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Summary

This thesis concerns three models of deterministic and stochastic population

invasions, starting from individual-level interactions and deducing population-

level behaviour.

Firstly, we model a bacteria population near obstacles using the 2D Fisher-

Kolmogorov-Petrovskii-Piscounov (FKPP) equation with mixed boundary con-

ditions along a corridor and in the half-plane. For a deterministic population,

we calculate the smallest corridor width required for survival, the angle the pop-

ulation level sets make with the boundaries, and the population speed. As the

hostility of the mixed boundaries increases, the condition for collapse behind the

front is achieved before the condition to achieve speed zero ahead of the front.

Secondly, we model an invasive fish population using the 1D FKPP equation

and explore the effect that sexual conflict between individuals has on the dif-

fusion rate, and hence the invasion speed, of the population. After introducing

a stochastic model for the microscopic movement, we demonstrate how sexual

conflict can increase the effective diffusion rate of a pair of individuals by de-

termining the mean speed, separation, and time required for a direction change.

In large populations, sexual conflict can increase the diffusion rate ahead of the

front, where the speed of the invasion is determined.

Finally, we model the spread of an opinion using the voter model with nonlocal

interaction and diffusion. Individuals can either persuade others who are close

by very strongly or persuade others who are far away very weakly. In low density

populations, we determine the probability of either individual persuading the

other when two different individuals meet in a pair. In a high density population,

a small noise expansion determines whether the proportion of either type in the

population increases or decreases on average. In both regimes, we find that wide

and weakly persuading individuals have an advantage.
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Chapter 1

General Introduction

From the ancient Egyptians [1] to early Chinese dynasties [2], from ancient

India [3] to the Native Americans [4], mathematical modelling has been a funda-

mental tool across time and across cultures. It has been used to track the motion

of the planets [5], determine how crops should be planted to maximise return [6],

and influence the architecture and engineering of early civilizations [7].

In more recent history, mathematics has continued to play a crucial part in

modelling the world around us. It has allowed us to model evolution as a result

of natural selection [8], the demand at a call centre [9], the spread of infectious

diseases through a population [10], and the harm caused by an invasive species

[11]. The creation of models that reflect these situations have allowed a deeper

understanding of the underlying interactions and resulting phenomena. This

thesis will be concerned with the subset of models that focuses specifically on

the development of biological populations, which have been studied in depth

[12, 13, 14, 15, 16, 17, 18].

Once such model was created in 1937. It was independently introduced by

Fisher [19] and by Kolmogorov, Petrovskii, and Piscounov [20]. The Fisher-

Kolmogorov-Petrovskii-Piscounov (FKPP) equation models a population moving

into a new territory as a reaction-diffusion equation. For a population with

density u(x, t) at location x and time t, growth rate r, and diffusion coefficient

D, the FKPP equation in 1D is

ut = Duxx + ru(1− u).

12
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Figure 1-1: The invading population front of the 1D FKPP equation.

It combines diffusion and logistic growth terms and it admits solutions in the form

of travelling waves in which the stable high-density u = 1 state propagates into

the unstable low-density state u = 0, shown in Figure 1-1, with speed c = 2
√
rD,

which is calculated by the asymptotic linear spreading rate of the low density

population ahead of the travelling wave, as the FKPP creates a pulled front

[21]. Biologically speaking, this means that only a very small number of ‘seed’

individuals are required to grow a large population. In fact, the FKPP has

travelling wave solutions for all speeds c ≥ 2 [22] and these limiting speeds

depend significantly on the initial conditions [23]. However, these solutions are

not physically relevant as they are not robust to small fluctuations. This work

has led to a significant amount of research in the area of traveling waves and

parabolic systems [24]. Fisher first applied the FKPP equation to the growth

of an advantageous gene. It has since been used to model wound closure [25],

human dispersion [26], and bacterial growth [27].
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The FKPP equation has been studied in depth in 1D. However, many bio-

logical invasions occur in 2D but not so much work has been done on the FKPP

equation in 2D [28, 29, 30]. Analysing the FKPP equation in 2D provides room

to more accurately model realistic biological invasions. This extra dimension al-

lows more complicated diffusion and growth, which determines how quickly the

population invades a new territory. This can be seen in both theoretical and ex-

perimental work [31, 32, 33, 34]. Extending the FKPP equation to 2D also allows

models to have more complicated heterogeneous environments, such as spatially

fragmented environments [35].

For example, the recent work of Möbius et. al. [36] on the movement of bacte-

riophage T7 focuses on the effect of environmental heterogeneities on population

fronts and genetic structure. In particular, they consider a 2D bacteria inva-

sion in the presence of obstacles that the population must invade around. The

environmental heterogeneity introduced by these obstacles creates a kink in the

population front. They also find that this kink is independent of the shape of the

obstacle. Motivated by this work, this thesis will analyse the 2D FKPP equa-

tion with a mixed boundary condition in both a corridor and the half plane. The

mixed boundaries in these two environments simulate the presence of an obstacle.

In addition to new boundary conditions in two dimensions, the FKPP equa-

tion can also be used to model the invasion speed of a population, which depends

on the growth rate and diffusion coefficient of the population. The diffusion has

been modelled in a variety of different ways, including density-dependent diffu-

sion [37, 38], nonlocal diffusion [39], and location-dependent diffusion [40]. It is

important to understand the underlying interactions within a population that

determine the diffusion coefficient of a population.

This link between diffusion coefficient and invasion speed can be seen at play

in fish populations with sexual conflict between individuals. The different be-

haviours, male fish swimming towards female fish and female fish swimming away

from male fish in general, cause a conflict between the two genders, which influ-

ences the diffusion coefficient of the population, which in turn determines the

invasion speed of the population. This thesis will explore the link between inter-

actions between individuals due to sexual conflict and the population diffusion

rate in order to understand how sexual conflict in a population can affect the

invasion speed of a population according to the FKPP equation.
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As well as individuals, we can also mathematically model the spread of ideas

through a population. The voter model is used to simulate the exchange of opin-

ions between neighbours in a population. Also known as an interacting particle

system [48], this model has been extended to a biased voter model [49] and a

noisy voter model [50]. Research has been done in one dimension [51], in two

dimensions [52], on a d-dimensional lattice [53], and on heterogeneous networks

[54]. Further applications include genetics [55], tumour growth [56], territory

competition [47, 57], and chemical monomer-monomer models [58].

One of the key properties of the voter model is that individuals only interact

with their nearest neighbours. That is, all interactions are local. Over time,

individuals interact locally until the environment has been conquered by one

population. This is called reaching consensus. The condition for only local in-

teractions can be relaxed to allow nonlocal interactions. This thesis will explore

the voter model with two types of non-locally interacting individuals: one type

of voter can weakly persuade within a very large radius and the other type of

voter can strongly persuade within a very short radius.

The main part of this thesis is structured as follows: Chapter 2 will be a

technical introduction to the key concepts and definitions used throughout. In

particular, the dynamics of single particle and multiple particle systems will be

discussed. The interactions between individuals and their environment in the

case of bacteria invasions will be explored in Chapter 3 while Chapter 4 will

contain an analysis of antagonistic interactions between individuals in the case

of sexual conflict between male and female fish. Chapter 5 will be an analysis of

competitive interactions between individuals affecting the probability of reaching

consensus in the nonlocal voter model and finally a conclusion and outlook for

future research will be given in Chapter 6.

1.1 New Results Contained in This Thesis

In Chapter 3, we consider the 2D FKPP equation

ut = uxx + uyy + u(1− u),

15



with mixed boundary condition uy = αu at y = 0. In the corridor CL = {(x, y) :
x ∈ R, 0 ≤ y ≤ L}, we apply a second mixed boundary condition uy = −βu at

y = L. On this domain ahead of the front, we calculate that:

• The condition for the population to have invasion speed zero is given by

(2− αβ) tan(
√
2L) =

√
2(α + β).

• The critical corridor width required to support a population is given by

Lm∞,∞ = π/
√
2. If L > Lm∞,∞, then the population will have a positive

invasion speed for any α, β.

In C∞ = {(x, y) : x ∈ R, y ≥ 0} ahead of the front, we calculate that:

• An explicit equation for the low density population is given by

u(x, y, t) = u0 exp(−(x− 2t))(1 + αy).

• Level sets meet the y = 0 boundary with gradient 1/α, which is independent

of the level set chosen.

Behind the front, we show that:

• Nonzero steady states exist in CL for all L > 0 and in C∞.

• The condition for stability of the nonzero steady state behind the front in

CL is given by

(1− αβ) tan(L) = α + β.

Finally, we show that, as the reaction rate α increases in CL, the condition for

the steady state behind the front becoming unstable is always achieved before

the condition for the population to achieve speed zero ahead of the front. This

is confirmed by simulations.

Chapter 4 concerns the effect of sexual conflict in an invading population.

We calculate the diffusion coefficient D for an individual fish assuming a ‘run

and tumble’ model of fish motion. After the introduction of sexual conflict in a

male-female pair of fish when the male fish has sexual aggression characterised

by a parameter A > 0, we show that:
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• The effective diffusion coefficient Deff is given by

Deff = 4

√

Dπ

A + 1

(

A

A+ 1

)2

sinh

(

1

4D(A+ 1)

)

,

which can be significantly larger than D for particular values of D,A.

In populations with many male and female fish and sexual conflict, we show that:

• The diffusion coefficient of a male fish ahead of the front is higher than a

male fish behind the front.

• The diffusion coefficient of a fish switching from diffusion coefficient D1 to

D2 with rate λ1 and back with rate λ2 is given by

Dswt =
D1λ2 +D2λ1
λ1 + λ2

.

Given that the 1D FKPP equation creates a pulled front and so the invasion

speed is determined by the dynamics ahead of the front, this shows that sexual

conflict can increase the invasion speed of the population.

In Chapter 5, we consider the nonlocal voter model with diffusion with two

types. Individuals of type W are weakly interacting over a wide domain and in-

dividuals of type S are strongly interacting over a small domain. The interaction

ranges are rW , rS and the interaction rates are λW , λS for type W,S respectively.

We assume rS < rW , λW < λS, and that individuals have diffusion coefficient D.

In a low density population, we calculate that:

• The probability pS of a type S individual converting a type W individual

in a pairwise interaction, for µ1 =
√

(λS + λW )/D, µ2 =
√

λW/D, is given

by

pS =

2µ1λS(e
2µ1rS − 1)eµ2(rS+rW )

(λS + λW )((µ1 − µ2)(e2rS(µ1+µ2) − e2µ2rW ) + (µ1 + µ2)(e2µ1rS+2µ2rW − e2µ2rS))
.

• When we assume λSrS = 1/2 = λW rW , pS < 1/2. This means that a type

W individual is more likely to convert a type S individual when they meet

as a pair.
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• In a population of N individuals with N0
S initially of type S, the probability

PS of type S individuals reaching consensus is given by

PS =
p
N−N0

S

S

p
N−N0

S

S + (1− pS)N
0
S

.

When N0
S = N/2, PS < 1/2. This means that, given a low density pop-

ulation of size N with half of type S and half of type W , the type W

individuals are more likely to survive to consensus.

In a high density population with diffusion rates DW , DS, we show that:

• For infinite populations, there exists a linearly stable state of the system,

in which a proportion τ are of type W and the remaining 1− τ are of type

S for all τ ∈ [0, 1].

• For large but finite N and the addition of noise in the system, the fluctu-

ations in the steady state for the proportion of type W individuals in the

population satisfies

d

dt
τ =

τ (1− τ)

Nπ2

∑

k 6=0

1
2rW

sin(krW )− 1
2rS

sin(krS)

(DW +DS)
k3

2
− 4k[( 1

2krW
sin(krW ) + 1/2) (1− τ) + ( 1

2krS
sin(krS) + 1/2)τ ]

.

• When we assume λSrS = 1/2 = λW rW , d
dt
τ > 0 for all τ . This means

that, on average, the noise in the system causes the proportion of type W

individuals to increase. Over time, this results in the type W individuals

surviving to consensus in a high density population.
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Chapter 2

Technical Introduction

In this Chapter, the key concepts and definitions used throughout the rest

of this thesis will be introduced. In order to understand individual interactions

within a population in various environments, we must first have a framework for

how individuals behave on their own.

The first part of this framework begins with one individual exhibiting random

motion. Random motion is useful here because it is unbiased and it provides

a general starting point as we introduce interactions between individuals. We

define Brownian motion, Gaussian white noise, and derive the Fokker-Planck

equations, all of which will be used in Chapter 4 to describe the motion of fish at

an individual level. We will also use Gaussian white noise in Chapter 5 to model

fluctuations in a population density.

The second part of this framework focuses on the movement of many individ-

uals with interactions between them, particularly births and deaths. From these

individual-level interactions, we derive the population-level FKPP partial differ-

ential equation and the associated linearised invasion speed. The FKPP equation

will be used in Chapter 3 to model the bacteria population and in Chapter 4 to

model the fish population. The method used to derive the FKPP equation will be

used in Chapter 5 to determine which type reaches consensus in the high density

population case.

This framework can be summarised as being a combination of two phenomena:

collective motion and pairwise interaction. Pairwise interactions take the form

of microscopic events between individuals over a very short time scale that can

cumulatively influence population motion. Collective motion is a macroscopic
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event that arises from the actions of individuals in the population viewed on a

long time scale.

2.1 Dynamics of One Particle

We begin by defining the framework for the movement of one particle in a 1D

domain. This particle may, for example, represent an individual bacterium, fish,

or voter. We assume on short time scales that the particle exhibits Brownian

motion. Once Brownian motion and Gaussian white noise has been defined, we

will derive the forward and backward Fokker-Planck equations, which determine

the development of a probability density function for the location of the particle

both forwards and backwards in time. We will use the backward Fokker-Planck

equation to calculate an equation for the mean time required for a particle to hit

a given boundary, which will be needed in Chapter 4, and we will use Gaussian

white noise in Chapter 5 to model fluctuations in a population density.

2.1.1 Brownian Motion

Consider a single particle. At time t, let this particle have location x(t) in a

1D environment. The movement of the particle is called Brownian motion, or a

Wiener process, with diffusion coefficient D when the following three properties

hold:

• Firstly, for two chronological points in time t1, t2 with t1 < t2, the change

in location of the particle x(t2)−x(t1) is distributed according to a normal

distribution with mean zero and variance D(t2 − t1) (known as stationary

Gaussian increments).

• Secondly, for n chronological points in time t1, t2, . . . , tn with t1 ≤ t2 ≤
· · · ≤ tn, the changes in location over the disjoint intervals x(t2)− x(t1),

x(t3) − x(t2), . . . , x(tn) − x(tn−1) are independent (known as independent

increments).

• Finally, the function t → x(t) that maps time t > 0 to location x(t) is
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continuous with probability 1. That is,

P
[

lim
t→t′

|x(t)− x(t′)| = 0
]

= 1.

These are the rules the movement of the particle satisfies on an individual level,

which is summarised from [59]. In the main part of this thesis, we will also need

the definition of Gaussian white noise. A process ξ(t) is called Gaussian white

noise when the following properties hold:

• ξ(t) has mean zero, that is E[ξ(t)] = 0

• For all t 6= t′, ξ(t), ξ(t′) are statistically independent, that is E[ξ(t)ξ(t′)] =

δ(t− t′),

•
∫ t

0
ξ(t′)dt′ = x(t), where x(t) satisfies the requirements of Brownian motion.

These conditions follow from [60]. We will use Brownian motion and Gaussian

white noise to model the motion of the fish in Chapter 4 and the fluctuations in

population densities in Chapter 5.

2.1.2 Fokker-Planck Equations

We have introduced Brownian motion and Gaussian white noise to describe

the random motion of a particle. In the main part of this thesis, we will also

need equations that determine how the probability density for the location of a

particle develops over time, that is, both forwards and backwards in time. These

equations will allow us to calculate the mean time required for a particle to hit

a given boundary later in this technical introduction. In Chapter 4, we will use

the mean hitting time to determine the mean time required for two fish chasing

each other in one direction to switch sides and chase each other in the opposite

direction.

We begin by deriving Itô’s formula using [60]. Let a(x, t), b(x, t) be two ar-

bitrary functions of location x(t) and time t, let W (t) be Brownian motion or

a Wiener process, and let a small change in the location of the particle ∆x(t)

develop according to the stochastic differential equation

∆x(t) = a(x, t)∆t + b(x, t)∆W (t).
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If f [x(t)] is an arbitrary function of x(t), then expanding f [x(t)] to second order

gives

∆f [x(t)] =f [x(t) + ∆x(t)]− f [x(t)]

=f ′[x(t)]∆x(t) +
1

2
f ′′[x(t)]∆x(t)2 +O(∆x(t)3)

=f ′[x(t)] {a(x, t)∆t + b(x, t)∆W (t)} + 1

2
f ′′[x(t)]b(x, t)2∆W (t)2,

after ignoring higher order terms. Using the result ∆W (t)2 = ∆t then gives

∆f [x(t)] =

{

f ′[x(t)]a(x, t) +
1

2
f ′′[x(t)]b(x, t)2

}

∆t + f ′[x(t)]b(x, t)∆W (t),

which is called Itô’s formula. It shows that changing variables from x to f [x(t)]

is not given by standard chain rule for stochastic differential equations and it will

be needed to derive the Fokker-Planck equations.

Using Brownian motion, Gaussian white noise, and Itô’s formula, we can now

derive the forward and backward Fokker-Planck equations. These equations are

partial differential equations that determine how the probability density of a

particle being at a given location at a given time varies as time progresses either

forwards or backwards. They are useful because they allow us to determine where

the particle is likely to be as a function of the particle’s underlying dynamics. We

will use the Fokker-Planck equations later in this Section to calculate the mean

time for a particle to hit a given boundary.

We now derive the forward Fokker-Planck equation using [60]. For this deriva-

tion, we need the following conditions for all ǫ > 0:

lim
∆t→0

1

∆t
p(x, t+∆t|z, t) = 0 for |x− z| > ǫ,

lim
∆t→0

1

∆t

∫

|x−z|<ǫ
(x− z)p(x, t +∆t|z, t)dx = A(z, t) +O(ǫ)

lim
∆t→0

1

∆t

∫

|x−z|<ǫ
(x− z)2p(x, t+∆t|z, t)dx = B(z, t) +O(ǫ).

(2.1)

The first condition ensures the movement of the particle is continuous. The sec-

ond and third conditions serve as definitions for the drift and diffusion coefficients

respectively. Now, let f(x) be an arbitrary twice differentiable function. The time
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derivative of the expectation of f can be written as

∂

∂t
E[f(y)] =

∂

∂t

∫

f(x)p(x, t|y, t′)dx

= lim
∆t→0

1

∆t

∫

f(x)[p(x, t +∆t|y, t′)− p(x, t|y, t′)]dx,

where we have applied the time derivative to p. We now need to use the Chapman-

Kolmogorov equation, which states, for locations x1, x2, x3 and times t1 < t2 < t3,

p(x3, t3|x1, t1) =
∫ ∞

−∞
p(x3, t3|x2, t2)p(x2, t2|x1, t1)dx2.

Applying the Chapman-Kolmogorov equation to the positive p term gives

∂

∂t

∫

f(x)p(x, t|y, t′)dx

= lim
∆t→0

1

∆t

{∫ ∫

f(x)p(x, t+∆t|z, t)p(z, t|y, t′)dzdx−
∫

f(z)p(z, t|y, t′)dz
}

.

(2.2)

We have assumed that f(x) is twice differentiable so, for |x− z| < ǫ, we have

f(x)

= f(z) +
∂f(z)

∂z
(x− z) +

1

2

∂2f(z)

∂z2
(x− z)2 +O(|x− z|3).

(2.3)

Separating the double integral domain into |x− z| < ǫ and |x− z| ≥ ǫ and then

substituting this equation into (2.2) gives

∂

∂t

∫

f(x)p(x, t|y, t′)dx =

lim
∆t→0

1

∆t

{∫∫

|x−z|<ǫ

[

f(z) +
∂f(z)

∂z
(x− z)

+
1

2

∂2f(z)

∂z2
(x− z)2 +O(|x− z|3)

]

p(x, t+∆t|z, t)p(z, t|y, t′)dzdx

+

∫∫

|x−z|≥ǫ
f(x)p(x, t +∆t|z, t)p(z, t|y, t′)dzdx −

∫

f(z)p(z, t|y, t′)dz
}

,
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and rearranging gives

∂

∂t

∫

f(x)p(x, t|y, t′)dx =

lim
∆t→0

1

∆t

{
∫∫

|x−z|<ǫ

[

∂f(z)

∂z
(x− z) +

1

2

∂2f(z)

∂z2
(x− z)2

]

× p(x, t+∆t|z, t)p(z, t|y, t′)dzdx
∫∫

|x−z|<ǫ
O(|x− z|3)p(x, t+∆t|z, t)p(z, t|y, t′)dzdx

+

∫∫

|x−z|≥ǫ
f(x)p(x, t +∆t|z, t)p(z, t|y, t′)dzdx

+

∫∫

|x−z|<ǫ
f(z)p(x, t +∆t|z, t)p(z, t|y, t′)dzdx

−
∫ ∫

f(z)p(x, t +∆t|z, t)p(z, t|y, t′)dzdx
}

,

(2.4)

where the last line follows by noticing that the integral over x is equal to one.

We now consider (2.4) line by line. For the first and second line of the RHS, we

assume uniform convergence to bring the limit inside the x integral to get

∫ [

A(z)
∂f

∂z
+

1

2
B(z)

∂2f

∂z2

]

p(z, t|y, t′)dz +O(ǫ).

For the third line of the RHS, we see that it vanishes as ǫ → 0. For the final

three lines of the RHS, we can simplify them in the following way

lim
∆t→0

1

∆t

{
∫∫

|x−z|≥ǫ
f(x)p(x, t+∆t|z, t)p(z, t|y, t′)

−f(z)p(x, t +∆t|z, t)p(z, t|y, t′)dzdx}

=

∫∫

|x−z|≥ǫ
f(x)p(z, t|y, t′) lim

∆t→0

1

∆t
p(x, t +∆t|z, t)

− f(z)p(z, t|y, t′) lim
∆t→0

1

∆t
p(x, t +∆t|z, t)dzdx

= 0,
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using the first condition in (2.1). Now letting ǫ→ 0 in (2.4), we have

∂

∂t

∫

f(x)p(x, t|y, t′)dx =

∫
[

A(z)
∂f

∂z
+

1

2
B(z)

∂2f

∂z2

]

p(z, t|y, t′)dz,

and integrating by parts and using the fact that f is arbitrary gives

∂

∂t
p(z, t|y, t′) = − ∂

∂z
[A(z, t)p(z, t|y, t′)] + 1

2

∂2

∂z2
[B(z, t)p(z, t|y, t′)], (2.5)

which is called the forward Fokker-Planck equation. This partial differential

equation tells us how the probability p(z, t|y, t′) develops over time in an ordinary

differential equation that depends on A(z, t), B(z, t) given initial conditions y, t′.

This equation is very useful if we know the initial conditions and would like to

evolve this equation forward in time.

Now, we derive the backward Fokker-Planck equation, which describes the

probability of the particle being at a given location at a given time in the past.

The following is a summary of [60]. The derivation begins with the Chapman-

Kolmogorov equation. Let ∆t be a small increment in time that will eventually

tend to zero. Then, the Chapman-Kolmogorov equation applied to p(x′, t′|x, t)
with t′ > t gives

p(x′, t′|x, t−∆t) =

∫ ∞

−∞
p(x′, t′|z, t)p(z, t|x, t−∆t)dz, (2.6)

which says that the probability of the particle being at location x′ at time t′ given

that it was at location x at time t − ∆t is equal to the sum of all probabilities

of the particle being at an intermediate location z at time t. In the small time

interval [t−∆t, t], the particle cannot move very far so we assume the locations

x and z are very close to each other. This assumption allows us to Taylor expand

the term p(x′, t′|z, t) in (2.6) as a function of (z − x). This expansion is given by

p(x′, t′|z, t) = p(x′, t′|x, t) + (z − x)
∂

∂x
p(x′, t′|x, t) + 1

2
(z − x)2

∂2

∂x2
p(x′, t′|x, t),

which ignores higher order terms in (z − x). Substituting this expansion into
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(2.6) and expanding gives

p(x′, t′|x, t−∆t) = p(x′, t′|x, t)
∫ ∞

−∞
p(z, t|x, t−∆t)dz

+

(

∂

∂x
p(x′, t′|x, t)

)
∫ ∞

−∞
(z − x)p(z, t|x, t−∆t)dz

+

(

∂2

∂x2
p(x′, t′|x, t)

)
∫ ∞

−∞

1

2
(z − x)2p(z, t|x, t−∆t)dz.

(2.7)

The first integral in (2.7) integrates to one as we integrate over all probabilities.

For the second and third integrals, we define functions a(x, t), b(x, t) such that

a(x, t−∆t) =
1

∆t

∫ ∞

−∞
(z − x)p(z, t|x, t−∆t)dz

b(x, t−∆t)2 =
1

∆t

∫ ∞

−∞
(z − x)2p(z, t|x, t−∆t)dz,

so that (2.7) can be rewritten as

p(x′, t′|x, t)− p(x′, t′|x, t−∆t)

∆t
= −a(x, t−∆t)

∂

∂x
p(x′, t′|x, t)

− 1

2
b(x, t−∆t)2

∂2

∂x2
p(x′, t′|x, t),

and letting ∆t→ 0 gives

∂

∂t
p(x′, t′|x, t) = −a(x, t) ∂

∂x
p(x′, t′|x, t)− 1

2
b(x, t)2

∂2

∂x2
p(x′, t′|x, t), (2.8)

which is called the backward Fokker-Planck equation. It is a partial differential

equation which shows how the probability p(x′, t′|x, t) develops backwards in time.

In the next Section, we will use this equation to calculate the mean time required

for the particle to hit a given boundary, which will be used in Chapter 4.

