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Summary

Preferential attachment networks with power law degree sequence undergo a phase

transition when the power law exponent τ changes. For τ > 3 typical distances in the net-

work are logarithmic in the size of the network and for 2 < τ< 3 they are doubly logarithmic.

In this thesis, we identify the correct scaling constant for τ ∈ (2,3) and discover a surprising

dichotomy between preferential attachment networks and networks without preferential

attachment. This contradicts previous conjectures of universality. Moreover, using a model

recently introduced by Dereich and Mörters, we study the critical behaviour at τ = 3, and

establish novel results for the scale of the typical distances under lower order perturbations

of the attachment function.
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Chapter 1

Introduction

1.1 Overview

The theory of random networks provides tools to model a multitude of phenomena in the

physical sciences, computer science, social sciences and even linguistics. A network, in the

most general sense, consists of two classes of objects: vertices and edges. For many ap-

plications, the number of vertices and edges is very large and changes over time according

to non-deterministic rules. Of particular interest, especially in the social sciences and com-

puter science is the small world problem1, i.e. the observation that even in very large sparse2

networks, most vertices can be connected by relatively short sequences of edges.

The goal of this work is to derive asymptotics for the distance of typical vertices in ran-

dom networks as they grow large. One fundamental parameter in the modelling of large

scale networks is the degree distribution. It has been observed, see e.g. [AB02] for a survey,

that real world networks often display an approximate power law distribution. Preferen-

tial attachment (PA), which has attracted lots of attention in the mathematical community

recently, see e.g. [Ath07; Bor+07; AGS08; BL12], is a simple modelling paradigm3 for the net-

work formation which explains the occurrence of power laws.

If the power law exponent τ of a random network satisfies 2 < τ < 3, then the network

topology is especially rich. For instance in [NR08] the authors observe a soft hierarchy struc-

ture, which only appears for infinite variance degrees. In these networks it is possible to

remove many high degree vertices without significantly changing the size of the largest con-

1See the famous study [Mil67], the phenomenon has been popularised e.g. in [Wat03] and [Bar02] and seems
to capture the imagination of wide audiences, similarly to the famous butterfly effect.

2‘Sparse’ means that the number of edges is of the same order as the number of vertices. This holds for all
models considered in this work.

3PA schemes have been studied in other contexts much earlier, e.g. in [Yul25]. There is also combinatorial
literature studying PA-like self-reinforcing processes, see e.g.[Szy87] and of course closely related urn processes
have been studied extensively by probabilists. However, the idea to use PA to generate power law networks
appeared only later, first in [BA99] as a model for the web graph.
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1.2. NOTATION

nected component. More generally, it is assumed, see e.g. [HH08], that there are two univer-

sality classes: the class of small worlds in which τ> 3 and typical distances are logarithmic

in the total size of the network and the class of ultrasmall worlds in which 2 < τ< 3 and the

scale is doubly logarithmic. The transition between these two classes occurs at τ= 3 and we

devote special attention to this case.

Our two main results and their proofs extend the understanding of the network topology

for the class of preferential attachment models. They are presented and discussed in detail

in Chapter 2. Both results feature the nonlinear preferential attachment model introduced

in [DM09] and studied in [DM13]. A survey of known results for this model can be found

in [DM11]. Theorem I covers the situation in which τ ∈ (2,3) and the arguments used in its

proof are robust enough to establish a new and surprising general dichotomy between mod-

els with preferential attachment and models without preferential attachment. Theorem II

addresses the case τ= 3, in which the nonlinearity of the model comes into play and allows

us to calculate distances in situations not previously covered, shedding some light on the

structural properties of networks at this transition point.

In Chapter 3 we give a non-rigorous account of the proofs of our main results, explain-

ing the most important ideas. Chapter 4 contains prerequisite results, most importantly

a branching process approximation which was developed in [DM13] and is crucial for the

proofs and our understanding of the model. The formal proofs of the novel results of Chap-

ter 2 are given in Chapters 5 and 6.

In the remainder of this opening chapter we set out the notation used throughout this

thesis. This is done in Section 1.2. Section 1.3 introduces the sublinear preferential attach-

ment model, for which our main results are formulated. This section also contains a discus-

sion of some of the models’ features and surveys some results that are needed as background

for subsequent chapters. Finally, in Section 1.4, we briefly discuss some of the literature re-

garding distances in other power law random graphs.

1.2 Notation

We start by introducing the basic notation which is used throughout this thesis. We use the

notations N0 =N∪ {0} for the set of non-negative integers and [n] for the set of positive in-

tegers less than or equal to n. The Gamma function is denoted by (Γ(x))x≥0, i.e. for n ∈Nwe

have Γ(n+1) = n!. For a function f (p,n) defined for integer values n ∈N0 and parametrised

by p we use the notation ∆ f (p,n) for the increment f (p,n +1)− f (p,n), n ∈N0. If f is de-

fined on a continuum we write ∆ f (p, t ) = f (p, t )− lims↑t f (p, s) if the latter exists.

Identical constants appearing in several proofs are indexed according to the place they
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1.2. NOTATION

are first used, such that, say, C1.2 is derived in Lemma 1.2 and D(3.4) is introduced in equa-

tion (3.4). γEM frequently denotes the Euler-Mascheroni constant limn→∞
∫ (b 1

x c− 1
x

)
dx.

Given a function f :N−→R we furthermore use the notations

f [m] :=
m∑

i=1
f (i ) for m ∈N

and in general

f j (A) = ∑
i∈A

f (i ) j for A ⊂N, j ∈N,

where we suppress the superscript if j = 1 and #A = f 0(A) denotes the cardinality of A.

We are usually interested in statements about a graph GN on [N ] which are very likely

to be true if the system size N gets sufficiently large. We use the term with high probability

or w.h.p. to describe this. Formally this means that if EN is a property of graphs of size N ,

defined as a subset of all graphs on [N ], then

lim
N→∞

P{GN ∈ EN } = lim
N→∞

P{EN } = 1.

Other common phrases to denote this form of convergence in law are ‘asymptotically al-

most surely’ and ‘almost every GN satisfies EN ’.

We also frequently use the asymptotic o-notation, i.e. for non-negative real functions

f , g , the statement f (x) = o(g (x)) means that limx→∞
f (x)
g (x) = 0 and f (x) = O(g (x)) means

that limsupx→∞
f (x)
g (x) <∞. We also write f ∼ g if limx→∞

f (x)
g (x) = 1.

We are now ready to introduce the main objects of our study: families of growing random

graphs.

Definition 1.1 (Network model). As a (dynamic) network model we denote a sequence of

random graphs (GN )N∈N with the set of vertices V (GN ) of GN given by [N ] = {1,2, . . . , N } and

the set of unoriented edges E(GN ) of GN given by a random symmetric subset of [N ]× [N ].

We write v ↔ w if the vertices v, w are connected by an edge in the graph GN . We will

also use the shorthands v ∈ GN (instead of v ∈ V (GN )) for vertices and e ∈ GN (instead of

e ∈ E(GN )) for edges.

Some of the examples discussed in Section 2.2 include models where multiple edges be-

tween one pair of vertices are allowed, but this will play no role for our considerations and

we treat them like one single edge.

In this work we provide techniques to find bounds on distances in GN , using the con-

vention that two vertices have infinite distance if they cannot be connected by a sequence

7



1.2. NOTATION

of edges. For connected subgraphs A ⊂GN , we also call the maximal distance between two

vertices in A its diameter. This is formalised in the following definition.

Definition 1.2 (Distances). The graph distance in GN is given by

dN (v, w) := min
{
n : ∃v = v0, v1, . . . , vn = w ∈GN such that vi−1 ↔ vi ∀ i ∈ [n]

}
,

and the notation generalises to sets of vertices A,B ⊂ [N ] by setting

dN (A,B) = min{dN (a,b) : a ∈ A,b ∈ B}.

The typical distance is the asymptotic graph distance of two vertices U ,V ∈ [N ] which are

chosen independently and uniformly at random in the graph GN . Furthermore, the diame-

ter of A ⊂GN is defined by

diamN (A) := max
m,n∈[A]

m,n connected

dN (m,n).

Note that if GN is not connected, which is often the case, then we restrict ourselves to

typical distances in the largest connected component of GN . This component is usually de-

noted by CN . Typically, there will be only one component CN ⊂GN which comprises a pos-

itive fraction of all vertices in the limit N →∞. Therefore, picking two random vertices U ,V

from CN has the same effect as conditioning U ,V to be connected.

The canonical example of a random network is the Erdős-Rényi random graph GN =
G (N , p), in which all edges in GN are mutually independent and exist with probability p ∈
[0,1]. However, for most applications this standard tool of combinatorial probability is not

a satisfactory model. For instance, in view of our emphasis on growth dynamics, in G (N , p)

there is no immediate rule how to obtain G (N +1, p) from G (N , p), if p depends on N . The

rich theory about G (N , p) nevertheless provides many ideas and techniques for the study of

more complex networks. An account of the classical results can be found in [Bol01].

As outlined above, the starting point for our considerations is the modelling of random

networks whose degree sequences obey an approximate power law.

Definition 1.3 (Degrees and power laws). Let v ∈GN . Then

Z [v, N ] = ∑
i∈[N ]

1{(v,i )∈E(GN )} denotes the degree of vertex v in GN .

We also call

Z [v, N ] = ∑
i∈{v+1,...,N }

1{(v,i )∈E(GN )} the indegree of v.

8



1.3. THE SUBLINEAR PREFERENTIAL ATTACHMENT MODEL

The empirical degree distribution of GN is denoted by µ(N ) = (µk (N ))∞k=0, where

µk (N ) = 1

N

∑
v∈[N ]

1{Z [v,N ]=k}, for k ∈N0.

We speak of a power law network if there is a power law exponent τ> 0 and a slowly varying

function L :N0 −→ [0,∞) such that, for all k ≥ 0,

lim
N→∞

µk (N ) = k−τL(k), in probability.

Remark 1.4. Many authors reserve the term power law for sequences µ(N ) satisfying, for

some C > 0 and k ≥ 1,

lim
N→∞

µk (N ) =C k−τ, in probability.

We call this a strict power law. The more general definition above is used, since we are

particularly interested in the behaviour of the network under alteration of the lower order

perturbation L.

As a consequence of the law of small numbers, the degrees in G (N , p) are asymptotically

Poisson distributed with parameter λ = limN→∞ N p(N ) in the sparse case, i.e. if the latter

expression is well defined and finite. Indeed, to generate power law networks we need to

leave the framework of G (N , p).

1.3 The sublinear preferential attachment model

Preferential attachment is a dynamical modelling approach that was taken up to explain

why power law degree sequences arise in growing real networks. The approach was pio-

neered in [BA99]. The principle of PA is that vertices which at a given point in time have

a lot of connections accumulate more connections than other vertices subsequently as the

network grows. This is an empirically and intuitively well grounded assumption in many

applications – ‘the rich get richer’4. Therefore, in general, one assumes in the PA-framework

that the connectivity of a vertex, i.e. the probability that a new vertex connects to it, is an

increasing function of its degree.

Indeed, if the connectivity of a vertex is an asymptotically linear (or affine) function of

the total degree, then this type of model produces a power law graph. However, the degree

sequence does not obey a power law as soon as this linear relation is broken up. This has

been shown rigorously for a sublinear connectivity in [DM09] and for superlinear connec-

tivities in [OS05]). The problem of justifying the modelling approach in applications has

thus in some sense been shifted to the problem of justifying the use of a certain attachment

4In the social sciences the phenomenon is also known as the ‘Matthew effect’, after the line “For unto every
one that hath shall be given, and he shall have abundance; but from him that hath not shall be taken even that
which he hath." in the Gospel According to Matthew.

9



1.3. THE SUBLINEAR PREFERENTIAL ATTACHMENT MODEL

function.

We now describe the sublinear preferential attachment model studied in [DM09] and

[DM13]. In the following subsections the model is introduced and some essential features

and results which are important later in the text are stated.

1.3.1 Model definition

Definition 1.5 (Sublinear PA). The sublinear PA model is a Markov chain (GN )N≥1 on the set

of all finite directed graphs with labels in N constructed using the following ingredients:

(I) a monotonically increasing attachment rule f :N0 −→ (0,∞);

(II) the initial state G1 represented by a single vertex labelled 1;

(III) the random attachment mechanism, i.e. given GN , the graph GN+1 is obtained by

• adding a new vertex labelled N +1,

• inserting directed edges from vertex N +1 to each existing vertex with label m ∈
[N ] with probability

f (Z [m, N ]

N
∧1

independently of everything else.

Remark 1.6. (i) We interpret the labels as time and also do not distinguish verbally be-

tween vertices and their labels.

(ii) The rules given above generate a directed graph, however the direction of the edges is

determined solely by the order of the vertices and can be ignored.

(iii) Instead of using the connection probability f (Z [m,N ])
N ∧1, one also could demand f (k) ≤

k +1, for all k ∈ N0, which is the original definition in [DM09]. The results do not de-

pend on this choice. For technical reasons it is often necessary to restrict the consider-

ation to concave attachment rules. In some situations this restriction can be dropped,

see e.g. [EM13], but in particular for the rigorous formulation of the branching process

approximation, which is one main tool of our investigation, it is very useful.

Generating the network in the way described in Definition 1.5 has some straightforward

consequences, which will be important in our considerations later.

Observation 1.7 (Stochastic domination I). (i) If A,B ⊂ [N ] and N ′ > N then surely

dN ′(A,B) ≤ dN (A,B),

since edges are never removed.

10



1.3. THE SUBLINEAR PREFERENTIAL ATTACHMENT MODEL

Figure 1-1: Realisation of GN for f (k) = 1
2 k + 1

2 , N = 100

(ii) If f ≤ f̄ are attachment rules used to generate graph sequences (GN )N≥1 and (ḠN )N≥1,

then ḠN stochastically dominates GN , i.e. we can find a coupling (G (c), Ḡ (c)) of the se-

quences such that almost surely G (c)

N ≤ Ḡ (c)

N for all N ∈N, in the sense that v ↔ w in Ḡ (c)

N

if v ↔ w in G (c)

N for all v, w ∈ [N ].

Induced parameters which are important in many of the calculations hereafter are

γ− = inf
k
∆ f (k), γ+ = sup

k
∆ f (k), and γ= lim

k→∞
∆ f (k),

if f is such that the last expression is well defined. We shall often assume that f is concave,

in which case γ+ = ∆ f (0) and γ = γ− exists. Some estimates also require that γ+ < 1, how-

ever this is for simplicity only and could be replaced by limsupk→∞∆ f (k) < 1.

Central to most of our arguments are the degree evolutions of the vertices in our network.

Definition 1.8 (Degree evolutions). (i) Let v ∈ N. We call the Markov chain (Z [v,n])n≥v

counting the edges linking to v during the growth of (GN )∞N=v the indegree evolution of

v or just its degree evolution.

(ii) The idealised degree evolution (Zt )t≥0 is the continuous time pure jump Markov pro-

cess which starts at Z0 = 0 and jumps from state k into state k +1 at rate f (k).

11



1.3. THE SUBLINEAR PREFERENTIAL ATTACHMENT MODEL

(iii) We call the independent families {(Z (k)[i ,n])∞n=i ; i ,k ∈ N} and {(Z (k))t≥0; k ∈ N} gen-

eralised degree evolutions. The Markov chain (Z (k)[i ,n])∞n=i is started in Z (k)[i , i ] = k,

jumps by 1 at time n > i with probability f (Z (k)[i ,n−1])
n−1 ∧1 and stays constant otherwise.

The continuous time process (Z (k)
t )t≥0 is started in Z (k)

0 = k and jumps from state j into

state j +1 at rate f ( j ) for j ≥ k.

A discrete-time generalised degree evolution behaves like the indegree of a vertex which

is introduced with already k edges pointing towards it.The idealised degree evolutions are

instrumental in constructing a limiting object for the sublinear PA graph, namely a typed

tree. One main prerequisite for this thesis is the link between the existence of a giant com-

ponent in the network and the survival of this tree.

The next two sections survey those results of [DM09] and [DM13] about the model which

are the foundation of most of the work in this thesis.

1.3.2 The degree sequence

To put the sublinear PA model into the context of power law random networks, it is nec-

essary to study the degree sequence. This (and much more) is the subject of [DM09]. The

convergence of the empirical degree distribution is covered by the following two statements.

Proposition 1.9 (Convergence of degree distribution, [DM09, Theorem 1.1]). Let f be any

attachment rule.

(I) Let µ(in)(N ) denote the empirical indegree distribution of GN , then

lim
N→∞

µ(in)(N ) =µ, almost surely in total variation norm,

where µ= (µk )k≥0 is the probability measure on N0 with

µk = 1

1+ f (k)

k−1∏
i=0

f (i )

1+ f (i )
, for k ∈N0.

(II) If f satisfies f (k) ≤ ηk + 1 for some η ∈ (0,1), then the conditional distribution of the

outdegree of vertex n +1 given Gn converges almost surely in total variation norm to a

Poisson distribution with parameter

λ=
∞∑

k=0

k∏
i=0

f (i )

1+ f (i )
=

∞∑
k=0

µ(k) f (k).

If f is chosen to be affine, i.e. f (k) = f (0)+γk, with f (0),γ ∈ (0,1], then Proposition 1.9 (I)

12



1.3. THE SUBLINEAR PREFERENTIAL ATTACHMENT MODEL

yields, see [DM09, Example 1.3],

µk = 1

γ

Γ
(
k + f (0)

γ

)
Γ
( f (0)+1

γ

)
Γ
(
k + f (0)+1

γ

)
Γ
( f (0)

γ

) , for all k ∈N0

and Stirling’s formula yields

µk ∼
Γ
( f (0)+1

γ

)
Γ
( f (0)

γ

) k−(1+ 1
γ

), as k →∞,

thus the indegree distribution converges to a power law. More generally, GN is a power law

network with power law exponent τ = 1+ 1
γ , if limk→∞∆ f (k) = γ ∈ (0,1). In this case the

outdegree distribution has no influence, since the tails of the Poisson distribution decay ex-

ponentially and do not distort the power law asymptotics.

Although we are concerned with the more important regime of asymptotically linear

functions, it is worthwhile mentioning at this point, that if limk→∞∆ f (k) = 0, then the

model does not produce a power law network. This is especially clear for constant attach-

ment rules, in which case the attachment is uniform and not preferential and the model

yields a version of Dubins’ model, which is considered in e.g. in [She89]. For a suitable

choice of p, this network is asymptotically equivalent to G (N , p), as N →∞, and thus pro-

vides a dynamical version of G (N , p) which is not a power law network.

Between the constant and asymptotically linear regime, the limiting degree distribution

depends on f in a more intricate way. For instance, the choice f (k) ∼ βkα, for β > 0 and

0 <α< 1, yields stretched exponential tails

logµk ∼ 1

β

1

1−αk1−α, as k →∞,

according to [DM09, Example 1.4].

1.3.3 The giant component

It is easily seen from the attachment mechanism, that GN will in general be a disconnected

graph. If we restrict ourselves to distances between vertices in the largest connected com-

ponent CN ⊂ GN , then, to make a meaningful statement about typical distances in GN , we

need to make sure that the relative size #CN
N of this component does not vanish in the limit

N →∞. If #CN
N converges in probability to a positive value, then we say that a giant compo-

nent exists. The existence and uniqueness of a giant component is one of the main results

of [DM13], which is reproduced below as Proposition 1.12.
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1.3. THE SUBLINEAR PREFERENTIAL ATTACHMENT MODEL

Before we can state the result, we need to introduce an important tool, which is also

of central significance for the later chapters. This is the idealised branching random walk

(IBRW). It is a typed random walk on R with type space S = [0,∞]∪ {`}, where ` is an ar-

bitrarily chosen non-numerical symbol. This random walk will help us to approximate the

neighbourhood of a typical vertex V ∈ GN for very large N , i.e. a vertex chosen randomly

from the uniform distribution on [N ]. The types are necessary to keep track of the depen-

dencies between edges which are induced by the preferential attachment.

Definition 1.10 (Idealised branching random walk). Recall that (Zt : t ≥ 0) is the pure birth

process started in zero with generator G given by

Gg (k) = f (k)∆g (k), g :N0 −→R,k ∈N0.

For σ ∈ [0,∞], we denote by (Zσ
t )t≥0 a version of (Zt )t≥0 conditioned to jump at σ ≥ 0.

The idealised branching random walk X consists of a collection of particles x = (s(x),τ(x)),

where s(x) ∈R is the position of x and τ(x) ∈S its type, endowed with a genealogical struc-

ture5. It is constructed as follows:

(I) The walk is initialised with one particle x; of type ` in random position s(x;), where

−s(x;) is exponentially distributed with parameter 1.

(II) Every particle of the walk produces offspring according to the following rules depend-

ing on its type and position:

• an `-type particle at s ∈R produces offspring particles

– to the right in positions relative to s given by jumps of (Zt )t≥0 and of type `,

– to the left in position relative to s distributed like a Poisson point process

with intensity measure e tE f [(Z−t )]dt , typed by their distance to s;

• a τ-type particle at s ∈R produces offspring particles

– to the right in position relative to s given by jumps of (Z τ
t − 1[τ,∞)(t ))t≥0 and

of type `,

– to the left like an `-type particle.

Having constructed the infinite random walk X , we need to relate X to the sequence

(GN )N≥1 of finite networks. This is done by removing all particles on the positive half line.

Definition 1.11 (Idealised neighbourhood tree). Let X denote the IBRW, then the idealised

neighbourhood tree (INT) T is the typed tree obtained from X by removing all particles x ∈ X

5Formally, every x ∈ X also has a unique label l (x) ∈ ⋃
n∈NNn ∪ {;}, where ; is the label of the root particle

and the set of labels {l (x), x ∈ X } obeys the obvious order rules. However, we do not need to refer to the labels
explicitly anywhere in our argumentation.

14



1.3. THE SUBLINEAR PREFERENTIAL ATTACHMENT MODEL

with s(x) > 0 and their descendants. We denote by #T the number of particles in T. If #T=
∞, then the INT survives, and we denote

p( f ) =P{#T=∞}.

Furthermore, we denote by πN the projection of (−∞] to [N ] which maps a point s ∈ (−∞,0]

onto the smallest m ∈ [N ] with s ≤−∑N−1
i=1

1
i +

∑m−1
i=1

1
i .

Informally, the inverse of πN can be thought of mapping the network GN to the INT. The

vertex N is mapped to a particle with position 0, the vertex 1 to a particle at − log N and the

order of the vertices is preserved, therefore the whole network is projected to the negative

half line.

The survival of the INT reflects the existence of a giant component in the network. More-

over, the survival probability corresponds to the relative size of the giant component.

Proposition 1.12 (The giant component, [DM13, Theorem 1.8]). Let f be a concave attach-

ment rule and let p( f ) be the survival probability of the INT. If C (1)

N and C (2)

N denote the largest

and second largest connected component of GN , then

#C (1)

N

N
→ p

(
f
)

and
#C (2)

N

N
→ 0, in probability.

In particular, there exists a unique giant component if and only if p
(

f
)> 0.

Remark 1.13. One can analyse the growth of the IBRW by studying the family of compact

linear operators (Aθ)0<θ<1 on the Banach space Cb of continuous bounded real valued func-

tions on S = [0,∞]∪ {`}, which is given by

Aθg (τ) =
∫ ∞

0
g (t )eθt dM(t )+

∫ ∞

0
g (`)e−θt dMτ(t ), g ∈Cb

where increasing functions M , resp. Mτ, are given by

M(t ) =
∫ t

0
e−s E

[
f (Zs)

]
ds, M`(t ) = E[Zt

]
, for t ≥ 0,

and Mτ(t ) = E[Zt |∆Zτ = 1
]− 1[τ,∞)(t ) for t ≥ 0, τ ∈ [0,∞].

Note that the functions M featuring in the definition of the operators are derived from the

IBRW as follows: M(t ) is the expected number of particles within distance t to the left of

any given particle, and Mτ(t ) is the expected number of particles within distance t to the

right of a given particle of type τ. Indeed, (Aθ)θ∈(0,1) plays the role of the Laplace transform

of the offspring measure in classical branching random walk results, see e.g. [Big77]. Con-

sequently, the ‘Malthusian parameter’ for the branching random walk can be derived from

(Aθ)θ∈(0,1) via the spectral radii %(Aθ),0 < θ < 1, and p( f ) > 0 if and only if there is θ ∈ (0,1)

such that %(Aθ) > 1. This is the content of Theorem 1.1 of [DM13].
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1.3. THE SUBLINEAR PREFERENTIAL ATTACHMENT MODEL

In particular, ifγ≥ 1
2 , then p( f ) > 0 and for affine attachment rules, the abstract criterion

of survival of T can be reformulated explicitly.

Proposition 1.14 (Conditions for the existence of a giant component,[DM13, Example 1.2,

Proposition 1.3]). If 1
2 ≤ liminfk→∞∆ f (k), then a giant component exists. Moreover, if f (k) =

f (0)+γk, k ∈N0, for some 0 < γ< 1 and f (0) > 0, then a giant component exists if and only if

γ≥ 1

2
or f (0) ≥

(1
2 −γ

)2

1−γ .

The above results give some further justification to focus on situations in which γ ≥ 1
2 ,

i.e. in which GN is a power law network with power law exponent τ = 1+ 1
γ ∈ (2,3], and ex-

plain why it is reasonable to call the case τ= 3 ‘critical’ in this context. If no giant component

exists, then the problem of ‘typical’ distances needs to be reformulated. If a giant compo-

nent exists, yet γ < 1
2 , then typical distances are of logarithmic scale and completely deter-

mined by the tree structure of the INT. To calculate the exact asymptotics for this case, i.e.

to derive the correct scaling constant from the attachment function f is beyond the scope

of this thesis. However, the problem does not appear to be very difficult and lies within the

range of the techniques already developed for the sublinear PA model.

1.3.4 Relation to other preferential attachment models

Apart from the sublinear PA model, there are many ways of formalising the preferential at-

tachment approach. The first rigorous mathematical formulation of the mechanism sug-

gested in [BA99] was given in [Bol+01]. The model defined there yields a power law network

with exponent τ= 3. Later the model was extended to cover the range τ ∈ (2,∞), see [Hof13,

Chapters 8 and 11] for an extensive survey of the results. We will refer to this model as the

classical or affine PA model and revisit it in more detail in Section 2. Recall that in the sub-

linear model τ = 1+ 1
γ , hence τ = 3 corresponds to γ = 1

2 . Remarkably, the distance results

about the difficult critical case for this model pre-date the results for other values and even

rigorous results for simpler models without preferential attachment at τ= 3, see in particu-

lar [BR04].6

We now survey results on the diameter and typical distances for the classical model,

which have been obtained in [BR04] and [DHH10]. The key feature of this model – or in fact

this family of models, since there are several non-equivalent formulations of it – is that the

graph GN = Gm,δ
N+1 is obtained from the graph Gm,δ

N by adding one new vertex with a fixed

number of m outgoing edges which connect to each one of the already existing vertices with

a probability proportional to its total degree plus a constant δ. The parameter δ ∈ (−m,∞)

is allowing us to construct power law networks for any exponent τ > 2. Although the exact

6Although not published until 2004 this article had already been written by 2001.
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1.3. THE SUBLINEAR PREFERENTIAL ATTACHMENT MODEL

attachment mechanism differs slightly from model to model within the family, the asymp-

totic behaviour is the same. We will revisit the model in Example 2.7.

Certain model variants allow self-loops which affects the connectedness of the graph,

since there is a tiny probability that an incoming vertex connects only to itself and thus

stays isolated for some time. However, these events are so rare that they do not influence

the distance results. If m = 1, then the resulting graph is a tree or a forest and diameter as

well as average distances grow logarithmically. The behaviour of these trees is studied in

[Pit94]. We exclude this case here, as we are only interested in models which allow for cy-

cles, i.e. ‘true’ network models.

The results for the order of the diameter of these networks (or of its largest connected

component, respectively) are given in the following table, note that the power law exponent

is given in terms of the parameters m and δ, we have τ = 3+ δ
m . For convenience we have

also included the corresponding parameter γ of the sublinear model.

Asymptotic bounds for diamN (Gm,δ
N ) for m≥ 2

range of δ (−m,0) {0} (0,∞)

range of τ (2,3) {3} (3,∞)

range of γ
(
1, 1

2

) { 1
2

} (
0, 1

2

)
upper bound

( 4
| log(τ−2)| + 4σ

m

)
loglog N for any σ> 1

3−τ
log N

loglog N O(log N )

lower bound O(loglog N ) log N
loglog N O(log N )

published in [DHH10] [BR04] [DHH10]

For the average distances between two uniformly chosen vertices in the largest con-

nected component of Gm,δ
N , the picture is less complete. Obviously, upper bounds for typi-

cal distances are implicit in the corresponding bounds on the diameter. Lower bounds for

typical distances often follow directly from the proof of the lower bound statement for the

diameter, since a first moment method is usually used to show that in the network there are

with high probability no vertices at all which lie within a certain distance of each other.

Asymptotic bounds for dN (U ,V ) for m≥ 2, U ,V ∈Gm,δ
N uniform

range of δ (−m,0) {0} (0,∞)

range of τ (2,3) {3} (3,∞)

range of γ
( 1

2 ,1
) { 1

2

} (
0, 1

2

)
upper bound 4

| log(τ−2)| loglog N log N
loglog N O(log N )

lower bound 4
| log(τ−2)| loglog N log N

loglog N O(log N )

published in [DMM12] [BR04] [DHH10]

The problem of bounding the diameter is often somewhat more challenging than finding

the typical distance. However, the main reason why we focus in our main results solely

on the typical distances is that the typical distance has much more practical relevance as
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1.4. OTHER POWER LAW RANDOM NETWORKS

a statistics of real world networks. Whereas the diameter can be influenced by one single

extremely long path, the typical distances are much more robust under alteration of small

subsets of the network.

Besides the classical and the sublinear model, there are many more ways of modelling

preferential attachment, e.g. the model suggested in [CL06, Chapter 5]. Some authors work

with very general models, which also include other effects like edge duplication or deple-

tion, e.g. in [CF03]. From the viewpoint of applications, it is of course desirable to include

as many effects as possible. From a mathematical point of view however, the models also

need to be tractable. To obtain rigorous results beyond the asymptotics of the degree se-

quence, many of those models are too complicated as they have usually been designed with

computer simulations of real world networks in mind.

Nevertheless, there has also been recent progress in deriving results for some extensions

of pure preferential attachment models which include other formation principles. This suc-

cess is partly due to a better understanding of preferential attachment on its own. Some

mathematically interesting effects, like condensation, see [BB01] for an early treatment, re-

quire a combination of preferential attachment and other effects. One such way in which

this can be realised is assigning to each vertex a fitness value, understood as a position in

some abstract geometric space. This fitness then has an influence on the connectivity. Rig-

orous results about such models are obtained, e.g. in [Jor13; DO13; JM12]. These ‘geomet-

ric’ preferential attachment models lie outside the framework of this thesis and rigorous

distance results are not available at present.

1.4 Other power law random networks

To provide an idea of the wider context of our results, we briefly discuss distance estimates

for some well studied network models and give a short account of some related results.

Inhomogeneous random graphs are a class of (generally non-dynamic) models in which

edges are conditionally independent. If P{u ↔ v in GN } =ΦN (u)ΦN (v), u, v ∈ [N ] for some

function ΦN on the set of vertices, then this is called the rank 1 case. Bollobás, Janson and

Riordan in [BJR07] provide diameter and distance results for a very general formulation of

the model which covers power law graphs with τ> 3. For the regime τ ∈ (2,3] there are sev-

eral models suggested in the literature. The monograph [Hof13] provides a comprehensive

overview including detailed proofs of distance results. Two inhomogeneous random graph

models, the expected degree random graph of Chung and Lu (see e.g. [CL06; CL02]) and the

Poissonian random graph of Norros and Reittu discussed in [NR06] appear as examples in

Section 2.2, thus we give an account of some known results below.

18



1.4. OTHER POWER LAW RANDOM NETWORKS

The exact formulation of the Chung-Lu model is given in Example 2.10. The main pa-

rameter is a sequence of weights w = (wk )k∈[N ] which, if chosen to obey a power law with

exponent τ> 2, produces a power law network.

Proposition 1.15 (Average distances in the Chung-Lu model,[CL06, Theorem 7.7]). Let H =
([N ],E(H )) be a random graph with given expected degrees w = (w1, . . . , wN ), where w satis-

fies

(i) for some ε> 0, independent of N , we have∑
k∈[N ] wk

N
> 1+ε,

(ii) for M(N ) = maxi∈N wi we have

log N

loglog N
= o(M(N )),

(iii) w follows a power law with exponent τ ∈ (2,3).

Then for U ,V chosen uniformly and independently from [N ]

dN (U ,V ) ≤ (2+o(1))
loglog N

log 1
τ−2

with high probability as N →∞.

This result is the first rigorous mathematical result about distances in a power law ran-

dom network and appeared in [CL02]. The proof in [CL06] includes a comparison of the set{
v ∈ [N ] : Z [v, N ] ≥ N (loglog N )−1}

to an Erdős-Rényi graph, which combined with the tech-

nique of [DHH10] provided a model for the arguments of Section 4.6.

