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SUMMARY

This thesis is about developing models to investigate spatio-temporal trends in defoliation lev-

els in European forests. The dataset used is provided by the International Co-operative Pro-

gramme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP), which has

been measuring crown condition on several thousand survey plots across Europe since the

1980s. Initially, a pre-existing generalised additive mixed model (GAMM) for defoliation ag-

gregated at the survey plot level is adapted for use with the ICP data, and an improved method

of displaying spatial patterns of change over time is developed. We then consider modelling

spatio-temporal trends at the level of individual trees within the GAMM framework with suit-

able response distributions, before moving on to set up a cumulative logistic regression model

(incorporating temporal autocorrelation) for defoliation as an ordinal response. Finally, we

begin to develop an MCMC algorithm to estimate this model, and offer suggestions for future

improvements.

1



ACKNOWLEDGEMENTS

This work was part-funded by the National Centre for Statistical Ecology via EPSRC/NERC

grant EP/1000917/1.



Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 ICP forest health monitoring data: background and descriptive statistics 1
1.1 Forest health monitoring in Baden-Württemberg, Germany . . . . . . . 1

1.2 Forest health monitoring across Europe . . . . . . . . . . . . . . . . . . 2

1.3 ICP crown condition data collection . . . . . . . . . . . . . . . . . . . . . 2

1.4 Survey plot numbers and locations . . . . . . . . . . . . . . . . . . . . . 3

1.5 Survey plot characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Norway spruce (Picea abies) . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Modelling aggregated crown condition data 10
2.1 Descriptive statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 The “country effect” . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Structure and fitting of the model . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Choice of response distribution . . . . . . . . . . . . . . . . . . . 13

2.2.2 Choice of k for spatial smooth . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Temporal autocorrelation . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Covariate effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Overall temporal trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Spatial patterns in crown condition . . . . . . . . . . . . . . . . . . . . . 20

2.6 Spatial patterns of change over time . . . . . . . . . . . . . . . . . . . . 22

2.6.1 Choosing an appropriate alpha value . . . . . . . . . . . . . . . . 22

2.6.2 Example fogplots . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Modelling defoliation in individual trees 25
3.1 Features required in a model of individual tree defoliation . . . . . . . . 25

3.2 Negative binomial response . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Inflated beta response . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Parameterisation 1: mixture of beta and Bernoulli distributions . 30

3.3.2 Parameterisation 2: point masses at zero and one . . . . . . . . 30

3.3.3 Implementation in gamlss . . . . . . . . . . . . . . . . . . . . . 30

i



3.3.4 Very simple model for crown condition . . . . . . . . . . . . . . . 31

3.4 Defoliation as an ordinal response . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 Relationships between defoliation and possible predictors . . . . 32

3.5 Structure of models for ordinal responses . . . . . . . . . . . . . . . . . 35

3.5.1 Cumulative threshold models . . . . . . . . . . . . . . . . . . . . 35

3.5.2 Sequential models . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Exploring cumulative logistic models for defoliation . . . . . . . . . . . . 36

4 Modelling defoliation as an ordinal response with temporal autocorrela-
tion 40
4.1 Cumulative logistic threshold model with temporal autocorrelation . . . . 40

4.1.1 Setting up the model . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.2 Posterior joint distribution of the parameters . . . . . . . . . . . . 41

4.1.3 Choosing priors . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.4 Conditional posterior distributions for the parameters . . . . . . . 43

4.2 Improving the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Conclusions and future work 50
5.1 Plot-level models of defoliation . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Tree-level models of defoliation . . . . . . . . . . . . . . . . . . . . . . . 51

A R code for drawing fogplots 52

B R code for MCMC algorithm 55

Bibliography 60

ii



List of Figures

1-1 Total number of plots assessed in all countries, 1987-2010 . . . . . . . . . . . 3

1-2 Survey plot locations: all species . . . . . . . . . . . . . . . . . . . . . . . . . 5

1-3 Survey plot locations: Norway spruce (Picea abies) only . . . . . . . . . . . . 9

2-1 Boxplots of mean % defoliation in each year for Germany, Austria and Switzer-

land . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2-2 Autocorrelation plot for model with AR(1) residuals . . . . . . . . . . . . . . . 14

2-3 Autocorrelation plot for model with ARMA(2,1) residuals . . . . . . . . . . . 14

2-4 Overall temporal trend in defoliation, adjusted to remove country effect . . . . 18

2-5 Temporal trends in defoliation by country, adjusted to remove country effect . . 19

2-6 Temporal trends in defoliation for plots with differently-aged dominant trees,

adjusted to remove country effect . . . . . . . . . . . . . . . . . . . . . . . . . 19

2-7 Spatial maps of defoliation levels at five-year intervals, adjusted to remove

country effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2-8 Spatial pattern of changes in crown condition between 1990 and 2010 . . . . . 23

2-9 Spatial pattern of changes in crown condition between 1990 and 2000 . . . . . 24

2-10 Spatial pattern of changes in crown condition between 1995 and 2005 . . . . . 24

2-11 Spatial pattern of changes in crown condition between 2000 and 2010 . . . . . 24

3-1 Distribution of defoliation measured in individual spruce trees (all countries,

all years to 2008) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3-2 Quantile-quantile plot for model with negative binomial response . . . . . . . . 27

3-3 Observed distribution of defoliation levels by year: Germany, 2001-2008 . . . . 28

3-4 Observed distribution of defoliation levels by year: Slovakia, 2000-2008 . . . . 29

3-5 Numbers of spruce trees in each defoliation category, by year . . . . . . . . . . 34

3-6 Checking the proportional odds assumption: odds ratios from separate logistic

regressions for each threshold . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4-1 MCMC trace plot for β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4-2 MCMC trace plot for ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4-3 MCMC trace plots for θ1, θ2, θ3 . . . . . . . . . . . . . . . . . . . . . . . . . 47

4-4 Example MCMC trace plot for Ui0 (a single tree) . . . . . . . . . . . . . . . . 48

iii



4-5 Example MCMC trace plot for Uit (a single tree in a single year) . . . . . . . . 48

iv



List of Tables

1.1 Numbers of plots with defoliation measured, by country and year . . . . . . . . 4

1.2 Summary of plot characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Genera of trees assessed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Characteristics of survey plots containing Norway spruce in Germany, Austria

and Switzerland . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Parameter estimates (on the logit scale) from the full model. . . . . . . . . . . 16

2.3 Parameter estimates (on the logit scale) from the final model after backwards

selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Defoliation levels in spruce trees in Germany . . . . . . . . . . . . . . . . . . 31

3.2 Parameter estimates for the zero-and-one-inflated beta model for crown condition 32

3.3 Defoliation and mean age of dominant trees: frequency table . . . . . . . . . . 33

3.4 Defoliation and water budget: frequency table . . . . . . . . . . . . . . . . . . 33

3.5 Defoliation and plot orientation: frequency table . . . . . . . . . . . . . . . . . 33

3.6 Defoliation and altitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7 Defoliation and humus type: frequency table . . . . . . . . . . . . . . . . . . . 34

3.8 Results of cumulative logistic regression model with proportional odds as-

sumption (Norway spruce, Germany) . . . . . . . . . . . . . . . . . . . . . . . 37

v



Chapter 1

ICP forest health monitoring data:
background and descriptive statistics

Forests are valuable to people in many ways, quantifiable or otherwise – as well as their eco-

nomic importance as a source of timber and other products, they provide habitats for wildlife,

prevent soil erosion, mitigate air pollution, and play a role in controlling the climate. The con-

dition of European forests has been monitored since the 1980s, initially in response to the high

levels of damage observed with increasing air pollution. There is an interest in investigating

the direction and magnitude of temporal and spatial trends in damage to forest health, which

may be the result of pollution, climate change or other factors.

1.1 Forest health monitoring in Baden-Württemberg, Germany

The Terrestrial Crown Condition Inventory (TCCI) in the Baden-Württemberg region of Ger-

many is an ongoing annual survey collecting data on crown condition (defoliation levels) from

forest plots on an irregular grid, often with different subsets of plots sampled in different years.

In analysing these data, it is necessary to consider the possibility of spatial correlations

between nearby survey plots, and of temporal autocorrelation between measurements made

on the same plot in consecutive years, as well as nonlinear effects of predictors such as tree

age. Augustin et al. (2009) addressed these issues by using a generalized additive mixed model

(GAMM) (Lin and Zhang, 1999) to model spatio-temporal trends in crown condition (defo-

liation) in Baden-Württemberg. Their model incorporated a multidimensional tensor product

smooth (Wood, 2006a) of space and time, allowing temporal trends to vary across locations,

and took the form given in Equation 1.1.

logit(E(yit)) = f1(tree ageit) + f2(noi,ei,yeart)

yit = E(yit) + εit
(1.1)

Here, yit is the mean proportion defoliation for trees on plot i in year t; f1 is a smooth
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function of tree age; f2 is a multidimensional smooth function of the spatial coordinates, nor-

thing (no) and easting (e), together with the year. The errors εit are normally distributed with a

first-order autoregressive moving average (ARMA) structure to allow for temporal correlation.

Using this model, Augustin et al. demonstrated a marked increase in defoliation beginning

in the late 1990s, from a mean of about 18% in 1998 to about 30% in 2005-2007 (for trees

with a median age of 75 years). There was also a strong effect of tree age, with defoliation

increasing up to around 75 years and then levelling off.

1.2 Forest health monitoring across Europe

In 1986, the International Co-operative Programme on Assessment and Monitoring of Air Pol-

lution Effects on Forests (ICP) was set up to co-ordinate monitoring of the condition of forests

across Europe. As of 2014, 42 countries are involved in this programme (Michel and Seidling,

2014). An extensive network of around 7500 Level I survey plots has been established, mainly

on a 16 × 16 km grid. From these plots, data have been collected about many aspects of forest

health, including defoliation, nutrient levels in foliage, deposition of atmospheric pollutants,

soil condition and ground vegetation. There is also a smaller Level II network comprising

several hundred plots, which are used to carry out more intensive ecosystem monitoring.

Forest monitoring in Baden-Württemberg generally makes use of a denser grid of survey

plots than the ICP (up to 4 × 4 km, depending on available funding); however the issues in-

volved in modelling spatio-temporal trends in crown condition are broadly similar. Additional

problems may arise when attempting to combine data from different countries.

1.3 ICP crown condition data collection

Crown condition data are collected annually from survey plots covering 35 European countries

(plus the Azores and the Canary Islands), beginning in 1987. Currently data covering the years

to 2010 are available to us. Data collection is carried out according to the established ICP

protocols (Eichhorn et al., 2010). Plots are not necessarily on a regular 16 × 16km grid, but

it is intended that numbers of plots for each country should be chosen to give approximately

the same density of coverage across the total forested area. At each grid location, a number of

trees will have been selected to form part of the sample; selected trees are permanently marked

and re-assessed during subsequent surveys, and trees removed are replaced by newly selected

trees.

The main variable of interest to us is percentage defoliation in the crown, estimated by

eye (using binoculars) for each individual tree, and recorded in 5% classes, with additional

categories for 0% defoliation and 100% defoliation (=dead). The sampling design excludes all

parts of crowns which are under direct influence of shadow from surrounding trees, and all trees

with biotic damage (e.g. from insects). Only the upper crown is assessed. The intention is “to

2



quantify the reduction in foliage as an effect of stressors including air pollutants and not as an

effect of long lasting site conditions” (Michel and Seidling, 2014) – to achieve this, defoliation

may be assessed relative to a healthy and vigorous “local reference tree”, representing the best

possible tree which could grow at a particular site.