2.1.3 Mean Hitting Time

In Chapter 4, we will need an equation that gives the mean time for a particle

to hit a given boundary. In particular, we require a 1D domain with a reflective

boundary to the left and an absorbing boundary to the right. The derivation

for this equation begins by considering the probability that the particle remains
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within some interval, applying the backwards Fokker-Planck equation (2.8), and

then defining the mean time for hitting a boundary on the interval. This will

give a second-order ordinary differential equation for the mean hitting time that

we will solve by direct integration. What follows is a derivation in [60] applied

to the scenario in Chapter 4.

Consider a particle at time t with location x(t) in the interval [A,B] for

constants A < B with a reflective boundary at x = A and an absorbing boundary

at x = B so that, when the particle reaches x = A, it is reflected back into the

interval and, when the particle reaches x = B, it is removed from the system.

Let p(x′, t|x, 0) be the probability that the particle is at location x′ at time t

given that the particle was at location x at time 0 in the past. Also, let P(x, t)

be the probability that the particle is located within the interval at time t, i.e.

A ≤ x′(t) ≤ B given that it started at location x. These two probabilities

p(x′, t|x, 0),P(x, t) are related by the equation

P(x, t) =

∫ B

A

p(x′, t|x, 0)dx′,

and taking a time derivative gives

∂

∂t
P(x, t) =

∂

∂t

∫ B

A

p(x′, t|x, 0)dx′ =
∫ B

A

∂

∂t
p(x′, t|x, 0)dx′,

as A,B are constants. We now apply the backwards Fokker-Planck equation,

which can be written as

∂

∂t
p(x′, t′|x, t) = a(x)

∂

∂x
p(x′, t′|x, t) + 1

2
b(x)2

∂2

∂x2
p(x′, t′|x, t).

The differences between this version and (2.8) are that the functions a(x), b(x) do

not explicitly depend on time and that the sign of both coefficients is positive. We

require both for the derivations in Chapter 4. Applying this backwards Fokker-

Planck equation to p(x′, t|x, 0), noting that the system is homogeneous in time
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so p(x′, t|x, 0) = p(x′, 0|x,−t), gives

∂

∂t
P(x, t) =

∫ B

A

a(x)
∂

∂x
p(x′, t|x, 0) + 1

2
b(x)2

∂2

∂x2
p(x′, t|x, 0)dx′

=a(x)
∂

∂x

∫ B

A

p(x′, t|x, 0)dx′ + 1

2
b(x)2

∂2

∂x2

∫ B

A

p(x′, t|x, 0)dx′,

and substituting the definition of P(x, t) gives

∂

∂t
P(x, t) = a(x)

∂

∂x
P(x, t) +

1

2
b(x)2

∂2

∂x2
P(x, t). (2.9)

This is a second order partial differential equation for P(x, t) with boundary

conditions for a reflective boundary at x = A and an absorbing boundary at

x = B given by
∂

∂x
P(A, t) = P(B, t) = 0, (2.10)

for all time t. We choose these boundary conditions here as we will be considering

a pair of individuals moving in a 1D environment with a reflective boundary to

the left and an absorbing boundary to the right in Chapter 4. We consider this

calculation with other boundary conditions in Appendix A. We will use (2.9) with

the boundary conditions (2.10) to derive a differential equation for the mean time

at which the particle hits a boundary. Let T (x) be the first time that the particle

hits the absorbing boundary x = B given that the particle starts at location x.

The probability that T (x) ≥ t is given by

P[T (x) ≥ t] =

∫ B

A

p(x′, t|x, 0)dx′ = P(x, t).

Using a definition of expectation, the mean hitting time E[T (x)] given that the

particle starts at location x is then given by

E[T (x)] =

∫ ∞

0

P[T (x) ≥ t]dt =

∫ ∞

0

P(x, t)dt.

We now have the mean hitting time E[T (x)] expressed in terms of P(x, t). We

will now use (2.9) and (2.10) to derive a differential equation for E[T (x)]. Firstly,
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we integrate (2.9) from 0 to ∞ to get

∫ ∞

0

∂

∂t
P(x, t)dt′ =

∫ ∞

0

a(x)
∂

∂x
P(x, t) +

1

2
b(x)2

∂2

∂x2
P(x, t)dt.

On the left hand side, we have

∫ ∞

0

∂

∂t
P(x, t)dt = P(x,∞)− P(x, 0) = −1

as the particle eventually leaves the interval if we wait long enough, and the

particle initially starts within the interval. On the right hand side, we have

∫ ∞

0

a(x)
∂

∂x
P(x, t) +

1

2
b(x)2

∂2

∂x2
P(x, t)dt

=a(x)
∂

∂x

∫ ∞

0

P(x, t)dt+
1

2
b(x)2

∂2

∂x2

∫ ∞

0

P(x, t)dt

=a(x)
∂

∂x
E[T (x)] +

1

2
b(x)2

∂2

∂x2
E[T (x)].

Hence, we have that

a(x)
∂

∂x
E[T (x)] +

1

2
b(x)2

∂2

∂x2
E[T (x)] = −1. (2.11)

This is a second order ordinary differential equation for the mean hitting time

E[T (x)]. Using (2.10), the boundary conditions for E[T (x)] are given by

∂

∂x
E[T (A)] = E[T (B)] = 0. (2.12)

We now have a differential equation with boundary conditions for the mean hit-

ting time E[T (x)]. We can solve this equation by direct integration. Define

S(x) =
∂

∂x
E[T (x)],

so that (2.11) becomes

a(x)S(x) +
1

2
b(x)2

∂

∂x
S(x) = −1.
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Dividing by b(x)2/2 gives

∂

∂x
S(x) + 2

a(x)

b(x)2
S(x) = − 2

b(x)2
,

and defining integrating factor

γ(x) = exp

(
∫ x

0

2
a(y)

b(y)2
dy

)

,

gives
d

dx
[γ(x)S(x)] = −2γ(x)

b(x)2
.

Integrating and simplifying gives

∂

∂x
E[T (x)] = S(x) = − 2

γ(x)

∫ x

A

γ(z)

b(z)2
dz +

C1

γ(x)
,

for some constant C1, and then integrating again gives

E[T (x)] = −2

∫ x

A

1

γ(w)

∫ w

A

γ(z)

b(z)2
dzdw +

∫ x

A

C1

γ(w)
dw + C2, (2.13)

for some constant C2. We now have an equation for the mean hitting time E[T ]

with two constants C1, C2. We define these constants by using the boundary

conditions (2.12), which give

0 =
∂

∂x
E[T (A)] =

∂

∂x

[

−2

∫ x

A

1

γ(w)

∫ w

A

γ(z)

b(z)2
dzdw +

∫ x

A

C1

γ(w)
dw + C2

] ∣

∣

∣

∣

x=A

=

[

− 2

γ(x)

∫ x

A

γ(z)

b(z)2
dz +

C1

γ(x)

] ∣

∣

∣

∣

x=A

=
C1

γ(A)
,

so C1 = 0 and

0 = E[T (B)] = −2

∫ B

A

1

γ(w)

∫ w

A

γ(z)

b(z)2
dzdw + C2

so

C2 = 2

∫ B

A

1

γ(w)

∫ w

A

γ(z)

b(z)2
dzdw.
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Hence

E[T (x)] =− 2

∫ x

A

1

γ(w)

∫ w

A

γ(z)

b(z)2
dzdw + 2

∫ B

A

1

γ(w)

∫ w

A

γ(z)

b(z)2
dzdw,

and therefore, the equation for the mean hitting time with a reflective boundary

at x = A and an absorbing boundary at x = B is given by

E[T (x)] = 2

∫ B

x

1

γ(w)

∫ w

A

γ(z)

b(z)2
dzdw. (2.14)

The calculation of this equation for other combinations of boundary types are

in Appendix A. We will use this equation in Chapter 4 to determine the mean

time required for a pair of fish swimming in one direction to change directions

and swim in the opposite direction.

We now have a framework for the dynamics of one particle. On the micro-

scopic stochastic level, we have defined Brownian motion and Gaussian white

noise for the random, unbiased movement of the particle. On the macroscopic

deterministic level, we have derived the forward and backward Fokker-Planck

equations, second order partial differential equations for the probability density

for the location of the particle. Finally, using the Fokker-Planck equation, we

calculated an equation for the mean hitting time of an absorbing boundary at

x = B on the interval [A,B] with a reflective boundary at x = A.

2.2 Dynamics of Many Particles

Populations are made up of many individuals, not just one. For this reason,

we need to extend our framework for the dynamics within a population to include

many particles. Again, these particles could represent voters, fish, bacteria, or

something else. The main goal of this Section is to introduce a framework for the

dynamics of a population with many individuals, which includes births, deaths,

and movement. Ultimately, we will derive the 1D FKPP equation, following

similar methods as used in [61], and prove the associated population invasion

speed. This equation will be used in Chapter 3 to model a bacteria population

and in Chapter 4 to model a fish population.
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2.2.1 Fisher-Kolmogorov-Petrovskii-Piscounov

(FKPP) Equation

In the previous Section, we kept track of the location of the particle for all

time. For many particles, this is difficult to do. Instead, we introduce a popula-

tion function that tracks the location of all particles and when an event occurs, we

change the population function instead of changing individual locations. Once

we have introduced the population function, we will define 3 processes: birth,

death, and movement. Each one of these processes represent an operation being

applied to the population function. A birth requires adding a particle, death re-

moving a particle, and movement results in removing one particle from a location

and adding it to another location. These three processes will be contained in a

master equation for the population dynamics. The rest of the derivation of the

FKPP equation will be a thorough analysis of this master equation. To do this,

we will use a variant of the Kramers-Moyal expansion [62, 63, 64], a Fourier space

expansion, and a special case of the Liouville equation. Returning back to real

space, we will be left with the 1D FKPP equation.

Consider a population of particles. At time t, let there be N(t) particles in the

system. Let the particles have locations x = x1, x2, . . . , xN(t) on the 1D interval

[−π, π). We use this finite interval as it means the inverse Fourier transform will

be a Fourier series over countably many Fourier modes, rather than an integral.

• For births, assume each particle gives birth at rate r and the offspring is

placed at the same location as the parent.

• For deaths, assume that the population has a carrying capacity K and

that individuals die with rate 1
K

∑

j g(xi − xj) where g is a nonnegative,

symmetric function for competition between individuals. We will allow g

to tend to the delta function rδ(x− y) during the derivation as we are only

interested in local competition. We also assume that K is large as we are

interested in the large population limit.

• For movement, assume particles move from location x to location y with

rate d(x − y) where d is also a nonnegative, symmetric function. We will

choose a d that corresponds to individuals moving according to Brownian

motion on a microscopic level.
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We begin the derivation with general functions g and d and introduce specific

functions only when necessary. Then, define the population function φ(x,x, t) as

φ(x,x, t) =
1

K

N(t)
∑

i=1

δ(x− xi).

We drop the x argument for the rest of the calculation.

We need to define the operators for the birth, death, and movement processes

as they will determine how the population function changes when an event occurs.

They are required to build the master equation for the system. When a birth

occurs at location y, we add the offspring to location y. In terms of the population

function φ, this is equivalent to adding a Dirac delta function at y. Similarly,

when a death occurs at location y, we remove the Dirac delta function from

location y in the population function. We define birth and death operators ∆+
y

and ∆−
y on an arbitrary functional F [φ(x, t)] as

∆±
y F [φ(x, t)] = F

[

φ(x, t)± 1

K
δ(x− y)

]

.

We use an arbitrary functional here to define the operators but these operators

will be applied to the probability state space functional during the analysis of

the functional master equation. When an individual moves from location y1 to

location y2, this is equivalent to subtracting a Dirac delta function at y1 and

adding one at y2. Define the movement operator for movement from location y1

to location y2 as ∆−
y1
∆+
y2
. On an arbitrary functional F [φ(x, t)], this is given by

∆−
y1
∆+
y2
F [φ(x, t)] = F

[

φ(x, t)− 1

K
δ(x− y1) +

1

K
δ(x− y2)

]

.

We have three operators for birth, death, and movement given by ∆+
y ,∆

−
y , and

∆−
y1
∆+
y2

respectively.

In addition to the functional operators, we also need to know the rates at

which these events occur to build the master equation. Define β(x, φ) to be the

birth rate at location x when the system is in state φ. As each offspring is placed

at the same location as the parent, this rate must be equal to the number of

particles at location x multiplied by their individual birth rate r. Hence, the
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birth rate is given by

β(x, φ) = rKφ(x, t). (2.15)

Define γ(x, φ) to be the death rate at location x when the system is in state φ.

The death rate is equal to the product of the number of particles at location x

and the total competition experienced at that location from particles at other

locations. This total competition is given by summing over the competition

kernels for every other location. Hence, the death rate is given by

γ(x, φ) = φ(x)

N(t)
∑

i=1

g(x− xi).

Instead of only summing over the locations of the particles, we could integrate

over the whole domain. This will be helpful for mathematical simplicity. In this

way, we can rewrite the death rate as

γ(x, φ) = K

∫ π

−π
φ(x)φ(y)g(x− y)dy. (2.16)

This equivalence of definitions can be seen by substituting the definition for φ(y)

in the integral. Finally, define the movement rate α(x, y, φ) as the rate of an

individual at location y moving to location x when the system is in state φ. This

rate is equal to the product of the number of particles at location y and the rate

d(x− y) to move to location x. Hence, the movement rate is given by

α(x, y, φ) = Kφ(y)d(x− y). (2.17)

We have now defined all three rates for birth, death, and movement. Using

these rates and their equivalent operators, we can construct the functional master

equation for our system. This master equation explains how the probability of

finding our system in a given state develops over time in terms of births, deaths,

and movements. The rest of this Section will be dedicated to analysing this

master equation and deriving the 1D FKPP equation.

Let P (φ, t) be the probability of the finding the system in state φ at time t.

For our system to be in state φ at time t, three different events could have taken

place for this system to arrive at φ. The system could have been in state ∆−
x φ
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and then a birth occurred at location x, in state ∆+
x φ and a death occurred at

location x, or in state ∆−
x∆

+
y φ and a particle moved from location y to location

x. The three events are summarised in the master equation as

∂

∂t
P (φ, t) =

∫ π

−π
Q(φ, x)P (φ, t)dx, (2.18)

where

Q(φ, x) = (∆−
x −1)β(x, φ)+(∆+

x −1)γ(x, φ)+

∫ π

−π
(∆−

x∆
+
y −1)α(x, y, φ)dy. (2.19)

The first term is for births, the second term for deaths, and the last term for

movement. This is the functional master equation for our system. We will now

carry out an extensive analysis of this equation, which will provide a framework

for an analysis in Chapter 5.

We will begin by expanding the birth, death, and movement operators using

a variation of the Kramers-Moyal expansion [62, 63, 64]. We will substitute this

expansion into the master equation with the formulas for the birth, death, and

movement rates, which will result in the master equation depending on φ and

functional derivatives of φ. At this point, the derivation will move to Fourier

space, as it will be easier to manage the real space convolutions as Fourier space

products. In addition, using results from complex integration, the master equa-

tion simplifies significantly in Fourier space. We will then define explicitly the

death and movement functions g and d and return to real space with the 1D

FKPP equation.

We now begin our analysis of the master equation. Applying a variation of

the Kramers-Moyal expansion to the birth, death, and movement operators will

allow us to rewrite the operators in terms of functional derivatives using a Taylor

expansion in K−1, as we have assumed that K is large. This is given by

∆±
x = 1± 1

K

δ

δφ(x)
+

1

2K2

δ2

δφ(x)2
, (2.20)

which ignores higher order terms in K−1 and where δ/δφ(x) is functional differ-
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entiation, which is defined for an arbitrary functional F [φ] as

δF [φ(x)]

δφ(y)
= lim

ǫ→0

F [φ+ ǫδ(x− y)]− F [φ]

ǫ
.

This is the expansion for the birth and death operators. The movement operator

is a product of the birth and death operators so the expansion is given by

∆−
x∆

+
y =

(

1− 1

K

δ

δφ(x)
+

1

2K2

δ2

δφ(x)2

)(

1 +
1

K

δ

δφ(y)
+

1

2K2

δ2

δφ(y)2

)

= 1 +
1

K

(

δ

δφ(y)
− δ

δφ(x)

)

+
1

K2

(

1

2

δ2

δφ(x)2
+

1

2

δ2

δφ(y)2
− δ

δφ(x)

δ

δφ(y)

)

.

(2.21)

We now substitute the expansions for the operators ∆±
x ,∆

−
x∆

+
y in (2.20) and

(2.21) into the equation for Q(φ, x) in (2.19). Expanding and simplifying gives

Q(φ, x) =
1

K

δ

δφ(x)

(

−β(x, φ) + γ(x, φ)−
∫ π

−π
α(x, y, φ)dy

)

+
1

2K2

δ2

δφ(x)2

(

γ(x, φ) + β(x, φ) +

∫ π

−π
α(x, y, φ)dy

)

+
1

K

∫ π

−π

δ

δφ(y)
α(x, y, φ)dy +

1

2K2

∫ π

−π

δ2

δφ(y)2
α(x, y, φ)dy

− 1

K2

∫ π

−π

δ

δφ(x)

δ

δφ(y)
α(x, y, φ)dy.

We now also substitute the equations for the birth, death, and movement rates

in (2.15), (2.16), and (2.17) into this equation giving

Q(φ, x) =

δ

δφ(x)

(

−rφ(x, t) +
∫ π

−π
φ(x)φ(y)g(x− y)dy −

∫ π

−π
φ(y)d(x− y)dy

)

+
1

2K

δ2

δφ(x)2

(∫ π

−π
φ(x)φ(y)g(x− y)dy + rφ(x, t) +

∫ π

−π
φ(y)d(x− y)dy

)

+

∫ π

−π

δ

δφ(y)
φ(y)d(x− y)dy +

1

2K

∫ π

−π

δ2

δφ(y)2
φ(y)d(x− y)dy

− 1

K

∫ π

−π

δ

δφ(x)

δ

δφ(y)
φ(y)d(x− y)dy.
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We can now let K → ∞ as we are only interested in the large population dy-

namics. This gives

Q(φ, x) =

δ

δφ(x)

(

−rφ(x, t) +
∫ π

−π
φ(x)φ(y)g(x− y)dy −

∫ π

−π
φ(y)d(x− y)dy

)

+

∫ π

−π

δ

δφ(y)
φ(y)d(x− y)dy,

and substituting this equation for Q(φ, x) back into the master equation (2.18)

gives

∂

∂t
P (φ, t) =

∫ π

−π

[

δ

δφ(x)

(

−rφ(x, t) +
∫ π

−π
φ(x)φ(y)g(x− y)dy −

∫ π

−π
φ(y)d(x− y)dy

)

+

∫ π

−π

δ

δφ(y)
φ(y)d(x− y)dy

]

P (φ, t)dx.

(2.22)

The master equation now contains convolutions. To make these convolutions

easier to handle, we move to Fourier space where they become products. Define

the Fourier space transforms of φ, g, d as

φn(t) =
1

2π

∫ π

−π
φ(x, t)e−inxdx

gk =
1

2π

∫ π

−π
g(x)e−ikxdx

dk =
1

2π

∫ π

−π
d(x)e−ikxdx,

and the inverse Fourier transforms as

φ(x, t) =
∑

n

φn(t)e
inx

g(x− y) =
∑

k

gke
ik(x−y)

d(x− y) =
∑

k

dke
ik(x−y),

(2.23)
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as we are on the finite interval [−π, π). Using these Fourier space expansions, the

function derivative for φ can be rewritten in terms of the Fourier modes φn as

δ

δφ(x)
=
∑

n

δφn
δφ

δ

δφn
=

1

2π

∑

n

δ

δφn
e−inx.

In Fourier space, we can now substitute the inverse Fourier expansions in (2.23)

into the functional master equation in (2.22). Making this substitution and sim-

plifying gives

∂

∂t
P (φ, t) =−

∑

p,n

δ

δφp
P (φ, t)

1

2π
rφn(t)

∫ π

−π
ei(n−p)xdx

+
∑

p,n,m,k

δ

δφp
P (φ, t)

1

2π
φn(t)φm(t)gk

∫ π

−π
ei(n+k−p)xdx

∫ π

−π
ei(m−k)ydy

−
∑

p,n,k

δ

δφp
P (φ, t)

1

2π
φn(t)dk

∫ π

−π
ei(k−p)xdx

∫ π

−π
ei(n−k)ydy

+
∑

p,n,k

δ

δφp
P (φ, t)

1

2π
φn(t)dk

∫ π

−π
eikxdx

∫ π

−π
ei(n−p−k)ydy.

The Cauchy Integral Theorem [66] tells us that these integrals will all be equal to

zero unless the exponents in the integrands are themselves zero as the integrands

have no poles within the unit circle. When the exponents are equal to zero, the

integrals are equal to 2π. Hence, we require the exponents to be equal to zero

and we gather conditions for the sum variables. This gives

∂

∂t
P (φ, t) =

∑

p

δ

δφp
P (φ, t)R(φp), (2.24)

where

R(φp) = −rφp(t) + 2π
∑

m

φp−m(t)φm(t)gm + 2πφp(t)(d0 − dp).

The functional master equation for our system is now in the form of the Liouville

equation [60], which is a special case of the forward Fokker-Planck equation (2.5)
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when b(x, t) = 0. The master equation (2.24) has solutions φp when

d

dt
φp = rφp − 2π

∑

m

gmφp−mφm + 2π(dp − d0)φp, (2.25)

which is a first-order ordinary differential equation for the Fourier modes φp which

we have recovered from the functional master equation. For the rest of this deriva-

tion of the 1D FKPP equation, we will focus on (2.25). We only need to define

functions d, g and return to real space. For movement, we have assumed that the

particles are moving according to Brownian motion with diffusion coefficient D

on a microscopic level. To model this here we assume that individuals remain

static at some location x and then move to location y with rate d(x−y). In order

to resolve the difference between the microscopic Brownian motion we want to

model and the framework we are using here, we assume that individuals move

at random times that are exponentially distributed with rate γ. The distance

traveled is a normal random variable with mean zero and variance D/γ. In the

limit γ → ∞, the movement of the individuals converges to Brownian motion

with diffusion coefficient D, which is the movement we want to model. Hence,

we define the movement rate d(x− y) to move from location x to location y as

d(x− y) =
γ

√

4πD/γ
exp

(−γ(x− y)2

4D

)

.

This movement rate has Fourier modes given by

dk =
1

2π

∫ π

−π
d(x)e−ikxdx =

γ

2π
√

4πD/γ

∫ π

−π
exp

(−γx2
4D

− ikx

)

dx

≈ γ

2π
√

4πD/γ

∫ ∞

−∞
exp

(−γx2
4D

− ikx

)

dx

=
γ

2π
√

4πD/γ
2

√

πD

γ
exp

(

−D
γ
k2
)

=
γ

2π
exp

(

−D
γ
k2
)

,

where the approximation follows as we are considering large γ so the exponential

has a very sharp peak at zero. Hence, the large tail error is small and we can shift

domains from [−π, π) to (−∞,∞). Considering the movement term in (2.25),

we see dp−d0 =
γ
2π
(e−

D
γ
p2 −1) ≈ − D

2π
p2 as we only need to consider small 1/γ as
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we are only interested in the case when γ → ∞. Substituting these modes into

(2.25) gives
d

dt
φp = rφp − 2π

∑

m

gmφmφp−m −Dp2φp. (2.26)

We now return to real space. Note that the Fourier modes of the product of two

arbitrary functions f and g are given by

Fk[f(x)g(x)] =
1

2π

∫ π

−π
f(x)g(x)e−ikxdx =

1

2π

∫ π

−π

∑

n

fne
inx
∑

m

gme
imxe−ikxdx

=
1

2π

∑

n,m

fngm

∫ π

−π
eix(n+m−k)dx =

∑

n

fngk−n,

where the last equality holds because, according to the Cauchy Integral Theorem

[66], this integral is equal to zero when the exponent is not zero as the integrand

has no poles within the unit circle. When the exponent is zero, the integral is

equal to 2π. The inverse Fourier transform is given by

F−1

[

∑

n

fngk−n

]

(x) =
∑

k

eikx
∑

n

fngk−n =
∑

k

einxei(k−n)x
∑

n

fngk−n

=
∑

n

fne
inx
∑

k

ei(k−n)xgk−n = f(x)g(x).

(2.27)

Also note that the Fourier modes of the convolution of two arbitrary functions f

and g are given by

Fk

[
∫ π

−π
f(x− y)g(y)dy

]

=
1

2π

∫ π

−π

∫ π

−π
f(x− y)g(y)dye−ikxdx

=
1

2π

∫ π

−π

∫ π

−π

∑

n

fne
in(x−y)

∑

m

gme
imydye−ikxdx

=
1

2π

∑

n,m

fngm

∫ π

−π
eix(n−k)dx

∫ π

−π
eiy(−n+m)dydx = 2πfkgk.

40



The inverse Fourier transform is given by

F−1[2πfkgk](x) =
∑

k

eikx2πfkgk =
∑

k

eikx
∫ π

−π
fkgkdy

=

∫ π

−π

∑

k

fke
ik(x−y)gke

ikydy =

∫ π

−π
f(x− y)g(y)dy.

(2.28)

From these results, we can calculate the inverse Fourier transform of (2.26).

Recall the inverse Fourier transform φ(x, t) =
∑

n φn(t)e
inx from (2.23). Differ-

entiating with respect to time and substituting (2.26) gives

∂

∂t
φ(x, t) =

∑

n

einx
d

dt
φn(t) =

∑

n

einx

(

rφn − 2π
∑

m

gmφmφn−m −Dn2φn

)

= r
∑

n

φne
inx −

∑

n

einx
∑

m

2πgmφmφn−m +D
d2

dx2

∑

n

φne
inx,

(2.29)

noting in the third term that

d2

dx2
einx = −n2einx.

Now, consider the second term in the last line of (2.29). Let fm = 2πgmφm.

Then, this term becomes

∑

n

einx
∑

m

2πgmφmφn−m =
∑

n

einx
∑

m

fmφn−m = f(x)φ(x),

using the result from (2.27). From considering the Fourier modes of f(x) given

by fm = 2πgmφm, we see that

f(x) =

∫ π

−π
g(x− y)φ(y)dy,

using the result from (2.28), so the inverse Fourier transform of the second term

in the last line of (2.29) is given by

F−1

[

∑

m

2πgmφmφn−m

]

= φ(x)

∫ π

−π
g(x− y)φ(y)dy.
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Hence, substituting the definition for φ(x, t) in (2.29) gives

∂

∂t
φ(x, t) = rφ(x, t)−

∫ π

−π
g(x− y)φ(y)dyφ(x) +D

d2

dx2
φ(x, t).

