

University of Bath

PHD

A context model, design tool and architecture for context-aware systems designs

Kaenampornpan, Manasawee

Award date:
2009

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 22. May. 2019

A CONTEXT MODEL, DESIGN
TOOL AND ARCHITECTURE FOR

CONTEXT-AWARE SYSTEMS
DESIGN

Manasawee Kaenampornpan

A thesis submitted for the degree of Doctor of Philosophy

University of Bath

Department of Computer Science

2009

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author. This copy of
the thesis has been supplied on condition that anyone who consults it is understood to

recognise that its copyrights rests with its author and that no quotation from the thesis and
no information derived from it may be published without the prior written consent of the

author.

This thesis may be made available for consultation within the University Library and may be
photocopied or lent to other libraries for the purposes of consultation.

 i

Abstract

The concept of context awareness is widely used in mobile and ubiquitous

computing to reduce explicit user input and customization through increased use

of implicit input. This requires that the systems take account of context in order to

infer the user’s objective and relevant environmental features. In order to develop

systems that support the user in an automatic and appropriate manner, a design

process which provides understanding about context and its use is required.

Further, an implementation architecture is required which benefits from this design

process and supports both system implementers in realising the designs and users

in refining and, where necessary, correcting the context sensing and modelling

processes at run time.

The aim of this dissertation is to introduce a uniform and systematic, by which we

mean consistent and structured, context model and design tool to the design and

implementation of context-aware systems. The context model helps to bridge the

gaps between designers, developers and users to support shared understandings

about context, and it presents a structured understanding of what is taken into

account as context. The context model presents a design tool that provides

systematic steps and instructions for designing the context-aware system to meet

user requirements. It guides the designers to make consistent design choices to

meet user requirements rather than adopting a more technology-driven approach.

 ii

This dissertation provides 3 main contributions. The first contribution is to

introduce a systematic context model based on Activity Theory. The context

model describes a uniform set of context elements and relationships between them.

We explain why Activity Theory is chosen to help model context. The concept of

adding a temporal dimension to extend Activity Theory is proposed. Based on our

extension to Activity Theory, the second main contribution is to develop a design

tool. Our context model and design tool can be used to model and represent

context, evaluate the potential of context resources, indicate situations where a

context-aware system is feasible to support a user, and guide the designer in

providing functions to support a user without taking control away from the user.

In order to support the functionalities that our design too introduces to the context-

aware system, as our third main contribution, we present a three layered

architecture. In this dissertation, we provide a demonstration of how design

choices can be explored, supporting flexible reuse of well structured and discrete

context resources, elements and reasoning process.

The use of the context model, design tool and architecture is demonstrated in

different scenarios. First the context model and design tool are applied to a simple

conference scenario and an initial scenario based on an ethnographic study of the

A&E department in a London hospital. The resulting designs for both scenarios

are developed in a context-aware system architecture, where the context model and

its associated design process are applied to generate design and implementation

recommendations. Finally, a prototype architecture is implemented using Java and

XML based on the design for patient check-in and check-out scenarios in the

hospital A&E department.

 iii

Table of Contents

0ABSTRACT ... 2I

1TABLE OF CONTENTS .. 2III

2LIST OF FIGURES .. 2XI

3LIST OF TABLES .. 2XIII

4ACKNOWLEDGMENTS .. 2XVII

5CHAPTER 1 INTRODUCTION .. 21

61.1 MOBILE AND UBIQUITOUS COMPUTING .. 21

71.2 CONTEXT AWARENESS ... 23

81.3 ISSUES IN CONTEXT AWARENESS... 26

91.4 CONTRIBUTIONS .. 28

11.5 OUTLINE OF DISSERTATION ... 210

1CHAPTER 2 CONTEXT AWARENESS .. 213

12.1 USABILITY ISSUES IN MOBILE AND UBIQUITOUS COMPUTING 213

12.2 PREVIOUS RESEARCH IN CONTEXT AWARENESS ... 215

12.2.1 CONTEXT DEFINITION ... 216

12.2.2 CONTEXT CLASSIFICATION ... 218

12.2.3 PREVIOUS CONTEXT-AWARENESS PROJECTS ... 224

 iv

12.2.3.1 Location Based Systems ... 224

12.2.3.2 Context Aware Systems ... 226

12.2.3.3 Context Aware Frameworks ... 229

22.2.3.4 From Location Based System to Context Aware Framework 254

22.2.4 TYPES OF CONTEXT-AWARE APPLICATIONS ... 259

22.2.5 FROM PREVIOUS CONTEXT AWARENESS TO THE PRESENT 263

22.3 PROBLEMS IN CONTEXT AWARENESS ... 264

22.3.1 IMPOSSIBLE TO ACQUIRE CONTEXT .. 264

22.3.2 EXPENSIVE TO PROCESS CONTEXT .. 265

22.3.3 NOT BEING USED IN THE REAL WORLD .. 266

22.3.4 BROAD DEFINITION OF CONTEXT .. 267

22.3.5 INFINITE CONTEXT CLASSIFICATION ... 268

22.3.6 LACK OF UNIFORM RELATIONSHIPS BETWEEN ELEMENTS OF CONTEXT 269

32.3.7 LACK OF SYSTEMATIC TOOLS ... 270

32.3.8 TECHNOLOGY DRIVEN ... 271

32.3.9 SUMMARY OF PROBLEMS IN CONTEXT AWARENESS .. 272

32.4 DERIVING SOLUTIONS FROM PROBLEMS .. 272

32.4.1 REQUIREMENTS FOR CONTEXT MODEL AND DESIGN TOOL 273

32.4.2 REQUIREMENTS FOR AN ARCHITECTURE TO SUPPORT CONTEXT AWARE SYSTEMS

 .. 277

32.4.3 RESEARCH AIMS AND OBJECTIVES ... 282

3CHAPTER 3 A NEW APPROACH TO THE DESIGN OF A CONTEXT-
AWARE SYSTEM ... 287

33.1 WHY REPRESENT CONTEXT IN A SIMPLE MODEL? .. 288

33.2 ACTIVITY THEORY .. 290

 v

43.3 ACTIVITY MODELLING ... 295

43.4 REASON FOR USING ACTIVITY THEORY ... 297

43.4.1 IT PROVIDES A STANDARD FORM FOR DESCRIBING HUMAN ACTIVITY 299

43.4.2 IT PROVIDES A REPRESENTATION OF THE USER .. 2100

43.4.3 IT RELATES INDIVIDUAL HUMAN ACTIVITY TO SOCIETY 3101

43.4.4 IT PROVIDES A CONCEPT OF TOOL MEDIATION .. 3102

43.4.5 IT MAPS THE RELATIONSHIPS AMONGST THE ELEMENTS OF A HUMAN ACTIVITY

MODEL .. 3102

43.5 HISTORY .. 3103

43.6 PROPOSED CONTEXT MODEL .. 3106

43.6.1 THE CONTEXT MODEL ... 3106

53.7 SUMMARY OF THE PROPOSED CONTEXT MODEL ... 3112

5CHAPTER 4 TURNING THE CONTEXT MODEL INTO A DESIGN TOOL
 .. 3115

54.1 STEP 1: DEFINE SCENARIOS IN WHICH THE SYSTEM WILL BE APPLIED 3116

54.2 STEP 2: DEFINE SITUATIONS IN WHICH CONTEXT AWARENESS CAN SUPPORT

USERS .. 3118

54.3 STEP 3: FROM THE SITUATION TO ELEMENTS IN THE CONTEXT MODEL 3123

54.4 STEP 4: FROM CONTEXT ELEMENTS TO SENSORS AND PROFILES 3126

54.5 STEP 5: FROM CONTEXT ELEMENTS TO REASONING ... 3129

54.6 STEP 6: FROM OUTCOME CONTEXT TO SELECTED APPLICATION AND CONTEXT

INFORMATION ... 3134

54.7 HOW THE DESIGN TOOL MEETS THE DESIGN TOOL REQUIREMENTS 3137

54.8 FROM CONTEXT MODEL TO NEW DESIGN TOOL .. 3139

 vi

6CHAPTER 5 SYSTEM ARCHITECTURE FOR CONTEXT MODELLING
 .. 3141

65.1 AN OVERVIEW OF CONTEXT AWARE SYSTEM ARCHITECTURE 3142

65.1.1 THE FLOW OF DATA .. 3144

65.1.2 DATABASES ... 3148

65.1.3 SENSOR ENGINE LAYER... 3150

65.1.4 CONTEXT ENGINE LAYER .. 3156

65.1.5 APPLICATION ENGINE LAYER .. 3162

65.2 HOW THE ARCHITECTURE MEETS EACH ARCHITECTURE REQUIREMENT 3166

65.3 FROM CONTEXT MODEL TO NEW ARCHITECTURE .. 3171

6CHAPTER 6 EVALUATION OF THE CONTEXT MODEL AND DESIGN
TOOL .. 3175

76.1 SCENARIO 1: A SIMPLE TOUR GUIDE AND CONFERENCE ASSISTANT 3176

76.1.1 STEP 1: DEFINING SCENARIOS IN WHICH THE SYSTEM WILL BE APPLIED 3177

76.1.2 STEP 2: DEFINE SITUATIONS WHERE CONTEXT AWARENESS CAN SUPPORT THE

USER ... 3178

76.1.2.1 Situation 1 ... 3178

76.1.2.2 Situation 2 ... 3182

76.1.2.3 Situation 3 ... 3184

76.1.2.4 Situation 4 ... 3186

76.1.3 STEP 3: FROM SITUATION TO ELEMENTS IN CONTEXT MODEL 3188

76.1.3.1 Situation 1 ... 3190

76.1.3.2 Situation 2 ... 3191

86.1.3.3 Situation 3 ... 3192

86.1.3.4 Situation 4 ... 3193

86.1.4 STEP 4: FROM CONTEXT ELEMENTS TO SENSORS AND PROFILES 3194

 vii

86.1.5 STEP 5: FROM CONTEXT ELEMENTS TO REASONING .. 3205

86.1.6 STEP 6: FROM OUTCOME CONTEXT TO SELECTED APPLICATION AND REQUIRED

CONTEXT ... 3210

86.2 SCENARIO 2: THE HOSPITAL A&E DEPARTMENT .. 3212

86.2.1 STEP 1: DEFINING SCENARIOS IN WHICH THE SYSTEM WILL BE APPLIED 3214

86.2.2 STEP 2: DEFINE SITUATIONS WHERE CONTEXT AWARENESS CAN SUPPORT USER

 .. 3215

86.2.2.1 Situation 1 ... 3215

86.2.2.2 Situation 2 ... 3218

96.2.2.3 Situation 3 ... 3223

96.2.3 STEP 3: FROM SITUATION TO ELEMENTS IN CONTEXT MODEL 3225

96.2.3.1 Situation 1 ... 3226

96.2.3.2 Situation 2 ... 3226

96.2.3.3 Situation 3 ... 3228

96.2.4 STEP 4: FROM CONTEXT ELEMENT TO SENSORS AND PROFILES 3228

96.2.5 STEP 5: FROM CONTEXT ELEMENTS TO REASONING .. 3238

96.2.6 STEP 6: FROM OUTCOME CONTEXT TO SELECTED APPLICATION AND REQUIRED

CONTEXT ... 3242

96.3 HOW EACH REQUIREMENT IS MET OR NOT MET IN THE SCENARIOS 3243

96.3.1 TO PROVIDE CONSISTENT SUPPORT FOR SHARED UNDERSTANDING AMONGST

RESEARCHERS ... 3243

16.3.2 TO IDENTIFY CONTEXT ELEMENTS ... 3244

16.3.3 TO DEMONSTRATE A CONSISTENT REASONING METHOD FOR THE

INTERPRETATION ABOUT THE CONTEXT ... 3244

16.3.4 TO SHOW THE SEPARATION BETWEEN CONTEXT AND ITS REASONING 3245

16.3.5 TO REPRESENT THE USAGE OF HISTORY AND TIME .. 3246

16.4 SUMMARY .. 3247

 viii

1CHAPTER 7 IMPLEMENTATION AND EVALUATION OF THE
ARCHITECTURE ... 3249

17.1 FROM DESIGN TO IMPLEMENTATION OF THE ARCHITECTURE 3250

17.1.1 DATABASE ... 3251

17.1.2 SENSOR ENGINE LAYER... 3254

17.1.2.1 Sensors .. 3254

17.1.2.2 Sensor Translators .. 3256

17.1.2.3 Sensor Engine ... 3258

17.1.3 CONTEXT ENGINE LAYER .. 3258

17.1.4 APPLICATION ENGINE LAYER .. 3262

17.1.5 CONCLUSION ... 3270

17.2 APPLYING THE PROTOTYPE TO THE SCENARIOS DESIGN 3273

17.2.1 SIMPLE TOURIST GUIDE AND CONFERENCE APPLICATIONS 3273

17.2.2 COMPLEX HOSPITAL SCENARIO .. 3281

17.2.3 HOW EACH REQUIREMENT IS MET OR NOT MET IN THE SCENARIOS 3286

17.3 CONTEXT FRAMEWORKS COMPARISON .. 3291

1CHAPTER 8 CONCLUSION AND FUTURE WORK 3295

18.1 DISSERTATION SUMMARY .. 3296

18.1.1 SUPPORTING RESEARCH AND PRACTICE IN CONTEXT AWARENESS 3296

18.1.2 AIMS .. 3296

18.1.3 CONTEXT MODEL .. 3297

18.1.4 DESIGN TOOL... 3298

18.1.5 ARCHITECTURE .. 3300

18.1.6 SCENARIOS .. 3301

18.2 APPLICABILITY TO OTHER APPLICATIONS ... 3302

 ix

18.3 FUTURE WORK .. 3303

18.3.1 IMPROVE THE REASONING ALGORITHM .. 3303

18.3.2 SECURITY AND PRIVACY ... 3303

18.3.3 CONTEXT MODEL REPRESENTATION .. 3304

18.3.4 REAL TIME EFFICIENCY IMPROVEMENTS INVOLVING USERS 3304

18.3.5 COPING WITH LIMITED STORAGE SPACE ... 3305

18.3.6 INTEGRATING OUR DESIGN TOOL WITH OTHER DESIGN MECHANISMS 3305

18.3.7 RELATING OUR FRAMEWORK WITH OTHERS APPROACHES 3306

18.4 CONCLUSION ... 3306

1REFERENCES .. 3309

1APPENDIX .. 3329

1I. EXAMPLE OF XML FILE FOR ENVIRONMENT DATA ... 3329

1II. EXAMPLE OF XML FILE FOR TOOLS.XML .. 3330

1III. EXAMPLE OF OBJECT FILE FOR XMLENV.JAVA ... 3330

 x

 xi

List of Figures

1Figure 2-1 Gaia system architecture .. 330

1Figure 2-2 CASS system architecture ... 432

1Figure 2-3 Architecture of MidCASE ... 436

1Figure 2-4 Components in Context Toolkit Architecture 438

1Figure 2-5 Architecture of Hydrogen Project .. 440

1Figure 2-6 Hydrogen's Object Oriented Approach ... 441

1Figure 2-7 Sentient Object Model ... 443

1Figure 2-8 Context Managing Framework Architecture 445

1Figure 2-9 SOCAM architecture ... 447

1Figure 2-10 CoBrA architecture .. 449

1Figure 2-11 List of Classes and Properties in COBRA-ONT v0.2 451

1Figure 2-12 STU21 architecture .. 453

1Figure 3-1 Mediation between Subject and Object ... 491

1Figure 3-2 Leontiev's Model ... 492

1Figure 3-3 Activities, Actions and Operations [Kuutti, 1995]. 492

1Figure 3-4 Structure of the Animal Form of Activity ... 493

1Figure 3-5 Structure of Activity Theory (Engeström) .. 495

1Figure 3-6 Extended Usage-Centred Design Notation for Activity Modelling
[Constantine, 2006] ... 497

1Figure 3-7 Basic “Structure” used with Reference to Human Activity 4104

1Figure 3-8 Proposed Context Model Adapted from Activity Theory 4108

1Figure 4-1 Jane R’s Situation Extracted into Context Model 4123

1Figure 4-2 Relationships related to the Role Element in the Context Model 4132

1Figure 4-3 Relationships in the Context Model including the Objective Element
 ... 4133

 xii

1Figure 4-4 Schema with Context model and Databases 4136

1Figure 5-1 Overview of Architecture of the Context Aware System 4146

1Figure 5-2 Flow of Data in the Architecture .. 4146

1Figure 5-3 Bluetooth data Transformed into Info for User Context Elements ... 4156

1Figure 5-4 Sensor Data Transformed into Info for Context Elements 4158

1Figure 5-5 Database Examples (show how a value in one can be used in other
context elements) ... 4160

1Figure 6-1 Context Model of Situation 1- Deciding which talk to attend 181

1Figure 6-2 Context Model of Situation 2 - Get to the presentation room on time183

1Figure 6-3 Context Model of Situation 3 - Adam meets up with colleagues 4185

Figure 6-4 Context Model of Situation 4- Get directions to the selected attraction
 ... 188

1Figure 6-5 Context Model of Situation 1- Get doctor to pick up his food 216

1Figure 6-6 Context Model of Situation 2 - Booking in a patient 219

1Figure 6-7 Context Model of Situation 3- Checking out patients 223

1Figure 7-1 GUI for Environment Element to Store in the Environment Object . 4256

1Figure 7-2 GUI for System's Log in and Registration .. 4256

1Figure 7-3 GUI for Gathering Information about Role Element 4260

1Figure 7-4 Flowchart of how the System Supports the User in the Prototype 4266

1Figure 7-5 GUI for Check In Patient Application ... 4267

1Figure 7-6 GUI for Check Out Patient Application .. 4268

1Figure 7-7 GUI of the Hospital Context-aware system 4268

1Figure 7-8 GUI Shows Current Context Model - allows users to update the model
if required .. 4269

1Figure 7-9 Architecture of Context-aware System Based on Results from the
Design Tool ... 4272

1Figure 7-10 Diagram of the Architecture Supporting Scenario 1 4279

1Figure 7-11 Overview Architecture Supporting the Hospital Scenario 4284

 xiii

List of Tables

1Table 2-1 Context classification systems. ... 422

1Table 2-2 Example of rule database entry ... 433

1Table 2-3 Example of sensor-based context ontology .. 45

1Table 2-4 Summary of Context Aware Frameworks .. 58

1Table 2-5 Types of Context Aware Computing .. 461

1Table 4-1 Table Designers Use in the Context Model .. 4125

1Table 4-2 Example of Assigning a Sensor and Attribute Name 4129

1Table 4-3 Information from Table 4-2 Assigned to Attributes in Environment
Database .. 4127

1Table 4-4 Typical Properties of Context Information [Henrickson, 2003] 4129

1Table 5-1 Typical Properties of Context Info [Henrickson, 2003] Separated Via the
Context Model ... 4147

2Table 5-2 Raw Data from Bluetooth Translated to Meaningful Information 4152

2Table 5-3 Info from Bluetooth used as Info in Context Elements Database 4152

2Table 5-4 Overview of the Responsibilities of each Components in the
Architecture. .. 4171

2Table 6-1 Values are Identified for Context Elements in Situation 1 4191

2Table 6-2 Values are Identified for Context Elements in Situation 2 4191

2Table 6-3 Values are Identified for Context Elements in Situation 3 4192

2Table 6-4 Values are Identified for Context Elements in Situation 4 4193

2Table 6-5 Values of the Environment Element from Different Situations 4195

2Table 6-6 Environment Database Stores Sets of Values of Info in Different
Situations ... 4196

2Table 6-7 Values of the Time Element from Situations Modelled to the Database
 ... 4197

 xiv

2Table 6-8 Time Database Stores Sets of Values of Info According to the Attributes
 ... 4195

2Table 6-9 Values of the User Element are Modelled to the database 4198

2Table 6-10 Example of a Trip Booking Profile ... 4199

2Table 6-11 Example of a User Profile ... 4199

2Table 6-12 User Database Stores Sets of Values of Info 200

2Table 6-13 Values of the Tools Element for Modelling the Database 4200

2Table 6-14 Values of Each Tool or Device Assigned Sensors and Attributes for
Modelling the Database ... 4201

2Table 6-15 The Tool Database Hold Info for Each Device 4201

2Table 6-16 Example of the Map Profile .. 4202

2Table 6-17 Example of the Timetable Profile ... 4202

2Table 6-18 Example of the Folder Profile ... 4202

2Table 6-19 Tools Database Stores Sets of Values of Information 4203

2Table 6-20 Values of the Community Element ... 4204

2Table 6-21 Community Database Stores Sets of Values of Information 4205

2Table 6-22 Role Database Stores Sets of Reference Points to the Information .. 4207

2Table 6-23 Rules Database Stores Sets of Reference Points to the Information 4207

2Table 6-24 Objective Database of Possible Value of the Objective from the
Situations ... 4208

2Table 6-25 Outcome Database Stores a Reference Point to the Objective Values
 ... 4209

2Table 6-26 Activity Theory Context Model Database Stores Sets of Reference
Points to the Information ... 4210

2Table 6-27 Application Database Stores a Reference Point to the Outcome in
Different Situations ... 4210

2Table 6-28 Values are Identified for Context Elements in Situation 1 4226

2Table 6-29 Values are Identified for Context Elements in Situation 2 4227

2Table 6-30 Values are Identified for Context Elements in Situation 3 4227

2Table 6-31 Values of the Environment Element from Different Situations 4230

2Table 6-32 Environment Database Stores Sets of Values of Information 4230

2Table 6-33 Values of the Time Element from Different Situations 4230

2Table 6-34 Time Database Stores Sets of Values of Information 4231

2Table 6-35 Values of the User Element from Different Situations 4231

 xv

2Table 6-36 User Database Stores Sets of Values of Information 4232

2Table 6-37 Values of the Tools Element from Different Situations 4233

2Table 6-38 Values of Each Tool or Device ... 4234

2Table 6-39 Example of the Tool Database for Each Device 4235

2Table 6-40 Example of the Map Profile for Each Map 4235

2Table 6-41 Example of the Information Profile that Holds Descriptive Information
for Each Information Tool ... 4236

2Table 6-42 Tools Database - Stores sets of values of information about tools in
different situations ... 4237

2Table 6-43 Values of the Community Element ... 4237

2Table 6-44 Community Database - Stores sets of values of information about
community ... 4238

2Table 6-45 Role Database - Stores sets of reference points to the information that
have influence on roles .. 4239

2Table 6-46 Rules Database - Stores sets of reference points to the information that
have influence on rules .. 4239

2Table 6-47 Objective Database - Stores the objective values from different
situations .. 4240

2Table 6-48 Outcome Database - Stores reference points to objective values 4240

2Table 6-49 Activity Theory Context Model Database - Stores sets of IDs of
information that have influence on objectives 4241

2Table 6-50 Application Database - Stores a reference point to the outcome in
different situations ... 4242

2Table 7-1 Frameworks Comparison .. 5294

 xvi

 xvii

Acknowledgments

First and foremost I would like to thank my parents and especially my sister

Pornpan Kaenampornpan for providing me with moral support throughout my

studies. Thanks for being patient and listening to my complaints through your

long distance phone calls everyday. I also wish to thank my supervisor, Eamonn

O’Neill for all his support, corrections, and ideas. Thank you for spending your

valuable time with me and being the best supervisor I could have asked for. Your

perfectionism helps me push myself to get closer to your standard. Furthermore, I

wish to thank Nicholas Gorman and his family for helping me get through the

difficult times and making me part of their family. Thank you for your warm

welcome and making me less homesick. Special thanks are due to Dawn

Woodgate for her ethnographic studies. I wish to thank my academic family, Peter

Johnson, Hilary Johnson, Leon Watts, Vassilis Kostakos, Andy Warr, Peter Wild,

Rachid Hourizi, Iya Solodilova, Anne Bruseberg and Stavros Garzonis. Your help

and support has been most appreciated. Finally, I am grateful to the Thai

Government for providing me with funding during my studies.

 xviii

 1

Chapter 1

Introduction

This chapter provides an introduction to mobile and ubiquitous computing and

briefly discusses how context awareness has developed as a research area.

(Context awareness is discussed in more detail in 5Chapter 2.) This leads to a

discussion of current issues in the context awareness research field. From these

issues, the research contributions of this dissertation are summarised at the end of

this chapter.

1.1 Mobile and Ubiquitous Computing

The majority of computing in recent years has been concerned with desktop

computing. This is where a computing device is sited at a fixed location, is fairly

large and difficult to move around. In order to use such a computing device, the

user is required to go to the location where the desktop computer is situated.

Typically, the same user uses the same computing device at the same place most

of the time, resulting in the working environment of the user and the computing

device remaining largely unchanged much of the time. Much of the information

 2

about the user, device and their environment is therefore relatively easily

predictable as substantial changes typically happen slowly over time.

Mobile and ubiquitous computing [Weiser, 1991] is a relatively new type of

computing. In this type of computing, computing devices and services are

available everywhere in the environment and the computing devices and services

can be effectively invisible to the user. What might be viewed as part of the move

towards ubiquitous computing is the increasing popularity of “laptop” or

“notebook” computers which now outsell desktop computers. However, these

devices are still quite bulky, hard to use on the move and are effectively just

physically smaller desktop computers. The move towards ubiquitous computing

includes, amongst their developments, the development of new form factors and

interaction techniques beyond the desktop paradigm. For instance, the computing

device could be embedded into a user’s clothes enabling the user to focus on other

things. As these devices are small and/or wearable, the user can carry or wear

them wherever she goes. Examples of such devices include: a Personal Digital

Assistant (PDA), tablet PCs, smart mobile phones and in-car driver assistance

systems. Freed from a fixed location on a desktop, this new type of computing can

lead to more rapid changes in information relating to users, devices and the

environment. Thus, the context of use is harder to determine, model and predict.

Ubiquitous computing is growing very rapidly. There has been a considerable

increase from 27% to 78% in the proportion of households with a mobile phone

since 1998-99. In 2004-05, 45% of households in the lowest income group

reported owning a mobile phone, compared with 94% in the highest income group

[DirectGov, 2005]. Wireless technology, which allows people to roam around

small areas while surfing the Web with a laptop, PDA or mobile phone, is gaining

popularity in every market around the world. The number of mobile phone users

accessing the internet on their handsets is increasing. According to figures

announced by the Mobile Data Association (MDA) [Mobile Data Association,

2006], a total of 40.7 million users were recorded as having used their phones for

 3

downloads and browsing the mobile internet in the UK during the third quarter of

2006. The total number of users recorded in July 2006 was 13 million, this

increased to 14 million by September 2006. The number of wireless users in 2009

is expected to increase by 77% compared to the 2004 figures [Pyramid Research,

2005]. This large and rapid increase in the number of people using wireless

services shows that users are becoming more comfortable and familiar with

ubiquitous computing , just as they were with desktop computing. In the near

future, it will be increasingly natural for people to use ubiquitous computing in

their everyday life.

In ubiquitous computing, users are no longer static and concentrating on one task

with one static device. Users are accessing many devices and services such as

PDA and mobile phone while they are dealing with multitasking such as find

direction on PDA while on the phone and cross the busy road. This raises a new

set of questions for researchers in order to improve usability and the user

experience. As the number of ubiquitous computing users is increasing,

researchers have tried to deal with a new set of human-computer interaction

problems. Researchers introduce the concept of context awareness. There are

various definitions of context by different researchers and it may be considered

broadly as information that has influence on the user in performing an activity.

The next section will discuss the concept of context awareness where researchers

take advantage of changes in the user’s environment to improve the usability of

ubiquitous computing.

1.2 Context Awareness

In the vision of ubiquitous computing, computing devices and services may be

everywhere in the environment. This means that at any time that users need, they

can access different services through different types of devices. For example, a

user may type in a keyword for what she is looking for on the Internet via a PDA

 4

whilst walking to the nearest shop. Researchers have tried to take advantage of the

changing information about users, devices and their environment to improve user

interaction by (i) reducing the need for explicit input and (ii) customising the

services offered to a user in a given context. From previous example, if user is

looking for direction to the nearest shop on her PDA while crossing the road and

finding out where she is, the system can reduce the user’s explicit input of typing

the current address. Instead, the system automatically fills in the current address

and shows the direction to the nearest shop for the user. This capability in a

computing system is known as context awareness.

“The idea behind context awareness is that computational artefacts are enabled to

sense the context in which they are being used so that they can adapt their

functionality accordingly” [Lueg, 2002]. Context awareness has become a popular

topic of research in ubiquitous computing. There are three main reasons for

facilitating implicit input rather than, or in addition to, explicit input:

1. Ubiquitous computing interfaces may be restricted in the interaction

functionality offered and their usability. The interfaces to mobile devices have

tended to become physically smaller and correspondingly less usable. Even the

hype around modern touch screen smart phones cannot hide the fact that conflating

user interaction with an increasingly smaller form factor leads to usability

problems [Weiser, 1999]. In addition, the interfaces to fixed devices in the

environment, such as large public displays [O’Hara et al., 2008; O’Hara et al.,

2003], are often by their nature aimed less at individual users and often lack an

explicit input device such as a keyboard.

2. As the available digital services become more transparent and distributed, it

becomes difficult for the users to be aware of what devices and services are

 5

available to them at a given place and time as they move through different

environments.

3. To support the user in efficiently carrying out several activities at the same

time in a transparent and distributed computing environment. Users may not be

concentrating on one task but may be multitasking. For example, a user may be

rushing through a crowded space and buying a bus ticket on her mobile phone

whilst her mobile device directs her to the bus which is about to leave.

Context awareness takes advantage of technologies that can sense information

about a user and her environment. Context awareness processes the sensed

information, and typically infers further information, to model the situation of the

user. By understanding the situation, it can help the user to become aware of

different transparent services and devices in different environments such as

available printer in another room. At the same time, it can narrow down the

services so that only relevant services are shown to the user in a limited interface

at the right time in the right place. For example, instead of showing a town map

on the small PDA screen, the system sues the user’s current location to rescale the

map and only shows the city map that user is situated. Also, the sensed

information can be used to reduce the need for the user to explicitly interact with a

device, thereby helping a user to efficiently multitask in her everyday life. Users

are no longer need to do explicit input of where they are or type of restaurant they

want to find. The system automatically uses the user’s current location and food

preference they provided during system registration to show nearby restaurant on

the map on her PDA.

Context awareness has been explored by several researchers in the past but it is

still in its infancy. In order to further the field, researchers are exploring several

 6

problems. Current problems in the context awareness field are discussed in the

next section.

1.3 Issues in Context Awareness

As will be discussed more fully in 5Chapter 2, the main problems in context

awareness can be summarised as follows:

1. The definition of context is broad and still unclear. The boundary of what is

and is not context is not properly defined. The question of “What context are we

defining?”, that we believe is important in understanding context, has not been

answered. A clear boundary will guide designers to narrow down the context

information to be used in their design of a context-aware system. Context is

potentially an infinite set of information so having a boundary helps a designer

identify the context information that is necessary to a particular design.

2. In attempting to define context, classifications by different researchers have

covered many different aspects of context. While not always in agreement, these

findings have shown that there are a large number of elements that make up

context. However, the implementation of context-aware applications typically has

been technology-driven instead of driven by user requirements. This means the

developers design the applications according to the available of the technology

such as what types of sensors are available to them at the development stage.

Therefore often only a subset of context, for example that can be sensed by a

particular technology that the researchers have to hand, is used in the

implementations. It can cause difficulties when there are new types of sensor

available because the application is not prepare to use other types of information

which could improve the efficiency of the context-aware system. Therefore the

redesign of the application is required before further research can be done.

 7

3. As context contains a potentially infinite set of information, the process of

gathering the context can be expensive or impossible. Therefore we need to

identify and analyse the most influential and critical elements of context that have

an influence on human activity in ubiquitous computing. This level of analysis has

never been carried out and there is confusion surrounding the various elements.

Moreover, there is a lack of understanding of the relationships between the

elements.

4. By having no fully identified context elements and uniform relationships

between elements, there is a lack of a context model that could provide a

systematic tool to help build shared understandings about context amongst

designers, developers and users. Without a systematic tool, context can be too

complicated for developers to understand and implement, while users have

difficulty in understanding the complex reasoning methods behind the context-

aware system. This lack of understanding can lead to breakdowns and frustration

when the system makes mistakes. The system is using the changes in information

about the user and environment to infer about use’s current task and therefore be

able to provide support to the user at the right time in order to reduce user’s tasks

overload. Even highly intelligent, human make mistake in inferring what other is

trying to do. Therefore it is possible that the system inferring process can make

mistake. By having uniform context model, it hopes to provide consistency in the

system and as a result users can build a mental model about the system easier.

5. Finally, how the context-aware system should use the context has not been

dealt with comprehensively. There is no uniform method to process the context in

order to infer the user’s objective. In other words, designers do not have a design

tool to uniformly guide them during the design process. A uniform tool can

introduce a uniform reasoning process and data storage model into the context

aware system’s architecture. Hence consistency in context reasoning can be

 8

implemented. With this architecture, the reasoning methods and context data

(which can be very expensive to collate) can then be more easily reused.

We summarise our contributions to addressing these challenges in Section 1.4.

1.4 Contributions

Researchers have been developing context-aware applications using whatever

technology is available to them. However, it is difficult for researchers to reuse

applications that are developed by other researchers since the various applications

have been developed without a systematic context model, design tool and process.

The context gathering process and reasoning process are driven by the particular

technology. Thus, there is little consistency across projects or common

understanding of what the context model is. As a result, researchers often have to

develop new applications from scratch before they can explore other problems in

the context awareness field. The main contribution of the research reported here is

therefore to produce a common context model and a systematic design tool for

context-aware systems that can offer reusability and support for context-aware

system design. Furthermore, based on the context model, a context-aware system

architecture is produced to support the functionalities that the design tool

introduces.

The context model draws on Activity Theory [Kaptelinin and Nardi, 1997] in

representing the context elements and relationships amongst them that may have

an influence on users in achieving their objectives. The model is based on

information drawn from Table 2-1. The model is used in inferring the user’s

objectives. Researchers can then follow the model and systematic tool during

design and implementation. At run-time, the model underpins the context aware

architecture and can be called upon to represent the system’s context model and

reasoning to the user, also allowing the user to correct and refine the model.

 9

This research is divided into the following three parts:

1. We provide a common context model that provides a conceptual

classification system for context. The context classification system in the context

model includes key elements of context that have an influence on a user’s activity.

Moreover, it also includes consistent relationships between each element in the

classification so that these relationships can be represented and exploited during

the development of a context-aware system.

2. We provide a systematic design tool based on the context model. This

design tool is intended to help designers analyse situations to decide which types

of information have an influence on the user in achieving their objectives. The

relationships between context elements in the context model are used to separate

the context elements from the reasoning methods. The relationships are also used

for designers to communicate with implementers in order to produce uniform

reasoning methods to infer and support the user’s objectives.

3. Based on the context model, we provide an architecture that supports the

separations between identified context elements and the relationships between

these elements in the context model. By having a clear separation between context

elements, the architecture simplifies processes such as changing types of sensors to

acquire context data. Moreover, as a result of supporting uniform relationships

between the elements in the context model, the architecture supports the ability to

reuse context information and reasoning methods in different applications and

even across different domains.

 10

The dissertation demonstrates how the proposed context model can be used as a

design tool. The goal for the context model is to provide a generic yet

operationalised understanding of context. The context model can then be used to

guide the development of a context-aware system architecture. A prototype

implementation is described in the dissertation to demonstrate how the architecture

offers flexibility and simplicity in changing or adding new types of sensors,

reusing context data for new applications and domains, and communicating the

underlying context model and reasoning to the user.

1.5 Outline of Dissertation

Chapter 2 presents background in the field of context awareness. Previous context

definitions, classifications and context-aware projects are reviewed in order to

identify challenges in the field. The chapter is concluded with a discussion of

requirements for a design tool and architecture for context-aware systems. Based

on these requirements, the research question of this dissertation is proposed. The

aims and objectives of the dissertation are discussed in order to elaborate on how

we set out to answer our research question.

Chapter 3 presents an introduction to the work of this dissertation. It begins

describing Activity Theory and the reasons for using it in this work. It then

discusses the significance of context history and how Activity Theory and context

history are used in our proposed context model. In our context model, a temporal

dimension is added to Activity Theory in order to take account of history. Our

context model contains nine elements. The definitions of the nine elements are

introduced in order to aid designers to come to a shared understanding about the

context model in a consistent and structured manner.

 11

In Chapter 4, the use of the context model as a design tool for context-aware

system design is discussed. First, we provide an overview of the six systematic

steps that designers should consider when using the context model as a design tool.

We discuss how our use of Activity Theory brings a uniformly structured design

tool to context-aware system design. We discuss how the proposed context model

is intended to meet the context-aware system design tool requirements described in

Chapter 2.

Chapter 5 provides an overview of the architecture that supports the designs

resulting from applying the context model. It begins with a brief summary of the

three layers in the architecture. The structured reasoning mechanism and data

storage are introduced. The flow of data in the architecture is then discussed in

order to show how the architecture supports the separation of context according to

its properties. We discuss how the architecture is intended to meet the context-

aware system architecture requirements.

In Chapter 6, two scenarios are introduced in order to apply and demonstrate the

design tool based on the proposed context model. The first uses a common

conference assistant scenario that has been used in previous context-aware projects

[Dey, et al., 2001; Dey, et al., 1999; Sumi and Mase, 2001]. The second example

is drawn from a complex scenario in the A&E department of a large London

hospital. The design tool is applied to these two scenarios. The results are

discussed to evaluate how the use of the design tool has met the requirements

developed in 5Chapter 2.

Chapter 7 applies the design outputs provided by our application of the context

model and design tool in 5Chapter 6 to demonstrate the implementation of a

prototype for managing patient admissions in the hospital A&E department

scenario. It shows how the design output from Chapter 6 assists the developer

 12

during implementation of the system with its consistent structure of databases for

sensors, context elements and context model. The consistent structure of the

databases provides well separated layers in the architecture to deal with different

levels of context information. As a result, with regard to the architecture described

in 5Chapter 5, the implementation of the three layered architecture is described in

order to show the potential advantages it introduces to the context-aware system.

Then an application of the design outputs from both scenarios in 5Chapter 6 is

discussed in order to demonstrate the use and advantages (e.g. ease of expansion

and reusability) of the architecture. The requirements developed in 5Chapter 2 are

then used to evaluate the architecture by investigating how the architecture

actually meets these requirements.

Chapter 8 summarises the work of the dissertation, draws conclusions, and

indicates directions for future work.

 13

Chapter 2

 Context
Awareness

This chapter introduces context awareness. It starts by discussing the problems

that ubiquitous computing introduces to traditional desktop computing users.

Previous context-aware definitions and classifications are then discussed.

Previous context-aware projects are also analysed, highlighting their similarities

and differences. The analysis of previous context-aware systems also leads to

discussion of the problems that need to be tackled in order to further the field of

context awareness. Lastly, a problem solving idea is presented and a research

question is raised.

2.1 Usability Issues in Mobile and Ubiquitous Computing

As technology develops, the use of computing devices is no longer limited to a

single location as in traditional desktop computing. Ubiquitous computing allows

users to carry a device with them at all times. A user can have access to

information anywhere via different devices or services that are embedded in the

environment. There is therefore the possibility of a user having to concentrate on

several activities at the same time. Moreover, the interfaces are in many cases

 14

becoming less usable. There are at least two sources of usability problems

associated with ubiquitous computing applications.

First, mobile and ubiquitous users access information and services in diverse

settings via different devices that are mobile or fixed in the environment and

whilst performing other activities. This multitasking in changing environments

puts increased cognitive demands on the user. While some research [Schumacher,

et al., 2001] suggests that users may become skilled at managing some of these

demands, and recent studies show that users can successfully perform relatively

simple multitasking, such as running through city streets while avoiding obstacles

and glancing intermittently at information on a PDA [Benford, et al., 2003;

Flintham, et al., 2003; Jameson and Klöckner, 2005], more cognitively demanding

multitasking remains a problem [McCrickard, et al., 2003; Oviatt, et al., 2004.] In

particular, usability is likely to suffer when interactive tasks involve explicit input

from the user [Oviatt et al., 2004]. Explicit input is input where the user tells the

computer directly (e.g. by command-line, direct manipulation using a GUI, gesture

or speech input) what he expects the computer to do, whereas implicit input is an

action performed by the user that is not primarily aimed at interacting with a

computer system but which such a system understands as input [Schmidt, 2000.].

An example of the implicit input is information about accessing a room or objects

when user is opening the door or picking up the objects that are embedded with

sensors [Antifakos, et al., 2003].

Secondly, in ubiquitous computing , usability is often hindered by the conflation of

the physical characteristics of the device with the characteristics of the interface

between the user and the services that the device delivers [Kostakos and O'Neill,

2003; O’Neill, et al., 2006]. For example, as mobile devices become smaller, their

input and output features become smaller and less usable. At the other end of the

size spectrum, fixed ubiquitous devices such as large public displays driven by

 15

embedded computers typically do not have the keyboard and mouse that support

explicit user input in the desktop environment. Researchers have explored new

techniques of interacting with ubiquitous devices such as gesture or speech input

[Minker, et al., 2005; O’Neill et al., 2006]. Unfortunately, we have not yet

developed interaction devices and techniques for such settings that are as effective

for explicit input as those in use in the standard desktop setting. It therefore

becomes harder for ubiquitous computing users to perform explicit input compared

to desktop users. Researchers have attempted to improve user interaction by

taking advantage of the changes in information relating to users, devices and

environments. This concept is known as context awareness. Context awareness

may be exploited to overcome the usability challenges of explicit input. The goal

of this research is to use context to improve usability in ubiquitous computing by

reducing the requirement for explicit input. This may be achieved by increasing

the use of implicit input. The reduction in explicit input that users have to perform

should improve usability both by reducing the user’s cognitive load and by

reducing the user’s reliance on poorly usable interaction techniques and devices,

thereby addressing both of the sources of usability problems described above.

Previous research in context awareness is discussed in the next section. It presents

previous context definitions and classifications proposed by different researchers.

The analysis of previous context-aware projects is then discussed.

2.2 Previous Research in Context Awareness

A large number of researchers have explored the field of context awareness in the

past few years. Early works [Abowd, et al., 1996; Brown, 1996; Schilit and

Theimer, 1994] considered context to be related to the location of users.

Technology has developed rapidly in the area of computing and sensing devices.

This means that devices may soon be placed in more and more locations in the

environment, sensing vast amounts of increasingly diverse information.

 16

Researchers hope to be able to make use of this sensed information through

context awareness to improve the usability of ubiquitous computing. Researchers

have attempted to define context in order to have a general view on the diversity of

context information.

2.2.1 Context Definition

A number of definitions of context awareness have been developed for various

applications. Researchers have defined context to better understand the theories

behind their implementations. Some of these different definitions are presented

and discussed here.

The first set of definitions offers a very broad definition of context. For example,

Capra et al. [Capra, et al., 2001] defined context as “everything that can influence

the behaviour of an application”. Lieberman and Selker similarly considered

context to be “everything that affects the computation”. However, they specified

that explicit input and output are not considered as part of context [Lieberman and

Selker, 2000]. These definitions are too vague to be used as theory behind an

implementation as it is very hard to define for implementation purposes what

exactly “everything” refers to.

The second set of definitions attempts to define context more precisely. For

example, Chen and Kotz [Chen and Kotz, 2000] provide a definition where

context is a set of environmental states and settings that are of interest to the user

or ones that trigger application events. Similarly, Benerecetti, Bouquest and

Bonifacio argue that context can be thought of as a subjective representation of the

environment that an agent uses to solve a particular problem [Benerecetti, et al.,

2001]. The context, in this case, is not all the states and settings but is limited to

ones that are of interest to the user or to solve a particular problem. Although

these definitions have attempted to define context more precisely, it is still unclear

exactly what the states of a particular environment actually are.

 17

The last set of definitions of context is again more precise but is not limited to the

environmental states and settings that are of immediate interest to the user.

“Ward, Jones and Hopper defined context as a state of the computer or

application’s surroundings” [Hopper, et al., 1997]. Ryan, Pascoe and Morse

[Morse, et al., 1997] similarly defined context as the information about a

computer’s environment. Schilit and Theimer [Schilit and Theimer, 1994] defined

context as information about the world around the users. Schmidt, et al [Schmidt,

et al., 1999a] define context as more than just a state of either the application’s

surroundings or world around the users. They defined context to be knowledge

about both the user’s and device’s state, including their surroundings, situation and

to a lesser extent, location. Here they have specified that context is not everything

that influences the application, but can be grouped into knowledge of both the

user’s and the device’s state. More specifically, Schilit, Adams and Want [Schilit,

et al., 1994] defined context as the user’s physical and computing environment that

is changing over time. Dey and Abowd [Dey and Abowd, 2001] provide a similar

definition but cover more than just a user’s and device’s state. “They defined

context as any information that can be used to characterise the situation of an

entity where an entity is a person, place, or object that is considered relevant to the

interaction between a user and an application, including the user and the

application themselves.” [Dey and Abowd, 2001]

Bucur [Bucur, et al., 2005] attempted to extend the definition from Dey and

Abowd by defining context as the factors that influence a certain decision. The

context may therefore be described as a set of attributes and finality. The finality

is the goal for which the context is used at a given moment, the focus of the

activity at hand.

 18

Although these definitions attempt to provide further detail, the boundaries of

context and the relationships between the user, device and environment are still

unclear. From different definitions, the root question that should be raised is:

“What context are we defining?” To date, nobody has answered this fully and this

has lead to vagueness in the definition of context. To design or develop a context-

aware system based on these unclear definitions is difficult.

Researchers have tended to use context definitions to give them a general idea

about context. Based on such definitions, some researchers have derived

classifications of context for a context management perspective.

2.2.2 Context Classification

Before researchers use context in applications, they need to have an understanding

of what they should take into account as context. The scope of context is

potentially infinite, encompassing everything that may in one way or another

influence the user. Clearly, a way of reducing this infinite set to something more

manageable is needed. A first step is to identify the elements of context that are

likely to be most relevant to the user’s needs and actions. (The ambiguity in this

claim illustrates the need for adaptability of our definition and representation of

context at each stage from analysis, through design and implementation, to use.)

Having reduced the set of elements of context that we must consider, to complete a

model of context we need to capture the relationships amongst these elements.

Several researchers have tried to develop better understandings of context by

producing context definitions and classifications of the key elements of context.

Table 2-1 summarises this work. The columns in 5Table 2-1 are derived from

elements that researchers have identified as relevant parts of context. In the first

 19

row of 5Table 2-1, Benerecetti, Bouquest and Bonifacio [Benerecetti et al., 2001]

have classified context into Physical Context and Cultural Context. Physical

Context is a set of features of the environment while Cultural Context includes

user information, the social environment and beliefs.

Schilit et al [Schilit and Theimer, 1994] similarly have included Physical Context

and Cultural Context, which is called the User Environment. However, Schilit et

al have paid attention to the Computing Environment as well.

Schmidt et al [Schmidt, et al., 1999b] on the other hand have extended the

classification into three dimensions: Physical Environment, Human Factors and

Time. Human Factors cover the same features as Cultural Context. Physical

Environment combines Physical Context and Computing Environment. They have

added time to reflect the importance of context history, which has an influence on

modelling the user’s past, current, and future actions.

Lieberman and Selker [Lieberman and Selker, 2000] have ignored Time and

classified context to include the Physical Environment, the User Environment and

the Computing Environment. In this case, the User Environment includes the

user’s location and is treated separately from the Physical Environment.

Lieberman and Selker treat the Computing Environment as a separate entity here

because they believe that information such as network availability can be of

interest to the user and related computing devices. Hull et al [Hull, et al., 1997],

Lucas [Lucas, 2001] and Chalmers and Sloman [Chalmers and Sloman, 1999]

argue that characteristics of the device itself, such as screen size and input device,

are also of interest to the user and system. They have therefore included Device

Characteristics as one element of their context classification. Chalmers and

Sloman have also added user activity into their context classification. However,

 20

they do not consider Time and other user characteristics, which may be important

elements of context.