Other information recorded includes the mean age of the dominant trees on the plot. Some

topographic characteristics of each plot are also recorded (orientation, altitude, etc).

1.4 Survey plot numbers and locations
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Figure 1-1 Total number of plots assessed in all countries, 1987-2010

Figure 1-1 and Table 1.1 illustrate where and when data were collected. Only Spain and the

Czech Republic provided data in 1987, with Slovakia beginning to provide data in 1988, and a

group of 12 countries joining in 1989. Russia provided data only in four years, Serbia began

to collect data in 2003 and Turkey in 2007. Funding shortfalls led to missing data in the late

2000s in several countries – including Sweden (the country with the largest number of plots)

and Austria – otherwise the number of plots in each country remained fairly stable or increased

over time. A total of 13151 different plots were measured on at least one occasion; the median

number of plots measured in any single year was 5552, with interquartile range 4311 to 5960.
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Figure 1-2 Survey plot locations: all species

Figure 1-2 shows the locations of all plots included at least once in the survey (exclud-

ing the Canary Islands and the Azores). Plot density varies between countries, due partly to

differing levels of forest cover and partly to levels of funding available to carry out the survey.

1.5 Survey plot characteristics

In addition to crown condition, a number of other variables were measured, mainly relating to

the landscape characteristics of each plot (altitude, orientation, water budget, humus type). The

mean age of trees on the plot was also recorded (the ages of individual trees are not available).

This information is summarised in Table 1.2 (for variables which may change over time, such

as mean age of dominant trees, the values given correspond to the first occasion this plot was
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included in the survey). It should be noted that water budget was also calculated on only one

occasion for each plot and is assumed not to change over the period of monitoring; this may be

misleading.

Table 1.2 Summary of plot characteristics

Latitude range 27◦44′ to 70◦28′ Orientation north 1171
Longitude range −28◦24′ to 42◦45′ northeast 985
Altitude <50m 1243 east 962

51-100m 1660 southeast 736
101-150m 2128 south 1065
151-200m 1493 southwest 876
201-300m 1635 west 992
301-400m 527 northwest 831
401-500m 990 flat ground 5456
501-1000m 2057 missing 77
1001-1500m 825 Mean age of 0-20 years 818
1501-2000m 219 dominant trees 21-40 years 2306
>2000m 18 41-60 years 3059
missing 53 61-80 years 2294

Water budget insufficient 1593 81-100 years 1880
sufficient 9601 101-120 years 1050
excessive 680 >120 years 1290
missing 1277 irregular stands 430

Humus type Moder 3084 missing 24
Mor 4898
Mull 2315
Peat/Anmoor 394
Histomull 218
Amphi 97
Roh/Histomoder 84
Histomor 629
missing 1432
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Although the ICP protocol was used to assess crown condition, the sample plots were not

selected in the same way in all countries, and the number of trees monitored on each plot

varied between one and over twenty. Over the whole survey period to 2010, 290,239 trees

were measured at least once, of which 178,263 were conifers and 112,098 broadleaved. The

most common genera were Pinus (pine, 35.8%), Picea (spruce, 21.7%), Quercus (oak, 13.5%),

Fagus (beech, 8.0%) and Betula (birch, 6.7%), – Table 1.3 gives the full list.

Table 1.3 Genera of trees assessed

Genus Common name(s) n Genus Common name(s) n
Acer maple 1944 Prunus plum, cherry, peach, 517
Alnus alder 3756 almond, apricot
Arbutus strawberry tree 129 Pyrus pear 42
Betula birch 19343 Quercus oak 39120
Buxus box 27 Rhamnus buckthorn 14
Carpinus hornbeam 3775 Robinia locust 1974
Castanea chestnut 2731 Salix willow 340
Ceratonia carob 10 Sorbus rowan, whitebeam 337
Cercis redbud 11 Tilia lime 1049
Corylus hazel 51 Ulmus elm 233
Crataegus hawthorn 14 Other broadleaves 1362
Erica heath 122 Abies fir 5447
Eucalyptus eucalyptus 3378 Cedrus cedar 292
Fagus beech 23351 Cupressus cypress 174
Fraxinus ash 2412 Juniperus juniper 1550
Ilex holly 23 Larix larch 2443
Juglans walnut 33 Myrica bayberry 36
Laurus bay, laurel 34 Myrtus myrtle 3
Malus apple 7 Picea spruce 62870
Olea olive 267 Pinus pine 104132
Ostrya ironwood 774 Pseudotsuga Douglas fir 1045
Phillyrea phillyrea 123 Taxus yew 1
Pistacia pistachio 72 Thuya red cedar 5
Platanus sycamore, plane 172 Tsuga hemlock 18
Populus poplar 4429 Other conifers 247
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1.6 Norway spruce (Picea abies)

Any spatio-temporal trends in crown condition are likely to vary between different species, and

certainly between deciduous and evergreen trees. For some species, such as common beech

(Fagus sylvatica), there is the additional complication that fructification (heavy production of

beechmast) in some years may cause resources to be diverted away from leaf growth (Mund

et al., 2010), and this must be taken into account in modelling crown condition. It seems

sensible to focus initially on a single species which is well-represented in the dataset; Norway

spruce (Picea abies) is the obvious candidate, as previous work on the Baden-Württemberg

data has focused on this species (together with beech).

In the ICP dataset, Norway spruce is the second most common species overall, accounting

for around 20% of all trees measured, and is frequently found at the same locations as the most

common species, Scots pine (Pinus sylvestris). Figure 1-3 shows the locations of plots with at

least one Norway spruce monitored in one or more years; these plots are concentrated mainly

in Scandinavia and central Europe.

The following chapter adapts the model used for Baden-Württemberg to investigate spatio-

temporal trends in mean percentage defoliation across a wider geographical area. We restrict

ourselves to data from the central contiguous area covered fairly densely by survey plots in

Germany, Austria and Switzerland.
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Figure 1-3 Survey plot locations: Norway spruce (Picea abies) only
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Chapter 2

Modelling aggregated crown condition
data

2.1 Descriptive statistics

Locations of German, Austrian and Swiss survey plots containing at least one Norway spruce

tree and measured at least once are shown in Figure 1-3. Data are available for Germany from

1989 to 2010 and for Austria and Switzerland from 1990 to 2010; Austria did not provide data

in the period 2007-2009. Numbers of plots in each country remained fairly steady over time,

with the median number of plots used (in years when any monitoring was carried out) being

215 for Germany, 111 for Austria and 31 for Switzerland. The total number of plots measured

in at least one year was: Germany 309, Austria 118, Switzerland 34.

Table 2.1 breaks down plot characteristics by country. The main differences appear to be

that Switzerland tends to have plots dominated by much older trees, with a greater prevalence

of Mull type humus rather than Moder, and a much greater proportion of plots with an excessive

water budget. Plots in Austria and Switzerland are also mainly at a higher altitude than those

in Germany.
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Table 2.1 Characteristics of survey plots containing Norway spruce in Germany, Austria and
Switzerland

Germany Austria Switzerland
Mean age of dominant trees

0-20 years 28 9 1
21-40 years 40 16 0
41-60 years 60 23 0
61-80 years 49 18 0
81-100 years 64 18 7
101-120 years 34 17 5
> 120 years 30 17 15
irregular stands 4 0 6

Humus type
Moder 135 94 10
Histomull 74 2 0
Mor 39 11 0
Mull/Amphi/Peat/Anmoor 59 11 18
Roh/Histomoder 2 0 6

Water budget
sufficient 268 108 20
insufficient 33 5 0
excessive 8 5 14

Orientation
flat 97 8 2
N 39 23 9
NE 23 14 6
E 19 6 3
SE 22 8 4
S 25 14 2
SW 22 17 0
W 5 17 5
NW 37 11 3

Altitude (metres)
median (IQR) 475 (375-625) 1000 (725-1375) 1150 (650-1450)
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2.1.1 The “country effect”

Although protocols have been developed to determine how crown condition should be assessed,

there is considerable scope for subjectivity leading to variation between different observers. An

ICP exercise was carried out in 2004, which requested 79 experts in 31 countries to assess the

apparent defoliation levels of trees in each of a set of 144 photographs (Lorenz et al., 2005).

For Norway spruce (one of six species used in the exercise), the mean absolute deviation from

the median defoliation assessment for each tree lay mostly in the range from seven to nine

percentage points. This is a fairly substantial difference, indicating discrepancies between

individual observers in crown condition assessment.

It is also possible that differences between countries in training, or in the reference pho-

tographs used, may lead to defoliation being recorded as systematically higher or lower in one

country compared to another. Figure 2-1 shows much lower defoliation being recorded in every

year in Austria compared to Germany and Switzerland. This could be explained by different

site conditions; however, if only the subset of survey plots close to the Austrian-German border

is considered (where topographical characteristics ought to be similar), the gap still exists. The

presence of a “country effect” can be investigated by simply including country in the proposed

model as a covariate, on the assumption that the magnitude of such an effect, if it exists, is

constant over time.
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Figure 2-1 Boxplots of mean % defoliation in each year for Germany, Austria and Switzerland

2.2 Structure and fitting of the model

Following Augustin et al. (2009), the response “mean proportion defoliation for trees on plot

i in year t” (yit) is modelled using a generalised additive mixed model (GAMM) (Lin and

Zhang, 1999; Fahrmeir and Lang, 2001; Wood, 2006a, 2011) of the following form:
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logit(E(yit)) = f1(latitudei, longitudei, yeart) + f2(altitudei) + Xitβ

yit = E(yit) + εit
(2.1)

Here, f1 is again a tensor product smooth of the two spatial dimensions together with time;

f2 is a smooth function of plot altitude; and Xitβ represents the contribution made to the linear

predictor by the effects of the other (categorical) covariates – tree age, country, humus type,

water budget and plot orientation.

Parameters are estimated by penalized quasi-likelihood (Breslow and Clayton, 1993), with

approximate restricted maximum likelihood (REML) estimation of the smoothness parameters

as described in Wood (2011). This scheme is implemented via the gamm function of the mgcv

package in R (R Core Team, 2014).

2.2.1 Choice of response distribution

The errors εit are assumed to follow a Gaussian distribution. A quasi-likelihood approach was

also considered, in order to allow the error variance to vary with the mean rather than being

fixed (pp 74–76 in Wood, 2006b). This did not improve the fit of the model, as assessed by

residual plots, so the Gaussian errors are retained.

2.2.2 Choice of k for spatial smooth

The value of k specified in the call to the gamm function places a constraint on the maximum

degrees of freedom associated with the tensor product smooth, but larger values of k require

more computing time to fit the model. To check that this constraint was not too severe, the

value of k for the spatial component of the smooth was increased from 49 to 80. As a result,

the effective degrees of freedom in the fitted model increased from 163.3 to 202; however, none

of the covariate effects were noticeably changed and the effective degrees of freedom were still

far below the upper limit imposed by the choice of k (which would be the product of the k

values for each component of the smooth, minus 1, or (49−1)×(49−1)×(10−1) ' 20000).

Hence, the value of k was kept at 49, which allows models to be fitted in a reasonable amount

of time (around 15 minutes) while allowing enough flexibility for the spatial smooth.

