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SUMMARY

We study the large deviation behaviour of simple random walks in dimension three or

more in this thesis. The first part of the thesis concerns the number of lattice sites

visited by the random walk. We call this the range of the random walk. We derive

a large deviation principle for the probability that the range of simple random walk

deviates from its mean. Our result describes the behaviour for deviation below the

typical value. This is a result analogous to that obtained by van den Berg, Bolthausen,

and den Hollander for the volume of the Wiener sausage.

In the second part of the thesis, we are interested in the number of lattice sites visited

by two independent simple random walks starting at the origin. We call this the

intersection of ranges. We derive a large deviation principle for the probability that

the intersection of ranges by time n exceeds a multiple of n. This is also an analogous

result of the intersection volume of two independent Wiener sausages.
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Chapter 1

Introduction

The random walk model had been introduced and well-studied since the early 19th cen-

tury, and still remains one of the most fundamental models of discrete time stochastic

processes. There are a lot of applications for random walk models in many areas such

as in biology, ecology, physics and computer science, as well as providing models in

gambling theory, stock price and potential theory. The recurrence property had been

studied by Polya [Pól21] and he showed that the probability that the random walk

will not return to the origin is zero for dimension one and two, i.e. random walk is

guaranteed to return to the origin. However, this non-return probability is non-zero

for dimension three or more. Later on, Dvoretzky and Erdös [DE51] investigated the

problem on the range of random walk, and they showed that the expected number of

lattice sites visited by a random walk depends on the dimension, and is also associated

with the non-return probability. Then, Donsker and Varadhan [DV79] derived the limit

behaviour of the range of a random walk in an exponent form. This celebrated result

leads to the study of the large deviation behaviour of the range of random walk.

More recently, there is also development on the study of the intersection of multiple

independent random walks. We concentrate on the intersections of the ranges, i.e. we

count how many sites have been visited by two or more independent random walks.

The intersection properties of random walks have been studied extensively in the past

fifteen years. The notable result by Dvoretzky, Erdös and Kakutani [DEK50] shows

that the number of intersection sites for two independent random walks is infinite in

dimension four or less, and finite in dimension five or more. This leads to the study of

the infinite-time intersection behaviour.

In the first part of this thesis, we will concentrate on the study of the range of a

single random walk on Zd. We compute the rate of decay of the probability of the

event that the random walk makes a visit on the lattice site less than usual on the
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mean scale. Our study shows that this event satisfies a large deviation principle, which

means that the probability of this event decreases exponentially. This result agrees

with the analogous result in the continuous case studied by van den Berg, Bolthausen

and den Hollander [BBH01]. This part of the thesis is based on the material in the

submitted paper

[Phe11] P. PHETPRADAP. Large deviations for the range of a simple

random walk, ESAIM, submitted, 2011.

The second part of this thesis will focus on the problem of the intersection of the range

of independent random walks. We consider the case of two independent random walks

and find the probability that the number of intersection made by the random walks is

larger than usual. This result agrees with the analogous result in the continuous case

studied by van den Berg et al. [BBH04]. The long term aim of this problem is to study

the infinite-time intersection behaviour, as we know that the number of intersections

is finite for dimension five or more.

The remainder of this thesis is structured as follows: In this chapter, we will first

introduce the main intersection quantities in Section 1.1. Then, we will describe the

development of the main quantities of interest and show our result. This will be done

separately on the range of random walk and the intersection of independent ranges in,

respectively, Section 1.2 and Section 1.3. Chapter 2 contains the proof for the result on

the range, while Chapter 3 gives the proofs for the result on the intersection of ranges.

Finally, we summarise the technique we have learnt and discuss an open problem in

Chapter 4.

2



1.1 Random walk model and quantities of interest

In this section, we provide the general set up of d−dimensional random walk model

and point out our main quantities of interest for the thesis. We also provide the set up

of a Wiener sausage.

Let (Sn : n = 1, 2, . . .) be a simple random walk on the integer lattice Zd, i.e.

Sn = X1 +X2 + . . .+Xn n = 1, 2, . . .

and X1, X2, . . . a sequence of independent, identically distributed random vectors with

P(X1 = ei) = P(X1 = −ei) = 1
2d , where e1, e2, . . . , ed are the orthogonal unit vectors

on Zd. Unless stated otherwise, we assume that S0 = 0. We always consider (Sn) as a

simple random walk throughout the thesis. Also, we let (S1
n), (S

2
n), . . . be independent

copies of (Sn).

In this thesis, we will pay particular attention to these two quantities:

• Range of the random walk: The number of distinct sites on Zd visited by a

random walk up to time n,

Rn = ♯{S1, . . . , Sn}. (1.1.1)

• Intersection of the independent ranges: The number of distinct sites on Zd

visited by all k independent random walks up to time n,

Jkn = ♯
{
{S1

j }1≤j≤n ∩ {S2
j }1≤j≤n ∩ . . . ∩ {Skj }1≤j≤n

}
. (1.1.2)

In this thesis, we will mainly focus in the case k = 2. Later on, we will write:

Jn := J2
n. (1.1.3)

We may notice that there is a relation between Rn and Jkn . Note that we can write Rn

as:

Rn =
∑
x∈Zd

1{Si = x for some 1 ≤ i ≤ n}, (1.1.4)
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where 1{·} is an indicator function. While for Jkn we have

Jkn =
∑
x∈Zd

1{S1
i1 = S2

i2 = . . . = Skik = x for some 1 ≤ i1, i2, . . . , ik ≤ n}

=
∑
x∈Zd

k∏
l=1

1{Sli = x for some 1 ≤ i ≤ n}. (1.1.5)

Our main aim for this thesis is to study the large deviation behaviour of these quan-

tities. There are a number of results that have been developed in the large deviation

sense, in particular by Donsker and Varadhan [DV79], Hamana and Kesten [HK01] and

recent book by Chen [Che10]. The results and heuristic arguments of the proof will be

shown in Section1.2.1 for Rn and Section 1.3.1 for Jn.

Let β(t), t ≥ 0 be a standard Brownian motion in Rd starting at the origin. We also

denote β1(t), β2(t), . . . as independent copies of β(t). Define W a(t) to be a Wiener

sausage up to time t with radius a > 0 by

W a(t) :=
∪

0≤s≤t
Ba
(
β(s)

)
, t ≥ 0, (1.1.6)

where Ba(x) is the open ball with radius a around x ∈ Rd. Similarly, define W a
1 (t), . . . ,

W a
k (t) as the Wiener sausages associated with β1(t), . . . , βk(t). The Wiener sausage is

one of the simplest examples of a non-Markovian functional of Brownian motion. We

also define V a
k (t) to be the intersection set of all W a

1 (t), . . . ,W
a
k (t), i.e.

V a
k (t) :=

k∩
i=1

W a
i (t), (1.1.7)

with our usual simplification V a(t) := V a
2 (t). We also let |W a(t)| to be the volume

of W a(t), and |V a
k (t)| to be the intersection volume up to time t of W a

1 (t), . . . ,W
a
k (t).

Note that we can also represent W a(t) and V a
k (t) in a similar to the form of (1.1.4) and

(1.1.5).

It is well known that Brownian is the scaling limit of random walk. Therefore, we

would expect similar behaviour in limits for random walk and Brownian motion. It

turns out that problems on Rn are analogous results of |W a(t)|, while problems on Jkn

are coupled with |V a
k (t)|.

There is also a development in the study of limiting behaviour of |W a(t)| and |V a
k (t)| in

the large deviation sense, notably by Donsker and Varadhan [DV75], Bolthausen [Bol90],

Hamana and Kesten [HK01] and van den Berg, Bolthausen and den Hollander [BBH01,

BBH04]. We also include the results and optimal strategies of the proofs in Section
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1.2.1 for |W a(t)| and Section 1.3.1 for |V a(t)|.

1.2 The ranges

In this section we will focus on problems and developments on Rn and |W a(t)|. Firstly,
we will give general overviews and known results in the classical case and the large

deviation case in Section 1.2.1. Then, we will present our main result and give extra

comments in Section 1.2.2. Finally, the outline of the proof of our results will be

explained in Section 1.2.3.

1.2.1 Overview

We start this section with the obvious fact that Rn is bounded due to discreteness

property the random walk, i.e.

0 < Rn ≤ n.

Remarks:

1. The random walk conditional on the event Rn = n is called self-avoiding walk

which was introduced as a polymer model in Physics and has been popularly

studied since. The recent question is to find the existence and conformal invari-

ance of the scaling limit of self-avoiding walk which is conjectured to be described

by Schramm-Loewner evolution. However, we will not mention self-avoiding walk

in this thesis. Readers can find further reading material at [Law96] for example.

2. There are also bounds for Rn in an exponent form, for example:

sup
n≥1

E exp

(
θ

n2/3
(Rn − ERn)

)
<∞ ∀θ > 0. (1.2.1)

The full proof can be seen in Theorem 6.3.2 of [Che10].

One of the typical questions to be asked is what is the expected value and the variance

of Rn? This question has been answered by Dvoretzky and Erdös [DE51]. Before we

quote the theorem, we first need to define the non-return probability of random walk
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on Zd:

κ := κ(d) = P(Si ̸= 0 for all i ≥ 1), (1.2.2)

i.e. κ is the probability of the event that the random will never return to the origin.

The value of κ depends on the dimension d. By the recurrence property of random

walk (e.g., by Polya [Pól21]), it can be deduced that the non-return probability is zero

for dimension one and two and positive for dimension three or more.

Theorem 1.2.1. As n→ ∞,

E(Rn) =


κn+O(n1/2), if d = 3,

κn+O(log n), if d = 4,

κn+ cd +O(n2−d/2), if d ≥ 5,

where cd are positive constants depending on the dimension d ≥ 5, and

Var(Rn) ≤


O(n3/2), if d = 3,

O(n log n), if d = 4,

O(n), if d ≥ 5.

Furthermore, it also satisfies the strong law of large numbers,

lim
n→∞

Rn
ERn

= 1 almost surely.

Proof(sketch). To work out the expected value, define an indicator function

γk =

{
1, if Sk ̸= Si for i = 1, . . . , k − 1,

0, otherwise .

Now, we can see that

ERn = E
n∑
k=1

γk =

n∑
k=1

P(Sk ̸= Si for i = 1, . . . , k − 1)

=

n∑
k=1

P
( k∑
j=i+1

Xj ̸= 0 for i = 1, . . . , k − 1
)

=
n∑
k=1

P
( k−i∑
j=1

Xj ̸= 0 for i = 1, . . . , k − 1
)

=
n∑
k=1

P(Si ̸= 0 for i = 1, . . . , k − 1). (1.2.3)
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However, we can see that

lim
k→∞

P(Si ̸= 0 for i = 1, . . . , k − 1) = κ,

and hence

lim
n→∞

1

n

n∑
k=1

P(Si ̸= 0 for i = 1, . . . , k − 1) = κ.

The error term depends on the dimension d. The proof for the upper bound of Var(Rn)

is omitted.

The non-return probability κ will later play a key role in the analysis of the problem

on the range. Also it is worth to comment that the expected value of Rn is of order n.

Note that, Theorem 1.2.1 only gives upper bounds for Var(Rn). This was later devel-

oped to give the exact order of the variance by Jain and Orey [JO68] for d ≥ 5 and by

Jain and Pruitt [JP71] for d ≥ 3:

Var(Rn) ≍

{
O(n log n), for d = 3,

O(n), for d ≥ 4,
(1.2.4)

where we write f(n) ≍ O
(
g(n)

)
implies that, for some positive constant C1, C2,

C1g(n) ≤ f(n) ≤ C2g(n). (1.2.5)

Proof (sketch). We will give the sketch of the proof. Define:

Zni = 1{Si ̸= Si+1, . . . , Si ̸= Sn}, 0 ≤ i ≤ n,Znn = 1 (1.2.6)

Zi = 1{Si ̸= Si+1, Si ̸= Si+2, . . .}, i ≥ 0 (1.2.7)

Wn
i = Zni − Zi. (1.2.8)

i.e.

• Zni is an indicator function of the event that after time i (where the position of

the random walk is Si), the random walk will not come back to lattice Si by time

n.

• Zi is an indicator function of the event that after time i, the random walk will

never come back to Si.

• Wn
i is an indicator function of the event that after time i, the random walk will

7



not come back to Si by time n, but it will eventually make a return to Si after

time n.

We can write Rn as

Rn =

n∑
i=1

Zni =

n∑
i=1

Zi +

n∑
i=1

Wn
i . (1.2.9)

We will abbreviate the sums as:

Yn :=

n∑
i=1

Zi, Wn :=

n∑
i=1

Wn
i . (1.2.10)

The idea to deduce Var(Rn) is to show that (i) For d = 3, Var(Yn) = O(n log n), (ii)

For d ≥ 4, Var(Yn) = O(n), and (iii) Var(Wn) = o(Var(Yn)).

Firstly, to show that Var(Wn) = o(Var(Yn)), we calculate EWn
i W

n
j for i ≤ j. This

was done in Lemma 4 of [JP71] and the formula of the expectation is explicitly given.

Then, by expanding Var(
∑n

i=1W
n
i ) along with EWn

i W
n
j , we get

EW 2
n ≍


O(n), for d = 3,

O(log2 n), for d = 4,

O(1), for d = 5.

(1.2.11)

Now, to derive Var(Yn), the key step is to deduce the covariances cov(Zi, Zj) for each

1 ≤ i ≤ j ≤ n. By Lemma 3 and Lemma 5 of [JP71], we get

aj :=

j−1∑
i=1

cov(Zi, Zj) ≍

{
O(log j), for d = 3,

O(1), for d ≥ 4.
(1.2.12)

Now, we deduce (1.2.4). For d ≥ 3, we can see that

Var(Zi) = EZ2
i − (EZi)2 = κ− κ2 (1.2.13)

Finally, we derive Var(Yn). By (1.2.12) and (1.2.13) we get

Var(Yn) =
n∑
i=1

Var(Zi) + 2
n∑
j=1

j−1∑
i=1

Cov(Zi, Zj)

≤
(
κ(1− κ)

)
n+ 2nan ≍

{
O(n log n), for d = 3,

O(n), for d ≥ 4.

Note that, the result for d ≥ 4 can be deduced since κ(1−κ)+2an is positive. Combine

this result with (1.2.11), we can see that Var (Wn) = o(Var(Yn)). Hence, Var(Rn) ≍

8



Var(Yn) by Schwarz inequality.

Now, the next question would be, how behaviours of Rn looks like? Would Rn satisfy

the central limit theorem? The answer is “Yes, the central limit theorem also holds for

Rn”. This result was first proved in d ≥ 5 by Jain and Orey [JO68] and later by Jain

and Pruitt [JP71] for d ≥ 3.

Theorem 1.2.2.

1√
n log n

(Rn − ERn)
d−→ N (0,D2), d = 3,

1

n
(Rn − ERn)

d−→ N (0, D̃2), d ≥ 4.

The exact forms of the variances D2, D̃2 can be found in [LGR91] as well as Theorem

5.5.3 of [Che10].

Proof (sketch). Consider d ≥ 4. We will use similar notations as in the proof for the

variance of Rn, in (1.2.6)-(1.2.9). Write:

Rn =

n∑
i=1

Zni =

n∑
i=1

Zi +

n∑
i=1

Wn
i .

We also abbreviate the sums as similar to (1.2.10):

Yn :=

n∑
i=1

Zi, Wn :=

n∑
i=1

Wn
i .

Next, it can be shown (e.g. by Chebychev’s inequality) that

P(Wn ≥ ϵn1/2)
n→∞−→ 0.

Hence Wn/(σ
√
n) converges to zero in probability. Therefore, to show that Rn has a

Gaussian limit, we can only need to consider the sequence Yn.

To do this, we will partition the random walk, each of timelength m := ⌊n1/3⌋ (while

we ignore the continuity correction for the sketch proof). The key idea of the proof is

to show that (Yn − EYn)/σ
√
n satisfies Lindeberg’s conditions. This will be done by

the following: Define

Ui =

im−1∑
j=(i−1)m

Zimj , Vi =

im−1∑
j=(i−1)m

W im
j .

9



Then, we write Yn as:

Yn − κn =

m2−1∑
k=0

(Zk − κ) =

m2∑
i=1

(Ui − EUi)−
m2∑
i=1

(Vi − EVi).

Next, it can be checked that ∑
(Vi − EVi)
σ
√
n

P−→ 0,

therefore we only need to consider the sequence Ui − EUi. Then, it can be shown that

Lindeberg’s conditions are satisfied, i.e.:

Var
( m2∑
i=1

Ui − EUi
σ
√
n

)
=

m2

σ2n
VarRm ∼ 1

m2∑
i=1

∫
|Ui−EUi|≥ϵσ

√
n

(Ui − EUi
σ
√
n

)2
dP n→∞−→ 0,

where the second part of the condition come from the fact that |Ui − EUi|/σ
√
n ≤

m/σ
√
n→ 0 as n→ ∞. Hence we can conclude that (Rn−ERn)/σ

√
n is asymptotically

normal.

In three dimensions, the problem is more delicate since the partition need to be of length

⌊n/ log n⌋, and additional results are required to show that Lindeberg’s conditions are

satisfied.

Remarks:

1. We also would like to mention analogous results in Wiener sausage case. We start

with similar type of results on the classical behaviour. By Spitzer [Spi64] and Le

Gall [LeG88]:

E|W a(t)| ∼ κat, d ≥ 3,

where κa is the Newtonian capacity of Ba(0), and

Var|W a(t)| ∼

{
O(t log t), for d = 3,

O(t), for d ≥ 4.

By comparison with Theorem 1.2.1 and (1.2.4), we can see that the expected

mean and variance of Rn and |W a(t)| are on the same scale. Moreover, |W a(t)|
satisfies the strong law of large numbers and the central limit theorem for d ≥ 3.

2. Apart from problems on the range of random walk, there is also active study on
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self-intersection local time problems of a random walk, which is defined by:

Qn =
∑

1≤j≤k≤n
1(Sj = Sk).

Self-intersections of random walks and Brownian motion have been studied in-

tensively. They play a key role e.g. in description of polymer chains (Madras and

Slade [MS93]).

Although we will not study the behaviours of Qn in this thesis, there is a relation

between Rn and Qn. We can see that Rn and Qn are related in negative ways,

i.e. the more self-intersections, the smaller the range. However, it seems to be

difficult to express the relation in mathematical formula. One surprise relation

is that the behaviour of Qn seems to be similar to Rn in high dimensions. For

example,

EQn = cn, for d ≥ 3,

and

Var(Qn) ∼

{
O(n log n), for d = 3,

O(n), for d ≥ 4.

The central limit theorem is obtained by Chen [Che08], while the large devia-

tion behaviour in high dimensions has been studied by Asselah [Ass08, Ass09].

See [Che10] for up-to-date results on the behaviours of the self-intersection local

time.

Large deviation behaviour

We may categorise the large deviation-type problems on the range of random walk by

the direction of events we considered. Therefore, there will be two main categories for

this, namely downward direction (event of type {Rn ≤ f(n)}) and upward direction

({Rn ≥ f(n)}).

1. Downward direction

The first result was from Donsker and Varadhan while they showed a limit behaviour

in an exponent form. This was first done in the Wiener sausage case [DV75] and later

in the random walk case [DV79].

11



Theorem 1.2.3. Let a > 0. For any θ > 0 and d ≥ 3

lim
n→∞

n−d/(d+2) logE exp(−θRn) = −k(θ, d), (1.2.14)

lim
t→∞

t−d/(d+2) logE exp(−θ|W a(t)|) = −k(θ, d), (1.2.15)

where

k(θ, d) = θ2/(d+2)
(d+ 2

2

)(2αd
d

)d/(d+2)

and αd is the lowest eigenvalue of −(1/2)∆ for the sphere of unit volume in Rd with

zero boundary values.

Remarks:

1. Obviously, both random walk and Brownian motion have the same limit. It is

worth saying that the rate function does not depend on the radius of Wiener

sausage a.

2. We can use the Gärtner-Ellis theorem to transform the result in the form of large

deviation scale.

Corollary 1.2.4. For any ν > 0,

lim
n→∞

n−d/(d+2) logP(Rn ≤ νnd/(d+2)) = −J(ν),

where

J(ν) =
1

ν

(d+ 2

2

)( d

2αd

)− 2d
d+2 − 1

νd/2

( d

2αd

) d+2
2
.

This implies that Theorem 1.2.3 gives a large deviation result in the downward

direction for the scale nd/(d+2) which is less than the mean, which came as a

surprising result.

Proof (sketch). We rewrite (1.2.14) as:

lim
m→∞

1

m
logE exp[mνXm] = −k(ν), (1.2.16)

where Xm is a family of random variable taking values in R. By comparison with

(1.2.14), we set m = nd/(d+2) and Xm = − 1
mRn. Since k(ν) is in explicit form

and differentiable, we can apply the Gärtner-Ellis theorem. Hence, we get

lim
m→∞

1

m
logP(Xm ≥ a) = − sup

y
{ya+ k(y)}.

12



Now, by substitute the values of m and Xm, and set b = −a, we get

lim
n→∞

n−d/(d+2) logP(Rn ≤ bnd/(d+2)) = − sup
y
{−by + k(y)}

Finally, we deduce the rate function J(ν) in Corollary 1.2.4. This can be done

explicitly.

3. For both cases, the optimal strategy to realise the large deviation is to stay inside

a ball of size nd/(d+2) until time n and fill all the space within the ball entirely and

nothing outside. The cost of this strategy leads to the exponential limit k(θ, d).

The next result in downward direction was done by van den Berg, Bolthausen and

den Hollander [BBH01] and they show the result in the Wiener sausage case for large

deviations on the scale of its mean.

Theorem 1.2.5. Let d ≥ 3 and a > 0. For every b > 0,

lim
t→∞

1

t
d−2
d

logP(|W a(t)| ≤ bt) = −Iκa(b), (1.2.17)

where

Iκa(b) = inf
ϕ∈Φκa (b)

[1
2

∫
Rd

|∇ϕ|2(x) dx
]
, (1.2.18)

with

Φκa(b) =
{
ϕ ∈ H1(Rd) :

∫
Rd

ϕ2(x)dx = 1,

∫
Rd

(1− e−κaϕ
2(x))dx ≤ b

}
. (1.2.19)

Remarks:

1. Our main result is obtaining the analogous result for the similar problem in the

random walk case. This will be explored in Section 1.2.2.

2. Note that Theorem 1.2.5 holds for every b > 0. However, for b > κa, the rate

function in (1.2.18) is infinite.

3. We repeat the words used by the authors of [BBH01] to describe the optimal

strategy of the problem

The idea behind the theorem is that the optimal strategy for Brow-

nian motion to realise the event {|W a(t) ≤ bt|} is to behave like a

Brownian motion in a drift field xt1/d → (∇ϕ/ϕ)(x) for some smooth

ϕ : Rd → [0,∞). The cost of adopting this drift during a time t is

13



the exponential of t(d−2)/d times the integral in (1.2.18) to leading or-

der. The effect of the drift is to push the Brownian motion towards

the origin. Conditioned on adopting the drift, the Brownian motion

spends time ϕ2(x) per unit volume in the neighbourhood of xt1/d, and

it turns out that Wiener sausage covers a fraction 1 − exp[−κaϕ2(x)]
of the space in that neighbourhood. The best choice of the drift field

is therefore given by a minimiser of the variational problem in (1.2.18),

or by a minimising sequence.

Therefore, the optimal strategy for the Wiener sausage is to cover only

part of the space and to leave random holes whose size are of order 1

and whose density varies on scale t1/d. Note that this strategy is more

complicated than the strategy in Theorem 1.2.3. A large deviation on

the scale of the mean does not squeeze all the empty space out of the

Wiener sausage, and the limit in (1.2.17) depends on a.

2. Upward direction

The behaviour in the upward direction has been first studied in the Wiener sausage

case. Van den Berg and Tóth [BT91] firstly develop the Donsker-Varadhan Wiener

sausage result to show the asymptotic behaviour in exponent term of λ|W a(t)| where
λ > 0. They showed that the limit

S(λ) := lim
t→∞

1

t
logE exp(λ|W 1(t)|)

is positive and finite in any dimension for any λ > 0. Moreover, for d ≥ 3,

max{ω2
d−1λ

2, d(d− 2)ωdλ} ≤ S(λ) ≤ 2ddωd−1e
2d−1ωd−1 max{λ, λ2},

where ωd is the volume of the ball of radius 1 in Rd. The result is later developed by

Bolthausen and van den Berg [BB94] to show the limit results of S(λ) when λ is either

large or small. They showed that for d ≥ 3

lim
λ↓0

S(λ)

λ
= κa, lim

λ→∞

S(λ)

λ2
= (ωd−1)

2,

where κa is the Newtonian capacity of the ball of radius a in Rd. It is also mentioned

that λ 7→ S(λ) is convex and lower semicontinuous.

The analogous result in the discrete case had been studied by Hamana [Ham01]. By
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setting

Λn(θ) =
1

n
logE

(
eθRn

)
, (1.2.20)

then, note that for θ > 0,

E
(
eθRn+m

)
≤ E

(
eθRn+θRm

)
≤ E

(
eθRn

)
× E

(
eθRm

)
.

this implies that {logE
(
eθRn

)
}∞n=1 is a subadditive sequence. Hence, it follows by the

standard subadditivity lemma that

lim
n→∞

Λn(θ) = Λ(θ) := inf
n≥1

Λn(θ). (1.2.21)

Moreover, Hamana also showed the limit results for Λ(θ):

lim
θ↓0

Λ(θ)

θ
= κ, lim

θ→∞

Λ(θ)

θ
= 1.

Note that, by Theorem 1.2.3, we can deduce that Λ(θ) = 0 for θ ≤ 0. Hence, we can

conclude that, for d ≥ 3, Λ is not differentiable at zero.

In both cases, since the constants in the exponent forms are both positive (compare

with Theorem 1.2.3), this reflects the asymptotic behaviour in the upward direction.

However, both results cannot be transformed in a standard large deviation set up, since

the differentiabilities of S(λ) and Λ(θ) are unknown, except at zero for Λ(·). Therefore,
we cannot easily apply Gärtner- Ellis theorem.

However, Hamana and Kesten [HK01] show that the result can be written in large

deviation form. This has been done by completely different technique.

Theorem 1.2.6. The function

ψ(θ) = lim
n→∞

−1

n
logP(Rn ≥ θn)

exists for all θ, and satisfies

ψ(θ) = 0, for θ ≤ κ,

0 < ψ(θ) <∞, for κ < θ ≤ 1,

ψ(θ) = ∞, for θ > 1.

Moreover, in dimension two or more, x 7→ ψ(x) is continuous and convex on [0, 1] and

strictly increasing on [κ, 1].

15



The authors also prove the analogous result in a Wiener sausage case. For the Wiener

sausage W a(t) with a constant drift µ (possibly zero),

ϕ(x) := lim
t→∞

−1

t
logP(|W a(t)| ≥ tx) exists (1.2.22)

for all x ∈ R and ϕ(·) = 0 for x ≤ κa. The exact form for the rate functions ψ(x) and

ϕ(x) are still open questions.

Remark: Apart from θ ∈ (κ, 1], it seems to be very trivial. Indeed, we knew that Rn

is bounded above by n, hence P(Rn ≥ θn) = 0 for θ > 1. Moreover, by Theorem 1.2.1

we can deduce that

lim
n→∞

P(Rn ≥ θn) = 1 for all θ < κ.

Therefore, the only interesting case is when κ < θ < 1, the case which the random walk

satisfies a large deviation principle with speed n and positive rate function ψ(θ).

Proof strategy. We repeat the words used by the authors of [HK01].

The proof bases on an approximation on a subadditivity relation. We build

a path of length n+m with Rn+m ≥ y + z − E(n,m) for some error term

E(n,m) from the two paths P1 and P2. The error term comes from the

fact that some points are counted in the range of both P1 and P2. Note

that P1(P2, respectively) has length n(m) and range greater than or equal

to y(z). In order to make small overlap, we do not count the initial point of

P2 and the endpoint of P1. The initial point of P2 shall be placed at the

distance at most of order nm1/(d+1) from the endpoint of P1 in order to get

the error term of order (nm)1/(d+1). The two paths are then connected at

not too large cost in probability. This results in the inequality:

P(Rn+m ≥ y + z − (2d+ 2)(nm)1/(d+1))

≥ 1

2
ζd(nm)1/(d+1)+dP(Rn ≥ y)P(Rm ≥ z),

for some ζ > 0.

Note that when d ≥ 2, (nm)1/(d+1) is small with respect to max{n,m}.
From this, we can use more or less standard subadditivity argument that

the limit ψ(x) exists at all continuity points x ∈ (0, 1) of

ψ(x) := lim inf
n→∞

−1

n
logP(Rn ≥ θn).

It is then easy to obtain from the equation that the restriction of ψ(x) to
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the continuity points of ψ in (0, 1) is convex. This is enough to conclude

that ψ is in fact continuous on (0, 1), just as in the usual proof of continuity

of a convex function. Hence ψ(x) exists for all (0, 1).

Summary and deviation on the other scales

In brief, we summarise the known results so far on behaviours of the range. Jain and

Pruitt [JP71] showed that Rn − ERn satisfies central limit theorem on the scale
√
n

for d ≥ 4, and on the scale
√
n log n for d = 3. For the scale nd/(d+2), Donsker and

Varadhan [DV75, DV79] showed that both Rn and |W a(t)| in the downward direction

satisfy the large deviation principle with speed nd/(d+2) and the same explicitly given

rate function. Then, for the mean scale n, Hamana and Kesten [HK01] showed that the

behaviours of both Rn and |W a(t)| in the upward direction satisfy the large deviation

principle with speed n but with an unknown rate function. Also on this same scale, van

den Berg, Bolthausen and den Hollander [BBH01] show the large deviation behaviour

in the downward direction for |W a(t)| with speed n(d−2)/d and an explicitly given rate

function.

