
        

University of Bath

PHD

Foam geometry and structural design of porous material

Gabbrielli, Ruggero

Award date:
2009

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. May. 2019



Foam geometry


and structural design of porous material


Ruggero Gabbrielli


A thesis submitted for the degree of Doctor of Philosophy


University of Bath


Department of Mechanical Engineering


Submitted: April 2009


Revised: August 2009


COPYRIGHT


Attention is drawn to the fact that copyright of this thesis rests with its 

author. A copy of this thesis has been supplied on condition that anyone 

who consults it is understood to recognize that its copyright rests with the 

author and they must not copy it or use material from it except as permitted 

by law or with the consent of the author. 

This thesis may be made available for consultation within the University 

Library and may be photocopied or lent to other libraries for the purposes 

of consultation. 



Contents 

1 Introduction 4


2 Porous Materials 10


3 Literature review 15


3.1 Foam geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 15


3.1.1 Open-cell foams . . . . . . . . . . . . . . . . . . . . . 17


3.1.2 Microstructural morphology . . . . . . . . . . . . . . . 18


3.1.3 Kelvin’s problem . . . . . . . . . . . . . . . . . . . . . 18


3.1.4 Topology . . . . . . . . . . . . . . . . . . . . . . . . . 25


3.1.5 The structure of random foams . . . . . . . . . . . . . 25


3.2 Tiling theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 26


3.3 Pattern formation . . . . . . . . . . . . . . . . . . . . . . . . 29


4 Methods 31


4.1 Method I: Nets and tilings . . . . . . . . . . . . . . . . . . . . 33


4.1.1 Delaney symbols . . . . . . . . . . . . . . . . . . . . . 33


4.2 Method II: The Corona algorithm . . . . . . . . . . . . . . . 37


4.2.1 A monotypic, non-isohedral simple tiling . . . . . . . . 40


4.3 Method III: Pattern formation . . . . . . . . . . . . . . . . . 44


4.3.1 A new counter-example to Kelvin’s conjecture . . . . . 44


I 



5 Periodic Nodal Surfaces	 67


5.1 Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70


5.1.1 Minimal surfaces . . . . . . . . . . . . . . . . . . . . . 71


5.1.2 Level surfaces . . . . . . . . . . . . . . . . . . . . . . . 72


5.2 Modelling methods . . . . . . . . . . . . . . . . . . . . . . . . 73


6 Numerical Simulations	 82


6.1 PNS models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82


6.2 Foam models . . . . . . . . . . . . . . . . . . . . . . . . . . . 85


6.3 Stress analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 86


7 Results	 90


7.1 Discovery: Soap bubbles and cell aggregates . . . . . . . . . . 91


7.2 Discovery: A new simple tiling with unusual properites . . . . 93


7.3 Discovery: A new space-filling polyhedron . . . . . . . . . . . 94


7.4 Invention: Improvement in joints and implants . . . . . . . . 94


8 Future work	 98


8.1 Intellectual merit . . . . . . . . . . . . . . . . . . . . . . . . . 100


Appendices	 120


A Research Publications	 122


A.1	 Development of modelling methods for materials used as bone


substitutes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122


A.2	 A new simple tiling, with unusual properties, by a polyhedron


with 14 faces . . . . . . . . . . . . . . . . . . . . . . . . . . . 123


A.3	 A new counter-example to Kelvin’s conjecture on minimal


surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124


II 



B Patent 141


C Invited Lectures and Seminars 165


III




All the text, illustrations and ideas contained in this work, unless differ

ently specified, are original work of Ruggero Gabbrielli. 

IV




Everything that is really great and inspiring is created by the individual 

who can labor in freedom. 

A. Einstein. Out of my later years, 1950


V




Acknowledgments 

I would like to thank my supervisors Irene Turner and Chris Bowen for the 

guidance and the support received in these three years at the Centre for 

Orthopaedic Biomechanics at the University of Bath, UK. I wish to thank 

all the staff from the Department of Mechanical Engineering that helped me 

while using manufacturing equipment and optical instruments, Peter Taylor, 

Frank Hammett, Ian Trussler, Chris Arnold and Andrew Green. 

I wish to thank Thomas Hales for the interesting discussions on sphere 

coverings and on the Kelvin problem. 

A special thank you goes to Ken Brakke, whose invaluable help with his 

program, the Surface Evolver, has been fundamental. A large part of the 

code used in this work has been written by himself from scratch on the basis 

of needs arose by myself during the modelling of foams. 

An enormous thank you goes to John Sullivan. I owe a relevant part of 

my results to his Voronoi constructor vcs and to his code for dealing with 

periodic foams in the Surface Evolver. 

I thank Olaf Delgado-Friedrichs, who introduced me to the computa

tional tiling theory and the powerful applications he developed, 3dt and 

Systre, that have been necessary tools in the development of this work. He 

supplied me with an algorithm that made possible the discovery of a wide 

number of completely new partitions of space whose surface area has been 

VI




calculated in this work for the first time. I also wish to thank the people 

who contributed to the search for a counter-example to Kelvin’s conjecture 

with their individual computer resources: Michael Ayers, Giacomo Bagnoli, 

Frances Baxter, Michela Bonsignori, Ferruccio Gabbrielli, Francesco Gab

brielli, Tim Holsgrove, Toby Jameson, Russell Mckenna and Sarah Sydney. 

I wish to say thank you to Michael O’Keeffe, whose help and guidance 

have been highly constructive, for having me introduced to symmetry and 

for the interesting and useful discussions we had, often starting points for 

new thoughts. 

I would like to thank Davide Proserpio for his advice and his continuous 

support on file conversion, the CILEA supercomputer facility in Milan and 

James Davenport and the supercomputing facility in Bath for the help re

ceived in carrying out most of the computational work. Thanks also to the 

Numerical Algorithms Group for their support on MPI. 

Thanks to Stephen Hyde and Barry Ninham who gave me the chance 

to show the most important achievement I was able to reach in these three 

years to a very heterogeneous audience last year in Canberra. I will not 

forget it. 

Thanks to Bernd Sing, who created the web page containing the graph

ical output of the main results found by Olaf’s algorithm. I will miss the 

productive meetings we had during our collaboration on foam modelling. 

I am profoundly grateful to Michael Cross, whose online demonstrations 

on pattern formation have the power of sharing to the world the behaviour of 

a family of partial differential equations using an interactve visual interface. 

This applet gave me the idea for the method that produced the counter

example to Kelvin’s conjecture contained in this thesis. 

I wish to thank David Lloyd who provided the bi-dimensional solver 

VII




written for MatlabTM, that I extended to the three-dimensional case. His 

support and guidance have been - and currently are - fundamental. 

The initial code for the generation of the periodic nodal surfaces has 

been written by Michael Carley, specifically for this application, and it has 

been used for the first batch of samples realized on the rapid prototyping 

equipment at the Department of Mechanical Engineering at the University 

of Bath. Thank you, Michael. 

Thanks to Randall Kamien and his group for sharing their projects with 

me and for the interest shown in the application of pattern formation to 

spatial partitions: Gareth Alexander, Bryan Chen, Tom Haxton, Xiaoming 

Mao, Sabetta Matsumoto and Vincenzo Vitelli. 

I thank Simon Cox for the generation of files with the geometry of indi

vidual polyhedra. 

I would like to thank Denis Weaire, Stefan Hutzler and the PhD students 

at the Foams & Complex Systems Research Group at the Trinity College 

for the pleasant day spent in Dublin and the fruitful debates about their 

projects. 

This work was supported by the University of Bath, UK and the pro

gramme Bridging the Gaps, funded by the EPSRC. 

VIII




To my father Fiornando.




Abstract 

This work considers the geometry of foams, their relation to three-dimensional 

patterns and a set of idealized structures intended to model highly porous 

materials for structural applications. 

Foams are aggregates of bubbles, normally of different sizes. The prob

lem handled in this work refers to an ideal state in which all the bubbles have 

the same volume. Since the process of foam formation is driven by energy 

minimization and since the energy decreases with decreasing surface area, 

the structure that would best represent the geometry of foams is thought to 

be that of lowest surface area. This translates into the geometrical question 

of how to divide space into equal volume cells with minimum partitional 

area, which is known as the Kelvin problem. Various approaches to solve 

this question have led to a number of new structures. 

A combinatorial algorithm for the tessellation of polytopes based on 

face-matching rules has been developed. Although only the outline of the 

algorithmic idea has been shown, its manual implementation already pro

duced a new tiling with unusual properties that engendered a multitude 

of questions about the degree of symmetry of systems made of self-similar 

subunits. 

A partial differential equation used in the science of pattern formation 

has been successfully linked for the first time to a number of different prob

lems in geometry including the Kelvin, the sphere packing, the covering 

and the quantizer problem, producing new non-lattices in three-dimensional 
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space and providing a new method for future investigations in arbitrary di

mension. New crystallographic patterns with associated space-filling poly

hedra have been discovered. This approach also produced new counter

examples to Kelvin’s conjecture, showing a link with the experimental evi

dence derived from the inspection of cellular solids such as foams and aggre

gates of cells, soft particles or soap bubbles. The existence of partitions with 

lower energy than that conjectured by Lord Kelvin containing quadrilateral 

rings has been proved numerically for the first time in this work. 

A family of surfaces - derived by the minimal surfaces - has been adapted 

for use in the modelling of highly porous materials for structural applica

tions. The addition of a linear term to the mathematical expressions of the 

surfaces in implicit form has been shown to model the geometry of func

tionally graded materials (FGM). A model has been proposed for a typical 

problem in orthopaedic implants, the fixation of an acetabular cup to a 

human pelvis. 



Statement of aims 

This work is divided into two parts. The first part, which contains the 

most innovative - and theoretical - results, is a multi-approach methodology 

for the solution of a problem in optimal geometry, directly related to the 

shape of bubbles in foams and froths. The second part is an innovative 

approach to the three-dimensional modelling of highly porous materials for 

load bearing applications, intended to be fabricated by a Solid Free Form 

(SFF) technique. The structures described in this work are therefore of two 

different types: structures that closely resemble foam-like geometries, some 

of which have been discovered within this study [1, 2], and high-porosity 

structures derived from the Periodic Nodal Surfaces (PNS) [3]. 

Two are the goals set for this thesis. 

The first goal is to solve the Kelvin problem [4, 5]. This would give 

a unique foam model able to represent the ideal structure of foams. The 

Kelvin problem is in fact the mathematical expression of the physical prin

ciple of energy minimization which foams are characterized by during their 

formation process. The problem is currently believed to have an ordered, 

crystalline solution [6] but this clashes with the experimental evidence aris

ing from the geometry of monodisperse foams, systems characterized by high 

disorder [7]. There are already a few works that describe the possible geo

metrical structure of foams, but they either exclude evidence coming from 

1
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visual inspection of real systems [8], such as the presence of polyhedra with 

13 faces in foams [7, 9], either rely on purely random approaches in the hope 

that the condition of optimality will be at some point reached [10]. The 

fact that the theoretical work on the Tetrahedrally Close Packed structures 

[6, 8] did not match the experimental observations of real foams [11, 9], 

made scientists wonder about the order (crystallinity) of the solution to the 

mathematical problem. A recent work based on random packing algorithms 

[10] showed topological results in agreement with the experimental observa

tions but not with the energy minimization, since foam energies (or costs) 

were higher than those found in Sullivan’s work on the TCP structures. 

The total lack of structures containing the right polyhedra has moved 

the author to consider the problem in its formal statement and to spare 

no effort in creating and finding new algorithms for the generation of new 

geometrical foams. This work aspires to find structures that are combina

torially similar to the experimental results yet preserving the low system 

energy that characterizes foams. 

The new foam models here described are defined by their combinatorial 

expression. The structure of real foams is somewhat elusive, always affected 

by the manufacturing process used, the variables in the process like temper

ature and pressure, and the material properties, let alone the engineering 

errors that always arise from the acquisition of such complex morphologi

cal data, usually performed with three-dimensional physical scans. In order 

to accomplish the second goal and to avoid the inconsistencies above de

scribed, a large part of this work has been dedicated to methods able to 

perform combinatorial and geometrical searches for idealized foam models. 

The complexity of the problem is very high and specific algorithms and 

methods that can directly move towards the minimal solution are hard to 
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find. Given the enormous computing resources that would be required to 

solve it, scientists say a proof will not come for years [12]. 

Three are the methods that have been used. The first method is based on 

the combinatorial tiling theory. It provides an exhaustive search for nets and 

tilings with given symmetry. The second method uses an assembly algorithm 

for polyhedra, called Corona algorithm. The third method starts from a 

pattern forming partial differential equation known as the Swift-Hohenberg 

equation . All these methods will be described in detail in Chapter 4. 

The second goal is to show the potential of porous material based on the 

PNS for load bearing applications by comparing their stress concentration 

characteristic to that of models for foamed materials under applied static 

load in an elastic linear model. This has been done numerically, with the 

aid of a computer. 

Summarizing, the aims are: 

•	 To solve the Kelvin problem, or at least to find new counter-examples 

to Kelvin’s conjecture, with the perspective of this leading to a formal 

understanding of the nature of disorder in foams and aggregates of 

cells 

•	 To show that porous materials based on the Periodic Nodal Surfaces 

can represent an efficient and adaptable way to model porous materials 

for structural applications 



Chapter 1 

Introduction 

What is the shape of foams? What is the most economical way to arrange 

matter in space so it can still stand up to a static load? This work is an 

attempt to answer the first question and to propose a solution for the second. 

In the first part of this work the geometry of foams is investigated thor

oughly, based on the physical principle that bubbles in dry foams tend to 

minimize their surface area for a given volume. 

In the second part a method to model the geometry of highly porous 

materials for structural applications is presented. 

The definition of an ideal geometry for highly porous media subject to 

loads is a complex problem, mainly depending on the boundary conditions 

of the system under study. In this thesis, a general definition of porous 

materials has been initially given (Chapter 2). Then the focus moves onto 

the morphology of foams, the most common class of industrially produced 

porous materials. A large amount of time and resources in this project were 

spent in finding a universal foam model that could be used in the future 

by professionals and researchers that deal with foamed materials. Details 

of the previously known models are given in Chapter 3, whilst the adopted 
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5 CHAPTER 1. INTRODUCTION 

approaches for the discovery of the new models, and their formal descrip

tions, are given in Chapter 4. This part constitutes the core of this work. 

It also contains the most notable results on space partitions and tessella

tions. Finally, a very simple set of equations describing surfaces that can be 

successfully used to model porous media with extremely low solid volume 

fraction is presented (Chapter 5). A numerical bending test showing a di

rect comparison between the stress spatial rate on nodes extracted from the 

generated foam models and the PNS having the same solid volume fraction 

is included (Chapter 6). 

The geometrical results on foams can be easily applied to different ma

terials, for structural, fluid dynamics or even combined and multiphysics 

numerical analyses. Polymers, metal alloys and ceramics, all of these can 

be either foamed or made porous via a large number of different techniques 

[13, 14, 15], for an even larger number of applications. 

Open-porous polymeric foams are widely used in the packaging industry, 

for padding, and for cushions. Their good energy absorption and relatively 

low cost have resulted in the manufacturing industry to opt for these mate

rials in this kind of applications. 

Open-porous metal foams can be efficiently used in biomechanical pros

theses to lower the mechanical stiffness of implants made out of solid tita

nium or solid steel to match that of bone and to provide fixation. The case 

study to be considered in this thesis refers to an acetabular cup, used in the 

total hip joint replacement. In the aerospace industry the most prominent 

application is in the core of sandwich structures. Another relevant field is 

the automotive sector, where high energy absorption capability joined with 

sufficient stiffness to allow self-support is required. Bumpers are often real

ized in aluminium alloy foams [16]. 
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Open-porous ceramic foams are also widely used, in applications that 

range from biomedical to renewable energy, to heat resistant filtering de

vices [15]. Calcium phosphate porous materials are used as scaffolds for 

the substitution of damaged, or the integration of missing, osseous tissue 

in living organisms, especially in the human body. In the renewable energy 

sector, zirconia electrodes for fuel cells require high surface area per unit vol

ume. Foams with such property are the optimal solution for molten metal 

and hot gas filters as well as for catalyst supports [16]. 

Foams are not the only open-porous materials that can be produced. 

Nowadays it is possible to create porous materials with a microstructure 

that is not touched by the shape constraints imposed by any foaming pro

cess. The Solid Free Form fabrication industry is provided with machines 

able to manufacture three-dimensional objects of arbitrary shape out of a 

wide choice of materials including metals and ceramics [17]. Solid Free Form 

fabrication is a technique for manufacturing solid objects by the sequential 

delivery of energy and/or material to specified points in space, sometimes 

still referred to as rapid prototyping. The geometrical results on PNS con

stitute a tool for the generation of this class of materials. 

Chapter 2 of this work gives a definition for porous matter. A general 

method for the description of pore geometry in structures requiring inter

connected channels like trabecular bone is sketched. The method sets some 

fundamental parameters, such as volume fraction, element dimension and 

connectivity, that are essential for comparative purposes among different 

structures. 

Chapter 3 illustrates the background information that has been necessary 

to develop the methods presented in Chapter 4. Section 3.1 is an overview 

of foams, their formation mechanism and their geometry is described and 
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used as a starting point for the developments of the models. A review of 

the geometrical models for foams and froths is presented, and an in-depth 

analysis of the problem of partitioning the space into cells of equal volume 

is also illustrated. The benefits and drawbacks of using these models are 

discussed thoroughly. Section 3.2 is a review of the combinatorial tiling 

theory, a work initiated by Andreas Dress, continued and implemented on 

computers by Olaf Delgado-Friedrichs in the computational tiling theory. 

Section 3.3 describes a family of partial differential equations used in the 

science of pattern formation. 

Chapter 4 contains three completely new approaches to the modelling 

of foam geometry. The first approach, based on the combinatorial tiling 

theory, has produced a very large number of new tilings with interesting 

properties and with the possibility of extrapolating data for more complex 

structures. A second approach has been used successfully to find suitable 

partitions of space with restricted given set of polyhedra. It produced a 

new simple tiling by a polyhedron with 14 faces, proving the existence of a 

tiling simultaneously monotypic and non-isohedral, the first of its kind. In 

the third approach a new family of counter-examples to Kelvin’s conjecture 

on space partitions has been discovered. The method used a numerical 

evaluation of the 3D Swift-Hohenberg equation in a periodic boundary with 

pseudorandom initial conditions. The most common patterns known to 

crystallography, plus a few new ones, can be formed starting from random 

data simply driving the solution of the differential equation to its stationary 

state. 

Chapter 5 presents a set of truss-like periodic structures each character

ized by a different topology, derived from the PNS. A task of this work is to 

evaluate the difference in performance between the open-cell foam models 
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and a group of lattice structures that include stretch-dominated structures 

[18] and bending-dominated truss-like structures derived from the triply 

periodic minimal surfaces (TPMS) [19, 20] developed in a previous study 

[21] and already found in orthopaedic applications [22]. Parameterized and 

tailored new structures are illustrated and the functions adopted for their 

generation are described. An application of these structures to an acetabular 

cup is shown. 

Chapter 6 deals with numerical techniques applied to the modelled struc

tures. In order to evaluate their mechanical properties Finite Element Anal

ysis software has been used. The stress leveling point response, within the 

elastic region, has been acquired. Quantitative data for the new porous 

models are extracted and compared with that obtained from the foam-like 

models produced in this work. 

Chapter 7 concludes with a description of the two main results achieved 

in this thesis. Firstly, the P42a structure, obtained from a new method 

capable of facing an age-old problem in geometric measure theory. Secondly, 

as an application of the mathematical models introduced in in Chapter 5 to 

orthopaedic implants, an acetabular cup with a new kind of body-implant 

porous interface. 

Chapter 8 presents the work planned for the future. The interest of sci

entists in the method for the generation of the new foam models has directed 

research efforts toward the study, the implementation and the optimization 

of the method itself. 

From a scientific point of view, the core result contained in this work 

represents a tool for mathematicians working in geometric measure theory, 

sphere packings and coverings, group theory and pattern formation, but also 

for physicists and crystallographers interested in dimension related disorder, 
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three-dimensional lattices and non-lattices, patterns and tilings. 

