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Abstract 

Heme is an essential molecule for all aerobic life. It acts as a co-factor for a wide variety 

of different proteins involved in functions as diverse as oxygen transport, energy 

generation and catalysis. Free or unbound heme also has a less well understood role as 

a signalling molecule, involved in transcriptional control, protein degradation, circadian 

regulation and cellular redox homeostasis. However, free heme is also cytotoxic through 

its pro-oxidant activity and its ability to trigger inflammatory cascades. Investigations 

into the role of heme in physiological processes and disease have been hampered by the 

lack of specific heme sensors that can be used in live cells to distinguish the low 

concentrations of the free heme pool from the protein-bound fraction. In this thesis, 

potential heme sensors have been designed and synthesised based on the amino acid 

sequences of heme-binding regions in the proteins Bach1 and hemopexin. Synthetic 

peptides with a CP motif derived from Bach1 were found to bind heme in a 1:1 ratio with 

low micromolar affinity by UV-vis titrations. One such peptide was modified to 

incorporate a 7-azatryptophan residue in place of tryptophan and quenching of the red-

shifted fluorescence was shown to be proportional to hemin concentration. This lead 

Bach1-derived peptide was used to measure heme levels in skin cell lysates and 

confirmed an increase in heme levels after treatment of cells with hemin or UVA 

irradiation. Further developments of this prototype sensor molecule have also been 

explored including the incorporation of a cell penetrating peptide sequence that 

improved uptake of the peptide by human skin cells in vitro. Conjugation of a second 

independent fluorophore to the heme-binding peptide was also investigated to prepare 

it for use in live cells, but this reduced the fluorescence of 7-azatryptophan, indicating 

that further optimisation of the fluorophore combination will ultimately be required. In 

summary, these studies provide the basis for the development of flexible peptide-based 

heme sensors that can be used to monitor heme levels in biological media. Further 

development should provide effective tools for probing the diverse physiological 

functions of heme, as well as aiding our understanding of how proteins such as Bach1 

regulate the transcription of genes associated with heme degradation.  
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1.1 Heme 

 

Heme (iron protoporphyrin IX) is a tetrapyrrole ring with a ferrous (Fe2+) iron coordinated 

at the centre. It is readily oxidised to the ferric iron (Fe3+) and the residual positive charge 

on the iron may be neutralised by a chloride iron forming hemin with a pentacoordinate 

square pyramidal structure.  

Heme is an essential molecule for all aerobic organisms and is a prosthetic group for a 

large variety of proteins. Its iron atom gives heme the ability to carry out oxido-reduction 

reactions, and this ability is responsible and crucial for the biochemical actions of these 

proteins (Smith 2009). In the globin proteins, heme transports and stores oxygen 

(Baldwin and Chothia 1979). In cytochromes, heme transports electrons and generates 

energy (Babcock and Wikström 1992). In a wide variety of enzymes such as catalases, 

peroxidases, cyclooxygenase and nitric-oxide synthase, heme activates oxygen or H2O2 

to oxidise substrates (Poulos 2014). 

 

While acting as a protein cofactor was the traditionally accepted function of heme in 

eukaryotes, it is now understood that free or labile heme is also an important cellular 

signalling molecule (Chiabrando et al. 2014). In such a role, heme can influence gene 

transcription, protein degradation (Ponka 1999), miRNA processing (Faller et al. 2007), 

circadian regulation (Yin et al. 2007), the immune response (Soares and Bozza 2016) and 

cellular redox homeostasis (Girvan and Munro 2013). 

 

There are several natural types of heme which contain the same porphyrin core but 

have different side chains, designated heme a, heme b and heme c. Heme b is the most 

prominent and acts as the prosthetic group for most hemoproteins and is thought to 

be the heme involved in regulating cellular processes (Figure 1.1.). Heme a and heme c 
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are found in the cytochrome a and cytochrome c proteins where they are covalently 

bound to amino acid side chains through their vinyl groups (Bowman and Bren 2008).  

 

 

 

 

 

 

 

 

 

 

Figure 1.1 The structures of the most common hemes: heme b, heme a and heme c. 

 

The total heme content of the cell comprises the mostly inert heme that is tightly 

associated with hemoproteins such as cytochromes and the free heme pool which is 

available for regulatory protein binding and signalling. The protein-bound fraction is 

much larger than the free heme fraction, and represents the majority of cellular heme. 

As the free heme pool is smaller and much more difficult to investigate, it is much less 

understood. Questions remain over its concentration, cellular distribution, oxidation 

state and dynamics – how it is controlled and how it responds to different stimuli. In 

theory, the labile heme pool contains heme that is newly synthesised, as well as heme 

released from hemoproteins under oxidising conditions. 

 

Heme b 

Heme a 

Heme c 
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1.2 Toxicity of free heme 

 

A further consideration is that free heme is cytotoxic (Kumar and Bandyopadhyay 2005). 

Excess free heme catalyses the production of reactive oxygen species (ROS). It is an 

abundant source of redox-active iron that can participate in the Fenton reaction to 

produce toxic free hydroxyl radicals. These free radicals can damage lipids, proteins and 

DNA. The hydrophobicity of heme allows it to intercalate into lipid bilayers, promoting 

lipid peroxidation which enhances permeability and membrane disorder, this leads to 

cell lysis and cell death (Schmitt et al. 1993).  Hemin also catalyses the degradation of 

proteins into peptide fragments (Aft and Mueller 1984). Heme iron directly interacts 

with H2O2 to induce a lipid peroxidation of low-density lipoprotein (Klouche et al. 2004). 

Hemin treatment also leads to deletion of mitochondrial DNA, affecting expression of 

proteins such as cytochrome c oxidase and Bcl-xl thus leading to apoptosis (Suliman et 

al. 2002). 

 

As well as the direct oxidative damage that free heme can cause, it can also activate the 

endothelium, leading to vascular dysfunction and stimulation of the immune response, 

promoting acute inflammation and associated tissue damage (Dutra and Bozza 2014). 

Injection of heme into mice causes vascular permeability, leukocyte migration from the 

vasculature to surrounding tissues, and increase of acute-phase proteins (Wagener et al. 

2001). Excess heme in the blood activates endothelial cells by binding to toll-like 

receptor 4 (TLR4) which activates intracellular NF-κB signalling leading to the induction 

of the adhesion molecules: intercellular adhesion molecule 1 (ICAM-1), vascular cell 

adhesion molecule 1 (VCAM-1), E-selectin, P- selectin, and von Willebrand factor (vWF) 

(Belcher et al. 2014). Heme also induces production of the cytokine interleukin-8 (IL-8) 

by endothelial cells (Natarajan et al. 2007) and by neutrophils (Graça-Souza et al. 2002). 

IL-8 is the major cytokine involved in neutrophil migration and adhesion to endothelial 

cells and therefore heme can also activate neutrophils for chemotaxis and infiltration. 
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Heme itself can also act as a chemoattractant to neutrophils (Porto et al. 2007). Once 

recruited, heme also stimulates production of ROS by neutrophils (Porto et al. 2007), 

further promoting oxidative damage of the vasculature and tissue injury (Mócsai 2013). 

Heme also activates macrophages through TLR4 binding, inducing production of the 

chemokines tumour necrosis factor α (TNFα), keratinocyte-derived chemokine (KC), 

CD14 (Figueiredo et al. 2007) and leukotriene B4 (LTB4) (Monteiro et al. 2011). These 

chemokines are also involved in neutrophil recruitment. Heme also triggers the oxidative 

burst of macrophages, increasing ROS production (Figueiredo et al. 2007). Co-

stimulation of several cell types with heme and TNFα have also been shown to activate 

the programed necrotic cell death pathway to a much higher extent than either alone 

(Gozzelino et al. 2010). Taken together, this activation of the immune response earns 

heme a categorisation as a damage associated molecular pattern (DAMP). DAMPs are 

molecules derived from damaged cells or extracellular matrix that signal to the innate 

immune system that damage has occurred and a response may be necessary. While 

inflammation is a vital immune process, inappropriate or excessive activation can cause 

local damage and the production of ROS by macrophages and neutrophils that can 

further exacerbate the oxidative damage caused by heme (Soares and Bozza 2016).  

 

A summary of the toxic effects of free heme can be seen in Figure 1.2. 
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Figure 1.2. Free heme toxicty. 1. Free heme can cause direct oxidative damage to membranes, 

DNA and proteins. 2. Oxidised heme can damage membranes of red blood cells, leading to 

hemolysis. 3. Heme can recruit neutrophils triggering inflammation. 4. Heme can activate 

endothelial cells leading to vascular dysfunction. From Chiabrando et al., 2014.  

 

1.3 Regulation of cellular heme levels 

 

Despite these negative effects, all heme dependent processes, such as the incorporation 

of heme into hemoproteins as well as signalling by the free heme pool requires the 

dynamic mobilisation of free heme. Therefore, the availability of free heme needs to be 

tightly controlled. Understanding the properties of the free heme pool is critically 
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important for understanding the role of heme in cellular processes. Organisms control 

their heme levels by a concerted action of several different systems: heme synthesis and 

degradation, import and export, and sequestration and scavenging by proteins (Figure 

1.3).  

Figure 1.3. Regulation of cellular heme levels. Heme is synthesised through 8 enzymatic steps in 

the mitochondria and cytosol. Extracellular heme can be exported through heme carrier protein 

1 (HCP1) and heme responsive gene-1 (HRG-1). Cytoplasmic heme can be scavenged by 

peroxiredoxin I (PRX1) or catabolised by heme oxygenase-1 (HO-1) or heme oxygenase 2 (HO-2). 

This liberates biliverdin (BV) that is converted to bilirubin (BR) by biliverdin reductase (BVR), CO 

and iron which is sequestered by ferritin (FtH). Cytoplasmic heme can also be exported by the 

Feline Leukemia Virus subgroup C receptor (FLVCR) and ATP-binding cassette, sub-family G, 

member 2 (ABCG2) transporters. From Larsen et al., 2012.  
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1.4 Regulation of heme synthesis 

 

Heme biosynthesis requires eight conserved enzymes and starts in the mitochondria 

(Wang and Pantopoulos, 2011). 5-Aminolevulinic acid (ALA) is synthesised by the enzyme 

ALA synthase (ALAS) from succinyl-CoA and glycine. ALA is exported to the cytosol where 

the next four enzymatic steps are carried out ending with the synthesis of 

protoporphyrinogen IX, which is transported back into the mitochondria where the last 

three conversions are carried out. In the mitochondria, it is oxidised to protoporphyrin 

IX and an Fe2+ iron is inserted by ferrochelatase in the last step of the pathway. Heme is 

then exported back to the cytosol for incorporation into apoproteins to form 

hemoproteins (Ajioka et al., 2006). The only mitochondrial heme exporter currently 

known is Feline Leukemia Virus subgroup C receptor 1 b (FLVCR1b). Overexpression of 

FLVCR1b promotes heme synthesis, whereas silencing it causes accumulation of heme 

in mitochondria (Chiabrando et al. 2012). 

 

There are two isoforms of ALAS in mammals – ALAS1 and ALAS2. ALAS1 is a 

housekeeping version of the enzyme, that is expressed in all tissue, whereas ALAS2 is 

specific to erythroid cells. In non-erythroid cells, it is ALAS that controls the rate of heme 

synthesis at the first step of the pathway. In erythroid cells that require large amounts 

of heme for synthesis of hemoglobin the rate limit is imposed by ALAS2. ALAS2 however, 

is not regulated by heme levels but by the supply of iron (Sassa, 1990; Ponka, 1997). 

 

In cells that express ALAS1, its expression is subject to negative feedback regulation by 

its product, heme (Marks et al., 1988). This was found to be due to inhibition by heme 

of translation of ALAS1 by destabilisation of mRNA, thereby decreasing its half-life (Drew 

and Ades, 1989; Hamilton et al., 1991).  Runoff transcription experiments showed that 

neither adding nor sequestering heme affected the rate of transcription in primary chick 
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hepatocytes, however sequestering heme did nearly triple the half-life of ALAS1 mRNA 

(Hamilton et al., 1991). ALAS also contains several 'heme regulatory motifs (HRM). 

Binding of heme to these Cys-Pro motifs inhibited the translocation of ALAS from its site 

of synthesis in the cytosol into the mitochondria where it acts (Lathrop and Timko, 1993; 

Munakata et al., 2004). Site directed mutagenesis that replaced the cysteine residues 

with serines reversed this inhibition and allowed ALAS1 to accumulate in mitochondria 

independent of hemin levels (Munakata et al., 2004). 

 

1.5 Regulation of heme degradation 

 

Although heme can regulate its own synthesis, an increase of free heme in the cytoplasm 

can also result from the turnover of hemoproteins, due to either natural catabolism of 

hemoglobin or oxidative stress-induced protein fragmentation. Heme oxygenase (HO) 

breaks down heme into ferrous iron (Fe2+), carbon monoxide and biliverdin. Carbon 

monoxide and biliverdin can act as antioxidants, protecting the cell from the pro-oxidant 

effects of heme. While, Fe2+ is also an oxidant that can act as a Fenton reactor to produce 

toxic free radicals (OH•), increased levels of Fe2+ promote synthesis of the protein ferritin 

that sequesters free iron, thereby protecting the cell from its oxidising effects (Gozzelino 

and Soares 2014). Therefore regulation of this system could determine whether the 

action of heme oxygenase acts a pro- or anti-oxidant and the enzyme can be thought of 

as a regulator of iron homeostasis (Ryter and Tyrrell 2000; Igarashi and Watanabe-

Matsui 2014). There are three isoforms of heme oxygenase: HO-1, HO-2 and HO-3. HO-

1 is an inducible form of the enzyme whereas HO-2 is constitutively expressed and 

participates in routine turnover of free heme (Maine et al. 1986). HO-1 and HO-2 are 

products of two different genes and share only 45% sequence homology, but their 

catalytic site regions do have 100% secondary structure homology (Kutty et al. 1994).  

The only response element in the promoter region of the HO-2 gene is the glucocorticoid 

response element (Raju et al. 1997). The HO-2 protein has two conserved Cys-Pro HRMs 
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(Mccoubrey et al. 1997) that form a reversible thiol/disulfide redox switch that indirectly 

regulates HO-2 activity by modulating substrate affinity (Yi et al. 2009). This allows HO-

2 to sense the redox state of the cell and link it to heme metabolism – under oxidative 

conditions heme catabolism increases, reducing the concentration of the pro-oxidant 

molecule and producing the anti-oxidants CO and biliverdin.  

The HO-3 gene was first identified in rat with the predicted protein sharing 90% 

sequence similarity with HO-2 and including two Cys-Pro motifs (McCoubrey et al. 1997). 

The protein was then expressed in E. coli but found to only have very low levels of 

catalytic activity and a regulatory role for HO-3 was suggested. However, since then, HO-

3 protein expression has not been detected in any tissue and remains an elusive and 

poorly investigated gene. More recently, efforts to isolate the previously reported gene 

failed but instead found two related psuedogenes HO-3a and HO-3b derived from HO-2 

transcripts but with no function (Hayashi et al. 2004).  

 

1.5.1 Regulation of HO-1 by heme 

 

To complement its inhibition of synthesis, heme can also promote its degradation to 

protect the cell from its oxidative effects. Heme acts through the transcription factor 

Bach1 (Figure 1.4.).  The hmox1 gene has several upstream enhancers that include the 

Maf recognition element (MARE) which can be bound by heterodimers of small Maf 

proteins (Kataoka et al., 2001). Bach1 is one such protein that can bind to MAREs with a 

small Maf protein to repress transcription of HO-1 (Sun et al. 2002). Evidence for this 

comes from co-transfection of a plasmid encoding Bach1, with a plasmid with both HO- 

1 and a luciferase reporter that showed that heme oxygenase expression was inhibited. 

Footprint analysis showed that Bach1 alone could not bind to DNA but when MafK was 

also added, the MARE sites were protected from DNA degradation. The presence of 

heme greatly inhibited the binding of Bach1-MafK to DNA  and in  bach1-/- knockout mice 

the level of HO-1 was much higher than in wild type (Sun et al., 2002).  Heme binds to 
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CP motifs in Bach1 and by a presumed conformational change inhibits DNA binding, 

displacing Bach1 from MAREs in favour of the transcription factor Nrf2 (Ogawa et al. 

2001; Sun et al. 2004). Chromatin immunoprecipitation analysis showed that heme 

displaced Bach1 from the hmox1 enhancer with the subsequent binding of Nrf2 (Sun et 

al., 2004). In addition to preventing Bach1-DNA binding, heme binding also triggers 

nuclear export of Bach1. Immunofluorescence microscopy showed that FLAG-tagged 

Bach1 localised to the nucleus but after stimulation with hemin it instead accumulated 

in the cytoplasm (Suzuki et al. 2004). Transcription of HO-1 is therefore regulated by 

balancing activation and repression. Heme increases expression by alleviating repression 

rather than activation of an activator.  

 

 

Figure 1.4. The regulation of heme oxygenase-1 (HO-1) by Bach1. The Bach1-MafK dimer binds 

to the Maf recognition element (MARE) and represses transcription of HO-1. If the free heme 

pool increases, heme binds to Bach1 and displaces it from the DNA, triggering its nuclear export. 

In its place, Nrf2 can bind the MARE, promoting transcription of the HO-1 gene. 
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1.5.2 Bach1 

 

The full structure of Bach1 has not been solved, although the BTB domain in isolation 

has (Ito et al. 2009). The amino acid sequence does contain six CP motifs that are 

characteristic of heme regulatory motifs (Oyake et al. 1996) and when mutated abolish 

the ability of Bach1 to repress transcription of HO-1 (Ogawa et al. 2001). The protein 

binds at least 5 heme molecules, but a fragment containing only the first two CP motifs 

(those nearest the N-terminus and the BTB domain) did not show any heme binding (Hira 

et al. 2007). Mutation of CP3, CP4, CP5 and CP6 in turn reduced the heme binding 

potential of the protein by one equivalent indicating that each binds one molecule of 

heme, as well as the existence of a fifth heme binding site. A mutant with CP3 and CP4 

mutated to alanine lost its sensitivity to heme with respect to nuclear export, but 

mutating all CPs except CP3 and CP4 still caused Bach1 to be exported out of the nucleus 

in the presence of heme, indicating that heme binding to one or both of these sites is 

critical for the depletion of Bach1 in the nucleus (Suzuki et al. 2004). Although there is 

no evidence that certain CP sites are important for DNA binding, it has been suggested 

that CP5 and CP6 are implicated due to their positions flanking the bZip domain (Figure 

1.5). 

 

Figure 1.5. The BTB (blue) and bZip (green) domains of Bach1 with the six CP motifs (orange). 
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1.5.3 Regulation of HO-1 by other factors 

 

Although heme is the most potent inducer of HO-1, other stimuli that promote 

transcription are transition metals, H2O2, 𝛽-amyloid, dopamine, kainic acid, cytokines, 

prostaglandins, endotoxin, and vasoactive compounds, as well as other pro-oxidants and 

inflammatory stimuli. It is also induced by heat shock, radiation, hypoxia and hyperoxia, 

hyperthermia and ultraviolet irradiation. These can all be grouped under the title of 

oxidative stressors which activate signal transduction pathways and transcription factors 

- such as members of the NF-E2, HSF, AP-1, and NF-κB families - that regulate hmox1 

transcription (Alam and Cook 2007).  

 

It is unclear why cells respond to oxidative stress by increasing catabolism of free heme. 

One possibility is that oxidative stress is particularly dangerous for hemoproteins, which 

become denatured and release free heme. As heme is also an oxidant, without its 

degradation by HO-1, the cell could become quickly overwhelmed by the original oxidant 

as well as the heme released. Alternatively, the production of the anti-oxidant CO and 

biliverdin molecules are so beneficial to the cell that the sacrifice of heme is worthwhile. 

CO can bind to the heme of hemoproteins, inhibiting their oxidation, protecting the 

protein from heme-mediated oxidation and preventing further heme release (Epiphanio 

et al. 2007). 

 

1.6 Incorporation of heme into hemoproteins 

 

The rate of heme acquisition in the cell has to be proportional to demand and the biggest 

demand for heme comes from newly synthesised apo-hemoproteins. Synthesis of heme 

and synthesis of apo-hemoproteins is therefore quite integrated. Heme can induce the 
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expression of α- and β-globin genes through binding of Bach1 causing its removal from 

MARE sequences in their promoter (Tahara et al. 2004). 

 

Heme also regulates translation through the kinase heme regulated inhibitor (HRI). HRI 

is a serine/threonine kinase that can phosphorylate and thereby inhibit the transcription 

factor eIF2α. HRI autophosphorylates and dimerises to form a stable heme-sensing 

complex. Further heme binding through Cys-Pro HRMs prevents further 

autophosphorylation of Thr485 which keeps HRI inactive and unable to phosphorylate 

eIF2α (Chen 2007). 

 

1.7 Heme export and import 

 

There are two heme exporters at the cell surface – FLVCR1a and the ATP-binding 

cassette, sub-family G, member 2 (ABCG2). Overexpression of FLVCR1a leads to a 

decrease of cellular heme and silencing causes raised heme levels (Quigley et al. 2004). 

In mice without FLVCR1a, heme and iron accumulated in the liver and HO and ferritin 

were upregulated, indicating that the cell tries to overcome the lack of export by 

increasing degradation (Vinchi et al. 2014). Export of heme by FLVCR1a is dependent on 

the extracellular concentration of the heme-binding proteins hemopexin and albumin 

(Yang et al. 2010). Hemopexin can bind directly to FLVCR1a and may immediately bind 

the heme that is exported, allowing the channel to open for another molecule of heme. 

It is possible that albumin can also bind to the channel, although it has a much lower 

affinity for heme than hemopexin, and so export to albumin would be slower and 

therefore binding of different heme-binding proteins to FLVCR1a could regulate its heme 

export. 

ABCG2 is a member of the ABC transporter family that can transport a wide variety of 

substrates (Mao and Unadkat 2005). Expression of ABCG2 is induced in HeLa cells after 
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stimulation of heme synthesis, potentially as part of the response to deal with excess 

heme (Chiabrando et al. 2012). In human embryonic kidney cells, heme-induced cell 

death was reduced when ABCG2 was overexpressed (Wagener et al. 2013). However, 

Abcg2−/− mice accumulate PPIX rather than heme in erythroid progenitors so the exact 

physiological role of ABCG2 with respect to heme is still not completely understood 

(Zhou et al. 2005). 

There are certain heme importers that have been identified; heme responsive gene-1 

(HRG-1) is expressed in endosomes and lysosomes and transports heme from the inside 

of these vesicles into the cytoplasm for further intracellular processing (Rajagopal et al. 

2014). The cytoplasmic membrane transporter heme carrier protein 1 (HCP1) can also 

import heme into the cell (Shayeghi et al. 2005). Regulation of HCP1 expression is linked 

to the expression of HO-1, with induction of HO-1 leading to increased uptake of heme 

and overexpression of HCP1 leading to an induction of HO-1 (Latunde-Dada et al. 2006). 

These transporters presumably act to remove heme from the extracellular space for use 

or degradation in the cell, thereby protecting the extracellular space from the cytotoxic 

effects of heme. 

 

1.8 Heme scavenging 

 

As well as degradation by HO-1, another intracellular protection against free heme is the 

protein peroxiredoxin I (Prx1), which is also known as Heme-Binding Protein 23 (HBP23). 

Prx1 acts as a heme scavenger that neutralises the pro-oxidant activity of free heme in 

the cytoplasm, nuclear matrix, mitochondria, and peroxisomes (Immenschuh et al. 

2003). Its expression is also induced by hemin (Immenschuh et al. 1997), presumably to 

counteract the toxic action of excessive free heme. 
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Extracellular heme has the same toxic effects as intracellular heme and can cause 

oxidative damage. Cells rely on the scavenging and sequestration of extracellular heme 

by extracellular proteins, and the main heme-neutralising proteins are haptoglobin and 

hemopexin. Lysis of red blood cells releases hemoglobin and free heme into the 

bloodstream; this constantly occurs at a low level as erythrocytes age, and controlled 

degradation of red blood cells that have reached an age of about 120 days takes place 

in the liver and spleen (Shibahara 2003). The free heme released from these processes 

needs to be quickly neutralised to prevent it damaging surrounding vasculature and 

tissue. Haptoglobin is a glycoprotein produced mainly in the liver and then circulates in 

the bloodstream. Binding of haptoglobin to hemoglobin protects the vasculature from 

hemoglobin-driven lipid peroxidation (Van Vlierberghe et al. 2004) with haptoglobin 

forming a stable complex with hemoglobin that is then internalised by the 

reticuloendothelial system. Binding to the CD163 receptor on the surface of macrophage 

cells triggers internalisation of the haptoglobin-hemoglobin complex and induction of 

HO-1 (Philippidis et al. 2004). After endocytosis, the complex is degraded in lysosomes 

and the heme can be catabolised in the cytosol by HO-1 (Moestrup and Møller 2004).  

 

Hemoglobin that does not become bound by haptoglobin is quickly oxidised, for example 

when the capacity of haptoglobin is exceeded. When confined inside red blood cells, 

hemoglobin exists as a tetramer with the iron of heme in a reduced state (Reiter et al. 

2002). However, after release hemoglobin dissociates into a dimer which reveals heme 

for oxidation to the ferric state, becoming methemoglobin. Methemoglobin then 

releases its free heme into the bloodstream (Ascenzi et al. 2005). Hemopexin is a 

glycoprotein that binds heme with very high affinity, to reduce its toxicity, thereby acting 

as an antioxidant. Hemopexin bound to heme is then internalised by CD91 (LDL receptor-

related protein 1), which is expressed mostly in the liver but also by macrophages 

(Hvidberg et al. 2005). As with the haptoglobin system, once endocytosed, the heme is 
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released from hemopexin which is degraded in the lysosome and the heme is released 

for further catabolism or recycling.  

 

Albumin can bind heme with an affinity 104 times lower than hemopexin, however, it is 

much more abundant than hemopexin which might compensate for its low affinity. 

Heme binding by albumin can also help protect against heme-mediated oxidative 

damage (Fasano et al. 2007). α1-Microglobulin is a plasma protein that is cleaved by free 

heme into an active form that can then catabolise free heme (Allhorn et al. 2002). α1-

Microglobulin expression is induced by heme and ROS and can protect skin cells from 

heme-mediated damage as well as protecting and repairing extracellular collagen fibrils 

(Olsson et al. 2011). High- and low-density lipoproteins (HDL and LDL, respectively) can 

also bind heme and then complex with hemopexin (Hvidberg et al. 2005) or be cleared 

via the CD36 and CD68 scavenger receptors expressed on macrophages (Camejo et al. 

1998). 