Based on Dey and Abowd’s definition of context [Dey and Abowd, 1999], they

have provided a top-level classification system which includes four types of

context: Location, Identity, Time and Activity. They claim that these are primary

types of context that can be used to refer to other secondary context. Becker and

Nicklas [Becker and Nicklas, 2004] used the concept of Identity from Dey and

Abowd’s classification of context [Dey and Abowd, 1999]. They divided context

information into three criteria: the Identity of the entities, the Location of entities

and Time. Because of the important roles of identity, location and time to the

organisation of context models, they refer to these as primary context. Lee and

Meier [Lee and Meier, 2007] extended Becker and Nicklas’ classification by

including Quality of Service context in the primary context. However, with these

three classifications, there is no clear separation between device and user. The

computing device and user should be treated differently because they have

different features and they affect user behaviour differently.

Similar to Dey and Abowd, Korpipää et al [Korpipää, et al., 2003] provided a top-

level classification system with categories including Location, Time, Environment,

User and Device. This provides a clearer separation between User and Device

compared to Dey and Abowd’s classification. Korpipää et al separated Location

from Environment and defined User Activity as a subcategory of User.

Thomson et al. [Thomson, et al., 2005] present a classification including

Location, Tools, Time and People. The People context includes information about

the user, her actions, other people around the user and their social relationships.

The Tools context includes information about Device Characteristics and the

Computing Environment. The representation of People and Tools illustrates that

 21

this classification has clear separation between User and Device similar to the

classification by Korpipää et al. On the other hand, it has combined information

about Location and Environment in Korpipää et al. into Location context. Similar

to both Dey and Abowd and Korpipää et al., it includes Time as part of context.

Oh et al [Oh, et al., 2006] use the well-known 4W1H concepts of knowledge

representation to classify preliminary contexts into 5 types: Who, What, Where,

When, and How.

Dix et al. [Dix, et al., 2000] have classified context into 4 types by considering the

nature of the context in which interaction with mobile and ubiquitous applications

takes place. First, Infrastructure Context is concerned with information such as

variability of service, user awareness of service and “liveness” of data. Secondly,

System Context deals with information about other devices, applications, and

users. Thirdly, Domain Context is concerned with information on application

domain, style of use and identification of user. Lastly, Physical Context is

concerned with the physical nature of the device, environment and location.

These classification systems are typically intended to be context models defining

what elements of context should be used to understand the user, in order to have a

better understanding of the user’s interactions and intentions. Chen and Kotz

[Chen and Kotz, 2000] have introduced a classification system with a different

aim, where context is classified depending on how it is used in the application.

They have classified context very broadly into two types: Active and Passive,

where Active Context is that which influences the behaviours of an application,

and Passive Context is that which is relevant but not critical to an application.

 22

Table 2-1 Context classification systems.

From 5Table 2-1 apart from Chen and Kotz’s classification, we can see that each

approach covers different elements of context for understanding human behaviour.

Some groups in different classification systems are overlapping. Moreover, some

groups cover the same elements but are labelled differently such as Cultural

Context in [Benerecetti et al., 2001] and User Environment in [Schilit and

Theimer, 1994]. Together these groups cover key elements of context that have an

influence on user behaviour. From these classification systems, we identify 5 high

 23

level categories of elements that should be taken into account in modelling context

for design. These 5 high level categories are:

User. This is information about the user (for example, identification, habit, and

preference) and the user’s current actions.

Physical Environment. This is information about the physical environment such

as the physical location of user and devices and condition of the environment (for

example level of noise, light, traffic etc.). It is separate from the computing

environment because it is different in its features, and the ways in which these

features are captured and reasoned about will be different.

Tools. This groups all information about the tools, including both non-computing

tools and the computing environment such as notice board, network availability,

printer queue status etc.

Social. This is separate from User because it represents information about the

relationship between a user and other users that will be captured and processed

differently from information about the user himself.

Time. This is time-based information such as time of day, date etc.

It is important that the context classification represents key elements as it will be

used during implementation. When the context classification is not complete or

too complicated, the developers may have difficulty in implementing the system

[Paganelli and Giuli, 2007]. Moreover, researchers may face difficulties in reusing

and expanding the system.

 24

2.2.3 Previous Context-Awareness Projects

In this section we group previous context-awareness projects according to the

approach they took to modelling context.

2.2.3.1 Location Based Systems
As Location Based Systems deal with only one particular type of context (i.e.

location) and only with one or a couple of sensors, system architecture can

therefore involve simple direct sensor access. The designers mainly concentrate

on how to acquire or gather the sensor data, represent the sensor data and how to

improve the accuracy of data from the sensors. The context model, which is used

in these systems, only deals with one type of context (i.e. location). It can

however gather information from different types of sensor such as GPS, Active

Badges, Active Bats, Smart Floor, etc.

For example, Location-Aware Web System (LAWS) [Haghighat, et al., 2004]

allows users to see web pages on their roaming device’s interface that are

dynamically generated based on their location from their own in-door positioning

system. So the users know where they are in the physical space and are able to

locate items or places of interest that they are looking for, either through a map

that is shown on the roaming device or through a reference point to the item’s

location. The positioning system represents location in the form of X-Y

coordinates.

Sotto Voce electronic guidebook [Aoki, et al., 2002] provides content about

exhibits on a user’s device according to a user’s location (The user can click on the

photo of the item in the room on his device to obtain more information on it).

 25

ImogI system [Luyten and Coninx, 2004] uses Bluetooth to establish

communication between the PDAs and the exhibits and reflects the closest exhibits

to the location of the user. Active Map [Schilit and Theimer, 1994] detects a

user’s current location via active badges and shows it on the map so that it allows

users to be located quickly.

Location-aware city guides [Davies, et al., 2001] use location information from

GPS or network-based location beacons to present information relevant to a user’s

location and provide route guidance.

SmartCampus Location-Aware Community System [Kim, et al., 2007] uses

WiFi access points to determine the location of users. It runs applications that link

“people-to-people-to-place”, or P3-systems. For instance, the applications allow a

user to see the location of her ‘buddies’. However, by using just location, it limits

the functionality of the applications. The users are therefore left with some

concerns such as privacy control, the validity of the data (e.g., will applications be

used to make verbal attacks on others?), and interruptions or overload with

information, which may be disruptive.

Most Location Based Systems were designed to be used for a particular scenario,

as they concentrate on a technology and its capability to get one type of context.

Therefore this type of system typically does not separate the sensor code from

system code. Thus it is impossible for researchers to reuse the systems with

different types of sensors or domains. Moreover, by limiting the context to just

one type of information, it may also limit the functionality of context-aware

systems.

 26

Researchers have explored different types of context beyond location in order to

improve the functionality of the context-aware system. These context-aware

systems are discussed in the next section.

2.2.3.2 Context Aware Systems
Location Based Systems do not take account of other information about the user or

her environment. For example, Sotto Voce’s electronic guidebook does not take

into account whether the user is with a companion or not. As a result, visitors

frequently complain that audio tours with headphones isolate them from their

companions, and visitors have few opportunities to interact effectively with each

other while an audio tour is played to them.

Instead of using one type of context, Context Aware Systems combine different

types of context (e.g. location, user’s environment, society and time) in order to

improve the understanding of a user’s current task or objective [Baldauf, et al.,

2006]. This increases the ability to adapt to the user’s needs and become a more

useful and usable system. However, it can only be used for a particular scenario

and particular types of sensor. These systems do not support other applications

and the sensors cannot be reused.

For example, SenSay [Siewiorek, 2003] is a mobile phone that adapts to changing

user states by manipulating ring volume, vibration, and phone alerts for incoming

calls according to context information. Context information such as the user’s

activity and the user’s environment is collated from a number of wearable sensors

including accelerometers, light and microphones mounted on the user’s body.

 27

SmartRestaurant [Lukkari, et al., 2004] is a web service for mobile users that has

been designed to enhance a restaurant’s production and delivery process. The

SmartRestaurant actors are categorised into customers and employees.

The customers (also referred to as end-users) are normal customers except that

they use the SmartRestaurant to order and pay for their lunch before they reach the

restaurant. SmartRestaurant takes account of customers’ current context (time,

location) to schedule the delivery time for their order so that the food will be hot

and fresh when they enter the restaurant. The employees of the restaurant

configure the service and prepare the ordered meals. SmartRestaurant allows the

restaurant to automatically adjust sales in line with production capacity (a

maximum of 10 orders can be sold per delivery period of 15 minutes).

SmartRestaurant also provides the restaurant with prior knowledge of upcoming

orders and reduces the time consuming process of completing payment.

Ubiquitous Multimedia Information Delivering Service (U-MIDS) for smart

homes [Hsu, et al., 2007] uses Radio Frequency Identification (RFID) to detect

user’s locations and behaviours. U-MIDS uses this information together with

users’ preferences to automatically deliver multimedia information, such as MP3

music, Internet radio, spoken online news and personal spoken messages to the

users in a smart home. The U-MIDS gateway can control the network media

players to play desired spoken information or music according to users’

preferences, locations and situations. The users can therefore be free and relaxed

to gather the ubiquitous multimedia information around their home all the time.

Chalmers et al [Chalmers, et al., 2004] introduce a framework for contextual

mediation concentrated on managed system resources. The context elements that

they take into account include the computing context and user context such as

screen size, network type and user’s current task. A context-aware map

 28

application is used as an example. Aspects of the contexts are used to select the

most appropriate profiles which specify the required mediation rather than trying

to cater to all possible context variations. The use of context as arguments and the

ability to compose sub-profiles give some flexibility.

Chisel [Keeney and Cahill, 2003] is an open framework for dynamic adaptation of

services in a context-aware manner based on a policy-driven approach. Chisel

adapts the behaviours of service according to the changes of environment, user

context and application context. The adaptation is driven by a human-readable

declarative adaptation policy script.

Another example is the context-aware mobile communication in hospitals

[Muñoz, et al., 2003]. It is comprised of context information in hospitals, which

includes location of a worker, device or artefact state, time and person’s role, and

allows users to send messages and access hospital services when and where they

choose. The system extends the instant messaging paradigm to add context

awareness as part of the message. By using this system, users can utilise their own

personal device to write messages that set circumstances when the message should

be sent. For example, the sender can ask that a patient’s lab results be delivered to

the first doctor to enter room 124 after 9am. The system architecture consists of a

context-aware client, an instant messaging server and several agents. Each agent

contains three modules: 1. Perception module gathers information sources

(sensors, users, other agents, the server) 2. Reasoning module governs the agent’s

action 3. Action module triggers a user specified event. All messages between

agents are XML encoded.

Previous Context Aware Systems projects have advanced the field of context

awareness. However, the often monolithic systems developed typically do not

 29

lend themselves to reuse for different situations or sensors. Context Aware

Frameworks provide attempts at a more abstract approach.

2.2.3.3 Context Aware Frameworks
Even though the Context Aware Systems can be optimised for the situations they

are used in, they do not have to be flexible and extensible. In order to ease the

development of context-aware applications, an abstract framework is needed. The

framework provides a generic infrastructure that not only provides the client with

access to retrieve context data, but also permits the simple registration of new

distributed heterogeneous data sources [Baldauf et al., 2006]. This means the

researchers do not have to invest time and resources to repeatedly develop new

Context Aware Systems. Examples of past Context Aware Frameworks are

discussed below:

Gaia [Román, et al., 2002]

Gaia extends typical operating system concepts to include context awareness. Its

aim is to support the development and execution of portable applications for active

spaces. Gaia is a distributed middleware infrastructure that coordinates software

entities and heterogeneous networked devices contained in a physical

space. 5Figure 2-1 shows the three major building blocks of Gaia:

 Gaia Kernel contains a management and deployment system for

distributed objects and an interrelated set of basic services that are

used by all applications. The Component Management Core

dynamically loads, unloads, transfers, creates, and destroys all the

components and applications of Gaia. Gaia’s five basic services are:

o Event manager service is responsible for event distribution in

the active space and implements a decoupled communication

model based on suppliers, consumers and channels.

 30

o Presence service is responsible for detecting digital (e.g.

service and application) and physical entities (e.g. furniture and

people) present in an active space. It defines four basic types of

entities: Application, Service, Device, and Person.

o Context service helps the applications to query and register for

particular context information and high level context objects.

o Space repository service stores information about all software

and hardware entities contained in the space (e.g., name, type,

and owner) and provides functionality to browse and retrieve

entities based on specific attributes.

o Context file system makes personal storage automatically

available in the user’s present location. It constructs a virtual

directory hierarchy to represent context as directories where

path components represent context types and values.

The Gaia Application Framework provides mechanisms to construct or run

applications or to adapt existing applications to active spaces. The framework is

composed of a distributed component-based infrastructure, a mapping mechanism,

and a group of policies to customise different aspects of the applications. The

Applications are the applications available in an active space.

Figure 2-1 Gaia system architecture

 31

The context model in Gaia is represented in a 4-ary predicate which is based on

first order logic and Boolean algebra An atomic context predicate is defined in the

following way: Context(<ContextType>, <Subject>, <Relater>, <Object>). It is

written in DAML+OIL [Connolly, et al., 2001]. The Context Type refers to the

type of context the predicate is describing, the Subject is the person, place or thing

with which the context is concerned, and the Object is a value associated with the

Subject. The Relater relates the Subject and the Object, using a comparison

operator (=, >, or <), a verb, or preposition. These rules may be a combination of

lower level context information. This model provides a simple way to write a

predefined rule about context. It is, however, very specific for different situations

and can be difficult to reuse or extend. The implementation of each application

requires subscribing for different context information and high level context

objects. There is no consistency in context model between applications. To

develop a subscription part for every new application can be a time consuming

process in itself. Moreover, by subscribing a combination of lower level of

information can lead to the difficulties in reusing the context model. For example

in different application where the same sensor is not available or new type of

sensor is introduced to the system. Then the context model (rules about context)

has to be changed for each set of rule.

CASS (Context-Awareness Sub-Structure) [Fahy and Clarke, 2004]

CASS is centralised server based middleware intended to support context-aware

applications on hand-held and other small mobile computers. 5Figure 2-2 illustrates

that the middleware contains:

 Interpreter

 Context retriever is responsible for retrieving stored context data. It

may use services of an interpreter.

 32

 Rule engine has 3 subclasses that correspond to the categories of

context awareness application features identified in [Dey and Abowd,

1999].

 SensorListener listens for updates from sensors which are located on

distributed computers called sensor nodes. It may then use the

services of an interpreter before storing the gathered data in the

database.

An inference engine works in conjunction with a knowledge base and uses the

rules contained in the knowledge base to solve problems. The rules are stored in a

database separate from the interpreter. The components are therefore not required

to recompile when the rules change.

Figure 2-2 CASS system architecture

 33

Table 2-2 Example of rule database entry

Table 2-2 shows a weather state for a tour-guide application. It might use such a

rule to allow it to display hyperlinks to indoor activities or can be used in a further

rule. There is no standard structured way in creating the rules. Normally, the rules

are specific to a particular domain which makes that extension and reuse in

different domains very difficult.

Middleware Enabling Context-awareness for Smart Environment

(MidCASE) [Bai, et al., 2007]

Similar to CASS, MidCASE is based on a layered middleware. Its architecture

aims to provide a service oriented middleware to bridge the gap between the

programmable application layer consisting of different scenarios and the hardware

layer consisting of heterogeneous devices. In this process, the middleware utilises

a service-oriented, distributed, extensible architecture to achieve the service in

each awareness service domain. The services are deployed in accordance with the

form of “One scenario, one service, one reasoning and awareness process”. The

awareness process is achieved by applying rule-based reasoning. The context

model (Context Tuple Space) in MidCASE uses combinations of entities to

represent the physical world in the domain. For each context service domain, the

selection of entities and their attributes, and the selection of methods, are critical in

the model building process.

5Figure 2-3 shows the architecture comprising of five layers and two cross-layer

modules:

 34

 Hardware Abstract Layer treats hardware devices as generic common

objects to obtain all kinds of context data. This layer makes the

sensors transparent to the upper layer.

 Service Registry Layer provides the mechanism of registration and

realises the communication among services through remote process

calls.

 Context Model Layer consists of the entity and context containers.

The entity container is used to model the environment. Each entity

models the object in the real world such as a nurse and a monitor.

The status and capability of the objects refer to the attributes and

methods of the entities. The context container is used to connect the

context data taken from the hardware abstract layer. To facilitate the

process of awareness and reasoning, as shown in 5Figure 2-3, this

layer combines context agent and context queue in order to work as a

connector to a rule engine. The context agents bridge up the entity in

context-awareness service and devices in physical world. The

context agent could gather data from different sensor devices where

the data becomes part of information about entity. The context agent

also could get different accessing objects from variable entities such

as nurse entity. In order to model the entity in the real world, the

context of entity constitutes a different context queue. The context

agents keep accessing the data from sensor devices and compare it

with the previous data that has been stored a moment ago. The

differences between the two groups of data will originate context

event, which means the changing of scenario. The attribute of the

relative entities could be changed through context event and be input

into rule engine as facts through the context queue, which is loaded

into a fact base and rule engine.

 Awareness and Reason Layer provides a rule engine which is

embedded in the middleware. The fact and rule loaders are provided

 35

in this layer so that the facts and rules in scenarios from entities can

be loaded. This layer checks whether the current context of entity

“facts” satisfy some rules. It then sends the result of reasoning to the

application presentation layer.

 Application Presentation Layer shows how to use the result of

reasoning in the physical world.

 Energy Management Module is implemented with cross-layer

cooperation. Combining the functions of module and rule engine, it

can control network energy assumptions by assuring normal running

on the fewest required nodes.

 Security Module refers to the hardware authentication of context

acquiring and access priority control of context data.

 36

Figure 2-3 Architecture of MidCASE

Context Toolkit [Dey, 2000; Dey et al., 2001]

This Toolkit was one of the first projects that considered separating the acquisition

and representation of context from the delivery and reaction to context, facilitating

easier building of the context aware application. As shown in 5Figure 2-4, the

components in the Context Toolkit architecture are:

 Widgets send particular context attribute information to subscribers

and store them in MySQL. For example, a Presence Widget that

senses the presence of people in a room. or a Meeting Widget that

detects new meeting information either from a user’s schedule or

built on top of a Presence Widget which would show that there are

 37

two or more people in the room. The context widgets separate the

applications from sensors.

 Interpreters convert data to meaningful or useful information.

Interpreters help the process of raising the level of abstraction of a

piece of context. For example, location may be expressed at a low

level of abstraction, such as geographical coordinates or at higher

levels such as street names. An example of combining data is as

follows: if a room contains several occupants and the sound level in

the room is high; one can guess that a meeting is going on by

combining these two pieces of context. The interpreters hide the

context translation process from the applications. Therefore they can

be reusable by multiple applications.

 Aggregators gather logically related information about a context

entity that is relevant for applications and make it available within a

single piece of software. For example, Attendee Aggregator is used

to collect information about a user such as location from Presence

Widget and a user’s note from Memo Widget.

 Discoverers are responsible for maintaining a registry of what

capabilities exist in the framework. This includes knowing what

widgets, interpreters, aggregators and services are currently available

for use by applications.

 Services are components in the framework that execute actions on

behalf of applications. Examples of services include sending an e-

mail to a user or sending a message to a user on a two-way pager

containing a number of possible message responses.

The peer to peer architecture with centralised discoverer supports multiple

simultaneous applications and querying or storage of context. The Context Toolkit

 38

considers context broadly as information about the relevant entities (people,

places, and objects) in the environment.

The context model is represented in simple attribute value tuples which are

encoded using XML for transmission. Based on the broad definition of context,

the context modelling in this project is domain oriented modelling. The context

design only supports context in the same domain. When the domain is changed,

the designers have to reconsider the required aggregators, widgets and interpreters,

which can be a time consuming process. Even for a new application, the designers

have to reconsider the aggregators if the existing ones cannot be reused.

Figure 2-4 Components in Context Toolkit Architecture

Hydrogen [Hofer, et al., 2003]

The Hydrogen framework is based on a layered architecture. 5Figure 2-5 shows an

architecture comprised of three layers. Similar to Context Toolkit, Hydrogen’s

architecture aims to separate the concerns of interacting with the physical sensors,

 39

storing and maintaining the context, and the application itself. The

communication between layers is based on an XML protocol. These layers are:

 Adaptor Layer is responsible for getting information from sensors

and possibly enriching this information with logical context

information. The information is then sent to the Management Layer.

This avoids multiple applications reading data from the same sensor.

 Management Layer has a ContextServer, which stores all contextual

information about the current environment of the device, embedded

to provide simple methods for the applications to retrieve and

subscribe to a context. ContextServer provides the possibility of

sharing context information with other devices via peer to peer

communication. It offers two ways for the applications to refer to

context – asynchronous and synchronous methods. The

asynchronous method allows the applications to query a specific

context from the server in a pull-based manner whereas the

synchronous method informs the applications about the changes or

the invalidation of the subscribed context.

 Application Layer holds context-aware applications. Each

application subscribes to a different context via a ContextClient or

directly via an XML protocol to react to specific context changes

reported by the context manager.

Unlike Context Toolkit and many other context frameworks, Hydrogen introduces

an architecture that is located on the same device in order to cope robustly with

mobile network disconnections. As the applications only deal with a local server

with limited storage space, they have to do without storing a vast amount of

context history.

.

 40

Figure 2-5 Architecture of Hydrogen Project

Hydrogen distinguishes between remote and local context as shown in 5Figure 2-6.

Local context contains several ContextObjects, which is information that our own

device is aware of as provided by any attached sensors. Remote context is

information other devices know about, and is accessible over the network such as

WLAN or Bluetooth. The current context model comprises of five types of

context in ContextObjects.

- Time - is the current time as provided by the system clock of the used

device.

- Location represents the current physical position of the device.

 41

- Device consists of a unique identifier and a device type.

- User contains information about the current user of the device.

- Network contains information about the available network connection

types of the device.

Figure 2-6 Hydrogen's Object Oriented Approach

More specialised types of context can be added to the framework by specialising

ContextObjects class, which is a base for all context objects.

As mentioned, the application subscribes context according to what it needs.

Moreover, applications have their own interpretation of context that they are

subscribed to. Therefore if the applications have not the same interpretation, the

code has to be rewritten.

Furthermore, the context model only supports context in the same domain and for

a particular application in a similar way to the Context Toolkit. When the domain

 42

is changed, the designers have to reconsider what should be included and how to

model the ContextObject.

CORTEX [Biegel and Cahill, 2004]

CORTEX system uses a context-aware middleware approach. The architecture is

based on the Sentient Object Model which was designed for the development of

context-aware applications in an ad-hoc mobile environment. The sentient object

model incorporates the STEAM event service [Meier and Cahill, 2003] to provide

communication among components of the model including sensors, which produce

software events and actuators, which consume software events.

Figure 2-7 illustrates that a sentient object which consists of 3 main parts can be

both producer and consumer of another sentient object:

 Sensory capture performs sensor fusion in order to manage

uncertainty of sensor data and derive higher level context information

from multi-modal data sources. A probabilistic sensor fusion scheme

is employed, based upon Bayesian networks, which provides a

powerful mechanism for measuring the effectiveness of derivations

of context from noisy sensor data.

 Context hierarchy holds and handles the set of contexts. The overall

context of a sentient object is made up of a set of discrete

environmental facts and data. These multi-modal context fragments

are fused by the sensory capture component to determine higher level

contexts. The set of contexts in which an object may exist is

represented as a hierarchy, based upon the Context-Based Reasoning

(CxBR) paradigm [Gonzalez and Ahlers, 1999].

 Inference engine is responsible for changing application behaviour

according to context and leverages the existing capabilities of the

 43

CLIPS (C Language Integrated Production System) production

system language [Giarratano, et al., 2004]. Sentient objects are made

context-aware by using conditional rules to specify application

behaviour in different contexts; in other words the objects follow an

Event-Condition-Action execution model [Ipiña, 2001].

Figure 2-7 Sentient Object Model

Context Managing Framework [Korpipää et al., 2003]

Figure 2-8 represents the CMF context framework that contains 4 major

components:

 Context manager represents a centralised server managing a

blackboard while other entities (except security) act as clients. It

stores context data and provides this information to the client

applications.

 Resource servers connect to any context data source and post context

information to the context manager’s blackboard, which further

processes the data if needed and delivers it to the clients according to

their subscriptions.

 Context recognition service stores recognition service table registers.

The resource server and recognition service convert an unstructured

 44

raw data flow into a representation defined in the context ontology

shown in Table 2-3 by using a fuzzy logic. It permits serving the

human-interpretable context information for the applications.

 Application can operate by using the high-level contexts without

needing to know about the underlying process.

The context ontology provides 5 main categories: location, time, environment,

user and device. The framework lets applications subscribe to the required context

information in an event based manner. This can be a time consuming process if

the application requires several context types in the ontology because the user has

to go through different types of the ontology which contains 5 main categories and

subscribe the required context. Moreover, the process of selecting the context is

required for different applications; the process can be burdensome to users. For

example, if different applications require the same set of context, the user still has

to redo the process for the new application. It shows that different context

categories can be reused but the reasoning of the context in a situation (high-level

interpretation) is not reusable as it has no formal structure; each application has its

own subscription of context. Formal structure in this case means it provide a

consistent context model and context reasoning process. Application should be

able to access the context model through an interface so it interacts with system in

the plug and play manner. It should not have to subscribe different information

from sensor devices or high-level context for every new application. The changes

in application or sensor technology should have minimal effect on the context

model.

 45

Figure 2-8 Context Managing Framework Architecture

Table 2-3 Example of Sensor-based Context Ontology

 46

Service-Oriented Context-Aware Middleware (SOCAM) [Gu, et al., 2004]

SOCAM (see 5Figure 2-9) uses a central server (Context interpreter) which gains

context data through distributed context providers and offers it in mostly processed

form to the clients.

It consists of:

 Context providers abstract useful context data from internal physical

sensors or external virtual sensors. It converts the low-level context

sensing to the high-level context in OWL [Smith, et al., 2003]

representations so that the context can be shared and reused by other

services components.

 Context interpreter acts as a context provider as it provides high-level

contexts by interpreting low-level contexts using logic reasoning

services. It consists of a context reasoner and a context KB.

The context reasoner has the functionality of providing deduced contexts based on

direct contexts, resolving context conflicts and maintaining the consistency of the

context KB.

The Context KB provides a set of APIs for other service components to query,

add, delete or modify context knowledge. The Context KB contains context

ontologies in a sub-domain and their instances.

 Context Database Service stores a context ontology and past contexts

for a sub-domain. There is one logic context database in each

domain.

 Location service allows users, agents and applications to locate

different context providers – it acts as resource discovery.

 Context-aware mobile services are applications and services that

make use of different levels of contexts and adapt the way they

behave according to the current contexts.

 47

Figure 2-9 SOCAM architecture

The SOCAM architecture presents a formal context model based on an ontology.

Contexts are represented as predicates written in OWL. The benefit of the

ontology-based approach is that context knowledge can be shared among different

entities and reasoning about context becomes possible. However, the logic context

database is required in each domain as there is no uniform separation of context

categories and the reasoning process that can be reused in different domains.

Context Broker Architecture (CoBrA) [Chen, et al., 2003]

CoBrA is an agent based architecture (see 5Figure 2-10) for supporting context-

aware systems in smart spaces. The heart of the CoBrA is the intelligent context

broker. The broker’s main responsibility is to maintain and manage a centralised

 48

model of context that can be shared by all devices, services and agents in the space

and provides privacy protection for the users in the space by enforcing the policy

rules that they define. The broker uses rule based logical inference for context

reasoning and knowledge maintenance. The context broker contains the

following:

 Context knowledge base provides persistent storage of the context

knowledge.

 Context Reasoning engine determines contextual information that is

stored in the context knowledge base that cannot be directly acquired

from sensors (e.g. intentions, roles, temporal and spatial relations).

 Context acquisition acquires contextual information from sources that

are unreachable by the resource-limited devices.

 Privacy management protects user privacy by enforcing policies that

the users have defined to control the sharing and the use of their

contextual information.

 49

Figure 2-10 CoBrA architecture

CoBrA uses the Web Ontology Language OWL to define ontologies for context

representation and modelling, defines rule-based logical inference for context

reasoning and knowledge maintenance, and provides a policy language for users to

control the sharing of their private information. Their ontology is categorised into

four distinctive but related themes:

- Ontologies for physical places

- Ontologies for agents (both human and software agents)

- Ontologies for the location context of the agents

- Ontologies for the activities context of the agents

 50

As seen in 5Figure 2-11, the role is predefined as part of the information about the

agent. As seen in the previous context clsssification in Table 2-1, user is influence

by the society and has a social status. As a result, user has a role in the society in

different situations. The role of the user can be inferred from the user’s current

location, people around the user (community) or time. Moreover, the context

broker defines different rules for a rule-based logical inference for context

reasoning. For the context broker to be able to provide support to the agents with

a context-aware ability, the defined rules are created in different manners for the

system to detect the situations. For example the rules are referring to a different

part of the ontology or different sets of ontologies. It does not provide developers

with a uniform method of high level interpretation. The uniform method allows

the applications to access context model through an interface rather than directly

predefined or subscription of different context for each application. Therefore

when a new domain is introduced, with the predefined or subscription context

method, the predefined role and the rules need to be redefined and rewritten for

each application.

 51

Figure 2-11 List of Classes and Properties in COBRA-ONT v0.2

STU21 [Conway, 2006]

Stu21 is a distributed agent-based framework, and uses ontology to define context.

This framework provides standard interfaces between components, publish-

subscribe functionality and a directory lookup service which acts like “The Yellow

Pages”. To search for a service, a client agent can search a yellow- and white-

pages directory. Once the client locates the service it can send standard messages

or subscribe to receive published information.

In the STU21 model, the primary actors are:

 PersonAgent. This is a subclass of the Context aware Agent that acts

on behalf of an individual.

 52

 RoomAgent. This is a subclass of the Context aware Agent that acts

on behalf of a smart space.

 A myriad of other agents like table agent, chair agent, desk agent,

projector agent, and light agent. In fact, an agent corresponding to

any object/entity can be added to the system. This object can either

contribute to context by providing information or use the context

information to carry out autonomous productive work.

 Context Broker acts like the CoBrA context broker that models a set

of spaces in concert with subsidiary RoomAgents.

 SensorAgent. This is an agent that wraps a sensor in the

environment, creating a conduit for the input of arbitrary context into

the framework.

 Various associated agents. In 5Figure 2-12, there are several types of

agents. These include:

• ResourceAgent – this is an agent that can represent a resource

available within a smart space, in the way that a SensorAgent

represents a generic sensor.

• IntermediaryAgent – this is an agent that works autonomously

on behalf of a person, monitoring, searching, or negotiating to

achieve some aim on behalf of the individual.

• Context Monitoring/Gathering agent – this is an agent that

monitors context for some purpose.

 53

Figure 2-12 STU21 architecture

Stu21 can be considered as an extension over CoBrA. The rules and inference part

are kept separate from the ontology, thus allowing different rule representations

and inference engines to coexist. Though this makes it possible to switch rule base

and inference engine without affecting the rest of the system, it has the big

disadvantage of representing rules based on semantic meaning of entities

independent of the semantic representation of the entities. Thus, making changes

in the ontology would require encoding new rules in the code to account for these

changes.

 54

The rules may frequently be a very large and dynamic set. In the current setup, the

rules are hidden from the users and are dependent upon programmers and even

small changes can lead to broken systems. Thus, this setup is not suitable for an

extensible and efficient system. This problem could be solved when the system

provides a uniform structure of high-level context elements and the relationships

between them rather than inconsistency embedded rules involving low level

information. Therefore, by having rules in a simple standard form that is

independent of a particular implementation, through its consistency, the users can

easily build understanding about the system and be able to improve the system

efficiency.

2.2.3.4 From Location Based System to Context Aware Framework
In conclusion, Location Based Systems are limited to one type of context (i.e.

location). Context Aware Systems take account of more than one type of context

(i.e. location, time, user’s environment, society, etc.) which is potentially more

useful in a ubiquitous computing environment. This is because there are vast

amounts of information that will be available and this information is important for

the system to utilise in order to obtain a better understanding of the user.

However, Context Aware Systems tend to be limited to specific applications or

domains. Context Aware Frameworks, on the other hand, are the most reusable

and generic, taking account of more than one type of context in a flexible way.

Table 2-4 shows the differences and similarities in different frameworks. It

compares different frameworks according to significant essentials in context-aware

system development:

 Context representation: How does the framework represent the

context in the architecture?

 Context Processing: How does the framework reason about the

context?

 55

 Context Model: How does the framework model the context? What

types of context are taken into account? This is different from the

context representation because the context model is about what are

taking into account as context in the system but the representation is

about how the context is used or implemented in the architecture.

 Architecture: What is the framework’s mechanism for the

architecture? How the system can be implemented?

 Sensing: How does the framework gather data from the sensors?

 Historical Context Data: How does the framework support the use of

historical context data during reasoning?

 Resource Discovery: How does the framework support resource

discovery?

 Security and Privacy: How does the framework support security and

privacy of the user and data?

Table 2-4 shows that the existing frameworks’ researchers have one vital objective

in common. This objective is attempting to make sensors transparent to the

context-aware system. The frameworks have a sensing module (in 5Table 2-4) to

separate the acquisition and representation of context from the delivery and

reaction to context. As a result when there are new sensors, they can be added to

the system without affecting the use of information from existing sensors in the

system. However, the existing frameworks focus on context modelling and

context processing (i.e. reasoning rules or inference) for particular domains or

applications. Existing context modelling and context processing are either

technology-driven or deal with certain types of context and embed context

processing in the context model. This means that the predefined context model

and context processing for inferring the situation are very specific to a particular

application, domain and types of context. This causes a weakness in the

 56

frameworks when there are new applications, domains or new types of context to

take into account.

When there are new applications, domains or types of context, the frameworks do

not cope well. The existing context model and reasoning process are not suitable

to be reused or expanded. This is because the context model and reasoning

process are irregular combinations of low level context (i.e. sensor data) and, in

some cases; high level context (i.e. translated data) depends on the availability of

the context at the time of implementation. Moreover, the context model and

reasoning process are hidden from users. As a result, even though the sensors are

transparent to the system, when a new application, domain or type of sensor is

used, the context model and its reasoning process require modification. Thus, the

designers and developers have to get involved in the process of adding the

functionality (i.e. subscribing to new types of context, remodelling a predefined

context model and reasoning rules) to cope with new applications, domains or

types of context. The process is time consuming and inefficient if users have to

turn to developers for every new application, domain or type of context.

Existing context-aware systems process the context by either using predefined

rules or context models (i.e. the inference part) in order to infer the situation where

the user requires support from the system. These rules and models are stored in

the system database. Most of the systems also provide availability of historical

context data in the system database. However, systems such as Hydrogen and

Context Managing Framework infer the situation using predefined rules but do not

provide the historical context data. This eliminates the possibility of the system’s

exploiting context history to improve efficiency.

With the Context Aware Frameworks, researchers are given more flexibility to

design and develop context-aware applications without having to concern

 57

themselves with sensors. This is because of their sensors transparency, unlike in

the Location Based Systems and Context Aware Systems where the

implementation of sensor module is embedded in the applications. The Context

Aware Frameworks provide the facility of separating the sensing module (i.e.

context providers, sensor nodes and sensor access module in Gaia, CASS and

MidCase projects respectively) from the applications. Therefore the researchers

are able to concentrate on implementing and improving the ability of context-

aware applications without worrying about changes in sensor technology.

 58

 Table 2-4 Summary of Context Aware Frameworks

 59

2.2.4 Types of Context-Aware Applications

In the past, researchers have tried to classify context-aware computing so that they

can better understand and use context more effectively. In this section, different

classification systems of context-aware applications are discussed.

Schilit, Adams and Want [Schilit et al., 1994] have categorised context-aware

computing by its tasks (whether a task is to get information or to execute a

command) and actions (whether the actions are triggered manually or

automatically). They categorise context-aware computing into four types as

follows:

 Proximate selection application: Retrieve information for the user

manually based on available context. Nearby objects are emphasised

or otherwise made easier to choose via the user interface.

 Automatic contextual reconfiguration: Retrieve information for user

automatically based on available context. New components are

dynamically added while existing components are removed or

connections are altered.

 Contextual information and commands: Execute a command for a

user manually based on available context.

 Contextual-trigger actions: Execute a command for a user

automatically based on available context - based on the “if-then” rule.

Pascoe [Pascoe, 1998] introduced another classification system based on context-

aware features. This is a set of basic capabilities that the context-aware computing

system should have. These capabilities are as follows:

 Contextual sensing: The ability to detect contextual information and

present it to the user, augmenting the user’s sensory system. This is

 60

similar to the proximate selection application of Schilit, Adams and

Want.

 Contextual adaptation: The ability to execute or modify a service

automatically based on the current context. This is similar to the

Contextual-trigger actions of Schilit, Adam and Want.

 Contextual resource discovery: The ability to allow a context-aware

application to locate and exploit resources and services that are

relevant to the user’s context. This is similar to the automatic

contextual reconfiguration of Schilit, Adam and Want.

 Contextual augmentation: The ability to associate digital data with

the user’s context. This is a new ability that Pascoe has added,

compared to the classification of Schilit, Adam and Want.

Dey and Abowd [Dey and Abowd, 1999] tried to simplify and combine the above

as follows:

 Presentation of information and services to a user: This is a

combination of proximate selection application, contextual

information and commands, contextual sensing and contextual

resource recovery.

 Automatic execution of a service: This is a combination of the

contextual-trigger actions and contextual adaptation.

 Tagging of context to information for later retrieval: This is

equivalent to the contextual augmentation.

The last classification of context-aware computing that will be discussed here is by

Chen and Kotz [Chen and Kotz, 2000]. They classified context-aware computing

according to how context is actually used in an application and identified two

types of context-aware computing as below:

 61

 Active context awareness: An application automatically adapts to

discovered context, by changing the application’s behaviour.

 Passive context awareness: An application presents the new or

updated context to an interested user or makes the context persistent

for the user to retrieve later.

Table 2-5 Types of Context Aware Computing

From existing publications it is evident that the study of active context-aware

computing is more popular than passive context-aware computing. This may be

because it introduces new levels of interactivity compared to the traditional

interactivity level, personalisation. The personalisation level is where the

computer lets the user specify her own settings for how the computer should

behave in a given situation [Barkhuss and Dey, 2003]. Context aware computing

Researchers Types of Context Aware Computing

Schilit, et al (1994)

Automatic

contextual

reconfiguration

Contextual-

trigger actions

Proximate

selection

application

Contextual

information

and

commands

Pascoe (1998)

Contextual

resource

discovery

Contextual

adaptation

Contextual

sensing

Contextual

augmentation

Dey (1999)
Automatic execution of a

service

Presentation of information

and services to a user

Tagging of context

to information for

later retrieval

Chen and Kotz

(2000)
Active Passive

 62

has introduced these new levels of interactivity to the user. However, compared to

more traditional methods of interactivity such as personalisation, active and

passive context-aware systems reduce user control. An important question should

then be raised regarding “how users feel about context-aware computing taking

control away from them”.

Active context awareness performs tasks for users automatically. In order to

provide a large degree of autonomy, researchers have tried to use different context

models. Active context awareness takes control away from the user completely.

This introduces the problem of loss of control. Barkhuss and Dey [Barkhuss and

Dey, 2003] have carried out research into this but it is still at an early stage. They

have concluded that users are willing to accept a large degree of autonomy from

applications as long as the application’s usefulness is greater than the cost of

limited control. Other researchers who support active computing are Brown and

Randell [Brown and Randell, 2002]. They state that the user could cope with

autonomy as long as context is used “defensively”. This defensive use of context

means that contextual information is used to decide what the device does, but only

in a way which would not be likely to cause irritation or bother to the user if the

inferences made from context are incorrect.

Passive context-aware systems automatically represent new context to the user

although the user still has some control over how to use the context. Brown and

Randell [Brown and Randell, 2002] suggest giving simple resources to users so

that they themselves can decide how best to use these resources in what they do.

They also argue that context is of great value when it is presented to users

themselves to interpret. However, they warn that the context that is represented

must be in a simple structure so the user can make sense of the context. These

arguments by Brown and Randell support passive context-aware systems while

attempting to avoid the problem that occurs in active context-aware systems where

 63

complex context models are used to fully reason with human behaviour. However,

problems exist with passive computing too. For example, a user is still involved

with a large number of explicit interactions. Also, there could be too much

information represented to the user.

In conclusion, active context-aware computing takes control away from the user

but the user still requires at least some kind of explicit interaction. This type of

computing helps reducing tasks overload for user but as mentioned it can be

defensive to user. In ubiquitous computing, there are immense amount of devices

and services in the environment and constantly changing around users while they

are trying to perform their multitasking. Therefore, by having the system to

automatically, support the users can improve users’ efficiency. However,

experimented by Barkhuss and Dey [Barkhuss and Dey, 2003] demonstrates that

the users are willing to use the system if the automation usefulness is greater than

the loss of control. At the same time, the system should prepare to provide an

option for the user to have their control back. Passive context-aware computing

gives the user some control but could present too much information to the user.

Personalisation can give the user a high level of control over the system but

requires a much higher amount of explicit interaction.

This kind of approach may help the researchers to further the field by developing

support for different types of applications at the framework or architecture level.

For example, in active applications, the architecture may support the user by

managing the presentation of context to users so that they have an understanding

of how the system came up with its decisions and feel less loss of control.

2.2.5 From Previous Context Awareness to the Present

Researchers have tried to enhance their understanding of context by defining and

classifying context. Previous context classifications are diverse and cover

 64

different elements of context. From context classifications, researchers have

developed context-aware systems. Classifications can be used to model and

understand the user in context-aware systems.

Context aware systems progress from sensor based systems, which are limited to

one type of context, to frameworks that support multiple types of context and

sensors that are transparent to the applications. This advantage of the framework

allows developers to replace, remove or add new sensors from/to the system

without affecting the applications. Existing frameworks use different architectures

and context models. Architectures support different services to systems and users

such as resource discovery and security. A context model is essential in

developing the context-aware system. This is because the context model is used

by designers of the system to make inferences about the user in different situations

in order for the system to react to the situation appropriately in real time. The

process of building a context model of users’ situations can be expensive and time

consuming.

The field of context awareness is still immature. There are many major challenges

facing researchers. Crucial current challenges are discussed in the next section.

2.3 Problems in Context Awareness

2.3.1 Impossible to Acquire Context

Many previous context-aware applications [Helal, et al., 2005; Kim, et al., 2004;

Muñoz et al., 2003; Park, et al., 2006] were implemented based on a context

definition that was defined as any information that can be used to characterise the

situation of an entity [Dey, 2001]. However, it is impossible to attach a sensor to a

device for every relevant type of context. Even though there are new technologies

that allow us to sense various types of information, sensor technology is still in a

 65

developing stage. All the information that could in principle be used to

characterise the situation of an entity from sensors cannot therefore be collated.

Moreover, the data from sensors can become unavailable or inaccurate due to the

capabilities of the technologies together with the nature of the open and dynamic

environment of ubiquitous computing users. For example, GPS or Bluetooth may

have problems with power consumption and signal range. Accelerometer based

motion sensors may be inaccurate, for example due to sudden changes of position.

Therefore the data from sensors can also be insufficient, uncertain, dynamic and

too heterogeneous for the system to make reliable inferences about the user.

2.3.2 Expensive to Process Context

In order to use context in a context-aware system, there are several ways and steps

of transforming raw data from sensors to meaningful data for the system. First, the

raw data may be processed to reduce noise [Roberts, et al., 2005]. Secondly, for

applications that use a single type of sensor, the raw data may be processed into

more meaningful – to the user – information. For example, the raw data from GPS

is a combination of latitude and longitude. Longitude and latitude information are

numerical data that identify positions on the Earth’s surface relative to a datum

position. Therefore they are not intuitively readable for many users. However,

longitude and latitude may be processed and translated into useful information

such as addresses with hierarchical structure using a special database, for example,

“7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan” [Aizawa, et al., 2004]. Thirdly, the

useful information or raw data from the sensor is used to provide information or

services to the user.

If the context-aware system gathers information from more than one sensor or type

of sensor, the useful information or raw data from different sensors can be

combined and processed together to be used in various ways to support the users.

Different types of system use different reasoning methods. Combining data from

 66

multiple sensors or multiple types of sensors can become complicated and thus

expensive, and can cause conflict between raw data from different sensors during

the context reasoning process.

2.3.3 Not Being Used in the Real World

In Section 2.2, it was shown that the majority of the previous research in context

awareness has not really been tested in the real world. The two main reasons for

context-aware systems not being used in the real world are discussed below. First,

a lot of research in the context awareness field appears to be based on the

assumption that in some application domains, context is not continuously changing

and that it is therefore feasible to represent context in rather static data structures.

Secondly, the computation and reasoning processes in context-aware systems can

be very complicated. Previous research suggests that there is little hope that this

problem will soon be overcome to enable systems that are context-aware in a non-

trivial sense. However, the difficulty of the problem does not suggest abandoning

research into context awareness in the real world. It suggests keeping these

problems in mind. The potential for failures should be taken into account when

designing context-aware systems or applications (e.g., [Bellotti and Edwards,

2001; Lueg, 2001]).

Largely for the two reasons above, implemented context-aware systems are error

prone. The system often does not provide the appropriate service or information to

the user, causing annoyance and a poor user experience. Therefore users stop

using the system because it causes annoyance and because they do not know how

to solve the problems [Lueg, 2002].

 67

2.3.4 Broad Definition of Context

The most frequently referenced definition of context was presented by Dey [Dey,

2001]. According to Dey, context is defined as any information that can be used

to characterise the situation of an entity. An entity should be treated as anything

relevant to the interaction between a user and an application, such as a person, a

place or an object, including the user and the application themselves. This is

broad, but conveys an important perspective in its emphasis on people [Winograd,

2001]. By being broad, it can mean different things to different people [Crowley,

2006]. Instead of focusing on developing a better understanding of the nature of

context, many researchers have naturally taken a technology-driven approach. The

researchers are limiting themselves to whatever technology is available. It drives

them away from concentrating about user’s requirement. By taking a technology-

driven approach, it is relatively simple to design and develop a system. However,

it limits the development of a context-aware system that has an adequate model of

the user and her intentions and activities in the world. If the context-aware system

does not have such an adequate model, the system is prone to producing errors

through its reasoning about context and its presentation of the results through a

user interface, thereby causing annoyance to the user.

Developing an adequate model of context is far from easy. It has been a problem

in classical representation-based artificial intelligence (AI). Pylyshyn [Pylyshyn,

1987] proposed that the problem is to do with what aspects of the world have to be

included in a sufficiently detailed world model and how such a world model can

be kept up-to-date when the world changes. Indeed, the problem has been shown

to be intractable in realistic settings (e.g. [Dreyfus, 2001]). The real world is

constantly changing, intrinsically unpredictable, and infinitely rich [Pfeifer and

Rademakers, 1991]. The problem has often been treated as a technical problem

but it can also be understood as an ontological problem, as aspects of the world

included in a world model determine the understanding of the world based on the

model. However, facts not included in the model and not derivable from the

 68

model cannot be explained based on the model. Hence, the problem in AI is

directly related to trying to understand any notion of context [Lueg, 2002].

Greenberg points out that it may be difficult or impossible to determine an

appropriate set of canonical contextual states and it may also be difficult to

determine what information is necessary to infer a contextual state [Greenberg,

2001]. Goodwin and Duranti argue that it does not seem possible at the present

time to give a single, precise, technical definition of context, and eventually we

might have to accept that such a definition may not be possible [Goodwin and

Duranti, 1992].

Even though it seems difficult to find an appropriate definition of context, a

context-aware system design tool that at least takes account of this problem would

help developers in their efforts to produce better context-aware systems.

2.3.5 Infinite Context Classification

Since previous context definitions were so broad, several researchers have tried to

develop better understandings of context by producing classifications of the key

elements of context, as shown in Section 2.2.4.

Previous classifications have covered different aspects of context. These findings

have shown that there are a large number of elements that make up context.

Indeed, the scope of context is potentially infinite, encompassing everything that

may in one way or another influence the user. Before we use context in

applications, we need to have an understanding of what the system should take

into account as context. Clearly, we need a way of reducing this infinite set to

something more manageable so that it is more possible to implement. It is

therefore important that the most influential and critical elements of context that

 69

have an influence on a human’s activity in ubiquitous computing are identified and

fully analysed. To date, this level of analysis has not been carried out and there is

confusion surrounding the various elements.

