
        

University of Bath

DOCTOR OF ENGINEERING (ENGD)

Sensing and Interactive Intelligence in Mobile Context Aware Systems

Lovett, Tom

Award date:
2013

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. May. 2019



Sensing and Interactive

Intelligence in Mobile Context

Aware Systems
submitted by

Thomas Lovett

for the degree of Doctor of Engineering

of the

University of Bath

Department of Computer Science

December 2012

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author. This

copy of the thesis has been supplied on the condition that anyone who consults it is

understood to recognise that its copyright rests with its author and that no quotation

from the thesis and no information derived from it may be published without the prior

written consent of the author.

This thesis may be made available for consultation within the University Library and

may be photocopied or lent to other libraries for the purposes of consultation.

Signature of Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Thomas Lovett





Acknowledgements

I can only imagine how these last few years might have unfolded without the support

of various people.

Firstly, my utmost thanks to my supervisor, Eamonn O’Neill, who has counselled,

mentored, guided and supported me with interminable patience throughout. Thanks

for all your time and effort over the years.

Thanks also to my academic cohort at the University of Bath’s Department of Com-

puter Science. In particular: Simon Jones, Andy Ridge, Andrew Chinery, Michael

Wright, Vicky Shipp, Laura Benton, Daniel Gooch and Jim Grimmett. Not forgetting

those in my EngD cohort and the Systems Engineering Doctorate Centre SEDC either.

Particular thanks to Elizabeth Gabe-Thomas at the University of Bath for her help

with viva preparation.

On the industrial side, my thanks to those who helped me and provided the necessary

resources for my studies and trips during my time at Vodafone Group R&D, namely:

David Pollington (now at GSMA), James Irwin, Kevin Scarr, Roy Davies and Narseo

Vallina Rodriguez (now at the University of Cambridge).

I’m further grateful to all my diligent study participants for their role in this work,

and thanks to my old friends for their company: Becky Kingdon, Andrew ‘Sock’ Lock,

David Andrews and John Reeks. I’m indebted to Sock for his proof reading services.

To my family, especially my parents, for your irreplaceable presence in my life.

Finally, to Sophie, for your immutable and constant belief in me, regardless of my often

capricious outlook.



Abstract

The ever increasing capabilities of mobile devices such as smartphones and their ubiq-

uity in daily life has resulted in a large and interesting body of research into context

awareness – the ‘awareness of a situation’ – and how it could make people’s lives easier.

There are, however, difficulties involved in realising and implementing context aware

systems in the real world; particularly in a mobile environment.

To address these difficulties, this dissertation tackles the broad problem of designing and

implementing mobile context aware systems in the field. Spanning the fields of Artificial

Intelligence (AI) and Human Computer Interaction (HCI), the problem is broken down

and scoped into two key areas: context sensing and interactive intelligence. Using a

simple design model, the dissertation makes a series of contributions within each area

in order to improve the knowledge of mobile context aware systems engineering.

At the sensing level, we review mobile sensing capabilities and use a case study to show

that the everyday calendar is a noisy ‘sensor’ of context. We also show that its ‘signal’,

i.e. useful context, can be extracted using logical data fusion with context supplied by

mobile devices.

For interactive intelligence, there are two fundamental components: the intelligence,

which is concerned with context inference and machine learning; and the interaction,

which is concerned with user interaction. For the intelligence component, we use the

case of semantic place awareness to address the problems of real time context infer-

ence and learning on mobile devices. We show that raw device motion – a common

metric used in activity recognition research – is a poor indicator of transition between

semantically meaningful places, but real time transition detection performance can be

improved with the application of basic machine learning and time series processing

techniques. We also develop a context inference and learning algorithm that incorpo-

rates user feedback into the inference process – a form of active machine learning. We

compare various implementations of the algorithm for the semantic place awareness

use case, and observe its performance using a simulation study of user feedback.

For the interaction component, we study various approaches for eliciting user feedback



in the field. We deploy the mobile semantic place awareness system in the field and

show how different elicitation approaches affect user feedback behaviour. Moreover,

we report on the user experience of interacting with the intelligent system and show

how performance in the field compares with the earlier simulation. We also analyse the

resource usage of the system and report on the use of a simple SMS place awareness

application that uses our system.

The dissertation presents original research on key components for designing and imple-

menting mobile context aware systems, and contributes new knowledge to the field of

mobile context awareness.
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Chapter 1

Introduction

“Quis, quid, quando, ubi, cur, quem ad modum, quibus adminiculis”

(Who, what, when, where, why, in what way, by what means.)

— Hermagoras of Temnos, c. 1 B.C.

The preceding quote refers to the ‘elements of circumstance’ [194], a philosophy that

is rooted in a set of interrogatory questions, each of which may be used to elicit a

description of a circumstance or event. These elements are perhaps more recognisable

in their modern form: the Five Ws (or sometimes 5W1H, for the How question); an

informal information gathering method used predominantly by journalists to report on

events. The questions ask:

1. Who is involved in the event?

2. What is the event about?

3. Where is it occurring?

4. When is it occurring?

5. Why is it occurring?

6. How is it occurring?

A truthful answer to each question should provide a complete, objective description of

the event for good reportage; it should describe the circumstances or context of the

event. Loosely speaking, context is an informative description of a situation or event,

and to take something ‘out of context’ is to remove relevant information that may

affect the interpretation of that something. The popular phrase “context is everything”
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refers to additional meaning that context can provide beyond what is stated, or the

dependence upon context for the true understanding of an event or communication,

e.g. in speech and writing, where additional information about what is said or written

may be communicated through knowledge of verbal context.

According to the International Telecommunication Union (ITU), nearly 87% of the

world’s population have access to a mobile device 1. Many of these devices are smart-

phones or tablets, and they are often equipped with rich and dynamic user interfaces,

as well as a range of hardware sensors. These features, coupled with the sheer popu-

larity and ubiquity of the mobile device, have led researchers to explore ways in which

such devices could be used to improve people’s everyday lives.

Mark Weiser’s ‘vision’ of ubiquitous computing [236] – which was, arguably, the genesis

of the ubiquitous computing (UbiComp) community in computer science – is frequently

cited as the idealistic goal for designers of mobile and pervasive computing systems.

Free from the constraints imposed by wires, bulky screens, immobile desktops and

industrial scale machinery, designers and researchers have questioned the extent to

which mobility can enable technology that is truly “indistinguishable” from the “fabric

of everyday life”. Realising this vision of mobile ubiquitous computing involves the

development and integration of work from two primary areas of computer science:

artificial intelligence (AI) and human-computer interaction (HCI).

AI is a broad and varied field in which the overarching aim is the creation of intelligent

machines (see Figure 1.2). The various AI communities’ development of approaches

to automated data sensing, statistical inference and machine learning have allowed re-

searchers in the UbiComp community to implement machine intelligence on everyday

mobile devices. This is done with a view to making device users’ lives easier by offload-

ing burdensome tasks such as search or navigation onto machine intelligence. Ideally,

the machine intelligence should perform its tasks perfectly and without need for human

supervision. Realistically, however, machine intelligence is likely to make mistakes or

fail entirely, which – if the intelligence is not designed well – can result in user annoy-

ance, frustration and general dissatisfaction. Prudent designers should account for this

and, in doing so, should design for human interaction with the machine intelligence.

HCI is the general study of people’s interaction with computers, and HCI researchers

work to improve the processes involved in this interaction, as well as people’s experi-

ences of the interaction itself. UbiComp researchers have drawn extensively on work

from the HCI community during the design and implementation of user interfaces and

interaction modes for mobile devices.

Coupling these fields together, one of the today’s research challenges is the effective

1http://www.itu.int/ITU-D/ict/facts/2011/material/ICTFactsFigures2011.pdf

(Accessed 2012-11-14.)
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Figure 1.1: Context awareness scope: context awareness is a sub-field of UbiComp which, in
turn, lies in the intersection of AI and HCI.

and efficient design of interactive intelligent systems (IIS) – intelligent systems that

users interact with [105] – which comprise of an AI component and an HCI component,

and the potentially complex interactions between the two.

