points uniformly distributed over [0, ε],
x0 = 0, xN−1 = ε, with xN = 1.

A corresponding monitor function can be given as

M(x) =


N − 1
Nε

, 0 ≤ x < ε

1
N(1− ε)

, ε ≤ x ≤ 1 ,
(4.27)

with θM :=
∫ 1

0 M(x)dx = 1. The averaged monitor function, with equal weighting is

M̂(x) : =
M(x) + θM

2θM

=


(1 + ε)N − 1

2Nε
, 0 ≤ x < ε

(1− ε)N + 1
2N(1− ε)

, ε ≤ x ≤ 1 .

(4.28)

Since
(1− ε)N + 1

2N(1− ε)
(1− ε)N + 1
2N(1− ε) + 2

=
1
2
, (4.29)

the integral of M̂ over [ε, 1] is greater than 1−ε
2 , and approximately half the equidis-

tributed points lie in the region [ε, 1], which previously had only the endpoints ε and
1.

A similar technique is used in [34], where the authors use a regularisation (equivalent
to the arc-length equation (4.18) here) of a monitor function M(x) as

M̂ =
√

1 + c2M2 , (4.30)

where the two values of parameter used in the results section are c = 0.5 and c = 0.25.
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Figure 4-11: Plots showing z-tapering of the elements of the mesh from Figure 4-6.

4.2.4 Smoothing

Another property we may wish to impose is mesh smoothness, where there are no
sudden jumps from areas of high mesh-width to low mesh-width. This can be achieved
through smoothing of the monitor function.

We can consider smoothing of the monitor function over grid points, for example
in 1D, a three-point smoothing of f at points xi, i = 0, .., N could be

S[f(xi)] =
(α−1f(xi−1) + α0f(xi) + α1f(xi+1))

α−1 + α0 + α1
, (4.31)

for internal points i = 1, . . . , N − 1, and

S[f(x0)] =
(α0f(x0) + α1f(x1))

α0 + α1
, (4.32)

S[f(xN )] =
(α−1f(xN−1) + α0f(xN ))

α−1 + α0
. (4.33)

This smoothing operation can be expressed as a smoothing stencil

α−1 α0 α1
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or, if a vector f is composed with fi = f(xi−1) then the effect of smoothing can be
expressed by left-multiplying by a tridiagonal matrix S, where

S =



α0
α0+α1

α1
α0+α1

α−1

α−1+α0+α1

α0
α−1+α0+α1

α1
α−1+α0+α1

. . . . . . . . .
α−1

α−1+α0+α1

α0
α−1+α0+α1

α1
α−1+α0+α1

α−1

α−1+α0

α0
α−1+α0


. (4.34)

If we have a 2D domain and we define the N -by-N matrix F such that

Fi,j = f(xi, yj) , (4.35)

then smoothing in the x-direction can be effected by left-multiplication with S, i.e.

Sx[F ] = SF , (4.36)

and smoothing in the y-direction by right-multiplication with the transpose of S,

Sy[F ] = FST . (4.37)

These smoothing operations are associative. As an example, using the stencil

1 2 1

for both x and y smoothing is equivalent to the 2D smoothing stencil

1 2 1
2 4 2
1 2 1 .

In [34], a horizontal smoothing step is used with a stencil

0 1 0
1 4 1
0 1 0 ,

which is iterated a number of times to “reduce the loss of horizontal coherence”. In the
two experiments presented for Data Assimilation, the smoothing stencil is applied 6
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and 8 times, equivalent to a single 13-by-13 and 17-by-17 horizontal smoothing stencil,
and was no vertical smoothing.

It is worth noting that in 1D this stencil smoothing operator can also be represented
by a convolution of the sequence of points {xi} with [..., 0, 0, α−1, α0, α1, 0, 0, · · · ], with
appropriate definition of the sequences and treatment near the edges of the domain.
For a non-discrete monitor function, an analogue, continuous form of smoothing is
convolution with a function such as Mσ. If we consider such a convolution on the
monitor function Mε,

M̄(x) = (Mε ∗Mσ)(x) , (4.38)

and since
Mε(x) = F

[
1
2
e−ε|s|

]
, (4.39)

for F as the Fourier transform, we get

M̄(x) = F

[
1
4
e−(ε+σ)|s|

]
. (4.40)
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Chapter 5

Application of Moving Meshes to

Burgers’ Equation

In this chapter we combine the ideas and results of the previous two chapters in order
to calculate the solution of Burgers’ equation on a moving mesh. In the first part
we will use an Eulerian (non-semi-Lagrangian) implementation, which can have issues
with CFL conditions. In the second part we will combine the semi-Lagrangian method
with moving meshes to give a very effective procedure for solving Burgers’ equation.

5.1 Burgers’ Equation

Having looked at mesh movement, we now turn our attention to using moving meshes to
solve PDEs in one spatial dimension. As an example which is typical in the literature,
we use Burgers’ equation. In this section we look at Burgers’ equation, finite difference
discretisations on non-uniform meshes then show computations of moving and static
mesh solutions to Burgers’ equation with some simple error measures.

For some ε > 0, the viscous Burgers’ equation as described in Section 2.6 is given
by

∂u

∂t
+ u

∂u

∂x
= ε

∂2u

∂x2
, ∀x ∈ [xL, xR], t > 0 , (5.1)

with initial and boundary conditions

u(x, 0) = u0(x) ∀x ∈ [xL, xR] ,

u(xL, t) = uL ∀t > 0 ,

u(xR, t) = uR ∀t > 0 .

(5.2)
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In this section we shall solve in a finite domain [0, 1] with smooth initial conditions

u0(x) = sin(2πx) +
1
2

sin(πx) , (5.3)

which forms a sharp front in a short amount of time. Later in the chapter, we investigate
the travelling wave solutions, as studied in Chapter (3).

We seek a numerical solution to Burgers’ equation via the method of lines. On a
mesh xi, i = 0, 1, . . . , N + 1, our numerical solution U(t) approximates

Ui(t) ≈ u(xi, t) .

Approximating the spatial derivatives via finite difference leads to a system of N + 2
ODEs which we integrate numerically.

5.2 Finite Differences on non-Uniform Meshes

We take a fixed mesh on the domain [xL, xR] with N + 2 points,

xL = x0 < x1 < . . . < xN < xN+1 = xR , (5.4)

and define the differences

∆i := xi − xi−1 ∀i = 1, · · · , N + 1 . (5.5)

For a uniform mesh we use the notation

∆x : = ∆i (5.6)

=
xR − xL
N + 1

. (5.7)

We adopt the common notation for finite difference operators as in Section 3.3 but
extended to non-uniform meshes: for the finite difference approximation to ux(xi, t)
we use the forward difference, backwards difference and central difference operators.
These we define as

δ+
x Ui : =

Ui+1 − Ui
∆i+1

, (5.8)

δ−x Ui : =
Ui − Ui−1

∆i
, (5.9)
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and

δ2xUi : =
Ui+1 − Ui−1

∆i+1 + ∆i
(5.10)

respectively. For uxx we use the approximation

δ2
xUi :=

δ+
x Ui − δ−x Ui

1
2(∆i + ∆i+1)

(5.11)

which, for a uniform mesh, reduces to the more familiar definition

δ2
xUi =

Ui+1 − 2Ui + Ui−1

(∆x)2
. (5.12)

We can also consider these finite difference operators acting on a vector U. With an
abuse of notation, δ2

x can be regarded as a matrix with action given by

(
δ2
xU
)
i

= δ2
xUi . (5.13)

In fact, the matrix is given explicitly for a non-uniform mesh in equation (5.54).
In this chapter we restrict ourselves to using Dirichlet boundary conditions, so that

U0 and UN+1 are fixed, and we reduce our problem to solving N ODEs, so i = 1, . . . , N .

5.2.1 Truncation Error of Finite Difference Operators

Considering again the unstructured mesh, we want to look at the truncation error of
our finite difference operators. For now we consider the central difference and the
second order finite difference operators. Using the definitions of our operators, we can
look at the errors of the central difference operator and the second difference operator,
τ1i and τ2i respectively, that satisfy

∂u

∂x
(xi, t) = δ2xUi + τ1i

=
Ui+1 − Ui−1

∆i+1 + ∆i
+ τ1i ,

(5.14)

∂2u

∂x2
(xi, t) = δ2

xUi + τ2i

=
∆iUi+1 − (∆i + ∆i+1)Ui + ∆i+1Ui

1
2∆i+1∆i(∆i+1 + ∆i)

+ τ2i .
(5.15)
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We can express Ui+1 and Ui−1 as Taylor series expansions of u(x) about xi

Ui+1 = u(xi + ∆i+1) (5.16)

= Ui + ∆i+1
∂ui
∂x

+
∆2
i+1

2
∂2ui
∂x2

+ higher order terms (h.o.t) (5.17)

and

Ui−1 = Ui −∆i
∂ui
∂x

+
∆2
i

2
∂2ui
∂x2

+ h.o.t , (5.18)

then substituting these terms into the finite difference approximations (5.14) and (5.15),
we find the truncation errors τ1i, τ2i to leading order are

τ1i = −
[

∆i+1 −∆i

2
∂2ui
∂x2

+
∆i+1

3 + ∆i
3

6(∆i+1 + ∆i)
∂3ui
∂x3

]
+ h.o.t (5.19)

τ2i = −
[

∆i+1 −∆i

3
∂3ui
∂x3

+
∆i+1

3 + ∆i
3

12(∆i+1 + ∆i)
∂4ui
∂x4

]
+ h.o.t . (5.20)

Each τni is made up of a mesh smoothness term (∆i+1−∆i) and a mesh spacing term(
∆i+1

3+∆i
3

∆i+1+∆i

)
. On the uniform mesh the smoothness term vanishes and the spacing

term becomes (∆x)2, proportional to (N + 1)−2.
With motivation from the maps presented in Section 4.1, we note that we can

consider x as a function of a computational variable ξ ∈ [0, 1]. A mesh in the physical
domain can be thought of the image of a uniform mesh in [0, 1] with

xi = x(ξi) , (5.21)

ξi := i∆ξ , ∀i = 0, · · · , N + 1 , (5.22)

∆ξ :=
1

N + 1
. (5.23)

If x(ξ) is sufficiently smooth, then taking a Taylor series about x(ξi), we see that

∆i = x(ξi)− x(ξi−1) = xi −
(
xi −∆ξ

∂xi
∂ξ

+ ∆ξ2∂
2xi
∂ξ2

+ · · ·
)
, (5.24)
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and we can express the truncation errors as

τ1i = −

(
1
2
∂2ui
∂x2

∂2xi
∂ξ2

+
1
6
∂3ui
∂x3

(
∂xi
∂ξ

)2
)

(∆ξ)2 + h.o.t , (5.25)

τ2i = −

(
1
3
∂3ui
∂x3

∂2xi
∂ξ2

+
1
12
∂4ui
∂x4

(
∂xi
∂ξ

)2
)

(∆ξ)2 + h.o.t , (5.26)

We observe that the two leading error terms have the same order of convergence, N−2.
These truncation errors can also be found in [5, Lemma 2.3 and 2.4].

In addition to the central difference approximation (5.14), we also consider a first
order finite difference scheme

∂u

∂x
(xi, t) =

1
2∆2

iUi+1 − 1
2(∆2

i −∆2
i+1)Ui − 1

2∆2
i+1Ui−1

1
2∆i+1∆i(∆i+1 + ∆i)

+ τ3i , (5.27)

with leading order truncation term

τ3i =
∆i+1∆i

6
∂3u

∂x3
(xi, t) + h.o.t . (5.28)

Comparing the truncation terms of (5.14) and (5.27), τ1i and τ3i, we observe that
the latter does not have the same restrictions on mesh smoothness (manifest in the
(∆i+1 −∆i) term in (5.25)), hence we would expect (5.27) to perform better on more
general meshes. However, as we shall see in the next section, for Burgers’ equation
(5.14) is preferable since it leads to an energy preserving discretisation.

We use the second order finite difference scheme (5.15) for the viscosity term uxx,
and now proceed to discuss the remaining advection term.

5.2.2 Discretisation of the Nonlinear Advection Term

There are a number of options available for discretising the nonlinear advection term
uux. In order to make an informed decision, we consider a discretisation of the inviscid
Burgers’ equation,

ut + uux = 0 , x ∈ [xL, xR] . (5.29)

We motivate our choice of discretisation of the nonlinear advection term by considering
a discrete version of the energy.
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An Energy Preserving Discretisation

Following [38] the energy associated with the inviscid Burgers’ equation (5.29), consid-
ered over some spatial interval Ω, is defined as

E(t) =
∫

Ω

u2

2
dx . (5.30)

Differentiating with respect to time and using inviscid Burgers’ equation (5.29),
provided we have a smooth solution u, we get

dE
dt

=
∫

Ω

∂

∂t

(
u2

2

)
dx (5.31)

=
∫

Ω
uutdx = −

∫
Ω
u2uxdx (5.32)

=
−u3

3

∣∣∣∣
Ω

. (5.33)

We can interpret this as energy being conserved internally in the domain and only
affected by the boundaries.

It is therefore desirable to have a discretisation which, in some sense, conserves the
energy of the nonlinear term uux, and with this motivation we construct a discrete
measure of energy as a numerical approximation to the integral (5.32),

dE
dt
≈
∑
i

Ui (Ui)t
(∆i + ∆i+1)

2
. (5.34)

If we choose to discretise the nonlinear term as

Ui (Ui)x = −Uiδ2xUi , (5.35)

then our approximation to the energy for inviscid Burgers’ equation (5.29) is

dE
dt
≈
∑
i

−U2
i

Ui+1 − Ui−1

(∆i + ∆i+1)
∆i + ∆i+1

2
, (5.36)

and considering only terms including Uj ,

dE
dt
≈ · · · − U2

j−1

Uj − Uj−2

2
− U2

j

Uj+1 − Uj−1

2
− U2

j+1

Uj+2 − Uj
2

− · · · (5.37)

= −Uj
(
U2
j−1 + Uj(Uj+1 − Uj−1) + U2

j+1

)
+ · · · . (5.38)
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In general, these terms do not cancel out and in the sense of our approximation, energy
is not conserved. This is also true with the second order finite difference discretisation
(5.27).

Alternatively, with the choice for the nonlinear term uux as

−Ui (Ui)x = −Ui−1 + Ui + Ui+1

3
Ui+1 − Ui−1

∆i + ∆i+1
, (5.39)

the discrete energies cancel out with successive terms and the total energy E is con-
served. Therefore we elect to use the equation (5.39) as our discretisation. This is
sometimes known as the FD2C discretisation of the nonlinear term. An alternative,
referred to as the conservative form of the differential-difference equation [12, (4.109)],
is

−Ui (Ui)x = −1
3
Ui
Ui+1 − Ui−1

∆i + ∆i+1
− 1

3
U2
i+1 − U2

i−1

∆i + ∆i+1
. (5.40)

This discretisation also has the property of discrete energy conservation, but we shall
not investigate it further.

We now return to the viscous Burgers’ equation (5.1). The change in energy is

dE
dt

=
∫

Ω
uut dx

=
∫

Ω
u (−uux + εuxx) dx

=
−u3

3

∣∣∣∣
Ω

+ ε uux|Ω ε
∫

Ω
(ux)2 dx (5.41)

, . (5.42)

We observe that internally there is no contribution to the change in energy from the
nonlinear advection term uux, only from the viscosity term εuxx. Motivated by this,
we shall use the FD2C discretisation (5.39) for the nonlinear advection term. For the
viscosity term, we shall simply use the standard finite difference discretisation of the
second derivative (5.15). Hence our discretisation of Burgers’ equation is

(Ui)t = −Ui−1 + Ui + Ui+1

3
δ2xUi + εδ2

xUi , (5.43)

with an appropriate discretisation of the boundary conditions, which we discuss in the
next section. Here we use the Dirichlet boundary conditions implemented as

U0(t) := u(xL, t) , (5.44)

UN+1(t) := u(xR, t) , (5.45)
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and with the initial conditions

Ui(0) := u0(Xi) , (5.46)

we have a nonlinear system of ODEs which we can solve numerically.
We now give the numerical implementation of this system of equations (5.43–5.46).