 

As outlined above, there are multiple levels of control for heme levels emphasising the 

importance for organisms of regulating the concentration of this potentially damaging 

molecule. As well as control of synthesis, cells have numerous responses to deal with 

excess free heme (Figure 1.6.). When these systems are overwhelmed or fail to act 

properly it can lead to disease states, as discussed in the next section. 
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Figure 1.6. Mechanisms for control of free heme. Lysis of red blood cells (RBC) leads to release 

of hemoglobin (Hb) which is scavenged by haptoglobin (Hp) and can be internalised by the CD163 

receptor. Hemoglobin that is not scavenged by haptoglobin is oxidised and releases free heme 

which can be scavenged by hemopexin (Hx) and internalised by the CD91 receptor. Further 

buffering capacity is provided by albumin, HDL, LDL and α1-microglobulin. Once inside the cell, 

heme can be catabolised by heme oxygenases. From Larsen et al., 2012. 

 

1.9 Dysregulation of heme levels and heme in disease 

 

The cellular free heme pool can conceivably increase after extracellular heme overload, 

increased heme synthesis, accelerated hemoprotein breakdown, impaired incorporation 

into apo-hemoproteins, or impaired HO activity.  
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1.9.1 Hemolytic diseases  

 

Hemolysis or rhabdomyolysis can release hemoglobin or myoglobin respectively into the 

extracellular space which can subsequently release free heme. If the buffering capacity 

of hemopexin is exceeded, then the free heme released can contribute to the 

pathogenesis of a range of disease. Hemolytic anemia, sickle-cell anemia, malaria, 

trauma and bleeding are typical causes of increased free plasma heme (Schaer et al. 

2013) that triggers vascular and organ dysfunction and leads to adverse clinical effects . 

Sickle cell disease is a genetic disorder caused by a mutation in hemoglobin, which leads 

to the production of abnormally shaped red blood cells that are prone to intravascular 

hemolysis. In sickle cell anemia, haptoglobin and hemopexin levels are both depleted 

(Muller-Eberhard et al. 1968).  

In sepsis, depleted hemopexin has been associated with more severe disease and fatal 

outcomes (Larsen et al. 2010). 

Polymorphisms in the hmox1 and hp2 (haptoglobin) genes as well as increased heme in 

the blood cause an increased susceptibility to malaria (Mendonça et al. 2012). Higher 

amounts of extracellular heme and lower amounts of hemopexin are associated with 

worse outcomes in malaria patients (Elphinstone et al. 2016). In mouse models of the 

disease, administration of free heme is sufficient to trigger the onset of cerebral malaria 

in mice infected with the Plasmodium strain that does not trigger cerebral malaria 

naturally (Ferreira et al. 2008), indicating that heme itself can exacerbate the disease. 

Destruction of red blood cells in malaria also hinders distribution of oxygen around the 

body, contributing to lactic acidosis, a principal pathophysiological feature of malaria 

(Miller et al. 2002).  

Oxidised heme is also a source of ROS and RNS that can damage the phospholipid 

membranes and proteins of red blood cells, contributing to aging and lysis of these cells 

(Rifkind and Nagababu 2013). Theoretically, in disease states where hemolysis is 
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triggered by other factors, the oxidation of heme could contribute to the continuation 

of the disease state by the further damage and lysis of red blood cells. After the release 

of free heme and the saturation of hemopexin, heme is distributed to cells in the 

vasculature, including endothelial cells and leukocytes where it can contribute to the 

inflammatory pathologies of disease.  

 

1.9.2 Neurodegenerative conditions 

 

Alzheimer’s disease (AD) is a neurodegenerative disease characterised by neuritic senile 

plaques (SP), which predominantly contain amyloid-β (Aβ) peptides, and tau-containing 

neurofibrillary tangles (NFT) mainly in the frontal cortex and hippocampus regions of the 

brain (Selkoe and Hardy 2016). Higher levels of free iron are observed in both the 

plaques and the tangles producing ROS and contributing to disease progression and 

cognitive impairment (Smith et al. 1997). This could be due to increased levels of HO-1 

found in plaques (Schipper 2000). Ferrochelatase is upregulated in the AD brain 

suggesting increased levels of heme synthesis (Atamna 2006). Hemoglobin is also found 

to aggregate with Aβ peptides in plaques (Wu et al. 2004). Free heme can also bind 

directly to Aβ through Arg5, Tyr10, and His13 residues, forming an active site with ROS 

generating and modest peroxidase activity (Ghosh et al. 2015). However, heme can also 

interact with hydrophobic residues of Aβ peptide secondary structure thereby blocking 

dimerization and higher order aggregation of the peptides (Zhao et al. 2013). In this role, 

heme would be protective against AD. Despite all these findings the pathogenic 

significance of heme in neurodegeneration in AD is not completely understood but it 

seems heme is significantly involved in AD. 

 

Parkinson’s disease (PD) is a movement disorder characterized by progressive 

degeneration of dopaminergic neurons, formation of α-synuclein-containing fibrillar 
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inclusions (Lewy bodies) in dopaminergic neurons and variable depletion of 

noradrenergic neurons and serotoninergic cells (Dauer and Przedborski 2003). HO-1 

expression is observed in the Lewy bodies and astroglia (Schipper et al. 1998). Whether 

free heme has a role in PD has yet to be investigated. 

 

HO-1 has been implicated in the pathobiology of numerous other degenerative and non- 

degenerative CNS condition. HO-1 localizes to diseased motor neurons in amyotrophic 

lateral sclerosis (Calingasan et al. 2005), Pick bodies in subjects with frontotemporal 

dementia, NFT in cases of progressive supranuclear palsy, and ballooned neurons in 

corticobasal degeneration (Castellani et al. 1995). It is conceivable that induction of HO-

1 may contribute to the pathological brain iron deposition and oxidative damage that 

have been documented in these late-onset human neurodegenerations (Schipper et al. 

2009). 

 

1.9.3 Cancer 

 

Cancer cells are hyperproliferative, have a high oxygen requirement and therefore an 

increased demand for hemoproteins and therefore heme itself. 

A number of studies have demonstrated a positive association between high intake of 

red meat and colorectal cancer (Hooda et al. 2014). Red meat is high in heme and heme 

is readily absorbed in the gut. Mice fed with heme had gut epithelial hyperproliferation 

and decreased apoptosis (IJssennagger et al. 2012). Microarray analysis of their colon 

mucosa showed differential regulation of 3710 genes, with a downregulation of the 

inhibitors of proliferation, Wnt inhibitory factor 1, Indian Hedgehog, bone 

morphogenetic protein 2 and Interleukin-15 and upregulation of the growth factors 

amphiregulin and epiregulin. The oxidative properties of heme can increase the 

production of N-nitroso compounds in the human intestine which could oxidise DNA and 
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lipoprotein and perhaps increase the rate of mutation of DNA (Lunn et al. 2007).  

Although less epidemiological data is available for other cancers, there is also evidence 

for increased dietary heme increasing the risk of oesophageal and stomach cancer and 

pancreatic cancer (Hooda et al. 2014). 

 

Heme can also regulate the phosphorylation activity of various proteins of the MAPK 

pathway (Ye and Zhang 2004) which has a central role in cell growth and transformation 

(Seger and Krebs 1995). In HeLa cells, heme can activate the kinase Raf, which was 

originally identified as an oncogene, leading to activation of the downstream targets 

ERK1/2 and MEK1/2  (Ye and Zhang 2004). Heme deficiency lead to increased levels of 

the p53 protein which is a tumour suppressor and the negative cell cycle regulator p21 

leading to decreased proliferation. 

 

HO-1 levels are also elevated in the majority of cancers; however, the activity of HO-1 

varies, and, therefore, heme metabolism can be dramatically altered in tumours (Wegiel 

et al. 2014). 

 

1.9.4 Cardiac Diseases 

 

Atherosclerosis is the thickening of the arterial wall as a result of invasion and 

proliferation of macrophages and foam cells and proliferation of smooth muscle, 

forming an atherosclerotic plaque. Free heme in the bloodstream can initiate the 

inflammatory response and recruit macrophages to the endothelium. Inside the cell, 

stimulation of NADPH oxidase by heme and subsequent production of cytosolic ROS has 

been shown to induce smooth muscle proliferation and formation of atherosclerotic 

plaques (Moraes et al. 2012). This effect is attenuated by the inhibition of heme 
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oxygenase-1. Double knockout mice – ApoE-/- and Bach1-/- - developed less 

atherosclerotic plaques than ApoE-/- mice (Watari et al. 2008). Free heme can also oxidise 

lipids and lyse red blood cells, debris of which can contribute to plaque formation 

(Viktoria et al. 2014).  

 

In mice subjected to coronary ligation induced ischemia, higher heme levels were found 

in hearts leading to worse cardiac function (Sawicki et al. 2015). Mice who overexpressed 

ALAS2 had hearts that displayed increased heme content, higher oxidative stress, 

exacerbated cell death, and worsened cardiac function due to the presence of excess 

heme. In failing hearts removed from transplant patients, an excess of heme was also 

observed (Khechaduri et al. 2013). ALAS2 was also significantly upregulated but HO-1 

was not.  

 

Heme can bind to myosin light chain-1 protein, alter human ventricular cardiomyocyte 

morphology and hinder their ability to contract (Alvarado et al. 2015). This may in part 

explain the role of heme in heart failure and cardiac ischemic injury. 

 

1.9.5 Diabetes 

 

Type 2 diabetes mellitus is characterized by hyperglycaemia, insulin resistance, and a 

relative impairment in insulin secretion. Patients with diabetes also display endothelial 

dysfunction that is likely due to high ROS mediated by hyperglycaemia (Abraham et al. 

2003). Diabetics are also more susceptible to atherosclerosis (DeFronzo 2010).  In muscle 

samples from diabetic patients, HO-1 levels were decreased (Bruce et al. 2003). 
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Induction of HO-1 by cobalt protoporhyrin improved insulin sensitivity in the diabetic 

obese rat model (Nicolai et al. 2009). Further, induction of HO-1 selectively enhanced 

polarization toward an anti-inflammatory M2 macrophage phenotype and reduced 

pericardial adiposity and cardiac injury in diabetic cardiomyopathy in obese rats (Jadhav 

et al. 2013). Improved anti-oxidative potential was reported in spontaneously 

hypertensive rats after treatment with hemin (Umekawa et al. 1990). Hemin therapy 

lowered blood pressure, decreased glycemia, reduced insulin resistance as well as 

proteinuria/albuminuria, and enhanced glucose transport.  

 

1.9.6 UVA irradiation 

 

UVA irradiation of skin fibroblasts induces HO-1 through the generation of reactive 

oxygen species (Basu-Modak S 1993) which is dependent on cyclooxygenase (Basu-

Modak et al. 1996). After UVA irradiation, or treatment with H2O2, heme is released from 

microsomal hemoproteins in a manner that is also dependent on cyclooxygenase and 

precedes induction of HO-1 (Kvam et al. 1999). UVA irradiation is a carcinogen and 

causes local inflammation and it is possible that the involvement of heme and HO-1 

contributes to these pathologies (Tyrrell 2004). 

 

1.10 Structure of hemoproteins 

 

Protein chains can bind heme b through both coordination of the available axial positions 

of the iron by amino acid side chains as well as by hydrophobic interactions with the 

porphyrin ring and hydrophilic interactions with the propionic acid units. The presence 

and position of amino acids not only define heme binding sites in proteins but are critical 

for controlling the protein’s heme chemistry. Heme proteins are especially prominent in 
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dioxygen chemistry, transporting O2, effecting redox chemistry or acting as a sensor for 

O2 or CO.  

Analysis of the heme-containing proteins deposited in the PDB revealed that in 77% of 

heme-binding proteins, the heme scaffold was α-helical, while 13% were mostly β-sheets 

and the remaining 10% were a mix (Reedy and Gibney 2004). The overall fold of the 

protein determines the orientation of the individual heme-interacting amino acids. The 

most commonly found coordination ligand is the imidazole group of histidine. 

Pentacoordinate binding involving one histidine is typical of oxygen carrier proteins such 

as hemoglobin and myoglobin. A hexacoordinate heme is typical of electron transfer 

proteins with two histidine ligands often being involved (bis-histidine coordination), and 

is the second most common binding pattern as illustrated by cytochrome b.  Histidine 

may also be found in combination with other axial ligands such as methionine in 

cytochrome c. While heme is covalently bound to all but one cytochrome protein during 

bis-histidine coordination, in hemopexin, where heme is also coordinated to two 

histidines, binding is very strong but reversible. Cys is another coordinating heme ligand, 

such as in cytochrome P450s, while in heme catalase, the hydroxyl group of Tyr acts as 

the axial ligand (Rydberg et al. 2004). However, especially in proteins where heme is not 

a permanently bound prosthetic group, the heme binding site is not necessarily static 

and ligands can change during heme binding. As well as the axial ligands, heme binding 

sites are characterised by aliphatic and aromatic amino acids that interact with and 

stabilise the heme macrocycle. Polar amino acids can also contribute to heme protein 

binding site specificity and modulation of chemical properties by providing various 

hydrogen bond donors and acceptors.     

One of the unique features of the heme molecule is that there is significant electron and 

spin delocalisation around the ring, the iron and the axial ligands (Rovira et al. 1997). 

Significant charge transfer can occur between the iron and covalent ligands resulting in 

changes in the formal charge on the iron and the distribution of net charge and unpaired 

spin density through the macrocyle. This allows the formation of various different 



26 
 

species and changes in the oxidation state of the iron leading to different heme protein 

functions. In enzymatic hemoproteins such as peroxidases and cytochrome P450s, the 

iron reaches the Fe(V) oxidation state which is too unstable to occur in any other iron 

system, but delocalisation greatly reduces the net charge on the formal Fe(V) iron (Loew 

and Harris 2000). Another property of a protein-bound heme is the presence of multiple 

spin states, and these changes in spin state can also be integral to hemoprotein function. 

In hemoglobin and myoglobin the binding of O2 to the iron transforms the five-

coordinated, high spin quintet species to a six-coordinated, singlet species (Baldwin and 

Chothia 1979).   

 

1.10.1 Hemoglobin 

 

Hemoglobin is a heme containing, oxygen transport protein present in all vertebrates. 

It has a globular structure and is composed of 2 α-chain subunits and 2 β-chain 

subunits, each forming a globin fold with a heme prosthetic group. Each ferrous heme 

iron is linked to the Nε of a His, denoted the proximal histidine (Figure 1.7). O2 can 

reversibly bind in a bent geometry to the Fe atom on the other side of the heme plane 

and is stabilised by hydrogen bonding to the distal histidine (Perutz 1979). The heme 

binding pocket is overwhelmingly hydrophobic and there are over 60 interactions of 4 

Å of less between the heme and the binding pocket (Perutz et al. 1968). Examples of 

particularly important interactions include van der Waals interactions with Val67, 

Leu88 and Val98, and π- π stacking with Phe42 (Park et al. 2006). 
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Figure 1.7. Human oxyhemoglobin (PDB 2DN1) showing the proximal and distal histidines in blue 

and other residues involved in heme binding in green. Heme is orange and O2 is red. The figure 

was created using The PyMOL Molecular Graphics System, Schrödinger, LLC. 

 

1.10.2 Cytochrome b5 

 

Cytochromes b5 are a ubiquitous family of hemoproteins involved in electron transport 

reactions. There are two isoforms of cytochrome b5 in vertebrates, Cyb5A and Cyb5B, as 

well as a number of other protein domains with the same fold covalently associated with 

other redox domains in proteins such as flavocytochrome cytochrome b2,and sulphite 

oxidase (Lederer 1994). The cytochrome b5 fold comprises two hydrophobic cores 

flanking a 5-stranded β-sheet. The N-terminal core contains the heme binding site 

between two α-helices, α2 and α5. The heme iron is bis-coordinated by two His residues 

with the propionate side chains facing out of the binding pocket. In human CYB5B, the 

heme iron is coordinated by His39 and His63 (Figure 1.8.) and the rest of the binding 

pocket is highly hydrophobic with Leu23, Ile25, Val32 and Leu71 side chains forming 
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hydrophobic packing interactions with the porphyrin core as well as edge-to-face 

stacking between Phe58 and Phe35 and the porphyrin ring (Parthasarathy et al. 2011). 

 

 

 

 

 

 

 

 

1.10.3 Cytochrome P450s 

 

Cytochrome P450s (CYP450s) are one of the largest families of enzymes, with over 

18,000 identified and 57 in humans. CYP450s are monoxygenases, and transfer a single 

oxygen from their heme iron to a variety of non-polar substrates. They are heavily 

involved in the detoxification of xenobiotic molecules by hydroxylation, epoxidation and 

heteroatom oxidation. Many of them have unique structures but all have a conserved 

proximal Cys that provides a sulfur atom ligand to a heme iron. Their heme atoms 

undergo complex transitions during their enzymatic cycle, changing oxidation state, 

distal ligands and spin states (Loew and Harris 2000). The local structure around the Cys 

ligand is highly conserved; the Cys is located at the C-terminal end of the L helix where 

the Cys sulfur accepts an H-bond from a peptide NH group, which helps the heme reach 

Figure 1.8. Human CYB5B (PDB 3NER) showing the heme-binding pocket with the coordinating 

His residues in blue and contributing hydrophobic residues in green. Heme is in orange. The 

figure was created using The PyMOL Molecular Graphics System, Schrödinger, LLC. 
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the required redox potential. There is more variation in the positioning of the I helix 

which lies over the surface of the heme and contributes groups that interact with the 

substrate and O2 (Poulos 2014).  

CYP3A4 is one of the most important, and also promiscuous CYP450 enzymes and 

metabolises half of all currently marketed drugs. This means that it is also responsible 

for a host of drug contraindications. It has a large cavity about the heme molecule which 

lies on a bed of mostly polar amino acids. In human CYP3A4, the heme is ligated by 

Cys442 (Figure 1.9.) and the propionates of the heme interact with the side chains of 

Arg105, Trp126, Arg130, Arg375 and Arg440. The side chains of Ile443 and Phe435 also 

lie under the heme macrocycle, providing hydrophobic contacts (Williams et al. 2004). 

The residues above the substrate cavity, help orientate the substrate in the correct 

position above the heme so that it can interact with the iron during the catalytic cycle.   

 

Figure 1.9. Human CYP3A4 (PDB 1W0F) showing the heme binding pocket and substrate cavity. 

Heme is in orange with the axial Cys in blue and other stabilising residues in green. The figure 

was created using The PyMOL Molecular Graphics System, Schrödinger, LLC. 
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1.10.4 Catalase 

 

Catalases are a family of enzymes that catalyse the degradation of two molecules of H2O2 

to oxygen and two molecules of water. The largest class of catalase is the 

monofunctional heme-containing catalases that all have a common mechanism 

(Chelikani et al. 2004). In the first step, one molecule of hydrogen peroxide is reduced 

by the Fe(III) heme iron to produce water and a covalent Fe(IV)=O species with a 

porphyrin cation radical. This species then oxidises a second H2O2 and releases the ferryl 

oxygen species as water, regenerating the heme Fe(III) iron species. By catalysing the 

degradation of the pro-oxidant H2O2, catalase is an important enzyme in protecting the 

cell from oxidative damage. Human catalase forms a tetramer with a heme molecule at 

the interface between two domains (Putnam et al. 2000). The heme is pentacordinate 

with Tyr358 providing an axial ligand (Figure 1.10.), the strong electron-donating 

character of which may help prioritise binding of H2O2 over water. The tyrosinate ligand 

is also hydrogen-bonded to Arg354 which is in turn hydrogen-bonded to His218, which 

is then followed by Asp348, and this charge relay likely tunes the reactivity of the heme 

iron and stabilises its different oxidation states. The heme propionates interact with 

Arg72, Arg112 and Arg365, while Phe153 and Phe161 contribute to aromatic stacking 

with the porphyrin ring.  
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1.11 Heme measurement and heme sensors 

 

Although there have long been ways of studying heme structure and synthesis in vitro, 

as well as methods to study the total heme content in populations of cells, there are very 

few tools available that permit the study of the dynamics of free heme in live cells. 

Traditionally, cellular heme has been measured by indirect spectroscopic methods. This 

would typically involve either homogenising cell or tissue samples and treatment of the 

resultant lysates with pyridine in alkali so that the nitrogen ligands from protein-bound 

heme are replaced by pyridine, forming the pyridine hemochromogen which can be 

detected by absorbance spectroscopy (Paul et al. 1953). Alternatively, homogenised cell 

or tissue samples could be heated and the resultant lysate acidified to release heme from 

hemoproteins and remove the iron to convert the heme into PPIX. The fluorescence of 

PPIX would then be measured and assumed to equal the concentration of heme 

(Morrison 1965). A further method involves extracting heme from cells or tissues with 

Figure 1.10. Human catalase (PDB 1DGF) showing the heme-binding pocket with the heme in 

orange. The coordinating Tyr residue is shown in blue and the hydrogen-bonded charge relay 

residues in red. Other contributing hydrophobic residues are in green. The figure was created 

using The PyMOL Molecular Graphics System, Schrödinger, LLC. 
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acetone and HCl and then analysing the material obtained by HPLC (Sinclair et al. 2001). 

More recently a new spectrophotometric method has been developed, wherein heme 

was extracted from cell free supernatants of Trypanosoma cruzi cultures with acidified 

chloroform (Lombardo et al. 2005). Then the relationship between the absorbance at 

388 nm, 450 nm and 330 nm was found to correlate to the concentration of hemin. After 

six days of parasite growth, with 0, 5, 15, and 30 µg hemin/ml of medium, the content 

of hemin in a cell-free supernatant was found to be 0.35 ± 0.22, 4.79 ± 1.38, 45.84 ± 4.50, 

and 72.34 ± 6.87 nmol/mL of supernatant, respectively. This assay is reportedly 15-30 

fold more sensitive and can detect hemin concentrations 4 fold lower than the pyridine 

hemochromogen method.  

Several molecular systems have been designed to provide direct spectroscopic readouts 

that may be correlated with heme binding. These so-called heme sensors are intended 

to address the challenge of measuring heme levels in live cells. For example, a heme 

sensor that utilised a fusion protein of enhanced green fluorescent protein (EGFP) and 

the heme binding protein apocytochrome b562 was used to monitor the fluorescence 

quenching of EGFP when heme binds to apocytochrome b562 (Takeda et al. 2003). No Kd 

was reported for heme binding, and the sensor was not used with any biological samples, 

although the potential for cell expression using a transfected plasmid was noted. 

The activity of horse radish peroxidase (HRP) on addition of hemin has also been used as 

the basis for a heme sensor (Masuda and Takahashi 2006). The apo-HRP could detect 

hemin, which could bind and activate the enzyme which then oxidises luminol in the 

presence of H2O2, producing chemiluminescence representing the amount of hemin 

present. The detection limit of this assay was estimated at 20 pM.  

A similar sensor based on the binding of heme to a heme-binding protein was also 

developed in 2013 by Koga et al. Three small molecule fluorophores - Alexa Fluor 350 

C5-maleimide (AF350), Alexa Fluor 555 C2-maleimide (AF555), and 2-(40- 

maleimidylanilino)naphthalene-6-sulfonic acid sodium salt (MIANS) were conjugated 

near the heme-binding site of HO-1 to an engineered Cys residue. Titration of hemin to 
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these sensors lead to quenching of the fluorophores’ fluorescence, with the HO-1-AF350 

construct having the lowest Kd of 1.44 ± 0.36 nM. The sensor was then used to detect 

heme released from different amounts of denatured hemoglobin. This sensor could 

reportedly detect heme at a concentration 10 fold lower than the cytb562–EGFP sensor 

of Takeda et al. It also improved over the HRP based sensor in that theoretically heme 

did not need to be extracted from samples before detection. The HO-1 sensor was 

further improved by mutation of Asp140 in the active site to a His residue, thereby 

removing the catalytic activity of the HO-1 enzyme (Taira et al. 2015). The mutated 

protein with the fluorophore AF555 had a Kd of 0.13 ± 0.02 nM, determined by a 

fluorescence titration with hemin. The improved sensor was then used to determine 

concentrations of 0.019 ± 0.003 and 1.757 ± 0.163 nmol heme/mg protein for non-

denatured and acidic acetone-treated samples of rat hepatic-microsomal fractions. 

 

Song et al. created a protein-based ratiometric heme sensor that relied on the binding 

of heme between two heme binding domains (IsdX1 and IsdC) that were each attached 

to a fluorescent protein (enhanced cyan fluorescent protein (ECFP) and enhanced yellow 

fluorescent protein (EYFP)). Heme binding brought the domains together causing energy 

transfer between the fluorescent domains (Song et al. 2015).  Titration of hemin into this 

system using the FRET ratio as the readout determined a Kd of 63.5 ± 14.3 nM. This 

construct was encoded into plasmids which were transfected into HeLa cells and used 

to monitor the increase in cellular heme after treatment of cells with 5 µM exogenous 

hemin. 20 min after the addition there was a clear increase in FRET ratio (IEYFP/IECFP) 

that reached a maximum after 100 min and had returned to baseline after 4 h. The 

concentration of free heme in the cytosol was estimated to be 25.6 ± 5.5 nM and the 

labile heme concentrations for mitochondria, endoplasmic reticulum, and nucleus were 

subsequently determined to be 23.3 ± 4.9 nM, 5.4 ± 1.4 nM, and 31.0 ± 7.0 nM, 

respectively. 
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Hanna et al. recently developed a genetically-encoded heme sensor that is again based 

on the quenching of the fluorescent protein EGFP by heme binding to cytochrome b562, 

but also has another fluorescent protein Katushka 2 (mKATE2) that exhibits heme-

insensitive fluorescence (Hanna et al. 2016). The red fluorescence of mKATE2 is not 

affected by heme binding and therefore can be used to normalise the altered 

fluorescence of EGFP upon heme binding. A Kd of 10 nM was determined by titration of 

hemin and measurement of the ratio of fluorescence. Plasmids encoding the sensor 

were transfected into Saccharomyces cerevisiae and the cytosol was found to have more 

free heme (∼20–40 nM) than the nucleus or mitochondria (<2.5 nM).  

 

1.12 Important factors to consider for designing a heme sensor 

 

The first important consideration when designing a strategy for heme sensor 

construction is the ability to differentiate between protein-bound and free heme. This 

means that the sensor should to be able to reach the free heme pool without the need 

to treat the cells with any reagent that would release bound heme. This also gives rise 

to the second consideration - the affinity of the probe for heme. As the pool of free heme 

in the cell needs to be tightly regulated to minimise its toxicity, it has previously been 

found to be at nM concentrations. Therefore, the affinity of a sensor for heme should be 

around this level in order to effectively detect such low concentrations. It is also 

necessary for such sensors to detect small changes in analyte (i.e. heme) concentration 

in cells. To gain this sensitivity and accurately quantify the concentration and dynamics 

of an analyte, a sensor should be partially saturated with the analyte in the organelle of 

interest when the cell is at rest. In this context using whole sensor proteins could help 

achieve this high affinity. Any sensor also needs to be specific for heme and not detect 

its precursor PPIX or free iron. Another problem with heme sensing is that heme iron can 

exist in two principal oxidation states – ferrous and ferric. As heme is readily oxidised in 

vitro, nearly all experiments with exogenous heme use ferric heme (hemin). While most 
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heme sensors probably bind both forms, albeit with different affinities, the ability to 

distinguish the redox state of the free heme in cells more precisely would be a useful 

feature for future iterations in the design of these sensors, as currently very little is 

known about the oxidation state of the iron in the free heme pool. 