We are especially interested in the case where wi ∼ c
√

N
i for some c > 0, correspond-

ing to a strict power law with τ = 3, in which the distances are of order O
( log N

loglog N

)
. Be-

fore we state an exact result for this case in a more general framework, we leave the setting

of the Chung-Lu model and briefly mention another closely related model, the Poissonian

random graph. The Poissonian random graph allows a convenient representation as a dy-

namic network. The precise formulation is given in Example 2.12. The main difference to

the Chung-Lu model is that the vertex weights w = (wk )k∈[N ] are replaced by random capac-

ities Wk ,1 ≤ k ≤ N , and the number of edges between v, w ∈ [N ] is Poisson with parameter
Wv Ww∑
i∈[N ] Wi

, so the model produces a graph with multiple edges.

In the monograph [Hof13] a host of previous results are summarised into a general

framework for inhomogeneous random graph models specified by random or determin-

istic weight sequences. The distance result [Hof13, Theorem 9.4] includes the Norros-Reittu

model and Proposition 1.15 as special cases. Consequently, the distances in the Norros-
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Reittu model agree with the distances in the Chung-Lu model for τ ∈ (2,3).

For τ = 3 the situation is similar, i.e. both models obey the same scaling of typical dis-

tances and the following result holds:

Proposition 1.16 (Inhomogeneous random graphs for τ = 3, [Hof13, Theorem 9.22]). Let

w = (wi )i∈N be a sequence of non-negative weights specified by its distribution function

FN (x) = 1

N

∑
i∈[N ]

1{wi≤x}, x ≥ 0.

Let also (WN )N≥1, be random variables with distribution functions FN , satisfying

(i) there is a random variable W with distribution function F such that limN→∞ FN (x) =
F (x) for all continuity points x of F ,

(ii) limN→∞EWN = EW > 0 for some random variable W with distribution function F .

Additionally, let the distribution of W follow a strict power law with exponent τ= 3, i.e. there

exist C > c > 0 and a > 0 such that

(a) for all x ≤ N a , we have (1−FN )(x) ≥ c
x2 ,

(b) for all x ≥ 0, we have (1−FN )(x) ≤ C
x2 .

Then, for uniformly and independently chosen U ,V ∈ [N ], conditionally on being connected,

dN (U ,V ) ∼ log N

loglog N
in probability, as N →∞.

It should be mentioned at this point that the corresponding situation for preferential at-

tachment treated in Theorem II is more general than the setup here, since we do not restrict

ourselves to the strict definition of a power law adopted in Proposition 1.16.

The configuration model of Example 2.15 has been studied by several authors, starting

with [BC78]. For the exact specifications of the configuration model, see Example 2.15. The

defining parameter of the configuration model (GN (D)N≥1) in the set up we wish to ad-

dress here is the i.i.d. sequence D = (Di )i∈N of degrees in the network. Remarkably detailed

bounds on typical distances are derived in [HHZ07], see below. In general, the distances in

a given power law configuration model have mutas mutandis the same scaling as the dis-

tances in the inhomogeneous random graph. However, in the configuration model even the

distribution of the fluctuation around the mean distance is known.

Proposition 1.17 (Fluctuations of typical distances, [Hof13, Theorem 10.46]). Let τ ∈ (2,3)

and let D = D1,D2 . . . i.i.d. with distribution function F such that there exist η ∈ [0,1),C <∞
with

x−τ+1−C (log x)η−1 ≤ 1−F (x) ≤ x−τ+1+C (log x)η−1
, for all sufficiently large x.
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Then, GN (D) satisfies that there exist random variables (Ra)a∈(−1,0] such that, for l ∈N0,

P
{

dN (U ,V ) = 2
⌊ loglog N

log 1
τ−2

⌋
+ l

∣∣∣dN (U ,V ) <∞
}
=P{RaN = l }+o(1), as N →∞,

where

aN =
⌊ loglog N

log 1
τ−2

⌋
− loglog N

log 1
τ−2

∈ (−1,0].

Moreover, the random variables (Ra)a∈(1,0] have an explicit interpretation in terms of the

height of a tree associated to the network.

The results stated so far suggest that if the power law exponent τ is in the range (2,3),

then typical distances grow doubly logarithmic and that the constants 2
| log(τ−2)| in front of

the double logarithm agree for all models discussed in this section. Even for the classical

preferential attachment model, this has been the conjectured asymptotic. However, it turns

out, see Chapter 2, that for τ ∈ (2,3) preferential attachment models have typical distances

which are twice as long as the shortest paths in models without preferential attachment.

For the critical case of τ = 3, it is reasonable to assume that exact asymptotics depend

sensitively on the model specification and that the log N
loglog N scaling breaks down, as soon as

one moves away from the ‘strict’ power law setting. However, this case had not been treated

for any of the models described above and only very recently a result based on path count-

ing techniques has been established for general inhomogeneous random graphs following

a strict power law, see [Hof13, Theorem 9.22]. The proof in [Hof13] seems to allow for a

straightforward adaptation to the configuration model and also for an extension away from

the strict power law setting in the spirit of our Theorem II. The path counting approach is

different from the arguments presented in Chapter 6 to prove Theorem II, which are novel.

21



Chapter 2

Results

We now present our two main results for the sublinear preferential attachment model, The-

orems I and II in Section 2.1. In Section 2.2 we demonstrate the consequences of our model

independent approach to prove Theorem I by discussing the universality of the typical dis-

tances by means of several examples of complex network models.

2.1 Main theorems and discussion

In the doubly logarithmic regime, the typical distances only depend on the value ofγ ∈ (1
2 ,1

)
.

The exact asymptotics are described in our first theorem.

Theorem I. Let f be a concave attachment rule with γ ∈ (1
2 ,1

)
, then, for U ,V ∈ CN chosen

independently and uniformly,

dN (U ,V ) ≤ 4
loglog N

log
( γ

1−γ
) +O(1), with high probability as N →∞ (2.1)

and

dN (U ,V ) ≥ (4+o(1))
loglog N

log
( γ

1−γ
) , with high probability as N →∞.

Moreover, if f is affine, then equality holds in (2.1).

Remark 2.1. Note that if f is affine, then the result implies that the distributions (νN )N≥1,

νN =L
(
dN (U ,V )−4

loglog N

log
( γ

1−γ
))

are tight. This paves the way for the investigation of accumulation points in the spirit of

Proposition 1.17.

The lower bounds in Theorem I are special a case of a more general result for all network

models which satisfy the following Assumption 2.2. They are in the same universality class

as the sublinear preferential attachment model and are thus called PA-type models.
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2.1. MAIN THEOREMS AND DISCUSSION

Assumption 2.2. For some 0 < γ < 1, there exists κ < ∞, such that, for all N and pairwise

distinct vertices v0, . . . , v` ∈ [N ],

P
{

v0 ↔ v1 ↔ v2 ↔···↔ v`
}≤ ∏̀

k=1
κ (vk−1 ∧ vk )−γ (vk−1 ∨ vk )γ−1.

In preferential attachment models with power law exponent τ, Assumption 2.2 is typi-

cally satisfied for all γ > 1
τ−1 . Hence we expect these networks to be ultrasmall if and only

if 1
2 < γ < 1. Theorem 2.3, one of the main results used to prove Theorem I, gives a lower

bound on the typical distance under this assumption.

Theorem 2.3 ([DMM12, Theorem 2]). Let (GN )N∈N be a dynamic network model that satisfies

Assumption 2.2 for some 1
2 < γ< 1. Then, for random vertices U and V chosen independently

and uniformly from [N ], we have

dN (U ,V ) ≥ 4
loglog N

log
( γ

1−γ
) +O(1), with high probability as N →∞.

Not only can Theorem 2.3 be applied to the sublinear model of Section 1.3, but also to

the affine PA graph with fixed outdegree discussed in Section 1.4, see Example 2.7. In all

variations of the affine PA model, Assumption 2.2 is satisfied for all γ > (τ−1)−1, and thus

Theorem 2.3 implies that

dN (U ,V ) ≥ (
4+o(1)

) loglog N

− log(τ−2)
, with high probability as N →∞.

The difference in the error bound is due to the fact that only the sublinear PA model ad-

mits a rigorous branching process approximation for local neighbourhoods, see Sections 3.2

and 4.3. The error term of constant order in Theorems I and 2.3 corresponds to the height

of a random tree, as becomes apparent in the proofs of Theorem 2.6 and Proposition 2.8.

Those proofs also reveal that matching upper bounds usually require a more model specific

approach.

The proof of Theorem 2.3 and a comparison of Assumption 2.2 to the path probabili-

ties in inhomogeneous random graph models of rank one (see also [BJR07] for the general

framework, which covers much more than the rank one case, but no power laws with τ≥ 3)

suggest a version of the lower bound result for models with a different connectivity struc-

ture, like the inhomogeneous random graph models of Section 1.4 and the configuration

model. We call them fitness type models and require only that they satisfy the following as-

sumption, which is strictly weaker1 than Assumption 2.2.

Assumption 2.4. For some 1
2 < γ < 1, there exists κ < ∞, such that, for all N and pairwise

1This follows from nγ−1m−γ ≤ n−γm−γN 2γ−1 for all n ≥ m ∈ [N ].

23



2.1. MAIN THEOREMS AND DISCUSSION

distinct vertices v0, . . . , v` ∈ [N ],

P
{

v0 ↔ v1 ↔ v2 ↔···↔ v`
}≤ ∏̀

k=1
κv−γ

k−1 v−γ
k N 2γ−1.

Under this assumption, the following theorem holds.

Theorem 2.5 ([DMM12, Theorem 1]). Let (GN )N∈N be a dynamic network model that satisfies

Assumption 2.4 for some 1
2 < γ< 1. Then, for random vertices U and V chosen independently

and uniformly from [N ], we have

dN (U ,V ) ≥ 2
loglog N

log
( γ

1−γ
) +O(1), with high probability as N →∞.

Together with the matching upper bounds, Theorems 2.3 and 2.5 indicate that PA- and

fitness type models are in different universality classes. Examples of network models in

which Theorem 2.5 can be applied, are mentioned in the introduction chapter and will be

discussed in some more detail in Section 2.2. Examples 2.15, 2.10 and 2.12 in that section

refer to this class. For instance, in the configuration model, the fitness of a vertex equals its

degree and in the Chung-Lu model it is described by the weight sequence w . In all cases, if

the degree distribution has power law exponent τ ∈ (2,3), Assumption 2.4 is satisfied for all

γ> 1
τ−1 , and the theorem implies that

dN (U ,V ) ≥ (
2+o(1)

) loglog N

− log(τ−2)
, with high probability as N →∞.

For all listed examples of fitness type models, matching upper bounds are known from the

literature. Generally, these are models in which there is no dynamical build up of strong

preference for certain vertices. Instead, every vertex receives an a priori fitness value which

determines its likelihood to form future edges. In the PA-type models, the need to build up

high connectivity by first accumulating connections leads to a dissociative network struc-

ture: high degree vertices are not very likely to be directly connected. Instead, they tend to

be connected by a path of length 2 via one low degree vertex. On the other hand, in fitness

type models one usually finds edges between high degree vertices, i.e. they are associative.

This explains the extra factor of 2 in the distances for PA-type models.

We now focus on the upper bound in Theorem I, which only holds in this form for the

sublinear PA model. In Section 5.4 it is shown to be a straightforward consequence of the

following similar result for the affine case.

Theorem 2.6. Let f (k) = γk +β, where β ∈ (0,1) and γ ∈ (1
2 ,1

)
. Then, for U ,V ∈ CN chosen

independently and uniformly,

dN (U ,V ) ≤ 4
loglog N

log
( γ

1−γ
) +O(1), with high probability as N →∞.
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The proof of Theorem 2.6 in Section 5.3 may be model specific, but is following in broad

strokes the approach of [DHH10], which is in turn a PA version of the arguments presented

in [NR06] and [HHZ07]. There are also similarities to the upper bound of Theorem II, which

is formulated below. In the affine PA model given in Example 2.7 we cannot obtain an error

term of constant order, since the branching process approximating local neighbourhoods

does not allow for an accessible representation.

The second main result of this work is concerned with γ= 1
2 , in which case the resulting

graph has a degree distribution which is a power law with exponent τ = 3. We focus on a

special choice of attachment rule to demonstrate that in the critical case the asymptotic

distance is not universal and instead dependent on model parameters beyond the power

law exponent. The scale of the distances depends crucially on the features of f .

Theorem II. Let f be a concave attachment rule satisfying, for some α≥ 0, η> 0,

f (k) = 1

2
k + α

2

k

logk
+o

( k

(logk)1+η
)
, k ≥ 2.

Then, for U ,V chosen independently and uniformly from CN ,

dN (U ,V ) ∼ 1

1+α
log N

loglog N
, in probability as N →∞.

The attachment rule f is chosen to create distances at the specific scale of the theorem,

i.e. to influence the scaling constant in front of the log N
loglog N term. Other choices result in dif-

ferent scales interpolating between the log N
loglog N and the loglog N regime. However, in those

cases the dependence of the scaling constant on the asymptotic order of the perturbation

g (k) = f (k)− 1
2 k is not as transparent.

In the case of affine attachment, i.e. g (k) ≡ f (0), the typical distance between two ran-

domly chosen vertices of the giant component is asymptotically log N
loglog N , in accordance with

the results for the LCD model in [BR04].

Forα> 0, the result concerns a regime that has not been considered so far and the model

shows a behaviour which can not be obtained with an affine attachment rule. Therefore, this

behaviour is also absent in the affine models of Example 2.7

2.2 Example applications of Theorems 2.2 and 2.4

In this section we give four further examples to which Theorems 2.2 and 2.4 apply, corre-

sponding to the best understood models of ultrasmall networks in the mathematical litera-

ture.
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2.2.1 Affine preferential attachment

The first example is of preferential attachment type and is discussed using Theorem 2.3.

The remaining three examples are of fitness type and are discussed using Theorem 2.5. This

PA-type models are studied in the work of Hooghiemstra, van der Hofstad and co-authors.

We base our discussion on the paper [DHH10], where three qualitatively similar models are

considered, see also [Hof13] for a survey. We focus on the first model studied in [DHH10],

which is most convenient to define, the two variants can be treated with the same method.

Example 2.7. The model depends on two parameters, an integer m ≥ 1 and a real δ > −m.

Roughly speaking, in every step a new vertex is added to the network and connected to m

existing vertices with a probability proportional to their degree plus δ. Note that in the case

m = 1 the network has the metric structure of a tree, making this a degenerate case of less

interest. The case studied by Bollobás and Riordan [BR04] corresponds to δ = 0 and m ≥ 2

and leads to a network with τ= 3 and typical distance log N
loglog N , so that it lies outside the class

of ultrasmall networks.

We first generate a dynamic network model (GN ) for the case m= 1. By Z [n, N ], n ≤ N ,

we denote the degree of vertex n in GN . We use the convention that self-loops add two

towards the degree of the vertex to which they are attached.

• G1 consists of a single vertex, labelled 1, with one self loop.

• In each further step, given GN , we insert one new vertex, labelled N +1, and one new

edge into the network such that the new edge connects the new vertex to vertex m ∈
[N ] with probability

P
{
m ↔ N +1 |GN

}= Z [m, N ]+δ
N (2+δ)+1+δ ,

or to itself with probability
1+δ

N (2+δ)+1+δ .

To generalise the model to arbitrary values of m, we take the graph G ′
mN constructed using

parameters m′ = 1 and δ′ = δ
m , and merge vertices m(k−1)+1, . . . ,mk in the graph G ′

mN into a

single vertex denoted k, keeping all edges. The degree sequence for the case m= 1 is studied

in [Bol+01], the general case is covered by [Hof13, Theorem 8.2]. Using martingale methods

one obtains convergence of the empirical degree distribution to the distribution

µk =


0, if 0 ≤ k <m,(
2+ δ

m

)
Γ(k+δ)
Γ(m+δ)

Γ(m+2+δ(1+ 1
m ))

Γ(k+3+δ(1+ 1
m ))

, if k ≥m.
.

Applying Stirling’s’ approximation we deduce that (µk )k≥0 is a power law with exponent τ=
3+ δ

m , hence we expect the model to be in the ultrasmall range if and only if −m< δ< 0.
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Proposition 2.8. For independent, uniformly chosen vertices U and V in the largest con-

nected component of the preferential attachment model with parameters m≥ 2, −m< δ< 0,

we have

dN (U ,V ) ∼ 4
loglog N

− log
(
1+ δ

m

) in probability.

Remark 2.9. Note that since τ= 3+ δ
m , the constant is the same as in Theorem I.

The upper bound follows from the arguments in [DHH10], see the remark following The-

orem 1.6 there. It is not explicitly derived in this paper, because the authors focus on the

graph diameter. We give an outline of the derivation of the bound for the typical distance

below, which is very similar to the arguments we use in the proof of Theorem 2.6. The pa-

per [DHH10] leaves the problem of finding a matching lower bound open. We resolve this

problem by verifying Assumption 2.2 for γ= (
2+ δ

m

)−1 and applying Theorem 2.3.

Proof of Proposition 2.8. For the lower bound, we look at m = 1 first. In this case, we have,

for 1 ≤ m < n ≤ N ,

P{m ↔ n} = EZ [m,n −1]+δ
n(2+δ)−1

. (2.2)

It is easy to see that

E
[

Z [m,n]+δ |Z [m,n −1]
]= (

Z [m,n −1]+δ) n(2+δ)

n(2+δ)−1
,

and hence

E
[

Z [m,n]+δ]= (1+δ)
Γ(n +1)Γ

(
m − 1

2+δ
)

Γ
(
n + 1+δ

2+δ
)
Γ(m)

.

In particular there exist constants 0 < c <C such that

c
( n

m

) 1
2+δ ≤ EZ [m,n] ≤C

( n

m

) 1
2+δ

for all 1 ≤ m < n.

Combining this with (2.2) yields, for γ= 1
2+δ and a suitable κ1 > 0, that

P{m ↔ n} ≤ C
( n

m

)γ+δ
n(2+δ)−1

≤ κ1nγ−1m−γ for all 1 ≤ m < n. (2.3)

To verify Assumption 2.2, following [DHH10, Lemma 2.1], we observe that, if m≥ 1, for dis-

tinct vertices v0, . . . , vl , all events of the form {v j−1 ↔ v j ↔ v j+1} with j ∈ {1, . . . , l − 1} and

v j < v j−1, v j+1, and all events {v j−1 ↔ v j } which are not part of these, are non-positively cor-

related, in the sense that the probability of all of them occurring is smaller than the product

of the probabilities. In particular, if m= 1 at most one outgoing connection can be made per

vertex and therefore the events are even mutually exclusive. Recalling also (2.3) it remains

to show that for m < v, w ,

P{v ↔ m ↔ w} ≤ κ2 vγ−1wγ−1m−2γ, (2.4)
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for some finite constant κ2 > 0. To this end we let {(Z (k,m)
n )n≥m : k,m ∈N} denote the collec-

tion of right-continuous Markov jump processes starting at Z (k,m)
m− = k, jumping instantly at

time m and subsequently at integer time-steps following the rule

P
{

Z (k,m)
n = Z (k,m)

n− +1 |Z (k,m)
n−

}= Z (k,m)
n− +δ

n(2+δ)−δ = 1−P{
Z (k,m)

n = Z (k,m)
n− |Z (k,m)

n−
}
.

Note that (Z [m,n])n≥m = (Z (1,m)
n )n≥m in law and that, for m < n, the event {m ↔ n} cor-

responds to {∆Z (1,m)
n = 1}, where we write ∆Z (k,m)

n := Z (k,m)
n − Z (k,m)

n− . Note also that Z (k0,m)
n is

stochastically dominated by Z (k,m)
n for k ≥ k0. Hence, for m < n1 < n2,

E
[

Z (2,m)
n2

|∆Z (2,m)
n1

= 1
]=n2−m+2∑

j=2

n1−m+1∑
k=2

j P{Z (2,m)
n2

= j |Z (2,m)
n1− = k,∆Z (2,m)

n1
= 1}

×P{Z (2,m)
n1− = k |∆Z (2,m)

n1
= 1}

≤
n2−m+2∑

j=2

n1−m+1∑
k=2

j P{Z (k+1,n1)
n2

= j } (k +δ)P{Z (2,m)
n1− = k}

(n1(2+δ)+1+δ)P{∆Z (2,m)
n1

= 1}

=
n1−m+1∑

k=2

(k +δ)P{Z (2,m)
n1− = k}EZ (k+1,n1)

n2

(n1(2+δ)+1+δ)P{∆Z (2,m)
n1

= 1}
.

As in the derivation of (2.3) the expectation in the last line can be bounded from above by

c0(k +1)nγ
2 n−γ

1 , for some c0 > 0. Similarly, we obtain P{∆Z (2,m)
n1

= 1} ≥ c1nγ−1
1 m−γ and

E
[
(Z (2,m)

n1− )2]≤ c2 m− 2
2+δ n

2
2+δ
1 ,

for further constants c1,c2 > 0. Summarising, we obtain

E
[

Z (2,m)
n2

|∆Z (2,m)
n1

= 1
]≤ c3nγ

2 n−2γ
1 mγ

m−n1+1∑
k=2

k2P
{

Z (2,m)
n1− = k

}≤ c4 nγ
2 m−γ,

for some c3,c4 > 0, and this establishes (2.4). Finally, passing from m= 1 to general m can be

achieved by a simple union bound.

For the upper bound we work directly in the graph G2N with m≥ 2 and δ ∈ (−m,0). Using

the terminology of [DHH10], we define the core of G2N to be

coreN = {
m ∈ [N ] : Z [m, N ] ≥ (log N )σ

}
,

whereσ>−m
δ . [DHH10, Theorem 3.1] states that the diameter of the core in G2N is bounded

by (4+o(1)) loglog N | log(1+ δ
m )|−1, thus all we need to show is that, for fixed ε > 0, a uni-

formly chosen vertex V ∈ [b(2 − ε)Nc] can be connected to the core using no more then

o(loglog N ) edges in G2N . This is done in two steps.

For the first step we explore the neighbourhood of V in GM , for M = b(2−ε)Nc, until we
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find a vertex w with degree Z [w, N ] ≥ u0, where u0 will be determined below. Denote by

Γk ,k ≥ 0 the set of all vertices in GM that can be reached from V using exactly k different

edges from GM . If we fix u ∈ N and set T (V )
u = min{k : Γk ∩ {n : Z [n, N ] ≥ u} 6= ;}, then we

wish to verify that we can find a large constant Cu,ε > 0, such that

P
{
T (V )

u >Cu,ε
}< ε, (2.5)

if N is sufficiently large. This can be done straightforwardly along the lines of the proof of

[DHH10, Theorem 3.6]. It is shown there that the neighbourhood exploration around V us-

ing only outgoing edges does w.h.p. not encounter more than one circle in the first few steps

and is therefore similar to an m-ary tree. The sum of all degrees in the tree is of the same or-

der as its size. It follows, using this fact and that the sum of the degrees of the vertices in

{v : Z [v, N ] ≥ u} is large, that there is w.h.p. a two-step connection between the tree and

the set {v : Z [v, N ] ≥ u}, provided the tree is grown up to a sufficiently large height which

depends only on u, but not on N .

The second step is now to show that any vertex w satisfying Z [w, N ] ≥ u0, for sufficiently

large u0, can be joined to the core by using O(logloglog N ) edges. To this end we apply

[DHH10, Lemma A.1], which provides lower bounds for the sum of all degrees of vertices

exceeding a certain minimum degree, like in the proof of [DHH10, Proposition 3.3], where

a path connecting high degree vertices is constructed by using low degree vertices from the

set {d(2− ε)Ne, . . . ,2N }. We obtain that for any vertex j ∈ M = {d(2− ε)Ne, . . . ,2N } and any

vertex a ∈ [N ] with Z [a, N ] ≥ ua ,

P{ j ↔ a, j ↔ b for some b with Z [b, N ] ≥ ub |GM } ≥
cuau

−(1+ δ
m )

b

N
,

for a positive constant c, with probability exceeding 1−o(N−1) and as long as both ua and

ub do not exceed a small power of N . Hence, with the same probability,

P{Ø j ∈M : j ↔ a, j ↔ b for some b with Z [b, N ] ≥ ub |GM }

≤
(
1−

cuau
−(1+ δ

m )

b

N

)#M

≤ exp
(
2cεuau

−(1+ δ
m )

b

)
.

(2.6)

Starting from the initial vertex w with Z [w, N ] ≥ u0 and defining for k ≥ 1,

uk+1 =
( εcuk

(log(k +1)− 1
2 logε)

) 1

1+ δ
m , (2.7)

it is straightforward to check that, for ua = uk and ub = uk+1, the right hand side of (2.6)

equals ε(k +1)−2. Summing over these error bounds, we therefore obtain that (2.7) defines

an increasing sequence (uk )K
k=0 of lower bounds on degrees at time N , for which we have
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assured that with probability at least 1− π2

6 ε there is a path of length 2K which alternates

between high degree vertices and vertices from M and connects w to a vertex of degree uK .

The recursive definition (2.7) implies that

loguK ≥ 1(
1+ δ

m

)K
(logu0 −Cε),

for some large Cε > 0, thus, if u0 = exp(2Cε), we can connect w to a vertex belonging to

coreN by choosing K ≥ Dσ,ε logloglog N , where Dσ,ε > 0 depends only on σ and ε. Fixing

u = exp(2Cε) in (2.5) and starting the above construction in u0 = u, we obtain that for a

uniformly chosen vertex V ∈G2N ,

P{d2N (V ,coreN ) > 2Dσ,ε logloglog N +Ce2Cε ,ε} ≤
(
2+ π2

6

)
ε,

if N is sufficiently large, showing that the diameter of coreN is the dominating contribution

to typical distances in G2N .

2.2.2 Inhomogeneous random graphs of rank one

The next two examples belong to the wide class of inhomogeneous random graphs of rank

one, whose essential feature is the independence between different edges. The following

model of a random graph with given expected degrees is studied in the work of Chung and

Lu, see [CL02] or [CL06] for a survey.

Example 2.10. In its general form the model depends on a triangular scheme w (N )

1 , . . . , w (N )

N

of positive weights, where the weight w (N )

i plays the role of the expected degree of vertex i in

GN . The model is defined by the following two requirements:

• for every pair (i , j ) with 1 ≤ i 6= j ≤ N the events {i ↔ j } are independent,

• for every pair (i , j ) with 1 ≤ i 6= j ≤ N we have

P{i ↔ j } =
w (N )

i w (N )

j

`N
∧1, where `N :=

N∑
i=1

w (N )

i .

Proposition 2.11. For independent, uniformly chosen vertices U and V in the largest con-

nected component of the expected degree random graph with weights satisfying

c
( N

i

)γ ≤ w (N )

i ≤C
( N

i

)γ for all 1 ≤ i ≤ N ,

for some γ> 1
2 and constants 0 < c ≤C , we have

dN (U ,V ) ∼ 2
loglog N

log
( γ

1−γ
) in probability.
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Proof. The upper bound is Proposition 1.15. For the lower bound we have to check Assump-

tion 2.4. Note that, using the upper bound on the weights,

P{i ↔ j } ≤ w (N )
i w (N )

j

`N
≤C 2 N 2γ

`N
(i j )−γ.

From the lower bound on the weights we get that `N ≥ cN , for some c > 0, and hence

P{i ↔ j } ≤ κN 2γ−1i−γ j−γ for a suitable κ. Using the independence assumption we see that

Assumption 2.4 holds, and the lower bound follows from Theorem 2.5.

The second example of this section is the conditionally Poissonian random graph as

studied in the work of Norros and Reittu, see [NR06].

Example 2.12. The model is based on drawing an independent, identically distributed se-

quence W1,W2, . . . of positive capacities. Conditional on this sequence, the dynamical net-

work model is constructed as follows:

• G1 consists of a single vertex, labelled 1, and no edges.

• Given GN , to obtain GN+1 we insert one new vertex, labelled N +1, and independently

for any m ∈ [N ] we introduce a random number of edges between N + 1 and m ac-

cording to a Poisson distribution with parameter

Wi WN+1

LN+1
for Ln :=

n∑
k=1

Wk .

Then we remove each edge in GN independently with probability 1− LN
LN+1

.

Recall that having possibly several edges between two vertices has no relevance for the typ-

ical distances in the giant component. In order to be in the ultrasmall regime we require the

law of the capacities to be power laws with exponent 2 < τ< 3.

Proposition 2.13. Assume that the capacities in the conditionally Poissonian random graph

satisfy

P{W1 > x} = x1−τ (c +o(1)) for all sufficiently large x,

where 2 < τ< 3 and c > 0 is constant. For independent, uniformly chosen vertices U and V in

the largest connected component we have

dN (U ,V ) ∼ 2
loglog N

− log(τ−2)
in probability.

Remark 2.14. The upper bound is proved in [NR06, Theorem 4.2], where it is also shown

that a giant component exists. For the lower bound we verify Assumption 2.4 for γ = 1
τ−1

and apply Theorem 2.5.
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Proof. We check that Assumption 2.4 holds conditionally with high probability, given the

capacities. For fixed N we put the capacities in decreasing order

W (1)

N >W (2)

N > ·· · >W (N )

N

and relabel the vertices so that the j th vertex has weight W ( j )

N . It follows from the definition

of the model (see [NR06, Proposition 2.1] for a formal derivation) that the number of edges

between vertices i and j in GN is Poisson distributed with parameter
W (i )

N W ( j )
N

LN
. As the edges

are conditionally independent we only have to verify that, given ε> 0 there exists κ> 0 such

that

1−exp
(
− W (i )

N W ( j )
N

LN

)
≤ κN 2γ−1i−γ j−γ for all 1 ≤ i < j ≤ N , (2.8)

with probability ≥ 1− 2ε. By the law of large numbers LN is of order N , so that it suffices

to establish W (i )

N ≤ κ
( N

i

)γ for all 1 ≤ i ≤ N . To this end, we denote by S (i )

N the number of

potential values exceeding κ
( N

i

)γ. The random variable S (i )

N is binomially distributed with

parameters N and p := P{
W1 > κ

( N
i

)γ} ≤ c(κ) i
N , where c(Å) → 0 for Å→∞. By Bernstein’s

inequality, see e.g. [Ben62, (8)],

P
{
S (i )

N > 2i
}≤ exp

[ −i 2

2Var(S (i )

N )+ 2i
3

]
≤ e−

3
8 i , if c(κ) < 1.

Hence we may choose M large enough so that
∑∞

i=M exp(−3
8 i ) < ε, ensuring that with prob-

ability exceeding 1− ε we have W (2i )

N ≤ κ
( N

i

)γ for all i ≥ M . It remains to give bounds on

W (1)

N , . . . ,W (2M)

N . By a standard Poisson approximation result, e.g. [Res08, Proposition 3.21],

we note that for any 1 ≤ i ≤ 2M , we have that S (i )

N converges weakly to a Poisson distribution

with parameter λ := limN→∞ NP
{
W1 > κ

( N
i

)γ} ≤ 2c(κ)M , and hence, by choosing κ large,

we can ensure that for large N , we have
∑2M

i=1P{S (i )

N > i } ≤ ε, which completes the proof.

2.2.3 Configuration model

Another model which falls in the universality class of fitness models are random networks

with fixed degree sequence, also known as the configuration model. This model is well

studied and very detailed results on average distances in the case of power laws with ex-

ponent τ ∈ (2,3) are obtained, in particular by van der Hofstad et al. in [HHZ07]. The idea

behind this class of models is to enforce a particular power-law exponent by fixing the de-

gree sequence of the network in a first step.

Example 2.15. We choose a sequence D1,D2, . . . of independent and identically distributed

random variables with values in the non-negative integers. For given N we assume that

LN :=
N∑

j=1
D j
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is even, which may be achieved by replacing DN by DN−1 if necessary. Thus, with D1, . . . ,DN

given, we construct the network GN =GN (D) as follows:

• To any vertex m ∈ [N ] we attach Dm half-edges or stubs.

• The LN stubs are given an (arbitrary) order.

• We start by pairing the first stub with a (uniformly) randomly chosen other stub, and

continue pairing the lowest numbered unpaired stub with a remaining randomly cho-

sen stub until all stubs are matched.

• Any pair of stubs is connected to form an edge.

Obviously the resulting network can have self-loops and double edges, but this has no rel-

evance for the typical distances in the giant component. In order to be in the ultrasmall

regime we require the law of the degrees to be a power law with exponent 2 < τ< 3.

Proposition 2.16. Assume that there exists c > 0 such that

P{D1 > x} = x1−τ (
c +o(1)

)
, for all sufficiently large x.

For independent, uniformly chosen vertices U and V in the largest connected component we

have

dN (U ,V ) ∼ 2
loglog N

− log(τ−2)
in probability.

Remark 2.17. This and much more is proved in [HHZ07, Theorem 1.2]. For an alternative

approach to the lower bound we now verify Assumption 2.4 for any γ< 1/(τ−1) and paths

of length up to `=O(loglog N ), which is clearly sufficient to apply Theorem 2.5.