5.2.3 Numerical Implementation and Boundary Conditions

As described above, we have N + 2 points xi, two of which correspond to the Dirichlet
boundary conditions

u(x0, t) = uL , (5.47)

u(xN+1, t) = uR . (5.48)

This leaves N points on which to represent our solution u(xi, t). If we represent these
values in a vector U with

Ui(t) ≈ u(xi, t) , (5.49)

then we can express the central difference operator (e.g. δ2xUi) from equation (5.14)
as a corresponding N -by-N matrix (e.g. δ2xU) and a length N boundary condition
correction vector bδ2x , such that

∂U
∂x
≈ δ2xU + bδ2x , (5.50)

with

δ2x =



0 1
∆1+∆2

−1
∆2+∆3

0 −1
∆2+∆3

. . . . . . . . .
. . . . . . 1

∆N−1+∆N

1
∆N+∆N+1

0


, (5.51)

bδ2x =
(
−uL

∆1 + ∆2
0 · · · 0

uR
∆N + ∆N + 1

)T
. (5.52)

The second order difference operator from equation (5.15) has a corresponding
matrix

∂2U
∂x2

≈ δ2
xU + bδ2x , (5.53)
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with

δ2
x =



−(∆1+∆2)
d1

∆1
d1

∆3
d2

−(∆2+∆3)
d2

∆2
d2

. . . . . . . . .
. . . . . . ∆N−1

dN−1
∆N+1

dN

−(∆N+∆N+1)
dN


, (5.54)

bδ2x =
(

∆2uL
d1

0 · · · 0
∆NuR
dN

)T
, (5.55)

where
di =

1
2

∆i∆i+1(∆i + ∆i+1) , i = 1, . . . , N . (5.56)

Finally we can express the averaging operator from equation (5.39) as a matrix

A =
1
3


1 1

1
. . . . . .
. . . . . . 1

1 1

 . (5.57)

and boundary correction vector

bA =
(ul

3
0 . . . 0

ur
3

)T
. (5.58)

5.3 Eulerian Moving Mesh Burgers’ Equation

5.3.1 Mesh Movement

We now discuss the mesh movement when solving PDEs with an Eulerian frame of
reference. This movement can either be in the physical domain via static rezoning,
where we must remesh after a number of time steps (can be after n time steps or when
some remeshing criteria is met), or in the computational domain, where we transform
our PDE using the maps from Chapter 4.

Static Rezoning

In this method, we adopt a two stage process, solving the PDE on a fixed non-uniform
mesh, then remeshing. The remeshing can be performed as frequently as required.
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This process is visualised in Figure 5-1, where the mesh is moved each time step. After
this remeshing, the solution needs to be interpolated onto the new mesh. With this

Figure 5-1: Example of using a different mesh at different times; the solution must be
interpolated onto the new mesh.

two-stage strategy, we can solve the PDEs with any method, electing here to use finite
difference in space and a θ-method in time.

Moving Meshes and Maps

Another approach to having a changing mesh in time, is to consider the time dependent
map from a computational domain Ωc. We can use this map with the evolving solution
as a continuous problem, which itself has to be discretised, solving the PDE and moving
the mesh simultaneously. This has been visualised in Figure 5-2. We consider a time
dependent map

x = x(ξ, t) . (5.59)

We now use this map as a transformation of variables, and represent our PDE in terms
of the computational variable ξ, as opposed to the physical variable x.

With this transformation, we can use the chain rule to find expressions for the
derivative of u with respect to x and t in terms of ξ and x(ξ), as

ut(ξ, t) = ut(x, t)− xtux , (5.60)

uξ(ξ, t) =
uξ(ξ, t)
xξ

. (5.61)
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Figure 5-2: Example of mesh points in a moving mesh solution shown in the physical
domain: the PDE is solved in the computational domain.

Now we can express Burgers’ equation as a PDE in the (ξ, t) domain

ut −
uξ
xξ

(xt − u)− ε

xξ

(
uξ
xξ

)
ξ

= 0 , (5.62)

which we discretise (5.62) via finite differences as

Ut = diag(δ2ξX)−1δ2ξU(Xt −AU) + εdiag(δ2ξX)−1δ−ξ

(
diag(δ+

ξ X)−1δ+
ξ U
)
, (5.63)

where diag(X) is a matrix with the entries of X along the diagonal, and δ+
ξ , δ−ξ and δ2ξ

are matrices associated with the finite difference operators (5.8–5.10). The boundary
condition terms have been omitted for succinctness. To implement this mesh movement,
we must discretise the mesh locations as

Xi(t) ≈ x(ξi, t) , (5.64)

which are then part of the solution. The transformed PDE can be coupled with a
strategy for evolving Xi in time, such as the MMPDE procedure as described in Sec-
tion 4.1.4, solving Burgers’ equation in a moving mesh framework.

For the moving mesh we adopt the monitor function

ρ(x, t) =
√
b+ (ux)2 , (5.65)

where b > 0 is a parameter which could be used to give more or less importance to
very sharp gradients (note b = 1 gives ρ(x, t) as the arc-length of u(x, t)). The monitor
function (5.65) is smoothed and averaged, as discussed in Chapter 4 then used to evolve
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the mesh x(t) in time with MMPDE5

xt =
1
τ

(Mxξ)ξ , (5.66)

discretised as

(X)t =
1
τ
δ−ξ


√√√√(b+

((
δ+
ξ X
)−1

δ+
ξ U
)2
)
δ+
ξ X

 , (5.67)

where δ+
ξ and δ−ξ are the forwards and backwards finite difference operators respectively

(as described in Section 5.2), with relaxation parameter τ = 0.1 and b = 1.
The two systems of ODEs (5.63) and (5.67) now form a system of 2N ODEs to be

solved.

5.3.2 Temporal Discretisation of Eulerian Moving Mesh Methods

θ-method

For the static rezoning approach, we are solving Burgers’ equation on a fixed mesh.
We elect to use the θ-method, since it most closely mirrors the 2TL scheme employed
in Chapter 3. We represent the spatial derivatives via finite difference, with the FD2C
discretisation from Section 5.2 and the matrix and vector representations from Subsec-
tion 5.2.3 so that

Ut = −diag(AU + bA)(δ2xU + bδ2x) + ε(δ2
xU + bδ2x)

:= G(U) .
(5.68)

We discretise at times tn with

tn+1 = tn + ∆t , (5.69)

and adopt the notation
Un = U(tn) . (5.70)

The θ-method [33, §2.10] is

Un+1 −Un

∆t
= θuG(Un+1) + (1− θu)G(Un) , (5.71)
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which we rewrite as

Un+1 −∆tθuG(Un+1) = Rn , (5.72)

where

Rn := Un + (1− θu)∆tG(Un) . (5.73)

We have an off-centring parameter θu ∈ [0, 1] (as in the 2TL SL discretisation
(2.19)), which gives the explicit Euler method for θu = 0, backwards Euler method for
θu = 1 and the Crank-Nicholson method for θu = 1

2 .
Equation (5.72) is a nonlinear implicit equation to be solved for Un+1. We can

express this equation as a root finding problem,

F (Un+1) := Un+1 −∆tθuG(Un+1)−Rn ,

= 0 ,
(5.74)

with tridiagonal Jacobian

JF (Un+1) = I −∆tθu
(
δ2
x − diag(AU + bA)δ2x − diag(δ2xU + bδ2x)A

)
. (5.75)

In burgers.m, which can be found in Appendix A.3, Newton’s method is employed
to solve equation (5.74) to a specified tolerance (default of 10−4).

ODE45

When choosing a numerical method and time step for Burgers’ equation coupled with
a moving mesh PDE, we must account for the stability of both discretised equations.
Instead of the θ-method, we use MATLAB’s inbuilt ODE solvers ODE45, which has
adaptive time stepping.

The coupled system, equations (5.63) and (5.67), is solved in this manner in fd_adaptive.m

in Appendix A.4.
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5.3.3 Numerical Solutions to Eulerian Moving Mesh Burgers’ Equa-

tion

We study the problem of solving the viscous Burgers’ equation as an initial value
problem (IVP),

ut + uux = εuxx on x ∈ [0, 1] , t > 0 (5.76)

with initial and boundary data

u(x, 0) = sin(2πx) +
1
2

sin(πx) , (5.77)

u(0, t) = u(1, t) = 0 , (5.78)

as seen in [21]. The solution develops a sharp front with width of order ε, taken here
to be ε = 0.002, from around time t ≈ 0.2s. This front then propagates in the positive
x direction.

We discretise these equations on N moving points Xi(t) and look for a numerical
solution Ui, as

Ui(t) ≈ u(Xi(t), t) . (5.79)

As described above, we are using the FD2C discretisation of the nonlinear advection
term from (5.39) , which is

(uux)(Xi, t) ≈
(Ui+1 + Ui + Ui−1) (Ui+1 − Ui−1)

3 (Xi+1 −Xi−1)
, (5.80)

and the standard second order finite difference approximation to the second derivative
term.

θ-method

For the static rezoning approach, we take Nt = 40 for t ∈ [0, 1]. We see the results for
N = 16 on a static mesh and a moving mesh in Figure 5-3. We see an improvement in
the results on a moving mesh, though there are small oscillations just behind the front.

We also show the numerical solution to the travelling wave problem from Chapter 3,
with ε = 0.0001 and θu = 1/2 in Figure 5-4 and θu = 0.7, (typical sample for a range of
experiments with θu > 0.5) in Figure 5-5. We take N = 64 and Nt = 40, and observe
the results at t = 1.5. We see oscillations in both cases, but with θu = 0.7 giving a
much smoother numerical solution.
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Figure 5-3: Solution to the IVP (5.76) with a θ-method for a static mesh (top) and using
static rezoning with linear interpolation (middle), and the corresponding positions of
the mesh points (bottom). Here Nt = 40, N = 16 and θu = 0.7. We see oscillations
in both cases, but much smaller with a moving mesh. The moving mesh has advanced
slower than the reference solution (see Figure 5-6).
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Figure 5-4: Solution to the travelling wave problem from Chapter 3 with a θ-method
with static rezoning and linear interpolation. Solution at t = 1.5 is shown above, with
the mesh movement below. Here Nt = 40, N = 64 and θu = 0.5, giving a Crank-
Nicholson scheme. We observe overshoots following the front. We also have rapid
oscillations in the mesh point locations which could be dampened with some time
relaxation of the monitor function.
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Figure 5-5: Solution to the travelling wave problem as in Figure 5-4 but with θx = 0.7.
The oscillations are still present, though much less pronounced, and the mesh movement
is considerably smoother.
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ODE45

We now take a closer look at the coupled Burgers’-MMPDE system.
For the coupled mesh system, resulting systems of ODEs are integrated with the

MATLAB implementation of Runge-Kutta code ODE45 with standard relative toler-
ance of 10−3.

Figure 5-6: Reference solution Uref to Burgers’ equation at time t = 1s.

We create a reference solution Uref on a fixed uniform mesh with N = 1025. So-
lutions with N = 2k + 1, k = {4, . . . , 9} for U and X and for both uniform-static and
adaptive-moving meshes are compared against Uref at t = 1s, by which point the front
has fully formed.

In Figure 5-6 we present the reference solution Uref, and in Figure 5-7 fixed mesh
and moving mesh solutions with N = 17 and N = 65, all at t = 1s.

Comparing the solutions with Uref we see the fixed mesh solution with N = 17
has not captured the front, while N = 65 has captured the front but has oscillations.
With the moving mesh, both solutions appear qualitatively correct, even for the low
discretisation of N = 17.

We can quantify these differences for each N by introducing an error vector with

(EN )i = |Ui(t = 1)− Uref(Xi(t = 1), t = 1)| ,

where, for the moving mesh, the value of Uref(Xi(t), t) has been calculated by linear
interpolation from Uref onto the moving mesh. We can then define two errors: a L2
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Figure 5-7: MMPDE numerical solutions to Burgers’ equation at time t = 1s for
N = 17 (left) and N = 65 (right), on a fixed mesh (above) and moving mesh (below).

error (||EN ||2) and the maximum error (||EN ||∞) as

||EN ||2 =

(
N∑
i=1

(EN )i
2

)1/2

, (5.81)

||EN ||∞ = max
i

(EN )i . (5.82)

In Tables 5.1 and 5.2 we present these error measures for different N , along with
the computation time and the minimum grid spacing on each mesh, and in Figure 5-8
we show ||EN ||∞ as a function of N in each case.
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Table 5.1: Numerical errors for Burgers’ equation with different number of points on
fixed static meshes.

Nfixed ||EN ||2 ||EN ||∞ ∆x time taken (s)
17 1.6354 1.0193 6.25× 10−2 0.065
33 0.4121 0.2404 3.1× 10−2 0.073
65 0.1647 0.1069 1.6× 10−2 0.014
129 0.0614 0.0422 7.8× 10−3 0.39
257 0.0202 0.0120 3.9× 10−3 1.7
513 0.0057 0.0023 2.0× 10−3 25
1025 - - 9.8× 10−4 110

Table 5.2: Numerical errors for Burgers’ equation with different number of points on
an adaptive moving meshes.

Nadaptive ||EN ||2 ||EN ||∞ min(∆xi) time taken (s)
17 0.1690 0.1228 6.7× 10−3 1.9
33 0.09 0.0370 1.7× 10−3 5.8
65 0.03 0.0091 7.4× 10−4 22
129 0.0045 0.0017 3.6× 10−4 79
257 0.0213 0.0031 1.8× 10−4 1500
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Figure 5-8: 2-norm and maximum norm of the error vector against N for the fixed and
adaptive meshes. With the final point in the adaptive mesh, the reference solution is
not accurate enough to compare with the numerical solution. Also shown is N−2, the
theoretical convergence from Section 5.2.1.
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From Tables 5.1 and 5.2, and Figure 5-8, we see that we have a greatly improved
solution with a moving mesh over the static mesh. For largeN we require approximately
1/4 of the grid points for a similar accuracy. For low N , the adaptive solution getting
a qualitatively correct solution where the static uniform mesh fails.

Figure 5-9: max |ux| for different discretisations of Burgers’ equation. (Above) Fixed
mesh N = 33 and N = 129. (Below) Adaptive mesh N = 17 and N = 129. ux is
calculated with the forward difference operator. Note the scale of the y-axis for the
fixed meshes.

In Figure 5-9 we present the maximum absolute gradient of the numerical solution
(calculated here via a forward difference operator) as a function of time. We see issues
with resolving with sharp gradient present at the front for low N on the fixed mesh
and what appear to be oscillations even for large N . In contrast, the moving mesh
solutions capture this maximum well for both low and high discretisations.

This calculation, along with that of the location of this maximum, will be useful
when comparing these simultaneous solutions with that of the semi-Lagrangian discreti-
sation, where we will see that the current implementation seems to get the estimated
maximum size of ux correct but not location and speed of the front.
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5.4 Moving Mesh Semi-Lagrangian Burgers’ Equation

5.4.1 Section Overview

In Chapter 3 we observed that the effect of the various errors given by the SL algorithm
are both to spread the width of the front and to modify the speed of the front. The
conclusion from Section 3.6 is that these errors are in general quite large, and do not
vary much as the mesh size is refined. Indeed they can only be significantly reduced
by taking a step size rather smaller than ε. This motivates the combination of the SL
method with moving meshes with a semi-Lagrangian moving mesh method (SLMM).
One way of placing spatial mesh points considered in Section 4.1.2 is to place them
so that we minimise the interpolation error when approximating a function. This
approach is particularly attractive in the context of a SL calculation, as we have seen in
Section 3.4.2 that a principal cause of the error in this case is the process of interpolating
the function defined on the mesh onto the departure points.

In this section we couple the 1D moving mesh methods with the SL discretisa-
tion, and demonstrate an improvement over the fixed uniform mesh SL calculations in
Chapter 3.

5.4.2 Reminder on semi-Lagrangian discretisations

We now give a quick summary of the semi-Lagrange methods discussed in Chapter 2
and applied to Burgers’ equation in Chapter 3.

We consider some quantity G(x, t) with Lagrangian derivative

DG(x, t)
Dt

:=
∂G

∂t
+∇G · ∂x

∂t
, (5.83)

then we can think of a Lagrangian method as a time discretisation along the pathlines
of the flow. With a time discretisation of tn+1 = tn + ∆t and G discretised as

Gni ≈ G(Xi(tn), tn) , (5.84)

then

DGni
Dt
≈
Gn+1
i −Gni

∆t
. (5.85)

This is in contrast to an Eulerian discretisation, where the mesh points are fixed for
the time step (in the physical or computational domain).

A Lagrangian method can be thought of as a moving mesh method where the mesh
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moves with the flow, or
(Xi)t = u(Xi(t), t) . (5.86)

Looking at the moving frame of reference transformed Burgers’ equation (5.62), the
nonlinear terms cancel out, resulting in the SL Burgers’ equation expressed with x(ξ)
as a map as in Section 5.3,

ut(ξ, t) =
ε

xξ

(
uξ
xξ

)
ξ

, (5.87)

or with a Lagrangian derivative as

Du
Dt

= uxx . (5.88)

Burgers’ equation was discretised in Chapter 3 as

Un+1 − ε∆tθuδ2Un+1 = [Un + ε∆t(1− θu)δ2Un+1]D , (5.89)

Xn+1 −Xn
D =

∆t
2

(Un+1 + Un
D) . (5.90)

Fully Lagrangian methods have the disadvantage that in general the meshes can
tangle in 2D and 3D flows with high vorticity, and are not widely used in practice.