2.2.3 Temporal autocorrelation

The model allows for temporal autocorrelation between successive crown condition measure-

ments on each plot. A simple AR(1) process was found to be insufficient, as displayed by the

correlogram in Figure 2-2, which shows significant correlations at lags of up to six years. An

ARMA(2,1) process appears to model the autocorrelation adequately (Figure 2-3).
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Figure 2-2 Autocorrelation plot for model with AR(1) residuals
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Figure 2-3 Autocorrelation plot for model with ARMA(2,1) residuals

2.3 Covariate effects

Some covariates were highly correlated with the country where the trees were located (specif-

ically, excessive water budgets and Mull-type humus were fairly common on Swiss plots but

very rare in Austria and Germany). To avoid over-estimating the size of the country effect,

which is hypothesised to be the result of different levels of adherence to the ICP measurement

protocols for crown condition, these covariates are not removed from the model. The coding

of orientation is simplified to compare plots facing south-west (into prevailing winds) with

all other plots, and altitude is included as a linear effect rather than a smooth term (since the

estimated smooth function in the full model appears very close to linear).

Table 2.2 shows the parameter estimates from the full model which was the starting point

for covariate selection (R2 = 58.5%). Table 2.3 shows the parameter estimates from the final

14



model (R2 = 58.4%). These coefficients are on the logit scale as a result of the link function

used in the model, so are not directly interpretable in terms of percentage defoliation; however,

positive values correspond to worsening crown condition. The spatio-temporal tensor product

smooth was found to be significant in both models, with effective degrees of freedom equal to

163.3 in the full model and 160.0 in the final model (p < 0.001 in both cases).

The mean age of dominant trees on the plot is strongly associated with crown condition,

with defoliation worsening with age sharply at first and then levelling out (see Figure 2-6 for

further illustration of this trend). Improved crown condition was also associated, though less

strongly, with Mull type humus, excessive water budget, south-west plot orientation, and lower

altitude. Although most of these survey plot characteristics are fixed, it should be noted that

water budget (which may vary from year to year) was assessed at only one point in time;

thus the observed association with defoliation does not reflect the possible effect of annual

variations in rainfall, though it may be due to the susceptibility of some plots to waterlogging.

The country effect is strongly present, even after adjusting for available covariates known

to be confounded with the country of measurement (water budget, humus type). For Austria,

the strength of this effect is on a similar scale to the effect of age, while for Switzerland the

impact is substantially smaller; hence there is evidence that in both countries crown condition

has been systematically recorded more optimistically than in Germany. Based on the available

data, we cannot completely rule out the possibility that unobserved differences in survey plot

characteristics (climate, topography, soil) may explain this, but it seems unlikely given the size

of the discrepancy (particularly for Austria).
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Table 2.2 Parameter estimates (on the logit scale) from the full model.

Covariate Estimate Std. error p-value
Mean age of dominant trees (ref. cat. 0-20 years):

21-40 years 0.225 0.076 0.003
41-60 years 1.085 0.071 <0.001
61-80 years 1.426 0.074 <0.001
81-100 years 1.504 0.070 <0.001
101-120 years 1.622 0.073 <0.001
> 120 years 1.798 0.076 <0.001
irregular stands 1.290 0.122 <0.001

Country (ref. cat. Germany):
Austria -1.092 0.083 <0.001
Switzerland -0.231 0.106 0.029

Humus type (ref. cat. Moder):
Histomull -0.050 0.055 0.362
Mor -0.022 0.053 0.674
Mull/Amphi/Peat/Anmoor -0.130 0.042 0.002
Roh/Histomoder -0.211 0.157 0.180

Water budget (ref. cat. sufficient):
insufficient -0.050 0.058 0.384
excessive -0.290 0.078 <0.001

Orientation (ref. cat. flat):
N -0.052 0.053 0.329
NE 0.054 0.062 0.377
E -0.151 0.079 0.057
SE 0.028 0.069 0.684
S -0.025 0.060 0.675
SW 0.166 0.062 0.007
W 0.009 0.059 0.872
NW -0.042 0.060 0.483
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Table 2.3 Parameter estimates (on the logit scale) from the final model after backwards selec-
tion.

Covariate Estimate Std. error p-value
Mean age of dominant trees (ref. cat. 0-20 years):

21-40 years 0.238 0.074 0.001
41-60 years 1.092 0.070 <0.001
61-80 years 1.430 0.073 <0.001
81-100 years 1.514 0.070 <0.001
101-120 years 1.638 0.073 <0.001
> 120 years 1.813 0.075 <0.001
irregular stands 1.349 0.122 <0.001

Country (ref. cat. Germany):
Austria -1.084 0.082 <0.001
Switzerland -0.296 0.104 0.005

Humus type (ref. cat. Moder):
Histomull -0.046 0.054 0.403
Mor -0.039 0.052 0.460
Mull/Amphi/Peat/Anmoor -0.137 0.042 0.001
Roh/Histomoder -0.143 0.155 0.356

Water budget (ref. cat. sufficient):
insufficient -0.040 0.057 0.485
excessive -0.283 0.077 <0.001
SW orientation 0.184 0.053 <0.001
altitude (per 100 metres) 0.013 0.006 0.028

2.4 Overall temporal trend

To obtain confidence intervals for non-linear functions of the model parameters, such as the

temporal trend, we use the approach suggested by Wood (2006a), generalising from Silverman

(1985). We take the final model and obtain a random draw from the (multivariate normal)

joint distribution of the parameter vector. We use this set of parameters to calculate predicted

defoliation values at every survey plot in every year, and then – for the temporal trend – take

the mean over all spatial locations to give a single predicted value for each year. This process

is then repeated with a new random draw from the parameter distribution, for a total of 1000

draws, until we have a predictive distribution for defoliation in each year. The medians of these

distributions, together with the 2.5% and 97.5% percentiles, provide estimates of the temporal

trend and a 95% credible interval.

All predictions for locations in Austria and Switzerland are adjusted to remove the country

effect, so that the defoliation values are (hypothetically) those which would have been obtained

if all measurements had been carried out according to the protocols used in Germany. Other

covariates are kept at their observed values for each survey plot.

Figure 2-4 shows the temporal trend averaged across all locations – median defoliation

levels have risen from around 16% in 1989 to 20% in 2010, with a peak at 22% in 2005-6 and
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a smaller peak in the early 1990s. The width of the 95% credible interval is in the region of 1–

1.5 percentage points either side of the median, indicating that the upward trend in defoliation

is beyond what could be explained by chance.

Figure 2-5 shows the temporal trends separately for each country in the model. In Germany

(where the majority of the survey plots are located), the pattern is very similar to Figure 2-4.

In Austria, the peak in the early 1990s is less noticeable, while the second spike in defoliation

in around 2005 is much more pronounced than in Germany; there is also some suggestion that

defoliation is beginning to rise again after 2009. Switzerland has the smallest number of survey

plots and so uncertainty around the estimates is greater (roughly 4 percentage points either side

of the median) – there is little evidence for a clear trend in either direction.

Figure 2-6 illustrates the impact of tree age on defoliation. Predictions are made for each

location in each year using a fixed age for the trees on every plot (instead of the observed age),

and then averaged over all locations as before. Three of the possible age groups are shown –

defoliation is predicted to be much lower than average if the mean age of dominant trees on all

plots is 21-40 years (around 5-8%), rising to around 20-25% if predictions are based on trees

being aged 61-80 years, and then levelling off.
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Figure 2-4 Overall temporal trend in defoliation, adjusted to remove country effect
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Figure 2-5 Temporal trends in defoliation by country, adjusted to remove country effect
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justed to remove country effect
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2.5 Spatial patterns in crown condition

Figure 2-7 displays spatial patterns in defoliation in individual years (every five years from

1990 to 2010), with yellow corresponding to areas of poor crown condition and green/blue to

less severely affected areas. Black dots show the locations of survey plots measured in that

year, and red lines show contours of equal predicted defoliation levels (on a scale from 0 to 1

rather than as percentages).

These plots are created using the vis.gam function from the mgcv package – predictions

are made for points on a regular grid covering Germany, Austria and Switzerland, with the re-

striction that these grid points must not be too far from an actual survey plot location. Because

plot-level covariate values are not known for these grid points, a reduced version of the final

model is used to make the predictions, with humus type, water budget, orientation and altitude

removed, so that their effects are absorbed into the spatial smooth. (The alternative would be

to use the final model as it stands and fix each covariate at a single value across the whole area

of the map, which is unrealistic.) All predictions are made assuming a mean dominant tree age

of 61-80 years, and adjusted for the country effect as with the temporal trend.

As expected, these maps agree with the temporal trend plot in Figure 2-4 in showing an

general increase in defoliation between 1990 and 2010, with the highest levels being in 2005.

There is some suggestion that areas in the western half of the map are more severely affected

by this increase.
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Figure 2-7 Spatial maps of defoliation levels at five-year intervals, adjusted to remove country
effect
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2.6 Spatial patterns of change over time

Spatial patterns of change in crown condition over time are displayed as “fogplots”, which

show on a single map both the estimated change and the degree of uncertainty about that

change. The fogplot function (see appendix) was written for this purpose, using the capa-

bilities of the rgl package (Adler et al., 2014) in R.

As previously described for the overall time trend, sampling from the parameter vector of

the final model is used to obtain a Bayesian posterior predictive distribution for the change in

defoliation between the two years of interest at each point on a regular grid. The median of this

distribution is used as a summary measure of the change at that grid point, and these changes

are then plotted on a map. Black dots show the locations of survey plots. Colour, on a scale

from blue (improvement in crown condition) to red (deterioration) is used to denote the mag-

nitude and direction of change, while greater transparency corresponds to greater uncertainty

about the direction. Transparency in OpenGL, as used by the rgl package, is determined

by the alpha value, which runs from 0 (complete transparency, so that the background colour

shows through) to 1 (solid colour).

2.6.1 Choosing an appropriate alpha value

The fogplot function was originally intended to be used to display spatial patterns in crown

condition in each individual year of measurement, as well as changes from year to year. The

alpha values are then used to indicate the level of uncertainty about the predicted defoliation at

each grid point. One way to achieve this is to set the alpha value equal to the probability (under

the posterior) that the true crown condition measurement is within some specified distance δ of

the predicted value, i.e.:

alpha = P(|X −median(X)| > δ)

= 1− FX(δ) + FX(−δ)
(2.2)

Here the probability is taken under the posterior predictive distribution of X (the defo-

liation level at a particular grid point), and FX is the corresponding cumulative distribution

function. In practice, the precision of the estimates does not vary greatly across the map and

there is little advantage in using fogplots for this purpose.

For plots showing change between two years, it is more useful to display the uncertainty

about the sign of the change, rather than its magnitude. This is achieved by calculating the

p-value from a test of the null hypothesis that the true change between years is equal to zero;

alpha is then set as equal to one minus the p-value, so that higher alpha (more solid colour) cor-

responds to stronger evidence against the null hypothesis. In practice this p-value is estimated

from the posterior predictive distribution of change at each grid point, as given below.
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alpha = 1− 2×min(p1, 1− p1)

where p1 = P(change < 0)

= Fchange(0)

(2.3)

Here Fchange is the cumulative distribution function corresponding to the posterior pre-

dictive distribution of change in crown condition between the years of interest, at a particular

grid point. This choice of alpha has the additional advantage that there is no need to specify a

particular distance δ which is considered to be “close” to zero.

2.6.2 Example fogplots

Figure 2-8 Spatial pattern of changes in crown condition between 1990 and 2010

Figure 2-8 shows the estimated change in defoliation between 1990 and 2010 (the whole

period for which data were available, excluding 1989 when fewer survey plots were measured).

There is a clear division of the map into an area of worsening defoliation in the west and south,

and a smaller area of modest improvement in the southeast of Germany.