So where does context fit in? To give a semi-formal scope: if we imagine the fields of

AI and HCI as sets in a Venn diagram (see Figure 1.1), then UbiComp lies in their

intersection. Context forms the basis of a popular sub-field (or subset in the analogy)

in UbiComp: context awareness. A computer is said to be ‘context aware’ if it can

adapt to a given situation [202] or provide relevant information and/or services to a

user [57].

Although a popular field within academia, context awareness has recently appeared

in commercial products and applications. Apple’s Siri system 2 and Google’s Now

platform 3 are perhaps the most notable modern examples. What is noticeable about

these and many other applications is the fact that they operate primarily on mobile

devices; taking advantage not only of increasing mobile device ubiquity and capability,

but also of mobile devices’ integration into their users’ everyday lives.

This ubiquity of mobile devices, coupled with their ever increasing capabilities, has

resulted in a further branch of context awareness in which device mobility plays a

2http://www.apple.com/uk/ios/siri/ (Accessed 2012-11-16)
3http://www.google.com/landing/now/ (Accessed 2012-11-16)
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Figure 1.2: The architecture of an intelligent agent; the core design principle in AI. (Image
taken from [199].)

fundamental role. This is mobile context awareness. Mobile context awareness is a fast-

moving research field, driven in part by the rapidity of commercial device improvement,

and mobile context awareness research has generated valuable work which, in turn, has

fed back into industry. However, even in such an evolving field, there are still many

issues and problems that have yet to be solved.

In this dissertation, we address the following broad research question:

• RQH: How can we improve the design and implementation of mobile context

aware systems?

By focusing on a set of questions within mobile context awareness, this dissertation

presents a series of contributions that advance the state of knowledge on the design

and implementation of mobile context aware systems. The following section outlines

the scope of this dissertation, and the succeeding section summarises our contributions

in greater detail.

1.1 Dissertation Scope

In this section we define the scope of this dissertation by outlining a set of high level,

ongoing research areas in the field of mobile context awareness. Although Chapter

2 covers these in greater detail, we introduce them here to provide a basis for our

contribution summary in the next section.
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1.1.1 Context Sensing

Although the technical capabilities of mobile devices are generally improving, their

functionality is still relatively limited when compared with desktop devices: user in-

terfaces are typically small; resources – particularly power resources – are limited and

often constrained; on-device components and sensors are designed for a narrow and

specific range of basic functions, e.g. accelerometers for screen orientation changes;

and connectivity is highly dependent on device location.

One of the basic requirements for any context aware system is the acquisition of context

data. This is undertaken using a set of sensors that translate data from context sources,

e.g. people, environments or other devices, into machine-readable data for higher level

context inference and learning processes to use. The question here relates to context

data sensing: from where can we source context data, and how might we sense it? This

is an important problem, as the acquisition of context data is one of the most critical

aspects of a context aware system. Failure to sense data can dramatically impact on

context awareness functionality and – particularly in a resource-constrained mobile

device – sensors themselves may vary in their availability and quality. Sensor range

and quality are import properties to consider in the design of mobile context aware

systems.

1.1.2 Interactive Intelligence

During our introduction of UbiComp, context awareness and their dependence upon

work from the fields of AI and HCI, we briefly mentioned interactive intelligent systems

(IIS), which are intelligent systems that users interact with [105]. Though IIS are

certainly not restricted to mobile systems, the notion of an interactive intelligent mobile

system allows us to elegantly state two important problem areas in mobile context aware

systems: the intelligence, i.e. the AI component, which relates to context inference and

learning processes; and the interaction, i.e. the HCI component, which relates to device

interfaces and modes for interaction with the intelligence.

The Intelligence

Automatically inferring context with mobile devices is non-trivial, particularly if avail-

able sensors are unreliable or of variable quality. Further difficulties may be encountered

if a mobile context aware system is expected to react to context changes in real time,

which is probable given the need for relevance in context aware services and applica-

tions [57]. Sensor availability and resource limitations may impact on context inference

further, e.g. attempting to use radio sensors such as GPS in areas of variable coverage,
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or using context inference approaches with large resource demands.

The aim of a context inference process is to achieve ‘good’ inference performance.

Ideally, inference should be perfect, i.e. context is correctly classified at the correct

time, but, in reality, this is rarely the case. The implications of incorrect inference may

vary in their severity, e.g. a wrongly inferred location could be serious for navigation

applications, but less serious for weather applications. We should therefore accept that

context inference will occasionally be incorrect, and we should design the intelligence

to learn about context over time in order to improve and maintain future inference

performance.

The key questions then, are how do we infer context? and how do we learn about

context? Can we enlist the help of the user in the learning process? Moreover, how

can we know when to infer context? Real time context inference (and learning) is

desirable, but identifying the correct time to infer is an inference problem in itself. It

is also pertinent for mobile context aware systems, where resource constraints call for

sensible inference and learning approaches.

The Interaction

Given intelligence that can infer and learn about context through a mobile device,

how might we design for user interaction? As we proposed in the previous section,

enlisting the help of the user in the context learning process may be prudent, but how

should we elicit this help? Unlike desktop users – whose primary attention may be on

a screen upon which prompts can be raised – mobile device users will not continuously

interact with their device; nor are they likely to be diligent in helping an intelligent

system if they feel it is asking for help too often. This raises an interesting question:

given that context learning could benefit from users’ help, and given that users will only

occasionally be able or willing to provide this help, how do we design mobile interfaces

and interaction modes to best elicit this help?

1.2 Research Contributions

Given the dissertation scope outlined in the previous section, our contributions in this

dissertation are as follows:

• In relation to context sensing, we outline a set of sensors that could be used in a

mobile context aware system. In a case study, we consider the everyday calendar
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as a ‘virtual’4 sensor of context data, and show it to be a poor reflection of reality

due to the inherent ‘noise’ of reminders and events that do not actually occur,

and ad hoc events that do occur but not appear in the calendar.

• In a further contribution to context sensing, we show – again, through our case

study of the calendar as a context sensor – that performing low level data fusion

of context data can improve sensing performance. We fuse our calendar data with

other forms of context data (namely location and social network data), and show

that this significantly improves context sensing performance.

• For the intelligence component of interactive intelligence in mobile context aware

systems, we model context as discrete states in a finite state machine (FSM).

This characterises two problems, the first of which is the inference of context

transitions. Through a case study of place awareness 5, we design and analyse

a system to infer place transitions in real time; showing how performance varies

according to the system’s parameters, and that good inference performance can

be achieved using this simple approach.

• The second problem characterised by an FSM model of context is the inference of

the context states. We contribute a context inference algorithm that is executed

at the moment of context transition. This algorithm also measures the confidence

of its reasoning and prompts the user for help – or feedback – if this measure is

too low. It then learns from user feedback in real time using a branch of ma-

chine learning known as active learning [210]. Continuing our case study of place

awareness, we apply the algorithm to the problem of real time place inference and

learning. Using data collected during a field study, we simulate the algorithm’s

performance over a range of expected user feedback scenarios. The simulations

are then used to compare a set of implementation designs for the algorithm;

showing how a probabilistic inference approach gives superior performance to a

geometric one.

• For the interaction component of interactive intelligence in mobile context aware

systems, we develop a set of user feedback and interaction requirements. Con-

tinuing with the place awareness case study, we use the requirements to design

a set of interfaces that request and enable user feedback for active learning. We

deploy our whole system in a field study and show that places are inferred and

learned well, even with the small amount of feedback provided by users. We

also compare user response behaviour to different feedback request approaches

and prompt modes; our results suggest that the use of speech prompts rather

4The concepts of ‘physical’ and ‘virtual’ sensors are outlined in Chapter 3
5The problem of place awareness is introduced in Chapter 4
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than simple audio prompts does not significantly improve feedback response rate

or time. Furthermore, the results suggest that requesting feedback actively, i.e.

using audio, visual and tactile modes, rather than passively, i.e. using the visual

mode only, does not significantly improve feedback behaviour for speech prompts

but it does for simple audio (non-speech) prompts. Finally, we compare the field

inference performance with the simulation performance from the previous study

and show that the simulation is a reasonable approximation of user behaviour in

the field.