2.3.6 Lack of Uniform Relationships between Elements of Context

There has been little research exploring the relationships between different

elements of context and how these relationships can affect the efficiency of

context-aware applications. As mentioned previously, context is not static; the

same set of data from sensors can be interpreted differently according to the

situation. This relationship between context elements is an important part of

providing an adequate context definition or classification [Kaenampornpan and

O'Neill, 2004a]. These relationships are also valuable in order to use context to

represent the world of the user and to help the system to better understand the

user’s activities and intentions, acknowledging that humans assimilate multiple

items of information to perform everyday tasks. For example, the relationship

between the user and the people around them could bring social status into the

context reasoning process. The social role of a user with respect to the same set of

people around her can be different according to the time and place that she is

situated in. For example, a user’s social role could be a work colleague when she

is at work but the role can change to a friend or member of a cycling group when

she is on the cycle group’s trip or the group meeting about the cycle trip. This

illustrates that the role of a user changes over time and space [Muñoz et al., 2003].

Moreover, unclear relationships between context elements lead to inconsistency in

the reasoning process about user’s context. As a result, designers use different

combinations of context elements and implement methods of inferring about the

user in the reasoning process in their own way. As discussed in Section 52.2.3,

existing context models and reasoning processes are inconsistent combinations of

low level context (i.e. sensor data) and, in some cases, high level context (i.e.

 70

translated data) depending on the availability of context at the time of

implementation. There are no uniform relationships between context elements to

help the researchers in the field to communicate and share understandings. With

this inconsistent reasoning in the context awareness field, the expensively

collected data for each context element can be difficult to reuse or extend. By

establishing uniform relationships, designers can reuse collective data of context

elements in the context model from their existing reasoning processes.

2.3.7 Lack of Systematic Tools

Although current technology for context awareness, such as sensors, has its

limitations, the technology is not the fundamental problem as it is increasingly

improving. The real problem is the understanding of context and the definition of

context. So far, integration of the notion of context directly into the design process

is not straightforward. This is partly due to the fact that current research on

context is a synthesis of different points of view, ill defined and ambiguous

definitions, [Kaenampornpan and O'Neill, 2004b]. Baldauf, et al have also noted

that currently there is no standard context model for sensing contextual

information from various sources to enable reuse across various context-aware

systems and frameworks [Baldauf et al., 2006]. Furthermore, what design tools

there are in ubiquitous computing, especially in context awareness, lack a bridge

between requirements and implementation. There is no tool to help designers to

transform raw data from requirements into implementation. Moreover, how the

context-aware system should use the context has not been dealt with

comprehensively. Designers and developers have little or no guidelines, step by

step tools or a simple standard context model to move from the requirements or

scenarios into implementation.

 71

2.3.8 Technology Driven

Due largely to the limitations in the state of the art discussed here, in the

implementation process context-aware applications have utilised only isolated

subsets of their context, such as a location or a device’s state; e.g. [Abowd and

Dey, 2000; Luyten and Coninx, 2004]. Implementation of context-aware systems

remains largely driven by technology. Often, developers implement applications

according to the types of information that happen to be provided by available

technology. Clearly, a programmer who is writing an application whose behaviour

will depend on a user’s location should not have to be concerned with details of

how location is determined: whether there is a camera-based vision system, an

active badge, a magnetic tracker, or some new kind of device not yet envisioned

when the program was written [Winograd, 2001].

In addition, the designer should not have to be concerned with the types of

information available to her as technology improves. The context model and its

reasoning process for applications should not have to be remodelled when new

types of information are available or in use. The only changes should be the

transformation of sensor data into the information for context elements in the

context model, not the context model and its reasoning process. Thus, the context

model and its reasoning process should not restrict themselves to the availability of

specific technologies. The applications should have a plug and play ability where

the designers concentrate on user requirements and how the system should take

advantage of context awareness. The system should provide an interface for each

application to have the same manner of accessing context model through the

uniform set of context model. The model, in this case, takes into account of

information that has influence on user’s activity rather than an inconsistent

subscription of different information and context elements depending on

availability of the technology. In order to improve the system efficiency,

information that the system needs can be designed as a set of information in the

database rather than ignore it and wait for the availability of the technology. In

 72

future when a new sensor is available, the information from the database can then

be replaced with one from the new sensor.

2.3.9 Summary of Problems in Context Awareness

From previous research in context awareness reviewed in this chapter, context

awareness plays a key role in ubiquitous computing . Throughout the context

awareness literature, researchers have tried to use different types of context in their

applications. For the most part, however, context-aware applications have utilised

only isolated subsets of their context, such as a location or a device’s state. A truly

context-aware system needs to take account of the wide range of interrelated types

of context and the relationships amongst them. As a precursor to implementing

such systems, researchers need an approach to modelling context that takes

account of this complexity and architecture that supports the model in a ubiquitous

computing environment.

Thus context-aware researchers need to consider design principles differently in

order to address the challenges in context awareness discussed in this chapter. The

next section identifies a number of requirements that the context model, design

tool and architecture must fulfil to enable designers to deal with context more

easily.

2.4 Deriving Solutions from Problems

The field of context awareness could benefit from a context model and systematic

design tool that facilitated bringing researchers together through having a common

understanding of context. This section will discuss the requirements of a context

model and design tool based on the current challenges in context awareness

discussed in the previous section. Furthermore, requirements for an architecture

 73

are discussed in order to be able to support implementations based on the common

context model and design tool.

2.4.1 Requirements for Context Model and Design Tool

To be able to develop a context-aware system that has the ability to cope with the

issues discussed in Section 52.3, the context model and design tool should meet the

requirements presented in this section.

Consistent Support for Shared Understandings of Context

Researchers use different types of context in their applications. The context model

and design tool should provide a common model that contains consistent types of

context so that researchers, designers and developers in the field can refer to and

develop shared understandings of context and understand what key elements

should be taken into account in order to have a better understanding of users’

behaviours [Kaenampornpan and O'Neill, 2004a]. By using a common context

model throughout the implementation, the context-aware systems should provide a

consistent context model to represent to the user during runtime. The consistency

in the context model should facilitate the userin having a better understanding

about the context that is used by the system, which was itself developed using the

same context model. Therefore the users should be able to make corrections to the

system during runtime when the system makes inappropriate decisions in

supporting the user through context awareness. Furthermore, by having an

understanding about the system, the users should be able to adapt the underlying

context model to suit their needs during runtime.

Identification of Context Elements

A context model that supports true context awareness should provide a model of

context that supports both simple and complex situations. The context model

 74

should identify important elements of context that influence the user’s behaviour

in a ubiquitous computing environment. The user may not be working on her own

at a desktop, so her behaviour may be influenced by objects, people, the

environment and society around her. The applications should not be technology-

driven. The context model should allow designers to concentrate on what types of

context have an influence on a user’s behaviour, not what technology is available

to the designer. As the context model provides elements of context that the

designer can deal with in a consistent way, it will allow the designer to be able to

expand the system as new technology becomes available.

By not being driven by technology, the context elements should help encourage

the designer to consider different types of context as the context does not just

come from sensors. Dourish [Dourish, 2004] suggested that context is

characterised as “information of middling relevance”. The context can also come

from user profiles or schedules and/or be user supplied. These types of context

have different properties such as their persistence and their uncertainty

[Henricksen, et al., 2002]. The context elements in the model should guide the

designer on how to deal with them differently. Moreover, by identifying the

elements, the designers can spend more time concentrating on how to meet the

users’ requirements.

Context Interpretation

Each element in the context model should show a clear boundary of what type of

information is to be taken into account. The boundaries should help the designers

clarify context elements from a user’s requirement and/or scenario into the context

model for building context-aware applications.

Instead of using the easiest way to build a context-aware application, by directly

hardwiring the drivers for sensors used to detect context into the applications

 75

themselves, the designers should use the model as a guide to group different types

of context in the scenarios. The code for sensors used to detect context is then

developed separately from the application code. This is because before raw data

from a sensor is passed directly through the application, the context model guides

the developers on how to acquire and handle sensor data so that it is inferred or

interpreted into information for each context element. This also transfers the raw

sensor data into different levels of information in the context element, which is

important as different applications may require different levels of information

from the same sensor data. For example, location coordinates can refer to the

identity of the building or refer to a room a user is in.

Due to the uncertainty in raw data from a sensor, the interpretation would also help

to reduce the uncertainty in context as well. For example, the sensed data from

two sensors and other profiles (e.g. user profiles) can be inferred to provide

information for one context element. Also, when one of the sensors does not

work, the inferred data of context element can be obtained from the second sensor

and other profiles, where the profiles are databases that were created to hold

information that cannot be obtained through sensors. The developers design the

database so that the system can refer to important information that sensor cannot

provide but has influence on user’s activity such as their preferences.

Separation between Context and its Reasoning

By having a clear separation between context elements, developers have a

common way to acquire and handle context from sensors and profiles. This first

removes the burden of rewriting the code to acquire and handle data from sensors.

Secondly, the context can efficiently be reused and has less uncertainty. However,

truly context-aware applications deal with more than one type of context.

Relationships between context information exist to describe how information is

obtained from other pieces of information [Henricksen et al., 2002]. The context

 76

model should provide possible relationships between context elements (different

types of context). The applications require these relationships for further

reasoning in order to combine different information from context elements and

derive conclusions about the user for that situation. The reasoning is mainly

integrated in the context [Saternus, et al., 2007; Tonnis, et al., 2007]. In the past,

each application required its own reasoning code to deal with context elements.

The reasoning code normally embedded context elements and its reasoning in the

particular application. Building a reasoning method can be very complex and time

consuming. Different research groups deal with the reasoning method differently.

It is therefore difficult to reuse the context elements and reasoning code even for a

new application within the same domain. It is impossible to reuse it across

domains or research groups. For example, the applications in Context Toolkit

subscribe to different aggregators and widgets. Each application first of all has to

be given a different code, depending on what widgets or aggregators are

subscribed to. Then each application has a code for reasoning and providing

decisions about the user according to subscribed widgets and aggregators. On

some occasions, the applications subscribe to the same aggregators or widgets but

using different reasoning rules. Even though ontologies support the separation of

content and its reasoning code, the context models that previous studies opted

contain inconsistent context elements. Moreover, as a result of different

subscription of inconsistent combination of information and high-level context, its

reasoning code and context normally are embedded in an inconsistent way. It is

therefore difficult (sometimes impossible) to reuse the code for different

applications.

In order to reduce the burden in building reasoning code for each application, the

context model should provide a clear consistent relationship between context

elements. This then provides a common way to derive context elements and

provides decisions about the user’s objective in the same manner. The application

only needs to know how to support the user and determine what information is

 77

required according to the user’s requirements. For example, in a conference

assistant, the application needs to show the user the conference schedule with

highlighted talks of interest to the user to minimise explicit user input and time to

make decisions about which talks to attend.

History and Time

Context is dynamic information as it is changing all the time. To deal with

dynamic information, the system may not be solely interested in the current state

but also in future or past states, or changes in the state over time [Henrickson,

2003]. There are three main usages of the time and history of context. First, the

history is exploited to predict users’ actions from the current context. Secondly, in

order to detect changes in context, the current context is compared with the

previous context. Lastly, information about a user’s future plans can serve as a

useful type of context information. For example, a user’s schedule can indicate to

the system what the user’s task will be in the next half hour and what the

appropriate support will be for the user by the system. History and time become

part of context and therefore the context model should support the use of the time

and history of context.

In order to take advantage of design based on a context model and design tool that

meet the requirements above, a new architecture is required. The architecture

needs to support reusable context elements and changes in reasoning for different

domains. It will need to meet the requirements that are discussed in the next

section.

2.4.2 Requirements for an Architecture to Support Context Aware

Systems

Dey [Dey et al., 2001] identified a number of requirements that the architecture

should fulfil to enable designers to deal with context more easily. These

requirements are discussed in this section based on our main requirement for the

 78

context model to provide a separation between consistent context elements and

reasoning.

Separation of Concerns

The context model should support the context interpretation by providing clear

boundaries between context elements and a clear separation between context and

its reasoning. The architecture of a context-aware system should provide the

ability to support these qualities of a context model.

Clear boundaries between context elements in a context model guide designers

through how to group data into information for each context element. Then the

designers and developers decide what sensors are available. For each sensor the

developer requires to translate the sensor data into meaningful information for

each context element. This forces the developer to implement the code for sensors

separately from an application code so that it can translate the data before being

used in application. By separating the sensor code from the application code, it

will reduce the burden in writing the code for acquiring and handling context

which can be a complex and time consuming process. It also supports good

software engineering practices by enforcing separation between application

semantics and the low level details of context acquisition from an individual

sensor [Dey et al., 2001].

By passing sensor data through an interpretation process, when there are new

applications, the developers do not have to rewrite the code for the sensors as they

can reuse the existing code to get information from sensors efficiently. Moreover,

when there is a new sensor, there are no changes required in the application as it is

only dealing with information in context elements. The developers just need to

write the code for the sensor to acquire and handle data so that it transforms into

useful information for each context element.

 79

Context Interpretation

Clear boundaries between context elements in the context model guide designers

through how to group the data and guide developers to implement the code for

acquiring and interpreting data into the abstract level of clear boundary of each

context element. The developers may need to implement code for each sensor or

profile to get raw data. Then there may be multiple layers that raw data go

through before information is grouped into each context element. For example, to

get information about a user’s environment, the lowest level may be to obtain the

latitude and longitude data from a GPS. The next level may be to translate the

data into a building name. At the next level, this information could be combined

with the translation of raw data from a thermometer to get “it’s cold outside

building A” as part of the user’s environment context.

Furthermore, with its consistent context elements and its reasoning process, the

context model provides a common way to derive context elements and provide

decisions about users to the applications in the same manner. The applications no

longer have their own code containing inconsistent context elements and reasoning

processes. The application only concentrates on how and what information is

required to support a user. For example, the application only needs to know that

the user is lost and wants to see the map and directions from building A to

Reception. So, once the interpretation of sensor data for each context element is

completed, the system requires another layer for further reasoning between context

elements in order to derive conclusions about the user in that situation from the

current context model gathered from sensors data for all applications based on the

consistent context model and its reasoning. The applications only have an

interface in the architecture layers to access the current context model which

contains information about user’s current activity and information that has

influence.

 80

From an application designers’ perspective, the use of these multiple layers should

be transparent. In order for the interpretation to be easily reusable by multiple

applications, it needs to be provided by the architecture.

Continuous Availability of Context Acquisition

Context aware applications should be able to access the same piece of context

without having to initiate individual components that provide sensor data.

Therefore the architecture should support the components that acquire context

executing independently from the applications that use them. The application

designers then do not have to worry about instantiating, maintaining or keeping

track of components that acquire context, while allowing applications to easily

communicate with them.

The context acquiring components run independently of applications therefore

they should be available at all times. The components must be running

continuously to allow applications to contact them when needed. The components

should be supported by the architecture so that first, it can be available to multiple

applications continuously and secondly, the designers do not have to rewrite the

code for each application.

Context Storage and History

Since context history may be used to infer future context values, the context

acquiring component should be able to store a history of the entire context it

obtains. Therefore the architecture must support context storage so that the

analysis, interpretation and inference can be performed at any time for multiple

applications. Moreover, the context history stored in the architecture can be

reused for new applications. Context history can be very complex and difficult to

 81

gather, but once it is collated, it will reduce the burden for application designers as

they will be able to reuse the existing history of context.

Resource Discovery

The architecture needs to support a form of resource discovery so that it can

efficiently hide the detail of where and how to acquire data from sensors in

distributed computing. With a resource discovery mechanism, when an

application is started, it could specify the type of context information required.

The mechanism would be responsible for finding any applicable components and

for providing the application with ways to access them. So instead of hardcoding

the sensor in the application, the architecture’s resource discovery will notify the

application when there are changes in context.

Security and Privacy

The vast expansion of sensor networks and new technologies in ubiquitous

computing allow designers to be able to gather various context data which may

include sensitive information on people. This leads to issues of security, privacy

and trust in context awareness. The availability of context information can also

offer new opportunities to establish, to enhance and to manage trust, privacy and

security. It is therefore important to be able to add this ability into the architecture

instead of hardcoding for each application.

The requirements described above for context models and architecture motivate

the research aims and objectives for this work. These aims and objectives are

presented in the next section.

 82

2.4.3 Research Aims and Objectives

This chapter discusses the lack of a common context model that takes account of a

wide range of interrelated types of context and the relationships among them.

Researchers have implemented context-aware systems without a common

knowledge or view of context. Therefore researchers have taken account of

different types of context elements in their systems. Moreover, they have

embedded different reasoning processes into the context elements. As a result, it

is difficult to extend existing system and typically impossible to reuse context in

different systems. Based on the requirements for a context model, design tools

and architecture described above, there are three main aims that this dissertation

addresses. First, we - produce a context model to support designers during the

design process. The objectives of using the context model are:

 To support researchers in developing a shared understanding about

context. Moreover, it can then be used to support communication

between designers, developers and users to have a shared

understanding of context. By having a shared understanding of

context in the context-aware system, it will help reduce

misunderstandings about the system during design. Furthermore,

mistakes made by the system during runtime can be more easily

recovered by the users if they understand the underlying context

model.

 To identify key elements that influence the user in achieving her

objectives. For every situation for which the context-aware system

may support the user, the context model facilitates developers in

identifying context elements following the user requirements instead

of limiting themselves to a technology-driven approach.

 To demonstrate a uniform reasoning process for the interpretation of

context. Researchers can build systems based on the uniform

reasoning process for top level context. By having a uniform

 83

reasoning process, different researchers can easily extend and update

the context data to suit their situations. Moreover, the consistency

that the uniform reasoning process provides to the system allows the

user to build an understanding of how the system reaches its

decisions. This will help to recover from breakdowns during

runtime.

 To show the separation between context and its reasoning, past

projects have embedded different reasoning processes onto the

context. This causes difficulty in extending the existing system and

makes it is impossible to reuse context in different systems. The

process of building context data for different situations is time

consuming. For example, it is a tedious process to just build context

data about the user or the room layouts for hospital. It is therefore

vital that the existing context data can be reused in different

situations, domains and context-aware systems.

 To represent the use of history and time. Human past experience

plays an important role in the everyday decision making process. We

refer to the past in order to support the way we complete our current

tasks. For example, in the past we burnt our tongue by tasting boiling

soup so this time we blow on a small spoon of soup and make sure it

is not too hot before we taste it. For the system to process the context

and reach a decision about the user’s current objective, the system

should be able to access the history of context and combine it with

current context knowledge to improve the reasoning.

 Based on the context model, we then aim to produce a systematic design tool

to support designers during the design process. The objectives of using the design

tool are:

 84

 To provide a systematic design process for developing context-aware

systems. At the moment, there are no systematic tools for designers

to follow in order to build context-aware systems. It is a complicated

and time consuming process to extract the context and reasoning

process from the user requirements for different situations and

domains. To reduce time and complication the designers require a

systematic tool to transform the user requirements into context data

for the system to reason and deliver the context-aware service to the

user.

 To provide a design that is more consistent and extendable.

Designers currently develop systems based on a specific domain and

they tend to be technology-driven. The systems’ capacity for

extension and reuse can be limited. There is no systematic tool that

encourages and facilitates them in building a reusable and extendable

system.

 Based on the context model and design tool, our final aim is to propose a system

architecture that supports designs based on the design tool. The objectives behind

the architecture are:

 To provide a separation of concerns. First, the sensors should be

transparent to the applications. The architecture helps developers in

easily changing or adding new sensors that provide the context data.

As technology grows rapidly, there are new sensors available; the

developers should be able to change the sensors without affecting the

applications. Secondly, the architecture should support the separation

between context elements and the reasoning process. By supporting

this, the architecture allows the data of the context elements to be

reused in different situations and domains.

 85

 To provide a uniform structure of context interpretation. The context

reasoning process is done in the architecture. Based on the design

tool, the uniform reasoning process on context is constructed.

Therefore the architecture should be able to support it. Moreover, by

doing so it will be able to present a uniform structure of context

reasoning to the user.

 To provide simultaneously available context data to multiple

applications. This means that the architecture supports the access of

context by multiple applications and users.

 To provide a uniform set of storage for context and its history. By

gathering the context data based on the design tool, the data is

represented in a uniform set of context elements. The architecture

should provide storage that keeps the data in the uniform set so that it

remains reusable and extendable. Moreover, the uniform set will

ease the process for the application to refer to and use the context

during runtime. It should provide storage for the uniform set of

context history so that it can be accessed by the system during

reasoning processes.

The main aim of this dissertation is to provide a context model for identifying the

context elements and relationships between context elements. The context model

gives the designers and developers a uniform systematic design tool for

developing context-aware systems that support ubiquitous computing users in

different domains. Additionally, an architecture to support this design process is

introduced.

Our interests are also related to other aspects of context-aware research which we

will not address other than in passing, such as:

 Work in HCI on usability of the interface to context aware systems

 86

 Representation of the context model for user understanding

 Techniques for sensing data including reducing noise in data

 Techniques for searching and matching algorithms

 87

Chapter 3

A New Approach to

the Design of a Context-

Aware System

Following on from the research questions presented in Section 52.4.3, this section

will introduce the approach this dissertation takes in order to answer those

questions.

Activity Theory is introduced as a potentially valuable approach to modelling the

relationships amongst the elements of context that should be taken into account

when designing a context-aware system. Towards the end of this chapter, the

proposed context model is presented.

Existing context definitions and classifications discussed in Chapter 2 suggested

that the concept of context can be very complex in mobile and ubiquitous

computing. It is impossible for researchers to build a context-aware system that

encompasses all of this complexity. Therefore researchers often develop a context

 88

model as a representation or description of context in ubiquitous computing . In

short, it is an abstraction or conceptual object used in the creation of a predictive

formula. The next section explains the reasons for proposing a simple context

model.

3.1 Why Represent Context in a Simple Model?

The context model should be able to identify the information that is needed within

that context, together with the processes or procedures to gather or arrive at that

information [Grant, 1992]. In ubiquitous computing, the user can be dealing with

different devices and services at the same time. A user’s activities in ubiquitous

computing can be complex and modelling the context for complex activities can be

overwhelming. Context can be represented as an infinite set of information. The

context model could easily become too complex. Such a complex context model

could be impossible for developers to use as an aid to designing and implementing

the system.

Humans cannot fully understand the full moment-to-moment richness of other

humans’ activities, states, goals and intentions [Baldwin and Baird, 2001].

Humans often have only a simple model of the other person’s intention and

knowledge and beliefs, and in short their context. Yet they manage successfully

and fluently to interact in many highly contextualised ways. Thus, a relatively

simple model of context can enable very rich human-human interaction. It

sometimes fails: each of us has experienced misinterpreting the intentions or

meaning of another person. But we typically deal with such breakdowns and

move on. Setting the bar higher for computers, suggesting that they should

capture every aspect of context and interpret a human’s intentions and meaning

correctly every time, is both unrealistic and unnecessary. Therefore we suggest

that a relatively simple model of the influences on users’ activities may be

adequate for representing context in the design of a mobile and ubiquitous system.

 89

The context model should be simple but at the same time be able to cope with

complex activity. Therefore a simple context model should not be too simplified.

It should identify the necessary elements of context and the relationships between

them. Moreover, a simple model has the additional advantage that it is easy to use

by the designers of the system. The developers will then have a tool to help them

make decisions that need to be taken in that context to infer about user’s activity

and implement a uniform reasoning method for the system.

As well as having a system that attempts to understand the user, the user should

also be in a position to understand the system. Lueg [Lueg, 2002] argues that the

user should be able to understand what the system is doing. Therefore the system

should provide information about itself to the user so that the user can understand

what the system is doing, why the system comes to a particular decision and what

the system is going to do. Johnson-Laird [Johnson-Laird, 1983] introduced the

concept of mental models as structural analogies of the world. The idea is that

humans use these mental models to understand the world and how to interact with

it. The mental models people create of computer systems are typically inaccurate

[Norman, 1983]. Having an inaccurate model of how a system works may cause

problems while interacting with the system. Many products, incorporating much

research, exist which represent the state of a system to the user during run time to

help the user build a better mental model of the system. As a simple example, a

mobile phone shows the current state of its battery level so the user understands

why it just switched itself off when the battery runs out. By showing the current

state of the system in a simple manner, the system can improve the user’s mental

model of the system.

With a better understanding between the user and the system, the user will be able

to build an appropriate mental model about the system. This mental model will

allow the user to correct errors that are made by the system. The system can then

 90

use this correction to improve its efficiency in the future. By having a simple

model that is well structured with identified elements of context and the uniform

relationships between them, developers can use its simplicity and consistency to

provide information about context to the user in a more straightforward manner.

The context from different sensors can be grouped and labelled based on the

simple model. Effectively labelling data allows the end user to understand the

context information. Instead of having to see the raw information from a sensor

which might not make sense to them, they get to see the higher level of data i.e.

information about the context element. Services and software objects can be

named by intent, for example “the nearest printer”, rather than by something

obscure such as an IP address. Moreover, raw data from sensors can be irregular

in different situations. This inconsistency can cause confusion between the user

and system.

Activity Theory is introduced next as a basis for developing a simple context

model that defines context elements and relationships.

3.2 Activity Theory

Activity Theory was developed by Russian psychologists of the former Soviet

Union, Vygotsky, Rubinshtein, Leontiev and others at the start of the 1920s

[Kaptelinin and Nardi, 1997]. Activity theory is a philosophical framework used

to conceptualise human activities. Vygotsky proposed how tools or instruments

mediate activity. Tool use influences the nature of external behaviour and also the

mental functioning of individuals. Many researchers took this idea and the idea of

object-orientedness and produced the first generation of Activity Theory. This

first generation of Activity Theory suggested that an activity is composed of a

subject and an object, mediated by a tool. A subject is a person or a group

engaged in an activity. An object (in the sense of “objective”) is held by the

subject and motivates activity, giving it a specific direction. The mediation can

 91

occur through the use of many different types of tools, material tools as well as

mental tools, including culture, ways of thinking and language.

Figure 3-1 Mediation between Subject and Object

In Vygotsky's early work the unit of analysis was object-oriented action mediated

by cultural tools. There was no recognition of the part played by other human

beings and social relations in the triangular model of action. Leontiev extended

the theory by adding several features based on the need to separate individual

action from collective activity [Mappin, 2000] as shown in 5Figure 3-2. Activities

can be broken down into goal-directed actions that have to be undertaken in order

to satisfy the object. Actions are conscious and are implemented through

automatic operations. Operations are behaviours that have become so well learned

they do not require conscious effort to execute. Operations are automatic

responses to perceived conditions of the current state of the object with respect to

the actions and goals that are to be fulfilled. Activity Theory maintains that the

elements of activity are not fixed but can change dynamically as conditions

change.

Object Subject

Mediating

Tools

 92

Figure 3-2 Leontiev's Model

The flexibility of the basic concepts makes them useful in describing development

processes. On the other hand, it also means that it is in fact impossible to make a

general classification of what an activity is, what an action is etc, because the

definition is totally dependent on what the subject, object etc are in a particular

real situation. We extracted the example shown in 5Figure 3-3 from [Kuutti, 1995].

It tries to provide an overview of how the levels of the activity, actions, operations

hierarchy could be recognised in theoretical, individual-level activities.

Figure 3-3 Activities, Actions and Operations [Kuutti, 1995].

Activity Motives

Actions Goals

Operations Conditions

 93

As stated above, there are no firm borders: a software project may be an activity

for the team members, but the executive manager of the software company may

see each of the projects as actions within his or her real activity at the level of the

firm [Kuutti, 1995].

One of the most important contributions to Activity Theory is by Engeström. In

1987 [Engeström, 1987] he expanded Vygotsky’s mediating triangle with a social

component that also mediates our action. He proposed a triangular structure of

human activity. This triangular structure of human activity is based on the

previous work in the Activity Theory field and the idea of the general structure of

animal forms of activity as shown in 5Figure 3-4. The structure of the animal forms

of activity consists of an individual, the natural environment and the population.

Engeström adapted this structure to fit with Activity Theory as shown in 5Figure

3-5. Engeström supported the main concept of Activity Theory that individual’s

actions are influenced by their socio-cultural context and therefore cannot be

understood independently of it [Little, et al., 2003]. This provided the activity

theoretical community with a powerful tool for the analysis of social systems.

Figure 3-4 Structure of the Animal Form of Activity

Object Subject

Community

Natural

Environment

Individual

Population

 94

The full triangular structure of human activity that was introduced by Engeström

suggests that the relationship between the subject and the community is

regulated/mediated by rules and that the relationship between the community and

the object is regulated/mediated by a division of labour. The full structure of

human activity that was introduced by Engeström is shown in 5Figure 3-5. To

conclude, the main concepts of this model are:

 Subject: Information about an individual or a subgroup chosen as the

point of view in the analysis such as user’s age, sex, ability, level of

experience.

 Tools: Information about tools can mean either physical or

psychological tools such as a programming tool, a handbook, a PDA,

language, maps, diagrams.

 Community: Information about individuals or subgroups who share

the same general object such as other user’s location, age, sex, job

title.

 Division of labour: The division of tasks between members of the

community such as different roles, rights.

 Rules: Explicit or implicit regulations, norms, conventions that

constrain action or interaction such as formal rules on paper, social

rules.

 Object: Target of the activity within the system. It could mean the

raw material or problem space at which the activity is directed and

which is transformed into outcomes such as e.g. manage the system

or create a timetable for students.

 Outcome: The result from transforming the object. Ideally, the

desired outcomes are the same as the ultimate objects [Gay and

Hembrooke, 2004]. But if the object is not met, the outcome will be

different from the object.

 95

Figure 3-5 Structure of Activity Theory (Engeström)

Activity Theory provides an organised and consistent way to describe and

understand the structure of human activity. Section 53.3 describes a concept that

provides a link between Activity Theory and Usage-Centred Design [Constantine,

1995]. Usage-Centred Design is a model-driven process for user interface and

interaction design. It relies on abstract prototypes to model the organisation and

functional content of user interfaces without regard to details of appearance or

behaviour [Constantine, 1998]. It provides established and effective methods for

putting activity-centered design into practice.

3.3 Activity Modelling

Constantine encourages the use of Activity Theory. He suggests that Activity

Theory and Usage-Centred Design are connected as they both represent the

participation of actors in activities and the hierarchical nature of performance of

activities [Constantine, 2006]. In order to make it easer for practising designers

such as software engineers to represent activities, Constantine introduced Activity

Modelling to capture essential insight and understanding about the context of

Object Outcome
Transformation

Subject

Mediating
Tools

Division of
Labour CommunityRules

 96

activity and to reflect this understanding in their designs. The aim of Activity

Modelling [Constantine, 2006] is to create an easily grasped modelling language

anchored in a consistent, coherent vocabulary of well-defined concepts that link

task modelling based on essential use cases [Constantine, 1995] to the established

conceptual foundation of Activity Theory. As a result, Activity Modelling extends

Usage-Centred Design by introducing new notations which are related to the

Unified Modeling Language (UML) used in software engineering [Fowler and

Scott, 1997]. The new notations are action, activity, player and tool in order to

take advantages of the three level hierarchical nature of activity, community, tool

in Activity Theory.

Figure 3-6 shows the summarised notation for Activity Modelling. With the new

notations, the additions and alterations have been made in Activity Model (which

includes Activity Map, Activity Profiles and Participation Map), Role Profile and

Task Model to incorporate systematic Activity Modelling into Usage-Centred

Design.

 97

Figure 3-6 Extended Usage-Centred Design Notation for Activity Modelling

[Constantine, 2006]

Based on the requirements for the context model discussed in Chapter 2, the next

section presents the rationale for using Activity Theory in this dissertation.

3.4 Reason for Using Activity Theory

As shown in Chapter 2, there are a multitude of classification systems (See 5Table

2-1). Researchers have tried to classify context into different elements that have

influence on a user’s activity in the ubiquitous computing world. Previous

classifications cover different elements of context for reasoning about human

behaviour but named them differently. Some groups are overlapping. Together

they cover elements that have influence on user behaviour. Therefore we need a

 98

new model that covers all the key elements so that the system can have a better

understanding about user. From 5Table 2-1, we identify 5 high level categories of

concepts that we need to take into account in modelling context to minimise the

repetition and a too specific classification. As shown in the columns in 5Table 2-1,

Location and condition are too specific in this content to classify them separate

from each other.

 Therefore we would like to group them together and called Physical Environment

as many researchers have done in the past. Computing Environment and Device

Characteristics could be grouped together in order to make the classification

simple because they both contain information about technology or tools that are

available for user in the ubiquitous computing. Information about user and user

activity are grouped together because this information is related and provides

information about particular user. Social is important in the ubiquitous computing

as users are in different society. Therefore social should be separated from the

human factor. It is hard to capture therefore the social information is hardly been

used in the past applications. To conclude, I propose that the context model

should cover these elements:

• Human factor contains information about user (such as mental state, habit,

preference) and user’s action.

• Physical environment is separated from the computing environment. This is

because of its differences in features. Therefore the way it captures and

reasons will be different. Moreover the impact on user behaviour is

different.

• Technology is to group all information about the devices (not limit to

computing devices) and computing environment

• Social is separated from human factor because it contain information on the

relationship between user and other users that will be capture and process

different from human factor. This will result from the human factor?

• Time is for keeping the history of context.

 99

Moreover, the relationship between each element of context is unclear. We would

like to combine these similarities and differences to develop an adequate

theoretical model, which is currently lacking in this field. In this case, an adequate

theoretical model means that this model can be applied to any real simple or

complex situation in the ubiquitous computing world. It should cover key

elements of context that influence user activity. Moreover, it should be able to

explain how elements influence the user’s activity in any real situations. This

model can then be used by the system to better understand the user. It will also

have potential to improve communication between researchers in the field and

promote shared understanding.

A classification system is needed to help the system use context to build a

conceptual model of user activity. Therefore we want to introduce a theory that

describes the relationships between the elements that have an influence on human

activity. There are several concepts for understanding human activity or tasks

such as Activity Theory [Engeström, et al., 1999; Rogers and Scaife, 1997] and

Task Analysis [Preece, et al., 1999]. For the purpose of classifying context,

Activity Theory is chosen as it has the main characteristics described below.

3.4.1 It Provides a Standard Form for Describing Human Activity

There are several studies of modelling human activity such as Activity Theory,

Task analysis, HTA. Activity Theory provides a simple standard form for

modelling human activity whereas Task Analysis, for example, does not. Activity

Theory treats activities as an ongoing process with a stable structure involving

people, a motive or “objective” and the tools that they use.

With techniques such as Task Analysis, the modelling of human activities can be

flexible in order to model the complexity and contingency of tasks in reality [Mori,

et al., 2002; O'Neill and Johnson, 2004; Paternò, 1999; Van Der Veer, et al.,

1996]. Aside from the simplistic hierarchies sometimes used in, for example,

 100

HTA [Shepherd, 1989; Shepherd, 1998], there is no fixed form for task modelling

in Task Analysis approaches. HTA is useful for interface designers because it

provides a model for task execution, enabling designers to envision the goals,

tasks, subtasks, operations and plan essential to users’ activity. HTA is useful for

decomposing complex tasks, but has a narrow view of the task and is normally

used in conjunction with other methods of task analysis to increase its

effectiveness [Crystal and Ellington, 2004]. HTA does not provide a uniform tool

that supports the designers to decide which elements have an influence on each

task.

In modelling context for context-aware system design purposes, we argue for

using a simple standard form to model the aspects of human activity that are

associated with key elements of context and their relationships. Although a simple

standard form cannot represent the full richness and complexity of human activity,

it does not have to. As humans, we cannot and do not form complete models of

other humans’ context, especially with regard to their internal goals and intentions.

Despite using partial and simplified models, we manage to communicate and

collaborate with our fellow humans very effectively and efficiently. As noted

above, from time to time we do get it wrong and, for example, misinterpret another

person’s intention or meaning. We then invoke repair mechanisms and feed the

information generated through this experience into our future models. Since

humans manage so well with relatively simple and partial models of other humans’

goals and activities, it is both unreasonable and unnecessary to demand more of

computer-based context models. Activity Theory provides a suitable simple

model in a standard form.

3.4.2 It Provides a Representation of the User

Activity Theory emphasises the importance of including a representative user in

the activity that the designers are concentrating on. It takes into account that

 101

information about the user has a large influence on the activity. This is important

in context awareness as the properties of users the context-aware system is

attempting to support have an impact on the system’s reasoning. The context

reasoning in the system obtains information about a user to increase the efficiency

of inferring the user’s objective and so provide suitable services. By including a

representative user in the model, the model directs the designers to take the user

into account during the design process.

3.4.3 It Relates Individual Human Activity to Society

In a ubiquitous computing world, users are not isolated workers at a desktop, in

one location. The ‘traditional’ use of computers is increasingly being

complemented by residential and nomadic use, thus penetrating a wider range of

users’ activities in a broader variety of environments and societies such as the

school, the home, the market place and other civil and social contexts

[Stephanidis, 2001]. Users access computing services within society and that

society will have an influence on the user’s behaviour. As a result of being in

society, users have roles in society. They decision of performing activity is driven

by their roles such as secretary or dad. At the same time, they perform the activity

under a set of rules that constrains their actions, for example, only using a

company account when he holds role as secretary or put expense on his personal

account when he holds role as dad. For example, the user may act as a secretary

at work using his mobile phone to book a flight for the boss with a company

account and he may also act as a dadat home with his family using the same phone

to book a holiday for them from his personal account.

Therefore the context classification should allow the system to take account of

what can have an impact on human behaviour within society. Activity Theory

explicitly takes society into account in its modelling.

 102

3.4.4 It Provides a Concept of Tool Mediation

Ubiquitous computing users may use multiple devices to access information or

services, thus dealing with different screen sizes and interaction methods such as

touch screen PDAs, laptops, mobile phones and wearable computing. Moreover,

the availability of services is changing all the time as one service may be available

at one situation and may not be available in the next. Therefore the tools and

services may be changing all the time. Characteristics of tools and services have

an influence on users’ behaviour in completing their activities. Activity Theory

explicitly includes this in its modelling. It provides a framework for

understanding the cyclical relationship of application and evaluation as a user

applies a tool to accomplish a goal.

3.4.5 It Maps the Relationships amongst the Elements of a Human

Activity Model

Activity Theory maps the relationships amongst the elements that it identifies as

having an influence on human activity. This provides us with a potentially useful

way to classify and relate the elements of context and maps them very closely to

the key elements of context. The relationships between the elements are important

in helping the inferring process to be manageable in a uniform manner.

These five reasons illustrate that Activity Theory is satisfactory for use in

attempting to develop a context model that meets the user requirements mentioned

in Section 52.4.1. The next section describes how Activity Theory meets the

context model requirement of representing the history of context. The importance

of history in the context model is also discussed.

 103

3.5 History

Leontiev [Leontiev, 1979] proposed that activity is not a reaction or aggregate of

reactions, but a system with its own structure, its own internal transformations,

and its own development. As mentioned above, Activity Theory structure breaks

down into three levels: activities, actions, and operation. The basic structure is

shown in 5Figure 3-7. Operations become routinised and unconscious with practice

and they depend on the conditions under which the action is being carried out.

That means that operations are situated in or related to the world by an

unconscious orientation basis established through experience with the conditions

or constraints for the operation [Rodriguez, 1998].

With reference to internal transformations, Activity Theory [Kuutti, 1995]

suggests that activities are not static or rigid entities; they are under continuous

change and development. This development is not linear or straightforward but

uneven and discontinuous. All levels can move up and down. For example, an

operation can become an action when “conditions impede an action’s execution

through previously formed operations”. Actions can become operations though

experience of performing actions in the past. When the user performs actions so

many times, they become automatic and are no longer performed consciously.

This is when an action transforms to an operation. This means that each activity

also has a history of its own. Part of the older phases of activities often stay

embedded in them as they develop, and historical analysis of the development is

often needed in order to understand the current situation. Thus, history is an

important element in Activity Theory as it influences the internal transformation.

In ubiquitous computing , context awareness supports the user at different levels.

By using history, context awareness can improve usability by supporting the action

level instead of the operation level when users have experienced the operation

level several times in the past. For example, at an early stage, the context-aware

 104

system supports the user by automatically filling in parts of a form such as the

name and address before the user explicitly submits the form. After a while, the

user becomes familiar with how the system pre-fills the form and how the system

recognises that the user usually agreed with the pre-fill information and explicitly

submitted the forms in the past. The system then transforms the action of

submitting the form to operation by automatically submitting the form for the user.

This shows that the history helps the system support the user in structurally

different levels of interaction.

Figure 3-7 Basic “Structure” used with Reference to Human Activity

Chalmers [Chalmers, 2004] discussed the history aspect of context and how it is

important for humans in referring to their current task. Through experimenting

with different applications such as Seamful Game, he suggested that, with

experience of its use, the tool may become understood and familiar to the

individual, i.e. more ready-to-hand and embodied. Therefore he sees significant

potential in making more use of the past in context–aware systems design.

Moreover, people often refer to experiences in the past while performing their

current activity, using such experiences to guide their current actions. For

example, in the past, a user got a virus from an email received from a certain email

address. When the user receives a second email from this email address, the user

deletes the email from the email address instead of opening it.

 105

An increasing number of context-aware projects [Hariharan and Toyama, 2004;

Helander, 2005; Kröner, et al., 2006; Mayrhofer, 2005; Mohr, et al., 2005] pay

attention to the use of history in their reasoning process for particular sensor data,

applications or domains. Instead of a fixed rule to recognise the situations that the

system should support the user, the history of situations is used to infer about the

situation. Several projects [Mayrhofer, 2005; Mohr et al., 2005] have studied the

inference algorithms that take history of context into account in order to improve

the inference mechanisms. However, these studies were conducted for particular

domains and applications. The modelling of context history is still in its infancy.

There are no guidelines for researchers to decide what to take into account in

context history.

History is a critical part of context. A few previous context-aware projects have

considered time as context. However, they have typically looked at time simply as

current time that can be sensed from the device. For example, they compare

current time to the user’s timetable and provide support for the user’s current task

in her timetable [Agarawala, et al., 2004; Hertzog and Torrens, 2004]. Time is

used to sequence the events in order to be able to compare the interval between

them. It has a direction where past lies behind while the future lies ahead.

Therefore time is crucial for recording the events in history. It is used as a

reference point for the events in the context history.

The next section presents the proposed context model to meet the requirements

described in Section 52.4.1.

 106

3.6 Proposed Context Model

Researchers in context awareness refer to context differently. In order to further

the field of context awareness, researchers should consider context in the truly

ubiquitous computing world instead of only part of the context that is available

through current technology. Moreover, researchers, developers and users could

benefit from having a model that aids shared understanding of context. This

section introduces a proposed context model that aims to support designers during

the context-aware system design process. It facilitates bringing researchers

together through having shared understandings of context. It underpins context-

aware system development by providing a uniform relationship between consistent

sets of context elements. Ultimately, it provides a consistent representation of the

system’s model of context to users. With these features, it potentially bridges

some of the gaps between researchers, designers, implementers and users.

3.6.1 The Context Model

The main objective of a context-aware system is to support a user’s current

activity. In order to support the user, the system has to know what the user’s

current objective is. In other words, it needs to know the answer to the question:

“What is the user is trying to do?” Even humans with all their senses can find it

difficult to know another human’s current objective. Human reasoning is complex

and impossible to build into the context-aware system. It is important to be aware

of the complexity and to opt for a simple systematic model to represent the

reasoning in the system. The simple systematic model will allow the developers to

implement the system more easily. Moreover, by using the systematic model, it

will allow a user to understand the system more easily than a system with a

complex or unsystematic model. The consistency of the system will help the user

to build mental model of the system easier and improve usability by minimizing

the user’s cognitive effort. This understanding will allow a user to be able to

correct the system when mistakes occur.

 107

People often refer to experiences in the past while performing their current

activity, using such experiences to guide their current actions. Chalmers

[Chalmers, 2004] notes a range of research that refers to activity as an ongoing

temporal process of interpretation. He found significant potential in making more

use of the past in context-aware system design. The features of Activity Theory

provide key elements that exert influence on human activity. However, although

Activity Theory captures key elements of human behaviour, the Activity Theory

model only captures information about the user’s current situation or context and

the outcome when the current activity is performed. The Activity Theory

framework argues that activities are under continuous change and development. It

suggests that the user’s experience has an influence on transforming between an

operation, action and activity. However, it does not provide an adequate account

of a user’s current object or intention, or of the user’s past actions and contexts in

the uniform model. Without a systematic representation of past, present and future

in the Activity Theory model, the context-aware system may find the model is

difficult to use to infer about a user’s current objective by referring to the history

because the history does not exist in the systematic model.

For the context model to be used to support uniform and systematic reasoning

about context in complex situations, it should not only be able to identify the key

elements of human behaviour and relationships between them, it should also be

able model relationships between the past, present and future behaviours in the

systematic model.

To represent the history element, we add a temporal dimension, a “timeline”, to

the Activity Theory model (see 5Figure 3-8). The timeline includes not just current

time, but also past time (that contributes to historical elements of the context) and

future time (that allows for prediction of users’ activities from the current context).

Activity Theory is used in our context model to analyse information about a

 108

particular user so that it concentrates on one point of view of the user and her

individual level of hierarchy. This is because the activity of one user can be an

action or operation of other users. Therefore the timeline in our context model

represents reference points of time at which the particular user engages in

achieving the objectives. Through the addition of a timeline to the Activity

Theory model, the context model can represent the history of context for the user.

Our extension to the Activity Theory model provides the basis for a systematic

context model (see 5Figure 3-8) to be used as a design tool to aid designers and

developers in building a shared understanding of context. It helps make design

issues explicit and forms a basis for design choices. It also encourages the

designer to focus on aspects of the system affecting usability. Time is a crucially

important part of context.

Figure 3-8 Proposed Context Model Adapted from Activity Theory

In our extended Activity Theory model, history is modelled as a set of states in the

past (Pn). A state is an event when the system identifies a user’s objective.

During design stage, these states are gathered from the scenarios in the user’s

History of Context
at Time n

Pn= {AT1,..., ATn-1}

ATn

AT...

AT1

 109

requirement by the developers and stored in the history of context. During run

time, a state is normally identified from system constantly accesses the related

sensor devices and profiles to get context elements in the context model (ATn).

The model is then compared with previous model (ATn-1) that was stored a

moment ago. The differences between the two models will originate state, which

means the switching of scenario. Each past state at time n is represented as an

Activity Theory model (ATn),, which captures the context of activities in the

environment at that time. This information includes the initial state (S0), object or

intention (S1), and outcome or end-state (Se) of the activity. The initial state (S0)

includes the current information about environment, time, user, tools, community,

rules and role, which is gathered by the system through transforming data from

sensors and profiles. The object or intention (S1) models information about the

user’s current objective, i.e. what the user is trying to achieve. This information

about user intention (S1) can be inferred from the history of context (Pn) and the

initial state (S0). In order to infer the user’s intention (S1) during run time, the

context elements found from sensors and profiles in the current context model

(ATn) are then compared to the context elements in different states in the history

of context (Pn). If the system found the most matched of the initial state (S0) in

current model and the one in history of context, the user intention (S1) in the model

in the history of context is assigned as user intention (S1) in the current context

model (ATn). Once the user has performed the activity, we have information

about the real outcome (Se). Then the initial state (S0), intention (S1) and outcome

(Se) are stored as context model at time n (ATn) and become part of the history of

context (Pn+1). It will be used to infer the user’s intention or goal in future

situations. By adding timeline to the Activity Theory, it allows us to represent

past, present and future in the context model. Therefore the history can then be

used to infer about user’s current intention through a consistent model.

For each slice of the Activity Theory model, in order to reach an outcome it is

necessary to produce certain objects (e.g. experiences, knowledge, and physical

 110

products). As mentioned in Section 53.4, human activity is mediated by artefacts

(e.g. tools used, documents, recipes, etc.). Activity is also mediated by an

organisation or community. Also, the community may impose rules that affect an

activity. The user works as part of the community to achieve the object. In the

society, an activity normally also features a division of labour or role. To be used

in the context-aware system design, the definitions of context elements on each

slice of Activity Theory model that influence a particular situation can be

described as follows:

User: For our current purposes, information about user that the context model is

supporting. Information may include name, preference, schedule, devices, etc.

(Answers: Who is the user that the context-aware system is supposed to support?)

Environment: Information about the physical and virtual environment that has an

influence on a user’s activity in the situation (Answer: Where is the activity

achieving?)

Time: For our current purposes, time is the occurrence of events in the past, the

present and the future. Each point of time shows the occurrence of the user

achieving the objective or goal. (Answer: When is the activity achieving?)