Proof of Proposition 2.16. We observe that, given D1, . . . ,DN , for pairwise disjoint vertices

v1, . . . , v`+1,

P
{

v`↔ v`+1 |v1 ↔ v2 ↔···↔ v`−1 ↔ v`
}≤ Dv`Dv`+1

LN −2
∑`

k=1 Dvk

,

where the denominator is a rough lower bound on the number of stubs unaffected by the

conditioning event. In particular, P{i ↔ j } ≤ Di D j

LN−2Di
. Using the law of large numbers one

can easily see that there is a c > 0 such that

LN −2
∑̀
k=1

Dvk ≥ cN with high probability,

for any choice of v1, . . . , v`, if ` = O(loglog N ). Therefore, to verify Assumption 2.4 we only

need to find appropriate bounds on the degrees of given vertices, which can be achieved

(using the same relabelling) by a similar argument as in Example 2.12.
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Chapter 3

Main ideas of proofs

This chapter explains the main concepts and ideas behind the proofs. We strive to limit

technicalities while also providing some background for the proofs of the following chap-

ters. Central for all distance estimations is the growth of the neighbourhood shells Γk (v)

around a vertex v,

Γk (v) = {i ∈GN : dN (v, i ) = k} ⊂GN , fork ≥ 0,

which determine the growth of the k-neighbourhoods Γ≤k (v) = ⋃
i≤k Γ

i (v). Rough a priori

estimates of the expected growth of the neighbourhoods are the subject of Section 3.1.

For upper bounds on the distances it is necessary to determine the exact growth of the

neighbourhoods. We follow [DM13] and use an exploration process, which successively col-

lects information about the connected component of a fixed vertex v . It starts in v and

uncovers new vertices by following edges incident to v in a well-defined order. It then fol-

lows edges incident to the newly discovered vertices and so on. The crucial step is then to

couple this exploration process to the exploration process in a suitably defined tree, which

turns out to be the INT of Definition 1.11. The precise setup is rather intricate and takes up

most of Chapter 4. An outline of the main ideas is given in Section 3.2.

The coupling of exploration processes fails as soon as the neighbourhoods become too

large – a true network contains cycles after all. To ensure that already explored large subsets

of the preferential attachment network are connected or that very dense subsets have small

diameters we use some tools which are adaptations of techniques from classical random

graph theory and briefly discussed in Section 3.3.

3.1 Truncated first and second moments

The fact that power law distributions with τ ≤ 3 have infinite variance is reflected in the

random networks by the difficulties that we encounter when we try to establish bounds for

the growth of the k-neighbourhoods. A natural approach to avoid these difficulties is to
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3.1. TRUNCATED FIRST AND SECOND MOMENTS

truncate the range of the exploration.

3.1.1 A truncated first order method – the lower bound of Theorem I

The proof of the lower bounds in Theorems 2.3 and 2.5 is based on a constrained or trun-

cated first moment method, which we now briefly explain. We start with an explanation of

the (unconstrained) first moment bound and its shortcomings. Let v , w be distinct vertices

of GN . Then, for δ ∈N,

P{dN (v, w) ≤ 2δ} =P
( 2δ⋃

k=1

⋃
(v1,...,vk−1)

{v ↔ v1 ↔···↔ vk−1 ↔ w}
)

≤
2δ∑

k=1

∑
(v1,...,vk−1)

k∏
j=1

p(v j−1, v j ),

where (v0, . . . , vk ) is any collection of pairwise distinct vertices in GN with v0 = v and vk = w

and, for m,n ∈N,

p(m,n) :=
{
κ(m ∧n)−γ(m ∨n)γ−1 if Assumption 2.2 holds;

κm−γn−γ N 2γ−1 if Assumption 2.4 holds.

Note that one can assign to each path (v0, . . . , vk ) the weight

p(v0, . . . , vk ) :=
k∏

j=1
p(v j−1, v j ), (3.1)

and the upper bound is just the sum over the weights of all paths from v to w of length

no more than 2δ. The shortcoming of this bound is that the paths that contribute most to

the total weight are those that connect v , resp. w , quickly to vertices with extremely small

indices. Since these are typically not present in the network, such paths have to be removed

in order to get a reasonable estimate.

Remark 3.1. If the variance of the degrees is bounded, then the unconstrained first moment

method already yields lower bounds on the typical distance of order log N . Also for γ = 1
2 ,

no truncation is needed to obtain the lower bound stated in Theorem II.

To obtain a more accurate estimate we define a decreasing cutoff sequence `= (`k )δk=0

of positive integers and consider a tuple of vertices (v0, . . . , vn) as admissible if vk∧vn−k ≥ `k

for all k ∈ {0, . . . ,δ∧n}. We denote by A(v)

k the event that there exists a path v = v0 ↔···↔ vk in

the network such that v0 ≥ `0, . . . , vk−1 ≥ `k−1, vk < `k , i.e. a path that traverses the threshold

sequence ` after exactly k steps. For fixed vertices v, w ≥ `0, the truncated first moment

estimate is

P{dN (v, w) ≤ 2δ} ≤
δ∑

k=1
P(A(v)

k )+
δ∑

k=1
P(A(w)

k )+
2δ∑

n=1

∑
(v0,...,vn )
admissible

P
{

v0 ↔···↔ vn
}
, (3.2)
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3.1. TRUNCATED FIRST AND SECOND MOMENTS

where the admissible paths in the last sum start with v0 = v and end with vn = w . By as-

sumption,

P{v0 ↔···↔ vn} ≤ p(v0, . . . , vn)

so that for v ≥ `0 and k = 1, . . . ,δ,

P(A(v)

k ) ≤
N∑

v1=`1

· · ·
N∑

vk−1=`k−1

`k−1∑
vk=1

p(v, v1, . . . , vk ). (3.3)

Given ε> 0 we choose `0 = dεNe and (` j ) j=0,...,k decreasing fast enough so that the first two

terms on the right hand side of (3.2) together are no larger than 2ε. For k ∈ {1, . . . ,δ}, set

µ(v)

k (u) := 1{v≥`0}

N∑
v1=`1

· · ·
N∑

vk−1=`k−1

p(v, v1, . . . , vk−1,u),

and set µ(v)

0 (u) = 1{v=u}. To rephrase the truncated moment estimate in terms of µ, note that

p is symmetric, so that, for all n ≤ 2δ and n∗ := bn/2c,

∑
(v0,...,vn )
admissible

P
{

v0 ↔···↔ vn
}≤ N∑

v1=`1

· · ·
N∑

vn∗=`n∗
· · ·

N∑
vn−1=`1

p(v, . . . , vn∗)p(vn∗ , . . . , w)

=
N∑

vn∗=`n∗
µ(v)

n∗(vn∗)µ(w)

n−n∗(vn∗). (3.4)

Using the recursive representation

µ(v)

k+1(n) =
N∑

m=`k

µ(v)

k (m) p(m,n),

we establish upper bounds for µ(v)

k (u), and use these to show that the rightmost term in (3.2)

remains small if δ is chosen sufficiently small. Using the input from Assumption 2.2 and

Assumption 2.4, respectively, this leads to the lower bounds for the typical distance in both

Theorems 2.3 and 2.5. Detailed proofs are given in Chapter 5.

3.1.2 A truncated second order method – the upper bound of Theorem II

For the proof of Theorem II we can use the unconstrained first moment method for the

lower bound. In the upper bound, however, we need a truncated second moment method. It

is based on moment estimates for the degree evolutions {Z [m, ·]}m∈[N ] formally derived in

Section 6.1. The convergence γ= limk→∞∆ f (k) = 1
2 implies, see Section 4.1, that

Ek f (Z [m,n]) ≈ f (k)

√
n

m
, for large n ∈ [N ].
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3.1. TRUNCATED FIRST AND SECOND MOMENTS

If f is affine, then ≈ can actually be replaced by ∼ in the above statement, which is shown

Lemma 4.7. To study the deviation from the affine case systematically, we introduce

ψk (m,n) = E f (Z (k)[m,n])
ξ(m)

ξ(n)
,

for m < n ∈ [N ], with

ξ(m) = ξ(m, N ) =
N−1∏
i=m

(
1+ 1

2i

)
= 1

f (0)
E f̄ (Z̄ [m,n]),

where f̄ denotes the affine function f̄ (k) = f (0)+ 1
2 k,k ≥ 0, and (Z̄ [m,n])n≥m the corre-

sponding degree evolution process of m ∈N.

We call ξ(m) the score of vertex m ∈ [N ] and note that for A ⊂ [N ], the total score ξ(A) is

a rough estimate for the number of edges incident to A. Consequently, for fixed k ≥ 1, the

size #Γk (v) of Γk (v), should be approximately equal to ξ(Γ≤k−1(v)). Given Γ≤k−1(v), Γk (v)

is of course random and to show that #Γk (v) is concentrated around ξ(Γ≤k−1(v)) we need

to derive bounds for ξ2(Γ≤k−1(v)). That this is troublesome, can be seen most easily in the

idealised branching random walk, which is, as already pointed out, an idealisation of the

exploration around a typical vertex in the network. For simplicity, assume v = N
2 , which

corresponds under the preimage of πN to an IBRW rooted in position − log2. Set k = 1 and

recall the functions M , Mτ of Remark 1.13, then the quantity corresponding to ξ2(Γ≤k−1(v) =
ξ2

(
Γ≤0

( N
2

))
in the IBRW is

Σ=
∫ − log2

−∞
e−

1
2 s dM(−s)+

∫ 0

− log2
e−

1
2 s dM`(−s), (3.5)

where e−
1
2 s =σ(s) is the score (now as a function of particles in the IBRW) of a particle of type

` in position s ≤ 0. In general, M and Mτ depend on the shape of ξ(m,n) andψ(m,n), where

we interpret ξ as the offspring density on the exponential scale, both in the idealised setting

and in the network. Similarly, ψ will have a counterpart in the idealised set up describing

the deviation of the density around ξ on the polynomial scale. For the affine attachment

rule f (k) = f (0)+ 1
2 k we obtain dM(s) = f (0)e−

1
2 s ds, for s ≥ 0, so ψ is constant, and we can

thus directly conclude that Σ=∞.

Analogously to the truncation of the first moment in Section 3.1.1, we need to find a

deterministic cutoff sequence r = (rk )δk=0 that prescribes lower bounds on the vertices in the

shortest path between the initial vertices U ,V. In the idealised setting this corresponds to

replacing the integral
∫ − log2
−∞ e−

1
2 s dM(−s) in (3.5) by

∫ − log2
rk

e−
1
2 s dM(−s), where rk ∈ (−∞,0]

depends on the depth k of the exploration. For the idealised branching random walk this is

the problem of determining bounds on the leftmost particle in generation k, which is solved

37



3.2. THE LOCAL PICTURE – BRANCHING PROCESSES APPROXIMATION

heuristically in Section 4.5. Denoting the k-th generation of the IBRW X killed at rk by X k ,

the appropriate choice of rk ,k ≥ 0, is obtained through the relation

Sk−1 = E
[ ∑

v∈X k

ξ(v)
∣∣∣X 0, . . . , X k−1

]
≈

∫ 0

rk

ψ(s)ds
∑

v∈X k−1

ξ(v),

by demanding that (Wk )k≥0 given by

Wk = Sk∏k
i=1

∫ 0
ri−1

ψ(s)ds
, k ≥ 0,

be (almost) an L2-martingale with respect to the filtration generated by the exploration. The

task of transferring this approach to the network setting is undertaken in Chapter 6.

3.2 The local picture – branching processes approximation

For the upper bound proofs, we need to show that we are able to connect two randomly cho-

sen vertices U ,V . We fix V and U and then define an exploration algorithm to successively

uncover the neighbourhoods of V and U up to the point where they meet or all vertices in

the connected components of V or U are uncovered.

For small k, we expect the neighbourhood Γ≤k (V ) to look like a tree. In Chapter 4 we

make this intuition precise and present the construction of [DM13] to couple the neigh-

bourhood of a vertex to a random labelled tree, which can then be mapped to the INT. Both

the neighbourhood and the tree are explored using a specific algorithm. We will call this the

exploration process. We show that the exploration processes of the network and the labelled

tree T(V ) can be defined on the same probability space in such a way that, up to a large

stopping time, the explored part of the network and the tree coincide.

This means we run three exploration processes in parallel – one exploration in GN , one

in T(V ) and one in π(T), where the latter is the killed IBRW projected onto [N ] using a suit-

able projection π and T is essentially an exploration of GN without vertex depletion, i.e. we

formally allow over-counting in the exploration process by extending the neighbourhood

even if an already explored vertex is ‘uncovered’ again. We denote by C l (V ) the first l neigh-

bours of V explored in GN – note that this subgraph depends on the choice of the order

of exploration and does not coincide with Γ≤l (V ) – and denote by Tl (V ) and Tl the corre-

sponding subsets ofT(V ) and T. We start by coupling V ∈ [N ] to the random variable s(−x;)

which is exponentially distributed with parameter −1 and then proceed inductively by cou-

pling an arbitrary exploration step with the random mechanisms used to generate offspring

inT(V ) and in the IBRW. The deviation between the three explorations can be kept small up

to about cN ≈ log N explored vertices and they coincide with high probability.
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3.3. THE GLOBAL PICTURE – CORES AND COUPLINGS

For γ < 1
2 , the IBRW has a well defined Malthusian parameter and the leftmost particle

moves at most at linear speed. If it survives, the INT thus grows exponentially and so do the

neighbourhoods Γk (v),k ≥ 0, if k is such that the total size of the k-neighbourhood does not

exceed cN . If γ ≥ 1
2 , then this is not the case any more – the INT, if it survives, grows super-

exponentially. For γ > 1
2 , a neighbourhood size of cN corresponds to an exploration depth

of o(loglog N ) generations. In fact, after only finitely many exploration steps, there are so

many cycles in the network discovered that the analogy between Γk (v) and a tree growing at

a certain rate breaks down. Therefore the growth of the INT is not reflected in the constant

in front of the double logarithm, which is not directly determined by the local approxima-

tion of the network.

For γ = 1
2 , the situation different. A size of cN of the explored cluster is still not suffi-

cient to determine the scaling of the shortest paths. However, the right scaling constant in

front of log N
loglog N is obtained from the IBRW as outlined in Section 3.1.2 above. The reason

that the approach works, is that although many cycles are uncovered, there is no strong de-

pletion effect until a neighbourhood size of about
p

N is reached and the neighbourhoods

grow at roughly the same rate as in the INT. This produces the upper bound of Theorem II.

Therefore, interestingly, in the critical case there seems to be no real qualitative difference

between shortest paths on the ‘local’ scale and the shortest paths on the ‘global scale’.

3.3 The global picture – cores and couplings

For the upper bound of Theorem I, we run the local exploration around V until we find a

vertex W of very high degree. At this point, we abandon the coupling and change the ex-

ploration strategy: we show that we can connect W via a sequence of high degree vertices

to the core coreN ⊂ GN , a subset of GN which contains vertices of particularly high degree.

Performing a similar exploration for U then results in a path between U and V .

The overall approach for the upper bound of Theorem II is similar. Starting in U and

V , we use an exploration scheme that has two stages. After the local stage, we abandon

the coupling to the tree and estimate the size (or more precisely the score) of the grow-

ing neighbourhood shells, using the truncated second moment method described above in

Section 3.1.2. Finally, we conclude that the explored parts of the graph must be connected,

which we show to be the case if α= 0 in Theorem II, or that the exploration processes have

hit the core.

In both situations, we need to show that the coreN is of small diameter, more precisely

we show that, for some parameter ε > 0, the core induces a subgraph of Gd(1+ε)Ne which is

of bounded diameter. We achieve this by using ε-connectors, which are a dynamical version

of the sprinkling technique commonly used in classical random graph theory. The first step
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Figure 3-1: Illustration of shortest path structure in GN . The disks represent vertices of high
degree, the lines the initial tree-like exploration. Note that qualitatively the picture is the
same for all γ ∈ [1

2 ,1
)
, but that the scales of the two parts of the path change dramatically at

γ= 1
2 .

of the approach is a variant of the technique used in [DHH10] and works as follows: We use

that our network evolves in time by considering the edges which are added to GN after an

additional period of length about εN . More precisely, given large GN we already know which

vertices have high degrees and are thus preferred by the edges emanating from the vertices

j ∈ {N + 1, . . . ,d(1+ ε)Ne}. We can use the fact that these edges are (almost) conditionally

independent given GN . The sublogarithmic scaling renders the differences in the distances

between Gd(1+ε)Ne and GN negligible.

Let v, w ∈ [N ] and j ∈ {N +1, . . . ,d(1+ε)Ne} then, conditional on GN ,

P{ j ↔ v, j ↔ w} ≥ f (Z [v, N ]) f (Z [w, N ])

(d(1+ε)Ne)2 ≈
( N

v

)γ( N
w

)γ
N 2 .

Since there are εN potential ε-connectors, we thus find that

P{dd(1+ε)Ne(v, w) ≤ 2} ≈ ε
( N

v

)γ( N
w

)γ
N

, (3.6)

which resembles the connection probabilities in an inhomogeneous random graph with

weights wv = c
( N

v

)γ, for some c > 0. For these random graphs, coupling techniques to non-

sparse versions of the Erdős-Rényi graph G (M , p), for appropriately chosen M = M(N ), p =
p(N ), are available and these couplings constitute the second step of the approach.

The couplings we utilise are based on lower bounds for the probabilities appearing in

(3.6) in terms of a fixed probability p. Given a subset G of GN size M , we argue that we have
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3.3. THE GLOBAL PICTURE – CORES AND COUPLINGS

sufficient independence to dominate every 2-step connection in G ⊂ Gd(1+ε)Ne induced by

an ε-connector by an edge in a coupled random graph G (M , p). For G (M , p), however, the

exact behaviour of the diameter is well known, see Proposition B.3. Similar arguments have

been used to bound distances in several non-homogeneous network models, including the

proofs of Proposition 1.15 in [CL02].

Furthermore, in Chapter 5, we use a version of the relation (3.6) for ε = 1 to determine

the connecting sequence of high degree vertices constructed in the proof of Theorem 2.6,

recall also the derivation of the upper bound in Proposition 2.8. Instead of using a fixed

lower bound in (3.6), we work with a bound that grows in every second step 2k along the

path constructed outwards from W depending on k.
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Chapter 4

Prerequisite results and general

techniques

This chapter provides most of the tools utilised to prove the main results. The martingale

techniques and the correlation bounds of Sections 4.1 and 4.2 are mostly adaptations of

standard results in complex network theory. We use the score functional mentioned in Sec-

tion 3.1 to describe vertex weights or expected degrees arising in the preferential attachment

graph and perform some straightforward calculations for the first moment of the score. Fur-

thermore, we establish some stochastic domination results for the degree evolutions needed

for local approximation purposes and the proofs in Chapters 5 and 6.

At the heart of all our ‘local’ calculations in the network lies the branching process ap-

proximation detailed in Sections 4.3 and 4.4, which, up to some minimal variations, follow

the exposition in [DM13]. To keep this thesis as self contained as possible, most of the elab-

orate construction in [DM13] is reproduced in those sections.

Section 4.5 is not strictly a prerequisite for the following chapters but provides a discus-

sion of a more idealised version of the second moment method used to derive the upper

bound of Theorem II in Chapter 6 and explains how the cutoff for the truncated second mo-

ment method is obtained.

Finally, in Section 4.6, we formalise the notion of ε-connectors, which is our adaptation

of the concept of t-connectors used in [DHH10] and occupies the place in our argumenta-

tion for the preferential attachment setting that sprinkling arguments often take in classical

random graph theory.
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4.1. DEGREE EVOLUTIONS AND CORRELATION BOUNDS

4.1 Degree evolutions and correlation bounds

We first collect some established results about the degree evolutions which will be useful

later and then turn a priori estimates for the degrees into first moment bounds on the exis-

tence probability of short paths, which provides the lower bound in Theorem II.

We wish to define a number of martingales related to the degree evolutions which are

instrumental in later proofs. Recall that {(Z (k)[i ,n])∞n=i i ,k ∈N} denotes the family of inde-

pendent jump process starting in k =Z (k)[i , i ] at time i and satisfying

P{∆Z (k)[i ,n] = 1|Z (k)[i ,n]} = 1−P{∆Z (k)[i ,n] = 0|Z (k)[i ,n]} = f (Z (k)[i ,n])

n
.

We write Pk and Ek for the distribution and expectation of the process (Z (k)[i ,n])n≥i in de-

pendence of the initial value k. We will usually omit k in the notation if k = 0 or if there is no

ambiguity. The same notation applies to the idealised degree evolution processes.

Remark 4.1. The distribution of the degree evolutions (Z [m,n])n≥m ,m ∈ [N ], in the net-

work GN is the same as that of the family (Z (0)[m,n])n≥m ,m ∈ [N ]. We can think of the jump

processes above as degree evolutions started in arbitrary values. Due to the independence

in the formulation of the model, we can couple (GN )N∈N perfectly to a realisation of the

ensemble (Z (0)[m,n]; 1 ≤ m ≤ n ≤ N ), where the evolutions (Z (0)[m,n])n≥m are mutually in-

dependent for different values of m. In this sense the random network is completely deter-

mined as a collection of independent jump processes and many of the following arguments

make ample use of this fact.

Definition 4.2 (Expectation operators). Let g :N0 −→ (0,∞) then we write

Pm,n g (k) = Ek g (Z [m,n]), k ∈N0,n ≥ m ∈N,

and for the idealised degree evolution (Zt )t≥0, we introduce

Pt g (k) = Ek g (Zt ), k ∈N0, t ∈ [0,∞).

A fundamental monotonicity result can be derived directly before we proceed to intro-

duce the martingales.

Lemma 4.3 (Stochastic domination II, [DM13, Lemma 2.11]). Let γ+ = supk∆ f (k) ≤ 1 and

m ≤ n ≤ l be integers, then

P{∆Z [m,n] = 1} ≥P{∆Z [m, l ] = 1}.
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Proof. It suffices to prove the statement for l = n +1. Let n ≥ m arbitrary, then

P{∆Z [m,n] = 1} = E f (Z [m,n])

n
= 1

n

∞∑
k=0

f (k)P{Z [m,n] = k}

and

P{∆Z [m,n +1] = 1} = 1

n

∞∑
k=0

f (k)
∆ f (k)+n

n +1
P{Z [m,n] = k}.

The statement follows, since ∆ f (k) ≤ γ+ ≤ 1.

Lemma 4.4 (Degree martingales I). Let h :N0 −→ R be a measurable function, and define a

sequence M h = (M h
1 , M h

2 , . . . ) of processes by

M h
i (n) =

h(Z [i ,n])−h(Z [i , i ])−∑n−1
s=i

f (Z [i ,s])
s ∆h(Z [i , s]), if n > i

0, if 0 ≤ n ≤ i .

Then M h is a martingale with respect to the filtration (Fn)n∈N generated by the random vari-

ables {(Z [i , j ])n
j=0, 1 ≤ i ≤ n}.

Proof. This is a special case of [BL12, Lemma 2.1]. A direct calculation yields, for n ≥ i ,

E[M h
i (n +1)|Fn] = E[M h

i (n)+h(Z [i ,n +1])−h(Z [i ,n])− f (Z [i ,n])

n
∆h(Z [i ,n])|Fn]

= M h
i (n)+∆h(Z [i ,n])P{∆Z [i ,n] = 1|Z [i ,n]}− f (Z [i ,n])

n
∆h(Z [i ,n])

= M h
i (n),

using the tower property of conditional expectation, the definition of M h and the fact that

Z [i ,n] increases with probability f (Z [i ,n])
n .

The weight of a vertex in the network is most conveniently described by its expected

indegree, recall that we call this the score of the vertex. Although we are only interested in

γ ∈ [0,1), it is convenient to allow for larger values of γ in the definition.

Definition 4.5 (Scores). Let γ ∈ [0,2], we define

ξ(γ)(m,n) =
n−1∏
i=m

(
1+ γ

i

)
, for n > m,

and set ξ(γ)(m,m) = 1 and ξ(γ)(n,m) = ξ(γ)(m,n)−1. We omit γ in the superscript, if there is no

ambiguity. In a graph of fixed size N we will often write ξ(m) for ξ(m, N ) and call ξ(m) the

score of m ∈ [N ].

Numerical bounds for ξ are of some importance in later proofs, thus we establish the

following lemma.

Lemma 4.6. Let C = eγγEM , then
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(i) for all γ ∈ [0,2],

ξ(γ)(m,n) ≤C
( n

m

)γ
, for all m,n ∈N;

(ii) for all γ ∈ [0,1],

ξ(γ)(m,n) ≥
( n

m

)γ
.

Proof. We begin with the lower bound. The statement is obvious for γ ∈ {0,1}. For γ ∈ (0,1),

we perform induction in n ≥ m. Firstly, n = m gives ξ(m,m) = 1. Secondly, applying first the

induction hypotheses and then Bernoulli’s inequality, we obtain

ξ(m,n +1)
1
γ =

(
1+ γ

n

) 1
γ
ξ(m,n)

1
γ ≥

(
1+ γ

n

) 1
γ
( n

m

)
≥

(
1+ 1

n

)( n

m

)
= n +1

m
,

which completes the induction step.

For the upper bound we recall that γEM = limx→∞
∫ x

1
1
bsc − 1

s ds and calculate directly, for

n ≥ m ≥ 1,

log
( n−1∏

i=m
1+ γ

i

)
=

n−1∑
i=m

log
(
1+ γ

i

)≤ γ n−1∑
i=m

1

i
≤ γ(log n

m +γEM),

since log(1+x) ≤ x for x ∈ (0,∞).

We can use ξ to rescale the degree evolutions and obtain a different class of martingales.

Lemma 4.7 (Degree martingales II). Let k ∈N and γ ∈ (0,1) be fixed and n ≥ m ∈N. Define

Xm(n) = f (Z (k)[m,n])

ξ(γ)(m,n)
and Ym(n) = f (Z (k)[m,n])2 +γ f (Z (k)[m,n])

ξ(2γ)(m,n)
, (4.1)

and consider the filtration generated by (Z (k)[m,n])n≥m .

(i) If f (l ) = γl +β, l ∈N, then Xm and Ym are martingales.

(ii) For any attachment rule f , replacing γ by γ+ in (4.1) yields supermartingales and re-

placing γ by γ− in (4.1) yields submartingales.

(iii) If f is concave, and γ in (4.1) is replaced by γ−, then Xm and Ym are submartingales.

Replacing γ by ∆ f (k),k ∈N, in (4.1) yields supermartingales.

Remark 4.8. (i) For the correlation results in the rest of the work we only need estimates

for f (Z [m,n])2. It is not difficult to define weights approximating the higher moments

of f (Z [m,n]), the proof below is easily adjusted. In the affine case one can always

explicitly calculate the weights associated with martingale sequences. See also [Hof13,

Section 8], where the weights are determined for general moments in the affine PA

models of Example 2.7.
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(ii) The first appearance of this martingale argument to determine the weights in PA net-

works is in [Bol+01].

Proof of Lemma 4.7. We only give the explicit argument for the affine case (i), the assertion

(ii) follows from straightforward adaptations of the calculation and so does (iii), recalling

that ∆ f (k) monotonically decreases towards γ− in this case. For convenience, we suppress

the dependence on the starting value k in the notation. The desired martingale property of

(Xm(n))n≥m for an affine attachment rule f (k) = γk +β follows directly from

E[ f (Z [m,n +1])|Gn] = E[ f (Z [m,n])+γ∆Z [m,n]|Z [m,n]]

= E[ f (Z [m,n])+γ1{n+1→m}|Z [m,n]]

= E[ f (Z [m,n])|Gn]+E[γ1{n+1→m}|Z [m,n]]

= E[ f (Z [m,n])|Gn]+γE
[ f (Z [m,n])

n

∣∣∣Z [m,n]
]

=
(
1+ γ

n

)
f (Z [m,n]).

(4.2)

The statement for (Ym(n))n≥m can be proven analogously,

ξ(2γ)(m,n +1)E[Ym(n +1)|Z [m,n]]

= E[ f (Z [m,n +1])2 | Z [m,n +1]]+γ
(
1+ γ

n

)
f (Z [m,n]),

(4.3)

and we determine by a calculation in the spirit of (4.2), that

E[ f (Z [m,n +1])2|Z [m,n]] =
(
1+ 2γ

n

)
f (Z [m,n])2 + γ2

n
f (Z [m,n]). (4.4)

Hence (4.3) turns into

ξ(2γ)(m,n +1)E[Ym(n +1)|Z [m,n]] =
(
1+ 2γ

n

)
f (Z [m,n])2 + γ2

n
f (Z [m,n])

+γ
(
1+ γ

n

)
f (Z [m,n])

=
(
1+ 2γ

n

)
ξ(2γ)(m,n)Ym(n),

and dividing by
(
1+ 2γ

n

)
ξ(2γ)(m,n) = ξ(2γ)(m,n +1) yields the martingale property. Examining

the above derivation shows that if we always bound the increments of f by

γ− ≤∆ f (Z [m,n]) ≤ γ+,

then we get the same calculations with inequalities instead of equalities and obtain a super-

/submartingale.

Lemma 4.7 together with Lemma 4.6 imply the following bound on the expected de-

grees.
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Corollary 4.9 (A priori bounds on expected degrees, [DM13, Lemma 2.7]1). For any attach-

ment rule f and k ∈N0, m ≤ n ∈N,

f (k)
( n

m

)γ− ≤ Ek f (Z [m,n]) ≤ f (k)C4.6

( n

m

)γ+
.

The recursion (4.2) for the expected degrees from which we derive the form of the score,

implies that ξ has an accessible product structure – the scores are ratios of Γ-functions –

which simplifies calculations later, in particular for affine f . We collect some straightfor-

ward facts for later reference.

Observation 4.10. Fix γ ∈ (0,1) and let N ∈N. Then the following relations hold:

(i) for all l ,m,n ∈N,

ξ(l ,m)ξ(m,n) = ξ(l ,n);

(ii) for all m,n ∈N,

ξ(2γ)(m,n) ≤ ξ(γ)(m,n)2 ≤ eγ
2 π2

6 ξ(2γ)(m,n);

(iii) for all m,n ∈N,

ξ(m,n) = Γ(n +γ)Γ(m)

Γ(m +γ)Γ(n)
.

Lemma 4.11 (Degree Martingales III,[DM09, Lemma 2.1, Proposition 2.2]). Let u ∈N,φ(u) =∑u−1
i=0

1
f (i ) and let

Mn =φ(Z [m,n])−
n−1∑
k=m

1

k
, n > m ∈N.

Then (Mn)∞n=m is a martingale w.r.t. the sequence (Z [m,n])∞n=m , which converges to a ran-

dom variable M∞ if and only if
∞∑

k=0

1

f (k)2 <∞.

Moreover, if f is concave, then the law of M∞ is absolutely continuous w.r.t. Lebesgue measure.

Proof. We only derive the martingale property and refer to [DM09] for the proofs of the other

statements. The martingale property follows from

E[φ(Z [m,n +1])−φ(Z [m,n])|Z [m,n]] = f (Z [m,n])

n

1

f (Z [m,n])
= 1

n
.

Remark 4.12. The original statement [DM09, Lemma 2.1] is formulated for a rescaled ver-

sion of the process.

We complete our collection of preliminary results with some important stochastic dom-

ination results from [DM13].

1Note that in the upper bound stated in [DM13, Lemma 2.7] the constant C4.6 is missing.
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Lemma 4.13 (Stochastic domination III, [DM13, Lemma 2.9]). Fix k ∈N. Let m ≤ n ∈N and

denote by I = {n1, . . . ,n j } an ordered set of potential jump points of (Z (k)[m, ·]). The process

(Z (k)[m,n]n≥m) conditional on the event E0 = {∆Z [m,ni ] = 0 ∀ 1 ≤ i ≤ j } is stochastically

dominated by the unconditioned process under Pk .

Proof. For completeness we reproduce the proof given in [DM13]. Assume first that m < n1.

For any k ≥ 0, we have, using the Markov property,

Pk {∆Z [m,m] = 1|E0} = f (k)

m

Pk+1{∆Z [m +1,ni ] = 0 ∀i ∈ {1, . . . , j }}

Pk {∆Z [m,ni ] = 0 ∀i ∈ {1, . . . , j }}
.

The last denominator can be bounded by

f (k)

m
Pk+1{∆Z [m +1,ni ] = 0 ∀i ∈ {1, . . . , j }}+

(
1− f (k)

m

)
Pk {∆Z [m +1,ni ] = 0 ∀i ∈ {1, . . . , j }}

≥ Pk+1{∆Z [m +1,ni ] = 0 ∀i ∈ {1, . . . , j }},

because f is non-decreasing. Hence Pk {∆Z [m,m] = 1|E0} ≤ f (k)
m , which certainly also holds

if m = n1 and the general result follows by induction.

Lemma 4.14 (Stochastic domination IV, [DM13, Lemma 2.10]). Let f be concave. For in-

tegers 0 ≤ k < m < n there is a coupling of the process (Z [m, l ])l≥m started in Z [m,m] = k

and conditioned on {∆Z [m,n] = 1} and the unconditional process (Z [m, l ])l≥m started in

Z [m,m] = k +1 such that for the coupled versions (Z̄ (c)[m, l ],Z̄ (u)[m, l ])l≥m one has

∆Z̄ (c)[l ] ≤∆Z̄ (u)[l ]+ 1{l=n}.

Thus the unconditioned process initiated in k + 1 dominates the process initiated at k and

conditioned to have a jump at time n.

Remark 4.15. Lemma 4.14 is central to the establishment of the coupling of the exploration

processes in Sections 4.3 and 4.4 and the only instance where concavity of f really is essen-

tial.