A SL method uses a Lagrangian discretisation at each time step, but then interpo-
lates onto a prescribed mesh. This means that each time level tn has two meshes, an
arrival mesh XA from the previous time step and a departure mesh XD going forward
to the next time step. If we are using a SL method, then since we are resigned to
interpolating each time step, we can use static rezoning between time steps, incurring
only the cost of the mesh calculation. This is the approach used in the remainder of
this chapter.

5.4.3 Moving Mesh Calculations

We now discuss the mesh movement, as with static rezoning.
We are looking to represent u(x) on N mesh points, where the mesh points are free

to move during the course of the calculation. As with the static rezoning, ρ(x) is a
monitor function which is a measure of the error of the resulting approximation. We
want to equidistribute the mesh points at specific times, such that∫ Xj+1

Xj

ρ(x)dx =
θ

N
. (5.91)

As shown in Chapter 3 the interpolation error makes a significant contribution to the
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overall error in a SL method. When using a linear interpolant to evaluate u(x), we can
minimise the interpolation error (2.35) by taking a curvature mesh density function
(4.19), as

ρ(x) =
√
a2 + b2u2

xx . (5.92)

The constants a and b are chosen carefully for normalisation so that the integral of
ρ over the domain is 1 [5, §2.8.2]. The mesh points Xj can then be calculated from
the expression (5.91) by quadrature, described in Section 4.1.3. We compare the use
of this interpolation error-minimising curvature monitor function with the commonly
used arc-length monitor function (4.18) given by

ρ(x) =
√
a2 + b2u2

x . (5.93)

In the context of the SL calculation, the function u(x, t), and hence the monitor
function, is not known a-priori but is calculated as part of the solution. However,
we may implement a two-stage strategy to calculate a moving mesh Xn

j at each time
level tn which makes use of the expression (5.91). We note that in many moving mesh
strategies (see for example [50]) it is required to interpolate the solution onto the new
mesh once it has been calculated. As discussed above, this step is not required in the
algorithm we propose, as the interpolation onto the departure points automatically
deals with this issue.

The moving mesh algorithm coupled to SL

The algorithm for coupling a moving mesh method to the SL algorithm augments the
SL algorithm to the MMSL algorithm in a two-step process as follows.

1. At time level tn we have a computed solution Un and a computed arrival mesh
Xn (at time level t0 the solution U0 is the value of the initial state and the mesh
X0 is assumed to be uniform).

2. Using the known values of Un a new arrival mesh Xn+1 is calculated to equidis-
tribute the monitor function ρ(x) evaluated on Un.

3. Using the new arrival mesh Xn+1, a new solution Un+1 is calculated at these
points using exactly the same SL algorithm as described in Chapter 3.

Note that this procedure is essentially constructing a mesh at time tn+1 which
equidistributes the monitor function of the solution at time tn. This means the mesh
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is “lagged” behind the solution by one time step, but for a small enough time step this
should not be an issue. This lag could be reduced by calculating a “predictor” solution
Ũn+1 for tn+1, equidistributing the mesh with respect to Ũn+1, then calculating a
“corrector” solution Un+1.

The main new part of this computation is the calculation of the new arrival points
Xn+1 in Step 2. This is done as follows:

1. Using the values of Un on the current arrival points Xn the monitor function ρn

is evaluated at each point Xn from (5.92) using a finite difference approximation
as in Section 5.2.

2. The resulting values of ρn are then smoothed using a low pass filter from Sec-
tion 4.2.4 to give points ρ̂n. This has proved necessary in earlier calculations of
moving meshes (see for example [34]) to ensure a smooth and regular mesh at
each stage of the calculation.

3. A linear interpolant is used to reconstruct a continuous monitor function ρ(x)
from the smoothed points ρ̂n.

4. The values of the new arrival points Xn+1 are then calculated from the equidis-
tribution equation (5.91). In this calculation, the linear interpolating function
is integrated exactly to give a piecewise quadratic function. The Xn+1 are then
found by solving a locally quadratic equation, implemented by the MATLAB
code equidistribute.m in Appendix A.2.

The above two algorithms can be seen in Figure 5-10, the first being with L = 1.

The use of the moving mesh means that the underlying function is much better
represented locally, with the mesh spacing being of the order of the shock width ε. Thus
the effective size of the mesh ∆x is much smaller in the equations for the numerical
viscosity (3.82) and the numerical front speed (3.72), leading to smaller errors for both.

5.4.4 Results for Smooth Initial Conditions

We solve the SL Burgers’ equations with ε = 0.002 and initial and boundary conditions

u(x, 0) = sin(2πx) +
1
2

sin(πx) , (5.94)

u(0, t) = u(1, t) = 0, . (5.95)
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1: X0 and U0 given
2: for n := 0 to Nt − 1 (Time loop) do
3: Make in initial estimate to Un+1{0} and Xn+1{0}

4: for ` := 1 to L (Mesh loop) do
5: Calculate ρ(x) from Un+1{`−1}

6: Find Xn+1{`} which equidistributes ρ(x) via (5.91)
7: Calculate Un+1{`} with the algorithm described in Figure 3-1

but with the non-uniform mesh Xn+1{`}

8: end for
9: end for

Figure 5-10: Solution procedure for a moving mesh semi-Lagrangian method. If L = 1
then the mesh is delayed by one time step. For step 7, if ` < L we may want to use a
cheaper, less accurate method to calculate Un+1{`}, which is “good enough” to use to
calculate the mesh Xn+1{`}.

This was solved with a version of the MATLAB code burgers.m from Appendix A.3.
We find Xn+1

A with trapezium equidistribution (see Section 4.1.3) using the monitor
function

M(Xn
i,A, t

n) =
√

1 + (δxUni )2 , (5.96)

with no smoothing or averaging. The value of UD is evaluated with linear interpolation.
As with with experiments in Section 5.3.3 the solutions are presented at t = 1s. We
see the front and mesh movement in Figures 5-11 and 5-12.

These results show a good representation of the front shape, but the front speed is
slower than expected.

We now apply the moving mesh semi-Lagrangian scheme to the travelling wave
problem from Chapter 3.

5.4.5 Travelling Wave Results

We now consider an implementation of the MMSL algorithm to Burgers’ equation, with
boundary conditions u(−∞, t) = c + α, u(∞) = c − α with c = 1 and α = 0.1, as in
Section 3.5.

In this algorithm we take a fixed number N of mesh points over the same x interval
x ∈ [−1, 4], with N increasing from 20 to 1000. We also take time steps of Nt = 40,
80 and 160. The mesh points are then moved to equidistribute the monitor function
taken as

ρ(Xi) =
√

0.1 + (δ+
x Ui)2 . (5.97)

The monitor function is smoothed during the calculation and approximated by a
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Figure 5-11: Numerical solution to Burgers equation at t = 1s with a Semi-Lagrange
discretisation and a moving mesh. The mesh is determined by trapezium equidistri-
bution to the u arc-length monitor function. The front is propagating but slower than
expected, ending at a point just under x = 0.8, whereas the reference solution in
Figure 5-6 finishes beyond x = 0.85.

Figure 5-12: The mesh movement for the solution in Figure 5-11.
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Figure 5-13: SLMM numerical solution to Burgers’ equation at t = 1s for N = 65.
The travelling front has moved further than that seen in the lower resolution run in
Figures 5-11 and 5-12.

piecewise-linear function which is then exactly equidistributed.

As a first experiment we take N = 80 and ∆t = 80 and plot both the evolution
of the arrival points and the minimum spacing ∆min of the arrival points, seen in
Figure 5-14. As seen in the expression (3.81), at the front we require a mesh width
smaller than 4 × 10−3 to overcome the minimum viscosity. We see that this mesh
satisfies this condition, and gives ε̂ = 5× 10−4 and k = 1.02.

As a second calculation we vary N and ∆t and consider the resulting errors. The
results are presented in Figure 5-15 in which we see the effective diffusion parameter,
and in Figure 5-16 in which we see the front speed. We can compare these with the
corresponding results in Chapter 3 (Figures 3-10 and 3-9).

In both cases we see a very significant improvement over the calculations using a
fixed mesh.

In Figure 5-15 we see that for N > 100 the effective diffusion parameter ε̂ is very
close indeed to the true value of ε = 10−4. Furthermore, we do not see the oscillations
in the value of the calculated diffusion parameter ε̂ which were observed earlier and
which were due to the CFL condition. Note, however, that as in the case of the static
mesh and for the two examples considered, the error measured in terms of the size of
ε̂ increases as the step size ∆t decreases. This is partially due to more interpolation
steps being performed.

In Figure 5-16 we see that the calculated speed k is much closer to the true speed
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Figure 5-14: 26 mesh point trajectories (left) and the minimum mesh spacing over time
(right) for a moving mesh solution to Burgers’ equation.

103



N
x

101 102 103

ep
si

lo
n 

ha
t

10-4

10-3

10-2

10-1

N
t
 = 40

N
t
 = 80

N
t
 = 160
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Figure 5-16: Front speed k with a moving mesh and curvature based monitor function.
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of c = 1. Furthermore, in line with the earlier calculation, this error decreases as ∆t
decreases and there is no evidence of oscillation. Thus the calculated front speed is a
more reliable estimate of the true speed in all cases for this example.
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Chapter 6

Vertical Column Model: Fixed

Non-Uniform Mesh

In this chapter we experiment with static non-uniform meshes in a NWP setting. For
this, we apply the earlier theory on SISL methods and static adaptivity on a more
meteorological problem. We construct an atmospheric simulation model with which to
work, then compare numerical simulations with and without static adaptivity. We want
our model to be simple, close in form to the relevant set of equations used in NWP and
be discretised in a manner that mirrors the formulation of ENDGame, the Met Office’s
dynamical core currently in use [56, 32]. Accordingly, we present a non-hydrostatic
vertical column model for both dry and moist air, and study the SISL method applied
to this.

This chapter is laid out as follows: In Section 6.1 we show some of the derivation of
the vertical column model and some useful hydrostatic profiles. In Section 6.2 we show
a SL discretisation of the vertical column model similar to that used in ENDGame, and
present the linearisation in Section 6.3, finite difference spatial discretisation in 6.4 and
the resulting Helmholtz equation to be solved for pressure in Section 6.5. Section 6.6
documents some experiments showing the effect of discretisation error from different
static meshes. And Section 6.7 shows the derivation of some of the terms used when
modelling moisture in the vertical column, with the PDEs for the moisture species in
Section 6.8.

6.1 Vertical Column Formulation

In this section we derive the form of the vertical column equations that forms the basis
of our experiments. This will be a dry adiabatic non-hydrostatic vertical column with
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no external forcing. Following this, we present a method for solving these equations
that closely mirrors the approach used by the Met Office.

Our equations are derived from the following physical laws: the conservation of
mass, the conservation of momentum, the conservation of energy, and the equation of
state (linking the pressure, density and temperature of air). The model is based on the
Met Office Dynamical Core [32, 56], with theory from [18].

The thermodynamic equation is given in [18, (2.41)] as

cv
DT
Dt

+ p
D
Dt

(
1
ρ

)
= Q̇ , (6.1)

where T is the temperature, ρ is the density, p is the pressure, cv is the specific heat of
dry air at constant volume and Q̇ is the energy transfer.

We also use the equation of state, [18, (1.25)]

p = ρRT , (6.2)

where R is the specific gas constant for dry air. Differentiating the logarithm of (6.2)
gives

1
p

Dp
Dt

=
1
ρ

Dρ
Dt

+
1
T

DT
Dt

. (6.3)

Using the state equation with Mayer’s relation [18, §2.7]

R = cp − cv , (6.4)

where cp is the specific heat of dry air at a constant pressure, we can rewrite the
thermodynamic equation (6.1) as

cp
DT
Dt
− 1
ρ

Dp
Dt

= Q̇ . (6.5)

We introduce the derived variables Exner pressure, [18, (4.47)] defined as

Π :=
(
p

p0

)R/cp
(6.6)

for a reference surface pressure p0, and potential temperature, defined as

θ :=
T

Π
. (6.7)
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Now the thermodynamic equation (6.5) can be expressed in the form

cpΠ
Dθ
Dt

= Q̇ . (6.8)

For our adiabatic model, there is no energy transfer out of the system, hence Q̇ = 0
and equation (6.8) gives

Dθ
Dt

= 0 . (6.9)

For a vertical column, we ignore any horizontal variations (changes in x- and y-
directions), and the Coriolis force. The momentum equation [18, (2.21)] reduces down
to

Dw
Dt

+
1
ρ

∂p

∂z
+ g = 0 , (6.10)

where w is the vertical wind. Using the variables Π and θ, this vertical momentum
equation and the state equation (6.2) take the form

Dw
Dt

+ cpθ
∂Π
∂z

+ g = 0 , (6.11)

Π
1−κ
κ =

R

p0
ρθ , (6.12)

where
κ :=

cp
R
. (6.13)

Finally, the conservation of mass can be expressed in our 1D setting as

Dρ
Dt

+ ρ
∂w

∂z
= 0 . (6.14)

For the boundary conditions, we prescribe the fields with zero velocity at the surface,
hence

w(0) = 0 , (6.15)

Π(0) = Πsurf , (6.16)

θ(0) = θsurf , (6.17)

and ρ(0) chosen to satisfy the equation of state (6.12).
At our model ceiling we impose a zero velocity condition

w(ztop) = 0 . (6.18)
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The equations (6.9), (6.11), (6.12) and (6.14) now form the model equations with
boundary conditions (6.15–6.18). In our numerical experiments we use initial conditions
with w = 0, and ρ, θ and Π sampled from hydrostatic profiles, which we look at in the
next section.

6.1.1 Hydrostatic profiles for the vertical column

It is useful to look at some static non-evolving solutions to the vertical column equa-
tions. Initially we discuss the general procedure of building hydrostatic profiles, then
give some examples which are used to initialise numerical experiments in Section 6.6.

For a static profile we have w = 0 and we need to specify the three variables ρ,
θ and Π. For this purpose, we require three equations: the equation of hydrostatic
balance

cpθ
∂Π
∂z

+ g = 0 (6.19)

(the momentum equation (6.11) with w = 0), a constraint equation and the equation
of state (6.12). In general we use hydrostatic balance and the constraint to obtain θ

and Π, then the state equation to get ρ.
Some typical hydrostatic profiles with corresponding constraints are isentropic,

isothermal and constant buoyancy,

N2 :=
g

θ

∂θ

∂z
= constant . (6.20)

We can also prescribe an initial field, such as θ = θ0(z) or T = T0(z).

We now give some examples of these profiles. In each case, ρ is defined by the
equation of state and not given here. An isentropic profile has a constant potential
temperature

θ(z) = θsurf ∀z , (6.21)

with θsurf, the potential temperature at the surface. For our profile to be static we
then have uniformly w = 0, and our momentum equation (6.11) gives a linear Exner
pressure

Π(z) = Πsurf −
g

cpθsurf
z . (6.22)
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An isothermal profile has a constant temperature

T (z) = Π(z)θ(z) = Tsurf , (6.23)

and the hydrostatic equation takes the form

∂Π
∂z

=
−gΠ
cpTsurf

,

Π(0) = Πsurf ,

(6.24)

with solution

Π(z) = Πsurf exp
(
−g

cpTsurf
z

)
, (6.25)

θ(z) = θsurf exp
(

g

cpTsurf
z

)
. (6.26)

(6.27)

Finally we construct an idealised inversion layer between two heights zIB (bottom
of the inversion layer) and zIT (top of the inversion layer). We specify a temperature
beneath the layer Tsurf and a temperature above the layer Ttop, with the temperature
varying linearly between the inversion layer boundaries zIB and zIT , so that

T (z) =


Tsurf 0 ≤ z < zIB ,

Tsurf + Tz(z − zIB) zIB ≤ z < zIT ,

Ttop zIT ≤ z ,

(6.28)

with

Tz =
Ttop − Tsurf

zIT − zIB
. (6.29)

A careful calculation using the hydrostatic equation (6.19) shows that the Exner
pressure and potential temperature are continuous and satisfy the surface conditions
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and momentum equation (6.11) with w = 0 as

Π(z) =


Πsurf exp

(
−g

cpTsurf
z
)

0 ≤ z < zIB ,

AT (z)−g/(cpTz) zIB ≤ z < zIT ,

B exp
(
−g

cpTtop
z
)

zIT ≤ z ,

(6.30)

θ(z) =


θsurf exp

(
g

cpTsurf
z
)

0 ≤ z < zIB ,

A−1T (z)(g/(cpTz)+1) zIB ≤ z < zIT ,

C exp
(

g
cpTtop

z
)

zIT ≤ z ,

(6.31)

with constants

A = Π(zIB)T g/cpTzsurf , (6.32)

B = Π(zIT ) exp
(

g

cpTtop
zIT

)
, (6.33)

C = θ(zIT ) exp
(
−g

cpTtop
zIT

)
. (6.34)

In contrast to this piecewise linear temperature profile, we can use a smoother T (z),
for example a tanh temperature profile,

T (z) = Tmid +
Tw

2
tanh

(
4(z − zIM)

ε

)
, (6.35)

with Tmid = (Tsurf+Ttop)/2, Tw = Ttop−Tsurf, zIM = (zIB+zIT)/2 and ε = zIT−zIB. The
piecewise linear temperature and tanh-temperature profiles are shown in Figure 6-1.