Tools: Information about the tools that are available to user and their availability,

including device characteristics, public services – applications, and computing

environment such as network availability. (Answer: What are the tools supporting

the user to complete the activity?)

Community: Information about people around the user (in both the physical and

virtual environments) that may have an influence on her activity. The community

 111

can be referred as particular set of known users (such as the community contains

Jenny and Paul in the situation) or a group of unknown users (such as there are

more than 5 other people in the situation). (Answer: Who are the people

influencing the process of completing the activity?)

Role: Roles of the user in completing the objective of the activity in that situation

including who can perform which tasks on the object. (Answer: What is the role of

the user in the society?)

Rules: Norms, social rules, policy and legislation within which the user relates to

others in her community. (Answer: What are the rules restricting the user in the

current society?)

Object: The user’s intention and objective of what activity that user wants to

perform. The system uses all the elements above to decide on the user’s intention

or objective. (Answer: What is the objective of the user to complete the activity?)

Outcome: This is the result of the user’s activities, which may or may not achieve

the objective. (Answer: What is the result from the activity that user is

performing?)

The context model contains consistent context elements and relationships between

the elements for the designers to refer to during the design process. Moreover,

adding a timeline to the model provides a systematic way to represent the past,

present and future context of the user. We intend this systematic context model to

help support designers in developing context-aware systems driven by user

requirements rather than by the availability of particular technology. During

design stage, the designers concentrate on the user’s requirement scenario and

 112

using the elements in the context model to extract the required context information

for each context element in the scenario rather than availability of the technology.

For the information that cannot be gathered from the sensors, the designers

develop profiles which are stored in the database to hold information that the

system can refer to during run time. The system therefore can access the

information that cannot be gathered from the sensors rather than ignoring

information that has influence on user’s activity.

3.7 Summary of the Proposed Context Model

Context awareness requires a systematic context model that represents context in a

ubiquitous computing situation. The proposed model can help bring researchers

together by bridging the varieties of different context elements that different

researchers utilise in their context-aware systems. In context awareness, the

context model is used to infer a user’s current objective. The inferring process in

the system utilises context information to make decisions about the user’s

objective. The process acts somewhat like human reasoning. However, human

reasoning is so complex that a complete understanding of how it works does not

actually exist. It is impossible to build a context-aware system based on this

complexity. A simpler systematic context model is therefore introduced for

designers to develop inference processes in context-aware systems.

Humans make their decisions based in part on their past experiences. History

plays an important part in user’s decision making. Therefore the context model

not only has concise constructs for presenting the current context but it is also

important for the context model to represent history of context. In this

dissertation, the systematic context model is developed by adding a temporal

dimension, a “timeline”, to the standard Activity Theory model. Activity Theory

provides a consistent set of context elements and relationships between them

which supports researchers or designers in having a shared understanding about

 113

context. Moreover, the timeline systematically adds representation of the past,

present and future context. Designers can use the context model as a reference to

decide what types of context the system should use to infer about a user’s current

objective. The simple systematic model allows the developers to be able to

implement the system that infers the user’s current objective based on the current

context and history of context that has been stored in a common format according

to the timeline in the model. The consistent context reasoning provided by the

context model is also intended to make it easier for the eventual user to build a

mental model of the system because of its consistency. Therefore the user

understands the system and is able to correct mistakes, for example in inference,

made by the system during run time. The design process introduced by the context

model will be discussed further in 5Chapter 4.

 114

 115

Chapter 4

Turning the

Context Model into a

Design Tool

The previous section described the proposed context model in which we extended

Activity Theory to provide a consistent and structured way of representing context

for context-aware mobile and pervasive systems. This chapter will explain further

how this context model can be used during design as a design tool enabling a new

design process for context-aware system design.

With its consistency and structure, the context model can be used as a design tool

to aid designers in building a common understanding of context. It helps make

design issues explicit and forms a basis for design choices through a consistent set

of context elements and relationships. The context elements provide a set of

consistent vocabulary that encourages the designers to focus on aspects of the

system affecting usability rather than the availability of technology.

 116

The context-aware system requires a set of context values stored in a database to

be used by the system during runtime to recognise the current user’s objectives.

The context values are a set of information for each context element which has

been assigned to the context model. During design stage, the context values are

extracted from the user’s requirement scenario. For example, the context value for

the environment in the scenario can be a room number in a building or town name.

In addition to the sets of context values available from sensors, profiles are stored

in the database. These profiles hold information that cannot be gathered from the

sensors and are generated by the designers, such as information about user’s

preferences where user has filled in the form during registration. The context

model helps the designers to generate a set of such values in the database to act as

a practical structured model from the descriptive situations in the scenario. By

concentrating on usage scenarios and user requirements, the context model guides

the designers to create profiles in the databases. Moreover, the relationships help

designers generate consistent real time reasoning process using the profiles and

history of context models in order to infer the values for context elements that

cannot be found from sensor data and the user’s current objective. The six steps in

the process of using the context model as a design tool in context-aware system

design are discussed below.

4.1 Step 1: Define Scenarios in which the System will be Applied

User requirements in ubiquitous computing have mainly been determined from

analysing the problems in scenarios [Derntl and Hummel, 2005; Dong, et al.,

2006; Gellersen, et al., 2002] or field studies [Desmet, et al., 2007; Jiang, et al.,

2004] in different domains. Both scenarios and field studies give the designers

descriptions or stories of people and their activities in different domains. For

example, on Monday morning, Jane R is running a bit late for her meeting. She

wishes to show the presentation on the projector in the meeting room in Building 1

West at the University of Bath whilst she is walking into the room. At the same

 117

time she wishes to access a memo on her presentation in a folder on her laptop

computer. However, the folder is covered up by a presentation that Jane wishes to

refer to while reading the memo. The presentation is so large that it nearly fills the

display. Jane pauses for several seconds, minimises the presentation, finds the

desktop that is connected to the projector on the network and sends the

presentation to the desktop, opens the memo on her laptop, and starts presenting.

Designers use scenarios and field studies to analyse how technology could

improve a person’s ability to complete tasks and create scenarios to show how the

technology can support people. Carroll [Carroll, 1999] suggested five reasons for

using scenarios during design. First, scenarios evoke reflection in the content of

design work, helping developers coordinate design action and reflection.

Secondly, scenarios are concrete and flexible, helping developers manage the rapid

changes of design situations. Thirdly, scenarios provide multiple views of an

interaction, helping developers manage the many consequences caused by any

given design decision. Fourthly, scenarios can also be abstracted and categorised,

helping designers to recognise, capture, and reuse generalisations, and to address

the challenge that technical knowledge often lags behind the needs of technical

design. Finally, scenarios promote work-oriented communication amongst

stakeholders, helping to make design activities more accessible to the great variety

of expertise that can contribute to design, and addressing the challenge that

external constraints, designers and clients often distract attention from the needs

and concerns of the people who will use the technology. Ubiquitous computing

users may not necessarily have a full understanding of the system as it might be

very new to them. Scenarios not only provide ideas to designers but also may be

useful in order to give a better understanding to users about this field that is still in

its infancy. Designers are therefore suggested to transfer scenarios or field studies

into context-aware scenarios which describe how context awareness could support

the user in different situations.

 118

4.2 Step 2: Define Situations in which Context Awareness Can

Support Users

As the scenarios and field studies are descriptive stories, the designers have to

break the stories into smaller situations in order to have a better understanding of

users’ requirements. Each situation is normally defined by how each activity is

carried out by the user. The designer can then decide how context awareness can

support the user to complete each activity in each situation. By having smaller

situations that concentrate on each activity in scenarios or field studies, it becomes

easier for a designer to concentrate on the activity that needs support from context

awareness. These situations are used as a guide for storing a set of basic activities

in the history of context. This set of basic activities is used by the system to

recognise the state and trigger event where the context-aware system should

support the user with relevant services or information. The history of context is

then used in real time for inferring the user’s current objective from sensor data.

After the scenarios are gathered, for every scenario the designers need to extract

the situations for the context-aware system to support the user. As noted in the

previous chapter, the context model is used to concentrate on the user that the

system is supposed to support. For each situation that has been extracted from the

scenario, the concept of three levels of activity in the Activity Theory is referred to

in order to gather the activity, actions and operations. Following Leontiev’s model

(Activity - Actions - Operations), our design tool has six activity level questions

for the designers and developers to follow for each situation. It has introduced a

systematic 6 question guide for the designers to use for analysing each situation.

The first 3 steps are:

Question 1: What is the activity for the context-aware system to

support in this situation?

Question 2: What are the actions that a user may need to perform?

 119

Question 3: What are the operations that a user may need to perform?

In Question 1, designers attempt to answer why the user is in this situation so that

the activity may be used to identify the objective from the situation. For example,

from the situation of Jane R, the objective of the situation is for Jane R to show the

presentation on the projector and see her memo on her laptop on time. Therefore

the activities in this situation are “showing the presentation on the projector and

seeing the memo on the laptop”.

In order to gather the actions for the activity in Question 2, the designers consider

goals and sub-goals of the user in the situation. The designers then attempt to

draw up a list of actions that the user is required to perform in order to meet the

goals and sub-goals. For example, the actions in Jane R’s situation are searching

for folders for presentation slides and the memo, searching in the network for the

projector, and opening the slides and memo.

From the actions in Question 2, the designers consider the set of operations that

the user performs unconsciously under the conditions in order to meet the actions.

In other words, the operational structure of the activity is typically automated and

is not a conscious concrete way of executing an action in accordance with the

specific conditions surrounding the goal. For example, the operations in Jane R’s

situation are double click to open folders for slide and memo, resize the folders,

and copy/paste the slide file. These have become operational because Jane R has

become used to opening the folder by double clicking. She does not have to think

consciously about how to double click on the folder. She only has to make sure

that she has the permission to access the folder and the window of the folder is not

opened too large so that it overlaps the other folder or is over the screen size.

These questions allow the designers to identify the three levels of activity in the

situation. As a result of applying these three questions, the lists of activity, actions

 120

and operations may be represented using a practical model driven approach such

as Activity-Task Map from the Activity Modelling approach [Constantine, 2006]

described in Section 53.3.

From the lists of activity, actions and operations, the designers decide at what

levels that the context-aware system should support the user. The difference in

levels represents the user’s level of awareness in order to perform an activity,

action or operation. The level of awareness can help the designer not to take

control away from the user completely.

According to Chen and Kotz [Chen and Kotz, 2000] classification, there are two

types of context-aware computing: active and passive. The classification is based

on the ways that context-aware computing supports the users. Active context-

aware computing automatically adapts to discovered context by changing its

behaviour whereas passive context-aware computing presents new or updated

context to an interested user or makes the context persistent for the user to retrieve

later. An example of active computing is context sensitive conference schedules

that highlight/narrow down the track that might be of interest to a user. The

designers assign a schedule application and the selected context is information

about the user – i.e. an element of user context. An example of passive context-

aware computing is that the conference assistant shows information about the

current colleagues’ locations or tourist attractions on a map according to the user’s

current location and time.

For situations where designers decide context awareness is required to support the

user, the designers have to assign application features (Active, Passive or both)

and information that the application might need to support the user in order to

complete the activity more efficiently based on the classification of context-aware

computing. Thus, the breakdown lists of activity, actions and operations

 121

encourage the designers to concentrate on the effect of context awareness at the

level of user interaction and usability.

From the application features of Active and/or Passive introduced by Chen and

Kotz, the lists of activity, actions and operations are revisited in order to assign

different types of support from the system. The lists offer ideas of where and how

the system should support the user and where the user should have control over the

system. The designers adopt the idea of active and passive support to get rid of

time-consuming or unnecessarily explicit inputs that interrupt the ubiquitous

computing user to complete the main activity. Furthermore the designers could

consider replacing the user’s explicit input with the system based on the system’s

ability to complete them better and quicker than a human with its features such as

finding a file in the database or finding matching words in a file. Therefore the

next design questions address the support that the system should provide to the

user, as shown below:

Question 4: What operation level supports is the system going to

provide?

- Double click to open folders for slide and memo >> Active

- Resize the folders >> Active

- Copy/paste the slide file

Question 5: What action level supports is the system going to provide?

- Search in the network for projector >> Active

- Search for folders for slides and memo >> Active

- Open presentation slides

- Open the memo

 122

Question 6: What activity level support is the system going to provide?

- Show the presentation on the projector and memo on the

laptop

As mentioned that during design stage, the designers extract context models from

user’s requirement scenarios, these context models are stored in the database as a

reference to infer user’s current objective in real time. Once the objective is

inferred, the system selects the support for the user according to the assignment

done during this design stage. For example, the application should be Active so it

can automatically show the combination of “a folder of the memo”, “the

presentation” and “a shared folder” on the desktop in the meeting room on Jane

R’s laptop. Hence, Jane does not have to resize the windows and go through the

process of searching for the folders and trying to detect a public desktop that is

connected to the projector in the meeting room on the network. Jane can then

explicitly select the right files in the folder. She can then transfer the presentation

file to the shared folder on the desktop and thereby show the presentation on the

projector and see the memo on her laptop more easily and quickly.

For each situation, answering these six questions provides the designers with

guidance on how and at what level the system should support the user. The next

step describes how the context model gives the designer a consistent and non

technology-driven way of modelling the context for each situation. The context

model provides a consistent set of vocabulary for the designers to consider about

grouping the information in the situation. The predefined context model of each

situation is stored in the context history. These are then used by the system to

infer about user’s current objective. The inference process allows the system to

recognise state and trigger events where the context-aware system should support

the user with relevant services or information. This is described in section 55.1.1.

 123

Figure 4-1 Jane R’s Situation Extracted into Context Model

4.3 Step 3: From the Situation to Elements in the Context Model

As the scenario is broken down into smaller situations that describe the user and

activity for that situation at a particular time, the designers can then identify the

types of context information for the situation. The information that has an

influence on a user to complete the activity is taken into account from the

situation. The designers then group the information in the situation into

information for each element of the context in the slice of context model for that

particular time.

As mentioned in Section 53.6, there are nine key abstract elements of context for

each slice of the context model (environment, time, user, community, tool, role,

rule, objective, and outcome). In this section, the designers follow the definition

of each element in the proposed context model to make decisions about each

element of context. Regarding each situation, the designers answer the nine

questions below:

Present slides
on projector

and see memo

Presented slides
on projector and

see memo

Transformation
Process

Jane R

Projector on
Desktop

Presenter Attendants Do not show

Meeting room, Building

West at University of Bath
Tuesday 5 Jan 2006
9:10am

 124

1. User element: Who is the user that the context-aware system is supposed to

support?

For the particular user, other elements in the model are identified according to the

user;

2. Environment element: Where is the activity being performed, both physical

and virtual?

3. Time element: When is the activity being performed?

4. Tools element: What tools are supporting the user to complete the activity?

5. Community element: Who are the people influencing the process of

completing the activity?

6. Role element: What is the role of the user in the current community/society?

7. Rules element: What rules restrict the user in the current

community/society?

8. Object element: What is the objective of the user to complete the activity?

9. Outcome element: What is the result from the activity that the user is

performing?

Table 4-1 shows how the context model transforms into a simple table that

designers can use to refer to the context model and assign values in the situation to

each element in the context model. The designers use the definition of each

context element and the nine questions above as a guide to decide on what value of

information should be in each context element of the context model. As a result,

the designers group the information about the situation into nine categories

following the nine key elements of the context model.

By following the questions, the designers use the table to model possible context

for the situation. The table and questions give the designers a flexible but

 125

systematic way for considering possible context models for the situation that the

system can use to support the user. As a result, the designers can assign many

possible context models to be stored in the history and to be used by the system to

trigger events the system can use to support the user during run time [see 5Chapter

5]. Table 4-1 shows examples of values extracted from Jane R’s situation.

Table 4-1 Table Designers Use in the Context Model

Context
Elements

Definition Values from Situation

Environment Information about physical and
virtual environment that has
influence on the user’s activity
in the situation.

Meeting room 2.4 in Building A,
University of Bath, Bath, Avon, UK

Time Point of time that the situation
is occurring.

Monday 5 Jan 2007 9.10 am

User Information about user
including identity, preferences,
schedule, devices.

Jane R, who has a Laptop and N95
mobile phone

Tools Information about tools that are
available to the user and their
availability, including device
characteristics, public services
– applications, and computing
environment.

Printer 1 no queue in meeting room
2.4
Desktop 2 connected to the projector
in meeting room 2.4
Wireless network
Room booking schedule

Community Information about people
around the user (in both the
physical and virtual
environments) that may have an
influence on user’s activity.

3 attendants including Attendant A,
Attendant C and Attendant D

Roles Roles of user in completing the
activity in that situation
including who can perform
which tasks on the object.

Presenter

Rules Norms, social rules, activity
rules and legislation within
which the user relates to others
in the community.

Can access and edit the presentation
slides and memo
But cannot show the memo to others

Objective User’s intention and objective
of the activity that the user
wants to perform.

Show the presentation slides on the
public projector and see memo on her
private device

Outcome This is the result of the user’s
activities, which may or may
not achieve the objective.

Gave presentation on the public
projector and see memo on her
private device quickly

 126

4.4 Step 4: From Context Elements to Sensors and Profiles

Instead of using descriptive scenarios to communicate with the developers, the

designers have generated the values for each context element in the context model

using the definition of each element together with the nine questions about context

elements described in the previous section. The set of values provides a more

conceptual and simple form of context for each situation as shown in 5Figure 4-1. It

can then be used as a common reference to understanding the context model for

each situation.

Environment

Values Sensor Attributes in the Database

Cold Thermometer Condition

Room 2.4 Barcode, Bluetooth or NRFID Room

Building A GPS Building

University of Bath GPS Area

Bath GPS Town

England GPS Country

Table 4-2 Example of Assigning a Sensor and Attribute Name

As the context model groups the information into nine context elements, each

context element has its own database that holds the information about that

element. The implementers who have a better idea of what sensors and profiles

are available can then refer to the context model and discuss the availability of

sensor data. Then both designers and implementers can work out how to combine

the data to derive as many types (attributes in the database) of information for each

 127

element of context as possible. The combination of the data will also guide the

developers in implementing the multiple layers of interpretation. For example,

from the information for environment context, developers can see from the table of

information that the most specific area that designers require to know is the room

number in the building. Therefore the implementers might suggest to the

designers that radio beacons, e.g. Bluetooth, should be used to refer to each room

and this can be combined with GPS to get the building and town or country, when

only the building name or town is required. Furthermore, the thermometer could

be used to capture the temperature of the room and infer if the user is inside or

outside the building as well.

This step not only supports the designers and implementers in deciding about the

sensors and the translation process within the context-aware system, it also

supports the developers in designing the storage model for the database (See Table

4-2). For example, the database for an environment sample from one situation

incorporates storage of a set of information, which represented as a set of values in

the attributes in the database, including room number, condition of the room (cold,

wet, hot, dark, etc), building name, street name, town name and country name.

Each database has an ID attribute to hold the identification of the set of values in

the database.

Environment Database

ID Condition Room Building Area Town Country

1 Cold Room 2.4 Building A University

of Bath

Bath UK

… …….. ……. …….. ……… …… ………

Table 4-3 Information from 5Table 4-2 Assigned to Attributes in Environment

Database

 128

This step not only helps designers and implementers decide on the sensing and

interpretation, it also allows the developers to assign attributes in the database of

each context element as shown in 5Table 4-3. Thus, each context element has its

own database and the values in the attributes can be referred to as a set of

information in the profile as well. The profile is generated by the designers where

the information cannot be gathered from sensors or they considered it is a better

resource of the information required by the system. For example, tourist

information which includes information such as attractions, locations, entrance

fees, etc. This is done so that the descriptive information is separated from the

context model. The descriptive information is grouped and separated from the

context model according to its quality and persistence.

5Table 4-4 is extended from Henricksen’s summary of the typical properties of

context information [Henrickson, 2003]. It shows how the context model guides

the designers in grouping the context information according to its properties. By

grouping the context information, the developers also create the storage structure

for context information and separate the information from the context model. By

separating context elements which hold different groups of information and the

context model, the storage of descriptive information about each context element

is separated from the context model storage. The context model only refers to the

reference point of each context element in order to refer to the set of values in the

context element database, which holds the descriptive information about the

context element.

 129

Class of
Information

Persistence Quality issues Sources of inaccuracy

Sensed Low
Maybe inaccurate,

unknown or stale

Sensing errors; sensor failures or network

disconnections; delays introduced by

distribution and the interpretation process

Static Forever Usually none Human error

Profiled Moderate Prone to staleness
Omission of user to update in response to

changes

Derived Variable
Subject to errors

and inaccuracies

Imperfect inputs: use of a crude or

oversimplified derivation mechanism

Table 4-4 Typical Properties of Context Information [Henrickson, 2003]

The separation of descriptive information and the context model does not only

allow easier editing of the values of the context element, it also allows easier

addition or removal of the values in the attributes or the attributes themselves in

the context element. When the attribute value in the set of information about the

context element needs to be changed, the values in the context models in the

history database that refer to the set of information in the context element that hold

changed value do not need to be changed but will be affected the changes in the

context element.

4.5 Step 5: From Context Elements to Reasoning

Not all information in each context element can be inferred from sensors or

existing profiles in real time. Context elements such as rule, role, objective and

outcome are normally difficult to infer directly from data from sensors and

profiles. Hereafter, the information that is difficult to infer from data from sensors

 130

and profiles is called an undiscovered value. The developers have to create new

databases to store the information for these context elements. The developers use

the databases to store values extracted from the scenario situations at design time

(e.g. Table 4-1). The relationships between elements of context in the context

model are used to guide the developers in implementing the structure of these

databases. The databases can then be used consistently to infer the undiscovered

values of the context elements in the context model in real time.

In order to be able to reason about the user’s current objective consistently, the

missing elements need to be found. Using the identification concept simplifies the

reasoning method because it separates the descriptive information about the

context element from the context model that will be stored in the context history.

For example, the descriptive information of role (Presenter role is used when the

user A interacts with community B on Monday at 9:00 am in Meeting Room 4) is

stored as a set of values in the attributes in the role database and the context model

that is stored in the database refers only to the reference point (ID) to the

information in that role database. When one of the values in the descriptive

information about the role changes (for example, user X instead of user A), the

value only needs to be edited in the attribute in the role database. The context

models in the history database that refer to the role do not need to be changed.

Separating the descriptive information from the context model not only allows

easier editing of the values in the context element without changing the context

models but also allows easier addition or removal of the values in the attributes or

the attributes in the context element without affecting the context model in the

history. This can be useful when the designers or developers require the modelling

of a new scenario of different users who have the same role but have different

personal devices. The context model in the history, which could be time

consuming to create and store, can be reused. This reduces the work for the

designers and developers. In addition, it may provide opportunities for end users

to change the values themselves via the context model at run time [see 5Chapter 5].

 131

The definition of the role context element in the context model is as follows: it is

the role of the user to perform the activity in order to meet the current objective

according to the community around her in a particular situation. Therefore the role

context element can be inferred from who the user is and the community that has

an influence on the user’s activity at a particular environment and time to meet the

objective, as shown in 5Figure 4-2. This can guide the developers in implementing

another reasoning method to get the value of the role of user in the particular

situation. For example, Jane R held a presenter role at the time she entered the

meeting room with User A, User B and User C who attend the presentation (where

User X represents a person named X who are present in the situation). At the

same time a week after, Jane R enters the same room with User A, User B and

User C gain but this time the User C has access to the projector. Therefore Jane R

now held role of Attendant according to the community’s characteristic.

According to the relationships in the context model, the value of Jane R’s role is

stored in the database with reference points (IDs) to the IDs of the user,

community, time and environment which hold descriptive information of each

context element in the particular situation. By storing them in a separate database,

the values in the role database can be changed by the user if required in real time

through the interface representing the attribute values (name of role, user ID,

Community ID, Time ID and Environment ID). With the consistency of the

attributes in the database, the user can easily make corrections or amendments, for

example change the community ID to the set of values that they believe is

appropriate to their current situation.

 132

Figure 4-2 Relationships related to the Role Element in the Context Model

Similar to the role context, the rule context has an influence on the user,

community, environment and time of a particular situation. When there is not

enough information about the rule context from the sensor data or profiles, such as

from network privacy rules or authorisation policies, the developers could design

the database for the rule element further informed by the role context, as they are

influenced by the same elements of context. For example, when the role is

presenter, the rules for this role are to be able to access and edit the memo and to

avoid showing the memo to the community. At the same time, as a presenter, the

user can access public tools such as the network and desktop computer. As a

result, the rule database should hold the information that is linked between the role

and rules context. Therefore when a new role is created in the role context, a set

of rules should be created to associate with the new role. For example, the

presenter role is associated with the presentation rules of only showing the

presentation slides to the public but do not show the memo.

Objective Outcome Transformation
Process

User

Tools

Role CommunityRules

TimeEnvironment

 133

Figure 4-3 Relationships in the Context Model including the Objective

Element

The objective context is defined as a user’s objective in performing a particular

activity in a particular situation – in other words, the user’s intention. The

information for the objective context is important information that the context-

aware system has to find out in order to determine how to support the user.

Moreover, the user’s intention cannot be sensed, therefore the developers have to

design and implement a further interpretation layer in order to be able to infer the

information for the objective context in real time. After completing the steps

above, the developers should be able to identify the information for all the

elements in the context model. The information will then be used to reason about

the user’s objective against the history of context stored in the database. The

context model and its relationships guide the developers to create the interpretation

layer that takes information of other elements of context apart from outcome

context to compare with the sets of values of the context models in the history in

order to infer the value of the current objective context.

Lastly, the context model shows that the outcome context is the result of the

objective context so the developers can create a database to be used in order to

Objective Outcome Transformation
Process

User

Tools

Role CommunityRules

TimeEnvironment

 134

infer the outcome context. As a result, the database should hold pairs of

information between objective and outcome context. Therefore when a new

objective is created in the objective context database, an ideal outcome should be

created to associate with the new objective and stored in the outcome database.

4.6 Step 6: From Outcome Context to Selected Application and

Context Information

From the defined situations and results of following the six questions in

Section 54.2, the designers and developers decide whether or not the existing

applications can be used to support the user. If none of the existing applications

are relevant or useful, the developers use the features that the designer extracted

from Section 54.2 as user requirements and guidelines in implementing a new

application.

According to the classification of context applications proposed by Chen and Kotz

[Chen and Kotz, 2000], the context-aware system should be able to decide what

application or service should support a user in a particular situation and the

context-aware system should also be able to provide the context information for a

particular situation. Therefore for every new outcome for the outcome context, for

the active context-aware computing, the designers should assign services and also

types of context information that the system should provide to the user in a

particular situation. For example, the existing applications are the Microsoft

Power Point or opening folder command and the new service could be an extended

opening folder command by auto-opening a particular folder instead of starting by

searching from the My Computer folder.

For passive context-aware computing, the system considers how to represent the

context information to the user. For example, the map representation on the user’s

 135

PDA screen with information about user’s location and other users’ location in the

community. It will leave user to decide what to do with the information herself.

In order to separate the context reasoning from the application, the design tool

presented here guides the designers to create a new database that relates each

outcome with the selected service and types of context that should be used to

support the user in a particular situation. From Jane R’s scenario, the chosen

service is “auto detect shared folder on the devices”. The context information this

service required was information about the environment (room number), tools

(public shared folder) and user profile (folder name of the presentation). The

service can then use this information to detect a shared folder on the public device

in the meeting room and open the presentation folder on the user’s laptop

computer. Jane then only needs to transfer the presentation file to the shared

folder on the desktop and open the memo on her laptop. The context reasoning is

no longer embedded in the application as the outcome database holds a reference

to information about the current context model and information about the service

or application, instead of directly embedding the context reasoning in a bespoke

application.

This section described how the context model can be used as an integral part of a

design process for context-aware system design. This design process is systematic

and easy for designers to follow. The next section discusses where the design tool

meets the requirements discussed in Section 52.4.1.

 136

Figure 4-4 Schema with Context model and Databases

User Database
ID Name Surname Device …
1 Jane R - …
2 Jay Kaenam Laptop …
 …… …… …… …
n …… …… …… …

Community Database
I
D

UsersID Initial Devices …

1 2, 5, 9 JK, LP,
??

Printer,
Laptop, ??

…

2 2, 7 JK, CW Mobile,
Laptop

…

 …… …… …… …
n …… …… …… …

Role Database
ID Name user

ID
Community
ID

…

1 Receptionist 1 1 …
2 Presenter 1 2 …
 …… … …… …
n …… … …… …

Tools Database
ID Tool IDs ...
4 Tuesday ...
...

Context Models Database
ID User Environment Tools Role Community Rules Objective Outcome Time
1 1 1 4 2 2 2 3 5 4
...

Environment Database
ID Room Building ...
1 Meeting Building West ...

… ……. …….. …

Time Database
ID Day ...
4 Tuesday ...
...

Rules Database
ID Name Role ID
2 Do not show note 2
...

Outcome Database

ID Name Objective ID

1 Presented Slides on Projector 3

...

5 Printed note 3

n …… ……

Objective Database
ID Name ...
3 Print note ...
...

Application Database

ID Application Outcome ID Context Info

3 PTT presentation 5 Tools

...

Print
Note

Printed
Note

Transformation

Process
Jane R

Projector

PresentAttendants Do not
show

Meeting room,
Building West Tuesday 5 Jan

 137

4.7 How the Design Tool Meets the Design Tool Requirements

The previous section discussed the use of the design tool with examples. This

section evaluates the design tool against the design tool requirements mentioned in

Section 52.4.1.

Consistent Support for Shared Understandings

An abstract level of consistent elements of context and their relationships is

provided in the context model as a basis for shared understandings about context

for researchers i.e. designers, implementers and users. With its consistent

vocabulary, designers can refer to the context model when they discuss context

elements with the developers and users. The developers can refer to the context

model when they want to refer sensor data and their interpretations to the

designers.

Identification of Context Elements

The context model identifies the key elements that have an influence on the user’s

behaviour. At the same time the model is not too complex as there are nine

consistent key abstract elements of context (environment, time, user, community,

tool, role, rule, objective, and outcome) that designers need to refer to when they

try to extract relevant context from the user’s requirement or scenarios. With this

structured but simple context model, the designers expand their design outlook

away from the availability of current technology. The designers can concentrate

on what types of context have an influence on a user’s behaviour in the situation

rather than what technology is available to them.

 138

Context Interpretation

The boundaries between elements in the context model provide the designers with

a consistent tool to transfer a descriptive knowledge of a user’s requirement to a

consistent structured context model of the situation. The designers use the

practical model to communicate with the implementers. Based on the nine key

elements in the context model, the boundaries of the elements also help the

designers and developers to group and form the interpretation of data from

different sensors and profiles into an abstract level of information for each context

element. By having the nine key elements of context as a uniform guide for the

designers, the designers have to group information for each context element. This

means the designers have to transform the data from sensors and profiles before

the values can be assigned to the attributes in the context element database. So

rather than embedding the sensor data acquisition in the context elements or

context model directly, the implementers develop the interpretation of sensor data

separately from the sensor data acquisition.

Separation between Context and its Reasoning

The relationships between context elements in the context model guide the

designers on how to reason or infer the context elements to determine a user’s

current objective. From the consistent context elements and the uniform

relationships in the context model, the designers can derive a consistent inference

process in the context system independent of the applications. From knowing the

user’s current objective, the developers can assign what and how the system

should support the user. The applications do not have to concern themselves about

context reasoning.

History and Time

The context model provides a temporal dimension where each point on the

timeline captures the context of the situation at that time. By storing a context

 139

model at different points in time, the system automatically stores a set of context

models in the past – i.e. it maintains a context history. With the timeline, the

history of context can be represented for the context-aware system. The history

can then be used during reasoning about user’s current objective.

From the evaluation above, the proposed context model introduces a systematic

design tool that meets the requirements described in 5Chapter 2. It provides a

systematic design tool for designers and implementers to develop a context-aware

system, with its uniform context elements and relationships between them helping

to steer the designers away from a technology driven approach.

4.8 From Context model to New Design Tool

This chapter described the use of the context model as a design tool. A new

systematic step by step design process for context-aware system design was

introduced. Following the three levels of activity, six activity level questions are

introduced to assist designers in transforming a descriptive scenario into a

structured set of requirements. The structured requirements help designers make

decisions about when and how the system should support the user. The context

model provides a consistent set of vocabulary for designers to build understanding

about context. Using the context model, the design process helps designers to

design a system to meet user requirements rather than design a system driven by

technology. Moreover, the design tool introduces a consistent approach to context

and its reasoning that may be used to help build understandings of context by

researchers, designers, developers and users. At the same time, it also takes into

account valuable information about context such as time and history.

Furthermore, the design process shows the possibility that the design can be

developed consistently. This can help reduce the time taken to design and develop

new systems as it becomes more straightforward to reuse or expand existing

systems built based on the shared understanding of context.

 140

However, in order to take full advantage of our design tool and process, a new

architecture is required to support fully the functionalities of the context-aware

system design introduced by the new design process. The next chapter will

discuss this new architecture.

 141

Chapter 5

A System

Architecture for

Context Modelling

The design tool presented in the previous chapter introduces a consistent approach

to identifying and representing context elements, their relationships and history.

Moreover, it also supports separation between the context model and its reasoning.

In order to benefit from these advantages that the design tool introduces, a new

architecture is required to support the functionalities when moving from design to

implementation of a context aware system.

This chapter introduces our system architecture to support the results of using the

design tool previously introduced. First, an overview of the architecture presents a

data flow through the architecture. Based on our context model and design tool,

the data flow shows how context is inferred about the current user’s objective from

 142

current context and its history. An overview of the architecture is then discussed

further to explain the features of the three layered structure of the architecture and

its advantages. This chapter provides a conceptual account of the architecture to

support developers during implementation. The implementation of the

architecture is discussed in detail in 5Chapter 7. At the end of this chapter, the

requirements described in Section 52.4.2 are discussed to demonstrate how the

architecture meets these requirements.

5.1 An Overview of Context Aware System Architecture

The separation between sensor and context model introduced by the use of our

design tool leads to an architecture which contains three separate layers including

Sensor Engine layer, Context Engine layer and Application Engine layer. Each

layer deals with different types and levels of data (see 5Figure 5-1), separating the

handling of sensor data, the interpretation of sensor data and profiles and context

reasoning. Each layer consists of different objects. These objects can be initiated

on a single device or multiple devices. The context elements in the context model

provide a structure for the objects in the Sensor Engine layer to transform the data

from sensors into a consistent sets of information according to the context

elements. The relationships between context elements in the context model

provide a uniform structure through which the objects in Context Engine layer

infer information about user’s current objective. Along with the three layers, the

architecture includes databases which hold information about the context elements

in the context model and the history of the context models. In 5Figure 5-1, the

databases and translated data are represented as XML but different languages can

be used to represent the database in the system.

 143

Figure 5-1 Overview of Architecture of the Context Aware System

SIMPLE CONTEXT MODEL

with userXML, comXML

REFINED CONTEXT MODEL

 144

5.1.1 The Flow of Data

As a result of using our context model presented in 5Figure 3-8 and our design

tool, 5Figure 5-2 shows the flow of the data in the architecture and the possibility of

coping with misunderstandings between the system and the user.

First layer, the sensor engine layer, contains objects that deal with different types

of sensors (♠) and profiles (♣). This layer transforms raw sensor data into

meaningful information for the attribute values in each context element. The

meaningful information is then combined and translated into information of

context elements (♥) in the context model that can be gathered from sensors and

profiles based on the history of each context element to represent current state of

the user. The meaningful information is raw sensor data processed into more

accurate data and/or information that has a meaning to the user. For example, raw

GPS data may be transformed into a building’s name.

The second layer, the context engine layer, uses information of context elements

(S0) from the sensor engine layer to translate and infer other context elements in

the context model. The context elements (S0) are used with the history of the

context model (Pn) to infer the user’s objective for a particular situation. As

mentioned, during design stage, the context models are extracted from the user’s

requirement scenarios. These models are stored in the history of context model to

be used to as a reference during run time. The current context model from the

sensor engine layer is compared to the history of context model. The model in the

history that has the best match to the current context model is then used to infer the

missing elements in the context model such as roles and objective to get a

complete current context model (S0 + S1).

Third layer, the application engine layer receives the current context model with

the inferred user’s objective and outcome. It then provides support to the user

according to the inferred outcome in the current context model. The application

engine layer uses the outcome context element in the current context model to

access application database to provide support to the user accordingly. If the

 145

user’s activity (♦) is not what the system predicted, the application engine can

then update the value of the outcome of the situation in the application database.

Therefore the value of the outcome needs to be updated in the inferred context

model i.e.

1. The preferred application is assigned with the outcome in the application

database.

If the new outcome is added to the application database:

2. The new outcome is added to the outcome database and assigned with the

current objective.

3. The context model in the database is updated with the new outcome.

This layer provides the possibility of allowing user to be able to make changes to

the context model together with the automation of the system. Further studies

need to be done in order to understand the involvement of the user without

irritating the user.

As a result of using the design tool, the architecture has the flow of data shown

in 5Figure 5-2. 5Table 5-1 illustrates how the context-aware system implementation

based on the design tool provides the separation of context according to its

properties. The design tool guides the designers to assign sensors to different

groups of context. The context model guides the designers to group different types

of context information and separates them according to the context elements. As a

result, the developers implement an architecture that supports separation between

different types and levels of data. Moreover, the architecture supports the

processing of different levels of data separately in different layers.

 146

Figure 5-2 Flow of Data in the Architecture

 147

Class of
Information

Persistence Quality issues Sources of inaccuracy
Via the context

model

Sensed Low

Maybe

inaccurate,

unknown or stale

Sensing errors; sensor failures or

network disconnections; delays

introduced by distribution and the

interpretation process

Raw data or

interpretation of

raw data from

assigned sensor♠

Static Forever Usually none Human error
End user

interactions♦

Profiled Moderate
Prone to

staleness

Omission of user to update in

response to changes
Profiles ♣

Derived Variable
Subject to errors

and inaccuracies

Imperfect inputs: use of a crude

or oversimplified derivation

mechanism

Interpretation

layers♥

Table 5-1 Typical Properties of Context Info [Henrickson, 2003] Separated

Via the Context Model

First, the most dynamic context, which is context from sensing (♠ in 5Figure 5-2

and 5Table 5-1) is stored in the sensor translator separately from the profiles and

other databases such as context elements and context model. Secondly, user

feedback or interaction from the user to the application (♦ in 5Figure 5-2 and 5Table

5-1) which has a static property is dealt with in the application engine. For

example, the system might have provided the user with a presentation service as a

result of the values stored in the application database but in real time the user

wants to use a tourist map service and the user wants this to apply in the future.

The user can then change the value in the application database for the current

situation to provide the tourist service instead of the presentation service. Thirdly,

the profiles of the user or tool e.g. user’s research interest, favourite food (♣

in 5Figure 5-2 and 5Table 5-1) which can be updated by the user and which can be

 148

dynamic to a moderate level are stored separately and dealt with in the sensor

engine. Lastly, derived data (♥ in 5Figure 5-2 and 5Table 5-1) such as data in the

context elements (e.g. building name, town, room number derived from GPS,

Bluetooth, etc) and context model (such as the value of user’s role, user’s current

objective, etc) has its own separate database. As a result of the separation of

different types and levels of data, if the developers want to take the properties of

context into account during the objective inference process, this can be done

without remodelling the context. For example, if the developers want to take the

frequency of use of the derived data (♥ in 5Figure 5-2 and 5Table 5-1) into account, it

can be done without affecting other types of data by adding another attribute

representing the frequency of use to the database of the derived data.

5.1.2 Databases

As mentioned in the design stage, the context elements and context model have

their own databases containing information about them. Each element contains a

set of attributes that hold information about the particular context element. The

values of the attributes can be gathered from other databases. In order to be able

to refer to other databases, a unique reference point (ID) concept was introduced.

The unique reference point is assigned to each set of attribute values in each

database. The design tool prepares the developers to create separate database for

each sensor, context element, and context model. It also helps developers prepare

the profiles database where the information cannot be gathered directly from the

available sensors. The clear separation between sensor, profile, context element

and context model introduced by our design tool provides an opportunity for the

developers to produce separate databases for each sensor, profile, context element

and context model.

As each context element has its own database, its database can be stored anywhere

in the system so long as the developers provide the system with code that allows

 149

other objects in the system to communicate with the database (represented as

in 5Figure 5-1). The developers use the assigned attributes in the databases

designed as in 5Chapter 4 in developing the code for managing a set of values in the

database. Hereafter, the code for managing a set of values in a particular database

is called Database Object (i.e. Environment Object holds the code that manages

the set of values in the environment database). Apart from managing the set of

values in the database, the code also has two main functions:

1. Storing a new set of values: a function that allows a new set of attribute

values to be added to the relevant database. To store a new set of values

efficiently, the function has an ability to check if the set of values does not already

exist in the database before storing it, to avoid repetition in the storage space.

2. Accessing (reading/editing) the existing sets of values in the database: a

function that allows the other objects in the architecture to be able to access the

values in the database. The function uses the given ID to find the set of values in

the relevant database. Once the set of values is found, the function has abilities to

read and edit any attribute values of the identified set of values in the database.

The function then updates and saves the set of values in the database where there

are some changes to the set of values.

These functionalities of each database allow the objects in the system to store and

access the values in the database in real time.

As these databases are separated and of uniform structure, the developers can

implement a GUI based on the attributes in each database to provide easier access

for the user to view, edit and add to the values in the database during design,

training stage and real time use. This not only allows the user to be able to update

 150

the values in the sensor, profiles and context elements databases but also allows

the user to update the reasoning process by adapting the values in the context

model database and the application database.

5.1.3 Sensor Engine Layer

The sensor engine layer consists of three main elements including a sensor

acquirer for each sensor, a sensor translator for each sensor and a sensor engine.

The main objective of this layer is to deal with each sensor and its raw data so that

the data is translated into meaningful data for each element of context. The source

of data is not just from sensors but also from profiles (such as map profile,

building profile, etc) where necessary. This data from sensors and profiles is

dynamic [Henricksen et al., 2002]. The data may need to be processed constantly.

Sensor

From the results of using the design tool, the sensors are assigned to acquire

different types of raw data. The developers finalise the type of available sensors

that will be used in the context-aware system. The Bluetooth object and sensor1

object etc in 5Figure 5-1 represent the sensor acquirers for different sensors. Each

sensor object in 5Figure 5-1 contains code that communicates with the sensor for

acquiring its raw data. Then the sensor object sends the data to its translator object

by notifying a resource discovery. The resource discovery in the Sensor Engine

layer has functions to detect the sensors or profiles that are available to the system

in the current situation and triggers them to start sending the data to their

translators. The code for the sensor object can be stored in the sensor itself or in

the same device as the architecture, as long as it has methods of acquiring the raw

data and sending the data to the resource discovery and therefore to its translator.

 151

Sensor Translator

A sensor translator contains code that processes the raw sensor data and translates

it into information for the attribute values in different context elements. The

attributes are assigned during the design stage as a result of using our design tool.

The first step that the developers might consider in processing the raw data is to

reduce the noise in the raw data. This is because the sensor may not be as accurate

as it should be. The raw data from the sensor can be inadequate to use directly in

inferring about the situation. Then the second step for each new raw data is to

translate it into values that are suitable to be stored as attribute values in each

context element, as illustrated in 5Table 5-3. Based on the attributes that the sensor

was assigned to sense the values for (during the design stage), the developers

implement the translation code for the raw data in order to get those values. The

set of values are then stored in the database for each sensor data.

The sensor translator object has a database for each sensor. When raw data is sent

to the translator, it has an ability to detect that the raw data has already been stored

in the sensor database. Therefore the translation process can be reduced as the

database can refer to the old translated values and transfer that information to the

context elements.

For information that cannot be sensed by sensors, the developers implement

profiles. The profile database has attributes that hold a set of information about

each item in the profile. For example, a tourist map profile database has attributes

that hold information about different tourist maps with reference points to tourist

attractions in the town, points of interest, events etc. A common profile example

is the user’s preference profile that might hold information such as professional

interests, list of allergies, food preferences, tourist interests, etc. The values in the

attributes in the profile database can be assigned to the attribute values in the

context element. Similar to the sensor translator, the profile translator requires

 152

having a method to allow the profile to communicate with other objects. This

method will allow other objects to access the values in the profiles.

Table 5-2 Raw Data from Bluetooth Translated to Meaningful Information

Bluetooth Database

ID Owner name Device name Device type Location

000e0797f047 Clematis Clematis 6680 Nokia 6680 within 50m

00119fc048e5 Kat KatDesktop Desktop Room 2.2

….. ….. …… …… …..

Table 5-3 Info from Bluetooth used as Info in Context Elements Database

As a result, for each sensor, the developers first need to implement the code for

processing the raw data into a meaningful set of values for each attribute in the

database as shown in 5Table 5-2. The raw data from Bluetooth such as MAC

address (Device ID) and Device name are translated further. For example, the

Bluetooth 2

ID 00119fc048e5

Owner Name Kat

Device Name KatDesktop

Device Type Desktop

Location Room 2.2 Building J

Bluetooth 1

ID 000e0797f047

Owner Name Clematis

Device Name Clematis 6680

Device Type Nokia 6680

Location Mobile within 50m

 153

MAC address is used to get information about Device type (and also information

such as Owner name and Location when available) from the profile of that device

which is stored in the database and referenced via the Bluetooth MAC address.

Secondly, for each set of data, a method is needed for assigning the values to the

attributes in the sensor database. The method also has a functionality to assign a

unique reference point to each set of values from the raw data, shown as ID

in 5Table 5-3.

Thirdly, the developers need a method for detecting the sensor data that already

exists in the database. By detecting existing data before the translation process

begins, the translated values in the database are used instead of retranslating the

raw data where possible in order to reduce processing time.

The new or old translated meaningful values are then transformed into information

for the attributes in the sensor database. For example, from 5Table 5-2 and 5Table

5-3, each Bluetooth data is translated into information about other detected people

– or their devices – around the user that the system is serving, e.g. “Clematis” who

owns Nokia 6680 mobile phone device appears to be situated within 50 meters of

the user.

Lastly, the sensor translator object requires a method to send the set of values from

the sensor data to the sensor engine object. The sensor engine object uses the

translated attribute values in the sensor databases to assign to the attribute values

in each context element.

 154

Sensor Engine

The sensor engine is used to combine different sets of values from different

sensors and profiles in order to get appropriate information for each context

element as illustrated in 5Figure 5-1. For example, the GPS provides information

about the location of the environment context element and the thermometer

provides information about temperatures of the current environment. This

information is combined so that the information of the environment context

element can be now represented as “outside building A in cold weather”. The

sensor engine does not only combine the values from different sensors to get better

information for the context element. It also combines the values from different

context elements to get the information for another context element.

For example, different sensor translators (for Bluetooth, beacons, RFID, etc) can

translate data from sensors to represent different people in the environment. The

translator transforms sensor data into meaningful information about detected users.

For example, the data from an RFID sensor can be translated to a user’s name and

preferred device. The information is then assigned to the attributes of the user

context element for each detected person from different sensor. By combining the

detected user context element for each person detected by different sensors, the

sensor engine object can infer the information about the community context

element for the particular situation. Similarly, from the combination of different

tools in the environment, the sensor engine gets the information about the tools

context element. Moreover, where the information cannot be gathered from

sensors, the information from an attribute value in one context element can be used

to refer to the available profiles in order to get further information about different

attribute values in the context elements. For example, the RFID sensor detects

data which is translated to the user’s name. From the user’s name, the food

preference for the user can be found in the user’s profile.

 155

By following the design tool, the developers use the context element in the context

model as a guideline in creating the code for combining the sets of values from

different sensors for each context element where the sensor data is available. The

code assigns values to the attributes in each context element, normally the user

context element, community context element, tools context element, environment

context element and time context element respectively. These context elements

were gathered from the available information from sensors and profiles. We call

the combination of these context elements the Simple Context Model (see 5Figure

5-1 and 5Figure 5-2). 5Figure 5-1 demonstrates the transformation from Bluetooth

data to the information for the user context element and the result of other context

elements.

In order for the Context Engine layer to access information about current available

context elements from the Sensor Engine layer, the developers require a method in

the Sensor Engine layer that has the ability to send the information of current

available context elements to the Context Engine layer. The method sends the

current available context elements to the Context Engine layer as different sets of

information for different context elements. The Database Object code of each

available context element is used to allow the Context Engine layer to access

different sets of information for different context elements. For example, the

Environment Object, in which the Sensor Engine layer gathers available

information about current environment that has influence on the user’s objective,

is passed to the Context Engine layer.