Figures 2-9, 2-10 and 2-11 show spatial patterns of change in defoliation levels for overlap-

ping ten-year periods. The trend in each case is towards poorer crown condition (red); however,

the greater transparency across large areas of Figure 2-9 illustrates that the change in this pe-

riod was not significantly different from zero. As expected from earlier results, the ten years

leading up to 2005 show the most severe change for the worse (Figure 2-10, with areas in the

south being most strongly affected and almost no areas of improvement. Figure 2-11 is, again,

mainly negative, with two small areas of (non-significant) improvement.
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Figure 2-9 Spatial pattern of changes in crown condition between 1990 and 2000

Figure 2-10 Spatial pattern of changes in crown condition between 1995 and 2005

Figure 2-11 Spatial pattern of changes in crown condition between 2000 and 2010
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Chapter 3

Modelling defoliation in individual
trees

This chapter considers some possible approaches to modelling defoliation in individual trees,

as opposed to the mean percentage defoliation aggregated within each plot, which has been

considered so far. Since trees included in the ICP monitoring programme are generally retained

from year to year and hence have repeated measurements associated with them, it may be

informative to model their individual trends in defoliation. (It should be noted that, owing to

the availability of data at the time this work was carried out, all models for tree-level data only

use data up to 2008.)

3.1 Features required in a model of individual tree defoliation

Although for the plot-aggregated data, a Gaussian distribution fitted reasonably well, this is not

the case for the tree-level data. As illustrated in Figure 3-1, we require a response distribution

that is skewed, and which allows for a possible second (smaller) peak representing extremely

damaged/dead trees.

Ideally, the final model would also include the following features:

• smooth/non-linear temporal and spatial trends in defoliation;

• temporal autocorrelation between repeated measurements on the same tree in different

years;

• spatial correlation between trees on the same plot, and possibly between neighbouring

plots; and

• adjustment for the country effect, as discussed in the previous chapter.

In this chapter, two continuous distributions (negative binomial and inflated beta) are briefly

investigated but ultimately rejected, the first because the model fit is still poor, and the second
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Figure 3-1 Distribution of defoliation measured in individual spruce trees (all countries, all
years to 2008)

due to practical limitations of the software available at the time to fit such a model. We then

move on to considering defoliation as an ordinal categorical variable, exploring ways of fitting

ordinal logistic models to the data using pre-existing R packages (polr and R2BayesX).

3.2 Negative binomial response

A negative binomial response ought to allow the skewness in the response to be modelled,

though not the bimodality. This distribution is already supported by the mgcv package in R,

so smooth terms can be included in the model without difficulty.

We begin by restricting to a roughly rectangular area covering central Europe – France,

Belgium, the Netherlands, Germany, Austria, Switzerland, Poland, Slovakia and the Czech

Republic – in order to avoid interpolating over large areas of water, though this could be dealt

with using soap-film smoothing (Wood et al., 2008) or similar. Again, for simplicity, we con-

sider only Norway spruce (Picea abies), which is widespread in all the countries under con-

sideration. All these countries have almost complete data from 1990 to 2008 (Austria in 2007

and 2008 is the only exception). At this stage, dead trees were not added back into the survey

sample. This gives a dataset containing 228404 measurements of 26894 individual trees on

1099 plots over the 19 years from 1990 to 2008.

Using this restricted dataset, models of the form given by equation (3.1) are fitted, with the

response yit following a negative binomial distribution.

log(E(yit)) = f1(yeart) + Xitβ (3.1)

Here, f1 is a smooth function of year, with smoothing parameters estimated by REML.

Observation yit corresponds to the crown condition of tree i in year t. The negative binomial

distribution requires a second (”size”) parameter, θ, which is estimated in mgcv by finding the
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value minimizing the AIC of the model. In this case, θ was found to be very close to 1, which

actually reduces the negative binomial distribution to a geometric distribution.

Attempts were also made to fit models which incorporated a spatial smooth (a two-dimensional

smooth function of latitude and longitude) and/or a random effect term to take account of the

correlation between the levels of defoliation of trees on the same plot. However, as expected,

none of these models were able to fit well to the data, as a result of the cluster of values around

100% defoliation (Figure 3-1). This is clearly shown in Figure 3-2, which is the quantile-

quantile plot for the residuals of the model given by equation (3.1) with no additional covariates

beyond the mean age of trees on the plot.

Figure 3-2 Quantile-quantile plot for model with negative binomial response
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3.3 Inflated beta response

A more flexible distribution is required, which can adequately model the bimodality present in

the data. In fact, if the data are broken down by country and year (Figures 3-3, 3-4), it appears

that there may be three peaks present. These occur at 0% defoliation (completely healthy

trees), 100% defoliation (dead trees), and at a point in between representing the modal level of

defoliation among trees with some degree of damage (see for example the data for Germany

1989-1991 in Figure 3-3). It can also be seen that the general form of the distribution may

be quite different depending on the country – in Germany, defoliation levels follow a smooth

curve, while in Slovakia there is a much sharper peak and very few completely healthy trees.

Figure 3-3 Observed distribution of defoliation levels by year: Germany, 2001-2008
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Figure 3-4 Observed distribution of defoliation levels by year: Slovakia, 2000-2008

If defoliation is to be modelled as a continuous variable, some form of mixture distribution

is required in order to incorporate the point masses at 0% and 100%. The remaining part of the

mixture (i.e. the part representing trees with some damage) also needs to be flexible enough

to allow for different levels of skewness. The beta distribution would satisfy this requirement,

and has the additional advantage of being defined only on the interval [0,1] (corresponding to

the possible range of values for defoliation, [0%, 100%]).

For x ∈ [0, 1] and shape parameters α > 0, β > 0, the beta distribution is defined by the

probability density function:

f(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 (3.2)

This can also be reparametrized in terms of the mean µ = α
α+β and the sum of the shape

parameters ν = α+ β.

Beta distributions are not currently supported by the mgcv package which we have been us-

ing so far to fit GAMs to the defoliation data; this is because the second (shape) parameter is not

simply a function of the mean and must be estimated separately. However, the beta distribution

(with the µ, ν parametrization) is included in the gamlss package (Rigby and Stasinopoulos,

2005). This fits “generalized additive models for location, scale and shape” (GAMLSS), which

allow the location, scale, skewness and kurtosis parameters for the distribution of the response

29



to be modelled as smooth functions of one or more explanatory variables, using maximum

(penalized) likelihood estimation with a backfitting algorithm for the smoothing parameters.

Ospina and Ferrari (2010) describe two possible parameterisations for a zero-and-one-

inflated beta distribution, the second of which is implemented (with modifications) as a re-

sponse distribution in the R package gamlss.

Both versions parameterise the beta distribution in terms of its mean, 0 < µ < 1, and

precision, φ > 0. The density function is:

f(y;µ, φ) =
Γ(φ)

Γ(µφ)Γ((1− µ)φ)
yµφ−1(1− y)(1−µ)φ−1, y ∈ (0, 1) (3.3)

3.3.1 Parameterisation 1: mixture of beta and Bernoulli distributions

In this parameterisation, y ∼ BEINF (α, γ, µ, φ), where 0 < α < 1 is the mixture parameter,

0 < γ < 1 is the success probability in the Bernoulli part of the mixture, and µ and φ are the

mean and precision of the beta part of the mixture as in equation (3.3).

The density of y is given by:

beinf(y;α, γ, µ, φ) =


α(1− γ), if y = 0,

αγ, if y = 1,

(1− α)f(y;µ, φ), if y ∈ (0, 1).

(3.4)

3.3.2 Parameterisation 2: point masses at zero and one

If P (y = 1) = δ1 = αγ and P (y = 0) = δ0 = α − δ1, then the density of y is instead given

by:

beinf(y; δ0, δ1, µ, φ) =


δ0, if y = 0,

δ1, if y = 1,

(1− δ0 − δ1)f(y;µ, φ) if y ∈ (0, 1).

(3.5)

This requires that 0 < δ0 + δ1 < 1 (this is unlikely to be a problem when modelling crown

condition data, as the proportion of trees which are either completely healthy or completely

dead is never close to 0% or 100%).

3.3.3 Implementation in gamlss

Distribution families in gamlss may have up to four parameters: mu (location), sigma

(scale), nu and tau (shape). The relationships between these parameters and the parameters

in equation (3.5) are given below.
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µ = mu φ =
1− sigma
sigma

δ0 =
nu

1 + nu + tau
δ1 =

tau

1 + nu + tau

(3.6)

So the requirement that 0 < δ0 + δ1 < 1 is equivalent to requiring that nu + tau > 0.

3.3.4 Very simple model for crown condition

We apply this zero-and-one-inflated beta distribution to the measurements of crown condition

in individual spruce trees in Germany between 1989 and 2008, beginning with a very simple

model containing no covariates. Table 3.1 summarises the number and percentage of trees

falling into each category of crown condition (measured in 5% steps with additional categories

for 0% defoliation and “100% defoliation (dead)”.

Table 3.1 Defoliation levels in spruce trees in Germany

Needle loss Frequency % Needle loss Frequency %
0% 6977 8.9% >55-60% 380 0.5%

>0-5% 7885 10.1% >60-65% 285 0.4%
>5-10% 10347 13.2% >65-70% 154 0.2%
>10-15% 11286 14.4% >70-75% 87 0.1%
>15-20% 10687 13.7% >75-80% 81 0.1%
>20-25% 9874 12.6% >80-85% 40 0.1%
>25-30% 7728 9.9% >85-90% 37 0.0%
>30-35% 5303 6.8% >90-95% 45 0.1%
>35-40% 3412 4.4% >95-100% (alive) 8 0.0%
>40-45% 1878 2.4% 100% (dead) 190 0.2%
>45-50% 1085 1.4% Total 78270 100%
>50-55% 501 0.6%

The simplest zero-and-one-inflated beta model is given by:

logit(mu) = η1

logit(sigma) = η2

log(nu) = η3

log(tau) = η4

(3.7)

where the linear predictors ηk, k = 1, 2, 3, 4, are constants. This model was fitted using

the BEINF family in gamlss, and the resulting parameter estimates are given in Table 3.2.

This is not very useful unless covariates can be added to the model; unfortunately, attempts

to do so, even in a very simple way, resulted in the model failing to converge. The BEINF

family of distributions in the gamlss package was a fairly recent development at the time

this work was carried out, and the authors do not, in their original paper (Ospina and Ferrari,
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Table 3.2 Parameter estimates for the zero-and-one-inflated beta model for crown condition

Parameter Estimate Standard error
η1 -1.407 0.003
η2 -0.716 0.003
η3 -2.312 0.013
η4 -5.925 0.073

mu, µ 0.197
sigma 0.329
nu 0.098
tau 0.003
φ 2.047
δ0 0.089
δ1 0.003

2010), demonstrate applications using real data which involve covariate effects. It was felt

that attempting a detailed investigation of the possible causes of non-convergence in a model

implementation that was still under development might not be the best use of time, and this

approach was not pursued further.

(A further point to consider is that any well-fitting model for defoliation would have to ac-

count for temporal autocorrelation. This is theoretically possible within the gamlss package,

using random effects terms, although no attempt has so far been made to combine this with a

zero-and-one-inflated beta model.)

Rather than investigating increasingly complicated continuous distributions for defoliation,

a more practical option might be to consider it as a categorical variable and fit an ordinal

response model instead.

3.4 Defoliation as an ordinal response

For the remainder of this chapter, defoliation is considered as an ordinal categorical variable

with four levels: “none”, ≤ 10% defoliation; “slight”, >10-25%; “moderate, >25-60%; and

“severe/dead”, >60-100%. This corresponds to the UNECE-EU standards used in the ICP

technical report, with the “severe” and “dead” categories combined – numbers of dead trees

are very low, and in some countries (including Germany), severely damaged trees may be pre-

emptively felled before they actually die.

For simplicity, analysis is initially restricted to spruce trees in Germany only.