Finally, we let g(x − y) tend to the delta function rδ(x − y) as we are only

interested in local competition. This gives

∂

∂t
φ(x, t) = rφ(x, t) (1− φ(x, t)) +D

d2

dx2
φ(x, t),

which is the 1D FKPP equation. The three terms show the effects of the birth,

death, and movement processes on the population function φ. In Chapter 3,

we will use the nondimensionalised FKPP equation extended to two dimensions

given by φt = φxx + φyy + φ(1− φ) to model a bacteria population. In Chapter

4, we will use the 1D FKPP equation to model a fish population.

Note that when searching for travelling wave solutions to the nondimension-

alised, linearised 1D FKPP equation φt = φxx+φ of the form φ(x, t) = ψ(x− ct)

for invasion speed c, we have solutions that solve

ψ′′ + cψ′ + ψ = 0,

which has solutions of the form

ψ(x− ct) = A1e
−c+

√
c2−4

2
(x−ct) + A2e

−c−
√

c2−4
2

(x−ct),

for constants A1, A2. Hence,

ψ(x− 2t) = e−(x−2t) (2.30)

is a travelling wave solution to the nondimensionalised, linearised 1D FKPP equa-

tion. We will use this solution to find solutions for the linearised 2D FKPP

equation in Chapter 3.

2.2.2 FKPP Invasion Speed Derivation

The FKPP equation is one of the standard equations used to model biological

invasions. A key feature of a biological invasion is the speed of invasion. Under-
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Figure 2-1: An invading front (solid lines) at various times. The front location is
determined by the intersection of the population front with the line φ(xC(t), t) =
C (dotted line). These locations are labelled as the xC(t) (dashed lines)

.

standing how quickly a population will invade into a new territory is crucial in

mathematical biology. This invasion speed will also be used in Chapters 3 and

4 in this thesis. In this Section, we will recap the derivation of the equation for

the invasion speed of the FKPP equation using [21] . We will do this by using

a Fourier space argument and results from complex integration to derive a dis-

persion relation for the population. The population invasion speed will then be

determined from the dispersion relation.

We begin by defining the population invasion speed. The FKPP equation

creates a pulled front, which means the dynamics of the equation, including

the invasion speed, are determined by the low density population ahead of the

front. In terms of the biological dynamics of a population, this means that as

the population moves into new, hospitable environments, only a few initial ‘seed’

individuals are needed for the population in this new area to grow to large,

sustainable levels. For this reason, we only need to consider the linearised 1D

FKPP equation, given by

∂

∂t
φ(x, t) = D

∂2

∂x2
φ(x, t) + rφ(x, t). (2.31)
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All populations that evolve according to this equation will grow unbounded and

so we can calculate the invasion speed for any population that has positive ini-

tial conditions. In addition, populations developing according to the linearised

1D FKPP equation will invade both to the left and to the right. Without loss

of generality, we consider populations invading to the right. For some positive

constant C, the population invasion speed v∗ is defined as the speed of the po-

sitions xC(t) at which φ(x, t) reaches the value C, i.e. the asymptotic speed of

the points xC(t) that satisfy φ(xC(t), t) = C, which is given by v∗ = limt→∞
dxC
dt

.

This definition is shown in Figure 2-1. Note that previously we were working on

the domain [−π, π) but now we consider the domain (−∞,∞), as we require an

infinite domain to define the asymptotic invasion speed.

In order to calculate this invasion speed, we move to Fourier space in order

to use some results from complex integration. We define the inverse Fourier

transform for φ as

φ(x, t) =
1

2π

∫ ∞

−∞
φk(t)e

ikxdk, (2.32)

for Fourier modes φk(t). We also give an ansatz for how the Fourier modes depend

on the Fourier mode number given by φk(t) = φk exp(−iω(k)t) where ω(k) is the
dispersion relation for the population. Substituting this ansatz into (2.32) gives

φ(x, t) =
1

2π

∫ ∞

−∞
φne

ikx−iω(k)tdk.

The results that we would like to use from complex integration depend on the

population front neither growing or decaying in time. Given that the population

ahead of the front is growing, we need to view the population through a moving

frame that keeps the population front constant. We have assumed the population

has invasion speed v∗ so we will consider the moving reference frame ζ = x− v∗t.

Rewriting (2.32) with this moving reference frame and then using [65] to deform

the integral onto (−∞+ iβ,∞+ iβ) gives

φ(ζ, t) =
1

2π

∫ ∞+iβ

−∞+iβ

φke
ikζe−i[ω(k)−v

∗k]tdk, (2.33)

where β is still undefined. The next part of this derivation requires the calculation

of two formulas for the population invasion speed v∗. Both formulas are derived
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considering φ as t→ ∞. The first equation comes from there being no maximum

for the integral exponents and second equation comes from the requirement that

φ should neither grow nor decay in time in our moving reference frame.

Now, for the first equation, let t → ∞. The largest contribution to (2.33)

occurs in the complex plane where the coefficient of t is largest. We define this

coefficient as G(k) = ω(k)−v∗k. We want to find the point in the complex plane

where this coefficient is largest. This point will be where G′(k) = 0. However, this

point will not be a local maximum according to the maximum modulus principle

[67] so it cannot occur at a boundary. Hence, it must be a saddlepoint. Define

this saddlepoint in the complex plane to be k∗ so G′(k∗) = 0. We set β = Im(k∗)

in (2.33). From the definition of G(k), it then follows that ω′(k∗)− v∗ = 0 so

v∗ = ω′(k∗). (2.34)

This is the first equation for v∗.

For the second equation, again let t→ ∞. We are viewing φ through a moving

reference frame so that the population front is not growing or decaying in time.

For this to be the case, (2.33) must be independent of time everywhere, including

at the saddlepoint k∗. Hence, we must have Im(G(k∗)) = Im(ω(k∗)− v∗k∗) = 0

and so

v∗ =
Im(ω(k∗))

Im(k∗)
. (2.35)

This is the second equation for v∗.

We now have two equations for the population invasion speed v∗ in terms of

ω(k∗). To determine v∗, we first calculate ω(k∗) for the FKPP equation. We look

for solutions of the form φ(x, t) ∝ eikx−iω(k)t. Substituting this into (2.31) gives

ω(k) = i(r −Dk2). (2.36)

We now have the equation for the dispersion relation ω(k) for the linearised FKPP

equation. Substituting (2.36) into (2.34) gives

v∗ = ω′(k∗) = −2iDk∗.

But v∗ is real so the right hand side is real. Hence, it must be that k∗ is purely
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imaginary so k∗ = iβ and

v∗ = ω′(iβ) = 2Dβ. (2.37)

Substituting (2.36) into (2.35) gives

v∗ =
Im(ω(iβ))

Im(iβ)
=

(r +Dβ2)

β
.

Setting these two equations equal to each other and solving for β gives

β = ±
√

r

D
.

Using the positive value for β in (2.37), as we are interested in populations in-

vading to the right, gives

v∗ = 2
√
rD. (2.38)

This is the equation for the population invasion speed for the FKPP equation,

which depends on both the growth rate r and diffusion coefficient D. We will use

this result in both Chapters 3 and 4.
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Chapter 3

Invasions and Reactive

Boundaries

When a population enters a new territory, a common question to ask is ‘how

is the surrounding environment affected by this new population?’ However, it

is equally important to understand how the population is affected by the envi-

ronment. There are many examples of ways the environment can influence local

dynamics. They include changing the properties of fluids in porous media [68, 69],

physiologically altering biofilms attached to solid surfaces [70, 71], and increasing

diffusion along roadsides [72, 73].

The environment can have any number of different effects on the populations

interacting with it. When considering the introduction of a new population,

the environment can influence the long term genetic diversity [74, 75]. This was

confirmed by Möbius et. al. in their work on bacteriophage T7 moving in an envi-

ronment of E. coli [36]. They found that a heterogenous environment significantly

affects the genetic diversity of a population. In particular, the experimental do-

main is a patch of two types of E. coli. One type is T7-resistant and the other is

not. When it reaches the non-resistant E. coli, the T7 “infects bacterial cells and

lyses them, releasing a large number of new phage particles which undergo pas-

sive dispersal and can infect nearby cells, a cycle of growth and replication that

leads to an advancing population front” [36]. The non-resistant E. coli provides

a region of good growth conditions for the T7. The T7-resistant E. coli does

not. When the T7 enters this hostile region, it does not release a large number

of new particles. In this region, which acts as an obstacle for the T7, the growth
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conditions are very poor. The results show that the obstacle created a kink in the

front of T7 near the boundary with the obstacle and that there was a significant

reduction in speed near the boundary. A constant speed model was suggested to

predict these results but it did not accurately reflect the shape of the front after

the kink had formed in the population. The experimental results lagged behind

the constant speed model significantly. Möbius et. al. then considered the 2D

FKPP equation with a location-dependent growth rate to determine the effect of

the obstacles on the population front. This model agrees qualitatively with the

experimental results. The lag is seen in the model in addition to the shape of the

front changing near the boundary and a slow down of the front near the widest

point of the obstacle.

Motivated by this work, we consider in this Chapter a population invading

a 2D environment with individuals that give birth, die and move. The simplest

model that captures these dynamics is given by the 2D FKPP equation

ut = uxx + uyy + u(1− u), (3.1)

where we have set r = D = 1, which is possible by rescaling time by t′ = rt and

space by x′= y′ =
√

r/D and then rewriting the 2D FKPP equation in terms of

t′, x′, y′. In order to model the obstacles, we choose environments that have at

least one boundary, which will simulate the obstacle. Hence, for the environments

we consider a corridor of finite width L > 0 given by CL = {(x, y) : x ∈ R, 0 ≤
y ≤ L} and a corridor of infinite width given by C∞ = {(x, y) : x ∈ R, y ≥ 0}. We

introduce a mixed or reactive boundary on the y = 0 boundary as it accurately

reflects the experimental dynamics of the T7 bacteriophage near the resistant E.

coli obstacle. A mixed boundary means that some of the individuals can pass

through the boundary while others are reflected back. When considering the

bacteriophage example, a mixed boundary is appropriate as each E. coli cell on

the border of the T7-resistant region can only be infected once. Once a particular

cell has been infected, the T7 can no longer cross the boundary at this point.

Hence, it is a mixed boundary. The mixed boundary condition is given by

uy = αu on y = 0, (3.2)

where α ≥ 0 is some reaction rate. When α is large, the boundary is very
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Figure 3-1: The two regions of the population that we explore in this Chapter
are shown in thick black lines. We are concerned with the low density dynamics
ahead of the front and the high density stable state behind the front.

hostile and nearly absorbing. When α is small, the boundary is barely hostile

and nearly reflective. The reaction rate α is a measure of how hostile the obstacle

in the environment is. Möbius et. al. used the 2D FKPP equation to model the

influence of the change in growth rate in the resistant and non-resistant regions.

Here, we are modelling the influence of the strength of the hostile boundaries

on the population. We model this mixed boundary according to [76]. When we

consider CL, we also introduce a mixed boundary condition uy = −βu on y = L

for reaction rate β ≥ 0. The negative sign is due to the change of orientation of the

y = L boundary compared to the y = 0 boundary. This second mixed boundary

allows us to consider the effects two obstacles could have on a population. Note

that when β = 0, the boundary at y = L is reflective, and as β → ∞, the

condition tends to an absorbing boundary. Hence, we can perform the following

calculations with general β and then set β = 0, β → ∞ when we want the results

for a reflective or absorbing boundary respectively.

The dynamics of the population change as the density of the population

changes. The dynamics of the population in the low density region where the

population is unstable are analysed in Section 3.1. We linearise the 2D FKPP

equation to find results on the speed of the population and the corridor widths
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that can support populations with different speeds. In Section 3.2, we study the

dynamics when the population density is high and stable. There we show the

conditions required for the survival and stability of the population. These two

regimes are shown in Figure 3-1.

3.1 Ahead of the Front

In this Section, we are interested in determining how a hostile boundary affects

the shape of the population invasion ahead of the front. The population density

ahead of the front is very small so we can assume u(x, y, t) ≪ 1. With this

assumption, we can linearise (3.1). The linearised 2D FKPP equation is given by

ut = uxx + uyy + u. (3.3)

We now seek to find solutions to (3.3). Consider a separable solution given by

u(x, y, t) = exp(−(x − ct))v(y) for some function v(y) and for invasion speed c.

We assume the solution has this form as u(x, t) = exp(−(x − ct)) is a traveling

wave solution to the 1D FKPP equation, as shown in the technical introduction

in (2.30). Substituting this solution into (3.3) gives

vyy + (2− c)v = 0, (3.4)

a second order differential equation for the function v(y) which gives the depen-

dence on the second spatial coordinate. In terms of v, the boundary condition

(3.2) is given by

vy = αv. (3.5)

We now focus on finding solutions of (3.4) and (3.5). In the absence of a mixed

boundary, the population would invade at speed c = 2, which we calculated in

the technical introduction in (2.38). We assume that, with a hostile boundary,

the invasion will be no faster than an invasion with no hostile boundary so c ≤ 2.

We define p =
√
2− c to simplify our notation. Note that when the population

has invasion speed c = 2, p = 0 and when c = 0, p =
√
2. The solution to (3.4)
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and (3.5) is then given by

v(y) = A

(

cos(py) +
α

p
sin(py)

)

, (3.6)

for some undetermined constant A. We now consider this solution in CL with a

varying reaction rate β at y = L and in C∞.

3.1.1 CL

We now consider the solution (3.6) for v(y) in the domain CL with the mixed

boundary condition

vy(L) = −βv, (3.7)

for reaction rate β ≥ 0. Applying (3.7) to (3.6) gives

(p2 − αβ) tan(pL) = p(α + β). (3.8)

This equation provides a condition that α, β, p, L must satisfy. This equation

is shown in Figure 3-2. For a given α, β, L, (3.8) has a countable number of

solutions for p. The values we are interested in are the values in [0,
√
2] as they

correspond to a nonnegative invasion speed c.

We can determine the relationship between L, α, and β when the population

front has speed c = 0 by setting p =
√
2 which gives

(2− αβ) tan(
√
2L) =

√
2(α + β). (3.9)

Setting β = 0 gives
√
2 tan(

√
2L) = α for a reflective boundary at y = L and

letting β → ∞ gives −α tan(
√
2L) =

√
2 for an absorbing boundary at y = L.

For given α, β and the mixed boundary condition (3.7), the corridor width Lmα,β
that results in a population with invasion speed zero is given by

Lmα,β =







1√
2
tan−1

(√
2(α+β)
2−αβ

)

for αβ < 2

1√
2

[

π + tan−1
(√

2(α+β)
2−αβ

)]

for αβ > 2.

There are cases here because we need the smallest positive root for tan(
√
2L) =
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Figure 3-2: The equation (p2 − αβ) tan(pL) = p(α + β). The left hand side is
shown in the solid line and the right hand side in the dashed line. α = β = L = 1

√
2(α + β)/(2− αβ). Letting α→ ∞ gives the critical corridor width

Lm∞,β =
1√
2

[

π + tan−1

(

−
√
2

β

)]

.

This value of Lm∞,β is critical in the sense that if L > Lm∞,β, the population will

invade forward for any value of α. If L < Lm∞,β, the population will invade

forward if α is small enough but it will not invade forward if α is large enough.

This relationship is shown in Figure 3-3. When β = 0 and when β → ∞, the

corridor width Lmα,0, L
m
α,∞ that results in a population with invasion speed zero is

given respectively by

Lmα,0 =
1√
2
tan−1

(

α√
2

)

Lmα,∞ =
1√
2

[

π + tan−1

(

−
√
2

α

)]

,

and letting α → ∞ gives the critical corridor widths Lm∞,0 = π/(2
√
2), Lm∞,∞ =

π/
√
2.
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Figure 3-3: The relationship between reaction rate α, corridor width L, and
invasion speed c. The white line shows the curve where the invasion has speed
zero, which comes from equation (3.9). The dashed black line shows the critical
corridor width Lm∞,β, above which the invasion always has a positive speed, for
any value of α. The colour bar shows the speed c.
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If α = β, then the corridor width Lmα is then

Lmα =







1√
2
tan−1

(

2
√
2α

2−α2

)

for α2 < 2

1√
2

[

π + tan−1
(

2
√
2α

2−α2

)]

for α2 > 2.

Letting α→ ∞ gives Lm∞ = π/
√
2.

As an aside, if α = β = 0, we return to (3.6) to see that the solution is now

v(y) = A cos(py).

Applying the reflective boundary condition vy(L) = 0 when β = 0 at y = L gives

that

pL = πn for n ∈ {0, 1, . . .}.

Recall that p =
√
2− c from (3.6). It then follows that the relationship between

the population invasion speed c and the corridor width L is given by

c = 2− n2π2

L2
→ 2 as L→ ∞,

which agrees with the invasion speed for the 1D FKPP equation we calculated in

the technical introduction in (2.38) with r = D = 1.

3.1.2 C∞

We now consider the population front in the domain C∞. As there is only one

boundary, we must impose the second boundary by considering the population

front as y → ∞. We try to set v(y) → 1 in (3.6) but we find there are no

solutions. Far away from the mixed boundary at y = 0, the population should

tend to the solution of the 1D FKPP equation with invasion speed c = 2 as

the effects of the hostile boundary will be negligible infinitely far away from the

boundary. We return to (3.4) with this speed requirement and see that it is now

given by

vyy = 0,
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and the mixed boundary condition (3.5) at y = 0 gives

v(y) = v0(1 + αy),

for some constant v0. The solution to (3.3) with boundary condition (3.2) is now

explicitly given by

u(x, y, t) = u0 exp(−(x− 2t))(1 + αy),

for some constant u0. From this equation, we can study the behaviour of the

population ahead of the front in terms of the level sets u(x, y, t) = K for some

constant 0 < K ≪ 1, as we are only considering ahead of the population front.

The curves for these level sets are then given by

y =
1

α

(

K

u0
exp(x− 2t)− 1

)

,

with gradient
dy

dx
=

1

α

K

u0
exp(x− 2t).

Note that when y = 0

exp(x− 2t) =
u0
K
,

so the gradient at y = 0 is dy/dx = 1/α, which is interesting because it is

independent of the level set chosen. This effect is shown in Figure 3-4. The

curvature in the level set near the boundary is more significant for larger α.

3.2 Behind the Front

3.2.1 Survival

We consider the survival of the population behind the front. In this region,

there is no variation in the population density in the x direction as the invading

front has passed and the population has reached a steady state so the population

density does not change with time. Hence, the population far behind the front

is now independent of both x and t so we write u(x, y, t) = w(y). The 2D
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(a) (b)

Figure 3-4: The solution u(x, y, t) = u0 exp(−(x − 2t))(1 + αy) to the linearised
FKPP equation ut = uxx + uyy + u in the domain C∞ with u0 = K = 1, t = 1.
The colour bar goes from zero to one as we are considering the population ahead
of the front. The colour bar shows the value of the population density u(x, y, t).
(a) α = 0.1 (b) α = 1.

nondimensionalised FKPP equation (3.1) is now

wyy = w(w − 1). (3.10)

The boundary condition behind the front remains the same and is given by

wy = αw on y = 0.

We note that w(y) = 0 everywhere is a solution behind the front so it is possible

that the population dies out. To analyse these equations, we define z = wy so

that we have

wy = z, zy = w(w − 1).

This system of differential equations has steady states at (0, 0) and (1, 0) and a

Jacobian matrix given by

J =

(

0 1

2w − 1 0

)

,

which has eigenvalues ±
√
2w − 1 so that (0, 0) is a centre and (1, 0) is a saddle-

point. We can also express these dynamics as a two-dimensional Hamiltonian
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Figure 3-5: The phase plane produced by the equations wy = z, zy = w(w − 1).
The solid lines show trajectories in the phase plane, the dashed blue line shows
the boundary condition wy = αw when y = 0, the dot dashed red line shows
the mixed boundary condition wy = −βw when y = L, and the thick solid
line shows the boundary condition for C∞ where w(y) → 1 as y → ∞. Points
(w0, z0), . . . , (w3, z3) are indicated by the labels 0, 1, 2, 3.

system, given by

wy = z =
∂H

∂z

zy = w(w − 1) = −∂H
∂w

.

(3.11)

where the Hamiltonian H(w, z) is given by

H(w, z) =
1

2
z2 +

(

1

2
w2 − 1

3
w3

)

. (3.12)

The phase plane is shown in Figure 3-5. In C∞, there is a unique trajectory

that corresponds to the boundary conditions z = wy = αw on y = 0, which is

shown in the dashed blue line, and w → 1 as y → ∞, which is shown by the thick

solid line, and when w, z > 0 for all y ≥ 0. This trajectory starts at the point
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(w0, z0), where the line z = wy = αw and the stable manifold intersect when

w, z > 0, and follows the stable manifold to the point (w1, z1) = (1, 0) as y → ∞.

We can find an analytic expression for this curve by solving (3.10), which gives

w(y) = 1− 3

2
sech2

(

(y + y0)

2

)

, (3.13)

for an undetermined constant y0. The equation in (3.13) clearly satisfies the

boundary condition w → 1 as y → ∞. We can determine y0 implicitly from the

boundary condition wy = αw on y = 0 using

3

2
tanh

(y0
2

)

= α

[

cosh2
(y0
2

)

− 3

2

]

. (3.14)

Since the left-hand-side of (3.14) increases monotonically from zero and asymp-

totically approaches 3/2 as y0 increases to infinity, and the right-hand side in-

creases monotonically from −α/2 at y0 = 0 to very large positive values as y0

increases, it is clear that for any fixed α > 0, the equation (3.14) has a unique

positive solution for y0. Since the left-hand-side is always positive, we have that

y0 always satisfies

y0 ≥ 2cosh−1

(

√

3

2

)

> 0.

In CL, the phase plane trajectories can start anywhere on the line z = wy =

αw. The starting point is determined by the finite width L, for example at

(w2, z2 = αw2), which provides a constraint on the contour. The trajectory ends

on the line z = wy = −βw, at the point (w3, z3 = −βw3).

The finite width constraint can be expressed through the requirement that the

contour containing the trajectory must correspond to a value of H that satisfies

the following constraint. Firstly, recall that wy = z from (3.11) and using (3.12),

we have

wy = z = (2H(w2, αw2) + 2w3/3− w2)1/2.
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Then, the requirement is

L =

∫ L

0

dy =

∫

γ

dy

dw
dw

=

∫

γ

1

wy
dw

=

∫

γ

1

(2H(w2, αw2) + 2w3/3− w2)1/2
dw

(3.15)

which follows from the Hamiltonian (3.12), starting from the initial condition

(w2, z2) and setting H = H(w2, z2) which is determined by the initial condition,

and integrating along the trajectory γ starting at the point (w2, z2) and ending at

(w3, z3). For a specified finite value of L, the constraint (3.15) selects a trajectory

in the phase plane that satisfies both this constraint and the required boundary

conditions, showing that a unique, positive solution exists for any positive L.

3.2.2 Stability

To determine the stability of the population solutions behind the front, we

return to the full dynamics. Behind the front, as the population front has already

passed, there is no longer any variation in the x direction. Hence, we aim to

analyse the 1D FKPP equation given by

ut = uyy + u(1− u), (3.16)

with boundary condition

uy = αu when y = 0.

We note that u = 0 everywhere is a solution to these equations as the population

can die out for large reaction rates α, β. We are interested in determining when

the solution u = 0 is stable and unstable. As we are considering small population

sizes around u = 0, we can linearise (3.16) to get

ut = uyy + u.
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We begin with the ansatz u(y, t) = eσtv(y). We choose this ansatz because

we want to determine when the solution grows or decays in time, without any

information about the dependence on the spatial y direction. Substituting this

ansatz into the linear FKPP equation gives

v′′(y) = (σ − 1)v(y),

with boundary condition

vy = αv when y = 0.

Define q =
√
1− σ to simplify notation. Solutions for v have the form

v(y) = A cos(qy) +B sin(qy),

and substituting the boundary condition gives

v(y) = A

(

cos(qy) +
α

q
sin(qy)

)

, (3.17)

for some constant A. In CL, applying the mixed boundary condition vy = −βv
on y = L to (3.17) gives

tan(qL) =
α+ β

q − αβ
q

.

We want to know when the solution changes from growing in time to decaying in

time. This occurs at σ = 0, which gives q = 1 and so

tan(L) =
α + β

1− αβ
.

This gives us a condition behind the front when the zero steady state transitions

between stable and unstable. When α > (tan(L) − β)/(1 + β tan(L), the zero

state is stable and the population solution decays to zero. Otherwise, the zero

state is unstable and the population grows away from the zero state. Using

the Poincare-Bendixson Theorem [77], we know that in the absence of any limit

cycles, the population must tend to the positive steady state.

This condition is shown in Figure 3-6. In addition, when L > π+tan−1(−1/β),
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Figure 3-6: The conditions for the population having a zero invasion speed de-
termined by the dynamics ahead of the front, given by α = (2 tan(

√
2L) −√

2β)/(
√
2+β tan(

√
2L)) in the solid line, and for the population having a nonzero

stable steady state behind the front, given by α = (tan(L)−β)/(β tan(L)+1) in
the dashed dotted line, as functions of reaction rate α and corridor width L when
there is a mixed boundary at y = L. The dashed line shows the critical corridor
width Lm∞,β = (π + tan−1(−

√
2/β))/

√
2 such that, for L > Lm∞,β, the population

will always have a positive invasion speed according to the dynamics ahead of
the front. We also see that, when L > π+tan−1(−1/β), shown in the thick solid
line, the population will always have a stable nonzero steady state regardless of
the value of α. β = 1/2.
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the population will always have a stable nonzero steady state behind the front,

for any value of α. When β = 0, this condition is tan(L) = α for a reflective

boundary and when β → ∞, this condition is tan(L) = − 1
α
for an absorbing

boundary.