 156

Figure 5-3 Bluetooth data Transformed into Info for User Context Elements

5.1.4 Context Engine Layer

The Context Engine layer consists of the context engine object. The aim of the

context engine object is to reason about the context elements in order to infer the

user’s current objective or activity. It therefore transforms the Simple Context

model to the Refined Context Model as shown in 5Figure 5-1 and 5Figure 5-2. The

design tool supports a consistent process of transforming the available context

elements, which have been gathered from sensors and profiles, to infer other

elements in the context model. The developers implement the code based on the

relationships between context elements in the context model in order to infer about

user’s current objective.

Bluetooth Database
ID Owner name Device name Device type Location

000e0797f047 Clematis Clematis 6680 Nokia 6680 within 50m
00119fc048e5 Kat KatDesktop Desktop Room 2.2
….. ….. …… …… …..

User
ID 1
Name Clematis
Surname Wallis
Device Nokia 6680
Food Preference Vegetarian

Time
ID 4
Time 12.00
Day Monday
Date 12
Month November
Year 2006

Community
ID 1
Users IDs 1,2,5
Users initials CW, JK, unknown
Devices mobile, laptop,

unknown

Tools
ID 2
Tools IDs 1,3
Names list Printer room2.5,

unknown

 157

First, the sets of available context elements (Simple Context Model) from the

Sensor Engine layer need to be checked to determine if they are already exist in

the context element databases. The Database Objects of the available context

elements are compared with the values in their databases. If it does not exist in the

database, a new unique reference point (ID) is assigned to the set of information

for the purpose of simple referencing and storing (see 5Figure 5-1). The

information is then stored in its context element database. If it is found in the

database, the existing set in the database can be updated if necessary. A method

that provides an ability to detect the existence is therefore required in this layer.

The method should also have an ability to update and store the information in the

database for the context elements. After this first step, the IDs of the available

context elements are recognised and ready to be used in the next step.

 158

User 1

ID 1

Name Clematis

Surname Wallis

Device Nokia 6680

Food Preference Vegetarian

Figure 5-4 Sensor Data Transformed into Info for Context Elements

Secondly, the context engine object is required to reason between available context

elements in order to get the attribute values for missing context elements starting

from the role context element as described in Section 54.5. The developers require

a best match algorithm to infer the information about the role context element

from the identities (IDs) of the information from different context elements –

including the user context element, community context element, environment

Community 1

ID 1

Users Ids 1,2,5

Users initials CW, JK, ??

Devices mobile, laptop, ??

Tool 1

ID 1

Name Room 2.5 Printer

Owner University

Type Printer

Location Room 2.5 BJ

 159

context element, time context element and tool context element respectively

against the history of role element in the role database – rolesXML in 5Figure 5-1.

By using the identities (see 6Figure 5-5) instead of the information of each element

itself, it reduces the complexity of the reasoning process. It hides the

interpretation within the context elements and therefore the reasoning about the

role context can easily be done consistently using IDs of available context

elements. The developers should implement code for their chosen matching

algorithm that takes IDs of available context elements including the user context

element, community context element, environment context element, time context

element and tool context element and compares them with the corresponding

attribute values in the past context models in the context model database.

Thirdly, the additional information about the rules context element can be found

from the roles context element. Using the design tool during the design stage, the

designers developed a database of rules for the different roles of the user from the

scenarios. During the design stage, the designers analysed the scenarios and

assigned different set of rules for each role in different scenarios. As mentioned in

Section 63.6.1, these rules are not just limiting to the legal law that user must not

break but it is also including norms that guide user to behave as good citizen but it

is acceptable to break these rules. As the rule database is separate from the other

databases and only refers to the ID of roles, it can easily be updated. The profile

of rules is stored in the rule database – rulesXML in 6Figure 5-1. In the rule

database, a set of rules is stored with a reference to the role value’s identity as

shown in 6Figure 5-5. Therefore once the role information is found, the developers

require code that uses the role identity to refer to the information of the rule

context element from the rule context element database.

 160

Figure 5-5 Database Examples (show how a value in one can be used in

other context elements)

Fourth, the implementers require code that performs a best match algorithm in

order to reason about context from IDs of available context elements in order to

infer information about a user’s current objective or activity. As mentioned in

Section 65.1.1 that the current context model from the sensor engine layer is used to

compare to the reference context models in the history of context model, the

matching algorithm is used to compare the combination of IDs of the context

elements in the current context model against ones in context model in the history

of the context models in its database – ATsXML in 6Figure 5-1. Following the

Rules Database

ID Name roleID …

1 Able to see hospital

patient database
1 …

n

User Database

ID Name Surname Device …

1 Clematis Wallis Printer …

2 Jay Kaenam Laptop …

 …… …… …… …

n …… …… …… …
Role Database

ID Name user

ID

CommunityID …

1 Receptionist 1 1 …

2 Presenter 1 5 …

 …… … …… …

n …… … …… …

Community Database

ID UsersID Initial Devices …

1 1, 2, 5 CW, JK,

??

Printer,

Laptop ,??

…

2 1, 2 CW,JK Mobile,

Laptop

…

 …… …… …… …

n …… …… …… …

 161

relationships between context elements in the context model, the role is extracted

from the model that has the most similarity of combination of IDs of context

elements in the current context model provided by the sensor engine layer. From

the role ID found, the rules ID can be found in the rule database. This will give us

the current context model with the combination of IDs of the user context element,

community context element, tool context element, environment context element,

time context element, role context element and rule context. The current context

model is used to find best matched context model in the history of context model.

The best matched model is found from comparing the ID of each element of

current context model with one in each context model in the history of context

models. It compares similarity of the IDs in the current model and ones in the

models in the history in order to find the best possible model in the history that has

the most similarity IDs to the ones in the current context model. Once the best

matched context model is found, the current objective can be referred to from the

ID of the objective context element in the found context model. The history of

context models can be created by the designers during the design stage or by the

user while using the system. The designers can assign values in the context model

to store in the history by analysing the scenarios. As a result of using the design

tool, the objective database is created in order to store information about the

objective with its unique reference point that can be referred to by the outcome

database.

Fifth, the implementers follow the context models of different situations that the

designers have extracted from the scenarios to create a database for the outcome

context element. Each set of values of the outcome context element is paired with

the reference point to the objective context element which is used to refer to the set

of values of the objective context element. This outcome context element database

provides a simple form of the history of the outcome context element that is stored

in the database.

 162

The sixth method that the developers are required to implement is the method for

storing the information of each element in its context element database. Not only

is the information of context element stored in the database, the information of the

context model at a particular situation is stored in the Activity Theory based

context model as well. This is an important part for inferring the information of

missing context elements and the user’s current objective. For each context

model, only the identities of the context elements are stored in the context model

database to minimise the storage requirement and reduce the complexity in the

inference process. The interpretations within the context element are hidden from

the reasoning between the elements to provide simpler consistent reasoning

between the context elements. The interpretations within the context element are

done separately and, after it is done, ID is used to represent the set of values of the

context element. The ID of the context element is used to infer the user’s

objective according to the relationships between context elements in the context

model against the history of context model. Therefore when the interpretation

within the context element changes, it does not affect the inferring process of

user’s objective through the context model. Moreover, the context model takes the

effect of the changes through the use of ID of the context element without

changing the context model itself.

Lastly, a method for sending the information of the context model for a particular

situation to the Application Engine layer is required so that the application can

refer to current context information from the identity of each element in its

database if it requires it.

5.1.5 Application Engine Layer

The Application Engine layer is used to assign suitable support for the user in

order to complete the predicted objective and meet the predicted outcome.

However, the actual outcome, which is the achievement from the user’s actual

 163

actions, may not be the same as the predicted outcome. The architecture should

provide the user with a misunderstanding recovery system when the context-aware

system provides the wrong service to the user as a result of predicting the user’s

objective wrongly or inferring about context elements wrongly.

The Application Engine layer first implements a resource discovery to find out

what applications or supports are available for the user in a particular situation

when it receives the context model of the current situation from the Context

Engine layer.

According to the classification of context-aware applications provided by Chen

and Kotz [Chen and Kotz, 2000], applications are divided into 2 categories,

passive and active as shown in 6Table 2-5. Active context-aware applications

perform tasks for users automatically while passive context-aware applications

automatically represent new context to the user. For the Application Engine to

decide at what level to support the user, during the design stage the designers

extract different values of the outcome context element from the scenarios to

assign to different applications or services that the user might need. For each

assigned application, the information from the context elements that is required by

the application or service to support the user during completing the activity is also

assigned in the application database. In order to provide suitable support to the

user, the Application Engine layer should be able to access the application profile

that contains:

1. Identity (ID) for each set of values of the information about the application:

the ID is used by other objects in the architecture to refer to the set of values

in the application database.

2. Outcome identity: in order to link between the current context model and the

prospective support for the user, the outcome ID is used in the application

 164

database to refer back to the outcome database in order to be able to get more

information about the current values of the outcome and the context model.

For example, for each set of values in the application database, it holds ID of

the outcome that has value of “1”. The outcome ID of 1 is used to refer to

the set of values in the outcome database that holds information about the

particular outcome, including information such as outcome name (“Jane

presents the presentation on time”).

3. Names of the application or service: it is used to give a shared understanding

about what application or service will be provided to the user by the system.

For example, opening Microsoft Power Point or opening folder command are

used as Names of the application in Jane’s scenario.

4. Names of the context elements that are required to be used with the

application or to represent context information to the user: the names of the

context elements are used by the Application Engine to access information

about the context elements in the current context model. From the names of

the context elements, the application engine accesses the current context

model and gathers the ID values of the required context elements in the

current context model. The ID values allow the application engine to access

further information via the values in the attributes of the particular context

element in the current context model (such as the room number in the

environment context element, public shared folder and devices in tools

context element and user’s profile holding folder name of the presentation in

user context element).

By using our 6 step design tool described in Chapter 4, the designers provide the

developers with an abstract set of data from different situations in the scenarios.

(See Chapter 6 for examples.) The developers build the application profile and

store it in the application database. In order to find suitable applications or

supports for the current situation, the Application Engine object implements a

 165

method to take the identity of the outcome element from the received context

model to find the best match in the application database. Once the best match is

found, the set of values in the application database is chosen to support the user.

The Application Engine can then use the information in the set of values (such as

name of application, name of context elements, etc) to provide services to the user.

The information from the database is used by the Application Engine to initiate the

application or service for the user with the information from selected context

elements. Therefore the developers implement a method to first get information of

the required context elements from their database. Once the matched set of

information is found in the application database based on the best match of the

current outcome ID, the value of Names of context elements attribute in the

application database is extracted from the best match set of values. The value in

that attribute contains a list of context element IDs. The IDs are then used to refer

to the information from the context element databases. The information is

transformed into the information that the application requires. For example, the ID

of the user is taken by the method to find the data with the matched ID in the

database to get details of the user. The information about the user leads to the

user’s profile, which holds information about the location of the folder of the

presentation file. A method for initiating the chosen application or service is then

required in the application engine object. For example, with the information of the

location of the folder in which the user stores the presentation file; the application

engine object gets the Names of the application, such as the opening folder

command. Then it triggers the command to open the presentation file’s folder.

From the information about the tools, the application engine object gets

information about the available shared devices. The method takes the chosen

device’s information into account in order to provide support to the user in the

most appropriate manner. For example, from the tools information, the application

engine object finds that the desktop computer is connected to the projector in the

shared tools. The application engine object then assigns the device to show the

 166

presentation. Contextual mediation [Chalmers et al., 2004] can be used to

improve the usability of data here by selecting a suitable format and device to

represent to the user.

The next section discusses how well the new architecture meets the requirements

for a context-aware system architecture described in Section 62.4.2.

5.2 How the Architecture Meets Each Architecture Requirement

The new architecture is introduced in this chapter in order to support the

functionalities that our context model and design tool introduce to the context-

aware system. The functionalities of the new architecture are compared here to the

context-aware system architecture requirements described in Section 62.4.2.

Separation of Concerns

This chapter introduces the architecture that consists of three layers as a result of

using the design tool during the design stage. The three layer architecture aims to

provide separation between sensor, context reasoning and application.

As the top layer (Sensor Engine Layer in 6Figure 5-1) deals with different sensors,

each sensor has its own code that enquires and translates sensor data. New sensors

can provide their own descriptions and template interpretations as long as it has

the translator to register the information to different attributes in context elements.

The Sensor Engine Layer deals with sensor data separately from the context

elements, context model and application. Together with the unique reference point

(ID) concept, each sensor is therefore independent from the context elements,

context model and application.

 167

For example, a new sensor is introduced to the system. The sensor gathers further

information about the environment. The environment database is changed and

updated with the new information from the new sensor by easily adding new

attributes to the existing sets of values in the database. The existing Activity

Theory context model database holds the ID of the set of values from the

environment database in each predefined context model in the context model

database. Each predefined context model in the database will take the new values

in the environment database into account without changing anything in the context

model database itself. This is because the sensor has its own database which can

be referred to by using the ID instead of referring directly to the attribute values in

the database.

In the Application Engine layer, when a new sensor is added to the system, the

application does not need to be changed in order to use sensor data from this new

sensor as the Sensor Engine layer and the Context Engine layer will process the

sensor data to a form that applications can access. On the other hand, when there

is a new application, the code for the sensor and context model reasoning does not

need to be changed or rewritten.

The architecture is aimed at supporting the developers in implementing and

acquiring sensor data code for each sensor and the application code separately.

This avoids the burden of rewriting the code and provides an easier way of adding

new sensors and applications to the system. As a result, the sensors and

applications can also be programmed in different languages or run in different

platforms. Since the sensors only require the sending of raw data to the

interpretation layers, they do not need to know how to translate the raw data. At

the same time the applications only need to know what they are supposed to do to

support the user.

 168

The architecture hides the interpretation and context reasoning in the Context

Engine layer from the sensors and applications so that only the relevant abstract

level of information is passed to the sensors and applications in the Sensor Engine

layer and Application Engine layer respectively. The architecture supports the

separation of concerns through this ability.

Context Interpretation

In order to be able to support the separation between sensors, context reasoning

and applications, the architecture is built upon the context model that supports the

separation between sensor data, the information of context elements and context

reasoning between elements. First, it provides the Sensor Engine layer to support

the codes for acquiring raw sensor data. Secondly, it supports the interpretation

from raw sensor data to more meaningful data by using the sensor translator. With

the consistency of the context elements in the context model introduced by

Activity Theory, the developers can implement the Sensor Engine object to

translate and combine the more meaningful data and profiles to get information for

each context element in the context model consistently. Thirdly, in the Context

Engine layer, the architecture provides the developers with a uniform reasoning

process between context elements in order to infer the user’s current objective or

activity so that that the system can support the user. Lastly, the Application

Engine layer deals with interpretation about the support for the user separately

from dealing with the sensors and context model. However, with the use of the

unique referent point (ID) concept, the Application Engine object can access the

information from the sensors and context model consistently. Therefore when

there is a new sensor, the developers only have to concentrate on the code for

acquiring the data and how to translate the raw data into information for each

element of context. They do not have to worry about how to reason about the

context elements in order to infer the user’s current objective or activity. When

there is a new application, the developers do not have to worry about rewriting the

code for reasoning about the user’s current objective or activity. They only have

 169

to assign the new value of each context element for the situation that the

application would be used in to support the user. The architecture supports the

interpretation of the sensors, context model and application separately in a

consistent manner. The interpretation can then reused by multiple applications.

Constant Availability of Context Acquisition

The architecture separates the components (such as sensor object, sensor translator

and context engine) that acquire sensor data, interpretation for each context

element and context reasoning. The components execute independently from the

applications that use them. For each sensor, the code for sensor object is used to

initiate the sensor in order to acquire sensor data. For example, the GPS object

initiates the GPS receiver in order to get latitude and longitude values. The sensor

translator then processes the sensor data to be used by the context engine. For

example, the GPS translator translates the latitude and longitude values into name

of the country, town and building and then assigns them to the values in the

context elements. The context engine reasons about the context elements and

stores the context model in the database for the application engine to access at its

own time. The architecture allows the components to execute independently from

the applications that use them. The components work independently from each

other. As a result, the components are available to multiple applications

continuously.

Context Storage and History

As there is a clear separation between sensor data, context elements and context

reasoning, each level of context can be stored easily and consistently. First, the

architecture provides storage for each sensor in order to store meaningful data after

the raw data from a sensor has been transformed with reference to each new sensor

data by the sensor translators. Each sensor has its own sensor database that holds

information that can be used as meaningful information for context elements.

 170

Secondly, the information from sensors and profiles are translated and combined

into the information of each element of context and this is also stored in each

context element database in the architecture. Thirdly, as a result of using the

design tool, after the context elements have been reasoned and inferred from to get

the user’s objective in the context model, the architecture provides storage for the

context model (context model database, ATsxml) so it can store the history of the

context model for each situation. Lastly, the architecture supports the storage of

information of ‘what and how’ the application should support the users to

complete their objective or activity (i.e. the outcome context element in the context

model) in each situation. The architecture provides a separation between different

levels of data by having the sensor databases, context element databases and

context model database). By having consistent and separate storage for each layer

in the architecture and the use of the unique reference point, the developers can

then easily edit or update the database without affecting other layers or levels of

information.

Resource Discovery

As the architecture hides the sensors and context reasoning process from the

applications, the Sensor Engine layer has the resource discovery mechanism in the

sensor engine to notify the system of the available sensors and profiles that are

available to the system. The application only needs to know what and how to

support the user, the architecture separates the sensors from the applications and

uses the resource discovery mechanism to provide information about available

sensors and profiles in the data sets in the databases instead of hardcoding the

sensors into the application. The resource discovery will notify the system when

there are changes in context. The Sensor Engine layer and Context Engine layer

hide the detail of where and how to acquire sensor data from the application. The

new applications or sensors can then easily be added to the architecture.

 171

Security and Privacy

A proper treatment of security and privacy is beyond the scope of this dissertation

and currently the architecture does not deal with security and privacy issues.

However, to a very basic degree a simple level of security is provided by the role

and rule context elements. The role and rule elements show the potential of the

security and privacy mechanism. The rule element can hold rules of ownership or

use policies. The rules or policy support security and privacy issues by controlling

access to the data or devices. For example, if the meeting folder is accessible to

certain people who attend the meeting, the rule in the context model will refer to

the role of the user whether she is part of the meeting or not. If the user is part of

the meeting, the rule will set so that the user can access the folder.

This chapter presents an architecture that aims to support the functionalities

introduced by the design tool presented in 6Chapter 4. Section 65.2 discussed the

functionalities of the architecture and how the requirements for the context-aware

system architecture presented in Section 62.4.2 are met and not met. The next

section summarises the transformation of the functionalities introduced by the

context model to the structure of the architecture.

5.3 From Context Model to New Architecture

Building on the design tool presented in Chapter 4, the new architecture consists of

three layers: a Sensor Engine layer, a Context Engine layer and an Application

Engine layer. The first layer (Sensor Engine layer) deals with different sensors

and profiles in order to transform raw data into more meaningful and less noisy

data that is ready to be referred to as part of the context elements in the context

model introduced by Activity Theory. The second layer (Context Engine layer)

uses the information of current context elements and the history of the context in

the database to infer about a user’s current objective and possible outcome. The

 172

Application Engine layer uses the value of the outcome context element in the

current context model from the previous layer to provide support to the user and

update the current context model if necessary. Table 5-4 shows an overview of the

responsibilities of each components in the architecture.

The architecture provides a separation between applications and sensors so that it

gives flexibility to changes in the sensors without affecting the applications.

Moreover, it supports the separation between context elements, their relationships

and their history. As a result, it provides a separation of their databases (i.e.

sensors databases, context element databases and context model databases). With

the unique reference point (ID) concept and the separation of the databases, this

allows the context to be reused, expanded and updated easily as the process can be

done in different part of the data without changing everything in the system. This

is significant because the process of modelling and gathering context is expensive.

Moreover, the architecture also provides the potential for developers to provide

mechanisms for security and privacy.

The previous chapters described the features of the new context model, design tool

and architecture. In the next chapters we will test their use in two extended

scenarios.

 173

Layer Component Responsibilities
Information

Receive Send

Sensor

Engine

Layer

Sensor Enquires the data from sensor Sensor Data

Translator

Translates raw data from

sensor into a meaningful

information for attributes in

context elements

sensor Data
Meaningful

information

Sensor

Engine

Assigns information to get

information about context

elements

Meaningful

information

Partial

context

elements in

current

context

model

Context

Engine

Layer

Context

Engine
Infers user's current objective

partial

context

elements in

current

context model

Complete

current

context

model

Application

Engine

Layer

Application

Engine

Provides service or

information for the user

complete

current

context model

Table 5-5 Overview of Responsibilities of each components in Architecture

 174

 175

Chapter 6

Evaluation of the

Context Model and

Design Tool

In ubiquitous computing , scenarios and field studies are often used to motivate

user requirements [e.g. Abowd et al., 1996; Dey, et al., 2001; Agarawala et al.,

2004; Brown, 1996; Hinze and Viosard, 2003; Hopper et al., 1997; Kim et al.,

2004; Schilit and Theimer, 1994]. This chapter presents the application of the

proposed context model and new context-aware system design tool described

in 6Chapter 3 and Chapter 4 to two scenarios in order to demonstrate their

feasibility. The first scenario is adapted from a common scenario that has been

used previously with a simple location based system [Haghighat et al., 2004; Helal

et al., 2005; Hinze and Viosard, 2003; Hsu et al., 2007; Kim et al., 2004]. This

scenario describes how a simple tour guide and conference assistant uses context

to provide new services to the user. The second scenario is based on ethnographic

studies in the Accident and Emergency (A&E) department of a London hospital

[O'Neill, et al., 2004] and is more complex. The healthcare staff in this setting

 176

work under pressure. Timing is crucial because it could affect the lives of the

patients. Moreover, the staff have to deal with multiple tasks within short periods

of time and with interruptions. As a result, patients can feel that they have been

interrupted during services or been ignored. The hospital field studies that are

examined in this section demonstrate the use of the context model in more

complex situations. As a result of applying the design tool to these scenarios, the

implementation and evaluation of the architecture can be demonstrated in 6Chapter

7. At the end of this chapter, the use of the context model and design tool is

assessed against the context model and design tool requirements presented in

Section 62.4.1.

6.1 Scenario 1: A Simple Tour Guide and Conference Assistant

“Adam is attending a technical conference in Hamburg, Germany. The conference

features a large number of presentations and demos spread over multiple tracks.

Adam is attending the conference with his colleagues Bob and John and they have

decided to try to attend different presentations. When Adam picks up his

conference package on the first day, he provides his contact information and the

topics he’s most interested in. He also mentions that his colleagues Bob and John

are attending. Along with the conference proceedings, he receives a personal

conference assistant, software for his handheld device designed to guide and assist

him throughout the conference. Adam has a hard time deciding what to attend for

the first session. The sessions start in five minutes. He turns to the conference

assistant. Based on his known interests, as represented in his profile, it

recommends a presentation and a demo that have similar keywords. Adam

chooses the presentation and the system then gives him directions to get to the

presentation room.

At lunch time Adam wants to catch up with Bob and John before the next session

starts. He only has ten minutes to look for them so he uses the conference

assistant to find Bob and John’s locations in the building. The assistant knows that

 177

Bob and John are Adam’s colleagues, so it has automatically shown Bob and

John’s locations on the map relevant to Adam’s location and not everyone else’s

locations.

After the conference ends, Adam has one day to look around Hamburg. He does

not have much time before catching his flight back to UK but he wants to see a

little bit of Hamburg. He again turns to the conference assistant. Based on his

current location and check-in time, it shows a map with his current location and

five attractions closest to him with a short description of each place when he clicks

on them. Adam chooses the attraction closest to him by clicking on it. The

assistant then displays the route to the attraction and estimated time of walking

there. Adam follows the route on the display.”

6.1.1 Step 1: Defining Scenarios in which the System will be Applied

The scenario above described the possibility of how the assistant would support

the user (Adam in this case) in different situations in the conference and tourism

domains. These two domains are frequently used in developing context-aware

applications. The descriptive scenario is used to provide a better understanding

between users and designers. With the descriptive scenario, the designers can

engage real users in evaluating the scenarios before the system is even

implemented as it is easy for the users to imagine themselves in the descriptive

scenario. The scenario is used by the designers to identify situations for each

activity where the system will support the user, as shown in the next step.

 178

6.1.2 Step 2: Define Situations Where Context Awareness Can

Support the User

The designers extract situations for the user from the scenario so that they can be

modelled into different models following the elements in the context model. This

will provide a simpler form for easier referencing with the developers about the

situation. This will also help designers analyse the situation and design the

functions of the application to support each activity of the user. For each situation,

the designers are guided to answer the six activity level questions about the

situation. The situations here are extracted from Adam’s scenario and the answers

to the six questions for each situation are as follows:

6.1.2.1 Situation 1

Adam has a hard time deciding what to attend for the first session. The sessions

start in five minutes. He turns to the conference assistant. Based on his interests,

it recommends a presentation and a demo. Adam chooses the presentation.

From this situation, the designers follow the six questions in order to analyse the

situation and gather the user’s requirements. The designers make decisions about

the support that the context-aware system provides to the user. The analysed data

from the situation are then stored in the system databases so the system can use

them in real time to detect the situation, where the system should provide support

for the user, from the current context.

Question 1: What is the activity for the context-aware system to support in

this situation?

As the aim of this situation is to be able to select the talk that Adam wants to

attend quickly, the activity in this situation is “selecting the presentation to attend”.

This leads to the answer for the question in step 2.

 179

Question 2: What are some actions that a user may need to perform?

In order to select which presentation to attend, there are two main goals that Adam

is trying to achieve. The first goal is to find the presentations that are on in the

next 5 minutes. The second goal is to find the presentations that match his

interests. Therefore the actions are first narrowing down the presentations to ones

that are on in the next five minutes and then narrowing things down further to the

ones that are relevant to his interest. From these actions, the operations for the

next questions can be answered.

Question 3: What are some operations that the user may need to perform?

To narrow down the presentations to the ones that are about to be on in the next 5

minutes, the operations are first to open the conference timetable and then select

the current time to show the list of presentations that are about to be on. In order

to meet the goal of finding a suitable talk, the operation is to click through the

presentations list from the previous operation and find the one that is relevant to

Adam’s interest.

The designers identify the level of support that will be suitable for activity, actions

and operations from the previous questions. In this case, the system automatically

looks through the timetable database with the search conditions of a starting time

within 5 minutes and keywords of the presentation that are matched to the user’s

interests. Then it automatically shows the narrowed down list of relevant

presentations to Adam. As a result, the actions and operations of narrowing down

the list are assigned as active supports from the system. The system then provides

passive support by presenting the narrowed down conference timetable. The

system however lets Adam pick the presentation that he wants to attend himself as

it can be too specific for the system to decide when there is more than one

 180

presentation that starts at the same time and matches the same keywords. As a

result, the system lets the user have control.

Question 4: What operation level support is the system going to provide?

- Open the conference timetable >> Passive

- Select the current time to show the presentations list >> Active

- click through the presentations list >> Active

Question 5: What action level support is the system going to provide?

- Narrow down presentations to ones that are on in the next 5

minutes >> Active

- Narrow down further to the ones that are relevant to Adam’s

interest >> Active

Question 6: What activity level support is the system going to provide?

- Selecting the presentation to attend

 181

From the object and outcome elements in the extracted context model of Situation

1 (see Figure 6-1) and the scenario description, the designers require applications

that will reduce the information about the conference timetable and emphasise the

relevant information to Adam. By reducing information, it will reduce the time for

Adam to scroll through the small PDA screen to see the talks available at that time

as the screen is too small to show the whole schedule. By emphasising the

information, Adam will be able to spot which talk is most relevant to his interest

quicker. Thus it will reduce Adam’s decision making time.

A recommendation is therefore added to the timetable in order to provide a

highlighted timetable to show which talks are the most relevant to Adam’s interest

in his profile. As the application will be used in Adam’s PDA which has a small

screen and cannot show the whole timetable at once. The highlighted timetable

uses the current time to minimise the information of the schedule by showing only

the talks that start now and after the current time. As it is likely that the users do

not need to include past talks in the decision making process.

Decide which
talk to attend

quickly

Picked talks to
attend quickly

Transformation

Process
Adam

Conference
timetable, map

Attendee Conference See the lists of

Conference building 2
Reception

Monday 19 June
2008 8:55

Figure 6-1 Context Model of Situation 1- Deciding which talk to attend

 182

The designers repeat the same steps in order to complete the situations in the

scenario.

6.1.2.2 Situation 2

When the talk is selected, the assistant shows the directions to the room according

to Adam’s current location.

Question 1: What is the activity that the context-aware system is to

support in this situation?

- Get to the presentation room on time

Question 2: What are some actions that a user may need to perform?

- Find the quickest route to the destination

Question 3: What are some operations that a user may need to perform?

- Open the map

- Look in the building map for his current location

- Look for the presentation room on the map

Question 4: What operation level support is the system going to provide?

- Open the map >> Passive

- Look in the building map for his current location >> Passive

- Look for the presentation room on the map >> Passive

 183

Question 5: What action level support is the system going to provide?

- Find the quickest route to the destination >> Active

Question 6: What activity level support is the system going to provide?

- Get to the presentation room on time >> Both

Similarly, the designers refer to the answers of the six levels of activity questions.

The system uses context including information about the location of the user and

information from the timetable about the room of the presentation in order to find

the quickest route for the user. The system provides active supports by

automatically finding Adam’s location and the presentation room on the map

instead of using the user’s explicit input of the location of himself and the

presentation room. The system can get the information itself and find the quickest

route sufficiently. The system then provides both active and passive supports by

automatically finding the quickest route to the destination from the present

location and showing Adam’s route information on the PDA screen.

Find
presentation
room on time

Get to
presentation
room on time

Transformation

Process
Adam

Conference
Timetable & Map

Attendee Attendance See building

Conference building 2
Room W4

Monday 19 June 2006
8:55

Figure 6-2 Context Model of Situation 2 - Get to the presentation room on time

 184

The route finder application is therefore added to the timetable in order to provide

support for getting the user to the presentation room. When the user selects the

presentation that he wants to attend, the application shows his location and

destination on the map with the quickest route to reach the destination. It takes

information about the user (current location) and room number from the

conference schedule to show the directions to the location which allows the user to

get to the destination quickly.

6.1.2.3 Situation 3

He only has 10 minutes to look for them so he uses the conference assistant to find

the location of Bob and John in the building.

Question 1: What is the activity that the context-aware system is to support in

this situation?

- Find Bob and John in the building

Question 2: What are some actions that a user may need to perform?

- Find the quickest route to Bob and John

Question 3: What are some operations that a user may need to perform?

- Open the map

- Look in the building map for his current location

- Look for Bob and John on the map

 185

Question 4: What operation level supports is the system going to provide?

- Open the map >> Active

- Look in the building map for his current location >> Active

- Look for the Bob and John on the map >> Active

Question 5: What action level supports is the system going to provide?

- Find the quickest route to Bob and John >> Active

Question 6: What activity level support is the system going to provide?

- Get directions to Bob and John >> Both

Figure 6-3 Context Model of Situation 3 - Adam meets up with colleagues

The system uses context including information about the location of Adam and his

colleagues’ information from the system in order to find the quickest route for

Adam. The system provides active supports by automatically finding his location

and his colleagues’ locations on the map instead of using the user’s explicit input

of the location of himself. The system can get the information itself and find the

Get his

colleagues’
Got colleagues’

locations and

Transformation

Process
Adam

Conference

Colleague Bob and John, See colleagues’

Conference building 2 Monday 19 June 2006

 186

quickest route sufficiently. The system then provides both active and passive

supports by automatically finding the quickest route to Adam’s colleagues and

presenting the route.

The object and outcome elements in 6Figure 6-3 suggest that the assistant should be

able to show the location of conference attenders on the map if their existence can

be detected in the same room. It also narrows down the people on show as there

are many people at the conference who are not relevant to the user and whose

details do not need to be displayed. The assistant should therefore take the user’s

information (user’s profile of colleagues or friends list, current location) and

community information (colleagues’ locations) into account in order to show only

information relevant to the user (locations of colleagues Bob and John).

6.1.2.4 Situation 4

He does not have much time before catching his flight back to UK but he wants to

see a little bit of Hamburg.

Question 1: What is the activity that the context-aware system is to support in

this situation?

- Visit nearby tourist places

Question 2: What are some actions that a user may need to perform?

- Narrow down to nearby tourist attractions in the area

- Narrow down to relevant tourist attractions in the area

- Find directions to the attractions

 187

Question 3: What are some operations that a user may need to perform?

- Open the map

- Get his current location on the Hamburg map

- Look for the tourist attractions on the map

Question 4: What operation level supports is the system going to provide?

- Open the map >> Passive

- Get his current location on the Hamburg map >> Active

- Look for the tourist attractions >> Active

Question 5: What action level supports is the system going to provide?

- Narrow down to nearby tourist attractions in the area >> Active

- Narrow down to relevant tourist attractions in the area >> Active

- Find directions to the attractions >> Active

Question 6: What activity level support is the system going to provide?

- Visit tourist places >> Both

Similarly to Situation 1, the assistant provides passive support by showing a map

of the area around Adam. Instead of showing the location of people around him

inside the conference building, it shows an outdoor map of the local tourist

attractions. It provides active supports by automatically narrowing down the

features according to the user’s interest and current location. Therefore the

assistant automatically takes the user information (user’s profile of tourist interests

 188

and current location) into account in order to show only information relevant to the

user (locations of interests that have a location close by to the user). The

community in this case is just people around him. They do not have more

substantive relationships. The user then selects the attraction that he wants to visit

and the system automatically shows the directions on the map according to his

current location and location of the selected tourist attraction.

Figure 6-4 Context Model of Situation 4- Get directions to the selected

attraction

For every situation, the designers now concentrate on modelling the context that

influence a user’s activity as shown in Step 3 below.

6.1.3 Step 3: From Situation to Elements in Context Model

Following on from the definitions of elements in the context model in Chapter 3,

the values of each element are identified in more detail for each situation. This

will support the designers to describe the possible values that are required to be

detected for each situation to the developers uniformly and descriptively. The

developers can also refer back to the simple models of the situations in Step 2 if

Get info

about tourist
Visit tourist

attractions

Transformation

Process
Adam

Tourist map

Tourist People See public info

Outside Sofitel Hotel, Tuesday 20 June 2006

 189

they want to study the relationship between the elements for a better understanding

of the model for each situation.

The designers use the nine questions about the context element below to fill

in 6Table 6-1 to 6Table 6-4:

1. User element: Who is the user that the context-aware system supposes to

support?

For a particular user, other elements in the model are identified according to the

user;

2. Environment element: Where is the activity achieving both physical and

virtual?

3. Time element: When is the activity achieving?

4. Tools element: What are the tools supporting the user to complete the

activity?

5. Community element: Who are the people influencing the process of

completing the activity?

6. Role element: What is the role of the user in society?

7. Rules element: What are the rules that restrict user in the current society?

8. Object element: What is the objective of the user to complete the activity?

9. Outcome element: What is the result from the activity that a user is

performing?

In this scenario, Adam is the user that the system is supposed to support. The user

element includes information about Adam, for example his preferences, his

interests and the current personal devices that he is carrying at that time in each

situation. As a result of answering the questions above, the tables of context

elements in each situation are extracted.

 190

6.1.3.1 Situation 1

Context

Elements
Values from Situation

ENVIRONMENT The reception of the conference in front of the Building 2, University of

Hamburg, Hamburg, Germany

TIME Monday 19 June 2006 8.55

USER Adam who has a PDA and iphone

Research interests: Context-aware computing, mobile an ubiquitous applications,

smart environment

TOOLS Desktop 2 connected to the projector at the reception

Wireless network

Conference Map

Conference timetable

COMMUNITY Conference attendants including Bob and John

ROLES Conference attendee

RULES See the list of talks on the conference schedule

Only access public devices and folders on the wireless network

OBJECTIVE Decide which talk to attend quickly

OUTCOME Attend the selected talk quickly

Table 6-1 Values are Identified for Context Elements in Situation 1

 191

6.1.3.2 Situation 2

Context Elements Values from Situation

Environment Room W4 in the Conference Building 2, University of Hamburg, Hamburg,
Germany

Time Monday 19 June 2006 8:55

User Adam who has a PDA and iphone

Research interests: Context-aware computing, mobile an ubiquitous applications,
smart environment

Tools Wireless network

Conference Timetable

Conference Map

Community Attendants

Roles Attendee

Rules See talk information

See map

Objective Find presentation room on time

Outcome Got to presentation room on time

Table 6-2 Values are Identified for Context Elements in Situation 2

 192

6.1.3.3 Situation 3

Context
Elements Values from Situation

Environment Cafeteria in the Conference Building 2, University of Hamburg, Hamburg, Germany

Time Monday 19 June 2006 13:50

User Adam who has a PDA and iphone

Research interests: Context-aware computing, mobile an ubiquitous applications,
smart environment

Colleague lists: Bob and John

Tools Wireless network

Conference timetable

Conference Map

Community Conference attendants and Bob and John

Roles Colleague

Rules See colleagues’ location

Not allowed to see attendants that do not have a relationship with or they do not
register as a public user

Objective Get his Colleagues’ locations

Outcome Got colleagues’ locations on the map with reference to his current location

Table 6-3 Values are Identified for Context Elements in Situation 3

 193

6.1.3.4 Situation 4

Context

Elements
Values from Situation

Environment Outside Sofitel Hotel, Alten Wall 40, 20457, Hamburg, Germany

Time Tuesday 20 June 2006 9:00

User Adam who has a PDA and iphone

Tourist interests: Parks & Scenic attractions, Churches, Castle

Return flight booking

Tools Wireless network

Tourist Map

Community - or People

Roles Tourist

Rules See public information about the tourism

Objective Get information about the tourist places

Outcome Got information about tourist places near his current location and direction to get there

Table 6-4 Values are Identified for Context Elements in Situation 4

The tables provide a summary of information that designers consider as important

for elements of context in each situation. The tables provide designers with a

systematic group of information about the context for each situation. The next

step describes the use of the table as a communication tool for designers and

developers about the context in each situation.

 194

6.1.4 Step 4: From Context Elements to Sensors and Profiles

The designers use the detailed description of the values for each context element in

Step 3 to discuss with the developers the possibilities for sensing the data or

translating the data. The description of the values for each context element in

different situations are grouped together in order to design the format for the

sensing method and modelling the database for each context element. This will

help the designers and developers agree on the selected sensors or creating values

in the profiles better. For each value of the context element, the designers and

developers decide a sensor or profile to use to capture the value as shown in 6Table

6-5. The values also generate the names of the attributes to store the values in the

database for the context element. For example, the designers and developers agree

that the value “cold” can be captured from the thermometer and the attribute name

in the environment database for this value should be called or “Condition” (short

for “Weather Condition”).

Some values such as “room” can be captured from more than one type of sensor.

Therefore the developers can assign more than one of the sensors for the value in

case one sensor fails or is not in range.

 195

Environment

Values Sensor Attribute in Database

Cold Thermometer Condition

Reception of the conference in front of building Bluetooth Room

Room W4 Bluetooth Room

Cafeteria Bluetooth Room

Outside Sofitel Hotel, Alten Wall 40 GPS Building

Hamburg Airport, GPS Building

Conference Building 2 GPS Building

University of Hamburg GPS Area

Hamburg GPS Town

Germany GPS Country

Table 6-5 Values of the Environment Element from Different Situations

After the names of attributes in the database are assigned, the attributes in the

database can be created accordingly. The values from each situation are created as

a set of information in the database (see for example the environment database

in 6Table 6-6). Note that not all the values must be in the database as some values

might not be necessary in the particular situation.

 196

Environment Database

Environment

ID

Room Building Area Town Country Condition

1 Receptio
n

Building 2 University
of

Hamburg

Hamburg Germany -

2 W 4 Building 2 University
of

Hamburg

Hamburg Germany -

3 Cafeteria Building 2 University
of

Hamburg

Hamburg Germany -

4 Outside Sofitel Hotel Alten Wall Hamburg Germany Cold

Table 6-6 Environment Database Stores Sets of Values of Info in Different

Situations

Time

Values Sensor Attribute in Database

Monday System clock Day of the week
Tuesday System clock Day of the week

19 System clock Date of the month
20 System clock Date of the month

June System clock Month
2006 System clock Year

Morning Interpretation Period of Day
8 System clock Hour of the day
9 System clock Hour of the day

55 System clock Minute of the hour
00 System clock Minutes of the hour

Table 6-7 Values of the Time Element from Situations Modelled to the

Database

 197

Time Database

Time ID DOW DOM Month Year Period of

Day

HH

MM

1 Monday 19 June 2006 Morning 8 55

2 Monday 19 June 2006 Morning 9 00

3 Monday 19 June 2006 Lunch 13 50

4 Tuesday 20 June 2006 Morning 9 00

5 Tuesday 20 June 2006 Lunch 12 30

6 Monday 19 June 2006 - - -

….. …. … … … …. …. ….

Table 6-8 Time Database Stores Sets of Values of Info According to the

Attributes

For values that cannot be assigned a sensor, the developers have to design the

interpretation methods. For example, for the value of a period of day attribute

such as morning, the developers implement the mathematical calculation to group

the hour of day into a different period of the day. In this case, a simple algorithm

is created to group hour of day into 4 groups of morning (5-11am), lunch (12-

13pm), afternoon (14-18pm), evening (19-22pm) and night (23, 0-4am). If the

hour of day is between 5 and 11 then it classes the period of day value as morning.

The time between 11pm and 4am classes the period of day value as night.

 For other values that could not be assigned a sensor, to gather the data or

translated data from the sensor data the developers have to create a profile if the

 198

values are necessary, as shown in 6Table 6-9. At this stage, the developers decide

what profiles to create. The profiles will be finalised after all the values in the

element are assigned.

User

Values Sensor Attribute in Database

Adam Profile or Log in info Name

PDA Bluetooth or user profile Personal Device

iphone Bluetooth or user profile Personal Device

Context-aware computing, mobile and

ubiquitous applications, smart

environment

User profile Research interest

Parks & Scenic attractions, Churches,

Castle

User profile Tourist interest

Flight booking User profile Schedule

Perfume for wife User profile Duty free shopping list

Table 6-9 Values of the User Element are Modelled to the database

Table 6-9 shows that the user profile is required to hold a user’s personal

information or preferences such as research interests, tourist interests and duty free

shopping list. The user profile is created for each user and should be easily

accessible by the user so the values can be changed upon the user’s needs. At this

stage, if the information of each preference is too detailed, the developers can

create another profile that holds a further description about the preference and the

 199

user profile can refer to its reference point (see 6Table 6-10). By storing the

descriptive values in the user profile and letting the user context element’s

attributes refer to them instead of building in the element itself, the user can easily

edit and add the values and new attributes in the profile without changing all the

values in the attributes in the user element in the database. For example, if the

date of a flight booking is changed from the previous trip, the value in the

Schedule attribute in the user element database does not change as it still refers to

the same reference point in the user profile even though the value of the flight

booking has changed.

Schedule Profile

ID Name date time

1 Flight Hamburg to London 18 June 2006 18.45

…. … …. …

Table 6-10 Example of a Trip Booking Profile

User Profile

ID User

ID

Research interest

Tourist interest Schedule Duty free

shopping list

1 1 Context-aware computing,

mobile and ubiquitous

applications, smart

environment

Parks & Scenic

attractions, Churches,

Castle

1 Perfume for wife

…. … …. … …. ….

Table 6-11 Example of a User Profile

 200

User Database

User ID Name Personal Devices User Profile
1 Adam PDA, iphone 1

….. …. … ….

Table 6-12 User Database Stores Sets of Values of Info

The tools context element is composed with information about different tools or

devices. Each tool or device has its own descriptive information. To separate the

descriptive information of each tool and the information of the tools available in

each situation, the database for each tool is created with the reference identity that

the tools context element can refer to.

 Tools

Values Sensor Attribute in Database

Public desktop 2 connected to projector Bluetooth Tools list

Printer 2 Wifi Tools list

Wireless network Wifi Wireless Types

Conference map Map Profile Maps list

Conference timetable Timetable Profile Timetable list

Talks share folder in the server Folder Profile Folder list

Tourist map Map Profile Map list

Flight schedule Timetable Profile Timetable list

Airport map Map Profile Map list

Table 6-13 Values of the Tools Element for Modelling the Database

 201

Tool – model database for each tool (desktop, printer, laptop, etc)

Values Sensor Attribute in Database

Desktop 2 Wifi Name

Printer 2 Wifi, Bluetooth Name

Wireless network Wifi Connection Types

Connected to projector Assign Function

Public conference Assign or Network Owner

Reception at conference Bluetooth Location Range

Status is in used Network Status

Table 6-14 Values of Each Tool or Device Assigned Sensors and Attributes for

Modelling the Database

Tool Database

ID Name Connection

type

Owner Location

Range

Screen size Status

1 PDA Wifi Adam 100 meters 3.8 inches Free

2 Nokia 6680 Bluetooth Adam 50 meters 2.5 inches Free

3 Desktop 2 Wifi Public conference 100 meters 90 inches Busy

4 Printer 2 Wifi,

Bluetooth

Public conference 50 meters - Free

…. …. …. …. …. …. ….

Table 6-15 The Tool Database Hold Info for Each Device

 202

From 6Table 6-13, the developers can design the profiles in order to provide the

information that cannot be sensed. The profiles are created to hold descriptive

information about the values separately from the context element. By separating

the descriptive information about the value of the attribute in database, it allows

the value to be changed, updated, edited and added more easily without affecting

the context model (see 6Table 6-16).

Map Profile

Map

ID

Name Source Location Range Period

1 Map of Conference www.mobile06.com/map.html At Hamburg conference 19 June 2006

2 Tourist Map www.hamburg.com/map.html At Hamburg forever

3 Hamburg Airport Map www.HBAirport.de/map.html At Hamburg forever

…. …. …. …. ….

Table 6-16 Example of the Map Profile

Timetable Profile

Timetable

ID

Name Source Location Range Period

1 Conference

Timetable

www.mobile06.com/timetable.x

ml

At Hamburg conference 19 June 2006

2 Flight Timetable www.flights.de/timetable.xml At Hamburg Airport 20 June 2006

…. …. …. …. ….

Table 6-17 Example of the Timetable Profile

 203

Folder Profile

Folder

ID

Name Source Location Range Period

1 Conference Talks folder www.mobile06.com/talks/ At Hamburg

conference

19 June 2006

…. …. …. …. ….

Table 6-18 Example of the Folder Profile

Tools Database

ID Tool ID list Map ID list Timetable ID list Folder ID list Name list

1 - 1 1 - Map of conference,

Conference timetable

2 3,4 - 1 1 Desktop2, printer2, Map of

conference, Conference

timetable

3 - - 1 1 Map of conference,

Conference timetable

4 - - - 2 Tourist Map

…. …. …. …. …. ….

Table 6-19 Tools Database Stores Sets of Values of Information

 204

Community

Values Sensor Attribute in Database

Conference attendants Bluetooth or NRFID Users list, numbers of people

in community

Talk presenter Bluetooth or Schedule Users list

Bob Bluetooth Users list

John Bluetooth Users list

People, more than 20 person Bluetooth Users list, numbers of people

in community

Table 6-20 Values of the Community Element

Similar to the tools element, the community context element is composed with

information of different users. The value of each community will therefore refer

to different users’ information. The information of the community can be general

information about the community where the values in the community do not have

a strong relationship with the user (such as passers-by or conference attendants).

Instead of considering who is in the community, the number of people in the

community shows the density of the community and can be more useful than

information about unknown users. The number of people in the community is

therefore added as an attribute name in the community database (see 6Table 6-21).

 205

Community Database

ID User ID list Name list Number of users

1 2,5,12, 20, unknowns John, Bob, Sam, Dan A, Sarah, unknowns >10

2 41 Dan A, unknowns -

3 2,5 John, Bob, unknowns -

4 unknowns Unknowns >20

5 2, unknowns John, unknowns -

6 3, unknowns Bob, unknowns -

…. …. …. ….