These concrete contributions go some way to improving the design and implementation

of mobile context aware systems. The next section outlines the dissertation structure.

1.3 Dissertation Outline

For the final section of this chapter, we outline the structure of the dissertation:

• Chapter 2 presents the background to context awareness and mobile context

awareness. We review the relevant literature and active research areas before

using them to derive a set of research questions that motivate the work in this

dissertation. We also note the popular use of layer models in the context aware-

ness literature, and present a layer model of our own to illustrate how our work

fits together. This layer model will be used to guide the dissertation.

• Chapter 3 addresses context sensing in mobile context aware systems. This chap-

ter is concerned with identifying sources and sensors of context data in a mobile

environment, and we present a case study of the everyday calendar as a context

sensor. During the study, we compare the calendar against actual events and

show that – standalone – it is a poor context sensor. However, by fusing it with

other sources of context data, the useful data can be extracted and performance

can be increased significantly.

• Chapter 4 moves into interactive intelligence in mobile context aware systems.

Focusing on the intelligence component, this chapter approaches the challenges

surrounding context inference and learning in mobile context aware systems. Us-

ing a FSM model of context, we first address the problem of inferring significant

context state transitions with mobile devices; using a case study of place aware-

ness to show that device motion can be used to infer the majority of place changes

in real time. We present our algorithms for context inference and active learning,

and apply them to the place awareness case study.
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• Chapter 5 focuses on the interaction component on interactive intelligence in mo-

bile context aware systems. Here, we address challenges related to the elicitation

of user feedback for active learning of context in the field with mobile devices.

We deploy our mobile place awareness system in a field study to better assess its

performance in the wild, and to compare alternative approaches to feedback elic-

itation. We report on our findings and conclude the chapter with a brief review

of possible applications for our work.

• Chapter 6 concludes the dissertation by summarising our contributions and link-

ing them back to our research questions and the overarching thesis question. We

critically analyse how well the research questions have been addressed, and pay

particular attention to the general implications and limitations of the work. Fi-

nally, we outline possible and alternative approaches for future work given the

work presented in the dissertation.
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Chapter 2

Background and Related Work

Context and context awareness are extremely broad research topics that span multiple

disciplines within computer science. This chapter introduces, explores and reviews

the literature surrounding the concept of context, context awareness and the narrower

yet growing field of mobile context awareness. We also review the emerging field of

interactive intelligent systems (IIS). The topics are introduced in descending order of

granularity, and are designed to set the scene for the remainder of the dissertation.

At each stage of this literature review, we describe common research problems and

issues, and attempt to summarise the state of the art for the areas that are relevant

to our work. We use these to formally define our high level research questions, before

introducing our layer model that will structure the technical chapters.

2.1 Context

We begin with the definition of context, and how it is interpreted by computer scientists.

There are, in fact, multiple definitions of context in the literature, each developed

according to the original applications that researchers had in mind. Here we list some

of the more popular definitions:

• Schilit and Thiemer [204] first introduced the term ‘context aware’ within their

work surrounding mobile distributed computing; specifically applying it to the

problem of location awareness in an office environment. Their definition comprises

of people’s locations and identities, as well as the state of objects within their

environment – which is further refined in their work on context aware computing

applications [202] to include accessible devices and changes in people and devices

over time.
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• Ward et al. [235], while working on embedded sensor systems within the home,

defined context to primarily be the location of an object in an environment.

• Pascoe et al. [174] first proposed that context was more than location – extending

it to include environmental features such as, for example, the current weather

description. The idea of context being ‘more than location’ was further outlined

by Schmidt et al. [208], in which they propose context to include environmental

conditions and infrastructure, as well as information about devices, users and

user tasks.

• Chen and Kotz [38] further include the context of time, defining context to be

“the set of environmental states and settings that either determines an applica-

tion’s behaviour or in which an application event occurs and is interesting to the

user”. They further categorise context into two categories: active context, which

influences application behaviour, and passive context, which is peripheral yet still

relevant to the application.

• Lieberman and Selker [138] have defined context as “everything but the explicit

input and output” of an application, specifically the state of the user, as well

the states of the physical and computational (virtual) environments. They also

include the history of interactions between each.

• Dey and Abowd [57, 59] define context as “any information that can be used to

[characterise] the situation of an entity. An entity is a person, place, or object

that is considered relevant to the interaction between a user and an application,

including the user and application themselves”.

• More recently, Zimmermann et al. [246] have attempted to extend Dey’s defini-

tion into categories of entity information, namely: location, time, individuality,

relations and activity. They also conjecture that context should be defined by its

use, i.e. its interpretation, and the transitions between contexts over time.

General definitions of context are vague and application specific, but the definition by

Dey [57] is seen as the de facto standard within the ubiquitous computing community. It

is both abstract in its description, e.g. “context is any information that [characterises]

the situation of an entity [...]”, and specific in its domain, e.g. “[...] considered relevant

to the interaction between a user and an application [...]”. Due to these properties,

and its popular adoption in the literature, we will follow this definition of context

throughout the dissertation.

Following Dey’s definition, there is a myriad of information that can be used to describe

a user’s situation, e.g. where they are (their location), what they’re doing (the activ-

ity), whom they’re doing it with, when they’re doing it, what they’re using to do it,
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where they’re intending to go next, where they’ve been, etc. Each of these somewhat

abstract categories can be further described using concrete examples, e.g. location

may be described by degrees latitude and longitude or by user-defined interpretations

(e.g. “home” or “work”); activity may be described generally (e.g. “travelling”) or

specifically, as relevant to the user (e.g. “walking to work”).

As these examples illustrate, users can interpret their context differently from others,

who in turn may describe their own context in a different manner. An apparently

objective description of the same context may differ again, e.g. the user describes her

location as “the office”; her friend, referring to the same location, may describe it as “in

London”; and a GPS sensor might describe it as 51.5049672, -0.0197931. Part of the

reason that context is so vaguely defined and application-specific [246] is the subjective

nature in which it can be defined in practice [62].

The work in this dissertation is chiefly influenced by Dey’s definition of context, as

it avoids the application specific nature of other work, e.g. [235]. We note, however,

that even Dey’s definition is hard to develop from the abstract to the concrete without

a classification or modelling system. Dey and Abowd extend Dey’s definition into a

model, as we shall see in the next section.

2.1.1 Classifying Context

Once we have defined our interpretation context, how should it be categorised or clas-

sified? That is, how can we formally and systematically label context such that it

can be useful in computing applications? This question has led to a range of context

classification systems, ontologies and models within the literature, and – as with con-

text definitions – these are typically driven by technology and applications. Again,

there is no agreed standard classification system, so here we summarise some of the

key approaches.

Dey and Abowd, following their definition of context, argue that the key categories of

context are location, identity, time and activity [58], which extends the physical/user

environmental distinction proposed by Schilit et al. [202]. Schmidt et al. [208] support

the environmental distinction, but extend the granularity of the physical environment.

More recently, Zimmermann et al. [246] have extended Dey and Abowd’s approach to

include a social aspect, i.e. incorporating entity relationships (see Figure 2.1), and a

further temporal aspect: context transitions, i.e. the idea that context classification

changes over time. Following the popularity of motion sensing in context aware systems

(cf. Section 2.4.4), Chalmers [35] extends the Dey and Abowd classification to include

motion and environment.
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Figure 2.1: Zimmermann’s context categories surrounding the Dey and Abowd categorisation
[57] (Image source: [246].)

Although there are multiple and fragmented approaches to classifying context in the

literature, there is common agreement on certain aspects of context. The two most

common categories are location and activity. Almost all attempts at classification

include them, and they have been developed into research sub-fields in their own right

(location awareness and activity recognition).

2.1.2 Context Facets

Here we link definitions and categorisations of context to the Five Ws approach pre-

sented in the introductory chapter of this dissertation. As we shall see, researchers

have used this approach in the past due to the natural description of context that the

Five Ws provide.

The Five Ws Approach

To remind the reader: in journalism, a “Five Ws” interrogatory approach is often used

to gather information about an event. Referring to who, what, where, when and why

questions, the Five Ws mnemonic is both intuitive and useful when applied to many

information gathering scenarios. It is natural therefore, to ask whether the Five Ws

model can be used to describe and categorise context.