The tanh temperature profile has a hydrostatic solution with

Π(z) = A exp
(

4(z − zIM)
ε

Tsurfφ

)((
tanh

(
4(z − zIM)

ε

)
+ 1
)
T (z)−1

)(Twφ/2)

,

(6.36)

θ(z) =
T (z)
Π(z)

, (6.37)

with φ = −εg
4cpTsurfTtop

and A fixed such that Π(0) = Πsurf.
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Figure 6-1: Piecewise linear temperature profile (left) from equation (6.28), and a
tanh-temperature profile (right) from equation (6.35).

We now return to the model equations, and show two ways in which they can be
discretised in a semi-Lagrangian manner.

6.2 Temporal Discretisation (SISL)

In this section we give a semi-Lagrangian two-time-level discretisation of the vertical
column model from Section 6.1, which we repeat below. This formulation is similar to
the discretisation in ENDGame [57].

The consolidated vertical column model equations are

Dw
Dt

+ cpθ
∂Π
∂z

+ g = 0 , (6.38)

Dρ
Dt

+ ρ
∂w

∂z
= 0 , (6.39)

Dθ
Dt

= 0 , (6.40)

over z ∈ [0, ztop] subject to the state equation

Π
1−κ
κ − R

p0
ρθ = 0 , (6.41)

112



and the boundary conditions

w(0) = 0 , (6.42)

w(ztop) = 0 , (6.43)

Π(0) = Πsurf , (6.44)

θ(0) = θsurf . (6.45)

This system (6.38-6.41) has been expressed with the kinematic equation, which in 1D
is

Dz
Dt

= w , (6.46)

giving us the required form for using a SL discretisation, to be solved for w, ρ, θ and
Π.

We discretise these in the two-time-level semi-Lagrangian fashion, as described in
Chapter 2, which was also applied in Chapter 3 to Burgers’ equation. The terms are
discretised along a semi-Lagrangian trajectory. Source terms are averaged along the
trajectory in a off-centred way with parameters α, β with α+β = 1, or a centred Crank-
Nicholson-like discretisation for α = β = 0.5. The terms α and β are equivalent to θu
and (1 − θu) from Chapter 2. The time-discretised equations using the SL framework
are hence from equations (6.38–6.41)[

w + ∆tα
(
cpθ

∂Π
∂z

+ g

)]n+1

A

=
[
w −∆tβ

(
cpθ

∂Π
∂z

+ g

)]n
D

, (6.47)[
ρ+ ∆tαρ

∂w

∂z

]n+1

A

=
[
ρ−∆tβρ

∂w

∂z

]n
D

, (6.48)

[θ]n+1
A = [θ]nD , (6.49)[

Π
1−κ
κ − R

p0
ρθ

]n+1

A

= 0 , (6.50)

(6.51)

with
zD = zA −∆t

[
αzw

n+1
A + (1− αz)wnD

]
, (6.52)

from (6.46).
The SISL solution procedure was described in a general setting in Chapter 2 and

for Burgers’ equation in Chapter 3. We repeat it here in Figure 6-2 in the setting of
our vertical column model.

We have a time loop in which the fields w, ρ, θ and Π are temporally updated, an
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1: for n := 1 to nmax (Time Loop) do
2: Estimate zD (use initial guess of w(z, tn+1) = w(z, tn))
3: for ` := 1 to L (Outer Loop) do
4: Interpolate right-hand sides of equations (6.47–6.49) onto zD

5: for k := 1 to K (Inner Loop) do
6: Iteratively solve (6.47–6.50) to find an estimate to fields at

tn+1 (described below)
7: end for
8: Update estimate to zD from (6.52)
9: end for

10: end for

Figure 6-2: Solution procedure for a Semi-Lagrangian vertical column model.

outer loop in which the departure points zD are updated, and an inner loop in which
the spatially discretised equations are iteratively solved, which is the subject of the
next section.

We now linearise these equations about some reference profiles (described below),
giving us an incremental version of the time-discretised PDEs which can be iterated in
the inner loop.

6.3 Linearisation

For each departure point (outer) loop, the equations (6.47–6.50) are solved in an itera-
tive manner, the inner loop, as follows: Consider, after k iterations we have the estimate
~x(k) = [w, ρ, θ,Π](k) to [w, ρ, θ,Π]n+1. We wish to find ~x(k+1) = [w, ρ, θ,Π](k+1) which
solves a residual equation

~R(k+1) := [R(k+1)
w , R(k+1)

ρ , R
(k+1)
θ , R

(k+1)
Π ] = 0 . (6.53)

This can be solved via a Newton method, giving

J(~x(k+1) − ~x(k)) = −~R(k) , (6.54)

where J is the Jacobian of ~R. The Jacobian can be restrictively expensive to compute in
higher dimensions, hence we replace it by a linear matrix L(~x∗), obtained by linearising
~R about a reference state ~x∗. We delay discussion of the choice of reference profiles
until Subsection 6.3.6. In the ENDGame formulation only the terms important to the
stability of the fast gravity waves are retained: e.g. in 2D we would drop the horizontal
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terms (u(k+1) − u(k))θ∗x.
This linearisation results in the linear equation

L(~x∗)(~x(k+1) − ~x(k)) = −~R(k) , k = 1, 2, . . . . (6.55)

We are free to choose ~x∗ as we like: In particular, we give an example of a Newton
Discretisation with ~x∗ = ~x(k), using the most up to date value ~x(k). We also consider
a form of the Met Office ENDGame discretisation with ~x∗ = ~xn, with the exception of
w∗, which is linearised about w∗ = 0.

The departure points are calculated from the most up-to-date estimates to the
winds wn+1

A in the outer loop, then with these departure points, the fields w, θ, ρ and
Π are calculated in the inner loop.

We denote the right-hand side of equations (6.47), (6.48) and (6.49) as (Rnw)D,
(Rnρ )D and (Rnθ )D respectively. The left-hand sides form a system of nonlinear PDEs
in space (ODEs here, since we are considering only one spatial dimension).

6.3.1 The momentum equation

We now present the linearisation of the time-discretised vertical column equations (6.47-
6.50), starting with the semi-Lagrangian momentum equation (6.47)[

w + ∆tα
(
cpθ

∂Π
∂z

+ g

)]n+1

A

= (Rnw)D . (6.56)

We represent the known right-hand sides of equations (6.47), (6.48) and (6.49) as
(Rnw)D,

(
Rnρ
)
D

and (Rnθ )D respectively. As described above we introduce reference
states w∗, θ∗, ρ∗ and Π∗, such that

w = w∗ + ŵ , (6.57)

θ = θ∗ + θ̂ , (6.58)

ρ = ρ∗ + ρ̂ , (6.59)

and

Π = Π∗ + Π̂ . (6.60)

If we linearise the left-hand side of the momentum equation (6.47), thus ignoring
all products of terms with hats (the perturbations from the reference states) then we
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get the expression[
w + ∆tα

(
cpθ

∂Π
∂z

+ g

)]n+1

A

≈ w∗ + ŵ + ∆tαcp

(
θ∗
∂Π∗

∂z
+ θ∗

∂Π̂
∂z

+ θ̂
∂Π∗

∂z

)
, (6.61)

where the term ∆tαcpθ̂ ∂
bΠ
∂z has been removed.

For w(k), a given current approximation to w, we want to find a better approxi-
mation w(k+1) via an increment w′. With equivalent expressions for ρ, θ and Π, we
have

w(k+1) = w(k) + w′ , (6.62)

ρ(k+1) = ρ(k) + ρ′ , (6.63)

θ(k+1) = θ(k) + θ′ , (6.64)

Π(k+1) = Π(k) + Π′ . (6.65)

For our Newton discretisation, we have e.g. w∗ = w(k), and as such w′ = ŵ.
We denote the left-hand side of equation (6.61) for w(k), θ(k) and Π(k) by L(k)

w (or
L

(k+1)
w with w(k+1) etc.). Then we can find w′, the update to w, by looking at the

difference between two steps of (6.61) with w(k) and w(k+1), giving

w′ + α∆tcp

(
θ∗
∂Π′

∂z
+ θ′

∂Π∗

∂z

)
= (Rnw)D − L

(k)
w . (6.66)

We repeat this process for the remaining equations.

6.3.2 The Thermodynamic equation

For the discretised thermodynamic equation (6.49) we have

[θ]n+1
A = [θ]nD . (6.67)

Taken as is, this gives an explicit expression for θn+1, which remains constant within
the inner loop. However, later in this chapter we shall permit energy transfer through
the inclusion of moisture, hence we construct an incremental form for θ, giving

θ′ = (Rnθ )D − L
(k)
θ . (6.68)

Currently we have θ′ = 0 and θ could be treated as constant in time in the remaining
incremental equations, but we include a forcing term in Subsection 6.3.5, giving non-
zero θ′.
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6.3.3 The continuity equation

For the density equation (6.49),[
ρ+ ∆tαρ

∂w

∂z

]n+1

A

=
(
Rnρ
)
D
, (6.69)

the linearisation and incremental difference, as above, results in the incremental mass
equation

ρ′ + ∆tα
(
ρ′
∂w∗

∂z
+ ρ∗

∂w′

∂z

)
=
(
Rnρ
)
D
− L(k)

ρ . (6.70)

6.3.4 The State equation

We consider the state equation [
Πγ − R

p0
θρ

]n+1

A

= 0 , (6.71)

with
γ :=

1− κ
κ

. (6.72)

This equation linearised around reference states becomes[
(Π∗)γ

(
1 + γ

Π̂
Π∗

)
− R

p0
θ∗ρ∗

(
1 +

θ̂

θ∗
+

ρ̂

ρ∗

)]n+1

A

= 0 . (6.73)

Dividing by Π∗γ and subtracting the previous inner loop approximation leads to the
incremental equation of state

γ
Π′

Π∗
− Rθ∗ρ∗

p0Π∗γ

(
θ′

θ∗
+
ρ′

ρ∗

)
=
−L(k)

Π

(Π∗)γ
. (6.74)

6.3.5 Correction Term for the Departure Points

We now discuss departure point correction terms for the momentum, thermodynamic
and mass equations. These are small corrections added to the left-hand sides of
equations (6.66), (6.68) and (6.70) within the inner loop. They are included in the
ENDGame formulation and experience has shown that they are beneficial to the nu-
merical solution procedure (T. Melvin, personal communication). There are a number
of ways of justifying their inclusion, [32, §A] and we here present one which feels most
“natural” to the author of this thesis.

We consider the momentum equation (6.47), the subject of Subsection 6.3.1. For the
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departure point equation (6.52) dependent on w, we can obtain an improved estimate
to the departure point by considering the new wind w(k+1),

zDIM = zA −
∆t
2

(
w(l) + (w(k+1) − w(l)) + wnD

)
,

= zD −
∆t
2

(w(k+1) − w(l)) , (6.75)

≈ zD −
∆t
2
w′ , (6.76)

where w(l) is the wind that was used in the outer loop to calculate zD, and w′ = w(k+1) − w(k).

If we consider updated departure point zDIM to be a first order perturbation, then
we get an additional term in the right-hand side of the momentum increment equation
(6.66),

(Rnw)DIM =
[
w − β∆tcpθ

∂Π
∂z

]n
DIM

≈ (Rnw)D − w
′∆t

2

[
∂w

∂z

]n
D

. (6.77)

Noting that, to first order [
∂w

∂z

]n
D

≈ ∂w∗

∂z
, (6.78)

and assuming α is close to 0.5, we can include this departure point correction term in
the left-hand side of the momentum increment equation (6.66), resulting in

w′ + α∆tcp

(
θ′
∂Π∗

∂z
+ θ∗

∂Π′

∂z

)
+ α∆tw′

∂w∗

∂z
= (Rnw)D − L

(k)
w . (6.79)

As we shall see below, in the ENDGame model the wind is linearised about w∗ = 0,
and the correction term in equation (6.79) vanishes.

With a similar argument we arrive at a correction to the mass increment equation

ρ′ + α∆t
(
ρ′
∂w∗

∂z
+
∂ (w′ρ∗)
∂z

)
=
(
Rnρ
)
D
− L(k)

ρ . (6.80)

For the incremental thermodynamic equation, with a θ-correction term we get

θ′ + α∆tw′
∂θ∗

∂z
= (Rnθ )D − L

(k)
θ . (6.81)

With this correction term, θ becomes coupled with w, ρ and Π.
We now have our incremental equations to be solved in the inner loop, equations
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(6.79–6.81) and the incremental equation of state (6.73). It remains to choose the
reference states around which to linearise and to discretise the equations spatially.

We now discuss the choice of reference profiles.

6.3.6 ENDGame and Newton Reference Profiles

As mentioned earlier, in the ENDGame model the model equations are linearised about
the pressure, density and temperature profiles from the previous time step, and zero
wind, that is

w∗ = 0 , (6.82)

ρ∗ = ρn , (6.83)

θ∗ = θn , (6.84)

Π∗ = Πn . (6.85)

If we also assume that these reference fields satisfy the equation of state then the
increment equations with correction terms are

w′ + α∆tcp

(
θ′
∂Πn

∂z
+ θn

∂Π′

∂z

)
= (Rnw)D − L

(k)
w , (6.86)

ρ′ + α∆t
∂(w′ρn)
∂z

=
(
Rnρ
)
D
− L(k)

ρ , (6.87)

θ′ + α∆tw′
∂θn

∂z
= (Rnθ )D − L

(k)
θ , (6.88)

γ
Π′

Πn
−
(
θ′

θn
+
ρ′

ρn

)
=
−L(k)

Π

(Πn)γ
. (6.89)

This is similar to a 1D form of the vertical slice equations in [32]. The numerical scheme
in [56, §5.1] uses a more sophisticated linearisation, which removed the dependence on
the reference states at convergence of the inner loop.

The approach we take here is to instead discretise about the most up-to-date esti-
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mates to the fields, such that

w∗ = w(k) , (6.90)

ρ∗ = ρ(k) , (6.91)

θ∗ = θ(k) , (6.92)

Π∗ = Π(k) . (6.93)

This gives the incremental equations

w′ + α∆tcp

(
θ′
∂Π(k)

∂z
+ θ(k)∂Π′

∂z

)
+ α∆tw′

∂w(k)

∂z
= (Rnw)D − L

(k)
w . (6.94)

ρ′ + α∆t

(
ρ′
∂w(k)

∂z
+
∂
(
w′ρ(k)

)
∂z

)
=
(
Rnρ
)
D
− L(k)

ρ . (6.95)

θ′ + α∆tw′
∂θ(k)

∂z
= (Rnθ )D − L

(k)
θ , (6.96)

γ
Π′

Π(k)
− Rθ(k)ρ(k)

p0

(
Π(k)

)γ ( θ′

θ(k)
+

ρ′

ρ(k)

)
=
−L(k)

Π(
Π(k)

)γ . (6.97)

As we shall see later in Section 6.5, solving this system requires calculating products
and numerical derivatives of the reference states. In the ENDGame formulation, such
terms must be calculated once per time step. For our Newton formulation they must
be recalculated at every step of the inner loop. Whilst it is not an issue in the case of
a 1D vertical column model as presented here, for a full 3D model this would represent
a significant computational expense.

A potential compromise could be to update the reference states at every step of
the outer loop, using the fields from the previous time for the initial step. We do not
discuss this further here.

In the next section, we discuss the spatial discretisation of these equations.

6.4 Spatial Discretisation

We now discretise our equations in space. We again mirror the approach used in
ENDGame, with the 3D spatial discretisation from [56, §4]. For Burgers’ equation in
Chapters 3 and 5 we discretised the solution on a single mesh with points xi. Here,
we use two staggered grids which we express with integer level and half-integer level
indices, zi and zi+1/2, known as a Charney-Phillips grid [56, §4.1]. The fields w and θ

are represented on integer level grid points, and ρ and Π are represented on half levels.
The bottom few levels are shown in Figure 6-3.
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z0

z1/2

z1

z3/2

w0, θ0

ρ1/2,Π1/2

w1, θ1

ρ3/2,Π3/2

...

Figure 6-3: First few levels with staggered variables, showing integer levels with w and
θ, and half-integer levels with ρ and Π.