As we can see from these figures, as α increases from zero, the non-zero steady

state behind the front becomes unstable before the population invasion speed

determined ahead of the front can reach zero. This suggests that the population

invasion collapses before it reaches zero invasion speed predicted by the theory

ahead of the front. In addition, as the FKPP equation is a pulled front, the

invasion speed is determined by the dynamics ahead of the front. We now see

that this is not the case for the 2D FKPP with hostile boundaries as the invasion

speed is significantly determined by the dynamics behind the front.

3.3 Simulations

We have analysed the 2D FKPP equation both ahead of and behind the

population front and found conditions for when the population is predicted to

collapse and when the population is predicted to have speed zero. To explore the

applicability of these conditions, we simulate both individual based models and

population based models. The individual based models are stochastic as they

include significant randomness in the birth, death, movement, and absorption

processes. The population based models of the 2D FKPP equation are determin-

istic and provide the large population limit of the individual based, stochastic

simulations. In this Section, we simulate stochastic models ahead of and behind

the front and we simulate a deterministic model of the 2D FKPP equation.

3.3.1 Stochastic Models

Consider the domain RL = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ L}, a rectangle

with length 1 in the x direction and length L in the y direction. We divide this

rectangle into a 20 by 20 grid. Let Ni,j(t) by the number of individuals in the (i, j)

square at time t. Each square has carrying capacity K. Individuals at location

(i, j) in the domain are born with rate r and die with rate rNi,j(t)/K. When

a patch is at carrying capacity, the birth and death rates are equal. Individuals
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Figure 3-7: The stochastic simulations of the absorbing boundary at y = L ahead
of the front. We set r = D = L = 1, K = 100 and increment each run for 100
time steps. The colour bar shows the number of individuals in each square. (a)
α = 0, (b) α = 0.5, (c) α = 1.
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move to neighbouring squares with rate D. In the y direction, we impose the

discrete space equivalent of the mixed boundary condition (3.2) at y = 0. This

is done by taking an individual that jumps to position (i,−1) and removing it

from the system with probability αh, where h = L/20, the length of a square in

the y direction, and otherwise placing it at the position (i, 1), which follows the

method of [76]. The initial condition for the stochastic simulations ahead of the

front is the left half of RL set to carrying capacity and everywhere else empty.

In the x direction, we impose reflective boundary conditions. This is to simulate

the population invading through the domain from left to right.

We now consider the different cases for the boundary at y = L. When there is

an absorbing boundary at y = L, we remove all individuals that jump to position

(i, 21). As we increase the reaction rate α, the population front creates a corridor

within RL away from the boundaries. These effects are shown in Figure 3-7.

When there is a reflective boundary at y = L, we place all individuals that jump

to position (i, 21) in position (i, 19). The stochastic invasion reaches carrying

capacity along the line y = L in the simulations. These effects are shown in

Figure 3-8. When there is a mixed boundary also at y = L, we see the effects of

the hostile boundaries on both boundaries. These effects are shown in Figure 3-9.

The mixed boundary is introduced by taking an individual that jumps to position

(i, 21) and removing it from the system with probability βh where h = L/20 and

otherwise placing it at the position (i, 19). In these figures, we see the various

ways the population invasion can develop as a function of the reaction rate α.

Behind the front, we impose periodic boundary conditions in the x direction

to simulate the fact that we are behind the front so there is no dependence on

the x location. The initial condition for this model is the whole domain RL set

to carrying capacity. This is to simulate the population invasion front already

passing and now we are at a steady state behind the front.

The results behind the front vary depending on the boundary condition at

y = L. For an absorbing boundary, we see the population behind the front

creates a corridor as α increases. This is shown in Figure 3-10. Similar results for

a reflective and mixed boundary are shown in Figures 3-11 and 3-12 respectively.
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Figure 3-8: The stochastic simulations of the reflective boundary at y = L ahead
of the front. We set r = D = L = 1, K = 100 and increment each run for 100
time steps. The colour bar shows the number of individuals in each square.(a)
α = 0, (b) α = 0.5, (c) α = 1.
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Figure 3-9: The stochastic simulations of the mixed boundary at y = L ahead of
the front. We set β = 10, r = D = L = 1, K = 100 and increment each run for
100 time steps. The colour bar shows the number of individuals in each square.
(a) α = 0, (b) α = 0.5, (c) α = 1.
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Figure 3-10: The stochastic simulations of the absorbing boundary at y = L
behind the front. We set r = D = L = 1, K = 100 and increment each run for
300 time steps. The colour bar shows the number of individuals in each square.(a)
α = 0, (b) α = 0.1, (c) α = 0.25.
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Figure 3-11: The stochastic simulations of the reflective boundary at y = L
behind the front. We set r = D = L = 1, K = 100 and increment each run for
300 time steps. The colour bar shows the number of individuals in each square.(a)
α = 0.1, (b) α = 0.5, (c) α = 1.
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Figure 3-12: The stochastic simulations of the mixed boundary at y = L behind
the front. We set r = D = L = 1, K = 100 and increment each run for 300
time steps. The colour bar shows the number of individuals in each square.(a)
α = 0.1, (b) α = 0.5, (c) α = 1.
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3.3.2 Deterministic Model

The conditions for collapse and reaching speed zero have been predicted from

analysing the 2D FKPP equation. Here we confirm these results by simulating

the population invasion and measuring the invasion speed for different parameter

values. We use the two step Adams-Bashforth method [78] to model the 2D

FKPP equation and we calculate the invasion speed by tracking the location of

level sets as the population progresses through the environment.

The results for various reaction rates α and corridor widths L = 0.5, 1.5, 2.5

with a reflective boundary at y = L are shown in Figures 3-13, 3-14, and 3-15

respectively. In Figure 3-13, we see that the invasion speed we measure dips

sharply away from the speeds predicted by the theory ahead of the front. The

speeds quickly decay reaching zero at the black square, which is at the location

of predicted parameter values for collapse behind the front. We see that even

for α values before collapse, there is a significant difference between the theory

and observed results. We are happy with this divergence between the theory

and observed results because we predicted the critical corridor width in Section

3.1.1. This figure confirms our prediction that the population collapses with this

corridor width at the black square. In both Figures 3-14 and 3-15, the observed

results agree with the predicted theory, despite both displaying speeds that are

slower than the theory predicts.

3.4 Conclusion

In this Chapter, we have explored the 2D FKPP equation ut = uxx + uyy +

u(1− u) on a corridor with finite width CL with the mixed boundary conditions

uy = αu on y = 0 and uy = −βu on y = L and on a corridor with infinite

width C∞ with only the y = 0 mixed boundary for reaction rates α, β. Ahead

of the front on CL, we found an equation relating the reaction rates, the width

of the corridor, and the speed of the population. From this equation, we can

determine when we expect the population to have speed zero for given values of

α, β, L. For C∞, the second boundary condition came from the requirement that

the population is unaffected by the boundary very far away. This allowed us to

derive an explicit equation for the population ahead of the front. From this, it
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Figure 3-13: A comparison between the simulations of the 2D FKPP equation
(red solid line) and predicted, low density theory ahead of the front (blue dashed
line) for the population invasion speed. We vary the reaction rate α for the
boundary at y = 0. There is a reflective boundary at y = L. L = 0.5
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Figure 3-14: A comparison between the simulations of the 2D FKPP equation
(red solid line) and predicted, low density theory ahead of the front (blue dashed
line) for the population invasion speed. We vary the reaction rate α for the
boundary at y = 0. There is a reflective boundary at y = L. L = 1.5
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Figure 3-15: A comparison between the simulations of the 2D FKPP equation
(red solid line) and predicted, low density theory ahead of the front (blue dashed
line) for the population invasion speed. We vary the reaction rate α for the
boundary at y = 0. There is a reflective boundary at y = L. L = 2.5

can be shown that the level sets ahead of the front meet the y = 0 boundary

with constant gradient, independent of the level set chosen. The next Section

of this Chapter analysed the survival and stability of the population behind the

front. Using a phase plane argument, we showed that a positive solution exists

for any positive L. For the stability, we again found an equation relating the

reaction rates and the corridor width for when the zero steady state becomes

unstable. Comparing this equation with the equation for when the population

ahead of the front reaches speed zero showed that, as the reaction rates increase,

the population behind the front becomes unstable before the population ahead

of the front reaches speed zero. This was confirmed by deterministic simulations.

Returning to the work by Möbius et. al. [36], we see that our results agree.

They found that as the T7 invades past the T7-resistant region of E. coli, a kink

is formed in the population invading front. We found this same kink occurring

in the invading front in C∞, shown in Figure 3-4. Our research here explores

new areas of this population invasion as well. For example, if we were to run an

experiment with a T7 invasion on a corridor of width L with two T7-resistant

regions on either side, our results predict when this invasion will have speed
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zero. It is not when the population ahead of the front achieves speed zero but

when the population zero state behind the front becomes stable. This point

is determined by the reaction rates on either boundary and the width of the

corridor. As our work looks at mixed boundaries with varying reaction rates, it

is biologically significant as it can be applied to situations where the effectiveness

of the boundary is not constant, such as drug treatment.
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Chapter 4

Invasions and Intraspecies

Conflict

Interactions between populations can have either positive, negative, or neutral

benefits for the populations involved. Positive interactions include mutualism,

when both individuals benefit mutually, and commensalism, when one individual

benefits and the other neither benefits or is harmed. Examples of these posi-

tive interactions include marine communities buffering one another in physically

stressful habitats [79], plants adjusting their environment to make it more suit-

able for themselves [80], and ants drinking the honeydew produced by homoptera

resulting in the homoptera feeding more and producing more honeydew [81].

These positive interactions between populations can have significant effects on

the development of the populations involved. These effects include the creation

of species-rich communities supported by a single resource [82], the evolution of

phenotypes in an opportunistic pathogen for rapid adaptation [83], and even the

introduction of stable population equilibrium that would not exist otherwise [84].

One of the possible resulting effects of positive interactions between popula-

tions is both populations invading faster together. This has been seen experi-

mentally in microbial parasites [85] and in invasive succulents [86]. Elliott and

Cornell theoretically showed that a mutualistic relationship between phenotypes

can result in a faster range expansion than if only one phenotype was present in

the population, for both deterministic and stochastic models [87, 88].

In this Chapter, we consider whether antagonistic interactions between indi-

viduals can also influence the speed of invasion of a population. This question is
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important because it means that we must give significant consideration to how we

alter biological systems as it may have consequences that are severely detrimen-

tal to local conservation efforts. With this in mind, we discuss the particularly

invasive Trinidadian guppy Poecilia Reticulata which is introduced to control the

mosquito population [90, 91]. The reproduction of the guppy, an interaction be-

tween individual male and female guppies, has been well studied. The sexual

responsiveness of female guppies varies with the colour of the male guppies [92]

while sexual harassment from male guppies alters the ways female guppies inter-

act with other females [94, 96, 97]. In order to minimise the amount of sexual

harassment they receive, female guppies associate with female guppies that are

more sexually attractive than themselves [95]. However, when female guppies are

distracted by the possibility of predation, the male guppies try to mate sneakily

[93], and this again changes the dynamics of social groups [98]. Their reproduc-

tion can be considered sexual coercion or sexual conflict, which is not mutualistic

[99], because the female guppies are highly selective in their choice of mate and

they are willing to reproduce for very short periods of time while the male gup-

pies experience significant competition from other male guppies so they choose

to harass female guppies as much as possible. This, in turn, leads to significant

evolutionary consequences in the species [100].

The aim of this Chapter is to determine if sexual conflict between male and

female guppies might result in a faster speed for the invading population. When

the guppies are introduced into new rivers and streams, even in very small num-

bers, they are very successful at reproducing and establishing a population [89].

These dynamics of a population density u(x, t) at location x and time t growing

from an unstable state u = 0 to a stable state u = 1 can be effectively modelled

by the 1D FKPP equation, which is appropriate here as we model the relatively

narrow streams and rivers the guppies live in. It is also appropriate to consider

the 1D FKPP equation as a starting point as we determine whether this link be-

tween sexual conflict and invasion speed exists. With guppy diffusion coefficient

D and growth rate r, the FKPP equation is given by

ut = Duxx + ru(1− u).

In (2.38), we calculated the invasion speed v = 2
√
rD, which is determined by
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the low-density, linearised region of the population ahead of the front. However,

sexual conflict is a nonlinear, second order interaction as it requires two individ-

uals to interact with each other. The calculation of these second order terms is

given in Appendix B. Hence, the linearised calculation of the population invasion

speed v is unaffected by the nonlinear sexual conflict in the population.

In the rest of this Chapter, we show that sexual conflict between guppies

changes the effective diffusion coefficient of the population, which in turn changes

the invasion speed. The individual interaction between guppies induces a diffu-

sion coefficient that can be orders of magnitude larger than that of a population

without sexual conflict. In Section 4.1, we introduce a framework for the move-

ment of one fish and how this movement can be used to calculate the diffusion

coefficient of the fish. This framework is then extended to two fish in Section 4.2

with the addition of sexual conflict. We show how this pairwise interaction can

influence the diffusion coefficient of the pair. Finally, in Section 4.3, we explore

these results as they apply to a population of many male and female fish.

4.1 One Fish

The movement of fish has been studied mathematically in great detail. This

research includes individual-based models and advection-diffusion equations [101],

simulations of a spatially heterogeneous environment due to a habitat index [102],

an advection-diffusion-reaction model structured by size [103], a spatial model for

the effect of climate on recruitment of tuna [104], and a habitat-based advection-

diffusion-reaction model used to design tag-recapture experiments [105].

In this Section, we introduce a highly simplified model of motion for an indi-

vidual fish in order to calculate the diffusion coefficient. This motion takes the

form of ‘run and tumble’ dynamics, which has been mathematically analysed in

[106] and is usually applied to bacterial motion [107, 108, 109]. It can be ap-

plied here to fish as their observed movement also contains short runs followed

by pauses and a run in a possibly different direction. Using the mean square dis-

placement of the fish over long times, we calculate the diffusion coefficient of the

fish from these ‘run and tumble’ dynamics. Finally, with the diffusion coefficient,

we state a stochastic differential equation for the location of the fish over long

times.
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Figure 4-1: The ‘run and tumble’ movements of a single fish with constant speed
v = 1 and mean time for a tumble T = 1.

Consider a point particle moving in a homogeneous 1D environment. We

model the fish as point particles because we are only interested in the location

of the fish and because they are small compared to the size of their environ-

ment. Assume the fish swims with constant speed v in the same direction for

an exponentially distributed amount of time with mean T (a run). This run is

exponentially distributed for its memorylessness property. We make a simplifying

assumption here that the previous location of the fish does not influence future

movement although this may not be true in practice. Then the fish forgets the

direction it is swimming in and chooses a new direction, left or right, uniformly at

random (a tumble). These are the ‘run and tumble’ dynamics, which are shown

in Figure 4-1.

In order to calculate the macro diffusion coefficient corresponding to this

movement, we use the mean square displacement of the fish. At time t, let the

fish have location X(t) with X(0) = 0. The mean square displacement is then
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defined by Q(t) = E[X(t)2] . To analyse Q(t) and derive the diffusion coefficient,

we begin by conditioning on the first tumble event giving

Q(t) = P[no tumble in [0, t]]E[X(t)2|no tumble in [0, t]]

+ P[tumble in [0, t]]E[X(t)2|tumble in [0, t]],

and using standard properties of exponential distributions gives

Q(t) = e−t/TQ0(t) +

∫ t

0

1

T
e−τ/TQ1(t|τ) dτ , (4.1)

where Q0(t) = (vt)2 is the mean square displacement in the case that there

are no tumble events (therefore simply the square of the displacement with con-

stant speed v), and Q1(t|τ) is the mean square displacement at time t given

that the first tumble event was at time τ . Since this is the first tumble and

the displacement after the tumble is independent of any previous movement,

again from the memoryless property of the movement, we have the relationship

Q1(t|τ) = Q0(τ) +Q(t− τ). Substituting this relationship into (4.1) gives

Q(t) = e−t/TQ0(t) +

∫ t

0

1

T
e−τ/T

(

Q0(τ) +Q(t− τ)
)

dτ .

The second term of the integral contains a convolution in τ . We can solve this

equation for Q(t) using Laplace transforms, as convolutions in real space become

products. Define Q(s) =
∫∞
0
e−stQ(t) dt to be the Laplace transform of Q(t).

Then, taking the Laplace transform of the above equation gives

Q(s) =
2

s

(

v

s+ 1/T

)2

+
1

Ts+ 1
Q(s) ⇒ Q(s) =

2v2

s2(s+ 1/T )
,

and inverting the transform yields

Q(t) = 2v2T
(

t− T + Te−t/T
)

. (4.2)

This is the equation for the mean square displacement of a fish moving according

to ‘run and tumble’ dynamics, swimming with constant speed v for an exponen-

tially distributed amount of time with mean T .

We can now use this equation for the mean square displacement to determine
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Figure 4-2: The large time diffusive movement of a single fish with constant speed
v = 1 and mean time for a tumble T = 1.

the diffusion coefficient for the fish. For large times t, we note that

lim
t→∞

Q(t)

t
= 2v2T,

so the mean square displacement grows linearly in time. This is characteristic of

a diffusion process [110, 111]. Hence, for large times t, the movement of the fish

is diffusive and the diffusion coefficient is given by D = v2T , half the coefficient

of the large time approximation for Q(t). This large time diffusive movement is

shown in Figure 4-2.

We have now derived the diffusion coefficient for the movement of an indi-

vidual fish. This diffusion coefficient can also be used to derive a stochastic

differential equation for the location of the fish over long time periods. This is

useful as it provides a description of the movement of the fish using the diffusion

coefficient D over long time periods without explicitly needing the short time

79



parameters v and T . Let p(x, t) be the probability that the fish is at location x

at time t. Then, for large time t and for diffusion coefficient D, p(x, t) satisfies

the forward Fokker-Planck equation in the technical introduction in Section 2.1.2

given by
∂p

∂t
= D

∂2p

∂x2
,

where a(x, t) = 0 and b(x, t) =
√
2D, as there is only diffusion and no drift in the

movement of the fish. According to Itô’s formula in the technical introduction

2.1.2, the stochastic differential equation for the location of the fish is given by

dX

dt
=

√
2DηX(t) , (4.3)

where ηX(t) is Gaussian white noise with mean zero and unit variance.

This stochastic differential equation provides the framework for the movement

of one fish with diffusion coefficient D = v2T . Considering a second fish will

now allow us to introduce sexual conflict and determine the effect it has on the

diffusion coefficient of the two fish as a pair.

4.2 Two Fish

In this Section, we extend the movement framework for one fish to include

two fish, one male and one female, with the goal of introducing sexual conflict

between the fish and determining whether this conflict can affect the diffusion

coefficient of the pair of fish. This effect is not unique to sexual conflict. It

will manifest for any collective motion arising from a coupled interaction. For

two fish, we assume that, in the absence of interaction, the two fish will move

according to the large time stochastic differential equation (4.3) calculated for

one fish. In addition to this, we add response functions that represent the sexual

conflict between the two fish. In particular, a conflict that results in the male

tending to swim towards the female and the female tending to swim away from

the male. These tendencies are well supported by empirical studies [97, 112].

Once the sexual conflict is introduced, we note that the movement of the pair

of fish is very similar to the ‘run and tumble’ movement of the individual fish.

This similarity will allow us to calculate the diffusion coefficient of the pair by
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using the same large time diffusive movement argument and hence determine how

sexual conflict influences the diffusion coefficient for a pair of fish.

Consider a male and female fish swimming in a homogeneous 1D environment

with locations X(t) and Y (t) respectively at time t. In the absence of interaction

we assume the fish move according to the stochastic differential equation (4.3)

with individual diffusion coefficient D. We assume that the two fish have the

same diffusion coefficient for mathematical simplicity here. As the female fish is

usually larger than the male fish, it is very possible that the diffusion rates are

different. This is an assumption that we can relax with the support of biological

data. In addition, we add response functions vX , vY due to the sexual conflict

between the fish. We assume these response functions are only dependent on the

locations of the two fish. The dynamics are given by

dX

dt
=vX(X, Y ) +

√
2DηX(t) ,

dY

dt
=vY (X, Y ) +

√
2DηY (t) ,

(4.4)

where ηX , ηY are independent Gaussian white noise terms with mean zero and

unit variance, as defined in the technical introduction in Section 2.1.1.

In order to further analyse these SDEs, we need to make assumptions about

vX , vY so that they accurately reflect the sexual conflict dynamics between the

male and female fish.

• The first assumption is that vX , vY are only functions of the separation

s = Y −X of the fish and we write vX(s), vY (s). We make this assumption

because we are in a homogeneous 1D environment so the location of either

fish is not important. It is the separation between the fish that influences

their behaviour. We know that sexual conflict says that the male fish tends

to swim towards the female fish and the female fish tends to swim away

from the male fish.

• This gives the second assumption on vX(s), vY (s). When the location of

the female is to the right of the location of the male, so s > 0, both fish

tend to swim in the positive direction, so vX(s), vY (s) > 0. Similarly, when

s < 0, vX(s), vY (s) < 0. When the fish are at the same location, so s = 0,

the male fish does not want to move at all while the female fish wants to
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move significantly, so vX(0) = 0 and vY (0) > 0. This assumption can be

written concisely as



















vX(s) < 0 if s < 0

vX(s) = 0 if s = 0

vX(s) > 0 if s > 0.

and







vY (s) < 0 if s < 0

vY (s) > 0 if s ≥ 0.

• The third assumption is that the male fish swims faster when the female

fish is farther away, so vX(s) increases as |s| increases, and the female fish

swims faster when the male fish is closer, so vY (s) decreases as |s| increases.

• The final assumption is that the swim speed of the fish should not increase

past some maximum speed vmax. This ensures that the swim speeds remain

biologically realistic.

With these assumptions in mind, the functions we choose for vX(s), vY (s) in

(4.4) are given by

vX(s) =







max{As,−1} if s < 0

min{As, 1} if s ≥ 0
vY (s) =







min{−1 − s, 0} if s < 0

max{1− s, 0} if s ≥ 0

(4.5)

where vmax = 1 and A is a positive constant that represents the measure of the

sexual aggression of the male fish. When A is large, the male fish responds more

quickly to the female. When male guppies are raised in environments with a large

or small proportion of female guppies, this affects the level of sexual aggression

they show other females as they grow older [113].

Before simulating the SDEs in (4.4) using the response functions in (4.5), we

note that vX(s), vY (s) have points of intersection where vX(s) = vY (s). At these

points, the separation and speed of the fish will remain constant in the absence

of noise. We define the mean separation s∗ and mean speed v∗ of the guppies

as the values such that |vX(s∗)| = |vY (s∗)| =: v∗. For the response functions in

(4.5), we find

s∗ =
1

A + 1
, v∗ =

A

A+ 1
, (4.6)

so that, as the sexual aggression A increases, the mean separation s∗ approaches
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Figure 4-3: The response functions vX(s) and vY (s) as functions of s. s∗ is the
mean separation and v∗ is the mean swim speed of the two fish. vX(s) is plotted
for A = 1.

zero and the mean speed v∗ approaches vmax = 1. This agrees with our concept

of A being the sexual aggression of the male fish. These functions are shown in

Figure 4-3.

Now we can simulate the SDEs in (4.4) using the response functions in (4.5).

We do this using standard Euler-Maruyama time stepping [60]. The results from

the simulations are shown in Figure 4-4. In (a), we see the male fish (in blue) and

the female fish (in red) swimming on a short time scale. The fish have roughly

the same speed with the female in front of the male. Occasionally the stochastic

element of the dynamics results in the male fish swimming past the female and the

two fish continue the chase in the opposite direction. On a medium timescale in

(b), we see the a pattern of coordinated swimming broken by occasional changes
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in direction while the movement appears diffusive over much longer timescales in

(c).

The movement of the pair of fish is very similar to the ‘run and tumble’

dynamics of a single fish in Section 4.1. The two fish chasing in a particular

direction could be considered ‘a run’ and a change in direction ‘a tumble’. Using

the same methods, we can derive a diffusion rate for the pair of fish and compare

whether sexual conflict induces a change in the effective diffusion rate of the two

fish compared to the diffusion coefficient of the individual fish.

In Section 4.1, we calculated the diffusion coefficient from the ‘run and tumble’

movement of one fish from the mean speed v and mean time to tumble T . We need

to determine the equivalent variables for the pair of fish in order to calculate the

effective diffusion coefficient of the pair. We have already stated the mean speed

v∗ for the pair of fish in (4.6). We now need to derive the mean time T ∗ for the

pair of fish to change directions. This will involve an extensive analysis of (4.4).

We begin by rewriting (4.4) in terms of the separation variable s(t) = Y (t)−X(t).

We do this because we want to calculate the mean time required for s(t) to move

between s = −s∗ and s = s∗. Then, we will introduce a potential U defined by

U ′(s) = vX(s)− vY (s). This definition will simplify the notation as we will need

to integrate U ′(s) and also make it clear that we can use the mean hitting time

calculation in Section 2.1.3 in the technical introduction, as we want to know the

mean time required for s(t) to hit s = s∗ with a reflective boundary at s = −∞,

an absorbing boundary at s = s∗, and initially starting at s = −s∗. This will

give us the mean time for the fish to change directions T ∗, which we can use with

v∗ to calculate the effective diffusion coefficient for the pair of fish as a result of

sexual conflict.

Now, taking the time derivative and using (4.4) gives the closed expression

ds

dt
= vY (s)− vX(s) +

√
2D(ηY (t)− ηX(t)) .