The Five Ws – sometimes referred to as 5W1H – has indeed been used for this purpose.

Abowd and Mynatt recommend using the approach as the very first step in context

aware system design [2] – highlighting the lack of standardisation in the definition and
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Figure 2.2: Oh, Yoon and Woo’s 4W1H interpretation of context facets, from [166].

classification of context. Dix et al. apply the approach to location and space questions

in their design framework for interactive mobile systems [61]. Further design models

using variants of the Five Ws have been used by Oh et al. for mobile devices [166] (see

Figure 2.2) and ubiquitous computing in smart homes [239].

Following Abowd and Mynatt, we use the Five Ws approach to define a set of context

facets:

• Who: e.g. “Whom are we trying to identify?”’; “Who is using our application?”;

“Who generated this context data?”. The “Who” facet refers to user identity,

one of the key categories of context proposed by Dey and Abowd [59]. Although

typically used in an individualistic manner – i.e. the identity of a single user,

namely the user in Dey’s definition – the “Who” facet can also extend to other

people that may be relevant to the user’s situation, e.g. friends in a social network,

co-located people, or other users of an application.

• What: e.g. “What is the user doing?”. The “What” facet refers to activity,

another key category of the Dey and Abowd approach. Activity is fundamental

to many context models, e.g. [57, 58, 246] and activity recognition is a popular

and fast-moving research field within the UbiComp community [16].

• Where: e.g. “Where is the user?”; “Where is the device or object?”. Location is

by far the most popular category of context, due in part to its use in commercial

applications in recent years, e.g. map applications on mobile devices. As we

saw in the previous section, early definitions of context focussed primarily, and

in some cases almost entirely, on location [235]. This focus changed, however, as

researchers began to realise the value of other context categories beyond location

[208].

• When: e.g. “When is the user doing this?”; “How long will the user be doing

this for?”; “How long will they be there for?”. The temporal aspect of context has

been recently explored in the research of routine and patterns in people’s daily

lives [67]. Temporal context is often related to changes in other context categories
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over time, e.g. [19, 246], and can add complexity to the context awareness, e.g.

how can we capture and model context changes over time?

• Why: e.g. “Why is the user doing this?”; “Why is the user here?”. Much

like the “When” facet, the “Why” facet is typically related to other categories,

e.g. “Why this activity?” or “Why this location?”. This is perhaps the most

complex context facet to analyse, as we would have to consider, for example,

action meaning, intent or emotion [239, 166]. Emotional context in particular is

non-trivial to interpret [187].

Although the Five Ws were developed in the context of journalism, we feel that their

breadth captures much of what context is about. Dey and Abowd’s work using location,

time, identify and activity is certainly broad, but the Five Ws are more abstract and we

see the Dey and Abowd facets as instantiations of each, e.g. identity is an instantiation

of ‘Who’. Much of the work in this dissertation is arguably better classified using the

more abstract definition than the concrete one, and hence we make use of the Five Ws

model throughout.

The Five Ws as a Theory for Context?

Our earlier discussion of context as its definition highlighted the fact that there is no

standard definition of context, even though many varied definitions exist. As such,

there is no standard theory of context either, and researchers develop definitions and

theories around their applications. Dey’s definition [57] is a de facto definition – used

and cited often – but researchers do still produce new definitions, e.g. [35].

This raises the question of context theory, and how the UbiComp community might

work towards developing a standard theory for practitioners to adopt. We conjecture

that the Five Ws, although a journalistic heuristic, is a sound basis upon which to build

such a theory, and the work in this dissertation aims to advance this notion. In the

concluding chapter, we will discuss how the work has advanced the idea of a context

theory and possible paths for further development.

2.2 Context Awareness

Given the philosophical and theoretical notions of context, how might we tangibly

exploit it – as computer scientists – in the systems that we design? In addition to how,

we should also ask why knowledge of context might be useful to our system and its users,

and why we should go to the bother of obtaining it. The main benefit that context
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knowledge provides is relevance. Computer systems should be designed with a benefit

in mind and, particularly in HCI, that benefit should be to the user of the system.

If a computer had knowledge of its user’s context, then it could enable applications

and services that are relevant to the user at any given time. This could potentially

make people’s lives easier by reducing burden associated with tasks such as search or

navigation. A computer system that can obtain and utilise knowledge of context in

this manner is defined to be context aware [202].

The importance of context awareness – or context aware computing – in computer sci-

ence has increased in recent decades as computers have become ever more pervasive in

everyday life. As we saw in the previous section, context has no strict definition, and

its interpretation can vary depending on application. The idea of computers sensing

and reacting to a user’s situation has been a popular research topic for a number of

years, featuring regularly in computer science conferences and journals and occasion-

ally in commercial products. The vision of pervasive computing integrating into the

environment – functioning only when necessary and without obstructing or annoying

the end user – is certainly not a reality yet, but technology is moving incrementally

closer to a world of “computing everywhere” [236].

As we saw in the introductory chapter, context awareness draws upon areas from many

other fields in computer science and engineering. For example, some of the key ideas

behind artificial intelligence – agents sensing and reacting to environments, knowledge

representation, inference, reasoning, learning and planning – interweave with the de-

sirable traits of a context aware system [21]. Relations to other fields include: HCI

(ubiquitous computing, user interfaces and user-centred design) [62, 205]; telecommu-

nications (sensors and wireless sensor networks); and mathematics (statistics, inference,

data structures and algorithm design).

2.2.1 Notable Context Aware Systems

One of the earliest and perhaps most recognised context aware system is the Active

Badge location system [234] (Figure 2.3a). Using a wireless sensor network deployed

within an office environment, workers’ locations are sensed through body-worn RF

badges. Designed to assist the redirection of phone calls to the relevant employee’s

nearest desk phone, the system provides basic location awareness with a probabilistic

measure of confidence. The active badge system has been pioneering, and its basic

approach – deploying sensors and sensor networks to enable context awareness – has

been adopted by many researchers since, e.g. [1, 14, 58, 67, 145, 168, 204, 235]. Early

propositions for context aware systems included a location aware shopping assistant

that used RF beacons to guide and assist customers around shops [12].
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(a) The ActiveBadge system was one of the
first operational context aware systems. (Im-
age from [234]).

(b) Abowd et al.’s Cyberguide: a mobile con-
text aware tour guide. (Image from [1]).

Figure 2.3: Notable early context aware systems.

In 1997, Abowd et al. introduced their Cyberguide system [1] (Figure 2.3b), a context

aware tour guide that used real time location and location history to guide people

around, for example, a museum or tourist attraction. (Museum and exhibition tour

guides have since become popular applications for context aware systems, e.g. [40,

221, 247].) The Cyberguide project was adapted into Dey and Abowd’s CybreMinder

system [58], which used their Context Toolkit [55] to deliver context-triggered reminders

to people, e.g. items on a to do list. The Context Toolkit was also used with various

prototype applications, including an input/output (IO) board – which was a primitive

presence and availability system designed to operate in workplaces – and a conference

assistant, which guided the user around a multi-track academic conference based on

their location and academic interests.

Other early context aware systems include: “Everywhere Messaging”, a message sys-

tem that attempts to deliver messages between users through multiple modalities and

mediums based on user context; ConChat [189], a context aware chat program that

was designed to replicate face-to-face conversation using context data sensed from the

conversation participants; SmartRestaurant [147], a system that used customer context

to improve the efficiency of food ordering in restaurant; and Coordinate [97], a system

that used calendar data to predict workers’ likely meeting availability. Context data

has been utilised by researchers beyond those exploring standalone systems. Begole et

al. have explored visualisation of people’s temporal patterns in collaborative computing

using context data [19], Muñoz et al. [158] have shown how context aware computing

can aid collaboration in a hospital environment and Hudson et al. [101] used context

data to analyse people’s reactions to interruption on desktop systems.

Context aware computing research has also been conducted within so called “smart

home” environments. Smart homes are domestic environments that have been aug-

mented with sensors and computing devices, and the data collected has been used for
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occupant modelling, e.g. [193, 223, 229], multimedia delivery, e.g. [99] and – more

recently – energy monitoring and usage, e.g. [53].