3.4.1 Relationships between defoliation and possible predictors

Looking at Tables 3.3 to 3.7, it appears that higher levels of defoliation may be associated with:

• greater mean stand age

• being on a site facing north or east
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• higher altitudes

• “Moder” or “Mor” humus type.

Table 3.3 Defoliation and mean age of dominant trees: frequency table

Defoliation Mean age of dominant trees on plot (years)
category 0-20 21-40 41-60 61-80 81-100 101-120 over 120 irregular stands
none 3567 7764 7382 2942 2407 654 289 204
slight 895 2118 6057 7253 8779 3926 2679 140
moderate 288 388 1544 3741 5894 3689 4686 57
severe/dead 38 42 98 111 182 165 280 11

Table 3.4 Defoliation and water budget: frequency table

Defoliation Water budget on plot
category insufficient sufficient excessive
none 2524 21377 1308
slight 2688 27996 1163
moderate 1987 17686 614
severe/dead 100 794 33

Table 3.5 Defoliation and plot orientation: frequency table

Defoliation Orientation of plot
category N NE E SE S SW W NW flat
none 2548 2343 1763 2413 2369 1216 1574 4022 6961
slight 4299 3862 1429 2082 2182 1850 2493 4190 9460
moderate 2097 2342 619 1162 940 1400 2704 2888 6135
severe/dead 76 119 37 57 96 49 127 91 275
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Table 3.6 Defoliation and altitude

Defoliation Mean plot
category altitude (m)
none 499.2
slight 554.1
moderate 575.7
severe/dead 609.9

Table 3.7 Defoliation and humus type: frequency table

Defoliation Orientation of plot
category Mull Moder Mor Amphi Anmoor Histomull Histomoder
none 4731 10759 1832 311 102 7025 339
slight 4906 13678 2295 178 114 10189 338
moderate 2075 8407 1608 255 76 7489 182
severe/dead 70 510 51 26 1 258 7
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Figure 3-5 Numbers of spruce trees in each defoliation category, by year
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3.5 Structure of models for ordinal responses

3.5.1 Cumulative threshold models

Let U be a continuous latent variable (unobservable), and let Y ∈ {1, ..., k} be an observable

categorical variable, with U and Y connected by:

Y = r ⇐⇒ θr−1 < U < θr, r = 1, ..., k (3.8)

with thresholds θr satisfying:

−∞ = θ0 < θ1 < ... < θk =∞ (3.9)

U is related to the explanatory variables X by:

U = XTβ + ε (3.10)

where β = (β1, ..., βp)
T is a vector of coefficients and ε is a random variable with distribution

function F .

So Y is related to the explanatory variables by:

P(Y ≤ r | X) = P(U ≤ θr | X) = F (θr −XTβ) (3.11)

If F is the logistic function F (x) = 1
1+e−x , equation (3.11) describes a cumulative logistic

model. This is also known as a proportional odds model, since the ratio of the odds of observing

Y ≤ r rather than Y > r for two different combinations of covariates (X1 and X2) does not

depend on the category r, i.e.:

P(Y ≤ r | X1)/P(Y > r | X1)

P(Y ≤ r | X2)/P(Y > r | X2)
= exp((X2 −X1)Tβ) (3.12)

Cumulative logistic models can be fitted in R using either the polr function from the

MASS package (Venables and Ripley, 2002) (no smooth terms) or R2BayesX (Umlauf et al.,

2013), which provides an R interface to the standalone package BayesX (Belitz et al., 2012).

BayesX also allows the proportional odds assumption to be relaxed so that separate coefficients

are estimated for each category boundary of the ordinal response.

3.5.2 Sequential models

Sequential models may be more appropriate than cumulative models where, in order to move

from a lower to a higher category, subjects must pass through all intervening categories (as

is the case with defoliation), though without necessarily being observed in each one. Let

Ur, r = 1, ..., k − 1, be latent variables, one for each threshold between categories of the
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response Y , with the Ur and Y now connected by:

Y = r | Y ≥ r ⇐⇒ Ur ≤ θr, r = 1, ..., k − 1 (3.13)

The thresholds θr no longer need to satisfy equation (3.9), since each one now relates to a

different latent variable Ur. Ur and Y are now related to the explanatory variables by:

Ur = XTβ + εr (3.14)

P(Y = r | Y ≥ r,X) = F (θr −XTβ) (3.15)

for r = 1, ..., k − 1, where each εr is a random variable with distribution function F .

If F is the logistic function, equation (3.15) is referred to as a sequential logistic model.

This has a similar property to the cumulative logistic model, in that:

P(Y = r | Y ≥ r,X1)/P(Y > r | Y ≥ r,X1)

P(Y = r | Y ≥ r,X2)/P(Y > r | Y ≥ r,X2)
= exp((X2 −X1)Tβ) (3.16)

Sequential logistic models can be fitted using R2BayesX; category-specific coefficients

can also be estimated.

3.6 Exploring cumulative logistic models for defoliation

As before, analysis at this stage is restricted to Norway spruce trees (Picea abies) in Germany.

First, a model of the form described by equation 3.11 is fitted using the polr function in R,

including all available covariates except spatial location (i.e. mean age of dominant trees on the

plot, water budget, plot orientation, plot altitude, humus type and year). Since polr does not

allow for smooth functions of covariates, the year of measurement is entered into the model

as a categorical variable with twenty levels corresponding to the years from 1989 to 2008.

The main aim of this simple model was to assess whether the proportional odds assumption

appeared to be consistent with the data.

Table 3.8 displays the results of this model in the form of odds ratios, with ratios greater

than one indicating increased odds of defoliation. Tree age is still a major factor, even though

the measure available in this dataset is only indirectly related to the age of the individual tree. A

water budget classified as “insufficient” is associated with increased odds of higher defoliation

compared to a “sufficient” waterbudget, while an “excessive” water budget seems to have a

protective effect. Contrary to the impression given by Table 3.5, it appears (after adjusting

for other covariates in the model) that only trees on west-facing slopes are more vulnerable

to defoliation, while all other orientations are at lower risk compared to trees on level ground;

this effect is probably confounded with altitude, however, and will require further investigation.

The humus types “Moder” and “Mor” are also associated with increased defoliation compared

to the “Mull” type.
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Figure 3-6 Checking the proportional odds assumption: odds ratios from separate logistic
regressions for each threshold
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A relatively straightforward method for checking the proportional odds assumption graphi-

cally has been suggested by Harrell (2001). For a given covariate, each threshold of the ordinal

response is considered separately and a binary logistic regression model is fitted where the out-

come is defined according to whether the original response was above or below that threshold;

the distances between the log odds ratios for the different thresholds should be equal across all

categories of a variable if the proportional odds assumption is satisfied. Figure 3-6 is the result

of applying this method to the defoliation data, and it suggests that the proportional odds as-

sumption does not hold for mean stand age, orientation, altitude or humus type. This will need

to be addressed in whichever model is finally chosen, perhaps by allowing threshold-specific

covariate effects.

A second cumulative logistic regression model was subsequently fitted using the R2BayesX

package so that smooth functions of time and altitude could be included; a third model was

also fitted in which the proportional odds assumption was relaxed and threshold-specific co-

efficients were estimated for all covariates (results not shown). Associations with defoliation

were broadly similar in the second model to those shown in Table 12, except that the effect

of age was reduced substantially. As expected, the results of the third model confirmed that

the proportional odds assumption does not hold for these data, with covariate effects varying

substantially depending on which threshold of the ordinal response was being considered.

Clearly the final model will need to in some way deal with the fact that the proportional

odds assumption is not satisfied. Another feature of the data which must be addressed by

the model is temporal autocorrelation, which (for ordinal responses) cannot be modelled in

BayesX.
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Chapter 4

Modelling defoliation as an ordinal
response with temporal
autocorrelation

Defoliation displays fairly high correlation between measurements in successive years, even if

observations on individual trees are aggregated at plot level before analysis (Augustin et al.,

2009). It seems reasonable to assume that this temporal autocorrelation will be even stronger

when considering tree-level data, so any sensible model for these data should be able to in-

corporate it. Models with an ordinal response and temporal autocorrelation are not currently

implemented in BayesX.

Some work has been done (Wang and Kockelman, 2009; Higgs and Hoef, 2012; Stegmueller,

2013) taking a Bayesian approach to fit cumulative probit threshold models with temporal au-

tocorrelation, with the authors writing their own R or Matlab code. So far, it does not appear

that anyone has developed a cumulative logistic threshold model with temporal autocorrela-

tion – one advantage of the logistic model is that the coefficients are (log) odds ratios and so

more easily interpreted than probit coefficients – and nor has there been any work to date on

a sequential logistic threshold model (which is probably more appropriate for the defoliation

data).

Using Wang and Kockelman (2009) as a starting point, we now construct a cumulative

logistic threshold model with temporal autocorrelation.
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4.1 Cumulative logistic threshold model with temporal autocorre-
lation

4.1.1 Setting up the model

Defoliation (% leaf/needle loss) is considered to be an unobserved (latent) continuous variable

Uit, where i = 1, ..., N indexes trees and t = 1, ...T indexes time in years. The observed

defoliation, yit, is an ordinal variable with k categories, which is determined from Uit by:

yit = r ⇐⇒ θr−1 < Uit ≤ θr, r = 1, ..., k (4.1)

with the thresholds θr satisfying:

−∞ = θ0 < θ1 < ... < θk =∞ (4.2)

Adding an AR(1) temporal autocorrelation term to the standard form of the cumulative

threshold model gives the following:

Uit = ρUi(t−1) + XT
itβ + εit (4.3)

where ρ is the temporal autocorrelation coefficient, with |ρ| < 1; β = (β1, ..., βp)
T is a

vector of coefficients; Xit is a vector of explanatory variables; and εit is a random variable with

distribution function F (the εit are assumed to be i.i.d.). If F is the standard logistic function

F (x) = 1
1+e−x , this is a cumulative logistic threshold model.

This method of including temporal autocorrelation in the model follows the approach of

Wang and Kockelman (2009); other, more natural, parametrisations are possible (see Section

4.2).

It should be noted that yi1 : i = 1, ..., N , the defoliation values observed in the first year

of measurement, depend (through Ui1) on the values of Ui0, which have no corresponding

observed yi0. This is also the result of following Wang and Kockelman (2009) at this stage,

and improvements may be possible.

We have:

P(Uit ≤ θr) = P(ρUi(t−1) + XT
itβ + εit ≤ θr)

= P(εit ≤ θr − ρUi(t−1) −XT
itβ)

= F (θr − ρUi(t−1) −XT
itβ)

(4.4)

and:

P(yit = r) = P(Uit ≤ θr)− P(Uit ≤ θr−1)

= F (θr − ρUi(t−1) −XT
itβ)− F (θr−1 − ρUi(t−1) −XT

itβ)
(4.5)

So the distribution of y = (y11, ..., yN1, ..., yNT ) depends on β, θ, ρ, U = (U11, ..., UN1, ..., UNT ),
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and U0 = (U10, ..., UN0).

4.1.2 Posterior joint distribution of the parameters

According to Bayes’ rule, posterior ∝ likelihood × prior, we have:

p(β,θ, ρ,U,U0 | y) ∝ p(y | β,θ, ρ,U,U0)π(β,θ, ρ,U,U0) (4.6)

U depends on β, ρ and U0 (by equation (4.3)) and θ is independent of the other parameters,

so the prior joint density can be broken down as follows:

π(β,θ, ρ,U,U0) = π((β, ρ,U,U0)π(θ)

= π(U | β, ρ,U0)π(β)π(ρ)π(U0)π(θ)
(4.7)

Also, y depends on β, ρ and U0 only through U, so the likelihood can be simplified:

p(y | β,θ, ρ,U,U0) = p(y | U,θ) (4.8)

Taking equations (4.6), (4.7) and (4.8) together, the posterior joint density for the parame-

ters of interest can be expressed as:

p(β,θ, ρ,U,U0 | y) ∝ p(y | U,θ)π(U | β, ρ,U0)π(β)π(ρ)π(U0)π(θ) (4.9)

4.1.3 Choosing priors

Non-informative prior distributions are needed for β, θ, ρ, U0 and U | β, ρ,U0.