The difference between two Gaussian white noise terms with mean zero and unit

variance is a Gaussian white noise term with mean zero and variance two. Hence,

we define

η(t) =
ηX(t) + ηY (t)√

2
,
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Figure 4-4: (a) Sample trajectories from (4.4) with parameters D = 0.04, A = 1.
The male fish is shown in blue, the female in red. (b) A medium timescale view
of the trajectories from (a). (c) A longer timescale view
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a Gaussian white noise term with mean zero and unit variance, to get

ds

dt
= vY (s)− vX(s) + 2

√
Dη(t) . (4.7)

The potential U(s) takes different forms depending on if A < 1 or if A > 1. Using

the definitions in (4.5) and taking A < 1 gives

U ′(s) =























































−1 if s < − 1
A

As if − 1
A
≤ s < −1

(A+ 1)s+ 1 if − 1 ≤ s < 0

(A+ 1)s− 1 if 0 ≤ s < 1

As if 1 ≤ s < 1
A

1 if 1
A
≤ s,

and integrating gives

U(s) =























































−s if s < − 1
A

A
2
s2 if − 1

A
≤ s < −1

A+1
2
s2 + s if − 1 ≤ s < 0

A+1
2
s2 − s if 0 ≤ s < 1

A
2
s2 if 1 ≤ s < 1

A

s if 1
A
≤ s.

(4.8)

Taking A > 1 gives

U ′(s) =























































−1 if s < −1

s if − 1 ≤ s < − 1
A

(A+ 1)s+ 1 if − 1
A
≤ s < 0

(A+ 1)s− 1 if 0 ≤ s < 1
A

s if 1
A
≤ s < 1

1 if 1 ≤ s,

86



s
-1.5 -1 -0.5 0 0.5 1 1.5

U
(s

)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 4-5: The potential U(s) when A = 0.5 in red dotted line and A = 2 in
solid blue line.

and integrating gives

U(s) =























































−s if s < −1

1
2
s2 if − 1 ≤ s < − 1

A

A+1
2
s2 + s if − 1

A
≤ s < 0

A+1
2
s2 − s if 0 ≤ s < 1

A

1
2
s2 if 1

A
≤ s < 1

s if 1 ≤ s.

(4.9)

These two potentials are shown in Figure 4-5.

Using this definition of the potential U , we can rewrite (4.7) as

ds

dt
= −U ′(s) + 2

√
Dη(t) ,

so

a(x) = −U ′(x), b(x) = 2
√
D, (4.10)
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in the definition of the mean hitting time calculated in the technical introduc-

tion in Section 2.1.3. Here, we want to calculate the mean hitting time for the

separation s initially starting at s = −s∗ with a reflective boundary at s = −∞
and an absorbing boundary at s = s∗. We can simplify this calculation as we

know, given the symmetry of the potential U(x), that the mean hitting time of

an absorbing boundary at s = s∗ is equal to twice the mean hitting time of an

absorbing boundary at s = 0, hence we will have a coefficient of 4 instead of the

coefficient of 2 in (2.14). This mean hitting time is then given by

E[T (−s∗)] = 4

∫ 0

−s∗

1

γ(w)

∫ w

−∞

γ(z)

b(z)2
dzdw,

where

γ(x) = exp

(
∫ x

0

2
a(y)

b(y)2
dy

)

.

Using the definitions for a(x), b(x) in (4.10), the equation for γ(x) is now

γ(x) = exp

(
∫ x

0

−U ′(y)

2D
dy

)

= exp

(−U(x)
2D

)

and the mean hitting time is given by

E[T (−s∗)] = 1

D

∫ 0

−s∗
exp

(

U(w)

2D

)
∫ w

−∞
exp

(−U(z)
2D

)

dzdw. (4.11)

If the potential U(x) has a big local maximum at zero and D is small, then

exp
(

U(z)
2D

)

has a sharp peak near zero. Hence, exp
(

−U(z)
2D

)

is very small near

zero. Therefore, the integral
∫ w

−∞ exp
(

−U(z)
2D

)

dz is approximately constant as a

function of w near zero. Therefore, we can split the double integral in (4.11) and

get the approximation

E[T (−s∗)] ≈ 1

D

∫ 0

−s∗
exp

(

U(w)

2D

)

dw

∫ 0

−∞
exp

(−U(z)
2D

)

dz. (4.12)

To calculate these integrals, we approximate U(x) near −s∗ and zero. U(x) is
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approximately a positive quadratic near x = −s∗, so we use the approximation

U(x) ≈ U(−s∗) + 1

2

(

x+ s∗

α

)2

,

for some constant α which is determined by the second derivative of U(x) at

x = −s∗. Equating the second derivative of U(x) from the definitions in (4.8)

and (4.9) and from the approximation gives

U ′′(−s∗) = A+ 1 =
1

α2
⇒ α =

1√
A+ 1

.

U(x) is approximately linear near x = 0, so we use the approximation

U(x) ≈ x.

Then, the two integrals in (4.12) become

∫ 0

−∞
exp

(

−U(z)
2D

)

dz ≈
∫ ∞

−∞
exp

(

−U(−s
∗)

2D
− 1

4D

(√
A+ 1(z + s∗)

)2
)

dz

≈
√

πD

A+ 1
exp

(

−U(−s
∗)

2D

)

,

where the second approximation follows from integrating a Gaussian function,

and

∫ 0

−s∗
exp

(

U(w)

2D

)

dw ≈
∫ 0

−s∗
exp

( w

2D

)

dw

=
[

2D exp
( w

2D

)]0

−s∗
= 2D

[

1− exp

(−s∗
2D

)]

.

Hence, the mean hitting time is now

E[T (−s∗)] = 2

[

1− exp

(−s∗
2D

)]

√

πD

A+ 1
exp

(

−U(−s
∗)

2D

)

= 2

√

πD

A+ 1

[

exp

(

−U(−s
∗)

2D

)

− exp

(−U(−s∗)− s∗

2D

)]

.
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Figure 4-6: Histogram showing the exponential distribution of the periods be-
tween direction changes for the male-female pair. D = 0.02, A = 1, and t = 107.

Recall from (4.6) that s∗ is defined as

s∗ =
1

A+ 1
,

and returning to the definition of the potential U(x) in (4.8) and (4.9) gives

U(−s∗) = A+ 1

2
(−s∗)2 − s∗ =

1

2(A+ 1)
− 1

A+ 1
= − 1

2(A + 1)
.

The equation for the mean hitting time is now

E[T (−s∗)] = 2

√

πD

A+ 1

[

exp

(

1

4D(A+ 1)

)

− exp

( −1

4D(A+ 1)

)]

,

and therefore the mean hitting time T ∗ for separation starting at s = −s∗ with a

reflective boundary at s = −∞ and an absorbing boundary at s = s∗ is given by

T ∗ = 4

√

πD

A + 1
sinh

(

1

4D(A+ 1)

)

. (4.13)
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When we considered the ‘run and tumble’ dynamics of one fish, we assumed

that the fish swims in the same direction for an exponentially distributed amount

of time. In Figure 4-6, we see the distribution for the amount of time the pair

of fish swim in the same direction and we see that it has a large tail distribution

similar to that of an exponential distribution.

For one fish, we also assumed that, when a tumble occurs, the new direction is

chosen uniformly at random. This is currently not the case for the pair of fish as

T ∗ gives the mean time for a change in direction. That is, the new direction is not

chosen uniformly at random. To resolve this issue, we use an exponential clock

argument. Following the method of Condat et. al.[106], we require that changes in

direction are independent from previous changes in direction. Currently, when an

exponential clock rings, the pair of guppies start moving in the opposite direction.

To make this situation independent, we introduce twice as many exponential

clocks with half the mean time of ringing. When one of these clocks ring, we

flip a coin. If heads, the guppies change direction. Otherwise, they continue

moving in the same direction. With this new perspective, the changes in direction

are independent and we have a statistically equivalent situation. Hence, we can

indeed use the same arguments in Section 4.1 to calculate the diffusion coefficient

of two fish with sexual conflict between them. The mean speed of the two fish is

given by v∗ in (4.6) and the mean time for a change in direction is given by T ∗ in

(4.13). To model this, we redefine the mean hitting time T ∗ to T = T ∗/2. Then,

following the calculation in Section 4.1, we find that the large time mean square

displacement Q(t) with speed v∗ and mean hitting time T is approximately given

by

Q(t) ≈ 2(v∗)2T t = (v∗)2T ∗t,

and therefore the effective diffusion rate for a pair of fish is given by

Deff = (v∗)2T ∗,

which depends on the male sexual aggression A and the individual diffusion co-

efficient of the fish D. The full equation for Deff in terms of A and D is given

by

Deff = 4

√

Dπ

A + 1

(

A

A + 1

)2

sinh

(

1

4D(A+ 1)

)

. (4.14)
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Figure 4-7 shows this relationship. We see that, for a given value of D, as A

increases from zero, the effective diffusion coefficient peaks and then decreases

again. This suggests that there is a level of sexual aggression A that maximises

the effective diffusion coefficient Deff for the pair of fish. This level of sexual

aggression could be an evolved characteristic that provides an evolutionary benefit

to the guppies. For example, a population of guppies with more aggressive males

will diffuse more, increasing chances of finding new resources to consume and

new environments to invade, all of which is beneficial to the population with

more aggressive males. The fact that Deff does not increase monotonically with

A can be understood by the fact that, as A gets very large, the male fish is

always very close to the female fish. When the noise is added to the system,

this results in constant changes in direction. Hence, the pair is unable to travel

very far and so has a smaller effective diffusion coefficient. For constant A, as

D increases, the effective diffusion coefficient decreases monotonically. This is

slightly counterintuitive as it says that when the fish have a small diffusion rate

individually, they have a larger diffusion coefficient as a pair. We can make

sense of this as, when the individual fish have a small diffusion coefficient, they

will swap sides and change the direction of swimming less frequently. With fewer

changes in direction, the pair will swim in the same direction for longer periods of

time, resulting in a higher diffusion coefficient. The thick black line shows where

Deff = D. The parameter space to the left of this curve shows where Deff > D.

Hence, we see very clearly that it is possible for sexual conflict to increase the

diffusion coefficient for a pair of fish. Note, however, that sexual conflict can

also decrease the diffusion coefficient for the pair. When the individual diffusion

coefficient D > 0.5, the noise in the movement of the fish causes the pair to

constantly change direction. These dynamics result in a very small joint diffusion

rate as the pair of fish never travel very far in a particular direction.

We have theoretically determined that sexual conflict can increase the effec-

tive diffusion coefficient of the pair of fish. We also want to show that this is

supported by simulations of the SDEs in (4.4) using the response functions in

(4.5). The simulation results are shown in Figure 4-8. We simulate the mean

square displacement of the male as a function of sexual aggression A. We only

focus on the displacement of the male as the two fish are very close together and

the displacement of the male is a suitable approximation for the displacement of
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Figure 4-7: The effective diffusion coefficient of the two fish Deff in (4.14) varying
with the sexual aggression of the male A and the individual diffusion coefficient
D. The thick black line shows where Deff = D. The colour bar shows the effective
diffusion coefficient.
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Figure 4-8: Short time and long time comparisons between simulations of the
SDEs for the two fish in (4.4) using the response functions in (4.5) and the theory
predicted by the mean square displacement Q(t) and the effective diffusion Deff.
The individual diffusion coefficient is D = 0.02. (a) Simulation run for time
period t = 103 (b) t = 105

the two fish. In (a), we simulate over a short time period t = 103. We plot the

simulation results in blue circles, the mean square displacement Q(t) calculated

in (4.2) in green, the long time approximation for Q(t) given by 2Defft in red, and

the numerical integration solution for Q(t) in (4.1) in cyan. We see that Q(t) and

the numerical integration agree strongly with the simulation results for this short

time period. The long time approximation for Q(t) does not agree here as we

are in the short time period regime. However, all curves are similar qualitatively

with a single peak in A, which agrees with the results in Figure 4-7. In (b), we

simulate over a long time scale t = 105 and see that the long time approximation

for Q(t) given by 2Defft now strongly agrees with the simulations.

We have shown that when sexual conflict is introduced between a male and

a female fish, the resulting movement has a diffusion coefficient Deff which can

be significantly greater than the diffusion coefficient D of the individual fish. We

expect that these results hold in a 2D and 3D environment as well.
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4.3 Many Fish

Populations of guppies usually contain significantly more than two fish in

a shoal. For this reason, it is more biologically realistic to consider the role

sexual conflict plays in populations with lots of fish, with many males and many

females. In this Section, we consider a large population of male and female fish

in a homogeneous 1D environment. We show that sexual conflict results in fish

having a higher diffusion coefficient in the low density region ahead of the front

than in the high density region behind the front. We showed in the technical

introduction in Section 2.2.2 that the speed of the FKPP is determined ahead of

the front in the linearised region. This means that sexual conflict can lead to a

faster invasion speed in a guppy population.

In the absence of interaction, we assume all fish move according to a diffusion

process with individual diffusion coefficient D. Sexual conflict in female fish

tends to cause them to swim away from all male fish. We assume here that

female fish respond to the location of all male fish as a first approximation to

their behaviour. Sexual conflict in male fish tends to cause them to swim towards

the nearest female fish. We make this assumption as male fish are focused on

reproducing so only the nearest female fish will hold their attention. In addition

to this, the male fish also has a finite attention span which means that it will

chase the nearest female for an exponentially distributed amount of time. When

a male fish is not chasing, it is moving according to a diffusion process and starts

chasing again with a chase rate. We introduce this attention span to create a

model that more realistically models the observed behaviour of male guppies.

Consider n male fish andm female fish with locations Xi(t) and Yj(t) at time t

respectively with i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , m}. We assume each individual

fish diffuses with diffusion coefficient D in the absence of interaction and assume

that sexual conflict takes the form of response functions vX , vY as in Section 4.2.

In addition, for each male fish i, let Y i(t) be the location of the nearest female

fish. Also, let I i(t) be a discrete Markov process on {0, 1}. I i(t) spends an

exponentially distributed amount of time with mean cMi in state I i(t) = 1, which

represents the time when male fish i is chasing, and then jumps to I i(t) = 0,

when male fish i is no longer chasing. I i(t) jumps from state zero to state one
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with chase rate ci. These dynamics are contained in the SDEs as

dXi

dt
=vX(Y

i −Xi)I
i(t) +

√
2DηX(t) ,

dYj
dt

=
1

n

n
∑

i=1

vY (Yj −Xi) +
√
2DηY (t) ,

(4.15)

where ηX , ηY are independent Gaussian white noise terms with mean zero unit

variance, as defined in the technical introduction in Section 2.1.1.We normalise

the sum over vY to ensure that the max speed of the female fish remains bio-

logically realistic when there is a large group of males to one side of the female

fish.

The SDEs in (4.15) provide insights even for very small populations. When

we only consider one male fish and one female fish again, taking n = m = 1, we

can simulate the SDEs and see the male fish chasing and not chasing the female

fish. This is shown in Figure 4-9 (a). When we consider one male fish and two

female fish, taking n = 1 and m = 2, the male fish can, due to the fact that it

chases the nearest female and has a finite attention span, switch between chasing

different female fish. This is shown in Figure 4-9 (b). The male fish starts chasing

the female fish in the dashed red line and then with stochastic noise swims closer

to the female in the solid red line and continues to chase this new female fish.

Now, we consider the diffusion coefficient of the population ahead of the front

where there is a low density of male and female fish and behind the front where

there is a high density of male and female fish. Ahead of the front, as there are

very few female fish, male fish will spend more time chasing the same female

fish instead of switching between them. This will result in longer runs and so

a larger diffusion coefficient. Behind the front, male fish will switch between

chasing different female fish more often and so the movement of the male fish

will be contain more changes in direction and so will result in a smaller diffusion

coefficient.

We can model the dynamics in these different regions by considering one

male fish with a varying number of female fish in a 1D environment with periodic

boundary conditions. We use periodic boundary conditions here because we want

to track the displacement of the one male fish over long time periods without any

constraints of a boundary while still being able to simulate the environment. We
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Figure 4-9: (a) A male fish chasing and not chasing a female fish. Diffusion
coefficient D = 0.01, chase rate c1 = 0.001, and mean chase time cM1 = 10. (b) A
male fish switching between two female fish. Diffusion coefficient D = 0.1, chase
rate c1 = 0.001, mean chase time cM1 = 100.

vary the number of female fish in the environment to simulate the male fish being

ahead of the front where there are few female fish and behind the front where

there are many female fish. We track the displacement of the male fish as we

vary the number of female fish in the environment and vary the chase rate of

the male fish. We vary the chase rate to determine how the displacement of the

male fish varies according to how long it spends not chasing in these different

regions of the population. The results are shown in Figure 4-10. We see for all

cases that the displacement of the male fish increases monotonically with the

chase rate. This is expected as, for a higher chase rate, the fish is spending more

time chasing. As the number of female fish in the environment decreases, the

asymptotic displacement of the male increases. This agrees with our prediction

that the male fish will have a higher displacement ahead of the front compared

to behind the front. As the invasion speed for the FKPP is determined by the

dynamics ahead of the front, we see that sexual conflict can increase the diffusion

coefficient of a population and hence the invasion speed of the population.

When male fish move according to the SDEs in (4.15), they switch between

chasing and not chasing. If the male fish was always chasing, over a long time

period it would have one diffusion coefficient and if the male fish was never
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Figure 4-10: The displacement of an individual male fish as a function of its chase
rate c1 and the number of female fish in the environment. Individual diffusion
coefficient D = 0.001, mean chase time cM1 = 1.

chasing, it would have a different diffusion coefficient. We want to determine the

diffusion coefficient Dswt for a fish that is switching between diffusion coefficients.

We calculate this by calculating the mean square displacement of the fish using

an argument similar to the calculation in Section 4.1.

Consider a male fish switching between diffusion rates D1, D2 such that it

switches from D1 to D2 with rate λ1 and back with rate λ2. Let Hi(t) be the

mean square displacement of a male fish initially diffusing with rate Di. We begin

by conditioning on the first diffusion rate change, given by

H1(t) = P[no diffusion change in [0, t]]E[X(t)2|no diffusion change in [0, t]]

+ P[diffusion change in [0, t]]E[X(t)2|diffusion change in [0, t]]

= e−λ1tQ1(t) +

∫ t

0

λ1e
−λ1τ (Q1(τ) +H2(t− τ)) dτ ,

where Q1(t) = 2v21T1
(

t− T1 + T1e
−t/T1

)

is the mean square displacement only

with displacement D1 = v21T1. As we are interested in the large time mean

square displacement, we can make the approximation Q1(t) ≈ 2D1t. Making this
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substitution for Q1(t) gives

H1(t) = e−λ1t2D1t +

∫ t

0

λ1e
−λ1τ (2D1τ +H2(t− τ)) dτ ,

and taking Laplace transforms gives

H1(s) =
2D1

(s+ λ1)2
+

2D1λ1
s(s+ λ1)2

+
λ1

s+ λ1
H2(s),

and similarly

H2(s) =
2D2

(s+ λ2)2
+

2D2λ2
s(s+ λ2)2

+
λ2

s+ λ2
H1(s).

Solving these equations for H1(s) gives

H1(s) =
2

s+ λ1 + λ2

(

D1(s+ λ2)

s(s+ λ1)
+
D1λ1(s+ λ2)

s2(s+ λ1)
+

D2λ1
s(s+ λ2)

+
D2λ1λ2
s2(s+ λ2)

)

and taking inverse Laplace transforms gives

H1(t) = 2
D1λ2 +D2λ1
λ1 + λ2

t− 2λ1(D1 −D2)

(λ1 + λ2)2
exp (−(λ1 + λ2)t) +

2λ1(D1 −D2)

(λ1 + λ2)2
,

and similarly

H2(t) = 2
D1λ2 +D2λ1
λ1 + λ2

t− 2λ2(D2 −D1)

(λ1 + λ2)2
exp (−(λ1 + λ2)t) +

2λ2(D2 −D1)

(λ1 + λ2)2
.

After a large time, we see that

H1(t) = H2(t)≈2
D1λ2 +D2λ1
λ1 + λ2

t.

Therefore, the long time diffusion coefficient of a male fish switching from diffusion

coefficient D1 to D2 with rate λ1 and from D2 to D1 with rate λ2 is given by

Dswt =
D1λ2 +D2λ1
λ1 + λ2

.

This is the equation for the diffusion coefficient for a fish that is switching between

two different diffusion coefficients. We could apply this to male fish ahead of the
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Figure 4-11: The results from the tracking software for one experiment.

population front, as they switch between chasing and not chasing. This would

then be used to calculate the population invasion speed v = 2
√
rD for the 1D

FKPP equation. It could also be applied to fish behind the front as well.

4.4 Experiments

Theoretical results are useful to ensure that the model predicts biologically

realistic behaviour. So far, we have found theoretical and simulated results for

how sexual conflict between male and female guppies affects their diffusion coef-

ficients and hence the invasion speed according to the 1D FKPP equation. These

results are more significant when they accurately reflect the observed guppy be-

haviour. Working with behavioural ecologists Dr Safi Darden and Prof. Darren

Croft at the University of Exeter, we organised guppy experiments to help test

and inform the models presented above. For the experiments, we chose to use a

very long, narrow tank. This simulated the rivers that the guppies live in and

allowed us to very clearly see chases along the tank. In the tank, we placed

different pairs of fish: either two females, two males, one female and a strongly

aggressive male, or one female and one weakly aggressive male. The two female

and two male pairs were used as control experiments so that we could determine
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Figure 4-12: The locations of a male and female guppy determined from guppy
experiments.

20 40 60 80 100

15

20

25

30

35

40

45

Figure 4-13: The response functions vX , vY as functions of separation s deter-
mined from guppy experiments.
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Figure 4-14: The potential U(s) of the guppies plotted as a function of separation
s determined from guppy experiments.

if any changes in diffusion are due to sexual conflict between males and females

or if it was another interaction due to shoaling that does not depend on the

genders involved. The aggression of the males was determined by the gender

diversity of the environment the males are raised in. While these pairs were in

the tank, there were video cameras recording their movements, which were then

tracked using computer software, with an example in Figure 4-11. This software

scanned the video for the fish and then recorded their location while also taking

into account that they may not always have been visible, e.g. if they crossed

over each other in the video. An example of the locations being tracked is shown

in Figure 4-12. At the time of writing, these recordings are still being analysed.

Once they are done, we can then use the trackings to calculate approximations

for the individual diffusion coefficient D, the sexual conflict response functions

vX , vY , with an example in Figure 4-13, the mean separation s∗, the mean speed

v∗, the potential U , with an example in Figure 4-14, the mean time to change

direction T ∗, chase rate c, mean chase time cM , and hence the effective diffusion

coefficient Deff and the switching diffusion coefficient Dswt for the pair. Results

from the tracking can also justify the assumption of run and tumble movement,

the zig-zag trajectories, and the exponentially distributed run times. We expect
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the experiments will agree with our theoretical results.

4.5 Conclusion

In this Chapter, we have analysed the effect of sexual conflict on the diffusion

coefficient of a population, and hence the invasion speed according to the 1D

FKPP equation ut = Duxx+ ru(1−u) for diffusion coefficient D and growth rate

r. The model for the movement of one fish was introduced using ‘run and tumble’

dynamics, with the fish having speed v and mean time to change direction T .

This resulted in an equation for the large-time mean square displacement of the

fish, which grows linearly in time and has diffusion coefficient D = v2T . For two

fish, one male and one female, we assumed that on average the male fish swims

towards the female, that the female fish swims away from the male, and that

the male fish has aggression level A. The stochastic differential equations that

captured these dynamics gave the mean speed and mean separation for the pair

of fish. Using a similar ‘run and tumble’ argument, we were able to determine

the effective diffusion coefficient Deff for the pair of fish. We found that, in

certain parameter regimes, the effective diffusion coefficient for the pair of fish

can be much greater than the individual diffusion coefficients. These results were

confirmed by simulations. Finally, we extended this framework to include many

males and many females and to allow male fish to switch between chasing and not

chasing. This large population model introduced variation in the mean square

displacement for male fish ahead of the front, where there are few female fish,

and behind the front, where there are many female fish. Male fish ahead of the

front have a much larger diffusion coefficient.

In order to establish the biological relevance of this work, we carried out

experiments tracking the movement of pairs of fish in order to calculate the effect

sexual conflict has on the effective diffusion coefficient of the pair. This research

can be used to better predict the invasion speed of fish populations. This is

significant because we have shown here that the aggression level of the male fish

in the population plays a crucial role in determining how quickly the population

invades. Behavioural ecologists will now know that understanding the aggression

of the males, which is influenced by the environment the fish was raised in, will

allow a more accurate prediction of the population invasion speed.
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Chapter 5

Invasions and Nonlocal

Interaction

Competition within and between populations has been studied for a long

time. Classic examples include work that introduced logistic growth and examines

populations competing for a finite resource [114, 115, 116]. These models have

been used to explain coexisting populations [117, 118, 119], have been studied in

field experiments [120], and have been found to influence the community structure

within a population [121]. They have been experimentally supported by a wide

range of populations, including the growth of yeast [122], herding of African

elephants [123], and the density of Peruvian anchovies [124].

These competition models can also be applied to the exchange of opinions

within a population, such as political support during an election. Each individual

has an opinion and this opinion changes as the individual interacts with others.

At any point, they can adopt the opinion of someone else. Understanding these

dynamics is crucial for election campaigns and other important decision making

processes.

The simplest model that captures these dynamics is the voter model, which

belongs to a wider class of models known as interacting particle systems [48]. It

is also referred to as a contact process or a stepping stone model [127]. Individu-

als are modelled by fixed points, so there is no movement, on a lattice, which is

usually 1D or 2D. Each point is given a colour representing the opinion of that

individual and, at random times, a point adopts the colour of one of its neigh-

bours, simulating the exchange of opinions. The key factors in this model include
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the initial distribution of colours on the lattice, the random process for adopting

colours, and the condition that colours can only be adopted from neighbours,

which is a form of local interaction. Research on the voter model in 2D has found

that clusters of opinions form on the lattice, known as coarsening [52, 125, 126].

One important question for the voter model is if the opinions of all individuals

agree with each other and, if so, how long does it take? This has been studied for

the 1D and 2D voter models [128, 129] and even with the introduction of indi-

viduals who never change their opinion, known as zealots [130]. In this Chapter,

we analyse the probability of reaching consensus for the 1D voter models with

nonlocal interaction and diffusion. We do this because it is very common for

individuals to be able to interact with others who are not their neighbours. Who

is more likely to convert the other type in a pairwise interaction: a strongly-

opinionated individual with a short interaction distance or a weakly-opinionated

individual with a large interaction distance? If we had a large population of

both types, which type is more likely to reach consensus? What influence does

the speed of the individuals have on these scenarios? These are the questions

we seek to answer in this Chapter. The answers to these questions will show us

how important individual interaction dynamics are in determining the long time

evolutionary dynamics of a population.