The systems presented so far are, in the majority, desktop-based, i.e. there is little or no

use of mobile devices, and many require bespoke hardware to function. In recent years,

the focus in context awareness research has shifted to the use of mobile devices such

as smartphones or tablet PCs; due in part to the enormous popularity and ubiquity

of such devices in people’s daily lives. This shift has resulted in a sub-field of context

awareness: mobile context awareness.

Desktop systems are still important however, and research conducted on or using them

has influenced the work in this dissertation. In particular, Horvitz et al.’s work using

desktop calendars [97] has informed our work on using the calendar as a sensor, and

integrating desktop systems with mobile ones.

2.3 Mobile Context Awareness

Mobile context aware systems are context aware systems in which mobile devices play

a significant role in enabling context awareness.

One of the most ubiquitous tools in the progress of context awareness has been the

mobile device. Its enormous popularity and permeation into daily life – coupled with

increasingly sophisticated hardware – has greatly increased the potential for context

awareness outside research environments. The very mobility of these devices is key

to the idea of mobile context awareness, where the sensing and inference is enabled

by – and even conducted upon – the device itself. It is both a sensing platform and a

computer, and the relentless increase in mobile computing power and sensing capability

– motion sensors, light sensors and multiple radio sensors come as standard in the

modern smartyphone – allow for a whole new area of mobile context awareness research

and development.

Today, mobile device users are becoming used to “always on” network connectivity;

taking advantage of faster connections to use services such as push email, synchronised

calendars and online application programmable interfaces (APIs) into social media ser-

vices, e.g. Facebook. These ‘virtual’ sensors can expose the mobile device to additional

data sources such as social networks, user preferences, tagged photographs and music

playlists. Fusion of these sources with traditional ‘physical’ sensors, e.g. GPS, can

allow for better inference of context and, subsequently, a wider range of mobile ap-

plications that utilise context. Furthermore, software developers have been turning to

mobile devices for their application development. The soaring popularity of services

such as Apple’s App Store and the Google Play Store means the mobile application
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business is predicted to be worth $17.5 billion in 2012 [211].

Many of the currently available context aware mobile services are limited to being

“location-based services”; they focus primarily on the device’s location, the user’s in-

teraction with the device and the services that the location-aware capability can enable,

e.g. navigation. As we discussed in Section 2.1.2, location is a key feature of context,

but it is not the only one; and this is even more apparent with the increasing range

and diversity of data available to the typical mobile device.

The potential for mobile context awareness is encouraging – the mobility of the device

can allow for the sensing and reaction to users’ everyday situations with little or no

specialist hardware and relatively simple system architectures. This mobility comes

at a price however: mobile devices are typically resource constrained – battery power,

CPU limitations and network connectivity must be traded off against the demand

for accurate and usable context aware awareness. These trade-offs, coupled with the

potential applications of – and improvements to – mobile context aware computing

methods, offer many challenges to the research community.

In this section, we review key literature within the field of mobile context awareness;

highlighting notable early systems. It is here that we build up to the state of the art

in mobile context aware computing, which will be discussed in the subsequent section

on active research areas.

2.3.1 Early Mobile Context Aware Systems and Applications

Following the evolution of desktop-based computing to ubiquitous computing, context

aware systems have made use of mobile devices. Early context aware systems such as

Abowd et al.’s Cyberguide [1] and Schmidt et al.’s work with primitive PDAs [208] used

mobile devices primarily for the location awareness. Chen and Kotz, in their survey of

early mobile context aware systems [38], reviewed a set of projects that used mobility

in context awareness. The survey showed that – although mobile device use in context

aware computing was gaining – mobility was simply a provider for basic location and

time data. Although still well cited today, this survey is perhaps a little outdated given

the surge of smartphones and tablets in recent years.

Dey et al. began to incorporate mobility into their work with the Context Toolkit [55],

and Schilit et al. highlighted the important role of mobile devices in context aware

communication [203]. Gellerson et al. began to explore the utility of mobility when

deploying mobile sensors into users’ natural environments and artefacts, e.g. a coffee

mug [78]. Hofer and Schwinger [93], and Chen et al. [39] presented new architectures

for context aware computing, both of which made extensive use of mobile devices, and
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(a) The TEA project integrated additional
sensors into early, commercially available
mobile devices. (Image from [78]).

(b) ContextPhone was the first mobile con-
text awareness prototyping platform. (Image
from [188]).

Figure 2.4: Notable, early mobile context aware systems.

Henricksen et al. [87] presented an abstract approach to modelling context information

in pervasive (particularly mobile) context aware systems.

Siewiorek et al. introduced their context aware mobile phone – SenSay [212] – which

was an early standalone context aware mobile device developed prior to the smartphone

era. Korpipää et al. – recognising the emerging need for formal management in the

development of mobile context aware systems – designed a framework for mobile context

management that uses a formal ontology of context sensor and source types [122, 123].

The first mobile context prototyping platform, ContextPhone, was released soon after

by Raento et al. [188]. ContextPhone (see Figure 2.4b) identified a set of common

developmental areas for mobile context aware systems, namely: sensing, communication

and application. ContextPhone was a very influential project, used by later large

scale mobile context aware systems such as Reality Mining [67]. The ideas behind

ContextPhone – particularly the layered architecture and its ability to both sense and

infer on-device – have provided a foundation for much of the work in this dissertation.

The influx of data that mobile devices could supply to context aware computing appli-

cations – and the potential noise and ambiguity that could arise from large quantities

of data – led to research into context mediation, whereby available context data is intel-

ligently selected given an input request, usually from the user. Chalmers et al. [36, 37]

performed extensive research into formal context mediation in mobile devices, using a

case study of map zooming to illustrate the benefits of mediation. Dey and Mankoff [60]

subsequently presented a design framework for context mediation in mobile devices.

Meanwhile, researchers were beginning to employ wireless infrastructure into mobile

context aware systems. Krumm and Horvitz [126] used WiFi signal strength fluctua-

tions to infer user location and movement patterns, and Laasonen et al. [129] presented
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an on-device location recognition framework that was based, interestingly, around user-

defined locations (rather than machine-inferred locations). Although somewhat limited

by the cellular infrastructure available at the time, Laasonen et al.’s work showed re-

markable generality, which is reflected in similar, later work on place recognition, e.g.

[90, 117]. Indeed, Laasonen’s unsupervised learning approach has served as inspiration

for the work on place inference and learning in this dissertation. The ActiveCampus

mobile context aware system is a notable example of mobile context awareness in the

field. Developed by Griswold et al. [81], its ActiveMap component was one of the first

mobile context aware systems to incorporate user feedback into the context inference

process.

Researchers then began to explore larger datasets sourced from mobile devices. One of

the most influential of these is from Eagle and Pentland’s Reality Mining study [65, 67],

which collected and analysed Bluetooth and other RF data from 100 subjects over the

course of a year. This publicly available dataset not only provided insight into people’s

daily lives, e.g. temporal patterns associated with routine, but also their social and

application behaviours. This dataset has been further analysed by researchers, leading

to findings associated with, for example, principal behaviours – or ‘eigenbehaviours’ [66]

–, recommender systems [108], context prediction [213] and activity prediction [47].

Reality Mining is perhaps the canonical example of the richness of data that can be

obtained through mobile context awareness. Its approach – Bluetooth sensing – is

similar to the one adopted by us for our calendar study, and the fact that it was

performed using older mobile technology, its results and its datasets are still being

used for research today.

The Reality Mining study showed how rich context data could be obtained using com-

mercially available mobile devices (rather than bespoke hardware). Similar large scale

studies with mobile devices followed, including: PlaceLab [130], a large scale approach

to location positioning using existing RF infrastructure in the wild; and Cityware [168],

which studied behaviour at the city scale using RF data obtained using mobile devices.