Note that, the behaviour of the range on the scale bn = nd/(d+2) in upward direction

is still unknown. The results by Hamana in (1.2.20) and (1.2.21) do not help in this

case. Even if we assume that Λ(θ) is differentiable (hence we can use Gärtner- Ellis

theorem), the transformation only give the similar type as in Theorem 1.2.6. In order

to get the large deviation of the scale nd/(d+2), we need a result of the type:

lim
n→∞

1

nd/(d+2)
logE exp(θRn), θ > 0.

However, by (1.2.20) and (1.2.21), we can deduce that:

lim
n→∞

1

nd/(d+2)
logE exp(θRn) = ∞.

Moreover, Bass and Kumagai [BK02] (also, see Theorem 8.5.2 [Che10]) shows the

moderate deviation for Rn − ERn in d = 3

Theorem 1.2.7. Let d = 3 and C is a constant. For any λ > 0 and positive sequence

cn satisfying limn→∞ cn = ∞ and cn = o(
√
log n),

lim
n→∞

1

cn
logP

{
± (Rn − ERn) ≥ λ

√
ncn log n

}
= −Cλ

2

κ4
.
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Note that the form in the theorem come from Theorem 8.5.2 [Che10]. Therefore, when

we consider the problem in both downward and upward directions on the scale bn,

Theorem 1.2.7 suggests that the moderate deviation principle is valid when√
n log n < bn < (log n)1/4

√
n log n,

with speed cn and rate function Cλ2/κ4.

Now, an open problem would be to complete all the gap for the scale bn ∈ (
√
n, n). To

do this, define

fn ≪ gn if and only if lim
n→∞

fn
gn

= 0, (1.2.23)

and similarly for gn ≫ fn. Note that for a problem on the scale bn ≫ n is not interesting

for both downward and upward directions since the behaviour becomes trivial by the

law of large number and the discrete property of Rn. For the rest, we give some

conjectures:

1.
√
n < bn < nd/(d+2) for d ≥ 4: This can be suspected that Rn satisfies the

moderate deviation principle.

2. nd/(d+2) < bn < n for d ≥ 3: It is reasonable to believe that Rn − ERn satisfies

the large deviation principle for this scale since both the upper and lower bound

of bn satisfies the large deviation principle.

We describe conjectures on these scales below.

Moderate deviation on Rn for d ≥ 4

Note that the proof from Theorem 1.2.7 relies on the integrability property of random

walks in dimension three. Hence, the proof can not be carried out in dimension four or

more. We, however, suspect that the moderate deviation principle can also be carried

out it the same way as in Theorem 1.2.7, and the conjecture for the moderate deviation

principle for d ≥ 4 is given by Chen (Conjecture 8.7.1, [Che10] ).

Conjecture 1.2.8. Let d ≥ 4. For any λ > 0 and an satisfying limn→∞ an = ∞ and

an = o(n
d−2
d+2 ),

lim
n→∞

1

an
logP(±(Rn − ERn) ≥ λ

√
nan) = − λ2

2D̃2
,

where D̃2 is the variance of Rn described in Theorem 1.2.2.
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Note that when an = n
d−2
d+2 , this is exactly the same scale as in Donsker-Varadhan

result in Theorem 1.2.3. Therefore, the sequence an must be less than this scale.

This conjecture implies that the moderate deviation valid with speed an and the rate

function λ2/2D̃2. A partial result has been obtained in Theorem 8.7.2 of [Che10]. They

showed that

lim sup
n→∞

1

an
logP(Rn − ERn ≥ λ

√
nan) ≤ − λ2

2D̃2
,

for λ > 0 and positive sequence an satisfying an → ∞ and an = o(n) as n→ ∞.

Large deviation on Rn on the scale between n
d

d+2 and n

We point out a conjecture made by Chen (Conjecture 8.7.3 [Che10]) to show the large

deviation for the centred sequence.

Conjecture 1.2.9. Let d ≥ 4. For any λ > 0 and bn satisfying limn→∞ bn/n
d−2
d+2 = ∞

and bn = o(n
d−2
d ),

lim
n→∞

1

bn
logP(Rn − ERn ≤ −λb

d
d−2
n ) = C̃(s)λ

d−2
d , (1.2.24)

where C̃(s) is a constant.

Note that, we will not study this conjecture in this thesis. However, we explain here

where the conditions of bn come from:

• Upper range bn = o(n(d−2)/d): This come from the large deviation for the range

on the mean scale. This is pretty obvious since by replacing bn by n(d−2)/d, the

corresponding event will be {Rn ≤ ERn−λn} which is the same type of the main

problem of this thesis, and hence satisfies the large deviation principle with speed

n(d−2)/d.

• Lower range bn ≫ n
d−2
d+2 : This comes from the Donsker-Varadhan result in The-

orem 1.2.3, as well as Conjecture 1.2.8 on the moderate deviation principle.

Table 1.1 shows the summary of the behaviours of Rn − ERn with various scales bn in

downward
(
P(Rn − ERn ≤ bn)

)
and upward

(
P(Rn − ERn ≥ bn)

)
directions for d = 3.

The only exception case would be in Donsker-Varadhan case for the scale bn = nd/(d+2),

the result is for non-centred sequence, i.e. P(Rn ≤ bn).

Also, Table 1.2 shows the summary of the behaviours of Rn −ERn with various scales

for d ≥ 4. Similarly, for the scale bn = nd/(d+2), the result is also for non-centred

sequence.
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Table 1.1: Behaviours of Rn − ERn on various scales for d= 3.
Scale Downward direction Upward direction

bn = (n log n)1/2 Central limit theorem
([JP71])

(n log n)1/2 < bn Moderate deviation

< n1/2(log n)3/4 ([BK02])

n1/2(log n)3/4 < bn -

< nd/(d+2)

bn = nd/(d+2) Large deviation1: speed nd/(d+2) -
([DV79])

nd/(d+2) < bn < n Large deviation (conjecture)
-

bn = n Large deviation: speed n(d−2)/d Large deviation: speed n
(Theorem 1.2.10) ([HK01])

Table 1.2: Behaviours of Rn − ERn on various scales for d ≥ 4.
Scale Downward direction Upward direction

bn = n1/2 Central limit theorem
([JP71])

n1/2 < bn < nd/(d+2) Moderate deviation (conjecture)
-

bn = nd/(d+2) Large deviation1: speed nd/(d+2) -
([DV79])

nd/(d+2) < bn < n Large deviation (conjecture)
-

bn = n Large deviation: speed n(d−2)/d Large deviation: speed n
(Theorem 1.2.10) ([HK01])

1Large deviation on event {Rn ≤ nd/(d+2)}.
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1.2.2 Main results for the ranges

In this section, we show our main result in full details, and give comments for the

result. We remind that κ is the non-return probability of a random walk defined in

(1.2.2).

Theorem 1.2.10. Let d ≥ 3. For every b > 0,

lim
n→∞

1

n
d−2
d

logP(Rn ≤ bn) = −1

d
Iκ(b), (1.2.25)

where

Iκ(b) = inf
ϕ∈Φκ(b)

[1
2

∫
Rd

|∇ϕ|2(x) dx
]

(1.2.26)

with

Φκ(b) =
{
ϕ ∈ H1(Rd) :

∫
Rd

ϕ2(x)dx = 1,

∫
Rd

(1− e−κϕ
2(x))dx ≤ b

}
. (1.2.27)

Remarks:

1. This is a large deviation result for the range of random walk when it deviates on

its mean in the downward direction. This is an analogous result of that in Wiener

sausage proved by [BBH01].

2. Apart from the factor 1/d in (1.2.25), the rate function coincides with the rate

function of Wiener sausage case in (1.2.17)-(1.2.19) except that κa is replaced by

κ. This is due to the local central limit theorem which we will describe in Remark

4.

3. The optimal strategy for the random walk is identical to that in Wiener sausage,

this is to push the random walk towards the origin. On the event {Rn ≤ bn}, the
walk behaves like the walk on a drift field xn1/d 7→ (∇ϕ/ϕ)(x) for some smooth

ϕ : Rd → [0,∞). Conditioned on this drift, the walk spends time ϕ2(x) in the box

of size Nn1/d and its range only cover a fraction of 1− e−κϕ
2(x) of the box. This

strategy is more complicated than that in Donsker-Varadhan result [DV79] at

which the optimal strategy is to stay inside a ball and fill all the space until time

n. The cost of this strategy made an effect on the speed and the rate function

of the large deviation event. It seems that the second constraint in (1.2.27) is

the main condition for the rate function. This will be explained in the remark of

Proposition 1.2.11.

4. The structure of the proof is also similar to that inWiener sausage case in [BBH01].
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However, there are some additional technical difficulties centred around the fol-

lowing three topics:

• Local central limit theorem: In the course of the argument, we have to work

with discrete probability transition density which by a local central limit

theorem converge to the transition densities of Brownian motion. This ap-

proximation leads to additional error terms and n−dependencies, which need

to be controlled.

• Potential theory : The potential theoretic case requires a significant change

from the set up of [BBH01]. The path reversal argument becomes more

transparent in the discrete case and the reasons for the occurrence of the

non-return probability κ are worked out clearly.

• Large deviation principle: The classical Donsker-Varadhan argument used

for the LDP of the empirical pair measures needs to be strengthened to incor-

porate the passage from the discrete problem to a continuous rate functional.

A parity issue also needs to be taken into account.

1.2.3 The outline

In this section, we give the outline for the proof of Theorem 1.2.10. The full details of

the proof will be shown in Chapter 2.

First of all, we begin the section by doing standard compactification. For N ∈ N even,

let ΛN =
[
− N

2 ,
N
2

)d
be the torus of size N > 0 with periodic boundary conditions.

Throughout the proof of Proposition 1.2.11, which we will introduce later in this section,

the random walk will live on Λ
Nn

1
d
∩ Zd with N fixed. We denote by (S1, . . . ,Sn) the

random walk on Λ
Nn

1
d
∩Zd and by Rn the number of lattice sites visited by the random

walk on the torus up to time n ∈ N.

To prove Theorem 1.2.10, we will show that the upper bound and the lower bound of

the left hand side of (1.2.25) are the required rate function, i.e. we show that:

lim sup
n→∞

1

n
d−2
d

logP(Rn ≤ bn) ≤ −1

d
Iκ(b), (1.2.28)

lim inf
n→∞

1

n
d−2
d

logP(Rn ≤ bn) ≥ −1

d
Iκ(b). (1.2.29)

In order to deduce (1.2.28) and (1.2.29), we will given an introduction of the transition

probability of a random walk in Section 2.1. This includes a property of the transition

probability of the random walk on a torus. In Section 2.2, we deduce the large deviation
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principle of random walk on a torus. Finally we complete the proof of Theorem 1.2.10

by showing (1.2.28) and (1.2.29) in Section 2.3.

We now explain the main steps of Section 2.2 and Section 2.3.

Large deviation behaviour of random walk on torus

We show that the range of random walk wrapped around ΛNn1/d satisfies a large devi-

ation principle.

Proposition 1.2.11. Let d ≥ 3, then 1
nRn satisfies a large deviation principle on R+

with speed n
d−2
d and rate function 1

dJ
κ
N , where

JκN (b) = inf
ϕ∈∂Φκ

N (b)
[
1

2

∫
ΛN

|∇ϕ|2(x)dx] (1.2.30)

with

∂ΦκN (b) = {ϕ ∈ H1(ΛN ) :

∫
ΛN

ϕ2(x)dx = 1,

∫
ΛN

(
1− e−κϕ

2(x)
)
dx = b}. (1.2.31)

Remarks:

1. Proposition 1.2.11 implies the following:

Corollary 1.2.12. Let d ≥ 3. For every b > 0 and N > 0,

lim
n→∞

1

n
d−2
d

logP
(
1
nRn ≤ b

)
= −1

dI
κ
N (b), (1.2.32)

where IκN (b) is given by the same formula as in (1.2.26) and (1.2.27) except that

Rd is replaced by ΛN .

2. Observe that the main condition for the rate function is the third term of (1.2.27).

Clearly,

b =

∫
Rd

(1− e−κϕ
2(x))dx ≤

∫
Rd

κϕ2(x)dx = κ.

This implies that the rate function is infinite for b > κ. This agree with the result

in Theorem 1.2.1

In order to prove Proposition 1.2.11, we divide the proof into four main steps.

• Section 2.2.1: For ϵ > 0, define the skeleton walk

Sn,ϵ = {S
iϵn

2
d
}
1≤i≤ 1

ϵ
n

d−2
d
. (1.2.33)
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Using this skeleton walk, we approximate 1
nRn by En,ϵ 1nRn, where En,ϵ denotes

the conditional expectation given Sn,ϵ. By application of a concentration inequal-

ity of Talagrand, the difference between 1
nRn and En,ϵ 1nRn is negligible in the

limit as n→ ∞ followed by ϵ ↓ 0.

• Section 2.2.2: We represent En,ϵ 1nRn as a continuous function of the pair empirical

measure:

Ln,ϵ = ϵn−
d−2
d

1
ϵ
n(d−2)/d∑
i=1

δ(n−1/dS
(i−1)ϵn2/d ,n

−1/dS
iϵn2/d )

. (1.2.34)

This will be done in (2.2.32) and it proved to be a key step for the proof. This is

because, by a variant of the classical Donsker-Varadhan theory, (Ln,ϵ)n>0 satisfies

a LDP. We will get LDP for En,ϵ 1nRn via the contraction principle.

• Section 2.2.3: Finally, we perform the limit ϵ ↓ 0. By the result from Section

2.1.1, we already know that 1
nRn is well approximated by En,ϵ 1nRn. It therefore

suffices to have an appropriate approximation for the variational formula in the

LDP for En,ϵ 1nRn.

Then, we collect all the results from Section 2.2.1 to Section 2.2.3 and complete the

proof of Proposition 1.2.11 in Section 2.2.4.

Sketch of the proof of Theorem 1.2.10

We give the outlines of the section:

• To prove (1.2.28), our main steps are the following:

1. We project the walk on Zd to a torus ΛNn1/d . This is done because we need

to use the fact that Rn ≤ Rn ,which will give the upper bound in probability

for our event.

2. We then instead prove the large deviation principle for the random walk on

the torus.

3. Finally, we increase the size of torus and get the required rate function in

(1.2.25) by Proposition 1.2.13.

• To show (1.2.29), we will do the following: We will again let the random walk

lives on ΛNn1/d and we let CNn1/d(n) to be the event that the random walk will
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not hit the boundary of ΛNn1/d until time n. Then, we find the lower bound in

probability of the event {Rn ≤ bn} by considering the inequality

P(Rn ≤ bn) ≥ P
(
Rn ≤ bn,CNn1/d(n)

)
. (1.2.35)

Then, we deduce that the right hand side of (1.2.35) give an appropriate limit

which converges to the required limit in (1.2.25) when we increase the size of the

torus.

Note that, in order to complete the proofs of (1.2.28) and (1.2.29), we need a result

to show that when the size of torus increases, the rate function for the random walk

on torus converges to the required rate function in (1.2.25). We denote IκN (b) is a rate

function on ΛN given by the same formula as in (1.2.26) and (1.2.27) except that Rd

is replaced by ΛN .

Proposition 1.2.13. limN→∞ IκN (b) = Iκ(b) for all b > 0 where

• IκN (b) is given by the same formula as in (1.2.26) and (1.2.27) except that Rd is

replaced by ΛN .

• Iκ is the rate function defined in Theorem 1.2.10.
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1.3 The intersections

In this section, we focus on problems and developments on the intersections of ranges

of independent random walks. Firstly, we give general overviews and known results

in Section 1.3.1. Then, we present our main result and give extra comments in Sec-

tion 1.3.2. Finally, the outline of the proof of our result is explained in Section 1.3.3.

We remind that Jkn is the intersection of independent ranges of k random walks defined

in (1.1.2) and Jn is defined in (1.1.3). Also, |V a
k (t)| is the intersection volume of k in-

dependent Wiener sausage with radius a defined in (1.1.7) , with V a(t) := V a
2 (t). Also,

we define infinite-time intersection of the ranges of random walks and, respectively,

infinite-time intersection volume of Wiener sausages as:

Jk∞ := lim
n→∞

Jkn , |V a
k | := lim

t→∞
|V a
k (t)|, (1.3.1)

with our usual notations J∞ := J2
∞ and |V a| := |V a

2 |.

1.3.1 Overview

We again start the section with an obvious fact that Jn is bounded, this is due to the

discreteness property of random walk.

0 ≤ Jn ≤ n. (1.3.2)

Remarks:

1. To get Jn = n, the only strategy is for one random walk to perform a self-avoiding

walk and the other walk follows the first random walk at every step. Also, to get

Jn = 0 is rather obvious, the random walks are not make any intersection at all

during time n.

2. It is also easy to see that (1.3.2) can also be extended to Jkn .

3. We note that the Jn is also bounded by each individual range, i.e.

Jn ≤ R1
n, Jn ≤ R2

n.

This is pretty obvious, and it can be derived from (1.1.5).

4. There are also more complicated bounds for Jn, for the moments of Jn, for ex-

ample, from Theorem 6.2.1 [Che10], when d ≥ 3, there exists a constant C > 0
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such that

(EJn)m ≤ (m!)3/2Cmnm/2, m, n ∈ N.

Before we show the result on expected value of Jn, we would like show the result de-

scribed in Dvoretzky-Erdös [DE51] and Dvoretzky-Erdös-Kakutani [DEK50, DEK54]:

Jk∞ = ∞ a.s. if and only if k(d− 2) < d. (1.3.3)

This result shows that k independent random walks will make finitely many intersec-

tions if k < d/(d − 2). Since we concentrate on the case k = 2, we can classify the

dimensions into

• Subcritical dimensions: d < 4.

• Critical dimension: d = 4.

• Supercritical dimensions: d > 4.

As we may expect, Jn behaves differently in each case. Moreover, in the subcritical

case, the behaviour of the intersections in one and two dimensions is different from

three dimensions because of the recurrence property.

We now show the expected value of Jn in high dimensions. The result has been shown

by Erdös and Taylor [ET60], and also by Le Gall [LeG86a, LeG86b]:

Theorem 1.3.1. As n→ ∞,

E(Jn) =


c3n

1
2 (1 + o(1)), d = 3

c4 log n(1 + o(1)), d = 4

cd(1 + o(1)), d ≥ 5

where ci is a finite positive constant for all i in Z+.

Proof(sketch). We only show this for d = 3, since the other dimensions follow the same

method. Also, we only show the lower bound. Note that:

EJn ≥
∑

x∈Zd:|x|≤
√
n

(
P(S1

i = S2
j = x for some 1 ≤ i, j ≤ n)

)
,

=
∑

x∈Zd:|x|≤
√
n

(
P(Si = x for some 1 ≤ i ≤ n)

)2
(1.3.4)
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gives the desired lower bound. Note that, for some constant c by, e.g.,[ET60]

P(Si = x for some 1 ≤ i ≤ n) >
c

|x|d−2
, (1.3.5)

for n > 1
5 |x|

2. By using (1.3.4) and (1.3.5), we get

EJn ≥
∑

{r:1≤2r<
√
n}

∑
{x:2r−1≤|x|≤2r}

(
c

|x|d−2

)2

≥
∑

{r:1≤2r<
√
n}

2dr ×
(

c

2r(d−2)

)2

.

Let d = 3, and we can derive that EJn ≥ C
√
n, hence, we get the desired lower bound.

We will not do the proof for upper bound here, but the idea is to write EJn as :

EJn =
∑

x∈Zd:|x|≤
√
n

P(S1
i = S2

j = x for some 1 ≤ i, j ≤ n)

+
∑

x∈Zd:|x|>
√
n

P(S1
i = S2

j = x for some 1 ≤ i, j ≤ n). (1.3.6)

Then, the first term on the right hand side of (1.3.6) can be approximated as in the

similar way as in the lower bound case, and it will give the upper bound of order
√
n. For the second term on the right hand side of (1.3.6), we need to show that this

grows slower than
√
n. One way to show this is from the local central limit theorem

(Lemma 2.1.1(a) in Chapter 2).

Remarks:

1. We can see that for dimension five or more, two random walks make only finitely

many intersections. This agrees with the result described in (1.3.3). The expecta-

tions of Jn behave differently in subcritical, critical and supercritical dimensions.

Also, note that by comparing with Theorem 1.2.1 we can see that the expectation

of Jn is smaller than the expectation of Rn.

2. We can find the weak law of Jn [LeG86a, LeG86b]:

Jn
n

d−→(det Γ)−1/2κ2α([0, 1]2), d = 3 (1.3.7)

Jn
log n

d−→ κ2

4π2
(det Γ)−1/2U2, d = 4, (1.3.8)

where Γ is the covariance matrix of a single random walk, U is a standard Gaussian

random variable, and α([0, 1]2) is the Brownian intersection local time symboli-
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cally defined by:

α([0, 1]2) =

∫
Rd

[ 2∏
j=1

∫ 1

0
δx
(
Wj(s)

)
ds

]
dx,

where W1(t) and W2(t) are independent 3-dimensional Brownian motions. The

explanation of the Brownian intersection local time can be seen in [GHR84] for

example.

3. We again show an analogous result for the intersection volume of independent

Wiener sausages. Le Gall [LeG86b] obtained the result for the expectation of

the intersection volume. Then, van den Berg [vdB05] gave the exact forms of the

expectations. As t→ ∞ and ĉ is a constant depends on dimension and the radius

of the Wiener sausages,

E|V a(t)| =

{
ĉ3t

1/2(1 + o(1)), d = 3,

ĉ4 log t(1 + o(1)), d = 4,
(1.3.9)

and for d ≥ 5,

lim
t→∞

E|V a(t)| = ĉd.

The exact values for the constants are shown in [vdB05, vdB11].

Now, we would like to introduce another intersection quantity. Define the mutual

intersection local time of k independent random walks by:

Ikn =

n∑
j1,...,jk=1

1{S1
j1 = . . . = Skjk}, (1.3.10)

with our usual set up In := I2n. Even though we are not concentrating on problems on

In for this thesis, it suggests that there is a relation between In and Jn. We list some

facts about In:

1. Observe that 0 ≤ Ikn ≤ nk. Also Ikn ≥ Jkn which come from the fact that random

walks may make multiple visits at intersection points.

2. It is obvious that In and Jn are related in a positive way, i.e. the more Jn, the

more chance of intersection local time. Indeed, Le Gall and Rosen [LGR91] show

that for d = 3,

lim
n→∞

1

n
E
(
In − κ2Jn

)2
= 0, (1.3.11)
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where we remind that κ is the non-return probability defined in (1.2.2). However,

it seems that the relation in (1.3.11) does not hold in the critical and supercritical

dimensions.

3. With the help of (1.3.11) we can see that In and Jn converges to a limit in the

same order. EIn is of the same order as EJn. Also, In satisfies the same weak

law as Jn with constant difference, i.e. for d = 3,

In
n

d−→(det Γ)−1/2α([0, 1]2).

Note that the similar result also hold in the critical dimension, d = 4.

4. By the result in (1.3.3), we also have

Ik∞ = ∞ a.s. if and only if k(d− 2) < d. (1.3.12)

Behaviours of Jn

We will show the results in subcritical dimension, critical dimension and supercritical

dimensions respectively, since Jn behaves differently in each case.

1. For the subcritical dimension, we have a large deviation result for Jn by Chen [Che05].

Theorem 1.3.2. For d = 3, a constant C1 and any θ > 0,

lim
n→∞

1

bn
logP(Jn ≥ θ

√
nb3n) = C1θ

2/3, (1.3.13)

where bn is any positive sequence satisfying bn → ∞ and bn = o(n1/3) as n→ ∞.

Remarks:

1. We have the restriction bn = o(n1/3) since Jn ≤ n, which give zero probability in

(1.3.13).

2. We also have an analogous result for In:

lim
n→∞

1

bn
logP(In ≥ θ

√
nb3n) = C1θ

2/3, (1.3.14)

where bn is any positive sequence satisfying bn → ∞ and bn = o(n) as n → ∞.

The last restriction is different from Jn case because In ≤ n2.
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2. For d = 4, we would expect the same behaviour as in the subcritical case. It has

been studied by Marcus and Rosen [MR97] that

lim
n→∞

1

bn
logP(Jn ≥ θbn log n) = −θC2(d, p), (1.3.15)

for small scale bn(= o(log log logn) in that paper). They also show that if bn grows

faster than log n will make (1.3.15) fail. Next, we show the conjecture made by Chen

(Conjecture 7.4.2 [Che10]) to show the large deviation behaviour for Jn in the critical

dimension:

Conjecture 1.3.3. For d = 4, a constant C3 and any θ > 0,

lim
n→∞

1

bn
logP(Jn ≥ θb2n) = −C3θ

1/2, (1.3.16)

where bn is any positive sequence satisfying limn→∞
bn

logn = ∞ and bn = o(n1/2) as

n→ ∞.

The conjecture shows that we might expect a similar behaviour as in (1.3.13) and

(1.3.15) even if bn ≫ log n. Note that since Jn ≤ n, this restrict then bn can not grow

faster than n1/2.

3. In supercritical dimensions, behaviour of In and Jn are completely different. Similar

behaviour as in (1.3.11) does not appear. We confirm this remark by the work from

Khanin, Mazel, Schlosman and Sinai [KMSS94] at which they study the tail distribu-

tions of the infinite-time intersections I∞ and J∞: For d ≥ 5, there are c1, c2 > 0 such

that

exp(−c1t1/2) ≤ P(I∞ ≥ t) ≤ exp(−c2t1/2), (1.3.17)

and that given δ > 0,

exp(−t
d−2
d

+δ) ≤ P(J∞ ≥ t) ≤ exp(−t
d−2
d

−δ) ∀t ≥ t0. (1.3.18)

holds for some t0. The difference in behaviour of In and Jn comes from their difference

in optimal strategies to get large values. In order to get I∞ large, we let random walks

stay inside a big but fixed ball and repeat the intersection at the same site. While for

J∞, this strategy does not work since they have to intersect at many different sites.

Indeed, the result for the infinite-time intersection local time has been shown by Chen

and Mörters [CM09], and it follows (1.3.17).
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Theorem 1.3.4. For d ≥ 5,

lim
n→∞

1

n1/2
logP(I∞ > n) = −2C, (1.3.19)

where C is positive and finite.

However, for the infinite-time intersection of the ranges, this is still an open problem.

It can be guessed that we suspect a similar type of behaviour as in Theorem 1.3.4 for

Jn, i.e. for some I which is positive and finite:

lim
n→∞

1

n(d−2)/d
logP(J∞ > n) = −I.

Finally, van den Berg, Bolthausen and den Hollander [BBH04] conjecture the result

for J∞ based on their work in the large deviation result for the finite-time intersection

volume of Wiener sausages from Theorem 1.3.5 below. We remind that κa is the

Newtonian capacity of Ba(0).

Theorem 1.3.5. Let d ≥ 3. Then, for every c > 0,

lim
t→∞

1

t
d−2
d

logP(|V a(ct)| ≥ t) = −Îκad (c), (1.3.20)

where

Îκad (c) = c inf
ϕ∈Φκa

d (c)
[

∫
Rd

|∇ϕ|2(x)dx], (1.3.21)

with

Φκad (c) = {ϕ ∈ H1(Rd) :
∫
Rd

ϕ2(x)dx = 1,

∫
Rd

(1− e−κacϕ
2(x))2dx ≥ 1}. (1.3.22)

Remarks:

1. Our main result is obtaining an analogous result for the similar problem for the

intersections of random walks. This will be explored in Section 1.3.2.

2. The result describes the tail distribution of infinite-time intersection of the ranges

in continuous space-time setting but only after restricting the time horizon to a

multiple of t. The authors pick a time horizon of length ct and are letting t→ ∞
for fixed c > 0. The size of the large deviation t come from the expected volume

of a single Wiener sausage as t → ∞. So, the two Wiener sausages are doing

large deviation on the scale of their mean.

3. We repeat the words described for the optimal strategy of the proof from the
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authors of [BBH04]:

The idea behind the theorem is that the optimal strategy for the two

Brownian motion to realise the large deviation event {|V a(ct) ≥ t|} is

to behave like Brownian motions in a drift field xt1/d 7→ (∇ϕ/ϕ)(x)
for some smooth ϕ : Rd → [0,∞) during the given time window [0,

ct]. Conditioned on adopting this drift, each Brownian motion spends

time cϕ2(x) per unit volume in the neighbourhood of xt1/d, thus using

up total time t
∫
Rd cϕ

2(x)dx. This time must equal ct. Also, each

corresponding Wiener sausage covers a fraction 1 − e−κacϕ
2(x) of the

space in the neighbourhood of xt1/d, thus making a total intersection

volume t
∫
Rd(1− e−κacϕ

2(x))2dx. This volume must exceed t. The cost

for adopting the drift during time ct is t(d−2)/d
∫
Rd c|∇ϕ|2(x)dx. The

best choice of the drift field is therefore given by minimisers of the

variational problem in (1.3.21) and (1.3.22).

Note that the optimal strategy for the two Wiener sausage is to form a

Swiss cheese: they cover only part of the space, leaving random holes

whose size are of order 1 and whose density varies on space scale t1/d.

The local structure of this Swiss cheese depends on a. Also note that the

two Wiener sausages follow the optimal strategy independently. Under

the joint optimal strategy the two Brownian motions are independent

on space scale smaller that t1/d.