Table 6-21 Community Database Stores Sets of Values of Information

This step allows the developers to model and create a database for each context

element. The key in modelling and storing the database is the identity key. It is

created for every value of element. The identity key is used to refer to the set of

information. Furthermore, the concept of identity key is used throughout in sensor

databases and profile databases as well.

6.1.5 Step 5: From Context Elements to Reasoning

The elements such as rule, role, objective and outcome are normally difficult to

infer from sensors in real time. Thus, the values for these elements are inferred

from the history of situations. The basic history of situations is based on the

situations identified from the scenarios in Step 2 (i.e. Situations 1-5 in Figure 6-1

to 6Figure 6-4). In order to create the database for the history of situations, first the

profile for a role is created following the relationship between elements in the

 206

context model. The role is influenced by the user element, community,

environment and time element respectively. The role database is created so that

for every role a value is associated with the reference points of the user,

community, environment and time in their database. These elements then guide

the designers and developers in assigning the attributes in the database as shown

in 6Table 6-22. Each role value has its own reference point for the context model to

refer to. The history of role values can then be created. The developers use the

attributes in the database with the extracted situations (see Figure 6-1 to 6Figure

6-4) to create values in the role database. For example, when the user Adam (User

ID is 1) is with the conference attendants (Community ID is 1) at the conference

reception (Environment ID 1) at 8:55am Monday 19 June 2008 (Time ID 1), these

values will be stored in the database. In real time, the sensor data is processed to

find the user ID in the user database and repeat the process in the community,

environment and time context element databases. These IDs can then be used to

find the best match in the role database in order to get the value of the user’s

current role. It is not necessary that all the values have to match the values in the

database. The extracted situations can create a further set of values in the

database, for example see Role ID 6 and 7 in 6Table 6-22. These are from Situation

3 where Bob and John are treated separately but they both hold the same role as a

colleague to Adam during the conference.

 207

Role Database

Role ID Role Name User ID Community

ID

Environment ID Time ID

1 Conference Attendant 1 1 1 1

2 Listener 1 2 2 2

3 Colleagues 1 3 3 3

4 Tourist 1 4 4 4

6 Colleagues 1 5 3 6

7 Colleagues 1 6 3 6

…. …. …. …. …. ….

Table 6-22 Role Database Stores Sets of Reference Points to the Information

As mentioned in the design tool, the value of rule is referenced to the value of the

role. The rule database is created as shown in 6Table 6-23.

Rules Database

Rule ID Rule Name Role ID

1 See the lists of talks on timetable 1

2 See information but not presenter’s note 2

3 See Colleagues’ locations 3

4 See public information about Tourism includes map and tourist info 4

…. …. ….

Table 6-23 Rules Database Stores Sets of Reference Points to the Information

 208

The objective database is created as shown in 6Table 6-24 so that the value can be

assigned for each context model in the context model database in 6Table 6-26.

Objective Database

ID Objective Name

1 Decide which talk to attend

2 Get info about talk

3 Get colleagues’ locations on the map

4 Get info about nearby tourist places

…. ….

Table 6-24 Objective Database of Possible Value of the Objective from the

Situations

From the objective descriptions, the outcome is the result of the user’s efforts to

meet the objective. As described in Section 64.5, for every set of values in the

outcome context element database, the objective value is paired with the ideal

outcome. The database for the outcome element is shown in 6Table 6-25.

 209

Outcome Database

ID Outcome Name Objective ID

1 Attend the selected talk quickly 1

2 Got info about talk to make note efficiently 2

3 Got colleagues’ locations and directions info on the map 3

4 Got info about nearby tourist places and direction to selected one 4

…. …. ….

Table 6-25 Outcome Database Stores a Reference Point to the Objective

Values

As described in Section 64.5, the value of the objective may be inferred from the

history of the context model. The context model holds IDs of context elements.

The IDs are the reference points to the set of values of the other elements in the

context model (user, community, role, rule, tools, environment and time

respectively) as shown in 6Table 6-26. The outcome ID of each situation is

assigned in the Activity Theory database according to its objective value in the

outcome database.

 210

Activity Theory Database

ID User

ID

Community

ID

Role

ID

Rule

ID

Tools

ID

Environment

ID

Time

ID

Objective

ID

Outcome

ID

1 1 1 1 1 1 1 1 1 1

2 1 2 2 2 2 2 2 2 2

3 1 3 3 3 3 3 3 3 3

4 1 4 4 4 4 4 4 4 4

5 1 4 5 5 5 5 5 5 5

…. …. …. …. …. …. …. …. …. ….

Table 6-26 Activity Theory Context Model Database Stores Sets of Reference

Points to the Information

This step shows the influence that the context model has on the reasoning method.

By referring to the identity of a set of values instead referring to the value itself,

the architecture provides flexibility in changing the value internally and in

systematically referring to the data.

6.1.6 Step 6: From Outcome Context to Selected Application and

Required Context

From the defined situations in Step 2, the extracted features through which the

context-aware system is supposed to support the user in each situation are analysed

further in order to decide an appropriate application for each situation. The

developers decide to use an existing application or implement a new one. For

example, the existing application is the conference schedule and the new

 211

application could be an extended version of the conference schedule that

highlights an interesting talk. Furthermore, the context information that a user

requires to complete the task is assigned to use with the application. For example,

in Situation 1, as Adam’s personal device is a PDA, the context-aware system is

required to reduce information about the conference schedule. The developers

assign the conference schedule application. In order to narrow down the

information to be shown on the PDA screen, the context-aware system requires

information about the current user’s personal device, user interests, current time

and conference schedule.

Application Database

Application

ID

Outcome

ID

Application Context

1 1 Conference Schedule

with highlight

User (device, interest), Time (HH, MM)

Tools (Conference schedule)

2 2 Talk Information User (device), Environment (room), Time (HH, MM)

Tools (Conference schedule, talks folder)

3 3 Users locator User (device, interest), Community (Relevant users’

location), Tools (Conference map)

4 4 Tourist Guide User (device, flight booking, Tourist interest),

Environment (Area), Tools (Tourist map)

5 5 Shopping reminder User (Device, Duty free shopping list), Environment

(Area), Tools (Airport map)

…. …. …. ….

Table 6-27 Application Database Stores a Reference Point to the Outcome in

Different Situations

 212

The sets of values in the databases and profiles created from the extracted

situations are used as a basic guide for the developers to generate further possible

sets of values in order to be able to support the user in similar situations.

This section applied six design steps to the simple scenario where the user is not in

a high pressure environment. Moreover, some elements of context do not need to

be taken into account in the simple scenario. The design tool introduces

systematic steps to the design process. Each step guides the designers with

questions about the situation that the designers should concentrate on in order to

meet the user requirements. The result of the context model for each situation is

well structured and simple to follow. This facilitates the communication between

the designers and developers.

A more complex scenario is introduced in the next section to illustrate how the

design tool is applicable to more complex scenarios.

6.2 Scenario 2: The Hospital A&E Department

The scenario here is extracted from material collected during an 18 month study of

observing a receptionist at the Accident and Emergency department of a hospital

in London [O'Neill et al., 2004]. It has been shortened for our purposes here.

“Sara is a receptionist at the Accident and Emergency (A&E) department of a

hospital in London. Everyday the reception and waiting area is very busy. There

are 2 printers at the reception desk that also serve other receptionists in the

department. One printer is assigned to print the Case Card and another is assigned

to print a set of sticky labels with the patient’s details for sticking on to blood

 213

samples, x-ray requests, appointment books, etc. There is a list of telephone

numbers on a piece of paper next to the reception desk in the waiting area.

Sara has to handle all sorts of enquiries such as information about how to register

with a GP, what to do next after check out, directions around the area, look for the

beeper numbers to beep the doctors when their take-away arrives, and answer the

phones that seem to be ringing all day.

Sara is required to book in the patients to the computer PAS system which holds

the information about the patient and generates a print out case-note (file) to be

filled in by the doctor. The first question is ‘Have you been here before?’ If yes,

they will be on the system. However, sometimes there are lots of people who have

the same name, or several entries with the surname spelt differently which may

relate to the same person. Also, the address, phone number etc will often have

changed. The date of birth is a key “demographic” enabling identification of an

individual in ambiguous situations. If the patient has not visited the department

before, a new entry will be made on the database. When a patient enters the

department, the first person they see will be a triage nurse, who will ask them

about their problem, and fill in a short form which they hand to the receptionist

when booking in. The patient’s name is already on this form, together with a short

summary of their complaint. The reception therefore does not need to ask the

name, if legible. If the patient is brought in by ambulance, the patient is booked in

by the paramedic, using details from the pink form that they will have previously

filled in. The receptionist then uses the pink form to book the patient into the PAS

system instead of asking the patient who may be unconscious or too badly injured

to answer questions. There will be a queue to book in with the receptionists

because it is a time consuming process and the receptionist may be interrupted by

a phone call, a language barrier or other enquiries.

 214

When the patient is discharged from the department, either to home or admitted to

a ward, the rest of the details from the case notes (as filled in by the doctor) are

entered onto the PAS by the receptionist. This happens after the forms are

collected from Majors by a receptionist. Not infreqeuently, the receptionist cannot

admit a patient on the database because there is information missing on the Case

Cards such as the admitting consultant’s name.”

The scenario shows the complexity of activity and the pressure that the user is

under. The scenario is analysed further in the next step in order to extract the

situation for each activity.

6.2.1 Step 1: Defining Scenarios in which the System will be Applied

The field study is complex and contains a 30 page description of the observations

on different days. There is no real structure as the data is a story of what happens

in a hectic hospital on different days. By keeping the context model in mind

during analysis of the field study, for every situation where the designers consider

that context awareness can support the user, they draw a simple context model

next to the paragraph that describes the situation. The simple context models from

different paragraphs can then be analysed and grouped according to their

objectives. As the field study is long and describes certain objectives repetitively,

the situation for each objective is created from combining information from

different paragraphs in the field study that have been annotated with a simple

context model with the same objective value. The designers use the situations

with the different objectives to create a new descriptive scenario for the field study

as shown in Section 66.2. This is to avoid a long unstructured and repetitive

scenario that will be used to communicate between the designers, developers and

users.

As the scenario provides non repetitive situations for each objective, it can then be

used to extract situations for each activity. As mentioned in the previous section,

 215

the situations visualise how context awareness can support the user in achieving

their objectives. The new situations can then be modelled into different models

following the elements in the context model. This will provide a simpler form for

easier referencing with the implementers about the situation. This will also help

designers analyse the situation and design the functions of the application to

support each situation. The new situations can also be used to describe the use of

context awareness to the users if a participatory design process is to be pursued.

6.2.2 Step 2: Define Situations where Context Awareness Can

Support User

The user that the system is supporting in this scenario is Sara who works at a

reception desk at the A&E department. The situations are extracted from the

scenario for each activity where the system will support the user as shown below:

6.2.2.1 Situation 1

Sara works under a lot of pressure completing multiple simultaneous tasks. She

was interrupted by the take-away delivery man. He asks her to get Dr Rach to

come and get his food while she is filling information into the PAS on desktop1.

Sara has a hard time looking for Dr Rach’s beeper number from the list of

telephone numbers on a piece of paper behind her. Instead, she turns to the PDA

information assistant which holds a telephone book database. Based on the name

of the doctor on the take-away receipt, it auto detects the beeper number and

allows Sara to send a beeper message to the Dr Rach.

 216

The same process that has been applied to the simple scenario in the previous

section is applied here. The designers follow the six questions in order to analyse

the situation and decide on the context-aware supports for the user.

Question 1: What is the activity for the context-aware system to support in

this situation?

As the aim of this situation is for Sara to be able to find the doctor’s beeper

number, the activity in this situation is “sending the text to doctor’s beeper to pick

up food”. This leads to the answer for question in step 2.

Question 2: What are some actions that a user may need to perform?

Find Dr’s

beep number
Send text to Dr

to pick up food

Transformation

Process
Sara

Food receipt,
PDA, phone

Food carrier Take away carrier See PDA & See

Hospital building West
A&E Reception

Monday 4 February
2003 18:55

Figure 6-5 Context Model of Situation 1- Get doctor to pick up his food

 217

In order to send a text to the doctor, the goal is to search for the doctor’s beeper

number that is in the long beeper number list. From this action, the operations for

the next questions can be answered.

Question 3: What are some operations that a user may need to perform?

The operations that the user need to complete in order to search the doctor’s

beeper number efficiently are first to get the doctor’s name from the receipt,

second to open the beeper number list, third to reorder the list by doctor’s first

name and last to look through the list to get the number from one that matches the

doctor’s name.

The designers assign a level of computing support that will be suitable for the

activity, actions and operations from the previous questions:

Question 4: What operation level supports is the system going to provide?

- Open the beeper number list >> Passive

- Reorder the list >> Active

- Get doctor’s name >> Active

- Look through the beeper number list >> Active

Question 5: What action level supports is the system going to provide?

- Search for the doctor beeper number >> Active

Question 6: What activity level support is the system going to provide?

- Sending the text to doctor’s beeper to pick up the food

 218

The system provides active supports to the user by automatically getting the

doctor’s name from the receipt, for example by scanning a barcode or sensed

RFID tag on the receipt, and searching for the best match from the beeper number

list. The best results are shown on the screen for Sara to select the number to send

the message for the doctor to pick up the food as a passive support from the

system. The assistant should therefore take tools information (receipt with the

customer’s name, beeper number list on the system) into account in order to show

only Dr Rach’s beeper number on the screen allowing Sara to concentrate on

making sure the number is correct and sending a text to tell Dr Rach that the food

has arrived at reception.

The next situation is when Sara has to book a patient into the department to be

treated.

6.2.2.2 Situation 2

Sara is asking questions in order to book a patient in. It is a time consuming

process in order to get all the details about one patient. Behind the patient is a

paramedic waiting to book another patient in. Instead, she turns to a booking in

assistant. It detects information about the patient and fills in the fields in the form

to reduce the questions that Sara has to ask each patient. But when the paramedic

checks in a patient, the assistant detects the information from the pink form and

automatically prints the Case Card for that patient.

 219

Book in

patient
Save info to

PAS and print

Transformation

Process
Sara

Desktop 1,
Printer 1, PAS

Booking in Patient A Access both

Hospital building West Monday 4 Febuary

Figure 6-6 Context Model of Situation 2 - Booking in a patient

Book in

patient
Save info to

PAS and print

Transformation

Process
Sara

Desktop 1, Printer
1, pink form, PAS

Booking in Paramedic Access both

Hospital building West
Monday 4 Febuary
2003 18:50

 220

For this situation, there are two sets of context model that support the same

activity of booking in. The first situation is when the patient is booking herself in.

The second situation is when the paramedic is booking the patient in. Following

the same questions as the previous situation, the answers are:

Question 1: What is the activity for a context-aware system to support in this

situation?

- Register the patient on PAS database and print a Case Card

Question 2: What are some actions that a user may need to perform?

- Find out whether the patient is already registered or not

If the patient is not in the PAS database

- Fill the patient detail onto the PAS database

- Order a Case Card to be printed

Question 3: What are some operations that a user may need to perform?

The operations that are required in order to find out whether the patient is already

in the PAS or not, are

- Open PAS system

- Ask the patient or if the patient is unsure or unconscious:

o Get patient date of birth and name from the patient or

paramedic

o Search if the date of birth and name are matched in the PAS

database

 221

If the patient is not in the PAS database, the operations that needed to be

completed are:

- Type in the patient information such as date of birth, name, other

relevant information

- Save data to the database

- Find the printer

- Select print a Case Card

Question 4: What operation level supports is the system going to provide?

To find out if the patient is in the database or not, the operations to complete are

- Open PAS system >> Active

- Ask the patient or if the patient is unsure or unconscious:

o Get patient information such as date of birth and name >>

Active

o Search if the date of birth and name are matched in the PAS

database >> Active

If the patient is not in the PAS database, the operations that need to be completed

are:

- Type in the patient information such as date of birth, name &

other relevant information >> Both

- Save data to the database

- Select print a Case Card

- Find the printer >> Active

 222

Question 5: What action level supports is the system going to provide?

- Find out whether the patient is already registered or not >>

Active

If the patient is not in the PAS database

- Fill the patient detail onto the PAS database >> Both

- Order a Case Card to be printed

Question 6: What activity level support is the system going to provide?

- Register the patient on PAS database and print a Case Card >>

Both

By using context awareness to support Sara in this situation, the system provides

active supports by automatically getting the patient information and searching the

database to see if the patient is already in the database or not. If the data of the

patient is found in the database, it will provide passive support by showing the

patient data on PAS so Sara can order a Case Card to be printed on the assigned

printer that the system automatically found in the network. If the data of the

patient is not found, the system provides both active and passive supports by

automatically filling the patient details on the PAS and showing it on PAS so Sara

can order a Case Card to be printed.

From the object and outcome elements in this situation, the information assistant

should be able to detect information about the patient and automatically fill in the

PAS form where the information is available. The receptionist will only have to

ask for the information that is missing from the patient. Therefore when the

assistant detects the patient, it should take community information (patient’s name,

 223

phone number, date of birth, address) into account in order to fill in the PAS.

When the assistant detects a paramedic, it should take tools information

(information on the discovered pink form – according to the name of the

paramedic who created the pink form) into account in order to fill in the PAS.

Obtaining information about the user can be time consuming process in the noisy

and busy environment. Moreover, the patient may not speak fluent English or not

understand English at all. For a system to obtain the information by using context

awareness will help Sara to concentrate on other important activities.

6.2.2.3 Situation 3

Sara is trying to find the consultant’s name on the Case Card in order to check out

a patient. It is a time consuming process in order to find out information that is

missing on the Case Card.

Check out

patient
Save info and

print instruction

Transformation

Process
Sara

Desktop 1,
printer 1, PAS,

Case Card

Checking Patient B Access both

Hospital building West
A&E Reception

Monday 4 February
2003 20:50

Figure 6-7 Context Model of Situation 3- Checking out patients

 224

From this situation, the six levels of activity questions are answered below:

Question 1: What is the activity for the context-aware system to support in

this situation?

- Get patient checked out of A&E with relevant information

Question 2: What are some actions that a user may need to perform?

- Update information about a user check out in PAS

- Get instruction for the patient to take home

Question 3: What are some operations that a user may need to perform?

- Open the PAS

- Type information about user from the Case Card onto PAS

- Find the printer for printing instruction

- Print the required instruction for the patient

Question 4: What operation level supports is the system going to provide?

- Open the PAS >> Active

- Type information about a user from the Case Card onto PAS >>

Active

- Find the printer for printing instruction >> Active

- Print the required instruction for the patient

 225

Question 5: What action level supports is the system going to provide?

- Update information about a user check out in PAS >> Both

- Get instructions for the patient to take home >> Active

Question 6: What activity level support is the system going to provide?

- Get patient checked out of A&E with relevant information

From the object and outcome elements in this situation, the information assistant

should be able to find out the information on the Case Card of Patient B from the

history of who edited the Case Card that was automatically recorded and the

values from the sensor attached on the Case Card. By using context awareness to

support Sara in this situation, the system provides active supports by automatically

getting the patient information on the Case Card and filling the information on to

PAS. The system will then provide passive support by showing the patient data on

PAS so Sara can order an instruction to be printed on the assigned printer that the

system automatically found in the network. As a result, the patient’s instructions

or prescription are printed for the patient to take home with them.

The situations are used in the next section for further analysis of information to

take account of context elements in the context model of each situation.

6.2.3 Step 3: From Situation to Elements in Context Model

The designers proceed to concentrate on expanding the list of information for each

element of context based on the definitions of context elements in Section 64.3.

 226

6.2.3.1 Situation 1

Context

Elements
Values from Situation

Environment A&E Reception, building West, Hospital, London, UK
Time Monday 4 February 2003 18.55
User Sara owns Nokia 6680
Tools Food receipt, PDA, Phone number lists

Community Take away carrier and People
Roles Food carrier assistant
Rules Use PDA to see the phone list

Objective Find DR Rach’s beeper number
Outcome Send text to Dr Rach to pick up the take away

Table 6-28 Values are Identified for Context Elements in Situation 1

6.2.3.2 Situation 2

As mentioned, there are two context models that support the same activity in this

situation. The first model is when the patient is checking herself in. The second

model is when the paramedic is checking the patient in. The paramedic has

already gathered information about the patient before the patient arrives at A&E.

The information about the patient is filled in the pink form which refers to one of

the tools available in this situation. Therefore with context awareness support, the

information in the pink form can be transferred to the PAS system without explicit

input from Sara.

 227

Context

Elements
Values from Situation

Environment A&E Reception, building West, Hospital, London, UK
Time Monday 4 February 2003 18.50
User Sara owns Nokia 6680
Tools Desktop 1, Printer 1, PDA, PAS

Community Patient and People
Roles Booking in Assistant
Rules Access both desktop1, desktop2, printer 1, printer 2 and PAS

Objective Fill information about patient into PAS
Outcome Save information about patient in PAS and print a Case Card

Context

Elements
Values from Situation

Environment A&E Reception, building West, Hospital, London, UK
Time Monday 4 February 2003 19.30
User Sara owns Nokia 6680
Tools Desktop 1, Printer 2, PDA, Pink form, PAS

Community Paramedic and People
Roles Booking in Assistant
Rules Access both desktop1, desktop2, printer 1, printer 2, Pink form and

PAS
Objective Booking in patient
Outcome Fill & save information about patient in PAS and print a Case Card

Table 6-29 Values are Identified for Context Elements in Situation 2

 228

6.2.3.3 Situation 3

Context

Elements
Values from Situation

Environment A&E Reception, building West, Hospital, London, UK

Time Monday 4 February 2003 20.50

User Sara owns Nokia 6680

Tools Desktop 1, Printer 1, PAS, Case Card

Community Patient and People

Roles Checking out Assistant

Rules Access both desktop1, desktop2, printer 1, printer 2, Case Card

Objective Discharge patient

Outcome Fill & save information about patient from Case Card into PAS and print a instruction for

patient (prescription, appointment)

Table 6-30 Values are Identified for Context Elements in Situation 3

At this stage, the designers concentrate on meeting the user requirements. In the

next step the designers will bring the implementers into the process in order to

determine the feasibility of gathering the information required for each context

element listed in 6Table 6-28, 6Table 6-29 and 6Table 6-30.

6.2.4 Step 4: From Context Element to Sensors and Profiles

Following on from the information in the tables, the implementers inform the

designers of what technology can be used to get information and to what level of

 229

information. For example, GPS is used to get geographic coordinates, which can

then be translated to information such as country, town etc. In this study, for

occasions where more specific information and more accuracy is required such as

at the reception desk, a RFID reader is adopted. As a result, we then get the

context element databases and profiles below.

Environment

Values Sensor Attribute in Database

 Thermometer Condition

A&E Reception desk RFID, Bluetooth Room

Building West GPS Building

Hospital GPS Area

London GPS Town

UK GPS Country

Table 6-31 Values of the Environment Element from Different Situations

The level of information required from the tables in the previous step for each

context element guides the developers to design the database for the element as

shown in Table 6-32.

 230

Environment Database

Environment

ID

Room Building Area Town Country Condition

1 Reception Building West Hospital London UK -

Table 6-32 Environment Database Stores Sets of Values of Information

The time element is designed similarly to the previous scenario. As a result, the

level of time information is shown in 6Table 6-33. As a result of these, the database

for the time element is as shown in 6Table 6-34. The attribute values in the time

element can be null to give flexibility in storing time. For example the rest of the

attributes can assigned to null value except Period of Day which is assigned to

Morning to represent the situation that happens every morning. Each set of values

of the time element is added to the database when the new scenario is found by the

system during run time as mentioned in Section 63.6.1.

Time

Values Sensor Attribute in Database

Monday System clock Day of the week
4 System clock Date of the month

February System clock Month
2003 System clock Year

Afternoon Interpretation Period of Day
18 System clock Hour of the day
19 System clock Hour of the day
20 System clock Hour of the day
55 System clock Minute of the hour
00 System clock Minutes of the hour

Table 6-33 Values of the Time Element from Different Situations

 231

Time Database

Time ID DOW DOM Month Year Period of Day HH MM

1 Monday 4 February 2003 Afternoon 18 55

2 Monday 4 February 2003 Afternoon 18 50

3 Monday 4 February 2003 Evening 19 30

3 Monday 4 February 2003 Evening 20 50

….. …. … … … …. …. ….

Table 6-34 Time Database Stores Sets of Values of Information

In this case, Sara only has one personal device which is her mobile phone,

information about which may be gathered by the system during run time through

Bluetooth or from Sara’s profile in the database.

User

Values Sensor Attribute in Database

Sara Profile or Log in info Name

Nokia 6680 Bluetooth or user profile Personal Device

Table 6-35 Values of the User Element from Different Situations

 232

User Database

User ID Name Personal Devices

1 Sara Nokia 6680

….. …. …

Table 6-36 User Database Stores Sets of Values of Information

As a hospital is a public space and has a variety of equipment to support several

tasks for different people, the developers follow the information in the tables from

the previous step to generate different values that are required for the tool element

in the scenario. The values are assigned to the sources where the information can

be gathered during run time as shown below.

 233

Tools

Values Sensor Attribute in Database

desktop 1 Bluetooth Tools list

Printer 1 Wifi Tools list

desktop 2 Bluetooth Tools list

Printer 2 Wifi Tools list

PDA Wifi Tools list

Wireless network Wifi Wireless Types

Food receipt Barcode, NRFID Tools list

Phone number list Information Profile Information list

Pink Form Barcode, NRFID Tools list

Hospital map Map Profile Map list

Registration Instruction Information Profile Timetable list

PAS Information Profile Information list

Case Card Barcode, NRFID Tools list

Table 6-37 Values of the Tools Element from Different Situations

As mentioned earlier, the profiles are created by the developers when they think

there is no suitable sensor to gather the information about the context element

directly. In this case, the developers assigned Information Profile to some tools’

value. This is because these tools here are different sources of information, which

in this case the developers could not find suitable sensor to sense this information.

The developers created an information profile to store information about different

 234

types of information that is used as a tool element in the context model from

different scenarios. The Information Profile (see 6Table 6-41) is a database that

holds information of what information is available, where the information can be

accessed, who is the owner, at which location it is available, etc. This is done so

that during run time, the profile can be referred to by the system in order to gather

information about the available tool, which at that time cannot be directly gathered

from sensor, in real time situations. For example, the sensor can gather

information about user’s current environment and who the user is during run time.

These information is then used to refer to what types of Information Tool that are

available from the Information Profile by matching the information about user

with the Owner of the information in the profile and information about user’s

current environment with the Location Range of the information in the profile.

Tool – model database for each tool (desktop, printer, laptop, etc)

Values Sensor Attribute in Database

Desktop 1 Wifi, Bluetooth, NRFID Name

Printer 1 Wifi, Bluetooth Name

Desktop 2 Wifi, Bluetooth, NRFID Name

Printer 2 Wifi, Bluetooth Name

Wireless network Wifi Connection Types

PDA Wifi, Bluetooth, NRFID Name

A&E Reception Assign or Network Owner

Reception at A&E Bluetooth Location Range

Status is in used Network Status

Table 6-38 Values of Each Tool or Device

 235

Tool Database

ID Name Connection

type

Owner Location

Range

Screen size Status

1 PDA Wifi A&E

Reception

100 meters 3.8 inches Free

2 Nokia 6680 Bluetooth Sara 50 meters 2.5 inches Free

3 Desktop 1 Wifi,

Bluetooth

Public

Hospital

100 meters 20 inches Busy

4 Printer 1 Wifi Public

Hospital

50 meters - Free

5 Desktop 2 Wifi,

Bluetooth

Public

Hospital

100 meters 20 inches Busy

6 Printer 2 Wifi Public

Hospital

50 meters - Busy

7 Food receipt NRFID Doctor N 1 meters - Free

…. …. … …. …. ….. …

Table 6-39 Example of the Tool Database for Each Device

Table 6-40 Example of the Map Profile for Each Map

Map Profile

Map ID Name Source Owner Location Range Period

1 Hospital map www.hospital.com/map.html Public At Hospital forever

….. …. … …. …. …

 236

 In the hospital scenario, there are different types of information that are available

for different users from patients to nurses to doctors. Different people have

different levels of accessibility. This is because privacy and security are important

issues in the hospital scenario. This assists the developers to design information as

shown below.

Table 6-41 Example of the Information Profile that Holds Descriptive

Information for Each Information Tool

In the complex scenario, by following the user requirements, there is a possibility

of developing more than one context model per situation/activity. For example, as

shown in scenario 2, there are two context models that support the same activity.

The first model is when the patient is checking herself in. The second model is

when the paramedic is checking the patient in. As a result, these context models

are both stored in the history of context database to be used to trigger support for

the user in real time. Moreover, the history of context elements such as tools and

community are also created as shown in 6Table 6-42 and 6Table 6-44 respectively.

Information Profile

Information

ID

Name Source Owner Location

Range

Period

1 Phone

number list

www.hospital.com/contact.xml Receptionist At reception 4 February

2008

2 Registration

Instruction

www.hospital.com/registration.htm

l

Public At hospital 4 February

2008

3 PAS system www.hospital.com/PAS Receptionist At hospital 4 February

2008

….. …. … …. …. ...

 237

Tools Database

ID Tool ID

list

Map ID

list

Information

ID list

Name list

1 1, 7 - 1 PDA, Desktop1,Printer1, Food receipt, phone list

2 3, 4 - 3 Desktop1, printer1, PAS

3 3, 8 - 3 Desktop1, printer1, Pink form, PAS

4 3, 9 - 3 Desktop1, printer1, PAS, Case Card

…. …. … …. …

Table 6-42 Tools Database - Stores sets of values of information about tools in

different situations

Community

Values Sensor Attribute in Database

Take away carrier Bluetooth Users list

Patient RFID Users list

Paramedic RFID Users list

….. ….. …..

Table 6-43 Values of the Community Element

 238

Community Database

ID User ID list Name list Number of users

1 5 Take away carrier -

2 41 Patient A -

3 50 Paramedic -

4 34 Patient B -

…. …. … …..

Table 6-44 Community Database - Stores sets of values of information about

community

These tables help developers design the database for each sensor, profile and

context element. All the values in the database are assigned with a unique identity

(ID). This will allow the set of values to be referable in different databases or

reasoning processes.

6.2.5 Step 5: From Context Elements to Reasoning

Following on from the reasoning process in Section 64.5, the situations in steps 2

and 3 are used in order to assign the value in the role database for different

situations from the user requirements as shown in 6Table 6-45. As a result of

having two context models for Situation 2, the roles are created for each context

model. At the same time, there are different sets of rules for the user in the context

model in this situation because of the importance of being able to access the Pink

Form from the ambulance if the paramedic is booking the patient in. When a

patient walks in off the street and checks herself in, there is no Pink Form.

 239

Role Database

Role

ID

Role Name User

ID

Community

ID

Environment

ID

Time

ID

1 Food carrier assistant 1 1 1 1

2 Booking in assistant for patient 1 2 1 2

3 Booking in assistant for ambulance 1 3 1 2

4 Checking out assistant 1 4 1 3

….. …. … …. …. …..

Table 6-45 Role Database - Stores sets of reference points to the information

that have influence on roles

As described in Section 64.5, each set of values of the rule is paired with the

reference point to the value of the role; the rule database is created as shown

in 6Table 6-23.

Rules Database

Rule ID Rule Name Role ID

1 Access PDA, phone book and name on the receipt 1

2 Access both Desktops, printers and PDA and PAS 2

3 Access both Desktops, printers and PDA, Pink form and PAS 3

4 Access both Desktops, printers and PDA, Case Card and PAS and

print instruction on printer 2 only

4

….. …. ... ……

Table 6-46 Rules Database - Stores sets of reference points to the information

that have influence on rules

 240

Objective Database

ID Objective Name

1 Find Dr’s beeper number

2 Check in patient

3 Check out patient

…. ….

Table 6-47 Objective Database - Stores the objective values from different

situations

From the objective descriptions, the developers can easily pair the reference points

of objectives with the expected outcomes. The database for outcome element is

shown in 6Table 6-25.

Outcome Database

ID Outcome Name Objective ID

1 Send text to Dr to pick up food 1

2 Save info to PAS and print a Case Card 2

3 Save info and print instruction for patient 3

…. …. …

Table 6-48 Outcome Database - Stores reference points to objective values

that have influence on outcome

 241

The values of the elements in the situations are stored in the Activity Theory

context model database to be used to infer the current user’s objective as shown

in 6Table 6-49.

Activity Theory Database

ID User

ID

Community

ID

Role

ID

Rule

ID

Tools

ID

Environment

ID

Time

ID

Objective

ID

Outcome

ID

1 1 1 1 1 1 1 1 1 1

2 1 2 2 2 2 1 2 2 2

3 1 3 3 3 3 1 2 2 2

4 1 4 4 4 4 1 4 3 3

… … … … … … … … … …

Table 6-49 Activity Theory Context Model Database - Stores sets of IDs of

information that have influence on objectives

The set of reference points (IDs) of elements that have influence on the user’s

objectives in different situations can then be stored in the Activity Theory context

model database as shown in 6Table 6-49. The information of these elements is to

be used in real time in inferring about a user’s current objective. The next step is

to assign an application or service to each outcome so that when the situation

occurs in real time the system can provide a suitable support to the user.

 242

6.2.6 Step 6: From Outcome Context to Selected Application and

Required Context

From the defined situations in Step 2, the extracted features that the context-aware

system is supposed to support for the user in each situation are analysed further in

order to decide an appropriate application for each situation. For Situation 1 (the

take-away scenario), the assistant will send the text to the name on the receipt with

the selected phone number from the phone list.

Application Database

Application

ID

Outcome

ID

Application Context

1 1 Take away called assistant Tools (PDA, name on the receipt, telephone Book)

2 2 Checking in assistant Community (Relevant user’s information), Tools

(Desktop1, printer 1, pink form), Time (HH, MM)

3 3 Checking out assistant Community (Relevant user’s information), Tools

(Desktop1, printer 1, Case Card), Time (HH, MM)

… ….. …. ….

Table 6-50 Application Database - Stores a reference point to the outcome in

different situations

This section shows how the design tool can be used with a more complex scenario.

Moreover, Situation 2 gives an example of how the context tool can be used to

create different context models for the situations in a scenario. The design tool

guides designers to model the context based on user requirements. The designers

can therefore identify as many context models for the situation as they wish. The

context models support the same activity but in different circumstances such as

 243

different tools available, different community, etc. These context models are then

stored in the history of context models in order to recognise the events for which

the system will provide services to the user in real time. The next section refers to

the context-aware system design tool requirements described in Section 62.4.1 in

order to evaluate the design tool.

6.3 How Each Requirement is Met or Not Met in the Scenarios

The requirements from Chapter 2 are discussed. Each individual requirement is

referred to in order to show how it is met or not met by using the context model

with the above scenarios:

6.3.1 To Provide Consistent Support for Shared Understanding

amongst Researchers

By breaking down the scenario into several short situations for each user objective,

the designers can refer to the defined situations in step 2 of the design steps in

order to show the developers a simple structured model of context instead of

showing them the description of the situation, which can be long and not well

structured for implementation. The descriptive story can be too complicated and

confusing to implement. Also, in the case of getting user involvement in the

development process through some form of participatory design, the users can use

both the description and a simple model of the situation in order to understand how

the system is modelling and referring to context about the situation. The context

model is used as a tool to help designers, developers and users in order for them to

develop shared understandings about context, how the context is used in the

system to infer the user’s objective and how the system provides support for the

user in different situations. For example, in Situation 1 of both scenarios, the

context model includes the information of nine context elements that are related to

each other in the same manner. The consistent context elements and their

 244

relationships help designers, developers and users to build a structural

understanding about the situations. The situations are formed in the same manner

by identifying the value in 9 context elements that relate to each other in the same

manner. Only the values in the elements are different to suit the situations.

6.3.2 To Identify Context Elements

The context model identifies key elements that have an influence on the user in

achieving her objective. As seen in the results of the context models for the

situations in step 2, the key elements that have an influence on the user’s objective

are identified consistently. For all the situations, suitable values from the situation

are extracted to assign to the key elements in the context model in the same

manner as shown in step 3. The information in the situation is broken into 9

groups of information for each element in the context model. This provides

consistency in the context model used by the system. The consistency of the

context model helps the users build their mental model of the system. Moreover,

the context elements drive the design instead of it being driven by the technology

that limits the design to what context is available. This allows the designers to

concentrate on the user’s requirements rather than on the availability of the

technology.

6.3.3 To Demonstrate a Consistent Reasoning Method for the

Interpretation about the Context

Similar to the previous requirement, the context models for the situations in step 2

show the consistent relationships between the elements. Step 5 of both scenarios

demonstrates the use of the relationships in creating a profile uniformly in the

same manner for both scenarios. For example, the role database is created

according to the user, community, environment and time context elements

respectively. Instead of assigning the role of the user directly to the inconsistent

context model, the role is inferred by using consistent context elements in the same

 245

manner. Similarly, the rule database is created separately from the context model

database. For every database containing a set of rules, there is a reference point to

the role of the user to whom those rules apply, instead of embedding the rules in a

monolithic context model. The reasoning method that was introduced by the

context model provides developers with a well structured reasoning method. With

the well consistent structured reasoning method that supports both simple tour

guide and hospital scenarios mentioned in Section 66.1 and 66.2 in the same way, the

users build a mental model of the system successfully with the consistent

structured reasoning method. If there is a mistake made by the system, the users

can reduce the unexpected errors by easily correcting the system’s decision

through an appropriate interface of the recovery function where it provided by the

system because the users understand the system. This is an opportunity for future

work. This is because the studies of representation of context model to user

should be done first in order to find a suitable representation format (For example,

model, picture, sound, text, etc.) for the system to communicate with the user with

minimal distraction from their main tasks.

6.3.4 To Show the Separation between Context and its Reasoning

Step 4 shows how the design tool provides the designers with guidance in

grouping the context information into each element of context. The database of

each element contains information about that context element (for example, 6Table

6-6, 6Table 6-8 and 6Table 6-19). The design tool helps the designers in grouping

the information from the scenario before the information is used in the reasoning

process. This step also supports the designers in separating the context

information from its reasoning. This is because, by using the unique reference

point (ID), only the references to each context element are used to reason about the

situation as seen in the Objective Database (6Table 6-24 and 6Table 6-47).

Therefore the design tool supports the separation between the information about

context and the reasoning method. The separation will reduce the time and effort

required when a new situation is added to the system. For example, if Henry (a

 246

new user) attends the same conference instead of Adam in scenario 1, the context

model in the history can easily be reused. From scenario 1 of Adam attending

conference situations in 6Table 6-24, first the reference point to Adam can be

changed to a reference point to Henry. The reference point to community in 6Table

6-24 can be changed in order to relate to Henry’s colleagues, if necessary. The

information about Henry is created in the User database. A new profile for Henry

is added to the user database, and the user profile (6Table 6-11) in scenario 1 can be

changed to suit Henry and added to the database of the system that supports

Henry. The information about the context model of the objective in 6Table 6-24

can easily be reused. Instead of remodelling the whole context models, the

existing values in the databases are reused and the reference points in the database

guide the developers or users in editing the values. In conclusion, by separating

the context information and context reasoning, it provides easier access to parts of

the context information. It can then be reused in different scenarios or domains.

Moreover, the reasoning about context can also be reused more easily as the new

value of the context element can be changed and edited for a new user or new

situations or domains.

6.3.5 To Represent the Usage of History and Time

The design tool supports using history through the time context element in the

context model. The history of context is stored in the databases of sensors, context

elements and context model. The context model database holds the history of

context in different situations at different time. The time context element in the

context model is used so that the history of context model can be stored in the

database with the reference of time for each situation. The values from situations

extracted from the scenarios are stored in the context model database (6Table 6-26

and 6Table 6-49). The values in these databases can then be used to recognise the

situations where the user requires support from the system. This means the values

will be used in real time in order to infer the user’s current objective from the

 247

current sensed data. The context models that the system triggers in real time are

also stored in the database in order to keep them in the history.

6.4 Summary

This chapter demonstrates the use of the context model and design tool introduced

in 6Chapter 4. The context model and design tool are applied to two scenarios

including a conference scenario commonly used in the literature and a study of a

hospital. The demonstration shows that the context model and design tool are

capable of aiding the designers during the design stage. The context model and

design tool allow the designers to move away from a technology driven approach.

Through consistently applied abstractions, they enable the designers to concentrate

on the user’s requirements rather than the availability of particular technology.

The six design steps guide the designers in developing the consistent structure of

context element and context model databases. The previous section discussed how

the context model and design tool requirements mentioned in Section 62.4.1 are met

or not met as demonstrated in the application to both scenarios.

 248

 249

Chapter 7

Implementation

and Evaluation of the

Architecture

This chapter describes the development of a context-aware system prototype based

on the design output from the previous chapter. The prototype system is not

intended to cover aspects outside our scope here, such as application GUIs or the

matching algorithm. Rather, the development of the prototype is used to

demonstrate the implementation of the architecture that supports the functionalities

introduced by the context model, design tool and process introduced in this

dissertation, and to further evaluate how well the requirements for that architecture

have been met. The prototype implementation is based on the hospital scenario,

which is the more complex of the two examples from the previous chapter.

 250

The first section discusses the implementation of the prototype context-aware

system for the hospital scenario used in the design processes of Chapter 6. The

next section investigates how robust and reusable the implementation is by

examining the feasibility of transferring the code implemented for the hospital

scenario to the conference assistant scenario. In another perspective on reuse, the

following section examines the use of the implemented architecture in the same

domain that the architecture was implemented for in the first place – the hospital –

but to support different situations. Finally, the prototype implementation is

evaluated against the architecture requirements presented in Section 62.4.2.

7.1 From Design to Implementation of the Architecture

The architecture proposed by the context model was discussed in 6Chapter 5. This

section demonstrates the uses of the architecture to support the context models

developed for the situations of the hospital scenario through the design process

in 6Chapter 6. The implementation of the prototype system in this section

demonstrates how the architecture supports the design. The reason for

implementing the prototype for the hospital scenario rather than the simple tour

guide and conference scenario is to demonstrate that the architecture can support

more complex context models that are influenced by several types of context. By

supporting these context models, the functionalities that the context model and

design process introduced to the architecture can be established. As a research

prototype, this system is clearly does not intended to be used in a real hospital

situation, and applications such as the PAS system are not available in this

prototype. The applications that we use as examples here are “Book in patient”

and “Check out patient” which are implemented to support situations 2 and 3

described in Section 66.2.

The prototype context-aware system is implemented using Java and XML. Java is

designed for its cross-platform and object oriented capabilities. It is therefore

alleged to have a number of advantages including the efficient reuse of code and

 251

the elimination of undefined and architecture dependent constructs. XML is short

for eXtensible Markup Language. It provides a foundation for creating documents

and document systems. XML provides syntax for document markup. At the same

time, it also provides the syntax for declaring the structures of documents

[St.Laurent, 1998]. XML uses a set of basic nested structures to build XML

documents. Since the structures can grow complex as layers and layers of detail

are added, XML is readily extensible. The mechanisms for developing the

structures are simple. Moreover, XML can be used on a wide variety of platforms

and interpreted with a wide variety of tools. As the document structures behave

consistently, parsers that interpret them can be built at a relatively low cost in a

range of languages.

The prototype does not address issues of the technology of sensors, best matching

algorithm and user interfaces in the context-aware system. The aim here is to

demonstrate the implementation of the system architecture that supports the

functionalities that the design tool introduces to the context-aware system. The

consistency of the context elements in the context model introduced by Activity

Theory provides a foundation for the databases in the architecture. The design

output in which database structures were assigned for the context elements and

profiles in 6Chapter 6 is used in order to implement the databases in the

architecture. The development of the databases in the architecture is described in

the next section.

7.1.1 Database

In this prototype, with the familiarity of the developer with XML, the databases

are stored in XML. As mentioned this is a prototype, the architecture supports any

forms of storage in the databases as long as it takes the concept of unique identity

value. XML is used because of its set of basic nested structures, flexibility and

accessibility. The design output from the previous chapter guides the design of the

 252

XML structure for each database. The headers of the columns in the environment

database in 6Table 6-32 are used as attributes for each set of environment data. By

taking the unique reference point, every set of environment data is assigned a

unique identity value – ID. In order to represent the set of values to the user, a

short attribute name (nm in the XML in Appendix I) of the set of values is

assigned to every set of data so that it can be presented to the user and makes sense

to the user during run time. The database designed in the previous chapter is used

in the same manner to produce XML files for all the databases required, for

example the environment database (env.xml), time database (time.xml), user

database (user.xml), tool database (tool.xml), and tools database (tools.xml – see

example in appendix II). The databases are created for important elements of

context that are used to reason about the user. The consistent of the databases

allows easily reuse and extend the context. Therefore unlike most past projects

mentioned in Section 2.2.3.3 such as CASS that model partial of context. The

example of CASS context model shown in Table 2-2 can be used in our work as

part of information for the environment database i.e. the result of their context

model “Goal” can be used as a value for our condition attribute in our environment

database. Even in the project such as Context Managing Framework that contains

large context ontology, there is no consistency for the context model to be used in

different applications. Each application requires subscribing to different part of

the context ontology.

For every database, the object was created in Java for each context element or

profile. Objects have two sections, fields (instance variables) and methods. Fields

express what an object is. Methods show what an object does including method

that allow it to edit, changed and access the values of the variable in the object.

For example, object that deals with information about environment, xmlEnv.java –

see example in appendix III.

 253

The XML files are created for context elements and profiles and then the values

from the situation can be stored in the database. Two Java programs are created in

order to create, edit, remove and access data sets for the XML files. The first

program is writeXML.java. It has methods to create XML files including editing or

adding a set of values of an object for each database to the XML file. The second

program is readXML.java. It has methods to read the XML file in order to access

the values for the object in the database. It also has a method that searches

through the database in the XML file and returns the object with a particular ID

such as getEnvAt().

Figure 7-1 The GUI for Environment Element to Store in the Environment

Object

As the profiles and databases are separate and have a consistent structure, a GUI is

created for each object in each database so that it provides an ability to add or edit

a set of values to the object database both during the design stage and in real time

use of the context aware system. During design stage, a set of values in each

context element that has been extracted from the user’s requirement scenarios can

be added by the developers through this GUI. At the same time, GUI

demonstrates the possibility for the system to allow user to add a new set or edit

existing set of values in the context element in the context model providing a good

 254

presentation of context model is adopted in the system. Hence the user can add or

edit datasets for each database or situation that relates context elements in the

context model database (ATsXML). The GUI uses the methods in readXML.java

and writeXML.java to update the values in the database where necessary. A GUI

example of the environment object is shown in 6Figure 7-1. The new object is then

added to the database XML file using the method in writeXML.java.

The design output from the previous chapter is used during implementation as a

guide to assigning sensors for gathering information that will be used during real

time. The design tool guides the designers in extracting and grouping the

information required in the situation instead of using the availability of the sensors

to limit the information that will be used in the system. For example, 6Table

6-31, 6Table 6-33, 6Table 6-35 and 6Table 6-37 demonstrate that the design tool

guides the developers in implementing the sensor acquirers to gather information

from sensors that will be used in the system. The next section describes how the

sensors acquiring process is developed in the architecture.

7.1.2 Sensor Engine Layer

As described in Section 65.1.3, in order to support the separation between the raw

sensor data from the application and the reasoning process, the sensor engine layer

is divided into 3 elements – sensors, sensor translators and sensor engine. The

implementation of these elements is discussed below:

7.1.2.1 Sensors
Each sensor requires different code to acquire data from the sensor. Bluetooth is

used in the prototype as an example, even though in real life, Bluetooth might not

be appropriate for many situations and other types of sensors would be used as

appropriate. The code for acquiring raw data from the Bluetooth is implemented

in Java. From now on the code for acquiring raw data from sensor is called

 255

“acquiring code”. The javax.bluetooth package is imported in order to take

advantage of existing methods. The code is for the system to discover the

Bluetooth devices that are in range. The data that is to be gathered is the ID of the

device and the name of the device. Another acquiring code is to get the date and

time. The code imports the java.util.Date to get the date object that hold

information about date and time on the system. The code for gathering raw data

from the Bluetooth and clock (bluetooth.java and dateTime.java respectively) are

shown as in 6Figure 7-11.

In this case, the user is required to register with the system in order to gather the

information about the user in the user’s profile. The GUI for log in and

registration of a user is shown in 6Figure 7-2. Through this explicit input, the

information from the registration form is stored in the user XML file.