As mobile devices became more ubiquitous and powerful, researchers began to study

the feasibility of performing context inference on-device using learned models. The

BayesPhone, developed by Horvitz et al. [98], used pre-trained models of user be-

haviour, e.g. call handling, that operated on-device. Although BayesPhone required

offline training, its key advantage lay in user customisation. By incorporating users’

own schedules and behaviour patterns into the machine learning process, it could im-

prove the relevance of its services to the user. Hightower et al. [90] explored on-device

context learning in their BeaconPrint project exploring place awareness. Whereas

BayesPhone used mobile devices for context inference with offline learning, BeaconPrint

performed learning and inference online with the disadvantage of requiring additional
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hardware, i.e. a laptop, to operate. Krause et al. [125] – building on earlier work from

the SenSay system [212] – used a wearable sensor array that integrated with a mobile

context aware device to perform online learning of users’ personal preferences. As with

BeaconPrint, this system required additional hardware to perform context inference

and learning in real time.

CenceMe [154] was the first mobile context aware system to infer, learn and share

context online through users’ social networks. By combining on-device context classi-

fiers with more heavyweight offline classifiers, CenceMe was able to perform near real

time inference with a favourable user experience using commercially available mobile

devices. CenceMe was well designed with a very large sample set, but it somewhat

compromised on its execution by offloading much of the hard inference work offline.

Although this was done for practicality reasons, we feel an interesting question relates

to the capability (and possibility) of tasking the device with most (if not all) of the

inference and learning. How might it perform, would it reduce awareness latency and

what are the implications for device resources?

Researchers were also studying the effects of integrating mobile context aware devices

into people’s everyday tasks and routines. The Place-Its system [214] used mobile

devices to deliver reminders to participants when entering and leaving important loca-

tions, and Comedia [104] used mobile context aware devices for media capture during

social events. A particularly interesting study was the Connecto system by Barkhuus et

al. [17]. Connecto used participants’ mobile devices to both capture and share location

within social groups. The findings were interesting due to their far reaching implica-

tions; insight was gained into: how people label locations (naming by place rather than

space, i.e. geographic location, or activity was the most common practice); how people

co-ordinate and communicate within groups; and how information sharing evolves over

time in a ‘storytelling’ style. Connecto has been a big influence on the later work in

this dissertation. It is one of the better examples of ‘place’ vs ‘space’ in practice, and

has been a useful source evidence for people’s reasoning behind the meaning of their

places.

As for other mobile context aware systems, Froehlich et al. [73] presented MyExperi-

ence, a mobile context aware system that captured objective sensor data and subjective

user experience feedback through mobile devices. Designed to aid the capture of data

by researchers in the field, MyExperience used active prompting to elicit feedback from

users on their current experience, whilst concurrently logging passive sensor and ap-

plication data through the device. Similar projects included: UbiFit Garden [50], a

mobile context aware system that used inferred user activity and a virtual ‘garden’

to encourage people to increase their physical activity; and UbiGreen [74], a mobile

context aware system for encouraging more environmentally friendly transportation
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(a) BayesPhone, which performed context
inference in real time (using probabilistic
context models learned offline), from [98].

(b) SenSay prototype, showing wearable
hardware, from [125].

(c) Real time, on-device inference (voice
classification) in CenceMe; from [154].

(d) Labelling meaningful places in Conneto,
from [17].

Figure 2.5: Notable mobile context aware systems.

habits.

The next section focuses on modern research in mobile context aware systems, most of

which is influenced by the work reviewed in this section. By dividing the research into

key areas, we will review important and influential work that leads to the state of the

art in mobile context awareness research.

2.4 Relevant Active Research Areas

In this section, we review the active research areas within mobile context awareness.

Much of the work in the previous section has led to a set of research trends in the field,

and we categorise the work according to these trends.
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Figure 2.6: Sensor list from a modern iPhone 4, (Image from [131]).

2.4.1 Mobile Context Sensing

The problem of acquiring context data using mobile devices is an ongoing research

topic within mobile context awareness, particularly in relation to resource efficiency

and context inference accuracy [23]. Although mobile device capabilities have evolved

rapidly in recent years, there are still many sources of context data that are not being

exploited by mobile context aware systems.

In a recent survey of mobile phone sensing, Lane et al. [131] list a set of typical

hardware sensors that are found on an off-the-shelf iPhone 4:

• Ambient light

• Proximity

• Dual cameras

• GPS

• Accelerometer

• Dual Microphones

• Compass

• Gyroscope
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In addition to these, mobile devices contain multiple RF technologies such as WiFi and

Bluetooth as standard, and further environmental sensors such as temperature, pres-

sure and humidity sensors have been developed for Android-based handsets 1. Although

modern smartphones are ubiquitous, and although researchers can take advantage of

this ubiquity through scalable and rapid deployment of prototype systems, the key

issue in mobile context sensing is the fact that – aside from GPS – sensors are typically

implemented for purposes other than context sensing. For example, accelerometers are

primarily used for screen orientation; ambient light sensors for screen illumination;

cameras for image capture; microphones for communication; WiFi for network connec-

tivity; and Bluetooth for media sharing. Researchers and developers must therefore

attempt to exploit this infrastructure for their own applications.

Given these restrictions, interesting and useful work has been undertaken with regard

to sourcing and sensing context data in the wild. For location awareness, Indulska

and Sutton [103] first introduced the distinction between physical, virtual and logical

location sensors. This distinction is not only a useful one for modelling traditional

sensors; it allows us as researchers to model a large range of data sources as ‘sensors’,

even though they are actually sensors in the traditional sense. Baldauf et al. [15]

expanded the generality of this distinction and argued that almost anything in a user’s

physical or virtual environment – providing it can transduce a data source into machine

readable data – could be considered as a potential sensor of context. At present,

research has been undertaken into the use of biological entities [127], calendars [145],

images [41], ambient sound [13, 146], screenplays [45] and social networks [18] as context

sensors.

These sometimes unusual approaches to sensing have yielded interesting results which

are relevant to the work in this dissertation. Given the enormous amount of data

available to a modern mobile device through applications and websites, the exploration

of virtual context sensing should continue. We aim to further this avenue of research

in our work on using the calendar as a virtual context sensor.

Other approaches to sensing context with mobile devices have lead researchers to create

hybrid sensing platforms that combine commercially available devices with custom

designed sensor arrays. Similar to earlier work by Hightower et al. [90] and Krause et

al. [125], the SeeMon system [111] attempts to integrate external sensors with mobile

devices in order to provide rich datasets for analysis. Similarly, the embedded sensing

platform (ESP), developed by Choudhury et al. [43], provides a set of external sensors

that can integrate with mobile context aware systems, e.g. UbiFit [50] and UbiGreen

[74].

1http://developer.android.com/guide/topics/sensors/sensors_overview.html

(Accessed 2012-11-16)
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In their review of mobile sensing [131], Lane et al. go on to highlight the growing

demand for sensing context data on human behaviour and translating raw data into

useful meaning through personalised sensing. The problem of sensing context data with

mobile devices is further exacerbated by user behavioural diversity – which is studied at

great length by Falaki et al. [68], who note the particularly large between-user ranges

of interaction frequencies, duration and application types – and the variable proximity

of users to their personal mobile devices at any given time [56, 175].

In summary, and using Indulska and Sutton’s useful distinction, it is virtual context

sensing, rather than physical sensing, that has the most potential for new research. As

such, we pursue this avenue in Chapter 3.

2.4.2 Communication Sensing and Analysis

Following the somewhat traditional approaches to context sensing in the previous sec-

tion, there is a large body of work that uses communications media to sense and analyse

deeper context such as human emotion or intent. An example of this is sentiment anal-

ysis, in which computers attempt to infer human opinions from communications media

such as Twitter, Facebook and email messages [172].

Pang et al.’s work used minimum cut sets in graphs to model film reviews and extract

sentiment – in this case, a positive or negative review of a film – to good effect [171]. The

authors use a very technical approach to an abstract problem, and the work is extremely

thorough and effective. Its publication was an important step towards directly sensing

and inferring sentiment from raw data.

Other applications of sentiment analysis have focused on voter opinions in political

elections [165], the detection of aggressive content in emails [216], inappropriate content

detection in online advertisements [107] and applications for recommender systems

[224].