Consider a population of individuals with two types. The first type has a

short range of interaction, but it is very strong. We call this type S. The

second type has a long range of interaction, but it is very weak. We call this

type W . Individuals of the same type do not interact with each other; the only

interactions we consider are between types. Let rS, rW be the interaction ranges

and let λS, λW be the interaction rates of the type S,W individuals respectively.

We assume rS < rW and λS > λW . When the distance between a S,W pair of

individuals is less than rW , the type W individual converts the type S individual

to type W with rate λW . Similarly, when a type W individual is within distance

rS of a type S individual, the type S individual converts the type W individual

with rate λS. These are the only interactions we consider in this Chapter. We also

assume that individuals exist in 1D domains because this gives mathematically

tractable problems. We expect the results to hold in higher dimensions as well. In

particular, we consider the domain [−π, π). In 1D, the total region of influence for

an individual of type W,S is 2rW , 2rS respectively. We assume another condition
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Figure 5-1: A representation of a W -S pair.

λSrS = λW rW = 1/2 so that the product of the region of influence and the

interaction rate for each type is equal to one. That is, 2λSrS = 2λW rW = 1.

This ensures that neither type has an advantage over the other from the choice of

parameters. In addition, let DS, DW be the diffusion rates of the types. In these

1D domains, individuals are moving and interacting with individuals of a different

type. A representation is shown in Figure 5-1. This model could simulate the real-

life situation of two political parties on the campaign trail trying to persuade their

voters using door-to-door canvassing in one party and social media campaigns in

the other.

These interactions end when the entire population consists of one type. We

call this reaching consensus because, in the example of voters, this signifies the

point when the voting population has reached a consensus. We want to determine

which type survives as the population reaches consensus. To do this, we have to

consider the number of individuals of each type in the population and the rate

at which they convert the other type. These variables depend on the size of the

population. In Section 5.1, we consider a small population size and calculate

the probability that a particular type converts the other when they meet in a

pair and the probability that a particular type survives as the population reaches

consensus. When the population size is large, the dynamics are more complicated
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and so require a different form of mathematical analysis. In Section 5.2, we

consider a large population size and calculate the master equation for the system

dynamics in Fourier space and a differential equation for population densities. In

both population regimes, we find that the type W individuals with a weak, wide

interaction range have an advantage in pair interactions and survive when the

population reaches consensus.

5.1 Low-Density Regime

The aim of this Section is to calculate the probability of a particular type

surviving to consensus. In the low density regime, a type will survive to consensus

if that type has a high probability of converting the other type when a pair meets.

This is because surviving to consensus is the result of numerous pair conversions

in the low density regime. However, this probability only needs to be greater

than 1/2 for large population sizes. We start by considering a single individual

and derive a differential equation for the density of individuals of the different

type around it. Solving this differential equation provides an equation for the

probability that an individual of type S converts the type W individual when a

pair meets. Hence, we calculate the probability that type S survives to consensus.

Consider a particular individual, denoted individual I. Let u(x) denote the

density of the locations of the individuals of a different type to individual I when

an interaction occurs. We only need to consider distances |x| < rW as, at any

larger distances, the individuals cannot interact with each other. Moreover, we

only need to consider x ∈ [0, rW ) as the interactions are symmetric so we can

simplify the problem by considering individual I placed at the origin and other

individuals at location x. This density is affected by the movement and conversion

of individuals. If we take a frame of reference that fixes the location of individual

I, individuals of the other type move with diffusion rate D = DS +DW . When

the distance between the individuals is less than rW and greater than rS, that is,

rS < x < rW , then the pair reacts with rate λW . When x < rS, the pair reacts

with rate λS + λW as the type S individual could convert to W or the other way

around. The type of individual I is not important here as the interactions are

symmetric. This reaction rate is summarised by λ(x) = λS1x<rS + λW1x<rW .
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These dynamics of the density u(x) are summarised by the differential equation

ut = Duxx − λ(x)u. (5.1)

The PDE (5.1) has boundaries at x = 0, x = rS, x = rW . The boundary con-

dition at x = 0 is reflective as we have fixed individual I at the origin and the

interactions are symmetric. At x = rS, we need to match the density u(x) and

flux u′(x) between the two regions x ∈ [0, rS) and x ∈ [rS, rW ) as λ(x) changes

value. Finally, at x = rW , the boundary condition is determined by the rate of

occurrence of pairs of different types coming within distance rW of each other.

Define this rate to be κ, which depends on the size of the population, the pro-

portion of different types, and the diffusion rates. We find that we can make

analytic progress without knowing the details of κ. These boundary conditions

are summarised as

u′(0) = 0, lim
xրrS

u(x) = lim
xցrS

u(x) lim
xրrS

u′(x) = lim
xցrS

u′(x) u′(rW ) = κ. (5.2)

Solving (5.1) and (5.2) for u(x) will provide a formula for the probability

of a particular type of individual converting the other in a pairwise interaction.

Firstly, we only need to consider the stationary solution of (5.1) because we

are interested in the long time behaviour of the density, which represents the

mean dynamics of a pair interaction. Secondly, as λ(x) is a piecewise constant

function, we can solve for the stationary solution of (5.1) by considering the

constant coefficient ODE 0 = Duxx − λu in the two regions x ∈ [0, rS) and x ∈
[rS, rW ) and taking λ to be the appropriate constant in each region determined

by λ(x) = λS1x<rS + λW1x<rW . Standard calculations give

u(x) =















C1 cosh

(

√

λS+λW
D

x

)

for x ∈ [0, rS)

C2 cosh

(

√

λW
D
x

)

+ C3 sinh

(

√

λW
D
x

)

for x ∈ [rS, rW ),
(5.3)

where constants C1, C2, C3, which are determined by the last three boundary
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conditions in (5.2), are given by

C1 =
κ
√
D√

λW cosh (B1) sinh (B2)−
√
λS + λW cosh (B2) sinh (B1)

C2 =
−κ√DλW cosh (B1)

λW cosh (B1) sinh (B2)−
√

λW (λS + λW ) cosh (B2) sinh (B1)

C3 =
−κ
√

D(λS + λW ) sinh (B1)

λW cosh (B1) sinh (B2)−
√

λW (λS + λW ) cosh (B2) sinh (B1)
,

where

B1 = rS

√

λS + λW
D

B2 = (rS − rW )

√

λW
D
.

It is a simple check to see that (5.3) satisfies the first boundary condition.

Now that we have found the solution for u(x), we can determine the probabil-

ity of a particular type converting the other when a pair of individuals of different

types come with interaction range of each other. Define pS to be the probability

that the type S individual wins and converts the other individual in the pair

interaction. The fluxes u′(rS), u
′(rW ) are the amount of probability mass moving

into the [0, rS), [rS, rW ) domains from the right respectively. If the type S indi-

vidual wins, it will occur in the [0, rS) domain. If the type W individual wins, it

will occur in the [0, rW ) domain. The ratio u′(rS)/u
′(rW ) is the proportion of the

probability mass that enters [rS, rW ) that also enters [0, rS). This represents all

situations when the interaction occurs on [0, rS). On this domain, the proportion

of interactions with the type S individual winning is given by λS/λS + λW and

similarly the type W individual winning is given by λW/λS + λW . Hence, from

the solution for u(x) in (5.3), pS is given by

pS =
u′(rS)

u′(rW )

λS
λS + λW

, (5.4)

where the first fraction gives the fraction of reactions occurring within the smaller

region of interaction x ∈ [0, rS) and the second fraction gives the fraction of in-

teractions that result in the type S individual winning. Similarly, the probability

109



of the type W individual winning is given by

pW =
u′(rS)

u′(rW )

λW
λS + λW

+
u′(rW )− u′(rS)

u′(rW )
, (5.5)

where the first term is the probability of the type W individual winning in the

smaller region of interaction x ∈ [0, rS) and the second term is for the region

x ∈ [rS, rW ). Note that we have pS + pW = 1 as expected. We only consider

cases when there is an interaction, that is, when the type of one individual is

changed. We do not consider the case when individuals are near each other but

do not interact. For the rest of the Section, we only consider pS.

Using the solution for u(x) in (5.3), we can write down the expressions for

pS in terms of the variables rS, rW , λS, λW . To simplify notation, we introduce

µ1 =
√

(λS + λW )/D and µ2 =
√

λW/D. Then, we have

pS =

2µ1λS(e
2µ1rS − 1)eµ2(rS+rW )

(λS + λW )((µ1 − µ2)(e2rS(µ1+µ2) − e2µ2rW ) + (µ1 + µ2)(e2µ1rS+2µ2rW − e2µ2rS))
.

(5.6)

We plot pS in Figure 5-2 varying the interaction distances and rates. We set

rW = λS = 1 and vary rS, λW in [0, 1]. We do this so the conditions λW < λS

and rS < rW are always satisfied. The joint diffusion rate for the types is set

at D = 1. We see that when λW ≈ 1, the probability pS increases from zero to

1/2 as rS increases from zero. This shows that when the interaction rates are

approximately the same, the winner of the interaction is determined by the type

with the larger interaction distance. Similarly, when rS = 1 and λW increases

from zero, the probability pS decreases from one to 1/2. This shows that when the

interaction ranges are approximately the same, the winner is determined by the

type with the larger interaction range. We are only interested in the case when the

two types are equally effective on average, that is, when λSrS = 1/2 = λW rW .

This point of interest is shown by the white x. At this point, the probability

pS of a type S individual winning the pair interaction is given by pS = 0.4614

which shows that the type W individuals have an advantage during the pairwise

interactions.

The results in Figure 5-2 are only for the value D = 1. To see how the
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Figure 5-2: The probability pS in (5.6) of a type S individual winning a pair
interaction varying with rS and λW . We set rW = λS = 1. In order for types to be
equally effective on average, we only consider the case when λSrS = 1/2 = λW rW ,
which is shown by a white x. At their intersection, pS = 0.4614. D = 1. The
colour bar shows the probability pS.
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Figure 5-3: The probability pS as a function of the joint diffusion D. rW = λS =
1, rS = λW = 1/2.

parameter case we are considering varies with D, we plot pS in Figure 5-3 for

different values of D. pS increases monotonically with D from zero and tends

to 1/2. When D is small, the individuals are moving slowly and when D is

large, the individuals are moving quickly. The result we see are expected as,

when individuals are moving slowly, type S individuals spend more time within

the interaction distance rW , so they can be converted by the type W individual,

before they are ever within distance rS of the type W individual. This means

that there is more time for the type S individual to be converted than there

is for it to convert the type W individual. Hence, pS is small when D is small.

When the individuals are moving quickly, they spend very little time within either

interaction distance so the effects of different rS, rW , λS, λW are lost and pS tends

to 1/2. In Figure 5-4, we replot Figure 5-2 with values D = 103 and D = 10−2.

We see in (a) that for large D, the region where pS ≈ 0.5 has grown slightly

compared to Figure 5-2. In (b), we see that pS decreases significantly when D

is small and individuals move slowly. This agrees with the reasoning above for

Figure 5-3.
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Figure 5-4: The probability pS of a type S individual winning a pair interaction
varying with rS and λW . The colour bar shows the probability pS.(a) D = 103.
The case we are interested in gives pS = 0.5. (b) D = 10−2. The case we are
interested in gives pS = 0.0240.

We have now calculated the probability pS of an individual of type S winning

a pair interaction and shown how this probability varies with the parameters

rS, rW , λS, λW , D. For the case we are interested in, which is when λW < λS,

rS < rW , and λSrS = 1/2 = λW rW , we have seen that pS < 1/2 so the type W

individuals always have an advantage in the pair interactions. Using these results,

we can calculate the probability that a particular type survives to consensus. We

do this by considering a simple birth-death process [131]. Let N be the number of

individuals in the population and let NS(ti), NW (ti) be the number of individuals

of type S,W respectively at time ti of the i-th pairwise meeting. Here we track

time in terms of conversions. We then haveNS(ti)+NW (ti) = N for all ti. Assume

initially there are N0
S individuals of type S in the population so N0

W = N − N0
S

gives the initial number of type W individuals. The birth-death process is then

given by

P[NS(ti+1) = n|NS(ti) = m] =







pS if n = m+ 1

1− pS if n = m− 1.

Now, for this birth-death process, we follow the methods in [132] and calculate
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Figure 5-5: The probability PS, shown in the colour bar, of type S individu-
als surviving to consensus varying with pairwise win probability pS and initial
population proportion N0

S/N .

using recursion that the probability PS of the type S individuals surviving to

consensus with initial proportion given by NS(0) = N0
S is given by

PS =
p
N−N0

S

S

p
N−N0

S

S + (1− pS)N
0
S

. (5.7)

We plot PS in (5.7) in Figure 5-5 as a function of the pairwise win probability pS

and the proportion N0
S/N of type S individuals initially in the population. We

see that the probability of surviving to consensus increases both with pairwise

win probability and with initial population proportion. In addition, even if the

pairwise win probability is less than 1/2, the type S individuals can still survive

to consensus with probability greater than 1/2 if the initial proportion is high

enough.

We have seen in low density populations that when a type S and type W

individual come within interaction distance of each other, the density of the lo-

cation of interaction solves a stationary, second order differential equation. The
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solution to this ODE can be used to determine the probability of either type

winning the pairwise interaction. When we assume that the product of the in-

teraction regions and interaction rates are equal, we find that the probability of

the type S individual winning is less than 1/2, for all diffusion rates. Using this

probability we can calculate the probability of the type S individual surviving

to consensus, which is also less than 1/2. The type W individuals with a wide

region of interaction and a weak interaction rate has an advantage at both the

pairwise and population level for low density populations.

5.2 High-Density Regime

In this Section, we consider the same population interactions between type

S and type W individuals in a high density population. In Section 5.1, the

exact location of the individuals was not important because we only needed to

know if a pair were within a certain distance of each other. Now that we are

considering a high density population, the locations of individuals is important.

For this reason, the mathematical model used for the population dynamics is

different here, although we are still considering the 1D domain [−π, π). We

formulate the system in terms of chemical reaction equations that represent the

possible interaction and movement events and population density distributions

that contain the locations of all individuals of each type. Using these reaction

equations and density distributions, we state the chemical master equation for the

system, which will be the main focus of this Section. The extensive manipulation

of the chemical master equation requires the use of functional operators and

Fourier space analysis and ultimately ends with a differential equation for the

dynamics of the Fourier modes of the population density distributions. Whether

the Fourier modes grow or decay on average over time will determine which type

survives to consensus in a high density population. We use the same notation

and method used in the technical introduction to derive the FKPP equation in

Section 2.2.1.

Consider a population of individuals of two types W and S. Let W (x), S(y)

represent individuals of type W,S at location x, y respectively. When a W (x)

individual and a S(y) individual interact, the W (x) individual wins with rate

λW (x − y) = λW1|x−y|<rW and the S(y) individual wins with rate λS(x − y) =
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λS1|x−y|<rS where λW , λS are the constant interaction rates and rW , rS are the

interaction distances. We again assume that the two types satisfy λS > λW and

rS < rW . Individuals of type W,S can also move from location x to location y

with rate dW (x− y), dS(x− y) respectively. We summarise these dynamics using

the reaction equations given by

W (x) + S(y)
λW (x−y)−−−−−→W (x) +W (y)

W (x) + S(y)
λS(x−y)−−−−−→ S(x) + S(y)

W (x)
dW (x−y)−−−−−→W (y)

S(x)
dS(x−y)−−−−−→ S(y)

(5.8)

where x, y ∈ [−π, π). We assume the individuals live on this domain without loss

of generality. We are interested in periodic boundaries so that there is no influence

from the environment and Fourier series sum over countably many modes, rather

than integrate over a continuum.

With the chemical reaction equations for the system now defined in (5.8), we

define the population density distributions φW , φS for the two types. Let N be the

number of individuals in the population. In the future, we will allow N → ∞ as

we are interested in modelling the high density regime. To simplify the notation

for the density functions, we label the individuals by integers i ∈ N = {1, . . . , N}
and let the individuals have locations x = x1, x2, . . . , xN . Let S,W be the set

of labels for individuals of type S,W respectively, so that S ∪ W = N and

S ∩W = ∅. Then, the population density distributions for the system are given

by

φW (x,x) =
1

N

∑

i∈W
δ(x− xi)

φS(x,x) =
1

N

∑

i∈S
δ(x− xi).

(5.9)

We drop the x argument for the rest of the calculation. The coefficient of 1/N

is required to normalise the distributions over the size of the population, i.e. so

that
∫ π

−π
φW (x)dx = |W|/N,

∫ π

−π
φS(x)dx = |S|/N. (5.10)
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At any point in time, the system is completely determined by φW , φS.

Recall the notation from (2.2.1) for the birth and death operators ∆+
y ,∆

−
y at

location y defined on an arbitrary function F [φ(x, t)] given by

∆±
y F [φ(x, t)] = F

[

φ(x, t)± 1

N
δ(x− y)

]

.

We now define equivalent operators for the births and deaths of a particular

type of individual given by ∆W±
y ,∆S±

y for type W,S respectively. Recall also the

notation for the movement operator given by ∆−
y1
∆+
y2

for moving from location y1

to location y2. We define movement operators for a particular type by ∆S−
y1 ∆S+

y2

and ∆W−
y1

∆W+
y2

. The two events in the system, conversion and movement, can be

expressed in terms of these operators. When a type W individual is converted to

type S at location y, this can be expressed as the operator ∆W−
y ∆S+

y . Similarly

when a type S is converted to type W at location y, we have ∆S−
y ∆W+

y . When

an individual moves to a new location, we use the movement operators defined

above.

The chemical master equation for this system can now be stated using the con-

version and movement operators. Let P (φW , φS, t) be the probability of finding

the system in state φW , φS at time t. There are four ways the system could end

up in this state. There could be a conversion from typeW to type S, a conversion

from type S to type W , movement from a type W individual, or movement from

a type S individual. These four events are summarised in the master equation as

∂P

∂t
(φW , φS, t) = N

∫ π

−π

∫ π

−π
Q(φW , φS, x, y)P (φW , φS, t)dxdy, (5.11)

where

Q(φW , φS, x, y) = (∆W+
x ∆S−

x − 1)λS(x− y)φW (x)φS(y)

+ (∆W−
y ∆S+

y − 1)λW (x− y)φW (x)φS(y)

+ (∆W+
x ∆W−

y − 1)dW (x− y)φW (x)

+ (∆S−
x ∆S+

y − 1)dS(x− y)φS(y).

(5.12)

We now begin an extensive manipulation of (5.11). We start by using the same

variation of the Kramers-Moyal expansion of the conversion and movement op-
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erators that we used in the technical introduction in 2.2.1. We can rewrite the

operators in terms of a Taylor expansion in N−1, given by

∆W±
x ≈ 1± 1

N

δ

δφW (x)
+

1

2N2

δ2

δφW (x)2

∆S±
x ≈ 1± 1

N

δ

δφS(x)
+

1

2N2

δ2

δφS(x)2
,

which ignores higher order terms in N−1, which is appropriate as we are in the

high density case. The pair of ∆ operators can then be expressed by

∆W+
x ∆S−

x = 1+
1

N

(

δ

δφW (x)
− δ

δφS(x)

)

+
1

2N2

(

δ

δφW (x)
− δ

δφS(x)

)2

,

with similar expressions for the other combinations. We substitute these expres-

sions into (5.12) to get

Q(φW , φS, x, y) =
1

N
A(φW , φS, x, y) +

1

2N2
B(φW , φS, x, y),

where

A(φW , φS, x, y) =

(

δ

δφW (x)
− δ

δφS(x)

)

λS(x− y)φW (x)φS(y)

+

(

δ

δφS(y)
− δ

δφW (y)

)

λW (x− y)φW (x)φS(y)

+

(

δ

δφW (x)
− δ

δφW (y)

)

dW (x− y)φW (x)

+

(

δ

δφS(y)
− δ

δφS(x)

)

dS(x− y)φS(y),

(5.13)

118



and

B(φW , φS, x, y) =
(

δ

δφW (x)
− δ

δφS(x)

)2

λS(x− y)φW (x)φS(y)

+

(

δ

δφS(y)
− δ

δφW (x)

)2

λW (x− y)φW (x)φS(y)

+

(

δ

δφW (x)
− δ

δφW (y)

)2

dW (x− y)φW (x)

+

(

δ

δφS(y)
− δ

δφS(x)

)2

dS(x− y)φS(y).

(5.14)

Substituting this expression for Q into (5.11) gives

∂P

∂t
(φW , φS, t)

=

∫ π

−π

∫ π

−π

[

A(φW , φS, x, y) +
1

2N
B(φW , φS, x, y)

]

P (φW , φS, t)dxdy.
(5.15)

This is the functional Fokker-Planck equation. In order to make progress with

the functional derivatives contained in (5.15), we move to Fourier space. Here we

define the inverse Fourier transforms as

φW (x) =
∑

n

φWn e
inx,

where n ∈ Z and the Fourier transform is given by

φWn =
1

2π

∫ π

−π
e−inxφW (x)dx, (5.16)

so that the functional derivatives are now defined as

δ

δφW (x)
=
∑

n

δφWn
δφW (x)

δ

δφWn
=

1

2π

∑

n

∂

∂φWn
e−inx.
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The Fourier space definitions for φS(x) and δ/δφS(x) are similar. We also define

λW (x− y) =
∑

k

λWk e
ik(x−y)

λS(x− y) =
∑

k

λSk e
ik(x−y)

dW (x− y) =
∑

k

dWk e
ik(x−y)

dS(x− y) =
∑

k

dSk e
ik(x−y).

Substituting these definitions into (5.13) gives

A(φW , φS, x, y) =
1

2π

∑

n

∂

∂φWn
AWn (φW , φS) +

1

2π

∑

n

∂

∂φSn
ASn(φW , φS),

where

AWn (φW , φS) =
∑

k,p,q

λSkφ
W
p φ

S
q e

i(−n+k+p)xei(−k+q)y − λWk φ
W
p φ

S
q e

i(k+p)xei(−n−k+q)y

+
∑

p

φWp
(

e−inx − e−iny
)

dW (x− y)eipx,

and

ASn(φW , φS) =
∑

k,p,q

λWk φ
W
p φ

S
q e

i(k+p)xei(−n−k+q)y − λSkφ
W
p φ

S
q e

i(−n+k+p)xei(−k+q)y

+
∑

q

φSq
(

e−iny − e−inx
)

dS(x− y)eiqy.

Substituting these Fourier space definitions into (5.14) gives

B(φW , φS, x, y) =
1

4π2

∑

n,m

∂

∂φWn

∂

∂φWm
BW,W
n,m (φW , φS)

− 1

2π2

∑

n,m

∂

∂φWn

∂

∂φSm
BW,S
n,m (φW , φS)

+
1

4π2

∑

n,m

∂

∂φSn

∂

∂φSm
BS,S
n,m(φW , φS),
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where

BW,W
n,m (φW , φS) =

∑

k,p,q

φWp φ
S
q [λ

S
k e

i(−n−m+k+p)xei(−k+q)y + λWk e
i(k+p)xei(−n−m−k+q)y]

+
∑

p

φWp e
ipxdW (x− y)[ei(−n−m)x − 2e−inxe−imy + ei(−n−m)y],

BW,S
n,m (φW , φS) =

∑

k,p,q

λSkφ
W
p φ

S
q e

i(−n−m+k+p)xei(−k+q)y

+
∑

k,p,q

λWk φ
W
p φ

S
q e

i(k+p)xei(−n−m−k+q)y,

and

BS,S
n,m(φW , φS) =

∑

k,p,q

φWp φ
S
q [λ

S
ke

i(−n−m+k+p)xei(−k+q)y + λWk e
i(k+p)xei(−n−m−k+q)y]

+
∑

q

φSq e
iqydS(x− y)[ei(−n−m)y − 2e−inye−imx + ei(−n−m)x].