We describe two spatial operators, a spatial averaging for stepping between full and
half levels, and finite difference operators for approximating derivatives, as described
in Sections 3.3 and 5.2. Spatial averaging of a field F at zi is the weighted average of
zi+1/2 and zi−1/2, defined as

F
z
i :=

zi+1/2 − zi
zi+1/2 − zi−1/2

Fi−1/2 +
zi − zi−1/2

zi+1/2 − zi−1/2
Fi+1/2 . (6.98)

We use a central difference operator to represent all derivatives,

δz(F )i =
Fi+1/2 − Fi−1/2

zi+1/2 − zi−1/2
. (6.99)

Similar expressions are used for spatial averaging and representing derivatives at half-
integer levels,

F
z
i+1/2 :=

zi+1 − zi+1/2

zi+1 − zi
Fi +

zi+1/2 − zi
zi+1 − zi

Fi+1 , (6.100)

δz(F )i+1/2 =
Fi+1 − Fi
zi+1 − zi

. (6.101)

The general approach is to use the spatial averaging operator to ensure the terms are
represented on appropriate levels, and then the central difference operator to express
any spatial derivatives.

121



The Newton increment equations are then

w′i + α∆tcp
(
θ′iδz

(
Π(k)

)
i
+ θ

(k)
i δz(Π′)i

)
+ α∆tw′iδz

(
w(k)

z)
i

= Rwi , (6.102)

ρ′i+1/2 + α∆t
(
ρ′i+1/2δz

(
w(k)

)
i+1/2

+ δz

(
ρ(k)

z
w′
)
i+1/2

)
= Rρi+1/2 , (6.103)

θ′i + α∆tw′iδz
(
θ(k)

z)
i

= Rθi , (6.104)(
γ

Π′

Π(k)

)
i+1/2

−

(
Rθ(k)

z
ρ(k)

p0

(
Π(k)

)γ
)
i+1/2

((
θ′

θ(k)

)z
i+1/2

+
(
ρ′

ρ(k)

)
i+1/2

)
= Rπi+1/2 .

(6.105)

We now have a set of linear equations to be solved to get a better approximation to
the fields w, ρ, θ and Π. The linearised equations are combined to form a Helmholtz
equation in terms of the Exner pressure Π, which we solve via finite differences. Finally,
the update to Π is back substituted to get expressions for w, ρ and θ. This process,
solving for Π constitutes a single step of the inner loop of the solution algorithm given
in Figure 2-3.

6.5 Helmholtz Equation

To solve the above linearised equations, we combine them to make a single linear system
in terms of Π′i+1/2 which we can solve. For convenience, we introduce a number of terms
dependent only on the reference profiles,

H0i =

(
Rρ(k)θ(k)

z

p0(Π(k))γ

)
i

, (6.106)

H1i =
(

1 + α∆tδzw(k)
)−1

i
, (6.107)

H2i = α∆tcpθ
(k)
i , (6.108)

Hθi = n1α∆tδzθ
(k)
i , (6.109)

Hwi =
(

1 + α∆tδz
(
w(k)

z)
− α∆tcpHθδz

(
Π(k)

))−1

i
. (6.110)
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With these, we can express the discretised incremental equations (6.102–6.105) as

w′
(

1 + α∆tδz
(
w(k)

z))
+ α∆tcpδz

(
Π(k)

)
θ′ +H2δz(Π′) = Rw , (6.111)

H−1
1 ρ′ + α∆tδz

(
ρ(k)

z
w′
)

= Rρ , (6.112)

θ′ +Hθw
′ = Rθ , (6.113)

γ
Π′

Π(k)
−H0

((
θ′

θ(k)

)z
+

ρ′

ρ(k)

)
= Rπ . (6.114)

We can eliminate ρ′ and θ′ by substituting the incremental mass and thermodynamic
equations (6.112) and (6.113) into (6.111) and (6.114), leaving us with

Hw
−1w′ +H2δz(Π′) = Rw − α∆tcpRθδz(Π(k)) := Rw , (6.115)

γ
Π′

Π(k)
+ α∆t

H0H1

ρ(k)
δz

(
ρ(k)

z
w′
)

+H0

(
Hθw′

θ(k)

)z
= RΠ +H0H1

Rρ

ρ(k)
+H0

(
Rθ
θ(k)

)z
=: RΠ .

(6.116)

Next we can substitute equation (6.115) into (6.116) eliminating w′, giving

γ
Π′

Π(k)
−D1

(
H2δz(Π′)

)
= RΠ −D1 (Rw) =: RHS , (6.117)

where the operator D1 is defined as

D1(X) := α∆t
H0H1

ρ(k)
δz

((
ρ(k)

)z
HwX

)
+H0

(
HθHw

θ(k)
X

)z
. (6.118)

The equation (6.117) forms a linear system of equations which we can solve for Π′.
In this 1D model, this system can be solved using a tridiagonal matrix inversion. In
higher dimensions solving this system is more computationally expensive. ENDGame
uses a stabilised bi-conjugate gradient method [56, §5.3].

6.5.1 Back substitution

We can now recover Π′, the inner loop update to the Exner pressure Π. The remaining
fields can be updated by back-substituting Π′ into the equations used to form the
discretised Helmholtz problem (6.117): The increment to the wind, w′ can be found
from equation (6.115), so that

w′ = Hw

(
Rw −H2δz

(
Π′
))
. (6.119)
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The update to the potential temperature θ′ can be found from equation (6.113),

θ′ = Rθ −Hθw
′ . (6.120)

Finally, the update to the density ρ′ can be obtained from equation (6.112),

ρ′ = H1

(
Rθ − α∆tδz

(
ρ(k)

z
w′
))

. (6.121)

6.6 Numerical Solutions

We now present the results of the implementation of the SL vertical column model with
Newton linearisation, as in the code main.m in Appendix A.5. For now, our process will
be to define an analytically stationary inversion layer as in Subsection 6.1.1, and run the
models, driven exclusively by first the discretisation error, then the discretisation and
interpolation errors. We present a number of cases with the different inversion layers
for a stationary uniform mesh and for stationary non-uniform meshes from Chapter 4.
The non-uniform meshes will be be quadratic, or will equidistribute monitor functions
depending on the analytic starting profile.

6.6.1 Static Inversion Layer Calculations

We take samples from an analytically static profile, and hence any wind present in the
system is a result of discretisation and interpolation error.

With a current lack of rigorous error analysis, we use the winds produced as an
approximate comparison between two meshes, where a lower magnitude of wind is seen
as preferable.

The Setup:
As described in Subsection 6.1.1 we prescribe a temperature profile then find θ and

Π which analytically satisfy the momentum equation with no wind w. The density ρ

is then found from the state equation.
We define our 1D domain from the earth’s surface up to 10,000m with a rigid floor

and ceiling. Initially we prescribe the temperature as 300K below 4,000m, 320K above
5,000m and varying linearly between 4,000m and 5,000m in the ‘inversion layer’ (6.28).

These profiles are sampled at 61 vertical points (lowest at 0m, highest at 10,000m)
and then used as initial conditions for the SISL method as described earlier in this
chapter, summarised in Figure 6-2, with a time step of 60 seconds integrated over 15
time steps.

First we use a uniform discretisation as our benchmark, in Figure 6-4.
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Figure 6-4: Uniform grid

125



We also look at a quadratic grid with a higher density of levels near the surface, as
in Figure 6-5. In the case of the quadratic grid the maximum magnitude of the wind
is approximately double of that with the uniform grid.
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Figure 6-5: Quadratic grid

127



The next grid, Figure 6-6 is piecewise uniform, in that there are 20 points below
4,000m, 20 in the inversion layer and 20 above. Here the wind is considerably larger,
suggesting larger discretisation errors. This is possibly due to the sharp transition in
grid-spacing between regions leading to high errors when approximating gradients via
finite difference. These problems should be somewhat reduced by applying some runs
of smoothing to the monitor function which defines this mesh.
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Figure 6-6: Piecewise-linear uniform grid
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We look at a mesh adapted using the modified arch-length monitor function

M(z) =

√
a+

(
∂θ

∂z

)2

, (6.122)

where a is a small positive parameter scaled with the average value of ∂θ
∂z , Figure 6-7.

The magnitude of the wind is similar to that with a uniform mesh.
Finally Figure 6-8 uses a curvature based monitor functions M(z) =

√
a+ θzz

2

but finding the tuning of the parameter a has so far been trial and error. We see that
the results produce smaller winds than for the uniform grid. This is due to a smaller
starting residual

rw := −gcp − θ
∂Π
∂z

, (6.123)

where ∂Π
∂z is calculated via finite difference.

6.7 Moisture

The vertical column model is a useful initial model for testing simple stability prop-
erties, but unlike an accurate 3D atmospheric model or Burgers’ equation it does not
form fronts by itself. We hope to include terms which will add enough interesting dy-
namics to cause fronts to form in the course of a numerical simulation. To this end, we
now include moisture in our vertical column model, following [18, §2.9] and [3].

The amount of water a volume of air can hold can be expressed by the saturation
pressure, which increases with temperature. When water vapour condenses into liquid
water energy is released as latent heat.

The specific humidity, q, is the ratio of the mass of water vapour mv to total mass,
m, in the air,

q =
mv

m
=
ρv
ρ
. (6.124)

If the only form of water in the air is water vapour, then the total mass can be separated
into water vapour mv and dry air md as

m = md +mv , (6.125)

then
q =

mv

md +mv
. (6.126)

Throughout this section subscript d denotes quantities relating to dry air and v to
water vapour. Moist air (combined dry and vapour) is denoted either by a subscript
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Figure 6-7: Piecewise uniform mesh with smoothing
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Figure 6-8: Adapted mesh based on potential temperature curvature with smoothing
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m, or by no subscript. Quantities relating to cloud or liquid water are denoted by
subscripts c and l.

The vapour mixing ratio rv is the mass ratio of vapour to dry air, with

rv =
mv

md
. (6.127)

A typical value of rv in the lower atmosphere is 10g kg−1, hence q is approximately
equal to rv.

The ideal gas law (6.2) states that

p = ρRT , (6.128)

where R is the specific gas constant of the given ideal gas, stated to be

R =
R∗

mmol
, (6.129)

for R∗ the universal gas constant, and mmol the average molecular mass of the gas.
Vapour pressure, usually denoted by the symbol e, and also satisfies the ideal gas law

e = ρvRvT . (6.130)

With the two equations of state (6.128) and (6.130), we can express the vapour mixing
ratio as

rv =
Rd
Rv

e

p− e
. (6.131)

We denote the molar mass ratio of dry air to water vapour as ε, or

ε :=
Rd
Rv
≈ 0.6226 , (6.132)

and since e is small compared to p, we can approximate equation (6.131) as

rv ≈ ε
e

p
. (6.133)

The saturation pressure esat(T ) is the vapour pressure at which air cannot hold any
more water vapour. The saturation pressure increases with temperature. If the temper-
ature is reduced such that the vapour pressure would exceed the saturation pressure,
water vapour condenses into liquid water droplets, forming clouds. The saturation
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pressure has a corresponding saturation mixing ratio rvs, from equation (6.131),

rvs = ε
esat

p− esat
. (6.134)

We can also find an expression for the saturation humidity qsat, which leads to the
familiar quantity relative humidity, being the ratio between q and qsat.

From [3], the gas constant for moist air is

Rm = Rd + rvRv (6.135)

= Rd

(
1 +

rv
ε

)
, (6.136)

and the specific heat at constant volume cvml and constant pressure cpml are given as

cvml = cv + rvcvv , (6.137)

cpml = cp + rvcpv . (6.138)

The latent heat from vaporisation is

Lv(T ) = Lv0 − (cpl − cpv)(T − T0) , (6.139)

where Lv0 is a reference latent heat at T0 = 273.15K,

Lv0 = 2.53106J kg−1 . (6.140)

Finally the Claussius-Clapeyron relation [18, (2.65)] gives an ODE for the saturation
pressure as

desat

dT
=
Lv(T )esat

RvT 2
, (6.141)

the solution to which, with reference saturation pressures at 273.15K, is

esat(T ) = esat(T0) exp
(
−
Lv0 + T0(cpl − cpv)

Rv

(
1
T
− 1
T0

))
·
(
T

T0

)(cpv−cpl)/Rv
. (6.142)

6.8 Moist Vertical Column

We now have expressions for cpml and Rm. We want to modify the vertical column
model (6.38–6.41) accounting for these differences when considering moisture. We also
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require equations for the transition between water vapour and liquid water (in the form
of clouds), and the heat transfer associated with this transition. We express these two
forms of water in our model with a water vapour mixing ratio rv, and a cloud mixing
ratio rc.

We model this as a two-step process, considering a dynamics step where the wa-
ter vapour and cloud are advected unchanged, followed by a physics step, where any
condensation or evaporation is calculated, with any associated heat transfer.

For the dynamics step we advect the moisture species exactly,

Drv
Dt

= 0 , (6.143)

Drc
Dt

= 0 . (6.144)

For the physics step we want to convert water vapour to cloud, or cloud to water
vapour. We specify that cloud is only present when the air is fully saturated, i.e.

rv ∈ [0, rvs(T )] , (6.145)

rc > 0 iff rv = rvs(T ) . (6.146)

Condensing water vapour releases latent heat, and the saturation mixing ratio rvs is
dependent on temperature (and pressure, which is only updated in the dynamics step).

Due to this, we need to find T and rv such that

f(T ) = rvs(T )− rv(T )

= 0 .
(6.147)

We can simplify this problem by assuming that, for the sake of moisture conden-
sation and evaporation, the specific heat of the moist air cpml is close to cp, and the
Latent heat is constant with T ,

dT
drv

= −Lv0

cp
. (6.148)

The saturation mixing ratio rvs can be calculated for T and p (or θ and Π) from
equations (6.134) and (6.142).
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We can now solve (6.147) with Newton’s method, giving

T (k+1) = T (k) − f(T (k))
f ′(T (k))

= T (k) +
r

(k)
v − rvs(T (k), p)
cp
Lv0

+ Lv0rvs(T (k),p)

Rv(T (k))2

,

(6.149)

r(k+1)
v = r(k)

v −
cp
Lv0

(T (k+1) − T (k)) , (6.150)

r(k+1)
c = r(k)

c +
cp
Lv0

(T (k+1) − T (k)) . (6.151)

If rc < 0, then we set

rc = 0 , (6.152)

rv = r(0)
v + r(0)

c , (6.153)

and

T = T (0) − cp
Lv0

r(0)
c . (6.154)

Note that the Newton iteration (6.149) is equivalent to the expression for moisture
transfer in [3, (27)], where the authors state that the scheme usually converges in 4 to
6 iterations.

A moisture species has been introduced into the vertical column model. Unfor-
tunately the changes observed with its inclusion seem to be minor. We suggest that
the impact of both moisture and vertically adaptive meshes will only play a significant
role to the behaviour of the system when the model is extended to a 2D vertical slice
model. In 2D there are a number of test problems available [53] on which the vertical
adaptivity can be applied to assess more accurately any benefits and downsides to its
use.

6.9 Summary, Issues and Reflections

The work presented in this chapter was mostly done whilst at the Met Office. The
intention from the outset was to create a basic but Meteorologically relevant model
with which to explore the use of moving meshes. There are many options of such a
model, and we elected to follow the model formulation of ENDGame, but as a 1D
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column.
When producing a forecast, the Met Office have considerable restrictions on com-

putational time. Since we were writing simpler code for research purposes, we had the
luxury of using computational techniques which might be seen as too time consuming
for operational use. We were able to avoid some of the less obviously justified lineari-
sations and assumption which would lead to faster code, for example by calculating
Jacobians less frequently or performing fewer linear solves. **Reverse engineering?**

An issue with the vertical column model is it generally does not lead to clearly
developing features. With such features lacking, there is little benefit of a moving
mesh over a static mesh adapted to the initial conditions. This lack of movement
motivated the inclusion of moisture species into the model. The hope was that this
might provide a physically motivated mechanism to increase in energy in the column
through the release of latent heat and lead to regions of buoyancy. The formation of
such a front not present at initialisation could demonstrate a benefit of having a moving
mesh.

Including moisture in the vertical column continuous equations proved to be a more
substantial task than initially anticipated due to the subtle interactions between the
moisture, temperature and pressure due to the changes to specific heats (which are
constants in a dry model).

Furthermore, there were additional complication in implementing the moist model
numerically, such as the derivation of the one-step Newton scheme for finding latent
heat release and transfer of moisture between vapour and liquid in equations (6.149–
6.151). When determining the initial conditions, setting the vapour pressure much
above the saturation pressure lead to a large release of latent heat in the first time
step. Conversely, having the vapour pressure much below the saturation pressure lead
to behaviour which was indistinguishable from the dry model.