Although it has long been possible to measure cellular heme by lysing cells, being able 

to measure heme intracellularly is more accurate as there will be no loss or degradation 

of cell components during collection and lysis. Intracellular detection is also much more 

attractive for assessing heme levels in some sub-cellular compartments, as although it is 

possible to separate some organelles from a total cell lysate, this is not always the case, 

especially for organelles of the secretory pathway. Being able to direct sensors into the 

cell and even into specific organelles would give a more complete picture of the 

management and distribution of the free heme pool. Any sensor that is applied 

intracellularly should also be as non-invasive as possible and not disrupt the heme level 

of the cell or indeed, the overall metabolic state of the cell. This is a drawback for 

genetically encoded sensors as it is never really truly known what effect the genetic 

manipulation has on the cell, especially if stable integration into nuclear DNA is desired 

rather than use of a plasmid.  Further, triggering the cell to overexpress the heme sensor 

could put an unnatural energy demand on the cell.  

For the readout of a heme sensor, consideration should be given to the type of signal 

that is to be measured. Light-based measurements, e.g. fluorescence provide a high 

degree of sensitivity and are quick and easy to measure. A ‘turn-on’ sensor with an 

increasing signal upon heme-binding would provide easier detection and will give a more 

accurate representation of when the probe is fully saturated by heme. Also, in order to 

determine the amount of heme sensor in the cell, a fluorophore that is independent of 

heme concentration, but proportional to the sensor concentration is necessary. 

Alternatively, two fluorophores that are ratiometric – that is the ratio between their two 

fluorescence intensities changes on heme binding – is another solution as long as the 

ratio can be determined in the absence of heme and when completely saturated.  
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Further desirable features would be the ease of use and inexpensiveness of the sensor 

for its use in large scale applications. 

 

1.13 Aims and objectives 

 

The role of heme in physiological processes and disease is currently poorly understood. 

Indirect measurements have implicated heme in a number of diseases states (as 

discussed above). However, there is currently no way to directly assess heme levels in 

cells. Being able to measure and track heme in cells would greatly aid future efforts to 

understand the functions of heme and could help understand, diagnose and treat 

disease. Of particular interest is the effect of UVA irradiation on free heme levels and 

the effect this will have on the cell. Bach1 is the transcription factor that monitors and 

reacts to the heme level of the cell and it is expected that if heme levels of the cell rise 

after exposure to UVA irradiation, Bach1 will react. 
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The overall objective of this thesis is to develop a probe that can detect heme levels in 

cells which can be used to investigate the Bach1/HO-1 system and the effect of UVA 

irradiation on this system and the heme levels of the cell. 

1. Develop a sensor capable of measuring heme levels (Figure 1.11) 

a. Design a probe able to bind heme 

b. Attach a fluorophore to provide a readout on heme binding 

 

 

 

 

 

 

2. Use the probe to investigate the effects of UVA irradiation on cultured skin cells 

a. Test the suitability of the probe for use in cells for example, toxicity and 

uptake 

b. Treat cells with hemin and UVA irradiation and use the peptide to 

investigate heme levels 

 

3. Develop a probe to compete with Bach1 for heme, thereby modulating its DNA 

binding activity 

a. Express recombinant human Bach1 

b. Test the ability of a probe to sequester heme by competition assay 

 

 

  

Heme binding causes a 

measurable spectroscopic 

change 

Heme 

Chromophore Peptide 

Figure 1.11. Illustration of the design of the peptide-based heme sensor. 
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2 Materials and Methods  
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2.1 Solid Phase Peptide synthesis 

 

General: Peptides were prepared by Fmoc solid phase peptide synthesis (SPPS) (Palomo 

2014). Fmoc-protected amino acids were all obtained from NovaBiochem, with the 

exception of 7-azatryptophan (SigmaAldrich). Peptide grade DMF was purchased from 

Rathburn Chemicals. All other solvents were purchased from Fisher Scientific. 

The completeness of solid phase acylations or deprotection reactions was confirmed by 

the Kaiser test (Kaiser et al. 1970). A few beads of the resin were placed in an Eppendorf 

tube and 2-3 drops of the following solutions were added: 100 mM ninhydrin in EtOH, 

2.1 M phenol in EtOH and 0.02 mM KCN in pyridine.  The tube was heated and the 

presence of free/unacylated amino functions was indicated by a dark blue colouration 

of the beads. To estimate the loading of resins after derivatisation with the first amino 

acid, an Fmoc loading test was performed (Gude et al. 2002). Fmoc-protected-resin (10 

mg) in a graduated flask (10 mL) was treated with 2% DBU (1,8-diazabicycloundec-7-ene) 

in DMF (2 mL) and agitated gently for 30 min. The solution was then diluted to 10 mL 

with MeCN and 2 mL of this solution was further diluted to 25 mL with MeCN (test 

sample). A similar treatment was performed for the reference sample, but without the 

resin. Measurement of the test sample against the reference sample was performed 

using a Unicam Helios UV-Vis spectrophotometer, and the absorbance was recorded at 

304 nm. An estimate of the loading of the resin was then calculated using the equation:  

Fmoc (mmol/g) = (Asample –Aref) × 16.4/ mg of resin 

 

Peptide amides: Rink Amide MBHA (Merck Millipore) resin (0.25 g, 0.78 mmol/g) was 

pre-swollen in DCM (5 mL) in an SPPS cartridge (Activotec) for 1 h. The resin was treated 

with 20% piperidine in DMF (5 mL) and was agitated for 2 min, then the resin was drained 

under suction, and the process was repeated for 15 min.  The solvent was drained and 

the resin was washed with DMF (4 × 5 mL). A positive Kaiser test showed the successful 



40 
 

removal of the resin amino group protection. The first amino acid was then coupled 

using Fmoc-X(PG)-OH (4 eq) with PyBOP (4 eq), DIEA (6 eq) and HOBt (4 eq) in DMF (5 

mL) for 1 h with agitation. The solvent was drained and the resin was washed with DMF 

(4 × 5 mL). A negative Kaiser test confirmed the reaction of the resin amino groups with 

the first amino acid. Any remaining free amino groups were acylated by treatment with 

acetic anhydride (20 eq) and DIEA (6 eq) in DMF (5 mL) for 20 min. 

 

The remaining amino acids were coupled using an Activotec P11 automated peptide 

synthesiser using PyBOP as the coupling agent (3 eq), DIEA as the base (6 eq) and DMF 

as the solvent. Coupling reactions were at 60 °C for 35 min. Fmoc deprotection was with 

25% piperidine in DMF for 2 min followed by washing with DMF followed by 25% 

piperidine for 5 min at room temperature. Removal of the Fmoc group of the final amino 

acid was carried out on the automated peptide synthesiser. 

Cleavage from the resin and side chain deprotection was completed by treatment of a 

sample of the resin (125 mg) with TFA/H2O/TIS/EDT (4 mL, 92.5/2.5/2.5/2.5, v/v/v/v) for 

Cys-containing peptides, or TFA/H2O/TIS (4 mL, 95/2.5/2.5, v/v/v) for peptides without 

a Cys residue. The deprotections were carried out for 3 h at room temperature. The resin 

was removed by filtration and the filtrate was added to diethyl ether which resulted in 

precipitation of the peptide. The peptide was collected by centrifugation after washing 

with Et2O (3 times).  

Peptide acids: Wang resin (100-200 mesh, 0.25 g, 0.9 mmol/g) was pre-swollen in DCM 

(5 mL) in an SPPS cartridge for 1 h. The first amino acid was coupled using Fmoc-X(PG)-

OH (4 eq) with MSNT (4 eq), 1-Methylimidazole (2 eq) in DCM (5 mL), overnight with 

agitation. The solvent was drained and the resin was washed with DMF (4 × 5 mL). The 

synthesis was then continued as for the peptide amides. 

Analysis and Purification: Crude peptides were purified by semi-preparative RP-HPLC 

using a Dionex HPLC system equipped with a Phenomenex Gemini 5 µm C-18 (250 × 10 
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mm) column with a flow rate of 2.5 mL/min. The gradient elution system was 0.1% TFA 

in water (mobile phase A) and 0.1% TFA in acetonitrile (mobile phase B). The peaks were 

detected at 214 nm, 220 nm, 254 nm and 280 nm. The gradient was T=0 min B=5%, T=30 

min B=95%, T=45 min B=95%, T=45.1 min B=5%, T=52 B=5%. Purified peptides were 

lyophilised and stored at -20 °C. 

Purity was confirmed with analytical RP-HPLC which was performed using a Dionex 

UltiMate 3000 HPLC system equipped with a Phenomenex Gemini 5 µm C-18 (150 × 4.6 

mm) column with a flow rate of 1 mL/min. The gradient elution system was 0.1% TFA in 

water (mobile phase A) and 0.1% TFA in acetonitrile (mobile phase B). The peaks were 

detected at 214 nm, 220 nm, 254 nm and 280 nm. The gradient was T=0 min B=5%, T=10 

min B= 95%, T=15 min B=95%, T=15.1 min B=5%, T=18 min B=5%. 

Mass spectrometry: All peptides were characterised by electrospray mass spectrometry 

on either a Bruker microTOF LCS spectrometer with time of flight quantitation, or a 

Bruker MaXis HD ESI-QTOF coupled to a Thermo Scientific Dionex Ultra High 

Performance Liquid Chromatography (UHPLC) unit. Samples were prepared in 

acetonitrile or methanol. 

LC-MS/MS: The Chip-based analysis was conducted using an HPLC-Chip Cube system 

coupled to a 6520 quadrupole time-of-flight (QTOF) mass spectrometer (Agilent 

Technologies, Santa Clara, CA) operated in ESI positive-ion mode. Liquid 

chromatography was performed using a Large-Capacity Chip (II) with a 160 nL 

enrichment column and analytical column of 150 mm × 75 µM with Zorbax 300SB-C18 

packing material at 5 µm (G4240-62010, Agilent, Santa Clara, CA, USA). The ChipCube 

source was operated at 300°C with 5 L/min N2 drying gas, the capillary voltage set to 

1900V and fragmentor at 170V. The TOF MS scan range was from 300 – 1700 mass-to-

charge ratio (m/z) at an acquisition rate of 4 spectra per second. For MS/MS, 5 multiply 

charged precursor ions per spectra, having between 2 – 5 charges, were selected for 

MS/MS and thereafter excluded after collecting 2 spectra, then released after 0.1 min. 

The MS/MS mode mass range was from 50 – 1700 m/z at 3 spectra per second with the 
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collision energy set relative to the ion mass with the formula 3.6m/z / 100 - 4.8. The 

source was interfaced with an Agilent 1260/1200 series HPLC system consisting of a 1260 

Cap pump, 1200 Nano pump, 1200 Micro WPS and 1290 Infinity Thermostat (Agilent, 

Santa Clara, CA, USA). Between 0.2 and 1 µL sample was loaded on the enrichment 

column using the capillary pump flow with H2O + 0.1 % formic acid (FA) at a flow rate of 

4 µL/min. The sample was eluted onto the analytical column using the nano pump at a 

flow rate of 0.3 µL/min. Solvent A and B consisted of H2O + 0.1 % formic acid (FA) and 

ACN:H2O 90:10 with 0.1% FA. Gradient steps were as follows: 0-28 min from 3% B to 

50%B, 28-30 min to from 50% B to 100% B, 30-31 min 100%B, 31-32 min from 100% to 

3% B. Internal lock mass calibration was active during the run using one calibrant 

reference mass at 1221.9906 m/z. Data processing and file exporting was performed 

using the Masshunter Workstation software version B.50.00 (Agilent, Santa Clara, CA, 

USA). Automated MS/MS database searching was performed using Mascot v2.4.1 

(Matrix Science, MA, USA). 

 

2.2 Characterisation of heme-binding peptides 

 

CP3 KRSECPWLG Obtained: 60.2 mg, 28%. HPLC: Rt- 5.37 min. [Found (ESI+) 1074.5593 

[M+H]+, C47H75N15O12S requires 1074.5513]. 

CP4 SSVNCPFIS Obtained: 46.2 mg, 35%. HPLC: Rt- 5.82 min. [Found (ESI+) 952.4618 

[M+H]+, C41H65N11O13S requires 952.4557]. 

CP5 QQEPCPYAC Obtained: 32.5 mg, 67%. HPLC Rt- 5.24 min. [Found (ESI+) 1038.4072 

[M+H]+, C43H63N11O15S requires 1038.4019]. 

CP6 SAADCPLSF Obtained: 53.6 mg, 36%. HPLC: Rt- 5.78 min. [Found (ESI+) 909.4306 

[M+H]+, C39H59N9O14S requires 909.4135]. 

CP-IRP2 TPILCPFHL Obtained: 61.5 mg, 43%. HPLC: Rt- 6.61 min. [Found (ESI+) 1040.5574 

[M+H]+, C50H77N11O11S requires 1040.5597]. 
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AP3 KRSEAPWLG Obtained: 46.0 mg, 44%. HPLC: Rt- 5.24 min. [Found (ESI+) 1042.7592 

[M+H]+, C47H75N15O12 requires 1042.5792]. 

CP3[7azaW] KRSECP[7azaW]LG Obtained: 75.0 mg, 70.6%. HPLC: Rt- 4.48 min. [Found 

(ESI+) 1075.5450 [M+H]+, C46H74N16O12S requires 1075.5466]. 

HXNP1 GHSWPIAQGSATLFYGHG Obtained: 89.1 g, 27%. HPLC: Rt- 5.74 min. [Found (ESI+) 

965.4437 [M+2Na]2+, C87H121N25O23 requires 965.4442]. 

HXNP2 GHSWPIAQPGSATLFYGHG Obtained: 24.9 g, 14%. HPLC: Rt- 5.64 min. [Found 

(ESI+) 1000.9639 [M+2Na]2+, C90H126N26O24 requires 1000.9627]. 

ACP3[7azaW] ARSECP[7azaW]LG Obtained: 28.6 mg, 31%. HPLC: Rt- 4.13 min. [Found 

(ESI+) 1018.4906 [M+H]+, C43H67N15O12S requires 1018.4887]. 

RRRRRRR[Ahx]ACP3[7azaW] RRRRRRR[Ahx]ARSECP[7azaW]LG Obtained: 58.4 mg, 24%. 

HPLC: Rt- 4.42 min. [Found (ESI+) 742.4354 [M+3H]3+, C91H162N44O20S requires 742.4325]. 

 

2.3 Labelled peptides 

 

The succinimidyl esters of selected fluorophores were purchased from ThermoFisher 

Scientific. Conjugation to peptides were carried out according to manufacturer’s 

instructions as detailed below. 

 

2.3.1 AlexaFluor350-labelled CP6 (AF350-CP6) 

CP6 (2 eq, 2.5 mg, 2.5 µmol) was dissolved in NaHCO3 (0.5 mL, pH 8.3).  A solution of 

AlexaFluor350 (0.5 mg, 1.22 µmol) in DMSO (100 µL) was slowly added to the peptide 

solution. After 1 h, analytical HPLC showed complete disappearance of the dye (Rt = 5.44 

min) and new peaks at Rt = 6.28 min and Rt = 6.65 min. The reaction mixture was then 

applied to a C-18 solid phase extraction cartridge (Supelco) and was eluted with 

increasing amounts of acetonitrile in H2O (0.1% TFA): 0% acetonitrile, 20% acetonitrile, 
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40% acetonitrile, 60% acetonitrile, 80% acetonitrile, 100% acetonitrile. The eluted 

solutions were purified further by semi preparative HPLC and lyophilised to give AF350-

CP6 as a pale blue solid (0.4 mg, 25 %). HPLC: Rt- 6.29 min. [Found (ESI+) 1205.4215 

[M+H]+, C51H68N10O20S2 requires 1205.4126]. 

 

2.3.2 5-Carboxy-X-rhodamine-labelled ACP3[7azaW] (5-ROX-ACP3[7azaW]) 

ACP3[7azaW] (2 eq, 15.7 mg, 9.5 µmol) was dissolved in NaHCO3 (1.5 mL, pH 8.3).  A 

solution of 5-ROX (3 mg, 4.7 µmol) in DMSO (300 µL) was slowly added to the peptide 

solution. Immediately after mixing and performing analytical HPLC, a new peak appeared 

at Rt = 6.26 min. The mixture was then passed through a C-18 solid phase extraction 

cartridge (Supelco) and was eluted with increasing amounts of acetonitrile in H2O (0.1% 

TFA): 0% acetonitrile, 20% acetonitrile, 40% acetonitrile, 60% acetonitrile, 80% 

acetonitrile, 100% acetonitrile. The eluted solutions were purified further by semi- 

preparative HPLC and lyophilised to give 5-ROX-ACP3[7azaW] as a bright pink solid (2.4 

mg, 30.6 %). HPLC: Rt- 6.27 min. [Found (ESI+) 767.8521 [M+2H]2+, C76H95N17O16S requires 

767.8504]. 

 

2.3.3 5-Carboxy-X-rhodamine labelling of RRRRRRR[Ahx]ACP3[7azaW] (5-ROX-

RRRRRRR[Ahx]ACP3[7azaW]) 

RRRRRRRACP3[7azaW] (2 eq, 14.8 mg, 6.3 µmol) was dissolved in NaHCO3 (1.5 mL, pH 

8.3).  A solution of 5ROX (2 mg, 3.2 µmol) in DMSO (200 µl) was slowly added to the 

peptide in buffer. Immediately after mixing and performing analytical HPLC, a new peak 

appeared at Rt = 6.88 min. The mixture was then passed through a C-18 solid phase 

extraction cartridge (Supelco) and was eluted with increasing amounts of acetonitrile in 

H2O (0.1% TFA): 0% acetonitrile, 20% acetonitrile, 40% acetonitrile, 60% acetonitrile, 

80% acetonitrile, 100% acetonitrile. The eluted solutions were purified further by semi 

preparative HPLC and lyophilised to give 5-ROX-RRRRRRR[Ahx]ACP3[7azaW] as a bright 
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pink solid (0.6 mg, 5.3 %). HPLC: Rt- 5.97 min. [Found (ESI+) 549.1058 [M+5H]5+, 

C76H69N17O16S requires 549.1035]. 

 

2.4 UV-Visible absorption spectroscopy 

 

UV-Vis spectroscopy was performed using a Lambda 650 UV-Vis spectrophotometer 

(Perkin Elmer). Stock solutions of peptide were made at 10 mM in potassium phosphate 

buffer (PB) (10 mM, pH 7.0). For titration experiments, stock solutions of hemin were 

prepared at 5 mM in 30 mM NaOH in 10 mM PB, and PPIX stock solutions were prepared 

at 5 mM in DMSO. All stock solutions were stored at -20 °C and freshly thawed before 

use. 

Titrations were carried by a modification of the procedure of Kühl (Kühl et al. 2011) 

whereby increasing concentrations of hemin were added to 10 µM peptide in PB (10 

mM, pH 7.0). The titrant solution was prepared at 500 µM in PB with 10 µM peptide. The 

peptide concentration was kept constant and the following titrant:peptide ratios were 

used 0.025:1.0, 0.05:1.0, 0.075:1.0, 0.1:1.0, 0.2:1.0, 0.3:1.0, 0.4:1.0, 0.5:1.0, 0.75:1, 

1.0:1.0, 1.25:1.0, 1.5:1.0, 1.75:1.0, 2.0:1.0, 2.5:1.0. Kd values were calculated using the 

fitting program created by Thordarson in Matlab (Thordarson 2010). The program uses 

non-linear regression to fit the absorbances obtained to the equation: 

∆𝐴𝑜𝑏𝑠 =  𝜀∆𝐻𝐺{
1

2
(𝐺0 + 𝐻0 +  

1

𝐾𝑎
) −  √(𝐺0 + 𝐻0 +

1

𝐾𝑎
)

2

+  4[𝐻0][𝐺0]} 

ΔAobs is the observed difference in absorbance units obtained by subtracting the 

absorbance of the guest (titrant) from the absorbance of the host (peptide)-guest 

(titrant) solution, which gives the absorbance of the host-guest complex. ε is the molar 

absorptivity coefficient of the host-guest complex. H is the concentration of peptide, G 

is the titrant concentration. Ka is the association constant. Kd = 1/Ka. 
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2.5 Fluorescence spectroscopy 

 

Fluorescence spectroscopy was performed using a Lambda 55 Fluorescence 

spectrometer (Perkin Elmer). For titration experiments, increasing concentrations of 

hemin were added to 10 µM peptide in PB (10 mM, pH 7.0) as for the UV-visible 

experiments. The titrant solution was prepared at 500 µM in PB with 10 µM peptide. The 

peptide concentration was kept constant and the following titrant:peptide ratios were 

used: 0.025:1.0, 0.05:1.0, 0.075:1.0, 0.1:1.0, 0.2:1.0, 0.3:1.0, 0.4:1.0, 0.5:1.0, 0.75:1, 

1.0:1.0, 1.25:1.0, 1.5:1.0, 1.75:1.0, 2.0:1.0, 2.5:1.0. Kd values were calculated using the 

fitting program created by Thordarson in Matlab (Thordarson 2010) to fit the emission 

data to the equation: 

∆𝐹𝑜𝑏𝑠 =  𝑘{
1

2
(𝐺0 + 𝐻0 +  

1

𝐾𝑎
) −  √(𝐺0 + 𝐻0 +

1

𝐾𝑎
)

2

+  4[𝐻0][𝐺0]} 

ΔFobs is the observed fluorescence unit obtained by subtracting the fluorescence of each 

guest (hemin) concentration from the fluorescence of the host (peptide) only. [H] is the 

concentration of peptide, [G] is the titrant concentration. Ka is the association constant. 

Kd = 1/Ka. 

 

2.6 Circular Dichroism spectroscopy 

 

Circular dichroism spectroscopy was performed on a Chirascan CD spectrometer 

(Applied Photophysics Ltd.). Far-UV CD spectra were recorded between 195 and 300 nm 

at 21 °C. Peptides were at 5 µM in phosphate buffer (10 mM, pH 7.0), or methanol.  The 

peptide concentration was kept constant and hemin was added at 1 and 2 equivalents. 
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2.7 Protein modelling and sequence alignment 

 

Protein structures were visualised and images created using the PyMOL Molecular 

Graphics System, Schrödinger, LLC. (https://pymol.org/). Sequence alignments were 

performed using Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/) with 

reviewed sequences from the UniProtKB database (http://www.uniprot.org/uniprot/). 

 

2.8 Nuclear magnetic resonance spectroscopy 

 

1H NMR spectra were recorded on a Bruker Avance 500 MHz spectrometer at 298 K. 1H 

chemical shifts are referenced to tetramethylsilane (TMS) and expressed in ppm. 

Peptides were dissolved in DMSO-d6. Regions of relevant proton resonances were 

identified by using standard 1H COSY (cosygpqf) pulse sequences outlined within the 

Bruker library. 

 

2.9 Cell culture 

 

FEK-4 human skin fibroblasts were cultured in Eagle’s Minimum Essential Medium with 

Earle’s salts and sodium bicarbonate (Sigma), supplemented with 2 mM L-glutamine 

(Invitrogen), 50 U/mL penicillin (Invitrogen) and 50 μg/mL streptomycin and 15% FBS 

(Sigma). FBS was heat-inactivated at 56 °C for 1 h before adding to media. Cells were 

maintained at 37 °C under 5% CO2 in a humidified incubator. 

Cells were subcultured on reaching 70-80% confluency. After washing with PBS, cells 

were incubated at 37 °C for 5 min with 0.25% trypsin. Detached cells were then collected 

with media and centrifuged at 200 g for 5 min. The supernatant was discarded and the 

cell pellet resuspended in fresh media. 

http://www.ebi.ac.uk/Tools/msa/clustalo/
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HEK 293F cells (Invitrogen) were cultured in unsupplemented FreeStyle™ 293 Expression 

Medium. Cells were maintained at 37 °C under 5% CO2 in a humidified incubator. Cells 

were subcultured on reaching between 1 × 106 –3 × 106 viable cells/mL by dilution of a 

sample of the growing culture in fresh medium.  

For cell counting, a cell suspension was mixed 1:1 with trypan blue (Sigma) and 10 µL 

was used in a Neubauer-improved hemocytometer 

For storage, 1x106 cells were re-suspended in 50% media/40% FBS/10% DMSO, v/v/v 

and placed in liquid nitrogen. Cells were thawed by placing in a water bath at 37 °C until 

the last ice crystal had just dissolved, and then they were added to a larger volume of 

media for centrifugation at 200 g for 5 min. The supernatant was discarded and the cell 

pellet re-suspended in fresh media for culture. 

 

2.10 Treatment with hemin 

 

Cells were treated with hemin by direct addition of hemin stock solution to the cellular 

growth medium to reach a final concentration of 10 µM. Cells were then returned to 

incubation at 37 °C, 5% CO2 for 18 h and protected from light during all subsequent use. 

 

2.11 Treatment with UVA 

 

A broad-spectrum 4 kW UVA lamp (Sellas, Germany) was used as a source of UVA 

radiation throughout this study. The irradiation times for corresponding UVA doses were 

calculated by measuring the fluence using a calibrated IL1700 radiometer (International 

Light, Newbury, MA). Cells were seeded in dishes for irradiation and the media was 

aspirated. Cells were washed with PBS, and then fresh PBS was added prior to UVA 

irradiation. The cells were irradiated at a dose of 250 kJ/m2. Irradiation was conducted 
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in a dark room with air-conditioning set to 18°C in order to prevent overheating by the 

UVA source. Following UVA irradiation, cells were removed to ice and then used 

immediately. 

 

2.12 Cell lysis 

 

Following treatment with either hemin or UVA, cells were detached with 0.25% trypsin 

and the pellet was collected by centrifugation at for 5 min. The supernatant was 

discarded and the cell pellets were suspended in 0.5 mL lysis buffer (KH2PO4, 20 mM; 

ethylene-diaminetetraacetic acid (EDTA), 0.5 mM; PMSF, 0.1%; with a complete Mini 

EDTA-free protease inhibitor cocktail tablet (Roche)), and then lysed by sonication for 14 

seconds on ice (Rapidis 300, Ultrasonics, UK). After sonication, cell lysates were 

centrifuged at 8 500 g for 5 min at 4 °C (Biofuge 13, Heraeus instrument). The 

supernatant containing the total protein was then collected and stored at -80 °C for 

future use. 