From an engineering point of view, this work suggests a fast route to the 

modelling of highly porous materials for structural applications, with the 

main aims being their use in computer simulations and their generation by 

Solid Free Form techniques. 



Chapter 2 

Porous Materials 

The use of the term porous to indicate materials that presents internal void 

spaces is quite unfortunate. A more rigorous classification would have been 

that of composite materials, since porous materials are made of at least two 

different phases, solid and void. This on the other hand might lead the 

reader to some confusion. Although for a composite material the interest 

is directed on the properties of both the phases and also on the interaction 

between the two, here the attention is focussed on the first phase only, aware 

of the fact that the system being studied only models the solid phase and 

therefore represents an approximation of real systems (like trabecular bone). 

The etymology of the word pore, from the Greek word ����c, which 

means passage, linguistically recalls the verb to fare [23]. If the porosity is 

open, interconnected channels through a porous medium can be identified 

and discerned. This is particularly easy for samples with a very high solid 

volume fraction. The idea of a passageway or a duct that allows fluid flow 

through the medium is then quite direct and can instinctively be compre

hended without the need to recur to bold circumlocutions. More in general, 

the channels might be so flat that instead of a duct one might spot a sepa

10
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Figure 2.1: Two examples of models of porous materials. A strut-like and a shell-like 

periodic structure having the same volume fraction but different spatial arrangement, yet 

preserving interconnectivity of the solid phase. The images have been generated with the 

application K3DSurf [24]. 

ration surface. It is possible to imagine the reverse samples of those shown 

in Figure 2.1, the first sketching interconnected channels, the second a con

tinuous surface dissecting a solid. It is of interest to note that the word pore 

in modern English generally refers to any kind of porosity, including that of 

materials with isolated pores (a very short fare in this case). 

Many authors have used in the past the term cellular to identify solids 

that show various kinds of porosity [25]. The use of this term is unfortunately 

as misleading as the previous one. The word cell has its roots in the Latin 

word cella which means small apartment, room [23]. Although this term 

might be appropriate when dealing with foams and periodic frameworks, it 

cannot be used to univocally identify random lattice structures, which also 

are porous materials, neither a large amount of periodic nets. It will be 

shown in the next chapter how polyhedral cells can be identified inside the 

reticular structure of real foams and how material defined as periodic can still 
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have a periodic unit cell (here the word cell is referred to a periodic unit, 

with a completely different meaning) that is able to represent the whole 

structure. To avoid confusion, the word tile or polyhedron instead of cell 

will be used, the latter being reserved to the periodic unit of a space-filling 

arrangement of geometrical elements. 

It is not an easy task to label such a vast category of materials as what are 

called porous materials, that it is out of the scope of this work to look for the 

most appropriate term. Instead, the definitions of some of the parameters 

commonly used to characterize porous matter are given, with the addition 

of simple examples, yet in a rigorous way. 

The definition of volume fraction, as reported below, is valid for a generic 

biphasic material, irrespective of its phase interconnectivity. Let two phases 

named A and B fill a cubic region of volume V = VA + VB. The volume 

fraction of the phase A is given by vA = VA/V . Since only the solid phase 

is taken into account in this study, the symbol v will be used in this work to 

identify the volume fraction of the solid phase, which can vary from 0 to 1. 

The complex lattice of a porous matter sample can intuitively be subdi

vided in smaller single elements such as struts or rods and shells or sheets. 

This visual partitional approach can also be formalized in a more rigor

ous way by the use of the parameter called element dimension. In an n-

dimensional space it is possible to arrange k-dimensional elements where 

0 < k < n−1. Since 0-dimensional elements, known as points, are incapable 

of defining a three-dimensional lattice on their own, the use of 1-dimensional 

(linear or strut-like) and 2-dimensional (planar or shell-like) elements will 

be necessary. The materialization of these elements into three-dimensional 

ones requires a further parameter, this time related to the volume creation. 

Linear elements will then be characterized by a diameter and planar ones by 
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a thickness. Figure 2.1 illustrates two samples built using linear and planar 

features respectively, both samples having exactly the same volume fraction 

of 0.06, which - as it will be shown in the next chapter - is a typical value 

for a reticulated foam. 

It is possible to mix linear and planar elements, this way increasing 

the complexity of the lattice. However, for a better understanding of the 

influence of the two different kinds of elements, investigations were carried 

out on sample with only one kind at a time. It is interesting to note that 

an infinity of different configurations can be built, even using elements all 

of the same dimension. 

A parameter developed from graph theory is used, which defines con

nectivity of a lattice as the number of struts per unit node. A node is a 

0-dimensional element where more than 2 struts meet. For shell-like mate

rials this number corresponds to the maximum number of paths available 

from an arbitrary point in the void space. 

Strut-like structures only are considered in this work. Two main classes 

are illustrated, structures based on the Periodic Nodal Surfaces and struc

tures based on the shape of real foams, the last being obtained as a result 

of a search for the solution to a problem known as the Kelvin problem [4]. 

This problem, in its formal statement, asks for the partition of space in 

regions of equal volume having the least interfacial area. 

It is relevant to note that the formal problem proposed by Lord Kelvin 

touches many more disciplines than those related to the morphology of foams 

[26]. On a smaller scale, the problem is of interest in soft condensed mat

ter physics [27], in biphasic systems [28] and microgravity fluid dynamics 

[29]. In chemistry the problem is directly related to the chemical structure 

of a group of a wide class of materials known as zeolites, that today have 
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many applications including catalytic cracking and water and gas purifica

tion. But applications are not limited to the material world. In cosmology, 

according to an evolutionary theory, the shape of the universe resemble that 

of a packing of polyhedral soap bubbles, where matter aggregates along the 

edges of the polyhedra. Optimization of wireless networks and data com

pression in computer science [30], optimal lattice quantizers in mathematics 

[31] are other areas that would potentially gain from a definitive answer to 

the Kelvin problem. On a theoretical point of view, such a result would 

be an extremely important step forward in Geometrical Measure Theory, a 

branch of mathematics that deals with the measure of manifolds . 

The new models found in this work may be useful to scientists and engi

neers who are in the need of simple geometrical models for foams, without 

the need of performing physical scans of real foams. The purpose may be 

various: structural, fluid dynamic (flow through porous media), thermal, op

tical, informational. Any application that requires a reference standard for 

foam-like materials or, more generally, for minimal partitions of the three-

dimensional space into regions having the same volume, could be a potential 

beneficiary of these models. Computer scientists working on data sampling, 

engineers designing a wireless network for large areas (when compared to a 

single antenna’s domain) will find the foam models described in this work 

of undisputed value. 



Chapter 3 

Literature review 

This chapter is divided into three parts. The first part describes the struc

ture of real foams and the related formal problem known as the Kelvin 

problem. The second part introduces the Delaney symbols for tilings and 

the computational tiling theory. The third part is a brief review of a par

tial differential equation known in pattern formation, the Swift-Hohenberg 

equation. 

3.1 Foam geometry 

Foams represent a wide class of engineering materials. In this work the 

interest is focussed on the morphology of open-cell foams, but the results 

obtained are mainly topological and can therefore be easily extended to any 

kind of monodisperse foams. 

A review of engineering foams and the geometrical aspects connected 

with the foaming process is briefly presented below. Initially their use in 

technology will be presented and at the same time a first idea of what they 

look like will be shown. Then the focus will move onto open-cell foams. 

Historically, the need for foamed materials arose when engineers were 

15
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looking for an inexpensive manufacturing method for fabricating porous 

materials. These materials exhibited global properties that none of the ex

isting ones could ever possess. The idea of reducing the volume fraction of 

material simply by adding empty space to a liquid phase and then obtaining 

the solid phase via a chemical or thermal process, made possible the real

ization of materials with properties that could match specific applications. 

Metal foams in particular found applications in hot gas filtering, catalytic 

supports, energy storage devices, where the high surface to volume ratio was 

the primary requirement, but also energy absorption, like bumpers for cars 

[16]. 

Whatever foaming technique used, foamed materials appear to be con

stituted by an assembly of smaller units, very similar each other in many 

aspects. These units are called bubbles, in order to avoid confusion with the 

word cell, which is used to identify a crystallographic unit cell in periodic 

structures of the kind illustrated later in this chapter. 

Consider now a solid, continuous material. The porosity of such a ma

terial is zero. Imagine now the addition of a second phase (void), shaped 

as many small spherical bubbles at random locations in space. The value 

of porosity, which can also be called the volume fraction of the void phase, 

is now positive. The bubbles (or void phase) will not be able to touch each 

other yet as their concentration is still too low. If the bubbles are further 

inflated so that the void phase fraction increases, at some point two or more 

bubbles will touch each other. At this point a spatial rearrangement of 

the bubbles is necessary. Bubbles move and set into a new position where 

they can keep their spherical shape, and doing so they fill the space in a 

presumably more efficient way. 

Now the first question arises on the arrangement of points in the initial 
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configuration. 

3.1.1 Open-cell foams 

When not only low density is a requirement but also high permeability to 

fluids is crucial to the application and fundamental for the function accom

plished by the product, foams are realized with interconnected cavities and 

are called open-cell foams. This can be achieved in different ways, depending 

on the base material used. Open-cell foams are produced today in all the 

three different classes of materials: polymers, metals and ceramics. Only 

polymer foams are produced from the bulk material whilst metallic and 

ceramic ones are often generated from a polymer foam template [13]. Poly

meric foams are commonly manufactured starting from a diisocyanate and 

a diol (often polyethylene glycol) in presence of a catalyst and a foaming 

agent. The reaction is a polymerization which gives rise to a polyurethane, 

in this case the extra presence of a substance that volatilizes (the foaming 

agent) during the process, leads to the formation of bubbles of gas which 

then collide and create the interconnectivity. The variation of parameters 

such as pressure and temperature gives the possibility of obtaining foams 

with different pore sizes. The bubbles generated by the foaming process are 

in tight contact each other as in a packing of soft spheres. The geometrical 

shape of a single cell can then be represented by a polyhedron. Since the 

microstructure of open-cell foams has a noticeable effect on their mechanical 

properties [32], an examination of their morphology will be the first step in 

this study. 
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3.1.2 Microstructural morphology 

A systematic investigation of these shapes can be only conducted if the 

number of parameters in the models is finite. In order to obtain parametrized 

models for foams, it is necessary to have a closer look to the bubble formation 

and foam setting mechanism involved in the process. Foam agents generate 

gas bubbles in the curing resin. This then polymerizes and sets making the 

foam evolve from a wet condition, in which spherical bubbles touch each 

other on points, to a dry one, where bubbles have polyhedral shapes [32] 

whose faces are shared with adjacent bubbles. Repeated experiments [33] 

show how bubbles of monodisperse (cells of equal volume) wet foams place 

themselves in an orderly fashion, precisely hcp (hexagonal close packed), fcc 

(face centered cubic) or rhcp (random sequence of hcp layers). 

During the drying phase of a wet foam, spherical bubbles assume poly

hedral shapes and settle in configurations believed to minimize the total 

surface area of the film, in the same way it happens in agglomerates of soap 

bubbles. The general structure of singularities of soap bubbles (films meet

ing at edges, edges meeting at vertices) has been thoroughly investigated by 

Jean Taylor [34]. If the bubbles are considered to have all the same volume, 

then a problem can be stated in a formal way, and this is what Lord Kelvin 

did in 1887 [4]. 

3.1.3 Kelvin’s problem 

The geometrical problem of partitioning three-space into regions of identical 

volume with the least total interfacial area is known as the Kelvin problem 

[5]. 

The equivalent problem in two dimensions is much easier to visualize 

therefore it will be presented first. Fig. 3.1 shows three periodic partitions of 
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the two-dimensional Euclidean space - the plane, respectively by equilateral 

triangles, by squares and by regular hexagons with one coloured cell (Fig. 

3.2). 

Figure 3.1: Three grids with cells of different shape but having same area. 

Note that not only does each single pattern contain congruent cells but 

also the three different patterns have cells of exactly the same area when 

compared one to the other. Now consider a representative cell for each 

pattern and give an expression for what intuitively is its sphericity. In 

physical terms, this magnitude is called cost of a foam or partition. The 

cost c for two-dimensional partitions can be defined as the ratio of half the 

perimeter of a cell p to the square root of its area A, but this ratio can be 

extended to any dimension, included the three-dimensional Euclidean space 

[35]. 

c =
2
√p

A 
(3.1) 

It can be noted that this ratio is dimensionless, which means that is size-

independent. If the cells are not congruent it will be necessary to take the 

minimum number of cells that constitute the periodic unit. Two cells are 

congruent if one can be transformed into the other by an isometry, such as 

translations, rotations or reflections. This can be done only if the structure is 

periodic by isolating the translational unit. A similar and better known ratio 

in geometry, which gives exactly the same information, is the isoperimetric 
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Figure 3.2: The representative cell for each pattern. 

quotient. This in simple terms tells how far from the circularity of a circle 

is a given closed curve. The isoperimetric quotient Q of a closed curve is 

defined as the ratio of the curve area A to the area of a circle Ac with same 

perimeter as the curve p [36]. 

A A 4πA 
Q = = 

π( p )2 = 
2 (3.2)

Ac 2π p

Cost and isoperimetric quotient are related through Eq. 3.3: 

π 
Q = 

2 (3.3) 
c

For the purpose of this study, and without losing in generality, the cost 

will be used instead. The area of the cells is fixed equal to 1 and their perime

ter P , which with this assumption coincides with their cost, is calculated. 

For triangles (t), squares (s) and hexagons (h) this gives: 

At = 1 = 

√
3 

lt = 4 Pt = 3lt = 2 
� 

3
√

3 ≈ 4.6 (3.4)
4 

lt 
2 √2

3 

As = 1 = ls 
2 ls = 1 Ps = 4ls = 4 (3.5) 

Ah = 1 = 
3
√

3 
lh 
2 lh = 

� 

3
√2

3 
Ph = 6lh = 2 

� 
2
√

3 ≈ 3.7 (3.6)
2 

The third pattern, a honeycomb, has the lowest perimeter. Addition

ally, any partition of the plane into regions of equal area has perimeter at 
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least that of the regular hexagonal grid, as it was conjectured by Pappus of 

Alexandria [37] and recently proved by Thomas Hales [38]. 

The analogue problem in three-dimensional space has only a conjectured 

solution, which is the Weaire-Phelan structure [6, 39]. In two dimensions 

the perimeter of the partition and the area of the cell were considered, here 

the focus is on the surface area of the partition interface and the volume of 

the cells. The cost of a foam is given by Equation 3.7: 

c = A/V 2/3 (3.7) 

where A is the average interfacial area per tile and V is the volume of each 

tile. A correct way to state the problem is then as follows: what partition of 

three-space in equal volume cells has minimal surface area? The question is 

very similar to the two-dimensional case mentioned above, therefore it can 

be stated in a similar way: what partition of two-dimensional space in equal 

area cells has minimal perimeter? Extending this to a generic dimensional 

space, one might ask: what partition of n-space in equal n-dimensional finite 

regions has minimal (n-1)-dimensional interfacial boundary? This problem 

and its fundamental theoretical background have been touched on by many 

mathematicians and physicists in the past [4, 40, 41, 42, 6, 8, 10]. A recent 

step forward has been taken by Morgan, who proved the existence of such 

a partition [43]. The search has been limited to the three-dimensional case 

here, as the main interest is to find a mathematical expression for the shape 

of monodisperse (equal-volume cells) real foams. 

A detailed review of the past efforts to solve the problem and results 

obtained is presented below, and a wide spectrum of tools and methods that 

have been used to perceive the complexity of the question is illustrated. 

More than a century ago, in 1887, Sir William Thomson - better known 



22 CHAPTER 3. LITERATURE REVIEW 

as Lord Kelvin - conjectured that the space-filling arrangement of cells of 

equal volume with minimal surface area was made of a periodic structure 

whose units were similar to a truncated octahedron, or orthic tetrakaidec

ahedron [4], a polyhedron with eight hexagons and six squares. The units 

only differed from the actual polyhedron by the fact that its edges were not 

linear and its faces not planar, as shown in Fig. 3.3. The structure is known 

as the Kelvin cell, or, in accordance with the Reticular Chemistry Structure 

Resource, for short RCSR [44], sod, as in the mineral sodalite. The symbols 

of the structures as they appear in the RCSR are in bold fonts. 

Figure 3.3: The Kelvin cell, a version of the truncated octahedron with slightly curved 

edges and non planar faces, net symbol sod. The graphical output, produced with the 

Surface Evolver, shows the gentle curvatures of the surfaces in this minimal partition of 

space. 

More recently Weaire and Phelan [6] gave a counterexample to Kelvin’s 

conjecture using a periodic structure found in certain chemical compounds 
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called clathrates. The translation unit is made of eight cells. There are 

two different polyhedra in this structure: a tetrakaidecahedron containing 

twelve pentagons and two hexagons, and an irregular pentagonal dodec

ahedron (Fig. 3.4), in which only the hexagons were planar faces. This 

structure’s net symbol is mep (as in the mineral melanophlogite), and the 

spatial arrangement of the centres of the bubbles shown is know as the A15 

pattern. 

Figure 3.4: The periodic unit of the Weaire-Phelan structure, also called A15, net symbol 

mep, is made of two [0-12-0] and six [0-12-2]. 

These cells are repeated periodically in the space so they can completely 

fill it. The periodic unit is made of six tetrakaidecahedra and two dodecahe

dra. Using the Surface Evolver by Ken Brakke [45], they measured the area 

of a wide range of structures, all containing only pentagons and hexagons. 

Together with the structure described above, other structures have been 

obtained and their cost calculated. Some of them showed lower cost than 
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sod but none lower than mep. There are 24 known crystalline structures 

called tetrahedrally close packed (TCP), or Frank-Kasper phases, which are 

related to different types of clathrates [46, 47]. 

A clathrate is a chemical compound whose structure resembles an as

sembly of cages. One kind of molecule is usually trapped in a lattice or 

net composed by a second kind of molecule. Gas clathrate (or clathrate 

hydrates) are made of hydrogen bonded water molecules trapping a gas, 

typically methane or carbon dioxide. There are three different types of 

clathrates, the main two resembling the structure of mep (Type I) and 

mtn (Type II). 

A deeper look into the family of structures from Weaire and Phelan 

showed that an infinite number of new structures can be generated as a 

convex domain [8] of the three structures mep, zra-d, referred to as Z in 

Sullivan’s work, and mtn, referred to as C15 (Fig. 3.5). 

Figure 3.5: The periodic units of the other two basic structures belonging to the TCP 

range: Z, net symbol zra-d, made of seven cells (three 12-hedra, two 14-hedra and two 

15-hedra), and C15, net symbol mtn, made of six cells (two 12-hedra and four 16-hedra). 
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3.1.4 Topology 

Area-minimizing problems are typically those in which a three-dimensional 

closed curve is given and the surface of minimal area touching that curve 

is calculated. If the curve lies in a plane, the obvious result will be planar, 

whatever the shape of the curve. For a three-dimensional curve the minimal 

surface lies in 3-space and for simple geometries can be obtained analyti

cally. When the geometry of the system being studied is more complex, the 

numerical approach is the only solution. Surface Evolver is an interactive 

program for the modeling of liquid surfaces shaped by various forces and 

constraints. Another class of area-minimizing problems is given by those 

related to bubble packing (soft-sphere packing), where the minimum sur

face area for an infinite number of solid regions is searched. If the regions 

are supposed to be all of the same volume, the problem is equivalent to the 

Kelvin problem. 

3.1.5 The structure of random foams 

The structure proposed by Lord Kelvin as the minimal partition of space in 

cells of equal volume, sod, has been beaten by mep, the counter-example 

presented in Weaire’s 1992 paper [6]. Recent attempts to find structures 

with even lower cost, or at least a second counter-example to Kelvin’s con

jecture not belonging to the range of the TCP structures, have used mod

els generated via random sequential adsorption or random close packing 

methods. This modelling technique produced computer generated random 

monodisperse foams which have been subsequently annealed in order to get 

the lowest possible value of cost [10]. The average number of faces of these 

foams had a minimum of 13.68, a value extremely close to that encountered 

by Matzke in his physical experiments with 600 soap bubbles of 13.70 [7]. 
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Unfortunately, it has not been possible to push their cost below the value 

of 5.324 (the value for sod is 5.306, largely below this limit). 