4. The result can be extended for the similar problem on three or more Wiener

sausages, see Section 1.6 of [BBH04]. For the intersection volume |V a
k (t)|, the

results will be similar as in Theorem 1.3.5 except that c is replaced by kc/2

in (1.3.21) and
∫
Rd(1 − e−κacϕ

2(x))2dx is replaced by
∫
Rd(1 − e−κacϕ

2(x))kdx in

(1.3.22).

The authors describe a conjecture for the large deviation behaviour for the infinite-time

intersection volume and we make a summary of the results here. Firstly, they get rid

of the dependence of a and c by the following: Let d ≥ 2 and a > 0. For every c > 0,

Îκad (c) =
1

κa
Θd(κac), (1.3.23)

where Θd : (0,∞) → [0,∞] is given by

Θd(u) = inf
{
||∇ψ||22 : ψ ∈ H1(Rd), ||ψ||22 = u, ∫(1− eψ

2
)2 ≥ 1

}
. (1.3.24)

Also, we define u⋄ = minξ>0 ξ(1−e−ξ)−2. Then Θd(u) has the nice following properties:
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• Θd = ∞ on (0, u⋄] and 0 < Θd <∞ on (u⋄,∞).

• Θd is nonincreasing and continuous on (u⋄,∞). Also, Θd ≍ (u− u⋄)
−1 as u ↓ u⋄.

• For 2 ≤ d ≤ 4, the mapping u 7→ u(4−d)/dΘd(u) is strictly decreasing on (u⋄,∞)

and

lim
u→∞

u(4−d)/dΘd(u) = µd,

where 0 < µd <∞.

• For d ≥ 5, define

ηd = inf
{
||∇ψ||22;ψ ∈ D1(Rd), ∫(1− eψ

2
)2 ≥ 1

}
,

then the exists a minimiser ψd of the variational problem. Moreover ||ψd||22 <∞.

Next, define ud = ||ψd||22. Then the mapping u 7→ θd(u) is strictly decreasing on

(u⋄, ud) and Θd(u) = ηd on [ud,∞).

• Let 2 ≤ d ≤ 4 and u ∈ (u⋄∞) or d ≥ 5 and u ∈ (u⋄, ud]. Then, the variational

problem in (1.3.24) has a minimiser. There is no minimiser when d ≥ 5 and

u ∈ (ud,∞).

We show the picture produced by van den Berg et al. in pp. 746 [BBH04] in Figure 1-1

to see the overall picture of Θd:

Figure 1-1: Qualitative picture of Θd made by van den Berg et al. for: (i) d = 2, 3; (ii)
d = 4; (iii) d ≥ 5.

Note that, although Îκad (c) = Îκad (c0) for all c > c0 in d ≥ 5 (see Figure 1-1 (iii)), it is

not obvious to get the result for J∞ from Theorem 1.3.5. Since it is not clear that the

limit t→ ∞ and c→ ∞ can be interchanged. The intersection volume might prefer to

exceed the value t on a timescale of order larger than t. Nevertheless, they suggest the

conjecture for the infinite-time intersection:
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Conjecture 1.3.6. For d ≥ 5,

lim
t→∞

1

t(d−2)/d
logP(|V a| ≥ t) = −Îκad ,

where

Îκad = inf
c>0

Îκad (c∗) =
ηd
κa
,

with c∗ = ud/κa.

Also, it can be suggested from Figure 1-1 that the limits t → ∞ and c → ∞ can be

interchanged for d ≥ 5, but not for the dimensions four or less. We can also see that

for 2 ≤ d ≤ 4, the optimal strategy for the time horizon is for c = ∞. It is conjectured

that the optimal strategy for d ≥ 5 is similar to that in Theorem 1.3.5 for the finite-

time intersection, we apply the drift for both Brownian motions up to time c∗t. After

this time, we let the Brownian motions behave normally, which make them travel to

infinity in different directions. This coincides with Figure 1-1(iii) where the function is

a constant after the critical time.
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1.3.2 Main results for the intersections

In this section, we show our main result in full details, and give comments for the

result. We remind that κ is the non-return probability of a random walk defined in

(1.2.2).

Theorem 1.3.7. Let d ≥ 3. Then, for every a > 0,

lim
n→∞

1

n(d−2)/d
logP(Jn ≥ an) = −1

d
Lκ(a), (1.3.25)

where

Lκ(a) = inf
ϕ∈Φ̂κ(a)

[ ∫
Rd

|∇ϕ|2(x)dx
]
, (1.3.26)

with

Φ̂κ(a) = {ϕ ∈ H1(Rd) :
∫
Rd

ϕ2(x)dx = 1,

∫
Rd

(
1− e−κϕ

2(x)
)2
dx ≥ a}. (1.3.27)

Remarks:

1. This is a large deviation result for the intersections of ranges of the two random

walks in the upward direction. This is an analogous result of that in Wiener

sausages proved by [BBH04] with essentially the same method. Note that, we

can write (1.3.25) as:

lim
n→∞

1

n(d−2)/d
logP(Jn ≥ an) = −a

(d−2)/d

d
Îκd
(
1
a

)
, (1.3.28)

where Îκd is the same rate function as in Wiener sausages case defined in (1.3.21)

except that κa is replaced by the non-return probability κ. Therefore, the conjec-

ture for the large deviation behaviour for the infinite-time intersection also valid

in the random walks case. We will show (1.3.28) later in this section.

2. Similar to a single random walk case, the extra factor 1/d enters the rate function

in (1.3.25), and also the capacity of the ball κa is replaced by the non-return

probability κ due to the local central limit theorem as in the problem on the

range of a single random walk.

3. The optimal strategy is similar to that in Theorem 1.3.5. On the event {Jn ≥ an},
the walks behave like the walks on a drift field xn1/d 7→ (∇ϕ/ϕ)(x) for some

smooth ϕ : Rd → [0,∞). Conditioned on this drift, each walk spend time ϕ2(x)

in the box of size Nn1/d and its range only cover a fraction of 1− e−κϕ
2(x) of the

box. Moreover, each random walk follow this optimal strategy independently.

36



4. We can also obtain a result for the intersection of ranges of three or more random

walks. This is pretty clear since each random walk follows the optimal strategy

independently.

Corollary 1.3.8. Let d ≥ 3 and k ≥ 3. Then, for every a > 0,

lim
n→∞

1

n(d−2)/d
logP(Jkn ≥ an) = −1

d
L̃κ(a), (1.3.29)

where

L̃κ(a) =
k

2
inf

ϕ∈Ψκ(a)

[ ∫
Rd

|∇ϕ|2(x)dx
]
, (1.3.30)

with

Ψκ(a) = {ϕ ∈ H1(Rd) :
∫
Rd

ϕ2(x)dx = 1,

∫
Rd

(
1− e−κϕ

2(x)
)k
dx ≥ a}. (1.3.31)

The proof will require minor modifications from the proof of Theorem 1.3.7.

Comparison of the rate functions

We show that the rate function in (1.3.26) can be written in the form of the rate

function Îκd , where

Îκd (c) = c inf
φ∈Φ̃κ

d (c)
[

∫
Rd

|∇φ|2(x)dx], (1.3.32)

with

Φ̃κd(c) = {φ ∈ H1(Rd) :
∫
Rd

φ2(x)dx = 1,

∫
Rd

(1− e−κcφ
2(x))2dx ≥ 1}. (1.3.33)

This rate function is similar to (1.3.21) except we replace κa by κ. To do this, we need

to use the scaling relation for the rate function described in (4.1) and (4.2) in [BBH04].

Let ϕ ∈ H1(Rd). For p, q > 0, define φ ∈ H1(Rd) by

ϕ(x) = qφ(x/p). (1.3.34)

Then, we have the relations

||∇ϕ||22 = q2pd−2||∇φ||22,
∫

(1− e−ϕ
2
)2 = pd

∫
(1− e−q

2φ2
)2. (1.3.35)
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Our aim is to re-write the rate function in (1.3.26) in terms of φ. By setting q = a−1/2

and p = a1/d, and using the relation in (1.3.34), we get∫
Rd

ϕ2(x)dx =

∫
Rd

1

a
φ2(x/a1/d)dx =

1

a

(
a

1
d
)d ∫

Rd

φ2(y)dy =

∫
Rd

φ2(y)dy.

Therefore, the first constraint in (1.3.27) becomes∫
Rd

φ2(x)dx = 1. (1.3.36)

Moreover, by using the second relation in (1.3.35), the second constraint in (1.3.27)

becomes ∫
Rd

(
1− e−κϕ

2(x)
)2
dx = a

∫
Rd

(
1− e−(κ/a)φ2(x)

)2
dx

Hence, we get ∫
Rd

(
1− e−(κ/a)φ2(x)

)2
dx ≥ 1. (1.3.37)

Combining (1.3.36) and (1.3.37) we get (1.3.33). Finally, by using the first relation in

(1.3.35), we have∫
Rd

|∇ϕ|2(x)dx = (a−1/2)2 · (a1/d)d−2

∫
Rd

|∇ϕ|2(x)dx

= a
d−2
d · 1

a

∫
Rd

|∇ϕ|2(x)dx.

Therefore, the rate function Îκd in (1.3.32) follows with c = 1/a and when a(d−2)/d is

taken to the main factor in (1.3.28).
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1.3.3 The outline

In this section, we give the outline for the proof of Theorem 1.3.7. The full details of

the proof will be shown in Chapter 3.

In order to prove Theorem 1.3.7 we will show that the upper bound and the lower

bound are the required rate function, i.e.

lim sup
n→∞

1

n
d−2
d

logP(Jn ≥ an) ≤ −1

d
Lκ(a), (1.3.38)

lim inf
n→∞

1

n
d−2
d

logP(Jn ≥ an) ≥ −1

d
Lκ(a). (1.3.39)

Note that we cannot directly apply the torus technique used in Proposition 1.2.10. This

is because the intersections of ranges may either increase or decrease when wrapped

around a torus. Therefore, we need to use another reflection technique to solve this

problem. It turns out that by using this reflection arguments from [BBH04], we are

able to apply large deviation results for Jn on a torus. The reflection arguments will

be described briefly later. The large deviation result of Jn on a torus will be used for

both upper and lower bounds.

The proof in Chapter 3 will be done in the following order: In Section 3.1, we prove

the large deviation result for the intersection of ranges on a torus. Most of arguments

will be borrowed from Chapter 2. In Section 3.2, We prove (1.3.39) which is done in a

similar fashion as in Section 2.2. Finally in Section 3.3, we prove (1.3.38). This will be

done by a different technique from a single random walk case. Note that the structure

of the proof is identical to that in [BBH04].

Intersection of the ranges of independent random walks on torus

We recall that ΛN =
[
− N

2 ,
N
2

)d
is the torus of size N > 0 with periodic boundary

conditions. Let the random walks (S1
i ) and (S2

i ) live on Λ
Nn

1
d
∩ Zd with N fixed. We

define

Jn := ♯
{
{S1

j }1≤j≤n ∩ {S2
j }1≤j≤n

}
(1.3.40)

to be the number of intersection made by the two random walks on Λ
Nn

1
d
. Our goal

for this section is to show that the number of intersection points on torus also satisfies

the large deviation principle in the same form as in Proposition 1.2.11.

Proposition 1.3.9. 1
nJn satisfies the large deviation principle on R+ with rate n

d−2
d
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and with rate function 1
d L̂

κ
N where

L̂κN (b) = inf
ϕ∈Φ̂κ

N (b)

[ ∫
ΛN

| ▽ ϕ|2(x)dx
]
, (1.3.41)

where

Φ̂κN (b) = {ϕ ∈ H1(ΛN ) :

∫
ΛN

ϕ2(x)dx = 1,

∫
ΛN

(
1− e−κϕ

2(x)
)2
dx ≥ b}. (1.3.42)

Remarks:

1. The rate function of 1
nJn is different from the one in a single random walk case.

In (1.3.42) we have the extra power 2 in the second constraint since (1−e−κϕ2(x))2

is the density of both random walks visit at site x. Also, the extra factor 2 in the

rate function come from our strategy of random walk.

2. Proposition 1.2.11 gives us good control over the Jn.

The global structure of the proof, which we list below, is similar to the proof of Propo-

sition 1.2.11 except that we now consider two random walks. The local structure will

be different but only requires minor adaptations.

• Section 3.1.1: Firstly, for j = 1, 2 and ϵ > 0, we introduce the skeleton walk

Sjn,ϵ = {Sj
iϵn

2
d
}
1≤i≤ 1

ϵ
n

d−2
d
. (1.3.43)

Then, we will show that the difference between 1
nJn and E(2)

n,ϵ
1
nJn is negligible

in the limit as n → ∞ followed by ϵ ↓ 0, where E(2)
n,ϵ denotes the conditional

expectation given Sjn,ϵ.

• Section 3.1.2: We represent E(2)
n,ϵ

1
nJn as a continuous function of two pair empirical

measures

Ljn,ϵ = ϵn−
d−2
d

1
ϵ
n(d−2)/d∑
i=1

δ
(n−1/dSj

(i−1)ϵn2/d
,n−1/dSj

iϵn2/d
)
, j = 1, 2. (1.3.44)

It turns out that, after a little modification, the continuous function is a product

of function of each pair empirical measure. Therefore, we can directly apply the

results in Section 2.1.2 to complete the proof.

• Section 3.1.3: We perform the limit ϵ ↓ 0 to get appropriate approximation for the

variational formula in the large deviation principle for En,ϵ 1nJn. We also derive

the large deviation principle of 1
nJn in this section.
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Note that to complete (1.3.38) and (1.3.39), we require an analogous result of Propo-

sition 1.2.13 but for rate function defined in Theorem 1.3.7.

Proposition 1.3.10. limN→∞ L̂κN (b) = Lκ(b) for all b > 0 where Lκ is the rate func-

tion defined in Theorem 1.3.7.

Lower bound

To prove (1.3.39) is straightforward as we can use a similar technique as in the proof

of the lower bound case of the problem on range in (1.2.29) from Section 2.2. Let

C2
Nn1/d(n) to be the event that both random walks will not hit the boundary of ΛNn1/d

until time n . Then, we find the lower bound in probability of the event {Jn ≥ an} by

considering the inequality

P(Jn ≥ an) ≥ P
(
Jn ≥ an,C2

Nn1/d(n)
)
. (1.3.45)

Then, we will deduce that the right hand side of (1.3.45) give an appropriate limit for

our result, and the limit converges to our required rate function when we expand the

size of the torus.

Upper bound

The proof of (1.3.38) follows from the proof of Proposition 4 of [BBH04]. The key idea

is to make various random reflections in each direction in such a way that after all the

reflections are made, the reflected walks stay inside a very large n-dependent box and

the number of intersections neither increases nor decreases. Since the reflected walks

stay inside this large box, they behaves similar to random walks on the torus. Hence,

we can apply Proposition 1.3.9. The proof will be divided into five steps, and we give

the outline here.

1. Section 3.3.1: We introduce the general setup for the proof and proof the prelim-

inary results. There are two main quantities. Define,

ΘNn1/d :=
[
− 1

2
Nn1/d,−1

2
Nn1/d

)d
, (1.3.46)

to be a d-dimensional box of side-length Nn1/d. Note that, we can partition Zd

to box of side-length Nn1/d by the following:

Zd =
∪
z∈Zd

ΘNn1/d(z), (1.3.47)

where ΘNn1/d(z) = ΘNn1/d + zNn1/d. Also, let Qη,N,n denote the 1
2ηn

1/d-
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neighborhood of the faces of the boxes, i.e.

Qη,N,n =
∪
z∈Zd

(
[ΘNn1/d \Θ(N−η)n1/d ] + zNn1/d

)
. (1.3.48)

Assume N/η is an even integer. Note that, if we shift Qη,N,n by ηn1/d altogether

N/η times in each of the d directions and in every possible combinations we

obtain (N/η)d copies of Qη,N,n. We label this Qxη,N,n for x = (x1, . . . , xd) ∈{
0, . . . , Nη − 1

}d
.

2. Section 3.3.2: We start analysing Qη,N,n. The key part of this section is to

show that amongst Qxη,N,n, there exists a copy at which random walks behaves

“nicely”. We call the copy QXη,N,n. Next, we categorise ΘNn1/d(z). We denote

the box ΘNn1/d(z1) to be a popular box if at least one of the two random walks

spend a considerable time inside the box, i.e.,

♯
{
{S1

j }1≤j≤n ∩ΘNn1/d(z1)
}
> ϵ or ♯

{
{S2

j }1≤j≤n ∩ΘNn1/d(z1)
}
> ϵ,

for ϵ > 0. Then, we define unpopular boxes to be those boxes that are not popular

boxes. Then, we will do reflection based on the position on the popular boxes.

The reflection procedure will be explained in this section and the example of the

procedure will be given in Figure 3-2 and Figure 3-3. Then, We end the section

by introducing two further important results (i) By making the reflection, the

reflected walks stay inside a very large n-dependent box, while the cost of making

reflection is negligible, and (ii) The contribution made at unpopular boxes and

the contribution made near some specific area(the boundary) of popular boxes

can be neglected.

3. Section 3.3.3 and 3.3.4: We complete the proof of the two results.

4. Section 3.3.5: We complete the proof of (1.3.38) by collecting all the results from

the previous sections.
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Chapter 2

Large deviation for the range of a

single random walk

This chapter is structured as follows: In Section 2.1, we first remind the setup we

introduced in Section 1.2.2. Also, we remind the transition densities of Brownian

motion and random walk. Then, we define these transition probabilities on a torus and

develop a preliminary result. In Section 2.2, we prove the large deviation principle for

the range of a random walk on torus. The proof will be divided into four main steps.

The structure of this section is as described in Section 1.2.3. Finally, we complete the

proof of our main result, Theorem 1.2.10, in Section 2.3. This will be done by deriving

the upper and lower bounds as explained in Section 1.2.3.

The content of this chapter is based on Phetpradap [Phe11].

2.1 Transition probability of a random walk

In this section, we remind basic results of Brownian transition kernel and the local

central limit theorem. Then, we define these transition probabilities on a torus. We

then focus on the local central limit theorem for a random walk on a torus and develop

a result on the transition probability of the random walk on torus. The result will be

used to acquire the large deviation principle on the range of the random walk on a

torus in Section 2.2.2.

Firstly, we recall the compactification we described at the beginning of Section 1.2.3:

For N ∈ N even, let ΛN be the torus of size N > 0,ΛN = [−N
2 ,

N
2 )

d with periodic

boundary conditions. To prove Proposition 1.2.11 in Section 2.2, we will let the random

walk live on Λ
Nn

1
d
∩Zd withN fixed. We denote by (Sn : n = 1, 2, . . .) the corresponding
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random walk on Λ
Nn

1
d
∩Zd and by Rn the number of lattice sites visited by the random

walk on the torus up to time n.

Due to the discreteness property of random walk, we need to take into account the

parity issue of random walk. Let x = (x1, . . . , xd) and y = (y1, . . . , yd) with x, y ∈ Zd.
We say that:

• The site x is in even(odd) parity if the sum x1 + . . .+ xd is even(odd).

• The site x and time n have the same parity if x1 + . . .+ xd + n is even.

• The sites x and y have the same parity if x1 + . . .+ xd + y1 + . . .+ yd is even.

• The sites x, y and time n have the same parity if x1 + . . .+ xd + y1 + ...+ yd + n

is even.

We first denote the transition probability of random walk from x to y at time n by

pn(x, y) := P(Sn = y|S0 = x). (2.1.1)

We also denote pn(x) = pn(0, x). Note that by the local central limit theorem (see

Lemma 17.6 [Rév05] ), assume x, y and n have the same parity, we get

pn(x, y) = 2

(
d

2πn

)d/2
exp

[
− d|y − x|2

2n

]
+An(x, y), (2.1.2)

where

An(x, y) = min
(
O(n−(d+2)/2), O(|y − x|−2n−d/2)

)
. (2.1.3)

And, trivially, if x, y and n do not have the same parity, then pn(x, y) = 0. We quote

two further results on the properties of the random walk on Zd from (2.1.2) and Lemma

17.8 [Rév05].

Lemma 2.1.1. Let d ≥ 3. Assume x and n have the same parity.

(a) Assume that x is in even parity. Then,

P(S2n = x)

{
= O(n−d/2), if n > |x|2,
≤ O

(
n−d/2 exp

[
− |x|2

2n

])
, if n < |x|2.

(b) As |x| → ∞, There exists a positive constant Cd such that

P(Sn = x for some n) =
Cd + o(1)

|x|d−2
.

44



Lemma 2.1.1(a) shows the probability that a random walk makes a visit at site x at time

2n is bounded and depends on the position of the site, while Lemma 2.1.1 (b) shows

the probability that random walk will ever visit site x. Next, we define the transition

probability for the random walk on the torus ΛNn1/d . We denote the probability by:

pπn(x, y) := P(Sn = y|S0 = x). (2.1.4)

Using the periodicity of ΛNn1/d , we can deduce that

pπn(x, y) =
∑
z∈Zd

pn(x, y + zNn1/d). (2.1.5)

We also denote pπn(x) = pπn(0, x).

Next, we denote the transition probability of Brownian motion on Rd . For x, y ∈ Rd,
define pt(x, y) to be the Brownian transition kernel from the point x to the point y at

time t, i.e.

pt(x, y) =

(
1

2πt

)d/2
exp

[
− |y − x|2

2t

]
. (2.1.6)

We also denote pt(x) = pt(0, x).

It is worth pointing out that for Brownian motion, the transition kernel is Gaussian,

while for random walk the transition density is not Gaussian, but its limit converges

to Gaussian.

We end the section by showing that the transition probability for a random walk on

torus is bounded by a multiple of the transition probability for a random walk on Zd. In
order to apply this result with our proof directly, we consider the transition probability

of random walk on ΛNn1/d from point an1/d to point bn1/d at time ϵn2/d (We may

assume for now that an1/d, bn1/d are on ΛNn1/d ∩ Zd and ϵn2/d is an integer. Also,

assume that an1/d, bn1/d and ϵn2/d have the same parity). The choice of timelength

is directly from the length of skeleton introduced in (1.2.33). The reason will become

clearer in Section 2.2.1. Therefore, by (2.1.4) and (2.1.5), we get

pπ
ϵn2/d(an

1/d, bn1/d) =
∑
z∈Zd

pϵn2/d

(
an1/d, (b+ zN)n1/d

)
, (2.1.7)

where

pϵn2/d(an1/d, bn1/d) = 2

(
d

2πϵn2/d

)d/2
exp

[
− d|bn1/d − an1/d|2

2ϵn2/d

]
+ Ãn(a, b), (2.1.8)
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at which Ãn(a, b) = min
(
O
(
n−1− 2

d

)
, O
(
|b− a|−2n−1− 2

d

))
. Note that the O-term may

depend on ϵ, but not any other variables.

Next we start to determine the transition probability in (2.1.7). Let bn1/d be a point

on ΛNn1/d . We can see that any points in the form (b+ zN)n1/d for z ∈ Zd will project
to the point b on ΛN . We define b∗n1/d the point amongst this form that provides the

shortest distance from an1/d. Since we assume that N is even and a and b have the

same parity, it is clear that

pm(an
1/d, b∗n1/d) = sup

z∈Zd

{
pm
(
an1/d, (b+ zN)n1/d

)}
. (2.1.9)

Finally, note that if we unwrap the torus ΛNn1/d , it will look like drawing boxes on Zd

where each box has sidelength Nn1/d and centred at points zNn1/d for z ∈ Zd. We will

call the box with centre 0 the central box. Also, we will call the boxes adjacent to the

central box (that is the box centred at zNn1/d with ||z||∞ = 1) the first shell, and we

will call the boxed adjacent to the first shell the second shell and so on. Without loss

on generality, we always put the point an1/d on the central box. It can be seen that

b∗n1/d must lie either in the central box or on the first shell.

Lemma 2.1.2. For a, b ∈ ΛN with O-term independent of a and b,

pπ
ϵn2/d(an

1/d, bn1/d) ≤ 3dpϵn2/d(an1/d, b∗n1/d) +O(n−1).

Proof. The number of boxes in the first shell, including the central box, is 3d. Since

b∗n1/d lies either on the central box or the first shell, we can conclude by (2.1.9) that∑
z∈Zd:||z||∞≤1

pϵn2/d(an1/d, (b+ zN)n1/d) ≤ 3dpϵn2/d(an1/d, b∗n1/d). (2.1.10)

Now, for k ≥ 2, if the point bn1/d lies on the box on the kth shell, then |an1/d−bn1/d| >
(k−1)Nn1/d. The number of boxes on each kth shell is (2k+1)d− (2k−1)d and hence,

∑
z∈Zd:||z||∞≥2

pϵn2/d

(
an1/d, (b+ zN)n1/d

)
≤

∞∑
k=1

(
(2k + 1)d − (2k − 1)d

)
pϵn2/d(0,kNn1/d)

≤
∞∑
k=1

(3k)dpϵn2/d

(
0,kNn1/d

)
, (2.1.11)

where k = (k, 0, . . . , 0) is a d-dimensional vector with value k in dimension 1 and zero
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in the other dimensions. From Lemma 2.1.1 (a) we get,

pϵn2/d(0,kNn1/d) ≤ O

((ϵn2/d
2

)−d/2
exp

[
− |kNn1/d|2

2ϵn2/d

])

=
( ϵ
2

)−d/2
exp

[
− k2N2

ϵ

]
O(n−1), (2.1.12)

subject to the condition ϵ < (kN)2. Substitute (2.1.12) into (2.1.11) we get,∑
z∈Zd:||z||∞≥2

pϵn2/d

(
an1/d, (b+ zN)n1/d

)
= O(n−1). (2.1.13)

Combining (2.1.10) and (2.1.13), we get the Lemma.

2.2 Random walk on a torus

In this section, we complete the proof of Proposition 1.2.11. We recall and rename the

proposition for the ease of reading.

Proposition 2.2.1. Let d ≥ 3, then 1
nRn satisfies a LDP on R+ with speed n

d−2
d and

rate function 1
dJ

κ
N , where

JκN (b) = inf
ϕ∈∂Φκ

N (b)
[
1

2

∫
ΛN

|∇ϕ|2(x)dx] (2.2.1)

with

∂ΦκN (b) = {ϕ ∈ H1(ΛN ) :

∫
ΛN

ϕ2(x)dx = 1,

∫
ΛN

(
1− e−κϕ

2(x)
)
dx = b}. (2.2.2)

For any functions fn and gn , we write fn(x) ≈ gn(x) if and only if,

lim
n→∞

log fn(x)

log gn(x)
= 1. (2.2.3)

2.2.1 Approximation of 1
n
Rn by En,ϵ 1nRn

We recall and rename the skeleton walk defined in (1.2.33).

Sn,ϵ = {S
iϵn

2
d
}
1≤i≤ 1

ϵ
n

d−2
d
. (2.2.4)

Also, recall that En,ϵ denotes the conditional expectation given Sn,ϵ and Pn,ϵ denote

the conditional probability given Sn,ϵ. In this section, we show that Rn can be approx-
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imated by its conditional expectation given Sn,ϵ:

Proposition 2.2.2. For all δ > 0,

lim
ϵ↓0

lim sup
n→∞

1

n
d−2
d

logP
(
1
n |Rn − En,ϵRn| ≥ δ

)
= −∞.

Proof. (1) For 1 ≤ i ≤ 1
ϵn

d−2
d , let

Wi =
{
Sj : (i− 1)ϵn

2
d ≤ j ≤ iϵn

2
d
}
. (2.2.5)

Then, it is easy to see that

1

n
Rn =

1

n
♯

{ 1
ϵ
n

d−2
d∪

i=1

Wi

}
. (2.2.6)

Now, for K > 0, let:

JK
n,ϵ =

{
1 ≤ i ≤ 1

ϵn
d−2
d : 1

n1/d |S(i−1)ϵn
2
d
− S

iϵn
2
d
| ≤ K

√
ϵ
}
. (2.2.7)

and define,

1

n
RK
n,ϵ =

1

n
♯
{ ∪
i∈JK

n,ϵ

Wi

}
, (2.2.8)

1

n
R̂K
n,ϵ =

1

n
♯
{ ∪
i/∈JK

n,ϵ

Wi

}
. (2.2.9)

Since 0 ≤ 1
nRn − 1

nR
K
n,ϵ ≤ 1

nR̂
K
n,ϵ, we have

1

n
|Rn − En,ϵRn| ≤

1

n
|RK

n,ϵ − En,ϵRK
n,ϵ|+

1

n
R̂K
n,ϵ +

1

n
En,ϵR̂K

n,ϵ. (2.2.10)

Therefore, to prove Proposition 2.2.2, we need to prove the two following results:

lim
ϵ↓0

lim sup
n→∞

1

n
d−2
d

logP
( 1
n
|RK

n,ϵ − En,ϵRK
n,ϵ| ≥ δ

)
= −∞ for all 0 < δ < 1,K > K0(δ).

(2.2.11)

lim
ϵ↓0

lim sup
n→∞

1

n
d−2
d

logP
( 1
n
R̂K
n,ϵ ≥ δ

)
= −∞ for all 0 < δ < 1,K > K0(δ).

(2.2.12)

We can ignore the third term of the right hand side of (2.2.10). Note that, 1
nR̂

K
n,ϵ ≤
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1
n |ΛNn 1

d
∩ Zd| = Nd and hence En,ϵ( 1nR̂

K
n,ϵ) ≤ δ

2 + NdPn,ϵ( 1nR̂
K
n,ϵ ≥ δ

2). By using

Markov’s inequality,

P
(
En,ϵ

( 1
n
R̂K
n,ϵ

)
≥ δ

)
≤ P

(
Pn,ϵ

( 1
n
R̂K
n,ϵ ≥

δ

2

)
≥ δ

2Nd

)
≤ 2Nd

δ
P
( 1
n
R̂K
n,ϵ ≥

δ

2

)
,

which will be studied in (2.2.12).