With the onset of large social media websites such as Twitter and Facebook, researchers

have applied sentiment analysis techniques with varying effects. Agarwal et al. have

recently attempted sentiment analysis with Twitter data with reasonable – but not

exceptional – accuracy (≈ 60%) [6]. O’Connor et al. have attempted to link sentiments

in Twitter data to presidential elections with promising, but still only reasonable,

accuracy results [165]. This works serves to illustrate how non-trivial sentiment and

opinion analysis can be.

As for sensing emotions through mobile devices, the most active recent work is that of

Rachuri et al. at Cambridge University and their work on the EmotionSense platform

[186]. Here, emotions such as ‘Happy’, ‘Sad’ and ‘Angry’ are sensed and classified
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through mobile devices. EmotionSense can correctly classify these emotions ≈ 50–

60% of the time – which is reasonable – but it suffers from noise, e.g. ambient sonic

noise, latency issues and variability between subjects. The authors propose combining

the system with bio-sensors such as galvanic skin response sensors in order to improve

accuracy, but they acknowledge that key difficulties lie in the complexity of the problem

rather than the implementation of the solution.

This is one of the reasons that this dissertation does not concentrate as heavily on the

‘Why’ context facet. Sentiment, opinion and emotion sensing is not easy, and yields

variable results even with well designed systems such as EmotionSense. It is certainly

and interesting and worthy research problem, but its difficult makes empirical research

challenging and perhaps distracting from the themes in this dissertation.

Nevertheless, we feel that this area of research is one of the most fruitful for future

work. Although EmotionSense reported some negative results, it has moved the idea

of emotion and intent sensing a step closer towards realisation.

2.4.3 Location Positioning with Mobile Devices

Since early context aware systems focused primarily on location, e.g. [235], and the

growing popularity of GPS-enabled commercial devices, location positioning has been

an important issue in the field of mobile context awareness. One of the largest prob-

lems for researchers has been indoor location positioning. Because GPS does not work

well indoors, various alternative approaches to the indoor location problem have been

attempted, mainly based around the ActiveBadge model [234]. Example systems fol-

lowing this approach include: RADAR [14] which uses base station signal strength pro-

files; Cricket [182], which uses ultrasound; and LANDMARC [163], which uses RFID

devices carried by users.

Because of its accuracy, we adopt a similar approach to ActiveBadge for our sensing

study in Chapter 3. Much like Reality Mining [67], our ‘badges’ are Bluetooth mobile

devices.

The main problem with the ActiveBadge approach, however, is the requirement for

bespoke hardware, i.e. the deployment of custom sensors in the users’ environments.

There is something of a trade off between the work required for implementation and the

reliability of the fine-grained location data obtained. There are also issues with scala-

bility. Because of this, researchers have exploited existing infrastructure, e.g. assisted

GPS (A-GPS), cellular networks and 802.11 WiFi access points, for indoor location

positioning. Rekimoto et al.’s LifeTag system [192] uses each of these technologies

in a city-wide (Tokyo) deployment of a location aware system, Krumm and Horvitz
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[126] used WiFi signal strength to infer motion and position, Jiang et al. [106] use

WiFi to fingerprint individual rooms within buildings and Kjærgaard et al. [120] use

WiFi-enabled mobile devices to infer the indoor movement of pedestrian flocks. For a

recent comprehensive review of location positioning technology in mobile devices, see

[244]. Other approaches to indoor localisation have used ambient sound to ‘fingerprint’

locations [13], user motion and inertia [135, 240], relative positioning [77, 181] and

geo-magnetic disturbances [48].

There is also an extensive range of commercial location positioning systems available.

Google’s myriad of location-based technologies, e.g. Google Maps, Street View (and

emerging indoor Street View2), Android’s location providers (which rely on anony-

mously collected data from Android mobile device users3) and Google Now (see Figure

2.7c) are perhaps the most familiar and popular. However, at the time of writing, a

market for indoor location technology is beginning to emerge4, with key companies

such as Nokia, Microsoft, Apple, Qualcomm, Cisco and Motorola all developing indoor

location positioning technologies for commercial use.

The popularity and demand for indoor location positioning has also generated a slew

of startup companies. The two most popular are perhaps Shopkick5, which uses ultra-

sound positioning technology similar to the Cricket system [182], and SkyHook6, which

fuses GPS, A-GPS and WiFi sensors for its location positioning.

In the academic space, however, the state of the art is place awareness, which moves

beyond simple ‘space’ [86] into the inference of location meaning to individual or groups

of users. Following Laasonen et al. [129], and stemming directly from Hightower

et al.’s BeaconPoint mobile place learning and recognition system [90], Kim et al.

have developed a place recognition approach that uses wireless fingerprinting [116, 117]

to automatically recognise people’s places using their mobile devices. Their current

approach – SensLoc [117] (Figure 2.7b) – remains the state of the art for automated

place capture and recognition with mobile devices, but the key problem researchers are

facing is the elicitation of meaning and the incorporation of user feedback into the place

recognition process [115]. This, coupled with the subjective nature of a ‘place’ [89] and

the diversity of people’s mobile interaction behaviour [68], sets a boundary for current

research in location based mobile computing. The key problem with these systems,

however, is the capture of place meaning from users. Both BeaconPrint and SensLoc

rely on unprompted user input in order to label places. Without user input, places are

2http://maps.google.com/help/maps/helloworld/index.html (Accessed 2012-11-16)
3http://developer.android.com/guide/topics/location/strategies.html

(Accessed 2012-11-16)
4http://finance.yahoo.com/news/google-tops-abi-research-indoor-152600971.html

(Accessed 2012-10-03)
5http://www.shopkick.com (Accessed 2012-11-16)
6http://www.skyhookwireless.com (Accessed 2012-11-16)
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(a) MIT’s OIL learns about
indoor RF regions from user
prompting (active learning),
from [173].

(b) SensLoc uses WiFi to
fingerprint meaningful places
without need for geometric
location positioning, from
[115].

(c) Google Now traffic card,
showing the automatically in-
ferred place ‘work’ 7.

Figure 2.7: State of the art mobile location positioning and place awareness systems.

effectively unique IDs without meaning. SensLoc is accurate in its inferences, but this

is only clear post hoc and not in real time unless the user has happened to label the

place without prompting. Power consumption is reasonable, but not optimal due its

reliance on WiFi scanning. The authors do tackle the issue with variable rate WiFi

scanning policies however, but there is more room for improvement. These limitations

have implications for real world deployment and usability, and forms the basis of our

rationale for studying awareness in this dissertation.

Since the ActiveCampus system [81], the value of user feedback and annotation in

location positioning has been realised. Bolliger et al. have studied the use of well

timed prompts to elicit user feedback of indoor location in their RedPin system [29,

30]. Feedback involved users clicking on a map to correct system inferences. Kim

et al. used daily user surveys in the attempt to annotate automatically classified

places, and the Connecto system [17] relied on participants’ unprompted self-reports.

Montoliu and Gatica-Perez [156] have developed an on-device multi-sensor approach to

place recognition which, again, uses participant self-report to elicit meaning of places.

Perhaps the most interesting approach, however, is that of Park et al. [173], whose

OIL system (see Figure 2.7a) attempts indoor location positioning using WiFi signal

strength and prompts the user for intervention if signal strengths fall outside a given

confidence metric. OIL illustrates how prompting users for feedback and integrating

the feedback back into the context learning process can help improve capture and

recognition of location points in an unfamiliar environment. The key problems here,

however, are: the requirement for devices to continually scan (at approximately 1
3Hz)

for WiFi beacons, which consumes excessive energy; the evaluation was only performed

in a single building, which affects the generality of the approach; it does not capture

7Image from: http://www.google.com/landing/now/ (Accessed 2020-10-1212)
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place meaning, nor does it attempt to elicit meaning from users; and it does not

integrate into commercially available devices. Nevertheless, the general approach –

prompting for, and utilising user feedback in the inference process – is interesting and

potentially valuable, as the OIL system shows. We feel it is an area that hasn’t been

fully explored, particularly with mobile devices, and we contribute to the area with our

work in Chapters 4 and 5

2.4.4 Activity Recognition with Mobile Devices

Activity recognition is a broad research field which is concerned with the inference

of entity – typically human – activity at a given point in time using sensory data.