3.2 Tiling theory 

The combinatorial tiling theory deals with the transcription of the informa

tion contained in periodic tilings into a connected graph (Delaney graph). 

The computational tiling theory provides concise and efficient data struc

tures able to represent periodic tilings by a simple sequence of integers 

(Delaney symbols). What follows is a detailed description of the Delaney 

symbols and how these can be obtained from a given tiling, taken from a 

fundamental work by Delgado-Friedrichs [48]. 

A periodic tiling is a subdivision of an n-dimensional space into regions 

called tiles. The periodicity of the tiling implies that a finite set of tiles, 

called periodic unit, can represent the whole configuration, which can be 

obtained by translation of the periodic unit. 

Consider now a tiling of the plane. A barycentric subdivision of the tiling 

can be constructed by choosing a point in the interior of each edge and each 

tile. Then the points chosen in the tile can be connected to its vertices and 

to the points in the interior of its edges, as shown in Figure 3.6. 

A triangulation will result from this operation where each triangle, called 

chamber, has three types of vertices, namely a vertex of the original tiling, 

a point on an edge and a point inside a tile. These are labelled as 0, 1 and 

2 respectively. The edges are labelled the same as the vertices opposite to 

them. In Figure 3.6 edges labelled 0, 1 and 2 are shown dashed, dotted and 

solid in this order. Each chamber has three neighbours, distinguished by 

the type of edge they share with it. These chambers are named s0(t), s1(t) 

and s2(t). 
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Figure 3.6: A tiling with its barycentric subdivision. The picture is from Delgado-

Friedrichs [48]. 

Two chambers are symmetry equivalent if there is a symmetry of the 

tiling mapping one onto the other. The chambers are shown in Figure 3.7. 

The information contained in the tiling can now be converted into a graph 

(right hand side of Figure 3.7), called the Delaney graph. This is basically 

a map of chamber adjacencies, where the kind of connection between two 

elements in the graph is determined by the kind of edge between the two 

chambers in the barycentric subdivision of the tiling. 

Figure 3.7: Chamber classes and the Delaney symbol. The picture is from Delgado-

Friedrichs [48]. 
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The Delaney graph does not uniquely determine the tiling. The archimedean 

solid shown in Figure 3.8 has exactly the same Delaney graph as the previous 

planar example, but it contains squares instead of hexagons. 

Figure 3.8: An archimedean solid. The picture is from Delgado-Friedrichs [48]. 

For this reason two numbers are added to the Delaney graph. The first 

one represents the number of vertices of the tiles containing chambers of 

this class and the second gives the degree of the vertices (number of meeting 

edges) adjacent to chambers of this class. These two numbers are shown 

inside the rectangles representing the chambers of the Delaney graph in 

Figure 3.7. 

This augmented Delaney graph can be converted into a string of a finite 

number of integers, the Delaney symbols, as shown in the documentation of 

the application 3dt included in the Gavrog project [49]. The advantage of 

such a coding is that tilings can be classified by simply changing these inte

gers. This is the technique that has been used in this work for the generation 

of three-dimensional tilings with a given number of kinds of vertex. 
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3.3 Pattern formation 

Pattern formation studies the evolution and the self-organization of patterns 

found in nature, especially in biology, chemistry and physics (dendrites in 

solidification, optics). 

The analytical study is often conducted via the use of partial differential 

equations, the most famous of which is the Swift-Hohenberg equation. The 

general form is shown in Equation 3.8: 

∂u 
= au − (�2 + 1)2 u + P (u) (3.8)

∂t 

where u = u(X, t), P (u) is a a polynomial in u and X has as many 

coordinates as the dimension of the problem. Thank to Michael Cross’ java 

applet [50], the outcome of such equation in a two-torus can be examined 

live and the parameters can be modified interactively. Figure 3.9 shows the 

values for the function u(x, y, t) at the stationary state where ∂u = 0: ∂t 

Figure 3.9: The Swift-Hohenberg equation calculated in a two-torus generates a stationary 

state with local maxima equally spaced. The regions represent the maxima and the blue 

ones the minima. The picture is taken from Cross’ on line demo [50]. 

The local maxima, at the centre of the red regions, self assemble into a 
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triangular pattern, which is a pattern by simplices. This inspired the work 

described in this thesis on the three-dimensional patterns. 



Chapter 4 

Methods 

Three new methods have been used for the first time in this thesis to solve 

the Kelvin’s problem. Although a solution has not been found, 15 new 

counter-examples and a large number of low cost periodic partitions have 

been produced. 

The first method uses Delaney symbols for tilings [51, 52, 53]. This 

approach turned out to be extremely powerful because of its intrinsic com

pleteness. Unfortunately, the computational power necessary to find po

tential candidate structures is still very high, which in simple terms means 

that the search will take a large period of time, unless shortcuts in the algo

rithm are able to identify areas with higher probability of finding interesting 

structures are provided. 

The second method uses an additive technique for topological polyhedra, 

developed for the first time in this thesis and named by the author Corona 

algorithm. Since a univocal relationship between 3-connected planar graphs 

and three-dimensional polyhedra exists, joining graphs corresponds to join

ing polyhedra. The method does not build periodic structures but finite 

clusters of polyhedra. Periodicity is detected if repetition of the structure is 

31
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noted to be persistent after a given step, a sort of mathematical induction. 

The third method uses a partial differential equation taken from pattern 

forming science. This gave the most interesting results. A number of new 

counter-examples to Kelvin’s conjecture have been found in this work using 

this method. 
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4.1 Method I: Nets and tilings 

The formal definition of nets is necessary for the systematic description of 

the structure of foamed materials. There is still noticeable disagreement 

between the morphology of proposed models [4, 6] and that emerging from 

experimental observation [7]. An accurate examination of the nets found 

in periodic models having low area-to-volume ratio (cost) could give helpful 

clues about the bubble polyhedral composition and spatial orientation in 

real foams. 

A net is a graph composed of a set of vertices and a set of edges, each 

connecting two vertices. If the graph representing the net is periodic, then 

it can be described using a finite number of elements. This is useful also 

in crystallography, where the identification of a net and the computation of 

its symmetry is the key factor for the enumeration of different structures. 

Methods able to compare periodic nets and compute their symmetry group 

have been developed quite recently [54]. 

A tiling is a subdivision of a space into closed regions called tiles. If the 

tiling is periodic, the number of tiles needed to represent the whole tiling is 

finite and a periodic unit can be identified in it. A tiling always carries a 

net with itself, since the subdivision into closed regions includes edges and 

vertices, all structured as in the graph described in the previous paragraph. 

Periodic tilings can be fully described by mathematical symbols, called 

Delaney symbols, from their inventor. 

4.1.1 Delaney symbols 

This approach has been proved to be a valuable tool when dealing with 

storage, classification and manipulation of tilings. Periodic tilings are rep

resented in a concise and efficient data structure that can be handled by a 
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machine. Algorithms have been developed for classification purposes, lead

ing to a complete enumeration of prescribed classes of tilings [48]. 

An ongoing research work in collaboration with Olaf Delgado-Friedrichs 

is producing all the possible periodic euclidean simple tilings by tiles with 12 

to 16 faces each, containing only quadrilaterals, pentagons and/or hexagons 

[55]. The search is conducted on a symmetry basis, where tilings with a 

given number of kinds of vertex are generated first, then the minimum cost 

allowed by their topological structure is numerically calculated. All the 

tilings with up to 10 kind of vertices have been generated, their Delaney 

symbols stored into a database, and their cost evaluated with the Surface 

Evolver. The number of tilings found is shown in Table 4.1. 

k 1 2 3 4 5 6 7 8 9 10 

z < 14 0 0 2 1 2 2 2 6 10 14 

z ≥ 14 1 2 7 18 43 105 154 441 722 1094 

time (s) 2 7 40 200 103 6 · 103 3 · 104 3 · 105 106 107 

Table 4.1: Number of tilings and execution times for vertex transitivity up to 10. 

As of August 2009, none of these structures showed lower cost than sod 

apart from the already known Weaire-Phelan structure (mep) as shown in 

Figure 4.1. 

This chart displays the values of the cost for the tilings with the lowest 

cost among those having the same number of kinds of vertex (vertex tran

sitivity). Comparing Figure 4.1 with Table 4.1, it can be noted that with 

one kind of vertex (k=1) only one tiling is present. This tiling is sod, and 

its cost is 5.306. For k=2 there are in total 2 tilings, each made of one 

14-sided polyhedron that tiles space isohedrally. These have been described 

by Delgado-Friedrichs and O’Keeffe [56]. The cost shown in Figure 4.1 only 
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Figure 4.1: This chart shows the cost c against vertex transitivity k. Among the tilings 

having the same vertex transitivity, only those who showed the least cost are displayed. 

refers to the lowest between the two costs, which is just below 5.32. For 

k=3 there are 9 possible tilings, 2 of which have an average number of faces 

below 14 (z < 14). Figure 4.1 shows 2 values in this case, one for the tiling 

with the lowest cost among those having an average number of faces per 

tile below 14 (continuous line, z < 14), and one for those with 14 or more 

(dotted line, z ≥ 14). 

The search is computationally expensive, as shown by the calculation 

times listed in Table 4.1. At the time of the writing of this thesis, all the 

possible 2,626 simple tilings with up to 10 kinds of vertex have been deter

mined with this method, requiring four months on three supercomputers, 

keeping busy a total of 65 cores. The cost of the tilings with z < 14 has 

been determined up to k=10, whilst for z ≥ 14 only up to k=9. The code is 

still running and it has already produced new tilings with low cost for k=11, 
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12 and 13, whose energies have been graphed in Figure 4.1. The tiling with 

the lowest energy, k13, is shown in Figure 4.2. 

Figure 4.2: A new tiling with 13 kinds of vertex, with energy just above that of the 

truncated octahedron. 

It is worth to note that this method has an enormous potential in find

ing new structures because of its intrinsic completeness, regardless of the 

computational time needed. According to Moore’s law (co-founder of Intel 

Corporation), processing speed is growing at an exponential rate, doubling 

approximately every two years. 
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4.2 Method II: The Corona algorithm 

Isohedral simple tilings with ≤ 16 faces containing only quadrilaterals, pen

tagons and hexagons have recently been determined [56]. The cost associ

ated with these tilings has been calculated using Surface Evolver [45]. The 

results have been compared in this work to those of the TCP structures and 

the result was that tilings by polyhedra with 14 faces had lower cost than 

those with more than 14 faces. 

It has been proved that the lower bound for the average number of faces 

per cell in an equal-pressure minimal foam is 13.397 [57]. Pentagonal faces 

are by far the most common kind of face found in foams [7, 9]. These two 

facts combined suggested the construction of a combinatorial algorithm in 

which the variance of the number of faces of the polyhedra belonging to 

the tiling was minimized. Hence, only polyhedra with 13 and 14 faces were 

selected. Additionally, only polyhedra with high content of pentagons (more 

than 70%) were selected. 

The result was that only polyhedra containing pentagons, hexagons and 

at most one quadrilateral were suitable. The software plantri [58] has been 

used to generate the possible topologies with these requirements, which re

sulted to be only three. Each tile has been named with three numbers, 

[Q-P-H], Q representing the number of quadrilaterals, P that of pentagons, 

H that of hexagons. The three polyhedra were: [1-10-2], [0-12-2] and [1

10-3]. These are the only possible 13 and 14-faced simple polyhedra with 

pentagonal, hexagonal and at most one quadrangular face. 

An algorithm for the generation of finite clusters of polyhedra has been 

developed in this work. Using only the three polyhedra defined above, the 

algorithm begins with an instance of a single quadrilateral face. This will 

constitute the first element belonging to the tiling. There are three different 
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ways to add two polyhedra to the starting quadrilateral: 

1. Using two [1-10-2]s; 

2. Using one [1-10-2] and one [1-10-3]; 

3. Using two [1-10-3]s. 

Because of their symmetry, two [1-10-2]s can be joined in two different 

ways. A [1-10-2] can be joined to a [1-10-3] in only one way (the other three 

are symmetrically equivalent to the first case). Finally, two [1-10-3]s can be 

joined in three different ways. The previous list of pairs of polyhedra is then 

rewritten as follows: 

1. Two [1-10-2]s + (mirrored); 

2. Two [1-10-2]s − (mirrored and rotated by π); 

3. One [1-10-2] and one [1-10-3]; 

4. Two [1-10-3]s + (mirrored); 

5. Two [1-10-3]s 0 (mirrored and rotated by π/2); 

6. Two [1-10-3]s − (mirrored and rotated by π). 

Mirror plane and rotation axis are related to the starting quadrilateral. 

The six pairs of tiles generated constitute the first step of the algorithm. 

These pairs of polyhedra are the only way to start a tiling using the given 

set of three topologically different tiles and having a quadrilateral as starting 

element. It will now be shown that pair 1 does not admit a tiling, and then 

that any of the three tiles in the set can be added to pair 2. 

Pair 1 is constituted by a couple of [1-10-2]s, each polyhedron being the 

mirrored image of the other through the starting quadrilateral. This double 
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(polyhedral) bubble configuration gives rise to four slots for the next polyhe

dron to be added. Two of these slots are made of two adjacent hexagons, the 

other two of two adjacent pentagons. Since the set of polyhedra available is 

limited to the three previously mentioned, the slots with adjacent hexagons 

can be only filled with a [1-10-3]. This will place a quadrilateral on the 

adjacent slot. The only configuration possible is then given by adding two 

[1-10-3]s to the initial couple of [1-10-2]s in such a way that the quadrilat

erals do not face the same slot. The potential tiling is now constituted of 4 

polyhedra. But the free slots show three adjacent pentagons and a quadri

lateral in such an arrangement that cannot be found in any of the polyhedra 

in the set. Thus, no tiling is possible for this pair. 

Pair 2 has got two [1-10-2]s joined on their quadrilateral, mirrored and 

rotated by π/2 along the axis normal to the quadrilateral face. Again, there 

are 4 couples of polygons available to accept a polyhedron each. In this case 

they are all related by symmetry, so we can work with only one. The couple 

is made of a pentagon and a hexagon. This means that each of the tiles 

in the set can fit in: [0-12-2], [1-10-2] and [1-10-3]. Due to its symmetry, 

there is only one way to place a [0-12-2]. Instead, [1-10-2] has 3 different 

arrangement. [1-10-3] even more, 7. Thus, there are in total 10 different 

ways to add a third tile to pair 2. 

Pair 3 is composed of one [1-10-2] and one [1-10-3]. The four slots avail

able show these polygon couples (h=hexagon, p=pentagon): h-h, p-h, h-p, 

p-p. On a h-h we need a [1-10-3], so the third tile is uniquely defined. But 

it can be placed in two different ways: with the quadrilateral facing p-h or 

p-p. In the first case the fourth tile can be either a [1-10-2] or a [1-10-3]. In 

the second case the choice is forced on a [1-10-3]. If we continue on this last 

path, we notice that only [1-10-3]s can be added. The structure generated is 
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a semi-helix (it goes to infinity in only one direction). If the first [1-10-2] in 

the semi-helix is replaced by a [1-10-3], the semi-helix becomes a full helix by 

[1-10-3]. If this helix is straightened to have a null helix angle, the column 

obtained can be packed to fill space [59], generating a new simple tiling with 

unusual properties. 

4.2.1 A monotypic, non-isohedral simple tiling 

A monotypic simple tiling by a 14-face polyhedron that does not admit an 

isohedral tiling is now described. The tiling is triclinic and contains four 

distinct, but combinatorially equivalent, kinds of tile. 

A polyhedron has a graph that is planar and three-connected (i.e. at 

least three vertices and their incident edges have to be deleted to separate 

the graph into two disjoint parts). In a simple polyhedron, two faces meet at 

each edge and three at each vertex. In a simple tiling of three-dimensional 

Euclidean space, the tiles are simple polyhedra and two meet at each face, 

three at each edge and four at each vertex. 

An isohedral tiling is one in which any two tiles are related by an isometry 

of the symmetry group of the tiling. A monotypic tiling is one in which all 

tiles are combinatorially equivalent (have the same graph). An isohedral 

tiling is monotypic but not necessarily vice versa. 

Simple tilings are of considerable interest as idealized models of foams 

and other physical systems [60], their nets (the skeleton of vertices and 

edges) are of interest in crystal chemistry as the framework types of real 

and hypothetical zeolites [61], and they present a number of interesting 

problems. The most celebrated of these is the Kelvin problem [5], which asks 

for the lowest-energy (smallest surface area) tiling for tiles of a given volume. 

Among other things, this has prompted numerous studies of isohedral simple 
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tilings. A recent study is that of Delgado-Friedrichs & OKeeffe [56] who 

showed that: (a) there are no isohedral simple tilings by tiles with less than 

14 faces; (b) all 14-face tiles of isohedral simple tilings have only faces of 4, 

5 or 6 sides (4-6 polyhedra); (c) of the 59 different 4-6 polyhedra with 14 

faces there are 10 different isohedral tilers that produce 23 distinct isohedral 

tilings. These results have been confirmed by Komarov et al. [62], who also 

give a full account of earlier work. 

The question of whether a given combinatorial type of polyhedron admits 

monotypic tilings has also attracted considerable attention. It is known [63] 

that there are non-tilers, isomorphic copies of which will not tile space in 

a locally finite and face-to-face fashion; the cuboctahedron is an example. 

On the other hand, the dual of a k vertex-transitive simple tiling is a k tile-

transitive tiling by tetrahedra and necessarily monotypic. In fact, simplicial 

polyhedra (those with only triangular faces) in general are tilers [64]. 

In this section, some properties of a new monotypic simple tiling dis

covered with the use of the Corona algorithm are described. The tile in 

this structure again has 14 faces but is distinct from the 10 isohedral tilers 

and is the unique 14-face 4-6 simple polyhedron with one quadrilateral face. 

It has symmetry m; its Schlegel diagram, which shows the kind of faces of 

the polyhedron and their relative positions, is shown in Figure 4.3. The 

combinatorial symmetry of the net of this tiling is P ̄1 as determined by the 

program Systre [54]. 

The unit cell contains eight tiles, each of symmetry 1, that are four pairs 

of enantiomers . The inversion centers are located in 4-and 6-sided faces. An 

illustration of a repeat unit made with the program 3dt is shown in Figure 

4.4. The structure has 24 kinds of vertex, 48 kinds of edge, 32 kinds of face 

and 4 kinds of tile (transitivity 24 48 32 4). 



42 CHAPTER 4. METHODS 

Figure 4.3: The Schlegel diagram of the polyhedron [1-10-3]. 

Figure 4.4: The new monotypic, non isohedral, simple tiling, net symbol rug. 
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This is the first example of a monotypic simple tiling by a polyhedron 

that does not admit an isohedral tiling and it raises some interesting ques

tions. What polyhedra admit monotypic simple tilings other than the known 

isohedral tilers? In particular, do any of the other 14-face 4-6 polyhedra 

admit monotypic tilings? Do polyhedra with less than 14 faces admit a 

monotypic simple tiling? It is known only that the average face size in a 

simple tiling must be ¡6 and 9/2 [65] so the average number of faces per tile 

is 8. For an example of a simple tiling with average face size approaching 

that lower limit [60]. 

Intrinsically triclinic structures rarely arise in such studies. For example, 

of the many hundreds of known 3-periodic packings of one kind of sphere, 

there is exactly one that is triclinic [66]. The net of this structure is the only 

triclinic entry in the RCSR database [44] of over 1000 nets, and there are 

no triclinic examples among the thousands of nets in the EPINET database 

[67]. 

Crystallographic data for an embedding with edge lengths all equal to 1 

are: a = 5.770, b = 5.806, c = 16.834, α = 94.81, β = 94.39, γ = 90.62. The 

centroids of the polyhedra are at (0.4110, 0.0920, 0.8775; 0.0325, 0.5904, 

0.8782; 0.4086, 0.4674, 0.6215; 0.0899, 0.9099, 0.3794). The coordinates 

of the vertices of the net of the structure have been entered in the RCSR 

database with the net symbol rug. 