(2) To prove (2.2.12), we estimate by Markov’s inequality that

P(
1

n
R̂K
n,ϵ ≥ δ)

≤ exp
[
− δn(d−2)/d

2ϵ

]
E
(
exp

[n d−2
d

2ϵ

1
ϵ
n

d−2
d∑

i=1

1

n
♯{Wi}1{i /∈ JK

n,ϵ}
])

= exp
[
− δn(d−2)/d

2ϵ

]
E
(
exp

[n d−2
d

2ϵ

1

n
♯{W1}1{1 /∈ JK

n,ϵ}
]) 1

ϵ
n

d−2
d

= exp
[
− δn(d−2)/d

2ϵ

]{
1 + E

(
1{1 /∈ JK

n,ϵ}
(
exp

[ 1

2ϵn2/d
♯{W1}

]
− 1
))} 1

ϵ
n

d−2
d

≤ exp
[
− δn(d−2)/d

2ϵ

]{
1 +

√
δKE

(
exp

[ 1

ϵn2/d
♯{W1}

])} 1
ϵ
n

d−2
d

, (2.2.13)

where δK = supn≥1 P
(

1
n1/d |Sϵn2/d | > K

√
ϵ
)
and we use the Cauchy-Schwarz inequality

in the last step. However,

E
(
exp

[ 1

ϵn2/d
♯{W1}

])
= E

(
exp

[ 1

ϵn2/d
Rϵn2/d

])
≤ E

(
exp

[ 1

ϵn2/d
ϵn2/d

])
= e.

Hence, from (2.2.13), for all ϵ,K > 0

lim sup
n→∞

1

n
d−2
d

logP
(
1
nR̂

K
n,ϵ ≥ δ

)
≤ −δ

2ϵ
+

1

ϵ

√
eδK .

Note that, limK→∞ δK = 0. Therefore, there exists K0(δ) such that
√
eδK ≤ δ

4 for

K ≥ K0(δ). For such K, we now let ϵ ↓ 0 and (2.2.12) follows.

(3) Before we we prove (2.2.11), we first refer a result due to Talagrand (Theorem

2.4.1, [Tal95]). For i ∈ N, consider a probability space (Ωi,Σi, µi), and the M -fold

product

( M∏
i=1

Ωi,

M⊗
i=1

Σi,

M⊗
i=1

µi

)
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forM ∈ N fixed. We denote P the product probability
⊗M

i=1 µi. We use the convention

(x1, . . . , xm) =: x ∈
∏M
i=1Ωi for a point in the product space.

Theorem 2.2.3. Let A ⊂
∏M
i=1Ωi be measurable and t > 0 such that, for i =

1, . . . ,M ,
∫ ∫

Ω2
i
exp[t · hi(z, z′)]dµi(z)µi(z′) < ∞, where hi is a measurable function.

Set, νi(ω, ω
′) = max(hi(ω, ω

′), hi(ω
′, ω)) for ω, ω′ ∈ Ωi. Then,

∫
Ω1×...×ΩM

exp
[
tfh(A, x)

]
dP (x) ≤ 1

P (A)

M∏
i=1

(∫
Ω2

i

cosh
(
t · νi(ω, ω′)

)
dµi(ω)dµi(ω

′)

)
,

where

fh(A, x) = inf
{∑
i≤M

hi(xi, yi); y ∈ A
}
.

Remark : Note that Theorem 2.4.1 in [Tal95] gives a result when all Ωi, i = 1, . . . ,M

are identical. However, it is straightforward from the arguments of the proof of his

theorem that the analogous result also holds for a M -fold product since the proof is

done by induction over M . This extension is also suggested in Remark 2.1.3 of that

paper.

To prove (2.2.11), we do the following: Conditionally on Sn,ϵ, the Wi are independent

random subsets of Λ
Nn

1
d
. Let T be the set of subsets of Λ

Nn
1
d
∩ Zd. The mapping

d : T × T → [0,∞) with

d(A,B) = 1
n♯{A△B} = 1

n♯{(A \B) ∪ (B \A)} (2.2.14)

defines a metric on T . Then, Pn,ϵ defines a product measure on
∏ 1

ϵ
n(d−2)/d

i=1 T , which

we denote by the same symbol Pn,ϵ. Define,

M(C) = ♯
{ ∪
i∈JK

n,ϵ

Ci

}
,

(
C = {Ci} ∈

1
ϵ
n(d−2)/d∏
i=1

T
)
.

Note that conditionally on Sn,ϵ fixes, JK
n,ϵ and M are Lipschitz in the sense that

∣∣M(C)−M(C ′)
∣∣ ≤ ∑

i∈JK
n,ϵ

1
n♯
{
Ci△C ′

i

}
,

(
C,C ′ ∈

1
ϵ
n(d−2)/d∏
i=1

T
)
. (2.2.15)

Now, denote by mK
n,ϵ the median of the distribution of Z := ♯

{ ∪
i∈JK

n,ε

Wi

}
= RK

n,ϵ under

50



Pn,ϵ, i.e. mK
n,ϵ = inf{m : Pn,ϵ(Z < m) ≥ 1

2}, and define

A = {C ∈

1
ϵ
n(d−2)/d∏
i=1

T :M(C) ≤ mK
n,ϵ}.

Note that for ϵ ∈ (0, 1] fixed and n large enough, there exists constant 0 < ξ < 1
2

such that ξ < Pn,ϵ(A) < 1− ξ. This is because of the size of the atomic masses of the

distribution of Z is bounded away from 1 in ϵ ∈ (0, 1] and n ∈ N.

We applying Theorem 2.2.3 with the mapping d defined in (2.2.14) as the function

h, t = λ/n, x = {Wi} for the conditional expectation En,ϵ. Hence, we get

En,ϵ
(
exp

[
λf(A, {Wi})

])
≤ ξ−1

∏
i∈JK

n,ϵ

En,ϵ
(
cosh

[λ
n
♯
{
Wi△W ′

i

}])
,

where

f
(
A, {Ci}

)
= inf

C′∈A

∑
i∈JK

n,ε

1
n♯
{
Ci△C ′

i

}
,

and {W ′
i} is an independent copy of {Wi}. By Chebyshev’s inequality we get

Pn,ϵ
(
f(A, {Wi}) ≥ δ

)
≤ inf

λ>0
e−λδEn,ϵeλf

(
A,{Wi}

)
≤ ξ−1 inf

λ>0
e−λδ

∏
i∈JK

n,ϵ

En,ϵ
(
cosh

[λ
n
♯
{
Wi△W ′

i

}])
=: ΞKn,ϵ(δ).

(2.2.16)

Arguing similarly with Â =
{
C ∈ T

1
ϵ
n

d−2
d : M(C) ≥ mK

n,ϵ

}
and noting that RK

n,ϵ =

M
(
{Wi}

)
, by using (2.2.15), we get

Pn,ϵ
(
1
n |R

K
n,ϵ −mK

n,ϵ| ≥ δ
)
≤ Pn,ϵ

(
f(A, {Wi}) ≥ δ

)
+ Pn,ϵ

(
f(Â, {Wi}) ≥ δ

)
≤ 2ΞKn,ϵ(δ). (2.2.17)

(4) Note that,

1

n

∣∣En,ϵRK
n,ϵ −mK

n,ϵ

∣∣ ≤ δ

3
+

1

n
♯
{
Λ
Nn

1
d
∩ Zd

}
Pn,ϵ

( 1
n

∣∣RK
n,ϵ −mK

n,ϵ

∣∣ ≥ δ

3

)
, (2.2.18)
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consequently, since 1
nR

K
n,ϵ ≤ Nd, by (2.2.17) and (2.2.18),

Pn,ϵ
(
1
n |R

K
n,ϵ − En,ϵRK

n,ϵ| ≥ δ
)

≤ Pn,ϵ
(

1
n |R

K
n,ϵ −mK

n,ϵ| ≥
δ

3

)
+ 1
(

1
n |En,ϵR

K
n,ϵ −mK

n,ϵ| ≥
2δ

3

)
≤ 2ΞKn,ϵ

(δ
3

)
+ 1
{
Pn,ϵ

(
1
n |R

K
n,ϵ −mK

n,ϵ| ≥
δ

3

)
≥ δ

3Nd

}
≤ 2ΞKn,ϵ

(δ
3

)
+ 1
{
2ΞKn,ϵ

(δ
3

)
≥ δ

3Nd

}
. (2.2.19)

By Chebyshev’s inequality and (2.2.19) we get, after averaging over Sn,ϵ,

P
(
1
n

∣∣RK
n,ϵ − En,ϵRK

n,ϵ

∣∣ ≥ δ
)
≤
(
1 +

3Nd

δ

)
E
(
2ΞKn,ϵ

(δ
3

))
. (2.2.20)

Therefore, to prove (2.2.11), it suffices to show that

lim
ϵ↓0

lim sup
n→∞

1

n
d−2
d

logE
(
ΞKn,ϵ(δ)

)
= −∞ ∀ 0 < δ < 1,K > K0(δ), (2.2.21)

which will follow if we can show a stronger version, namely,

lim
ϵ↓0

lim sup
n→∞

1

n
d−2
d

log ||ΞKn,ϵ(δ)||∞ = −∞ ∀ 0 < δ < 1,K > K0(δ), (2.2.22)

where ||X||∞ is the infinity norm for a random variable X.

(5) To estimate En,ϵ
(
cosh

[λ♯{Wi△W ′
i}

n

])
from (2.2.16), we pick λ = c

ϵn
d−2
d for 0 < c < 1

and use the fact that cosh(cd) ≤ 1 + c2 exp(d) for 0 < c ≤ 1 (this can be checked by

expanding exponential terms from both sides). Hence,

En,ϵ
(
cosh

[cn d−2
d ♯{Wi△W ′

i}
ϵn

])
≤ 1 + c2En,ϵ

(
exp

[♯{Wi△W ′
i}

ϵn2/d

])
≤ 1 + c2En,ϵ

(
exp

[♯{Wi}
ϵn2/d

])2
≤ 1 + c2e2, (2.2.23)

where in the last inequality, we use ♯{Wi} = Rϵn2/d ≤ ϵn2/d. Therefore, by (2.2.16)
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and (2.2.23),

ΞKn,ϵ(δ) ≤ ξ−1 exp
[
− cδ

ϵ
n

d−2
d

] ∏
i∈JK

n,ϵ

En,ϵ
(
cosh

[λ
n

∣∣Wi△W ′
i

∣∣])

≤ ξ−1 exp
[
− cδ

ϵ
n

d−2
d

] 1
ϵ
n

d−2
d∏

i=1

(
1 + c2e2

)
≤ ξ−1 exp

[
− cδ

ϵ
n

d−2
d

](
exp[c2e2]

) 1
ϵ
n

d−2
d

= ξ−1 exp
[
(−cδ + c2e2)

1

ϵ
n

d−2
d

]
.

Now, for any δ > 0, we pick c satisfying 0 < c < min(1, δ/e2). Let n→ ∞ followed by

ϵ ↓ 0. We then get (2.2.22) and the proof of Proposition 2.2.2 is now completed.

2.2.2 The LDP for En,ϵ 1nRn

In this section, we prove the large deviation principle for the conditional expectation

of random walk on ΛNn1/d given Sn,ϵ.

We would like to remove n-dependence for the random walk on the torus. In order to

do that, we will do a scaling of the torus from the original size of Nn1/d to the size N .

The mesh of the random walk on the scaled torus, ΛN , will now be n−1/d and therefore

a point a in the scaled torus corresponds to the point an1/d in the original torus. We

will use S̃n for the corresponding position of the random walk on ΛN and P for its law.

However, it may be the case that the point a = (a1, . . . , ad) ∈ ΛN is not on the

scaled grid ΛN ∩ n−1/dZd. Therefore, from now on, we use the following convention:

unless stated otherwise, S̃n = a will have the same meaning as S̃n = ⌊a⌋ where ⌊a⌋ =

(⌊a1⌋, . . . , ⌊ad⌋) with ⌊ai⌋ is the biggest integer less than or equal to ai . In other words,

the area on scaled grid will be represented by the bottom-left corner of the box. Note

that scaling of the torus does not effect Rn.

We recall the pair empirical measure on the scaled torus defined in (1.2.34):

Ln,ϵ = ϵn−
d−2
d

1
ϵ
n

d−2
d∑

i=1

δ(
n−1/dS

(i−1)ϵn2/d ,n
−1/dS

iϵn2/d

).
Let I

(2)
ϵ : M+

1 (ΛN × ΛN ) → [0,∞] be the entropy function

I(2)ϵ (µ) =

{
h(µ|µ1 ⊗ πϵ) if µ1 = µ2

∞ otherwise,
(2.2.24)
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where M+
1 denotes a probability measure space on ΛN with weak topology, h(·|·)

denotes relative entropy between measures, µ1 and µ2 are the two marginals of µ and

πϵ(x, dy) = pπϵ (y − x)dy is the Brownian transition kernel on ΛN where µ1 ⊗ πϵ :=∫
µ1(dx)πϵ(x, dy). By (2.1.5) and (2.1.6), we get

pπt (x, y) =
∑
z∈Zd

pt(x, y + zN), (2.2.25)

with pπt (x) = pπt (0, x). Furthermore, for η > 0 let Φη : M+
1 (ΛN ×ΛN ) → [0,∞) be the

function

Φη(µ) =

∫
ΛN

dx
(
1− exp

[
− 2ηκ

∫
ΛN×ΛN

φϵ
(
y − x, z − x

)
µ(dy, dz)

])
, (2.2.26)

with

φϵ(y, z) =

∫ ϵ
0 dsp

π
s/d(−y)p

π
(ϵ−s)/d(z)

pπϵ/d(z − y)
. (2.2.27)

Our main result in this section is the following proposition:

Proposition 2.2.4. En,ϵ 1nRn satisfies a LDP on R+ with speed n
d−2
d and rate function

Jϵ/d(b) = inf
{1
ϵ
I
(2)
ϵ/d(µ) : µ ∈ M+

1 (ΛN × ΛN ),Φ1/ϵ(µ) = b
}
.

Proof. Although we prove results on ΛN , it is more natural to carry on the proof on

the non-scaled torus, ΛNn1/d , corresponding to the probability law P.

Let c1, c2, . . . be constants that may depend on ϵ,N (which are fixed) but not on any

of the other variables.

(1) We first approximate Rn by cutting small holes around the points Siϵn2/d , 1 ≤ i ≤
1
ϵn

d−2
d . Fix K > 0, for 1 < i < 1

ϵn
d−2
d let,

WK
i = Wi \

{
Sj : |Sj − S(i−1)ϵn2/d | < K or |Sj − Siϵn2/d | < K, (i− 1)ϵn2/d < j < iϵn2/d

}
.

(2.2.28)

Also, define

1

n
RK
n =

1

n
♯
{ 1

ϵ
n

d−2
d∪

i=1

WK
i

}
. (2.2.29)

Note that, this cutting procedure corresponds to removing balls of size Kn−1/d on the

scaled torus. Therefore, we have cut at most 1
ϵn

d−2
d times the number of points in a
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ball of radius K, hence

1

n

∣∣∣Rn −RK
n

∣∣∣ ≤ 1

n
c1
1

ϵ
n

d−2
d (2K)d =

2dc1K
d

ϵn2/d
, (2.2.30)

which tends to zero as n → ∞ and therefore is negligible. This cutting procedure is

done in order to make the intersection between WK
i and WK

i+1 unlikely which will be

important in the next step.

(2) Define σ = min{n : Sn = 0} = min{n : S̃n = 0}. For y, z ∈ ΛN , define

qn,ϵ(y, z) = P
(
σ ≤ ϵn

2
d |S̃0 = y, S̃

ϵn
2
d
= z
)

= P
(
σ ≤ ϵn

2
d |S0 = yn

1
d ,S

ϵn
2
d
= zn

1
d
)
. (2.2.31)

We define P (·) = P0(·), P(·) = P0(·), Pa(·) = P (·|S̃0 = a),Pan1/d(·) = P(·|S0 =

an1/d), and bridge measuresPa,b(·) = P (·|S̃0 = a, S̃ϵn2/d = b),Pan1/d,bn1/d(·) = P(·|S0 =

an1/d,Sϵn2/d = bn1/d).

We can express En,ϵ 1nR
K
n in terms of qn,ϵ(y, z) and the empirical measure Ln,ϵ as follows:

En,ϵ
1

n
RK
n =

1

n

∑
x∈Λ

Nn
1
d

(
1− Pn,ϵ

(
x /∈

1
ϵ
n

d−2
d∪

i=1

WK
i

))

=
1

n

∑
x∈Λ

Nn
1
d

(
1− Pn,ϵ

( 1
ϵ
n

d−2
d∩

i=1

{x /∈ WK
i }
))

=
1

n

∑
x∈Λ

Nn
1
d

(
1−

1
ϵ
n

d−2
d∏

i=1

Pn,ϵ
(
x /∈ WK

i

))

=
1

n

∑
x∈Λ

Nn
1
d

(
1− exp

( 1
ϵ
n

d−2
d∑

i=1

log
[
1− Pn,ϵ(x ∈ WK

i )
]))

=

∫
ΛN

dx

(
1− exp

(
1

ϵ
n

d−2
d

∫
ΛN×ΛN

Ln,ϵ(dy, dz) log
[
1− qKn

−1/d

n,ϵ (y − ⌊xn
1
d ⌋n−

1
d , z − ⌊xn

1
d ⌋n−

1
d )
]))

,

(2.2.32)

where

• the last equality comes from scaling the torus and using the empirical measure,

• for ρ > 0, we define qρn,ϵ(y, z) = qn,ϵ(y, z) if y, z /∈ Bρ, the centred ball of radius
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ρ, and zero otherwise.

(3) We want to expand the logarithm and do an approximation. For this we need the

following facts about random walk on ΛN . Recall that κ is the exit probability from

the origin.

Proposition 2.2.5. (a) limK→∞ lim supn→∞ supa,b/∈B
Kn−1/d

qn,ϵ(a, b) = 0.

(b) limn→∞ supa,b/∈Bρ
|n

d−2
d qn,ϵ(a, b)− 2κφϵ(a, b)| = 0 for all 0 < ρ < N/4.

Remark: Due to the parity problem of random walk we may assume that a, b and ϵn2/d

have the same parity.

Proof. We will divide the proof of Proposition 2.2.5 into three parts. We first show

that, after scaling ΛNn1/d to ΛN , (2.1.5) converges to a function of the Brownian tran-

sition kernel on ΛN defined in (2.2.25). Then, we prove Proposition 2.2.5 (a) and (b)

separately.

I. The local central limit theorem

Lemma 2.2.6. For a, b ∈ ΛN with O-term independent of a and b and for any α <

1 + 2
d ,

pπ
ϵn2/d(an

1/d, bn1/d) =
2

n
pπϵ/d(a, b) + o(n−α),

which implies that for any ε > 0 and sufficiently large n, we have

2− ε

n
pπϵ/d(a, b) ≤ pπ

ϵn2/d(an
1/d, bn1/d) ≤ 2 + ε

n
pπϵ/d(a, b).

Proof. We first show that pπ
ϵn2/d(an

1/d, bn1/d) ≤ 2
np

π
ϵ/d(a, b) + o(n−α). By (2.1.7), for

fixed m,

pπ
ϵn2/d(an

1/d, bn1/d)

=
∑

z∈Zd:||z||∞≤m

pϵn2/d

(
an1/d, (b+ zN)n1/d

)
+

∑
z∈Zd:||z||∞>m

pϵn2/d

(
an1/d, (b+ zN)n1/d

)
.

(2.2.33)
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Now, by (2.1.8),∑
z∈Zd:||z||∞≤m

pϵn2/d

(
an1/d, (b+ zN)n1/d

)
=

∑
z∈Zd:||z||∞≤m

2
( d

2πϵn2/d

)d/2
exp

[
−d|(b+ zN)n1/d − an1/d|2

2ϵn2/d

]
+ (2m+ 1)dO(n−1− 2

d )

=
∑

z∈Zd:||z||∞≤m

2

n

( d

2πϵ

)d/2
exp

[
−d|(b+ zN)− a|2

2ϵ

]
+ (2m+ 1)dO

(
n−1− 2

d
)

≤
∑
z∈Zd

2

n

( d

2πϵ

)d/2
exp

[
−d|(b+ zN)− a|2

2ϵ

]
+ (3m)dO

(
n−1− 2

d
)

=
2

n
pπϵ/d(b− a) + (3m)dO

(
n−1− 2

d
)
. (2.2.34)

Now, for the second term of (2.2.33), by (2.1.11) and (2.1.12) for some constant cd,ϵ

depending on d and ϵ,

∑
z∈Zd:||z||∞>m

pϵn2/d

(
an1/d, (b+ zN)n1/d

)
≤
cd,ϵ
n

∞∑
k=m

kd exp
[
− k2N2

ϵ

]
≤
ĉd,ϵ
n
md exp

[
− m2N2

ϵ

]
. (2.2.35)

Combining (2.2.33), (2.2.34) and (2.2.35) we get

pπ
ϵn2/d(an

1/d, bn1/d) ≤ 2

n
pπϵ/d(b− a) + (3m)dO(n−1− 2

d ) +
ĉd,ϵ
n
md exp

[
− m2N2

ϵ

]
.

(2.2.36)

Now to minimise the error terms in (2.2.36), we choose m =
√

2ϵ
dN2 log n, this would

give the required upper bound.
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Next, we show that pπ
ϵn2/d(an

1/d, bn1/d) ≥ 2−ε
n pπϵ/d(a, b) + o(n−α). Write

pπ
ϵn2/d(an

1/d, bn1/d)

=
∑
z∈Zd

pϵn2/d

(
an1/d, (b+ zN)n1/d

)
≥

∑
z∈Zd:||z||∞≤m

pϵn2/d

(
an1/d, (b+ zN)n1/d

)
=

∑
z∈Zd:||z||∞≤m

2

n

( d

2πϵ

)d/2
exp

[
−d|(b+ zN)− a|2

2ϵ

]
+ (2m)dO(n−1− 2

d )

≥
∑
z∈Zd

2

n

( d

2πϵ

)d/2
exp

[
−d|(b+ zN)− a|2

2ϵ

]
+ (2m)dO(n−1− 2

d )

−
∑

z∈Zd:||z||∞>m

2

n

( d

2πϵ

)d/2
exp

[
−d|(b+ zN)− a|2

2ϵ

]

≥ 2

n
pπϵ/d(b− a) +

(
(2m)dO(n−1− 2

d )−
c′d,ϵ
n
md exp

[
− m2N2

ϵ

])
. (2.2.37)

Again, we choose m =
√

ε
N2 log

cd,ϵ
2d

+ 2
d log n =

√
2
d log c

′
d,ϵ,Nn and we get the required

lower bound.

II. Proof of Proposition 2.2.5 (a)

Throughout the proof, ϵ,N are fixed.

(a) We begin by proving another lemma.

Let

• Pma,b be the law of S̃m under Pa,b on ΛN ∩ n−
1
dZd

• Pma be the law of S̃m under Pa on ΛN ∩ n−
1
dZd

Lemma 2.2.7. For m ∈
(
0, 12ϵn

2
d

]
, there exists a constant c2 such that for a, b ∈

ΛN ,
dPm

a,b

dPm
a

≤ c2.

Proof. Indeed, for x ∈ ΛN ∩ n−
1
dZd,

dPma,b
dPma

(x) =
Pa,b(S̃m = x)

Pa(S̃m = x)

=
1

Pa(S̃m = x)

[
Pa(S̃m = x, S̃ϵn2/d = b)

Pa(S̃ϵn2/d = b)

]
=
Px(S̃ϵn2/d−m = b)

Pa(S̃ϵn2/d = b)
,
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by the Markov property. Set m = m̃ϵn2/d with 0 < m̃ < 1
2 and unscale ΛN to

ΛNn1/d we get

Px(S̃ϵn2/d−m = b)

Pa(S̃ϵn2/d = b)
=

Pxn1/d(S(1−m̃)ϵn2/d = bn1/d)

Pan1/d(Sϵn2/d = bn1/d)

=
pπ
(1−m̃)ϵn2/d(xn

1/d, bn1/d)

pπ
ϵn2/d(an

1/d, bn1/d)
.

Now, using Lemma 2.1.2 and (2.1.8) we get

pπ
(1−m̃)ϵn2/d(xn

1/d, bn1/d)

pπ
ϵn2/d(an

1/d, bn1/d)
≤ 3d

[
p(1−m̃)ϵn2/d(xn1/d, b∗n1/d)

pϵn2/d(an1/d, bn1/d)

]
+O(n−1)

= 3d(1− m̃)−d/2 exp
[ d
2ϵ

(|b− a|2 − |b∗ − x|2)
]

+O(n−1− 2
d ) +O(n−1)

≤ 3d exp
[ d
2ϵ
N2
]
+O(n−1),

since ϵ, d and N are fixed, 0 < m̃ < 1
2 and |b − a| < N . Hence, we get the

lemma.

(b) We start the proof of Proposition 2.2.5 (a) by removing both the bridge restriction

and the torus restriction. Let Dr be points on ΛN ∩ n−1/dZd that are at most

⌊rn1/d⌋ steps away from the origin, and define ∂Dr be points that are exactly

⌊rn1/d⌋ steps away from the origin. For a, b ∈ ΛN and 0 < r < N/2, let σr

be the first entrance time into Dr. Also, recall that Pa(·) = P (·|S̃0 = a) and

σ = {minn : S̃n = 0}. Next, we use Lemma 2.2.7, to deduce that, when n is

large enough, for all 0 < Kn−
1
d < N/4,

sup
a,b/∈D

Kn−1/d

qn,ϵ(a, b) ≤ sup
a,b/∈D

Kn−1/d

Pa,b

(
σ ≤ 1

2
ϵn

2
d

)
+ sup
a,b/∈D

Kn−1/d

Pb,a

(
σ ≤ 1

2
ϵn

2
d

)
≤ 2c2 sup

a/∈D
Kn−1/d

Pa

(
σ ≤ 1

2
ϵn

2
d

)
. (2.2.38)

Now, let σ̂ be the first entrance time into Dc
N/2 = ΛN \DN/2. We may write that

Pa

(
σ ≤ 1

2
ϵn

2
d

)
= Pa

(
σ ≤ 1

2
ϵn

2
d , σ < σ̂

)
+ Pa

(
σ ≤ 1

2
ϵn

2
d , σ > σ̂

)
. (2.2.39)

To estimate the second term of the RHS of (2.2.39), we note that, by choice on

n, on its way from ∂DN/2 to the origin, the walk must first cross ∂DN/4 and then
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∂DKn−1/d . Hence, by the strong Markov property, for any a /∈ DKn−1/d

Pa

(
σ ≤ 1

2
ϵn

2
d , σ > σ̂

)
≤ c3 sup

x∈∂D
Kn−1/d

Px

(
σ ≤ 1

2
ϵn

2
d

)
. (2.2.40)

where c3 = supn supx∈∂DN/2
Px
(
σN

4
n1/d <

1
2ϵn

2
d

)
. Evidently c3 < 1 and we can

deduce that

sup
a/∈D

Kn−1/d

Pa

(
σ ≤ 1

2
ϵn

2
d

)
≤ 1

1− c3
sup

a/∈D
Kn−1/d

Pa

(
σ ≤ 1

2
ϵn

2
d , σ < σ̂

)
. (2.2.41)

As long as the walk does not hit Dc
N/2, it behaves like random walk on n−1/dZd.

Define τ = min{n : Sn = 0} = min{n : n−1/dSn = 0}. Hence,

Pa

(
σ ≤ 1

2
ϵn

2
d , σ < σ̂

)
≤ Pa

(
τ ≤ 1

2
ϵn

2
d

)
. (2.2.42)

Combining (2.2.38), (2.2.41) and (2.2.42) we get, for all 0 < Kn−1/d < N/4,

sup
a/∈D

Kn−1/d

qn,ϵ(a, b) ≤
c2

1− c3
sup

a/∈D
Kn−1/d

Pa

(
τ ≤ 1

2
ϵn

2
d

)
. (2.2.43)

(c) Now, we unscale the random walk on ΛN to ΛNn1/d . Similarly, we define D̃r to

be points on ΛNn1/d ∩ Zd that are at most ⌊rn1/d⌋ steps away from the origin.

Using Lemma 2.1.1 (b) we get

sup
a/∈D

Kn−1/d

Pa

(
τ ≤ 1

2
ϵn

2
d

)
= sup

u/∈D̃
Kn−1/d

P
(
τ ≤ 1

2
ϵn

2
d |S0 = u

)
≤ P

(
τ ≤ 1

2
ϵn

2
d

∣∣|S0| = K
)

≤ P(τ <∞
∣∣|S0| = K)

≤ P(Sn = 0 for some n
∣∣|S0| = K)

≤ c4 + o(1)

Kd−2
.

Hence,

sup
a/∈D

Kn−1/d

qn,ϵ(a, b) ≤
c2

1− c3

(
c4 + o(1)

Kd−2

)
. (2.2.44)

Now, note that DKn−1/d ⊂ BKn−1/d , and therefore supa/∈B
Kn−1/d

qn,ϵ(a, b) ≤
supa/∈D

Kn−1/d
qn,ϵ(a, b). Hence, we can conclude that,

sup
a/∈B

Kn−1/d

qn,ϵ(a, b) ≤
c2

1− c3

(
c4 + o(1)

Kd−2

)
.
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By taking the limit n→ ∞ followed by K → ∞, we get the proof of Proposition

2.2.5 (a).