 

2.13 Quantification of protein concentration in cell lysates 

 

Quantification of protein levels in cell lysates was performed using the Pierce BCA 

Protein Assay (ThermoFisher Scientific). The assay was carried out according to the 

manufacturer’s protocol. A standard curve was constructed using BSA of final 

concentrations 2000, 1500, 1000, 750, 500, 2250, 125, 25, 0 µg/mL. Absorbance was 

measured at 550 nm with a Fluostar Optima (BMG Labtech). 
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2.14 MTT assay 

 

Cells were plated (7 × 104 cells/mL) in 96-well plates and left for 48 h to adhere fully 

before addition of CP3[7azaW] for 48 h at 37 ˚C. Concentrations used were 250 µM, 100 

µM, 50 µM, 10 µM, 1 µM, 0.5 µM, 0.1 µM, 1 nM in standard media for cell growth (1% 

DMSO, 10% FBS in RPMI). After 48 h, cells were washed three times with PBS and 100 

µL of MTT reagent was added (0.5 mg/mL, 10% PBS:medium) and incubated for 2 h 

protected from light. Following aspiration of the MTT reagent, 100 µL of DMSO was 

added and the plates were shaken for 2 min. Absorbance was measured using a Fluostar 

Omega (BMGLabTech) plate reader at 570 nm with 630 nm as the reference wavelength. 

The results obtained from the analysis above were averaged for each concentration and 

then normalised to the untreated cells. These were then plotted as % cell viability against 

normalised controls. Normalised standard deviations were also calculated and displayed 

as error bars on the graphs generated. 

 

2.15 Fluorescence microscopy  

 

Peptide uptake: FEK-4 were seeded on glass coverslips at a density of 6x104 per 3 cm dish 

to reach 70-80% confluence. Peptides were prepared at 1 µM or 10 µM in fresh media 

or PBS. Cells were washed with PBS and incubated with the fresh peptide solutions, or 

media or PBS alone, for 30 min or 60 min at 37 °C in the dark. After this treatment, the 

cells were washed with PBS and fixed with 4% paraformaldehyde in PBS for 15 min at 

room temperature. After washing again with PBS, the cells were permeabilised with 

Triton X-100 and stained with 600 nM DAPI at room temperature for 20 min in the dark. 

The coverslips were then removed from each dish and mounted on glass slides with 

fluorescence mounting medium (DAKO), and then left to dry at room temperature 
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overnight in the dark. The slides were then imaged with a LSM 510 META (Zeiss) confocal 

laser scanning microscope.  

 

Bach1-GFP expressing cells: Transfected cells were collected by centrifugation of 

growing culture at 200 g for 5 min. Cells were then resuspended in PBS at 2x106 cells/mL 

and fixed by addition of 4% paraformaldehyde in PBS and incubation at room 

temperature for 10 min. 200 µL was then pipetted onto a coverslip and adhered by 

centrifugation at 550 g for 5 min. The coverslips were gently washed with PBS and then 

covered in 600 nM DAPI and incubated at room temperature for 20 min in the dark. The 

coverslips were then washed gently three times with PBS and mounted on glass slides 

with fluorescence mounting medium (DAKO), and then left to dry at room temperature 

overnight in the dark. The slides were then imaged with a LSM 510 META (Zeiss) confocal 

laser scanning microscope.  

 

2.16 Transfection 

 

Transfection was carried out by the protocol of Portolano et al., 2014. HEK 293F cells 

were subcultured at least 5 times before transfection. Cells were subcultured at a density 

of 0.5x106 24 h before transfection. 3 µg of plasmid DNA per 1x106 cells to be transfected 

was added to PBS followed by 0.6 mg PEI. The mixture was then incubated at room 

temperature for 20 min and added to the cells. The cells were cultured for a further 48 

h and then harvested by centrifugation at 550 g for 5 min.  
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2.17 Protein purification 

 

The frozen cell pellet was defrosted into 40 mL lysis buffer (100 mM potassium acetate, 

50 mM Tris pH 7.5, 5% glycerol, 0.3% Triton X-100, protease inhibitors) per L of culture 

and suspended through a combination of pipetting and homgenisation. Cells were lysed 

by sonication - 15 seconds on followed by 15 seconds off, repeated 3 times. The lysate 

was then centrifuged at 30 000 g for 25 min at 4 °C (Beckman J2 MC) to remove cellular 

debris, and the supernatant retained. 1.25 mL of anti-FLAG packed agarose resin (Sigma) 

per L of culture was equilibrated with resin equilibration buffer (100 mM potassium 

acetate, 50 mM Tris pH 7.5) by washing 3 times. The cell lysate was then incubated with 

the affinity gel for 90 min at 4 °C with gentle agitation. The resin was then washed with 

45 mL of pre-chilled buffer 1 (100 mM potassium acetate, 50 mM Tris pH 7.5, 5% glycerol, 

0.3% Triton X-100) and centrifuged at 550 g for 1 min. This was repeated with high salt 

buffer (300 mM potassium acetate, 50 mM Tris pH 7.5, 5% glycerol), followed by low salt 

buffer (50 mM potassium acetate, 50 mM Tris pH 7.5, 5% glycerol) and Enterokinase 

Cleavage Buffer (500 mM Tris, 2mM CaCl2, pH 8.0, 1% TWEEN 20). The resin was then 

resuspended in Enterokinase Cleavage Buffer and 0.04 U of enterokinase (Sigma) was 

added. The tube atmosphere was replaced with N2 gas and the sample was incubated 

overnight at 4 °C with gentle agitation. The sample was centrifuged at 550 g for 10 min 

then the resin was separated from the cleaved protein. The sample was concentrated by 

use of a centrifugal filter with a 50 kDa cut off (Millipore). 

 

2.18 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

 

 A resolving gel was prepared using a 10% resolving polyacrylamide gel solution (10% 

acrylamide/bis-acrylamide, 0.5 M Tris-HCL pH=6.8, 10% SDS, 10 µL N,N,N',N'-

tetramethylethylenediamine (TEMED) and 0.03 % ammonium persulfate (APS)). The gel 

solution was poured into an empty BioRad gel casting system, and then it was allowed 
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to form at room temperature for 1 h. H2O was layered on top of the resolving gel in order 

to prevent evaporation. The stacking gel solution was prepared using a 4% 

polyacrylamide gel (4% bis-acrylamide, 1.5M Tris-HCL, pH=8.8, 10% SDS, 5 µL TEMED and 

10% APS. The water was removed from the top of the resolving gel and replaced with 

the stacking gel which was allowed to set at room temperature for a further 45 min. 

Protein samples were diluted in a 5x loading buffer (300 mM Tris, 50% glycerol, 10% 

sodium dodecyl sulfate (SDS), 0.5% bromophenol blue) and loaded into the SDS 

polyacrylamide gel. Electrophoresis was performed in running buffer (25mM Tris-HCl, 

200mM Glycine, 0.1% w/v SDS) subjected to 150 V for 1 h. 

 

2.19 Coomassie staining 

 

For Coomassie staining, the gel was fixed in 50% methanol, 10% acetic acid (v/v) in H2O 

overnight at room temperature with gentle agitation. It was then stained with 0.25% 

Coomassie R-250 (w/v) in fresh fixing solution for 2 h at room temperature with gentle 

agitation. It was then destained to remove excess stain in 5% methanol, 7.5% acetic acid 

(v/v) in H2O at room temperature with gentle agitation for 4 h. The destain solution was 

replaced every hour until clear blue bands were observed on the gel. 

 

2.20 Western blotting 

 

For Western blotting, the protein was transferred from the SDS polyacrylamide gel to a 

PVDF membrane (Immobilon-P, Millipore) by using a tank blotting unit filled with 

transfer buffer (3 % w/v tris, 14.4 % w/v glycine, 20 % methanol) subjected to 14 V 

overnight at 4 °C. Membranes were then incubated with 3% BSA in TBS (20 mM Tris-HCl, 

0.15 M NaCl, pH 7.5) to block nonspecific binding at room temperature for 1 h. 
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Monoclonal ANTI-FLAG M2 antibody produced in mouse, was used at a 1:1,000 dilution 

in 3% BSA/TBS (w/v) and incubated with the membrane for 30 min at room temperature 

with gentle agitation, following manufacturer’s instructions. The membrane was then 

washed 3 times with 3% BSA/0.1% Tween 20/TBS (w/v/v). The secondary antibody 

IRDye® 800CW Donkey anti-Mouse IgG (LI-COR) was diluted 1:10,000 in 3% BSA/0.1% 

Tween 20/TBS (w/v/v) and incubated with the membrane for 1 h at room temperature 

with gentle agitation. The membrane was then washed 3 times with 3% BSA/0.1% Tween 

20/TBS (w/v/v). Imaging was performed with the Odyssey CLx imaging system (LI-COR). 
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3 Synthesis of peptide probes based on the amino acid sequence 

of Bach1 and investigations of their interactions with hemin  
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3.1 Introduction 

 

As outlined earlier, a heme sensor needs two main components: a probe and a reporter. 

The role of the probe is to bind heme and orient it correctly for energy transfer to the 

sensor if the reporter is a fluorophore. Peptides are good candidates for heme ligands 

because they are easily synthesised and can potentially be engineered to bind heme with 

good affinities. The binding of hemin to a peptide probe then needs to be transferred 

into a measurable signal. Using a fluorophore to transduce this signal is attractive, firstly 

because of the absorbance characteristics of heme and secondly because it would allow 

the direct and rapid conversion of binding to a detectable signal. Fluorescence is a 

simple, highly sensitive and generally inexpensive, quantifiable analytical technique. A 

fluorophore can be conjugated to a peptide so that a single unit contains both the 

molecular recognition unit and the signal generator. 

 

3.1.1 Designing the probe unit 

 

Heme b can participate in non-covalent, reversible interactions with proteins through 

the amino acid side chains of Cys, His, Tyr, Met and Lys residues coordinating the iron of 

heme. Analysis of the structure of 125 heme-binding proteins from the Protein Data 

Bank shows that the majority (80%) of heme binding involves His (Li et al. 2011). 

However, there are several important proteins that interact with heme through a Cys 

residue. For instance, HAP1 is a yeast transcriptional activator and was the first DNA 

binding protein to be found to be regulated by transient binding of heme. Much like 

Bach1 it forms a complex via its heme binding domain that represses transcription when 

bound to DNA. The addition of heme causes dissociation of the repressor and HAP1 can 

then promote transcription (Zhang and Guarente 1994). The HAP1 heme-binding 

domain contains six repeats of the amino acid sequence Lys/Arg-Cys-Pro-Val-Ile-Asp-His 

within a stretch of 200 amino acids. It was noted that this sequence was very similar to 
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that found in two other proteins that are regulated by heme: the enzyme ALAS and the 

kinase heme regulated eukaryotic initiation factor 2α kinase (HRI). The sequence was 

found to be necessary in ALAS for its repression by heme and thus the importance of the 

Cys-Pro motif in heme binding and regulation of protein function was realised. The heme 

binding sequences of other proteins such as globins and cytochromes differ from this 

‘heme regulatory motif’ (HRM) in that they are based on double coordination of the 

heme by either a His and a Met or two His residues and are known to bind heme almost 

irreversibly and sometimes covalently (Phillips 1980; Aoyama et al. 1995; Dawson 1988). 

In contrast, it was hypothesised that instead the Cys-Pro HRMs allow reversible binding 

by heme to modulate protein function.  

 

Synthesis of a decapeptide based on the sequence of the HRM from HAP1 (Ala-Lys-Arg-

Cys-Pro-Val-Asp-His-Thr-Met) revealed that this sequence bound heme resulting in a 26 

nm shift of the Soret band (from 388 to 362 nm) of heme to a shorter wavelength on 

addition of equimolar hemin (Zhang and Guarente 1995). A cysteine to alanine mutation 

abolished heme binding and a proline to alanine mutation greatly reduced heme binding 

showing that the peptide binds heme through the cysteine residue and the proline aids 

the interaction. 

 

A combinatorial peptide library of nonapeptides was screened for heme binding in an 

attempt to identify the general features of such heme binding sequences (Kühl et al. 

2011). A library of the sequence X4[C/H/Y]X4 was screened with hemin and yielded 180 

peptides that bound heme that were further analysed for sequence features. Of the 

sequences analysed, 38.4% contained His, 40.0% contained a Tyr and 21.2% contained a 

Cys. In general, high proportions of polar and charged amino acids were found with Ala, 

Gly, Phe, Tyr, Lys, Arg, Glu, Asp and Gln being prevalent N-terminal to the central heme-

coordinating residue. High numbers of Ala, Val, Phe, Ser, Lys, Arg, Asp and Asn residues 

were observed towards the C-terminus. Leu Thr, His and Asn were more frequently 
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found on the N-terminal side of peptides with His or Tyr as the central heme binding 

residue compared to peptides with Cys as the central heme binding residue. Cys 

containing peptides were much more likely however, to have a proline at Cys+1 or Cys+2 

whereas Glu was never found in the four residues after the Cys. In 55.6% of the 

sequences, as well as the heme coordinating His/Tyr/Cys, an additional His or Tyr was 

present. These findings were characteristics of sequences of the heme binding sites in 

many proteins, for example HAP1, IRP2 and catalase. 

 

Further to this study, investigations were carried out on 22 9-mer Cys containing 

peptides some of which were based on the sequences of known heme-regulated 

proteins (Kühl et al. 2013). Of these peptides, 10 contained only a Cys and the other 12 

a Cys followed by a Pro. Titration of increasing amounts of hemin to the peptides and 

subtraction of the spectra of heme alone showed that different peptides gave spectra 

that could be categorised into four groups (Figure 3.1). The first group contained only 

five cysteine-only peptides and their spectra were characterised by a minimum around 

370 nm followed by a maximum at 420 nm. The second group, containing four CP 

peptides and one cysteine-only peptide had a peak at around 370 nm. The third 

contained two cysteine-only and two CP peptides and was characterised by maxima at 

both 370 and 420 nm. The fourth contained the control peptide AAACAAA as well as one 

other CP peptide and had a much shallower, broader maximum at 400 nm (Figure 3.1). 

It was found that it was only Cys-only peptides that were found in group 1, while group 

2 was predominantly Cys-Pro peptides. Group 3 had 2 Cys only peptides and 2 Cys-Pro 

peptides. There was a lack of negatively charged amino acids to the C-terminal side of 

the Cys residue but there seems to be less importance on the N-terminal side. In the 

peptides that lacked a positively charged residue, there was a hydrophobic residue to 

the C-terminal side of the Cys residue. The peptides with the lowest Kds (<1 µM) were 

those with the motif C-X/P-H/F. The next range of Kds (1.37 µM – 6.43 µM) were from 
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peptides that had non-polar, non-aromatic amino acids (Ala, Ile, Leu, Nle, Val) at C-

terminal positions or a Trp. 

 

 

Figure 3.1. Difference absorbance spectra of cysteine containing peptides from (Kühl et al. 2013). 

 

Analysis of the X-ray crystallographic structures of 18 heme binding proteins revealed 

the sequence GX[H/R]XC[P/L/A/V]G as a motif for heme binding (Li et al. 2011). Of the 

18 proteins with cysteine as the heme coordinating residue, 6 were followed by a 

proline, while the others were always followed by hydrophobic amino acids: leucine, 

alanine, valine and isoleucine. The -2 position favoured a histidine or an arginine to 

interact electrostatically with the heme propionate units while the following small 

glycine residue aided flexibility. In the 6 protein structures with CP motifs, the proline 

introduces a bend for the following peptide chain away from the face of the heme. 

However, further downstream there were slight differences. In chloroperoxidase (PDB 
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ID 2CIW), Rev-erb (3CQV) and microsomal prostaglandin E synthase (2PBJ) where the 

proline is highly conserved the α-helices that follow align nearly perpendicularly to the 

heme plane whereas in the P450 family where the proline is less conserved the α-helices 

that follow align in parallel to the heme plane. It is possible therefore that when the 

proline is conserved the structure it creates is necessary for function. Indeed the proline 

following Cys409 in HRI is essential for heme binding (Igarashi et al. 2008). However, 

with so few crystal structures available for proteins that bind heme through the Cys-Pro 

motif it is difficult to assess the full functionality of temporary heme binding pockets.  

Bach1 contains six Cys-Pro motifs with the sequences shown in Table 3.1. Mutagenesis 

studies suggest that the first two Cys-Pro motifs do not bind heme (Suzuki et al. 2004). 

A Bach1 fragment including amino acids 417- 739 (including the last 4 Cys-Pro motifs) 

appeared to bind to 4 or 5 hemin molecules, which was the same as a fragment of amino 

acids from 174-739 (including all 6 Cys-Pro motifs) (Hira et al. 2007). Mutation of each 

of the cysteines of CP3-CP6 to an alanine reduced the hemin binding capacity of Bach1 

by 1 equivalent indicating that each can bind one molecule of heme.  

 

Motif Amino acid sequence Cysteine position 

CP1 LPSLCPKYR 224 

CP2 PASQCPTEKS 301 

CP3 KRSECPWLG 438 

CP4 SSVNCPFIS 464 

CP5 QQEPCPYAC 495 

CP6 SAADCPLSF 649 

Table 3.1. Amino acid sequences of CP motifs in human Bach1. 
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The Bach1 peptides are all Cys-Pro peptides and so are expected to have difference 

spectra like group 1 and 2. The only Bach1 peptide that has a negative residue C-term to 

the Cys is CP2 but CP3 and CP5 have glutamic acids to the N-terminal side. CP1 and CP2 

both have positive amino acids C-term to the Cys, whereas the others have large 

hydrophobic residues immediately after the Pro. CP4, CP5 and CP6 however, do have a 

polar residue (Ser or Cys) following that. 

 

3.2 Synthesis of peptides based on protein CP motifs 

 

Based on previous reports showing that small peptides can bind to heme with good 

affinities (Kühl et al. 2013) and the interest of this work in the Bach1/HO-1 system, the 

first potential heme-binding peptides synthesised in this work were based on the Cys-

Pro motifs of Bach1 known to bind to hemin – CP3-CP6 (Table 3.1.). A peptide, based on 

the Cys-Pro motif of IRP2 (Kühl et al. 2013) was included as a positive control as was the 

negative control KRSEAPWLG [AP3], in which the heme binding cysteine is changed to 

alanine. 

 

CP3 was synthesised on Rink Amide MBHA resin on a 0.6 mmol scale using Fmoc solid 

phase peptide synthesis (Palomo 2014). The first amino acid, Fmoc-Gly-OH (4 eq) was 

coupled manually using PyBOP (4 eq) as the activating agent and DIEA (6 eq) as the base 

(Scheme 3.1). The first amino acids of CP4, CP6 and AP3 were coupled analogously. IRP-

2 and CP5 were synthesised on Wang resin. The first amino acid was coupled manually 

using 1-(mesitylene-2-sulfonyl)-3-nitro-1,2,4-triazole (MSNT) (4 eq) as the activating 

agent and 1-methylimidazole (2 eq) as the base (Harth-Fritschy and Cantacuzene 1997).  

After coupling of each first amino acid, the acylated resin was then transferred to an 

Activotec automated peptide synthesiser for the coupling of the remaining amino acids 

(3 eq) using PyBOP (3 eq) and DIEA (6 eq). Removal of the Fmoc group in each cycle was 
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effected by 25% piperidine in DMF. Final cleavage from the resin and full side-chain 

deprotection was achieved using TFA/TIS/H2O/EDT (92.5:2.5:2.5,2.5, v/v/v/v). Each 

peptide was purified by RP-HPLC to >98% purity, which was confirmed by analytical 

HPLC. The identity of each peptide was confirmed by ESI-MS. 

 

CP5 was synthesised on Wang resin with MSNT as Cys was the first residue to be coupled 

and this method reportedly gives a better coupling efficiency with low racemisation 

when using Cys resides (Harth-Fritschy and Cantacuzene 1997). After purification of CP5, 

two closely running peaks were seen in the analytical HPLC. It was suspected that this 

resulted from intramolecular disulfide bond formation involving the two Cys residues 

upon resin cleavage. Further treatment with EDT converted the double peak to a single 

species whose MS was consistent with the peptide structure. 

 

The yields of the purified CP peptides obtained are summarised in Table 3.2. 

  

 

 

 

 

 

Table 3.2. Synthesis of CP peptides derived from Bach1 and IRP2 

 

 

Peptide Amino acid sequence Yield (%) 

CP3 KRSECPWLG 28 

CP4 SSVNCPFIS 35 

CP5 QQEPCPYAC 67 

CP6 SAADCPLSF 36 

CP-IRP2 TPILCPFHL 43 

AP3 KRSEAPWLG 44 
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Scheme 3.1. Synthesis of CP3. Reagents and conditions: a. Piperidine/DMF (1:5 v/v), 2 + 5 min b. 

Fmoc-Gly-OH, DIEA, PyBOP, DMF, RT, 1 h; c. Piperidine/DMF (1:4 v/v), 5 + 10 min; d. Fmoc SPPS: 

Fmoc-AA-OH, PyBOP, DIEA, DMF; e. TFA/TIS/H2O/EDT (92.5:2.5:2.5:2.5, v/v/v/v), 3 h. 
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Scheme 3.2. Synthesis of CP-IRP2. Reagents and conditions: a. Fmoc-Gly-OH, 1-methylimidazole, 

MSNT, DCM, RT, 16 h; c. Piperidine/DMF (1:5 v/v), 5 + 10 min; d. Fmoc SPPS: Fmoc-AA-OH, 

PyBOP, DIEA, DMF; e. TFA/TIS/H2O/EDT (92.5:2.5:2.5:2.5, v/v/v/v), 3 h. 
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Figure 3.2. Structures of CP peptides. A) CP4. B) CP5. C) CP6. D) AP3. 
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3.3 Hemin binding to CP peptides 

 

UV-Vis spectroscopy can be used to monitor the binding of heme to peptides (Kühl et al. 

2011). The Soret band of heme represents the π-π* transition associated with the 

porphyrin ring but when heme binds to a peptide, interaction of the peptide with the 

porphyrin ring increases the energy gap of this transition and leads to a blue shift of the 

Soret band in the UV-Vis spectrum.  

Increasing amounts of hemin (0.25 μM – 25 μM) were titrated against a fixed amount of 

peptide (10 μM) in PB (10 mM, pH 7.0) and the UV-Vis spectrum was measured for each 

concentration between 250 nm and 600 nm (Figure 3.3. A). A spectrum of only hemin at 

each concentration was also measured. The difference spectra representing only hemin 

bound to peptides were created by subtracting the spectra of hemin alone from the 

spectra of peptide with hemin (Figure 3.3. B, D, F, H, J, L). The Soret band of 10 μM hemin 

in phosphate buffer (pH 7.0) was observed at 387 nm.  

Kühl et al. identified two features (either maxima or minima) that could be present in 

the difference spectra of their Cys peptides, one around 420 nm which they designated 

the Soret peak and one around 365 nm that they designated the near UV band. Most of 

the CP peptides tested here have well defined features in the near UV region. The hemin-

bound complexes of CP4, CP5, CP6 and CP-IRP2, have peaks at 367 nm. CP5 and CP6 also 

have second smaller Soret peaks at 419 and 421 nm respectively which puts them into 

the third category found by Kühl et al. (2013). CP4 and CP-IRP2 do not have such well-

defined Soret peaks and therefore fit better into Kühl’s second group. The difference 

spectra of CP3 with hemin has two troughs, one at 340 nm in the near UV and one at 

397 nm for the Soret band; this pattern is unlike any of the previously identified groups. 

The AP3 peptide without the cysteine residue for coordination of the heme iron atom 

has a spectrum slightly similar to Kühl’s group one with a minima at 347 nm followed by 

a peak at 420 nm. However, these features are less well defined compared to the Cys 

containing peptides. Once the difference spectra were plotted and the new wavelengths 
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of the Soret peaks identified, the ΔAbsorbance at these wavelengths was plotted against 

the hemin concentration (Figure 3.3. C, E, G, I, K, M.)  These graphs for the CP peptides 

show a steady increase or decrease in ΔAbsorbance representing heme binding until 

they start to plateau when the binding sites of the peptide are saturated. For heme 

binding to the AP3 peptide, the plot is much flatter, consistent with the loss of Cys-

mediated binding. This data were used to calculate a Kd by fitting to the one-site binding 

equation (Thordarson 2010). 

 

∆𝐴𝑜𝑏𝑠 =  𝜀∆𝐻𝐺{
1

2
(𝐺0 + 𝐻0 +  

1

𝐾𝑎
) −  √(𝐺0 + 𝐻0 +

1

𝐾𝑎
)

2

+  4[𝐻0][𝐺0]} 

 

This equation is widely used to find dissociation constants for ‘host-guest’ interactions, 

including by Kühl et al. (2013) to quantify heme binding to peptides. Fitting data is 

included in Appendix A.1. 
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H I
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L  

Figure 3.3. UV-Vis spectroscopy of CP peptides with hemin. Peptide concentration was constant 

(10 μM) whilst hemin was titrated (0.25 μM, 0.5 μM, 0.75 μM, 1 μM, 2 μM, 3 μM, 4 μM, 5 μM, 

7.5 μM, 10 μM, 12.5 μM, 15 μM, 17.5 μM, 20 μM, 25 μM) in phosphate buffer (10 mM). After 2 

min stirring the absorbance was read between 250 nm and 650 nm. Error bars show the 

standard deviation (n=3). A) Absorbance of CP3 with increasing amounts of hemin. B) Difference 

spectrum of CP3 with hemin. C) ΔAbsorbance of CP3 with hemin at 397 nm against hemin 

concentration. D) CP4. E) 367 nm. F) CP5. G) 367 nm. H) CP6. I) 367 nm. J) CP-IRP2. K) 367 nm. 

L) AP3. M) 347 nm. 
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The peak wavelengths for the synthesised CP peptides along with the corresponding 

calculated Kds are reported in Table 3.3. Table 3.3. Peak wavelengths of CP peptides and the 

corresponding calculated dissociation constants.The Kds reported by Kühl et al. range from 

0.28 µM to 48.8 µM. The CP peptides tested here have Kds ranging from 0.26 µM to 33.9 

µM which are quite comparable. Kühl et al. studied and reported CP-IRP2 peptide Kds of 

0.60 ± 0.41 µM for the near UV band and 2.03 ± 1.38 µM for the Soret band and here 

the Kds were found to be 0.89 ± 0.16 µM and 20.2 ± 4.6 µM so while the Kd for the near 

UV band matches well, the Soret band Kd was found to be 10-fold higher here. CP6 was 

found to have the lowest Kd of 0.26 ± 0.24 µM. The ΔAbsorbance data of CP5 could not 

be fitted to the binding equation and a Kd value could not be obtained. This could be due 

to the presence of two Cys residues which could be allowing more complicated peptide-

heme structures to form and thus confounding the data. CP5 also has two Pro residues 

which could contribute to a conformation that does not favour strong heme binding 

compared to the other Bach1 derived peptides.  