For other information that cannot be gathered from the sensors, code for creating

profiles is written. Following the design output from Section 66.2, the patient

profile, which holds information about the patients in the scenario, is created. The

patient profile stores the data about what information is available in the scenario

(such as patient name, date of birth and address). The object code for each profile

is created for dealing with acquiring data from the profile, i.e. xmlPatient.java. The

object code is a class that deals with a object such as sensor and profile. The

object code for each sensor and profile also provides a method for other code to

access the data about the object.

The sensor acquirer is very common in the past frameworks mentioned in Section

2.2.3.3 as this is the main common aim of the frameworks to separate the sensor

acquirer from the application. For example, the Sensory Capture and Context

Provider in CORTEX and SOCAM project respectively. However, not many past

projects prepare for the information that is not available by current technology.

 256

The profile acquirers in our project are aiming at providing necessary information

that will improve system efficiency in inferring about user’s objective.

The information from the sensor or profile acquirer code is gathered and sent to

the sensor or profile translator to be processed.

Figure 7-2 GUI for System's Log in and Registration

7.1.2.2 Sensor Translators
The raw data from the sensor is translated in order to get meaningful information

from the raw data. As mentioned in Section 65.1.3, the first level of processing data

is to reduce noise in the data. Then the second level of processing data is the

interpretation. As we are not concentrating on accuracy of the data in this

prototype, the first level of processing data, noise reduction, is not implemented.

But it can be added to the sensor translator by, for example, instead of using the

immediate set of detected Bluetooth devices, the sensor translator has ability to

 257

monitor the detected devices over a period of time and the devices that were

detected every time during the monitored period are sent to the next processing

level. This process gets rid of devices that are not detected at all during the

monitored period. In this prototype, the Bluetooth translator

(bluetoothTranslator.java) gets the ID and name of the detected devices and

processes them to get information such as Bluetooth ID, name of the device,

owner’s name and type of device, etc by referring to the MAC address and the

registered device’s profiles. The set of meaningful information for each Bluetooth

device is stored in the database, following the design output from 6Chapter 6. The

data from the system clock is also translated into a set of required values based on

the design output, Time database as shown in 6Table 6-34 (i.e. day, date, month,

year, hour and minute). The sets of values for these attributes in different

situations are then stored in the database. The code that operates the translation of

data is from now on called translation code. This is similar to the Context

Interpreter, Interpreter in SOCAM, Context Toolkit respectively. Our Sensor and

Profiles Translators have the attributes in the context element database as a

guideline of what to translate the raw data into.

To avoid repetition in the database, the values are used by the translation code to

ensure that the same set of values is not stored more than once in the database, by

checking its ID. For example, if the Bluetooth ID is found in the database, the

process of getting further information (such as Device type, Owner name and

location) does not have to be performed. The set of values of the meaningful

information from the existing database is used. The meaningful information in the

database is accessible by using readXML.java. The set of values will then be used

to build information for the context elements, as in the next section.

 258

7.1.2.3 Sensor Engine
In this prototype, the sensor engine (sensorEngine.java) contains code that manages

the registry of the context providers – the startSensing() method. This method

starts the sensor acquiring code. As a result, the sensor translator processes the

data into meaningful data. The main duty of the sensor engine is to assign the

meaningful data to the attributes in each context element. For example, in this

case, the name of the device is assigned as name of tool in the tool context

element, name of the Bluetooth owners were assigned as names of users in the

situation, list of Bluetooth owners (users) detected is assigned as community, the

user log in ID as for getting current user element etc. As a result, the information

for user, tools, community, environment and time elements in the current context

model is gathered from sensor data. These current elements are stored in the

context element objects which are accessible by the context engine in order to

reason about the current context model.

The sensor engine is similar to the Adaptor Layer in Hydrogen project mentioned

in Section 2.2.3.3. In order to avoid multiple applications reading from the same

sensor, it gathers meaningful information in the context element objects and sent

them to another layer to manage the context. Hydrogen project does not have a

consistent set of context element objects. It allows the application to query a

specific context from the server. Our sensor engine gathers information from

sensors into a consistent set of objects and sends them to the next layer to deal

with inferring about user’s objective rather than applications have access to

inconsistent context information.

7.1.3 Context Engine Layer

The context engine layer contains the context engine code (contextEngine.java). It

takes available information about current context elements from the sensor layer

(represented in the form of user object, community object, tools object,

 259

environment object and time object) to infer the user’s current role by comparing

the ID of the current context elements from the sensor layer against the history of

the context models in the database. The history of context models in the database

is a set of ID values of the context elements in each slice of context model in the

history (ATsXML). As a result of using our extension to Activity Theory in the

context model, for every situation the context model which is represented as a set

of IDs of context elements or AT object (ATXML) is stored in the history database

(ATsXML). In this prototype, the code findBestMatch.java is developed for the

inferring process. The matching algorithm that is adopted in this prototype is a

simple process of matching the ID String for each element in the current context

model with one in the existing context models in the history. The

equalsIgnoreCase() function available in Java is adopted here but a more

sophisticated algorithm can and should be used to improve the accuracy of the

system in the findBestMatch.java. The current role object’s ID is extracted from the

matched context model in the history. If all or almost all available current IDs are

matched to the values in the context model in the history database, the role

object’s ID is extracted from the matched context model in the history to assign

values for the role object for the current situation. If there are no matches at all, a

new role has to be created and stored in the database via the GUI, as shown

in 6Figure 7-3. The GUI can be used by the user in real time to create a new role

and assign the values for the context elements (user and community) in the role

database. The required information on the GUI such as current user ID,

community ID and role name is based on the design output as shown in 6Table

6-45. If the current user ID and the current community ID can be gathered from

sensor or profile databases for the situation, they will be pre-filled and will leave

the user just to assign the new role name.

 260

Figure 7-3 GUI for Gathering Information about Role Element

Based on the design output from 6Chapter 6, the rule database holds the information

about the rules that each role is liable to. The role object’s ID is then used by the

context engine to get the rule object from the rules database. Similarly, if the set

of values of rule element is not found, the new rule can be created by the user in

real time via the GUI. The GUI is implemented based on the attributes in the rule

database as a result of the design output shown in 6Table 6-46.

As a result, the set of IDs of the current context model (user object, tools object,

community object, environment object, time object, role object and rule object) is

compared against the history of the context models to get the ID of the objective

object using the same matching algorithm. If there is no best match found, a new

objective is added to the objective database by the user via the GUI, in order to

create the objective object. The ID of the objective object is then assigned for the

object element in the current context model or AT object (ATXML).

The ID of the objective object is used to find the outcome object from the outcome

database, again following on from the results of the design process in Chapter 6

(see 6Table 6-25 and 6Table 6-48). If the ID of the outcome object is not found in

 261

the outcome database, a new set of data for the outcome object is created via the

outcome object GUI. Once the new outcome object is created, its ID is assigned

for the outcome element in the current context model or AT object. The current

context model or AT object are then stored in the history of the context model

database (ATsXML), bases on the design output shown in 6Table 6-49.

The context engine only supports the design output based on our design tool.

Therefore different context models that have been created in different projects will

need to be adapted. The consistency in the context model to be used by the

applications allows the context engine to infer about user’s objective uniformly.

Unlike the past projects that have an application that subscribes to different

context elements. For example Aggregator and ContextClient in Context Toolkit

and Hydrogen that inconsistently subscribe and reason about context for different

applications. For every new application, the Aggregator and Context Client are

required to be developed in order to support the new application. This process is

including making decision about context to be subscribed and how to reason about

them which can be a time consuming process.

The code for the context engine not only provides the inference methods (in this

prototype, a matching algorithm is used to match the IDs of the context elements)

above but it also provides the code that allowed other code to access the current

context model or AT object (ATXML) via the getAT() method. This method

allowed other code to get further information about the context elements in the

current context model through the set of IDs of the context elements in the current

context model that the method provided. This was done by using the ID of the

element in the current context model to refer to the set of values in the database of

that element. The set of values from the context element database that has the

same ID value is used to present the information about the context element.

 262

This function will be useful for the application engine as shown in the next

section.

7.1.4 Application Engine Layer

Users can have difficulty in understanding the complex reasoning methods behind

a context-aware system. This lack of understanding can lead to breakdowns and

frustration when the system makes mistakes. Humans often make mistakes in

their interpretations of other humans’ intentions but we are still able to achieve our

objectives by recovering from such misunderstandings. But in many cases, users

stop using a computer application because they do not understand what the

application is doing, how it is trying to do it, or why it repeatedly comes to a

wrong decision. Even though the application may allow the user to correct errors,

a lack of understanding between the user and application in how the errors

occurred can result in users quickly becoming disenchanted with the application.

Improved communication between the user and the context-aware system is

important, as this will increase the user’s knowledge of how to control the

application. For a successful context aware system, it is as important for the user

to have an accurate model of the system’s intentions as it is for the system to have

an accurate model of the user’s intentions.

Following on from the previous section, the application engine layer accessed the

current context model or AT object through the getAT() method in the context

engine. The ID of the outcome object is used to find the best matched application

object in the application database which stores information such as application ID,

Outcome ID, description of application and required context information as shown

in the design output, 6Table 6-50. If the outcome ID is not found in the application

database, the application object GUI is used by the user in real time to create a

new set of values for the application database. The GUI is implemented based on

the attributes in the application database. Once the user selects an application

 263

from the list of available application that the GUI provides, the value is stored in

the application database with the current outcome ID. The new application object

for the outcome ID is then stored in the application database.

The application engine then uses the application object to process the information

further. The process is divided into 2 main steps.

In the first step, the context information that the application requires from the

current AT object can be identified from the discovered application object as

shown in 6Table 6-50. The application engine transforms the IDs from the AT

object into the information that the application requires. This is done by finding

the context element object in each context element database that matches the same

ID of that element in the current AT object. For example, the Tools element is

required by the application ID 3 “Checking In assistant”. The ID of the tool

element in the AT object is used to get further information about the list of tools

available in the current environment from the tools object in the tools database that

has the same ID as the one from the current AT object. Each ID of each tool in the

list of tools object is then used to get information for each tool available in the

environment. The information of each tool such as Desktop1, Printer1 and Pink

Form is then available for the application. This is done in the same manner by

using the ID of each tool to refer to the set of values of the tool in the tool

database, as shown in 6Table 6-39. The application engine gathers information

requires by the application in the same manner following the values in the context

attribute in 7Table 6-50. For example, in the check out patient situation, the context

elements that are required by the application are Community, Tools and Time

context elements. The ID values of these context elements are taken from the

current context model in order to gather further information about each context

element from their databases.

 264

In the second step, following the design tool, for each value in the application

attribute in the application database, the developers decide to implement a new

application or use an existing application. The new applications will be

implemented following the requirements developed during the design stage for

each situation. Moreover, the developers may adapt the existing applications to

meet the requirements.

In this case, the prototype applications of Checking In (GUIbookInDialog.java) and

Checking Out (GUIcheckOutDialog.java) are implemented in Java. In addition, the

applications are registered to the context-aware system. This is done by assigning

the applications to the outcome in the application database for the relevant

situations, as shown in 7Table 6-50. The application implementation follows the

user requirements and the levels of activity produced during the design stage.

The flowchart in 7Figure 7-4 shows how the system supports users in real time.

When the current context model is found in the history database, the system

provides the application with information relevant to the user or just provides

context information to the user. In this case, according to the information required

by Sara recorded in the user requirements, the GUI interfaces for Check In patient

and Check Out patient are shown in 7Figure 7-5 and 7Figure 7-6 respectively. As a

result, instead of the traditional Check In and Check Out forms that require explicit

input from Sara, the assistants add methods to automatically open the Check In or

Check Out form and fill it with the patient information where the information can

be gathered from the user in the community context element in the current context

model.

In this case, the community element in the current context model or AT object is

used to get the information about the community in the current situation. The ID

of the community element is referred to the database to determine who is in the

 265

current situation based on the set of values that has the same ID in the database.

The application engine extracts the list of users in the community in order to get

users’ information. The information from the discovered user object is then

transformed to the patient information as a patient object. The patient object is

then passed to a method in the application so that the form can be filled with the

available information to save Sara from explicitly typing in all the information

about the patient. Sara only has to check if the information is correct and then

submit the information to the system in order to confirm the check in and check

out status of the patient.

 266

Figure 7-4 Flowchart of how the System Supports the User in the Prototype

For this prototype, after the receptionist (Sara) logs in to the context-aware system,

the GUI interface in 7Figure 7-7 shows the receptionist is logged in, with a

statement reading “Hello Sara A” where Sara A is the user’s name. The GUI also

provides buttons for available applications so she is able to access the applications

Get on with
current task

Context-Aware System

Completes Processing

Call up the
context model

and make
correction

through the
model

Model is found
in history?

Provide service with
relevance

information to User

Do nothing – But notify
the user that there is new

context model

Yes No

User finds mistake
made by system

and wants to make
correction?

User notices and
wants to add new
model to history?

Call up the
context model

and make
correction

through the
model

Get on with
current task

Yes
Yes

No
No

 267

explicitly when needed. This is done in order to maintain the user’s sense of being

in control (see Section 72.2.4). In addition, the context model button is presented so

that the user has an option to see the current context model which represents the

underlying reasoning model used by the system. If the user finds the service or

information that the system provides is inappropriate, the user can click on the

context model button in order to see the current context model. The user can make

changes to the context model when she thinks the values in the model are not

appropriate. As the values are then stored in the databases, the changes will take

effect on subsequent inference processes.

Figure 7-5 GUI for Check In Patient Application

Prefilled information gathered
by the context -aware system

 268

Figure 7-6 GUI for Check Out Patient Application

Figure 7-7 GUI of the Hospital Context-aware System

From the flowchart in 7Figure 7-4, when the current context model is not found in

the history database, the system does not make any context-driven interventions

but discreetly notifies the user that it found a new situation that might be of

interest to the user. This gives the option for the user to add the new context

model to the history database or ignore it and continue with her current task.

 269

When the user decides to add the new context model, the context model button is

clicked, the current context model is represented to the user via the GUI shown

in 7Figure 7-8. The GUI is represented in the form of each slice of the extended

Activity Theory model. The buttons are used to represent the values of elements

in the context model of context. If the user thinks the value that is shown on a

given button is inappropriate or missing, the user can press the button to open the

GUI for that context element in order to change or add the values of the attributes

in that context element. The GUI for context elements are the same as the ones

described in Section 77.1.1 including code such as GUIenvXML.java,

GUIroleXML.java, GUIuserXML.java and GUIruleXML.java where the implementation

is based on the design result tables. Once the values are updated, the database for

the context element is also updated. Once the user completes editing the values in

the context model, the user selects the save button to update the context model in

the history of context model. The changes will therefore influence subsequent

inference processes 0

1.

Figure 7-8 GUI Shows Current Context Model - allows users to update the

model if required

1 In a somewhat similar approach, in November 2008 Google.com introduced “Promote” and

“Remove” functions for the user to edit search results in a way that influences subsequent search

processes.

 270

Moreover, as noted in Section 75.1.5, the application engine requires a command to

execute the chosen application through a suitable device and pass the selected

parameters accordingly. The device information from the user element (personal

device) or tool element (tools availability) will allow the application to decide the

format of the information e.g. for a PDA (personal small screen and less powerful)

or a projector (more public large screen). In this situation, the Desktop is chosen

as a device to show the support to the user as the receptionist (Sara) sits at the

registration desk where the desktop computer is available to her.

The application engine acts like an interface for the application to access the

context information. Unlike Aggregator, ContextClient and Context service in

Context Toolkit, Hydrogen and Gaia project respectively, application is not

subscribed to certain context information. It has access to the uniform context

model. The application engine refer to the current context model and application

database to decide what application or what context information to be presented to

the user. The application itself does not directly deal with the context reasoning.

It only has access to the databases in order to get information about required

context elements.

7.1.5 Conclusion

XML and the Java language were used to implement the hospital prototype in

order to demonstrate the implementation of the architecture that supports the

functionalities introduced by our design tool. As a result of the implementation of

the context-aware system based on the design output, the architecture is shown

in 7Figure 7-9. The architecture contains three layers: sensor engine layer, context

engine layer and application engine layer. These layers have access to the

databases as described in 7Chapter 5.

 271

The implementation of the prototype described in this chapter has illustrated how

the architecture provides the separation of context elements and its reasoning

process. The architecture introduces advantages such as efficiencies in reusing

code and existing context data in the databases. The process of gathering the data

from the situations during the design stage in order to be stored in the database to

be used to infer about user’s current objective is a time consuming process. Once

the current context model is found in the history database, the current context

model, which hold a consistent set of IDs of context elements, is passed to the

application engine layer. Then the application engine, which has information

about the available applications, first uses the ID of the outcome element in the

current context model to access application database to get information about the

require application and context elements. Then the application engine translates

information of the required context elements and passes it to the selected

application according to the application database. The application is then activated

by the application engine. The application engine acts as a translator for the

application. The application can be redesigned or changed to different application

for the situation as long as the developers notify the application engine and update

the application database.

Moreover, the process is an ongoing process as the user should be able to add and

edit the set of values in real time. Therefore it is important that the existing

context data can efficiently be reused and edited through the consistent context

elements that are separate from each other and the context model. The possibility

of manual in-use-adjustment (adaptability) by an end user is demonstrated through

the simple context model GUI shown in 7Figure 7-8.

In order to evaluate the architecture, the next sections will discuss how the

implementation can be adapted and extended to support other scenarios discussed

 272

in 7Chapter 6. How well the implemented architecture meets the requirements

described in Section 72.4.2 is then discussed.

Figure 7-9 Architecture of Context-aware System Based on Results from the

Design Tool

ATXML

userXML, toolsXML,

commXML, envXML,

 273

7.2 Applying the Prototype to the Scenarios Design

The architecture implemented in the previous section shows that implementation

of the architecture presented in 7Chapter 5, which is introduced by the design tool

as a result of adapting Activity Theory in the context model, is feasible. The

architecture supports the database structure as a result of the design process. The

next section will show how the simple and more complex applications mentioned

in 7Chapter 6 take advantage of this architecture in a ubiquitous computing

environment. This section is intended to demonstrate how the existing

functionalities in the prototype can be applied to the simple and more complex

applications in order to evaluate the system architecture.

7.2.1 Simple Tourist Guide and Conference Applications

The “tourist guide and conference assistant” scenario in 7Chapter 6 is used to

discuss the functionalities of the existing architecture implementation. This

section demonstrates the usability of the existing architecture in a different

domain, i.e. moving from the hospital domain to the conference domain. The next

section describes the potential for reusing or extending the context-aware system

from the existing architecture within the same domain.

Database

The Bluetooth, clock, context element databases and user profile can be reused in

the tourist guide and conference assistant application. This is because the same

level of data is required for each database. Even if the database requires extra

attributes in the database, it can easily be extended by adding XML code in the

database to represent each new attribute required in each context element via

simple extra lines of code in readXML.java and writeXML.java. The code is added to

allow the java class to be able to access (read/white) the new attributes in the

database. The existing sets of values will then be updated with the value, such as

 274

“unknown”, for new attribute unless the value is known. , . At the same time, the

Java code for that object is updated in order to add the new variable (i.e. add new

attribute value to the context element) to the object. Additional profiles required

in this scenario are map, folder and timetable profiles in order to hold information

about maps, folders and timetables available in the scenario. The XML (such as

maps.xml, folders.xml and timetables.xml) and Java (such as xmlMaps.java,

xmlFolders.java and xmlTimetables.java) code for these objects are created in order to

allow other code to access a set of values for each object. Similarly, the variables

in the object are chosen according to the design output tables (7Table 6-16, 7Table

6-17 and 7Table 6-18).

Sensor Engine Layer

From the existing databases developed in the previous section, the existing

architecture has a well structured concept of what sensors and profiles are to be

used in the system based on the design outputs. The sensor engine does not rely

on any sensors or profiles in particular as long as the information about context

elements available from any available sensors and profiles are received by sensor

engine in this layer. Sensor engine then passes the current information about

context elements to the context engine layer to get full current context model for

the application engine layer. The sensor engine layer does not directly interact

with application engine layer. The application does not know what sensors are

available to them and does not need to know. The databases are consistent and

separated from each other. This section describes how this architecture enables

the reuse and extension of the existing sensor engine layer for the conference

assistant scenario.

Sensors

From applying the design tool to the conference assistant scenario,

there are seven types of sensor, including the thermometer, Bluetooth,

 275

GPS, system clock and WiFi, to be used in the system according to the

design output in Section 76.1. In order to be able to acquire data from

new sensors that the existing implementation does not support, such as

thermometer, GPS and WiFi, the implementation of the code to request

raw data from each sensor has to be done separately in the appropriate

languages. The codes for the Bluetooth and Clock can easily be

reused. The codes for other sensors must be implemented with the

functions that allow any subscribed object to access the data similarly

to the existing method get() in the Bluetooth and Clock code.

For the data that cannot be sensed from sensors, new profiles such as

maps, timetables and folders profiles are created in XML in order to

store the values of the attributes in the profile following the design

output (see 7Table 6-16, 7Table 6-17 and 7Table 6-18). The database

structure of the context elements and context model in the existing

architecture can be reused as the information from sensors and profiles

are grouped in the same manner as in the prototype as a result of

following the context model and design tool.

Sensor Translators

The existing translators for clock and Bluetooth can be reused. Other

translators will have to be implemented. As mentioned previously, for

every new raw data that is received from a sensor, the data is

processed in order to get meaningful information. The first level of

processing data can often be to reduce noise in the data. For example,

instead of using one piece of raw data from the GPS, the developers

can design the code to collect a set of raw GPS data over some period,

say one minute, and use the average value. The second level of

processing data is the interpretation. The code is implemented to

 276

process the data for different sensors according to the design output

tables. For example, the processed GPS value is used to get

information about the building, area, town and country following the

design output table. As in the previous section, for other objects to

access the data, a method to provide communication between the

sensor or profile translator and other objects is implemented. In this

case, it is getGPS(), used to send the data about the current values of

the sensor to the subscribed object, where GPS is the name of the

sensor or profile.

Sensor Engine

In the sensor engine, the developers implement the code to assign the

values from the attributes from the new sensors and profiles to the

attributes in the different context elements, according to the design

outputs. New code to add new information from the new sensor is

required to assign the value to the variables in different context

elements. Following the design outputs, the values for the

environment object in 7Figure 7-10 are combined with the values from

the assigned sensors (Thermometer, Bluetooth and GPS) in 7Table 6-5.

For example, the processed GPS value is used to get information to

assign to the building, area, town and country attributes in the

environment database.

The method of deciding whether the information already exists in the database can

be reused. By using the best match algorithm, a set of values is then added or

updated in the environment database in order to get the ID of the environment

object.

 277

The code for translating information from the system clock can be reused. In order

to get value for the new attribute of Period of Day in the time database, the code

for transforming the time to the Period of Day is added as suggested during the

design step.

Identical to the existing implementation, for every unique tool detected by the

WiFi, Bluetooth and NRFID as discussed in 7Table 6-13, the tool object is assigned

the values for the attributes in the tool object for each detected device. The

discovered tool objects are then added or updated in the tool database in order to

get the ID of each tool object. The additional code is implemented for this

scenario in order for the sensor engine to be able to detect the availability of the

map, timetable and folder from the profiles. The discovered object is then added

to the tools object. In this case, following the design output, the value of the

environment element in the map profile is used to get the relevant map object for

the situation in order to get the ID for the map object.

The existing code can be reused to create the user objects for every unique user

detected by every detected tool such as WiFi, Bluetooth and NRFID. Similarly to

the tool, the user objects are then added or updated in the user database in order to

get the ID of each user object. The code for extracting the user object is therefore

extended by adding the information from other sensors aside from the Bluetooth in

the implemented architecture.

Similarly, the existing code combines the unique tools into the information for the

tool list, map list and name list attribute in the tools object that will be stored in the

tools database. Similarly for the community object, the detected user objects are

combined to obtain information for the attributes in the community database. As a

result of using the IDs to refer to object, the existing code for detecting unique IDs

from the tool and user objects can be reused. Also the code for getting the ID for

 278

both the tools object and community object from the tools database and community

database respectively can also be reused.

Other codes can then access the context element objects via the existing getUser()

method – where the User is the name of the element in the context model where

the sensor engine can gather its information.

 279

Figure 7-10 Diagram of the Architecture Supporting Scenario 1

ATXML

userXML, toolsXML,

commXML, envXML,

 280

Context Engine Layer

The reasoning process for finding the missing elements in the current context

model is done in a consistent manner by starting to find the role, rule, object and

outcome elements respectively. There is therefore no change required in the code

for the reasoning process about the context model. As a result, the existing

contextEngine.java can be reused in this scenario, and others.

Application Engine Layer:

The application engine used only the ID of the outcome element rather than

directly embedding the information about the current context model and reasoning

process in the application engine. As only the ID of the outcome in the AT object

is used, rather than “proprietary” information and reasoning process, the same

code can be reused to find the best match in the application database for the new

scenario. The existing code in the application engine for accessing the AT object

to gather the information required by the application can also be reused. This is

done, as mentioned previously, by using the getUserAt() method from readXML.java.

It passes the ID of the set of values in the context model; in this case it obtains the

user object of that reference user ID in the AT object. The application engine

gathers information required by the application in the same manner following the

context attribute from 7Table 6-27. Then the application engine either provides the

service to the user or selects information to be provided to the user in this

application engine layer.

Following the design outputs, new and existing applications can be used to support

the user in this scenario. For example, by using an existing application such as

Google Maps, the web browser opens the Google map with the user’s current

location on the left of the screen, this covers 50% of the screen and on the right of

the web browser is some small detail showing tourist information with a reference

point on the map. After the application engine decides what context-aware

 281

support to offer the user, it shows the application, for example a tourist attraction

where the map is opened using the web browser.

Thus, the implementation transfers well from supporting the features of the

hospital scenario for which it was originally created to supporting the relatively

simple conference assistant and tourist guide scenario. The existing code can be

reused on many occasions such as in existing sensor translators, sensor engine,

context model reasoning in context engine and accessing data from context model

in application engine. As a result of the designed architecture’s consistent and

well separated structure of the context elements and context model. In the next

section we look at extending the implementation to support further features within

the more complex hospital scenario.

7.2.2 Complex Hospital Scenario

The previous section suggested that on many occasions the existing code of

different methods in the implemented three layered architecture could be reused

for the conference assistant scenario. This is because of the consistent structure of

the databases and the systematic separation of dealing with different levels of

information in each layer in the architecture. Moreover, the predefined values in

the context elements and context model databases in the previous scenario can also

be reused. This section discusses the use of the implemented architecture in the

same domain for which the architecture was implemented in the first place but to

support different situations such as a Phone Book assistant. As the architecture

was implemented according to the design output for the complex hospital scenario,

the existing databases can be reused.

 282

Sensor Engine Layer

Sensors

According to the design output for the complex hospital scenario, the chosen

sensors include Bluetooth, GPS, clock and RFID. This is similar to the previous

scenario so the code for acquiring raw data for Bluetooth, GPS and clock can be

reused. In addition, code for acquiring data from the RFID is required. The RFID

is used to sense information about the community because the hospital can be a

busy space. A near range sensor such as RFID or finger print scan is required in

order to know the right community that has an influence on the user (Sara) in

different situations. A busy place like the hospital fills up with people who have

different reasons for being there (i.e. patient, visitor, relative, etc). In order for the

system to provide appropriate support for the receptionist, more precise

information about who she is currently dealing with is required. This may be

achieved with data from a short range sensor. The implementation of the code for

acquiring the data from the RFID is therefore required including the get() method

to provide the data accessibility to the subscribed object.

A new profile is required for the tools element in order to capture information

about the information available, as shown in 7Figure 7-11. As mentioned

previously, at the hospital access to information or tools is categorised into many

levels according to the responsibility of the users ranging from the patient,

receptionist, nurse to the doctor. As it is a complex environment, sensitive

information such as the patient’s database and x-ray results are not available to

everyone in the environment. The sensitive information limits access to certain

groups of people or just one particular person. For example, when the value of the

owner attribute is Private, it means only certain people are allowed to access the

information; e.g. the Pink Form that was created by the paramedic can be accessed

by the receptionist only when the paramedic arrives at the reception of A&E. The

attribute Owner is therefore required to be added to the Map profile and

 283

Information profile. By adding the attribute to the profiles, a few lines of code are

to be added to the readXML.java, writeXML.java and the code for profile objects in

order to represent the value of the new attribute in the database and object. These

codes can be used to update the database of the object to add the values for the

new attribute to the existing object in the database.

Sensor Translators

The translators for Bluetooth, GPS and clock can be reused. A new translator for

the RFID is required in order to transform the RFID data to the information for the

context elements. The raw data from the RFID can be taken as a reference ID to

find the information from the registered data in the RFID database. For example,

the RFID database stores the ID and name of the registered patients and

paramedics. The information is then assigned for the attributes in the user objects.

Similar to the previous scenario, if the values are new, they are then stored as a set

of values for the new RFID in the RFID database that is created and stored in

XML.

Sensor Engine

The sensor engine does not require large changes, apart from allowing the RFID

translator and information profile to be detected. New code for assigning the

values from the attributes in the RFID object to the attributes in the user object and

(if required) tool object is implemented. The codes for assigning the values from

Bluetooth and clock can be reused.

 284

Figure 7-11 Overview Architecture Supporting the Hospital Scenario

ATXML

userXML, toolsXML,

commXML, envXML,

RFID

 285

Context Engine Layer

With the consistent reasoning process of using the IDs of available context

elements to infer other elements in the current context model, there is no change

required in the code of the context engine. This is because the context engine only

deals with the values of the set of IDs and processes in the same manner to get the

values of the missing elements in the current context model. The reasoning

process is not directly embedded within an inconsistent set of information. There

are always 9 uniform elements in the context model where the context reasoning

process is occurred in order to infer user’s objective. The additional attributes in

the database do not affect the reasoning process code even though the new values

will be taken into account. Therefore contextEngine.java can be reused.

Application Engine Layer

Following the design output, the application engine takes the ID of the current

outcome element to infer about services to offer support to the user. The first

function of transforming the AT object to the information that the application

requires is the same as before.

The new situations to be supported in the hospital scenario require new

applications. The application requirements extracted for each situation during the

design stage are followed in order to implement the application. For example, the

Phone Book assistant can be extended from the previous check in patient in our

prototype PAS system by adding a method to pass the values to automatically fill

the form where possible. In this case, the tools element in the context model can

be used to get the name on the receipt. The name is then used to narrow down the

list shown in the phone book. Then the list can be shown on the GUI screen for

the user to check the phone number before she sends the message.

 286

This chapter so far has demonstrated the implementation of the Activity Theory

based architecture for context-aware systems and how it may be extended to

support new situations and scenarios. The next section discusses the architecture

functionalities with reference to the requirements of the context-aware system

architecture presented in Section 72.4.2.

7.2.3 How Each Requirement is Met or Not Met in the Scenarios

The requirements from Chapter 2 are discussed. Each individual requirement is

referred to in order to show how the architecture developed to support the use of

the context model is met or not met in:

 Supporting the separation of concerns

First of all, in the sensor engine, each sensor has its own code for acquiring raw

data. It is separated from the code for translating the raw data into a meaningful

set of information – sensor translator. Therefore when the new sensor such as a

RFID reader was added to the system for scenario 2, the code for acquiring the

data from the RFID and the RFID translator was added to the system without

having to change the other translation code which could be time consuming.

Moreover, the existing code for acquiring data from clock, GPS and Bluetooth and

the code for translating the data can easily be reused without rewriting the code –

this provides a plug and play ability.

Furthermore, the architecture supports the separation between the sensor database

and the context elements. As shown previously, each sensor has its own database

that holds information that can be translated from the sensor. Therefore the

information from the sensors or profiles can be reused in different scenarios or

domains without the process of remodelling or gathering. For example, the map

profile in Scenario 1 can easily be reused in a new scenario involving Sara, our

hospital receptionist, on a 3 day trip to Hamburg.

 287

Moreover, the clear separation between context elements in the context model

allows the developers efficiently to reuse the context elements in different

scenarios or domains. For example, information about the user (Henry) can be

reused in Scenario 1 to represent Henry attending the conference instead of Adam.

The history of context model in Scenario 1 can easily be reused for new user

Henry by replacing Adam’s ID with Henry’s ID in the user element of the history

of context model. As history of context model is used to infer user’s current

objective, by having the history of context model for Henry, it will save time for

new user like Henry. It will be even more useful when the information about the

element becomes more complex and time consuming to rewrite, such as the user

database which can contain further details such as a current action and the user’s

stability (moving fast, slow, still), etc. In addition, when there is a need to edit or

add a new attribute to the database, this can easily be done to the particular sensor

database, profile and context element without affecting other databases, e.g.

adding Owner attributes to the map profile in Scenario 2 from the map profile in

Scenario 1 or adding current actions in the user element, etc. This makes it easier

to reuse or extend information from the existing sensor database or context

element database.

 Providing a consistent structure of the context interpretation

Following the structured reasoning method about the situation based on the

context model and the ID referral approach, the code for reasoning about context

elements shows a consistent structure of the interpretation about context elements

and inference about the user’s current objective. Therefore the code for

interpretation about context elements in the context engine can easily be reused

with the databases created according to the context model during the design stage.

As shown before, the code in the context engine does not require any changes in

order to be used with new scenarios or domains – e.g. the hospital domain in

 288

Scenario 2. The architecture supports the consistent structure of the context

interpretation, therefore the code in the context engine can easily be reused.

Moreover, the database for the context model is separated from the database of

context elements. Therefore the context model can easily be reused. For example

the history of context model of Scenario 1 can be reused by adapting the

information about the user (Adam) to refer to a different user such as Sara from

Scenario 2 to represent Sara attending the conference. It allows easy access to

edit, add or remove items to the database without affecting other information or

without having the hassle of remodelling the context model.

 Providing a constant availability of context acquisition

As each sensor has its own acquiring code that has method get() that allows any

subscribed object to get the raw data from the sensor, the architecture allows

multiple objects to access the raw data from the sensors when they require.

Moreover, similarly to the method get(), the method getXXX() in the sensor

translator, sensor engine and context model allows any subscribe objects to access

the set of data of the sensor database (bluetoothXML), sensor engine (current

context information such as toolXML) and context element database (such as

userXML, commXML, toolsXML, etc.) respectively.

 Providing a consistent structure for the context storage and history

By separating the databases for the sensor, context elements and context model,

the architecture provides storage for each sensor, context element and context

model. The history of the sets of values can be stored uniformly in the database

following the attributes name. Moreover, the reasoning about the context is

represented uniformly in the context model database (ATsXML) as a history of

context about the situations. As the attributes in the context model database are

consistent following the elements in the context model, the values in the attributes

are the points of reference to the set of information about the context elements.

 289

The history of the context model is a consistent set of values of context elements

in the context model. As a result, together with the ID referral approach, the

modelling of information about the context elements or sensors can easily be

transformed without affecting the context model as long as it contains an ID

attribute. For example, for each context element, the XML database holds

different values in the attributes about the context object in the database.

The information can be transformed into OWL Web Ontology Language [2004],

which provides additional vocabulary along with formal semantics, in order to add

more relationships between attributes by following the attribute names in the

database. The values for the attributes in the context model database can then

refer to different points of values in the OWL ontology. By using the context

model in defining the template in OWL, it will provide the separation between

elements and context reasoning. The OWL templates will therefore provide a

uniform storage for context that can be reused in different projects instead of them

having their own templates. Similarly, the sensor data can be translated into

information that is described in OWL. The values in the attributes of the context

element can be referred to the point of information in OWL. The context model

separates the high level interpretation (inferring the user’s objective) from the

lower level interpretation so that the OWL templates can easily be extended,

reused and edited without affecting the other templates about the sensor, context

elements and context model. Furthermore, as shown previously, a value in the

attribute can be more meaningful, for example the number of people and time of

day do not have to be an exact number or time that is represented as a value of the

attribute. They can be referred to as “there are more than 20 people in the

community and it is lunch time” instead of “24 people in the community” and

“12.30pm”.

 290

 Providing a mechanism of resource discovery

In this architecture, the sensor engine layer contains code, startSensing(), that

detects all available sensors and profiles in the situation. It refers to a simple list

of context providers and subscribes to the ones available in the situation. The code

of startSensing() allows the system to gather information from different sensors.

Each sensor translator individually deals with translating the sensor data into

information of each value in the attribute in the context element. Therefore when

the information cannot be gathered from one sensor, other sensors can be used.

For example, WiFi and Bluetooth can be used to get information about Printer 2 as

shown in 7Table 6-14.

 Providing a mechanism of security and privacy.

The architecture here does not provide real mechanisms for security and privacy as

they are beyond the scope of this dissertation. However, there is a possibility of

using the rule element to add a security mechanism to the architecture. The rule

can be used to limit the access of the user to certain information or tools – like a

policy driven rule [Keeney and Cahill, 2003]. For example, only the user who has

a role as a nurse is able to access the PAS system. This provides security to the

PAS and the information that cannot be seen or accessed by others. Moreover, by

separating the information about a user in a user profile (7Table 6-11, 7Figure 7-12

and 7Figure 7-13), it can limit the access by, for example, saving the user profile in

the user’s personal device or allowing only the user who has the same ID as the

one on the user profile to access it.

 291

7.3 Context Frameworks Comparison

By using two scenarios to evaluate the architecture proposed by this research, the

previous section illustrates that the architecture meets the majority of the

requirements. Other requirements noted in chapter 2, such as security and privacy,

are beyond the scope of this dissertation. The architecture introduces the

separation between sensors, context, context reasoning and application.

Furthermore, the unique identity concept allows easy access, update and reuse of

values in the databases. With the well separated databases structure introduced by

the context model and the three layered architecture, the set of values in the

database can easily be edited without changes in other databases that refer to the

set of values. This is a huge advantage in cases such as new sensors, new types of

sensor, new applications or a new domain as the process of gathering context

information and predefining the context models can be a time consuming process.

Table 7-1 compares the capabilities of architectures based on different

frameworks. The chosen conditions to be used in comparing the frameworks are

based on the normal situations in context aware systems where there are often

changes in sensors, types of sensor, applications or domains.

Chapter 2 discussed different context aware frameworks including their ability to

cope with new sensors, new types of sensor and changes in rules of context

reasoning. Chapter 2 mentioned that previous frameworks cope well when a new

version of the same type of sensor is introduced to the system. However, the

previous frameworks require changes in the predefined context models in the

database whereas in this work it only affects lower levels of context in sensor

engine layer not the context model itself. So the context engine layer and

application engine layer are dealing with consistency of the context model.

Moreover, there are requirements in rewriting or recreating some part of the

architecture such as the aggregator and application in the context Toolkit project.

 292

This can be a time consuming and complicated process. Also, when there are new

applications or domains, the predefined context models in the database for the

system to be recognised are normally required to be changed or added. This

means there will be changes in rules within the context information or adding a

new rule for reasoning about context. But in this work the rules for reasoning

about context are only changed in lower levels of the context. The reasoning

process of context model is consistent according to the relationships between

context elements.

To create a set of predefined context models for the system to recognise the

situations to support the user, the designers have to spend a lot of time extracting

the models from the user requirements, and may not always get it right. Ideally,

the user should be able to edit and add a set of predefined context models in real

time while using the system. This process could take a long time. For example, in

the smart home, the user stores different settings such as curtains, heating and

lighting, for the context-aware system to recognise in different situations at

different time of the year. This means it could take the user a year before she

completes defining context models for the system. Therefore it will be difficult if

the user has to turn to developers every time there are new rules, applications or

domains. In this work, we hope the consistency in the context model will help

user build mental model about the system more easily. Through this

understanding and its uniform separation of concern capability, the user should be

able to extend the context values in the context model through a sufficient

interaction provided by the system. For example, through the GUIs that show the

current context model and information about each context element. This requires

intensive studies about such as representation of context for user and levels of

willingness from user to make correction etc.

 293

The context model and architecture proposed in this research introduce a clear

separation between sensor, context and its reasoning. The system then requires

minimum changes in the architecture. Therefore it is easier for the user herself to

deal with the changes in rules, applications or domain. This shows that the

architecture that supports the results from the design tool meets the requirements

quite well. Moreover, the architecture provides reusability in context history in all

four conditions that are used to evaluate the architecture in 7Table 7-1 (including

changes in sensor, add new sensor, changes in rules and add new set of rules). Our

architecture is referred as AT context framework in 7Table 7-1. Moreover, the

changes required to the system are minimal compared to the other frameworks.

However, the process of gathering information of context models from user’s

requirement and designing the profiles and databases can be complicated and time

consuming. This will be worthwhile in a long run because of being able to easily

expand and reuse these context models, profiles and database in the future. The

consistency of the context model introduced by Activity Theory helps the

developers and users in building a mental model of the system. The next chapter

summarises the research reported here and discusses future research that may be

conducted to further the field of context awareness based on this dissertation work.

 294

Table 7-1 Frameworks Comparison

Conditions Changes in sensor Add new type sensor Changes in rules Add new set of rule

Context
Frameworks

Context
rep/ User
context

conception

Context process/
Designer or

developercontext
conception

Reuse
history

Context rep/
User context
conception

Context process/
Designer or

developercontext
conception

Reuse
history

Context rep/
User context
conception

Context process/
Designer or

developercontext
conception

Reuse
history

Context rep/
User context
conception

Context process/
Designer or

developercontext
conception

Reuse
history

Gaia 2002 No changes change in cotext
provider yes change in

context model
change in context

model and hierachy no change in
context model

change in context
model and hierachy no change in

context model
change in context

model and hierachy no

CASS 2004 No changes change in sensor
node yes

change in
knowledge

base in
ruleEngine

change in knowledge
base in ruleEngine
and in each client

devices

no

change in
knowledge

base in
ruleEngine

change in knowledge
base in ruleEngine
and in each client

devices

no

change in
knowledge

base in
ruleEngine

change in knowledge
base in ruleEngine
and in each client

devices

no

Context

Toolkit 2000
No changes change in sensor

widget yes
change in
condition

model

change in condition
model and intepreter

& aggregator for
relevant applications

no
change in
condition

model

change in condition
model and intepreter

& aggregator for
relevant applications

no
change in
condition

model

change in condition
model and intepreter

& aggregator for
relevant applications

no

Hydrogen

2003
No changes change in

adapter n.a.
change in

contextObject
s

change in
contextObject in
contextClient for

relevant applications

n.a. change in
contextObjects

change in
contextObject in
contextClient for

relevant applications

n.a. change in
contextObjects

change in
contextObject in
contextClient for

relevant applications

n.a.

CORTEX No changes change in sensor
component yes

change in
context
hierachy

change in context
hierachy and

production rules
no

change in
context
hierachy

change in context
hierachy and

production rules
no

change in
context
hierachy

change in context
hierachy and

production rules
no

Context

Managing

Framework
No changes change in sensor

resource n.a.
change in
context

vocabulary

change in context
vocabulary and

labelling process
n.a.

change in
context

vocabulary

change in context
vocabulary and

labelling process
n.a.

change in
context

vocabulary

change in context
vocabulary and

labelling process
n.a.

SOCAM No changes change in sensor
provider yes change in

context model

change in knowledge
base and logic

reasoning rules in
interpretater

no change in
context model

change in knowledge
base and logic

reasoning rules in
interpretater

no change in
context model

change in knowledge
base and logic

reasoning rules in
interpretater

no

CoBrA No changes change in sensor
module yes change in

context model

change in knowledge
base and logic

reasoning rules in
context reasoning

engine

no change in
context model

change in knowledge
base and logic

reasoning rules in
context reasoning

engine

no change in
context model

change in knowledge
base and logic

reasoning rules in
context reasoning

engine

no

STU21 No changes change in sensor
agent yes change in

context model

change in knowledge
base and logic

reasoning rules in
context reasoning

engine

no No changes change in knowledge
base no change in

context model
change in knowledge

base no

AT Context

Framework
No changes change in

OldsensorEngine yes No changes change in Sensor
Engine

yes for AT
context

history &
unaffected

history

No changes

change in
sensorEngine or
Sensor Engine

(Depend on the type
of rule)

yes for
AT

context
history

&
unaffect

ed
history

No changes

change in
sensorEngine or
Sensor Engine

(Depend on the type
of rule)

yes for
AT

context
history

&
unaffect

ed
history

 295

Chapter 8

Conclusion and

Future Work

This chapter concludes the dissertation. It briefly reviews the three main aims of

the dissertation which include offering a new context model, design tool and

architecture for context-aware system design. Activity Theory was applied and

extended in developing our proposed context model because of a number of useful

features provided by its standard modelling. We developed a new design tool

based on the combination of our proposed context model and concepts introduced

by Activity Theory, such as its three levels of activity concept, in order to steer

context-aware system design away from a technology-driven approach and

towards a more generalisable yet concrete approach to context aware system

design. To support the functionalities that the context model and design tool

introduced to context-aware systems, we proposed a three layered implementation

architecture. Towards the end of this chapter, we suggest future research that

might further inform the field of context awareness.

 296

8.1 Dissertation Summary

8.1.1 Supporting Research and Practice in Context Awareness

This dissertation has discussed previous context definitions and classifications

(Chapter 2). It has shown that researchers in the field have different views about

context, what elements it should include and the relationships amongst those

elements. Moreover, from a review of previous context-aware projects, it has been

argued that developers often design and implement context aware systems with

greater reference to the features of specific technologies that are available to them,

rather than to user requirements. Users themselves often reject attempts at context

aware applications when they struggle to make sense of the system’s model of user

context, especially when the system gets it wrong. In order to support research

and practice in developing and using context-aware systems, we need to support

shared understandings and provide tools that allow designers, implementers and

users to understand, communicate about and represent context effectively,

efficiently and easily.

8.1.2 Aims

From the issues in context awareness and the requirements for a context model and

context-aware system architecture discussed in Chapter 2, we arrived at three main

aims that had to be achieved in order to develop better context-aware systems.

The aims addressed in this dissertation were:

 Providing a context model that is consistent and simple;

 Providing a new design tool to support context aware system

designers in focusing on the user’s requirements;

 Providing an architecture that complements the new design tool and

supports the implementation of consistent, reusable context-aware

system components.

 297

Example scenarios from different domains were used to investigate how the new

design tool and architecture meet their requirements. In the next section, we

review our contribution and the success of our approach in the areas mentioned

above. Then potential future improvements are discussed.

8.1.3 Context Model

In Chapter 3 we proposed Activity Theory for use in context modelling. Activity

Theory may be considered as a descriptive conceptual framework rather than

strictly a theory, proposing a simple triangular structure of human activity that

relates the seven elements (subject, mediating tools, community, rules, division of

labour, object and outcome) which it claims have an influence on a person’s

activity. Our use of Activity Theory introduces a consistent separation of context

elements and at the same time maintains a consistent set of relationships between

them. Such a treatment of context elements has not been proposed in the context

awareness field before.

We reviewed the features of our use of Activity Theory against the problems in

previous context definitions and classifications. At the end of Chapter 3 we

proposed a new context model. In our context model, a temporal dimension, “a

timeline”, is added to represent history, present and future in the Activity Theory

model. For each Activity Theory model on the timeline, it also includes

information on the environment and time that have an impact on the user’s

activity. By exploiting Activity Theory in our context model, it not only provides

a consistent set of context elements in the context model but also provides

systematic relationships between them. Therefore the history of each context

element can be stored separately from each other and from the history of context

models. The history of context elements and context model can be used in

inferring about the user in a consistent manner according to the consistent

 298

relationships in the context model rather than, for example, inconsistent embedded

rules in the context databases.

From the new context model, context is defined as: “Related sets of attributes of

information about the user, community, role, rule, tools, environment and time that

have an influence on the user in achieving her current objective or goal”.

8.1.4 Design Tool

Based on the proposed context model and Activity Theory concept, we suggested

a new design tool that is composed of six steps. These six steps are:

1. Nature of User Requirements

As stories and descriptions in scenarios, often themselves drawn from field

studies, are a main source of user requirements in ubiquitous computing , we

suggested that the designers concentrate on the requirements for the user in

different scenario-driven situations. A scenario was then created to show how

context awareness can support the user in each situation and particular activity.