Proof of Lemma 4.14. Again, we reproduce an argument from [DM13]. We claim that

Pk (∆Z [m,m] = 1|∆Z [m,n] = 1) = f (k)

m

1
nE

k+1 f (Z [m +1,n])
1
nE

k f (Z [m,n])
≤ f (k +1)

m
, (4.5)

which allows us to use a coupling argument. Suppose that (Z̄ (u)[m, l ])l≥m has the distribu-

tion of the unconditioned process started in k +1 and set N0 = m. Let N1 < N2 < . . . denote

the jump times of (Z̄ (u)[m, l ])l≥m and let (V j ) j≥0 be a sequence of uniform random variables

on [0,1] which are mutually independent and independent of (Z̄ (u)[m, l ])l≥m . Now define

(Z̄ (c)[m, l ])l≥m as the jump process starting in k and increasing by one
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• at time N j+1 < n, if

V j ≤
f (Z̄ (c)[m, N j ])

f (Z̄ (u)[m, N j ])

EZ̄ (c)[m,N j ]+1 f (Z̄ (c)[N j+1 +1,n])

EZ̄ (c)[m,N j ] f (Z̄ (c)[N j+1,n])
; (4.6)

• at time n;

• at time N j+1 > n, if

V j ≤
f (Z̄ (c)[m, N j∨n])

f (Z̄ (u)[m, N j ])
. (4.7)

By definition we have

Z̄ (c)[m, l ]+1 ≤ Z̄ (u)[m, l ], for all l = m, . . . ,n −1

and

Z̄ (c)[m, l ] ≤ Z̄ (u)[m, l ], for all l ≥ m,

since the first process starts in k and can only jump at time n and at those times at which

the second process jumps. Together with (4.5) it follows that the right hand sides of the

inequalities (4.6) and (4.7) are bounded by 1. We can therefore check that the distribution of

(Z̄ (c)[m, l ])l≥m is the same as that of the process (Z (k)[m, l ])l≥m starting at k and conditioned

to jump at time n. Indeed, by construction and given N0, . . . , N j , for N j < l < n,

P{∆Z̄ (c)[m, l −1] = 1} =P{∆Z̄ (c)[m, N j+1 −1] = 1, l = N j+1}

=P{∆Z̄ (c)[m, N j+1 −1] = 1|l = N j+1}P{l = N j+1}

= f (Z̄ (c)[m, N j ])

f (Z̄ (u)[m, N j ])

EZ̄ (c)[m,N j ]+1 f (Z̄ (c)[N j+1 +1,n])

EZ̄ (c)[m,N j ] f (Z̄ (c)[N j+1,n])

f (Z̄ (u)[m, N j ])

l −1

= f (Z̄ (c)[m, N j ])

l −1

EZ̄ (c)[m,N j ]+1 f (Z̄ (c)[N j+1 +1,n])

EZ̄ (c)[m,N j ] f (Z̄ (c)[N j+1,n])
,

and similarly for l > n ∨N j

P{∆Z̄ (c)[m, l −1] = 1} = f (Z̄ (c)[m, N j ∧n])

l −1
,

showing that the jump probabilities of both processes agree at all times l ≥ m.

It remains to verify the claim (4.5). To this end, we fix another i.i.d. sequence (U j ) j≥0 of

uniform random variables on [0,1] which is independent of everything else. Now let M0 =
m and M1 < M2 < . . . denote the jump times of (Z (k+1)[m, l ])l≥m and consider the process
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(Yl )l≥m which is constant on {M j +1, . . . , M j+1 −1} and satisfies

YM j+1 =YM j + 1{
U j≤

f (YM j
)

f (Z [m,M j ])

}. (4.8)

By definition, (Yl )l≥m has the same distribution as (Z (k)[m, l ])l≥m . Since f is concave, we

find that

f (YM j )

f (Z (k)[m, M j ])
=≥

f (k)+ (YM j −k)
f (Z (k)[m,M j ])− f (k)

Z (k)[m,M j ]−k

f (k)+ (Z (k)[m, M j ]−k)
f (Z (k)[m,M j ])− f (k)

Z (k)[m,M j ]−k

and that
f (Z (k)[m, M j ])− f (k)

Z (k)[m, M j ]−k
≤∆ f (k),

which implies

f (YM j )

f (Z [m, M j ])
≥

YM j + f (k)
∆ f (k) −k

Z [m, M j ]+ f (k)
∆ f (k) −k

, (4.9)

by Lemma B.4.

To (Z (k+1)[m, M j ]) j≥0 and (YM j ) j≥0 we now couple a Pólya urn according to the following

scheme: The urn process is started with an urn containing blue balls of total weight B0 =β=
f (k)
∆ f (k) and red balls of weight 1. In each step a colour is picked with probability proportional

to the total weight of all balls of that colour and one ball of the picked colour is added to the

urn. The total weight after j picks is j +β+1 and we can represent the weight of the blue

balls after j steps by

B j+1 = B j + 1{
U j≤

B j
j+β+1

}.

Now (4.8) and (4.9) imply that if blue is picked in step j , then the evolution (Yl )l≥m increases

at time M j . As (Z (k+1)[m, l ])l≥m is independent of (U j ) j≥0, we have, for 0 ≤ i ≤ l ,

E[Yl |Z (k+1)[m, l ] = k +1+ i ]−k ≥ E[Bi −B0] = β

1+β (i +β+1)−β= i
f (k)

f (k +1)
,

and concavity of f implies that

E[ f (Yl )|Z (k+1)[m, l ] = k +1+ i ] ≥ f (k)
f (i +k +1)

f (k +1)
,

thus
E f (Z (k+1)[m, l ])

E f (Yl )
≤ f (k +1)

f (k)
,

which completes the proof of (4.5), since E f (Z (k)[m, l ]) = E f (Yl ) and E f (Z (k+1)[m +1, l ]) ≤
E f (Z (k+1)[m, l ]).
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4.2 Untruncated first moment bounds

In this short section, we derive a statement that yields lower bounds on the typical distance

in the setting of Theorem II, i.e. if limk→∞∆ f (k) = γ = 1
2 . The only assumption is a bound

on the edge correlation. This is a variation of standard results, see e.g. [BR04, Lemma 4],

which can also be formulated for more general subgraphs than just self-avoiding paths. The

same first moment bounds can be applied for the parameter range γ ∈ (
0, 1

2

)
, which is at the

bottom of the lower bound proof for the corresponding setting in [DHH10]. As we have seen

in Section 3.1.1, a slight modification also leads to bounds for in range γ> 1
2 .

Lemma 4.16. Let GN = ([N ],E) be a random graph and assume that there is an absolute

constant κ≥ 0, such that, for any self-avoiding path P = (v0, . . . , vl ),

P{P ⊂GN } ≤ κl
l−1∏
j=0

P{v j ↔ v j+1} (4.10)

and that there is a functionΨ :N−→ [0,∞) such that

P{v ↔ w} ≤ Ψ(N )p
v w

, for all v, w ∈ [N ], (4.11)

and

lim
N→∞

logΨ(N )

log N
= 0. (4.12)

Then, for uniformly chosen vertices V ,W ∈GN and any δ ∈ (0,1),

lim
N→∞

P
{

dN (V ,W ) ≥ (1−δ) log N

loglog N + logΨ(N )

}
= 1.

Remark 4.17. The proof below shows that the condition on Ψ is not the best possible, and

that also δ may be chosen dependent on N . The lemma as stated is however sufficient to

prove the lower bound of Theorem II in Section 6.3.

Proof of Lemma 4.16. Let

1 ≤ l ≤ L = L(N ) =
⌊ (1−δ) log N

loglog N + logΨ(N )

⌋
and let P = (v0, . . . , vl ) be self-avoiding. Then the assumptions imply that

P{P ⊂GN } ≤ κl
l−1∏
j=0

Ψ(N )p
v j v j+1

=
(
κΨ(N )

)l

p
v0vl

l−1∏
j=1

1

v j
.

Hence for v, w ∈ [N ] and P l (v, w) denoting the set of all self-avoiding paths of length l from
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v to w

P{dN (v, w) ≤ L} ≤
L∑

l=1

∑
(v0,...,vl )∈P l (v,w)

(
κΨ(N )

)l

p
v w

l−1∏
j=1

1

v j
≤

L∑
l=1

(
κΨ(N )

)l

p
v w

( N∑
j=1

1

j

)l−1

≤ 1p
v w

L∑
l=1

κlΨ(N )l (log N )l−1 ≤ LκLΨ(N )L(log N )L−1

p
v w

.

(4.13)

For any ε ∈ (0,1), the probability that one of the vertices U ,V is smaller than ε
3 N is bounded

by 2
3ε and thus using (4.13) on the complement of this event results in

P
{

dN (V ,W ) < (1−δ) log N

loglog N + logΨ(N )

}
≤ ∑

v,w≥ ε
3 N

P{dN (v, w) ≤ L}P{V = v,W = w}+ 2ε

3

≤ 3L(κΨ(N ))L(log N )L−1

εN
+ 2ε

3
≤ 3(1−δ)(κΨ(N ))L(log N )L

εN (loglog N + logΨ(N ))
+ 2ε

3

≤ 3N (1−δ)(logκ+loglog N+logΨ(N ))/(loglog N+logΨ(N ))−1

ε(loglog N + logΨ(N ))
+ 2ε

3
.

The numerator in the last line decays like a small power of N , if N is sufficiently large, so

condition (4.12) guarantees that the sum is bounded by ε.

4.3 The local exploration processes

This section is devoted to presenting the details of the exploration process introduced in

Section 3.2. Our eventual aim is to couple the network exploration process to an explo-

ration process on the INT T, which will essentially look like the killed IBRW. To this end, we

first specify the exact exploration scheme and then introduce an intermediate object, a dis-

crete random tree on which an exploration processes can be defined that can be compared

directly to the exploration process in the network.

4.3.1 Exploration of the network

We now specify the first stage, or local stage, of the exploration process used in our network

(or in any finite graph, e.g. the tree described below), i.e. we specify the way we collect

information about the neighbourhood of a particular vertex v .

Definition 4.18 (Exploration process). To initiate the exploration process around v ∈GN , we

explore in the first step all immediate neighbours of v in the graph. To describe a general

exploration step we classify the vertices in three categories:

• veiled vertices: vertices for which we have not yet found connections to the neigh-

bourhood of v ;

• active vertices: vertices for which we already know that they belong to the neighbour-

hood, but for which we have not yet explored all its immediate neighbours;
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• dead vertices: vertices which belong to the neighbourhood and for which all immedi-

ate neighbours have been explored.

After the first exploration step the vertex v is marked as dead, its immediate neighbours as

active and all the remaining vertices as veiled. In a general exploration step, we choose the

leftmost active vertex, set its state to dead, and explore its immediate neighbours. The newly

discovered veiled vertices are marked as active, and we proceed with another exploration

step until there are no active vertices left.

We now describe a tree T (w) which describes the neighbourhood of a vertex w ∈GN as

long as it contains no cycles.

Definition 4.19 (Discrete neighbourhood tree). T(w) is constructed inductively. Any vertex

v ∈T(w) is labelled by two parameters: its location m(v) ∈ [N ], and its type t (v), an element

of {`}∪ {m(v), ...N }. The root ; of the tree has location m(;) = w and type `.

• A vertex v of type ` produces descendants

– in the locations 1, . . . ,m(v)−1 of type i with probability

P{v has a descendent in location j of type i} =P{∆Z [ j , i −1] = 1}; (4.14)

– in the locations m(v)+ 1, . . . , N , it independently produces descendants, all of

type `, such that the cumulative sum of these descendants is distributed accord-

ing to the law of (
Z

[
i , j

]
; i +1 ≤ j ≤ N

)
.

• If v is of type t (v) = k ∈ [N ], it produces descendants

– to the left in the same way as a vertex of type `;

– to the right, independently, it produces descendants of type `, in such a way that

the cumulative sum of these descendants is distributed as

(
Z

[
i , j

]− 1[k,∞) : i +1 ≤ j ≤ N
)

conditioned on ∆Z [i ,k −1] = 1.

That the tree resembles the neighbourhood of w ∈ GN up to a certain stopping time is

the content of the following proposition, which is a slight generalisation of the correspond-

ing statement in [DM13], but has exactly the same proof. The result follows from a coupling

between the explorations in the network and in the tree which is based on a careful analysis

of an exploration step.

53



4.3. THE LOCAL EXPLORATION PROCESSES

Proposition 4.20 (Coupling of explorations, [DM13, Proposition 5.1]). Suppose that (cN )N∈N
and (nN )N∈N are a sequences of positive integers with

cN = o(log N loglog N ) and lim
N→∞

c2
N

n1−γ+
N

= 0,

then one can couple the pair (V ,GN ) consisting of the network and a uniformly chosen vertex

V with T (V ) such that with high probability either

C k
N (V ) =Tk (V ) , for all k ≤ cN , (4.15)

where C k
N (V ) and Tk (V ) denote the connected components uncovered in the first k steps of

the exploration, or

C k
N ∩ [nN ] 6= ;, for some k ∈ [cN ], and #CN ≥ cN . (4.16)

Remark 4.21. As cN can be chosen to diverge as N →∞, we can potentially couple neigh-

bourhoods of unbounded size. This is necessary for the argumentation in [DM13], but when

we apply the coupling result in Chapters 5 and 6, it is often sufficient to look at arbitrarily

large bounded neighbourhoods.

Before we proceed to present the proof of Proposition 4.20 given in [DM13], we need to

state one more preliminary result, namely a rough a priori estimate on the size of the giant

component which can be obtained using only the constant lower bound f (k) ≥ f (0), k ≥ 0

and the exponential Chebyshev inequality. We omit the proof, since it is not very instructive

and refer to [DM13, p. 29] for the details.

Lemma 4.22 (A priori estimate, [DM13, Lemma 4.2]). Let (cN )N∈N and (nN )N∈N be sequences

of positive integers satisfying

cN = o(log N loglog N ) and lognN = o(log N ),

and denote by CN (v) ⊂GN the connected component containing v ∈ [N ]. Then

lim
N→∞

P{#CN (v) < cN for any v ∈ [nN ]} = 0.

4.3.2 Coupling the explorations - proof of Proposition 4.20

In the following, we couple the exploration process of the network, started with a particle at

position v and type `, to the exploration process of the tree T(v), started in the root, up to a

stopping time T. Before we introduce the coupling explicitly, we quote adverse events which

stop the coupling.

• Whenever the exploration processes of the network revisits an active vertex we have

found a cycle in the network. We call this event (E1) and stop the exploration so that,
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before time T, the explored part of the neighbourhood of v is a tree with each node

having a unique location.

• We stop once the explored part of the network differs from the explored part of the

random labelled tree, calling this event (E2), we shall see below how this can happen.

In cases (E1) and (E2) we say that the coupling fails.

Further reasons to stop the exploration are, for certain parameters 1 ≤ nN ,cN ≤ N ,

• (A) the number of dead and active vertices exceeds cN ,

• (B) one vertex in [nN ] is activated, and

• (C ) there are no more active vertices left.

If we stop the exploration without (E1) and (E2) being the case, we say that the coupling

succeeds. Once the exploration has stopped, the veiled parts of the random tree and the

network may be generated independently of each other with the appropriate probabilities.

Hence, if we succeed in coupling the explorations, we have coupled the random labelled

tree and the network.

To distinguish both exploration processes, we use the term descendant for a child in the

labelled random tree and the term immediate neighbour in the context of the neighbour-

hood exploration of the network. In the initial step, we explore all immediate neighbours of

v and all the descendants of the root. Both explorations are identically distributed thus can

be perfectly coupled. Suppose now that we have performed k steps and that we have not yet

stopped the exploration. In particular, this means that both explored subgraphs coincide

and that any unveiled element of the labelled random tree can be uniquely referred to by its

location. We now explore the descendants and immediate neighbours of the leftmost active

vertex, say n.

• We explore the descendants to the left (veiled and dead) and immediately check if

they themselves have right descendants in the set of dead vertices. If we discover no

dead descendants, the set of newly found left descendants is identically distributed to

the immediate left neighbours in the network. Thus we can couple both explorations

such that they agree in this case. Otherwise we stop the exploration due to (E2).

• We explore the descendants to the right. If the vertex n is not of type `, then n has no

right descendants that were marked as dead when n itself was discovered. Since we

always explore the leftmost active vertex there are no new dead vertices to he right

of n. Therefore, the explorations to the right in the network and the random labelled

tree are identically distributed and we stop, if we find right neighbours in the set of

active vertices due to (E1). If the vertex n is of type `, then we have not gained any
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information about its right descendants yet. If we find no right descendants in the

set of dead vertices, it is identically distributed to the immediate right neighbours

of n in the network. We stop if a right descendant is discovered that was marked as

dead, corresponding to (E2), or if right descendants are discovered in the set of active

vertices, corresponding to (E1).

Lemma 4.23 (Success of the coupling). Suppose that (cN )N∈N, (nN )N∈N are sequences of in-

tegers such that

lim
N→∞

c2
N

n1−γ+
N

= 0

Then the coupling of the exploration process satisfies

lim
N→∞

sup
v∈{nN+1,...,N }

P{coupling with initial vertex v ends in (E1) or (E2)} = 0

i.e. the coupling succeeds with high probability.

Proof. We analyse one exploration step in detail. Let a and d denote two disjoint subsets of

{nN +1, ..., N } with #(a∪d) < cN and #a 6= 0. The exploration of the minimal vertex n in the

set a may only fail for one of the following reasons:

(i) the vertex n has left descendants in d;

(ii) the vertex n has left descendants which themselves have right descendants in d;

(iii) the vertex n has right descendants in a∪d.

Indeed, if (i) and (ii) do not occur then the exploration to the left ends neither in state (E1)

nor in (E2), and if (iii) does not happen the exploration to the right does not fail. Condition-

ally on the configuration (a,d), the probability for the event (i) equals

P{∃a ∈ d such that ∆Z [a,n −1] = 1} ≤ ∑
a∈d
a<n

P{∆Z [a,n −1] = 1}

whereas the probability for (ii) is by Lemma 4.14 equal to

P{∃a ∈ dc and b ∈ d such that ∆Z [a,n −1] =∆Z [a,b −1] = 1}

≤ ∑
a∈dc

a<n

∑
b∈d
b>a

P{∆Z [a,n −1] =∆Z [a,b −1] = 1}

≤ ∑
a∈dc

a<n

∑
b∈d
b>a

P{∆Z [a,n −1] = 1}P1{∆Z [a,b −1] = 1}

If the vertex n is of the type τ 6= `, then the conditional probability of (iii) is

P{∃a ∈ a such that ∆Z [n, a −1] = 1|Z [n,τ−1] = 1,∆Z [n,b −1] = 0∀b ∈ d\ {τ}}
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≤C
∑

a∈a∪d
a>n

P1{∆Z [n, a −1] = 1},

using first [DM13, Lemma 2.12] (or Lemma 6.12) to obtain the constant C > 0 and then

Lemma 4.14. If the vertex n is of type `, the conditional probability of (iii) is

P{∃a ∈ a∪d such that ∆Z [n, a −1] = 1} ≤ ∑
a∈a∪d

a>n

P{∆Z [n, a −1] = 1}

Since, by Lemma 4.3, for any a > n,

P1{∆Z [n, a −1] = 1} ≤P1{∆Z [nN +1,nN +1] = 1},

we conclude that the probabilities of the events (i) and (iii) are bounded by

(2+C )cNP
1{∆Z [nN +1,nN +1] = 1},

independently of the type τ. Moreover, the probability of (ii) is bounded by

cNP{∆Z [1,nN ] = 1}
n−1∑
a=1

P{Z [a,n −1] = 1}.

The sum is the expected outdegree of vertex n, which is uniformly bounded by Corollary 4.9,

and hence one of the events (i), (ii) or (iii) occurs in one step with probability less than a

constant multiple of cNP
1{Z [1,nN ] = 1}. As there are at most cN exploration steps until we

end in one of the states (A),(B) or (C), the coupling fails due to (E1) or (E2) with a probability

bounded from above by a constant multiple of

c2
NP

1{∆Z [1,nN ] = 1} ≤C4.9 f (1)
c2

N

n1−γ+
N

→ 0,

in other words, the coupling succeeds with high probability.

Proof of Proposition 4.20. We apply the coupling of Lemma 4.23 with (nN )N∈N satisfying

lim
N→∞

lognN

log N
= 0 and lim

N→∞
(log N loglog N )2

n1−γ+
N

= 0.

Then, by the a priori estimate Lemma 4.22, we get that with high probability

coupling ends in (B) ⇒ #CN (V ) ≥ cN . (4.17)

One also obtains limN→∞ maxv=1,...,nN P{#T(v) < cN } = 0 so that implication (4.17) is also

valid for #T (V ). Since the coupling succeeds we have, with high probability,

coupling ends in (A) ⇔C k
N (V ) =Tk (V ) for all k ∈ [cN ],
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or

coupling ends in (B) ⇔ #CN (V ) ≥ cN and k ∈ [cN ],

and the statement follows immediately.

4.4 The idealised exploration process

We proceed in this section with the approximation of the local neighbourhood of a ran-

domly chosen vertex V ∈GN by the idealized random tree T featuring in Chapter 3. Vertices

in the network GN are mapped onto particles on the negative half line in such a way that the

vertex with index n ∈ {1, ..., N } is mapped into position tn − tN , where

tn =
n−1∑
i=1

1

i
, for all n ∈N.

The youngest vertex is placed at the origin, and older vertices are placed to the left with de-

creasing intensity. In particular, the position of the particle corresponding to a vertex with

fixed index will move to the left as N is increasing.

Any fixed interval [a,b] fills up with more and more particle as N → ∞. At the same

time the age of the vertex corresponding to a particle closest to a fixed position in [a,b]

is increasing, which means that the probability of edges between two such vertices is de-

creasing. Below we see, that the combination of these two effects leads to convergence of

the distribution of offspring locations on the half line. Thanks to the independence of edges

with a common right endpoint, offspring to the left converge to a Poisson process by the law

of small numbers, while offspring to the right converge to the point processes correspond-

ing to the pure birth process (Zt : t > 0), if there is no dependence on previous generations.

The considerations of the previous section suggest that the only form of dependence

of the offspring distribution of a vertex on previous generations, is via the relative position

of its father. This information is encoded in the type of a particle, where type ` indicates

that the father is to the left of the particle, and a numerical type τ indicates that the father

is positioned τ units to the right. It should be noted that the relative positions of offspring

particles only depend on the absolute position of the reproducing particle via the removal

of particles whose position is not in the negative half line, and which therefore do not cor-

respond to vertices in the network GN . This produces the random walk structure, which is

crucial to the analysis of the underlying tree performed in [DM13]. Our main aim here is to

present the derivation of the following result.

Proposition 4.24. Suppose that (cN )N∈N is a sequence of integers with

lim
N→∞

cN

log N loglog N
= 0
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Then each pair (V ,GN ) can be coupled with T such that with high probability CN (V ) agrees

with T up to size cN , in the sense that the discrete tree obtained from the first cN exploration

steps around V is the same as the tree obtained from cN exploration steps around the root in

π−1
N (T).

We know from the previous section, that the neighbourhood of a vertex v in a large net-

work is similar to the random tree T(v). To establish the relationship between T(V ), for an

initial vertex V chosen uniformly from {1, ..., N } and the idealised neighbourhood tree T we

apply to each element of the INT T the projection

πN : (−∞,0] −→ {1, ..., N },

which maps onto the smallest m ∈ {1, ..., N } with t ≤ −tN + tm . We obtain a branching pro-

cess with location parameters in {1, ..., N }, which we call πN -projected INT. We wish to show,

using a suitable coupling, that when the INT is started with a particle in −X , where X is stan-

dard exponentially distributed, then this projection is close to the random tree T (V ). Again

we apply the concept of an exploration process.

To this end we show that, for every particle x = (s(x),`) with s ≤ 0, the πN−projected

descendants of x have a similar distribution as the descendants of a vertex in location n :=
πN (s(x)) in the labelled tree T(n). We establish couplings of both distributions and bound

the probability of failure.

4.4.1 Coupling the evolution to the right for `-type vertices

We fix s ≤ 0 and N ∈ N, and suppose that m := πN (s) ≥ 2. For an `-type vertex in s the

cumulative sum of πN -projected right descendants is distributed as (Ztn−tN−s)m≤n≤N . This

distribution has to be compared with the distribution of (Z [m,n])m≤n≤N , which is the cu-

mulative sum of right descendants of m in T(m).

Lemma 4.25. Fix a level T ∈ N. For any s ≤ 0 with πN (s) = m ∈ {2,3, ..., N } we can cou-

ple the processes
(
Ztn−tN−s : n ≥ m

)
and (Z [m,n] : n ≥ m) such that for the coupled processes(

Y (1) [n] : n ≥ m
)

and
(
Y (2) [n] : n ≥ m

)
we have

P
(
Y (1) [n] 6=Y (2) [n] for some n ≤ τ)≤ (

f (0)+ f (T )2) 1

m −1
,

where τ is the first time when one of the processes reaches or exceeds T.

Proof. We define the process Y = ((
Y (1) [n] ,Y (2) [n]

)
: n ≥ m

)
to be the Markov process with

starting distribution L
(
Ztm−tN−s

)⊗δ0 and transition kernels p (n) such that the first and sec-

ond marginal are the respective transition probabilities of (Ztm−tN−s : n ≥ m) and (Z [m,n] :

n ≥ m) and, for any integer a ≥ 0, the law p (n)((a, a), ·) is the coupling of the laws of Z∆tn and

Z [n,n +1] underPa provided in [DM13, Lemma 2.13]. Then the processes
(
Y (1) [n] : n ≥ m

)
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are distributed as stated in the lemma. Moreover, letting σ denote the first time when they

disagree, we get

P{σ≤ τ} =
∞∑

n=m
P{σ= m}+

∞∑
n=m

P{σ= n +1|τ> n,σ> n}

and, by [DM13, Lemma 2.13],

P{σ= n +1|τ> n,σ> n} ≤
(

f (T )
1

n

)2
, for n ∈ {m,m +1, ...} .

Moreover, P{σ= m} =P{Y (1)[m] > 0} = 1−exp[−(tm − v) f (0)] ≤ f (0)
m−1 . Consequently,

P{σ≤ τ} ≤ f (0)

m −1
+ f (T )2

∞∑
n=m

( f (0)+ f (T )2)
1

m −1
.

4.4.2 Coupling the evolution to the left

Recall that a particle in position s ≤ 0 produces a number of πN -projected descendants

which are Poisson-distributed at the locations m ≤ n :=πN (s) with parameter

λ :=
∫ (−tN+tm )∧s

−t N+tm−1
exp[− (s −u)]E f (Zs−u)du. (4.18)

We adopt the convention that t0 =−∞. A vertex in location n in T(n) produces a Bernoulli

distributed number of descendants in m with success probability P{∆Z [m,n − 1] = 1} for

m < n and no descendants for m = n. The following lemma provides a coupling of both

distributions.

Lemma 4.26. There exists a constant C > 0 such that the following holds: Let m,n ∈ N and

s ≤ 0 with m ≤ n := πN (s) and define λ as in (4.18). If m < n, one can couple a Poiss(λ)-

distributed random variable with∆Z [m,n −1], such that the coupled random variables Y (1)

and Y (2) satisfy

P{Y (1) 6=Y (2)} ≤C
1

m1+γ+
1

n1−γ+ .

If m = n, a Poiss(λ)-distributed random variable Y (1) satisfies

P
(
Y (1) 6= 0

)≤C
1

n
.

Proof. It suffices to prove the second statement for m = n ≥ 2 note that u 7→ exp[−u]E f (Zu)

is decreasing so that

λ≤
∫ −tN+tn−1

s
exp[− (s −u)]E f (Zs−u)du ≤ f (0)

1

n −1
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which leads directly to the second statement of the lemma. Next, consider the case where

2 ≤ m < n. Note that for u ∈ ( tN + tm−1,−tN + tm ], one has s −u ∈ (tn−1 − tm , tn − tm−1)

which, using again that u 7→ e−uE f (Zu) is decreasing, implies that

1

m −1
e−tn−tm−1E f (Ztn−tm−1 ) ≤λ≤ 1

m −1
E f (Ztn−tm )].

Next, note that by definition of tn we have log n
m ≤ tn − tm ≤ log n−1

m−1 , so that(
1− 1

m −1

)
1

n −1
E
[

f
(
Ztn−1−tm

)]≤λ≤
(
1+ 1

m −1

)
1

n −1
E
[

f
(
Ztn−1i tm

)]
. (4.19)

On the other hand, ∆Z [m,n −1] is a Bernoulli random variable with success probability

p := 1

n −1
E
[

f (Z [m,n −1])
]

.

By [DM13, Lemma A.1] it suffices to control λ2 and |λ−p|. By [DM13, Proposition 2.14] and

(4.19), ∣∣λ−p
∣∣≤C

1

m −1

1

n −1

(
E
[

f
(
Ztn−1−tm

)]+E[
f (Z [m,n −1])

])
, (4.20)

and

λ2 ≤ 4

(
1

n −1

)2

E
[

f
(
Ztn−1−tm

)]2 . (4.21)

Since tn−1−tm ≤ log n−2
m−1 , we get, using Corollary 4.9 and a similar statement for the idealised

degree evolution, that

E
[

f
(
Ztn−1−tm

)]+E[
f (Z [m,n −1])

]≤C
( n

m

)γ+
.

Recalling that n > m ≥ 2, it is now straightforward to deduce the statement from equations

(4.20) and (4.21). It remains to consider the case where 1 = m < n. Here, we apply the same

argument and tn−1 ≥ log(n −1) to deduce that

λ≤
∫ −tN+t1

−∞
exp[− (s −u)]E f (Zs−u)du ≤C

∫ ∞

tn−1

exp[−(1−γ+)u]du ≤ C

1−γ+ (n −1)γ
+−1,

while, by Lemma 4.9, P{∆Z [1,n −1] = 1} ≤ f (0)(n −1)γ
+−1, therefore a Poiss(λ)-distributed

random variable can be coupled with∆Z [1,n −1] so that they disagree with probability less

than a constant multiple of nγ+−1.

Remark 4.27. Lemma 4.26 provides a coupling for the mechanisms with which both trees

produce left descendants. Since the number of descendants in individual locations form an

independent sequence of random variables, we can apply the coupling lemma sequentially

for each location and obtain a coupling of the πN -projected left descendants of a particle in

position s and the left descendants of n = πN (s) in T (n). Indeed, under the assumptions of
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Lemma 4.26, one finds a coupling of both processes such that

P{left descendants disagree} ≤C
1

n
+C

1

n1−γ+
n−1∑
m=1

1

m1+γ+ ≤C ′ 1

n1−γ+ ,

where C ′ > 0 is a suitable constant.

4.4.3 Coupling the evolution to the right for particles of type τ 6= `
We fix s ≤ 0 and N ∈ N, and suppose that m := πN (s) ≥ 2. Also fix a type τ < −s with l :=
πN (s +τ) > m. The cumulative sum of πN -projected right descendants of a particle in s of

type τ (including its predecessor) is distributed according to
(
Z−tN+tn−s : m ≤ n ≤ N

)
condi-

tioned on∆Zτ = 1. The cumulative sum of right descendants inT(m) of a vertex in m of type

l (including the predecessor) is distributed according to the law of (Z [m,n] : m ≤ n ≤ N )

conditioned on ∆Z [m, l −1] = 1. Both processes are Markov processes and we provide a

coupling of their transition probabilities.

Lemma 4.28. There exists a constant C > 0 such that the following holds: Let k ≥ 0,m,n ≥ 1

be integers with k+1 < m < n, and let τ ∈ (tn−tm , tn+1−tm]. Then the random variables Z∆tm

under Pk {·|∆Zτ = 1} and Z [m,m +1] under Pk {·|∆Z [m,n] = 1} can be coupled such that the

resulting random variables Y (1) and Y (2) satisfy

P{Y (1) 6=Y (2)} ≤C

(
f (k)

m

)2

.

Proof. We couple Y (1) and Y (2) by plugging a uniform random variable on (0,1) in the gen-

eralised inverses of the respective distribution functions and conclude that

P{Y (1) 6=Y (2)} = ∣∣P{Y (1) = k}−P{Y (2) = k}
∣∣+P{Y (1) ≥ k +2}.

The second error term is of the required order, since

P{Y (1) ≥ k +2} ≤Pk+1{Z1/m ≥ k +3} ≤
(

f (k +2)

m

)2

.

It remains to analyse the first error term. We have

P{Y (2) = k} = 1− f (k)∆tm
Ek+1 f (Z [m +1,n])

Ek f (Z [m,n])
,

and representing
(
Z [τ]

t : t ≥ 0
)

by its compensator,

P
(
Y (1) = k

)= exp

{
− f (k)

∫ ∆tm

0

Pτ−u f (k +1)

Pτ−u f (k)
du

}
.
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We need to compare

Pm+1,n f (k +1)

Pm,n f (k)
and

Pu f (k +1)

Pu f (k)
for u ∈ [tn − tm+1, tn+1 − tm] .