 

CP4 has the C-X/P-H/F motif identified by Kühl et al. as the best predictor for a low Kd. 

However, here CP4 has the highest Kd of the CP peptides tested. CP3 with only the 

hydrophobic WLG sequence C-terminal to the Cys residue and the two positive residues 

Lys and Arg at the N-terminus would also be predicted to have a low micromolar Kd based 

on the patterns observed by Kühl et al. This is indeed the case with a Kd of 1.7 µM 

calculated for the Soret band with CP3. CP6 which does not have any positively charged 

residues and has a Ser residue C-terminal to the Cys residue has the lowest Kd which was 

not predicted. 
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 Wavelength 

(nm) 

Kd  

(µM) 

SEM 

(µM) 

Wavelength 

(nm) 

Kd  

(µM) 

SEM 

(µM) 

CP3 340 - - 397 1.7 1.0 

CP4 367 33.9 11.1 - - - 

CP5 367 - - 419 - - 

CP6 367 0.26 0.24 421 - - 

IRP2 367 0.89 0.16 418 20.2 4.6 

AP3 347 - - 420 - - 

Table 3.3. Peak wavelengths of CP peptides and the corresponding calculated dissociation 

constants. 

 

Although there appears to be some unspecific binding of hemin to the AP3 peptide, 

presumably via hydrophobic interactions with the porphyrin ring and electrostatic 

interactions between the hemin propionates and the positively charged side chains of 

the peptide, the ΔAbsorbance data could not be fitted to the binding equation and a Kd 

value could not be obtained. As the plot of ΔAbsorbance against hemin concentration 

also remains very flat this suggests that the binding sites of the peptide are not being 

saturated. Taken together this is consistent with relatively little binding occurring 

between the peptide and hemin which highlights the importance of the Cys residue for 

effective hemin binding. Even though AP3 also contains a Lys and an Arg residue which 

could provide coordinating nitrogens for the iron of hemin, this does not seem to be 

favoured. 
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3.4 PPIX binding to CP3  

 

PPIX is the immediate precursor to heme in the cellular heme biosynthetic pathway and 

consists of the same porphyrin structure without the central iron. Therefore, this 

molecule will be present in cells as well as hemin itself. The absorbance spectrum of PPIX 

is quite similar to that of hemin with an intense Soret band at 400 nm. As the aim of the 

work was to measure cellular heme concentration, any binding of PPIX to the peptide 

could give a false positive signal and therefore misrepresent the amount of heme 

present in the cell. It was therefore important to test the interaction of PPIX with the 

peptides to ensure that minimal binding occurred. A titration was carried out with PPIX 

as with hemin previously. While the concentration of CP3 peptide was constant (10 µM) 

in PB, pH 7.0, PPIX concentration was increased from 0.25 µM to 25 µM and the 

absorbance of each solution measured between 250 nm and 600 nm (Figure 3.4.).  

 

The difference absorbance spectrum of CP3 with PPIX has a similar shape to the 

difference absorbance spectrum of CP3 with hemin, both having two minima. The 

wavelengths of the two minima for PPIX binding are 342 nm and 456 nm, 342 nm being 

very close to the 340 nm of hemin binding, while the 456 nm trough is red shifted 59 nm 

compared to the 397 nm Soret band of CP3 with hemin. The plot of ΔAbsorbance at 342 

nm against PPIX concentration shows very little binding until a 10 µM PPIX concentration 

(equivalent to a 1:1 ratio of peptide:PPIX). The data again could not be fitted to the one 

site binding equation. The lack of binding of PPIX to CP3 is thus consistent with the lack 

of iron in PPIX to mediate binding through the Cys in CP3. From this it can be 

extrapolated that CP3 should not competitively bind other non-metal containing 

tetrapyrroles.  
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Figure 3.4. UV-Vis spectroscopy of CP3 with PPIX. Peptide concentration was constant (10 μM) 

whilst PPIX was titrated (0.25 μM, 0.5 μM, 0.75 μM, 1 μM, 2 μM, 3 μM, 4 μM, 5 μM, 7.5 μM, 10 

μM, 12.5 μM, 15 μM, 17.5 μM, 20 μM, 25 μM) in phosphate buffer (10 mM). After 2 min stirring 

the absorbance was read between 250 nm and 650 nm. Error bars show the standard deviation 

n=3. A) Absorbance of CP3 with increasing amounts of PPIX. B) Difference spectrum of CP3 with 

PPIX. C) ΔAbsorbance of CP3 with PPIX at 420 nm against hemin concentration. 

 

3.5 Confirming binding stoichiometry of hemin to CP peptides 

 

Given the structures of the peptides, a 1:1 binding model with heme was expected and 

indeed the data from the difference spectra did not fit to either a 2:1 or 1:2 binding 

model (Thordarson 2010). However, to confirm that a 1:1 model was the correct one to 

use to determine the dissociation constant, the method of continuous variation was 

employed which has been used previously for determining the stoichiometry of hemin 

binding to various other synthetic peptides (Mahajan and Bhattacharjya 2013). The total 

molar concentration of peptide and heme was kept constant while varying the mole 
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fraction. The maximum on the plot corresponds to the binding stoichiometry. The Job 

plot of CP-IRP2 with hemin confirmed the expected 1:1 stoichiometry (Figure 3.5.). 

 

 

 

 

 

 

 

 

 

3.6 Attachment of a fluorophore to the N-terminus of CP6 

 

In order to monitor heme binding to a peptide probe, a suitable reporter unit needs to 

be attached. Attachment of 3 different fluorophores to recombinant HO-1 has previously 

been shown to result in fluorescence quenching upon heme binding (Koga et al. 2013). 

The fluorophores used were AlexaFluor 350 and 2-anilinonaphthalene-6-sulfonic acid 

which have emission bands which overlap with the Soret band of hemin, and AlexaFluor 

555 which has an emission band that overlaps with the α- and β- absorption bands of 

hemin at 574 nm and 553 nm respectively (Blank et al. 2001).  The HO-1-AlexaFluor350 

conjugate exhibited reduced fluorescence in proportion to the amount of hemin present 

and was almost completely quenched on addition of equimolar and higher amounts of 

0.00 0.25 0.50 0.75 1.00
0.0

0.1

0.2

0.3

hemin 

A
b

s
o

rb
a
n

c
e

Figure 3.5. Job plot of hemin with CP-IRP2. Total molar concentration of peptide and hemin (10 

µM) was constant while the mole fraction of each component was varied in PB (10 mM, pH 7). 



75 
 

hemin. The HO-1-AlexaFluor350 conjugate has a lower dissociation constant and 

therefore higher affinity for hemin. As such, AlexaFluor 350 was deemed the best 

fluorophore to use with the most efficient energy transfer and with less disruption of 

the binding pocket.  

AlexaFluor 350 was therefore chosen as the fluorophore to conjugate to a CP peptide to 

act as a reporter. CP6 was the peptide with the lowest Kd for hemin and was therefore 

chosen as the lead peptide. The fluorophore, as a N-hydroxy-succinimidyl ester, was 

reacted with the free peptide at room temperature for 1 hour in NaHCO3 buffer at pH 

8.3, protected from light. As the dye is expensive and less available than the peptide, the 

peptide was used in excess (2 eq) to ensure complete consumption of the dye. The 

reaction was monitored by HPLC which showed disappearance of the starting material 

and appearance of a new species at Rt = 6.29 min. The crude product was then passed 

through a DSC-18 solid phase extraction cartridge with increasing amounts of 

acetonitrile in water (0.1% TFA). The coloured fractions were then further purified by 

semi-preparative HPLC. Freeze drying yielded AF350-CP6 as a light blue solid in 25% yield 

(Scheme 3.3.). 

The peptide with the dye attached has a maximum absorbance at 352 nm and a 

maximum emission at 443 nm corresponding to the anticipated values for the AlexaFluor 

350 dye (Figure 3.6.).  
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Scheme 3.3. Synthesis of AF350-CP3. Reagents and conditions: a. AF350-SE, NaHCO3, RT, 1 h. 
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 Figure 3.6. Absorbance (blue) and fluorescence (red) spectroscopy of AF350-CP6, 10 

μM in PB (10 mM, pH 7). Excitation wavelength = 352 nm. 
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3.7 Fluorescence titration of AlexaFluor350 labelled peptide with hemin 

 

As the emission spectrum of the AlexaFluor350 label overlaps with the Soret absorption 

band of hemin it was anticipated that hemin binding to the peptide should result in 

effective fluorescence quenching. Therefore, adding hemin to a solution of AF350-CP6 

peptide should quench the fluorescence in proportion to how much hemin is present 

until all the binding sites of the peptide are occupied (at an equimolar concentration) 

and fluorescence quenching should plateau.  

However, upon addition of hemin to the peptide in solution, no quenching of the 

AlexaFluor 350 fluorescence was observed (Figure 3.7.). As resonance energy transfer is 

dependent on the distance between the donor and acceptor and the orientation of their 

dipole moments it is possible that conjugating the fluorophore at the N-terminus of the 

peptide places it too far away from the heme binding at the cysteine side chain, 5 amino 

acids away (Jares-Erijman and Jovin 2003). When attached to HO-1, the AlexaFluor350 

dye can be quenched by heme binding but the structure of HO-1 is more rigid than a 

small peptide and the dye is likely to be constrained at the correct distance from the 

binding site by the tertiary structure of the protein which is not achieved with the more 

flexible 9-mer peptide. Another possibility is that the fluorophore itself sterically blocks 

heme binding. This was tested by carrying out a UV-Vis titration with hemin but to 

overcome the brightness of the AlexaFluor 350 fluorophore, it was necessary to adjust 

the concentration of peptide and hemin to much lower than used previously. As such 

changes in binding could not be detected accurately and so the results were 

inconclusive. 
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Figure 3.7. Fluoresence spectroscopy of AF350-CP6 with hemin. Peptide concentration was 

constant (10 μM) whilst hemin was titrated (0.25 μM, 0.5 μM, 0.75 μM, 1 μM, 2 μM, 3 μM, 4 

μM, 5 μM, 7.5 μM, 10 μM, 12.5 μM, 15 μM, 17.5 μM, 20 μM, 25 μM) in phosphate buffer (10 

mM). After 2 min stirring the fluorescence was taken between 380 nm and 600 nm. The 

excitation wavelength was 350 nm, the slit widths for excitation and emission were 5 nm.   

 

3.8 Quenching of the intrinsic fluorescence of the tryptophan in CP3 by hemin 

 

In order to decrease the distance between the fluorophore and the bound hemin 

molecule, the fluorophore could be conjugated to an amino acid side chain following the 

Pro in the heme-binding peptide. This could be achieved by synthesis of the peptide with 

a lysine residue following the proline with a suitable protecting group that could be 

selectively removed to allow conjugation of the fluorophore only at that side chain. This 

would require a revision of the synthetic strategy in Scheme 3.1. 

However, the CP3 peptide has a tryptophan residue following its proline and tryptophan 

is fluorescent upon excitation at 280 nm, giving emission at 350 nm. Tryptophan 

fluorescence is often used as a readout to study protein conformation as its fluorescence 

is highly sensitive to its environment (Ghisaidoobe and Chung 2014). More recently, it 

has also gained popularity in the intrinsic Forster Resonance Energy Transfer (iFRET) 

technique which uses energy transfer between an intrinsic tryptophan and a suitable 
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fluorophore. For example, it has been used to investigate ligand binding to proteins by 

monitoring energy transfer between a fluorophore labelled ligand and tryptophan 

residues found near the ligand binding site of the protein (Liao et al. 2009; Kim et al. 

2014).  

The absorption band of heme is quite broad and overlaps with the emission band of 

tryptophan (Figure 3.8.). Therefore, on addition of increasing amounts of hemin, and 

hemin binding to the peptide, the emission of the tryptophan residue should be 

increasingly quenched. 

 

 

 

 

 

 

 

 

To assess this for CP3, the concentration of the peptide in phosphate buffer was kept 

constant (10 µM) while increasing the amount of hemin (from 0.25 µM to 25 µM). The 

peptide was excited at 280 nm and the emission spectrum recorded (Figure 3.9. A). As 

expected the emission peak of tryptophan (357 nm) is reduced on the addition of more 

hemin. By plotting the fluorescence of the peptide (F0) with the fluorescence at each 

hemin concentration (F) subtracted (F0-F), against the hemin concentration, the effect 

of hemin on fluorescence can be seen directly (Figure 3.9. B). F0-F increases steadily with 

Figure 3.8. Absorbance (blue) and fluorescence (green) spectroscopy of CP3 showing the 

overlap between CP3 fluorescence and hemin absorbance (red), 10 µM, PB pH 7.0. 
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increasing amounts of hemin until a 1:1 ratio of hemin:peptide is reached, after which 

F0-F plateaus as the binding sites are saturated. This data could also be used to generate 

a Kd by fitting the data to the same one site binding equation by replacing the absorbance 

with fluorescence. Fitting data is included in Appendix A.2. The average Kd (n=4) for 

hemin binding to the CP3 peptide was 0.44 ± 0.12 μM. This is four-fold lower than the Kd 

found by absorbance spectroscopy. Discrepancies between dissociation constants 

calculated using absorbance versus fluorescence spectra have been reported before and 

attributed to the use of different concentrations of binding partners between the two 

experiments; as fluorescence spectroscopy is more sensitive than absorbance, generally 

lower concentrations can be used (Koga et al. 2013; Thiabaud et al. 2013). However, in 

this work, the concentrations were equal across both platforms. Therefore, rather than 

the difference being caused by differing concentrations, it is likely that the difference is 

due simply to the difference in accuracies between the two techniques. Fluorescence 

spectroscopy is more sensitive than absorbance spectroscopy because fluorescence 

intensity is measured directly without comparison to a reference beam whereas 

absorbance spectroscopy measures the difference in light intensity between the beam 

passing through a buffer and passing through the sample (Sheehan 2009). Limits of 

optics and electronics make it difficult to detect small changes and small percentages of 

absorbed light making measurements at low concentrations difficult. Finding a Kd by 

absorbance spectroscopy also relied upon detecting a small shift in wavelength of the 

maximum absorbance of the Soret band on peptide binding, which changes throughout 

the experiment and the absorbance values at these shifting wavelengths whereas during 

the fluorescence quenching experiment the maximum wavelength is constant and 

simply the fluorescence value is measured.   

The modulation of tryptophan fluorescence on heme binding is promising for sensor 

development and proves that the position after the Cys-Pro motif is close enough for 

energy transfer to occur between the hemin and the tryptophan. However, tryptophan 

itself is not an ideal choice for a fluorophore for heme sensing in cells because of its 

natural occurrence in proteins. If a peptide such as CP3 was taken up by a cell it would 
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be very difficult, if not impossible to distinguish the fluorescence of the peptide probe 

at around 350 nm from the fluorescence of the native cellular protein tryptophans.  

 

  

 

Figure 3.9. Fluorescence spectroscopy of CP3 with hemin. Peptide concentration was 

constant (10 μM) whilst hemin was titrated (0.25 μM, 0.5 μM, 0.75 μM, 1 μM, 2 μM, 3 μM, 4 

μM, 5 μM, 7.5 μM, 10 μM, 12.5 μM, 15 μM, 17.5 μM, 20 μM, 25 μM) in phosphate buffer (10 

mM). After 2 min stirring the fluorescence was measured between 300 nm and 550 nm. The 

excitation wavelength was 280 nm, the slit widths for excitation and emission were 5 nm.  A) 

Quenching of the fluorescence peak of CP3 with addition of hemin. B) F0-F (fluorescence of 

peptide – fluorescence at each hemin concentration) for CP3 with addition of hemin. Error 

bars show the standard deviation, n=4. 
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3.9 Incorporation of 7-azatryptophan into CP3 

 

Azatryptophans are analogues of natural tryptophan where one of the endocyclic CH 

groups of the indole is substituted with nitrogen. An azatryptophan is an attractive 

option for a replacement fluorophore for a number of reasons. Firstly, their fluorescence 

is red-shifted compared to normal tryptophan, allowing for their detection above the 

background tryptophan fluorescence of the cell (Merkel et al. 2010). Secondly, the 

substitution of carbon for nitrogen is the smallest possible structural alteration of 

tryptophan analogues and so their structure is very similar in size and shape to normal 

tryptophan and so should not perturb binding of heme to a given peptide (Figure 3.10.).  

 

 

 

 

 

 

 

There is precedent for using 7-azatryptophan to monitor the binding between two 

species by taking advantage of its ability to be involved in Förster resonance energy 

transfer. 7-Azatryptophan for instance, has been incorporated into a 47 residue peptide 

based on the sequence of the thrombin inhibitor hirudin. A tyrosine at position 3 was 

replaced with 7-azatrytophan and the change in fluorescence on binding to thrombin 

was used to follow the interaction between the peptide and protein (De Filippis et al. 
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Figure 3.10. Structures of tryptophan and 7-azatryptophan showing their peak excitation 

and emission wavelengths. 
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2004). 7-azatryptophan has also been incorporated into peptides based on the LysM 

motif of peptidoglycan binding proteins. Titrating ‘bacteria like particles’ onto the 

labelled peptide led to increased quenching of the azatryptophan fluorescence (Petrović 

et al. 2012). It was reported that the autofluoresence of the proteins used was more 

than 10-fold lower than the fluorescence of the 7-azatryptophan labelled peptides 

allowing them to be easily distinguished.     

 

7-Azatryptophan is commercially available as the L isomer in Fmoc protected form, 

meaning synthesis of a new peptide containing the residue is simpler and less time-

consuming than regioselectively modifying the peptide with a fluorophore would be, 

after its synthesis. CP3[7azaW] was synthesised on Rink Amide MBHA resin on a 0.6 

mmol scale and using Fmoc solid phase peptide synthesis (Scheme 3.4.). As previously, 

the first amino acid, Fmoc-Gly-OH was coupled manually using PyBOP as the activating 

agent and DIEA as the base and the rest of the peptide was completed on the Activotec 

automated peptide synthesiser using PyBOP activation. Cleavage from the resin and full 

side-chain deprotection was achieved using TFA/TIS/H2O/EDT (92.5:2.5:2.5,2.5, v/v/v/v). 

The peptide was purified by RP-HPLC to >98% purity as judged by analytical HPLC and its 

identity was confirmed by ESI-MS. Even though the indole ring of the azatyptophan was 

not protected (compared to Boc protection of the indole group used in Trp for CP3) no 

significant side products were observed and the desired peptide was successfully 

synthesised and purified. The incorporation of EDT in the deprotection cocktail helps 

prevent t-butylation of nucleophilic side chains by t-bu cations (Eberle et al. 1986) and 

use of Pmc as the protecting group for Arg rather than Mtr for example, also reduces the 

chance of potential sulfonation of Trp during cleavage from the resin (Riniker et al. 1990).  

Comparing the absorbance and fluorescence of the two peptides shows that substitution 

of tryptophan with 7-azatryptophan red shifts the absorbance of the peptide by 10 nm 

from 280 nm to 290 nm and the emission by 43 nm from 357 nm to 400 nm (Figure 

3.11.). These shifts are in agreement with those previously reported (Smirnov et al. 
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1997). Even the relatively small shift in the absorption peak of 7-azatryptophan should 

mean that the excitation wavelength used for detection can be shifted towards the red 

to the edge of the 7-azatryptophan absorption peak (310-320 nm) which is further red 

than for any absorption by tyrosine and the absorption by tryptophan is negligible. Even 

though red-shifted, the emission peak of 7-azatryptophan still largely overlaps with the 

absorption of hemin and so was expected to be quenched on hemin binding to the 

peptide. The red shift should therefore help in distinguishing the fluorescence of the 

modified peptide from endogenous tryptophan of cellular proteins when used 

intracellularly. 
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Scheme 3.4. Synthesis of CP3[7azaW]. Reagents and conditions: a. Piperidine/DMF (1:4 v/v), 

5 + 10 min b. Fmoc-Gly-OH, DIEA, PyBOP, DMF, RT, 1 h; c. Piperidine/DMF (1:4 v/v), 5 + 10 

min; d. Fmoc SPPS: Fmoc-AA-OH, PyBOP, DIEA, DMF; e. TFA/TIS/H2O/EDT (92.5:2.5:2.5:2.5, 

v/v/v/v), 3 h. 
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3.10 Quenching of the fluorescence of 7-azatryptophan in CP3 by hemin 

 

To ensure that incorporation of 7-azatryptophan did not alter the heme binding ability 

of the peptide and that hemin binding can still be monitored by fluorescence quenching 

of 7-azatryptophan, a hemin titration was carried out as previously. Hemin (0.25 µM to 

25 µM) was added incrementally to a fixed concentration of CP3[7azaW] peptide (10 

μM) and the fluorescence spectra measured at each concentration.  

As with the original peptide, addition of hemin quenched the fluorescence maximum at 

402 nm. Plotting F0-F at the emission peak gave a very similar profile as for CP3 with 

fluorescence quenching plateauing after 10 μM hemin (1:1 equivalents of peptide and 

hemin). Using this data to calculate a Kd yielded 0.74 ± 0.42 µM which is comparable to 

the Kd found by fluorescence for unmodified CP3. Fitting data is included in Appendix 

A.2. 

Figure 3.11. Absorbance (blue) and fluorescence (green) spectroscopy of CP3[7azaW] showing 

the red shift compared to the fluorescence of CP3 (pink) and that there is still significant 

overlap with the absorbance of hemin (red), 10 µM, PB pH 7.0. 
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Figure 3.12 Fluorescence spectroscopy of CP3[7azaW] with hemin. Peptide concentration 

was constant (10 μM) whilst hemin was titrated (0.25 μM, 0.5 μM, 0.75 μM, 1 μM, 2 μM, 3 

μM, 4 μM, 5 μM, 7.5 μM, 10 μM, 12.5 μM, 15 μM, 17.5 μM, 20 μM, 25 μM) in phosphate 

buffer (10 mM). After 2 min stirring the fluorescence was measured between 300 nm and 

550 nm. The excitation wavelength was 290 nm, the slit widths for excitation and emission 

were 5 nm.  A) Quenching of the fluorescence peak of CP3[7azaW] with addition of hemin. 

B) F0-F (fluorescence of peptide – fluorescence at each hemin concentration) for CP3[7azaW] 

with addition of hemin. Error bars show the standard deviation, n=3. 
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3.11 Discussion 

 

Peptides based on the CP motif heme binding sites of Bach1 have been successfully 

synthesised. Each has been shown to bind hemin in a cell-free system and the binding 

can be monitored by UV-Vis absorption spectroscopy. This allowed the calculation of a 

dissociation constant for heme binding for 3 of the Bach1 derived peptides. These Kds 

ranged from 33.9 ± 11.1 µM to 0.26 ± 0.24 µM, with CP6 having the strongest hemin 

binding capability. 

However, attempting to monitor heme binding intracellularly by UV-Vis absorption 

spectroscopy would be very challenging as it would be subject to a large amount of 

interference from various cellular components. Being able to follow heme binding by 

monitoring fluorescence is a much more attractive option as it is potentially both more 

specific and more sensitive.  

A blue fluorophore, AF350, that was previously used for a protein-based heme sensor 

was conjugated to the N-terminus of CP6 however, no modulation of fluorescence was 

observed on hemin binding. Focus was instead turned to fluorescent, non-natural amino 

acids. The CP3 sequence contains a natural tryptophan which exhibits fluorescence at 

357 nm when excited at 280 nm. On addition of hemin, this fluorescence is quenched as 

the hemin binds to CP3, bringing it into proximity with the tryptophan so that Förster 

resonance energy transfer can occur. The Kd found for hemin binding to CP3 in this way 

was 0.44 ± 0.12 μM. 

Tryptophan fluorescence is not very attractive for use intracellularly as it could be 

difficult to deconvolute from the background fluorescence of endogenous tryptophan 

found in cellular proteins. However, the azatryptophans are a readily available class of 

modified tryptophans with red shifted fluorescence compared to natural tryptophan. 7-

azatryptophan was incorporated into the sequence of CP3 and it was shown that the 

fluorescence of CP3[7azaW] at 402 nm was also quenched on binding to hemin in a 

manner that was proportional to hemin concentration until a 1:1 ratio of hemin:peptide 
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was reached. The Kd found for this interaction was 0.74 ± 0.42 µM which is comparable 

to the Kd for unmodified CP3 peptide, showing that the substitution of Trp for 7-

azatryptophan does not hinder hemin binding. 

This newly synthesised peptide therefore has potential for use as a heme sensor but 

further development is necessary before it can be used intracellularly.  
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4 Synthesis of peptide probes based on the amino acid sequence 

of hemopexin and investigations of their interactions with hemin  
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4.1 Introduction 

 

Hemopexin is a plasma glycoprotein that binds heme. It has a molecular weight of 60 

kDa and consists of a single polypeptide chain of 439 amino acids. It has the strongest 

affinity for heme of any known protein with a Kd of 10-13 M reported for the native 

protein isolated from human blood (Hrkal et al. 1974), although a higher Kd  of 10-8 M 

has been reported for a recombinant protein (Satoh et al. 1994). Heme-bound 

hemopexin is recognised by the receptor LDL-receptor-related protein-1 (Hvidberg et al. 

2005) and binding leads to internalisation. The receptor is expressed by several cell types 

including hepatocytes, macrophages and neurons indicating the use of heme in multiple 

cell types. As hemopexin has such a high affinity for heme, it ensures that any free heme 

is quickly bound and neutralised, thereby preventing damage that could be caused by 

free heme and delivering it back to the liver for recycling and thus conserving energy. 

The aim of this chapter was to design peptides based on the heme-binding sequence of 

hemopexin with stronger affinities for heme than the peptides discussed in Chapter 3. 

 

4.1.1 The heme binding site of hemopexin  

 

Hemopexin consists of two domains, each with the same β-propeller fold, consisting of 

four β-sheets. The heme binding site is at the interface between these two domains and 

each domain provides one face of the heme binding site (Paoli et al. 1999) (Figure 4.1.). 