Substituting these equations for A(φW , φS, x, y) and B(φW , φS, x, y) into (5.15)

gives

∂P

∂t
(φW , φS, t) =

1

2π

∑

n

∂

∂φWn
P (φW , φS, t)

∫ π

−π

∫ π

−π
AWn (φW , φS)dxdy

+
1

2π

∑

n

∂

∂φSn
P (φW , φS, t)

∫ π

−π

∫ π

−π
ASn(φW , φS)dxdy

+
1

8Nπ2

∑

n,m

∂

∂φWn

∂

∂φWm
P (φW , φS, t)

∫ π

−π

∫ π

−π
BW,W
n,m (φW , φS)dxdy

− 1

8Nπ2

∑

n,m

∂

∂φWn

∂

∂φSm
P (φW , φS, t)

∫ π

−π

∫ π

−π
BW,S
n,m (φW , φS)dxdy

+
1

8Nπ2

∑

n,m

∂

∂φSn

∂

∂φSm
P (φW , φS, t)

∫ π

−π

∫ π

−π
BS,S
n,m(φW , φS)dxdy,

and substituting the expressions for AWn , A
S
n , B

W,W
n,m , BW,S

n,m , B
S,S
n,m into this equation
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gives

∂P

∂t
(φW , φS, t) =

1

2π

∑

n,k,p,q

λSkφ
W
p φ

S
q

∂

∂φWn
P (φW , φS, t)

∫ π

−π

∫ π

−π
z−n+k+p,−k+qdxdy

− 1

2π

∑

n,k,p,q

λWk φ
W
p φ

S
q

∂

∂φWn
P (φW , φS, t)

∫ π

−π

∫ π

−π
zk+p,−n−k+qdxdy

+
∑

n,p

φWp
∂

∂φWn
P (φW , φS, t)P

W
n,p(φW , φS)

+
1

2π

∑

n,k,p,q

λWk φ
W
p φ

S
q

∂

∂φSn
P (φW , φS, t)

∫ π

−π

∫ π

−π
zk+p,−n−k+qdxdy

− 1

2π

∑

n,k,p,q

λSkφ
W
p φ

S
q

∂

∂φSn
P (φW , φS, t)

∫ π

−π

∫ π

−π
z−n+k+p,−k+qdxdy

+
∑

n,q

φSq
∂

∂φSn
P (φW , φS, t)P

S
n,q(φW , φS)

+
1

8Nπ2

∑

n,m,k,p,q

λSkφ
W
p φ

S
q

∂

∂φWn

∂

∂φWm
P (φW , φS, t)

∫ π

−π

∫ π

−π
z−n−m+k+p,−k+qdxdy

+
1

8Nπ2

∑

n,m,k,p,q

λWk φ
W
p φ

S
q

∂

∂φWn

∂

∂φWm
P (φW , φS, t)

∫ π

−π

∫ π

−π
zk+p,−n−m−k+qdxdy

+
1

4Nπ

∑

n,m,p

φWp
∂

∂φWn

∂

∂φWm
P (φW , φS, t)P

W,W
n,m,p(φW , φS)

− 1

8Nπ2

∑

n,m,k,p,q

λSkφ
W
p φ

S
q

∂

∂φWn

∂

∂φSm
P (φW , φS, t)

∫ π

−π

∫ π

−π
z−n−m+k+p,−k+qdxdy

− 1

8Nπ2

∑

n,m,k,p,q

λWk φ
W
p φ

S
q

∂

∂φWn

∂

∂φSm
P (φW , φS, t)

∫ π

−π

∫ π

−π
zk+p,−n−m−k+qdxdy

+
1

8Nπ2

∑

n,m,k,p,q

λSkφ
W
p φ

S
q

∂

∂φSn

∂

∂φSm
P (φW , φS, t)

∫ π

−π

∫ π

−π
z−n−m+k+p,−k+qdxdy

+
1

8Nπ2

∑

n,m,k,p,q

λWk φ
W
p φ

S
q

∂

∂φSn

∂

∂φSm
P (φW , φS, t)

∫ π

−π

∫ π

−π
zk+p,−n−m−k+qdxdy

+
1

4Nπ

∑

n,m,q

φSq
∂

∂φSn

∂

∂φSm
P (φW , φS, t)P

S,S
n,m,q(φW , φS),

(5.17)
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where

zn,m = einxeimy

and where

PW
n,p(φW , φS) =

1

2π

∫ π

−π

∫ π

−π
eipx

(

e−inx − e−iny
)

dW (x− y)dxdy

P S
n,q(φW , φS) =

1

2π

∫ π

−π

∫ π

−π
eiqy

(

e−iny − e−inx
)

dS(x− y)dxdy

PW,W
n,m,p(φW , φS) =

1

2π

∫ π

−π

∫ π

−π
eipx[(e−inx − e−iny)(e−imx − e−imy)]dW (x− y)dxdy

P S,S
n,m,q(φW , φS) =

1

2π

∫ π

−π

∫ π

−π
eiqy[(e−iny − e−inx)(e−imy − e−imx)]dS(x− y)dxdy

In order to simplify PW
n,p, P

S
n,q, P

W,W
n,m,p, P

S,S
n,m,q, we need to define the diffusion rates

dW , dS. In this high density regime, we are assuming that individuals remain

static at some location x and then move to location y with rate dW (x − y) or

dS(x − y) for either type. To model this here we assume that type W and type

S individuals remain static at some location x and then move to location y with

rate dW (x− y), dS(x− y) respectively. In order to resolve the difference between

the microscopic Brownian motion we want to model and the framework we are

using here, we assume that individuals move at random times that are exponen-

tially distributed with rates γW , γS. The distance traveled is a normal random

variable with mean zero and variance DW/γW , DS/γS. In the limit γW , γS → ∞,

the movement of the individuals converges to Brownian motion with diffusion

coefficients DW , DS, which is the movement we want to model. Hence, we set

dW (x− y) =
γW

√

2πDW/γW
exp

(−γW (x− y)2

2DW

)

dS(x− y) =
γS

√

2πDS/γS
exp

(−γS(x− y)2

2DS

)

.

This choice means that we can approximate PW
n,p, P

S
n,q by

PW
n,p(φW , φS) ≈

DW

2
n2δn,p

P S
n,q(φW , φS) ≈

DS

2
n2δn,q
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which follows from

PW
n,p(φW , φS) =

1

2π

∫ π

−π

∫ π

−π
eipx

(

e−inx − e−iny
)

dW (x− y)dxdy

=
γW

2π
√

2πDW/γW

∫ π

−π

∫ π

−π
e
ipx−inx− γW (x−y)2

2DW dxdy

− γW

2π
√

2πDW/γW

∫ π

−π

∫ π

−π
e
ipx−iny− γW (x−y)2

2DW dxdy.

(5.18)

For the first integral in the last line of (5.18), after switching the order of inte-

gration, we have

γW

2π
√

2πDW/γW

∫ π

−π

∫ π

−π
e
ipx−inx− γW (x−y)2

2DW dydx

=
γW

2π
√

2πDW/γW

∫ π

−π
eipx−inx

∫ π

−π
e
− γW (x−y)2

2DW dydx

≈ γW

2π
√

2πDW/γW

∫ π

−π
eipx−inx

∫ ∞

−∞
e
− γW (x−y)2

2DW dydx

=
γW
2π

∫ π

−π
eipx−inxdx = γW δn,p,

where the third line follows from the large γW approximation and the fourth line

from the Gaussian curve integrating to one. For the second integral in the last

124



line of (5.18), also switching the order of integration, we have

− γW

2π
√

2πDW/γW

∫ π

−π

∫ π

−π
e
ipx−iny− γW (x−y)2

2DW dydx

= − γW

2π
√

2πDW/γW

∫ π

−π

∫ π

−π
e
− γW

2DW

[

(y−x+in γW
DW

)2−ip 2DW
γW

x+x2− 1
4
(2x−2in

DW
γW

)2
]

dydx

= − γW

2π
√

2πDW/γW

∫ π

−π
e
− γW

2DW

[

−ip 2DW
γW

x+x2− 1
4
(2x−2in

DW
γW

)2
]

∫ π

−π
e
− γW

2DW
(y−x+in γW

DW
)2
dydx

= −γW
2π

∫ π

−π
e
− γW

2DW

[

−ip 2DW
γW

x+x2− 1
4
(2x−2in

DW
γW

)2
]

dx

= −γW
2π

∫ π

−π
e
− γW

2DW

[

D2
W

γ2
W

n2+
2DW
γW

x(n−p)i
]

dx = −γW
2π

∫ π

−π
e
− DW

2γW
n2−x(n−p)i

dx

= −γW
2π

e
− DW

2γW
n2
∫ π

−π
e−x(n−p)idx = −γW e−

DW
2γW

n2

δn,p.

Hence,

PW
n,p(φW , φS) = γW δn,p − γW e

− DW
2γW

n2

δn,p = γW (1− e
− DW

2γW
n2

)δn,p

≈ γW
DW

2γW
n2δn,p =

DW

2
n2δn,p,

where the approximation follows as we only need to consider small 1/γW as we

are only interested in the case when γW → ∞. The calculation for P S
n,q is similar.

We can approximate PW,W
n,m,p, P

S,S
n,m,q by

PW,W
n,m,p(φW , φS) ≈ −DWmnδn+m,p

P S,S
n,m,q(φW , φS) ≈ −DSmnδn+m,q,
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which follows from

PW,W
n,m,p(φW , φS) =

1

2π

∫ π

−π

∫ π

−π
eipx[(e−inx − e−iny)(e−imx − e−imy)]dW (x− y)dxdy

=
γW

2π
√

2πDW/γW

∫ π

−π

∫ π

−π
eipx[ei(−n−m)x − e−inxe−imy − e−imxe−iny + ei(−n−m)y ]

exp

(−γW (x− y)2

2DW

)

dxdy

=
γW

2π
√

2πDW/γW

∫ π

−π

∫ π

−π
e
ipx− γW (x−y)2

2DW
−ix(n+m) − e

ipx− γW (x−y)2

2DW
−ixn−imy

− e
ipx− γW (x−y)2

2DW
−imx−iny

+ e
ipx− γW (x−y)2

2DW
−iy(n+m)

dxdy

=
γW

2π
√

2πDW/γW

∫ π

−π

∫ π

−π
e
ipx− γW (x−y)2

2DW
−ix(n+m)

dxdy

− γW

2π
√

2πDW/γW

∫ π

−π

∫ π

−π
e
ipx− γW (x−y)2

2DW
−inx−imy

dxdy

− γW

2π
√

2πDW/γW

∫ π

−π

∫ π

−π
e
ipx− γW (x−y)2

2DW
−imx−iny

dxdy

+
γW

2π
√

2πDW/γW

∫ π

−π

∫ π

−π
e
ipx− γW (x−y)2

2DW
−iy(n+m)

dxdy.

(5.19)

The first integral in the last line of (5.19) follows the calculation of the first

integral in the last line of (5.18) to get

γW

2π
√

2πDW/γW

∫ π

−π

∫ π

−π
e
ipx− γW (x−y)2

2DW
−ix(n+m)

dxdy = γW δn+m,p.

The second, third, and fourth integrals in the last line of (5.19) follow the calcu-

lation of the second integral in the last line of (5.18) to get

− γW

2π
√

2πDW/γW

∫ π

−π

∫ π

−π
e
ipx− γW (x−y)2

2DW
−inx−imy

dxdy = −γWe−
DW
2γW

m2

δm,p−n

− γW

2π
√

2πDW/γW

∫ π

−π

∫ π

−π
e
ipx− γW (x−y)2

2DW
−imx−iny

dxdy = −γWe−
DW
2γW

n2

δn,p−m

γW

2π
√

2πDW/γW

∫ π

−π

∫ π

−π
e
ipx− γW (x−y)2

2DW
−iy(n+m)

dxdy = γWe
− DW

2γW
(n+m)2

δn+m,p.
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Hence, PW,W
n,m,p(φW , φS) is given by

PW,W
n,m,p(φW , φS) = γW δn+m,p − γWe

− DW
2γW

m2

δm,p−n − γWe
− DW

2γW
n2

δn,p−m

+ γWe
− DW

2γW
(n+m)2

δn+m,p

= γW (1− e
− DW

2γW
m2 − e

− DW
2γW

n2

+ e
− DW

2γW
(n+m)2

)δn+m,p

≈ DW

2
(m2 + n2 − (n+m)2)δn+m,p

= −DWmnδn+m,p,

where the approximation follows as we only need to consider small 1/γW as we

are only interested in the case when γW → ∞. The result for P S,S
n,m,q(φW , φS) is
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similar. Using these results, the master equation is now given by

∂P

∂t
(φW , φS, t) =

1

2π

∑

n,k,p,q

λSkφ
W
p φ

S
q

∂

∂φWn
P (φW , φS, t)

∫ π

−π

∫ π

−π
z−n+k+p,−k+qdxdy

− 1

2π

∑

n,k,p,q

λWk φ
W
p φ

S
q

∂

∂φWn
P (φW , φS, t)

∫ π

−π

∫ π

−π
zk+p,−n−k+qdxdy

+
∑

n,p

φWp
∂

∂φWn
P (φW , φS, t)

DW

2
n2δn,p

+
1

2π

∑

n,k,p,q

λWk φ
W
p φ

S
q

∂

∂φSn
P (φW , φS, t)

∫ π

−π

∫ π

−π
zk+p,−n−k+qdxdy

− 1

2π

∑

n,k,p,q

λSkφ
W
p φ

S
q

∂

∂φSn
P (φW , φS, t)

∫ π

−π

∫ π

−π
z−n+k+p,−k+qdxdy

+
∑

n,q

φSq
∂

∂φSn
P (φW , φS, t)

DS

2
n2δn,q

+
1

8Nπ2

∑

n,m,k,p,q

λSkφ
W
p φ

S
q

∂

∂φWn

∂

∂φWm
P (φW , φS, t)

∫ π

−π

∫ π

−π
z−n−m+k+p,−k+qdxdy

+
1

8Nπ2

∑

n,m,k,p,q

λWk φ
W
p φ

S
q

∂

∂φWn

∂

∂φWm
P (φW , φS, t)

∫ π

−π

∫ π

−π
zk+p,−n−m−k+qdxdy

− 1

4Nπ

∑

n,m,p

φWp
∂

∂φWn

∂

∂φWm
P (φW , φS, t)DWmnδn+m,p

− 1

8Nπ2

∑

n,m,k,p,q

λSkφ
W
p φ

S
q

∂

∂φWn

∂

∂φSm
P (φW , φS, t)

∫ π

−π

∫ π

−π
z−n−m+k+p,−k+qdxdy

− 1

8Nπ2

∑

n,m,k,p,q

λWk φ
W
p φ

S
q

∂

∂φWn

∂

∂φSm
P (φW , φS, t)

∫ π

−π

∫ π

−π
zk+p,−n−m−k+qdxdy

+
1

8Nπ2

∑

n,m,k,p,q

λSkφ
W
p φ

S
q

∂

∂φSn

∂

∂φSm
P (φW , φS, t)

∫ π

−π

∫ π

−π
z−n−m+k+p,−k+qdxdy

+
1

8Nπ2

∑

n,m,k,p,q

λWk φ
W
p φ

S
q

∂

∂φSn

∂

∂φSm
P (φW , φS, t)

∫ π

−π

∫ π

−π
zk+p,−n−m−k+qdxdy

− 1

4Nπ

∑

n,m,q

φSq
∂

∂φSn

∂

∂φSm
P (φW , φS, t)DSmnδn+m,q,

For the remaining integrals, we note that they will vanish unless both exponential
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powers are equal to zero because we are not integrating around any poles in the

complex plane according to the Cauchy Theorem [66]. Hence, we require the

powers to be equal to zero. When the powers are equal to zero, each integral

for the x and y variables is equal to 2π. This considerably simplifies the master

equation to give

∂P

∂t
(φW , φS, t) =

−
∑

n

∂

∂φWn
P (φW , φS, t)

[

∑

k

2π(λWk φ
W
−kφ

S
n+k − λSkφ

W
n−kφ

S
k )− φWn DW

n2

2

]

−
∑

n

∂

∂φSn
P (φW , φS, t)

[

∑

k

2π(λSkφ
W
n−kφ

S
k − λWk φ

W
−kφ

S
n+k)− φSnDS

n2

2

]

+
1

2N

∑

n,m

∂

∂φWn

∂

∂φWm
P (φW , φS, t)

[

∑

k

η(n,m, k)− 1

2π
φWn+mDWnm

]

− 1

2N

∑

n,m

∂

∂φWn

∂

∂φSm
P (φW , φS, t)

[

∑

k

λSkφ
W
n+m−kφ

S
k + λWk φ

W
−kφ

S
n+m+k

]

+
1

2N

∑

n,m

∂

∂φSn

∂

∂φSm
P (φW , φS, t)

[

∑

k

η(n,m, k)− 1

2π
φSn+mDSnm

]

,

(5.20)

where

η(n,m, k) = φWn+m−kφ
S
kλ

S
k + φW−kφ

S
n+m+kλ

W
k .

This is the Fourier Fokker-Planck equation for the system in terms of functional

derivatives and Fourier modes. We can now use this master equation to derive

differential equations for the Fourier modes φWn , φ
S
n . To do this, we let N → ∞

for a high density population to get

∂P

∂t
(φW , φS, t) =

−
∑

n

∂

∂φWn
P (φW , φS, t)

[

∑

k

2π(λWk φ
W
−kφ

S
n+k − λSkφ

W
n−kφ

S
k )− φWn DW

n2

2

]

−
∑

n

∂

∂φSn
P (φW , φS, t)

[

∑

k

2π(λSkφ
W
n−kφ

S
k − λWk φ

W
−kφ

S
n+k)− φSnDS

n2

2

]

.

The functional master equation for our system is now in the form of the Liouville
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equation [60], which is a special case of the forward Fokker-Planck equation (2.5)

when b(x, t) = 0. This high density master equation has solutions φWn , φ
S
n when

d

dt
φWn =

∑

k

2π(λWk φ
W
−kφ

S
n+k − λSkφ

W
n−kφ

S
k )− φWn DW

n2

2

d

dt
φSn =

∑

k

2π(λSkφ
W
n−kφ

S
k − λWk φ

W
−kφ

S
n+k)− φSnDS

n2

2
.

(5.21)

These differential equations show how the Fourier modes depend on conversion

and diffusion. We note that d
dt
(φW0 + φS0 ) = 0 so φW0 + φS0 is a constant. To

determine this constant, recall from (5.10) that

∫ π

−π
φW (x)dx = |W|/N,

∫ π

−π
φS(x)dx = |S|/N

and recall the definitions for φW0 , φ
S
0 in (5.16) so that

φW0 + φS0 =
1

2π

∫ π

−π
φW (x) + φS(x)dx =

1

2π
.

For n 6= 0, we have d
dt
(φWn +φSn) = −Dn2(φWn +φSn)/2 which has solution φWn +φSn =

Ae−Dn
2t/2 for some constant A. As time increases, φWn +φSn quickly decays to zero,

so we have the condition φWn + φSn = 0. A simple check shows that (5.21) has a

family of solutions given by

φWn =
τ

2π
δn,0, φSn =

1− τ

2π
δn,0,

for all τ ∈ [0, 1]. These solutions correspond to the scenario where a proportion

τ of individuals are of type W and the remaining 1− τ proportion are of type S.

There may be other solutions but we focus only on this family of solutions here

as they are an example of how demographic noise can influence the stability of a

solution, which will be shown in the rest of this Section. Each of these solutions

is linearly stable in this N → ∞ regime. If instead N is large but finite, there

will be small fluctuations in the Fourier modes which could result in a change

in the solutions and in their stability. To explore this possibility, we consider an
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ansatz given by

φWn =
τ

2π
δn,0 +

1√
N
αn , φSn =

1− τ

2π
δn,0 −

1√
N
αn , (5.22)

where αn is Gaussian white noise with mean zero and unit variance, as defined in

the technical introduction in Section 2.1.1. The noise terms have opposite signs

to ensure that we still satisfy the condition φWn + φSn = δn,0/2π. Also, we only

need to consider φWn as we can use this condition to work out φSn . Recall as well

from the Chapter introduction that we choose the two types so that the product

of the interaction distance and interaction rate is equal. This means that we

choose λW , λS, rW , rS such that

∫ π

−π
λW (x)dx =

∫ rW

−rW
λWdx = 2rWλW = 2rSλS =

∫ rS

−rS
λSdx =

∫ π

−π
λS(x)dx.

Hence, we have that λW0 = λS0 as

λW0 =
1

2π

∫ π

−π
λW (x)dx =

1

2π

∫ π

−π
λS(x)dx = λS0 .

Now, substituting the ansatz (5.22) into (5.21) gives

d

dt
τ =

1

N

∑

k 6=0

(λSk − λWk )|αk|2. (5.23)

The sign of the summand in this equation is determined by the sign of λSk −λWk as

|αk|2 is positive. If λSk − λWk is always positive, then the sum and the right hand

side of that equation are positive and the proportion of the population of type

W increases. If λSk − λWk is always negative, the proportion of the population

decreases. The sign of this factor is determined by the interaction functions

λW (x), λS(x). Recall from (5.16) that the Fourier modes are defined by

λW0 =
1

2π

∫ π

−π
λW (x)dx =

λW
2π

∫ rW

−rW
dx =

λW rW
π

λWk =
1

2π

∫ π

−π
e−ikxλW (x)dx =

λW
2π

∫ rW

−rW
e−ikxdx

=
λW
2π

−1

ik
(eikrW − e−ikrW ) = −λW

kπ
sin(krW ),
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and similarly λS0 = λSrS
π
, λSk = −λS sin(krS)/kπ for k 6= 0. Substituting these

values into (5.23) gives

d

dt
τ =

1

N

∑

k 6=0

1

kπ
(λW sin(krW )− λS sin(krS))|αk|2.

The term λW sin(krW )−λS sin(krS) is not always positive or always negative. In
order to determine if the proportion of type W individuals increases or decreases,

we have to calculate the value of the full sum, which cannot be done until we

have an equation for |αk|2. To calculate this, we return to (5.20). Multiplying by

φWn φ
S
−n and integrating gives

d

dt
φWn φ

S
−n = φS−n

(

∑

k

2π(λWk φ
W
−kφ

S
n+k − λSkφ

W
n−kφ

S
k )− φWn DW

n2

2

)

+ φWn

(

∑

k

2π(λSkφ
W
n−kφ

S
k − λWk φ

W
−kφ

S
n+k)− φSnDS

n2

2

)

− 1

N

(

∑

k

λSkφ
W
−kφ

S
k + λWk φ

W
−kφ

S
k

)

.

(5.24)

Now for n 6= 0 the ansatz (5.22) gives us φWn φ
S
−n = −|αn|2/N . Substituting the

ansatz into (5.24) gives

d

dt
|αn|2 = −N d

dt
φWn φ

S
−n

= −NφS−n

(

∑

k

2π(λWk φ
W
−kφ

S
n+k − λSkφ

W
n−kφ

S
k )− φWn DW

n2

2

)

−NφWn

(

∑

k

2π(λSkφ
W
n−kφ

S
k − λWk φ

W
−kφ

S
n+k)− φSnDS

n2

2

)

+

(

∑

k

λSkφ
W
−kφ

S
k + λWk φ

W
−kφ

S
k

)

= −|αn|2
(

4π[(λW−n − λS0 ) (1− τ) + (λSn − λW0 )τ ] + (DW +DS)
n2

2

)

+ (λS0 + λW0 )τ (1− τ) +O(N−1/2),
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so we have a differential equation for the noise αn for large but finite N given by

d

dt
|αn|2 = −ψn|αn|2 + σ (5.25)

where we note that λW−n = λWn and λS−n = λSn and where

ψn = 4π[(λWn − λS0 ) (1− τ) + (λSn − λW0 )τ ] + (DW +DS)
n2

2

σ = (λS0 + λW0 )τ (1− τ) .

The solution to (5.25) is given by

|αn|2 =
σ − e−ψn(t−C)

ψn
,

for some constant C. The noise equilibrates quickly for ψn > 0 so we can make

the approximation |αn|2 ≈ σ/ψn and substitute into (5.23) to get

d

dt
τ =

1

N

∑

k 6=0

(λSk − λWk )(λS0 + λW0 )τ (1− τ)

4π[(λWk − λS0 ) (1− τ) + (λSk − λW0 )τ ] + (DW +DS)
k2

2

(5.26)

Substituting the Fourier modes into (5.26) gives

d

dt
τ =

(λSrS + λW rW )τ (1− τ)

Nπ2

∑

k 6=0

λW sin(krW )− λS sin(krS)

(DW +DS)
k3

2
− 4k[(λW

k
sin(krW ) + λSrS) (1− τ) + (λS

k
sin(krS) + λW rW )τ ]

This is now an ODE for the zero mode in terms of the Fourier modes λSk , λ
W
k and

the diffusion rates DW , DS. Recall from the Chapter introduction that we are

interested in the case where λW < λS, rS < rW , and λSrS = λW rW = 1/2 so we

can set λS = 1/2rS, λW = 1/2rW . Making this substitution gives

d

dt
τ =

τ (1− τ)

Nπ2

∑

k 6=0

1
2rW

sin(krW )− 1
2rS

sin(krS)

(DW +DS)
k3

2
− 4k[( 1

2krW
sin(krW ) + 1/2) (1− τ) + ( 1

2krS
sin(krS) + 1/2)τ ]

.

(5.27)
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Figure 5-6: The value of dτ/dt in (5.27) as a function of τ for different values of
rS. rW = 1, λW = 1/2rW , λS = 1/2rS, D = 0, N = 100 and we take the first 1000
positive and negative modes. Solid line rS = 0.2, dashed line rS = 0.5, dotted
line rS = 0.8.

We plot (5.27) as a function of τ in Figure 5-6 for different values of rS. We see

that dτ/dt is always positive and that when rS is closer to rW = 1, the effects of

the noise is weakened. It then follows that introducing noise for large but finite

N results in the proportion of individuals of type W always increasing. Hence,

the type W individuals will survive to consensus in this regime.

When D = 0, dτ/dt is always positive. For small but positive values of D,

the sign of dτ/dt changes depending on the value of τ . This is shown in Figure

5-7.

5.3 Conclusion

In this Chapter, we have considered the novel model of nonlocal interaction

and diffusion in the voter model. One type of individual has a high interac-

tion rate with individuals very close while the other type has a low interaction

rate with individuals very far away. The mathematics required for low density

and high density population are very different. For a low density population,
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Figure 5-7: The value of dτ/dt for D = 1 and D = 2. See Figure 5-6 for caption
details.
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we summarised the dynamics using a second-order partial differential equation.

Using this PDE, we showed that in a pairwise interaction, the wide and weak

type individual has a better chance of winning the interaction. In a high density

population, we determined using an intensive Fourier space argument that noise

changes the stability of steady states in the system. This instability also results

in the wide and weak type individuals reaching consensus overall.

These results can be applied to the real world in any situation where decisions

are being made on two options and individuals have the opportunity to persuade

each other. In our research, when an individual switches types, the individuals

method of interaction also changes. This can be applied to the development of

election campaign strategies. For example, if there are two political parties. One

party prefers to use online advertising, a wide and weak form of interaction, while

the other prefers door-to-door canvassing, a short and strong form of interaction.

Our work here shows that the wide and weak political party has a better chance

of winning the election, regardless of the size of the population, with everything

else being equal. Our results hold only in very particular real world scenarios.
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Chapter 6

General Conclusion and Outlook

for Future Research

Populations are very complicated. The factors that influence a population

and how they do so are still not fully understood. In this thesis, we have seen

some examples of ways we can better understand these factors. We conclude by

restating the new results presented here.

In Chapter 3, we considered a population moving in 2D according to the FKPP

equation in the presence of mixed boundaries. In a corridor CL of width L, we

apply the mixed boundary conditions uy = αu at y = 0 and uy = −βu at y = L.

In the half plane C∞, we only need the former as there is only one boundary in

this domain. Ahead of the front, the linearised 2D FKPP equation allowed us to

calculate the dependence of the population structure on the y domain and the

resulting invasion speed. The critical corridor width Lm∞,β, such that if L > Lm∞,β,

the population will always have a positive invasion speed for any value of α, is

given by

Lm∞,β =
1√
2

[

π + tan−1

(

−
√
2

β

)]

.