III. Proof of Proposition 2.2.5(b)

Again, we set ϵ,N fixed.

a) From Lemma 2.2.6 for any ε > 0 and α < 1 + 2
d , with o-term independent of a and

b,

pπ
ϵn2/d(an

1/d, bn1/d) =
2

n
pπϵ/d(a, b) + o(n−α). (2.2.45)

Now, by the similar arguments as in Lemma 2.2.6, and setting k = sn2/d for s < ϵ, we

can also show that

pπ
(ϵ−s)n2/d(bn

1
d ) =

2

n
pπ(ϵ−s)/d(b) + o

(
n−α

)
, (2.2.46)

pπ
sn2/d(−an

1
d ) =

2

n
pπs/d(−a) + o

(
n−α

)
. (2.2.47)

b) Let 0 < δ < ϵ/2. For a, b ∈ ΛN ∩ (n−1/dZd), define

qn,ϵ(a, b, δn
2
d ) = Pa,b

(
δn

2
d < σ < (ϵ− δ)n

2
d

)
. (2.2.48)

Note that

sup
a,b/∈Bρ

∣∣∣n d−2
d qn,ϵ(a, b)− n

d−2
d qn,ϵ(a, b, δn

2
d )
∣∣∣

≤ n
d−2
d sup

a,b/∈Bρ

(
Pa,b

(
σ ≤ δn

2
d
)
+ Pa,b

(
(ϵ− δ)n

2
d ≤ σ < ϵn

2
d
))
.

≤ 2n
d−2
d sup

a,b/∈Bρ

Pa,b
(
σ < δn

2
d
)

≤ 2c2
1− c3

n
d−2
d sup

a/∈Bρ

Pa
(
τ < δn

2
d
)
, (2.2.49)

where the last equality comes from (2.2.43). Now, using the Markov property and

Lemma 2.1.1 (a) under the condition δ < |ρ|2,

sup
a/∈Bρ

Pa
(
τ < δn

2
d
)
≤

δn
2
d∑

k=1

P
(
Sk = 0|S0 = ρn1/d

)

≤
δn

2
d∑

k=1

∣∣∣∣O(k−d/2 exp [− |ρn1/d|2

2k

])∣∣∣∣. (2.2.50)
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Note that O
(
k−d/2 exp

[
− |ρn1/d|2/2k

])
is maximised when k = |ρ|2n2/d/d. Hence,

δn
2
d∑

k=1

∣∣∣∣O(k−d/2 exp [− |ρn1/d|2

2k

])∣∣∣∣ ≤ δn2/dO

(
1

n

( |ρ|2
d

)−d/2
exp

[
− d

2

])
≤ δn−1+ 2

dO

(( |ρ|2
d

)−d/2
exp

[
− d

2

])
. (2.2.51)

Therefore, by (2.2.49), (2.2.50) and (2.2.51),

sup
a,b/∈Bρ

∣∣n d−2
d qn,ϵ(a, b)− n

d−2
d qn,ϵ(a, b, δn

2
d )
∣∣ ≤ 2c2

1− c3
δ
( |ρ|2
d

)d/2
exp

[
− d

2

]
O(1).

Hence,

lim
δ↓0

lim
n→∞

sup
a,b/∈Bρ

∣∣n d−2
d qn,ϵ(a, b)− n

d−2
d qn,ϵ(a, b, δn

2/d)
∣∣ = 0.

So, Proposition 2.2.5 (b) can be proved by replacing qn,ϵ(a, b) by qn,ϵ
(
a, b, δn2/d

)
.

c) We need instead to show that

lim
δ↓0

lim
n→∞

∣∣n d−2
d qn,ϵ(a, b, δn

2/d)− 2κφϵ(a, b)
∣∣ = 0. (2.2.52)

Note that

n
d−2
d qn,ϵ

(
a, b, δn2/d

)
= n

d−2
d

(ϵ−δ)n
2
d∑

k=δn
2
d

P
an

1
d ,bn

1
d
(σ = k)

= n
d−2
d

(ϵ−δ)n
2
d∑

k=δn
2
d

P
an

1
d

(
Sk = 0,S1, . . . ,Sk−1 ̸= 0

)
· P0

(
S
ϵn

2
d−k

= bn
1
d

)
P
an

1
d

(
S
ϵn

2
d
= bn

1
d

) .

(2.2.53)

By using Lemma 2.2.8 below, the proof of Proposition 2.2.5 (b) follows.

Lemma 2.2.8.

lim
n→∞

∣∣∣∣∣n d−2
d

(ϵ−δ)n
2
d∑

k=δn
2
d

P
an

1
d

(
Sk = 0,S1, . . . ,Sk−1 ̸= 0

)
P0

(
S
ϵn

2
d−k

= bn
1
d

)
P
an

1
d

(
S
ϵn

2
d
= bn

1
d

)
− 2κ

∫ ϵ−δ

δ
ds
pπs/d(−a)p

π
(ϵ−s)/d(b)

pπϵ/d(b− a)

∣∣∣∣∣ = 0.

We will prove upper and lower bound separately. We denote (A) by
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(A) := n
d−2
d

(ϵ−δ)n
2
d∑

k=δn
2
d

P
an

1
d

(
Sk = 0,S1, . . . ,Sk−1 ̸= 0

)
· P0

(
S
ϵn

2
d−k

= bn
1
d

)
P
an

1
d

(
S
ϵn

2
d
= bn

1
d

) .

d)

Proof of Lemma 2.2.8: The upper bound. We shall show that

lim sup
n→∞

(A) ≤ 2κ

∫ ϵ−δ

δ
ds
pπs/d(−a)p

π
(ϵ−s)/d(b)

pπϵ/d(b− a)
. (2.2.54)

For n large enough, let l(< k) ∈ N fixed. Note that by reversing the random walk and

then using the Markov property:

(A) ≤ n
d−2
d

(ϵ−δ)n
2
d∑

k=δn
2
d

P0

(
Sk = −an

1
d ,S1, . . . ,Sl ̸= 0

)
· P0

(
S
ϵn

2
d−k

= bn
1
d

)
P
an

1
d

(
S
ϵn

2
d
= bn

1
d

)
≤ n

d−2
d

(ϵ−δ)n
2
d∑

k=δn
2
d

E0

[
1{S1, . . . ,Sl ̸= 0} · P̂Sl

(
Ŝk−l = −an−

1
d

)]
· P0

(
S
ϵn

2
d−k

= bn
1
d

)
P
an

1
d

(
S
ϵn

2
d
= bn

1
d

) ,

(2.2.55)

where under P̂x the random walk (Ŝm)1≤m≤k−l is independent of (Sj) and started in

x. We can see that

Px
(
Ŝk−l = −an

1
d
)
≤ P0

(
Ŝk−l = −an

1
d − x

)
= pπk−l(−an1/d − x).

Now, by (2.1.7) and (2.1.8), for ε′, ε′′ > 0, we get hold of n0 ∈ N such that for all

n > n0,

pπk−l(−an1/d − x) =
∑
z∈Zd

[
2

(
d

2π(k − l)

)d/2
exp

[ −d
2(k − l)

|(a+ zN)n
1
d + x|2

]
+ ˜̃An(a)

]

≤
∑
z∈Zd

[
2
( d

2πk

)d/2
(1 + ε′) exp

[−d
2k

| − (a+ zN)n
1
d |2(1− ε′′)

]
+ ˜̃An(a)

]
≤
∑
z∈Zd

pπk/(1−ε′′)
(
− (a+ zN)n

1
d
)
× (1 + ε′)

≤ (1 + ε′)pπk/(1−ε′′)(−an
1
d ),

where, for k ≥ δn2/d,
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• (1 + ε′) ≤
(
k
k−l
)d/2

= (1 + l
k−l )

d/2 n→∞−→ 1,

• (1− ε′′) ≥ |an1/d+x|2
|an1/d|2

k
k−l

n→∞−→ 1 uniformly on x ∈ {a : |a| < l}.

Note that, we abused the notation pπk/(1−ε′′)(·) since the time may not be an integer.

However, we prefer to use this terminology since it is clear to see what will happen

when we pass the limit ε ↓ 0. The formula in (2.1.2) can also be used to give an

approximation of pπt (·) for non-integer t.

Also, note that the error term ˜̃An(a) from the local central limit theorem in (2.1.2)

does not change the order when we insert ε′ and ε′′.

From (2.2.55), taking supremum limit on both sides and using Lemma 2.2.6 we get

lim sup
n→∞

(A)

≤ lim sup
n→∞

n
d−2
d

(ϵ−δ)n
2
d∑

k=δn
2
d

(
(1 + ε′)pπk/(1−ε′′)(−an

1
d )pπ

ϵn2/d−k(bn
1/d)

pπ
ϵn2/d(bn

1/d − an1/d)

)
× P0

(
S1, . . . ,Sl ̸= 0

)

≤ lim sup
n→∞

(
n

d−2
d

∫ (ϵ−δ)n
2
d

δn
2
d

dk
(1 + ε′)pπk/(1−ε′′)(−an

1
d )pπ

ϵn2/d−k(bn
1/d)

pπ
ϵn2/d(bn

1/d − an1/d)
P0

(
S1, . . . ,Sl ̸= 0

))

= lim sup
n→∞

(
n

∫ ϵ−δ

δ
ds

(1 + ε′)pπ
sn2/d/(1−ε′′)(−an

1/d)pπ
(ϵ−s)n2/d(bn

1/d)

pπ
ϵn2/d(bn

1/d − an1/d)
P0

(
S1, . . . ,Sl ̸= 0

))

≤ lim sup
n→∞

(
2

∫ ϵ−δ

δ
ds
pπs/d(−a)p

π
(ϵ−s)/d(b)

pπϵ/d(b− a)
P0

(
S1, . . . ,Sl ̸= 0

)
+ o
(
n−α

))

= 2

∫ ϵ−δ

δ
ds
pπs/d(−a)p

π
(ϵ−s)/d(b)

pπϵ/d(b− a)
P0

(
S1, . . . ,Sl ̸= 0

)
.

Finally, letting l → ∞ we then get,

lim
l→∞

lim sup
n→∞

(A) ≤ 2κ

∫ ϵ−δ

δ
ds
pπs/d(−a)p

π
(ϵ−s)/d(b)

pπϵ/d(b− a)
.

e) Proof of Lemma 2.2.8: The lower bound

We shall show that

lim inf
n→∞

(A) ≥ 2κ

∫ ϵ−δ

δ
ds
pπs/d(−a)p

π
(ϵ−s)/d(b)

pπϵ/d(b− a)
. (2.2.56)
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Set 4
d2
< γ < 2

d and θ = δ′nγ for δ′ < δ. Also, define

(B) := n
d−2
d

(ϵ−δ)n
2
d∑

k=δn
2
d

P0

(
Sk = −an

1
d ,S1, . . . ,Sθ ̸= 0

)
· P0

(
S
ϵn

2
d−k

= bn
1
d

)
P
an

1
d

(
S
ϵn

2
d
= bn

1
d

) ,

(C) := n
d−2
d

(ϵ−δ)n
2
d∑

k=δn
2
d

P0

(
Sk = −an

1
d ,Sj = 0 for some θ < j < k

)
· P0

(
S
ϵn

2
d−k

= bn
1
d

)
P
an

1
d

(
S
ϵn

2
d
= bn

1
d

) .

Then,

(A) ≥ (B)− (C).

Our aim is to show that,

lim inf
n→∞

(B) ≥ 2κ

∫ ϵ−δ

δ
ds
pπs/d(−a)p

π
(ϵ−s)/d(b)

pπϵ/d(b− a)
, (2.2.57)

lim sup
n→∞

(C) = 0. (2.2.58)

Proof of (2.2.57)

Let 0 < β < 1
2 . Now,

(B) = n
d−2
d

(ϵ−δ)n
2
d∑

k=δn
2
d

E0

(
1{S1, . . . ,Sθ ̸= 0} · P̂Sθ

(
Ŝk−θ = −an

1
d

))
· P0

(
S
ϵn

2
d−k

= bn
1
d

)
P
an

1
d
(S
ϵn

2
d
= bn

1
d )

≥ n
d−2
d

P
an

1
d
(S
ϵn

2
d
= bn

1
d )

(ϵ−δ)n
2
d∑

k=δn
2
d

E0

[(
1{S1, . . . ,Sθ ̸= 0} × 1{|Sθ| < θ

1
2
+β}

× inf
|c|≤θ

1
2+ϵ

P̂c
(
Ŝk−θ = −an

1
d
))

× P0

(
S
ϵn

2
d−k

= bn
1
d
)]
.

Now, by using the same technique as in the upper bound case, we can see that for

ε′, ε′′ > 0 and k < ϵn2/d, there exists n0 such that for all n > n0 ,

inf
|c|≤θ

1
2+β

P̂c
(
Ŝk−θ = −an

1
d
)
≥ pπk/(1+ε′′)(−an

1
d )× (1− ε′).

65



Hence,

(B) ≥ n
d−2
d

pπ
ϵn2/d(bn

1/d − an1/d)

(ϵ−δ)n
2
d∑

k=δn
2
d

E0

[(
1{S1, . . . ,Sθ ̸= 0} − 1{|Sθ| > θ

1
2
+β}

)
× pπk/(1+ε′′)(−an

1
d ) · (1− ε′) · pπ

ϵn2/d−k(bn
1/d)

]
=
n

d−2
d

(
P
(
S1, . . . ,Sθ ̸= 0

)
− P

(
|Sθ| > θ

1
2
+β
))

pπ
ϵn2/d(bn

1/d − an1/d)

×
(ϵ−δ)n

2
d∑

k=δn
2
d

(
pπk/(1+ε′′)(−an

1
d ) · (1− ε′) · pπ

ϵn2/d−k(bn
1/d)

)
. (2.2.59)

Next, we need to estimate the probability P
(
|Sθ| > θ

1
2
+β
)
. This can be done by the

moderate deviation principle ( e.g. see [deA92]). Let (Sn)n∈N be a d-dimensional

random walk. Assume
√
n≪ an ≪ n in the sense of (1.2.23). Then, for x > 0,

lim
n→∞

n

a2n
logP(|Sn| ≥ xan) = −x

2

2
. (2.2.60)

By using (2.2.60) and the Markov property, we can deduce that for large n and β < 1
2 ,

P
(
|Sθ| > θ

1
2
+β
)
≤ P

(
|Sθ| > θ

1
2
+β
)
≈ exp(

−θ2β

2
),

in the sense of (2.2.3). Moreover,

lim
n→∞

n
d−2
d e−

n2β

2 = 0.

Combine (2.2.59) with Lemma 2.2.6 and the same argument as in the upper bound

case, we get

lim inf
n→∞

(B)

≥ lim inf
n→∞

P
(
S1, . . . ,Sθ ̸= 0

)[
n

d−2
d

(ϵ−δ)n
2
d∑

k=δn
2
d

pπk/(1+ϵ′′)(−an
1
d ) · (1− ϵ′) · pπ

ϵn2/d−k(bn
1/d)

pπ
ϵn2/d(bn

1/d − an1/d)

]

≥ lim inf
n→∞

[
2κ

∫ ϵ−δ

δ
ds
pπs/d(−a)p

π
(ϵ−s)/d(b)

pπϵ/d(b− a)
+ o
(
n−α

)]

≥ 2κ

∫ ϵ−δ

δ
ds
pπs/d(−a)p

π
(ϵ−s)/d(b)

pπϵ/d(b− a)
.
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Proof of (2.2.58)

By rewriting (C) and using Markov property,

(C) ≤ n
d−2
d

(ϵ−δ)n
2
d∑

k=δn
2
d

∑k
j=θ P0

(
Sj = 0, Sk = −an

1
d

)
· P0

(
S
ϵn

2
d−k

= bn
1
d

)
P
an

1
d

(
S
ϵn

2
d
= bn

1
d

)
= n

d−2
d

(ϵ−δ)n
2
d∑

k=δn
2
d

(∑k
j=θ P0

(
Sj = 0

)
· P0

(
Sk−j = −an

1
d

))
· P0

(
S
ϵn

2
d−k

= bn
1
d

)
P
an

1
d

(
S
ϵn

2
d
= bn

1
d

)
= n

d−2
d

∫ (ϵ−δ)n
2
d

δn
2
d

dk

( ∫ k
θ djP0

(
Sj = 0

)
· P0

(
Sk−j = −an

1
d

))
· P0

(
S
ϵn

2
d−k

= bn
1
d

)
P0

(
S
ϵn

2
d
= (b− a)n

1
d

) ,

Setting k = sn2/d and using the fact that P(Sj = 0) ≤ Cj−
d
2 for some j ∈ N for a

constant C, we get

(C) ≤ n

∫ (ϵ−δ)

δ
ds

pπ
(ϵ−s)n2/d(bn

1/d)

pπ
ϵn2/d

(
(b− a)n1/d

)(∫ sn
2
d

θ
dj P0

(
Sj = 0

)
· P0

(
Ssn2/d−j = −an

1
d
))

≤ n

∫ (ϵ−δ)

δ
ds

pπ
(ϵ−s)n2/d(bn

1/d)

pπ
ϵn2/d

(
(b− a)n1/d

) ∫ sn
2
d

θ
dj Cj−

d
2 · P0

(
Ssn2/d−j = −an

1
d
)
.

Again, set j = xn2/d ,we get

(C)

≤ n
2
d

∫ (ϵ−δ)

δ
ds

pπ
(ϵ−s)n2/d(bn

1/d)

pπ
ϵn2/d

(
(b− a)n1/d

) ∫ s

δ′nγ− 2
d

dx Cx−
d
2 · pπ

(s−x)n2/d(−an1/d)

≤ Cn
2
d

∫ (ϵ−δ)

δ
ds

pπ
(ϵ−s)n2/d(bn

1/d)

pπ
ϵn2/d

(
(b− a)n1/d

) ∫ s

δ′nγ− 2
d

dx pπ
(s−x)n2/d(−an1/d)× [δ′nγ−

2
d ]−

d
2

= Cn1+
2
d
− γd

2

∫ (ϵ−δ)

δ
ds

pπ
(ϵ−s)n2/d(bn

1/d)

pπ
ϵn2/d

(
(b− a)n1/d

) ∫ s

δ′nγ− 2
d

dxpπ
(s−x)n2/d(−an1/d). (2.2.61)

For the last integral in (2.2.61) , by using Lemma 2.2.6,∫ s

δ′nγ− 2
d

dxpπ
(s−x)n2/d(−an1/d) =

2

n

∫ s

δ′nγ− 2
d

dxpπs−x(−a) + o(n−α)

≤ 2

n
s+ o(n−α) ≤ 2

n
ϵ+ o(n−α), (2.2.62)

where ϵ is fixed and note that pπs−x(·) is a transition probability. Moreover, the first

integral in (2.2.61) is bounded (This can be checked by direct substitution using (2.1.2),

(2.1.5) and Lemma 2.1.2). Combining this with (2.2.61) and (2.2.62), for another
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constant Ĉ, we get

(C) ≤ Ĉn
2
d
− γd

2 .

Recall that 4
d2
< γ < 2

d , we then claim that lim supn→∞ (C) = 0. Hence, from (2.2.57)

and (2.2.58), we can deduce (2.2.56). Combining the upper bound and the lower bound,

we can deduce Lemma 2.2.8.

Hence, we have completed the proof of Proposition 2.2.5 (b).

(4) We start from where we left off at the end of step 2, see page 56. We want to

modify (2.2.32) using Proposition 2.2.5. For y, z ∈ ΛN , recall that q
ρ
n,ϵ(y, z) = qn,ϵ(y, z)

if y, z /∈ Bρ, the ball of radius ρ, and zero otherwise. From Proposition 2.2.5(a), it

follows that there exists δK > 0, satisfying limK→∞ δK = 0, such that the inequalities

−(1 + δK)q
Kn− 1

d

n,ϵ (y, z) ≤ log
(
1− qKn

− 1
d

n,ϵ (y, z)
)
≤ −qKn

− 1
d

n,ϵ (y, z), (2.2.63)

hold for all y, z and for n ∈ N large enough. Now we introduce the function

Φn,η,ρ : M+
1 (ΛN × ΛN ) −→ [0,∞),

defined by

Φn,η,ρ(µ) =

∫
ΛN

dx
(
1− exp

[
− ηn

∫
ΛN×ΛN

qρn,ϵ(y − x, z − x)µ(dy, dz)
])
. (2.2.64)

The main advantage of introducing the function Φn,η,ρ is we can get good upper and

lower bounds. By using (2.2.32) and (2.2.64), we get:

Φ
n

d−2
d ,1/ϵ,Kn− 1

d
(Ln,ϵ) ≤ En,ϵ 1nR

K
n ≤ Φ

n
d−2
d ,(1+δK)/ϵ,Kn− 1

d
(Ln,ϵ) (2.2.65)

Moreover, the function also provide nice upper bounds for its approximation.

Lemma 2.2.9. There exists constants c4, c5 such that:

(a) |Φ
n

d−2
d ,η,ρ

(µ)− Φ
n

d−2
d ,η,ρ′

(µ)| ≤ c4η|ρ2 + ρ′2| for all η, µ.

(b) |Φ
n

d−2
d ,η,ρ

(µ)− Φ
n

d−2
d ,η′,ρ

(µ)| ≤ c5|η − η′| for all ρ, µ and n ≥ n0(ρ).

Proof. Define φρϵ (y, z) = φϵ(y, z) if y, z /∈ Bρ and zero otherwise. Note that for x, y >

0, |e−x − e−y| ≤ |x − y|. Here, oρ,ρ′(1) means an error tending to zero as n → ∞
depending on ρ, ρ′ but not on other variables.

(a) Let Bρ(y) be the ball of radius ρ centred at y. By using the triangle inequality and
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Proposition 2.2.5 (b),

∣∣Φ
n

d−2
d ,η,ρ

(µ)− Φ
n

d−2
d ,η,ρ′

(µ)
∣∣

≤ η

∫
ΛN

dx

∫
ΛN×ΛN

µ(dy, dz)
∣∣n d−2

d qρn,ϵ(y − x, z − x)− n
d−2
d qρ

′
n,ϵ(y − x, z − x)

∣∣
= η

∫
ΛN

dx

∫
ΛN×ΛN

µ(dy, dz)
[∣∣2κφρϵ (y − x, z − x)− 2κφρ

′
ϵ (y − x, z − x)

∣∣+ oρ,ρ′(1)
]

≤ 2ηκ

∫
ΛN

dx

∫
ΛN×ΛN

µ(dy, dz)
∣∣φρϵ (y − x, z − x)− φϵ(y − x, z − x)

∣∣
+ 2ηκ

∫
ΛN

dx

∫
ΛN×ΛN

µ(dy, dz)
∣∣φρ′ϵ (y − x, z − x)− φϵ(y − x, z − x)

∣∣+ |ΛN |oρ,ρ′(1).

(2.2.66)

Therefore, we can calculate the two integrals in (2.2.66) separately. Note that∫
ΛN

dx

∫
ΛN×ΛN

µ(dy, dz)|φρϵ (y − x, z − x)− φϵ(y − x, z − x)|

≤
∫
ΛN

dx

∫
(Bρ(x)×ΛN )∪(ΛN×Bρ(x))

µ(dy, dz)φϵ(y − x, z − x)

≤
∫
ΛN×ΛN

µ(dy, dz)

∫
Bρ(y)

dx

∫ ϵ

0
ds
pπs/d(x− y)pπ(ϵ−s)/d(z − x)

pπϵ/d(z − y)

+

∫
ΛN×ΛN

µ(dy, dz)

∫
Bρ(z)

dx

∫ ϵ

0
ds
pπs/d(x− y)pπ(ϵ−s)/d(z − x)

pπϵ/d(z − y)
, (2.2.67)

at which both integral can be estimated in the same way. Now, we consider the first

term of the integral above by splitting the range of the integral as follows:∫
Bρ(y)

dx

∫ ϵ

0
ds
pπs/d(x− y)pπ(ϵ−s)/d(z − x)

pπϵ/d(z − y)

=

∫
Bρ(y)

dx

∫ ϵ/2

0
ds
pπs/d(x− y)pπ(ϵ−s)/d(z − x)

pπϵ/d(z − y)

+

∫
Bρ(y)

dx

∫ ϵ

ϵ/2
ds
pπs/d(x− y)pπ(ϵ−s)/d(z − x)

pπϵ/d(z − y)
. (2.2.68)

Now, for the first term of (2.2.68), note that as s comes close to zero, the terms pπϵ/d(·)
and pπ(ϵ−s)/d(·) can be approximated by a constant C. Also, by modifying Lemma 2.1.2
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to get the upper bound of the integral, we can write this term as:∫
Bρ(y)

dx

∫ ϵ/2

0
ds
pπs/d(x− y)pπ(ϵ−s)/d(z − x)

pπϵ/d(z − y)
≤ C

∫ ϵ/2

0
ds

∫
Bρ(0)

dxpπs/d(x)

≤ 3dC

∫ ϵ/2

0
ds

∫
Bρ(0)

dxps/d(x)

≤ 3dC∗
∫ ϵ/2

0
ds

∫
Bρ(0)

dx
1

sd/2
e−

d|x|2
2s .

(2.2.69)

From (2.2.69), we separate the integral into two cases:

• |x|2 ≤ s/d.

Then, we have∫ ϵ/2

0
ds

∫
{x∈Bρ(0):|x|2<s/d}

dx
1

sd/2
e−

d|x|2
2s ≤

∫ ϵ/2

0
ds

∫
B

min(ρ,
√

s/d)
(0)
dx

1

sd/2

≤
∫ dρ2

0

1

dd/2
ds+ ρd

∫ ϵ/2

dρ2
ds

1

sd/2

≤ d1−
d
2 ρ2 − ρd[s1−d/2]

ϵ/2
dρ2

= O(ρ2).

• |x|2 > s/d.

Then, we have∫ ϵ/2

0
ds

∫
{x∈Bρ(0):|x|2>s/d}

dx
1

sd/2
e−

d|x|2
2s ≤

∫
Bρ(0)

dx

∫ d|x|2

0

1

sd/2
e−

d|x|2
2s ds

By changing the variables from s to s̃ := s
d|x|2 , we get

∫
Bρ(0)

dx

∫ d|x|2

0

1

sd/2
e−

d|x|2
2s ds ≤ d1−

d
2

∫
Bρ(0)

dx
[
|x|2−d

∫ 1

0

1

s̃d/2
e−

1
2s̃ds̃

]
≤ d1−

d
2

∫
Bρ(0)

(d|x|)2−ddx

≤ d1−
d
2

∫ ρ

0
rd−1r2−ddr

≤ d1−
d
2

∫ ρ

0
rdr = O(ρ2).
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Therefore, we can conclude that∫
Bρ(y)

dx

∫ ϵ/2

0
ds
pπs/d(x− y)pπ(ϵ−s)/d(z − x)

pπϵ/d(z − y)
= O(ρ2).

Secondly, we look at the second term of (2.2.68). This time, the terms pπϵ/d(·) and

pπs/d(·) can be approximated by constants. We can use the same arguments as above

to assert that ∫
Bρ(y)

dx

∫ ϵ

ϵ/2
ds
pπs/d(x− y)pπ(ϵ−s)/d(z − x)

pπϵ/d(z − y)
= O(ρ2).

Therefore we can estimate the integral in (2.2.66) as c4ηρ
2.

(b) We use Proposition 2.2.5(b).

|Φ
n

d−2
d ,η,ρ

(µ)− Φ
n

d−2
d ,η′,ρ

(µ)|

≤ |η − η′|
∫
ΛN

dx

∫
ΛN×ΛN

µ(dy, dz)n
d−2
d qρn,ϵ(y − x, z − x)

= |η − η′|
∫
ΛN

dx

∫
ΛN×ΛN

µ(dy, dz)
[
2κφρϵ (y − x, z − x) + oρ(1)

]
≤ |η − η′|[2κϵ+ |ΛN |oρ(1)],

where in the last inequality, we drop the superscript ρ to be able to perform the

x−integration and use the fact that
∫
ΛN

dxφϵ(y − x, z − x) = ϵ.

(5)We start to collect all the results together. By (2.2.30), (2.2.65) and Lemma 2.2.9

we get

En,ϵ
1

n
Rn ≤ En,ϵ

1

n
RK
n +

1

n
c1
(
1
ϵn

d−2
d Kd

)
≤ Φ

n
d−2
d ,(1+δK)/ϵ,Kn− 1

d
(Ln,ϵ) +

c1K
d

ϵn
2
d

≤ Φ
n

d−2
d ,1/ϵ,ρ

(Ln,ϵ) +
c1K

d

ϵn
2
d

+ c4
(Kn−1/d)2 + ρ2

ϵ
+ c5

δK
ϵ
. (2.2.70)

and also a similar lower bound.

(6) Next, we approximate Φ
n

d−2
d ,1/ϵ,ρ

(Ln,ϵ) by another function Φ∞,1/ϵ,ρ(Ln,ϵ) defined

by

Φ∞,η,ρ(µ) =

∫
ΛN

dx
(
1− exp

[
− 2ηκ

∫
ΛN×ΛN

φρϵ (y − x, z − x)µ(dy, dz)
])
. (2.2.71)
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In order to continue from (2.2.70), we need the following Lemma:

Lemma 2.2.10. There exists constants c6, c7, c8 > 0 such that:

(a) |Φ∞,η,ρ(µ)−Φ
n

d−2
d ,η,ρ

(µ)| ≤ c6ηδρ,n for all µ with limn→∞ δρ,n = 0 for any ρ > 0.

(b) |Φ∞,η,ρ(µ)− Φ∞,η,0(µ)| ≤ c7ηρ
2 for all η, µ.