There is a flexible linker between the two domains that could not be resolved in the 

crystal structure and is also the least conserved sequence region. The linker could be in 

a position to close the heme binding pocket but if it does interact with heme, it is likely 

not an important interaction. The heme propionates are buried in the pocket of the 

protein, whereas the more hydrophobic side of the heme faces out of the pocket. The 

central heme iron is coordinated by two histidine residues, one from the start of the loop 

bridging the two domains (H213) and the other from the C-terminal domain (H266). 
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Apart from these axial ligands, the binding pocket has an abundance of aromatic and 

positively charged residues which are highly conserved between species. There are 

seven aromatic residues, 6 of which are from the N-terminal domain (W171, Y176, Y197, 

F183, Y204, F205) with only W267 from the C-terminal side. It is likely that there is edge 

to face π-stacking between Y204 and W267 with the face of the heme, as well as side 

chain stacking between the pairs of Y204 and H213 and W267 and H266 that help 

stabilise the binding site. There are four basic residues: R174, R185 from the N terminal 

domain and H271 and H222 from the C terminal domain. Along with Y267 these residues 

surround the propionates of the heme and provide hydrogen bonding partners. 

 

 

Figure 4.1. The binding site of rabbit hemopexin (1QH). The N-terminal domain is in blue and the 

C-terminal domain is in green. The heme porphyrin is shown in orange with the two coordinating 

histidines (H213 and H265) in black. The aromatic residues (W171, Y176, Y197, F183, Y204, F205 

and W267) are in red and the basic residues (R174, R185, H271 and H222) are purple. The figure 

was created using The PyMOL Molecular Graphics System, Schrödinger, LLC. 
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4.2 Sequence alignment of hemopexin amino acid sequences 

 

Analysis of the crystal structure of rabbit hemopexin (Figure 4.1.) has revealed the shape 

of the heme binding site and the residues that interact with heme. However, to gain a 

further understanding of the important residues for heme binding a sequence alignment 

was undertaken using the protein sequence from a number of different species (Figure 

4.2.). Residues that are critical or important for protein function are usually highly 

conserved across species because any deviation from the best sequence can lead to loss 

of function and is evolutionarily selected against. Therefore, highly conserved residues 

would be important to consider including in any heme binding peptide to be synthesised 

based on the heme binding site of hemopexin. 

Eight hemopexin sequences were taken from UniProtKB and aligned by Clustal Omega 

(Figure 4.2.).  

 

The sequence of the hemopexin heme binding site is well conserved across mammals. It 

is less conserved in zebra fish, but most of the aromatic and positive amino acids 

identified as important for binding in the crystal structure of rabbit hemopexin (Figure 

4.1.) are still conserved or substituted for other aromatic or positive residues (e.g. Tyr 

for Trp). The peptide chain that links the two domains is the least conserved region of 

the sequence, which also points to it not being important for heme binding. 
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sp|Q91X72|HEMO_MOUSE      RSWSTVGNCTAALRWLERYYCFQGNKFLRFNPVTGEVPPRYPLDARDYFVSCPGRGHGRPRNGTAHGN 246  

sp|P20059|HEMO_RAT        RSWPAVGNCTAALRWLERYYCFQGNKFLRFNPVTGEVPPRYPLDARDYFISCPGRGHGKLRNGTAHGN 246 

sp|Q3SZV7|HEMO_BOVIN      RSWPAVGNCSSAIRWLNRYYCFRGNKFLRFDPVTGEVNSTYPRDVRDYFMSCPNRGHAH-RNATQHM- 246 

sp|P50828|HEMO_PIG        RLWPAVGNCSSAMRWISRYYCFRGNQFLRFDPVTGHVDPKYPRDVRDYFMSCPGRGHAH-RNATHRG- 246 

sp|P20058|HEMO_RABIT      RSWPAVGNCTSALRWLGRYYCFQGNQFLRFNPVSGEVPPGYPLDVRDYFLSCPGRGHRS-----SHRN 244 

sp|P02790|HEMO_HUMAN      RSWPAVGNCSSALRWLGRYYCFQGNQFLRFDPVRGEVPPRYPRDVRDYFMPCPGRGHGH-RNGTGHGN 248 

sp|Q5R543|HEMO_PONAB      RSWPAVGNCSSALRWLGRYYCFQGNQFLRFDPVRGEVPPRYPRDVRDYFMPCPGRGHGH-RNGTGHGN 246 

                          : : :: **:.*:*:: :****:*.:* :*:*: *.*   ** :.****: **  *    

          

sp|Q91X72|HEMO_MOUSE      STH--PMHSRCSPDPGLTALLSDHRGATYAFTGSHYWRLDSSRDGWHSWPIAHHWPQGPSTVDAAFSW 312 

sp|P20059|HEMO_RAT        STH--PMHSRCNADPGLSALLSDHRGATYAFSGSHYWRLDSSRDGWHSWPIAHHWPQGPSAVDAAFSW 312 

sp|Q3SZV7|HEMO_BOVIN      -------DKRCSPHLVLSALLSDNHSATYAFSENHYWRLDSSRDGWHSWRIEHLWPQGPSTVDAAFLW 312 

sp|P50828|HEMO_PIG        -------DDRCSPDLVLTALLSDNHGATYAFRGTHYWRLDTSRDGWHSWPIDHQWSHGPSAVDAAFSW 312 

sp|P20058|HEMO_RABIT      STQHGHESTRCDPDLVLSAMVSDNHGATYVFSGSHYWRLDTNRDGWHSWPIAHQWPQGPSTVDAAFSW 312 

sp|P02790|HEMO_HUMAN      STHHGPEYMRCSPHLVLSALTSDNHGATYAFSGTHYWRLDTSRDGWHSWPIAHQWPQGPSAVDAAFSW 314 

sp|Q5R543|HEMO_PONAB      GTHHGPEYMRCSPHLVLSALTSDNHGATYAFSGTHYWRLDTSRDGWHSWPIAHQWPQGPSTVDAAFSW 314 

               :*     * *: **. .  *.*   *:  :  . * :**  *   : .  * **:.* : 

 

 

Figure 4.2. An excerpt from the multiple sequence alignment of hemopexin, showing the two histidine residues that coordinate the iron 

atom of heme (highlighted yellow). The aromatic and basic residues identified in Figure 4.1 as being important for heme binding are also 

shown (highlighted blue). Sequence alignment was performed by Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/). Species 

included are mouse, rat, cow, pig, rabbit, human and orangutan. 

http://www.ebi.ac.uk/Tools/msa/clustalo/
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4.3 Design and synthesis of a peptide based on hemopexin 

 

In order to design a potential heme-binding peptide, the information gained from both 

the crystal structure of rabbit hemopexin and the sequence alignment was taken into 

account. Two histidine residues were included to coordinate one iron of heme, with the 

peptide forming a ‘claw shape’ around the planar heme molecule. With two coordinating 

residues it was hoped that hemin binding would be very effective. Aromatic residues 

were included to provide an opportunity for π-π stacking between the side chains and 

the porphyrin ring. Polar residues were also included to provide interactions with the 

propionate side chains of heme. As other positively charged residues could conceivably 

compete with the histidine residues for iron binding, positively charged residues from 

the crystal structure were substituted for other polar amino acids that would not run 

this risk but could still act as hydrogen bonding partners for the heme propionates.  

A glycine was added at the N-terminus of the designed peptide to mimic the 

continuation of the native protein chain, followed by a histidine residue to coordinate 

the iron, mimicking H265. The peptide then follows the protein chain and takes the same 

residues through Ser266, Trp267, Pro268, Ile269, Ala270 and instead of His271, a Glu is 

substituted. A Gly was added to bridge the gap between the C-terminal and N-terminal 

domains. A Ser was added to the peptide sequence to reproduce the interactions 

observed between heme and Arg174 in the protein structure. An Ala was then included 

as a bridge to a threonine residue which was added as a substitute to provide 

interactions with heme as the Arg185 does in the native protein. The residues from the 

protein’s β-strand were then followed; a Leu, a Phe and then a Tyr to imitate the 

protein’s Tyr205. A Gly was added as a bridge to the second His included for binding to 

be analogous to His213. Finally, as at the N-terminus, a Gly was added at the C-terminus 

of the designed peptide to simulate the continuation of the hemopexin protein chain. 

The final design of the hemopexin based peptide, HXNP1, is summarised in Figure 4.3.  
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The peptide was synthesised as described in Chapter 3 by Fmoc solid phase peptide 

synthesis. It was purified by semi-preparative HPLC. Freeze drying yielded of HXNP1 as 

a white solid, 27% (Scheme 4.1). 

 

 

 

 

Scheme 4.1. Synthesis of HXNP1. Reagents and conditions: a. Piperidine/DMF (1:4 v/v), 5 + 10 

min b. Fmoc-Gly-OH, DIEA, PyBOP, DMF, RT, 1 h; c. Piperidine/DMF (1:4 v/v), 5 + 10 min; d. Fmoc-

SPPS: Fmoc-AA-OH, PyBOP, DIEA, DMF; e. TFA/TIS/H2O/EDT (92.5:2.5:2.5:2.5, v/v/v/v), 3 h. 
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A 

Figure 4.3. A) Schematic explaining the design of a potential heme-binding peptide, HXNP1 

based on the hemopexin binding site. B) Structure of hemopexin binding site with residues that 

were chosen for the peptide in blue and green. The figure was created using The PyMOL 

Molecular Graphics System, Schrödinger, LLC. 
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4.4 NMR of HXNP1 

 

1H NMR was employed to gain some preliminary insights into the solution structure. 

The 1H COSY spectrum (Appendix A.3.) was used to assign areas of the spectrum to 

specific residues found in a peptide and the 1H NMR spectrum with regions assigned is 

shown overleaf (Figure 4.4).  All the resonances in the spectrum appear well dispersed 

and sharp and some of the NH resonances are downshifted above 8.5 ppm which all 

suggest that the peptide is in a stable conformation in solution. Broader linewidths can 

indicate that the peptide can fluctuate between different conformations but the line 

shape is quite defined and the peaks are sharp suggesting that the peptide is folded in 

an low energy optimised conformation. 

Spectra were also obtained for a 1:1 mixture of the peptide and hemin in an attempt to 

reveal some specific details of the binding interaction. The spectrum was changed 

significantly compared to the spectrum of the peptide alone, with slightly broader line 

shapes and up-field shifting of multiple resonances. However, it was impossible to 

conclude if these changes were due to binding or simply due to the presence of the 

paramagnetic Fe3+ ion of hemin as illustrated previously (Thiabaud et al. 2013). 

This experiment was carried out by Dr Vincenzo Mirabello (University of Bath) 
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Figure 4.4. 1H NMR spectrum of a DMSO-d6 solution of the designed heme-binding peptide 

HXNP1 with chemical shift regions assigned to peptide features. 
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4.5 Heme binding to HXNP1 

 

The newly designed and created peptide (HXNP1) was tested for its hemin binding 

ability, as for the shorter peptides in Chapter 3. The Soret band of hemin shifted from 

387 nm to 395 nm upon peptide binding. The difference spectrum shows a broad, deep 

minimum at 377 nm and a maximum at 418 nm (Figure 4.5). Compared to the CP 

peptides discussed in the previous chapter, it was anticipated that the binding of HXNP1 

should be stronger (and therefore the Kd lower) due to the potential for more 

interactions with hemin built into this longer peptide. In this context, a 23 residue 

peptide with a Cys-Pro motif investigated by Kühl et al. had a Kd of 1.42 ± 0.24 µM for 

hemin binding. Although this was not significantly lower than the other 9-mer peptides 

tested, given the additional design elements based on the binding site of hemopexin, a 

much smaller Kd was expected for HXNP1. 

 

The difference absorbance plot obtained for HXNP1 and hemin indicates that hemin was 

binding to the peptide. The plot shows a minimum at 377 nm and a maximum at 418 

nm. This pattern is remarkably similar as the Group 1 peptides defined by Kühl et al. 

(2013) which suggests that selective iron mediated binding to the peptide is occurring. 

It is also very similar to the reported difference absorbance plot of heme binding to 

hemopexin protein, which also had a minimum followed by a maximum at 418 nm in PB 

at pH 7.0 (Hrkal et al. 1974).  However, the plot of hemin concentration against 

ΔAbsorbance does not reach a plateau, suggestion saturation of the peptide with hemin 

is not reached.  
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HXNP1 was designed to bind hemin in a 1:1 ratio, however various other types of 

interaction could be imagined. If the interaction was between two molecules of hemin 

and one peptide, then the peptide would have become saturated quicker and the 

difference absorbance should have plateaued at a hemin concentration of 10 µM (0.5 

equivalents of hemin to peptide). If two molecules of peptide were coordinating one 

A B 

C D 

Figure 4.5. UV-Vis titration of hemin binding to HXNP1. A) Full spectra of HXNP1 with increasing 

hemin concentration. B) Difference spectra of the HXNP1-hemin complex. C) The difference 

absorbance in relation to hemin concentration at the 418 nm peak. D)  The difference 

absorbance in relation to hemin concentration at the 377 nm minimum. Peptide concentration 

was constant (20 μM) whilst hemin was titrated (0.4 μM, 0.8 μM, 1.2 μM, 1.6 μM, 2 μM, 4 μM, 

6 μM, 8 μM, 10 μM, 15 μM, 20 μM, 25 μM, 30 μM, 35 μM, 40 μM) in phosphate buffer (10 mM). 

After 15 min stirring the absorbance was measured between 200 nm and 800 nm. 



102 
 

molecule of hemin, then the difference absorbance would start to plateau after 40 µM 

which was not exceeded in this experiment. The structure of HXNP1 also makes it seem 

unlikely that two peptides are coordinating one hemin while the other histidine residues 

are left free. However, what could be happening is that the peptide is forming higher 

order complexes, with longer chains forming between one hemin and the histidines of 

two different peptides (Figure 4.6.). 

 

 

 

 

 

 

 

Supporting the idea of higher order complex formation, the difference absorbance data 

for HXNP1 binding to hemin did not fit to the one-site binding equation that the data for 

the CP peptides of Chapter 3 were fitted to. It also did not fit to the 2:1 or 1:2 binding 

equations which further suggests that larger complexes may be formed (Thordarson 

2010). 

 

4.6 Investigating the binding stoichiometry of heme to HXNP1 

 

In order to further explore the stoichiometry of hemin binding to HXNP1 a Job plot was 

constructed as previously. 

 

Figure 4.6. A scheme showing the proposed architecture of the possible higher order 

complexes forming between hemin and HXNP1. The peptide chain is represented in blue 

with the two histidine side chains shown as blue pentagons and heme as yellow diamonds. 
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The Job plot (Figure 4.7) shows that the two lines intersect at a hemin mole fraction of 

0.56 which equates to a binding stoichiometry of 1.3 hemin molecules to one peptide.  

 

There are some limitations to using the Job plot to assign stoichiometry in a system that 

does not follow 1 to 1 binding (Thordarson 2010). When the binding is not simply 1 to 1 

then there is more than one species in the solution. For example, for 2 molecules of 

hemin binding to one peptide, then there would be both the 1 to 1 and 2 to 1 complexes 

in equilibrium in the solution. These different complexes would be expected to have 

different physical properties and therefore it cannot be completely assumed that the 

property of interest (in this case absorbance) is still linearly dependent on the fraction 
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Figure 4.7. Job plot of hemin with HXNP1. Total molar concentration of peptide and hemin (10 

µM) was constant while the mole fraction of each component was varied in PB (10 mM, pH 7). 
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of the highest order complex, as the lower order complex will have its own absorbance 

profile that could be interfering.   

 

4.7 Circular dichroism spectroscopy 

 

The peptide was designed to form a claw conformation around the heme molecule, 

however, the indication that larger order complexes are present suggests that the 

peptide is not sufficiently constrained to the claw shape and is flexible enough to allow 

different heme molecules to bind to each histidine. To investigate this further, the 

conformation of HXNP1 in solution was investigated by circular dichroism spectroscopy 

(CD). Circular dichroism is a spectroscopic method that can give insight into the 

secondary structure of proteins and peptides (Kelly et al. 2005). 

Plane polarised light can be thought of as consisting of two components, that are each 

circularly polarised and of equal magnitude but rotating in opposite directions, one left 

handed and one right handed. Circular dichroism is the unequal absorption of these two 

oppositely rotating components of circularly polarised light. When asymmetric 

molecules are placed in this light they will absorb the polarised light unequally and the 

recombination of the light that passes through a sample will possess elliptical 

polarisation. 

In proteins, the chromophores that absorb polarised light include the peptide bond, 

aromatic side chains and disulfide bonds. If a number of chromophores of the same type 

are in close proximity, they can behave as a single absorbing unit which will give rise to 

characteristic spectral features (Greenfield 2007; Brahms and Brahms 1980).  
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Figure 4.8. Typical CD spectra profiles of elements of protein structure. Adapted from Brahms 

and Brahms, (1980).  

 

Absorption below 240 nm is mostly due to the peptide bond and the presence of regular 

secondary structure gives rise to characteristic spectra in the far UV region (Figure 4.8.). 

α-Helices have a double minimum at 222 nm and 208 nm and a positive band at 193 nm. 

β–Sheets give a negative maximum at 218 nm and a positive maximum at 195 nm. Very 

disordered peptide chains have very negative ellipticity around 200 nm which rises to 

near 0 around 220 nm.  Due to these characteristic patterns, CD can be used to estimate 

the structure of unknown proteins and also to monitor any changes in conformation due 

to different conditions or ligand binding (Greenfield 2007). 

 

A peak at 205 nm is characteristic of a type II β-turn which is what was expected with 

HXNP1 if the peptide adopted a bend to form a claw around the hemin. However, in 

phosphate buffer, CD of HXNP1 shows that it apparently has a very unordered 

conformation (Figure 4.9). This is not entirely unexpected as a peptide of this length 
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would not be expected to show a much defined α-helical or β–sheet structure. Addition 

of hemin also did not change the structure of the peptide however, suggesting that a 

turn structure in the peptide is not induced by hemin and that it is indeed unlikely that 

one peptide is binding one hemin through two histidine residues, which may help explain 

why it was not possible to fit the ΔAbsorbance data from the UV-Vis hemin titration to 

any of the binding equations. Phosphate buffer is a physiologically relevant medium but 

methanol, as a less polar solvent can also give some insight into peptide structure when 

less hydrogen bonds are possible with the solvent, thereby making it more favourable 

for the peptide to form more intramolecular interactions (Cox et al. 1993). In methanol, 

HXNP1 gave a spectrum much more characteristic of α-helical configuration and again, 

addition of hemin did not appear to change the conformation.   
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Figure 4.9. Circular dichroism spectroscopy of HXNP1 (5 µM, 10 mM PB, pH 7.0) (blue) with 1 

equivalent (green) of hemin. A in phosphate buffer. B in methanol. 
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4.8 Design and synthesis of HXNP2 

 

If HXNP1 is able to adopt a rather flexible conformation in solution, this could be the 

reason for its failure to bind hemin in the designed one to one ratio. To address this the 

sequence of HXNP1 was adapted to include a specific β-turn motif to induce the peptide 

chain to adopt a folded conformation in solution around one molecule of hemin. A β-

turn is a non-repeating secondary structure that causes a reversal in the peptide chain.  

Each β-turn consists of 4 amino acids designated i, i+1, i+2 and i+3 and the turn is 

stabilised by a hydrogen bond in the peptide backbone between the CO of residue i and 

the NH of residue i+3 (Figure 4.10). The ideal dihedral angles for amino acids in the 

different types of β-turn are shown in Table 4.1.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10. Two types of β-turns with the tetrapeptide Cα atoms denoted as 1, 2, 3, 4. Turn type I 

has (φ, Ψ)2 of (-60°, -30°) and (φ, Ψ)3 of (-90°, 0°). Turn type II has (φ, Ψ)2 of (-60°, -120°) and (φ, Ψ)3 

of (90°, 0°). Adapted from (Chou and Fasman 1977) 

 

- 

II has (4, I,/J)~=(-60”, 

120”) and (4, #)3=800, 0”). 
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Turn type i+1 φ° i+1 Ψ° i+2 φ° i+2 Ψ° 

I -60 -30 -90 0 

I’ 60 30 90 0 

II -60 120 80 0 

II’ 60 -120 -80 0 

Via -60 120 -90 0 

VIb -120 120 -60 0 

VIII -60 -30 -120 120 

Table 4.1. The ideal dihedral angles (Ψ, Φ) of amino acids in the i+1 and i+2 positions of different 

classes of β-turns. 

 

Proline has a Ψ angle of -65° due to its cyclic side chain making it a good candidate for 

the i+1 position of a Type II β-turn. Glycine, on the other hand, is a small amino acid with 

only a hydrogen atom as a side chain. This means its dihedral angles can cover a wide 

range of values. Proline and glycine are therefore commonly found at the i+1 and i+2 

positions of Type 2 β-turns (Wilmot and Thornton 1988) and glycine especially is highly 

favoured over any other residue at i+2. As there is a glycine residue already at the centre 

of HXNP1, this was identified as a potential site for nucleating a β-turn. Gln is also the 

second most likely amino acid to be found at the i position in Type II β-turns (Chou and 

Fasman 1977) so this residue of HXNP1 could be retained. Ser is not particularly favoured 

at the i+4 position but it is not strongly selected against either and so it was decided to 

keep it in the modified peptide sequence based on the hemopexin binding site. It was 

therefore concluded that the simplest alteration to the HXNP1 sequence to induce a β-

turn was to insert a Pro residue between the central Gln and Gly residues (Figure 4.11.). 

In order to promote the formation of a β-turn in the desired location without the chain 

kinking at any other place, the Pro that occurred earlier in the sequence was substituted 

for an Ala. The modified peptide was designated HXNP2. 
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The new peptide, HXNP2, was synthesised as above by Fmoc solid phase peptide 

synthesis and purified by semi-preparative HPLC. Freeze drying yielded HXNP2 as a white 

solid, in 14% yield (Scheme 4.2.). 

  

    GHSWAIAQPGSATLFYGHG 

Gly added to simulate 

continuation of a protein 

Gly as a bridge 

between the two 

domains 

Residues taken 

from the N 

terminal domain 

Residues taken 

from the C 

terminal domain 

Polar residues to interact 

with the propionates 

Aromatic residues interact with 

the porphyrin ring 

Histidine residues to interact with 

the iron of hemin 

Figure 4.11. Schematic explaining the design of a second peptide, HXNP2, based on the hemopexin 

binding site with the addition of a proline residue to induce a β-turn. 
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Scheme 4.2. Synthesis of HXNP2. Reagents and conditions: a. Piperidine/DMF (1:4 v/v), 5 + 10 

min b. Fmoc-Gly-OH, DIEA, PyBOP, DMF, RT, 1 h; c. Piperidine/DMF (1:4 v/v), 5 + 10 min; d. Fmoc-

amino acid-OH, PyBOP, DIEA, DMF; e. TFA/TIS/H2O/EDT (92.5:2.5:2.5:2.5, v/v/v/v), 3 h. 
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4.9 CD of HXNP2 

 

Now that the peptide sequence contained amino acids with a higher propensity to form 

β-turns, CD spectroscopy was used again to investigate whether the peptide had indeed 

been constrained into forming the desired folded structure, based around a type II β-

turn (Figure 4.12).  

In phosphate buffer the spectrum of HXNP2 remained very similar to the spectrum of 

HXNP1 which is again characteristic of an unordered peptide chain in solution. In 

methanol the predominant structure stills seems to be α-helical and so it seems that 

introducing the proline residue into the HXNP1 sequence did not result in the desired 

effect on the peptide secondary structure. 
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Figure 4.12. Circular dichroism spectroscopy of HXNP2 (5 µM, 10 mM PB, pH 7.0) (blue) with 1 

equivalent (green) and 2 equivalents (red) of hemin. A in phosphate buffer. B in methanol. 
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4.10 Binding stoichiometry of hemin to HXNP2 

 

Even though no β-turn structure could be observed with CD spectroscopy for HXNP2, a 

Job plot was constructed with hemin and HXNP2 to see whether any clear heme-binding 

stoichiometry could now be discerned (Figure 4.13).  

 

 

 

 

 

 

 

 

 

 

 

The Job plot (Figure 4.13) shows that the two lines intersect at a hemin mole fraction of 

0.62 which equates to a binding stoichiometry of 1.6 hemin molecules to one peptide. 

Again this ratio cannot be easily rationalised when looking at the structure of the peptide 

and is not consistent with a single binding stoichiometry between the peptide and 

hemin. Once more, the results suggest that a number of different peptide/hemin 

complexes are formed in solution. 

Figure 4.13. Job plot of hemin with HXNP2. Total molar concentration of peptide and hemin (10 

µM) was constant while the mole fraction of each component was varied in PB (10 mM, pH 7). 
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4.11 Discussion 

 

This chapter set out to create a peptide with a much lower dissociation constant than 

the CP peptides discussed in the previous chapter. In order to achieve this, a peptide was 

designed based on the heme binding site of hemopexin, the protein with the highest 

known affinity for heme. The peptide included two histidine residues that were designed 

to both provide coordination for one molecule of heme. However, including two 

histidine residues appeared to complicate the binding of hemin to the designed HXNP1 

peptide. Although hemin does bind to HXNP1, as shown by the minimum and maximum 

features of the difference absorbance, the Job plot and the failure to fit the titration data 

to a 1:1 binding equation demonstrate that HXNP1 does not bind hemin in an equimolar 

ratio thus making it unsuitable for further development. CD spectroscopy showed that 

HXNP1 was very flexible in solution and so a new peptide, HXNP2, was designed to try 

to constrain the peptide into a locked conformation so that sterically, only one potential 

heme binding site was created. However, CD spectroscopy of this peptide also showed 

an unordered confirmation in solution and the Job plot again did not show a 1:1 binding 

stoichiometry.  Development of this peptide was therefore halted. 

 

One possible way to further investigate the binding of hemin to the HXNP peptides 

would be to employ Raman spectroscopy to ascertain whether the iron at the centre of 

the hemin molecule is penta- or hexacoordinated (Kühl et al. 2013). Pentacoordination 

would indicate only one histidine binding to each hemin molecule whereas 

hexacoordination would prove that each hemin was bound by two extra ligands.  

 

Whatever the true dynamics of the binding between hemin and HXNP1 or HXNP2, 

further development is needed to design a peptide derived from hemopexin that can 

bind hemin in the desired 1:1 ratio with a low Kd. Perhaps the simplest thing to try as a 
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first step would be to resynthesize the peptide but with only one histidine (and therefore 

one potential heme binding site) and then find its dissociation constant with a hemin 

titration. If the Kd with only one iron coordinating side chain residue is still high, and it is 

deemed that two are necessary, then further modification of the peptide could be 

trialled to further induce a β-turn. For example, in the i+3 position Arg and Gln are highly 

favoured. In peptide design other positive amino acids were avoided to prevent further 

heme binding sites so including an arginine to induce a β-turn would be 

counterproductive. However, a Gln could be added to the sequence.  