The computer programs 3dt and Systre, both essential to this work, are 

by Olaf Delgado Friedrichs [49]. 
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4.3 Method III: Pattern formation 

Pattern formation studies the mechanisms of self-organization of lower di

mensional (cellular or linear for two-dimensional space) entities in a given 

n-dimensional space. The mathematical analysis of these patterns is usu

ally conducted by studying the behaviour of a partial differential equation 

(PDE), typically the Swift-Hohenberg equation [68, 69], which is shown in 

Equation 4.1. 

∂u 
= au − (�2 + 1)2 u + bu2 − cu 3 (4.1)

∂t 

The use of this equation for three-dimensional space partitioning prob

lems is shown in a recent work by the author [1]. The implications of pattern 

formation and space partitioning in a wide range of disciplines ranging from 

physics of foams, cellular materials, crystallography, biology (plant cell tissue 

aggregates), metallurgy (grains in polycrystalline materials), data compres

sion and more, has pushed the author to consider this mathematical tool 

carefully. The fact that the Swift-Hohenberg equation led to a mathemat

ical discovery on minimal surfaces suggests the existence of some kind of 

relationship between the cost derived from it and the actual cost of a foam. 

Seventeen out of more than fifty partitions obtained with this method had 

lower cost than sod. Fifteen of these had never found before. 

4.3.1 A new counter-example to Kelvin’s conjecture 

A new counter-example to Kelvin’s conjecture on minimal surfaces [4] has 

been found in this work [1]. The original conjecture stated that the min

imal surface area partition of space into cells of equal volume was a tiling 

by truncated octahedra with slightly curved faces (K or sod). Phelan and 

Weaire found a counter-example [6] whose periodic unit includes two differ



45 CHAPTER 4. METHODS 

ent tiles, a dodecahedron and a polyhedron with 14 faces (A15 or mep). 

Successively, Sullivan showed the existence of a whole domain of partitions 

[8] by polyhedra having only pentagonal and hexagonal faces that included 

A15. 

This thesis presents a new partition with lower surface area than K con

taining quadrilateral, pentagonal and hexagonal faces, the first of this kind. 

These and other new partitions have been generated via the Voronoi diagram 

of spatially periodic sets of points obtained as local maxima of the station

ary solution of the 3D Swift-Hohenberg [68] partial differential equation in 

a triply periodic boundary, with pseudorandom initial conditions. 

The geometrical problem that seems to have its solution in real foams of 

partitioning space into cells of equal volume with the least interfacial area 

has not yet been solved. The solution to the two-dimensional problem, also 

known as the honeycomb conjecture, has been given a formal proof by Hales 

[38]. For the three-dimensional problem, a conjectured solution has been 

proposed by Phelan and Weaire [6]. The proof of the existence of a solution 

for the general n-dimensional case has been recently given by Morgan [41]. 

A possible solution to the three-dimensional problem was given more 

than a century ago by William Thomson, better known as Lord Kelvin, 

who was also the first to formally stated it [4]. Kelvin conjectured that the 

partition made by a packing of identical truncated octahedra with slightly 

curved faces (K), had the minimum surface area among all the possible equal 

volume partitions of space. The truncated octahedron is a polyhedron with 

14 faces, 8 of which are hexagons and the remaining 6 of which are quadri

laterals as shown in Figure 4.5. In the partition considered by Kelvin all 

the edges were curved. The quadrilateral faces were flat, and the hexag

onal ones were slightly curved, further reducing the total interfacial area 
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Figure 4.5: A truncated octahedron an its Schlegel diagram. This polyhedron is space-

filling. 

of the partition when compared to the flat-faced version of the truncated 

octahedron. 

The solution proposed by Kelvin was believed to be optimal until 1993, 

when Robert Phelan and Denis Weaire, using Ken Brakke’s program Surface 

Evolver [45], showed the existence of a partition (WP) having less area 

than that by truncated octahedra [6]. The partition, also known as the 

Weaire-Phelan structure, has two different cell shapes, namely a cubicly 

deformed pentagonal dodecahedron and 14-hedron with 12 pentagonal and 

2 hexagonal faces as in Figure 4.6. 

Shortly after the discovery, John Sullivan described a class of mathemat

ical foams known as tetrahedrally close-packed structures, which included 

WP. Many of these structures have been known for a long time as Frank-

Kasper phases [46, 47]. All the structures belonging to this domain are 

made of polyhedral cells having only pentagonal and hexagonal faces. He 

constructed infinite families of periodic structures as convex combinations 

of a finite set of basic structures [8, 70]. 
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Figure 4.6: The periodic unit of the Weaire-Phelan structure contains 8 polyhedra, two [0

12-0] and six [0-12-2]. The Schlegel diagrams are shown on the right. Tiles are represented 

slightly detached one from the other for a better visualization. The pictures only display 

the topological information of the structure. 

This showed that not only WP had less area than K, but infinitely many 

other structures (the terms structure, partition, foam and tiling are used as 

synonyms here as the problem interests a large number of different fields 

[60, 71, 72, 73]) could be constructed with such a property. The polyhedral 

cells used in these structures are of four distinct kinds having 12, 14, 15 and 

16 faces. All contain 12 pentagons plus respectively 0, 2, 3 and 4 hexagons. 

These are the only combinatorially possible simple polyhedra containing 

only pentagons and/or hexagons where the hexagons are not adjacent, as 

shown by the program plantri [58]. A simple polyhedron is a polyhedron 

in which each vertex belongs to exactly three edges. A tiling by polyhedra 

is simple if every face contained in it is shared by two adjacent tiles, every 

edge by three incident faces, and every vertex by four incident edges. Since 
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faces can be in general non-planar, polyhedra should also have at least three 

faces meeting at each vertex. 

Since the only faces that occur in the partitions found have from 4 to 

6 sides, a nomenclature for polyhedra based on this fact consisting of three 

numbers has been considered. Each polyhedron is assigned three numbers 

[Q-P-H] that represent the number of quadrilaterals (Q), pentagons (P) and 

hexagons (H). This naming system, called simplified signature, although not 

always univocal in defining the topology as with the Schlegel diagram [74], 

presents the advantage of a much more concise form of identification of the 

polyhedron, very similar to the signature used in the software application 3dt 

[49], and for this reason it will be used to describe the polyhedral composition 

of the structures found in this work. 

One method of generating foams is by Voronoi partitions in three di

mensions. All that is needed is a set of points in a parallelepiped. If the 

opposite faces are connected each other, a three-torus is the result and the set 

of points can be thought as periodic and filling the whole three-dimensional 

space. The Voronoi diagram of these points produces a periodic partition of 

the space. Generation methods that start from random sets of points in a 

three-torus have already been used with interesting results [10]. 

In this thesis a method based on a partial differential equation that 

shows a pattern forming behaviour, Equation 4.1, also known as the Swift-

Hohenberg equation [68, 69] is proposed. A Matlab script provided by David 

Lloyd previously used for the study of two-dimensional localized hexagonal 

patterns [75] has been modified for the three-dimensional case. This allowed 

to find numerical solutions to the Equation 4.1 on a periodic cube of pre

scribed size L using the Fast Fourier Transform. The coefficients a and b in 

Equation 4.1 affect the final pattern. The values needed for homogeneously 
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distributed and isolated maxima to appear in the stationary state were found 

to be respectively close to 0.001 and 1.0 and for this reason these have been 

adopted. The unit cell was chosen to be cubic for simplicity. A version of 

the code that computes Equation 4.1 in a cuboid as also been written and a 

more general implementation working in a parallelepiped might help. Solu

tions with non-cubic symmetry arise in a cubic region only if a multiple of 

their unit cell has arbitrary close to cubic symmetry. This is always the case, 

the only problem being the fact that the structure might be very large. The 

mesh grid adopted for the numerical solution consisted of 40x40x40 scalars. 

The code is reported below, comment lines start with a % symbol: 

% Equation parameters


a = 0.001; b = 1.0; c = 1.0;


% Mesh and domain size and time step


N = 40; L= 7; dt= 2;


dx=2*pi/N;x=dx*(1:N)’;x=L*(x-pi)/pi;


[xx,yy,zz]=meshgrid(x,x,x);


% Initial data


u = rand (N,N,N);


% Viewing parameters


d = 0.8; eps = 0.00001; rotate3d;


% Compute eigenvalues of linear operator


kk = [0:N/2 -N/2+1:-1]*(pi/L); % wave numbers


[kkx,kky,kkz]=meshgrid(kk,kk,kk);
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LU = - (-(kkx.^2 + kky.^2 + kkz.^2)+1).^2 + a; % Linear Operator 

EXP = exp(LU*dt); % Exact linear bit 

ETD = (exp(LU*dt)-1)./LU; % ETD1 coeffs 

uT = fftn(u); 

u2 = rand (N,N,N); 

% Main loop 

while max(max(max(u2-u)))>eps 

f = s*u.^2 - u.^3 ; % nonlinear rhs 

% exponential timestep in fourier space


fT = fftn(f); uT = uT.*EXP + fT.*ETD;


u2 = u;


u = real(ifftn(uT));


end 

% Isosurface plot 

pa = patch(isosurface(xx,yy,zz,u,d*max(max(max(u)))+ 

(1-d)*min(min(min(u))))); 

set(pa,’FaceColor’,’r’,’EdgeColor’,’none’,’FaceAlpha’,.5); 

view(3); camlight; axis vis3d; axis ([-L,L,-L,L,-L,L]); 

axis square; grid on; drawnow; 

% Pseudotorus 

v=zeros(N+2,N+2,N+2); 

for k=1:1:N 

for j=1:1:N 
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for i=1:1:N


v(1,j+1,k+1)=u(N,j,k);


v(N+2,j+1,k+1)=u(1,j,k);


v(i+1,1,k+1)=u(i,N,k);


v(i+1,N+2,k+1)=u(i,1,k);


v(i+1,j+1,1)=u(i,j,N);


v(i+1,j+1,N+2)=u(i,j,1);


v(i+1,j+1,k+1)=u(i,j,k);


end 

end 

end 

% Maxima coords extraction 

l=1; 

for k=1:1:N 

for j=1:1:N 

for i=1:1:N 

if ((v(i+1,j+1,k+1)>v(i,j+1,k+1))&& 

(v(i+1,j+1,k+1)>v(i+2,j+1,k+1))&& 

(v(i+1,j+1,k+1)>v(i+1,j,k+1))&& 

(v(i+1,j+1,k+1)>v(i+1,j+2,k+1))&& 

(v(i+1,j+1,k+1)>v(i+1,j+1,k))&& 

(v(i+1,j+1,k+1)>v(i+1,j+1,k+2))) 

vv(l,1)=j; vv(l,2)=i; vv(l,3)=k; l=l+1; 

end 

end 

end 
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end 

The coefficients a, b and c were the parameters in Equation 4.1, a being 

the coefficient of the linear, b the quadratic and c the cubic part. N was 

the resolution of the grid in each of the three spatial directions. L was 

the domain size, which is the side length of the periodic cube. dt is the 

time step. x represents the discretized spatial variable, ranging from −L 

to L. This was used to generate a vector array for volume discretization 

and successive computation of the function u = u(x, y, z), which has been 

initialized with random values (u = rand(N, N, N)). d has been introduced 

for visualization purposes. It allows the user to select a value between 0 and 

1, which correspond to the absolute minimum and maximum of the function 

u. The parameter eps was set to terminate the execution of the program 

when variation on u were negligible. 

The numerical solution of the PDE 4.1 was performed with a spectral 

method that uses the discrete Fourier transform (fftn). The eigenvalues 

were computed and the linear and nonlinear parts of the equation written 

for the exponential time step in Fourier space (EXP and ETD). The main 

loop repeatedly computes the transform and the inverse transform until the 

variations in the function u are negligible. This corresponds to the stationary 

state where the condition ∂u = 0 is required. ∂t 

For the purpose of extraction of the coordinates of the maxima a pseu

dotorus was generated which consisted in a cubic shell of values surrounding 

the mesh constructed for the function u. The value of u in space was com

pared to neighbour values and the maxima were stored in the array vv for 

use in the Voronoi constructor. 

The graphical output is shown in Figures 4.7, 4.8 and 4.9. The blob-like 

objects are surfaces at 80% between the minimum and the maximum of the 
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function u (d = 0.8). The patterns shown in Figures 4.8 and 4.9 are new. 

Figure 4.9(b) shows the pattern that led to the counter-example to Kelvin’s 

conjecture. 

Local maxima for the function u(x, y, z, t) lie inside the sphere-shaped 

isolevel surfaces shown in the pictures. 

The normalised energy associated with Equation 4.1 is given by: 

1 au2 [(�2 + 1)u]2 bu3 u4 

E =
8L3 − 

2
+ 

2 
− 

3 
+

4 
dzdydx (4.2) 

This has been used to determine whether a correlation with the cost of a 

foam was present or not. No link has been found yet, but it is believed that 

a relationship between this energy and other forms of it like the chemical 

bond energy of the crystal lattice might exist. 

The solution for the function u = u(x, y, z, t) has been found to con

verge from pseudorandom initial conditions to a stationary state. The three-

dimensional coordinates of the local maxima of the function u = u(x, y, z, t) 

in this final state have been extracted. The method has been run a finite 

number of times, and the results have been compared for congruence. Suc

cessively L has been incremented and the coordinates at the stationary state 

have been recorded again. It has been found that for large values of L the 

patterns formed appear locally but not globally ordered. For certain values 

of the parameter L the system converges to a state where the maxima are 

arranged on parallel lines in space, all having the same orientation, in a 

hexagonal packing fashion. The partition obtained from such an arrange

ment is a cylindrical hexagonal honeycomb. 

Another issue is that many of the more simple patterns appear for dif

ferent values of L. These values are the multiples of the fundamental lattice 

distance for a given pattern. Thus more complex patterns might be hidden 

by the simpler ones when looking for a solution for a given size L. 
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(a) 

(b) 

(c) 

Figure 4.7: The most frequent periodic patterns that appear for L=7.3 is A15 (a), for 

L=9 is BCC (b), and for L=10.5 is C15 (c), with respectively 8, 16 and 24 points. 
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(a) 

(b) 

(c) 

Figure 4.8: The new periodic patterns that appear for L=7.2 is P8 (a), for L=9.8 is P20 (b) 

and for L=12 is P36 (c). Note that the discovery of the P8 pattern has been particularly 

difficult since it was occulted by the more frequent A15 pattern, whose L values (6.7 to 

7.9) completely hide those at which P8 arises (7.0 to 7.6). 
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(a) 

(b) 

Figure 4.9: The new periodic patterns that appear for L=12.3 is P40 (or K11) (a) and for 

L=12.7 is P42 (b). The surface represents locations where the energy functional is at 80% 

of its maximum. The letter P stands for points and the following number indicates the 

number of points in the pattern. The Voronoi diagram of the pattern P42 is a non-simple 

tiling by polyhedra with 13 and 14 faces. Some of the simple modifications of this tiling 

have lower cost than Kelvin’s partition of space. The figures on the right are projections 

along the z-axis. 
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In general, since the average distances between the local maxima are 

roughly constant, increasing the size of the cubic region in which the equa

tion is calculated increases the number of the local maxima within the same 

region. This allows structures with different level of complexity to be found 

simply acting on the size of the periodic boundary L. 

The patterns obtained from such a setup were BCC, FCC, P8, WP, P20, 

C15 [76, 8], P36, K11, P42. The values of L for which the patterns were 

found are: 4.5 for BCC, 5.7 for FCC, 7.2 for P8, 7.3 for WP, 9.8 for P20, 

10.5 for C15, 12 for P36, 12.3 for K11 and 12.7 for P42. More patterns are 

present at L=13.9 (P56), 14.0 (P60), 15.0 (P76) and 16.7 (P136). Since the 

system allows the solution to be stretched, the patterns were also found for 

values close to those given above. The values listed here correspond to the 

lowest PDE energy (see Equation 4.2). Any given pattern appears also for 

values that are integer multiples of these listed. Additionally, some of the 

patterns arise for more than only one value, such as FCC that also shows 

up at 7.4 and 9.6. Symbols starting with the letter P identify structures 

that have not been found in the literature. The number following the letter 

P specifies the number of points found in the cubic region at the stationary 

state. K11 contains 40 points. This pattern is described in a separate article 

[55], since the tiling having these points as Voronoi centers has been found 

for the first time using a different method. 

Using Sullivan’s vcs software [77] the Voronoi partition for each pattern 

of points was created. This software uses the gift-wrapping algorithm for 

the determination of the Voronoi vertices and for this reason is not stable 

when more than four Voronoi cells meet at a point. Since some of the new 

partitions found were non-simple, a small random quantity has been added 

to the coordinates of the points to avoid algorithm instabilities. 
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The partitions have been imported into Surface Evolver, where the added 

errors have been eliminated by deletion of the edges shorter than a given 

value. A number of additional simple foams has been created directly in 

Surface Evolver by popping vertices of non-simple ones. The outcome of 

this operation is not a unique structure since there are 3m + 4n different 

combinations, if m is the number of 8-connected vertices and n that of 6

connected vertices in the original non-simple foam. However, this number 

can be drastically reduced due to symmetry considerations. 

The periodic graphs of the nets constituted by the edges of the partitions 

have been analyzed by Systre [54] so that the primitive net could be identified 

and the number of tiles in the partition therefore reduced to its minimum 

possible. This helped in the case of P42, where the 42 tiles have been reduced 

to 14, as shown in Figure 4.10. 

Figure 4.10: The unit cell of the new partition P42 contains 14 polyhedra of 2 different 

kinds. Twelve non-simple [4-8-1] and two [0-12-2]. The Schlegel diagram of the non-simple 

[4-8-1] is shown. 

Fifteen out of the 81 combinatorially possible simple partitions derived 

from the P42 non-simple case are topologically distinct configurations. Each 

of these showed less surface area than K. The partitions contain only poly
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hedra with 13, 14 and 15 faces each, specifically those named below plus 

a [3-6-4] and a [2-8-5]. Their costs range from 5.303 to 5.306. Figure 4.11 

shows a picture of the tiling of the unit cell of the structure with the lowest 

cost, which has been named P42a. 

Figure 4.11: The unit cell of the new partition P42a contains 14 polyhedra of 4 differ

ent kinds. Four [1-10-2] (red), four [1-10-3] (green), four [2-8-4] (blue) and two [0-12-2] 

(yellow). Tiles of the same colour are related by point inversion or glides (a glide is a 

reflection plus a translation). The Schlegel diagrams of the first three are shown. From 

the top: [1-10-2], [1-10-3] and [2-8-4]. 

The content of quadrilaterals, pentagons and hexagons in the new par

tition P42a closely matches (Table 4.2) the values experimentally found in 

real foams first by the camera lucida drawings of the botanist Edwin Matzke 

in 1964 [11] and successively by the 3D Nuclear Magnetic Resonance images 

of Katsumi Kose in 1996 [9]. 

The fundamental unit is made of ten 14-hedra and four 13-hedra. The 
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polygon count percentage 

quad pent hex tot quad pent hex 

Kose 10 76 23 109 9 70 21 

Matzke 866 5503 1817 8221 11 67 22 

K 3 - 4 7 43 - 57 

WP - 48 6 54 - 89 11 

P42a 8 68 20 96 8 71 21 

Table 4.2: Polygonal composition experimentally found in real foams by Kose and Matzke 

compared to the distribution in some of the lowest cost periodic partitions known. Note 

the similarities with the P42a structure. 

polyhedral composition of P42a matches very closely that observed by Matzke 

[11]. The three most common cells in this partition [1-10-2], [1-0-3] and [2-8

4] are the first three entries in Matzke’s experiments. The [0-12-2] cell is at 

the fifth place in Matzke’s list, followed by the pentagonal dodecahedron [0

12-0], not present in P42a. The average number of faces is 13.71, very close 

to the values of 13.70 found by Matzke [11], 13.63 by Kose [9], the theoret

ical optimal value of 13.56 given by Coxeter for random close-packing [78], 

not far from the value of the currently conjectured solution to the Kelvin 

problem of 13.5 [6] and above the lower bound for equal-pressure foams of 

13.40 given by Kusner [57]. The lower bound for the cost corresponding to 

this last value is 5.254 as shown by Glicksman and Rios [79]. 