(c) |Φ∞,1/ϵ,0(µ)−Φ∞,1/ϵ,0(µ
′)| ≤ c8||µ−µ′||tv where || · ||tv denotes the total variation

norm.

Proof. (a) We again use Proposition 2.2.5 (b).

∣∣Φ∞,η,ρ(µ)− Φ
n

d−2
d ,η,ρ

(µ)
∣∣

≤ η

∫
ΛN

dx

∫
ΛN×ΛN

µ(dy, dz)
∣∣n d−2

d qρn,ϵ(y − x, z − x)− 2κφρϵ (y − x, z − x)
∣∣

= η

∫
ΛN

dx

∫
ΛN×ΛN

µ(dy, dz)oρ(1) = η|ΛN |oρ(1).

(b) By Proposition 2.2.5 (b),

∣∣Φ∞,η,ρ(µ)− Φ∞,η,0(µ)
∣∣

≤ ηκ

∫
ΛN

dx

∫
ΛN×ΛN

µ(dy, dz)
∣∣φρϵ (y − x, z − x)− φϵ(y − x, z − x)

∣∣
≤ ηκ

∫
ΛN

dx

∫
(ΛN×Bρ(x))∪(Bρ(x)×ΛN )

µ(dy, dz)φϵ(y − x, z − x).

Now, we can use the same arguments as in Lemma 2.2.9(a) to claim the lemma.

(c) For |µ| = µ+ + µ− the variation of µ,

∣∣Φ∞,1/ϵ,0(µ)− Φ∞,1/ϵ,0(µ
′)
∣∣

≤ 2κ

ϵ

∫
ΛN

dx

∫
ΛN×ΛN

|µ− µ′|(dy, dz)φϵ(y − x, z − x)

= 2κ

∫
ΛN×ΛN

|µ− µ′|(dy, dz) = 2κ||µ− µ′||tv.

(7) Now, we do the final collection of results. By (2.2.70), the similar lower bound and
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Lemma 2.2.10(a), (b) with η = 1/ϵ, we now have that for any K and ρ,

|| 1nEn,ϵRn − Φ∞,1/ϵ,0(Ln,ϵ)||∞

≤ c1K
d

ϵn2/d
+
c4(Kn

−1/d)2 + ρ2

ϵ
+
c5δK
ϵ

+
c6δρ,n
ϵ

+
c7ρ

2

ϵ
. (2.2.72)

Letting n→ ∞ followed by K → ∞ and ρ ↓ 0, we thus arrive at

lim
n→∞

|| 1nEn,ϵRn − Φ∞,1/ϵ,0(Ln,ϵ)||∞ = 0 for all ϵ > 0. (2.2.73)

(8) In order to complete the proof of Proposition 2.2.4, we need an LDP for the

empirical pair measure of the skeleton walk. Other than the Wiener sausage case, the

Donsker-Varadhan result does not apply here, as the Gaussian kernel of the skeleton

walk is n-dependent. However, the following result shows that this dependence decays

quick enough for an LDP to hold.

Proposition 2.2.11. Let (S̃n)n>0 be simple random walk on the torus ΛNn1/d ∩ Zd.
Then, the empirical pair measure

L̂n,ϵ = ϵn−
d−2
d

1
ϵ
n

d−2
d∑

i=1

δ(n−1/dS̃
(i−1)ϵn2/d ,n

−1/dS̃
iϵn2/d )

satisfies a LDP with speed n
d−2
d and rate function 1

ϵ I
(2)
ϵ/d where I

(2)
ϵ is defined in (2.2.24).

Proof. Setm := 1
ϵn

d−2
d and let s0 = 0. Let A be a measurable subset of M+

1 (ΛN×ΛN ),

then

P(L̂n,ϵ ∈ A)

=
∑

s1,...,sm∈ΛN∩n−1/dZd

1{ 1
m

∑m
j=1 δ(sj−1,sj)

∈A
} m∏
j=1

P
(
S̃jϵn2/d = sjn

1/d|S̃(j−1)ϵn2/d = sj−1n
1/d
)

= nm
∫
ΛN

· · ·
∫
ΛN

ds1 . . . dsm

1{ 1
m

∑m
j=1 δ(⌊sj−1n

1/d⌋n−1/d,⌊sjn1/d⌋n−1/d)
∈A
} m∏
j=1

P(S̃ϵn2/d = ⌊sjn1/d⌋ − ⌊sj−1n
1/d⌋)

= nm
∫
ΛN

· · ·
∫
ΛN

ds1 . . . dsm

1{ 1
m

∑m
j=1 δ(⌊sj−1n

1/d⌋n−1/d,⌊sjn1/d⌋n−1/d)
∈A
} m∏
j=1

pπ
ϵn2/d(⌊sjn1/d⌋ − ⌊sj−1n

1/d⌋).

(2.2.74)
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Note that from Lemma 2.2.6, for any ε > 0 and sufficiently large n,

2− ε

n
pπϵ/d(sj − sj−1) ≤ pπ

ϵn2/d(sjn
1/d − sj−1n

1/d) ≤ 2 + ε

n
pπϵ/d(sj − sj−1),

provided that sj , sj−1 ∈ ΛN∩n−1/dZd, and ϵn2/d, sjn1/d, sj−1n
1/d have the same parity.

However, if we use this to transform pπ
ϵn2/d(⌊sjn1/d⌋ − ⌊sj−1n

1/d⌋) into pπϵ/d(sj − sj−1)

under the integral in (2.2.74), this will cost a factor of a half. This is because we need

to consider only points with the same parity. For any ⌊sj⌋, the set of points sj−1 such

that ⌊sj−1⌋ and ⌊sj⌋ have the same parity is a “checker board” of cubes with sidelength

n−1/d with total volume 1
2 |ΛN |. Therefore, under the integral in (2.2.74), we only use

half of the actual values. Combining with (2.2.74), we get

(
1− ε

2

)mP(L̃n,ϵ ∈ A) ≤ P(L̂n,ϵ ∈ A) ≤
(
1 + ε

2

)mP(L̃n,ϵ ∈ A),

where

P{L̃n,ϵ ∈ A} =

∫
ΛN

· · ·
∫
ΛN

ds1 . . . dsm1{ 1
m

∑m
j=1 δ(sj−1,sj)

∈A
} m∏
j=1

pπϵ/d(sj − sj−1)

is the probability that the empirical pair measure L̃n,ϵ of an m-step random walk with

Gaussian transition kernel pπϵ/d is in A. Therefore, Donsker-Varadhan theory can be

applied (see [DV76] as well as [BBH01] pp. 377 ) and we can conclude that L̃n,ϵ satisfies

the LDP on M+
1 (ΛN × ΛN ) with speed n

d−2
d and rate function 1

ϵ I
(2)
ϵ/d.

(9) Finally, we can derive the desired large deviation principle for fixed ϵ as follows.

Firstly, the function Φ∞,1/ϵ,0, defined in (2.2.71), is continuous in the total variation

topology by Lemma 2.2.10(c). Also, note that Φ∞,1/ϵ,0 is exactly equals to Φ1/ϵ, the

function defined in (2.2.26). Now, by (2.2.73), we can combine the result from Propo-

sition 2.2.11 along with the contraction principle to claim that 1
nEn,ϵRn satisfies the

large deviation principle with the required speed and the required rate function in

Proposition 2.2.4.

2.2.3 The limit ϵ ↓ 0 for the LDP

In this section, we collect the results from [BBH01] to deduce the rate function when

ϵ ↓ 0. Proofs of the results are omitted since we can directly use the proof of that in

Section 2.4 [BBH01] where κ can be taken as an arbitrary number.

(a) We denote by I : M+
1 (ΛN ) → [0,∞] the standard large deviation rate function for
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the empirical distribution of the random walk:

I(ν) =

{
1
2

∫
ΛN

|∇ϕ|2(x)dx, if dµdx = ϕ2 with ϕ ∈ H1(ΛN )

∞, otherwise.
(2.2.75)

We further denote by Iϵ/d : M+
1 (ΛN ) → [0,∞] the following projection of I

(2)
ϵ/d, defined

in (2.2.24), onto M+
1 (ΛN ):

Iϵ/d(ν) = inf{I(2)ϵ/d(µ) : µ1 = ν}. (2.2.76)

Below is the result from Lemma 5 from [BBH01].

Lemma 2.2.12. Let (πt)t≥0 denote the semigroup of Brownian motion. Then, for all

ν ∈ ΛN , we have t 7→ It(ν)/t is non-increasing, with limt↓0 It(ν)/t = I(ν).

(b) We need an approximation of the function Φ1/ϵ : M+
1 (ΛN ×ΛN ) → [0,∞), defined

in (2.2.26), by the simpler functions Ψ1/ϵ : M+
1 (ΛN ) → [0,∞) defined by

Ψ1/ϵ(ν) =

∫
ΛN

dx
(
1− exp

[
− 2κ

ϵ

∫ ϵ

0
ds

∫
ΛN

pπs (x− y)ν(dy)
])
. (2.2.77)

Below is the result from Lemma 6 from [BBH01].

Lemma 2.2.13. For µ ∈ M+
1 (ΛN × ΛN ), and for any K > 0,

lim
ϵ↓0

sup
µ: d

ϵ
I
(2)
ϵ/d

(µ)≤K

∣∣Φ1/ϵ(µ)−Ψ1/ϵ(µ1)
∣∣ = 0.

(c) Next we define the function Γ : L+
1 (ΛN ) → [0,∞) by

Γ(f) =

∫
ΛN

dx
(
1− e−2κf(x)

)
. (2.2.78)

Below is the result from Lemma 7 from [BBH01].

Lemma 2.2.14. For any K > 0,

lim
ϵ↓0

sup
ν: d

ϵ
I
(2)
ϵ/d

(ν)≤K

∣∣∣Γ(dν
dx

)−Ψ1/ϵ(ν)
∣∣∣ = 0,

where dν/dx is the density of ν with respect to Lebesgue measure. If ν do not have

a density, then the supremum is infinite. Recall (2.2.24) and (2.2.76), the authors

of [BBH01] also point out that, if Iϵ/d(ν) <∞, then dν ≪ dx because ν⊗πϵ/d ≪ dx⊗dy.
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2.2.4 Proof of Proposition 2.2.1

In this section, we collect the results from Section 2.2.1, Section 2.2.2 and Section 2.2.3

to complete the proof of Proposition 2.2.1.

Proof. For any f : R+ → R bounded and continuous,

1. By Proposition 2.2.2, Proposition 2.2.4 and Varadhan’s lemma,

lim
n→∞

1

n
d−2
d

logE
(
exp

[
n

d−2
d f( 1nRn

)])
= lim

ϵ↓0
lim
n→∞

1

n
d−2
d

logE
(
exp

[
n

d−2
d f
(
En,ϵ

(
1
nRn

))])
= lim

ϵ↓0
sup

µ∈M+
1 (ΛN×ΛN )

{
f
(
Φ 1

ϵ
(µ)
)
− 1

ϵ I
(2)
ϵ/d(µ)

}
.

(2.2.79)

2. We will prove that

lim
ϵ↓0

sup
µ

{
f
(
Φ 1

ϵ
(µ)
)
− 1

ϵ I
(2)
ϵ/d(µ)

}
= lim

K→∞
lim
ϵ↓0

sup
µ: d

ϵ
I
(2)
ϵ/d

(µ)≤K

{
f
(
Φ 1

ϵ
(µ)
)
− 1

ϵ I
(2)
ϵ/d(µ)

}
.

(2.2.80)

Note that since f is bounded, we have

sup
µ
f
(
Φ 1

ϵ
(µ)
)
− 1

ϵ I
(2)
ϵ/d(µ) ≥ − sup |f |.

Now, we can see that any µ with 1
ϵ I

(2)
ϵ/d(µ) > 2 sup |f | can be discounted. There-

fore, by setting K = 2d sup |f |, we get the equation.

3. By Lemma 2.2.13, Equation (2.2.76), Lemma 2.2.14, Lemma 2.2.12 and Equation
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(2.2.75) respectively, we get:

lim
K→∞

lim
ϵ↓0

sup
µ: d

ϵ
I
(2)
ϵ/d

(µ)≤K

{
f
(
Φ 1

ϵ
(µ)
)
− 1

ϵ I
(2)
ϵ/d(µ)

}
= lim

K→∞
lim
ϵ↓0

sup
µ: d

ϵ
I
(2)
ϵ/d

(µ)≤K

{
f
(
Ψ 1

ϵ
(µ1)

)
− 1

ϵ I
(2)
ϵ/d(µ)

}
= lim

K→∞
lim
ϵ↓0

sup
ν: d

ϵ
Iϵ/d(ν)≤K

{
f
(
Ψ 1

ϵ
(ν)
)
− 1

ϵ Iϵ/d(ν)
}

= lim
K→∞

lim
ϵ↓0

sup
ν: d

ϵ
Iϵ/d(ν)≤K

{
f

(
Γ
(dν
dx

))
− 1

ϵ Iϵ/d(ν)

}
= sup

ν

{
f

(
Γ
(dν
dx

))
− 1

dI(ν)

}
= sup

ϕ∈H1(ΛN ):||ϕ||22=1

{
f
(
Γ(ϕ2)

)
− 1

2d
||∇ϕ||22

}
. (2.2.81)

Combining (2.2.79), (2.2.80), (2.2.81) and recalling (2.2.78), we can see that the claim

now follows from the inverse of Varadhan’s lemma proved in Bryc [Bry90].

2.3 Proof of Theorem 1.2.10

In this Section we complete the proof of Theorem 1.2.10. This will be done by deriving

the upper and lower bounds of the left hand side of (1.2.25) in Section 2.3.1 and

Section 2.3.2 respectively.

First of all, we recall and rename Proposition 1.2.13 which will be used in both proofs

of the upper and lower bounds.

Proposition 2.3.1. limN→∞ IκN (b) = Iκ(b) for all b > 0 where

• IκN (b) is given by the same formula as in (1.2.26) and (1.2.27) except that Rd is

replaced by ΛN .

• Iκ is the rate function defined in Theorem 1.2.10.

The proof of Proposition 2.3.1 is omitted since it is exactly the same as the proof of

Proposition 2 in Section 2.6 in [BBH01], where κ can be taken as arbitrary positive

number.
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2.3.1 The upper bound

Proof. We shall prove (1.2.28):

lim sup
n→∞

1

n
d−2
d

logP
(
1
nRn ≤ b

)
≤ −1

dI
κ(b).

Note that Proposition 2.2.1 implies the following :

Corollary 2.3.2. Let d ≥ 3. For every b > 0 and N > 0,

lim
n→∞

1

n
d−2
d

logP
(
1
nRn ≤ b

)
= −1

dI
κ
N (b).

Now, it is trivial that Rn ≤ Rn and therefore

1

n
d−2
d

logP
(
1
nRn ≤ b

)
≤ 1

n
d−2
d

logP
(
1
nRn ≤ b

)
,

for all b > 0, N > 0 and n > 0. As n → ∞, by using Corollary 2.3.2 and Proposi-

tion 2.3.1, we now complete the proof of (1.2.28).

2.3.2 The lower bound

Proof. We shall prove (1.2.29):

lim inf
n→∞

1

n
d−2
d

logP
(
1
nRn ≤ b

)
≥ −1

dI
κ(b).

Firstly, we let CNn1/d(n) be the event that the random walk (Sn : n = 1, 2, . . .) does

not hit the boundary ∂ΛNn1/d until time n. Then, clearly,

P
(
1
nRn ≤ b

)
≥ P

(
CNn1/d(n), 1nRn ≤ b

)
. (2.3.1)

Now, the right hand side involves the random walk on the torus with the restriction

that the walk does not hit the boundary. Now, we repeat the arguments of Section 2.2

on the event CNn1/d(n), i.e. with zero boundary conditions instead of the periodic ones

considered. Note that one major difference is that we can use the local central limit

theorem, see (2.1.2), without requiring Lemma 2.1.2. The arguments of the proofs of

Proposition 2.2.2 and Proposition 2.2.4, as well as Proposition 2.2.11 and the proof of

Proposition 2.2.1 in Section 2.2.4, are still valid. Therefore, we get

lim
n→∞

1

n
d−2
d

logP
(
1
nRn ≤ b|CNn1/d(n)

)
= −1

d Ĩ
κ
N (b) (2.3.2)
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where ĨκN (b) is the same rate function as in (1.2.26) and (1.2.27), except that ϕ is

satisfying supp (ϕ) ∩ ∂ΛN = ∅.
Now, let Sk = (S

(1)
k , . . . , S

(d)
k ). For the event CNn1/d(n),

P(CNn1/d(n)) = P
(
max
1≤k≤n

n−
1
2 ||Sk||∞ ≤ N

2 n
1
d
− 1

2
)

= P
( d∩
j=1

{
max
1≤k≤n

n−
1
2 |S(j)

k | ≤ N
2 n

2−d
2d
})

≥ P
( d∩
j=1

{
max
1≤k≤n

n−
1
2 |S̃(j)

k | ≤ N
2 n

2−d
2d
})

=
(
P
(
max
1≤k≤n

n−
1
2 |S̃(1)

k | ≤ N
2 n

2−d
2d
))d

, (2.3.3)

where
(
S̃
(1)
i

)
1≤i≤n, . . . ,

(
S̃
(d)
i

)
1≤i≤n are independent copies of one-dimensional simple

random walk, and we use the fact that

max
1≤k≤n

|S(j)
k | ≤ max

1≤k≤n
|S̃(j)
k |,

for all j = 1, . . . , d. By Theorem 2.13 in [Rév05], for any ε > 0 and large n,

P
(
max
1≤k≤n

n−
1
2 |S̃(1)

k | ≤ N
2 n

2−d
2d
)
≥ 4(1− ε)

π

[
exp(− π2

2N2
n

d−2
d )− 1

3
exp(− 9π2

2N2
n

d−2
d )
]

≥ 8(1− ε)

3π
exp

[
− π2

2N2
n

d−2
d

]
. (2.3.4)

Hence, by (2.3.3) and (2.3.4),

lim
n→∞

1

n
d−2
d

logP(CNn1/d(n)) ≥ − dπ2

2N2
=: −λN , (2.3.5)

from which we can see that limN→∞ λN = 0. Combining (2.3.1), (2.3.2) and (2.3.5),

we can deduce that

lim inf
n→∞

1

n
d−2
d

logP
(
1
nRn ≤ b

)
≥ −1

d Ĩ
κ
N (b)− λN for all N.

By the same type of argument as in the proof of Proposition 2.3.1, we can deduce that

lim
N→∞

ĨκN (b) = Iκ(b).

Hence, let N → ∞, we can deduce (1.2.29). Therefore, Theorem 1.2.10 follows.
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Chapter 3

Large deviation for the

intersections of independent

ranges

The structure of this section is as follows: In Section 3.1, we recall the notations and

standard compactification described earlier in Section 1.3.3. Then, we prove the large

deviation on the number of intersection made by two independent random walks on a

torus. This is an analogous result of Proposition 1.2.11. The main steps of the proof

are similar to that in Proposition 1.2.11 which is done in Section 2.2. The proof will

be divided into three main steps, and the structure is as described in Section 1.3.3.

Then, we start the proof of our main result, Theorem 1.3.7, in Section 3.2 where we

complete the lower bound proof of the theorem. Finally, we complete the proof of the

upper bound in Section 3.3. The proof will be divided into five steps and the structure

is described in Section 1.3.3.

3.1 LDP for the intersection of the ranges of random

walks on the torus

In this section, we recall the notations described at the beginning of Section 1.1 and

standard compactification described in Section 1.3.3. Then, we prove Proposition 1.3.9.

The material of the proof is mainly borrowed from Section 2.2 where we prove the large

deviation result for 1
nRn. The result will be used to complete the proof of Theorem 1.3.7

in Section 3.2 and Section 3.3.

Recall that (S1
n : n = 1, 2, . . .) and (S2

n : n = 1, 2, . . .) be two independent random
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walks on Zd with R1
n and R2

n the corresponding ranges of each random walks up to

time n. Also, recall that Jn is the number of intersection sites made by the two

random walks as described in (1.1.3). For N ∈ N even, recall that ΛN is the torus of

size N > 0,ΛN = [−N
2 ,

N
2 )

d with periodic boundary conditions. In this section, we let

the walks live on Λ
Nn

1
d
∩Zd with N fixed. In a similar way as in Section 2.2, we denote

(S1
n : n = 1, 2, . . .) and (S2

n : n = 1, 2, . . .) the corresponding random walks of (S1
i )1≤i≤n

and (S2
i )1≤i≤n on Λ

Nn
1
d
∩ Zd. Also, R1

n and R2
n represent, respectively, the number of

lattice sites visited by the random walks on the torus up to time n. Moreover, we have

Jn = ♯
{
{S1

j }1≤j≤n ∩ {S2
j }1≤j≤n

}
(3.1.1)

to be the number of intersection sites made by the two random walks up to time n.

We recall and rename Proposition 1.3.9 described in Section 1.3.3.

Proposition 3.1.1. 1
nJn satisfies the large deviation principle on R+ with rate n

d−2
d

and with rate function 1
d L̂

κ
N where

L̂κN (b) = inf
ϕ∈Φ̂κ

N (b)

[ ∫
ΛN

| ▽ ϕ|2(x)dx
]
, (3.1.2)

where

Φ̂κN (b) = {ϕ ∈ H1(ΛN ) :

∫
ΛN

ϕ2(x)dx = 1,

∫
ΛN

(
1− e−κϕ

2(x)
)2
dx ≥ b}. (3.1.3)

This result is an analogous of Proposition 1.2.11. The main steps of the proof will also

be similar to that in Proposition 1.2.11. We therefore divide the proof into three main

steps as described in Section 1.3.3. The proof follows closely Proposition 2 of [BBH04].

3.1.1 Approximation of 1
n
Jn by E(2)

n,ϵ
1
n
Jn

Similar to Section 2.2.1, we show that 1
nJn can be well approximated by its conditional

expectation. Recall the skeleton walks described in (1.3.43): For j = 1, 2 and ϵ > 0

fixed

Sjn,ϵ = {Sj
iϵn

2
d
}
1≤i≤ 1

ϵ
n

d−2
d
.

Also, recall that E(2)
n,ϵ = E(·|S1n,ϵ,S2n,ϵ) denotes the conditional expectation given S1n,ϵ,S2n,ϵ

and P(2)
n,ϵ denote the conditional probability given S1n,ϵ,S2n,ϵ. In this section, we show

that Jn can be approximated by its conditional expectation given S1n,ϵ,S2n,ϵ.
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Proposition 3.1.2. For all δ > 0,

lim
ϵ↓0

lim sup
n→∞

1

n(d−2)/d
logP

(
1
n |Jn − E(2)

n,ϵJn| ≥ δ
)
= −∞.

Proof. Set

βk = {Ski : i = 1, . . . , n}, k = 1, 2,

to be the lattice sites visited by the k-th random walk. Our aim is to use Proposi-

tion 2.2.2 in Section 2.2.1 for the proof. Note that we can deduce Proposition 3.1.2

from the following equations: Firstly,

lim
ϵ↓0

lim sup
n→∞

1

n(d−2)/d
logP

(
1
n

∣∣Jn − E(Jn|S1n,ϵ, β2)
∣∣ ≥ δ

∣∣β2) = −∞, (3.1.4)

uniformly in the realisation of β2. And, secondly

lim
ϵ↓0

lim sup
n→∞

1

n(d−2)/d
logP

(
1
n

∣∣E(Jn|S1n,ϵ, β2)− E(Jn|S1n,ϵ,S2n,ϵ)
∣∣ ≥ δ

)
= −∞. (3.1.5)

Combining (3.1.4) and (3.1.5), we get Proposition 3.1.2.

Proof of (3.1.4)

Note that the proof of (3.1.4) can be adapted from the proof of Proposition 2.2.2 as

follows: In the single random walk case, we are interested in how many sites on Zd are

visited by the random walk. For the intersection problem, we are interested in how

many elements in the set β2 are visited by random walk (S1
i )1≤i≤n, i.e. Jn can be

written as

1

n
♯

{{ 1
ϵ
n

d−2
d∪

i=1

W1
i

}
∩ β2

}
,

where W1
i is defined similar to (2.2.5). Then, it is obvious to see that we extend the

proof of Proposition 2.2.2 to this case, using Talagrand’s concentration inequality in

Lemma 2.2.3. In general, for any measurable set D ⊂ ΛNn1/d , the function

{W1
i }

1≤i≤ 1
ϵ
n

d−2
d

7→ ♯

{{ 1
ϵ
n

d−2
d∪

i=1

W1
i

}
∩D

}
,

is Lipschitz-continuous in the sense of (2.2.15) uniformly in D. Hence, (3.1.4) follows.
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Proof of (3.1.5)

By interchanging β1 and β2 in (3.1.4), we get

lim
ϵ↓0

lim sup
n→∞

1

n(d−2)/d
logP

(
1
n

∣∣Jn − E(Jn|β1,S2n,ϵ)
∣∣ ≥ δ|β1

)
= −∞, (3.1.6)

uniformly in the realisation of β1. Note that (3.1.6) implies that

lim
ϵ↓0

lim sup
n→∞

1

n(d−2)/d
logP

(
1
n

∣∣E(Jn|S1n,ϵ, β2)− E(Jn|S1n,ϵ,S2n,ϵ)
∣∣ ≥ δ|S1n,ϵ

)
= −∞, (3.1.7)

uniformly in the realisation of S1n,ϵ. By averaging over S1n,ϵ in (3.1.7), we finally get

(3.1.5).

3.1.2 The LDP for E(2)
n,ϵ

1
n
Jn

In this section, we prove the large deviation principle for E(2)
n,ϵ

1
nJn. Note that, similar to

the set up in Section 2.2.2, we will do a scaling of the torus from ΛNn1/d to ΛN to remove

n-dependence. We also have an issue to have random walks live on a scaled grids,

therefore we will make similar assumption as described at the beginning of Section 2.2.2:

Unless stated otherwise, S̃n = a will have the same meaning as S̃n = ⌊a⌋ where ⌊a⌋ =
(⌊a1⌋, . . . , ⌊ad⌋) with ⌊ai⌋ is the biggest integer less than or equal to ai. Also, recall

that, for k = 1, 2, S̃kn is the corresponding position of the random walk Skn on ΛN . Note

that, the scaling does not effect Jn.

We recall a similar empirical measure introduced in (1.3.44)

Lk,n,ϵ = ϵn−
d−2
d

1
ϵ
n

d−2
d∑

i=1

δ(
n−1/dSk

(i−1)ϵn2/d
,n−1/dSk

iϵn2/d

), k = 1, 2.

Also, recall the entropy function, I
(2)
ϵ : M+

1 (ΛN × ΛN ) → [0,∞] defined in (2.2.24)

I(2)ϵ (µ) =

{
h(µ|µ1 ⊗ πϵ) if µ1 = µ2

∞ otherwise,
(3.1.8)

where, as usual, h(·|·) denotes relative entropy between measures, µ1 and µ2 are the

two marginals of µ and πϵ(x, dy) = pπϵ (y − x)dy is the Brownian transition kernel on

ΛN defined in (2.2.25).
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Next, for η > 0, let Φ̂η : M+
1 (ΛN × ΛN ) → [0,∞) be the function

Φ̂η(µ1, µ2) =

∫
ΛN

dx
(
1− exp

[
− 2ηκ

∫
ΛN×ΛN

φϵ
(
y − x, z − x

)
µ1(dy, dz)

])
(
1− exp

[
− 2ηκ

∫
ΛN×ΛN

φϵ
(
y − x, z − x

)
µ2(dy, dz)

])
, (3.1.9)

where, we recall from (2.2.27) that,

φϵ(y, z) =

∫ ϵ
0 dsp

π
s/d(−y)p

π
(ϵ−s)/d(z)

pπϵ/d(z − y)
. (3.1.10)

Our main result in this section is the following:

Proposition 3.1.3. E(2)
n,ϵ

1
nJn satisfies a LDP on R+ with speed n

d−2
d and rate function

Jϵ/d(b) = inf
{1
ϵ

(
I
(2)
ϵ/d(µ1) + I

(2)
ϵ/d(µ2)

)
: µ1, µ2 ∈ M+

1 (ΛN × ΛN ), Φ̂1/ϵ(µ1, µ2) = b
}
.

This is an analogous result to Proposition 2.2.4.

Proof. We follow the first two steps as in the proof of Proposition 2.2.4 in page 54.

We approximate Jn by cutting small holes around the points S1
iϵn2/d ,S2

iϵn2/d , where

1 ≤ i ≤ 1
ϵn

d−2
d . By the similar procedure as in (2.2.30), we get

1

n

∣∣∣Jn − JK
n

∣∣∣ ≤ 2dc1K
d

ϵn2/d
, (3.1.11)

which tends to zero as n→ ∞ and therefore is negligible. Next, we recall the quantity

defined in (2.2.31). For y, z ∈ ΛN , define

qn,ϵ(y, z) = P
(
σ ≤ ϵn

2
d |S̃0 = y, S̃

ϵn
2
d
= z
)

= P
(
σ ≤ ϵn

2
d |S0 = yn

1
d ,S

ϵn
2
d
= zn

1
d
)
,

where σ = min{n : Sn = 0} = min{n : S̃n = 0}. Now, define W1,K
i and W2,K

i as similar

to (2.2.28). By the similar way as in (2.2.32), we can write the conditional expectation
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as:

E(2)
n,ϵ

1

n
JK
n

=
1

n

∑
x∈Λ

Nn
1
d

(
1− P(2)

n,ϵ

(
x /∈

1
ϵ
n

d−2
d∪

i=1

W1,K
i

))(
1− P(2)

n,ϵ

(
x /∈

1
ϵ
n

d−2
d∪

i=1

W2,K
i

))

=

∫
ΛN

dx

(
1− exp

(
1

ϵ
n

d−2
d

∫
ΛN×ΛN

L1,n,ϵ(dy, dz) log
[
1− qKn

−1/d

n,ϵ (y − ⌊xn
1
d ⌋n−

1
d , z − ⌊xn

1
d ⌋n−

1
d )
]))

×

(
1− exp

(
1

ϵ
n

d−2
d

∫
ΛN×ΛN

L2,n,ϵ(dy, dz) log
[
1− qKn

−1/d

n,ϵ (y − ⌊xn
1
d ⌋n−

1
d , z − ⌊xn

1
d ⌋n−

1
d )
]))

,

(3.1.12)

where for ρ > 0, we remind that qρn,ϵ(y, z) = qn,ϵ(y, z) if y, z /∈ Bρ, the centred ball of

radius ρ, and zero otherwise.