A suitable prior for β would be multivariate normal, β ∼ N(c, hIQ) (where Q is the

number of parameters). This is non-informative for small c and large h.

Similarly, a multivariate normal prior could be used for θ, with the additional condition

that each threshold must be strictly greater than the previous one (equation (4.2)); i.e. θ ∼
N(q, gIk−1) · δ(θ1 < ... < θk−1) for small q and large g, where δ is an indicator function.

(Alternatively, Albert and Chib (2001) suggest using the transformationα1 = log(θ1), αr =

log(θr−1 − θr), 2 ≤ r ≤ k − 1 and assigning a multivariate normal prior to α.)

The uniform distribution on (-1,1) would be a suitable prior for ρ.

From equation (4.3), we have that Uit | Ui(t−1),β, ρ ∼ F (ρUi(t−1) + XT
itβ), where F is

the cdf of the standard logistic function. The corresponding pdf would be F ′(x) = e−x

(1+e−x)2 .

Assuming the Uit are (conditionally) i.i.d., the conditional prior for U would be:

π(U | β, ρ,U0) =

T∏
t=1

N∏
i=1

e−(Uit−ρUi(t−1)−XT
itβ)

(1 + e−(Uit−ρUi(t−1)−XT
itβ))2

(4.10)

To match the distributions of U1, U2, and so on, the prior for U0 could also be a logistic

distribution. In its general form, the logistic distribution has the cdf:
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F (x) =
1

1 + e−
x−µ
s

(4.11)

and corresponding pdf:

f(x) =
e−

x−µ
s

s(1 + e−
x−µ
s )2

(4.12)

where µ is the mean and s is proportional to the standard deviation (in fact s =
√
3
π s.d.).

For small µ and large s, this would represent a non-informative prior for U0, with each Ui0
being drawn independently from the same distribution.

4.1.4 Conditional posterior distributions for the parameters

From the joint posterior density in equation (4.9), the forms of the conditional posterior densi-

ties for the individual parameters can be derived as follows:

β (covariate effects)

p(β | θ, ρ,U,U0,y) ∝ π(U | β, ρ,U0)π(β)

=

T∏
t=1

N∏
i=1

exp(−(Uit − ρUi(t−1) −XT
itβ))

(1 + exp(−(Uit − ρUi(t−1) −XT
itβ)))2

· 1√
(2π)QhQ

exp(−1

2
(β − c)Th−Q(β − c))

∝ exp(−1

2
(β − c)Th−Q(β − c))

·
T∏
t=1

N∏
i=1

exp(−(Uit − ρUi(t−1) −XT
itβ))

(1 + exp(−(Uit − ρUi(t−1) −XT
itβ)))2

(4.13)

θ (threshold parameters)

p(θ | β, ρ,U,U0,y) ∝ p(y | U,θ)π(θ)

=
T∏
t=1

N∏
i=1

k∑
r=1

δ(yit = r) · δ(θr−1 < Uit ≤ θr)

· (2πg)−
k−1
2 exp(−1

2
(θ − q)T (gIk−1)

−1(θ − q))δ(θ1 < ... < θk−1)

(4.14)

This is equivalent to equation (A.23) in Wang and Kockelman (2009), and reduces sim-

ilarly to a set of truncated normal distributions if each threshold parameter θr is considered

separately.
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p(θr | β,θ 6=r, ρ,U,U0,y) ∝ δ(θinfr < θr < θsupr ) · exp(− 1

2g
(θr − qr)2)

where θinfr = max{max{Uit : yit = r}, θr−1}

and θsupr = min{min{Uit : yit = r + 1}, θr+1}

(4.15)

ρ (temporal autocorrelation parameter)

p(ρ | β,θ,U,U0,y) ∝ π(U | β, ρ,U0)π(ρ)

=

T∏
t=1

N∏
i=1

exp(−(Uit − ρUi(t−1) −XT
itβ))

(1 + exp(−(Uit − ρUi(t−1) −XT
itβ)))2

· 1

2
δ(ρ ∈ (−1, 1))

(4.16)

U0 (initial values of the latent variable)

p(U0 | β,θ, ρ,U,y) ∝ π(U | β, ρ,U0)π(U0)

=

T∏
t=1

N∏
i=1

exp(−(Uit − ρUi(t−1) −XT
itβ))

(1 + exp(−(Uit − ρUi(t−1) −XT
itβ)))2

·
N∏
i=1

exp(−(Ui0 − a)d−1)

d(1 + exp(−(Ui0 − a)d−1))2

(4.17)

Taking eachUi0 separately and ignoring factors not involvingUi0 (which can be considered

as part of the normalising constant), we have:

p(Ui0 | β,θ, ρ,U6=i,0,U,y) ∝ exp(−(Ui1 − ρUi0 −XT
i1β))

(1 + exp(−(Ui1 − ρUi0 −XT
i1β)))2

· exp(−(Ui0 − a)d−1)

d(1 + exp(−(Ui0 − a)d−1))2

(4.18)

U (values of the latent variable at all other time points)

p(U | β,θ, ρ,U0,y) ∝ p(y | U,θ)π(U | β, ρ,U0)

=
T∏
t=1

N∏
i=1

k∑
r=1

δ(yit = r) · δ(θr−1 < Uit ≤ θr)

·
T∏
t=1

N∏
i=1

exp(−(Uit − ρUi(t−1) −XT
itβ))

(1 + exp(−(Uit − ρUi(t−1) −XT
itβ)))2

(4.19)

Again considering each Uit separately and ignoring factors which could be absorbed into

the normalising constant, we have:
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p(Uit | β,θ, ρ,U0,U6=i, 6=t,y) ∝
k∑
r=1

δ(yit = r) · δ(θr−1 < Uit ≤ θr)

·
exp(−(Uit − ρUi(t−1) −XT

itβ))

(1 + exp(−(Uit − ρUi(t−1) −XT
itβ)))2

·
exp(−(Ui(t+1) − ρUit −XT

i(t+1)β))

(1 + exp(−(Ui(t+1) − ρUit −XT
i(t+1)β)))2

(4.20)

The conditional posterior density for β is the product of i.i.d. logistic densities and a

multivariate normal density, which does not simplify to any standard distribution. Posterior

densities for the other parameters behave similarly.

As a first step towards fitting this model to the (very large) European defoliation dataset,

we simulated a small dataset (n = 100 trees, T = 20 years) with a single covariate (time)

having only a simple linear effect on the progress of defoliation:

Uit = ρUi(t−1) + βt+ εit (4.21)

with yit (the observed defoliation in ordinal categories) determined by Uit as given in

equation 4.1. The parameter values used when simulating the data were β = 0.3, ρ = 0.2 and

θ = (−1, 5, 10); values of Ui0 are randomly generated from a Logistic(2,3) distribution. The

model given by equation 4.21is then fitted to the simulated data using Markov Chain Monte

Carlo (MCMC) methods, with the Metropolis-Hastings algorithm employed to construct the

chain in order to (temporarily) avoid the issues raised by the complex posterior distributions

described above. The R code for simulating the data and fitting this model is reproduced in the

Appendix.

Figures 4-1 to 4-3 are trace plots for β, ρ and θ after running the algorithm for 1,000,000

iterations. After a fairly lengthy burn-in period, the distributions of θ1, θ2, θ3 appeared sta-

ble and were reasonably close to the original values used in the simulation; however, β was

slightly too high (around 0.4 rather than 0.3) while the temporal autocorrelation coefficient ρ

had collapsed to zero. Figures 4-4 and 4-5 are trace plots for the values of the latent variables

U9,0 and U9,4 respectively, i.e. for tree 9 in year 0 (the year before data collection started) and

for the same tree in year 4. Other simulated trees in other years showed very similar traces.

Variability is much greater than for the other parameters, and for U9,0 it is not clear whether or

not the chain is mixing well.
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Figure 4-1 MCMC trace plot for β

Figure 4-2 MCMC trace plot for ρ
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Figure 4-3 MCMC trace plots for θ1, θ2, θ3
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Figure 4-4 Example MCMC trace plot for Ui0 (a single tree)

Figure 4-5 Example MCMC trace plot for Uit (a single tree in a single year)
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4.2 Improving the algorithm

As it stands, this algorithm is neither reliable nor computationally efficient enough to be applied

to the real defoliation data; however, it provides a basis from which to work towards this goal,

through a combination of improvements to the form of the current model. Some possibilities

are listed below.

1. The model in its current form conflates the temporal trend (β) with the temporal autocor-

relation (ρ), so that it is difficult for the MCMC algorithm to estimate both accurately.

This was confirmed by simulating data from the model given by 4.21 with various differ-

ent values of ρ and fixed β; increasing ρ induces an apparently greater temporal drift in

the latent variable U. This issue could be addressed by reformulating the model as given

by Equation 4.22. The interpretation of XT
i(t−1)β would then be straightforward, as it

would simply represent the expected value at each point (which is not the case currently).

Uit −XT
itβ = ρ(Ui(t−1) −XT

i(t−1)β) + εit (4.22)

2. Rather than starting at t = 0 and making assumptions about the distribution of U0 with

no information (since y0 is not observed), we could start instead at t = 1. This would

speed up the algorithm, as there would be fewer parameters to estimate.

3. The intractable forms of some of the posterior distributions slow down the MCMC es-

timation considerably; finding workable approximations to some or all of these would

allow the Metropolis-Hastings steps to be dispensed with in favour of faster methods.

4. At the moment, U and the threshold parameters θ1, θ2, θ3 (which together determine the

observed values y) are all free to vary. Fixing one of the threshold parameters (θ1, say)

would speed up the burn-in period without restricting the model in any meaningful way,

since the scale of U and θ doesn’t matter.
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Chapter 5

Conclusions and future work

5.1 Plot-level models of defoliation

This thesis began by applying previously-developed methods for modelling crown condition

to part of the Europe-wide ICP Forests data set. Estimates of smooth, non-linear temporal

and spatial trends in defoliation for Norway spruce in Germany, Austria and Switzerland were

produced, together with measures of the uncertainty surrounding these trends.

As discussed in chapter 2, the overall temporal trend has been towards poorer crown con-

dition, with median defoliation rising from approximately 16% in 1989 to a peak of 22% in

2005-6 and falling back slightly to 20% in 2010. The uncertainty around each of these esti-

mates is less than 1.5 percentage points in either direction. Spatial patterns are less definite,

although the fogplot method for displaying spatial trends in change over time will hopefully

prove to be a useful tool. Tree age, as expected, is a major factor, with plots dominated by the

oldest trees exhibiting defoliation levels up to 15 percentage points higher than those contain-

ing mainly young trees.

Models were adjusted for the “country effect” – sharp, and ecologically implausible, differ-

ences in average defoliation between countries – which is believed to be due to differences in

interpretation of the protocols for assessing crown condition. It is clear that any future attempts

to model ICP Forests data from more than one country must take this effect into account. (It

may also be necessary to allow for the size of the effect to vary over time as adherence to

protocols improves, although this should be done cautiously to avoid confusion with the real

temporal trend in defoliation.)