By [DM13, Proposition 2.14], one has, for a ∈ {k,k +1} and sufficiently large m,

Pu f (a) ≤ Ptn+1−tm f (a) ≤ eγ
+( 1

m
+ 1

n

)
Ptn−tm+1 f (a)

≤ eγ
+( 1

m
+ 1

n

)(
1+C

f (a)

m

)
Pm+1,n f (a)

≤ eγ
+( 1

m
+ 1

n

)
+C

f (a)

m
Pm+1,n f (a) ,

for some constant C > 0. Conversely,

Pu f (a) ≥ Ptn−tm+1 f (a) ≥ e−
γ+
m Ptn−tm f (a) ≥ e

γ+
m

(
1−C

f (a)

m

)
Pm,n f (a)

We only need to consider large m and we may assume that C f (k+1)
m ≤ 1

2 , as otherwise we

may choose C ′ large enough to ensure that the right hand side in the display of the lemma

exceeds one. Then

Pu f (a) ≥ exp
[
γ+

1

m
−2C

f (a)

m

]
Pm,n f (a) ,

Since exp[−2y] ≤ 1− y for y ∈ [
0, 1

2

]
. Consequently,

exp
[
−γ+

(
2

1

m
+ 1

n

)
−3C

f (k +1)

m

]Pm+1,n f (k +1)

Pm,n f (k)

≤ Pu f (k +1)

Pu f (k)

≤ exp

[
γ+

(
2

1

m
+ 1

n

)
+3C

f (k +1)

m

]
Pm+1,n f (k +1)

Pm,n f (k)
.

Recall that Pm+1,n f (k+1)
pm,n f (k) is uniformly bounded over all k so that we arrive at

Pm+1,n f (k +1)

Pm,n f (k)
−C ′ f (k)

m
≤ Pu f (k +1)

Pu f (k)
≤ Pm+1,n f (k +1)

Pm,n f (k)
+C ′ f (k)

m
,

for an appropriate constant C ′ > 0. Therefore,

P{Y (1) = k}−P{Y (2) = k} ≤ 1∧exp
[
− f (k)∆tm

(Pm+1,n f (k +1)

Pm,n f (k)
−C ′ f (k)

m

)]

−
(
1− f (k)∆tm

Pm+1,n f (k +1)

Pm,n f (k)

)

≤C ′
(

f (k)

m

)2

+ 1

2

(
f (k)∆tm

(
Pm+1,n f (k +1)

Pn,m f (k)
−C ′ f (k)

m

))2

≤C ′′
(

f (k)

m

)2

,
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for some suitable constant C ′′ > 0. Similarly, one finds that

P{Y (2) = k}−P{Y (1) = k} ≤C ′′
(

f (k)

m

)2

,

and putting everything together yields the assertion.

From Lemma 4.28 we get the following analogue of Lemma 4.25.

Lemma 4.29. Fix a level T ∈N. For any s ≤ 0 and τ≤−s with πN (s) = m ∈ {2,3, ..., N } and

m < 1 := πN (s +τ) we can couple to process
(
Ztn−tN−s : n ≥ m

)
conditioned on ∆Zτ = 1 and

(Z [m,n])n≥m conditioned on Z [m, l −1] = 1 such that the coupled processes

(
Y (1) [n] : n ≥ m

)
and

(
Y (2) [n] : n ≥ m

)
satisfy

P
(
Y (1) [n] 6=Y (2) [n] for some n ≤σ)≤C

(
f (T )2 +1

) 1

m

whereσ is the first time when one of the processes reaches or exceeds level T and C is a positive

constant.

Proof. We define the process Y = ((
Y (1) [n] ,Y (2) [n]

)
: n ≥ m

)
to be the Markov process with

starting distribution L
(
Ztm−tN−s |∆Zτ = 1

)⊗δ0 and transition kernels p (n) such that the first

and second marginal are the conditioned transition probabilities of
(
Ztn−tN−s : n ≥ m

)
and

(Z [m,n] : n ≥ m) as stated in the lemma. In the case where n < l −1, we demand that, for

any integer a ≥ 0, the law p (n) ((a, a, ) , ·) is the coupling of the laws Z∆tn under

Pa{·|∆Zτ−(tn−tN−s) = 1}

and Z [n,n +1] under

Pa{·|∆Z [n, l −1] = 1}

provided in Lemma 4.28. Conversely, we apply the unconditioned coupling of Lemma 4.25

for n ≥ l . Letting % denote the first time when both evolutions disagree, we get

P{%≤σ} =
∞∑

n=m
P{σ≥ n,%= n} ≤P{%= m}+

∞∑
n=m

P{%= n +1|σ> n,%> n}

and, by Lemma 4.25 and Lemma 4.28,

P{%= n +1|σ> n,%> n} ≤C4.28

(
f (T )

n

)2

for n ∈ {m,m +1, ...}\(l −1) .

Moreover, P{%= m} ≤P1{Ztm−tN−s > 0} = 1−exp[−(tm − s) f (1)] and
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P{%= l |%≥ l ,σ≥ l } ≤PT {Z∆tl−1 > T } ≤ f (T ) 1
m . Consequently,

P{%≤σ} ≤ f (1)

m −1
+ f (T )

m
+C4.28 f (T )2

∞∑
n=m

1

n2 ≤C
(

f (T )2 +1
) 1

m
,

for suitable C > 0.

4.4.4 Proof of Proposition 4.24

We couple the labelled tree T (V ) and the πN -projected INT, starting with a coupling of the

position of the initial vertex V and πN (−X ), which fails with probability going to zero, by

[DM13, Lemma A.2].

Again we apply the concept of an exploration process. As before we categorise vertices as

veiled, if they have not yet been discovered, active, if they have been discovered, but if their

descendants have not yet been explored, and dead, if they have been discovered and all their

descendants have been explored. In one exploration step the leftmost active vertex is picked

and its descendants are explored in increasing order with respect to the location parameter.

We stop immediately once one of the events (A), (B) or (C) happens. Note that in that case

the exploration of the last vertex might not be completed. Moreover, when coupling two

explorations, we also stop in the adverse event (E) that the explored graphs disagree. In

event (B), the parameters (nN )N∈N are chosen such that

lim
N→∞

(
log N loglog N

)ζ
nN

= 0 and lim
N→∞

lognN

log N
= 0,

for ζ = (
1−γ+)−1 ∨3. Noting that we never need to explore more than cN vertices, we see

from Lemma 4.25, Remark 4.27 and Lemma 4.29 that the probability of a failure of this cou-

pling is bounded by a constant multiple of

cN
(
1+ f (cN )2) 1

nN
+ cN

1

n1−γ+
N

≤ c3
N

nN
+ cN

n1−γ+
N

→ 0.

Consequently, the coupling succeeds with high probability. As in the proof of Lemma 4.22 it

is easy to see that, with high probability, event (B) implies that

#T (V ) ≥ cN and #T≥ cN .

Hence we have

#T (V )∧ cN = #T∧ cN with high probability

and the statement follows by combining this with Proposition 4.20.
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4.5 Branching process heuristics for γ= 1
2

For the upper bound in Theorem II, we need to show that a fixed vertex n in GN is well con-

nected. In a first step, we use the neighbourhood coupling from the previous sections up to

a large finite “decoupling time” to determine whether the initial vertex lies in the giant com-

ponent. After this, we associate a sequence of scores (Sk )k≥0 to the neighbourhood shells

Γk = {m : dN (n,m) = k} which roughly measures the total degree of vertices contained in

Γk . We aim to show, that if the scores of the neighbourhoods of two vertices grow above a

certain threshold, then there exists with high probability a connection between them. The

typical growth rate of the scores will determine the typical distances. Possible circles in the

network complicate the calculation, therefore we study the score growth in the IBRW first

and use the results to adjust our parameters for the network setting. Central to argument

is the cutoff (rk )k≥0, which we will introduce first for the idealised setting and then use in

Chapter 6 in the network.

More specifically, let s0 be a negative parameter of large absolute value, representing a

position far left on the negative half line in the BRW setting (or equivalently a large score

which we need to obtain in the initial local exploration) and let α≥ 0 be the parameter that

measures the deviation of the expected degrees from the linear setting. We define the cutoff

sequence r as the solution to the difference equation

r0 = s0

−1

2
∆rk = (α+1)log(−rk+1) log k+2

k+3 +2log log(k+2)
log(k+3) −d +

(
α+ 1

2

)
log rk

rk+1
, for k ≥ 0,

(4.22)

where d = log(2α(α+ 1)). This solution exists for all k ≥ 1 and is unique if |s0| is chosen

sufficiently large, as is shown in Appendix A. The remainder of this section is devoted to a

heuristic derivation of this equation.

To this end, we study the idealised score process on the INT derived from the IBRW in-

troduced in Section 1.3.3 and several modifications of it. Let X̃ denote the IBRW on R×S

initiated by a root particle located in s0 ∈ (−∞,0) with type τ0 and killed at the origin. Above

we have introduced a truncation sequence or cutoff r =(rk )k≥0 of deterministic points on

the negative half line, which we use to kill the BRW X̃ also on the left. The obtained BRW is

then denoted by X . For any particle v ∈ X̃ , denote its position in (−∞,0] by s(v), its type by

τ(v) and its graph distance from the root in the genealogical tree by d(v). Let furthermore

X̃ k = {v ∈ X̃ : d(v) = k} and X̃ ≤k = {v ∈ X̃ : d(v) ≤ k}.
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Recall, for a particle v = (s(v),τ(v)) ∈R×S , the function Mv :R×S −→ [0,∞)

Mv (t ,τ′) =



∫ s(v)
t ex−s(v)E[ f (Zs(v)−x )]dx, if t ∈ (−∞, s(v)],τ′ = s(v)− t ,

M`(t − s(v)), if t ∈ (s(v),∞),τ(v) = τ′ = `,

Mτ(v)(t − s(v)), if t ∈ (s(v),∞),τ(v) ∈ [0,∞],τ′ = `,

0, otherwise,

(4.23)

where M`(t ) = E[Zt ] and Mτ(t ) = E[Zt |∆Zτ = 1] − 1[τ,∞)(t ), for τ ∈ [0,∞], and M∞(t ) =
limτ→∞ Mτ(t ). Mv describes the intensity at which v reproduces into state and type space

to its left and right.

Let µv (t ) = ∫
S Mv (t ,τ)dτ. The density dµv (t )

dt exists a.e. and is continuous on R \ {s(v)}.

For an attachment rule of the form f (k) = 1
2 k +o(k) it turns out that it is most convenient to

write

dµv (t ) = e−
s(v)−t

2 ψv (t )dt , (4.24)

where ψv (t ) may depend on the position and type of v , is strictly positive (in fact bounded

below by f (0)), continuous a.e., grows at most subexponentially in t and decays monotoni-

cally as a function of τ(v) ∈ [0,∞] (reflecting Lemma 4.14).

Remark 4.30. For f (k) = 1
2 k +β, we get

dµv (t ) = 1{t≤s(v)}βe
t−s(v)

2 dt + 1{t≥s(v),τ(v)=`}βe
t
2 dt + 1{t≥s(v),τ(v)=τ∈[0,∞]}

(
β+ 1

2

)
e

t
2 dt ,

hence ψv (t ) =β+ 1
21[s(v),∞)×[0,∞](t ,τ(v)).

For the remainder of the section we discuss the dependence on the shape of ψv of the

speed of the leftmost particle of the IBRW X̃ . Let T denote the corresponding INT. Note that

the results in [DM13, Section 3] imply lims0→−∞P{#T = ∞|s(;) = s0} = 1, i.e. the survival

probability of the killed random walk can be made arbitrarily large by moving the initial

particle towards −∞.

For the purpose of determining the growth of X̃ , we introduce a score functional ξ on X̃

which associates weights to subsets of the IBRW path and resembles the functional ξ on the

network. For any v ∈ X̃ and Γ⊂ X̃ we set

ξ(v) = e−
s(v)

2 , and ξ(Γ) = ∑
v∈Γ

ξ(v). (4.25)

Since ξ does not depend on the type of particles, we can calculate the expected score of the

first generation of particles in the IBRW X̃ , using only the densities above. We obtain

E
∑

v :d(v)=1
ξ(v) ≥

∫ 0

−∞
e−

s
2 dµ;(s) = e−

s0
2

∫ 0

−∞
ψ;(s)ds =∞, (4.26)
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since ψ is uniformly bounded away from 0. To circumvent this degeneracy, we use the de-

creasing sequence r = (rk )∞k=1 of cutoff points on the negative half line and consider in the

branching mechanism only those particles of the k-th generation of X̃ which have positions

in [rk ,0] and kill all other particles alongside with their offspring. We denote the resulting

truncated IBRW by X = X (r )

(s0,τ0).

Let Y k denote the empirical measure of all particle positions and types in the k-th gen-

eration X k of X , let Yv denote the empirical measure of the offspring X (v) of a particle v

and set

Sk = ξ(X k ) =
∫
R×S

e−
s
2 dY k (s,τ). (4.27)

Let Ek denote the σ-field generated by the first k generations X ≤k of X . Then, formally,

E
[

Sk+1|Ek

]
= ∑

v∈X k

Eξ(X (w)) = ∑
v∈X k

E

∫
R×S

e−
s
2 dYv (s,τ)

= ∑
v∈X k

∫ 0

rk+1

e−
s
2 dµv (s) = ∑

v∈X k

e−
s(v)

2

∫ 0

rk+1

ψv (s)ds.
(4.28)

The integral on the right hand side of (4.28) still depends on the type of the offspring. The

bounds we need are relatively coarse, so we can simplify at this stage and work with upper

and lower bounds which we obtain by a modification of the branching mechanism and a

stochastic domination argument.

The calculations of Chapter 6 suggest, that ψv (s) ≈ |s(v)− s|α is symmetric around s(v)

and growths polynomially. Thus we can assume that the factor
∫ 0

rk+1
ψv (s)ds in (4.28) is min-

imal for a particle v of type ` in position 1
2 rk+1 and maximal for a particle v of type 0 and

position rk+1. Thus, to obtain bounds for (4.28), we would like to create auxiliary branching

processes X , X in which (4.24) holds for a particle v of generation k with

ψk+1(s) = 1[rk+1,0](s)ψ( 1
2 rk+1,`)(s)

or

ψk+1(s) = 1[rk+1,0](s)ψ(rk+1,0)(s),

respectively. Such processes can be obtained by altering the jump processes in the defi-

nition of the IBRW. We extend the notation to the associated σ-algebras, functionals and

parameters in the obvious way. For the obtained modifications S and S, the last integral in

(4.28) does not depend on v any more. thus, equation (4.28) implies that

W k = Sk∏k
i=0 ‖ψk‖1

and W k = Sk∏k
i=0 ‖ψk‖1

are martingales w.r.t. their corresponding filtrations E ,E , where ‖ · ‖1 denotes the usual L1-
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norm.

Remark 4.31. (i) For the linear case we have ‖ψk‖1 =−βrk and ‖ψk‖1 =−(β+γ)rk .

(ii) In the nonlinear regime where α> 0, with

ψv (t ) = |s(v)− t |α, (4.29)

we obtain

‖ψk‖1 =β (−rk )α+1

2α(α+1)
and ‖ψk‖2 =β (−rk )α+

1
2

2α
p
α+1

.

The martingales are non-negative, thus converge a.s., we need to make sure that they

also converge in L1. In fact we aim for L2 convergence. We focus on W only, the other

calculation being similar. We obtain

E
[( ∑

v∈X k

e−
1
2 s(v)

)2∣∣∣E k−1

]
=E

[ ∑
a,b∈X k−1

∑
v∈X (a)

∑
u∈X (b)

e−
1
2 (s(v)+s(u))

∣∣∣E k−1

]
= ∑

a∈X k−1

E
[ ∑

v,w∈X (a)
e−

1
2 (s(v)+s(w))

∣∣∣E k−1

]
+ ∑

a,b∈X k−1

a 6=b

E
[ ∑

v∈X (a)
e−

1
2 s(v)

∣∣∣E k−1

]
E
[ ∑

w∈X (b)
e−

1
2 s(w)

∣∣∣E k−1

]
= ∑

a∈X k−1

E
[ ∑

v,w∈X (a)
e−

1
2 (s(v)+s(w))

∣∣∣E k−1

]
+ ∑

a,b∈X k−1

a 6=b

e−
s(a)+s(b)

2

(∫ 0

−∞
ψk (s)ds

)2
,

(4.30)

and proceed to bound the terms in the first sum in the last line. We indicate the dependence

on k of the marginal density of the offspring measure via ψk by writing µk
v . We also denote

by dµk
v (s, t ) the joint density for reproduction in positions s, t ∈R and get

E
[ ∑

v,w∈X (a)
e−

1
2 (s(v)+s(w))

∣∣∣E k−1

]
=E

[ ∑
v∈X (a)

e−s(v)
∣∣∣E k−1

]
+2E

[ ∑
v,w∈X (a)
s(v)<s(w)

e−
1
2 (v+w)

∣∣∣E k−1

]

=
∫ 0

−∞
e−s dµk

a(s)+2
∫ 0

−∞

∫ 0

s
e−

1
2 (s+t ) dµk

a(s, t ).

It is easy to see that by [DM13, Lemma 2.5] and concavity of f , dµa(s, t ) ≤ f (1)
f (0) dµa(s)dµa(t ).

Hence

E
[ ∑

v,w∈Γ(a)
e−

1
2 (s(v)+s(w))

∣∣∣E k−1

]
≤ e−

s(a)
2

∫ 0

−∞
e−

s
2ψk (s)ds + f (1)

f (0)
e−s(a)‖ψk‖2

1,

and Cauchy-Schwarz yields

E
[ ∑

v,w∈Γ(a)
e−

1
2 (s(v)+s(w))

∣∣∣E k−1

]
≤ e−

s(a)
2 e−

rk
2 ‖ψk‖2 + f (1)

f (0)
e−s(a)‖ψk‖2

1. (4.31)
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Thus

E
[( ∑

v∈X k

e−
1
2 s(v)

)2∣∣∣E k−1

]
≤ S2

k−1‖ψk‖2
1+

( f (1)

f (0)
−1

)‖ψk‖2
1

∑
a∈Γk−1

ξ(a)2+ξ(rk )‖ψk‖2Sk−1, (4.32)

and

E[W 2
k |E k−1] ≤W 2

k−1 +
( f (1)

f (0) −1
)‖ψk‖2

1
∑

a∈X k−1 ξ(a)2 +ξ(rk )‖ψk‖2Sk−1∏k
i=0 ‖ψi‖2

1

. (4.33)

As above we get

E
∑

a∈Xk−1

e−s(a) ≤ ξ(rk−1)‖ψk−1‖2ESk−2

and therefore taking expectations in (4.33) implies that W k is bounded in L2 if

∞∑
k=1

ξ(rk )‖ψk‖2∏k
i=0 ‖ψi‖1

<∞, (4.34)

which gives a criterion how to chose the cutoff r and incorporate it into ψk . For the linear

case, ‖ψi‖1 =−βri and ‖ψi‖2 =−βpri . Thus, if s0 is sufficiently small and r is the solution

to the difference equation

r0 = s0,

r1 = 2(− log(−s0)+ logβ− log3−2loglog3),

−1

2
∆ri = log(−ri )+ logβ− log

( i+3
i+2

)−2log
( log(i+3)

log(i+2)

)
, for i ≥ 1,

then
ξ(rk )‖ψk‖2∏k

i=0 ‖ψi‖1
= 1

(k +2)(log(k +2))2 .

It is easy to see, that rk decays faster than −(2−ε)k logk for any choice of ε ∈ (0,2). An upper

bound for Sk is obtained by replacing β by β+γ.

For the general case, we now start by fixing the condition

ξ(rk )‖ψk‖2∏k
i=0 ‖ψi‖1

= 1

(k +2)(log(k +2))2 , for all k ≥ 0 (4.35)

which implies the convergence (4.34). It is easy to see, that if r satisfies (4.22), then it also

satisfies (4.35).

4.6 ε-connectors and the core

In this section we introduce a useful concept to establish connectivity results on a global

scale which can be seen as a natural extension of the use of sprinkling arguments in classical
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Random Graph Theory, see for example the proof of the emergence of the giant component

in the Erdős-Rényi model [Bol01, Theorem 6.8] and also [DM13, Proposition 4.1]. It is an

analogue to the use of t-connectors in [DHH10], which correspond to 1-connectors in our

notation.

Definition 4.32 (ε-connectors). Let N ∈N and ε> 0. Let also a 6= b ∈ [N ] be vertices in GN .

Then n ∈ {N +1, . . . ,b(1+ε)Nc} is called an ε-connector for a and b if both n → a and n → b.

We write

{a
ε↔ b} = {∃ n ∈ {N +1, . . . , (1+ε)N } : n is an ε-connector for a and b},

and extend the notation also to sets, i.e. if A,B ⊂N are disjoint, then

{A
ε↔ B} = {∃ (a,b) ∈ A×B : a

ε↔ b}.

Some straightforward implications that are of use later are summarised below.

Observation 4.33. Let N ∈N and ε> 0, then

(i) for all A,B ⊂ [N ], A
ε↔ B implies dd(1+ε)Ne(A,B) ≤ 2;

(ii) given GN and a,b ∈ [N ], for all potential ε-connectors n ∈ {N +1, . . . ,b(1+ε)Nc},

P{n is an ε-connector for a and b|GN } ≥ f (Z [a, N ]) f (Z [b, N ])

((1+ε)N )2 ,

which follows from the model definition and that the evolutions Z [a, ·],Z [b, ·] are non-

decreasing. Note that the bound holds for each n independently of the connection

status of the other ε-connectors.

We would like to consider those subgraphs of Gd(1+ε)Ne which are induced by connec-

tors in couplings with the classical random graph G (n, p). In particular, we are interested in

bounds for the diameter of certain subsets of the oldest part of the graph {1, . . . , M }, where

M = M(N ) = o(N ). To show, that the edge density is high enough to perform the coupling,

we need some notation.

Definition 4.34. Fix ε> 0 and set

ξ∗ = ξ∗(γ,ε) = inf
k
ξ(γ)(k,d(1+ε)ke) ≥ (1+ε)γ

and

σ=σ(γ,ε) = ξ∗+3

4
−1 > 0.

(I) Let f be such that 1
2 < γ− < 1 and M = bpN (log N )

1
2γ− c. We call v ∈ [M ] a core vertex of

Gd(1+ε)Ne if

Z [v, N ] ≥
√

Nγ−

log N
and Z [v,d(1+ε)Ne]−Z [v, N ] ≥σ

√
Nγ−

log N
.
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(II) Let f be as in Theorem II, with α > 0 and M = b(log N )Rc for some R > 0. We call

v ∈ [M ] a core vertex of Gd(1+ε)Ne if

f (Z [v, N ]) ≥ 1

4
EZ [M , N ] and f (Z [v,d(1+ε)Ne])− f (Z [v, N ] ≥σ f (Z [M , N ]).

Let moreover CN denote the subset of [M ] containing all core vertices, and let

EN = {(v, w) ∈CN ×CN : v
ε↔ w}

then we call the random subgraph coreN = (CN ,EN ) of Gd(1+ε)Ne the core.

Depending on the form of f , we choose M appropriately to use a coupling between the

core and an Erdős-Rényi Graph G (n, p) for suitable n, p. Prerequisite for this coupling is the

following lemma.

Lemma 4.35 (Size of coreN ). Fix ε> 0 and f , M as in Definition 4.34.

(i) There exists q( f ,ε) > 0 such that

P{v ∈CN } ≥ q( f ,ε) for all v ∈ [M ] independently.

(ii) With high probability #CN ≥ M q( f ,ε)
2 .

Proof. We prove statement (i) only for situation (II) of Definition 4.34, the argument for the

other setting is given in the proof of Lemma 5.7. Independence follows from the indepen-

dence of degree evolutions. Note that the condition in (II) is a condition on the growth of the

degree evolution (Z [v, ·]), by monotonicity it is sufficient to verify the conditions for v = M .

Since f (k) ≥ k
2 , for all k, it is sufficient to demonstrate that there exists a small positive prob-

ability q , such that

f (Z [M , N ]) ≥ 1

2
E f (Z [M , N ]) (4.36)

and

f (Z [M ,d(1+ε)Ne]) ≥ (1+σ) f (Z [M , N ]), (4.37)

for all sufficiently large N , which is slightly stronger than the condition given in (II). To show

(4.36), note that the Payley-Zygmund inequality implies that

P
{

f (Z [M , N ]) ≥ 1

2
E f (Z [M , N ])

}
≥ 1

4

(E f (Z [M , N ]))2

E f (Z [M , N ])2 = p(M , N ).

The moment bounds derived in Proposition 6.1 now entail that p(M , N ) > p1 > 0 for some

small p1 and all sufficiently large N . Furthermore, since f is concave, (Z (k)[n, s])s≥n domi-

nates (Z̄ (k)[n, s])s≥n , the latter denoting the degree evolution associated with the linearised
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attachment rule satisfying f̄ (l ) = f (k)+ 1
2 (l −k) ≤ f (l ), l ≥ k. Thus for some p2 > 0,

P{ f (Z [M ,d(1+ε)Ne]) ≥ (1+σ) f (Z [M , N ])|Z [M , N ] = k}

=Pk { f (Z [N ,d(1+ε)Ne]) ≥ (1+σ) f (k)}

≥Pk { f̄ (Z̄ [N ,d(1+ε)Ne]) ≥ (1+σ) f (k)}

=Pk
{

f̄ (Z̄ [N ,d(1+ε)Ne]) ≥ (1+σ)

ξ(N ,d(1+ε)Ne)
f (k)ξ(N ,d(1+ε)Ne)

}
≥

(
1− 1+σ

ξ∗
)2 (E f̄ (Z̄ [N ,d(1+ε)Ne]))2

f̄ (EZ̄ [N ,d(1+ε)Ne])2
> p2,

where we have used the Payley-Zygmund inequality and Lemma 4.7 for the last two steps.

Thus (4.37) holds with probability at least p2, independently of the value of Z [M , N ]. Since

(Z [M , s])s≥M is a Markov process, we know that the increment

f (Z [M ,d(1+ε)Ne])− f (Z [M , N ])

can only depend on the past via Z [M , N ], it follows that (4.36) and (4.37) are jointly satisfied

with probability at least q = p1p2.

For statement (ii) of the lemma, note that by (i) all v ∈ [M ] have chance of at least q =
q( f ,ε) to be in the core and the degree evolutions are independent. Thus #CN dominates

(via an appropriate coupling) the sum SM = ∑M
i=1 Xi , where X1, X2, . . . are i.i.d. Bernoulli

with parameter q . A concentration inequality (e.g. Lemma B.2) now yields

P
{

#CN < M
q

2

}
≤P

{
SM < M

q

2

}
≤ exp

(
− q

2
M

)
,

which converges to 0 as N →∞.

We are now ready to prove that the core is, with high probability, of bounded diameter.

Proposition 4.36. For any ε> 0, coreN has bounded diameter with high probability, if either

of the following hold

(i) f is affine with 1 > γ> 1
2 and M = bpN (log N )

1
2γ c;

(ii) f is as in Theorem II with γ= 1
2 ,α> 0 and M = b(log N )Rc for some R > 0.

Remark 4.37. The restriction to affine f in (i) is for convenience only. Since we assume

f to be concave, we know that GN dominates G ′
N , the graph process associated to f ′(k) =

f (0)+γ−k. Since the definition of the core does only depend on γ = γ−, we have that, for

the coupled versions, C ′
N ⊂CN and E ′

N ⊂ EN , thus the diameter of coreN is bounded by the

diameter of core′N .

Proof of Proposition 4.36. For v, w ∈ CN we now provide an estimate for the connection

probability P{(v, w) ∈ EN } which is independent of the occupation status of the other edges
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in coreN . Denote

ψ(m,n) = E f (Z [m,n])

ξ(m,n)
,

and note that in setting (i), ψ(m,n) = f (0) and in setting (ii), ψ(m,n) →∞ if n
m →∞, which

is shown in Proposition 6.2. Fix v ∈ CN . Since f (Z [v,d(1+ ε)Ne]) ≥ (1+σ) f (Z [v, N ]), we

know that by concavity of f ,

Z [v,d(1+ε)Ne]−Z [v, N ] ≥σZ [v, N ] ≥ 1

4
EZ [v, N ].

Let Z (v) = {N < j ≤ d(1+ε)Ne : ∆Z [v, j ] = 1}. Since v ≤ M , the number #Z (v) of potential

ε-connectors to v is thus bounded below by

1

4
EZ [M , N ] ≥ ηε

( N

M

)γ
,

for some ηε > 0. Given GN and v ∈CN , the probability that there is no ε-connector between

v and w can therefore be bounded

P{(v, w) ∉ EN } = ∏
j∈Z (v)

(
1− f (Z [w, j ])

j

)
≤

(
1− f (Z [w, N ])

d(1+ε)Ne
)ηε( N

M )
γ

.

Since w ∈CN , we can find cε > 0, such that

f (Z [w, N ]) ≥ cεψ(M , N )
( N

M

)γ
,

and thus

P{(v, w) ∉ EN } ≤
(
1− cεψ(M , N )( N

M )
γ

d(1+ε)Ne
)ηε( N

M

)γ
≤ exp

(
− cεψ(M , N )

( N
M

)γ
d(1+ε)Ne ηε

( N

M

)γ)
.

For both possible values of M , the argument of the exponential is close to 0, for such argu-

ments we have that e−x ≤ 1− x
2 . For sufficiently large N , we thus obtain

P{(v, w) ∉ EN } ≤ 1− cεηεψ(M , N )
( N

M

)2γ

2d(1+ε)Ne .

We have therefore shown, that for some small δε > 0, and N sufficiently large,

P{(v, w) ∈ EN } ≥ δεψ(M , N )N 2γ−1M−2γ. (4.38)

Note that, given GN and CN , this holds independently for all pairs v, w ∈ CN . We can thus

dominate coreN by an Erdős-Rényi graph G (n, p) of (random) size n = #CN and connection

probability p = δεψ(M , N )N 2γ−1M−2γ. Theorem B.3, the diameter result for G (n, p), now

implies the boundedness of the diameter.

Remark 4.38. (i) The ε-connectors are easier to handle than the corresponding connec-
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tions in the affine PA model, due to the conditional independence. Nevertheless, the

general idea, that one has to look backwards after a large time period to gain (condi-

tional) independence of edges is the same.

(ii) The approach used here relies on the appearance of high degrees or rather scores (i.e.

“edge density”), unlike the sprinkling argument of Proposition 4.1 in [DM13], which

uses the “vertex density” (since there the goal is to connect clusters of vertices which

may have themselves low degrees.)

The last proposition implies that it is sufficient to show that the explored parts of the

graph are connected to the core to obtain distances on the desired scale. Note also, that in

the setting of Theorem II, the approach does not work if α= 0.
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Chapter 5

Typical distances for γ ∈ (
1
2,1

)
This chapter is based on joint work with Steffen Dereich and Peter Mörters that has been pub-

lished in [DMM12].

We first apply the truncated first moment method explained in Section 3.1 to prove

the general lower bound results for preferential attachment and fitness type models, Theo-

rem 2.3 and Theorem 2.5, in Sections 5.1 and 5.2. Then we prove the upper bound for the

sublinear preferential attachment model, Theorem 2.6 in Section 5.3, using both the local

exploration procedure explained in Sections 4.3 and 4.4 and the bound on the size of the

core derived in Section 4.6. Finally, in Section 5.4, we deduce Theorem I.

5.1 Lower bounds for preferential attachment models - proof of

Theorem 2.3

For the proof, we assume the validity of Assumption 2.2 for some γ ∈ (1
2 ,1

)
with a fixed con-

stant κ. We adopt the notation laid out in the discussion at the end of Section 3.1. In partic-

ular recall the definition of µ(v)

k and the key estimates (3.2), (3.3) and (3.4), which combined

give

P{dN (v, w) ≤ 2δ} ≤
δ∑

k=1
µ(v)

k [`k −1]+
δ∑

k=1
µ(w)

k [`k −1]+
2δ∑

n=1

N∑
u=`n∗

µ(v)

n∗(u)µ(w)

n−n∗(u). (5.1)

The remaining task of the proof is to choose δ ∈ N and 2 ≤ `δ ≤ . . . ≤ `0 ≤ N which allow

the required estimates for the right hand side. To do so, we will make use of the recursive

representation

µ(v)

k+1(n) =
N∑

m=`k

µ(v)

k (m) p(m,n) for k ∈ {0, . . . ,δ−1} and n ∈ [N ],
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5.1. PROOF OF THEOREM 2.2

where µ(v)

0 (n) = 1{v=n} and

p(m,n) = κ(m ∧n)−γ(m ∨n)γ−1.

Denote by µ̄(v)

k (m) = 1{m≥`k }µ
(v)

k (m) the truncated version ofµ(v)

k and regardµ(v)

k and µ̄(v)

k as row

vectors. Then

µ(v)

k+1 = µ̄(v)

k PN , (5.2)

where PN = (p(m,n))m,n=1,...,N . Our aim is to provide an upper bound of the form

µ(v)

k (m) ≤αk m−γ+ 1{m>`k−1}βk mγ−1, (5.3)

for suitably chosen parameters αk ,βk ≥ 0. Key to this choice is the following lemma.

Lemma 5.1. Suppose that 2 ≤ `≤ N , α,β≥ 0 and q : [N ] −→ 0,∞) satisfies

q(m) ≤ 1{m≥`}(αm−γ+βmγ−1), for all m ∈ [N ].