In addition to the initial conditions, it raised again the question: was mass - and ad-
ditionally water - being conserved by the interpolation scheme? The mass conservation
was addressed from the ENDGame perspective in a number of publications on SLICE
[60, 32], where the conservation of mass equation was expressed in a finite volume form.
The mass conservation along with smoothness conditions was then used to define the
cubic interpolant of the density ρ. No such form was presented for the moisture species
in an ENDGame setting.

This research brought the interpolation scheme into focus. The precise effect of
different types of interpolant was not entirely clear in a SISL discretisation, even for
the “simple” Burgers’ equation. Such realisations lead to the analysis which appears
in Chapter 3.
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Upon reflection, instead of including moisture in the model, I would have liked to
have extended the model to a 2D vertical slice model. Such a model would have in with
the 1 + 1D meshes which were used on artificial inversion layer in Chapter 4, and the
associated element quality measures. Such a model would also allow for comparisons
with standard test problems from the literature, such as those seen in [32, §4].
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Chapter 7

Conclusions

The aim of this thesis was to combine moving mesh methods with semi-Lagrangian
(SL) discretisations of PDEs. This was with a view to applying these two techniques
simultaneously for applications in numerical weather prediction (NWP).

In Chapter 2 semi-implicit semi-Lagrangian (SISL) methods commonly used in
NWP were reviewed. We focused on a two time-level iterated implicit method as de-
veloped for the Canadian Climate Model [8], where the departure points are found
iteratively from a trapezium rule discretisation as in Cullen (2001) [9], and spatial
derivatives are discretised as finite differences, as currently in use by the Met Office.
A number of interpolants were described, along with methods for ensuring local mono-
tonicity such that an interpolant does not create new maxima or minima. We then
introduced Burgers’ equation, which was chosen as a test problem, which can be ex-
pressed with a Lagrangian derivative. In particular, we discussed the travelling wave
solutions of Burgers’ equation, which move with a wave speed c, a front of height 2α
and a front width of order O(ε/α), where c and α are determined by the boundary
conditions, and ε is the viscosity parameter in Burgers’ equation.

In Chapter 3 we explored the numerical solutions of Burgers’ equation with a SL
discretisation. We found the exact solutions of the Lagrangian trajectories and pre-
sented the SL discretisation of Burgers’ equation in the style of the SL methods used at
the Met Office. We showed preliminary numerical experiments with linear interpola-
tion, observing that the numerical solution resembles an exact travelling wave solution
with correct front height, but different numerical wave speed ĉ and width, with the
width expressed in terms of a numerical viscosity parameter ε̂. Next we analysed the
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SL discretisation of Burgers’ equation by forming a modified equation and considering
expansions of the numerical solution and wave speed in terms of α. We arrived at terms
for ĉ and ε̂, valid under the assumption that, for given spatial mesh and time step, the
integer part of the Courant number does not change in space. These were shown to be
in good agreement with numerical results for linear interpolation, as analysed, and for
other interpolants, and showed qualitatively similar results for larger α, but only for
small Courant number. This analysis could be extended for higher order interpolants,
such as cubic Lagrange interpolants.

In Chapter 4 we presented moving meshes as time-dependent maps with associated
mesh densities, or monitor functions. We discussed the equidistribution principle to
find a 1D mesh for a given monitor function (including a simple algorithm where one
assumes a piecewise linear monitor function) and moving mesh PDEs (MMPDEs).
We discussed 2D spatial meshes, uniform in one dimension and adapted in the other,
which we refer to as 1+1D meshes, showing some measures which could be employed
to characterise elements of such meshes. Finally we discussed the process of smoothing
monitor functions, and averaging a monitor function with a uniform monitor function,
processes commonly employed before applying the equidistribution principle.

In Chapter 5 we implemented moving meshes with Burgers’ equation. We first dis-
cussed finite differences on non-uniform meshes and energy preserving discretisations
of the advection term in inviscid Burgers’ equation, which we use for the corresponding
term in Burgers’ equation. We described two methods for coupling Eulerian discreti-
sations of PDEs with moving meshes: static rezoning, where we remesh between time
steps, interpolating the solution onto the new mesh, and a change of coordinates for
a moving mesh, where the PDE is modified to account for these moving mesh points
and is solved in a computational domain. For the static rezoning the mesh points
were moved via the equidistribution principle and the PDE, Burgers’ equation, was
solved with a θ-method. For the moving frame of reference, the mesh movement was
dictated by a MMPDE which was coupled with the discretised Burgers’ equation and
the two solved simultaneously using MATLAB’s implementation of ODE45. Numeri-
cal results were shown with sine-based initial conditions. For the moving mesh semi-
Lagrangian (MMSL) method, the mesh points were moved via the equidistribution
principle. Compared to the SL method, the MMSL method required no additional
interpolation. Numerical results were presented for the sine-based initial conditions,
giving good comparisons with the other moving mesh techniques in Chapter 5, and for
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the travelling wave initial conditions, showing small errors for the numerical viscosity ε̂
and the front speed ĉ compared to the uniform meshes in Chapter 3. Future work could
be done looking at the MMSL method applied to PDEs with two spatial dimensions,
with an obvious first step being 2D Burgers’ equation. Investigating the 1+1D meshes
described in Chapter 3 would be of particular interest in a NWP setting, since it could
lead on to a vertical slice model.

In Chapter 6 we presented model equations for a dry vertical column in one spatial
dimension, and corresponding hydrostatic profiles, including inversion layers. This
problem was chosen to be more realistic of a meteorological calculation than Burgers’
equation, and threw up many new challenges. The model was discretised in a semi-
Lagrangian fashion. This was more complicated than Burgers’ equation, since the
system to be solved for given departure points is nonlinear (in contrast to Burgers’
equation, which results in a linear system). To solve it a linearisation was used based
on a combination of that used by the Met Office and a Newton-Raphson algorithm.
We carried out numerical experiments where the initial conditions were sampled from
a hydrostatic inversion layer profile. In Burgers’ equation the errors arising from a
poor resolution were mostly diffusive. In the vertical column the errors result in the
production of spurious waves. If the mesh used is adapted to a curvature based monitor
function then these waves are reduced. In order to create more movement in the model
we modified the equations to model a moist vertical column, where the change of water
vapour into liquid water releases heat. The algorithm for calculating the maximum
mass of water vapour a volume of air can hold were rederived from the literature.
The numerical experiments on these two models raised questions that motivated the
inclusion of the interpolation in the more careful analysis in Section 3.4. More work
is required in order to better understand the errors present in numerical experiments,
such as the effect of the mesh on conservation of various terms, before further work can
be down on coupling these discretised models with moving meshes. These models could
then be extended to vertical slice models with two spatial dimensions (one horizontal
and one vertical), for which there are a number of published test problems, which could
be used to investigate 1D adaptivity in a meteorologically relevant model.
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Appendix A

Code

A.1 burg2.m

function [Un,X A,bigXstar] = burg2(N, Nt, param file)

% A light−weight SL 1D burgers' solver, uniform grid, linear interpolation

%

% [U,X] = burg2(N,Nt) returns the final solution to a semi−Lagrangian
% method for viscous Burgers' equation with N internal spatial points and

% Nt time steps for the experiment described in Section 3.3

%

% [U,X,Xstar] = burg2(N,Nt) is as above, but returns the location of

% x star for all time steps, the point such that U(x star, t) = c. Calls a

% simple external function get m x (not included).

%

% [U,X] = burg2(N, Nt, param file) is as above, but loads problem

% parameters from a .mat file with filename specified by param file.

%

% This is a simplified version of the code used for moving mesh

% semi−Lagrangian Burgers' equation in Chapter 5. Main changes required

% involve recalculating A, B and C when the mesh moves (require an old B

% for one time step), interpolation of U onto the new mesh and saving the

% mesh points to be output.

% Stephen P. Cook 03−04−2016

old path = addpath([pwd,'\options']);

% Load default model parameters, see Section 3.3

load('params default',...

'K', ... % Number of outer loops
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'theta u', 'theta x', 'epsilon', ... % Problem parameters

'x l', 'x r', 't0', 'tmax',... % Domain parameters

'c', 'alpha 0', 'u0', 'u l', 'u r',... % Initial and Boundary Conditions

'plotting', 'plotlims'); % Plot options

if nargin==3

load(param file);

end

if nargout==3 % Whether to create bigXstar or not

track front = 1;

else

track front = 0;

end

% Setup

Dx = (x r−x l)/(N+1);

Dt = (tmax−t0)/Nt;

X A bc = (x l:Dx:x r)';

X A = X A bc(2:end−1);

% Finite difference matrix and problem specification.

delta2 = 1/(Dxˆ2) * ...

(−2*eye(N) + diag(ones(N−1,1),1) + diag(ones(N−1,1),−1));
% Can express SL Burgers' equation as

% A*u(t(n+1)) + theta u*C = [B*u(t(n)) + (1−theta u)*C] D

% (see Figure 3−1)
A = eye(N) − Dt*epsilon*theta u*delta2;

Ainv = Aˆ(−1);
B = eye(N) + Dt*epsilon*(1−theta u)*delta2;

C = Dt*epsilon/(Dxˆ2)*[u l;zeros(N−2,1);u r];

% Initialisation

Un = u0(X A);

U out = zeros(N,Nt); % Can be used to track solution

X D out = zeros(N,Nt,K); % Can be used to check departure point convergence

Unplus1 = Un;

X D = X A − Dt*Unplus1;

if track front

bigXstar = zeros(Nt+1,1);

end % if track front

for tt = 1:Nt % Time Loop

for kk = 1:K % Outer Loop

% Calculate departure points

X D old = X D;
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X D = X A − Dt*Unplus1;

X D(X D<x l) = x l;

X D(X D>x r) = x r;

for ll = 1:2 % Departure point iteration, see Section 2.4

Un D = interp1(X A bc,[u l;Un;u r],X D);

X D = X A − Dt*(theta x*Unplus1 + (1 − theta x)*Un D);

X D(X D<x l) = x l;

X D(X D>x r) = x r;

end % for ll

R D = interp1(X A bc,[u l;B*Un + (1−theta u)*C;u r],X D);

%ENO pp = interp ENO(X A bc,[u l;B*Un + (1−theta u)*C;u r]);

%R D = ppval(ENO pp, X D);

% Solve the SL system (tridiagonal, could use Thomas algorithm)

Unplus1 = Ainv*(R D + theta u*C);

X D out(:,tt,kk) = X D;

X D diff = X D − X D old;

end % for kk

Un = Unplus1;

U out(:,tt) = Unplus1;

if track front

[˜,bigXstar(tt+1)] = get m x(Un,X A,c,alpha 0);

end % if track front

end % for tt

if plotting

for tt = 1:Nt

plot(X A bc,[u l;U out(:,tt);u r])

ylim(plotlims)

drawnow

end

end % if plotting

path(old path);

end % function burg2

A.2 equidistribute.m

function Y = equidistribute(x0,X,M)

% Find points xout that equidistribute the lin. interp. of (X,M)

%

% Y = equidistribute(x0,X,M) finds the points which equidistribute the

% linear interpolant of (X,M) with the same shape as x0. Assumes that X is

% ordered with unique values, (as such we should have Y(1) = X(1) and
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% Y(end) = X(end)), that length(X) == length(M) and that all(M>0).

% Stephen Cook 03−04−2016

Y = zeros(size(x0));

II = length(Y) − 1;

JJ = length(X) − 1;

%

intMi(i) =

Z X(i+1)

X(i)

m(x)dx,

%

intM(i) =

Z X(i)

X(1)

m(x)dx

% and

%

theta =

Z X(II)

X(1)

m(x)dx

% Assuming M is piecewise linear.

% Integrate (X,M) with the trapezium rule

intMi = 1/2*(M(1:end−1)+M(2:end)).*(diff(X));
intM = [0;cumsum(intMi(:))];

theta = intM(end);

Y(1) = X(1);

% jj tracks which interval of X we are in

jj = 1;

for ii = 2:II

Target = (ii − 1)/II * theta;

% Find the interval [X(jj), X(jj+1)] in which Y(ii) lies.

while and(intM(jj) < Target, jj<(JJ))

jj = jj + 1;

end % while

jj = jj − 1;

XL = X(jj);

ML = M(jj);

XR = X(jj+1);

MR = M(jj+1);

target local = Target − intM(jj);

mx = (MR−ML)/(XR−XL);

% We want to find Y such that
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% Z Y

XL

M(x)dx = target local.

% In this interval

%
M(x) = mx ∗ (x−XL) + ML.

% so we integrate and use the quadratic formula to get

%

Y = XL + (−ML + sqrt(ML2 + 2 ∗mx ∗ target local))/mx.

% For small m, this gives huge error, so we rearrange as

Y(ii) = XL + 2*target local/(ML + sqrt(MLˆ2 + 2*mx*target local));

end % for ii

Y(II+1) = X(JJ+1);

end % function equidistribute

A.3 burgers.m

function [bigU,bigX] = burgers(N, Nt, param file)

% Eulerian theta method for Burgers' equation with moving mesh

%

% [bigU,bigX] = BURGERS(N,Nt) performs a theta method integration using

% the default boundary and initial conditions from param default.mat,

% returning Nt−by−N matrices containing the solution and mesh over time.

% See Section 5.2.

%

% [bigU,bigX] = burgers(N, Nt, param file) is as above, but loads problem

% parameters from a .mat file with filename from param file.

%

% Uses included subfunctions mk fd matrices and mk plot. Also uses a

% function not included, move mesh.m which forms a smoothed monitor

% function M defined at X , then calls equidistribute(X ,X ,M)

% Stephen P. Cook 11−10−2016

old path = addpath([pwd,'\options']);

% Load default model parameters

load('params default',...

'NewtonIts', 'NewtonTol',... % Newton iterations and tolerance

'theta u', 'epsilon', ... % Problem parameters
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'x l', 'x r', 't0', 'tmax',... % Domain parameters

'c', 'alpha 0', 'u0', 'u l', 'u r',... % Initial and Boundary Conditions

'plotting', 'plotpause', 'plotlims'); % Plot options

if nargin==3

load(param file);

end

Dx = (x r − x l)/(N+1);

Dt = (tmax−t0)/Nt;

mopts = mk move opts('Exact2');

X = (x l:Dx:x r)';

X = X (2:end−1);

[del2i, del c, ave, b del2, b del c, b ave] = mk fd matrices(X , u l, u r);

bigU = zeros(Nt, N);

bigX = zeros(Nt, N);

T = Dt*(1:Nt)';

% The equation to be solved is

% u t = −(ave*U).*(del c*U) + epsilon*(del2i*U)

% via the theta method. For theta > 0, need to solve

% F(U) = U − Dt*theta*(epsilon*del2i*U − (ave*U).*(del c*U)) − RHS = 0

% RHS = U old + ...

% Dt*(1−theta)*(epsilon*del2i*U old − (ave*U old).*(del c*U old))

% JACOBIAN OF F(U)

% J(U) = I − Dt*theta*epsilon*del2i + J2(U)

% J2(U) = Dt*theta*diag(ave*U)*del c + diag(del c*U)*ave

% Initiation

U old = u0(X);

% U independent part of Jacobian

% (Independent of time if using a static mesh)

J1 = eye(N) − Dt*theta u*epsilon*del2i;

for ii = 1:Nt % timeloop

% Forward euler, initial estimate

U = U old + Dt*(epsilon*(del2i*U old + b del2)...

− (ave*U old + b ave).*(del c*U old + b del c));

if theta u % if theta == 0 then stop at the initial estimate, else Newton

RHS = U old + ...

Dt*(1−theta u)*(epsilon*(del2i*U old + b del2)...
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− (ave*U old + b ave).*(del c*U old + b del c));

for jj = 1:NewtonIts % Newton loop

F = U − Dt*theta u*(epsilon*(del2i*U + b del2)...

− (ave*U + b ave).*(del c*U + b del c)) − RHS;

% U dependent part of Jacobian (so J F(U) = J1 + J2(U))

J2 = Dt*theta u*(diag(ave*U + b ave)*del c + diag(del c*U + b del c)*ave);

% Newton solve. Tridiagonal solve to come later.

U prime = − (J1 + J2)\F;
U = U + U prime;

if (max(abs(U prime)) < NewtonTol*U)

break

elseif (jj==NewtonIts)

warning(sprintf('Newton method not converged after %d iterations',jj))

end

end % for jj, Newton loop

end % if theta u

% Store output

bigU(ii,:) = U;

bigX(ii,:) = X;

% Remesh every time step

X old = X ;

% New mesh

X = movemesh(mopts,X ,[u l;U;u r]);

X = X (2:end−1);
% Interpolate U onto this new mesh

% Currently Linear interpolation, not limited.