Future work on plot-level models might include:

• extensions to a wider geographical area, possibly using soap-film smoothers or similar

to avoid smoothing over the sea, and taking care to adjust appropriately for the various

country effects;

• modelling defoliation in other common tree species, such as beech (Fagus sylvatica) or

sub-temperate oak (Quercus species);
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• investigating covariate effects, using, for example, data on soil characteristics which has

also been collected from Level I plots as part of the ICP Forests programme.

5.2 Tree-level models of defoliation

Although plot-level models are adequate for monitoring large-scale trends in crown condition,

it may also be informative to look at trends in individual trees. Some progress has been made

towards this goal in the second half of this thesis, with the development of an ordinal logistic

model with temporal autocorrelation, estimated using MCMC methods.

Specific suggestions for immediate improvements to the efficiency and interpretability of

this current model are listed at the end of the previous chapter. If these prove successful, the

model could then be extended to incorporate other essential features, such as:

• a more flexible, non-linear temporal trend;

• extra random effects terms to model spatial correlations between trees on the same plot;

• inclusion of other covariates besides tree age;

• allowance for missing data (not all trees are measured in all years).

Such a model would allow the crown condition trajectories of individual trees to be mapped

and the factors influencing them – which might include tree-specific variables such as insect

damage – to be studied.
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Appendix A

R code for drawing fogplots

See Section 2.6.

### Function to draw maps displaying, on a regular grid, predicted change in

### defoliation between two time points, with transparency (alpha values)

### indicating the probability of a non-zero change.

### Values must be supplied for all covariates used in the model, even though these

### will cancel out in change plots.

### If label=TRUE (default), plots will be labelled with the appropriate year(s).

### If show.plots=TRUE, locations of survey plots will be marked on the map.

### If legend=TRUE, a legend will be created in the top right of the map.

### The plot will be saved in the directory given by the path argument.

fogplot <- function(model,covs=list(),ngrid=50,too.far=0.05,yearsdiff=NULL,

colours=c("dodgerblue","red"),path,borders=c("Germany","Austria","Switzerland"),

tag="GAS",maxchange=15,label=TRUE,show.plots=FALSE,legend=FALSE) {

libraries <- c("rgl","maps","mapdata","MASS","mgcv","INLA")

for (l in libraries) require(l,character.only=TRUE)

if (is.null(yearsdiff)) stop("Must specify yearsdiff")

if (!is.numeric(yearsdiff) || length(yearsdiff)!=2) {

stop("Must specify yearsdiff as a vector of two years")

}

if (substring(path,nchar(path))!="/") path <- paste(path,"/",sep="")

dat <- model$lme$data

yearsdiff <- sort(yearsdiff)

# Predict on a regular grid covering all observed locations

ux <- unique(dat$x); uy <- unique(dat$y)

gx <- seq(min(ux),max(ux),length=ngrid)

gy <- seq(min(uy),max(uy),length=ngrid)

ndat <- expand.grid(x=gx,y=gy)

predterms <- attr(model$gam$terms,"term.labels")
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predterms <- predterms[!predterms %in% c("x","y","year")]

for (term in predterms) {

ndat[,term] <- covs[term]

}

M1 <- predict(model$gam,newdata=cbind(ndat,year=yearsdiff[1]),type="lpmatrix")

M2 <- predict(model$gam,newdata=cbind(ndat,year=yearsdiff[2]),type="lpmatrix")

# Simulate from posterior distribution of parameters to get posterior distributions

# for defoliation at each grid point for the year/s required

simcoef <- mvrnorm(n=1000,mu=coef(model$gam),Sigma=model$gam$Vp)

simfit1 <- M1%*%t(simcoef)

simfit2 <- M2%*%t(simcoef)

simfit <- 100*(plogis(simfit2)-plogis(simfit1))

# Mark grid points too far from data

has.data <- unique(dat[,c("x","y")])

ndat$exclude <- exclude.too.far(ndat$x,ndat$y,has.data$x,has.data$y,too.far)

# Function to extract medians and alpha values from simulated distributions

alpha.sim <- function(x) {

m <- median(x)

Fn <- ecdf(x) # empirical CDF

p1 <- Fn(0)

alpha <- 1 - 2 * min(p1,1-p1) # 1 - P(|change|>observed | H_0:true change = 0)

list(median=m,alpha=alpha)

}

# Calculate alpha values for each grid point

ma <- unlist(apply(simfit,1,alpha.sim))

ma <- data.frame(matrix(ma,length(ma)/2,2,byrow=TRUE))

names(ma) <- c("median","alpha")

ndat$simmedians <- ma$median

ndat$alpha <- ma$alpha

ndat[ndat$exclude,c("simmedians","alpha")] <- NA

# Reshape medians and alphas into matrix forms needed for plots

xx <- reshape(ndat,direction="wide",v.names="simmedians",drop=c("alpha",

"exclude",predterms),idvar="x",timevar="y")

xx <- as.matrix(xx[,-1])

aa <- reshape(ndat,direction="wide",v.names="alpha",drop=c("simmedians",

"exclude",predterms),idvar="x",timevar="y")

aa <- as.matrix(aa[,-1])

aa[is.na(aa)] <- 0

# Misc. plot parameters

windowRect <- 50+c(0,0,400,400)

zoom <- 0.8

line.width <- 2

# Set up colour palette

cp <- colorRampPalette(colours)

cc <- as.array(inla.generate.colors(as.vector(xx),color.axis=c(-maxchange,maxchange),

color.palette=cp)$colors,dim=dim(xx),dimnames=dimnames(xx))

# Warn if maximum absolute value of change in defoliation is greater than the
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# maxchange argument; this will lead to all grid points with change >= maxchange

# being plotted as the same color (at the end of the colour ramp).

if (max(abs(xx),na.rm=TRUE) > maxchange) warning("Predicted changes outside range of

colour ramp; increase ’maxchange’ for all plots")

# Borders and labelling

maplines <- map("worldHires",regions=borders,exact=TRUE,plot=FALSE)

if (label) {

tx <- (max(maplines$x,na.rm=TRUE)+min(maplines$x,na.rm=TRUE))/2

ty <- min(maplines$y,na.rm=TRUE)-1

}

# Legend positioning

if (legend) {

xrange <- range(maplines$x,na.rm=TRUE); yrange <- range(maplines$y,na.rm=TRUE)

topright <- c(floor(xrange[2]),floor(yrange[2]))

legendwidth <- (xrange[2]-xrange[1])/15

legendheight <- (yrange[2]-yrange[1])/3

ny <- 30; nx <- 3

legendx <- seq(topright[1]-legendwidth,topright[1],length.out=nx)

legendy <- seq(topright[2]-legendheight,topright[2],length.out=ny)

legendcc <- inla.generate.colors(seq(-maxchange,maxchange,length.out=ny),

color.axis=c(-maxchange,maxchange),color.palette=cp)$colors

legendcc <- matrix(rep(legendcc,nx),nrow=nx,ncol=ny,byrow=TRUE)

}

# Draw fogplot

open3d(windowRect=windowRect)

view3d(0,0,fov=0,zoom=zoom)

surface3d(gx,gy,z=xx*0,color=cc,alpha=aa,specular="black")

lines3d(maplines$x,maplines$y,maplines$x*0,lwd=line.width)

if (show.plots) {

plotlocs <- unique(dat[,c("x","y")])

plot3d(plotlocs$x,plotlocs$y,z=0,add=TRUE)

}

labtext <- paste("Change ",as.character(yearsdiff[1]),"-",as.character(yearsdiff[2]),sep="")

if (label) {

text3d(tx,ty,z=0,text=labtext,adj=c(0.5,0),cex=2)

}

if (legend) {

surface3d(legendx,legendy,z=matrix(0,nx,ny),color=legendcc,specular="black")

text3d(legendx[1],legendy[1],z=0,text=paste("-",as.character(maxchange),sep=""),adj=1.1,

cex=0.8)

text3d(legendx[1],mean(legendy[c(1,ny)]),z=0,text="0",adj=1.1,cex=0.8)

text3d(legendx[1],legendy[ny],z=0,text=as.character(maxchange),adj=1.1,cex=0.8)

}

snapshot3d(paste(path,tag,gsub(" ","",tolower(labtext)),".png",sep=""))

}
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Appendix B

R code for MCMC algorithm

See Chapter 4.

library(mvtnorm)

## Simulate data (linear time trend, no other covariates)

rho.sim <- 0.2 # temporal autocorrelation coefficient

beta.sim <- 0.3 # linear time trend

theta.sim <- c(-1,5,10) # thresholds

mm <- 2 # U_i0 ˜ Logistic(mm,ss) iid

ss <- 3

n <- 100 # sample size in each year

T <- 20 # number of years

set.seed(13)

# simulate values of U_0 (latent variable at time 0)

U.0.sim <- rlogis(n,mm,ss)

# simulate residuals for t>0

eps <- matrix(rlogis(n*T,0,1),nrow=n,ncol=T)

# calculate latent variables U_t

U.t.sim <- matrix(0,nrow=n,ncol=T)

U.t.sim[,1] <- rho.sim*U.0.sim + beta.sim*1 + eps[,1]

for (t in 2:T) U.t.sim[,t] <- rho.sim*U.t.sim[,t-1] + beta.sim*t + eps[,t]

# calculate observed variables y_t

y <- matrix(findInterval(U.t.sim,vec=theta.sim),n,T)

# stack y into one column (obs in each year grouped together)

y <- c(y)

time <- rep(1:T,each=n)

simdat <- data.frame(cbind(y,time))

#########################################################################

## Fit cumulative logistic threshold model with temporal autocorrelation

# Parameters for priors

# beta ˜ N(c,h) (MVN if more than one parameter)

c <- 0.0001; h <- 1000

# theta ˜ MVN(q,gI)

q <- c(0.0001,0.0001,0.0001); g <- 1000

# rho ˜ Uniform(-1,1)

# U.0 ˜ Logistic(m,s)

m <- 0.0001; s <- 1000
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# Initial parameter values (these will be overwritten by the MH loop)

beta0 <- 0

rho0 <- 0.1

theta0 <- sort(rmvnorm(1,mean=q,sigma=diag(rep(g,3))))

U.00 <- rlogis(n,m,s)

# Set U.t0 to match up with values of y, given theta0

U.t0 <- rep(0,length(y))

U.t0[y==0] <- theta0[1] - 0.1*(theta0[1]-min(U.00))

U.t0[y==1] <- mean(theta0[1:2])

U.t0[y==2] <- mean(theta0[2:3])

U.t0[y==3] <- theta0[3] + 0.1*(max(U.00)-theta0[3])

U.t0 <- matrix(U.t0,n,T)

# Storage

n.rep <- 1000000

thin <- 10

# If n.rep is large, store only 1/thin of the iterations (set to 1

# if n.rep is small enough for everything to be stored)

n.store <- n.rep/thin

n.accept <- list(beta=0,theta=0,rho=0,U.0=rep(0,n),U.t=matrix(0,n,T))

alpha <- list(beta=rep(0,n.store),theta=rep(0,n.store),rho=rep(0,n.store),

U.0=matrix(0,n,n.store),U.t=array(0,c(n,T,n.store)))

beta <- rep(0,n.store)

theta <- matrix(0,length(theta0),n.store)

rho <- rep(0,n.store)

U.0 <- matrix(0,n,n.store)

U.t <- array(0,c(n,T,n.store))