Then there exists a constant c = c(γ,κ) > 1 such that

qPN (m) ≤ c
(
α log N

` +βN 2γ−1)m−γ+ 1{m>`}c
(
α`1−2γ+β log N

`

)
mγ−1

for all m ∈ [N ].

Proof. One has

qPN (m) = 1{m>`}

m−1∑
k=`

q(k) p(k,m)+
N∑

k=m∨`
q(k) p(k,m)

≤ 1{m>`}

m−1∑
k=`

κ(αk−γ+βkγ−1)k−γmγ−1 +
N∑

k=m∨`
κ(αk−γ+βkγ−1)kγ−1m−γ

≤ κ
(
α

N∑
k=m∨`

k−1 +β
N∑

k=m∨`
k2γ−2

)
m−γ+ 1{m>`}κ

(
α

m−1∑
k=`

k−2γ+β
m−1∑
k=`

k−1
)
mγ−1

≤ κ
(
α log N

`−1 +
β

2γ−1
N 2γ−1

)
m−γ+ 1{m>`}κ

( α

1−2γ
(`−1)1−2γ+β log m

`−1

)
mγ−1.

This immediately implies the assertion since `≥ 2 by assumption.

Proof of Theorem 2.3. We apply Lemma 5.1 iteratively. Fix ε> 0 small and start with

`0 = dεNe, α1 = κ(εN )γ−1 and β1 = κ(εN )−γ.
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Fix v ≥ `0. Then, for all m ∈ [N ],

µ(v)

1 (m) = p(v,m) ≤ κ`γ−1
0 m−γ+ 1{m>`0}κ`

−γ
0 mγ−1

≤α1m−γ+ 1{m>`0}β1mγ−1.

Now suppose that, for some k ∈N, we have chosen αk ,βk and an integer `k−1 such that

µ(v)

k (m) ≤αk m−γ+βk mγ−1 for all m ∈ [N ].

We choose `k as an integer satisfying

6ε

π2k2 ≥ 1

1−γαk`
1−γ
k , (5.4)

and assume `k ≥ 2. Pick αk ,βk such that

αk+1 ≥ c5.1
(
αk log N

`k
+βk N 2γ−1),

βk+1 ≥ c5.1
(
αk`

1−2γ
k +βk log N

`k

)
.

(5.5)

By the induction hypothesis we can apply Lemma 5.1 with `= `k and q(m) = µ̄(v)

k (m). Then,

using (5.2),

µ(v)

k+1(m) ≤αk+1m−γ+ 1{m>`k }βk+1mγ−1 for all m ∈ [N ], (5.6)

showing that the induction can be carried forward up to the point where `k < 2, say in

step K . Summing (5.6) over m ≤ `k−1 and using (5.4) we obtain

µ(v)

k [`k −1] ≤ 1

1−γαk`
1−γ
k ≤ 6ε

π2k2 .

Hence the first two terms on the right hand side in (5.1) are together smaller than 2ε. It

remains to choose δ= δ(N ) as large as possible while ensuring that δ< K and

lim
N→∞

2δ∑
n=1

N∑
u=`n∗

µ(v)

n∗(u)µ(w)

n−n∗(u) = 0.

To this end assume that `k is the largest integer satisfying (5.4) and the parameters αk ,βk

are defined via equalities in (5.5). To establish lower bounds for the decay of `k we investi-

gate the growth of ηk := N
`k

> 0.

Going backwards through the definitions yields, that for an integer k ≥ 0 with k +1 < K

and if the right hand side is less or equal to
( N

3

)1−γ, one has

(
η−1

k+2 + 1
N

)γ−1 ≤ c2
5.1(k+2)2

k2 η
γ

k +2c2
5.1

(k+2)2

(k+1)2 η
1−γ
k+1 logηk+1.

In particular, it follows that K > k +2 in that case.
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It is easy to check inductively that for any solution of this system there exist constants

b,B > 0 (not depending on N ) such that,

ηk ≤ b exp
(
B

( γ
1−γ

) k
2

)
(5.7)

for k < K and, moreover, the right hand side exceeds
( N

3

)1−γ before step K . We now use (5.6)

to estimate

2δ∑
n=1

N∑
u=`k

µ(v)

n∗(u)µ(w)

n−n∗(u) ≤ 2
δ∑

k=1

N∑
u=`k

(
αk u−γ+βk uγ−1)2

≤ 4
2γ−1

δ∑
k=1

(
α2

k`
1−2γ
k +β2

k N 2γ−1)≤ 4
2γ−1 δ

(
α2
δ`

1−2γ
δ

+β2
δN 2γ−1).

Using (5.4) and (5.7) the first term in the last bracket can be estimated by

α2
δ`

1−2γ
δ

≤ (
δ−2 6ε

π2 (1−γ)
)2
`−1
δ ≤ ( 6ε

bπ2 (1−γ)
)2 1

Nδ4 exp
(
B

( γ
1−γ

) δ
2

)
.

Using equality in (5.5) we get βδ ≤ c5.1
(
αδ`

1−2γ
δ

+αδN 1−2γ log N
`δ

)
. Noting that the second

term of the sum on the right hand side is bounded by a multiple of the first, we find a con-

stant C1 > 0 such that β2
δ

N 2γ−1 ≤C1α
2
δ
`

1−2γ
δ

, and thus, for a suitable constant C2 > 0,

2δ∑
n=1

N∑
u=`k

µ(v)

n∗(u)µ(w)

n−n∗(u) ≤C2
1

Nδ3 exp
(
B

( γ
1−γ

) δ
2

)
.

Hence, for a suitable constant C > 0, choosing

δ≤ loglog N

log
√

γ
1−γ

−C

we obtain that the term we consider goes to zero as O((loglog N )−3). Note from (5.7) that

this choice also ensures that `δ ≥ 2. We have thus shown that

P
{
dN (v, w) ≤ 2δ

}≤ 2ε+O
(
(loglog N )−3),

whenever v, w ≥ `0 = dεNe, which implies the statement of Theorem 2.3.

5.2 Lower bounds for fitness models - proof of Theorem 2.5

In this section, we assume validity of Assumption 2.4 for some 1
2 < γ< 1 with a fixed constant

κ ≥ 1. Recall again the notation and framework from the introductory Section3.1.1. We

use the same approach as in the proof of Theorem 2.3 but now we have to consider the
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5.2. PROOF OF THEOREM 2.4

symmetric matrix PN := (p(m,n))m,n∈[N ] given by

p(m,n) := κm−γn−γN 2γ−1 for m,n ∈ [N ]. (5.8)

We obtain the following lemma, which is the analogue of Lemma 5.1.

Lemma 5.2. Suppose that 2 ≤ `≤ N and q : [N ] −→ 0,∞) satisfies

q(m) ≤ 1{m≥`} mγ−1`−γ, for all m ∈ [N ].

Then, for all m ∈ [N ],

qPN (m) ≤ κm−γNγ−1
( N

`

)γ
log N

`−1 .

Proof. By (5.8) and the assumption on q ,

qPN (m) =
N∑

i=1
q(i )p(i ,m) ≤ κm−γ`−γN 2γ−1

N∑
i=`

1
i ≤ κm−γ`−γN 2γ−1 log N

`−1 ,

which implies the statement of the lemma.

For fixed ε > 0 we first construct inductively a strictly decreasing sequence of integers

(`k ) by letting `0 = dεNe and defining `k+1 as the largest integer such that

κ

1−γ
(`k+1

N

)1−γ ≤ 6ε

π2(k +1)2

(
log N

`k−1

)−1
(`k

N

)γ
. (5.9)

We stop once we find `k ≤ 1, say in step K . Recall the definition and recursive formula forµ(v)

k

and let µ̄(v)

k (m) := 1{m≥`k }µ
(v)

k (m). Thenµ(v)

k+1(m) = µ̄(v)

k PN (m). We now show, for k = 1, . . . ,K−1,

that

µ(v)

k (m) ≤ κm−γNγ−1
( N

`k−1

)γ
log N

`k−1−1 ≤ m−γ`γ−1
k , for all m ∈ [N ]. (5.10)

Indeed, for k = 1 the statement follows from (5.8) and (5.9). We then continue by induction

using Lemma 5.2. Considering the truncated first moment estimate (3.2) for δ< K and our

choice of (`k )K
k=0, we obtain from (5.10) that

P
(

A(v)

k

)≤µ(v)

k [`k −1] ≤ κ

1−γ
(`k

N

)1−γ( N

`k−1

)γ
log N

`k−1−1 .

Hence (5.9) entails that
∑δ

k=1P
(

A(v)

k

) ≤ ε. The last step is to choose δ = δ(N ) as large as

possible while ensuring that δ< K and

2δ∑
n=1

N∑
u=`n∗

µ(v)

n∗(u)µ(w)

n−n∗(u) → 0 (5.11)

goes to zero as N →∞. By (5.10) this double sum can be bounded by a constant multiple of

N 2γ−2 ∑δ
k=1`

1−2γ
k . To verify (5.11) we have to bound the growth of the values ηk := N

`k
. The
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choice made in (5.9) implies, for k < K and if the right hand side is smaller than ( N
3 )1−γ, that

(
η−1

k+1 + 1
N

)γ−1 < π2κ
1−γ

(k+1)2

6ε η
γ

k log(2ηk ), for k ≥ 0.

In particular, one has k +1 < K in that case.

From this it is straightforward to verify inductively the existence of constants b,B > 0,

which only depend on ε,κ and γ, such that

ηk ≤ b exp
(
B

( γ
1−γ

)k
)
, for k < K ,

and, moreover, the right hand side exceeds ( N
3 )1−γ before step K . Hence, we may choose a

suitable constant C > 0 such that for

δ≤ loglog N

log( γ
1−γ )

−C

we have `δ ≥ 2. To complete the proof, we note that

N 2γ−2
δ∑

k=1
`

1−2γ
k ≤ 1

N

δ∑
k=1

η
2γ−1
k ≤ δb N

B
( γ

1−γ
)−C−1

,

which implies convergence in (5.11) when C is chosen large enough.

5.3 Upper bounds for preferential attachment networks - proof of

Theorem 2.6

The proof will encompass three steps: a local exploration around the randomly chosen ver-

tices, connection of successive layers of high degree vertices in the core using 1-connectors

and a coupling to a classical random graph for the vertices of highest degree. The proof

is a variation of the argument in [DHH10, Section 3] for the affine preferential attachment

model, the sharper bound featured in Theorem 2.6 results from our ability to identify (and

work with) the INT as the weak local limit of the graph.

For convenience, we work in the graph G2N , and we thus use ε-connectors with ε = 1.

In the case of an affine attachment rule f (k) = γk +β all calculations become completely

explicit. For the remainder of this section, ε> 0 is a fixed but arbitrary small parameter, not

to be confused with parameter for the connectors which equals 1 throughout. Depending

on ε and γ, we will parametrise a sequence of layers N (k), k ∈N0, of high degree vertices in

the network. For this purpose, we fix a strictly increasing sequence u = (uk )∞k=0 of positive

integers, prescribing the minimum degrees of the vertices in those layers.
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Definition 5.3. Let

u0 = u0(γ,ε) = min{n ∈N : logn ≥ a(γ,ε)}, (5.12)

where

a(γ,ε) = γ
( γ

1−γ −1
)
(log2+γEM)+

∞∑
j=0

( γ

1−γ
)− j+1

(loglog( j +3)+ c(γ,ε)), (5.13)

and

c(γ,ε) = γ

1−γ log
8−

4log ε
π2

log2

γσq(γ) , (5.14)

where σ = σ4.34(γ,1) = ξ∗+3
4 − 1 and q(γ) = q4.35( f ,1) > 0 only depend on γ. Now define

inductively for k ≥ 0,

uk+1 = u
γ

1−γ
k

(
log(k +3)

)− γ

1−γ e−c(γ,ε). (5.15)

The choice of u is rather technical, but has some useful implications which we collect

for later reference.

Lemma 5.4 (Properties of u). The definition of u implies that

(i) we have
uk+1

uk+2
≤ 2−γe−γEMγ, for all k ≥ 0;

(ii) for all k ≥ 0,

exp
(
− γσq(γ)

4 uk u
1− 1

γ

k+1

)
≤ 1

(k +3)2

6ε

π2 ; (5.16)

(iii) there exists a constant C > 0 such that for

L = L(N ) = min
{

k ∈N : uk ≥ 2

√
Nγ

log N

}
(5.17)

and every N ∈N,

L ≤ loglog N

log γ
1−γ

+C . (5.18)

Proof. For ease of notation we write ηk = loguk . The recursion (5.15) implies that

ηk+1 =
γ

1−γηk −
( γ

1−γ loglog(k +3)+ c(γ,ε)
)
,

and thus

ηk =
( γ

1−γ
)k(

η0 −
k−1∑
j=0

( γ

1−γ
)− j

(loglog( j +3)+ c(γ,ε))
)
. (5.19)

Therefore

∆ηk ≥
( γ

1−γ
)k[( γ

1−γ −1
)
η0 −

k−1∑
j=0

( γ

1−γ
)− j+1

(loglog( j +3)+ c(γ,ε))
]
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and (5.13) implies that

−∆ηk ≤−γ(log2+γEM)
( γ

1−γ
)k

and the latter term is maximal for k = 0. The assertion (i) now follows from the observation

that

−∆ηk ≤−γ(log2+γEM)

if and only if
uk

uk+1
≤ 2−γe−γEMγ.

Furthermore, (ii) is equivalent to demanding that

uk+1 ≤ u
γ

1−γ
k

( γσq(γ)

8log(k +3)−4log 6ε
π2

) γ

1−γ
,

which is satisfied for all k by the choice of c(γ,ε) in (5.14), as

e−c(γ,ε) =
(
γσq(γ)

8−4
log ε

π2

log2

) γ

1−γ
≤

(
γσq(γ)

8−4
log ε

π2

log(k+3)

) γ

1−γ
, for all k ∈N.

Finally, for (iii), note that (5.19) implies that ηk ≥ log2+ g0
( γ

1−γ
)k for some g0 > 0 and all

k ≥ k0, where k0 does only depend on γ and ε. Thus, if

k ≥ loglog N

log γ
1−γ

+
log

( γ
2g0

− loglog N
2g0 log N

)
log γ

1−γ

and N sufficiently large,

ηk ≥ log2+ γ

2
log N − 1

2
loglog N

which implies the statement.

The sequence u is now utilised to split the high degree vertices into layers.

Definition 5.5. The k-core of G2N is given by

K (k)

N = {i ∈ [N ] : EZ [i , N ] ≥ uk }, for k ≥ 0.

For k = 0 we just speak of the extended core. Let furthermore N (k) =K (k) \K (k+1).

The size of the layers plays a role in the calculations below, we therefore derive some

rough bounds using the inverse of ξ(γ)(·, N ).

Lemma 5.6 (Size of layers). For all N (k) ⊂V (G2N ) such that N (k+1) 6= ;, we have

#N (k) ≥ N (u
− 1
γ

k −eγEM u
− 1
γ

k+1).
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Proof. Let ν denote the inverse of the discrete function ξ(γ)(·, N ), then Lemma 4.6 entails

that, for all y ∈ Y = {ξ(γ)(i , N ), i ∈ [N ]},

Nu
− 1
γ

k ≤ ν(y) ≤ eγEM Nu
− 1
γ

k+1

and therefore

#N (k) = #{ν(y), y ∈ Y ∩ [uk ,uk+1)} ≥ N y− 1
γ −eγEM N y− 1

γ .

The following lemma is a straightforward consequence of the Payley-Zygmund inequal-

ity.

Lemma 5.7. Let f (k) = γk +β, where β,γ ∈ (0,1) and recall that ξ∗ = infk∈N ξ(γ)(k,2k) ≥ 2γ.

The following hold for all choices n > m ∈N :

(i) we have

P{Z [m,n] ≥ϑEZ [m,n]} ≥ (1−ϑ)2 β2

β2 +γ , for all 0 ≤ϑ< 1;

(ii) we have

P{Z [m,2n]−Z [m,n] ≥ϑZ [m,n]} ≥
(
1− 1+ϑ

xi∗
)2

for all 0 ≤ϑ< ξ∗−1.

Proof. From Lemma 4.7 we can infer that

Ek f (Z [m,n]) = f (k)ξ(γ)(m,n) (5.20)

and that
E f (Z [m,n])2 = ( f (k)2 +γ)ξ(2γ)(m,n)−γ f (k)ξ(γ)(m,n)

≤ ( f (k)2 +γ)ξ(2γ)(m,n),
(5.21)

and therefore an application of the Payley-Zygmund inequality and Lemma 4.7 yields

P{ f (Z [m,n]) ≥ϑE f (Z [m,n])} ≥ (1−ϑ)2 (E f (Z [m,n]))2

E f (Z [m,n])2

≥ (1−ϑ)2 β2ξ(γ)(m,n)2

β2 +γξ(2γ)(m,n)
≥ (1−ϑ)2 β2

β2 +γ ,

which proves statement (i), since f (Z [m,n]) ≥ϑE f (Z [m,n]) if Z [m,n] ≥ϑEZ [m,n].

For (ii), note that for k ∈N0,

E
[ f (Z [m,2n])

f (Z [m,n])
;Z [m,n] = k

]
= Ek f (Z [n,2n])

f (k)
P{Z [m,n] = k} = ξ(γ)(n,2n)P{Z [m,n] = k},
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by using the Markov property of the evolution at time n and (5.20). Thus

E
f (Z [m,2n])

f (Z [m,n])
=

∞∑
k=0

E
[ f (Z [m,2n])

f (Z [m,n])
;Z [m,n] = k

]
= ξ(γ)(n,2n).

By a similar argument, using the inequality (5.21), we also obtain

E
( f (Z [m,2n])

f (Z [m,n])

)2 ≤ ξ(2γ)(n,2n).

We also note that for (the linear interpolation of) affine f

f (xk) ≤ x f (k), for all x ≥ 1,

and together with one more application of the Payley-Zygmund inequality and Lemma 4.7

we can conclude the proof,

P{Z [m,2n]−Z [m,n] ≥ϑZ [m,n]} = P{Z [m,2n] ≥ (1+ϑ)Z z[m,n]}

= P{ f (Z [m,2n]) ≥ f ((1+ϑ)Z [m,n])}

≥P{ f (Z [m,2n]) ≥ (1+ϑ) f (Z [m,n])}

≥
(
1− 1+ϑ

ξ(γ)(n,2n)

)2 ξ(γ)(n,2n)2

ξ(2γ)(n,2n)
≥

(
1− 1+ϑ

ξ(γ)(n,2n)

)2
.

Definition 5.8. Recall that σ= ξ∗+3
4 −1. We call a vertex v ∈N (k) good if both Z [v, N ] ≥ 1

2 uk

and Z [v,2N ]−Z [v, N ] ≥σuk

Note that the definition of the layers is such that for sufficiently large k ≥ L, with L as in

Lemma 5.4, the good vertices in N (k) are in coreN .

The next step is to bound from below the probability that a vertex is good. Note also that

goodness of a vertex is a condition on the degree evolution, and the corresponding events

are therefore independent.

Lemma 5.9. The probability that v ∈ N (k) is good is uniformly bounded away from 0, i.e.

there exists q(γ) > 0 such that

P{v is good } ≥ q(γ), for all N ∈N,k with N (k) 6= ; and v ∈N (k).
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Proof. We calculate

P{v is good } = ∑
x≥ 1

2 uk

P{Z [v,2N ]−Z [v, N ] ≥σuk ,Z [v, N ] = x}

= ∑
x≥ 1

2 uk

P
{
Z [v,2N ] ≥

(
1+ σuk

Z [v, N ]

)
Z [v, N ]

∣∣∣Z [v, N ] = x
}
P{Z [v, N ] = x}

= ∑
x≥ 1

2 uk

Px
{
Z [v,2N ] ≥

(
1+ σuk

x

)
x
}
P{Z [v, N ] = x}

≥ ∑
x≥ 1

2 uk

Px
{

f (Z [v,2N ]) ≥
(
1+ σuk

x

)
f (x)

}
P{Z [v, N ] = x}

≥ ∑
x≥ 1

2 uk

(
1− 1+ σuk

x

ξ(γ)(N ,2N )

)ξ(γ)(N ,2N )2

ξ(2γ)(N ,2N )
P{Z [v, N ] = x}

using the Markov property and the Payley-Zygmund inequality. The restriction x ≥ 1
2 uk and

the choice of σ imply the result.

We are now set up to begin the main part of the proof. We determine especially short

paths connecting good vertices in the extended core. The following proposition states that

the distance between a uniformly chosen initial vertex V ∈ C2N and a good vertex in the

extended core is with high probability bounded. The proof relies in part on the coupling

of the exploration procedures detailed in Sections 4.3 and 4.4 and the properties of the INT

mentioned in Section 1.3.3.

Proposition 5.10 (Distance of periphery and extended core). Let V ∈ G2N be a uniformly

chosen random vertex. Then, for every ε> 0, there is a K = K (ε) ∈N such that

P{C K
2N (V ) contains a good vertex} ≥ p( f )−ε.

Proof. We use the couplings of Chapter 4 to be able to work with the INT. We fix some nota-

tion first by defining the sequence of events

Ek = E (V )

k = {the coupling fails before step k +1} for k ∈N.

Now observe that the sets N (k) have disjoint pre-images under the projection π2N and that

the goodness of a vertex in the network is (under the coupling) equivalent to a condition on

the number and positions of offspring of the corresponding particle in T. We may thus also

speak of good particles in the INT, but recall that this definition depends on ε. We are only

interested in the situation where the coupling succeeds. For any k ∈ N, let Tk denote the
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5.3. PROOF OF THEOREM 2.5

first k vertices explored in T, then

P{C K
2N (V ) contains a good vertex}

≥ P{C K
2N (V ) contains a good vertex|EC

K }−P(EK )

= P{TK contains a good particle}−P(EK )

≥ p( f )P{TK contains a good particle|#T=∞}−P(EK ).

(5.22)

We first establish that the INT survives if and only if it contains infinitely many particles left

of any bound −L on the negative real line, i.e.

#T=∞ if and only if ∀L <∞ : #(T∩ (−∞,−L])) =∞ almost surely. (5.23)

Only one implication is non-trivial. To see that it holds, we look at the killed BRW generating

T and note that, almost surely, every generation has only finitely many particles. Assume

that the walk survives but has only finitely many particles left of −L. In this case there must

be a generation R <∞ after which no offspring in (−∞,−L] is produced. Survival implies

that there is at least one particle xi in every generation R + i for all i ∈ N. Each of those

particles has a positive probability pi ≥ p ≥ µ((−∞,−L) > 0 to produce offspring left of −L,

where µ denotes the intensity measure of the Poisson offspring distribution to the left. Thus

P{no xi has offspring in (−∞,−L])} ≤ lim
I→∞

(1−p)I = 0.

Thus R =∞ almost surely which contradicts our assumption.

We can use (5.23) now to show that for all δ> 0, there is K (δ) such that

P{TK (δ) contains a good particle |#T=∞} ≥ 1−δ. (5.24)

Let y = y(ε,γ) < 0 denote the least upper bound of π−1
2N (N 0). For m ∈N, set

pm,k =P{Tk contains a good particle |#Tk ∩ (−∞, y) ≥ m, #T=∞}.

By (5.23) we can fix for every m some k(m) ∈N such that

P{#Tk(m) ∩ (−∞, y] ≥ m|#T=∞} ≥ 1− δ

2
.

Every particle left of y has a small positive probability, uniformly bounded from below by

some q > 0, to be good, thus

M = M(δ) = min
{

m ∈N : pm,k(m) ≥ 1− δ

2

}
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5.3. PROOF OF THEOREM 2.5

is finite. Combining these estimates yields

P{Tk(M) contains a good particle|#T=∞}

≥ pM ,k(M)P{#Tk(M) ∩ (−∞, y) ≥ M |#T=∞}

≥ (1− δ

2
)2 ≥ 1−δ,

and setting K (δ) = k(M) shows (5.24). Setting δ= ε
2p( f ) in (5.24), we obtain from (5.22) that

P{C K
2N (V ) contains a good vertex}

≥ p( f )(1−δ)−P{EC
K } ≥ p( f )− ε

2
− ε

2
,

if N is sufficiently large, since K does not depend on N and we can use the coupling result

Proposition 4.24.

Remark 5.11. In this proof, we could also have used the version of the coupling lemma in

[DM13]. In fact, the much weaker demand that C2N (V ) has T as its local weak limit is suffi-

cient.

At the time when the successful exploration stops, the score of the explored part of the

graph is at most finite (i.e. it does can be bounded independently of N ). This is useful for

the remainder of the proof since it implies that conditioning on the information obtained

from the degree evolutions during the initial part of the exploration does not have a large

effect on the connection probabilities in the extended core of the network.

Lemma 5.12. Let K ∈ N. Conditional on successful completion of the initial exploration in

step K ∈N, for every ε> 0, there exists S(ε) such that

P{ξ(C K (V )) ≤ S(ε)} ≥ 1− ε

2
.

Proof. The coupling succeeds, so we can argue using the INT. Denote by TK the explored

part of the INT corresponding to C K
2N (V ). We can first find a large constant M(K ) such that

P{#TK ≤ M(K )} ≥ 1− ε

2

and then fix a position y = y(M(K )) on the negative real line such that

P{TK contains a particle left of y |#TK ≤ M(K )} ≤ ε

2
.
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5.3. PROOF OF THEOREM 2.5

Conditional on success of the coupling, we therefore get by applying Markov’s inequality

P{ξ(C K (V )) ≥ S}

≤P{ξ(C K (V )) ≥ S, #TK ≤ M(K ), TK contains a particle left of y}+ ε

2

≤P{ξ(C K (V )) ≥ S| #TK ≤ M(K ), TK contains a particle left of y}+ ε

2

≤ E{ξ(C K (V ))| #TK ≤ M(K ), TK contains a particle left of y}

S
+ ε

2

≤ M(K )ξ(π2N (y(M(K ))))

S
+ ε

2
.

The assertion is obtained by choosing S large enough, since ξ(π2N (y(M(K )))) can be uni-

formly bounded in N .

We shall now see that along the good vertices, we can find with high probability a short

path into the core.

Proposition 5.13 (Distance of the extended core to the core). Let ε > 0 and assume that

there is a good vertex W ∈ K (0)

N in which the local exploration around V ends after at most

K (ε) steps. There is a constant C =C (ε,γ) <∞ such that

P
{

d2N (W,coreN ) > 2
loglog N

log γ
1−γ

+C
}
≤ ε,

if N is sufficiently large.

Proof. We aim to construct a path from W to the core using 1-connectors to successively

connect a good vertex in layer N (k) to a good vertex in layer N (k+1). This means every con-

nection step corresponds to 2 edges in the constructed path. We start at step k = 0 with

the good vertex W , we can assume that W ∈ N (0) otherwise we reduce the total number of

steps which only makes the path shorter. Assume the procedure has succeeded up to step

k, i.e. we have constructed a path of length 2k to a good vertex v ∈N (k). Let Fk denote the

σ-algebra generated by all degree evolutions used in the construction so far and let C0(V )

denote the part of the neighbourhood around V explored at the time at which W was dis-

covered. Let furthermore w ∈ N (k+1) be any vertex and j ∈ {N +1, . . . ,2N } with ∆Z [v, j ] = 1

be the potential next vertices on the constructed path. Denote byΓ>(w) the immediate right

neighbours of w and note that conditional on Fk the probability of the event

E0 = E (w)

0 = {Γ>(w)∩C0(V ) =;}

can be made larger than 1− q(γ)
2 uniformly in w , since ξ(C0(V )) ≤ S(ε),

P{E0} ≥ 1− ∑
i∈C0(V )

E f (Z [w, i ])

i
≥ 1− ξ(C0(V ))

(2N )1−γ ,
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5.3. PROOF OF THEOREM 2.5

using that 1−γ< γ and recalling that in the affine case ξ(w, i ) = EZ [w, i ]. We are interested

in the probability that j is connected to w and that w is good.

P{∆Z [w, j ] = 1, w is good|Fk }

≥ (P{w is good}−P{EC
0 })P{∆Z [w, j ] = 1|w is good}

≥ q(γ)

2
P{∆Z [w, j ] = 1|w is good},

if N is sufficiently large, since the indegree evolution Z [w, ·] is independent of Fk and by

Lemma 5.9. Furthermore,

P{∆Z [w, j ] = 1|w is good} ≥P{∆Z [w, j ] = 1} ≥ f (uk+1)

2N

and this bound holds independently of the status of all other potential 1-connectors be-

tween v and N (k+1). Using this independence we can get a bound on the probability that we

fail to connect in the next step by estimating the probability that there is no 1-connector to

a good vertex in N (k+1) among the right neighbours Γ>(v) of v .

P{Ø good w ∈N (k+1) : w
1↔ v} ≤

(
1−q(γ)

f (uk+1)

2N

)σuk #N (k+1)

≤ exp
(
−q(γ)

f (uk+1)

2
σuk (u

− 1
γ

k+1 −eγEM u
− 1
γ

k+2)
)
,

using first the goodness of v and then Lemma 5.6. Applying now first f (k) ≥ γk and then

Lemma 5.4 (i) and (ii), we can bound the last expression further

exp
(
−q(γ)

f (uk+1)

2
σuk

(
u
− 1
γ

k+1 −eγEM u
− 1
γ

k+2

))≤ exp
(
− q(γ)γσ

2
uk u

1− 1
γ

k+1

(
1−eγEM

(uk +1

uk+2

) 1
γ
))

≤ exp
(− γσq(γ)

4 uk u
1− 1

γ

k+1

)≤ 6ε
π2

1

(k +3)2 .

The cumulative probability of failure can be bounded by summing up the right hand side

for every stage k,

6ε
π2

∞∑
k=0

1

(k +3)2 < 6ε
π2

∞∑
k=0

1

k2 = ε

and the length of the path featured in the proposition follows from Lemma 5.4 (iii).

Proof of Theorem 2.6. We fix ε> 0. Let U ,V ∈C2N be uniformly chosen vertices, then Propo-

sition 5.10 implies that there is a large number K = K (ε) such that

P{C K
2N (V ) and C K

2N (U ) contain good W (v),W (w) ∈K (0)

N } ≥ 1−ε, if N is sufficiently large.

By Proposition 5.13, both W (v) and W (w) can be connected to coreN in less than 2 loglog N
log γ

1−γ
+

C (ε,γ) steps with probability exceeding 1−2ε, if N is sufficiently large. Finally, the diameter

diam2N (coreN ) is bounded by a constant D = D(γ) with probability at least 1−ε by Proposi-
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tion 4.36. Combining all these bounds, we arrive at

P
{

d2N (U ,V ) > 4
loglog N

log γ
1−γ

+2C +2K +D
}
≤ 4ε, if N is sufficiently large,

and thus

d2N (U ,V ) ≤ 4
loglog N

log γ
1−γ

+O(1) with high probability.

5.4 Proof of Theorem I

Proof. We start with the lower bound. First note that, for v < w ∈ [N ],

P{v ↔ w} = E f (Z [v, w −1])

w −1
. (5.25)

An estimate for the expectation can be obtained by fixing first ε > 0 and then using the

concavity of f to fix k such that, for all n ≥ k, we have f (n) ≤ f (k)+ (γ+ε)(n −k). Note that

E f (Z [v, w −1]) ≤ Ek f (Z [v, w −1]). Lemmas 4.7(iv) and 4.6 now imply that

E f (Z [v, w −1]) ≤ f (k)ξ(γ+ε)(v, w) ≤ f (k)C4.6

( w

v

)γ+ε =C1

( w

v

)γ+ε
, (5.26)

For the constant C1 = f (k)C4.6. We now use (5.26) to verify Assumption 2.2 for γ+ε. For v <
w ∈ [N ], all events {v ↔ w} with different values of v are independent. Hence P{v0 ↔ ··· ↔
vn} can be decomposed into factors of the form P{v j−1 ↔ v j ↔ v j+1} with v j < v j−1, v j+1

and factors of the form P{v j−1 ↔ v j } for the remaining edges. It remains to estimate factors

of the latter form. We may assume v < u < w and get

P{u ↔ v ↔ w} = E[ f (Z [v,u −1]) f (Z [v, w −1])]

(u −1)(w −1)
.

Arguing as in the derivation of (5.26) we get, for a suitable constant C2 > 0,

E
[

f (Z [v, w −1]) |Z [v,u −1] = k
]≤C2 f (k)wγ+εu−γ−ε.

Hence

E
[

f (Z [v,u −1]) f (Z [v, w −1])
]≤C2E

[
f (Z [v,u −1])2]wγ+εu−γ−ε,

and, using a similar argument as above, we obtain C3 > 0 such that

E
[

f (Z [v,u −1])2]≤C3u2γ+εv−2γ−ε.
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Summarising, we obtain a constant C4 > 0 such that

P{u ↔ v ↔ w} ≤C4uγ−1+εv2γ−εwγ−1+ε,

as required for Assumption 2.2. Since ε was chosen arbitrarily, Theorem 2.3 implies that

dN (V ,W ) ≥ (4+o(1))
loglog N

log γ
1−γ

, with high probability as N →∞.

If f is affine, we can verify Assumption 2.2 directly for γ, and then Theorem 2.3 yields a

deviation of constant order, as stated in Theorem I.