The next step is the key part of the proof. This is to show that the difference between

the number of intersections given their conditional expectation and the function of

µ1, µ2 defined in (3.1.9) can be written as the sum of a function of each measure

individually. This allows us to apply the result from Proposition 2.2.4 straightaway.

This method was done in pp. 753 of [BBH04]. We repeat the method from the paper:

For k = 1, 2 and x ∈ ΛN , we set

fk(x) := exp

(
1

ϵ
n

d−2
d

∫
ΛN×ΛN

Lk,n,ϵ(dy, dz)

log
[
1− qKn

−1/d

n,ϵ (y − ⌊xn
1
d ⌋n−

1
d , z − ⌊xn

1
d ⌋n−

1
d )
])

gk(x) := exp

(
− 2κ

ϵ

∫
ΛN×ΛN

φϵ(y − x, z − x)Lk,n,ϵ(dy, dz)

)
. (3.1.13)
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Then, we can write:

E(2)
n,ϵ

1

n
Jn − Φ̂1/ϵ(L1,n,ϵ, L2,n,ϵ)

=

∫
ΛN

dx
(
1− f1(x)

)(
1− f2(x)

)
−
∫
ΛN

dx
(
1− g1(x)

)(
1− g2(x)

)
=

∫
ΛN

dx
(
g1(x)− f1(x)

)(
1− f2(x)

)
+

∫
ΛN

dx
(
1− g1(x)

)(
g2(x)− f2(x)

)
.

(3.1.14)

Let k = 1, 2. Since qKn
−1/d

n,ϵ (·) is probability of an event, we have log
[
1 −

qKn
−1/d

n,ϵ (·)
]
≤ 0. This gives fk(x) is an exponential of a non-positive term.

Hence, we have |1− fk(x)| ≤ 1. Similarly, since φϵ(·) is non-negative func-

tion, this implies that gk(x) is also an exponential of a non-positive term.

Hence, |1− gk(x)| ≤ 1. Using these two facts along with (3.1.14), we get

|E(2)
n,ϵ

1

n
Jn−Φ̂1/ϵ(L1,n,ϵ, L2,n,ϵ)|

≤
∫
ΛN

dx|g1(x)− f1(x)|+
∫
ΛN

dx|g2(x)− f2(x)|. (3.1.15)

Therefore, we can do the approximations on L1,n,ϵ and L2,n,ϵ separately, which is exactly

done in Section 2.2.2. Next, we need to show that the left hand side of (3.1.15) converges

to zero as n → ∞ follows by ϵ ↓ 0. We consider each term on the right hand side of

(3.1.15) separately. Note that∫
ΛN

dx|g1(x)− f1(x)| =
∫
ΛN

dx|
(
1− f1(x)

)
−
(
1− g1(x)

)
|.

By recall f1(x) and g1(x) defined in (3.1.13) we get∫
ΛN

dx
∣∣(1− f1(x)

)
−
(
1− g1(x)

)∣∣
=

∫
ΛN

dx

∣∣∣∣∣
(
1− exp

(
1

ϵ
n

d−2
d

∫
ΛN×ΛN

L1,n,ϵ(dy, dz) log
[
1− qKn

−1/d

n,ϵ (y − ⌊xn
1
d ⌋n−

1
d , z − ⌊xn

1
d ⌋n−

1
d )
]))

−

(
1− exp

(
− 2κ

ϵ

∫
ΛN×ΛN

φϵ(y − x, z − x)L1,n,ϵ(dy, dz)

))∣∣∣∣∣,
we can see that this is exactly the same as | 1nEn,ϵR

1,K
n − Φ∞,1/ϵ,0(L1,n,ϵ)|, which has

already been studied in Section 2.2.2. Hence we can immediately apply the result from

Section 2.2.2, namely (2.2.72), to deduce the large deviation principle for each term.
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Note that, the similar arguments also apply for the second term on the right hand side

of (3.1.15).

Finally, we can deduce the rate function in Proposition 3.1.3 since we have the sum of

two explicit rate functions for each random walk.

3.1.3 The limit ϵ ↓ 0 and the proof of Proposition 3.1.1

The structure of this section is similar as what was done in Section 2.2.3 and Sec-

tion 2.2.4. We first introduce more approximate functions. Then, we complete the

proof of Proposition 3.1.3.

Set µ1, µ2 ∈ M1(ΛN ),

Ψ̂1/ϵ(µ1, µ2) =

∫
ΛN

dx
(
1− exp

[
− 2κ

ϵ

∫ ϵ

0
ds

∫
ΛN

ps(x− y)µ1(dy)
])

×
(
1− exp

[
− 2κ

ϵ

∫ ϵ

0
ds

∫
ΛN

ps(x− y)µ2(dy)
])
, (3.1.16)

and for f1, f2 ∈ L+
1 (ΛN ),

Γ̂(f1, f2) =

∫
ΛN

dx
(
1− e−2κf1(x)

)(
1− e−2κf2(x)

)
. (3.1.17)

Also, recall (2.2.75) and (2.2.76) that Iϵ is the rate function of the discrete-time Markov

chain on ΛN with Brownian transition kernel pϵ, i.e.,

Iϵ(ν) = inf(I(2)ϵ (µ) : µ1 = ν) (3.1.18)

Next, we finalise the proof of Proposition 3.1.1. This will be done by obtaining the

limit when ϵ goes to zero.

Proof. By Proposition 3.1.2, Proposition 3.1.3 and Varadhan’s lemma, for f : R+ → R
bounded and continuous, we get

lim
n→∞

1

n
d−2
d

logE
(
exp

[
n

d−2
d f( 1nJn

)])
= lim

ϵ↓0
sup

µ1,µ2∈ΛN×ΛN

{
f
(
Φ̂1/ϵ(µ1, µ2)

)
− 1

ϵ

(
I
(2)
ϵ/d(µ1) + I

(2)
ϵ/d(µ2)

)}
.

(3.1.19)

Then, we repeat the approximation arguments similar to Section 2.2.4 and we get from
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(3.1.19) that

lim
n→∞

1

n
d−2
d

logE
(
exp

[
n

d−2
d f( 1nJn

)])
= lim

K→∞
lim
ϵ↓0

sup
ν1,ν2:

d
ϵ
Iϵ/d(ν1)≤K, dϵ Iϵ/d(ν2)≤K

{
f
(
Ψ1/ϵ(ν1, ν2)

)
− 1

ϵ

(
Iϵ/d(ν1) + Iϵ/d(ν2)

)}
= sup

i=1,2:ϕ∈H1(ΛN ),||ϕi||22=1

{
f
(
Γ̂(ϕ21, ϕ

2
2)
)
− 1

2d

(
||∇ϕ1||22 + ||∇ϕ2||22

)}
. (3.1.20)

Using Bryc’s lemma [Bry90], we see from (3.1.20) that 1
nJn satisfies the large deviation

principle with speed n(d−2)/d and with rate function

L̂(b) = inf
{ 1

2d

(
||∇ϕ1||22 + ||∇ϕ2||22

)
:

||ϕ1||22 = ||ϕ2||22 = 1,

∫
ΛN

dx
(
1− e−2κϕ21(x)

)(
1− e−2κϕ22(x)

)
≥ b
}

= inf
{1
d
||∇ϕ||22 : ||ϕ||22 = 1,

∫
ΛN

dx
(
1− e−κϕ

2(x)
)2

≥ b
}
. (3.1.21)

Note that the variational problem reduces to the diagonal ϕ1 = ϕ2 in the last equality

by (3.1.22) and (3.1.23) below. We set ϕ2 = 1
2(ϕ

2
1 + ϕ22) and note that

ϕ =
√

1
2(ϕ

2
1 + ϕ22) ≤

1√
2
(ϕ1 + ϕ2).

By using the relations in (1.3.34) and (1.3.35), we get

|∇ϕ|2 ≤ 1
2 |∇ϕ1|

2
2 +

1
2 |∇ϕ2|

2
2. (3.1.22)

Next, we use that fact that x 7→ −e2κϕ2(x) is concave to show that

(
1− e−2κϕ2(x)

)2
= 1− 2e−2κϕ2(x) + e−4κϕ2(x)

≥ 1−
(
e−2κϕ21(x) + e−2κϕ22(x)

)
+ e−2κϕ21(x)e−2κϕ22(x)

≥
(
1− e−2κϕ21(x)

)(
1− e−2κϕ22(x)

)
. (3.1.23)

Note that (3.1.21) is the required rate function for Proposition 3.1.1, and this completes

the proof.
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3.2 The lower bound in Theorem 1.3.7

In this section, we complete the proof of (1.3.39):

lim inf
n→∞

1

n(d−2)/d
logP( 1nJn ≥ a) ≥ −1

dL
κ(a), (3.2.1)

where Lκ(a) is as given in (1.3.26) and (1.3.27). The proof is similar to the proof in

Section 2.3.2 and the idea of the proof follows from Section 2.2 of [BBH04].

Proof. Firstly, we let C2
Nn1/d(n) be the event that both of the two random walks do

not hit the boundary of
[
− N

2 n
1
d , N2 n

1
d

)d
, hence stay in the torus of size Nn1/d, until

time cn. Clearly,

P( 1nJn ≥ a) ≥ P
(
1
nJn ≥ a,C2

Nn1/d(n)
)

(3.2.2)

Now, similar to Section 2.3.2, we repeat the argument that led to Proposition 3.1.1,

with the restriction on the event C2
Nn1/d(n). We then get

lim
n→∞

1

n(d−2)/d
logP

(
1
nJn ≥ a|C2

Nn1/d(n)
)
= −1

d L̃
κ
N (a), (3.2.3)

where L̃κN (a) is the same rate function as in (3.1.2) and (3.1.3), except that ϕ is sat-

isfying the extra restriction supp (ϕ) ∩ ∂
{
− (N2 n

1
d , N2 n

1
d )d
}
= ∅. Next, we recall from

Section 2.3.2 that CNn1/d(n) is the event that a random walk does not hit the boundary

of
[
− N

2 n
1
d , N2 n

1
d

)d
. By a similar calculation as in Section 2.3.2, we get

lim
n→∞

1

n
d−2
d

logP
(
C2
Nn1/d(n)

)
= lim

n→∞

1

n
d−2
d

logP
(
CNn1/d(n)

)2
≥ −dπ

2

N
= −2λN , (3.2.4)

where the inequality comes from (2.3.5) and λN is also defined in (2.3.5). We also

remind that limN→∞ λN = 0. Next, combine (3.2.2)-(3.2.4), we get

lim inf
n→∞

1

n
d−2
d

logP
(
1
nJn ≤ a

)
≥ −1

d L̃
κ
N (a)− 2λN for all N > 0. (3.2.5)

Now, let N → ∞ and note that by Proposition 1.3.10, we get

lim
N→∞

L̃κN (a) = Lκ(a). (3.2.6)

We will not prove Proposition 1.3.10 but the can be done in a similar way as in

Proposition 1.2.13. This completes the proof of (1.3.39).
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3.3 The upper bound in Theorem 1.3.7

In this section, we prove (1.3.38). For the ease of reading, we translate the equation to

the following proposition:

Proposition 3.3.1. Let d ≥ 3. Then, for every a > 0,

lim sup
n→∞

1

n(d−2)/d
logP( 1nJn ≥ a) ≤ −1

dL
κ(a), (3.3.1)

where Lκ(a) is as given in (1.3.26) and (1.3.27).

The proof of Proposition 3.3.1 is divided into five steps. The structure of the proof is

as described in Section 1.3.3.

3.3.1 Preliminaries

We divide this section into four main steps. In the first step, we introduce the models

which will be used through out the proof. In Step 2 and Step 3, we define important

quantities of the proof. Finally, to prepare for the proof in later sections, we introduce

and prove a few results of the quantities we described in first three steps.

(1) We will make a partition of Zd by the following: Assume N > 0 and 0 < η < N/2.

Define ΘNn1/d to be a d-dimensional box of side-length Nn1/d i.e.

ΘNn1/d =
[
− 1

2
Nn1/d,−1

2
Nn1/d

)d
.

Then, this will partition Zd into Nn1/d-boxes as:

Zd =
∪
z∈Zd

ΘNn1/d(z), (3.3.2)

where ΘNn1/d(z) = ΘNn1/d +zNn1/d. This box partition will be used throughout the

section.

Now, we may also partition Zd into d-dimensional slices, by the following: For each

direction k ∈ {1, . . . , d}, we can separate Zd into d-dimension slices, t(k) with width

ηn1/d in direction k and infinite width in the other directions, i.e.

t(k)m =
{
(z1, . . . , zd) ∈ Zd : zk ∈

[
− η

2n
1/d +mηn1/d, η2n

1/d +mηn1/d
)}
, m ∈ Z.

(3.3.3)
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Figure 3-1: Partition of Z2 into boxes of sidelength Nn1/d and copies of Qη,N,n defined
in (3.3.4) and (3.3.5). The shaded area represents the 1

2ηn
1/d-neighborhood of the faces

of the boxes. The picture on the left shows the copy Q
(0,0)
η,N,n, while the copy on the

right represent Q
(0,1)
η,N,n.

For example in direction 1, we can have slices as:

. . . ,
[
− 3η

2
n1/d,−η

2
n1/d

)
× Zd−1,

[
− η

2
n1/d,

η

2
n1/d

)
× Zd−1,

[η
2
n1/d,

3η

2
n1/d

)
× Zd−1, . . . .

These slices will be important tools later on.

(2)We introduce copies of the box partition. LetQη,N,n denote the
1
2ηn

1/d-neighborhood

of the faces of the boxes, i.e.

Qη,N,n =
∪
z∈Zd

((
ΘNn1/d \Θ(N−η)n1/d

)
+ zNn1/d

)
(3.3.4)

Assume N/η is an even integer. If we shift Qη,N,n by ηn1/d for N/η times in each of

the d directions and in every possible combinations we obtain (N/η)d copies of Qη,N,n:

Qxη,N,n = Qη,N,n + xηn
1
d , x = (x1, . . . , xd) ∈

{
0, . . . , Nη − 1

}d
, (3.3.5)

whereQxη,N,n is the shift, which was made by shiftingQη,N,n by xkηn
1/d in each direction

k. Each point of Zd is contained in exactly (N/η)d− (N/η−1)d copies. See Figure 3-1,

for example.

Now, we can see that each copy of Qη,N,n can be formed by forming the union of

particular slices in (3.3.3). However, the most important remark is that each slice is

contained in exactly (N/η)d−1 copies.
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(3) We are going to look at how often the random walks (S1
i )1≤i≤n and (S2

i )1≤i≤n cross

the slices in direction k ∈ {1, . . . , d} of width ηn1/d. Define

B(k) =
{
(z1, . . . , zd) ∈ Zd : zk =

(η
2
+ ηa

)
n1/d for some a ∈ Z

}
, (3.3.6)

to be set of points on the boundary hyperplanes between slices on direction k. Also,

for x = (x1, . . . , xd) ∈ B(k), define

B(k)
x =

{
(z1, . . . , zd) ∈ Zd : zk = xk

}
(3.3.7)

to be set of points on the boundary hyperplane that contains x.

Obviously, B(k)
x ⊂ B(k). Also, for i = 1, 2, define

T
i,(k)
1 = min{m > 0 : Sim ∈ B(k)}

T
i,(k)
2 = min{m > T

i,(k)
1 : Sim ∈ B(k),B(k)

Si
m
̸= B(k)

Si

T
i,(k)
1

},

...
...

T
i,(k)
j = min{m > T

i,(k)
j−1 : Sim ∈ B(k),B(k)

Si
m
̸= B(k)

Si

T
i,(k)
j−1

}, (3.3.8)

to be the steps taken to cross the slices in direction k (of width ηn1/d) of the random

walks. Now, we are going to define the crossings on the slices of width ηn1/d in direction

k. Let

Υ
i,(k)
j = max{T i,(k)j ≤ m < T

i,(k)
j+1 : Sim ∈ B(k)

Si

T
i,(k)
j

}, (3.3.9)

to be the last time that the random walk i hit the current boundary hyperplane B(k)

Si

T
i,(k)
j

,

before hitting the new boundary hyperplane B(k)

Si

T
i,(k)
j+1

. Now, we can see that the path

{Sim}Υi,(k)
j ≤m≤T i,(k)

j+1

lies fully inside a slice of length ηn1/d in direction k. We call this path the crossing of

the slice. Now, define C
(k)
n (η) to be the total number of crossings made by two random

walks up to time n in direction k. It is clear that

C(k)
n (η) = max{j : T 1,(k)

j−1 ≤ n}+max{j : T 2,(k)
j−1 ≤ n}. (3.3.10)
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Finally, define

Cn(η) =

d∑
k=1

C(k)
n (η) (3.3.11)

to be the total number of crossings made by the random walks. Now, we introduce the

central hyperplanes on the slices of width ηn1/d on direction k, which lie at the centre

of these slices, i.e.

H(k) =
{
(z1, . . . , zd) ∈ Zd : zk = aηn1/d for some a ∈ Z

}
. (3.3.12)

Obviously, for each crossing, the random walk will hit the central hyperplane of the

slice. Now, we define the entrance time of a crossing to be the first time when the

crossing hits the central hyperplane. Similarly, we define the exit time of a crossing to

be the last time where the crossing hits the central hyperplane. The reason to introduce

the central hyperplanes is that, we will do reflections on the path of the walks on these

central hyperplanes.

Next, for a slice H
(k)
1 of width ηn1/d and its central hyperplane, H(k)

1 , define

• A good excursion of H(k)
1 to be the path of a random walk that starts from an

exit time of H(k)
1 of any crossing of H

(k)
1 and ends at the entrance time of H(k)

1 of

the next crossing on H
(k)
1 .

• A bad path of H(k)
1 to be the path of a random walk that starts from the entrance

time of H(k)
1 of any crossing of H

(k)
1 and ends at the exit time of the same crossing.

• An exit excursion of H(k)
1 to be the path of a random walk that starts from the

last time that the random walk hits H(k)
1 .

• An entrance excursion of H(k)
1 to be the path of a random walk that starts from

time zero and ends at the first entrance time the walk hits H(k)
1 .

In order to do the reflection on H(k)
1 , we only reflect some of the good excursions, exit

excursions and entrance excursions of H(k)
1 , leaving all bad paths unreflected. Which

excursions that are actually reflected will become clear in Reflection argument 3.3.3.

(4) At a later step of the proof, we are going to do the reflection of the paths in

various hyperplanes in order to move them inside a large time-dependent box. We now

introduce the lemma which will be needed for the estimates. Define the event

On =
{
Skj ∈

[
− n, n

]d
, 0 ≤ j ≤ n, k = 1, 2

}
(3.3.13)

Lemma 3.3.2. (a) limn→∞
1

n(d−2)/d
logP([On]

c) = −∞

93



(b) limn→∞
1

n(d−2)/d
logP

(
1
nJn > 2κ

)
= −∞.

(c) For every M > 0,

lim sup
η→∞

lim sup
n→∞

1

n(d−2)/d
logP

(
Cn(η) >

dM

η
n

d−2
d

)
= −C(M), (3.3.14)

with limM→∞C(M) = ∞.

We abbreviate the last two events as:

Vn =
{

1
nJn ≤ 2κ

}
, (3.3.15)

Cn,M,η =
{
Cn(η) ≤

dM

η
n

d−2
d
}
. (3.3.16)

The lemma implies the following: (i) Until time n, the random walks can not travel

further than the distance n (ii) the number of intersection points cannot be too large,

and (iii) the total number of crossings in (3.3.11) cannot be too large.

Proof. (a) This is trivial since the random walks can not escape from the box
[
−n, n

]d
.

This gives P([On]
c) = 0 and hence Lemma 3.3.2 (a).

(b) Note that Jn ≤ R1
n. Using Kesten and Hamana’s result in Theorem 1.2.6, we have

lim
n→∞

1

n
logP(R1

n ≥ 2κn) = −ψ(2κ), (3.3.17)

where ψ(2κ) is positive and finite. Next, since n≫ n(d−2)/d, it can be deduced that

lim
n→∞

1

n(d−2)/d
logP(R1

n ≥ 2κn) = −∞. (3.3.18)

Therefore, we can deduce Lemma 3.3.2 (b).

(c) Since

P
(
Cn(η) >

dM

η
n

d−2
d

)
≤ dP

(
C1
n(η) >

M

η
n

d−2
d

)
, (3.3.19)

it is enough to estimate the η-crossings perpendicular to direction 1. For i = 1, 2, let

T̃ ik = T ik − T ik−1 with T0 = 0. Then, T̃1, T̃2, . . . denote the independent and identically1

distributed crossing time of the slices. Since, for both random walks, all the crossings

1By (3.3.8), the distribution of T̃1 is different from T̃2, T̃3, . . .. However, we can deal with this easily,
and the rest of the proof remains valid.
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must occur before time n, we have

P
(
C(1)
n (η) >

M

η
n

d−2
d

)
≤ 2P

( M
2η
n

d−2
d∑

i=1

T̃
(1)
i < n

)
. (3.3.20)

Now, let τ̃1, τ̃2, . . . denote the independent and identically distributed crossing time

taken by the one-dimensional random walk to cross the one-dimensional slice of width

ηn1/d. Obviously,

P
( M

2η
n

d−2
d∑

i=1

T̃i < n
)
≤ P

( M
2η
n

d−2
d∑

i=1

τ̃i < n
)
. (3.3.21)

Now, note that the event
{∑M

2η
n

d−2
d

i=1 τ̃i < n
}
implies that at least half of one-dimensional

η-crossing time is less than 4η
M n

2/d. Since all the time are independent and identically

distributed, we have,

P
( M

2η
n

d−2
d∑

i=1

τ̃i < n
)
≤ ξ
(
P(τ̃1 < 4η

M n
2/d)

)M
4η
n

d−2
d

, (3.3.22)

where ξ =

(
⌊M2ηn

d−2
d ⌋

⌊M4ηn
d−2
d ⌋

)
is the number of permutation to choose ⌊M2ηn

d−2
d ⌋ events out

of ⌊M4ηn
d−2
d ⌋. Note that, by Stirling’s formula,

log ξ =
M

2η
n

d−2
d log 2 + o(M2ηn

d−2
d ). (3.3.23)

Now, let Mk = max1≤i≤k |S1
i |. From (3.3.22), we can deduce that

P
(
τ̃1 <

4η
M n

2/d
)
= P

(
M 4η

M
n2/d > ηn1/d

)
= P

(
1√

4η
M n

2/d
M 4η

M
n2/d >

√
Mη

2

)
. (3.3.24)

Now, by Theorem 2.13 from [Rév05] we have, for any ε > 0,

P
(

1√
4η
M n

2/d
M 4η

M
n2/d >

√
Mη

2

)
≤ (1 + ε)

8

2πMη
exp

(
− Mη

8

)
. (3.3.25)
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Hence, from (3.3.19) - (3.3.25) we can deduce that

P
(
Cn(η) >

dM

η
n

d−2
d

)
≤ 2ξd

[
(1 + ε)

8√
2πMη

exp
(
− Mη

8

)]M
4η
n

d−2
d

= 2ξd exp
(
− M2

32
n

d−2
d

)[
(1 + ε)

8√
2πMη

]M
4η
n

d−2
d

. (3.3.26)

Therefore, by (3.3.23) and (3.3.26),

lim sup
n→∞

1

n(d−2)/d
logP

(
Cn(η) >

dM

η
n

d−2
d

)
≤ M

2η
log 2− M2

32
+
M

4η
log

[
(1 + ε)

8√
2πMη

]
+ o
(M
2η

)
,

and therefore,

lim sup
η→∞

1

n(d−2)/d
lim sup
n→∞

logP
(
Cn(η) >

dM

η
n

d−2
d

)
≤ −M

2

32
.

Hence, we get the claim in (3.3.14) with C(M) =
M2

32
.

3.3.2 Counting the intersections

We start analysing Qxη,N,n introduced in (3.3.5) and describe the set up to complete

the proof in Section 3.3.5.

(a) For x ∈
{
0, . . . , Nη − 1

}d
, define

Cn(Q
x
η,N,n) =

2∑
i=1

d∑
k=1

max{j:T i,(k)
j−1 ≤n}∑

l=0

1{(Sij)T i,(k)
l ≤j≤T i,(k)

l+1

⊂ Qxη,N,n} (3.3.27)

to be the number of crossings in Qxη,N,n up to time n, and

Jn(Q
x
η,N,n) = ♯

{
{S1

i }1≤i≤n ∩ {S2
i }1≤i≤n ∩Qxη,N,n

}
, (3.3.28)

to be the number of intersection points in Qxη,N,n up to time n. Now, by summing

the total number of crossings for all copies of Qη,N,n, each slice will be used exactly
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(N/η)d−1 times. Hence, on the event Cn,M,η ∩ Vn, we have

∑
x∈{0,...,N/η−1}d

Cn(Q
x
η,N,n) ≤

dMn
d−2
d

η

(N
η

)d−1
.

∑
x∈{0,...,N/η−1}d

1
nJn(Q

x
η,N,n) ≤ 2κ

(N
η

)d−1
. (3.3.29)

Note that there exists a shift X ∈ {0, . . . , Nη − 1}d such that

Cn(Q
X
η,N,n) ≤ 2dM

N n
d−2
d , (3.3.30)

1
nJn(Q

X
η,N,n) ≤ 4κ η

N . (3.3.31)

Our aim now is to use a reflection procedure introduced in [BBH04] in order to control

the random walks, and these two bounds will play crucial roles later. Next, we pick

η =
√
N andM = logNand use the fact that for large N , both the number of crossings

and the number of intersection points in QXη,N,n are small. This fact will allow us to

control both the entropy associated with the reflections and the change in the number

of intersection caused by the reflections.

(b) Before we describe the reflection procedure, we need some set up. Recall (3.3.5),

let xX√
N,N,n

denotes the shift that QX√
N,N,n

is obtained from Q√
N,N,n. For z ∈ Zd, we

define

1
nJ

X
n,N (z) =

1
n♯
{
{S1

j }1≤j≤n ∩ {S2
j }1≤j≤n ∩ΘX

Nn1/d(z)
}
,

1
nJ

X
n,
√
N,N,out

(z) = 1
n♯
{
{S1

j }1≤j≤n ∩ {S2
j }1≤j≤n ∩QX√N,N,n(z)

}
,

1
nJ

X
n,
√
N,N,in

(z) = 1
n♯
{
{S1

j }1≤j≤n ∩ {S2
j }1≤j≤n ∩ [ΘX

Nn1/d(z) \QX√N,N,n(z)]
}
, (3.3.32)

where

ΘX
Nn1/d(z) = ΘNn1/d + zNn1/d + xX√

N,N,n

QX√
N,N,n

(z) = [ΘNn1/d \Θ(N−
√
N)n1/d ] + zNn1/d + xX√

N,N,n
. (3.3.33)

Next, define

ZX
ϵ,N =

{
z ∈ Zd : 1

nR
1,X
n,N (z) > ϵ or 1

nR
2,X
n,N (z) > ϵ

}
, (3.3.34)

to be the set of popular boxes, where

Rk,Xn,N (z) = ♯
{
{Skj }1≤j≤n ∩ (ΘX

Nn1/d(z))
}
, k = 1, 2. (3.3.35)
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Also, we define ZXϵ,N := ♯{ZX
ϵ,N}, and define the event

R(2)
n =

{
1
nR

1
n ≤ 2κ, 1nR

2
n ≤ 2κ

}
, (3.3.36)

where R1
n and R2

n is the number of distinct sites on Zd visited by each random walk up

to time n. Note that, trivially, R(2)
n ⊂ Vn. Moreover, by (3.3.34) and (3.3.36), on the

event R(2)
n we have

♯{ZX
ϵ,N} ≤ 4κ/ϵ. (3.3.37)

Also, by (3.3.18) we get

lim
n→∞

1

n
d−2
d

logP
(
[R(2)

n ]c
)
= −∞. (3.3.38)

(c) Now, we described the reflection procedure introduced in [BBH04]:

Reflection argument 3.3.3.

We start by a labelling procedure:

L1. We will deal with the reflection for each direction k ∈ {1, . . . , d} separately. For

each direction k, we will partition Zd into slices T
(k)
m of width Nn1/d, i.e. for

m ∈ Z,

T(k)
m :=

{
(z1, . . . , zd) ∈ Zd :

zk ∈
[
− N

2 n
1/d +mNn1/d + xX√

N,N,n
, N2 n

1/d +mNn1/d + xX√
N,N,n

)}
.

(3.3.39)

L2. We consider the collection of the popular boxes ZXϵ,N in (3.3.34). From now on,

we will only consider the slices that contain at least one popular box (we will

call these slices the popular slices). Assume there are R such slices. Note that

R ≤ ZXϵ,N . Now, we will label the popular slices by H
(k)
1 , . . . , H

(k)
R to be the

popular slices evaluated from the left to the right.