When β = 0, we have a reflective boundary at y = L and Lm∞,0 = π/2
√
2. When

β → ∞, we have an absorbing boundary at y = L and Lm∞,∞ = π/
√
2. Each of

these critical corridor widths ahead of the front also have a corresponding curve in

the (L, α) plane that represent where each population invasion achieves invasion
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speed zero. For a mixed boundary at y = L, this is given by

(2− αβ) tan(
√
2L) =

√
2(α + β).

Ahead of the front in the half plane, we were able to calculate explicitly a formula

for the 2D invasion front, given by

u(x, y, t) = u0 exp(−(x− 2t))(1 + αy),

for some constant u0 and we showed that the level sets of this equation meet the

mixed boundary at y = 0 with gradient 1/α which is independent of the level set

chosen. Also, we found that the level sets never become parallel with the y axis

as y → ∞. This shows that the effects of the mixed boundary at y = 0 are felt

very far away from the boundary. Behind the front, the problem is fully nonlinear

and we show that solutions exist for all L > 0 using a phase plane argument and

we derive the condition for these solutions behind the front to be stable, which

is given by

(1− αβ) tan(L) = α + β.

Comparing these conditions for stability behind the front and the conditions for

achieving zero invasion speed ahead of the front in the (L, α) plane show that,

as α increases, the population invasion collapses behind the front before it can

ever reach zero invasion speed. Hence, the invasion collapses and reaches zero

invasion speed before the linear prediction. From this, we can conclude that the

invasion speed for the 2D FKPP equation in the presence of mixed boundaries

is not fully determined by the low density linear calculations ahead of the front,

as it is for the 1D FKPP equation, which we showed in 2.2.2. It is indeed a

nonlinear process. Future work includes:

• Recording the invasion speed for the stochastic individual based simulations

in Section 3.3.1 and comparing them to the deterministic simulations and

the predicted theory.

• Extending the speed simulations in Figures 3-13,3-14,3-15 to include mixed

and absorbing boundaries at y = L.

• Considering a population that is invading at some angle θ with a hostile

138



boundary. That is, replacing the hostile boundary condition uy = αu on

y = 0 with the same condition on y = tan(θ)x.

• Exploring population invading past a spatially heterogeneous hostile bound-

ary, such as uy = α(1 − sin(x))u/2, or past a generation-varying hostile

boundary, such as uiy = αiu
i where ui, αi are the population density and

reaction rate of the i-th generation respectively.

The future outlook for this research includes calibrating bacteriophage detection

devices to the existence of low density populations near hostile boundaries and

the effects of antibiotic medicine just outside the regions of influence. In the

mathematics literature, this work provides new insight for the 2D FKPP equation.

In Chapter 4, we analysed how a population moving in 1D according to the

FKPP equation is affected by the introduction of sexual conflict, in particular

how this influences the population invasion speed. Starting with an introduction

of ‘run and tumble’ movement, we calculated the mean square displacement of

one fish, given by

Q(t) = 2v2T
(

t− T + Te−t/T
)

,

and showed how this leads to diffusive movement for large times with diffusion

rate D = v2T and to the stochastic differential equation

dX

dt
=

√
2DηX(t)

for the location of the fish. We then introduced the response functions vX , vY for

sexual conflict between two fish as

dX

dt
=vX(X, Y ) +

√
2DηX(t) ,

dY

dt
=vY (X, Y ) +

√
2DηY (t) .

The movement of the two fish is very similar to the ‘run and tumble’ movement

of one fish so we use similar methods to calculate the diffusion rate for the pair.

We found that for a particular level of male aggression A and individual diffusion

rate D, the effective diffusion rate Deff of the pair of fish is given by

Deff = 4

√

Dπ

A + 1

(

A

A + 1

)2

sinh

(

1

4D(A+ 1)

)

,
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and that it can be significantly larger than the individual diffusion rate D. Since

the invasion speed for the 1D FKPP equation is given by v = 2
√
rD, we have

shown that sexual conflict between male and female fish can increase the invasion

speed of the population. This contrasts very nicely with the work in Chapter 3,

where we saw that interactions with the environment can slow down a popula-

tion. Here we saw that coupled interactions within a population can speed it

up. Finally, we showed that sexual conflict in populations with lots of fish can

result in male fish having a higher diffusion rate ahead of the front where there

are fewer female fish compared to behind the front where there are many female

fish. This agrees with our conclusion as the FKPP equation has a pulled front

so the invasion speed is determined by the dynamics ahead of the front. We also

derived the equation for the diffusion coefficient of a fish switching between two

different diffusion coefficients, which is given by

Dswt =
D1λ2 +D2λ1
λ1 + λ2

.

In order to inform and test the model, we carried out experiments tracking the

movement of pairs of guppies in a tank. The results from the experiment qualita-

tively agree with the assumptions we made in our model. Future work includes:

• Exploring the case of male and female fish having different diffusion rates,

which is very likely as female fish are, on average, bigger than the male fish

• Using the data we have collected from the pair experiments, we can explore

different interaction functions vX , vY that more closely reflect the observed

behaviour

• Consider more variations of guppy behaviour, such as guppies of the same

gender interacting with each other and female fish only interacting with the

nearest male in the large population case

This work contributes to the literature surrounding Poecilia Reticulata and the

factors that contribute to it being so successful at establishing an invasive popu-

lation. This also addresses the wider influence of coupled, nonlinear interactions

within a population and the role they play in determining population density

level characteristics that cannot be accounted for at the individual or linear level.
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In Chapter 5, we examined the voter model with nonlocal interaction and

diffusion. The population contained two types: type W individuals with a wide

region of interaction that is very weak and type S individuals with a short region

of interaction that is very strong. We assumed the interaction ranges satisfy

rS < rW and the interaction rates satisfy λW < λS. The success of either type

surviving to consensus varies with the density of the population. For a low density

population, we derive a differential equation for the density of pairs of different

types and calculate the probability of either type winning a interaction from

the stationary solution of the ODE. We see that the probability pS of a type S

individual winning in a pairwise interaction is given by

pS =

2µ1λS(e
2µ1rS − 1)eµ2(rS+rW )

(λS + λW )((µ1 − µ2)(e2rS(µ1+µ2) − e2µ2rW ) + (µ1 + µ2)(e2µ1rS+2µ2rW − e2µ2rS))
,

where µ1 =
√

(λS + λW )/D and µ2 =
√

λW/D. It is less than 1/2 when we

assume λSrS = λW rW = 1/2 and D = 1. In order for a type to survive to

consensus, it must repeatedly win these pairwise interactions. We calculate that

the probability PS for the survival of type S individuals to consensus is given by

PS =
p
N−N0

S

S

p
N−N0

S

S + (1− pS)N
0
S

.

We see that the type W individuals always have an advantage in low density

populations. However, in high density populations, we formulate the model in

terms of chemical reaction equations and a chemical master equation. After a

long analysis of the chemical master equation, involving Fourier space expansions,

Kramers-Moyal operator expansions, diffusion rate approximations, and complex

integrals, we find that there is a family of solutions where the proportion of type

W individuals is τ and the proportion of type S individuals is 1−τ for all τ ∈ [0, 1].

When we add noise to these steady states with large but finite populations, we
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find that the density of the type W individuals satisfies the equation

d

dt
τ =

τ (1− τ)

Nπ2

∑

k 6=0

1
2rW

sin(krW )− 1
2rS

sin(krS)

(DW +DS)
k3

2
− 4k[( 1

2krW
sin(krW ) + 1/2) (1− τ) + ( 1

2krS
sin(krS) + 1/2)τ ]

.

When we assume λSrS = λW rW = 1/2, this equation is always positive as we vary

τ . Hence, in a large but finite population, the type W individuals also survive to

consensus. Future work includes:

• Allowing individuals of the same type to interact with each other either in

a competitive or mutualistic way

• Extending calculations to two and three dimensions and determining if the

results still hold

• Exploring more complicated interaction rates, such as spatially and tempo-

rally varying, and more complicated interaction regions, such as circles and

squares in two dimensions, spheres and cubes in three dimensions

• Considering populations of more than two types

• Exploring nonzero diffusion rates in the high density case

This work contributes to the literature surrounding the voter model, interacting

particle systems, and contact processes. More generally, it provides insight into

optimum strategies for decision making events, such as elections.
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Appendix A

Mean Hitting Time For

Alternative Boundary Conditions

Here, we calculate the mean hitting time for alternative boundary conditions.

For an absorbing boundary at x = A and at x = B, the boundary conditions on

P(x, t) are given by

P(A, t) = P(B, t) = 0,

so the boundary conditions on E[T (x)] are given by

E[T (A)] = E[T (B)] = 0.

Applying these boundary conditions to

E[T (x)] = −2

∫ x

A

1

γ(w)

∫ w

A

γ(z)

b(z)2
dzdw +

∫ A

A

C1

γ(w)
dw + C2,

gives

0 = E[T (A)] = −2

∫ A

A

1

γ(w)

∫ w

A

γ(z)

b(z)2
dzdw +

∫ x

A

C1

γ(w)
dw + C2 = C2

and

0 = E[T (B)] = −2

∫ B

A

1

γ(w)

∫ w

A

γ(z)

b(z)2
dzdw +

∫ B

A

C1

γ(w)
dw
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so

C1 =
−2
∫ B

A
1

γ(w)

∫ w

A
γ(z)
b(z)2

dzdw
∫ B

A
1

γ(w)
dw

.

Hence,

E[T (x)] =− 2

∫ x

A

1

γ(w)

∫ w

A

γ(z)

b(z)2
dzdw

+
−2
∫ B

A
1

γ(w)

∫ w

A
γ(z)
b(z)2

dzdw
∫ B

A
1

γ(w)
dw

∫ x

A

1

γ(w)
dw

=− 2

∫ x

A
1

γ(w)

∫ w

A
γ(z)
b(z)2

dzdw
∫ B

A
1

γ(w)
dw

∫ B

A
1

γ(w)
dw

− 2

∫ B

A
1

γ(w)

∫ w

A
γ(z)
b(z)2

dzdw
∫ x

A
1

γ(w)
dw

∫ B

A
1

γ(w)
dw

=− 2

∫ x

A
1

γ(w)

∫ w

A
γ(z)
b(z)2

dzdw
∫ B

A
1

γ(w)
dw

∫ B

A
1

γ(w)
dw

− 2

∫ x

A
1

γ(w)

∫ w

A
γ(z)
b(z)2

dzdw
∫ x

A
1

γ(w)
dw

∫ B

A
1

γ(w)
dw

− 2

∫ B

x
1

γ(w)

∫ w

A
γ(z)
b(z)2

dzdw
∫ x

A
1

γ(w)
dw

∫ B

A
1

γ(w)
dw

=− 2
∫ B

A
1

γ(w)
dw

∫ x

A

1

γ(w)

∫ w

A

γ(z)

b(z)2
dzdw

∫ B

x

1

γ(w)
dw

− 2
∫ B

A
1

γ(w)
dw

∫ B

x

1

γ(w)

∫ w

A

γ(z)

b(z)2
dzdw

∫ x

A

1

γ(w)
dw,

which is the mean hitting time for two absorbing boundaries at A and B.

For one absorbing boundary at A and one reflecting boundary at B, the

boundary conditions for P(x′, t′) become

P(A, t′) =
∂

∂x
P(B, t′) = 0,
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so the boundary conditions for E[T (x)] become

E[T (A)] =
∂

∂x
E[T (B)] = 0.

Now, solving

E[T (x)] = −2

∫ x

A

1

γ(w)

∫ w

A

γ(z)

b(z)2
dzdw +

∫ x

A

C1

γ(w)
dw + C2,

with these boundary conditions gives C2 = 0 again and

0 =
∂

∂x
E[T (B)] =

∂

∂x

[

−2

∫ x

A

1

γ(w)

∫ w

A

γ(z)

b(z)2
dzdw +

∫ x

A

C1

γ(w)
dw

] ∣

∣

∣

∣

x=B

=

[

−2
1

γ(x)

∫ x

A

γ(z)

b(z)2
dz +

C1

γ(x)

] ∣

∣

∣

∣

x=B

=− 2
1

γ(B)

∫ B

A

γ(z)

b(z)2
dz +

C1

γ(B)
,

so

C1 = 2

∫ B

A

γ(z)

b(z)2
dz.

Hence

E[T (x)] =− 2

∫ x

A

1

γ(w)

∫ w

A

γ(z)

b(z)2
dzdw + 2

∫ B

A

γ(z)

b(z)2
dz

∫ x

A

1

γ(w)
dw

=

∫ x

A

[

−2

∫ w

A

γ(z)

b(z)2
dz + 2

∫ B

A

γ(z)

b(z)2
dz

]

1

γ(w)
dw

=2

∫ x

A

1

γ(w)

∫ B

w

γ(z)

b(z)2
dzdw,

which is the mean hitting time for an absorbing boundary at A and a reflective

boundary at B.
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Appendix B

Calculation of Sexual Conflict as

a Second Order Interaction

In this Section, we show that sexual conflict between individuals of two dif-

ferent types is a second order, nonlinear interaction. To see this, assume we have

a population with N males with locations X1, . . . , XN and M females with loca-

tions Y1, . . . , YM . We assume that the male response to other male fish is given

by fxx, the male response to female fish is given by fxy, the male response to

other male fish as a coefficient of the noise is given by gxx, and the male response

to female fish as a coefficient of the noise is given by gxy. There are similar func-

tions for the female responses. We also assume all fish have diffusion coefficient

D. These dynamics for the i-th male and female are given by

dXi

dt
=

1

N

N
∑

j=1

fxx(Xi(t)−Xj(t)) +
1

M

M
∑

k=1

fxy(Xi(t)− Yk(t))

+
√
2Dηi(t)

(

1

N

N
∑

j=1

gxx(Xi(t)−Xj(t)) +
1

M

M
∑

k=1

gxy(Xi(t)− Yk(t))

)

,

dYi
dt

=
1

N

N
∑

j=1

fyx(Yi(t)−Xj(t)) +
1

M

M
∑

k=1

fyy(Yi(t)− Yk(t))

+
√
2Dηi(t)

(

1

N

N
∑

j=1

gyx(Yi(t)−Xj(t)) +
1

M

M
∑

k=1

gyy(Yi(t)− Yk(t))

)

,
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where ηi(t) is Gaussian white noise with mean zero and unit variance. For the

rest of this calculation, we only focus on dXi

dt
. The calculations for dYi

dt
are similar.

Define the location distribution ρxi for the i-th male fish as

ρxi (x, t) = δ(Xi(t)− x), (B.1)

so that, for arbitrary function hx, we have

hx(Xi(t)) =

∫

ρxi (x, t)h
x(x)dx. (B.2)

We will use the fact that hx is arbitrary to derive a partial differential equation

for ρxi . Summing over i will then provide a PDE for the population density of

male fish. Firstly, we need to calculate the derivative of hx(Xi(t)). To do this,

we use Itô’s formula from Section 2.1.2, to get

∂hx

∂t
=

(

1

N

N
∑

j=1

fxx(Xi(t)−Xj(t)) +
1

M

M
∑

k=1

fxy(Xi(t)− Yk(t))

)

∂hx

∂x

+D

(

1

N

N
∑

j=1

gxx(Xi(t)−Xj(t)) +
1

M

M
∑

k=1

gxy(Xi(t)− Yk(t))

)2

∂2hx

∂x2

+
√
2D

(

1

N

N
∑

j=1

gxx(Xi(t)−Xj(t)) +
1

M

M
∑

k=1

gxy(Xi(t)− Yk(t))

)

∂hx

∂x
ηi.

We replace the location Xi(t) using (B.2) to get

∂hx

∂t
=

∫

ρxi (x, t)

[

∂hx

∂x

(

1

N

N
∑

j=1

fxx(x−Xj(t)) +
1

M

M
∑

k=1

fxy(x− Yk(t))

+
√
2Dηi

(

1

N

N
∑

j=1

gxx(x−Xj(t)) +
1

M

M
∑

k=1

gxy(x− Yk(t))

))

+D

(

1

N

N
∑

j=1

gxx(x−Xj(t)) +
1

M

M
∑

k=1

gxy(x− Yk(t))

)2

∂2hx

∂x2



 dx,
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and integrating by parts gives

∂hx

∂t
=

∫

hx(x)

[

− ∂

∂x

([

1

N

N
∑

j=1

fxx(x−Xj(t)) +
1

M

M
∑

k=1

fxy(x− Yk(t))

]

ρxi (x, t)

+
√
2Dηi

(

1

N

N
∑

j=1

gxx(x−Xj(t)) +
1

M

M
∑

k=1

gxy(x− Yk(t))

)

ρxi (x, t)

)

+D
∂2

∂x2





(

1

N

N
∑

j=1

gxx(x−Xj(t)) +
1

M

M
∑

k=1

gxy(x− Yk(t))

)2

ρxi (x, t)







 dx.

(B.3)

We now compare (B.3) to the time derivative of (B.2), which is given by

dhx

dt
=

∫

hx(x)
∂ρxi
∂t

dx.

Because hx is arbitrary, we must have that

∂ρxi
∂t

= − ∂

∂x

([

1

N

N
∑

j=1

fxx(x−Xj(t)) +
1

M

M
∑

k=1

fxy(x− Yk(t))

]

ρxi (x, t)

+
√
2Dηi

(

1

N

N
∑

j=1

gxx(x−Xj(t)) +
1

M

M
∑

k=1

gxy(x− Yk(t))

)

ρxi (x, t)

)

+D
∂2

∂x2





(

1

N

N
∑

j=1

gxx(x−Xj(t)) +
1

M

M
∑

k=1

gxy(x− Yk(t))

)2

ρxi (x, t)



 .

We now define the population distribution for all male fish

ρx(x, t) =

N
∑

i=1

ρxi (x, t),
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so that

∂ρx

∂t
=

N
∑

i=1

∂ρxi
∂t

= − ∂

∂x

([

1

N

N
∑

j=1

fxx(x−Xj(t)) +
1

M

M
∑

k=1

fxy(x− Yk(t))

]

ρx(x, t)

)

− ∂

∂x

(

√
2D

(

1

N

N
∑

j=1

gxx(x−Xj(t))

+
1

M

M
∑

k=1

gxy(x− Yk(t))

)

N
∑

i=1

ηi(t)ρ
x
i (x, t)

)

+D
∂2

∂x2





(

1

N

N
∑

j=1

gxx(x−Xj(t)) +
1

M

M
∑

k=1

gxy(x− Yk(t))

)2

ρx(x, t)



 .

Using the fact that

∫

ρx(y, t)fxx(x− y)dy =

∫ N
∑

j=1

ρxj (y, t)fxx(x− y)dy

=
N
∑

j=1

∫

ρxj (y, t)fxx(x− y)dy

=

N
∑

j=1

fxx(x−Xj(t)),
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we integrate against ρ(y, t) giving

∂ρx

∂t
= − ∂

∂x

([

1

N

∫

ρx(y, t)fxx(x− y)dy

+
1

M

∫

ρy(y, t)fxy(x− y)dy

]

ρx(x, t)

)

− ∂

∂x

(√
2D

(

1

N

∫

ρx(y, t)gxx(x− y)dy

+
1

M

∫

ρy(y, t)gxy(x− y)dy

) N
∑

i=1

ηi(t)ρ
x
i (x, t)

)

+D
∂2

∂x2

((

1

N

∫

ρx(y, t)gxx(x− y)dy

+
1

M

∫

ρy(y, t)gxy(x− y)dy

)2

ρx(x, t)

)

.

At this point, we have to mention that the noise terms are uncorrelated so the

correlation function is

E[ηi(t)ηj(t
′)] = δi,jδ(t− t′).

Define the noise term as

ξ(x, t) = − ∂

∂x

(

A(x, ρx, ρy, gxx, gxy)

N
∑

i=1

ηi(t)ρ
x
i (x, t)

)

,

where

A(x, ρx, ρy, gxx, gxy) =
√
2D

(

1

N

∫

ρx(y, t)gxx(x− y)dy

+
1

M

∫

ρy(y, t)gxy(x− y)dy

)

.

Then, we can derive the correlation function for ξ(x, t) by noting that

ξ(x, t)ξ(z, t′) =
∂

∂x

∂

∂z
A(x, ρx, ρy, gxx, gxy)A(z, ρ

x, ρy, gxx, gxy)

N
∑

i=1

N
∑

j=1

ρxi (x, t)ρ
x
j (z, t

′)ηi(t)ηj(t
′).
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Taking averages then gives

E[ξ(x, t)ξ(z, t′)] =
∂

∂x

∂

∂z
A(x, ρx, ρy, gxx, gxy)A(z, ρ

x, ρy, gxx, gxy)

N
∑

i=1

N
∑

j=1

ρxi (x, t)ρ
x
j (z, t

′)E[ηi(t)ηj(t
′)]

=
∂

∂x

∂

∂z
A(x, ρx, ρy, gxx, gxy)A(z, ρ

x, ρy, gxx, gxy)

N
∑

i=1

N
∑

j=1

ρxi (x, t)ρ
x
j (z, t

′)δi,jδ(t− t′)

=
∂

∂x

∂

∂z
A(x, ρx, ρy, gxx, gxy)A(z, ρ

x, ρy, gxx, gxy)

N
∑

i=1

ρxi (x, t)ρ
x
i (z, t).

Recalling the definition of ρxi from (B.1), we see that

ρxi (x, t)ρ
x
i (z, t) = δ(Xi(t)− x)δ(Xi(t)− z) = δ(x− z)ρxi (x, t),

so we have

E[ξ(x, t)ξ(z, t′)]

=
∂

∂x

∂

∂z
A(x, ρx, ρy, gxx, gxy)A(z, ρ

x, ρy, gxx, gxy)
N
∑

i=1

δ(x− z)ρxi (x, t)

=
∂2

∂x2
A(x, ρx, ρy, gxx, gxy)

2
N
∑

i=1

ρxi (x, t)

=
∂2

∂x2
A(x, ρx, ρy, gxx, gxy)

2ρx(x, t).

We now define the global uncorrelated white noise field η(x, t), such that the

correlation function is

E[η(x, t)η(z, t′)] = δ(t− t′)δ(x− z),

151



and define the global noise field ξ′(x, t) by

ξ′(x, t) = − ∂

∂x

(

A(x, ρx, ρy, gxx, gxy)η(x, t)ρ
1/2(x, t)

)

.

We show now that ξ(x, t) and ξ′(x, t) have the same correlation function. Note

that

ξ′(x, t)ξ′(z, t′) =
∂

∂x

∂

∂z
A(x, ρx, ρy, gxx, gxy)A(z, ρ

x, ρy, gxx, gxy)

ρ1/2(x, t)ρ1/2(z, t′)η(x, t)η(z, t′),

and taking averages gives

E[ξ′(x, t)ξ′(z, t′)] =
∂

∂x

∂

∂z
A(x, ρx, ρy, gxx, gxy)A(z, ρ

x, ρy, gxx, gxy)

ρ1/2(x, t)ρ1/2(z, t′)E[η(x, t)η(z, t′)]

=
∂

∂x

∂

∂z
A(x, ρx, ρy, gxx, gxy)A(z, ρ

x, ρy, gxx, gxy)

ρ1/2(x, t)ρ1/2(z, t′)δ(t− t′)δ(x− z),

=
∂2

∂x2
A(x, ρx, ρy, gxx, gxy)

2ρ(x, t).

Hence, ξ(x, t) and ξ′(x, t) are statistically equivalent. Then we have

∂ρx

∂t
= − ∂

∂x

([

1

N

∫

ρx(y, t)fxx(x− y)dy +
1

M

∫

ρy(y, t)fxy(x− y)dy

]

ρx(x, t)

)

− ∂

∂x

(√
2D

(

1

N

∫

ρx(y, t)gxx(x− y)dy

+
1

M

∫

ρy(y, t)gxy(x− y)dy

)

η(x, t)ρ1/2(x, t)

)

+D
∂2

∂x2

((

1

N

∫

ρx(y, t)gxx(x− y)dy

+
1

M

∫

ρy(y, t)gxy(x− y)dy

)2

ρx(x, t)

)

Defining

φx =
ρx

N
, φy =

ρy

M
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gives
∂φx

∂t
=

1

N

∂ρx

∂t

and

∂φx

∂t
=

1

N

∂ρx

∂t

= − 1

N

∂

∂x

([
∫

φx(y, t)fxx(x− y)dy +

∫

φy(y, t)fxy(x− y)dy

]

Nφx(x, t)

)

− 1

N

∂

∂x

(√
2D

(∫

φx(y, t)gxx(x− y)dy

+

∫

φy(y, t)gxy(x− y)dy

)

η(x, t)N1/2φ1/2(x, t)

)

+
D

N

∂2

∂x2

(

(
∫

φx(y, t)gxx(x− y)dy +

∫

φy(y, t)gxy(x− y)dy

)2

Nφx(x, t)

)

= − ∂

∂x

([
∫

φx(y, t)fxx(x− y)dy +

∫

φy(y, t)fxy(x− y)dy

]

φx(x, t)

)

− 1

N1/2

∂

∂x

(√
2D

(
∫

φx(y, t)gxx(x− y)dy

+

∫

φy(y, t)gxy(x− y)dy

)

η(x, t)φ1/2(x, t)

)

+D
∂2

∂x2

(

(
∫

φx(y, t)gxx(x− y)dy +

∫

φy(y, t)gxy(x− y)dy

)2

φx(x, t)

)

Letting N → ∞ gives

∂φx

∂t
= − ∂

∂x

([
∫

φx(y, t)fxx(x− y)dy +

∫

φy(y, t)fxy(x− y)dy

]

φx(x, t)

)

+D
∂2

∂x2

(

(
∫

φx(y, t)gxx(x− y)dy +

∫

φy(y, t)gxy(x− y)dy

)2

φx(x, t)

)

As the calculation for the population invasion only depends on the linearisation of

these equations, it is clear that the invasion speed is unaffected by sexual conflict

as these terms are all nonlinear.
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