 

Given the difficulties in monitoring heme binding to the hemopexin based peptides, the 

shorter CP peptides from the previous chapter were returned to for further 

development of a prototype intracellular heme sensor. 
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5 Further development of the Bach1-derived peptide probes for 

intracellular application 
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5.1 Introduction 

 

Given the difficulties encountered in the previous chapter in determining the 

stoichiometry and dissociation constant for the longer peptides based on the hemopexin 

sequence, it was decided to return to the peptides from Chapter 3.  It had been 

established there that short Cys-Pro containing peptides derived from the Bach1 

sequence could bind hemin effectively and CP3[7azaW] was established as a lead 

peptide. This chapter is therefore concerned with the further development of this 

peptide and establishing whether it could be used as a heme sensor in biological 

samples.  

 

There are certain criteria that a peptide sensor should fulfil if it is to be used 

intracellularly. It should be able to enter cells easily and quickly and when internalised, 

be non-toxic to cells and not affect their usual processes.  It must also be possible to 

monitor the sensor in cells by fluorescence spectroscopy and microscopy and therefore 

a fluorophore is needed that will be compatible with commonly used detection methods 

and instrumentation of these types.   

 

Incorporating a cell penetrating peptide (CPP) sequence would be one way that should 

ensure cell permeability of the sensor. CPPs are short peptide sequences, usually 

between 8-30 amino acids long, and many well-known CPPs have a high proportion of 

basic residues, like the Tat(48-60) (GRKKRRQRRRPPQ) and polyarginine sequences (Rn (n = 

6-12)). Other well-known CPPs are amphipathic like Pep-1 

(KETWWETWWTEWSQPKKKRKV) (Zorko and Langel 2005). CPPs are capable of 

manipulating the cellular machinery to trigger endocytosis, or can cross the cell 

membrane directly (Mueller et al. 2008). When various other molecules (ranging from 

small molecule drugs to proteins) are combined either covalently or non-covalently, with 
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CPPs, they are efficiently transported across the membrane where alone only poor 

internalisation would be achieved (Copolovici et al. 2014).  CPPs therefore have potential 

for use for a number of biological applications such as delivery of therapeutics, imaging 

and sensing (Fonseca et al. 2009; Stewart et al. 2008). A recent example that is 

particularly relevant to this work is the use of an octa-arginine CPP to help deliver a 

peptide helix tagged with the fluorescent probe 4- nitrobenzo-2-oxa-1,3-diazole, that 

could then be attached to different proteins for imaging (Nomura et al. 2015).  

 

5.2 Detection of heme in cell extracts with CP3[7azaW] 

 

Initially, the ability of CP3[7azaW] to bind and detect heme in cell lysates was 

investigated.  FEK4 cells were either treated with 10 µM hemin for 18 h, or 250 kJ/m2 

UVA irradiation before collection and lysis by sonication in lysis buffer with protease 

inhibitors. The total protein content of the lysates was assessed by the BCA assay so that 

the concentration of cellular extract could be standardised for treatment with a heme 

sensor peptide (Noble and Bailey 2009). The BCA assay is a colourimetric assay in which 

protein reduces Cu2+ to Cu+ which then reacts with bicinchoninic acid to produce a 

purple solution.  Differing amounts of cell lysates were then mixed with 10 µM 

CP3[7azaW] in UV transparent 96 well plates (UV-Star®, Greiner Bio-One), and the 

fluorescence was measured by exciting at 320 nm in a CLARIOstar fluorescence plate 

reader (BMG Labtech).  
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Figure 5.1. Detecting heme in cell lysates with CP3[7azaW]. Cells were either untreated (blue), 

treated with 10 µM hemin for 18 h (red) or 250 kJ/m2 UVA irradiation (green) and then lysed by 

sonication. CP3[7azaW] (10 µM) was then incubated with differing amounts of cell lysate 

(determined by protein concentration). Fluorescence of peptide alone was designated F0. n=1 (2 

µg, 10 µg, 20 µg, 30 µg), n=4, mean with SEM (5 µg). 

 

The fluorescence of peptide alone was designated as F0, so that an increase in F0-F 

represents fluorescence quenching which can be assumed to be due to heme binding to 

the peptide (Figure 5.1.). Initially the peptide was tested with a range of different lysate 

amounts, determined by the total protein content of the lysate. A similar trend was seen 

with all lysate amounts and it was decided that 5 µg of cell lysate was enough to cause 

determinable changes in the fluorescence of CP3[7azaW] and so repeats were 

subsequently performed only with 5 µg of cell lysate. 

F0-F was found to increase compared to peptide alone in all cell lysates, with a greater 

increase seen with higher amounts of lysate used. In all cases, as expected, more 

quenching was seen when the cells were loaded with hemin compared to the untreated 

cells suggesting that the peptide was indeed detecting changes in heme levels. F0-F was 
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further increased by treatment with UVA irradiation compared to untreated cells (p = 

0.06) suggesting that UVA irradiation directly increases free heme.  

 The process did not involve any treatment that should disrupt protein structure, and 

protease inhibitors were included to help protect cellular proteins from degradation by 

cellular proteases. The heme detected by this fluorescence quenching should therefore 

represent cellular free heme only and not any heme bound to hemoproteins within the 

cell lysate.  

 

5.3 Toxicity of peptide to cells 

 

As the ultimate aim is to use a heme-sensing peptide in cells, it is essential that such 

molecules be non-toxic and not affect the metabolism or heme levels of the cell under 

study.  The toxicity of the test peptide was evaluated using the MTT assay (Meerloo et 

al. 2011). FEK4 cells were seeded and left to adhere before being treated with the 

peptide for 48 h. The cells were then washed and treated with the MTT dye which is 

reduced by the cellular enzymatic machinery to an insoluble formazan. Any remaining 

dye was then removed by washing and the cells were treated with DMSO to dissolve the 

formazan into a coloured solution. The absorbance of this solution represents the 

activity of NAD(P)H-dependent cellular oxidoreductase enzymes which are an indication 

of the viability of the cells present. If the peptide diminishes the growth of the cells, then 

less formazan will be produced compared to the untreated cells and the absorbance will 

be lower.  
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Figure 5.2. MTT assay to assess toxicity of CP3[7azaW] in FEK4 cells. Cells were seeded in a 96 

well plate for 24 h before being treated with peptide (0 M, 0.1 µM, 10 µM, 50 µM, 100 µM, 1 

mM, 5 mM, 10 mM, 25 mM) in duplicate for 48 h before addition of MTT reagent for 3 hours. 

Absorbance was standardised to the untreated cells which was set at 100% viability. Error bars 

show standard deviation, n=3. 

 

Figure 5.2. shows the result of the MTT assay to assess the toxicity of CP3[7azaW] in 

FEK4 cells. There was no difference observed between the cells treated with peptide 

and the untreated cells. At the highest concentrations there was a slight decrease in 

cellular enzyme activity but these concentrations (5 mM – 25 mM) are 10× higher than 

would typically be used in a cellular assay. The cells were also exposed to the peptide 

for 48 h which is much longer than would be required for a heme sensing assay. 

Therefore, it can be concluded that the lead peptide is likely to be non-toxic to cells 

across its working concentration range.    
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5.4 Conjugation of 5-carboxy-X-rhodamine to the N-terminus of CP3[7azaW] 

 

As already noted, in order to measure heme levels intracellularly it must be possible to 

quantify the amount of peptide sensor that is taken into the cell. Using the fluorescence 

of 7-azatryptophan to do this would be inappropriate because any heme binding would 

quench its fluorescence and therefore it would appear there was less peptide in the cell 

than there actually was. Coupling a second, independent fluorophore to the peptide 

would be a solution to this. As the excitation wavelength of 7-azatryptophan is in the 

near UV region, it would be impractical to select a second fluorophore with a shorter 

wavelength. Therefore, a fluorophore with an excitation wavelength longer than the 

emission wavelengths of heme was required. This should allow it to be excited 

independently at a longer wavelength that would not interfere with the signal from 

either 7-azatryptophan or heme. A second fluorophore would also allow the cell to be 

more easily detected by fluorescence microscopy. The 7-azatryptophan fluorophore 

requires excitation in the middle UV region, and most fluorescence microscopes are not 

equipped to excite at such a short wavelength, with most only having a 405 nm diode 

for DAPI fluorescence as the lowest wavelength source.  

 

5-Carboxy-X-rhodamine (5-ROX) was identified as having desirable spectroscopic 

properties, with an absorption maximum at 578 nm and emission maxima at 593 nm. A 

succinymidyl ester of 5-carboxy-X-rhodamine (5-ROX-SE) was chosen as a simple means 

to conjugate this dye with the N-terminus of the lead CP3 peptide. As this peptide has a 

Lys residue at the N-terminus with a free amino group in its side chain, this provides an 

alternative conjugation site for 5-ROX that would potentially compete with the amino 

group at the N-terminus. To avoid this problem, the CP3[7azaW] peptide was therefore 

resynthesized with this Lys substituted for a neutral Ala – ACP3[7azaW] - before the 

conjugation of 5-ROX.   
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ACP3[7azaW] (2 eq) was incubated with 5ROX-SE in NaHCO3 pH 8.3, at room 

temperature, protected from light (Scheme 5.1.). The reaction was monitored by HPLC 

which showed disappearance of the starting material and appearance of a new species 

at Rt =6.26 min. The crude product was then passed through a DSC-18 solid phase 

extraction cartridge with increasing amounts of acetonitrile in water (0.1% TFA). The 

coloured fractions were then further purified by semi-preparative HPLC. Lyophilisation 

yielded 5ROX-ACP3[7azaW] as a pink solid in 30.6% yield. It was found that it was 

essential to keep the reaction time short, as prolonged reaction times led to 

disappearance of the first-formed peptide product and generation of multiple species 

(Figure 5.3.)  

 

 

Scheme 5.1. Synthesis of 5ROX-ACP3[7azaW]. Reagents and conditions: a. 5ROX-SE, NaHCO3, 

RT, 1 h. 
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Figure 5.3. HPLC results from the reaction of 5-ROX with ACP3[7azaW]. A) 5-ROX. B) The reaction 

mixture immediately after mixing. C) The reaction mixture after 1 h. 
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5.5 Absorbance and fluorescence of 5ROX-ACP3[7azaW] 

 

As the peptide was doubly labelled with two different fluorophores, it was necessary to 

check that the presence of the large rhodamine moiety did not hinder heme binding to 

the peptide. The absorbance profile of 5ROX-ACP3[7azaW] shows a major absorption 

peak with a maximum at 586 nm representing the rhodamine dye. However, the 

fluorescence profile shows that fluorescence at around 400 nm is much reduced upon 

excitation at 290 nm (Figure 5.4). The fluorescence of the 7-azatryptophan in the 

unmodified CP3[7azaW] is shown in blue for comparison. As there was no observed 

fluorescence around 400 nm where the Soret absorption of heme is located, this 

means it would be impossible to follow heme binding to this peptide by fluorescence 

quenching. 
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Figure 5.4. Absorbance (red) and fluorescence (green) spectroscopy of 5ROX-ACP3[7azaW] with 

fluorescence of CP3[7azaW] (blue), 10 μM in 10 mM phosphate buffer, pH 7.0. 
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5-ROX was chosen as a second fluorophore as its peak excitation and emission 

wavelengths appeared to be independent of those of 7-azaTrp and heme and were also 

compatible with fluorescence microscopy laser lines. However,  

Figure 5.4. shows that the doubly labelled peptide also has a small absorbance peak at 

373 nm, associated with 5-ROX, and it is therefore possible that this is the origin of the 

quenching of the 7-azaTrp fluorescence.  

 

5.6 Uptake of 5ROX-ACP3[7azaW] in FEK4 cells 

 

Although no longer suitable for use as a heme sensor, the doubly labelled peptide could 

still be used to test whether such a conjugate was cell-permeable. To do this, the peptide 

was incubated with FEK4 skin fibroblasts and the cells were then imaged by fluorescence 

microscopy. Cells were grown on glass coverslips for four days before washing with PBS 

and incubation with 1 µM or 10 µM 5ROX-ACP3[7azaW] in media or PBS for 30 or 60 

min. Cells were then washed again to remove any peptide remaining in the solution and 

fixed with paraformaldehyde. The cells were then incubated with the nuclear stain DAPI 

and mounted on glass slides with mounting media before being left to dry overnight and 

then imaged by fluorescence microscopy (Figure 5.5). 

 

The rhodamine dye should be seen in the red channel and at the 10 µM concentration, 

the peptide can be seen in cells (Figure 5.5.). However, the uptake is very uneven and 

particulate and the fluorescence is not very bright suggesting that uptake of the peptide 

is not very efficient. There is apparently very little difference between the uptake in 

media and the uptake in PBS. These results confirmed the need for additional 

development of the lead sensor peptide in order to obtain effective cell uptake.  
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Figure 5.5. FEK4 cells were incubated with 5ROX-ACP3[7azaW] (1 μM or 10 μM) for 30 or 60 min 

in media or PBS for comparison with untreated cells. Cells were then fixed and stained with DAPI. 

Images were taken with a Zeiss LSM510Meta confocal laser scanning microscope. 
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5.7 Synthesis of RRRRRRR[Ahx]ACP3[7azaW] 

 

In order to try to increase the efficiency of uptake of the peptide, a cell-penetrating 

peptide sequence was incorporated next to the hemin binding sequence on the N-

terminal side. As Förster energy transfer and therefore any fluorescence quenching is 

dependent on distance as well as overlap between emission and excitation profiles, it 

was anticipated this would also have the benefit of increasing the distance between the 

5-ROX label and the 7-azaTrp residue. Increasing the distance between the two 

fluorophores could thus relieve the unwanted quenching effect (Selvin 1995).  

Two of the most commonly used CPP sequences are the Tat sequence and a sequence 

of multiple arginine residues. However, given the Tat sequence contains multiple lysine 

residues, these would again provide alternative sites for labelling with a second 

fluorescent dye. To avoid this complication, a hepta-arginine sequence was chosen 

instead with 6-aminohexanoic acid used as a spacer between the arginines and the 

heme-binding sequence as has been  previously described (González-Magaldi et al. 

2015).  

The peptide sequence was synthesised as previously giving RRRRRRR[Ahx]ACP3[7azaW] 

as white solid in 24% yield after lyophilisation (Scheme 5.2.).
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Scheme 5.2. Synthesis of RRRRRRR[Ahx]ACP3[7azaW]. Reagents and conditions: a. Piperidine/DMF (1:4 v/v), 2 + 5 min b. Fmoc-Gly-OH, 

DIEA, PyBOP, DMF, RT, 1 h; c. Piperidine/DMF (1:4 v/v), 5 + 10 min; d. Fmoc-amino acid, PyBOP, DIEA, DMF; e. TFA/TIS/H2O/EDT 

(92.5:2.5:2.5:2.5, v/v/v/v), 3 h. 
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5.8 Conjugation of 5-carboxy-X-rhodamine to the N-terminus of 

RRRRRRR[Ahx]ACP3[7azaW] 

 

Once the peptide had been synthesised with the inclusion of a cell-penetrating 

sequence, a dye could again be conjugated to follow the uptake of peptide into cells. The 

same 5-ROX dye was used as previously along with the same reaction conditions.  

 

RRRRRRR[Ahx]ACP3[7azaW] (2 eq) was incubated with 5-ROX-SE in NaHCO3 pH 8.3 at 

room temperature, protected from light. The reaction was monitored by HPLC which 

again showed disappearance of the starting material and appearance of a new species 

almost immediately upon mixing. The crude product was isolated by solid phase 

extraction and HPLC as before, giving the desired labelled peptide as a pink solid albeit 

in low yield (5.3%) (Scheme 5.3). As with synthesis of 5-ROX-ACP3[7aW], it was found 

that it was essential to keep the reaction time short, since again prolonged reaction 

times led to disappearance of the first-formed peptide product and generation of 

multiple species (Figure 5.6.). This may partly explain the low recovery of the final 

peptide product. 
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Figure 5.6. HPLC results from the reaction of 5-ROX with RRRRRRR[Ahx]ACP3[7azaW]. A) 5-ROX. 

B) The reaction mixture immediately after mixing. C) The reaction mixture after 1 h. 
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5.9 Absorbance and fluorescence of 5-ROX-RRRRRRR[Ahx]ACP3[7azaW] 

 

With the new labelled peptide in hand, its spectroscopic properties could again be 

investigated. It was hoped that increasing the distance between the N-terminal dye 

and the 7-azaTrp would prevent any possible quenching occurring between the two 

fluorophores. If this was successful, then the fluorescence of the 7-azaTrp should 

again be seen as a peak around 400 nm in the fluorescence spectrum of the peptide.  

However, the absorbance and fluorescence profiles of 5-ROX-

RRRRRRR[Ahx]ACP3[7azaW] were very similar to 5-ROX-ACP3[7azaW] and the 7-

azaTrp fluorescence band could not be observed (Figure 5.7.). This means that 

increasing the distance between the two fluorophores had apparently not reduced 

the quenching of the 7-azaTrp fluorescence, so making this doubly labelled peptide 

probe also unsuitable for monitoring cellular heme concentration. 
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Figure 5.7. Absorbance (red) and fluorescence (green) spectroscopy of 5-ROX-

RRRRRRR[Ahx]ACP3[7azaW] with fluorescence of CP3[7azaW] (blue), 10 μM in 10 mM 

phosphate buffer, pH 7. 
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5.10 Tandem mass spectrometry to investigate site of 5-ROX conjugation 

 

Another possible explanation for the properties of the doubly labelled peptide above 

was that the rhodamine dye had been conjugated to the sulfur of the cysteine rather 

than the N-terminal amino function of the peptide. This would mean that the 

rhodamine dye was in much closer proximity to the 7-azaTrp fluorophore than 

expected and could explain why the fluorescence of the 7-azaTrp residue was 

apparently reduced by 5-ROX. The site of conjugation would be very challenging to 

confirm by NMR spectroscopy, and is impossible to determine by normal mass 

spectrometry. However, tandem mass spectrometry (MS/MS) could be used to 

fragment the peptide and then characterise various fragments to identify which 

residue the dye might be conjugated to. 

 

5-ROX-ACP3[7azaW] was chosen for this study as its shorter sequence compared to 

5-ROX-RRRRRRR[Ahx]ACP3[7zazW] was expected to make the analysis of the 

fragments easier. In the event, the results obtained were inconclusive, as no peptide 

fragment could be identified containing the 5-ROX fluorophore without the Cys 

residue. Although a fragment consisting of the ECP[7azaW]L sequence could be 

identified without 5-ROX attached to the Cys, this does not rule out the possibility 

that the dye was removed from the Cys residue during the fragmentation, and so 

does not definitively prove that the dye was attached to the N-terminus of the full 

peptide. 
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5.11 Uptake of 5-ROX-RRRRRRR[Ahx]ACP3[7azaW] in FEK4 cells 

 

Although the longer peptide still could not be used to measure fluorescence 

quenching on heme binding, it could be used to test whether incorporation of the 

hepta-arginine sequence improved cellular uptake of the heme-binding peptide. 

Cells were treated as previously and grown on glass coverslips for four days before 

washing with PBS and incubation with 1 µM or 10 µM 5-ROX-

RRRRRRR[Ahx]ACP3[7azaW] in media or PBS for 30 or 60 min. Cells were then 

washed again to remove any peptide remaining in the solution and fixed with 

paraformaldehyde. The cells were then incubated with the nuclear stain, DAPI and 

mounted on glass slides with mounting media before being left to dry overnight. The 

cells were then imaged with fluorescence microscopy as previously (Figure 5.8.). 
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Figure 5.8.  FEK4 cells were incubated with 5-ROX-RRRRRRR[Ahx]ACP3[7azaW] (1 μM or 10 

μM) for 30 or 60 min in media or PBS for comparison with untreated cells. Cells were then 

fixed and stained with DAPI. Images were taken with a Zeiss LSM510Meta confocal laser 

scanning microscope. 
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Again, very little uptake was seen with 1 µM of peptide after 30 min. Slight red 

staining could be seen with 1 µM peptide incubated for 60 min. With 10 µM peptide, 

the cells were bright red after both 30 min and 60 min incubation. The whole cell 

appeared to be red, suggesting that the peptide may be entering many cellular 

compartments. The cells were much brighter red after incubation with 5-ROX-

RRRRRRR[Ahx]ACP3[7azaW] compared to 5-ROX-ACP3[7azaW] proving that the 

addition of the hepta-arginine sequence did indeed aid cellular internalisation of the 

peptide sensor. 

 

5.12 Discussion 

 

The original CP3 peptide can in principle be used to measure heme in cell lysates. 

Although only one repeat is presented here, the results are promising as the trends 

are as expected, and it also supports the hypothesis that UVA irradiation increases 

cellular free heme levels. This work in cell lysates highlights the potential of the 

peptide to be used as a heme sensor after further development to make it useable 

intracellularly. 

 

To be used in cells, the peptide should interfere with the cellular machinery as little 

as possible. The MTT assay was used to establish that the lead heme-binding peptide 

does not interfere with mitochondrial function and showed that the peptide is 

virtually non-toxic to FEK4 cells. 

 

The next challenge to develop the sensor for intracellular use was to ensure that it 

can enter live cells. As the fluorescence of the 7-azaTrp is in the near UV-region, it is 

not detectable by many fluorescence microscopes. A secondary fluorophore was 

therefore needed to image the peptide in cells and assess its uptake. The rhodamine 

dye, 5-ROX was conjugated to the peptide, which was then incubated with live FEK4 

cells. A small amount of fluorescence was then seen in the cells, but the uptake was 
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inconsistent and not every cell became fluorescent. Therefore, a longer peptide was 

synthesised that included a cell-penetrating peptide sequence fused to the heme-

binding peptide sequence. The same rhodamine dye was then conjugated to the 

longer peptide and it was tested for cell uptake. The fluorescence of this peptide was 

much stronger in cells and seemed to cover nearly the whole cell. Therefore, it could 

be concluded that the inclusion of the cell-penetrating sequence is highly beneficial 

for promoting uptake of the peptide by FEK4 cells and should be included during 

further development. 

 

In order to properly quantify the levels of heme in cells, the amount of peptide that 

has entered the cell needs to be quantifiable. The fluorescence signal of 7-azaTrp 

would not be suitable for this application because it can be quenched by any heme 

present and would therefore give a readout lower than that corresponding to the 

actual amount of peptide present. For this work therefore a second, independent 

fluorophore was necessary whose fluorescence could be reliably related back to 

peptide concentration. 5-X-carboxyrhodamine was expected to be a good choice for 

an independent dye as its excitation wavelength is 586 nm, which is further in the 

red part of the spectra than heme and so should not interfere spectroscopically with 

any heme measurement. However, when conjugated to the peptide, the previously 

observed fluorescence of the CP3[7azaW] peptide around 400 nm that was 

attributed to the 7-azaTrp residue had been drastically reduced.  Unfortunately, this 

made the peptide in this form unsuitable for use as a heme sensor. 

 

The quenching of the fluorescence of 7-azaTrp was not relieved when the distance 

between this residue and the 5-X-carboxyrhodamine fluorophore was extended by 

the addition of an N-terminal cell-penetrating peptide spacer to the CP3[7azaW] 

sequence. This suggests that the choice of this pair of fluorophores is still not optimal 

and therefore other combinations should be considered. 
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A further possible explanation for the behaviour of the doubly labelled peptides is 

that the rhodamine dye was in fact conjugated to the sulfur of the Cys rather than 

the N-terminal amino function of the peptides during both labelling reactions 

performed. This would place the rhodamine dye in much closer proximity to the 7-

azaTrp fluorophore than expected, which is impossible to determine by normal mass 

spectrometry. Selective fragmentation of the shorter rhodamine-labelled peptide 

using MS/MS techniques could not fully confirm that the site of labelling was indeed 

at the N-terminus, and not at Cys, although some fragments identified were 

consistent with the desired labelling outcome. Additional support for preferential N-

terminal labelling over labelling at Cys does come from reports suggesting that good 

selectivities can be obtained when the dye is attached via a succinimidyl ester as was 

employed here, although for optimum results carrying out the reaction at pH 7.0 is 

also recommended (Bark and Hahn, 2000). As 5-ROX conjugation to the Cys would 

also completely block the main hemin binding site of the peptide sensors, UV-Vis 

titrations with hemin might also be carried out to see if hemin binding is drastically 

reduced compared to the unlabelled peptides. Even if the dye was blocking the Cys 

residue but nonspecific binding was occurring, this should be distinguishable from 

Cys-mediated binding by looking at the shape of the difference spectra (see Chapter 

3). Lastly, another method to test the site of the dye labelling would be to simply 

react the peptide with iodoacetamide. Iodoacetamide is an alkylating agent that 

reacts preferentially with thiol groups, so if the side chain thiol of Cys remained free 

(i.e. as for the desired N-terminally labelled peptides), it would be derivatised and 

the corresponding increase in molecular weight could be demonstrated by mass 

spectrometry.  

 

In summary, while the unlabelled CP3[7azaW] peptide does shows promise as a 

heme sensor for use in biological systems, further development is still needed to 

enable it to be used it intracellularly.   
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6 Production of Bach1 
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6.1 Introduction 

 

Bach1 is a negative regulator of transcription that can sense heme and has an 

important role in heme homeostasis through the regulation of several proteins 

involved in heme homeostasis (Zhou et al. 2016). Bach1 plays a key role in the cellular 

response to oxidative stress by allowing induction of HO-1 which can catabolise pro-

oxidative heme and release the antioxidants CO and biliverdin. Given the 

involvement of heme, Bach1 and HO-1 in a number of diseases involving components 

of oxidative stress (Abraham and Kappas 2008), HO-1 is emerging as a target for 

therapeutic intervention and drug discovery (Motterlini and Foresti 2013). However, 

much of the effort in this area so far has gone into inducing Nrf2 with much less 

attention paid to Bach1, perhaps because there is still much to understand about the 

role of heme, Bach1 and HO-1 in human pathophysiology.   

This chapter aimed to use recombinant DNA to express human Bach1 protein. The 

purpose of this was two-fold. Firstly, for the further development of the heme-

binding peptides produced in the previous chapters, and secondly, for investigations 

on the targeting of Bach1 with other heme-like porphyrins and hence modulation of 

its DNA-binding activity. Competition assays were designed to test the interaction 

between a heme-binding peptide in the presence of Bach1, and it was envisaged that 

electrophoretic mobility band shift assays (EMSA) could be used to investigate the 

binding of Bach1 to DNA in the presence of hemin and a heme-binding peptide. 

Further, the ability of different heme-like porhyrins to affect the DNA-binding activity 

of Bach1 could also be tested by EMSA. As there is no crystal structure of full length 

Bach1, purified protein could potentially be used further for crystallisation studies 

and detailed structural investigations. 