The space group for each of the foams produced were determined by 3dt, 

which is part of the Gavrog Project [49], and refers to the structure with the 

highest degree of symmetry having the same topology. The minimum cost is 

obtained by constraining the structure to have tiles of the same volume. It 

is relevant to note that the configuration of minimum cost does not always 
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coincide with the most symmetrical one. Note that P42a is characterized by 

a very low symmetry when compared to K and WP. Table 4.3 reports the 

data for comparison. 

simplified signature sp. gr. c z 

K [6-0-8] Im3m 5.306 14 

WP [0-12-0]+3[0-12-2] P m3n 5.288 13.5 

P42a 2[2-8-4]+2[1-10-2]+2[1-10-3]+[0-12-2] C12/c1 5.303 13.71 

P42 6[4-8-1]+[0-12-2] P 6/mcc 5.307 13.14 

Table 4.3: Simplified signature, space group of the most symmetrical configuration, min

imum cost c of the equal-volume configuration and average number of faces per cell z. 

The Surface Evolver code used for the calculation of foams properties and 

parameters (including their cost) has been provided by Sullivan. The code 

for the directional popping has been provided by Brakke. The code for the 

relaxation of the periods has been written by the author. This step consisted 

in numerical iterations in which lengths and angles of the vectors defining 

the periodic unit, along with the coordinates of all the vertices defining the 

structure where varied one at a time and the surface area further minimized. 

The periods of the unit cell and the coordinates of the centers of the 

Voronoi cells for the partition P42 are reported in Table 4.4. 

A graphical illustration for the set is shown in Figure 4.12, where the 

third dimension has been represented by varying the size of the dots. It is 

easy to see that the fundamental periodic unit of the pattern consists of two 

rings of six points stacked one on the top of the other with a relative rotation 

of π/6 and two points at the centre of these rings lying on intermediate 

planes. 
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ρ 

Periods 
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12 
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2 

Table 4.4: Parameters for the periodic point set for the Voronoi generation of the partition 

P42, given in the cylindrical system. 

Figure 4.12: The 14 points in the P42 pattern and how they relate to the periodic unit 

cell. The radius of the dots expresses the third dimension otherwise not representable on 

paper. There are four different sizes: one point in the origin at z = 0 (in white), six points 

at z = 0.5, one point at z = 1 (this coincides with that at z = 0 in this views) and six 

points at z = 1.5. 

The method described, opportunely tuned, can also be used to find new 

clues about the honeycomb problem considered by Tóth [80]. 

The pictures of the tilings have been generated with 3dt [49]. The 

Schlegel graphs (apart from that in Figure 4.10 that has been partially 

edited by hand) have been produced with Olaf Delgado-Friedrichs’ code in 
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Thomas Harmuth’s 3-regular planar graphs generator built in the software 

CaGe [81]. 

The point set P8 produces a new space-filling polyhedron with 13 faces, 

a [6-6-1]. Space group is Pa3 (see Figure 4.13). 

Figure 4.13: The new partitions P8 is made of a single polyhedron having 13 faces, a 

[6-6-1]. Space group is Pa3. 

The tilings for the sets P20 and P36 are shown in Figure 4.14. Space 

groups are P 4332 and P ca21 respectively. 

The stress concentration under static load of periodic foam structures, 
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including that derived from the tiling P42a, have been compared with the 

geometries produced in Chapter 5. The numerical results are described in 

the Chapter 7. 
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Figure 4.14: The partitions P20 and P36. Space groups are P 4332 and P ca21 respectively. 
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Summary 

•	 An extensive search on periodic simple tilings approximating the struc

ture of foams has been conducted [55]. 

•	 An algorithm for corona of polyhedra chosen among a given set has 

been developed. It is believed that its implementation on a computer 

would give rise to new structured arrangements of polyhedra, such 

linear (helices) or fully three-dimensional (tilings) [2]. 

•	 The first monotypic, non-isohedral simple tiling has been discovered 

[59]. 

•	 A partial differential equation known in pattern formation has been 

used for the first time with success for the solution of a problem in 

geometric measure theory [1]. 

•	 A new family of counter-examples to Kelvin’s conjecture on minimal 

surfaces has been discovered, showing a link with experimental evi

dence and a possible explanation to the intrinsic disorder in foams. 

One of the members of this family is also the first example of simple 

tiling containing only polyhedra with 13 and 14 faces [1]. 

•	 A new space-filling polyhedron with 13 faces has been discovered (the 

Voronoi diagram of the P8 pattern [1]). 



Chapter 5 

Periodic Nodal Surfaces 

The use of mathematical surfaces in defining the morphology of porous ma

terials allows simple models to be analyzed in a virtual environment without 

the need of any physical testing, this way reducing costs for equipment, elim

inating the inevitable errors due to the heterogeneity of the feature of the 

source specimens, both relative to their material properties and morphol

ogy. Additionally, measurement errors that always arise from experimental 

setups can this way be avoided. A further advantage is that such models 

can be easily and rapidly generated, modified and exchanged between sci

entists and engineers, who can then feedback their results to the rest of the 

scientific community. Defining a standard is much more simple and, for the 

same effort spent, more reliable and consistent than in the physical world. 

The main disadvantage is that models are not able to fully simulate the 

real object behaviour. The investigation of different properties requires the 

generation of different models for the same system. Models are created to 

solve individual problems related in general to a much larger and complex 

system. Even the apparently simple problem of understanding the mechan

ical response of porous materials in terms of stress distribution under load 

67
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would require different models, often on different scales, for an appropriate 

investigation. It will become clear that the geometrical models developed 

in this work could be used to predict both structural and fluid dynamical 

properties of highly porous materials with interconnected porosity. The fluid 

permeability of triply periodic minimal surfaces, which is a family of sur

faces strictly related to the PNS, has been recently evaluated by Jung and 

Torquato [82]. In this study the structural behaviour of materials bounded 

by PNS has been considered, and a correlation between their geometry and 

the stress concentration in the solid phase resulting from compressive load 

has been established. 

In this study, in order to generate the geometry of the scaffold, two 

different parametric methods have been investigated, lattice generation by 

a three-dimensional modelling application and surface definition by implicit 

triply periodic trigonometric functions. The first approach consists of the 

design of the lattice with the aid of a parametric modeler. The geometry 

obtained is shown in Figure 5.1. 

The implicit function method - the second method used in this work 

uses a set of triply periodic level surfaces [83], in a way that has been recently 

used also in nano design [84]. These surfaces are not only periodic, but also 

approximating a set of minimal surfaces. A more extensive description of 

minimal surfaces is given later in this chapter. At this stage, it is sufficient 

to know that if a surface is minimal, the area included in any closed curve 

lying on the surface is the minimum possible. The surface also divides the 

three-dimensional space into two equal volumes. 

The set of triply periodic minimal surfaces chosen in this work for their 

ability to produce skeletal graphs of different interconnectivity order is com

posed of: the primitive surface, the diamond surface and the gyroid surface 
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(Figure 5.2), having interconnectivity order respectively equal to 6, 4 and 3. 

In this section the structures of porous materials will be described from a 

topological point of view. In order to achieve this, the surface of separation 

that defines the internal arrangement of the porosity will be considered. The 

boundary surface between the solid and the void part of the structure will 

be designed via a mathematical model on the basis of the functions and 

constraints defined in the material. An advantage of using mathematical 

expressions to define the surface is that a desired number of parameters can 

be assigned to the model so that a subsequent shape optimization study can 

be carried out with relative ease. 

The surface has been modelled with the aid of a routine written by 

Michael Carley which uses the GNU Triangulated Surface Library [85]. Fi

nally, the geometry has been tested via Finite Element Analysis (FEA) to 

Figure 5.1: Lattice generated by a three-dimensional modelling application. 
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Figure 5.2: P (primitive), D (diamond) and G (gyroid) triply periodic minimal surfaces 

divide the space into two equal parts. These and more pictures are available on the 

Scientific Graphics Project website [83]. 

determine the effective stress distribution under load (Chapter 6). 

5.1 Surfaces 

The number of possible continuous surfaces that satisfy the requirement of 

dividing the space into two parts of given volumes is obviously infinite. The 

periodicity constraint narrows down this number without losing in general

ity. Several methods have been and are being adopted to model periodic 

surfaces [84] for geometries with the prescribed functions and constraints. 

Two of them have been developed in the present study, and they will be 

described below, in increasing order of versatility and potential number of 

applications. 

The first method consists in using a solid modelling software application. 

With a 3-D modelling program it is relatively easy to build a structure 

starting from elemental objects such as cylinders, join them together and 

provide them with a smooth surface fillet, to obtain a parametric cell. A 3D 

periodic array will complete the exercise. Although this method seems rapid 

and intuitive, the information stored on a computer increases quickly when 

handling NURBS (Non Uniform Rational B-Spline) and there are limits 



71 CHAPTER 5. PERIODIC NODAL SURFACES 

to the surface continuity at the junctions between struts and node fillets. 

This inevitably leads to processor and memory overload, often resulting in 

unmanageable graphical data handling. 

NURBS are mathematical curves obtained by the junction of more poly

nomial curves. They are widely used in computer graphics because of their 

high versatility in representing shapes and the ease with which curvature 

continuity can be imposed to the geometry. 

The second method is to generate the structures purely by mathematical 

expressions. This study considers an extension of the minimal surfaces dis

covered in 1890 by the German mathematician Hermann Schwarz [19] and 

in 1970 by Alan Schoen [20], in a similar way to that considered by several 

authors in recent years in different areas [84, 22]. This method is quite ver

satile because the geometries produced, defined by just one mathematical 

expression, are easily modifiable. A further advantage is that randomness 

can be introduced into the lattice, so that its distortion provides isotropic 

properties to the macroscopic porous matter. The only drawback is that a 

change in the parameters will result in an apparently unpredictable change 

in the shape. An accurate study of the behaviour of the function parameters 

used will allow the designer to understand their effects and relate them to 

more tangible physical quantities such as distances and angles. 

5.1.1 Minimal surfaces 

Minimal surfaces are those that minimize the area for a given closed contour. 

Mathematically they are defined as surfaces with zero mean curvature any

where. From a structural point of view the minimization of the surface area 

produces smooth surfaces and therefore the solid created by filling one side 

of the surface shows low stress concentration under applied load. In such a 
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geometry the stresses would tend to flow into the structure completely filling 

the volume available in an homogeneous way. At the same time, and for the 

same reason, there are no valleys or cavities in the surface so that stress 

concentration would be minimized. The minimality condition makes the 

surface “straight”, having the minimal area for any given closed curve lying 

on it. An immediate consequence is that ideally the yield point (or fracture, 

in case of brittle materials) is reached for a higher load than in samples 

made of exactly the same materials and having the same volume fraction 

of solid but with different geometry (for example a 3D grid of intersecting 

cylinders). 

The mean curvature of a surface S at a point P on itself is expressed 

by k = k1 + k2 where k1 and k2 are the principal curvatures of S in P. 

This means that if k1 is positive, k2 is negative and vice versa, making 

each point of the surface a saddle point. Unfortunately, a minimal surface 

also partitions the space into two symmetric zones, which in turns means 

that only 50% volume porous material can be designed. To obviate this 

fact, a different and more versatile (all the partitions possible) family of 

curves which closely approximates the minimal surfaces has been taken into 

account, the level surfaces approximation of minimal surfaces. This work 

extends the method shown by David Hoffman in the Scientific Graphics 

Project [83]. 

5.1.2 Level surfaces 

Level surfaces are expressed by the equality: 

f(x, y, z) = 0 (5.1) 

where f is a function declared in the implicit form. Using a combination 
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of trigonometric functions is possible to generate a wide range of periodic 

shapes, in the form: 

3 n

cos(xi) + k = 0 (5.2) 
i=1 j=1 

where symmetry is guaranteed by the rotational interchangeability of 

each spatial variable xi. 

Three different surfaces have been chosen that satisfy the constraints 

given above and show promising structural properties: the gyroid, the di

amond and the primitive surface as shown in Figure 5.3. The promising 

properties are provided by the fact that these level surfaces approximate 

the relative minimal ones. 

Figure 5.3: P, D and G minimal surfaces (red) and level surfaces (green) cross each other 

many times, and the crossings appear to lie roughly on planes [83]. 

5.2 Modelling methods 

In this study, two different parametric methods have been used, lattice gen

eration by a 3D modelling application and surface definition by implicit 

functions. 

The first method consists of the design of the cell lattice with the aid 

of the parametric modeller Unigraphics NX (UGS, Plano, Texas), as shown 
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in figure 5.4. The parameters chosen were interconnectivity order, which is 

the number of struts (or channels) departing from one node (4 in the case 

shown in Figure 5.1), length of the strut l, neck diameter of the strut d and 

curvature radius between struts r as in Figure 5.4. This shows a smooth 

surface covering the diamond lattice (carbon atoms can be imagined at the 

nodes). Figure 5.5 could result very useful for the intuitive understanding 

of these parameters, especially the interconnectivity order and the idea of 

node, which is the region where three or more struts meet. 

Figure 5.4: Parameter set chosen for the lattice generated by a three-dimensional mod

elling application. Length of strut l, neck diameter d and curvature radius r are indicated. 

The second method, the implicit function method, uses a set of triply pe

riodic level surfaces that has extended starting from the functions proposed 

in the Scientific Graphics Project (Figure 5.5) [83]. 

The boundary surface between the solid and the void region of the struc

ture has been designed via a mathematical model on the basis of the func



75 CHAPTER 5. PERIODIC NODAL SURFACES 

Figure 5.5: Modifications of the P (primitive), D (diamond) and G (gyroid) triply periodic 

minimal surfaces to their skeletal nets as shown on the Scientific Graphics Project website 

[83]. 

tions and constraints defined in the material. A three-dimensional implicit 

function is defined as f(x, y, z) = 0 whose graphic representation is a surface 

in the space. For example the equation: 

x 2 + y 2 + z 2 − 1 = 0 (5.3) 

represents a sphere with radius 1. An advantage of using mathematical 

expressions to define the surface is that a desired number of parameters can 

be assigned to the model so that a subsequent shape optimization study 

can be carried on with relative ease. A code written in C using the GNU 

Triangulated Surface Library has produced a wide range of shapes with 

different porosity. 

Equation 5.4 has been used to generate the porous structures illustrated 

in Figure 5.6. Is it easy to show that the parameter ki is proportional (not 

linearly) to the solid volume fraction. 

The calculation time for this kind and size of surface is between 0.4 and 

2 s, mainly depending on the size and the desired resolution of the output 

samples. The machine used for these operations is run by a Pentium 4 

processor, 2.4 GHz with 1 GB RAM. 
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cos x + cos y + cos z + ki((cos x cos y + cos y cos z + cos z cos x) + 2.8) < 0 

i = 1, 2, 3 k1 = −0.51, k2 = 0 , k3 = 0.51 (5.4) 

Figure 5.6: Modified level P surface showing how porous materials with low (left, 10%), 

medium (centre, 50%) and high (right, 90%) volume fraction can be represented using the 

same mathematical parametric expression. 

By tuning the parameters of the model it is possible to generate func

tionally graded materials with a porous inner core and a dense outer layer, 

imitating for example the transition in bone structure from cortical (com

pact) to cancellous (porous). Equation 5.5 produces the geometry shown in 

Figure 5.7. 

This is a modified G level surface with variable porosity along one pref

erential direction. The linear term kx has been added to the trigonometric 

terms providing the gyroid in order to vary the porosity. The parameter k 

gives the porosity gradient. 

The isolevel section (level surface) of the 3D modelling software applica

tion K3DSurf [24] has been used for the generation of the structures shown 

in Figure 5.8. 

The use of the viewer provided the opportunity to produce complex 

structures in a finite volume via implicit functions and inequalities. Equation 

5.7 generates the bone wedge shown in Figure 5.9. 
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cos x sin y + cos y sin z + cos z sin x + kx < 0 k ∈ R (5.5) 

Figure 5.7: The graphical output of the 3D modeller K3DSurf (left) and its physical 

realization on a 3DSystems Selective Laser Sintering machine (right). This is a modified 

G level surface that defines the boundary of a porous sample with a porosity gradient. 

Solid volume fraction (the complementary size of porosity) varies from zero (top) to one 

(bottom). 

The boundaries are produced by the first three inequalities, namely a 

cylinder and two inclined planes. The main inequality is a modified level G 

surface whose principal directions have been made coincide with cylindrical 

coordinates (radial and tangential). Also, the porosity has been imposed to 

grow logarithmically with th radius to simulate trabecular bone distribution 

in long bones. 

The radius of the outer cylinder is R and the two cutting planes are 

x + z = 0 and x − z = 0. 

This new approach to 3D modelling is particularly useful when dealing 
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cos x sin y + cos y sin z + cos z sin x+


0.08(cos(2x) cos(2y) + cos(2y) cos(2z) + cos(2z) cos(2x)) + 1.4 < 0 (5.6)


Figure 5.8: A modified G surface generated via a 3D viewer. 

with microstructure of materials, because of its capability of representing 

small features like struts and pores with little memory allocation. Addition

ally, the highest degree of continuity is implicitly guaranteed at any point 

on the surface because these functions are of class C∞, which means that 

they are differentiable an infinite number of times. 

In the next chapter, a different geometrical class of porous materials has 
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(x 2 + y 2 < R2)&(x + z > 0)&(x − z > 0) 

cos(a log r) sin(aθ) + cos(aθ) sin z + cos z sin(a log r)+ 

+ k1(cos(2r)cos(2aθ) + cos(2aθ)cos(2z) + cos(2z)cos(2r)+ 

+ 2(k2 − (x 2 + y 2)/R2) < 0 

r = x2 + y2, θ = arctan(y/x), a ∈ N, ki ∈ R (5.7) 

Figure 5.9: A bone wedge generated via mathematical functions. The first three terms 

generate a cylindrical wedge, the first inequality being a cylinder, the second and the third 

ones a plane. A radial, logarithmically growing, gyroidal porosity is shaped by the main 

inequality. 
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been assessed. The vast majority of porous material nowadays produced 

by the manufacturing industry is created through techniques that either 

directly introduce a foaming agent or a surfactant into a solidifying liquid, 

either copy the geometry of the structures produced with this method to 

create samples made out of other materials (replica technique), typically by 

spraying or dipping. 

These materials are referred to as foams. Due to their wide use in engi

neering applications, the prediction of their properties based on their geom

etry would be quite handy. Additionally, an idealized model for foams could 

be directly comparable to the models described in the present chapter. 
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Summary 

•	 Minimal surfaces and their approximation by Periodic Nodal Surfaces 

have been identified as potential candidates for porous matter mod

elling 

•	 A general formula for the generation of a family of modified surfaces 

has been proposed (Equation 5.2) 

•	 An example of the design of porous materials to hard tissue replace

ment in orthopaedics has been shown 



Chapter 6 

Numerical Simulations 

The geometries generated with the two methods described in the previous 

chapters have been converted into solid parts having the same volume frac

tion, which has been fixed in 0.1, and tested with a Finite Element Analysis 

software. The solid volume fraction of foamed materials typically range from 

0.03 to 0.12 (ERG Duocel foams). Since the aim considered at this stage 

consisted in evaluating the influence of network topology on the stress con

centration under static load, a constant value has been chosen. The study 

aims to test PNS models and establish whether they present lower stress 

concentration than foam-like geometries when a static axial load is applied, 

assuming the material as linear elastic. 

6.1 PNS models 

The unit nodes of the PNS models (see Chapter 5) shown in Figure 6.1 

have been isolated and two struts departing from the same node have been 

applied a load on the direction of the line joining the node centres. 

The geometries shown in Figure 6.1 have been generated with a version 

of the application K3DSurf [24] that has been personally provided by its 
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Figure 6.1: The nodes of the three structures, obtained as the intersection of a solid sphere 

of radius equal to the distance between two neighbour nodes, with a solid bounded by the 

isolevel surfaces P, D and G. 

developer, Taha Abderrahman. Implicit functions and boundaries are given 

by Equations 6.1 and 6.2 for the P surface, Equations 6.3 and 6.4 for D and 

Equations 6.5 and 6.6 for G. 

cos x + cos y + cos z+ 

+0.553(cos x cos y + cos y cos z + cos z cos x) < 1.34 (6.1) 

(x − π)2 + (y − π)2 + (z − π)2 < (2π)2 (6.2) 

sin x sin y sin z + sin x cos y cos z+ 

+ cos x sin y cos z + cos x cos y sin z+ 

+0.1(cos(4x) + cos(4y) + cos(4z)) < 1.07 (6.3) 

(x − 
π 
4
)2 + (y − 

π 
4
)2 + (z − 

π 
4
)2 < π2 (6.4) 

cos x sin y + cos y sin z + cos z sin x+ 

−0.02(cos(2x) cos(2y)+ 

+ cos(2y) cos(2z)+ 

+ cos(2z) cos(2x)) < 1.17 (6.5) 

(x − 
π 

)2 + (y − 
π 

)2 + (z − 
π 

)2 < π2 (6.6)
4 4 4 

The graphical application is able to export the surface mesh into the 
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Wavefront Object format (obj), which consists of a list of vertices and facets. 