Next, we define d1Nn
1/d, . . . , dR−1Nn

1/d to be the distances between the successive

popular slices, i.e. if H
(k)
1 is connected to H

(k)
2 , then d1 = 0.

The reason that we introduce slices T
(k)
m of width Nn1/d is that each slice of T

(k)
m

corresponds to
∪

{z:zk=m}Θ
X
Nn1/d(z) in direction k. Also, the unions of 1

2η-neighborhood

of the faces of the boxes make slices of width ηn1/d. Moreover, the central hyperplanes

of the slices of width ηn1/d, see (3.3.12), will play the role of boundary hyperplanes
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between successive slices T
(k)
m . See Figure 3-1.

Now, we are ready to do the reflecting procedure via the following explanations:

R1. We first consider d1. If d1 ≥ 1, define the central hyperplane H(k)
1 uniquely by

the following properties:

• H(k)
1 is amongst the central hyperplanes of slices of width ηn1/d, located

between successive slices T
(k)
m , that lie between H

(k)
1 and H

(k)
2 .

• Reflecting on H(k)
1 , the slice H

(k)
2 lands to the left of H

(k)
1 at a distance either

0 or N (depending whether d1 is odd, respectively, even).

We then do the reflection on H(k)
1 . If d1 = 0, then we do not reflect the walks.

R2. To do the reflection, we only reflect on those good excursions, exit excursions and

entrance excursions (see Page 93) that lie fully on the right of H(k)
1 . We do not

reflect bad paths.

R3. The effect of the first reflecting procedure (R1) is that slices H
(k)
1 and H

(k)
2 fall

inside a slice of side-length 3Nn1/d, no matter whether we do the reflection or

not.

R4. Now, we repeat the reflecting procedure with d2. If d2 ≥ 3, we define the central

hyperplane H(k)
2 uniquely by the following properties:

• H(k)
2 is amongst the central hyperplanes of slices of width ηn1/d, located

between successive slices T
(k)
m , that lie between H

(k)
2 and H

(k)
3 .

• Reflecting onH(k)
2 , the sliceH

(k)
2 lands to the right(left depending on whether

there is a reflection on Step R1 or not) of the slice of width 3Nn1/d that

contains H
(k)
1 and H

(k)
2 (see R3), at a distance either 0, N or 2N .

We then do the path reflection similar to R2 on H(k)
2 . Note that if we make reflec-

tion from the first reflection procedure on R1, then we look for good excursions,

exit excursions and entrance excursions that lies fully on the left of H(k)
2 . If we

do not reflect from the first reflection procedure, we looks for good excursions,

exit excursions and entrance excursions on the right of H(k)
2 . If d2 ≤ 2, then we

do not reflect the walks.

R5. The effect of the second reflecting procedure is that the slice H
(k)
1 ,H

(k)
2 and H

(k)
3

fall inside a slice of side-length 6Nn1/d.

R6. Repeat the arguments for d3, . . . , dR−1 i.e. compare whether di ≥ 3 × 2i−2(do

reflect) or di ≤ 3× 2i−2 − 1(do not reflect).
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R7. After all reflections have been made in direction 1, we repeat the label procedure

and reflection procedure for direction 2, . . . , k.

It is clear by Figure 3-1 that the path reflection must be made at the central hyper-

planes, in order to control the entropy in
∪
z∈Zd

(
ΘX
Nn1/d(z) \QX√N,N,n(z)

)
, the volume

defined in (3.3.33).

The example in Figure 3-3 shows the global picture for a reflection procedure in Z2,

while Figure 3-2 shows the local picture of what happens to a path when the reflection

at the central hyperplanes has been made.

R1

S

T

R1

S

T

Figure 3-2: To reflect the random walk on the right of the central hyperplane R1, we
only reflect a good excursion that lies fully on the right of R1, which is the path of
random walks from an exit time S to the next entrance time T .
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(i) (ii)

H1 H2 H3 H4 H1H2H3H4

(iii) (iv)

H1H2H3H4 H1H2H3 H4

Figure 3-3: Reflection procedure on Z2 in direction 1 from top-left, top-right, bottom-
left and bottom-right respectively: The popular boxes are represented by the black
boxes. In direction 1, we have such 4 popular slices labelled H1, . . . , H4 from left to
right respectively. We can see that d1 = 2, d2 = 0, d3 = 6 (i) Since d1 ≥ 1, we make a
reflection on the bold hyperplane. (ii) The reflection makes all the popular slices move
to the left of H1 and the new distance between H1 and H2 is 1. This makes H1 and H2
lie inside a slice of width 3Nn1/d, represented by the green boundaries, in direction 1.
(iii) Since d2 ≤ 3 we do not make a reflection and H1, H2 and H3 lie inside a slice of
width 6Nn1/d. Next, since d3 ≥ 6, we do a reflection on the bold hyperplane. (iv) The
reflections made H1, H2, H3 and H4 lie inside a slice of width 12Nn1/d in direction 1.
After doing the similar procedure in direction 2, all the popular boxes will lie inside a
12Nn1/d box.
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(d) We end the section by introduce two results from Reflection argument 3.3.3.

Proposition 3.3.4. For N ≥ 1 fixed and ϵ, δ > 0,

(a) By Reflection argument 3.3.3, the number of reflections made in the hyperplanes

of QX√
N,N,n

is at most ♯{ZXϵ,N} − 1. After all the reflections have been made, all

the intersection sets end up in disjoint boxes of sidelength Nn1/d inside a large

box of sidelength 2Z
X
ϵ,NNn1/d. Therefore, by projecting the reflected random walks

on Λ
2
ZX
ϵ,NNn1/d

this will not affect the intersection
∑

z∈ZX
ϵ,N

1
nJ

X
n,
√
N,N,in

(z).

(b) Let R denotes the reflection transformation from Reflection argument 3.3.3 and

P̃ the path measure for the two random walks defined by P̃ (A) = P (R−1A) where

A is the set of paths of random walks. On the event, On ∩ Cn,logN,√N ∩R(2)
n , the

cost of doing the reflections is at most exp[γNn
d−2
d + O(log n)] as n → ∞, with

limN→∞ γN = 0, i.e.,

dP̃/dP ≤ exp[γNn
(d−2)/d +O(log n)].

Proposition 3.3.5. There exists an N0 such that for every 0 < ϵ ≤ 1 and δ > 0,

lim sup
n→∞

sup
N≥N0

1

n(d−2)/d
logP

({ 1

n

∑
z∈Zd\ZX

ϵ,N

JXn,N > δ
}
∪
{ 1

n

∑
z∈Zd

JX
n,
√
N,N,out

> δ
})

≤ −K(ϵ, δ), (3.3.40)

with limϵ↓0K(ϵ, δ) = ∞ for any δ > 0.

Note that (3.3.40) imply, by the complement of the event, that

0 ≤ 1
nJn −

1
n

∑
z∈ZX

ϵ,N

JX
n,
√
N,N,in

(z) ≤ 2δ. (3.3.41)

Note that the sum in (3.3.41) is invariant under the Reflection argument 3.3.3 and

therefore the estimate in (3.3.41) implies that most of the intersection points are unaf-

fected after the reflections have been made.

3.3.3 Proof of Proposition 3.3.4

We proceed the proof of Proposition 3.3.4.

Proof. (a) After we consider the reflection procedure of all slices, we get all the R slices

fit inside a slice of sidelength 3×2R−2Nn1/d which is less than ≤ 2RNn1/d. After the re-

flection procedure has been made in direction 2, . . . , k, all the popular boxes fit inside a

102



box of size 2Z
X
ϵ,NNn1/d. Note that by making reflections at the central hyperplanes, this

make no effect on the number of intersections made in
∪
z∈Zd

(
ΘX
Nn1/d(z)\QX√N,N,n(z)

)
,

the volume defined in (3.3.33).

(b) Note that the cost of adapting the reflections is bounded, restricted on the event

On ∩ Cn,logN,√N ∩R(2)
n . This comes from the product of the three contributions:

• From the crossings of the random walks: By considering that each crossing defined

in (3.3.11) has two possiblilities, to reflect or not to reflect. Also, by (3.3.11)

and (3.3.16) with M = logN and η =
√
N , on the event Cn,logN,√N the total

number of crossings of the two random walks is bounded above by d logN√
N
n

d−2
d

from Lemma 3.3.2 (c). Therefore, this contributes at most 2
d logN√

N
n

d−2
d

for the

cost of applying the reflections.

• On the event On defined in (3.3.13) the number of central hyperplanes available

for the reflection is bounded above by
(

2n
n1/d

)d
. Also, on the event R(2)

n defined

in (3.3.36) and from (3.3.37), the total number of reflections is bounded above by

|ZXϵ,N | ≤ 4κ/ϵ. Hence, this contributes at most
(

2n
n1/d

)4dκ/ϵ
.

• The total number of shifted copies ofQ√
N,N available defined in (3.3.4) is

(
N√
N

)d
.

Therefore, by combining these three contributions, we get

dP̃

dP
≤ 2

d logN√
N
n

d−2
d
( 2n

n1/d

)4dκ/ϵ(
N√
N

)d
= exp

[
log
(
2
d logN√

N
n

d−2
d (

2n(d−1)/d
)4dκ/ϵ

Nd/2
)]

= exp
[
n

d−2
d
(
d logN√

N
log 2

)
+ 4(d−1)κ

ϵ log n+ log
(
2(4dκ)/ϵNd/2

)]
. (3.3.42)

Hence, by setting γN = d logN√
N

log 2, which gives limN→∞ γN = 0 and noting that

exp
[4(d−1)κ

ϵ log n+ log
(
2(4dκ)/ϵNd/2

)]
= exp[O(log n)],

we can deduce Proposition 3.3.4 (ii).

3.3.4 Proof of Proposition 3.3.5

We proceed the proof of Proposition 3.3.5. The proof is divided into two steps.
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Proof. (1) Firstly, the event {
1
n

∑
z∈Zd

JX
n,
√
N,N,out

> δ
}

from (3.3.40) can be simplified. Note that N ≥ N0 = (4κ/δ)2 because of (3.3.31) with

η =
√
N and M = logN (recall that 1

nJn(Q
X√
N,N

) = 1
n

∑
z∈Zd JX

n,
√
N,N,out

(z)). Thus,

we only need to show that there exists an N0 such that for every 0 < ϵ ≤ 1 and δ > 0,

lim sup
n→∞

sup
N≥N0

1

n(d−2)/d
logP

({ 1

n

∑
z∈Zd\ZX

ϵ,N

JXn,N > δ
})

≤ −K(ϵ, δ), (3.3.43)

with limϵ↓0K(ϵ, δ) = ∞ for any δ > 0. To do this, for N ≥ 1 and ϵ > 0, let

A(n)
ϵ,N =

{
A ⊂ Zd : inf

x∈Zd
sup
z∈Zd

1
n♯{(A+ x) ∩ΘNn1/d(z)} ≤ ϵ

}
. (3.3.44)

Note that the class of sets A(n)
ϵ,N is closed under translations. Also, its elements become

more sparse as ϵ ↓ 0. We prove Proposition 3.3.5 via the following lemma:

Lemma 3.3.6. For every 0 < ϵ ≤ 1 and δ > 0,

lim
ϵ↓0

lim sup
n→∞

1

n(d−2)/d
log sup

N≥1
sup

A∈A(n)
ϵ,N

P
(
1
n♯
{
A ∩ {Sj}1≤j≤n

}
≥ δ
)
= −K(ϵ, δ), (3.3.45)

with limϵ↓0K(ϵ, δ) = ∞ for any δ > 0.

We will complete the proof of the lemma later. Now, we finish the proof of Proposi-

tion 3.3.5. Note that Lemma 3.3.6 implies Proposition 3.3.5 as follows: Consider the

random set

A∗ =
∪

{z∈Zd: 1
n
♯{{S1

j }1≤j≤n∩ΘX

Nn1/d
(z)}≤ϵ}

{
{S1

j }1≤j≤n ∩ΘX
Nn1/d(z)

}
. (3.3.46)

We can see that, A∗ ∈ A(n)
ϵ,N . Now, recall (3.3.32)-(3.3.34),

1

n

∑
z∈Zd\ZX

ϵ,N

JXn,N (z) =
1

n

∑
z∈Zd\ZX

ϵ,N

♯
{
{S1

j }1≤j≤n ∩ {S2
j }1≤j≤n ∩ΘX

Nn1/d(z)
}

≤ 1

n

∑
z∈Zd

♯
{
A∗ ∩ {S2

j }1≤j≤n ∩ΘX
Nn1/d(z)

}
=

1

n
♯
{
A∗ ∩ {S2

j }1≤j≤n
}
. (3.3.47)
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Therefore,

P
(
1

n

∑
z∈Zd\ZX

ϵ,N

JXn,N (z) > δ

)
≤ sup

A∈A(n)
ϵ,N

P
(

1
n♯
{
A ∩ {S2

j }1≤j≤n
}
> δ
)
. (3.3.48)

By (3.3.48) along with Lemma 3.3.6 implies (3.3.43), and this completes the proof of

Proposition 3.3.5.

(2) Next, we prove Lemma 3.3.6.

Proof of Lemma 3.3.6. (a) We will show that

lim
ϵ↓0

lim sup
n→∞

1

n(d−2)/d
log sup

N≥1
sup

A∈A(n)
ϵ,N

E
(
exp

[
ϵ−1/3dn−

2
d ♯
{
A ∩ {Sj}1≤j≤n

}])
= 0.

(3.3.49)

Now, using (3.3.49) together with Chebyshev’s inequality that

P
(

1
n♯
{
A∩{S2

j }1≤j≤n
}
> δ
)

≤ exp
[
− δϵ−

1
3dn

d−2
d

]
E
(
exp

[
ϵ−1/3dn−

2
d ♯
{
A ∩ {S2

j }1≤j≤n
}])

, (3.3.50)

will imply Lemma 3.3.6.

(b) To prove (3.3.49), we use the subadditivity property of s→ 1
n♯
{
A ∩ s

}
as follows:

sup
A∈A(n)

ϵ,N

E
(
exp

[
ϵ−

1
3dn−

2
d ♯
{
A ∩ {Sj}1≤j≤n

}])

≤ sup
A∈A(n)

ϵ,N

E
(
exp

[
ϵ−

1
3dn−

2
d

ϵ−
1
d n

d−2
d∑

k=1

♯
{
A ∩ {Sj}(k−1)ϵ1/dn2/d≤j≤kϵ1/dn2/d

}])

≤
{

sup
A∈A(n)

ϵ,N

sup
x∈Rd

Ex
(
exp

[
ϵ−

1
3dn−

2
d ♯
{
A ∩ {Sj}

1≤j≤ϵ
1
d n

2
d

}])}ϵ−1/dn(d−2)/d

,

(3.3.51)

where Ex refers to the expectation given that starting point of the random walk with

E := E0. Also, we use the Markov property at times kϵ1/d, k = 1, . . . , ϵ−1/dn(d−2)/d,

along with the property that A(n)
ϵ,N is closed under translations.

(c) Now we consider the expectation from (3.3.51). We use the inequality eu ≤ 1+u+
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1
2u

2eu, along with the Cauchy-Schwarz inequality, to obtain that

Ex
(
exp
[
ϵ−

1
3dn−

2
d ♯
{
A ∩ {Sj}

1≤j≤ϵ
1
d n

2
d

}])
≤ 1 + ϵ−1/3dn−2/dEx♯

{
A ∩ {Sj}

1≤j≤ϵ
1
d n

2
d

}
+

1

2
ϵ4/3d

√
1

(ϵ1/dn2/d)4
Ex
(
Rϵ1/dn2/d

)4√Ex
(
exp

[
2ϵ2/3d

1

ϵ1/dn2/d
Rϵ1/dn2/d

])
.

(3.3.52)

Note that, we over estimate by removing the intersection with A in the last term of

(3.3.52). Now, we can see that

1

(ϵ1/dn2/d)4
Ex
(
Rϵ1/dn2/d

)4 ≤ 1

(ϵ1/dn2/d)4
Ex(ϵ1/dn2/d)4 = 1, (3.3.53)

and

Ex
(
exp

[
2ϵ2/3d

1

ϵ1/dn2/d
Rϵ1/dn2/d

])
≤ Ex

(
exp

[
2ϵ2/3d

1

ϵ1/dn2/d
ϵ1/dn2/d

])
= exp[2ϵ2/3d]. (3.3.54)

Combining (3.3.52)–(3.3.54), we get

Ex
(
exp

[
ϵ−

1
3dn−

2
d ♯
{
A ∩ {Sj}

1≤j≤ϵ
1
d n

2
d

}])
≤ 1 + ϵ−1/3dn−2/dEx♯

{
A ∩ {Sj}

1≤j≤ϵ
1
d n

2
d

}
+ C1ϵ

4/3deϵ
1/3d

,

∀A ⊂ Zd, x ∈ Zd, T ≥ 1, 0 < ϵ ≤ 1.

(3.3.55)

Finally, the remaining expectation in (3.3.55) can be estimated as follows. Write

Ex♯
{
A∩{Sj}

1≤j≤ϵ
1
d n

2
d

}
=
∑
z∈Zd

Ex♯
{
A ∩ {Sj}

1≤j≤ϵ
1
d n

2
d
∩ΘNn1/d(z)

}
≤
[
sup
x∈Zd

sup
z∈Zd

{
Ex
{
♯
{
A ∩ {Sj}

1≤j≤ϵ
1
d n

2
d
∩ΘNn1/d(z)

}}}]
× Ex♯

{
z ∈ Zd : {Sj}

1≤j≤ϵ
1
d n

2
d
∩ΘNn1/d(z) ̸= ∅

}
≤
[
sup
x∈Zd

sup
z∈Zd

{
Ex
{
♯
{
A ∩ {Sj}1≤j≤∞ ∩ΘNn1/d(z)

}}}]
× Ex♯

{
z ∈ Zd : {Sj}

1≤j≤ϵ
1
d n

2
d
∩ΘNn1/d(z) ̸= ∅

}
, (3.3.56)

where {Sj}1≤j≤∞ is a set of lattice sites visited by an infinite-time random walk. Now,

by [AC07], for any z ∈ Zd and Px the probability given that random walk start at x,
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we have

Px
(
♯
{
A ∩ {Sj}1≤j≤∞ ∩ΘNn1/d(z)

}
> t
)
≤ Px

(
l∞
(
A ∩ΘNn1/d(z)

)
> t
)

≤ exp
[
− C2t

|A ∩ΘNn1/d(z)|2/d
]
, (3.3.57)

where l∞(B) is the total time spent by the infinite-time random walk inside a set

B ∈ Zd. Hence, by the definition of A defined in (3.3.44),

Ex♯
{
A ∩ {Sj}1≤j≤∞ ∩ΘNn1/d(z)

}
≤
∫ ∞

0
exp

[
− C2t

|A ∩ΘNn1/d(z)|2/d
]
dt

= C2|A ∩ΘNn1/d(z)|2/d

≤ C2(ϵn)
2/d. (3.3.58)

Combining (3.3.56) and (3.3.58), we can get from (3.3.55) that,

Ex♯
{
A ∩ {Sj}

1≤j≤ϵ
1
d n

2
d

}
≤ C2ϵ

2/dn2/dEx♯
{
z ∈ Zd : {Sj}

1≤j≤ϵ
1
d n

2
d
∩ΘNn1/d(z) ̸= ∅

}
.

(3.3.59)

However,the expectation on the right hand side of (3.3.59) is also bounded above by

C3 uniformly in x ∈ Zd, N ≥ 1 and 0 ≤ ϵ ≤ 1. Therefore, by (3.3.55) and (3.3.59)

sup
x∈Zd

sup
T≥1

Ex
(
exp

[
ϵ−

1
3dn−

2
d ♯
{
A ∩ {Sj}

1≤j≤ϵ
1
d n

2
d

}])
≤ 1 + C2C3ϵ

5/3d + C1ϵ
4/3deϵ

1/3d
, ∀0 < ϵ ≤ 1. (3.3.60)

By substituting (3.3.60) into (3.3.51), we then get (3.3.49). This completes the proof

of Lemma 3.3.6.

3.3.5 Proof of Proposition 3.3.1

We complete the proof of Proposition 3.3.1.

Proof. By (3.3.38), (3.3.41), Lemma 3.3.2(a), (c) and Proposition 3.3.5 we have, for n

and N large enough, 0 ≤ ϵ ≤ 1 and δ > 0,

P( 1nJn ≥ a) ≤ exp
[
− 1

2K(ϵ, δ)n(d−2)/d
]

+ P
( 1
n

∑
z∈ZX

ϵ,N

JX
n,
√
N,N,in

(z) ≥ a− 2δ,On ∩ Cn,logN,√N ∩R(2)
n

)
. (3.3.61)
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Now, by Proposition 3.3.4 we have, for any N ≥ 1, 0 < ϵ ≤ 1 and δ > 0,

P
(

1
n

∑
z∈ZX

ϵ,N

JX
n,
√
N,N,in

(z) ≥ a− 2δ,On ∩ Cn,logN,√N ∩R(2)
n

)
≤ exp

[
γNn

d−2
d +O(log n)

]
× P

(
1
n

∑
z∈ZX

ϵ,N

JX
n,
√
N,N,in

(z) ≥ a− 2δ,On ∩ Cn,logN,√N ∩R(2)
n ∩ D

)
, (3.3.62)

with D the disjointness property stated in Proposition 3.3.4(a). However, by this

disjointness property we have

1
nJn ≥ 1

n

∑
z∈ZX

ϵ,N

JX
n,
√
N,N,in

(z), (3.3.63)

where Jn is the number of intersection points wrapped around Λ24κ/ϵN , the torus of size

24κ/ϵN , i.e., Jn = ♯
{
{S1

j}1≤j≤n ∩ {S2
j}1≤j≤n

}
where Si

j is the position of the random

walk when wrapped around Λ24κ/ϵNn1/d . Note that we use that fact that ♯{ZXϵ,N} ≤ 4κ/ϵ

on R(2)
n . Combining (3.3.61)−(3.3.63) we obtain that, for n,N large enough, 0 < ϵ ≤ 1

and δ > 0,

P( 1nJn ≥ a) ≤ e−
1
2
K(ϵ,δ)n(d−2)/d

+ eγNn
d−2
d +O(logn)P

(
1
nJn ≥ a− 2δ

)
. (3.3.64)

We then use Proposition 3.1.1 to obtain that, for N large enough, 0 < ϵ ≤ 1 and δ > 0,

lim sup
n→∞

1

n
d−2
d

logP
(
1
nJn ≥ a

)
≤ max

{
− 1

2K(ϵ, δ), γN − L̂κ
24κ/ϵN

(a− 2δ)
}
. (3.3.65)

Next, we let N → ∞ and use the facts that γN → 0 and note that

lim
N→∞

L̂κ
24κ/ϵN

(a− 2δ) = Lκ(a− 2δ),

by Proposition 1.3.10. We then obtain that, for any 0 < ϵ ≤ 1 and δ > 0,

lim sup
n→∞

1

n
d−2
d

logP( 1nJn ≥ a) ≤ max
{
− 1

2K(ϵ, δ),−Lκ(a− 2δ)
}
. (3.3.66)

Next, let ϵ ↓ 0 which gives K(ϵ, δ) → ∞, to obtain that, for any δ > 0,

lim sup
n→∞

1

n
d−2
d

logP( 1nJn ≥ a) ≤ −Lκ(a− 2δ). (3.3.67)

Finally we need to show that Lκ(a−2δ) converges to our required rate function, Lκ(a),

in Theorem 1.3.7. We refer to the results by [BBH04] to show this, since we can write
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Lκ in term of Îκd defined in (1.3.32). First of all, by the scaling relations in (1.3.34)

and (1.3.35) we have

Lκ(a− 2δ) =
(
1− 2δ

a

) d−2
d Lκ/(1−2δ)(a). (3.3.68)

Now, we are in position to transform Lκ to another rate function Θ̂d by the relation

described in (1.3.23) where Θ̂d is also described in (1.3.23), except we replace κa by κ.

The benefit of transforming the rate function is that Θ̂d is continuous at a. Hence, we

can pass the limit δ ↓ 0 and therefore

Lκ(a− 2δ)
δ↓0−→ Lκ(a).

This completes the proof of Proposition 3.3.1 and hence Theorem 1.3.7.

109



Chapter 4

Summary and open problem

In this chapter, we make a summary of the results in Chapter 2 and Chapter 3. We

also point out an open problem in the range of random walk and make a comment on

the problem.

The large deviation behaviour problems on the range of a random walk and on the

intersections of the independent ranges have been solved, respectively, in Chapter 2 and

Chapter 3. We have considered the problem on the range in the downward direction,

and the problem on the intersections in the upward direction. In both cases, the speed

of the large deviation are both n(d−2)/d and the rate functions are explicitly given

in Theorem 1.2.10 and Theorem 1.3.7. For the result in Theorem 1.2.10, the main

technique for the proof is to project the random walk on a time-dependence torus in

order to get a good control for the range. The size of the torus will later increase to

infinity. While for the result in Theorem 1.3.7, the main technique is to reflect the

random walks in order to move the main contribution of the intersections of the ranges

inside a large time-dependence box. Then, we can apply the result for the intersections

of the ranges on the torus to get the large deviation result.

We try to extend our result in the general case. We now concentrate in the downward

direction. Rather than getting the large deviation principle on the range, we may

consider the large deviation problem of the type:

P
( ∑
x∈{S1,...,Sn}

f(xn−1/d) ≈ n
)
.

Note that, by taking a constant function,

f(x) =
1

κ
, for all x,
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this is exactly the same problem as in Theorem 1.2.10 which has been studied in

Chapter 2. Therefore, this suggests the conjecture:

Conjecture 4.1. For d ≥ 3, and a function f bounded away from 0 and ∞,

lim
n→∞

1

n
d−2
d

logP
( ∑
x∈{S1,...,Sn}

f(xn−1/d) ≤ n
)
= −Iκ(f),

where Iκ(f) is an explicitly given rate function.

This conjecture agrees with the conjecture made by Chen(Equation (7.6.2), [Che10]).

However, it seems that both techniques from Chapter 2 and 3 cannot be applied to

solve this conjecture:

• By projecting the random walk to ΛNn1/d , for the range we would get Rn ≤ Rn

which gives the upper bound in probability for the event. However, this argument

does not imply the same outcome here. If we consider a point x ∈ ΛNn1/d (with

the assumption that x is on a scale grid) then x can be any point in the set

{x+ zNn1/d : z ∈ Zd} at which each point in the set give the different values on

the function f . Also, the existence of x on the torus may represent the multiple

points for Zd. Hence, by projecting the random walk on a torus, we can not

conclude that the sum will increase or decrease.

• By reflection technique described in Chapter 3, the problem of the point x rep-

resents multiple points will disappear. However, this technique still not good

enough to solve the conjecture by the lack of monotonicity of the function f ,

which is not the case for the intersections of the ranges.

Nevertheless, if we add a condition that the function f is radially decreasing, then

we can apply the reflection technique to solve the conjecture. By making reflection,

according to the location of the popular boxes, we end up with the reflected random

walk which stay closer to the origin than the original walk. This gives the lower bound

in probability for the sum. The projection technique, however, still cannot be applied

here since the point x on the torus may still represent the multiple points on Zd.

111



Bibliography

[deA92] A. DE ACOSTA. Moderate deviations and associated Laplace approximations

for sums of independent random vectors, Trans. Amer. Math. Soc., 329, pp.

357-375, 1992.

[Ass08] A. ASSELAH. Large deviation estimates for self-intersection local times for

simple random walk in Z3, Prob. Theor. Rel. Fields, 141, pp. 19-45, 2008.

[Ass09] A. ASSELAH. Large deviation principle for the self-intersection local times

for simple random walk in dimension 5 or more, ALEA, 6, pp. 281-322,

2009.

[AC07] A. ASSELAH, F. CASTELL. A note on random walk in random scenery. Ann.

de l’I.H.P., 43, pp. 163-173, 2007.

[BK02] R. F. BASS, T. KUMAGAI. Laws of the iterated for the range of random

walks in two and three dimensions, Ann. Probab., 30, pp. 1369-1396, 2002.

[vdB05] M. VAN DEN BERG. On the expected volume of intersection of independent

Wiener sausages and the asymptotic behaviour of some related integrals, J.

Funct. Anal., 222 (1), pp. 114-128, 2005.

[vdB11] M. VAN DEN BERG. On the volume of the intersection of two independent

Wiener sausages, Potential Anal., 34 (1), pp. 57-79, 2011.

[BB94] M. VAN DEN BERG, E. BOLTHAUSEN. Asymptotics of the generating func-

tion for the volume of the Wiener sausage, Prob. Thery Relat. Fields, 99,

pp. 389-397, 1994.

[BBH01] M. VAN DEN BERG, E. BOLTHAUSEN, F. DEN HOLLANDER. Moderate de-

viations for the volume of the Wiener sausage, Ann. of Math., 153, pp.

355-406, 2001.

[BBH04] M. VAN DEN BERG, E. BOLTHAUSEN, F. DEN HOLLANDER. On the volume

of the intersection of two Wiener sausages, Ann. of Math., 159, pp.741-782,

2004.

112
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[DEK50] A. DVORETZKY, P. ERDÖS, S. KAKUTANI. Double points of paths of Brow-

nian motion in n-space. Acta Sci. Math.Szeged, 12, Leopoldo, Fejér et Fred-

erico Riesz LXX annos natis dedicatus, Pars B, pp. 75-81, 1950.
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[Pól21] G. PÓLYA. Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend

die Irrfahrt im Strassennetz, Math. Ann., 84, pp.149-160, 1921.
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