The upper bound in the affine case is Theorem 2.6. For general concave f , we note that

f (k) ≥ f (0)+γk = f̄ (k)

for all k and thus the stochastic domination of Observation 1.7 yields that GN and ḠN can

be coupled such that the distances in GN are bounded by the distances in ḠN . Applying

Theorem 2.6 to ḠN then yields the bound.
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Chapter 6

Typical distances for γ= 1
2

This chapter is based on recent joint work with Steffen Dereich and Peter Mörters and the

results have not yet been published elsewhere.

In this chapter we combine the techniques provided in Chapter 4 with some more specific

calculations to prove Theorem II. First, in Propositions 6.1 and 6.2, we derive bounds for

the expected degrees of the vertices in the network given the particular form of attachment

rule featured in Theorem II. Then we adapt the second moment discussion of Section 4.5

from the BRW setting to preferential attachment graphs in Section 6.2. Finally, we prove

Theorem II in Section 6.3 by combining all these results with the exploration and sprinkling

techniques of Chapter 4.

The proof works along the following lines: We work outwards from the randomly cho-

sen vertices U ,V using a depth first exploration to determine whether they lie in the giant

component and to accumulate a high initial score. We then carry on with the explorations

but move one step away from the tree picture and allow some circles in the explored part

of the graph, using a breadth first exploration. We show that the score of the exploration

grows at a rate which implies Theorem II until it reaches a certain threshold at which we

stop exploring. Finally, we use ε-connectors to show that the distance between the explored

parts of the graph is negligible, in particular we use Proposition 4.36(ii), i.e. that the set of

old vertices in GN has a small diameter, if the parameter α in Theorem II is strictly positive.

If α = 0, we argue slightly differently with the aim to show that the (explored) components

to which the initial vertices belong are directly connected via ε-connectors.

The following section provides the bounds for the edge density around a given vertex,

which are needed to show that the score grows at the rate postulated in Theorem II.
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6.1. MOMENT BOUNDS

6.1 Moment bounds for f (k) = 1
2k + αk

2logk +o
(

k
(logk)1+η

)
Below we derive lower and upper bounds for Ek f (Z [m,n]). For notational convenience,

denote f (k) = 1
2 k + g (k), where g satisfies

g (k) = α

2

k

logk
+o

( k

(logk)1+η
)
, for some η> 0, (6.1)

where α≥ 0 is the parameter of interest. In the linear setting, the score of a vertex is propor-

tional to its expected degree, recall that, by Lemma 4.7, for n > m ∈ [N ], and fixed k,

ξ(n,m) = Ek f (Z [m,n])

f (k)
=

n−1∏
i=m

(
1+ 1

2i

)
≈

√
n

m
.

Recall that, for the deviation from the linear case, we use the notation

ψk (m,n) = Ek f (Z [m,n])

ξ(m,n)
.

Determining the order of ψk will be the first step towards the proof of Theorem II.

Proposition 6.1 (First and second moment upper bound). Let f be an attachment rule with

f (k) = 1
2 k + g (k), where g : N0 −→ (0,∞) is concave and satisfies (6.1). Then, for any k ∈ N,

there exists constant C (k),C ′(k) <∞ depending only on f and k, such that uniformly for all

pairs m,n ∈N with n ≥ m,

Ek f (Z [m,n]) ≤C (k)

√
n

m

(
log n

m ∨1
)α

and

Ek f (Z [m,n])2 ≤C ′(k)
n

m

(
log n

m ∨1
)2α.

Proposition 6.2 (First moment lower bound). Let f , g be as in Proposition 6.1. Then, for any

k ∈ N there exists a constant c > 0, only dependent on f , such that uniformly for all pairs

m,n ∈N with n > m,

Ek f (Z [m,n]) ≥ c

√
n

m

(
log n

m ∨1
)α.

To prove Propositions 6.1 and 6.2 we need two auxiliary statements, which are straight-

forward consequences of our restrictions on f .

Lemma 6.3. Let f be a concave attachment rule with γ= 1
2 . There is an integer K = K ( f ) > 0,

such that for all start times m ∈N and initial degrees k > K ∈N,

e∨
√

n

m
≤ Ek f (Z [m,n]) ≤ f (k)e∆ f (0)γEM

( n

m

)∆ f (0)
,

for all n ≥ m ∈N, where γEM denotes the Euler-Mascheroni constant.
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Proof. This is a corollary of Lemma 4.9. By concavity γ+ =∆ f (0) and thus the upper bound

follows from the upper bound there. For the lower bound, note that concavity implies that

γ− = γ= 1
2 and thus the lower bound in Lemma 4.9 yields

Ek f (Z [m,n]) ≥ f (k)

√
n

m
,

i.e. K ( f ) = min{k ∈N : f (k) > e} has the required property.

We next obtain bounds for the functionφ(x) =∑x−1
i=0

1
f (i ) featuring in Lemma 4.11 and its

inverse.

Lemma 6.4 (Bounds for φ). Let f satisfy condition (6.1) with α,η> 0. Then,

(i) the linear interpolation φ−1 :
[ 1

f (0) ,∞)−→ [0,∞) of the inverse of φ exists and is strictly

monotone, in particular, for x ≥ 1
f (0) and k ∈N,

φ−1(x) ≥ k, if x ≥φ(k);

(ii) there are constants c,C ∈ (0,∞), only depending on f , such that, for all k ∈N,

1

f (0)
∨ (

2log+ k −2α loglog+ k − c
)≤φ(k) ≤ 2log+(k −1)−2α loglog+(k −1)+C ,

where log+(k) = logk ∨1 and loglog+(k) = loglogk ∨1.

Proof. For (i) note, that the attachment rule f is positive and strictly increasing, which im-

plies that ∆φ= 1
f > 0 is strictly decreasing. Thus φ is concave and strictly increasing, hence

its inverse is well defined, convex, strictly increasing and

φ−1(x) = k, if x =
k−1∑
i=0

1

f (i )
,

and the claimed monotonicity is inherited by the linear interpolation.

To show (ii), we use our assumption on the asymptotics of g , to establish the existence

of k0 = k0( f ) > e2, such that, for all k > k0,

k

2
+ αk

2logk
− k

(logk)(1+η)
≤ f (k) ≤ k

2
+ αk

2logk
+ k

(logk)(1+η)
.

From these inequalities we can deduce that there is a constant C ′ > 0 and k1 > k0 such that

for all k ≥ k1

2

k
− 2α

k logk
− C ′

k(logk)1+η ≤ 1

f (k)
≤ 2

k
− 2α

k logk
+ C ′

k(logk)1+η . (6.2)
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We set Σ(η) = ∑∞
k=2

1
k(logk)1+η , then start with the lower bound in (ii). Summation over the

first inequality in (6.2) yields, for k > k1,

φ(k) =
k−1∑
i=0

1

f (i )
≥−C ′Σ(η)+

k1∑
i=0

1

f (i )
+2

k−1∑
i=k1

1

i
−2α

k−1∑
i=k1

1

i log i
,

in which we can bound the latter two sums by the integrals
∫ k−1

k0
s−1 ds and

∫ k
e (s log s)−1 ds

and we arrive at

φ(k) ≥ −C ′Σ(η)+
k1∑

i=0

1

f (i )
+2

∫ k−1

k1

1

s
ds −2α

∫ k

e

1

s log s
ds

= −C ′Σ(η)+
k0∑

i=0

1

f (i )
−2log

( k
k−1

)+2log
( k

k1

)−2α loglogk

≥ −C ′′+2logk −2α loglogk,

for all k > k1 and a large constant C ′′ > 0. The desired bound now holds for all k, since φ is

bounded from below by 1
f (0) and increasing.

For the upper bound of (ii) we proceed in a similar fashion and sum over the second

inequality in (6.2), to obtain for all k > k1 and some constant D > 0,

φ(k) ≤ D +2
k−1∑
i=k1

1

i
−2α

k−1∑
i=k1

1

i log i
.

This fact, together with an approximation by integrals for the remaining sums similar to the

above yields the existence of a constant D ′ > 0 such that

φ(k) ≤ D ′+2
∫ k−1

k1

1

s
ds −2α

∫ k−1

k1

1

s log s
ds

for all k > k1. Thus we can find another constant C > 0, depending only on D ′ and k1, such

that

φ(k) ≤C +2(log(k −1)∨1)−2α(loglog(k −1)∨1)

for all k ∈N.

We now combine these results to derive the desired bounds for Ek f (Z [m,n]).

Proof of Proposition 6.1. We start with the first moment. Since f is non-decreasing, stochas-

tic domination implies that it is sufficient to derive the bound for sufficiently large k > k1, as

Ek f (Z [m,n]) ≤ Ek1 f (Z [m,n]) for all k ≤ k1 and m ≤ n ∈N. Hence we are allowed to choose

k1 = k1( f ) large enough to make use of the asymptotic properties of f . We will use this to im-

plement another simplification, namely that we are allowed to make explicit assumptions

on the shape of g . To this end, first define k1 to be the smallest integer larger than e2 such
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that both

g (k) < αk

2logk
+ k

2(logk)1+η , for all k ≥ k1, (6.3)

and

Ek1 f (Z [m,n]) ≥
√

n

m
∨e (6.4)

hold. The existence of such k1 is entailed by the assumption on g and Lemma 6.3. Let now

f̄ be given by

f̄ (k) =
 f (k), if k ≤ k1,

1
2 k + αk

2logk + k
2(logk)1+η , if k > k1;

then (6.3) implies that f̄ ≥ f on N0. Denoting by Z̄ [m, ·] the degree evolutions correspond-

ing to the jump rate f̄ , another stochastic domination argument yields

Ek f (Z [m,n]) ≤ Ek f̄ (Z̄ [m,n]) for all k ∈N, m ≤ n ∈N.

For the attachment rule f̄ we are now able to perform explicit calculations and obtain the

desired bound, which will also hold for f . Thus, we can assume without loss of generality

for the remainder of the argument that f = f̄ .

We observe that for all k > k1,

∆ f (k) ≤ 1

2
+ α

2logk
+ 1

2(logk)1+η ,

which implies the existence of k0 > k1 such that for all k ≥ k0

∆ f (k) ≤ 1

2
+ α

2log f (k)
+ 1

(log f (k))1+η . (6.5)

We are now ready to formulate the recursion argument which will produce the explicit upper

bound. Let k ≥ k0 be fixed and let m ∈N. We can decompose

f (Z [m,n]) = f (k)+
n−1∑
s=m

f (Z [m, s])

s
∆ f (Z [m, s])+M f

m(n),

where M f
m is the martingale of Lemma 4.4. Taking expectations we obtain the relation

Ek f (Z [m,n +1]) = Ek f (Z [m,n])+Ek f (Z [m,n])∆ f (Z [m,n])

n
. (6.6)

Since k ≥ k0 > k1 we can apply (6.5) to obtain

Ek f (Z [m,n])∆ f (Z [m,n]) ≤ 1

2
Ek f (Z [m,n])+ α

2
Ek f (Z [m,n])

log f (Z [m,n])
+Ek f (Z [m,n])

(logZ [m,n])1+η .

The functions x 7→ x
(log x)1+s , s ≥ 0, are concave on (e2,∞), thus we can apply Jensen’s inequal-
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ity to the second and third term in the sum and obtain

Ek f (Z [m,n])∆ f (Z [m,n]) ≤ 1

2
Ek f (Z [m,n])+ α

2

Ek f (Z [m,n])

logEk f (Z [m,n])
+ Ek f (Z [m,n])

(logEk f (Z [m,n]))1+η .

Applying this bound to the right hand side of (6.6) yields, after division by Ek f (Z [m,n]),

Ek f (Z [m,n +1])

Ek f (Z [m,n])
≤ 1+ 1

2n
+ α

2n logEk f (Z [m,n])
+ 1

n(logEk f (Z [m,n]))1+η . (6.7)

We can apply (6.4) to bound the denominator in last two terms from below by n
(
1∨ log n

m

)
and n

(
1∨ log n

m

)1+η, respectively, to obtain

Ek f (Z [m,n +1])

Ek f (Z [m,n])
≤ 1+ 1

2n
+ α

n(1∨ log n
m )

+ 21+η

n(1∨ log n
m )1+η . (6.8)

Iterating both sides of (6.8) in n then yields

Ek f (Z [m,n]) ≤ f (k)
n−1∏
i=m

(
1+ 1

2i
+ α

i (1∨ log i
m )

+ 21+η

i (1∨ log i
m )1+η

)
and using the inequality 1+x ≤ ex we get

Ek f (Z [m,n]) ≤ f (k)exp
( n−1∑

i=m

1

2i
+

n−1∑
i=m

α

i (1∨ log i
m )

+
n−1∑
i=m

21+η

i (1∨ log i
m )1+η

)
,

which implies

Ek f (Z [m,n]) ≤ f (k)exp
[1

2

n−1∑
i=m

1

i
+α

( deme−1∑
i=m

1

i
+

n−1∑
i=deme

1

i log i
m

)]
×exp

( deme−1∑
i=m

21+η

i
+

n−1∑
i=deme

21+η

i (log i
m )1+η

)
.

(6.9)

The exponential of 1
2

∑n−1
i=m

1
i sum is always less than C ′

√
n
m , for some constant C ′. For the

second expression in the exponential we observe that
∑deme−1

i=m
1

i k ≤ 11
6k and for some absolute

constant C ′′,

n−1∑
i=deme

1

i log i
m

≤
∫ n

em

1
m

s
m log s

m

ds +C ′′ =
∫ n

m

e

1

x log x
dx +C ′′ = loglog n

m +C ′′.

Finally, the second factor on the right hand side of (6.9) is bounded by a constant D > 0, due

to the convergence of the series
∑∞

i=2
1

i (log i )1+η . Applying all these estimates to (6.9) we arrive

at

EkZ [m,n] ≤ f (k)e
11α
6k +C ′′

C ′
√

n

m
D

(
1∨ log n

m

)α,
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proving the desired bound for C (k, f ) = f (k)e
11α
6k +C ′′

C ′D.

It remains to deduce the bound for the second moment. We apply the same argument

as before, but apply Lemma 4.4 with the function f 2, i.e. we obtain

Ek f (Z [m,n])2 = f (k)2 +
n−1∑
s=m

Ek f (Z [m, s])∆ f (Z [m, s])2

s
.

Since f is non decreasing, we find that ∆ f (k)2 ≤ f (k +1)2∆ f (k) and thus

Ek f (Z [m,n])2 ≤ f (k)2 +
n−1∑
s=m

Ek 2 f (Z [m, s]+1)2∆ f (Z [m, s])

s
= E(m,n).

The function E(m,n) can be bounded in the same fashion as the first moment, we obtain

E(m,n +1)

E(m,n)
≤ 1+ 1

n
+ 2α

n(1∨ log n
m )

+ 22+η

n(1∨ log n
m )1+η ,

which implies, as above, that

E(m,n) ≤C ′(k)
n

m

(
log n

m

)2α,

and therefore the second moment bound holds.

Finally we can derive the lower bound.

Proof of Proposition 6.2. First we consider the case α= 0, in which the assertion follows di-

rectly from Lemma 6.3. Now assumeα> 0. We focus on the lower bound for k = 0 and begin

with the observation that the concavity condition implies that

E f (Z [m,n]) ≥ f (0)+ 1

2
EZ [m,n]. (6.10)

We will use the bounds onφ derived in Lemma 6.4, to derive bounds for EZ [m,n], based on

the fact (see Lemma 4.11) that

φ(Z [m,n]) =
n−1∑
i=m

1

i
+Mn ,

where (Mn)n≥m is a martingale. Clearly,

Eφ(Z [m,n]) =
n−1∑
i=m

1

i
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and, using concavity of φ, Jensen’s inequality implies that

φ(EZ [m,n]) ≥
n−1∑
i=m

1

i
,

which yields, since φ is strictly increasing,

EZ [m,n] ≥φ−1
( n−1∑

i=m

1

i

)
, (6.11)

in which, as before, we use the notation φ−1 to represent the strictly increasing linear inter-

polation of the inverse of φ. We wish to use Lemma 6.4(i) to establish a lower bound for the

right hand side, i.e. it is sufficient to show

n−1∑
i=m

1

i
≥φ(K (m,n)),

for a suitably chosen K (m,n). By Lemma 6.4(ii), we can determine a constant C6.4 such that

φ(k) ≤C6.4 +2log(k −1)−2α loglog(k −1),

for all k ∈N. Let

K (m,n) =
⌈√

n

m

(
log n

m

)α⌉
,

then

φ(K (m,n)) ≤C6.4 + log n
m +2α loglog n

m −2α log
(1

2 log n
m +α loglog n

m

)
≤C6.4 + log n

m +2α loglog n
m −2α log

(1
2 log n

m

)
≤2α log2+C6.4 + log n

m

≤C ′+
n−1∑
i=m

1
i ,

(6.12)

where C ′ is a constant depending only on f . Thus, (6.12) implies that
∑n−1

i=m
1
i ≥ φ(K (m,n))

and therefore

φ−1
( n−1∑

i=m

1
i

)
≥

⌈√
n

m

(
log n

m

)α⌉
≥

√
n

m

(
log n

m

)α.

Combining this with (6.10) and (6.11) yields

E f (Z [m,n]) ≥ f (0)+ 1
2

√
n
m

(
log n

m

)α, (6.13)

for all n,m with n > me. Hence the desired bound holds with c = f (0)
eα for all m > n. The

bound for k > 0 follows by stochastic domination.

The bounds obtained will now be used to estimate the growth of the score of the explo-

ration.

100



6.2. TRUNCATED SECOND MOMENTS

6.2 Truncated second moments

In this section we study a particular phase of the network exploration scheme in GN . We

assume that we have already determined (up to a small error) in the initial Phase (I) of local

exploration around a finite number V1,V2, . . . ,V j of initial vertices, whether these initial ver-

tices are contained in CN . We therefore start with an initial subset Γ0 ⊂GN , which is a forest

with total score ξ(Γ0) ≥ s0, and corresponds to the explored part of the largest connected

component after local exploration around the typical vertices V1,V2, . . . ,V j . By E0 we denote

the The σ-field generated by the exploration during Phase (I). Note that here the parameter

s0 controls the probability that the initial vertices are not in CN and is independent of N .

Phase (II) now consists of a truncated breadth first exploration starting from Γ0, which

we will not couple directly to the exploration of a tree as we did in Phase (I). Our aim is,

to show that in Phase (II) the accumulated score of the discovered vertices grows in a sim-

ilar way as the score in the truncated IBRWs in Section 4.5, provided the exploration is not

stopped according to certain criteria we will define below. We start by setting up the neces-

sary notation.

Recall the truncation sequence r we obtained in Section 4.5 via the equation

r0 = s0

−1

2
∆rk = (1+α) log(−rk )+ 1

2
log rk+1

rk
−2log k+4

k+3 + log cp
1+α , for k ≥ 0,

(6.14)

This equation has a unique solution r for all sufficiently large initial values, as is shown

in Appendix A. For the discrete model, we are interested in the πN -projection of r , which we

will denote (slightly abusing notation) also by r.

Definition 6.5. Let

r = r (s0, N ) = (rk )k∈N0 ⊂ [N ]

denote the πN -projection of the solution to (6.14) with initial condition −s0. We are going

to use r to control the first moment of the total score of the neighbourhood shells around a

given set. Define inductively the (truncated) k-th neighbourhood shells of Γ0 ⊂ [N ] for k ≥ 1

by

Γk = {i ∈ [N ] : dN (Γk−1, i ) = 1} \ {1, . . . ,rk −1},

the (truncated) k-neighbourhood by

H k =
k⋃

i=0
Γk ,
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and the undiscovered vertices before exploration stage k ∈N by

U k = {rk , . . . , N } \ H k−1.

For m ∈ [N ] and k ≥ 1, we set furthermore

Γ[m] = {n ∈ [N ] : dN (m,n) = 1} and Γk [m] = Γ[m]∩U k

and note that Γk [m] is the disjoint union of

Γ<k [m] = Γk [m]∩ {1, . . . ,m −1} and Γ>k [m] = Γk [m]∩ {m +1, . . . , N }.

The filtration generated by the exploration procedure is denoted by

E0 =σ(Γ0) and Ek+1 =σ(Ek ∪ {σ(1m↔n),m ∈ Γk ,n ∈Uk }), for k ∈N.

Remark 6.6. rk is roughly equal to N e−(2α+2)k logk , if N À k À 0, as can be seen from the

calculations in Appendix A. However, due to the projection, we have rk = 1 for all sufficiently

large k.

In Phase (II), we therefore uncover in every step a whole neighbourhood shell, which is

in contrast to Phase (I) where each step corresponded to the exploration of a single vertex.

We also expect to encounter some circles in the network during Phase (II). We count special

types of circles, in which during one exploration step multiple edges to the same vertex are

discovered. Showing that the number of these circles is small, enables us to deduce that the

score of the network exploration behaves almost like the score in a tree.

Definition 6.7. Let H ⊂ H k−1 and define, for i ≥ 2,

Y i
k (H) = #{m ∈U k : ∃ distinct m1, . . . ,mi ∈ H with ∆Z [m,ms] = 1∀1 ≤ s ≤ i },

the number of i-stars induced by H at stage k.

Remark 6.8. The choice of `0 is motivated by our estimates below, which show that i -stars

almost never occur in the network for i ≥ 4.

Additionally, we introduce the notion of thin sets, which will be useful in describing the

extent of the explored part if the graph in terms of the score.

Definition 6.9. Set

`0 = `0( f ) = min
{
` ∈N :

f (4)

`∆ f (4)
< 1

}
.

For N ∈N, we call disjoint pairs of vertex sets I0, I1 ⊂ {`0, . . . , N } thin if

ξ(I0)ξ(I1) ≤ 1

2

N

ψ4(`0, N )
.
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Lemma 6.10. Let α be as in (6.1), then

liminf
n→∞

(logn)α

ψ4(`0,n)
=χ> 0.

Proof. This is a direct consequence of Proposition 6.1

The expected number of i -stars induced by a subset H of vertices can be bounded in

terms of the score ξ(H). In turn, given that the exploration has not yet uncovered a 4-star,

we can bound the probability, that the explored set H during stage k of the exploration (i.e.

H ⊂ H k ) paired with the set {rk+1} ceases to be thin. Thus we define the stopping criteria for

the exploration in terms of thin sets and i -stars.

Definition 6.11. We introduce two N -dependent stopping times

S = min{k ∈N : a 4-star is discovered during exploration step k},

and

T = min
{

k ∈N : ξ(H k ) > s0

p
N

ψ4(`0, N )

}
∧k∗,

where

k∗ = min
{

k : ξ(rk+1) > 1

2s0

p
N

ψ4(`0, N )

}
.

Recalling that rk ≈ N e−(2α+2)k logk , we can conclude that k∗ ≤ ( 1
2α+2 + ε) log N

loglog N if N is

sufficiently large. Also observe, that the stopping time T basically marks the stage at which

({rT+1}, H T ) ceases to be thin. We can establish upper bounds on the jump probabilities of

the degree evolutions of the unexplored vertices at a given stage k < S∧T of the exploration.

Lemma 6.12 (Modification of [DM13, Lemma 2.12.]). Fix N ∈N and let ({m}, I0) be thin. Let

furthermore I1 ⊂ {m, . . . , N } be disjoint of I0 with #I1 ≤ 4. Set

Ei = {∆Z [m, j ] = δ1i for all j ∈ Ii }, for i ∈ {0,1}. (6.15)

Then there is a constant C > 0, only dependent on f such that

P{∆Z [m,n] = 1|E1,E0} ≤CP{∆Z [m,n] = 1|E1}, for all n ∈ {m, . . . , N −1}.

Proof. We have

P{∆Z [m,n] = 1|E0,E1} ≤ P{∆Z [m,n] = 1|E1}

P{E0|E1}
,

so it is sufficient to bound the denominator P{E0|E1} uniformly from below. Since #I1 ≤ 4,

we get by Lemma 4.14,

P{∆Z [m,n] = 0 ∀n ∈ I0|∆Z [m,n] = 1 ∀n ∈ I1} ≥P4{∆Z [m,n] = 0 ∀n ∈ I0}. (6.16)
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Denoting i = min I0, we obtain

P4{∆Z [m,n] = 0 ∀n ∈ I0} =P4{∆Z [m,n] = 0 ∀n ∈ I0 \ {i }|∆Z [m, i ] = 0}

×P4{∆Z [m, i ] = 0}

≥P4{∆Z [m,n] = 0 ∀n ∈ I0 \ {i }}P4{∆Z [m, i ] = 0},

using Lemma 4.13. Iteration yields

P4{∆Z [m,n] = 0 ∀n ∈ I0} ≥ ∏
n∈I0

P4{∆Z [m,n] = 0}

= ∏
n∈I0

(
1− E4 f (Z [m,n])

n

)
,

(6.17)

and inserting (6.17) into (6.16) yields

P{∆Z [m,n] = 0 ∀n ∈ I0|∆Z [m,n] = 1 ∀n ∈ I1} ≥ ∏
n∈I0

(
1− E4 f (Z [m,n])

n

)
. (6.18)

By Lemma 4.9 and the definition of `0,

E4 f (Z [m,n])

n
≤ f (4)n∆ f (4)−1m−∆ f (4) ≤ f (4)

`
∆ f (4)
0

< 1,

hence there is a constant c = c( f ) > 1 such that for all `0 ≤ m ≤ n,

− log
(
1− E4 f (Z [m,n])

n

)
≤ E4 f (Z [m,n])

n
+ c

(E4 f (Z [m,n])

n

)2 < 2c
E4 f (Z [m,n])

n
.

Thus, taking the logarithm in (6.18) and using Observation 4.11, we can bound, using the

monotonicity properties of ψ and Lemma 4.6,

− logP{E0|E1} ≤2c
∑

n∈I0

E4 f (Z [m,n])

n
= 2c

∑
n∈I0

ψ4(m,n)ξ(m)

nξ(n)

≤2c
ξ(m)

N

∑
n∈I0

ξ(n)ψ4(`0,n) ≤ 2c
ξ(m)ψ4(m, N )ξ(I0)

N
,

and the last expression is uniformly bounded by c since (m, I0) is thin.

The next step is to derive bounds on the expected number of i -stars, given that S and T

have not occurred yet.

Lemma 6.13. Let y i
k (H) = E[Y i

k (H)|Ek ], for i ≥ 2 and H ⊂ H k−1, then there is a constant

C (i ) > 0 such that

y i
k (H) ≤C (i )ψ0(rk , N )i N− i

2 ξ(H)i r
1− i

2

k ,

conditional on T ∧S > k −1.
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Proof. Let k − 1 < T ∧ S, m ∈ U k and let I0, I1 denote, as in Lemma 6.12, sets of jump or

non-jump times of Z [m, ·] representing already explored vertices. Let also, similarly to

Lemma 6.12, E0,E1 ∈ Ek−1 denote the corresponding events. Denote by

J = {n1, . . . ,ni } ⊂ {m, . . . , N } \ (I0 ∪ I1)

the potential jump times of Z [m, ·], then we can use the independence of the degree evolu-

tions and Lemma 6.12 to obtain

P{∆Z [m,nl ] = 1 ∀l ∈ J |Ek−1} = P{∆Z [m,nl ] = 1 ∀l ∈ J |E0,E1,T ∧S ≥ k}

≤C6.12P
4{∆Z [m,nl ] = 1 ∀l ∈ J }.

Proposition 6.1 now yields in conjunction with Lemma 4.6

P4{∆Z [m,nl ] = 1 ∀l ∈ J } ≤C6.1(4)
i∏

l=1

ψl−1(m,nl −1)ξ(m,nl −1)

nl −1

≤ C6.1(4)C i log
( N

rk

)αi (N m)−
i
2

i∏
l=1

ξ(nl ),

for some constant C > 0 and we conclude

P{∆Z [m,nl ] = 1 ∀l ∈ J |Ek−1} ≤C6.12C6.1(4)C i log
( N

rk

)αi (N m)−
i
2

i∏
l=1

ξ(nl ). (6.19)

Summing over all combinations n1 < ·· · < nl ∈ H ⊂ H k−1 in (6.19) yields

∑
n1<···<nl∈H

P{∆Z [m,nl ] = 1 ∀l ∈ J |Ek−1}

≤ C6.12C6.1(4)C i log
( N

rk

)αi (N m)−
i
2

∑
n1<···<nl∈H

i∏
l=1

ξ(nl )

≤ C6.12C6.1(4)C i ( log
( N

rk

))αi (N m)−
i
2 ξ(H)i ,

and summation over m = rk , . . . , N yields the existence of another constant C ′(i ) > 0 with

y i
k (H) ≤C ′(i )

(
log

( N
rk

))αi N− i
2 ξ(H)i r

1− i
2

k .

Remark 6.14. The bound implies that

y2
k (H) =O

(ψ1(rk , N )2ξ(H)2

N

)
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and that, for i > 2,

y i
k (H) =O

(r
1− i

2

k ψi−1(rk , N )iξ(H)i

N
i
2

)
,

suggesting that for i = 2 and ξ(H) around
p

N the number of circles discovered does not

vanish, which illustrates why we do not expect to be able to uphold the tree coupling of the

local exploration.

We can now use Lemma 6.13 to show that stars are rare as long as the score stays low.

Lemma 6.15. With high probability,

T ∧S = T.

Proof. Assume T has not occurred by time k −1, then, by Lemma 6.13

P{Y (i )

k (H k−1) ≥ 1|Ek−1} ≤ E[Y (i )

k (H k−1)|Ek−1]

≤ C6.13(i )r
1− i

2

k ψ0(rk , N )iξ(H k−1)i N− i
2 ,

and ξ(H k−1) ≤ s0
sqr t N

ψ4(`0,N ) implies that

P{Y (i )

k (H k−1) ≥ 1|Ek−1} ≤C6.13(i )si
0r

1− i
2

k

ψ0(rk , N )i

ψ4(`0, N )i
.

Choosing i = 4 yields

P{Y (4)

k (H k−1) ≥ 1|Ek−1} ≤Cr−1
k

ψ0(rk , N )4

ψ4(`0, N )4 ≤C ′r−1
k

for suitably chosen constants C ,C ′ > 0. Summation over k and recalling that rk decays and

k ≤ T ≤ k∗ =O
( log N

loglog N

)
gives

P{S ≤ T } ≤ E[
k∗∑

k=1
P{S = k|Ek−1}] ≤C ′ k∗∑

k=1
r−1

k ≤C ′′ log N

rk∗ loglog N
.

Observe that ξ(rk∗) ≤ 1

2s0

p
N

ψ4(`0,N )

implies rk∗ ≥ c log N for some c > 0. Thus P{S ≤ T } vanishes

as N →∞.

We can now start to estimate first and second moment of Sk = ξ(Γk ),k = 1, . . . ,T −1 as-

suming that S has not yet occurred. Before we state our results, we need one more auxiliary

correlation bound for the conditioned degree evolutions. Analogously to Lemma 6.12, we

wish to use also a lower bound for the jump probabilities of the conditioned process.

Lemma 6.16 (Lower bound for conditioned jump probabilities). Fix N ∈ N, let ({m}, I0) be
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thin and let I1 ⊂ {m, . . . , N } be disjoint of I0 with #I1 ≤ 3. Then, for E0,E1 as in (6.15),

P{∆Z [m,n] = 1|E0,E1} ≥ 1

2
P{∆Z [m,n] = 1|E1} for all n ∈ {m, . . . , N −1} \ I0.

Proof. Let n ∈ {m, . . . , N −1} \ I0. We have

P{∆Z [m,n] = 1,∆Z [m,k] = 0 ∀k ∈ I0|E1} = P{∆Z [m,n] = 1|E1}

−P{∆Z [m,n] = 1, ∃k ∈ I0 :∆Z [m,k] = 1|E1}

≥P{∆Z [m,n] = 1|E1}− ∑
k∈I0

P{∆Z [m,n] =∆Z [m,k] = 1|E1}.

(6.20)

The last sum can be rewritten∑
k∈I0

P{∆Z [m,n] =∆Z [m,k] = 1|E1}

= P{∆Z [m,n = 1|E1]}
∑

k∈I0

P{∆Z [m,k] = 1|E1,∆Z [m,n] = 1}.
(6.21)

Applying Lemmas 4.14 and 4.6 yields, for all k ∈ I0,

P{∆Z [m,k] =1|E1,∆Z [m,n] = 1} ≤ P4{∆Z [m,k] = 1}

= E4 f (Z [m,k])

k
= ψ4(m,k)ξ(m,k)

k

≤ ψ4(`0, N )ξ(m,k)

k
= ψ4(`0, N )ξ(m)ξ(k)

N
.

(6.22)

Inserting (6.22) into (6.21) in combination with (6.20) yields

P{∆Z [m,n] = 1,∆Z [m,k] = 0 ∀k ∈ I0|E1} ≥P{∆Z [m,n = 1|E1]}
(
1− ξ(m)ξ(I0)

N

)
,

and using that ({m}, I0) are thin yields the statement.

We are now ready to state our bounds for the expected growth of the score.