An example is probably the best way to understand how the information is 

structured in such a file format. A cube, with its 8 vertices and 6 quadrilat

eral faces, would look like this: 

v 0.0 0.0 0.0 

v 0.0 0.0 1.0 

v 0.0 1.0 0.0 

v 0.0 1.0 1.0 

v 1.0 0.0 0.0 

v 1.0 0.0 1.0 

v 1.0 1.0 0.0 

v 1.0 1.0 1.0 

f 1 3 7 5 

f 1 5 6 2 

f 1 2 4 3 

f 3 4 8 7 

f 2 6 8 4 

f 5 7 8 6 

where the letter v indicates the presence of a vertex, followed by three real 

numbers that represent the three-dimensional coordinates and f of a facet, 

in this case followed by a finite set of integers, each referring to the n-th 

vertex in the list of vertices. Note that vertex order gives facet orientation. 

The exported surface were triangulated meshes. The resolution of the 

grid was 30x30x30 voxels, where each voxel contained one vertex of the 

mesh. This produced obj files of respectively 73, 116 and 71 KB in size. The 

exported obj files have been converted into the 3DStudio format (3ds) using 

the multi-translator tool ivcon [86] and finally into the IGES format, which 
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is readable by all the most common industrial FEA platforms. This last 

step needed the application exoTKAD [87], which uses the OpenCASCADE 

libraries [88]. 

The translation operation is a step that might be affected by data loss. 

Different computer graphics file formats that handle three-dimensional data 

structure the information in different ways. For this reason standards have 

been developed that can cope with many formats this way allowing the 

exchange of 3D data between different applications. One of these is the 

IGES standard [89], that has been used in this work. The standard is 

organized in geometrical entities, each of which defines the topology of the 

elements considered, and their features, listed as attributes of the entities. 

6.2 Foam models 

The models that showed the lowest value of the cost, described in Section 3.1 

and 4 have been converted into a format suitable to be fed into a FEA appli

cation. These models are related to the structures A15, ZA15 (a structure 

belonging to the TCP range) and P42a. The input files for the mechanical 

tests have been generated with a Surface Evolver script provided by Brakke 

able to cut cubic finite samples out of a given periodic, infinte foam. Figure 

6.2 shows one of these, ZA15. 

As previously stated, the A15 foam model, also known as the Weaire-

Phelan structure, is the current conjectured solution to the Kelvin problem 

and - as such - the best approximation of the geometry of real foams by a 

crystalline structures. The model consists belongs to the TCP structures. 

The ZA15 foam model also belongs to the TCP structures. Its unit cell 

is made of 15 polyhedral cells. It can be thought of as the union of an A15 

foam (8 cells) and a Z foam (7 cells). 
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Figure 6.2: A crossed-eye stereo image of a cubic sample of the foam generated by the 

partition ZA15. 

The new P42a foam model has been discovered within this work using a 

novel method able to find tetrahedrally close packed structures. The method 

is based on the partial differential equation named after Swift and Hohenberg 

[1]. The periodic unit of P42a consists of 14 polyhedral cells, all having either 

13 or 14 faces each. Its cost is just below 5.304. As a reminder, the cost of 

the partition related to the b.c.c. lattice, mentioned in a famous manuscript 

by Lord Kelvin [4], is about 5.306, then conjectured to be minimal. 

The models for the new partition P42a can be downloaded from the 

web in Surface Evolver, D-symbols and OFF formats [90]. Conversion to 

different file formats is available upon request. 

6.3 Stress analysis 

The geometry of the samples has been imported into FEA software for a 

bending test. For each geometry, two neighbouring struts have been ex

tracted from the periodic net. A compressive load in the direction of the 

line joining the centres of the free ends has been applied, as shown in Figure 

6.3. 
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Figure 6.3: A tetrahedral mesh of the G structure. The sample shown does not contain 

any closed rings. 

Tetrahedral volume meshes have been generated using the element pro

vided by the software Ansys called SOLID72. The study has been limited 

to the flexural behaviour of two contiguous struts, isolated from the rest of 

the net, for each of the geometries proposed, with the purpose of demon

strating the existence of a link between the number of struts meeting at a 

node and the spatial rate of stress at their junctions. Note that the samples 

considered are finite and do not contain closed rings. 

The cross-sectional area along the struts in the PNS structures has been 

varied by adjusting the parameters of Equations 6.1 and by keeping the 

volume fraction constant. The initial values of these parameters have been 

chosen so that the resulting computer generated image of the structure was 

reasonably solid. Then, a numerical has been run and the results stored in 

a file. Parameters have been varied and new analyses taken until a local 
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minimum was found. 

Numerical values for the material properties and applied load were cho

sen in an arbitrary way, since the interest was directed on the relative, not 

absolute, behaviour. Elastic modulus and Poisson’s ratio were chosen equal 

to 100GP a and 0.3. The force applied was 1kN . 

The rate of stress r at the common node has finally been recorded. This 

has been measured as the derivative of the Von-Mises stress respect to length 

on the surface of the inner part of the node. The results are shown in Table 

6.1. 

P D G A15 ZA15 P42a


r (Pa/m) 42.8 38.1 30.9 39.3 41.3 41.1


Table 6.1: Rate of stress at the central node (on the surface, inner side). 

As expected, the foam-like models have a similar values to the D struc

ture, since both have four struts per node and an average angle between the 

struts of arccos(−1/3). 

The lowest rate of stress is achieved by the gyroidal sample. This makes 

this kind of structure particularly suitable for porous components used in 

load bearing applications and where mass dictates the rules for the choice 

of the material. 
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Summary 

•	 A parametric study on the PNS has been carried out. Manual itera

tions led to a local minimum for a specific target. 

•	 The rate of stress under load at the junction of neighbouring struts in 

two families of models of highly porous structures has been measured. 

•	 A comparison betwwen the rate of stress at the junction of isolated 

nodes of the PNS and the foam-like structures with identical solid 

volume fraction indicated the surface G as the ideal model. 



Chapter 7 

Results 

This work led to four main results, three theoretical discoveries and one 

practical invention. 

The first result is about the mathematical optimization problem of di

viding the space in regions of equal volume with the least interfacial area. 

Geometry is the key to the understanding of the mechanical behaviour of 

cellular solids. It should not come as a surprise the fact that soap bubbles 

have elements in common with uniformly spread patterns of points in space. 

The second result is an unusual tiling by a polyhedron with 14 faces 

that has been obtained from a combinatorial algorithm presented for the 

first time in this work. 

The third result is a new space-filling polyhedron with 13 faces. It has 

been found using the Swift-Hohenberg equation. Six were the documented 

space-filling polyhedra with 13 faces before this study [91]. 

The fourth result offers a new design approach for the surface of or

thopaedic joints and implants. A patent, describing one of the possible 

applications, has been filed in the UK (patent application no. 0809721.4, 

AI 13634 GB). The interface body-implant is one the most common causes 
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of misalignment and poor fixation. This invention increases the porosity of 

the interface of the implant allowing bone in-growth and biointegration. 

7.1 Discovery: Soap bubbles and cell aggregates 

The Kelvin problem has not been solved but a new family of counter

examples has been found with one of the methods proposed in this the

sis. The counter-example with the lowest cost among the structures in this 

family is shown in Figure 7.1. 

Figure 7.1: The new tiling P42a. The net carried by this tiling is a good approximation 

of a foam, since its cost is low and it contains a ratio of polyhedra close to that found in 

real foams. The image has been generated with 3dt [49]. 

After the discovery of new anisotropic patterns associated to configu

rations of minimality, the interest has moved to the understanding of the 

links between the Swift-Hohenberg equation and the solution to the Kelvin 
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problem. The PDE energy has been computed for many patterns but no 

numerical correlation has been found between this and the cost of the parti

tion derived by the Voronoi diagram of such patterns. An analytical study is 

planned in the near future. At the moment the only outstanding fact is that 

both are converging towards a tiling by regular simplicia (triangles in the 

plane, tetrahedra in the space), the first by evolving to a pattern with the 

relative minima located at the vertices of almost regular simplicia (the regu

lar tetrahedron does not tile the space), the second by requiring the bubbles 

to be tetrahedrally packed (its dual structure is a tiling by simplicia). 

The concentration of quadrilaterals, pentagons and hexagons in the new 

partition P42a closely matches (Table 4.2) that of real foams found by 

Matzke [7]. 

Figure 7.2 shows a crossed-eye stereo image produced with the Surface 

Evolver of the minimal surface of P42a’s periodic unit. 

Figure 7.2: A crossed-eye stereo image of the partition P42a as it appears in the Surface 

Evolver at the end of the optimization iterations and periods relaxation, showing its 

slightly curved faces. 

Figure 7.3 shows a model built using a plastic flexible pipe and tetrahe

dral plastic joints by Cochranes of OxfordTM . 
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Figure 7.3: A plastic model of half of the unit cell of P42a. Photo courtesy of Tim 

Holsgrove. 

7.2	 Discovery: A new simple tiling with unusual 

properites 

A new tiling has been discovered using a novel combinatorial algorithm 

developed for the first time in this thesis. The polyhedron belonging to 

the tiling comes in four different geometries, called enantiomers. It has 14 

faces: 1 quadrilateral, 10 pentagons and 3 hexagons. It tiles the space within 

the triclinic system, the only entry of this type on the Reticular Chemistry 

Structure Resource. Space group is P 1. A picture of its periodic unit shows 

the spatial arrangement of the single tiles composing its periodic unit in 

Figure 7.4. The image has been generated with 3dt [49]. 
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Figure 7.4: The periodic unit of the tiling rug, made of chiral copies of the same polyhe

dron [1-10-3]. The four pairs of enantiomers have different colours. The image has been 

generated with 3dt [49]. 

7.3 Discovery: A new space-filling polyhedron 

A new space-filling polyhedron has been discovered using the Swift-Hohenberg 

partial differential equation for pattern formation. It is a non-simple poly

hedron with 13 faces having 6 quadrilaterals, 6 pentagons and 1 hexagon. 

It tiles the space with the symmetry group Pa3. It is the first space-filling 

13-hedron that tiles space with cubic symmetry. The previously known ex

amples belongs to the tetragonal system [91]. Its periodic unit is shown in 

Figure 7.5. The image has been generated with 3dt [49]. 

7.4 Invention: Improvement in joints and implants 

Mathematical surfaces derived from the trigonometric implicit functions, 

approximating the PNS, have been used to produce the three-dimensional 

file of an acetabular cup, one of the components of a hip replacement system. 



95 CHAPTER 7. RESULTS 

Figure 7.5: The periodic unit of the tiling by [6-6-1] polyhedra, derived by the Voronoi 

diagram of the pattern P8 obtained with the three-dimensional Swift-Hohenberg equation 

used in pattern formation. The image has been generated with 3dt [49]. 

A common problem with implants is their fixation to the structure of bone. 

Loosening of the implant at the interface is likely to invalidate or drastically 

reduce the functions for which the implant was made for. It is the main 

cause of revision surgery. Many are the techniques nowadays used to increase 

bone fixation and reduce the chances of an early revision. In this work the 

surface feature of the implant has been modelled so bone is allowed to grow 

into it. The upper surface of the cup has been modelled with the gyroidal 

motif, with gradually varying porosity, ranging from 0 (solid) to 1 (external 

surface) as shown in Figure 7.6. The surface can be easily modelled with 

different motifs. The reason the gyroidal motif was chosen is that stress 

concentration is minimized among the structures studied in this work (see 

Table 6.1). 
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Figure 7.6: The acetabular cup, showing an exaggerated gyroidal surface feature with 

porosity gradient. 
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The parameters and the function used to describe the gyroidal surface 

are shown in Equation 7.1 and 7.2. 

r = x2 + y2 + z2 

y
θ = arctan 

x 
z 

φ = arctan � (7.1) 
x2 + y2 + z2 

z > 0 

x 2 + y 2 + z 2 > ri 
2 

cos r sin nθ + cos nθ sin nφ + cos nφ sin r + ar − b < 0 (7.2) 

The gyroidal motif was chosen because of its smoothly distributed stress 

field under static load as shown in Table 6.1. The porosity gradient in the 

radial direction allows bone to grow into the feature of the implant for a 

rigid and long-lasting bone fixation. 

The invention has been recently filed as a UK patent, application no. 

0809721.4, AI 13624 GB [92]. 



Chapter 8 

Future work 

The double outcome of the work conducted in this thesis addresses new lines 

for further development of the methods employed, both for the modelling of 

highly porous structures and the algorithms for the solution to the Kelvin 

problem. 

Regarding the modelling, future work should consider the coupled struc

tural and fluid dynamic case. Fluid permeability is strictly connected with 

the structural problem, since the vast majority of engineering applications 

that utilise highly porous materials with low solid volume fraction require 

them to be also permeable to fluids. The only study available considers the 

flow through periodic minimal surfaces [82], which represent the 0.5 volume 

fraction case. 

More is planned for the the second aim of this work, the solution to the 

Kelvin problem and the problems associate with it, like the covering problem 

[93]. Now that a proof for the existence of minimal partitions has been given 

[43], the search for methods able to produce structures that might show less 

surface area than the Weaire-Phelan structure is making even more sense. 

The main aim of the future activity is to continue the search for space 
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partitions with lower surface area than the Weaire-Phelan structure. Three 

are the methods that have been proposed within this thesis. They have not 

been exhausted yet and they need to be continued and improved in a future 

work. The methods will allow the identification of possible candidates for 

surface-minimizing foams (the surface free energy of an interface is, in first 

approximation, proportional to the surface area). 

The first method consists of a complete search for 3D simple tilings 

with increasing complexity (and decreasing symmetry) based on the De

laney symbols and the combinatorial tiling theory [48]. The search began 

in March 2008 and is now running on three supercomputer facilities. The 

work planned for this project consists of improvements (shortcuts) to the 

current algorithm and in managing the I/O file stream on the supercom

puter facilities, since these are at the moment the major bottlenecks in the 

whole process. 

The second method is based on the combinatorial matching rules for 

simple polyhedra with 13 and 14 faces having at most one quadrilateral face 

[2]. The algorithm has already been used to find a monotypic simple tiling 

[59], but it needs to be implemented on a machine. The plan is to define the 

data structure needed for this method, set the steps for the algorithm and 

write the necessary code. Substantial difficulties have been encountered in 

the very first stage of this procedure, the definition of the ideal data structure 

for the polyhedra and for the available slots in the cluster of polyhedra. 

The future developer of the algorithm is advised not to underestimate this 

problem, as it might result in increased computational complexity, which 

eventually will make the algorithm inefficient for any practical use. 

The third method is by construction of the Voronoi diagram of point 

sets obtained with the 3D Swift-Hohenberg equation in a three-torus and 
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pseudorandom initial conditions. This approach has produced the most in

teresting results [1]. It starts from random initial conditions and for this 

reason a large number of runs is necessary in order to evaluate the output. 

An implementation of a script that automatizes the process of pattern pro

duction and data extraction would be of valuable help. This software, if 

necessary, will run on a parallel architecture machine and the results will be 

directly fed into the downstream softwares, the Voronoi generator [77] and 

the surface area minimizer [45]. 

The extension of the investigation to cases of higher dimensions is an

other target of possible future projects. All of the algorithms mentioned 

above can be used to approach the n-dimensional problem, in most cases by 

simply adding an extra coordinate to the algorithm. 

8.1 Intellectual merit 

A solution to the problem would be a result in geometric measure theory. 

Both unicity and crystalline order of the solution are open problems. The 

discovery of new structures will provide clues that might prove useful in the 

construction of the formal proof to the Kelvin’s problem. 

The question about order of the solution has fascinated scientists and 

engineers for years, since physical foams made of large aggregates of bubbles 

of equal volume do not show any kind of order and any effort spent in 

producing experimentally dry Weaire-Phelan foams has not given a positive 

outcome so far [33]. 

The generation of a geometrical reference model for foams would be par

ticularly useful in the process of understanding their mechanical behaviour, 

e.g., for the understanding of cellular solids, because it would represent the 

topological standard for use in numerical simulation such as finite element 
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analysis both structural and thermo-fluid dynamical. 

Also, the solution to Kelvin’s problem has applications in data compres

sion (optimal quantizers) [94, 95, 31], biology (cell aggregates) [42], crystal

lography [60], spatial arrangement of sensors [30], condensed matter physics 

[28] and the physics of amorphous solids [71]. 



Glossary


dry foam A foam with less than 1% liquid, 4 

enantiomer A crystal or three-dimensional form that is 

not superposable on its mirror image, 92 

enantiomer A mirror object that can not be superposed 

on its source, as in the left and the right hand. 

Same as chiral, or point inverted image, 41 

FGM Functionally Graded Material: Materials that 

can be characterized by the variation in com

position and structure gradually over vol

ume, resulting in corresponding changes in 

the properties of the material, 2 

k tile-transitive Containing k symmetrically distinct tiles, 41 

k vertex-transitive Containing k symmetrically distinct vertices, 

41 

Kelvin Problem In geometric measure theory, the problem of 

dividing space into equal volume cells with 

minimum partitional area, 1 
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manifold 

monodisperse 

pattern formation 

PNS 

polyhedron 

polytope 

In mathematics, more specifically in differen

tial geometry and topology, a manifold is a 

mathematical space that on a small enough 

scale resembles the Euclidean space of a cer

tain dimension, called the dimension of the 

manifold, 13 

Same as monosized, made of subunits or par

ticles having the same size, 1 

The science that studies the orderly outcomes 

of self-organization and the common princi

ples behind similar patterns, 1 

Periodic Nodal Surfaces: a family of surfaces 

at which a standing wave has minimal am

plitude. Their mathematical expressions are 

implicit functions of sinusoidal terms, 1 

A geometric solid with faces, edges and ver

tices, 1 

A generalized term referring to an n-

dimensional geometrical entity made of (n

1)-dimensional subunits. Examples inlcude 

polygons and polyhedra, 1 
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SFF techniques A collection of techniques for manufacturing 

solid objects by the sequential delivery of en

ergy and/or material to specified points in 

space to produce that solid. SFF is sometimes 

referred to as rapid prototyping, rapid manu

facturing, layered manufacturing and additive 

fabrication, 1 

sphere covering In geometry, the problem concerning the ar

rangement of the minimum number of over

lapping identical spheres able to cover a space, 

1 

sphere packing In geometry, the problem concerning the 

arrangement of non-overlapping identical 

spheres in a space, 1 

Swift-Hohenberg eq. A partial differential equation derived from 

the equation for thermal convection, mainly 

used for its pattern forming behaviour, 3 

TCP structures A family of simple tilings by a set of polyhedra 

having 12, 14, 15 and 16 faces each, containing 

pentagonal and hexagonal faces only, 1 

tessellation See tiling, 1 

tiling An n-dimensional assembly of tiles that fills 

the space with no gaps. Also called tessella

tion, 1 



Glossary	 105 

torus	 A doughnut, or anything that is homeomor

phic to (has the same topology of) a torus. A 

two-torus is a periodic square, where points 

on the left side coincide with points on the 

right side (and top with bottom), 29 

TPMS	 Triply Periodic Minimal Surfaces: a family of 

three-dimensional surfaces having zero mean 

curvature and showing periodicity in the three 

directions of space, 7 

triclinic	 In crystallography, the triclinic crystal system 

is one of the 7 lattice point groups and the 

lowest symmetry system, 40 
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3dt [49]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 

7.5	 The periodic unit of the tiling by [6-6-1] polyhedra, derived 

by the Voronoi diagram of the pattern P8 obtained with the 

three-dimensional Swift-Hohenberg equation used in pattern 

formation. The image has been generated with 3dt [49]. . . . 95 

7.6	 The acetabular cup, showing an exaggerated gyroidal surface 

feature with porosity gradient. . . . . . . . . . . . . . . . . . 96 



References 

[1] R. Gabbrielli. A new counter-example to Kelvin’s conjecture on mini

mal surfaces. Phil. Mag. Lett., 89:483–491, 2009. 