U = interp1(X old,[u l;U;u r],X);

% Recalculate the FD matrices

[del2i, del c, ave, b del2, b del c, b ave] = mk fd matrices(X , u l, u r);

% Recalculate the U independent part of Jacobian

J1 = eye(N) − Dt*theta u*epsilon*del2i;

U old = U;

end % ii, timeloop

if plotting

% Plot the solution

figure(1)

mk plot(bigX, bigU, T, x l, x r, u l, u r, plotpause, plotlims);

% Plot the mesh movement

figure(2)

for ii = 1:length(X)

plot(bigX(:,ii),T)

hold on

end

hold off

end % if plotting
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path(old path);

end % function main

function [del2i, del c, ave, b del2, b del c, b ave] =...

mk fd matrices(X , u l, u r)

%MK FD MATRICES Makes finite difference matrices and BC vector terms

%

% [D 2,D c,Ave,b 2,b c,b ave] = MK FD MATRICES(X , u l, u r) creates the

% second order finite difference matrix D 2, the centred finite difference

% matrix D c and a tridiagonal averaging matrix Ave for a mesh X , and

% Dirichlet boundary condition correction vectors for endpoints

% u(X (1))=u l and u(X (end)) = u r.

Dx = diff(X );

N = length(Dx) − 1;

del2i = zeros(N);

del c = zeros(N);

%ave = zeros(N);

b del2 = zeros(N,1);

b del c = zeros(N,1);

b ave = zeros(N,1);

for ii = 2:N−1
denom = 0.5*Dx(ii)*Dx(ii+1)*(Dx(ii)+Dx(ii+1));

% Irregular second order finite difference operator.

del2i(ii,ii−1) = Dx(ii+1)/denom;

del2i(ii,ii) = −(Dx(ii) + Dx(ii+1))/denom;

del2i(ii,ii+1) = Dx(ii)/denom;

% Irregular centred difference operator.

del c(ii,ii−1) = −1/(Dx(ii) + Dx(ii+1));

del c(ii,ii+1) = 1/(Dx(ii) + Dx(ii+1));

end % for ii

% Left boundary, U(X[0]) = u l

del2i(1,1) = −2/(Dx(1)*Dx(2));
del2i(1,2) = 1/(0.5*Dx(2)*(Dx(1)+Dx(2)));

del c(1,2) = 1/(Dx(1) + Dx(2));

% Right boundary, U(X[N+1]) = u r

del2i(N,N) = −2/(Dx(N)*Dx(N+1));
del2i(N,N−1) = 1/(0.5*Dx(N)*(Dx(N)+Dx(N+1)));

del c(N,N−1) = −1/(Dx(N) + Dx(N+1));
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% Unweighted averaging operator over 3 values.

ave = 1/3*(eye(N) + diag(ones(N−1,1),1) + diag(ones(N−1,1),−1));

% Boundary correction terms

b ave(1) = u l/3;

b ave(N) = u r/3;

b del c(1) = −u l/(Dx(1) + Dx(2));

b del c(N) = u r/(Dx(N) + Dx(N+1));

b del2(1) = u l/(0.5*Dx(1)*(Dx(1)+Dx(2)));

b del2(N) = u r/(0.5*Dx(N+1)*(Dx(N)+Dx(N+1)));

end % function mk fd matrices

function mk plot(bigX, bigU, T, x l, x r, u l, u r, plotpause, plotlims)

%MK PLOT Creates a moving plot from matrix stored results

%

% MK PLOT(bigX, bigU, T, x l, x r, u l, u r, plotpause, plotlims) plots the

% data stored in bigX and bigU with endpoints [x l x r] and [u l u r]

% respectively for all t in T.

Nt = length(T);

for ii = 1:Nt

plot([x l,bigX(ii,:),x r],[u l,bigU(ii,:),u r])

ylim(plotlims)

title(['t = ',num2str(T(ii))])

drawnow()

pause(plotpause)

end % for ii

end % function mk plot

A.4 fd adaptive.m

function [tout,uout]=fd adaptive(N)

% Function for solving Burgers' Equation with a moving mesh

% Stephen Cook, 02−04−2012

% For solving the PDE

% u t − (u xi/x xi)*(x t − u) −
% epsilon/x xi*(u xi/x xi) xi = 0,

% x t − 1/tau*(x xi*M(x)) xi = 0,

% with a monitor function M(x), here being

% M = sqrt(1+b.*(u xi./x xi).ˆ2).
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%

% −INPUT−
% N − The number of points required in the computational

% domain.

%

% −OUTPUT−
% tout − The times corresponding to columns of uout

% uout − The calculated solution, 2*N by t N matrix.

% Single column corresponds to [u;x] at time

% given in tout.

%

% −PARAMETERS−
% epsilon − In PDE, gives order of the width on which we

% have rapid change for t > 0.

% tau − Relaxation factor for the moving mesh PDE.

% b − A parameter for the monitor function.

% implicit − Whether to use ODE15i or ODE15s.

% t N − Number of timepoints to be outputted.

% t max − Maximum time to run solution up to.

%

% −VARIABLES−
% xi − Var in computational domain

% x − Var in physical domain

% u − Discretised Solution

% t − Time

% y − Stacked vector, y=[u;x]

%

% −SUBFUNCTIONS−
% x = igrid(xi) − Initial grid.

% [C,F,B]= mk fd matrices() − Finite Difference Matrices.

% M = monitor(u,up,x,xp)− Monitor Function.

% utout = ut(y[,yp]) − Burgers' equation.

% xtout = xt(y) − Moving Mesh PDE.

% Mout = outputM(uout) − Monitor function for uout.

% myplot(uout, tout)− Plotting function.

if nargin==0

N=17;

end % if nargin

if nargout==0

end

epsilon= 2e−3; % Parameters

tau= 1;

b= 1;

implicit= false;

151



t max=1.5;

t N= 151; % Points to plot

h= 1./(N−1); % Computational grid width

xi= h*((1:N)−1)'; % Computational grid

x0 = igrid(xi); % Initial Physical Grid

y0(N)= 0;

y0 = [sin(2*pi*x0)+ 1/2*sin(pi*x0);x0]; % Initial Conditions.

yp0 = zeros(2*N,1);

basepp= basemonitor(igrid(xi)); % Call this so it is a GLOBAL var.

% Main ODE solver, MATLAB inbuilts

if implicit

f= @(t,y,yp) yp − [ut(y,yp);xt(y)];

[tout,uout]= ode15i(f,t max*(0:(t N−1))./(t N−1),y0,yp0);
else

f= @(t,y) [ut(y);xt(y)];

[tout,uout]= ode15s(f,t max*(0:(t N−1))./(t N−1),y0,yp0);
end % if implicit

myplot(uout, tout); % Plot output.

% −−−−−−−−−−−−−−END OF MAIN FUNCTION−−−−−−−−−−−−−−
%

% SUBFUNCTIONS

function base= igrid(xi)

% Subfunction for defining the initial grid at t=0.

base= xi;

end % function igrid

function [C,F,B]= mk fd matrices()

% Subfunction for making the finite difference matrices.

C= diag(ones(N−1,1),1);
C= C − C';

C(1,1)= −2;
C(1,2)= 2;

C(N,N−1)= −2;
C(N,N)= 2;

C = C./(2*h);

F= (diag(ones(N−1,1),1) − diag(ones(N,1)))./h;

B= −F';
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F(N,:)= F(N−1,:);
B(1,:)= B(2,:);

end % function mk fd matrices

function M= monitor(u, x)

% Monitor function + smoothing

% Use the switch parameter mtype to choose the monitor

% function,

% 1 − Arclength,

% M = sqrt(1 + b*u xˆ2)

% 2 − Mod'd Arclength (c=b for now).

% M = sqrt(1 + b*u xˆ2 + c*u xxˆ2)

mtype= 1;

mnormalise= 1; % Normalise or not

up= (N+1)*[2*(u(2)−u(1));...
u(3:end)−u(1:end−2);...
2*(u(end)−u(end−1))];

xp= (N+1)*[2*(x(2)−x(1));...
x(3:end)−x(1:end−2);...
2*(x(end)−x(end−1))];

if mtype==1

M= sqrt(1+b.*(up./xp).ˆ2);

elseif mtype==2

upp= (N+1)ˆ2*[u(3)−2*u(2)+u(1);...
u(3:end)−2*u(2:(end−1))+u(1:(end−2));...
u(end−2)−2*u(end−1)+u(end)];

xpp= (N+1)ˆ2*[x(3)−2*x(2)+x(1);...
x(3:end)−2*x(2:(end−1))+x(1:(end−2));...
x(end−2)−2*x(end−1)+x(end)];

M= sqrt(1+b.*((up./xp).ˆ2 + ...

(upp./(xp.ˆ2)−up.*xpp./(xp.ˆ3)).ˆ2));
end % if

% Normalise

if mnormalise

%trapz(x,M)

M=(M/trapz(x,M));

end

% Smoothing (MATLAB inbuild, 5 point smoothing)

M=smooth(M);

end % function monitor

function Mout= outputM(uout)
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% Subfunction for producing the monitor function at every time.

% Produces a t N by N matrix with rows corresponding to the

% monitor function evaluated at time t in tout.

Mout= zeros(t N,N);

for i=1:t N

Mout(i,:)= monitor(uout(i,1:21)',uout(i,22:end)');

end % for i

end % function outputM

function utout= ut(y,yp)

% Subfunction for constructing the approximation to u t

if nargin < 2

xt l= xt(y);

else % Implicit

xt l= yp(N+1:2*N);

end % if nargin

u= y(1:N);

x= y(N+1:2*N);

[C,F,B] = mk fd matrices;

u xi= C*u; % Central, forward and backward difference

x xi= C*x; % schemes for u and x.

u xi f= F*u;

u xi b= B*u;

x xi f= F*x;

x xi b= B*x;

tri111 = (diag(ones(N−1,1),−1) + eye(N) + diag(ones(N−1,1),1))/3;

utout= (u xi./x xi).*(xt l − tri111*u) +...

epsilon./(x xi*h) .*...

((u xi f./x xi f) − (u xi b./x xi b));

utout(1)= 0; % Boundary Conditions

utout(N)= 0;

end % function ut

function xtout= xt(y)

% Subfunction for constructing approximation to x t

% x t = 1/tau*(x xi*M(x)) xi;

u= y(1:N);

x= y(N+1:2*N);

% Forward/Backwards difference estimate of dx/d(xi).

x xi= (x(2:end)−x(1:end−1))/h;
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M m= monitor(u, x);

M b= ppval(basepp,x);

M= M m.*M b;

% Linear interpolation for midpoints of M.

M mid= (M(1:end−1)+M(2:end))*0.5;

xtout= 1/(tau*h) * [0;...

(M mid(2:end).*x xi(2:end)...

− M mid(1:end−1).*x xi(1:end−1));...
0];

end % function xt

function myplot(uout, tout)

% function for plotting results

ts= [0,0.25,0.5,0.75,1]; % Values of t to plot.

gpoints=true; % Plot the coords as 'ro's?

clf

subplot(1,2,1)

hold on

for i = 1:length(ts)

[˜,t i]= min(abs(tout−ts(i))); % tout closest to ts(i).

t i=t i(1); % Incase we get two minima.

plot(uout(t i,N+1:2*N),uout(t i,1:N),'b−')
if gpoints

plot(uout(t i,N+1:2*N),uout(t i,1:N),'ro')

end

end % for i

xlim([0,1]), xlabel('x'), ylabel('u(x,t)')

subplot(1,2,2)

hold on

for i=N+1:2*N

plot(uout(:,i),tout)

end % for i

xlim([0,1])

xlabel('x')

ylabel('t')

axis('square')

hold off

end % function myplot

end % Main function fd adaptive
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A.5 main.m

function [output] = main(Dt in, T in, N in, alpha q)

% A 1D vertical slice code with moisture

%

% Subfunctions:

% − report

% − calc zD

% − calc R D

% − calc L

% − calc R

% − calc H

% − calc RHS

% − solve help

% − back sub

%

% Removed for thesis

% − mk contour

% − mk plot

%

% Calls to external functions:

% ../mk initial conditions.m

% Function which creates a specified initial condition, such as

% isentropic or an inversion layer.

% ../moisture simple.m

% Moisture scheme which makes simplifications, such as assuming

% c {vml} is constant.

% ../moisture.m

% As above, but without simplifications

% ../movemesh.m

% Wrapper function for equidistribute.m

% ../interpolation/interp3lim.m

% Cubic Lagrange interpolant with a flux limiter.

%

% [output] = main(Dt in, T in, N in, alpha q)

old path = addpath([pwd,'\interpolation']);

global Dt T N Dz alpha alpha X n1 is moist

Dt = Dt in;

T = T in;

N = N in;

%Dt = 60; % Timestep
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%T = 300; % Number of timesteps

%N = 60; % Spatial resolution

z ceiling = 10000; % Domain ceiling

Dz = z ceiling/N; % Spatial step

alpha = 0.5; % SL weighting

alpha X = 0.5; % SL weighting for d−points
n1 = 1; % Switch for theta correction

M = 4; % Departure point iterations

K = 4; % Helmholtz (Newton) iterations

is moist = 0; % Moisture switch

do move = 0; % Moving mesh switch

move param = 1;

heating = 0; % Gaussian heating switch

verbatim=0; % Level of verbose outputting

plotparam=2; % Type of plotting to do (see mk plot)

% Constants

global cp g gamma R p0

cp = 1005; % Dry Specific heat at constant pressure

g = 9.80665; % Gravity

kappa = 0.285621890547264; % R/cp

gamma = (1−kappa)/kappa;
R = 287.05; % Dry gas constant

p0 = 1e5; % Reference pressure

% Some initial mesh

[w,rho,theta,exner, z A, zh A] = mk initial conditions(alpha q);

% Initialise the departure mesh to be equal to arrival mesh

z D = z A;

zh D = zh A;

% For a moving mesh; z A n means z A at the previous timestep.

z A n = z A;

zh A n = zh A;

% Initialise moisture parameters

if is moist

rv = 0.005*ones(size(theta));

rc = 0*rv;

else
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% theta = theta + 30/z ceiling*z A;

theta(1) = theta(1) + 5.0*tanh(0/1800);

rv = 0*ones(size(theta));

rc = rv;

end

rv n = rv;

rc n = rc;

rvout = zeros(T,N+1);

rcout = zeros(T,N+1);

% Perturbation

%theta(5) = theta(5) + 5;

z A0 = z A;

zh A0 = zh A;

w0=w;

rho0=rho;

exner0=exner;

theta0=theta;

mass0 = sum(rho0.*diff(z A0));

N sq0 = g./theta0(2:end−1).*...
(theta0(3:end)−theta0(1:end−2))./(z A0(3:end)−z A0(1:end−2));

N sq0 = g*log(theta0(2:end)./theta0(1:end−1))./(z A0(2:end)−z A0(1:end−1));

w n = w;

theta n = theta;

rho n = rho;

exner n = exner;

for t=1:T % Timestep loop

% Calculate initial estimate of departure points

%z D = z A;

%zh D = zh A;

for m=1:M % Outer loop, departure point iteration

% Calculate departure points from wˆ{(k)} A and wˆ{n} D:

% Recalculate w D, then the departure points again.

z D old = z D;

[z D,zh D] = calc zD(w,w n,z A,zh A,z D,zh D);

z D prime = z D old − z D;

% MM changed z A to z A n

[R w D,R rho D,R theta D] = ...

calc R D(w n,theta n,rho n,exner n,rv,rc,z A n,z D,zh A n,zh D);

for k=1:K % Inner loop. Newton iterations.

[L w,L rho,L theta,L pi] = calc L(w,rho,theta,exner,rv,rc,z A,zh A);

[R w,R rho,R theta,R pi] = calc R(L w,L rho,L theta,L pi,...

R w D,R rho D,R theta D,exner);
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[H0,H1,H2,Htheta,Hw] = calc H(w,rho,theta,exner,z A,zh A);

[Rfrak w,˜, RHS] = calc RHS(R w,R rho,R theta,R pi,...

rho,exner,theta,H0,H1,Hw,Htheta,z A,zh A);

[exner prime] = solve helm(H0,H1,H2,Htheta,Hw,RHS,exner,theta,z A,zh A);

[w,rho,theta,exner] = back sub(w,rho,exner,theta,exner prime,z A,zh A,...

H0,H1,H2,Htheta,Hw,Rfrak w,R rho,R theta,R pi);

theta(1) = 300 + 5.0*tanh(t*Dt/1800);

end % for k, inner loop

end % for m, outer loop

% Store variables for next loop

if heating

a=1; b=0.00001; z i= 2/3*(N*Dz);

delta theta = a*exp(−b*(z A − z i).ˆ2);

theta = theta + delta theta;

%theta(floor(2/3*N)) = theta(floor(2/3*N))+4;

end % if heating

if is moist

rv D = interp3lim(z A n,rv n,z D);

rc D = interp3lim(z A n,rc n,z D);

theta D = interp3lim(z A n,theta n,z D);

switch 0 % 0 for simple thermodynamics, 1 for more complicated

case 0

% [theta out, rv out, rc out] = ...