Proposition 6.17. Let f satisfy the assumptions of Theorem II. There are constants c,C > 0,

depending only on f , and N0 ∈N, such that for Sk = ξ(Γk )

E[Sk+1|Ek ] ≥ c
(

log N
rk+1

)1+αSk , (6.23)

and

E[Sk+1|Ek ] ≤C
(

log N
rk+1

)1+αSk , (6.24)

almost surely for all N ≥ N0 and k ≤ T ∧S −1.
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Proof. Observe that

E[Sk+1|Ek ] ≥E
[ ∑

u∈Γk

(
ξ(Γ<k+1[u])+ξ(Γ>k+1[u])

)|Ek

]
−E

[ ∑
u∈Γk

∑
t∈Γk :
t<u

(
ξ(Γ<k+1[u]∩Γ[t ])+ξ(Γ>k+1[u]∩Γ[t ])

)|Ek

]
,

(6.25)

where the second term accounts for double counting due to circles in the network. If the

graph was a tree, the second term could be omitted (which yields an upper bound, see be-

low). A lower bound for the second term in (6.25) is obtained by estimating

E
[ ∑

u∈Γk

∑
t∈Γk :
t<u

(
ξ(Γ<k+1[u]∩Γ[t ])+ξ(Γ>k+1[u]∩Γ[t ])

)|Ek

]
(6.26)

≤E
[ ∑

u,t∈Γk :
t<u

ξ(Γ>k+1[u]∩Γ>k+1[t ])|Ek

]
+E

[ ∑
u,t∈Γk :

t<u

ξ(Γ<k+1[u]∩Γ>k+1[t ])|Ek

]
(6.27)

+E
[ ∑

u,t∈Γk :
t<u

ξ(Γ<k+1[u]∩Γ<k+1[t ])|Ek

]
. (6.28)

The two first terms (6.27) are easier to bound, we have

E[ξ(Γ>k+1[t ]∩Γ<k+1[u])|Ek ] ≤
u−1∑

i=t+1
ξ(i )P{∆Z [t , i ] =∆Z [i ,u] = 1|Ek }

=
u−1∑

i=t+1
ξ(i )P{∆Z [t , i ] = 1|Ek }P{∆Z [i ,u] = 1|Ek },

(6.29)

using the independence of indegree evolutions, and similarly

E[ξ(Γ>k+1[u]∩Γ>k+1[t ])|Ek ] ≤
N∑

i=u
ξ(i )P{∆Z [t , i ] =∆Z [u, i ] = 1|Ek }

=
N∑

i=u
ξ(i )P{∆Z [t , i ] = 1|Ek }P{∆Z [u, i ] = 1|Ek }.

(6.30)

Only the last term (6.28) contains dependencies, since there are jumps of the same indegree

evolution involved, we obtain

E[ξ(Γ<k+1[u]∩Γ<k+1[t ])|Ek ] ≤
t∑

i=rk+1

ξ(i )P{∆Z [i , t ] =∆Z [i ,u] = 1|Ek } (6.31)

In the expression (6.31) we need to bound, for active v ∈ Γk and unexplored x1, x2 ∈U k , with
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v < x1 < x2,

P{∆Z [v, x1] =∆Z [v, x2] = 1|Ek } =P{∆Z [v, x2] = 1|∆Z [v, x1] = 1,Ek }

×P{∆Z [v, x1] = 1|Ek }

≤C 2
6.12P

4{∆Z [v, x2] = 1}P3{∆Z [v, x1] = 1}

= C 2
6.12E

4 f (Z [v, x2])E3 f (Z [v, x1])

x2x1
,

(6.32)

where we have used first Lemma 6.12, noting that before time S, no explored vertex has

more than 3 right neighbours and that the score of H k is low, and then Lemma 4.14. Apply-

ing (6.32) to (6.31) and using that, for all i ∈ Γk , j ∈ [N ] and I ∈ {3,4},

ψI (i , j ) ≤ψI (rk , N ) =:ψI
k (N )

now yields a bound for the term (6.26),

E
[ ∑

u∈Γk

∑
t∈Γk :
t<u

(
ξ(Γ<k+1[u]∩Γ[t ])+ξ(Γ>k+1[u]∩Γ[t ])

) ∣∣∣ Ek

]

≤ ∑
u∈Γk

∑
t∈Γk :
t<u

C 2
6.12ψ

3
k (N )

(
ψ

4
k (N )

t∑
i=rk+1

ξ(i , N )ξ(i ,u)ξ(i , t )

ut

+ψ3
k (N )

u−1∑
i=t+1

ξ(i , N )ξ(t , i )ξ(i ,u)

i u
+ψ3

k (N )
N∑

i=u

ξ(i , N )ξ(t , i )ξ(u, i )

i 2

)
.

We recall that ξ(m,n) ≤C4.6

√
n
m and hence there is B > 0, such that

E
[ ∑

u∈Γk

∑
t∈Γk :
t<u

(
ξ(Γ<k+1[u]∩Γ[t ])+ξ(Γ>k+1[u]∩Γ[t ])

) ∣∣∣ Ek

]

≤ ∑
u∈Γk

∑
t∈Γk :
t<u

Bψ3
k (N )

(
ψ

4
k (N )

t∑
i=rk+1

ξ(i , N )

i
p

ut

+ψ3
k (N )

u−1∑
i=t+1

ξ(i , N )

i
p

ut
+ψ3

k (N )
N∑

i=u

ξ(i , N )

i
p

ut

)

≤B 2ψ
3
k (N )ψ4

k (N )
∑

u∈Γk

∑
t∈Γk

√
N

ut

N∑
i=rk+1

i−
3
2

= B 2ψ
3
k (N )

N
ψ

4
k (N )

( ∑
u∈Γk

√
N

u

)( ∑
t∈Γk

√
N

t

)( N∑
i=rk+1

p
N

i
3
2

)
,

on which we can use the bounds in the definition of T for Sk and ξ(rk+1), to obtain, for some
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appropriately chosen constants C ′,C > 0,

E
[ ∑

u∈Γk

∑
t∈Γk :
t<u

ξ(Γk+1[u]∩Γ[t ])
∣∣∣ Ek

]
≤ C ′ψ3

k (N )ψ4
k (N )

N
ξ(Γk )ξ(rk+1)Sk ≤C Sk . (6.33)

It remains to bound the first term on the right hand side of (6.25). We estimate now,

using Lemma 6.16 and the definition of ξ while setting ψ=ψ0, for u ∈ Γk ,

E[ξ(Γk+1[u])|Ek ] =
rk−1∑

j=rk+1

ξ( j )P{∆Z [ j ,u] = 1}+ ∑
j∈U k

rk≤ j<u

ξ( j )P{∆Z [ j ,u] = 1|Ek }

+ ∑
j∈U k

u< j≤N

ξ( j )P{∆Z [u, j ] = 1|Ek }

≥c6.16

( ∑
j∈U k

rk+1≤ j<u

ξ( j )
ξ( j )ψ( j ,u)

ξ(u)u
+ ∑

j∈U k

u< j≤N

ξ( j )
ξ(u)ψ(u, j )

ξ( j ) j

)

≥c ′ξ(u)
( ∑

j∈U k

rk+1≤ j<u

ξ2( j )
ψ( j ,u)

N
+ ∑

j∈U k

u< j≤N

ψ(u, j )

j

)

for a small constant c ′ > 0. Set now

ψ( j ) =ψk,u( j ) =


1
j

(
1∨ log u∨ j

u∧ j

)α for j ∈ {rk+1, . . . , N }

0, otherwise,

and let ψ(A) = ∑
a∈Aψk,u(a) for A ⊂ [N ]. The form of ψ is due to Proposition 6.2. Thus we

obtain, for some constant d = d( f ) > 0, which does not depend on u,k or N ,

E[ξ(Γk+1[u])|Ek ] ≥ dξ(u)ψ(U k ). (6.34)

Since ψ is non-negative, we can bound the latter term from below by using

ψ(U k ) ≥ψ([N ])−ψ(H k ).

To this end calculate

ψ([N ]) =
b u

e c∑
j=rk+1

1

j

(
log u

j

)α+ beuc∑
d u

e e

1

j
+

N∑
j=deue

1

j

(
log j

u

)α
≥ 2+ c ′′+ 1

α+1

(
log u

rk+1

)α+1 + (
log N

u

)α+1
)

≥ 2+ c ′′+ 1

(α+1)2α
(

log N
rk+1

)α+1,

where c ′′ is an approximation error and the last inequality follows from convexity of x 7→
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xα+1. Thus (6.34) implies

E[ξ(Γk+1[u])|Ek ] ≥ dξ(u) log N
rk+1

)α+1
( 1

(α+1)2α
− ψ(H k )(

log N
rk+1

)α+1

)
. (6.35)

Note furthermore, that before T has occurred, for all k,

∑
j∈H k

1

j

(
1∨ log u∨ j

u∧ j

)α ≤ (
log N

rk

)α ∑
j∈H k

1

j
≤ (

log N
rk

)α+1,

and hence (6.35) yields

E[ξ(Γk+1[u])|Ek ] ≥ eξ(u)
(

log N
rk+1

)α+1, (6.36)

for a suitably chosen constant e > 0. Applying (6.36) and (6.33) in (6.25), we conclude

E[Sk+1|Ek ] ≥ (
e log

( N
rk+1

)α+1 −C(6.33)
)
Sk , (6.37)

and the proof of the lower bound is finished by adjusting the constants (recall that r0 can be

made small by adjusting s0).

For the upper bound a similar, slightly more straightforward calculation shows that also

for u ∈ Γk

E[ξ(Γk+1[u])Ek ] ≤ DψJ (rk+1, N )ξ(u) log N
rk+1

under the conditions of the proposition, for some constant D. Thus applying Proposition 6.1

yields

E[Sk+1]|Ek ] ≤C
(

log N
rk+1

)1+αSk ,

for some C =C ( f ) which finishes the proof.

To prove concentration of the score around its mean, we also need to bound the variance

of the score growth.

Proposition 6.18. Let f satisfy the assumptions of Theorem II and r be defined via 6.14. Then

there are constants C ,C ′ > 0 such that

E[S2
k+1|Ek ] ≤ E[Sk+1|Ek ]2 + (

log N
rk+1

)2αS2
k +C ′ ∑

u∈Γk

ξ(u)2( log N
u

)2α+2,

almost surely for all k < T ∧S.
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Proof. Note that, for k ≥ 0,

S2
k+1 ≤

( ∑
u∈Γk

ξ(Γk+1[u])
)2 = ∑

u,v∈Γk

ξ(Γk+1[u])ξ(Γk+1[v])

= ∑
u,v∈Γk

(ξ(Γ<k+1[u])+ξ(Γ>k+1[u]))(ξ(Γ<k+1[v])+ξ(Γ>k+1[v]))

= ∑
u,v∈Γk

ξ(Γ<k+1[u])ξ(Γ<k+1[v])+ ∑
u,v∈Γk

ξ(Γ<k+1[u])ξ(Γ>k+1[v])

+ ∑
u,v∈Γk

ξ(Γ>k+1[u])ξ(Γ<k+1[v])+ ∑
u,v∈Γk

ξ(Γ>k+1[u])ξ(Γ>k+1[v]).

(6.38)

Since we are interested in the expectations conditional on Ek , we determine which of the

terms on the right hand side of (6.38) contain dependencies. Since the outdegree of a fixed

vertex is independent of its indegree, we obtain that ξ(Γ<[u]k+1) and ξ(Γ>[v]k+1) are inde-

pendent and so are ξ(Γ<[v]k+1) and ξ(Γ>[u]k+1). Also, ξ(Γ>[v]k+1) and ξ(Γ>[u]k+1) are inde-

pendent, unless u = v. Finally, Γ<[v]k+1 and Γ<[u]k+1 both contain information about the

indegree evolutions of vertices m < u ∧ v and are thus dependent. We first treat the case of

ξ(Γ>[u]k+1)2, for u ∈ Γk , and k ≤ T∧,S

E
[
ξ(Γ>k+1[u])2

∣∣∣Ek

]
= E

[ ∑
a,b∈Γ>k+1[u]

ξ(a)ξ(b)
∣∣∣Ek

]

=2
N∑

a=u+1

N∑
b=a+1

ξ(a)ξ(b)P{∆Z [u, a −1] =∆Z [u,b −1] = 1|Ek }

≤2C6.12

N∑
a=u+1

N∑
b=a+1

ξ(a)ξ(b)P{∆Z [u, a −1] = 1|Ek }P1{∆Z [u,b −1] = 1|Ek }

=2C6.12

N∑
a=u+1

N∑
b=a+1

ξ(a)ξ(b)P{∆Z [u, a −1] = 1|Ek }P{∆Z [u,b −1] = 1|Ek }

+2C6.12

N∑
a=u+1

(
ξ(a)P{∆Z [u, a −1] = 1|Ek }

×
N∑

b=a+1
ξ(b)(P1{∆Z [u,b −1] = 1|Ek }−P{∆Z [u,b −1] = 1|Ek })

)
=E

[
ξ(Γ>k+1[u])

∣∣∣Ek

]2

+ c
N∑

a=u+1

N∑
b=a+1

ξ(a)ξ(b)ψ0(u, a)ψ0(u,b)
ξ(u, a)ξ(u,b)

ab
,

(6.39)

for some constant c > 0, where we have used that ψ1

ψ0 is uniformly bounded by Proposi-

tion 6.1 and 6.2. Using that ξ(u, a)ξ(a, N ) = ξ(u, N ) = ξ(u), and ψ0(x, y) ≤ c6.1
(

log y
x

)α∨1 we
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obtain

N∑
a=u+1

N∑
b=a+1

ξ(a)ξ(b)ψ0(u, a)ψ0(u,b)
ξ(u, a)ξ(u,b)

ab

≤c2
6.1ξ(u)2

( N∑
a=u

1

a
(log a

u ∧1)α
N∑

b=a+1

1

b
(log b

u ∧1)α
)

≤c2
6.1ξ(u)2

( N∑
a=u

1

a
(log a

u ∧1)α
(
c ′+1+

∫ N

eu

1

b
(log b

u

)αdb
))

≤c2
6.1ξ(u)2(c ′+ (

log N
u

)α+1)(c ′+1+
∫ N

eu

1

a
(log a

u )αda
)

≤ξ(u)2c ′′
(

log N
u ∧1

)2α+2,

where c ′,c ′′ are suitably chosen constants. Inserting this into (6.39) yields

E
[
ξ(Γ>k+1[u])2

∣∣∣Ek

]
≤ E

[
ξ(Γ>k+1[u])

∣∣∣Ek

]2 +ξ(u)2C ′′( log N
u ∧1

)2α+2, (6.40)

for some C ′′ > 0. The other case with dependencies which we have to consider are the ran-

dom variables Γ<k+1[u],Γ<k+1[v]. We note that

P{∆Z [a,u] =∆Z [b, v] = 1|Ek } =P{∆Z [a,u] = 1|Ek }P{∆Z [b, v] = 1|Ek },

unless a = b < u ∧ v in which case, as above,

P{∆Z [a,u] =∆Z [b, v] = 1|Ek } ≤C6.12P{∆Z [a,u ∧ v] = 1|Ek }P1{∆Z [a,u ∨ v] = 1|Ek }.

A consideration similar to the first case now yields

E
[
ξ(Γ<k+1[u])ξ(Γ<k+1[v])

∣∣∣Ek

]
=E[ξ(Γ<k+1[u])|Ek ]E[ξ(Γ<k+1[u])|Ek ]

+D ′ u∧v∑
a=rk+1

ξ(a)2 ξ(a,u)ξ(a, v)

uv

(
log u

a ∨1
)α(

log v
a ∨1

)
α,

(6.41)

for some constant D ′ > 0. Applying Lemma 4.6 and summing over all u, v ∈ Γk in (6.41) yields

∑
u,v∈Γk

E
[
ξ(Γ<k+1[u])ξ(Γ<k+1[v])

∣∣∣Ek

]
≤ ∑

u,v∈Γk

E[ξ(Γ<k+1[u])|Ek ]E[ξ(Γ<k+1[u])|Ek ]

+D
(

log N
rk+1

)2α ∑
u,v∈Γk

ξ(u)ξ(v),
(6.42)

for another appropriately chosen constant D > 0. Combining (6.40) and (6.42) with (6.38)

now concludes the proof.

To conclude the argument about the growth of the score, we note that if T < k∗, then ST

is larger than s0

p
N

ψ4(`0,N ) . If this is not the case, then we use the previous result to show that
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Sk∗ is concentrated around its expectation.

Proposition 6.19. With high probability, as N →∞,

ST∧S ≥ s0

p
N

ψ4(`0, N )
.

Proof. We have already established, that S∧T = T with high probability. The case where T <
k∗ satisfies the lower bound of the proposition by definition and we only need to focus on

the case T = k∗. Let 0 ≤ k ≤ k∗, then an application of the conditional Chebychev inequality

yields

P
{
|Sk+1 −E[Sk+1|Ek ]| > 1

2
E[Sk+1|Ek ]|Ek

}
≤

C6.18
(

log N
rk+1

)2αS2
k +C ′

6.18
∑

u∈Γk ξ(u)2
(

log N
u ∨1

)2α+2

1
4E[Sk+1|Ek ]2

,
(6.43)

using the second moment estimate of Proposition 6.18. Analogously to (4.33), we obtain that

the dominating term on the right hand side of (6.43) is
(

log N
rk+1

)2αS2
kE[Sk+1|Ek ]−2. Taking

expectations in (6.43) and recalling that rk decays like N e−k logk yields

∞∑
k=0

P
{
|Sk+1 −E[Sk+1|Ek ]| > 1

2
E[Sk+1|Ek ]

}
<∞.

This implies Sk
Sk−1

≤ 1
2 (log N

rk
)α+1 only finitely many times as k →∞. Therefore we can find a

small constant δ such that

Sk∗ ≥ δck∗
(6.23)

k∗∏
i=0

(
log N

ri

)1+α

with high probability. The choice of rk and k∗ ≥ η
log N

loglog N for some η > 0 now imply that

the right hand side exceeds
p

N if N is sufficiently large, which concludes the argument and

also implies that S ∧T < k∗ with high probability.

6.3 Proof of Theorem II

We start with the lower bound, which is a straightforward application of Lemma 4.16. Using

the bound on the expected degrees provided in Proposition 6.1, we can apply Lemma 4.16

withΨ(N ) = (log N )α and have thus proven the following statement.

Proposition 6.20 (Lower bound on distances). Let f be an attachment rule of the form

f (k) = 1

2
k + αk

2logk
+h(k),

where α≥ 0 and

lim
k→∞

h(k)(logk)1+η

k
= 0,
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for some η> 0. Then, for uniformly chosen vertices V ,W ∈GN and any δ ∈ (0,1),

lim
N→∞

P
{

dN (V ,W ) ≥ (1−δ) log N

(1+α) loglog N

}
= 1.

The upper bound is more involved. The dominating part of the distance is covered by

the exploration phase after the initial local exploration. Before we can apply the results on

the score growth from the previous section, we need to make sure that we can start the

breath first search in a favourable configuration and that high final score implies that we

have w.h.p. found the core of the network. The whole exploration scheme therefore has

three parts

• Phase (I)– local exploration around V ,W until either the component is explored or we

have accumulated a score of at least s0 = S(ε);

• Phase (II) – breadth first exploration to accumulate a high score ST ;

• Phase (III) – connecting components of high score in GN by short paths in G(1+ε)N .

To find a path between two uniformly chosen vertices we first establish that they are

connected. This amounts to showing that they are in the giant component which can be

inferred from the coupling of the local exploration processes to the INT.

Proposition 6.21 (Local exploration). Fix ε> 0. Depending on the value ofα, we fix a thresh-

old S(ε),

(i) if α> 0, let S(ε) = −16(1+8ε) logε
σ4.34q4.35( f ,ε)χ6.10

,

(ii) if α= 0, let S(ε) =− log(ε)(1+2ε)ψ4(`0, N ).

Let V ,W ∈GN be independently and uniformly chosen vertices. In both cases (i) and (ii), there

exist N -independent constants K = K (ε),r0 = r0(ε) such that

lim
N→∞

P
{

min
(
ξ(C K (V )),ξ(C K (W ))

)≥ S
}= p( f )2,

where, for k ≥ 0, C k (v) = C k (v,ε) denotes the first k vertices discovered in the local explo-

ration around v ∈GN truncated at r0.

Proof. For the untruncated exploration the statement is implied by the local weak conver-

gence of C k to the projected INT, which is a consequence of Proposition 4.20. For every

fixed k, and δ > 0 we can also find r < 0 such that P{Tk ∩ (−∞,r ]} < δ. As #C K < ∞ for

the untruncated exploration, we can therefore use this local convergence also to infer the

statement for the truncated version.

Proof of Theorem II. Only the upper bound remains to be shown. Let ε > 0. We start local

explorations in the uniformly chosen vertices V ,W ∈ CN . By Proposition6.21, we reach in
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both explorations a minimum score of S0 = S
(
ε
8

)
after at most K

(
ε
8

)
exploration steps with

probability exceeding 1− ε
4 . We denote the explored part at the time the score S0 is reached

by H (1)

0 , H (2)

0 and start the second exploration stage, in which we only look at the scores of

the two explorations. We know by Proposition 6.19 that, if N is sufficiently large, the explo-

rations will end with probability exceeding 1− ε
4 after T < k∗ steps, by which point

ξ(H (i )

T ) ≥ S0

p
N

ψ4(`0, N )
, i = 1,2. (6.44)

We now distinguish two cases.

Firstly, ifα> 0, then we have collectd no information about the degree evolutions of ver-

tices in [M ], for M = b(log N )2αc during the whole exploration, due to the truncation. There-

fore we can apply Proposition 4.36 to deduce that, for sufficiently large N , with probability

exceeding 1− ε
4 , the subgraph coreN = (CN ,VN ) ⊂G(1+ε)N is of bounded diameter D . We will

show now, that P{H (i )

T
ε↔ coreN } ≥ 1− ε

4 , if N is large. Let H ⊂ [N ] and i ∈ {N , . . . , (1+ ε)N },

then for every u ∈ H ,

P{∆Z [u, i ] = 0} ≤ 1− E f (Z [u, N ])

(1+ε)N
≤ e−

f (0)ξ(u)
(1+ε)N

and thus

P{∆Z [u, i ] = 0 for all u ∈ H } ≤ e−
f (0)ξ(H)
(1+ε)N , i ∈ {N , . . . , (1+ε)N }. (6.45)

Applying Lemma 4.35, we obtain that with probability exceeding 1− ε
8 , denoting σ = σ4.34

and q = q4.35( f ,ε),

#{i ∈ {N , . . . , (1+ε)N } : i ←CN } ≥ σqMEZ [M , N ]

8
≥ σqM f (0)ξ(M)

8
,

if N is sufficiently large. Combining this with (6.45) yields

1−P{H
ε↔ coreN } ≤ exp

(
− f (0)2σqMξ(H)ξ(M)

8(1+ε)N

)
+ ε

8
,

and applying the latter inequality to H = H (i )

T , i = 1,2 and using (6.44) we obtain

1−P{H (i )

T
ε↔ coreN } ≤ exp

(
− f (0)2σqMξ(H (i )

T )ξ(M)

8(1+ε)N

)
+ ε

8

≤ exp
(
− f (0)2σqMS0

p
Nξ(M)

8ψ4(`0, N )(1+ε)N

)
+ ε

8

≤ exp
(
− f (0)2σqMS0N

8ψ4(`0, N )
p

M(1+ε)N

)
+ ε

8

≤ exp
(
− f (0)2σqχ6.10S0

16(1+ε)

)
+ ε

8
≤ ε

4
,
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using the lower bound

S0 ≥ S
(
ε
8

)≥ −16(1+ε) log
(
ε
8

)
σ4.34q4.35

(
f , ε8

)
χ6.10

in the last step and this holds for both H (1)

T and H (2)

T independently. Thus, we have shown

that with probability exceeding 1−ε,

d(1+ε)N (U ,V ) ≤ 4+D +k∗+2K
(
ε
8

)
,

if N is sufficiently large.

Secondly, if α= 0, we cannot conclude anything about the diameter of the core, but we

can argue as above to obtain that with probability exceeding 1− ε
2 ,

1−P{H (1)

T
ε↔ H (2)

T |GN } ≤ exp
(
− ξ(H (1)

T )ξ(H (2)

T )ε

(1+ε)2N

)
≤ e

− S2
0ε

(1+ε)2ψ4(`0,N ) ≤ ε

2
,

since S0 ≥ S
(
ε
2

)
, for all sufficiently large N .

In both cases we have shown that w.h.p. the dominating part of the distance is bounded

by k∗, thus the upper bound is shown by taking ε→ 0.
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Appendix A

Properties of the truncation sequence

The cutoff sequence r = (rk )∞k=0 used in the proof of Theorem II is introduced in Section 4.5

as solution to the difference equation

r0 = s0

−1

2
∆rk = (1+α) log(−rk )+ 1

2
log rk+1

rk
−2log k+4

k+3 + log cp
1+α , for k ≥ 0,

(A.1)

where c > 0,α ≥ 0 and the initial condition s0 < 0 is a negative parameter of large absolute

value.

Lemma A.1. The equation (A.1) has a unique, strictly decreasing solution (rk )∞k=0, if the initial

value s0 is chosen sufficiently small.

Proof. Note that

−2log k+4
k+3 + log cp

1+α ≥ log 9c
16

p
1+α = d ,

thus (A.1) has a unique strictly decreasing solution if

s0 = s0

−1

2
∆sk = (1+α) log(−sk )+ 1

2
log sk+1

sk
+d , k ≥ 0,

(A.2)

has a solution in which case sk ≥ rk for all k. We will argue inductively. Setting k = 1 in (A.2)

yields

−1

2
(s1 − s0) = (1+α) log(−s0)+ 1

2
log s1

s0
+d ,

which can be formally rewritten as

φ(−s1) =−2s0 + (2α+1)log(−s0)+2d , (A.3)

withφ(x) = x− log x. The right hand side of (A.3) is strictly greater than 1 if −s0 is sufficiently

large, and φ defines an increasing bijection of (1,∞) into itself. Thus s1 exists and is strictly
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negative. Furthermore,

−s1 + s0 = log(−s1)− s0 +2d + (2α+1)log(−s0) > 0,

if −s0 is sufficiently large. Now assume, s0 > s1 > ·· · > sk are given, then sk+1 is obtained via

−sk+1 =φ−1(−2sk +2(α+1)log(−sk )+2d)

by the same argument and −sk+1 >−sk .

We now collect some results about the asymptotics of (rk )k≥0 here. First, observe that if

rk grows superlinearly but subexponentially, we expect, for N À k À 0 sufficiently large,

−∆rk ≈ 2(α+1)log(−rk ). (A.4)

For the proof of Theorem II, we need reasonably sharp asymptotic lower bounds on the

decay of r , which is the content of the following lemma.

Lemma A.2. Let r = (rk )k≥0 be the solution to (A.1). Then

liminf
k→∞

−rk

k logk
≥ 2(α+1).

Proof. Let d = log 9c
16

p
1+α and set

k0 = min
{

k : loglogk > (k +1)log k+1
k − d

2(α+1)
− log(2α+1)

}
.

Fix also

t0 =−s0 > 2(|d |+1)∨ (2(α+1)k0 + logk0 +d),

and let t = (tk )∞k=0 solve

∆tk = 2(α+1)log tk +d .

Note that the tk are uniquely defined, and also −tk ≥ rk , for all k. We have

tk+1 =φ(tk )

with

φ(x) = x +2(α+1)log x +d ,

which defines a concave, non-negative and strictly increasing function on (2|d | +1,∞). To

prove the statement about r , we only need to verify

tk+1 ≥ 2(α+1)(k +1)log(k +1) (A.5)
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for all sufficiently large k. We induce induction for k = k0 and obtain

tk0 > t1 = (−s0)+ (2α+1)log(−s0)+d > 2(α+1)k0 logk0,

by choice of s0. Assume now, that (A.5) holds for tk , then

tk+1 = φ(tk ) ≥φ(2(α+1)k logk)

= 2(α+1)k logk + (2α+1)log(2(α+1)k logk)+d

= 2(α+1)(k +1)log(k +1)+2(α+1)(loglogk + log(2α+1))+d −2(α+1)(k +1)log k+1
k

≥ 2(α+1)(k +1)log(k +1),

since k ≥ k0, which concludes the argument.

Remark A.3. For any ε> 0, it can also be shown that −rk does not grow faster than (2α+2+
ε)k logk.

Using Lemma A.2 we now derive the bound for k∗ featured in the proof of Theorem II.

Lemma A.4. Define r = (rk )∞k=0 as the solution to (A.1). Set, for N ∈N,

mk =πN (rk ) = N erk .

Let R ∈N0 be independent of N and ψ(N ) =O((log N )R ). define

k∗(N ) = min
{

k : ξ(mk , N ) ≥
p

N

(ψ(N )

}
.

For any ε ∈ (0,2α+2), we have that k∗ ≤ log N
(2+2α−ε) loglog N , if N is sufficiently large.

Proof. Lemma A.2 implies that if N and k are sufficiently large,

ξ(mk , N ) ≥ k1+α− ε
2 k. (A.6)

Fix ε> 0, let C > 0 be such that ψ(N ) ≤C (log N )R , for all N , and let

k0 = k0(N ) =
⌈ log N

(2+2α−ε) loglog N

⌉
,

then

2
(
α+1+ ε

2

)
k0 logk0 =

2α+2+ ε
2

2α+2−ε
log N

loglog N (loglog N (1+o(1))),

thus for sufficiently large N , we obtain

2(α+1)k0 logk0 ≥ log N −2R loglog N − logC ,
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hence (A.6) implies that k0 ∈
{
k : ξ(mk , N ) ≥

p
N

ψ(N )

}
and thus k∗ ≤ k0.

Remark A.5. Following Remark A.3, we also obtain that k∗(N ) ≥ log N
loglog N for some c and N

sufficiently large.
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Appendix B

Further preliminaries

Proposition B.1 (A priori bounds on degrees). (i) Let f be affine, f (k) = γk +β, and set

Ξ =p
2 γ
β

√∑∞
k=1 ξ (1,k)−2. Then, for any δ > 0, w.h.p. Gn has no vertex of degree larger

than f (0)ξ (1, N ) (Ξ+δ)
√

log N .

(ii) Let f be concave with γ = 1
2 then for any δ > 0 w.h.p. there is no vertex with degree

f (Z [m, N ]) ≥ n
1
2+δ.

Proof. For (i), we would like to apply the Azuma-Hoeffding inequality to Xk . For a bound

on the increment, look at

|Xn+1 −Xn | =


(
1+ γ

k

)
f (Z [1,n])− f (Z [1,n])

ξ(1,n+1) if ∆ f (Z [1,n]) = 0∣∣(1+ γ

k

)
f (z[1,n])− f (Z [1,n])−γ∣∣

ξ(1,n+1) otherwise
≤ γ

ξ (1,n +1)

Recall that for all n,

P
{

Xn ≥β+ t
} ≤ exp− t 2

2
δ
γ
∑
ξ (1,n +1)−2

(B.1)

≤ e−
t2

Ξ2 β
2

. (B.2)

And we obtain

P
{

f (Z [1, N ]) ≥ βξ (1, N ) (Ξ+δ)
√

log N
}

(B.3)

= P
{
ΞN ≥β+β

(
(Ξ+δ)

√
log N −1

)}
(B.4)

≤ exp

{
− (Ξ+δ)2 log N −2

√
log N +1

Ξ2

}
(B.5)

≤ N
− (Ξ+δ)2

Ξ2 − 2p
log N =O

(
N−1) . (B.6)

Since Z [1, N ] dominates all other degree evolutions taking a union bound implies the state-

ment.
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The proof of (ii) works similarly, but we start in k0 = min
{

k :∆ f (k) ≤ 1
2 + δ

2

}
and then use

the supermartingale f (Z [1,N ])

ξ
1
2 + δ

2 (1,n)
. The above derivation then applies with t = f (K )

(
n

δ
2 −1

)
.

Lemma B.2 (Janson’s Lemma, [Jan02]). Let X1, X2, . . . be a sequence of independent Bernoulli

random variables with P{Xi = 1} = pi . Denote Sn =∑n
i=1 Xi and µn = ESn , then, for any t ≥ 0,

P{Sn ≥µn + t } ≤ exp
(
− t 2

2
(
µn + t

3

))
,

and

P{Sn ≤µn − t } ≤ exp
(
− t 2

2µn

)
.

Proof. This is a consequence of Chernoff’s inequality.

Proposition B.3 (Diameter of G (n, p), [Bol01, Corollary 10.12, first part]). Suppose d(n) ≥ 3

and 0 < p(n) < 1 satisfy

(i) limn→∞
logn
d(n) −3loglogn =∞,

(ii) limn→∞ p(n)d(n)nd(n)−1 −2logn =∞,

(iii) limn→∞ p(n)d(n)−1nd(n)−2 −2logn =−∞;

then, with high probability, G (n, p) has diameter d(n).

Proof. The general theorem for G (n, p) is proved in [Bol01, Theorem 10.10], however this

corollary is sufficient for our purposes. The original proof was published in [Bol81].

Lemma B.4. Let a,b, x, y, z > 0 and a ≤ b. Then

x + y a

x + za
≥ x + yb

x + zb

if and only if z ≥ y.

Proof. Note that under the assumptions, z ≥ y if and only if z(b − a) ≥ y(b − a), which is

equivalent to

zb + y a ≥ za + yb

and therefore also to

x2 +xzb +x y a + y zab ≥ x2 +xza +x yb + y zab.

The last inequality can be rewritten as

(x + zb)(x + y a) ≥ (x + za)(x + yb),

and we have obtained the desired statement.
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