[2] R. Gabbrielli.	 An algorithm for equal-volume minimal surface area 

partitions of three-space. Available at http://people.bath.ac.uk/ 

rg247/corona.pdf. 

[3] H. G. von Schnering and R. Nesper.	 Nodal surfaces of fourier series: 

Fundamental invariants of structured matter. Zeitschrift für Physik B, 

83:407–412, 1991. 

[4] W. Thomson. On the division of space with minimum partitional area. 

Phil. Mag., 24:503, 1887. 

[5] D. Weaire.	 The Kelvin Problem: foam structures of minimal surface 

area. CRC, first edition, 1997. 

[6] D. Weaire and R. Phelan. A counter-example to kelvin’s conjecture on 

minimal surfaces. Phil. Mag. Lett., 69:107–110, 1994. 

[7] E. B. Matzke.	 The three-dimensional shape of bubbles in foam - an 

analysis of the role of surface forces in three-dimensional cell shape 

determination. Am. J. Bot., 33:58–80, 1946. 

[8] J. Sullivan. The geometry of bubbles and foams, 1998. 

112 

http://people.bath.ac.uk/


113 REFERENCES 

[9] K. Kose.	 3D NMR imaging of foam structures. Journal of Magnetic 

Resonance, A118:195–201, 1996. 

[10] A.M Kraynik, D. A. Reinelt, and F. van Swol.	 Structure of random 

monodisperse foam. Phys. Rev. E, 67, 2003. 

[11] E. B. Matzke. The three-dimensional shape of bubbles in foams.	 Pro

ceedings of the National Academy of Sciences of the United States of 

America, 31:281–289, 1945. 

[12] H. Fountain. A problem of bubbles frames an olymic design.	 The New 

York Times, August, 5:F4, 2008. 

[13] N. Mills.	 Polymer foams handbook. Butterworth-Heinemann, first edi

tion, 2007. 

[14] M. F. Ashby, N. A. Fleck, et al.	 Metal foams. Elsevier, first edition, 

2000. 

[15] M. Scheffler and P.	 Colombo. Cellular ceramics. Wiley-VCH, first 

edition, 2005. 

[16] A. Kelly.	 Why engineer porous materials? Phil. Trans. R. Soc. A, 

364:5–14, 2006. 

[17] D. L. Bourell, H. L. Marcus, et al.	 Selective laser sintering of metals 

and ceramics. International Journal of Powder Metallurgy, 28:369–381, 

1992. 

[18] M. F. Ashby. The properties of foams and lattices. Phil. Trans. R. Soc. 

A, 364:15–30, 2006. 

[19] H. A. Schwarz.	 Gesammelte Mathematische Abhandlungen. Springer-

Verlag, Berlin (Reprinted by Chelsea Publishing Company, 1972, 1890. 



114 REFERENCES 

[20] A. H. Schoen.	 Infinite periodic minimal-surfaces without self-inter

sections. NASA Technical Note, D-5541:1–70, 1970. 

[21] R. Gabbrielli, I. G. Turner, and C. R. Bowen. Development of modelling 

methods for materials to be used as bone substitutes. Key Eng. Mat., 

361:903–906, 2008. 

[22] S. Rajagopalan and R. A. Robb. Schwarz meets schwann: design and 

fabrication of biomorphic and durataxic tissue engineering scaffolds. 

Medical Image Analysis, 10:693–712, 2006. 

[23] Oed online, mar 2008. 

[24] Available at http://k3dsurf.sourceforge.net, apr 2007. 

[25] L.J. Gibson and M.F. Ashby.	 Cellular solids, structure and properites. 

Cambridge University Press, second edition, 1997. 

[26] G. C. Barker. All kinds of bubbles. Science, 289:398, 2000. 

[27] P. Ziherl and Kamien R. D. Maximizing entropy by minimizing area: to

wards a new principle of self-organization. J. Phys. Chem. B, 105:10147, 

2001. 

[28] G. M. Grason.	 The packing of soft materials: Molecular asymmetry, 

geometric frustration and optimal lattices in block copolymer melts. 

Physics Reports, 433:1–64, 2006. 

[29] D. Weaire, S. J. Cox, et al. Foams in microgravity. J. Phys. IV France, 

11:213, 2001. 

[30] S. M. Nazrul Alam and J. Haas Zygmunt. Coverage and connectivity in 

three-dimensional underwater sensor networks. Wirel. Commun. Mob. 

Comput., 8:995–1009, 2008. 

http://k3dsurf.sourceforge.net


115 REFERENCES 

[31] R. P. Barnes and N. J. A. Sloane. The optimal lattice quantizer in three 

dimensions. SIAM J. Algebr. Disc. Meth., 4:30–41, 1983. 

[32] W. Y. Jang, A. M. Kraynik, et al. On the microstructure of open-cell 

foams and its effect on elastic properties. Int. J. Solids Struct., 2008. 

[33] A. ven der Net, W. Drenckhan, D. Weaire, and S. Hutzler. The crys

tal structure of bubbles in the wet foam limit. The Royal Society of 

Chemistry, Soft Matter, 2:129–134, 2006. 

[34] J. E.	 Taylor. The structure of singularities in soap-bubble-like and 

soap-film-like minimal surfaces. Ann. Math., 103:489–539, 1976. 

[35] R. Kusner and J. Sullivan. Comparing the weaire-phelan equal-volume 

foam to kelvin’s foam. Forma, 11:233—242, 1996. 

[36] Wolfram mathworld.	 Available at http://mathworld.wolfram.com, 

mar 2009. 

[37] Pappus d’Alexandrie.	 La collection mathématique. Albert Blanchard, 
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Appendix A 

Research Publications 

The author has published one conference paper and two articles in referred 

journals. Below is given a background and a brief description of the findings 

for each publication, in chronological order. 

A.1	 Development of modelling methods for mate

rials used as bone substitutes 

The idea of investigating the geometrical structure of idealized, highly porous 

materials has been given to the author by a natural material found in ver

tebrates, osseous tissue. This mineralized connective tissue is thought to 

optimize strength and stiffness to mass ratios in order to facilitate animal 

locomotion. The guidance of the author’s supervisors combined with his 

interest in the emerging technologies for the rapid manufacture of geomet

rically complex parts yielded his first publication, the content of which was 

presented at the Bioceramics20 conference in Nantes in September 2007 

and a month later at the European Society for Biomaterials conference in 

Brighton. 
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The paper describes a family of triply periodic surfaces generated by 

implicit functions of finite sequences of trigonometric terms. The application 

to porous materials, functionally graded materials and bone substitutes is 

substantiated with SFF polymeric samples. 

A.2	 A new simple tiling, with unusual properties, 

by a polyhedron with 14 faces 

On a parallel path, the author has always considered the geometry of a 

class of materials that have been and are often used as the starting point 

in the manufacture of bone substitutes. This is the class of foamed ma

terials. A problem related to the geometry of the ground state of foams 

widened the author’s interests to more theoretical issues in chemistry and 

crystallography, physics and condensed matter, combinatorics, symmetry 

and complexity and the nature of order/disorder in materials. A new com

binatorial approach for the tiling of polytopes generated a new structure 

that aroused the interest of people working in the area of crystallography 

and led to a second publication. 

The article, published as a short communication, describes a polyhedron 

with 14 faces that fills the space with no gaps. Many are the tiles of this type 

that have been already discovered, but the unique feature of this tiling is 

given by its tiles. Although sharing the same Schlegel diagram (i.e. having 

the same face adjacency map), tiles can not be be superpose each other (i.e. 

they are chiral, like the left and the right hand). 
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A.3	 A new counter-example to Kelvin’s conjec

ture on minimal surfaces 

The third publication, the idea of which was suggested to the author by 

an interactive applet showing the numerical solution of a partial differential 

equation, represents the most appreciated result of the author’s work world

wide. This is a new - and the first known - method able to actively search 

for solutions to the celebrated Kelvin problem, which asks for the partition 

of space in equal volume cells with minimal area. The problem relates to 

the geometry of cell aggregates, foams and soap bubbles but the connections 

with wave theory, metal crystallites, photonics and data compression, as well 

as the more theoretical ones like sphere coverings, n-dimensional quantiza

tion and tilings, can not be ignored. A series of invited lectures in the US, 

Australia, Italy, UK and the Netherlands followed the discovery and is still 

growing at the time of the writing of this thesis. 

The article describes an application of pattern formation to optimal ge

ometry. A well-known partial differential equation has been numerically 

computed in three-dimensional space with periodic boundary conditions. 

Starting from random initial conditions, the equation converges to a station

ary state. The coordinates of the local maxima have then been extracted 

and used for the generation of periodic Voronoi partitions. The surface area 

of the partitions has then been numerically minimized and compared with 

that of the previously known structures, showing the existence of a new 

counter-example to Kelvin’s conjecture. 
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Citation data are for the articles are listed below: 

•	 Development of modelling methods for materials used as bone substi

tutes, with Irene Turner and Chris Bowen, Key Eng. Mat. 361-363, 

2008, pp 903-906. 

•	 A new simple tiling, with unusual properties, by a polyhedron with 14 

faces, with Mike O’Keeffe, Acta Cryst., A64, 2008, pp 430-431. 

•	 A new counter-example to Kelvin’s conjecture on minimal surfaces, 

Phil. Mag. Lett., 89, 2009, Issue 8. 



Development of Modelling Methods for Materials to be Used as Bone 
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Abstract. The demand in the medical industry for load bearing materials is ever increasing. The 

techniques currently used for the manufacture of such materials are not optimized in terms of 

porosity and mechanical strength. This study adopts a microstructural shape design approach to the 

production of open porous materials, which utilizes spatial periodicity as a simple way to generate 

the models. A set of triply periodic surfaces expressed via trigonometric functions in the implicit 

form are presented. A geometric description of the topology of the microstructure is necessary when 

macroscopic properties such as mechanical strength, stiffness and isotropy are required to be 

optimised for a given value of volume fraction. A distinction between the families of structures 

produced is made on the basis of topology. The models generated have been used successfully to 

manufacture both a range of structures with different volume fractions of pores and samples of 

functional gradient material using rapid prototyping.  

Introduction 

The need for new materials which have a high porosity and low weight but also a relatively high 

strength and tailored stiffness, has pushed research towards a more in depth analysis of the 

microstructure of porous materials. The numerous applications that, today, require a good balance of 

mechanical properties and porosity encompass the aerospace, automotive, biomedical materials, 

chemical and renewable energy industries. The wide range of properties available in the form of 

porous materials justifies the market demand and the interest in further developing their properties. 

In the medical sector, porous materials are highly desired as a substitute for osseous tissue, as some 

of their properties resemble those of bone, being lightweight, strong and having a totally 

interconnected porosity [1-4]. The demand from the medical industry for a material of this kind is 

continuously growing, and the manufacturing processes for foaming metals, polymers and ceramics 

which are continuously evolving. There is also increasing interest in the production of functional 

gradient materials which more closely resemble the naturally occurring structures found in bone [5-

7]. A limitation of the materials currently used for biomedical applications is their lack of 

interconnected porosity and their limited load bearing capacity. The aim of this study is to adopt a 

microstructural shape design approach to the manufacture of open porous materials, which utilizes 

spatial periodicity as a simple way to generate the models. The intention is to minimize stress 

concentrations in open porous materials via structural design of interconnected three-dimensional 

lattices hence optimising properties such as strength. The optimised models and geometries which 

are finally developed can be subsequently produced in material form by the use of rapid prototyping 

techniques.   

Model development 

Consider a finite volume of porous matter. Interconnected voids inside the continuous matter can 

be defined via a surface. In mathematical terms, let S be a surface defined by: 
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30)(: RXXFS ∈=  Eq. 1 

 

where X is a point of coordinates x, y and z. 

The surface S represents the border between the matter and the voids. A trigonometric 

polynomial has been used for the definition of the function F(X), which can be written as a sum of d 

terms as shown in Eq. 2: 
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This gives rise to triply periodic level surfaces: the primitive (P) surface, the diamond (D) surface 

and the gyroid (G) surface, having interconnectivity orders respectively equal to 6, 4 and 3.  
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From a topological point of view, the interconnectivity order states how many struts depart from 

each node of the lattice. 

 

 
Fig.1: The P, D and G surfaces with different values of volume fraction (from left to right: 0.7, 0.5 

and 0.3). 

P 

D 

G 
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A particular advantage of using mathematical expressions to define the surface is that a desired 

number of parameters can be assigned to the model so that a subsequent shape optimization study 

can be carried out with relative ease. Subsequently, the generation of models with a range of pore 

volume fractions and interconnectivities is possible. 

The surface has been modelled with the aid of a routine written in the computer language C 

which uses the GNU Triangulated Surface Library [8]. The shapes obtained are illustrated in Fig. 1 

which shows P, D and G surfaces with different values of volume fraction. 

Different values for volume fraction have been assigned to the scaffold geometries, 

demonstrating how cortical and cancellous bone (respectively ~0.7 and ~0.2 volume fraction) can be 

represented using the same mathematical expression, where just a few coefficients vary. The 

calculation time for this type and size of surface is between 0.4 and 2 s, and primarily depends on 

the number of cells per unit volume and the desired resolution of the output. The machine used for 

these operations is run by a Pentium 4 processor, 2.4 GHz with 1 GB RAM. 

By adding a linear term to Eq. 1 it is possible to generate functionally graded materials with a 

porous inner core and a dense outer layer, imitating the transition seen in bone  from the outer dense 

cortical to the inner porous cancellous structure. Fig. 2 shows examples of functionally graded  

structures produced in this way. 

 

 
(a)       (b) 

Fig. 2: (a) Variable porosity structure resembling functional gradient material. (b) Representation of 

a bone wedge generated via mathematical function. 

 

The use of the viewer K3DSurf [9] provided the opportunity to produce complex structures in a 

finite volume via implicit functions and inequalities. A more complex function with a radial 

variation of the porosity can be used to generate the bone wedge shown in Fig. 2(b). This new 

approach to 3-D modelling is particularly useful when dealing with the microstructure of materials, 

because of its ability to represent small features such as struts and pores with little computer 

memory allocation. Additionally, the highest degree of continuity is implicitly guaranteed over the 

entirety of the defined surface. 

Manufacturing 

The modelling outputs in Fig. 1 and Fig. 2(a) were used to generate the geometries using rapid 

prototyping techniques. The specimens shown in Fig. 4(a) have been manufactured using a 

3DSystem SLS Vanguard Rapid Prototyping machine. In addition, a model of the functional 

gradient scaffold using a G surface has also been produced via SLS on a DTM Sinterstation 2500, 

Fig. 4(b). All the scaffolds are made from polyamide PA12, although in the longer term it is 

intended to pursue the direct formation of these structures in ceramic [10]. 

Key Engineering Materials Vols. 361-363 905



 

        
   (a)       (b) 

Fig. 4: The samples in (a) are 30x30x30 mm, the one in (b) is 30x30x60 mm. 

Conclusions 

A range of materials with different volume fractions have been successfully modelled and 

subsequently manufactured using rapid prototyping. The techniques have been further developed to 

produce models and prototype functional gradient samples with a similar bimodal structure to that 

found in natural bone. In order to optimize the mechanical properties of such structures, the load 

bearing capacity of such materials needs to be further investigated. However this success in 

developing simple, yet effective, modelling methods for the generation of materials with a diversity 

of microstructural features indicates the potential use of the technique to manufacture tailor made 

structures that could be used in dental and orthopaedic applications. 
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A monotypic simple tiling by a 14-face polyhedron that does not admit an

isohedral tiling is described. The tiling is triclinic and contains four distinct, but

combinatorially equivalent, kinds of tile.

A polyhedron has a graph that is planar and three-connected (i.e. at

least three vertices and their incident edges have to be deleted to

separate the graph into two disjoint parts). In a simple polyhedron,

two faces meet at each edge and three at each vertex. In a simple tiling

of three-dimensional Euclidean space, the tiles are simple polyhedra

and two meet at each face, three at each edge and four at each vertex.

An isohedral tiling is one in which any two tiles are related by an

isometry of the symmetry group of the tiling. A monotypic tiling is

one in which all tiles are combinatorially equivalent (have the same

graph). An isohedral tiling is monotypic but not necessarily vice versa.

Simple tilings are of considerable interest as idealized models of

foams and other physical systems (Sadoc & Rivier, 1999), their nets

(the skeleton of vertices and edges) are of interest in crystal chem-

istry as the framework types of real and hypothetical zeolites

(Delgado-Friedrichs et al., 1999), and they present a number of

interesting problems. The most celebrated of these is the Kelvin

problem (Weaire, 1996), which asks for the lowest-energy (smallest

surface area) tiling for tiles of a given volume. Among other things,

this has prompted numerous studies of isohedral simple tilings. A

recent study is that of Delgado-Friedrichs & O’Keeffe (2005) who

showed that: (a) there are no isohedral simple tilings by tiles with less

than 14 faces; (b) all 14-face tiles of isohedral simple tilings have only

faces of 4, 5 or 6 sides (4-6 polyhedra); (c) of the 59 different 4-6

polyhedra with 14 faces there are 10 different isohedral tilers that

produce 23 distinct isohedral tilings. These results have been

confirmed by Komarov et al. (2007), who also give a full account of

earlier work.

The question of whether a given combinatorial type of polyhedron

admits monotypic tilings has also attracted considerable attention. It

is known (Schulte, 1985) that there are non-tilers, isomorphic copies

of which will not tile space in a locally finite and face-to-face fashion;

the cuboctahedron is an example. On the other hand, the dual of a k

vertex-transitive simple tiling is a k tile-transitive tiling by tetrahedra

and necessarily monotypic.1 In fact, simplicial polyhedra (those with

only triangular faces) in general are tilers (Grünbaum et al., 1984).

In this report, we describe some properties of a new monotypic

simple tiling discovered by one of us (RG). The tile in this structure

again has 14 faces but is distinct from the 10 isohedral tilers and is the

unique 14-face 4-6 simple polyhedron with one quadrilateral face. It

has symmetry m; its Schlegel diagram is shown in Fig. 1. The

combinatorial symmetry of the net of this tiling is P�11 as determined

by the program Systre [the method is described by Delgado-Frie-

drichs & O’Keeffe (2003)]. The unit cell contains eight tiles, each of

symmetry 1, that are four pairs of enantiomers. The inversion centers

are located in 4- and 6-sided faces. An illustration of a repeat unit

made with the program 3dt is shown in Fig. 2. The structure has 24

kinds of vertex, 48 kinds of edge, 32 kinds of face and 4 kinds of tile

(transitivity 24 48 32 4).

As far as we know, this is the first example of a monotypic simple

tiling by a polyhedron that does not admit an isohedral tiling and it

raises some interesting questions. What polyhedra admit monotypic

simple tilings other than the known isohedral tilers? In particular, do

any of the other 14-face 4-6 polyhedra admit monotypic tilings? Do

polyhedra with less than 14 faces admit a monotypic simple tiling? It

Figure 1
The Schlegel diagram of the polyhedron.

Figure 2
A repeat unit of the tiling. Tiles of the same color are related by inversion.

1 By k tile (vertex) transitive, we mean that there are k kinds of tile (vertex) in
which all tiles (vertices) of one kind are related by symmetry but there is no
symmetry operation relating tiles (vertices) of different kinds.



is known only that the average face size in a simple tiling must be <6

and�9/2 (Luo & Stong, 1993) so the average number of faces per tile

is �8. For an example of a simple tiling with average face size

approaching that lower limit, see O’Keeffe (in Sadoc & Rivier, 1999).

We remark also that intrinsically triclinic structures rarely arise in

such studies. For example, of the many hundreds of known 3-periodic

packings of one kind of sphere, there is exactly one that is triclinic

(Fischer & Koch, 2002). The net of this structure is the only triclinic

entry in the RCSR database (http://rcsr.anu.edu.au) of over 1000 nets,

and there are no triclinic examples among the thousands of nets in the

EPINET database (http://epinet.anu.edu.au).