[theta, rv, rc] = ...

moisture simple(w, exner, theta, rv D, rc D, z A, zh A);

case 1

for mm=1:10

%[r dot out, S theta out] = moisture(w, exner, theta, rv, rc, z A, zh A);

[r dot out, S theta out] = moisture(w, exner, theta, rv D, rc D, z A, zh A);

%rv = rv D − Dt*r dot out([1,1:end,end]);

%rc = rc D + Dt*r dot out([1,1:end,end]);

rv = rv D − Dt*r dot out;

rc = rc D + Dt*r dot out;

theta = theta D + Dt*S theta out([1,1:end,end]);

end % mm

end % switch

rv n = rv;

rc n = rc;

rvout(t,:) = rv;

rcout(t,:) = rc;

end % if is moist
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w n = w;

rho n = rho;

theta n = theta;

exner n = exner;

% Save vars

if t==1

wout = zeros(T,N+1);

thetaout = zeros(T,N+1);

zout = zeros(T,N+1);

rhoout = zeros(T,N);

exnerout = zeros(T,N);

zhout = zeros(T,N);

massout = zeros(T,1);

Mout = zeros(T,N+1);

end

% MM

zout(t,:) = z A;

zhout(t,:) = zh A;

wout(t,:) = w;

rhoout(t,:) = rho;

thetaout(t,:) = theta;

exnerout(t,:) = exner;

massout(t) = sum(rhoout(t,:).*diff(zout(t,:)));

% MM section

% 1. These meshes become previous meshes

%

z A n = z A;

zh A n = zh A;

%

% 2. Move the mesh, either based on current fields or on predictions

%

if do move

if any(ismember(who,'move param'))

mm alpha = move param;

else

mm alpha = 0.5;

end % if ismember

[z A adapted,Mout(t,:)] = movemesh(z A,zh A,theta);

z A = mm alpha * z A n + (1−mm alpha)*z A adapted;
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zh A = (z A(1:end−1) + z A(2:end))/2;

end

%

% 3. Interpolate w, rho, theta and exner (currently intial guesses

% for next timestep) from z A n onto z A

theta = interp3lim(z A n,theta n,z A);

w = interp3lim(z A n,w n,z A);

exner = interp3lim(zh A n,exner n,zh A);

rho = interp3lim(zh A n,rho n,zh A);

end % for t, timestep loop

for t=1:T % Calculate the deviations from the (interpolated) initial fields

thetadev(t,:) = thetaout(t,:)−interp3lim(z A0,theta0,zout(t,:));

rhodev(t,:) = (rhoout(t,:)−interp3lim(zh A0,rho0,zhout(t,:)))...

./interp3lim(zh A0,rho0,zhout(t,:));

exnerdev(t,:) = exnerout(t,:)−interp3lim(zh A0,exner0,zhout(t,:));

end % for t, deviations

massdev = (massout−mass0)/mass0;
massdiff = diff(massout)./massout(1:end−1);

%mk plot(plotparam, wout, rhodev, thetadev, exnerdev, ...

% z A, zh A, zout, massdev, rvout, rcout, z A0, massdiff)

path(old path);

% Plot some data

figure;

plot(theta0,z A,'k',theta,z A,'b','linewidth',2);

end % function main

function [z D,zh D] = calc zD(w,w n,z A,zh A,z D,zh D)

global Dt alpha X

zh weighted ave = 1;

zh interp = 2;

for ii = 1:2 % Departure point iteration

w D = interp3lim(z A,w n,z D);

z D = z A − Dt*(alpha X*w + (1−alpha X)*w D);

end % for i

z D = min(max(z A),max(z D,0));

switch(zh interp)

case(zh weighted ave)

zh D = (z D(1:end−1) + z D(2:end))/2;

case(zh interp)
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w h = 0.5*(w(2:end) + w(1:end−1));
for ii = 1:2 % Departure point iteration

w Dh = interp3lim(z A,w n,zh D);

zh D = zh A − Dt*(alpha X*w h + (1−alpha X)*w Dh);

end % for i

otherwise

error 'Unknown type of z h interoplation'

end % switch

zh D = min(max(z A),max(zh D,0));

end % function calc zD

function [R w D, R rho D, R theta D] = ...

calc R D(w n, theta n, rho n, exner n, rv, rc, z A n, z D, zh A n, zh D)

% Calculates R wˆn, R \rhoˆn and R \thetaˆn on the previous meshes z A,

% zh A and interpolates onto the departure points z D, zh D.

% Uses the interpolation routine interp3lim (currently in the folder

% ˜/dos/MATLAB/ ).

global Dt alpha cp g

% could possibly calculate Dz A before−hand, but doing it internally

% will closer fit the moving mesh approach.

% This is the arrival mesh from the previous time step.

Dz A = diff(z A n);

Dzh A = diff(zh A n);

exner z bot = −g*(1+rv(1) + rc(1))/(cp*theta n(1));

exner z internal = (exner n(2:end) − exner n(1:end−1))./Dzh A;

exner z top = −g*(1+rv(end) + rc(end))/(cp*theta n(end));

% This is equivalent to saying exner z in linear in [z A(0), z D(2)] and

% [z D(end−1), z A(end)]. (interval−and−a−half)
exner z = [exner z bot,exner z internal, exner z top];

w z = (w n(2:end) − w n(1:end−1))./Dz A;

R n w = w n − Dt*(1−alpha)*(cp./(1+rv+rc).*theta n.*exner z + g);

R n rho = rho n − Dt*(1−alpha)*rho n.*w z;

R w D = interp3lim(z A n,R n w,z D);

R theta D=interp3lim(z A n, theta n, z D);

R rho D=interp3lim(zh A n, R n rho, zh D);

end % function calc R D

function [L w,L rho,L theta,L pi] = calc L(w,rho,theta,exner,rv,rc,z A,zh A)

global Dt alpha cp g gamma R p0 % Dz

% The arrival mesh for current time

Dz A = diff(z A);
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Dzh A = diff(zh A);

exner z bot = −g*(1+rv(1)+rc(1))/(cp*theta(1));
exner z internal = (exner(2:end) − exner(1:end−1))./Dzh A;

exner z top = −g*(1+rv(end)+rc(end))/(cp*theta(end));

exner z = [exner z bot, exner z internal, exner z top];

w z = (w(2:end) − w(1:end−1))./Dz A;

ave weight = (zh A − z A(1:end−1))./(z A(2:end)−z A(1:end−1));
theta ave = (theta(1:end−1).*ave weight + theta(2:end).*(1−ave weight));

L w = w + Dt*alpha*(cp./(1+rv+rc).*theta.*exner z + g);

L rho = rho + Dt*alpha*rho.*w z;

L theta = theta;

L pi = (exner.ˆgamma − R/p0*rho.*theta ave);

end % function calc L

function [R w,R rho,R theta,R pi] = calc R(L w,L rho,L theta,L pi,...

R w D,R rho D,R theta D,exner)

global gamma

R w = R w D − L w;

R rho = R rho D − L rho;

R theta = R theta D − L theta;

R pi = −L pi./(exner.ˆgamma);

end % function calc R

function [H0,H1,H2,Htheta,Hw] = calc H(w,rho,theta,exner,z A,zh A)

global alpha n1 Dt cp R p0 gamma % Dz

Dz A = diff(z A);

Dzh A = diff(zh A);

w z = (w(2:end)−w(1:end−1))./Dz A;

ave weight = (zh A − z A(1:end−1))./(z A(2:end)−z A(1:end−1));
theta ave = (theta(1:end−1).*ave weight + theta(2:end).*(1−ave weight));

theta z int = (theta(3:end) − theta(1:end−2))./(Dz A(1:end−1)+Dz A(2:end));

theta z = [0, theta z int, 0];

exner z int = (exner(2:end) − exner(1:end−1))./Dzh A;

exner z = [0,exner z int,0];

H0 = R/p0*(rho.*theta ave./(exner.ˆgamma));

H1 = 1./(1+alpha*Dt*w z);

H2 = alpha*Dt*cp*theta;

Htheta = n1*alpha*Dt*theta z;

Hw = 1./(1−alpha*Dt*cp*Htheta.*exner z);

end % function calc H
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function [Rfrak w, Rfrak pi, RHS] = ...

calc RHS(R w,R rho,R theta,R pi,rho,exner,theta,H0,H1,Hw,Htheta,z A,zh A)

global alpha Dt cp % Dz

Dz A = diff(z A);

Dzh A = diff(zh A);

exner z internal = (exner(2:end) − exner(1:end−1))./Dzh A;

exner z = [0,exner z internal,0];

ave weight = (zh A − z A(1:end−1))./(z A(2:end)−z A(1:end−1));
R tt ave = (R theta(1:end−1)./theta(1:end−1).*ave weight +...

R theta(2:end)./theta(2:end).*(1−ave weight));

Rfrak w = R w − alpha * Dt * cp *R theta.*exner z;

Rfrak pi = R pi + H0.*H1.*(R rho./rho) + H0.*R tt ave;

Hw Rfrak w z = (Hw(2:end).*Rfrak w(2:end) − ...

Hw(1:end−1).*Rfrak w(1:end−1))./Dz A;

HHR = Htheta.*Hw.*Rfrak w./theta;

HHR ave = ave weight.*HHR(1:end−1) + (1−ave weight).*HHR(2:end);

RHS = Rfrak pi − alpha*Dt*H0.*H1.*Hw Rfrak w z − H0.*HHR ave;

end % function calc RHS

function [exner prime] = solve helm(H0,H1,H2,Htheta,Hw,RHS,exner,theta,z A,zh A)

global gamma alpha Dt % Dz

Dz A = diff(z A);

Dzh A = diff(zh A);

ave weight = (zh A − z A(1:end−1))./(z A(2:end)−z A(1:end−1));

N = length(RHS);

A diag = zeros(1,N);

A sup = zeros(1,N);

A sub = zeros(1,N);

K0 = alpha*Dt*H0.*H1./Dz A;

K1 = Hw.*H2./[1,Dzh A,1];

K1(1)=0; K1(end) = 0;

K2 = Htheta.*Hw.*H2./(theta.*[1,Dzh A,1]);

K2(1)=0; K2(end) = 0;

A diag = gamma./exner − (−K0.*(K1(2:end)+K1(1:end−1)) + ...

H0.*(ave weight.*K2(1:end−1) − (1−ave weight).*K2(2:end)));

A sup = −(K0.*K1(2:end) + H0.*(1−ave weight).*K2(2:end));

A sub = −(K0.*K1(1:end−1) − H0.*ave weight.*K2(1:end−1));

% BCs
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A diag(1) = gamma/exner(1) − (−K0(1)*K1(2) + ...

H0(1)*(−1)*(1−ave weight(1))*K2(2));

A diag(end) = gamma/exner(end) − (−K0(end).*K1(end−1) + ...

H0(end).*ave weight(end).*K2(end−1));

% Could use the Thomas algorithm

A = diag(A diag) + diag(A sup(1:end−1),1) + diag(A sub(2:end),−1);
exner prime = (A\(RHS'))';
end % function solve helm

function [w,rho,theta,exner] = back sub(w,rho,exner,theta,exner prime,z A,zh A,...

H0,H1,H2,Htheta,Hw,Rfrak w,R rho,R theta,R pi)

global gamma Dt

Dzh A = diff(zh A);

exner prime z internal = (exner prime(2:end)−exner prime(1:end−1))./Dzh A;

% BCs used here

exner prime z = [0,exner prime z internal,0];

w prime = Hw.*(Rfrak w − H2.*exner prime z);

w prime(end) = 0;

theta prime = R theta − Htheta.*w prime;

theta theta ave = (theta prime(1:end−1)./theta(1:end−1) + ...

theta prime(2:end)./theta(2:end))/2;

% Choices for rho definition

with R rho = 1;

with R pi = 2;

with sl pi = 3;

rho opt = 2;

switch(rho opt)

case(with R rho)

Dz A = diff(z A);

w prime z = (w prime(2:end)−w prime(1:end−1))./Dz A;

rho prime = H1.*(R rho − alpha*Dt* rho.*w prime z);

case(with R pi)

rho prime = rho./H0.*(gamma*exner prime./exner − R pi) − ...

rho.*theta theta ave;

case(with sl pi)

end % switch rho opt

exner = exner + exner prime;

w = w + w prime;

theta = theta + theta prime;

rho = rho + rho prime;

end % function back sub
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Appendix B

Derivatives of Burgers’ equation

B.1 Time-Derivatives

Some equations from differentiating Burgers’ equation (3.1):

utx = −(ux)2 − uuxx + εu3x , (B.1)

utxx = −uu3x − 3uxuxx + εu4x , (B.2)

utt = u2uxx − 2ε(uu3x + uxuxx) + ε2u4x . (B.3)

The travelling wave solution (3.4) has the following spatial derivatives:

ux =
1
2ε
(
(c− u)2 − α2

)
, (B.4)

uxx =
1

2ε2

(
α2(c− u)− (c− u)3

)
, (B.5)

u3x = −1
ε

(
uxx(c− u)− (ux)2

)
, (B.6)

u4x = −1
ε

(u3x(c− u)− uxuxx − 2uxuxx) . (B.7)

These can be expressed in polynomials of u but are considerably less compact.

B.2 Integrals of tanh

For
v(x) = c− α tanh

( α
2ε
x
)
, (B.8)
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we can evaluate the following integrals over the real line:∫ ∞
−∞

v2v′′ dx =
−4
3
α3c

ε
. (B.9)

∫ ∞
−∞

vv′′ dx =
−2
3
α3

ε
. (B.10)

∫ ∞
−∞

vv′2 dx =
2
3
α3c

ε
. (B.11)

∫ ∞
−∞

v′2 dx =
2
3
α3

ε
. (B.12)
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[8] J. Côté, S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, The oper-
ational CMC-MRB global environmental multiscale (GEM) model. part I: Design
considerations and formulation, Monthly Weather Review 126 (1998), 1373–1395.

[9] M.J.P. Cullen, Alternative implementations of the semi-Lagrangian semi-implicit
schemes in the ECMWF model, Quarterly Journal of the Royal Meteorological
Society 127 (2001), no. 578, 2787–2802.

170



[10] T. Davies, M.J.P. Cullen, A.J. Malcolm, M.H. Mawson, A. Staniforth, A.A. White,
and N. Wood, A new dynamical core for the Met Office’s global and regional mod-
elling of the atmosphere, Quarterly Journal of the Royal Meteorological Society
131 (2005), no. 608, 1759–1782.

[11] P.J. Davis, Interpolation and approximation, Dover Books on Mathematics, Blais-
dell Publishing, 1963.

[12] D.R. Durran, Numerical methods for fluid dynamics: With applications to geo-
physics, vol. 32, Springer Science & Business Media, 2010.

[13] L.C. Evans, Partial differential equations, second ed., Graduate studies in mathe-
matics, American Mathematical Society, 2010.

[14] R. Ford, C.C. Pain, M.D. Piggott, A.J.H. Goddard, C.R.E. De Oliveira, and A.P.
Umpleby, A nonhydrostatic finite-element model for three-dimensional stratified
oceanic flows. part I: Model formulation, Monthly Weather Review 132 (2004),
no. 12, 2816–2831.

[15] F.N. Fritsch and R.E. Carlson, Monotone piecewise cubic interpolation, SIAM
Journal on Numerical Analysis 17 (1980), no. 2, 238–246.

[16] C.I. Hampson, Estimates of mesh quality in grids generated for aerospace applica-
tions, Master’s thesis, University of Bath, UK, 2011.

[17] A. Harten, B. Engquist, S. Osher, and S.R. Chakravarthy, Uniformly high or-
der accurate essentially non-oscillatory schemes, III, Journal of Computational
Physics 71 (1987), no. 2, 231–303.

[18] J.R. Holton and G.J. Hakim, An introduction to dynamic meteorology, fifth ed.,
Academic Press, 2012.

[19] W. Huang and R.D. Ren, Y. Russell, Moving mesh partial differential equations
(MMPDES) based on the equidistribution principle, SIAM Journal on Numerical
Analysis 31 (1994), no. 3, 709–730.

[20] W. Huang and R.D. Russell, Analysis of moving mesh partial differential equations
with spatial smoothing, SIAM Journal on Numerical Analysis 34 (1997), no. 3,
1106–1126.

[21] , Adaptive moving mesh methods, Applied Mathematical Sciences, Springer,
2010.

171



[22] J.M. Hyman, Accurate monotonicity preserving cubic interpolation, SIAM Journal
on Scientific and Statistical Computing 4 (1983), no. 4, 645–654.
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