There have been several previous reports on the expression and DNA-binding 

properties of mammalian Bach1 proteins. Recombinant mouse Bach1 has been 

previously expressed as a GST fusion protein in E. coli and purified with a glutathione 

labelled Sepharose column (Ogawa et al. 2001). The protein that was produced was 

used for EMSAs. Human His-tagged Bach1 has been expressed in E. coli and purified 
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with Ni-NTA resin (Hintze et al. 2007), and once again the purified protein was probed 

in EMSA studies to confirm Bach1-DNA promoter interaction. The BTB domain of the 

mouse Bach1 has also been expressed with a His-tag in E. coli and purified by nickel 

affinity chromatography for crystallisation and structure determination (Ito et al. 

2009). Finally, Bach1 with a FLAG tag in a baculovirus vector was used to express the 

construct in High Five insect cells  (Cantor et al. 2004). The Bach1-FLAG was then 

purified by FLAG affinity resin and tested for its enzymatic activity. 

 

Given the complex structure of Bach1 and the presence of several heme prosthetic 

groups, a human expression system was chosen for this project, in order to achieve 

correct post-translational processing and quaternary structure of the expressed 

protein. To this end, chose a system from a recent report on a suspension cell system 

composed of human embryonic kidney cells (HEK 293-F) that described the 

production of a nuclear complex of mammalian proteins in good yield (Portolano et 

al. 2014). 

 

6.2 Plasmids 

 

A plasmid expressing a Bach1-GFP fusion construct was derived in this laboratory 

(Figure 6.1) (Raval et al. 2012) and a plasmid expressing a Bach1-FLAG tagged 

construct was a gift from Prof. Etsuro Ito (Figure 6.2)(Kanezaki et al. 2001).  
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Figure 6.1. Map of the pEGFP-N1 vector. The Bach1 gene was inserted into the MCS (multiple 

cloning site) region using EcoR1 and Kpn1. 

 

 

Figure 6.2. Map of the pFLAG-CMV vector. The Bach1 gene was inserted into the MCS region 

using EcoR1 and Sal1. 

 

6.3 Transfection of HEK 293-F cells with Bach1-GFP 

 

In order to test the transfection efficiency, a test transfection was carried out with 

the Bach1-GFP plasmid so that transfection could be monitored by detection of the 

fluorescence of the GFP of the Bach1-GFP construct. Transfection was carried out by 

the protocol of Portolano et al., 2014, using polyethylenimine (PEI) as the 
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transfection reagent. Expression of GFP was observed and transfection efficiency was 

calculated to be 53% (Figure 6.3.).  

 

Bright Field 405 nm 488 nm Merge 

    

Figure 6.3. Transfection of HEK 293-F cells with Bach1-GFP. Cells were transfected with the 

Bach1-GFP encoding plasmid and incubated at 37 °C for 48 h to allow for protein production. 

Cells were then harvested, fixed and stained with DAPI adhered to glass coverslips by 

centrifugation, and imaged by fluorescence microscopy. 

 

6.4 Transfection of HEK 293-F cells with Bach1-FLAG 

 

The FLAG tag is a polypeptide sequence of DYKDDDDK that can be used in affinity 

chromatography to purify tagged proteins from non-tagged proteins (Hopp et al. 

1988). The same transfection procedure as described above was therefore now used 

with the non-fluorescent but FLAG-tagged Bach1 encoding plasmid, and purification 

was also carried out according to the protocol of Portolano et al., 2014, using anti-

FLAG M2 antibody labelled affinity gel. Cells were lysed and large molecular debris 

(e.g. membranes and DNA complexes) were removed by centrifugation. The 

supernatant was then incubated with the affinity gel. The protein was then cleaved 

from the resin using enterokinase overnight at 4 °C. Enterokinase cleaves after a 

DDDDK amino acid sequence which is part of the FLAG-tag. Any further bound 

protein was then eluted from the resin using glycine HCl, pH 3.0. Samples were 

collected from each stage of the procedure for analysis by SDS-PAGE and Coomassie 

Blue protein staining. 
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The whole cell lysate obtained showed an abundant protein species at around 72 kDa 

on SDS-PAGE analysis with Coomassie Blue staining. Although the expected 

molecular weight for Bach1 is 82 kDa, the transfected plasmid should lead to 

overexpression of the protein and as this was the most abundant gel band it is 

possible that it does indeed represent Bach1 (Figure 6.4. 8.). However, after 

incubation of the lysate with the affinity gel and then washing with buffer to remove 

unbound protein, no protein bands were seen (Figure 6.4 3.). This would suggest that 

there was no protein binding to the gel. Further purification steps still did not show 

the presence of any protein (Figure 6.4 4-6, 11-12.). Based on these results, it is 

difficult to determine if the failure to isolate any protein resulted from the 

transfection process or during purification. 
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Figure 6.4. Purification of Bach1-FLAG from HEK 293-F cells. 
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6.5 Western Blotting of cell lysate with anti-FLAG antibody 

 

In order to investigate whether Bach1-FLAG was expressed in the cells and where it 

should run on the SDS-PAGE, Western blotting with an anti-FLAG antibody was 

performed on the cell lysate. The anti-FLAG antibody chosen was the same clone as 

that conjugated to the affinity gel used for purification so that comparisons could be 

made between the two results (Clone M2, Sigma). After transfection, harvest and 

lysis as described previously, the lysate was subjected to SDS-PAGE, followed by 

transfer to nitrocellulose membrane.  Primary antibody staining with the M2 anti-

FLAG antibody raised in mouse was followed by secondary antibody staining with a 

fluorescent anti-mouse antibody (LI-COR). The membrane was then imaged with an 

Odyssey CLx imaging system (LI-COR). 
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Figure 6.5. Western blotting of HEK 293F cell lysate with anti-FLAG antibody. A Coomassie 

stain of the same sample is included for comparison. 
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The Western blot in Figure 6.5. shows the absence of any FLAG epitope from the cell 

lysate. The band at 72 kDa seen on the Coomassie stain therefore does not seem to 

represent the Bach1-FLAG construct. One possibility is that during cell lysis the 

Bach1-FLAG construct is fragmented; as Bach1 consists of several domains it could 

be particularly susceptible to lysis during sonication. If the FLAG tag was lost from the 

protein, this would explain why the protein cannot be purified using the anti-FLAG 

affinity gel and why no bands were observed on the Western blot. This could also 

help explain why the principal band on the gel appears at a position on the gel 

corresponding to a size 10 kDa lower than the size of the expected protein. 

 

6.6 Mass spectrometry of the proteins in the 72 kDa-running SDS-PAGE band 

 

To complement the Western blotting results and further investigate the most highly 

abundant protein seen in the SDS-PAGE, mass spectrometry was employed to 

investigate the identity of the protein. The band from the gel was excised and 

subjected to a trypsin digest (carried out by Christopher Vennard, University of Bath) 

before mass spectrometry analysis (by the MS/MS method). Peptide fragments were 

identified by Mascot v2.4.1 (Matrix Science) using the SwissProt database. Even if the 

72 kDa band contained a truncated version of Bach1, fragments from the trypsin 

digest could still be used to identify the protein. Table 6.1 shows the proteins 

identified from the 72 kDa-running band with their masses. Bach1 was not one of the 

proteins identified. 
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Table 6.1. Proteins identified from the 72 kDa running SDS-PAGE band. 

 

6.7 Discussion 

 

It was not possible to express and purify human Bach1 given the time constraints of 

this project. Transfection and expression of the Bach1-GFP fusion appears to have 

been successful, suggesting that that transfection protocol chosen was suitable. 

However, this does not guarantee that the transfection of the Bach1-FLAG was 

successful as the plasmids and constructs are not exactly the same. Further 

investigation, such as immunostaining of whole cells with antibodies against the 

FLAG tag and against Bach1 could help confirm whether the plasmid is successfully 

transfected and expressed in intact cells. If this proved unsuccessful, then the 

transfection protocol itself could be optimised or different expression systems 

tested. If the expression is confirmed, then this would indicate that optimisation of 

the purification protocol is needed instead, or a different protein tag should be 

investigated.  

  

Accession Mass (Da) Description 

HS71A_HUMAN 70294 
Heat shock 70 kDa protein 1A OS=Homo sapiens 
GN=HSPA1A PE=1 SV=1 

K2C1_HUMAN 66170 
Keratin, type II cytoskeletal 1 OS=Homo sapiens 
GN=KRT1 PE=1 SV=6 

K1C9_HUMAN 62255 
Keratin, type I cytoskeletal 9 OS=Homo sapiens 
GN=KRT9 PE=1 SV=3 

HS90B_HUMAN 83554 
Heat shock protein HSP 90-beta OS=Homo sapiens 
GN=HSP90AB1 PE=1 SV=4 

K1C10_HUMAN 59020 
Keratin, type I cytoskeletal 10 OS=Homo sapiens 
GN=KRT10 PE=1 SV=6 

http://chpc-mascot/mascot/cgi/master_results_2.pl?file=..%2Fdata%2F20170926%2FF004452.dat;pr.show=reportbuilder;qo.sort=acc;qo.sortdir=asc#tc:rf:reportbuilder
http://chpc-mascot/mascot/cgi/master_results_2.pl?file=..%2Fdata%2F20170926%2FF004452.dat;pr.show=reportbuilder;qo.sort=mass;qo.sortdir=asc#tc:rf:reportbuilder
http://chpc-mascot/mascot/cgi/master_results_2.pl?file=..%2Fdata%2F20170926%2FF004452.dat;pr.show=reportbuilder;qo.sort=desc;qo.sortdir=asc#tc:rf:reportbuilder
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7  General discussion 
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In Chapter 3 of this thesis the construction of a prototype heme sensor with the 

peptide sequence ARSECP[7azaW]LG has been described. The sensor relies on the 

fluorescence of 7-azatryptophan which is quenched in proportion to the amount of 

hemin present. The peptide was derived from one of the heme-binding motifs of the 

transcriptional regulator protein, Bach1. 

Traditionally, cellular heme has been measured by spectroscopic methods after 

treatment of tissue by a variety of chemical steps. One method involves 

homogenising cell or tissue samples and reducing and treating the resultant lysates 

with pyridine in alkali so that the nitrogen ligands from protein-bound heme are 

replaced by pyridine so that the pyridine hemochromogen can be detected by 

absorbance spectroscopy (Paul et al. 1953). Alternatively homogenised cell or tissue 

samples were heated and acidified to release heme from hemoproteins and remove 

the iron to convert the heme into PPIX. The fluorescence of PPIX was then measured 

and assumed to equal the concentration of heme (Morrison 1965). A third method 

involves extracting heme from cells or tissues with acetone and HCl and then 

analysing the species present by HPLC (Sinclair et al. 2001). None of these methods 

are able to distinguish free heme from protein bound heme nor are they sensitive 

enough to recognise the very low levels of free heme in the cell. The peptide-probe 

heme-sensors developed here can in principle be used without any pre-treatment of 

cells to measure free heme levels or after treatment of cells to remove heme from 

hemoproteins.  

The fact the sensors developed in this work rely on quenching of fluorescence is not 

ideal as quantifying the reduction of fluorescence with increasing hemin makes it 

more difficult to determine exactly when the sensor is fully saturated than if they 

were a ‘turn on’ sensor where fluorescence would increase with increasing hemin 

concentration (Zhang et al. 2014). However, none of the previously designed sensors 

for heme have overcome this flaw. While it is a promising tool for measurement of 

heme levels in biological samples ex vivo, the basic sensor developed here cannot be 

used in live cells to quantify heme concentration as there would be no way to correct 

the reading for the concentration of peptide that entered the cell. This is because it 

is not possible to independently excite the 7-aatryptophan without its emission being 
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quenched by any cellular hemin. A heme sensor using a fusion protein of enhanced 

green fluorescent protein (EGFP) and the heme binding protein apocytochrome b562 

also suffered from this problem and could only be used to monitor the fluorescence 

quenching of EGFP when heme binds to apocytochrome b562 (Takeda et al. 2003). 

More recently, the heme sensor constructed by Koga et al. based on the heme 

binding protein heme oxygenase-1 and small molecule fluorophores is also ultimately 

limited to simple use in a cell-free system (Koga et al. 2013; Taira et al. 2015). In order 

to quantify the concentration of heme intracellularly therefore, the sensor needs to 

be ratiometric, or contain an internal standard of fluorescence. Further development 

of this work in Chapter 5 aimed to address this challenge. 

 

In Chapter 4, the creation of further heme-binding peptides, HXNP1 and HXNP2 that 

were expected to have higher affinities for hemin was described. These were inspired 

by the 3D structure of the heme-binding site of hemopexin, a protein with the highest 

known affinity for heme. Development of these peptides into heme sensors was 

attractive as it could have aided further investigation of the very low (nM-pM) 

concentrations of free heme that may be present in different organelles. However, 

difficulties were encountered elucidating the heme-binding stoichiometries and thus 

quantifying binding affinities of these peptides for hemin, and so this area of work 

was suspended in favour of the Bach1-derived peptide probes.  

 

Chapter 5 extended the work in Chapter 3 with the aim of attaching an independent 

fluorophore that could be used to monitor the uptake of the previous peptide sensor 

in cells. While conjugation of 5-carboxy-X-rhodamine to the N-terminus of CP 

peptides did allow for testing of the uptake of such a heme-binding peptide in cells, 

it also interfered with the fluorescence of the 7-azatryptophan residue, thereby 

nullifying the peptide’s suitability for use as a heme sensor.  However, the shorter 

CP3[7azaW] peptide was used in cell lysates to reveal an increase in heme levels after 

UVA irradiation of FEK4 cells compared to untreated cells. 
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Some elegant solutions have recently been devised to address the challenge of 

producing a heme sensor with a quantifiable level in cells. Song et al. created a 

protein-based ratiometric heme sensor that relied on the binding of heme between 

two heme-binding protein domains (IsdX1 and IsdC) that were each attached to a 

fluorescent protein (enhanced cyan fluorescent protein (ECFP) and enhanced yellow 

fluorescent protein (EYFP)). Heme binding brought the domains together causing 

energy transfer between the fluorescent domains (Song et al. 2015).  This construct 

was encoded into plasmids which were transfected into HeLa cells and used to 

monitor the increase in cellular heme after treatment of cells with 5 µM exogenous 

hemin. 

Hanna et al. recently developed a genetically encoded heme sensor that is again 

based on the quenching of the fluorescent protein EGFP by heme binding to 

cytochrome b562 but also has another fluorescent protein, Katushka 2 (mKATE2) that 

exhibits heme-insensitive fluorescence (Hanna et al. 2016). The red fluorescence of 

mKATE2 is not affected by heme binding and therefore can be used to normalise the 

altered fluorescence of EGFP upon heme binding. The spectral properties of mKATE2 

(excitation = 588 nm, emission = 620 nm) are very similar to that of 5-ROX used here, 

indicating that our basic design strategy in Chapter 5 is sound. 

 

However, a small molecule sensor has significant advantages over a genetically 

encoded sensor. It does not need to be transfected into a cell using plasmids or stably 

incorporated into the genome. Neither of these processes are facile. For preliminary 

testing of a sensor produced in this way, the expressed protein needs to be purified 

from the cell which is time consuming and expensive and can give very low yields. 

Chemical synthesis and purification of a short modified peptide is often much more 

simple to carry out. A small molecule also overcomes the risk of interfering with the 

normal physiological heme metabolism of the cell that comes from constitutively 

expressing extra heme-binding proteins. A small molecule sensor as designed here 

does not rely on conformational change between large protein domains and two 
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fluorophores, but only the direct energy transfer between the substrate heme and 

the fluorophore providing the readout. 

 

Further development of the Bach1-inspired peptide probe developed in this project 

is needed to make it functional in cells. Further optimisation could be carried out on 

all aspects of the sensor – the heme binding sequence, the fluorophores or even the 

linker between the two. 

The heme concentration of the cytosol of Saccharomyces cerevisiae has been 

previously reported as in the nM range using a sensor with a Kd for hemin of 0.5–2.0 

μM (Hanna et al. 2016). This Kd range is very similar to the range for the heme-binding 

peptides tested here. However, the concentration in the mitochondria and nucleus 

was estimated to be lower than 2.5 nM using a sensor with a Kd for hemin of 3 nM. 

Therefore, if the peptide based heme sensors from this work were to be employed 

for measuring heme concentration in subcellular organelles, further development of 

the heme-binding sequence would be necessary. This could involve further 

development of the HXNP peptides as discussed in Chapter 4 as currently, the 

sequences of peptides capable of binding heme through His or Tyr has not been 

studied to the same extent as Cys-containing peptides (Kühl et al. 2011; Kühl et al. 

2013). Alternatively, the information gained from the sequence analysis of Cys-

containing peptides could be combined with the information gained here to design a 

CP peptide with specific properties rather than basing one on the sequence of a 

natural heme-binding protein alone. 

In order to measure heme concentration in specific organelles, variations of the 

peptide to incorporate subcellular targeting peptide sequences would also need to 

be considered. Mitochondria-penetrating peptides with the sequence FXrFXKFXrFXK 

(Fx = cyclohexylalanine, r = d-Arg) can be used to target cargo to the mitochondria 

(Horton et al. 2008). There are also a number of nuclear localisation sequences 

derived from nuclear-targeted protein sequences such as GRKKRRQRRRPPQC, 

derived from the Tat protein (Gupta et al. 2005) that could be employed. 
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In terms of optimising the fluorophores, an alternative azatryptophan could be 

incorporated. For example, 4-azatryptophan has a higher fluorescence intensity 

compared to 7-azatryptophan and a 65 nm greater red-shift than 7-azaTrp (Lepthien 

et al. 2008). Methylation of azatryptophans can also alter their spectroscopic 

properties in a beneficial fashion. 1-Methyl-7-azatryptophan and 1,7-dimethyl-7-

azatryptophan both display greater red-shifted fluorescence than 7-azatryptophan 

(Noichl et al. 2015) as do 1-methyl-4-azaindole and 1,4-dimethyl-4-azaindole (Merkel 

et al. 2010). None of these potential Trp analogues are currently available 

commercially in Fmoc protected form but could be chemically synthesised. A greater 

red-shifted fluorescence could potentially avoid overlap of emission of these 

fluorophores with the 373 nm absorbance peak of 5-ROX. Additionally, a different 

independent fluorophore could be coupled to the N-terminus of the peptide such as 

AlexaFluor633, Cy5 or Texas Red. Another possibility for optimisation is to increase 

the length of the linker between the heme-binding and heme-sensitive fluorophore 

and the secondary fluorophore. 

 

When these issues have been addressed, the sensor could be employed in cells in a 

similar way to the Cytb562-EGFP-mKATE2 employed in Saccharomyces cerevisiae by 

Hanna et al. (2016) but without the need for the host cell to be expressing the protein 

sensor. A combination of fluorimetry, flow cytometry and fluorescence microscopy 

was used to determine the cellular heme concentration in Hanna et al.’s work and a 

small molecule sensor should also be suitable to use in all three methods.  

 

The work in this thesis aimed to develop for the first time a small-molecule heme 

sensor that could be applied to any cell type or biological sample to investigate heme 

levels after a variety of treatments. Of particular interest here was the effect of UVA 

irradiation on heme levels. The prototype probe KRSECP[7azaW]LG  was used to 

investigate heme levels in skin cell lysates after treatment with UVA irradiation. 
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Although only preliminary data is presented here, the trends in the data – an increase 

in F0-F in the control cell sample compared to the total fluorescence of the peptide, 

with further increases after pre-loading the cell with exogenous hemin (10 µM) and 

irradiation with UVA irradiation (250 kJ/m2) – are promising. The increase in F0-F 

suggests that free heme levels are increased after UVA irradiation which agrees with 

previous reports on the effect of UVA on skin cells (Kvam et al. 1999). Further 

investigation into this area should involve a dose response curve to correlate the 

levels of heme with increasing doses of UVA irradiation and to investigate what 

happens to heme levels at different time points after UVA irradiation. As 250 kJ/m2 

is only a moderate dose – equivalent to about an hour of sun exposure at midday in 

Southern Europe – increases in UVA dose could cause further increases in heme 

which could be used to further test the peptide sensor. 

 

Another potential use for the heme-binding peptides developed here would be as 

tools for investigations into the action of Bach1. Bach1 is ordinarily bound to the 

promoter of HO-1 and prevents transcription, however, when heme binds to the Cys-

Pro motifs of Bach1, the transcription factor is released from the DNA. If the 

dissociation constant of the peptide was as low as the dissociation constant of Bach1 

for heme then the peptide would be able to compete with Bach1 for free heme.  This 

would prevent the release of Bach1 from DNA and the transcription of HO-1, allowing 

investigation of the dependence of downstream processes on Bach1 or HO-1 activity. 

Another possibility would be to use the peptide to deliver other ‘heme-like 

porphyrins’ into the nucleus that are capable of modulating the DNA binding ability 

of Bach1, either positively or negatively. Further optimisation of the current heme-

binding peptides as suggested above should allow some of these interesting 

applications to be explored in the future. 
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A.1 Fitting Absorbance data 

 

A.1.1 CP3 Repeat 1 397 nm

 

Calculated εΔHG  -14028.4 

Calculated Ka 1.87428e+07 

Sum of squares (ss) 0.00288177 

Standard error (SEy) 0.0143471 

Covariance of fit 0.0588962 

 

A.1.2 CP3 Repeat 2 397 nm 

 

Calculated εΔHG  -14313.8 

Calculated Ka 293330 

Sum of squares (ss) 0.00072665 

Standard error (SEy) 0.00720441 

Covariance of fit 0.0260481 

 



182 
 

A.1.3 CP3 Repeat 3 397 nm 

 

Calculated εΔHG  -14080 

Calculated Ka 587136 

Sum of squares (ss) 0.000591979 

Standard error (SEy) 0.00650263 

Covariance of fit 0.0171582 

 

A.1.4 CP4 Repeat 1 367 nm 

 

Calculated εΔHG  68297.8 

Calculated Ka 29194.5 

Sum of squares (ss) 0.0167935 

Standard error (SEy) 0.0359417 

Covariance of fit 0.0853182 
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A.1.5 CP4 Repeat 2 367 nm 

 

Calculated εΔHG  122482 

Calculated Ka 18422.5 

Sum of squares (ss) 0.00831339 

Standard error (SEy) 0.0243683 

Covariance of fit 0.0280931 

 

A.1.6 CP4 Repeat 3 367 nm 

 

Calculated εΔHG  57383.1 

Calculated Ka 62289.4 

Sum of squares (ss) 0.00595913 

Standard error (SEy) 0.0206313 

Covariance of fit 0.0240414 
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A.1.7 CP6 Repeat 1 368 nm 

 

Calculated εΔHG  13933.9 

Calculated Ka 4.87508e+07 

Sum of squares (ss) 0.000240768 

Standard error (SEy) 0.00447928 

Covariance of fit 0.00562466 

 

A.1.8 CP6 Repeat 2 368 nm 

 

 

Calculated εΔHG  10850.6 

Calculated Ka 2.33461e+08 

Sum of squares (ss) 0.00180657 

Standard error (SEy) 0.0113596 

Covariance of fit 0.0596136 
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A.1.9 CP6 Repeat 3 366 nm 

 

Calculated εΔHG  6841.78 

Calculated Ka 1.3352e+06 

Sum of squares (ss) 0.000891853 

Standard error (SEy) 0.00862097 

Covariance of fit 0.130684 

 

A.1.10 IRP2 Repeat 1 418 nm 

 

Calculated εΔHG  20372.8 

Calculated Ka 79763.8 

Sum of squares (ss) 5.4252e-05 

Standard error (SEy) 0.00196854 

Covariance of fit 0.00190682 
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A.1.11 IRP2 Repeat 1 367 nm 

 

Calculated εΔHG  22971.4 

Calculated Ka 2.94433e+06 

Sum of squares (ss) 0.0013028 

Standard error (SEy) 0.00964661 

Covariance of fit 0.00998985 

 

A.1.12 IRP2 Repeat 2 418 nm 

 

Calculated εΔHG  31898.4 

Calculated Ka 51348.7 

Sum of squares (ss) 6.78631e-05 

Standard error (SEy) 0.00220167 

Covariance of fit 0.00151321 
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A.1.13 IRP2 Repeat 2 367 nm 

 

Calculated εΔHG  21405.5 

Calculated Ka 1.58833e+06 

Sum of squares (ss) 0.00130578 

Standard error (SEy) 0.00965764 

Covariance of fit 0.0125627 

 

A.1.14 IRP2 Repeat 3 418 nm 

 

Calculated εΔHG  35636 

Calculated Ka 35019.1 

Sum of squares (ss) 8.44768e-05 

Standard error (SEy) 0.00254916 

Covariance of fit 0.00231698 
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A.1.15 IRP2 Repeat 3 367 nm 

 

Calculated εΔHG  19137.8 

Calculated Ka 1.12051e+06 

Sum of squares (ss) 0.00095599 

Standard error (SEy) 0.00857541 

Covariance of fit 0.0134511 
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A.2 Fitting fluorescence data 

 

A.2.1 CP3 Repeat 1 357.5 nm 

 

Calculated εΔHG  8.20353e+07 

Calculated Ka 5.03416e+06 

Sum of squares (ss) 120352 

Standard error (SEy) 92.7176 

Covariance of fit 0.0768804 

 

A.2.2 CP3 Repeat 2 356 nm 

 

Calculated εΔHG  7.7148e+07 

Calculated Ka 1.34043e+06 

Sum of squares (ss) 47561.4 

Standard error (SEy) 58.2859 

Covariance of fit 0.0358403 
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A.2.3 CP3 Repeat 3 356 nm 

 

Calculated εΔHG  7.88612e+07 

Calculated Ka 2.07984e+06 

Sum of squares (ss) 144389 

Standard error (SEy) 101.556 

Covariance of fit 0.116372 

 

A.2.4 CP3 Repeat 4 355.5 nm 

 

Calculated εΔHG  5.91233e+07 

Calculated Ka 2.82463e+06 

Sum of squares (ss) 11008.4 

Standard error (SEy) 28.0413 

Covariance of fit 0.0131166 
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A.2.5 CP3[7azaW] Repeat 1 402 nm 

 

Calculated εΔHG  8.68975e+07 

Calculated Ka 1.14835e+06 

Sum of squares (ss) 86944.8 

Standard error (SEy) 78.8057 

Covariance of fit 0.055623 

 

A.2.6 CP3[7azaW] Repeat 2 401.5 nm 

 

Calculated εΔHG  7.24035e+07 

Calculated Ka 4.13077e+06 

Sum of squares (ss) 108585 

Standard error (SEy) 91.3929 

Covariance of fit 0.0963478 
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A.2.7 CP3[7azaW] Repeat 3 401 nm 

 

Calculated εΔHG  9.88311e+07 

Calculated Ka 582548 

Sum of squares (ss) 14980.3 

Standard error (SEy) 32.7112 

Covariance of fit 0.00739344 
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A.3 HXNP1 COSY NMR spectrum 

 

1H-1H COSY spectrum of a DMSO-d6 solution of HXNP1. 