# SDs for proposal distributions

sd.beta <- 0.01

sd.theta <- 0.01

sd.rho <- 0.005

sd.U.0 <- 80

sd.U.t <- 2

# Prior probabilities

lprior.beta0 <- dnorm(beta0,mean=c,sd=sqrt(h),log=TRUE)

lprior.theta0 <- dmvnorm(theta0,mean=q,sigma=diag(rep(g,3)),log=TRUE)

lprior.rho0 <- dunif(rho0,min=-1,max=1,log=TRUE)

lprior.U.00 <- dlogis(U.00,location=m,scale=s,log=TRUE)

lprior.U.t0 <- matrix(0,n,T)

lprior.U.t0[,1] <- dlogis(U.t0[,1],location=rho0*U.00+beta0,scale=1,log=TRUE)

for (t in 2:T) {

lprior.U.t0[,t] <- dlogis(U.t0[,t],location=rho0*U.t0[,t-1]+

beta0*t,scale=1,log=TRUE)

}

lprior.U.01 <- lprior.U.00; lprior.U.t1 <- lprior.U.t0

# Metropolis-Hastings loop

for (j in 1:n.rep) {

# Store only every thin’th iteration

store <- (floor(j/thin)==j/thin)

j.store <- j/thin

# Beta proposal
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beta1 <- rnorm(1,mean=beta0,sd=sd.beta)

# New priors if beta updated (beta, U.t)

lprior.beta1 <- dnorm(beta1,mean=c,sd=sqrt(h),log=TRUE)

lprior.U.t1[,1] <- dlogis(U.t0[,1],location=rho0*U.00+beta1,

scale=1,log=TRUE)

for (t in 2:T) {

lprior.U.t1[,t] <- dlogis(U.t0[,t],location=rho0*U.t0[,t-1]+beta1*t,

scale=1,log=TRUE)

}

# Accept/reject

alpha.test <- (lprior.beta1+sum(lprior.U.t1))-

(lprior.beta0+sum(lprior.U.t0))

if (alpha.test>log(runif(1))) {

lprior.beta0 <- lprior.beta1; lprior.U.t0 <- lprior.U.t1

n.accept$beta <- n.accept$beta + 1

beta0 <- beta1

}

if (store) {

beta[j.store] <- beta0

alpha$beta[j.store] <- alpha.test

}

# Theta proposal

theta1 <- rmvnorm(1,mean=theta0,sigma=diag(rep(sd.thetaˆ2,3)))

# New likelihood if theta updated (NB ordering restriction

# is checked here rather than when calculating new prior probabilities)

if (theta1[1]<theta1[2] && theta1[2]<theta1[3]) {

y.check <- findInterval(U.t0,vec=theta1)

like.is.1 <- identical(y,y.check)

} else

like.is.1 <- FALSE

# New priors if theta updated (theta only)

lprior.theta1 <- dmvnorm(theta1,mean=q,sigma=diag(rep(g,3)),log=TRUE)

# Accept/reject

alpha.test <- lprior.theta1-lprior.theta0

if (alpha.test>log(runif(1)) && like.is.1) {

lprior.theta0 <- lprior.theta1

n.accept$theta <- n.accept$theta + 1

theta0 <- theta1

}

if (store) {

theta[,j.store] <- theta0

alpha$theta[j.store] <- alpha.test+like.is.1

}

# Rho proposal

rho1 <- rnorm(1,mean=rho0,sd=sd.rho)

# New priors if rho updated (rho, U.t)

lprior.rho1 <- dunif(rho1,min=-1,max=1,log=TRUE)

lprior.U.t1[,1] <- dlogis(U.t0[,1],location=rho1*U.00+beta0,

scale=1,log=TRUE)

for (t in 2:T) {

lprior.U.t1[,t] <- dlogis(U.t0[,t],location=rho1*U.t0[,t-1]+beta0*t,

scale=1,log=TRUE)

}

# Accept/reject
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alpha.test <- (lprior.rho1+sum(lprior.U.t1))-

(lprior.rho0+sum(lprior.U.t0))

if (alpha.test>log(runif(1))) {

lprior.rho0 <- lprior.rho1; lprior.U.t0 <- lprior.U.t1

n.accept$rho <- n.accept$rho + 1

rho0 <- rho1

}

if (store) {

rho[j.store] <- rho0

alpha$rho[j.store] <- alpha.test

}

# Updating one obs (tree) at a time

for (i in 1:n) {

# U.i0 proposal

U.i01 <- rnorm(1,mean=U.00[i],sd=sd.U.0)

# New priors if U.i0 updated (U.i0, U.i1)

lprior.U.01[i] <- dlogis(U.i01,location=m,scale=s,log=TRUE)

lprior.U.t1[i,1] <- dlogis(U.t0[i,1],location=rho0*U.i01+beta0,

scale=1,log=TRUE)

# Accept/reject

alpha.test <- (lprior.U.01[i]+lprior.U.t1[i,1])-

(lprior.U.00[i]+lprior.U.t0[i,1])

if (alpha.test>log(runif(1))) {

lprior.U.00[i] <- lprior.U.01[i]

lprior.U.t0[i,1] <- lprior.U.t1[i,1]

n.accept$U.0[i] <- n.accept$U.0[i] + 1

U.00[i] <- U.i01

}

if (store) {

U.0[i,j.store] <- U.00[i]

alpha$U.0[i,j.store] <- alpha.test

}

}

for (t in 1:T) {

for (i in 1:n) {

# U.it proposal

U.it1 <- rnorm(1,mean=U.t0[i,t],sd=sd.U.t)

# New likelihood if U.it updated (current values of i,t only)

y.check <- findInterval(U.it1,vec=theta0)

like.is.1 <- identical(y[n*(t-1)+i],y.check)

# New priors if U.it updated (U.it, U.i(t+1))

if (t>1) {

lprior.U.t1[i,t] <- dlogis(U.it1,location=rho0*U.t0[i,t-1]

+beta0*t,scale=1,log=TRUE)

} else {

lprior.U.t1[i,t] <- dlogis(U.it1,location=rho0*U.00[i]

+beta0*t,scale=1,log=TRUE)

}

if (t<T) {

lprior.U.t1[i,t+1] <- dlogis(U.t0[i,t+1],location=rho0*U.it1

+beta0*(t+1),scale=1,log=TRUE)

}

# Accept/reject
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if (t<T) {

alpha.test <- (lprior.U.t1[i,t]+lprior.U.t1[i,t+1])-

(lprior.U.t0[i,t]+lprior.U.t0[i,t+1])

} else {

alpha.test <- lprior.U.t1[i,t]-lprior.U.t0[i,t]

}

if (alpha.test>log(runif(1)) && like.is.1) {

lprior.U.t0[i,t] <- lprior.U.t1[i,t]

if (t<T) {

lprior.U.t0[i,t+1] <- lprior.U.t1[i,t+1]

}

n.accept$U.t[i,t] <- n.accept$U.t[i,t] + 1

U.t0[i,t] <- U.it1

}

if (store) {

U.t[i,t,j.store] <- U.t0[i,t]

alpha$U.t[i,t,j.store] <- alpha.test+like.is.1

}

}

}

}

# Save results

results <- list(beta=beta,theta=theta,rho=rho,U.0=U.0,U.t=U.t)

59



Bibliography

Daniel Adler, Duncan Murdoch, and others. rgl: 3D visualization device system (OpenGL),

2014. URL http://CRAN.R-project.org/package=rgl. R package version

0.94.1143.

J.H. Albert and S. Chib. Sequential ordinal modeling with applications to survival data. Bio-

metrics, 57:829–836, 2001.

N.H. Augustin, M. Musio, K. von Wilpert, E. Kublin, S.N. Wood, and M. Schumacher. Mod-

elling spatiotemporal forest health monitoring data. Journal of the American Statistical

Association, 104(487):899–911, 2009.

C. Belitz, A. Brezger, T. Kneib, S. Lang, and N. Umlauf. BayesX: Software for Bayesian

Inference in Structured Additive Regression Models. Version 2.1., 2012.

N.E. Breslow and D.G. Clayton. Approximate inference in generalized linear mixed models.

Journal of the American Statistical Association, 88:9–25, 1993.

J. Eichhorn, P. Roskams, M. Ferretti, V. Mues, A. Szepesi, and D. Durrant. Manual on methods

and criteria for harmonized sampling, assessment, monitoring and analysis of the effects

of air pollution on forests, chapter Visual Assessment of Crown Condition and Damaging

Agents. UNECE ICP Forests Programme Co-ordinating Centre, Hamburg, 2010.

L. Fahrmeir and S. Lang. Bayesian inference for generalized additive mixed models based on

Markov random field priors. Journal of the Royal Statistical Society C (Applied Statistics),

50:201–220, 2001.

F.E. Harrell. Regression Modeling Strategies: With Applications to Linear Models, Logistic

Regression, and Survival Analysis, chapter Ordinal Logistic Regression, pages 335–336.

Springer-Verlag, New York, 2001.

M.D. Higgs and J.M. Ver Hoef. Discretized and aggregated: Modeling dive depth of harbor

seals from ordered categorical data with temporal autocorrelation. Biometrics, 68:965–974,

2012.

X. Lin and D. Zhang. Inference in generalized additive mixed models by using smoothing

splines. Journal of the Royal Statistical Society Series B, 61:381–400, 1999.

60



M. Lorenz, G. Becher, V. Mues, R. Fischer, R. Becker, V. Calatayud, N. Dise, G.H.M. Krause,

M. Sanz, and E. Ulrich. Forest condition in europe: 2005 technical report of icp forests and

futmon. Technical report, ICP Forests, Hamburg, 2005.

A. Michel and W. Seidling. Forest condition in europe: 2014 technical report of icp forests.

Technical report, BFW Austrian Research Centre for Forests, Vienna, 2014.

M. Mund, W.L. Kutsch, C. Wirth, T. Kahl, A. Knohl, M.V. Skomarkova, and E.-D. Schulze.

The influence of climate and fructification on the inter-annual variability of stem growth

and net primary productivity in an old-growth, mixed beech forest. Tree Physiology, 30(6):

689–704, 2010.

R. Ospina and S.L.P. Ferrari. Inflated beta distributions. Statistical Papers, 51:111–126, 2010.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for

Statistical Computing, Vienna, Austria, 2014. URL http://www.R-project.org/.

R.A. Rigby and D.M. Stasinopoulos. Generalized additive models for location, scale and shape

(with discussion). Applied Statistics, 54:507–554, 2005.

B.W. Silverman. Some aspects of the spline smoothing approach to nonparametric regression

curve fitting. Journal of the Royal Statistical Society, Series B, 47:1–52, 1985.

D. Stegmueller. Modelling dynamic preferences: A bayesian robust dynamic latent ordered

probit model. Political Analysis, pages 1–20, 2013.

Nikolaus Umlauf, Thomas Kneib, Stefan Lang, and Achim Zeileis. R2BayesX:

Estimate Structured Additive Regression Models with BayesX, 2013. URL

http://CRAN.R-project.org/package=R2BayesX. R package version

0.3-1.

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer, New York,

fourth edition, 2002. URL http://www.stats.ox.ac.uk/pub/MASS4. ISBN 0-

387-95457-0.

X. Wang and K.M. Kockelman. Bayesian inference for ordered response data with a dynamic

spatial-ordered probit model. Journal of Regional Science, 49:877–913, 2009.

S.N. Wood. Low-rank scale-invariant tensor product smooths for generalized additive mixed

models. Biometrics, 62(4):1025–1036, 2006a.

S.N. Wood. Generalized Additive Models. An Introduction with R. Chapman & Hall/CRC,

Boca Raton, 2006b.

61



S.N. Wood. Fast stable restricted maximum likelihood and marginal likelihood estimation of

semi-parametric generalized linear models. Journal of the Royal Statistical Society Series

B, 73:3–36, 2011.

S.N. Wood, M.V. Bravington, and S.L. Hedley. Soap film smoothing. Journal of the Royal

Statistical Society Series B, 70(5):931–955, 2008.

62