2. Define Situations that Context Awareness Can Support

The context model was used by the designers to generate a simple structure of

each situation with possible functionalities of applications that support the user in

the situation. The simple structure of each situation which was represented as a

context model and the concept of three levels of activity in Activity Theory can be

used by the developers during implementation. The context model can be used

together with the descriptive scenario for the designers, implementers and users to

develop better shared understandings about the situation.

 299

3. From Situation to Elements in the Context Model

For each extracted situation, the definition of each element in the context model

guides the designers to make a decision about the information that should be used

for that element in order to infer about the user’s objective.

4. From Context Element to Sensors and Profiles

The results from step 3 may be used by the designers to discuss with the

implementers the possibilities for collecting and processing values from various

sensor technologies. The developers assign a sensor where possible and create

profiles for necessary information.

5. From Context Elements to Reasoning

The sets of values for context elements and context model are extracted from the

scenario for different situations. The values are stored in the databases for the

system to use during the inference process in real time against the current context

values. The relationships in the context model provide the developers with a well

structured reasoning process about undiscovered context elements (such as role,

rule, outcome context elements) and about the inference process for the user’s

current objective.

6. From Outcome Context to Selected Application and Context

From the defined outcome and functionalities of the application, the designers can

guide the implementers in developing an application that supports the

 300

functionalities. The functionalities can be passive or active computing that takes

information from the current context model where appropriate.

7Chapter 6 discussed how our context model meets the requirements for a design

tool introduced in Chapter 2. It then described the details of the design tool and

described how the context model is used and itself evolves as part of the process of

use, with a simple example of each step.

8.1.5 Architecture

Based on the design tool, we proposed a three layered context-aware system

architecture to support the facilities that were introduced by Activity Theory in the

context model. The architecture was described in 7Chapter 5. It included:

 The Sensor Engine Layer containing

o Sensors which provide the facility of acquiring raw data from

a particular sensor.

o Sensor translators that provide an interpretation of the raw

data or a set of raw data into less noisy and more meaningful

information, and store it in the sensor database.

o A Sensor engine that identifies what sensors and profiles are

available in different situations. It combines meaningful

information from different sensors and profiles to get values

for the attributes in different context elements.

 The Context Engine Layer which provides a reasoning process in

order to combine information from the available context elements to

get missing elements via the use of history of the context elements

and context models.

 301

 The Application Engine Layer which uses the IDs of the identified

context elements in the application database to gather relevant

information. The information is then used to determine the

representation of the application to the user. The application engine

then executes the chosen application with the relevant contextual

information for supporting the user, and also facilitates user

interrogation and refinement of the underlying context model.

7Chapter 7 discussed how our architecture meets the requirements introduced in

Chapter 2. It described the details of the architecture including how the data flows

in the architecture.

8.1.6 Scenarios

Chapter 6 demonstrated step by step how we used the six steps of the design tool

to transform a descriptive scenario into well structured sets of information – the

database structure to be used in the architecture. A simple conference assistant

scenario, which is a common scenario and has been used in previous context

awareness projects, and a more complex hospital reception assistant scenario were

used. In the more complex hospital scenario, the user is working under pressure

and various multiple tasks are associated with different roles of the user. The use

of the design tool was evaluated against the requirements proposed in Chapter 2.

The results from applying the design tool to two different scenarios illustrated how

the design tool could be used to simplify and systematise the design process in

both domains so that the designers could concentrate more on meeting the user’s

requirements.

Furthermore, the results from the design tool were used to implement a prototype

context-aware system including the architecture for the exemplar scenarios. This

demonstrated how the architecture implemented from the context model simplified

the process of adding support for a new situation or domain to the architecture.

 302

The clear separations between the context elements and the reasoning processes

allowed an easier process of reusing or remodelling context. The three layered

architecture also supported the separation between sensor acquisition and the

applications.

8.2 Applicability to Other Applications

Two scenarios from different domains were demonstrated. In general the design

tool and architecture can be used to support designers in any domains. The design

tool allows the designers and developers to communicate through a uniform

context model. The context model provides a clear separation between context

elements and consistent relationship between them. The designers can use it to

analyse the user requirement systematically. The system can them meet the user’s

requirement and extract context information accordingly. Although by avoiding

the technology driven approach, the developers require further effort and time to

design and develop profiles and databases to provide information that the system

requires where the technology is not available yet. This will be worthwhile when

the system can be expanded and reused more easily in the future.

In order to apply the design tool output, the developers have to use our architecture

in order to take full advantages of the design output. For example, the architecture

provides a separation of concerns. The clear separation between sensor data and

the context elements allows developers to change the methods of processing or

interpreting the data from the sensors. Therefore developers who use different

algorithms in interpreting the raw data will be assisted by the use of the design tool

as they can plug in their algorithm into our sensor translator without affecting the

other parts. For example, instead of using raw data from GPS in the sensor object,

an algorithm for getting a mean value of the GPS data over 10 seconds could be

added to the sensor object. There will be no consequent change in other parts of

 303

the architecture. Similarly, instead of using attribute-value tuples to reason about

the context model, the developer can use new algorithms or methods for reasoning

about the context model such as fuzzy logic, forward and backward chaining rule

engine or 4-ary predicates.

8.3 Future Work

8.3.1 Improve the Reasoning Algorithm

As noted previously, context has different properties, some more persistent than

others. Activity Theory introduces a separation between consistent elements that

influence the user’s activity. Consequently, the context model separates the

context into these consistent context elements with different properties. There is

potential for using such properties in the reasoning process. In this work we use a

simple best match function which compare characters of the attribute values. The

more advanced techniques such as fuzzy logic, forward and backward chaining

rule engine should be studied in order to improve the efficiency in reasoning

process. For example, for the rule based logical inference, a weighting system of

different types of context could be used, with different weights being applied for

context elements that have different properties. Further analysis could be done to

investigate if this approach improves the efficiency of the system. If it does, more

research should be conducted to determine how each property should be applied.

8.3.2 Security and Privacy

The architecture here does not provide a real mechanism for security and privacy.

However, as Activity Theory emphasises the division of labour and role concepts,

there are possibilities of using rules and role elements to add security and privacy

mechanisms to the architecture. Rules can be used to limit the access of the user

to certain information or tools – cf. policy driven rules [Keeney and Cahill, 2003].

 304

In addition, as the context element and profile databases are clearly separated, the

user can choose to store private information such as the user’s profile where they

think it will be safe, as long as they notify the system where it is. For example, the

user may not want to share her medical record with the public so she could move it

to a trusted device or space (such as secure file servers). The user then notifies the

system (i.e. updates the user’s profile database) where the resource of the medical

record is now stored.

8.3.3 Context Model Representation

The user’s mental model [Johnson-Laird, 1983; Payne, 2003] of the system is

important for the user to be able to interact with the system efficiently. The user

interface and the representation to the user of the current context model that is

influencing the decisions of the system should be further analysed. These are

potentially very useful supports for the user’s model and the system’s model to be

consistent, or at least for the user and the system to have some understanding of

where their models differ. There are many possible ways of representing

information about the system’s context model. For example, the context model

diagram based on Activity Theory’s triangular model, photos, cartoons, tables or

lists. The different methods should be evaluated and compared in order to

investigate how each method influences the user’s understanding of the system.

8.3.4 Real Time Efficiency Improvements Involving Users

As described in 7Chapter 6 and 7Chapter 7, the design tool and architecture support

the possibility of real time efficiency improvements that involve users. Further

investigation could be carried out into this. First of all, as suggested by Section

8.3.3, different methods of context representation should be studied in order to

 305

support the user in giving feedback or correcting mistakes made by the context-

aware system. Secondly, the impact on user experience of improving the context

reasoning in real time should be studied. Thirdly, the possibility of allowing users

to add new events to the context history should be studied. By allowing users to

add their own events, they can extend the use of the system to meet their needs.

8.3.5 Coping with Limited Storage Space

As there is, however large, a limit to storage space, it is not feasible to store all

available context. Therefore, methods of prioritising context for storage should be

considered. For example, the frequency and recency of context data should be

taken into account so that old and least used data can be downgraded or removed

from the database. Concepts such as LRFU (Least recently/Frequently Used)

policy [Lee, et al., 2001] can be added as a new attribute in each structured

database in our context architecture. The LRFU value can be stored for each

dataset in the database. For every new dataset, the LRFU values of existing

datasets are compared and the dataset with the least frequency and least recently

used is replaced with the new dataset. Further research should be done in order to

find a range of suitable methods for increasing context storage efficiency.

8.3.6 Integrating Our Design Tool with Other Design Mechanisms

Our design tool can be divided into two parts. First, design tool (step 1-2 and 6)

provides consistent steps for designers to model the system to support the user in a

context awareness manner. Second, design tool (step 3-5) provides a uniform

model for transforming user’s requirement into context model. It will advance the

system design process if the design tool is studied further in order to be applied to

existing 2language for 2software modelling and designing such as Unified Modeling

Language (UML) and object-modelling technique (OMT). As discussed in

Section 73.3, Activity Modelling extends Usage-Centred Design by introducing

new notations which are related to the Unified Modeling Language (UML) used in

 306

software engineering [Fowler and Scott, 1997]. It demonstrates the possibility of

using first part of our design tool with UML for software modelling and designing.

This could leads to the further studies of multiusers system.

8.3.7 Relating Our Framework with Others Approaches

Our context-aware system architecture provides the separation of concern between

3 layers and databases. Each layer has its own different objects to handle different

tasks. The sufficient in dividing tasks in the architecture should be studied further.

The uniform separation should be able to apply to different approaches. The

relevant of different approaches such as Aspect-oriented programming (AOP),

multi-agent system (MAS) and service-oriented architecture (SOA)) should be

investigated in order to further the efficient of the architecture.

8.4 Conclusion

This dissertation presents a context model and design tool that adopt the consistent

simple triangular structure of human activity proposed by Activity Theory, in

order to facilitate shared understandings about context and context reasoning

amongst designers, developers and users. The standard model provided by

Activity Theory was extended to include a temporal dimension in order to model

the history of context. The resulting context model not only offers a consistent set

of context elements. It also provides consistent context reasoning through the

model. In order to support the facilities introduced by the context model and

design tool a three layered implementation architecture was introduced. It

provides separation between objects that deal with different types of context, with

different properties, and the context reasoning. As a result, the context can be

reused or remodelled for different domains with relative ease. Through two

example scenarios, the context model, design tool and implementation architecture

 307

have been demonstrated and evaluated against the requirements which we have

proposed for them.

 308

 309

References

Abowd, G., Atkeson, C., Aust, D., and Long, S. (1996). Cyberguide: Prototyping

Context-Aware Mobile Applications. In Proceedings of the Human Factors

in Computing Systems (CHI), ACM Press, Vancouver, BC Canada. 293-

294.

Abowd, G. D., and Dey, A. K. (2000). CybreMinder: A Context-Aware System for

Supporting Reminders. In Proceedings of the Second Int. Symposium on

Handheld and Ubiquitous Computing (HUC), Springer Verlag, Bristol,

UK. 172-186.

Agarawala, A., Greenberg, S., and Ho, G. (2004). The Context-Aware Pill Bottle

and Medication Monitor. In Proceedings of the Sixth International

Conference on Ubiquitous Computing, Nottingham, England.

Aizawa, K., Hori, T., Kawasaki, S., and Ishikawa, T. (2004). Capture and Efficient

Retrieval of Life Log. In Proceedings of the Pervasive Workshop on

Memory and Sharing Experiences, Vienna, Austria. 15-20.

Antifakos, S., Schiele, B. and Holmquist, L. E. (2003) Grouping Mechanisms for

Smart Objects Based On Implicit Interaction and Context Proximity. In

Proceedings of UBICOMP 2003 Interactive, 207-208.

Aoki, P. M., Grinter, R. E., Hurst, A., Szymanski, M. H., Thornton, J. D., and

Woodruff, A. (2002). Sotto Voce: Exploring the Interplay of Conversation

 310

and Mobile Audio Spaces. In Proceedings of the Human Factors in

Computing Systems (CHI), ACM Press, Minneapolis, MN. 431-438.

Bai, Y., Ji, H., Han, Q., Huang, J., and Qian, D. (2007). MidCASE : A Service

Oriented Middleware Enabling Context Awareness for Smart Environment.

In Proceedings of the International Conference on Multimedia and

Ubiquitous Engineering (MUE), Seoul, Korea. 946-951.

Baldauf, M., Dustdar, S., and Rosenberg, F. (2006). A Survey on Context-Aware

systems. International Journal of Ad Hoc and Ubiquitous Computing 2,

263-277.

Baldwin, D. A. and Baird, J. A. (2001). Discerning intentions in dynamic human

action. Trends in Cognitive Sciences, 5(4), 171-178. Becker, C., and

Nicklas, D. (2004). Where do spatial context-models end and where do

ontologies start? A proposal of a combined approach. In Proceedings of the

First International Workshop on Advanced Context Modelling, Reasoning

and Management in conjunction with UbiComp, Nottingham, England.

Barkhuus, L. and Dey, A. (2003). Is context-aware computing taking control away

from the user? Three levels of interactivity examined. In Proceedings of

Ubicomp 2003, 149-156.

Bellotti, V., and Edwards, K. (2001). Intelligibility and Accountability: Human

Considerations in Context-Aware Systems. Journal of Human-Computer

Interaction 16, 193-212.

Benerecetti, M., Bonifacio, M., and Bouquet, P. (2001). Distributed Context-

Aware Systems. Human-Computer Interaction 16, 213-228.

 311

Benford, S., Anastasi, R., Flintham, M., Drozd, A., Crabtree, A., and Greenhalgh,

C. (2003). Coping with uncertainty in a location-based game. IEEE

Pervasive Computing 2, 34-41.

Biegel, G., and Cahill, V. (2004). A Framework for Developing Mobile, Context-

aware Applications. In Proceedings of the Second IEEE Annual

Conference on Pervasive Computing (PerCom). 361 - 365.

Brown, B., and Randell, R. (2002). Building a context sensitive telephone: Some

hopes and pitfalls for context sensitive computing. Glasgow Context Group

1st Symposium, Building Bridges: Interdisciplinary Context-Sensitive

Computing

Brown, P. J. (1996). The Stick-e Document: A Framework for Creating Context-

Aware Applications. In Proceedings of the Electronic Publishing. 259-272.

Bucur, O., Beaune, P., and Boissier, O. (2005). Representing context in an agent

architecture for context-based decision making. In Proceedings of the

Workshop on Context Representation and Reasoning (CRR’05), Paris,

France.

Capra, L., Emmerich, W., Mascolo, C., and Zachariadis, S. (2001). Towards a

Mobile Computing Middleware: A Synergy of Reflection and Mobile Code

Techniques. In Proceedings of the 8th IEEE Workshop on Future Trends of

Distributed Computing Systems, Bologna, Italy. 148-154.

Carroll, J. M. (1999). Five Reasons for Scenario-Based Design. In Proceedings of

the Thirty-Second Annual Hawaii International Conference on System

Sciences, IEEE Computer Society, Maui, HI, USA.

 312

Chalmers, D., and Sloman, M. (1999). QoS and Context Awareness for Mobile

Computing. In Proceedings of the Handheld and Ubiquitous Computing,

First International Symposium (HUC), Springer, Karlsruhe, Germany. 380-

382.

Chalmers, D., Dulay, N., and Sloman, M. (2004). A framework for contextual

mediation in mobile and ubiquitous computing applied to the context-

aware adaptation of maps. Personal and Ubiquitous Computing 8, 1-18.

Chalmers, M. (2004). A Historical View of Context. The Journal of Collaborative

Computing: Computer Supported Cooperative Work 13, 223-247.

Chen, G., and Kotz, D. (2000). A Survey of Context-Aware Mobile Computing

Research (Report Number TR2000-381). Dartmouth College, Department

of Computer Science, UK.

Chen, H., Finin, T., and Joshi, A. (2003). An Ontology for Context Aware

Pervasive Computing Environments, Acapulco, Mexico.

Connolly, D., van Harmelen, F., Horrocks, I., McGuinness,D. L., Patel-Schneider,

P. F. and Stein, L. A. (2001) "DAML+OIL (March 2001) Reference

Description," http://www.daml.org/2001/03/daml+oil-index

Constantine, L. L. (1995). Essential Modeling: Use Cases for User Interfaces.

Interactions 2, 34-46.

Constantine, L. L. (1998). Abstract Prototyping. Software Development 6,

Constantine, L. L. (2006). Activity Modelling: Toward a Pragmatic Integration of

Activity Theory with Usage-Centered Design. Laboratory for Usage-

Centered Software Engineering.

 313

Conway, A. S. M. (2006). Survey of Context aware Frameworks. – Analysis and

Criticism. The University of North Carolina, Chapel Hill.

Crowley, J. (2006). Situation Models for Observing Human Activity. ACM

Crystal, A., and Ellington, B. (2004). Task analysis and human-computer

interaction: approaches, techniques, and levels of analysis. In Proceedings

of the Tenth Americas Conference on Information Systems (AMCIS), New

York, NY.

Davies, N., Cheverst, K., Mitchell, K., and Efrat, A. (2001). Using and

Determining Location in a Context-Sensitive Tour Guide. IEEE Computer

34, 35-41.

Derntl, M., and Hummel, K. A. (2005). Modeling context-aware e-learning

scenarios. In Proceedings of the Pervasive Computing and

Communications Workshops, PerCom 2005. 337 - 342.

Desmet, B., Vallejos, J., Costanza, P., and Hirschfeld, R. (2007). Layered design

approach for context-aware systems. In Proceedings of the First

International Workshop on Variability Modelling of Software-Intensive

Systems (VaMoS 2007), Limerick, Ireland.

Dey, A. K., and Abowd, G. D. (1999). Toward a Better Understanding of Context

and Context-Awareness (Report Number GITGVU -99-22). Georgia

Institute of Technology, Atlanta, GA, USA.

Dey, A. K., Salber, D., Futakawa, M., and Abowd, G. D. (1999). An Architecture

to Support Context-Aware Applications. Georgia Institute of Technology.

 314

Dey, A. K. (2000). Providing Architectural Support for Building Context-Aware

Applications, College of Computing, Georgia Institute of Technology.

Dey, A. K. (2001). Understanding and Using Context. Personal and Ubiquitous

Computing 5, 4-7.

Dey, A. K., Abowd, G. D., and Salber, D. (2001). A Conceptual Framework and A

Toolkit for Supporting the Rapid Prototyping of Context-Aware

Applications. Human-Computer Interaction 16, 97-166.

DirectGov. (2005). Percentage of households with selected consumer durables,

Expenditure and Food Survey, Office for National Statistics, UK.

http://www.statistics.gov.uk/cci/nugget.asp?id=868Dix,

A., Rodden, T., Davies, N., Trevor, J., Friday, A., and Palfreyman, K. (2000).

Exploiting Space and Location as a Design Framework for Interactive

Mobile Systems. ACM Transactions on Computer-Human Interaction 7,

285–321.

Dong, J. S., Feng, Y., Sun, J., and Sun, J. (2006). Context Awareness Systems

Design and Reasoning. In Proceedings of the Second International

Symposium on Leveraging Applications of Formal Methods, Verification

and Validation (ISoLA), Paphos, Cyprus. 335-340.

Dourish. P. (2004) What we talk about when we talk about context. Personal and

Ubiquitous Computing, 8(1), 19–30.

Dreyfus, H. (2001). On the Internet: Thinking in Action. Routledge, London, UK.

Engeström, Y. (1987). Learning by expanding: An activity-theoretical approach to

developmental research (Helsinki, Orienta-Konsultit).

 315

Engeström, Y., Miettinen, R., and Punamäki, R. L., eds. (1999). Perspectives on

Activity Theory. Cambridge University Press.

Fahy, P., and Clarke, S. (2004). CASS – Middleware for Mobile Context-Aware

Applications. In Proceedings of the Mobisys, Boston, USA.

Flintham, M., Anastasi, R., Benford, S., Hemmings, T., Crabtree, A., Greenhalgh,

C., Rodden, T., Tandavanitj, N., Adams, M., and Row-Farr, J. (2003).

Where on-line meets on-the-streets: experiences with mobile mixed reality

games. In Proceedings of the Human Factors in Computing Systems (CHI),

ACM Press, Florida. 569-576.

Fowler, M., and Scott, K. (1997). UML Distilled. Addison-Wesley, Reading, MA.

Gay, G., and Hembrooke, H. (2004). Activity - Centered Design : an ecolgical

approach to designing smart tools and usable systems. MIT Press,

Cambridge, Massachusetts.

Gellersen, H.-W., Schmidt, A., and Beigl, M. (2002). Multi-Sensor Context-

Awareness in Mobile Devices and Smart Artefacts. Mobile Networks and

Applications 7, 341-351.

Giarratano, J., Riley, G., and Riley, G. D. (2004). Expert Systems: Principles and

Programming. Course Technology Ptr.

Gonzalez, A. J., and Ahlers, R. (1999). Context-Based Representation

of Intelligent Behaviour in Training Simulations. Transactions of the Society for

Computer Simulation International 15,

Goodwin, C., and Duranti, A. (1992). Rethinking context: an introduction.

Cambridge University Press.

 316

Grant, S. (1992). A context model needed for complex tasks. Mental Models and

Everyday Activities: Proceedings of the Second Interdisciplinary Workshop

on Mental Models, Cambridge, England, 94-102.

Greenberg, S. (2001). Context As A Dynamic Construct. Human Computer

Interaction 16, 257-268.

Gu, T., Pung, H. K., and Zhang, D. Q. (2004). A middleware for building context-

aware mobile services. In Proceedings of the IEEE 59th Vehicular

Technology Conference (VTC), Milan, Italy. 2656 - 2660.

Haghighat, A., Lopes, C. V., Givargis, T., and Mandal, A. (2004). Location-Aware

Web System. In Proceedings of the OOPSLA, Vancouver.

Hariharan, R., and Toyama, K. (2004). Project Lachesis: Parsing and Modeling

Location Histories. Geographic Information Science 106-124.

Helal, S., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., and Jansen, E.

(2005). The Gator Tech Smart House: A Programmable Pervasive Space.

Computer 38, 50-60.

Helander, J. (2005). Exploiting Context Histories in Setting up an e-Home. In

Proceedings of the 1st International Workshop on Exploiting Context

Histories in Smart Environments, Munich, Germany.

Henricksen, K., Indulska, J., and Rakotonirainy, A. (2002). Modeling Context

Information in Pervasive Compututing Systems. In Proceedings of the

Pervasive Computing, Springer, Zurich, Switzerland,. 167-180.

 317

Henrickson, K. (2003). A framework for context-aware pervasive computing

applications, School of Information Technology and Electrical

Engineering,, The University of Queensland.

Hertzog, P., and Torrens, M. (2004). Context-aware mobile assistants for optimal

interaction: a prototype for supporting the business traveler. In Proceedings

of the 9th international conference on Intelligent user interface, ACM

Press, Funchal, Madeira, Portugal. 256-258.

Hinze, A., and Viosard, A. (2003). Location- and time-based information delivery

in tourist. In Proceedings of the Advances in spatial and temporal databases

(SSTD), Springer. 489-507.

Hofer, T., Schwinger, W., Pichler, M., Leonhartsberger, G., and Altmann, J.

(2003). Context-Awareness on Mobile Devices - the Hydrogen Approach.

In Proceedings of the 36th Hawaii International Conference on System

Science (HICSS), IEEE Computer Society, Waikoloa, Big Island, Hawaii,

USA. 292-301.

Hopper, A., Jones, A., and Ward, A. (1997). A New Location Technique for the

Active Office. IEEE Personnel Communications 4, 42-47.

Hsu, J.-M., Wu, W.-J., and Chang, I.-R. (2007). Ubiquitous Multimedia

Information Delivering Service for Smart Home. In Proceedings of the

Multimedia and Ubiquitous Engineering (MUE). 341-346.

Hull, R., Bedford-Roberts, J., and Neaves, P. (1997). Towards Situated

Computing. In Proceedings of the First Int. Symposium on Wearable

Computers, IEEE Computer Society Press, Cambridge, Massachusetts.

146-153.

 318

Ipiña, D. L. d. (2001). An ECA Rule-Matching Service for Simpler Development

of Reactive Applications. In Proceedings of the Middleware 2001.

Jameson, A., and Klöckner, K. (2005). User Multitasking with Mobile Multimodal

Systems. In Spoken Multimodal Human-Computer Dialogue in Mobile

Environments (Minker, W., Bühler, D., and Dybkjær, L., eds.), pp. 349-

377. Springer, Netherlands.

Jiang, X., Chen, N. Y., Hong, J. I., Wang, K., Takayama, L., and Landay, J. A.

(2004). Siren: Context-aware Computing for Firefighting. In Proceedings

of the Second International Conference on Pervasive Computing

(Pervasive), Vienna, Austria. 87-105.

Johnson-Laird, P. N. (1983). Mental models. Cambridge University Press,

Cambridge.

Kaenampornpan, M., and O'Neill, E. (2004a). Modelling context: an Activity

Theory approach. In Proceedings of the Ambient Intelligence: Second

European Symposium (EUSAI), Springer, Eindhoven, The Netherlands.

367-374.

Kaenampornpan, M., and O'Neill, E. (2004b). An Integrated Context Model:

Bringing Activity to Context. In Proceedings of the First International

Workshop on Advanced Context Modelling, Reasoning and Management.

In conjunction with The sixth international UbiComp Conference.,

University of Southampton, Nottingham, England. 17-21.

Kaptelinin, V., and Nardi, B. (1997). Activity Theory: Basic Concepts and

Application. In Proceedings of the CHI, Los Angeles.

 319

Keeney, J., and Cahill, V. (2003). Chisel: A policy-driven, Context-aware,

dynamic Adaptation framework. In Proceedings of the Fourth IEEE

International Workshop on Policies for Distributed Systems and Networks

(POLICY), Lake Como, Italy. 3-14.

Kim, E., Plummer, M., Hiltz, S. R., and Jones, Q. (2007). Perceived Benefits and

Concerns of Prospective Users of the SmartCampus Location-Aware

Community System Test-bed. In Proceedings of the 40th Annual Hawaii

International Conference on System Sciences (HICSS), Waikoloa, HI. 19.

Kim, S. W., Kim, M. C., Park, S. H., Jin, Y. K., and Choi, W. S. (2004). Gate

reminder: a design case of a smart reminder. In Proceedings of the

Designing interactive systems: processes, practices, methods, and

techniques, ACM Press, Cambridge, MA, USA.

Korpipää, P., Mäntyjärvi, J., Kela, J., Keränen, H., and Malm, E.-J. (2003).

Managing Context Information in Mobile Devices. Pervasive Computing

42-51.

Kostakos, V., and O'Neill, E. (2003). A directional stroke recognition technique

for mobile interaction in a pervasive computing world, People and

Computers XVII. In Proceedings of the HCI: Designing for Society, Bath,

UK. 197-206.

Kröner, A., Heckmann, D., and Wahlster, W. (2006). SPECTER: Building,

Exploiting, and Sharing Augmented Memories. In Proceedings of the

Knowledge Sharing for Everyday Life (KSEL), Kyoto, Japan.

Kuutti, K. (1995). Activity Theory as a potential framework for human-computer

interaction research. In Context and conciousness: Activity Theory and

 320

human computer interaction (Nardi, B., ed, pp. 17-44. MIT Press,

Cambridge.

Lee, D., Choi, J., Kim, J.-H., Noh, S. H., Min, S. L., Cho, Y., and Kim, C. S.

(2001). LRFU: A Spectrum of Policies that Subsumes the Least Recently

Used and Least Frequently Used Policies. IEEE Transctions on Computer

50, 1352-1361.

Lee, D., and Meier, R. (2007). Primary-Context Model and Ontology: A

Combined Approach for Pervasive Transportation Services. In Proceedings

of the Fifth Annual IEEE International Conference on Pervasive

Computing and Communications Workshops (PerCom), White Plains, NY.

Leontiev, A. N., ed. (1979). The problem of activity in psychology. Sharpe, New

York.

Lieberman, H., and Selker, T. (2000). Out of context: Computer Systems that

Adapt to, and Learn from, Context. IBM Systems Journal 39, 617-632.

Little, L., Briggs, P., and Cventry, L. (2003). An Activity Theory Approach to

Technology Use in Public Areas: The case of the ATM. In Proceedings of

the 17th British HCI Annual Conference, Bath. 45-48.

Lucas, P. (2001). Mobile Devices and Mobile Data-Issues of Identity and

Reference. Human-Computer Interaction 16, 323-336.

Lueg, C. (2001). On context-aware artifacts and socially responsible design. In

Proceedings of the Annual Conference of the Computer Human Interaction

Special Interest Group of the Ergonomics Society of Australia. 84-89.

 321

Lueg, C. (2002). On the Gap between vision and feasibility. In Proceedings of the

Pervasive computing, Springer Lecture Note in Computer science (LNCS

141), Zurich, Switzerland. 45-57.

Lukkari, J., Korhonen, J., and Ojala, T. (2004). SmartRestaurant: mobile payments

in context-aware environment. In Proceedings of the the 6th international

conference on Electronic commerce, ACM Press, Delft, The Netherlands.

575-582.

Luyten, K., and Coninx, K. (2004). ImogI: Take Control over a Context-Aware

Electronic Mobile Guide for Museums. In Proceedings of the HCI in

Mobile Guides, in conjunction with Mobile HCI, Glasgow, Scotland.

Mappin, D. A. (2000). Edpy 597: Advanced Instructional Design - Diving Deeper.

University of Alberta.

Mayrhofer, R. (2005). Context Prediction based on Context Histories: Expected

Benefits, Issues and Current State-of-the-Art. In Proceedings of the 1st

International Workshop on Exploiting Context Histories in Smart

Environments, Munich, Germany.

McCrickard, D. S., Chewar, C. M., Somervell, J. P., and Ali, N. (2003). A model

for notification systems evaluation—assessing user goals for multitasking

activity. In Proceedings of the TOCHI, ACM Transactions on Computer-

Human Interaction. 312-338.

McGuinness, D. L., and Harmelen, F. v. (2004). OWL Web Ontology Language

Overview. W3C.

Meier, R. e., and Cahill, V. (2003). Exploiting Proximity in Event-Based

Middleware for Collaborative Mobile Applications. In Proceedings of the

 322

4th IFIP International Conference on Distributed Applications and

Interoperable Systems (DAIS), Springer-Verlag Heidelberg, Germany.

Minker, W., Dybkjaer, L., and Buhler, D. (2005). Spoken Multimodal Human-

Computer Dialogue in Mobile Environments. Kluwer Academic

Publishers.

Mobile Data Association. (2006). Press Releases: Latest Statistics. MDA Press

Office.

Mohr, P., Timmis, J., and Ryan, N. (2005). Immune Inspired Context Memory. In

Proceedings of the 1st International Workshop on Exploiting Context

Histories in Smart Environments, Munich, Germany.

Mori, G., PaternoÁ, F., and Santoro, C. (2002). CTTE: Support for Developing

and Analysing Task Models for Interactive System Design. IEEE

Transactions on Software Engineering 28, 797-813.

Morse, D., Pascoe, J., and Ryan, N. (1997). Enhanced Reality Fieldwork: The

Context-Aware Archeological assistant. Computer Applications in

Archeology

Muñoz, M. A., Rodríguez, M., Favela, J., Martinez-Garcia, A. I., and González, V.

M. (2003). Context-Aware Mobile Communication in Hospitals. Computer

36, 38-46.

Norman, D. A., ed. (1983). Some Observations on mental models. L. Erlbaum

Associates.

 323

O'Hara, K., Glancy, M., and Robertshaw, S. (2008) Understanding collective play

in an urban screen game. CSCW '08: Proceedings of the ACM conference

on Computer supported cooperative work, CA, USA. 67-76

O'Hara, K., Perry, M., Churchill, E. and Russell, D. (2003) Public and Situated

Displays: Social and interactional aspects of shared display technologies.

Kluwer.

O'Neill, E., and Johnson, P. (2004). Participatory Task Modelling: users and

developers modelling users' tasks and domains. In Proceedings of the

TAMODIA, 3rd International Workshop on task models and diagrams for

user interface design, ACM Press, Prague, Czech Republic.

O’Neill, E., Kaenampornpan, M., Kostakos, V., Warr, A., and Woodgate, D.

(2006). Can we do without GUIs? Gesture and speech interaction with a

patient information system. Personal and Ubiquitous Computing 10, 269-

283.

O'Neill, E., Woodgate, D., and Kostakos, V. (2004). Easing the wait in the

emergency room: building a theory of public information systems. In

Proceedings of the Designing interactive systems: processes, practices,

methods, and techniques, ACM Press, Cambridge, MA, USA. 17 - 25.

Oh, Y. S., Yoon, H. S., and Woo, W. T. (2006). Simulating Context-Aware

Systems based on Personal Devices. In Proceedings of the International

Symposium on Ubiquitous VR (ISUVR). 49-52.

Oviatt, S., Coulston, R., and Lunsford, R. (2004). When Do We Interact

Multimodally? Cognitive Load and Multimodal Communication Patterns.

In Proceedings of the ICMI. 129-136.

 324

Paganelli, F., and Giuli, D. (2007). An Ontology-Based Context Model for Home

Health Monitoring and Alerting in Chronic Patient Care Networks. In

Proceedings of the 21st International Conference on Advanced Information

Networking and Applications Workshops, IEEE Computer Society. 838-

845.

Park, D. G., Kim, J. K., Sung, J. B., Hwang, J. H., Hyung, C. H., and Kang, S. W.

(2006). TAP: touch-and-play. In Proceedings of the Human Factors in

Computing Systems, ACM Press, Montréal, Québec, Canada. 677-680.

Pascoe, J. (1998). Adding Generic Contextual Capabilities to Wearable

Computers. In Proceedings of the 2nd International Symposium on

Wearable Computers, IEEE Computer Society, Pittsburgh, PA. 92-99.

Paternò, F. (1999). Model-based design and evaluation of interactive applications.

Springer-Verlag, London.

Payne, S. J. (2003). Users' Mental Models: The Very Ideas. In HCI Models,

Theories, and Frameworks Toward a Multidisciplinary Science (Carroll, J.

M., ed, pp. 27-54. Morgan Kaufmann, San Francisco.

Pfeifer, R., and Rademakers, P. (1991). Situated adaptive design: Toward a

methodology forknowledge systems development. In Proceedings of the

Verteilte Kunstliche Intelligenz und kooper-atives Arbeiten: 4.

Internationaler GI-Kongress Wissensbasierte Systeme, Springer-Verlag,

Berlin.

Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S., and Carey, T. (1999).

Human-Computer Interaction. Addison-Wesley.

 325

Pylyshyn, Z. W. (1987). The robot’s Dilemma: the frame problem in artificial

intelligence. Publishing Corporation, Norwood, NJ.

Pyramid Research. (2005). Wi-Fi Gaining Traction. businessweek.com.

Roberts, G., Meng, X., and Dodson, A. (2005). Using adaptive filtering to detect

multipath and cycle slips in GPS/Accelerometer bridge deflection

monitoring data. In Proceedings of the ISGPAP??

Rodriguez, H. (1998). Activity theory and Cognitive Sciences.

Rogers, Y., and Scaife, M. (1997). Activity Theory. COGS, University of Sussex.

Román, M., Hess, C. K., Cerqueira, R., Ranganathan, A., Campbell, R. H., and

Nahrstedt, K. (2002). Gaia: A Middleware Infrastructure to Enable Active

Spaces. IEEE Pervasive Computing 74-83.

Saternus, M., Weis, T., Knoll, M., and Durr, F. (2007). A Middleware for Context-

Aware Applications and Services Based on Messenger Protocols. In

Proceedings of the Fifth Annual IEEE International Conference on

Pervasive Computing and Communications Workshops (PerCom). 467-

471.

Schilit, B., Adams, N., and Want, R. (1994). Context-Aware Computing

Applications. In Proceedings of the IEEE Workshop on Mobile Computing

Systems and Applications, Santa Cruz, CA, US. 85-90.

Schilit, B., and Theimer, M. (1994). Disseminating Active Map Information to

Mobile Hosts. IEEE Network 8, 22-32.

 326

Schmidt, A., Adoo, K. A., Takaluoma, A., Tuomela, U., Velde, W. V. d., and

Laerhoven, K. V. (1999a). Advanced Interaction in Context. Lecture Notes

in Computer Science 1707, 89-101.

Schmidt, A., Beigl, M., and Gellersen, H. W. (1999b). There is More to Context

Than Location. Computers and Graphics 23, 893-901.

Schmidt, A. (2000). Implicit Human Computer Interaction Through Context.

Personal Technologies 4, 191-199.

Schumacher, E. H., SeyMour, T. L., Glass, J. M., Fencsik, D. E., Lauber, E. J.,

Kieras, D. E., and Meyer, D. E. (2001). Virtually perfect time sharing in

dual-task performance: uncorking the central cognitive bottleneck.

Psychological Science 12, 101-108.

Shepherd, A. (1989). Analysis and training in information technology tasks. In

Task Analysis for Human-Computer Interaction (Diaper, D., ed, pp. 15-55.

Chichester: Ellis Horwood.

Shepherd, A. (1998). Hierarchical task analysis. Taylor & Francis.

Siewiorek, D. P. e. a. (2003). SenSay: A context-aware mobile phone. In

Proceedings of the International Symposium on wearable computers

(ISWC), White Plains, New York, USA.

Smith, M, K., Welty, C., McGuinness, D. L. (2003). OWL Web Ontology

Language Guide, W3C http://www.w3.org/TR/2003/CR-owl-guide-

20030818/

St.Laurent, S. (1998). Why XML? www.simonstl.com/articles/whyxml.htm

 327

Stephanidis, C. (2001). Ambient Intelligence in the Context of Universal Access.

ERCIM.

Sumi, Y., and Mase, K. (2001). Digital Assistant for Supporting Conference

Participants: An Attempt to Combine Mobile, Ubiquitous and Web

Computing. Lecture Notes In Computer Science 2201, 156-175.

Thomson, G., Nixon, P., and Terzis, S. (2005). Situation Determination with

Distributed context histories. In Proceedings of the 1st Int workshop on

exploiting context histories in smart environments, Pervasive, Munich,

Germany.

Tonnis, M., Klinker, G., and Jan-Gregor, F. (2007). Ontology-Based Pervasive

Spatial Knowledge for Car Driver Assistance. In Proceedings of the Fifth

Annual IEEE International Conference on Pervasive Computing and

Communications Workshops (PerCom). 401-406.

Van Der Veer, G. C., Lenting, B. F., and Bergevoet, B. A. J. (1996). GTA:

Groupware Task Analysis - Modeling Complexity. Acta Psychologica 91,

297-322.

Weiser, M (1999). The Computer for the 21st Century. ACM SIGMOBILE Mobile

Computing and Communications Review 3(3) 3-11.

Winograd, T. (2001). Architectures for Context. Human-Computer Interaction 16,

401-419.

 328

 329

Appendix

I. Example of XML File for Environment data

In order to represent the set of values to the user, a short name (nm in the XML in

Figure I) of the set of values is assigned to every set of data so that it can be

presented to the user and makes sense to the user during run time. For example,

the Reception Desk is assigned as a name of the set of values (This is represented

as nm in XML file) from 7Table 6-32. Any value that is not available in the table

for each attribute in the element is assigned as “unknown”.

Figure I XML Codes for Environment Database and Tool Database

<tools>

 <tool>

<ID>2</ID>

<dname>Reception Phone</dname>

<dtype>mobile</dtype>

<owner>hospital</owner>

<bt>y</bt>

 </tool>

<tools>

<environments>

 <environment>

 <ID>1</ID>

 <nm>Reception Desk</nm>

 <building>West</building>

 <room>Reception</room>

 <area>Hospital</area>

 <town>London</town>

 <country>UK</country>

 <condition>unknown</condition>

 </environment>

i t

 330

II. Example of XML File for Tools.xml

The tools database holds the list of IDs of the public tools that are available in the

situation as shown in Figure II. The IDs are the list of identities of the tools in the

tools database where the further information about each tool can be acquired from

the ID of each tool in Tool Database which is similar manner to Environment

Database in Figure I.

Figure II XML Codes for Tools Database

III. Example of Object File for xmlEnv.java

Objects have two sections, fields (instance variables) and methods. Fields for the

object for accessing environment information has variables of ID, nm, building,

room, area, town, country and condition as a set of values in the environment

object following the XML structure. xmlEnv.java has methods (such as getNM() and

setNM()) that allow it to edit, change and access the value of the variable in the

object as shown in Figure III. This process is followed for the other databases

such as xmlUser.java, xmlTool.java and xmlTools.java. The methods in these

programs allow the architecture to access these objects. Moreover, they allow

access between objects themselves.

<tools>

 <tool>

 <ID>1</ID>

 <TIDs>2</TIDs>

 </tool>

<tools>

 331

Figure III Sample Java Codes for Object that dealing with Environment

Information

Figure III Object Code for Dealing with Environment Information

 public class xmlEnv {

 String ID, nm, building, room, area, time;

public xmlEnv(String id, String out1, String bd, String rm, String ar,String co)

{

 this.ID = id;
 this.nm = out1;
 this.building = bd;
 this.room = rm;
 this.area = ar;
 this.time = co;

 }

...

 public String getID()

 {return ID;}

 public String getNM()

 {return nm;}

 public void setID(String id)

 { ID=id;}

 public void setNM(String ob)

 { nm=ob;}

}

	0BAbstract
	1BTable of Contents
	2BAcknowledgments
	Chapter 1 3BIntroduction
	1.1 12BMobile and Ubiquitous Computing
	1.2 13BContext Awareness
	1.3 14BIssues in Context Awareness
	1.4 15BContributions
	1.5 16BOutline of Dissertation

	Chapter 2 4BContext Awareness
	17BUsability Issues in Mobile and Ubiquitous Computing
	2.2 18BPrevious Research in Context Awareness
	52BContext Definition
	2.2.2 53BContext Classification
	2.2.3 54BPrevious Context-Awareness Projects
	118BLocation Based Systems
	2.2.3.2 119BContext Aware Systems
	2.2.3.3 120BContext Aware Frameworks
	2.2.3.4 121BFrom Location Based System to Context Aware Framework

	2.2.4 55BTypes of Context-Aware Applications
	2.2.5 56BFrom Previous Context Awareness to the Present

	2.3 19BProblems in Context Awareness
	2.3.1 57BImpossible to Acquire Context
	2.3.2 58BExpensive to Process Context
	2.3.3 59BNot Being Used in the Real World
	2.3.4 60BBroad Definition of Context
	2.3.5 61BInfinite Context Classification
	2.3.6 62BLack of Uniform Relationships between Elements of Context
	2.3.7 63BLack of Systematic Tools
	2.3.8 64BTechnology Driven
	2.3.9 65BSummary of Problems in Context Awareness

	2.4 20BDeriving Solutions from Problems
	2.4.1 66BRequirements for Context Model and Design Tool
	2.4.2 67BRequirements for an Architecture to Support Context Aware Systems
	2.4.3 68BResearch Aims and Objectives

	Chapter 3 5BA New Approach to the Design of a Context-Aware System
	21BWhy Represent Context in a Simple Model?
	3.2 22BActivity Theory
	3.3 23BActivity Modelling
	3.4 24BReason for Using Activity Theory
	69BIt Provides a Standard Form for Describing Human Activity
	3.4.2 70BIt Provides a Representation of the User
	3.4.3 71BIt Relates Individual Human Activity to Society
	3.4.4 72BIt Provides a Concept of Tool Mediation
	3.4.5 73BIt Maps the Relationships amongst the Elements of a Human Activity Model

	3.5 25BHistory
	3.6 26BProposed Context Model
	74BThe Context Model

	3.7 27BSummary of the Proposed Context Model

	Chapter 4 6BTurning the Context Model into a Design Tool
	28BStep 1: Define Scenarios in which the System will be Applied
	4.2 29BStep 2: Define Situations in which Context Awareness Can Support Users
	4.3 30BStep 3: From the Situation to Elements in the Context Model
	4.4 31BStep 4: From Context Elements to Sensors and Profiles
	4.5 32BStep 5: From Context Elements to Reasoning
	4.6 33BStep 6: From Outcome Context to Selected Application and Context Information
	4.7 34BHow the Design Tool Meets the Design Tool Requirements
	4.8 35BFrom Context model to New Design Tool

	Chapter 5 7BA System Architecture for Context Modelling
	36BAn Overview of Context Aware System Architecture
	5.1.1 75BThe Flow of Data
	5.1.2 76BDatabases
	5.1.3 77BSensor Engine Layer
	5.1.4 78BContext Engine Layer
	5.1.5 79BApplication Engine Layer

	5.2 37BHow the Architecture Meets Each Architecture Requirement
	5.3 38BFrom Context Model to New Architecture

	Chapter 6 8BEvaluation of the Context Model and Design Tool
	39BScenario 1: A Simple Tour Guide and Conference Assistant
	6.1.1 80BStep 1: Defining Scenarios in which the System will be Applied
	6.1.2 81BStep 2: Define Situations Where Context Awareness Can Support the User
	6.1.2.1 122B Situation 1
	6.1.2.2 123BSituation 2
	6.1.2.3 124BSituation 3
	6.1.2.4 125BSituation 4

	6.1.3 82B Step 3: From Situation to Elements in Context Model
	6.1.3.1 126BSituation 1
	6.1.3.2 127BSituation 2
	6.1.3.3 128BSituation 3
	6.1.3.4 129BSituation 4

	6.1.4 83BStep 4: From Context Elements to Sensors and Profiles
	6.1.5 84BStep 5: From Context Elements to Reasoning
	6.1.6 85BStep 6: From Outcome Context to Selected Application and Required Context

	6.2 40BScenario 2: The Hospital A&E Department
	86BStep 1: Defining Scenarios in which the System will be Applied
	6.2.2 87BStep 2: Define Situations where Context Awareness Can Support User
	6.2.2.1 130BSituation 1
	6.2.2.2 131BSituation 2
	6.2.2.3 132BSituation 3

	6.2.3 88BStep 3: From Situation to Elements in Context Model
	6.2.3.1 133BSituation 1
	6.2.3.2 134BSituation 2
	6.2.3.3 135BSituation 3

	6.2.4 89BStep 4: From Context Element to Sensors and Profiles
	6.2.5 90BStep 5: From Context Elements to Reasoning
	6.2.6 91BStep 6: From Outcome Context to Selected Application and Required Context

	6.3 41BHow Each Requirement is Met or Not Met in the Scenarios
	6.3.1 92BTo Provide Consistent Support for Shared Understanding amongst Researchers
	6.3.2 93BTo Identify Context Elements
	6.3.3 94BTo Demonstrate a Consistent Reasoning Method for the Interpretation about the Context
	6.3.4 95BTo Show the Separation between Context and its Reasoning
	6.3.5 96BTo Represent the Usage of History and Time

	6.4 42BSummary

	Chapter 7 9BImplementation and Evaluation of the Architecture
	43BFrom Design to Implementation of the Architecture
	7.1.1 97BDatabase
	7.1.2 98BSensor Engine Layer
	7.1.2.1 136BSensors
	7.1.2.2 137BSensor Translators
	7.1.2.3 138BSensor Engine

	7.1.3 99BContext Engine Layer
	7.1.4 100BApplication Engine Layer
	7.1.5 101BConclusion

	7.2 44BApplying the Prototype to the Scenarios Design
	7.2.1 102BSimple Tourist Guide and Conference Applications
	7.2.2 103BComplex Hospital Scenario
	7.2.3 104BHow Each Requirement is Met or Not Met in the Scenarios

	7.3 45BContext Frameworks Comparison

	Chapter 8 10BConclusion and Future Work
	46BDissertation Summary
	8.1.1 105BSupporting Research and Practice in Context Awareness
	8.1.2 106BAims
	8.1.3 107BContext Model
	8.1.4 108BDesign Tool
	8.1.5 109BArchitecture
	8.1.6 110BScenarios

	8.2 11BApplicability to Other Applications
	8.3 47BFuture Work
	8.3.1 111BImprove the Reasoning Algorithm
	8.3.2 112BSecurity and Privacy
	8.3.3 113BContext Model Representation
	8.3.4 114BReal Time Efficiency Improvements Involving Users
	8.3.5 115BCoping with Limited Storage Space
	8.3.6 116BIntegrating Our Design Tool with Other Design Mechanisms
	8.3.7 117BRelating Our Framework with Others Approaches

	8.4 48BConclusion
	I. 49BExample of XML File for Environment data
	II. 50BExample of XML File for Tools.xml
	III. 51BExample of Object File for xmlEnv.java