Crystallographic data for an embedding with edge lengths all equal

to 1 are a = 5.770, b = 5.806, c = 16.834, � = 94.81 � = 94.39, � = 90.62�.

The centroids of the polyhedra are at �(0.4110, 0.0920, 0.8775;

0.0325, 0.5904, 0.8782; 0.4086, 0.4674, 0.6215; 0.0899, 0.9099, 0.3794).

The coordinates of the vertices of the net of the structure are being

entered in the RCSR database with the net symbol rug.

Research at Bath is supported by a University of Bath research

studentship. Work at ASU is supported by the US National Science

Foundation (grant No. DMR 0451443). The computer programs 3dt

and Systre, both essential to this work, are by Olaf Delgado Friedrichs

and available at http://gavrog.org.
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A new counter-example to Kelvin’s conjecture on minimal surfaces has
been found. The conjecture stated that the minimal surface area partition of
space into cells of equal volume was a tiling by truncated octahedra with
slightly curved faces (K). Weaire and Phelan found a counter-example
whose periodic unit includes two different tiles, a dodecahedron and a
polyhedron with 14 faces (WP). Successively, Sullivan showed the existence
of an infinite number of partitions by polyhedra having only pentagonal
and hexagonal faces that included WP, the so-called tetrahedrally close
packed structures (TCP). A part of this domain contains structures with
lower surface area than K. Here, we present a new partition with lower
surface area than K, the first periodic foam containing in the same structure
quadrilateral, pentagonal and hexagonal faces, in ratios that are very close
to those experimentally found in real foams by Matzke. This and other new
partitions have been generated via topological modifications of the
Voronoi diagram of spatially periodic sets of points obtained as local
maxima of the stationary solution of the 3D Swift–Hohenberg partial
differential equation in a triply periodic boundary, with pseudorandom
initial conditions. The motivation for this work is to show the efficacy of
the adopted method in producing new counter-examples to Kelvin’s
conjecture, and ultimately its potential in discovering a periodic partition
with lower surface area than the Weaire–Phelan foam. The method seems
tailored for the problem examined, especially when compared to methods
that imply the minimization of a potential between points, where a criterion
for neighboring points needs to be defined. The existence of partitions
having a lower surface area than K and an average number of faces greater
than the maximum value allowed by the TCP domain of 13.5 suggests the
presence of other partitions in this range.

Keywords: tetrahedra packing; bubbles; crystal geometry; foams

The geometrical problem that seems to have its solution in real foams of partitioning
space into cells of equal volume with the least interfacial area has not yet been solved.
The solution to the two-dimensional problem, also known as the honeycomb
conjecture, has been formally proven by Hales [1]. For the three-dimensional
problem, a conjectured solution has been proposed by Weaire and Phelan [2].
The proof of the existence of a solution for the general n-dimensional case has been
recently given by Morgan [3].
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A possible solution to the three-dimensional problem was given more than a
century ago by William Thomson [4], better known as Lord Kelvin, who was also the
first to formally state it. Kelvin conjectured that the partition made by a packing of
identical truncated octahedra with slightly curved faces (K), had the minimum
surface area among all the possible equal volume partitions of space. The truncated
octahedron is a polyhedron with 14 faces, eight of which are hexagons and the
remaining six are quadrilaterals, as shown in Figure 1. In the partition considered by
Kelvin, all the edges were curved. The quadrilateral faces were flat, and the
hexagonal ones were slightly curved, this way further reducing the total interfacial
area of the partition when compared to the flat-faced version of the truncated
octahedron.

In general, if A is the average interfacial area per cell and V is the volume of
each cell in the periodic partition, a dimensionless, scale-invariant quantity can be
defined as

c ¼ A=V 2=3: ð1Þ

This quantity, known as the cost of a foam (or partition) [5], has been used
throughout this work for comparison purposes between different structures.

The solution proposed by Kelvin was believed to be optimal until 1993, when
Robert Phelan and Denis Weaire, using Ken Brakke’s [6] program Surface Evolver,
showed the existence of a partition (WP) with less area than that by truncated
octahedra [2]. The partition, also known as the Weaire–Phelan structure, has two
different cell shapes, namely, a cubicly deformed pentagonal dodecahedron and
14-hedron with 12 pentagonal and two hexagonal faces, as in Figure 2.

Shortly after the discovery, John Sullivan described a class of mathematical
foams known as tetrahedrally close-packed structures, which included WP. Many of
these structures have been known for a long time as Frank–Kasper [7,8] phases. All
the structures belonging to this domain are made of polyhedral cells having only
pentagonal and hexagonal faces. He constructed infinite families of periodic
structures as convex combinations of a finite set of basic structures [9,10].

Figure 1. A truncated octahedron and its Schlegel diagram. This polyhedron is space-filling.
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This showed that not only did WP have less area than K, but infinitely many
other structures (the terms structure, partition, foam and tiling are used as synonyms
here, as the problem interests a large number of different fields [11–14]) could be
constructed with such a property. The polyhedral cells used in these structures are of
four distinct kinds having 12, 14, 15 and 16 faces. All contain 12 pentagons plus,
respectively, zero, two, three and four hexagons. These are the only combinatorially
possible simple polyhedra containing only pentagons and/or hexagons where the
hexagons are not adjacent, as shown by the program plantri [15]. A simple
polyhedron is a polyhedron in which each vertex belongs to exactly three edges.
A tiling by polyhedra is simple if every face contained in it is shared by exactly two
adjacent tiles, every edge by exactly three incident faces, and every vertex by exactly
four incident edges. Since faces can be in general non-planar, polyhedra should also
have exactly three faces meeting at each vertex.

Since the only faces that occur in the partitions found to have from four to six
sides, a nomenclature for polyhedra based on this fact consisting of three numbers
has been considered. Each polyhedron is assigned three numbers [Q-P-H] that
represent the number of quadrilaterals (Q), pentagons (P) and hexagons (H). This
naming system, called simplified signature, although not always univocal in defining
the topology, as with the Schlegel diagram [16], presents the advantage of a much
more concise form of identification of the polyhedron, very similar to the signature
used in the software application 3dt [17], and for this reason it will be used to
describe the polyhedral composition of the structures found in this work.

Figure 2. The periodic unit of the Weaire–Phelan structure contains eight polyhedra, two
[0-12-0] and six [0-12-2]. The Schlegel diagrams are shown on the right. Tiles are represented
slightly detached one from the other for better visualization. The pictures only display the
topological information of the structure.
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One method of generating foams is by Voronoi partitions in three dimensions.

All that is needed is a set of points in a parallelepiped. If the opposite faces are

connected to each other, a three-torus is the result and the set of points can be

thought of as periodic and filling the whole three-dimensional space. The Voronoi

diagram of these points produces a periodic partition of the space. Generation

methods that start from random sets of points in a three-torus have already been

used with interesting results [18].
A method is proposed here, based on a partial differential equation that shows a

pattern forming behavior, the Swift–Hohenberg equation [19,20]. A Matlab script

previously used for the study of two-dimensional hexagonal patterns [21] has been

modified for the three-dimensional case. This allowed us to find numerical solutions

to the equation

@u

@t
¼ au� ðr2 þ 1Þ2uþ bu2 � u3, ð2Þ

on a periodic cube of prescribed size L using the Fast Fourier Transform. The

coefficients a and b in Equation (2) affect the final pattern. The values needed for

homogeneously distributed and isolated maxima to appear in the stationary state

were found to be, respectively, close to 0.001 and 1, and for this reason these have

been adopted. The unit cell was chosen to be cubic for simplicity. A version of the

code that computes Equation (2) in a cuboid has also been written and a more

general implementation working in a parallelepiped might help. Solutions with non-

cubic symmetry arise in a cubic region only if a multiple of their unit cell has

arbitrary close to cubic symmetry. This is always the case, the only problem being the

fact that the structure might be very large. The mesh grid adopted for the numerical

solution consisted of 40� 40� 40 scalars.
The normalized energy associated with Equation (2) is given by

E ¼
1

8L3

Z
�
au2

2
þ
½ðr2 þ 1Þu�2

2
�
bu3

3
þ
u4

4
dz dy dx: ð3Þ

This has been used to determine whether a correlation with the cost of a foam

was present or not. No link has been found yet, but it is believed that a relationship

between this energy and other forms of it like the chemical bond energy of the crystal

lattice might exist.
The solution for the function u¼ u(x, y, z, t) has been found to converge from

pseudorandom initial conditions to a stationary state. The three-dimensional

coordinates of the local maxima of the function u¼ u(x, y, z, t) in this final state

have been extracted. The method has been run a finite number of times, and the

results have been compared for congruence. Successively, L has been incremented

and the coordinates at the stationary state have been recorded again. It has been

found that for large values of L the patterns formed appear locally but not globally

ordered. For certain values of the parameter L the system converges to a state where

the maxima are arranged on parallel lines in space, all having the same orientation, in

a hexagonal packing fashion. The partition obtained from such an arrangement is a

cylindrical hexagonal honeycomb.
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Another issue is that many of the simpler patterns appear for different values
of L. These values are the multiples of the fundamental lattice distance for a given
pattern. Thus more complex patterns might be hidden by the simpler ones when
looking for a solution for a given size L.

In general, since the average distances between the local maxima are roughly
constant, increasing the size of the cubic region in which the equation is calculated
increases the number of the local maxima within the same region. This allows
structures with different levels of complexity to be found simply acting on the size of

the periodic boundary L.
The patterns obtained from such a setup were BCC, FCC, P8, WP, P20, C15

[9,22], P36, K11 and P42. The values of L for which the patterns were found are 4.5

for BCC, 5.7 for FCC, 7.2 for P8, 7.3 for WP, 9.8 for P20, 10.5 for C15, 12 for P36,
12.2 for K11 and 12.9 for P42. Since the system allows the solution to be stretched,
the patterns were also found for values close to those given above. The values listed
here correspond to the lowest PDE energy (Equation (3)). Any given pattern also
appears for values that are integer multiples of these listed. Additionally, some of the
patterns arise for more than only one value, like FCC that also shows up at 7.4 and
9.6. Symbols starting with the letter P identify structures that have not been found in
the literature [23]. The number following the letter P specifies the number of points
found in the cubic region at the stationary state. K11 contains 40 points. This pattern
is described in a separate article [24], since the tiling having these points as Voronoi
centers has been found for the first time using a different method.

Using Sullivan’s vcs software [25], the Voronoi partition for each pattern of
points was created. This software uses the gift-wrapping algorithm for the determina-
tion of the Voronoi vertices and for this reason it is not stable when more than four
Voronoi cells meet at a point. Since some of the new partitions found were non-
simple, a small random quantity has been added to the coordinates of the points to

avoid algorithm instabilities.
The partitions have been imported into Surface Evolver, where the added errors

have been eliminated by deletion of the edges shorter than a given value. A number

of additional simple foams have been created directly in Surface Evolver by popping
vertices of non-simple ones. The outcome of this operation is not a unique structure
since there are 3mþ 4n different combinations, if m is the number of eight-connected
vertices and n that of six-connected vertices in the original non-simple foam.
However, this number can be drastically reduced due to symmetry considerations.

The periodic graphs of the nets constituted by the edges of the partitions have
been analyzed by Systre, which is part of the Gavrog Project [17], so that the
primitive net could be identified and the number of tiles in the partition therefore
reduced to its minimum possible. This helped in the case of P42, where the 42 tiles
have been reduced to 14, as shown in Figure 3.

Fifteen out of the 81 combinatorially possible simple partitions derived from the
P42 non-simple case are topologically distinct configurations. Each of these showed
less surface area than K. The partitions contain only polyhedra with 13, 14 and 15
faces each, specifically those named below plus a [3-6-4] and a [2-8-5]. Their costs
range from 5.303 to 5.306. Figure 4 shows a picture of the tiling of the unit cell of the
structure with the lowest cost, which has been named P42a.
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The content of quadrilaterals, pentagons and hexagons in the new partition P42a
closely matches (Table 1) that of real foams found experimentally by the botanist
Edwin Matzke [26].

The fundamental unit is made of ten 14-hedra and four 13-hedra. The polyhedral
composition of P42a matches very closely that observed by Matzke [27]. The three
most common cells in this partition [1-10-2], [1-10-3] and [2-8-4] are the first three
entries in Matzke’s experiments. The [0-12-2] cell is at the fifth place in Matzke’s list,
followed by the pentagonal dodecahedron [0-12-0], not present in P42a. The average
number of faces is 13.71, very close to the value of 13.70 found by Matzke,
the theoretical optimal value of 13.56 given by Coxeter [27] for random close-
packing, not far from that of the currently conjectured solution to the Kelvin
problem of 13.5 [2] and above the lower bound for equal-pressure foams of 13.40

Figure 3. The unit cell of the new partition P42 contains 14 polyhedra of two different kinds.
Twelve non-simple [4-8-1] (cyan) and two [0-12-2] (yellow). The Schlegel diagram of the non-
simple [4-8-1] is shown.

Figure 4. The unit cell of the new partition P42a contains 14 polyhedra of four different kinds.
Four [1-10-2] (red), four [1-10-3] (green), four [2-8-4] (blue) and two [0-12-2] (yellow). Tiles of
the same color are related by point inversion or glides (a glide is a reflection plus a translation).
The Schlegel diagrams of the first three are shown. From the top: [1-10-2], [1-10-3] and [2-8-4].
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given by Kusner [28]. The lower bound for the cost corresponding to this last value is
5.254, as shown by Glicksman and Rios [29].

The space group for each of the foams produced were determined by 3dt, which is
part of the Gavrog Project [17] via the method described by Delgado-Friedrichs and
O’Keeffe [30], and refers to the structure with the highest degree of symmetry having
the same topology. The minimum cost is obtained by constraining the structure to
have tiles of the same volume. It is relevant to note that the configuration of
minimum cost does not always coincide with the most symmetrical one. Note that
P42a is characterized by a very low symmetry when compared to K and WP. Table 2
reports the data for comparison.

The Surface Evolver code used for the calculation of foams properties and
parameters (including their cost) has been provided by Sullivan. The code for the
directional popping has been provided by Brakke. The code for the relaxation of the

Table 2. Simplified signature, space group of the most symmetrical
configuration, minimum cost c of the equal-volume configuration and
average number of faces per cell z.

Simplified signature Sp. gr. c z

K [6-0-8] Im3m 5.306 14
WP 3[0-12-2]þ [0-12-0] Pm3n 5.288 13.5
P42a 2[2-8-4]þ2[1-10-3]þ

2[1-10-2]þ [0-12-2]
C12/c1 5.303 13.71

P42 6[4-8-1]þ [0-12-2] P6/mcc 5.307 13.14

Table 3. Parameters for the periodic point set for the Voronoi generation
of the partition P42, given in the cylindrical system.

Periods Points (k2N, 14 k4 12)

� 5
2 cosð

�
12Þ

5
2 cosð

�
12Þ 0 0 0

ffiffi
3
p

2

� 0 �
3 0 0 0 ð2k� 1Þ �12

z 0 0 2 0 1 1þ ð�1Þ
k

2

Table 1. Polygonal composition experimentally found in real foams by Matzke
compared to the distribution in some of the lowest cost periodic partitions
known. Note the similarities with the P42a structure.

Polygon count Percentage

Quad Pent Hex Tot Quad Pent Hex

K 3 – 4 7 43 – 57
WP – 48 6 54 – 89 11
P42a 8 68 20 96 8 71 21
Matzke 866 5503 1817 8221 11 67 22
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periods has been written by the author. This step consisted in numerical iterations in
which lengths and angles of the vectors defining the periodic unit, along with the
coordinates of all the vertices defining the structure, were varied one at a time and
the surface area further minimized.

The periods of the unit cell and the coordinates of the centers of the Voronoi cells
for the partition P42 are reported in Table 3 and shown in Figure 5.

The method described, opportunely tuned, can also be used to find new clues
about the honeycomb problem considered by Tóth [31].

The pictures of the tilings have been generated with 3dt [17]. The Schlegel graphs
(apart from that in Figure 3 that has been partially edited by hand) have been
produced with Olaf Delgado-Friedrichs’ code in Thomas Harmuth’s 3-regular planar
graphs generator built in the software CaGe [32].

A three-dimensional model of the P42a partition realized with JavaView [33] can
be viewed online [34].
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Appendix B 

Patent 

This patent is the outcome of a fruitful collaboration between the University 

of Bath and a manufacturer of orthopaedic implants. The idea of filing a 

patent on the geometry of the surface of orthopaedic implants originates 

from an informal chat at the Bioceramics20 conference in Nantes between 

the author and Corrado Piconi, inspired by the oral presentation at the 

venue. 

The document describes the application of a set of mathematically de

fined surfaces to the geometry of the outer layer of joints and implants. 

Functionally Graded Materials can be modelled according to these principles 

and their geometry defined simply by representing the boundary between 

solid and void fractions of material. 

•	 Improvements in or relating to joints and/or implants, patent appli

cation no. 0809721.4, AI 13624 GB [92]. 
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Appendix C 

Invited Lectures and 

Seminars 

Below is the complete list of invited talks, branched by subject. Each 

item includes the name of the person who sent the invitation, followed 

by date, place, name of the main event (if present), and School where the 

event/seminar took place. A selected list of talks, mainly held at conferences 

or meetings, is also included. Lists are provided in reverse chronological or

der. 

•	 The geometry of foams 

–	 Katia Bertoldi, 24 Jun 2009: Enschede, The Netherlands - Multi 

Scale Mechanics - University of Twente, Faculty of Engineering 

Technology 

•	 Periodic point sets from a differential equation 

–	 Stephen Hyde, 11 Dec 2008: Kioloa, Australia - Materials and 

Complexity VI - The Australian National University, Department 

of Applied Mathematics 
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166 APPENDIX C. INVITED LECTURES AND SEMINARS 

• A new counter-example to Kelvin’s conjecture on minimal surfaces 

–	 Chrystelle Egger, 14 May 2009: Keele, UK - RSC Advancing the 

Chemical Sciences - Keele University, Research Institute for the 

Environment, Physical Sciences & Applied Mathematics 

–	 Arrigo Cellina, 25 Mar 2009: Milan, Italy - Università di Milano 

Bicocca, Dipartimento di Matematica e Applicazioni 

–	 Barry Ninham, 8 Dec 2008: Canberra, Australia - Barry Ninham 

Chair of Natural Science - The Australian National University, 

Research School of Physical Sciences and Engineering 

•	 Space partitions from a pattern forming equation 

–	 David Lloyd, 3 Dec 2008: Guilford, UK - University of Surrey, 

Department of Mathematics 

–	 Randall Kamien, 12 Nov 2008: Philadelphia, PA - Natural Sci

ences Seminars, Condensed Matter - University of Pennsylvania, 

Department of Physics and Astronomy 

–	 Thomas C. Hales, 6 Nov 2008: Pittsburgh, PA - Algebra, Com

binatorics and Geometry Seminars - University of Pittsburgh, 

Department of Mathematics 

•	 The Kelvin problem 

–	 Michael O’Keeffe, 8 Aug 2008: Santa Barbara, CA - Summer 

School on Periodic Structures and Crystal Chemistry - University 

of California at Santa Barbara, International Center for Materials 

Research 

•	 Sphericity of simple polyhedra with 13 and 14 faces 



167 APPENDIX C. INVITED LECTURES AND SEMINARS 

–	 Simon J. Cox, 23 Jul 2007: Aberystwyth, UK - Aberystwyth 

University, Institute of Mathematics and Physics 

Other Lectures and Seminars 

•	 The shape of soap bubbles 

–	 23 Oct 2008 - University of Bath, Bridging the Gaps 

–	 2 Jul 2008 - University of Bath, Department of Chemistry 

•	 The shape of soap bubbles in foams 

–	 2 Jun 2008 - University of Bath, Meeting of Minds 

•	 Development of modelling methods for materials to be used as bone 

substitutes 

–	 28 Feb 2008 - University of Bath, Stryker UK visit 

–	 24 Oct 2007 - Nantes, Bioceramics20 

•	 Porous matter design for load bearing capacity 

–	 10 Sep 2007 - Brighton, European Conference on Biomaterials 

ESB2007 

•	 Porous matter design 

–	 22 May 2007 - Trinity College Dublin, Foams and Complex Sys

tems 