For brevity, we will only focus on activity recognition with mobile devices for this

review. Following successful research of activity recognition in smart homes, e.g. [223,

229], researchers began to look at the feasibility of using mobile devices as tools for

enabling and performing human activity recognition. Sohn et al. [215] used GSM

signal traces to infer human mobility, and Anderson and Muller [8] used GSM signal

strength fluctuation to infer basic activities such as walking or driving. Although they

used existing infrastructure, i.e. GSM cellular networks, these systems could not infer

fine-grained activities easily. Eagle and Pentland took a different approach with their

Reality Mining project [67]. By capturing Bluetooth data over time and analysing the

entropy of users’ lives, they could infer basic activities such as ‘working’ to a good

degree of accuracy. However, activities were still coarse-grained. Choudhury et al.’s

mobile sensing platform [43] – a standalone embedded activity recognition device –

addressed this issue at the cost of a custom hardware requirement. It did, however,

illustrate the value of fine-grained activity recognition; particularly in relation to health

and fitness activities [50, 184]. Choujaa and Dulay [44] used a temporal (rather than

location-centric) approach to activity recognition with mobile devices in their TRAcME

system. Their approach – which utilised Bluetooth and cellular data captured during

the Cityware project [124] – used learned temporal patterns of users’ days to classify a

set of common activities with good performance.

As accelerometers began to appear on commercial mobile devices, Miluzzo et al. [154]

used them as part of the CenceMe project to infer 3 basic activities: walking, running

and no activity (stationary); and Brezmes et al. [32] explored a slightly larger range,

where good classification performance was achieved for a set of common activities such

as ‘walking’, ‘sitting’ and ‘falling’. Bieber et al. [26] extended this range to include

‘driving’ and ‘cycling’, and Yang [243] performed a detailed study that compared a the

performance of a range of algorithms for activity recognition with mobile devices. Ac-

celerometers have continued to be the key sensor used for activity recognition on mobile

devices [131], with application to health and fitness. Following work by Hong et al.
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Figure 2.8: Activity recognition using a mobile device, from Reddy et al. [191].

using an embedded accelerometer [96], Kwapisz, Weiss and Moore [128] demonstrate

the potential for real time activity recognition with mobile devices. Figo et al. [69] un-

dertook an extensive study that compared alternative activity recognition approaches

with mobile device accelerometer data, and Reddy et al. [191] used mobile devices to

infer transportation activities (see Figure 2.8). This work used fusion of accelerometer

and GPS, and a hidden Markov model (HMM) to achieve high classification accuracy

in an empirical evaluation. Although these studies show promise in the activity recog-

nition capabilities of mobile device accelerometers, the range of activities recognised is

small, e.g. ‘walking’, ‘running’ or ‘sitting’. This is more a limitation of the hardware,

as mobile device accelerometers are primarily designed for device-specific interactions

such as screen orientation or gaming. The more successful activity recognition studies,

e.g. Bao and Intille [16] use multiple, body-worn accelerometers to achieve greater

performance. We do not focus on the classification of activities in this dissertation for

these key reasons: i) previous studies show that only a small range of activities can be

reliably classified by mobile devices in practice; and ii) we constrain ourselves to mobile

devices and not wearable computing (which is a research field in its own right), thus we

wish to avoid the requirement for additional body-worn hardware such as those used

in other activity recognition studies, e.g. [16, 92].

A number of studies have used the mobile device accelerometer as an event-based

trigger for further sensing or user prompting. Bolliger et al. [30] used it to prompt for

location annotations, Kjærgaard et al. [119] for detecting stop-go motion, and Kim et

al. [117] for controlling the frequency of WiFi scanning. Ho and Intille, in their work on

activity transition detection [92], show that motion-triggered prompts are useful and

have potential applications for triggering other processes and applications. However,

their work was undertaken using body-worn accelerometers, and not using commercially

available mobile devices. The work is relevant, however, as it is not concerned with

activity classification – which, as we note above, is non-trivial on mobile devices – but

activity transition, which is more feasible yet useful for applications such as notification

delivery and sensing policy.
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2.4.5 Context Inference and Learning with Mobile Devices

Machine learning is a broad topic within the field of artificial intelligence (AI), with

a rich and varied history [199]. Once again, for brevity, we will focus upon its ap-

plication to mobile context awareness. Machine learning is primarily concerned with

the automated identification of patterns within data, and the automated classification

(or labelling) of data. It has important implications for mobile context awareness, as

mobile context aware systems typically perform statistical inference and learning of

context given a set of input data. Indeed, many researchers in the field have used

machine learning techniques to help improve context inference, or have used mobile

context awareness to help improve applications of machine learning.

Lieberman and Selker [138] presented a high level proposal for context aware systems to

learn from user behaviour (rather than simply sensing it and reacting to it). Researchers

have since implemented a variety of machine learning techniques in order to learn about

behaviour. The Technology for Enabling Awareness (TEA) project [78], which ran until

late 2000, provided the first in-depth approach to learning in context awareness. Van

Laerhoven produced early, detailed work [230] investigating context learning in real time

using Kohenen Self-Organising Maps (SOMs) [121]. Van Laerhoven’s work presents an

interesting perspective on unsupervised learning with mobile devices. Although lacking

in empirical study, its theory influences our work on interactive intelligence later in the

dissertation.

Using GPS traces of people’s daily lives, Ashbrook and Starner [11] applied unsuper-

vised learning techniques to the GPS data in order to extract the meaningful places in

people’s lives, and Mayrhofer, Radi and Ferscha [151] used a combination of a mobile

phone, a PDA and additional sensory hardware to learn about user context patterns.

The input data were then used to predict future context based on patterns identified

during the learning process. Patterson et al. [176] employed sophisticated particle filter

techniques with learned parameters in order to classify users’ high level behaviours from

GPS traces, and showed how activity and location classification performance could be

improved using learning. When the Reality Mining results were reported [67], Eagle

and Pentland demonstrated how machine learning techniques could be applied to ex-

tract temporal patterns in users’ daily lives; namely social groups and applications

used. In the same year, Horvitz et al. released BayesPhone [98], which – unlike the

Reality Mining project – implemented pre-learned Bayesian networks of users’ context

variables on mobile devices. BayesPhone would attempt to estimate users’ interrupt-

ibility or ‘cost of interruption’, i.e. whether users should be interrupted by the device

given the current context data and the Bayesian network of context variables.

Hightower et al. employed a method of ‘fingerprint learning’ in their BeaconPrint
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system [90]. This used real time context data to update stored models of places de-

termined by WiFi and GSM base station IDs, and showed that the learning process

helped in future inference of users’ meaningful places. Nurmi and Koolwaaij [164] took a

different approach, which used traditional unsupervised learning (specifically, k -means

clustering) to identify places from geometric location data, i.e. GPS coordinates. Their

approach was also capable of learning about users’ places in real time; as opposed to

other approaches that could only learn offline or post hoc, e.g. [11, 98, 110, 176]. Krause

et al.’s work [125] using wearable sensor arrays employed real time machine learning

in order to model users’ preferences, and Liao, Fox and Kautz [137] applied Condi-

tional Random Fields (CRFs) – discriminative probabilistic graphical models that are

used frequently in natural language processing (NLP) – to users’ GPS data in order to

infer significant places and activities; which improved upon earlier performance using

particle filter techniques applied to the same problem [176].

Choujaa and Dulay’s TRAcMe [44] used learned models of users’ activities to recog-

nise daily activities, and the CenceMe project [154] used multiple on-device audio and

activity learned classifiers coupled with offline location and social classifiers to infer

users’ context through their mobile devices. The key attribute of these approaches

(and earlier work on BayesPhone [98]), was the partial implementation of machine

learning techniques on-device. The feasibility of employing fully on-device learning was

beginning to emerge, and Choudhury et al.’s mobile sensing platform [43] showed the

value of using real time on-device learning for improving context inference and the user

experience [50].

The value of using machine learning in mobile context awareness has become increas-

ingly realised, particularly due the diversity of behaviours in mobile device users [68].

Much of the recent work surrounding machine learning in mobile context awareness is

concerned with comparing alternative machine learning approaches to context infer-

ence problems, e.g. Anagnostopoulos et. al [7] compare a range of learning techniques

when applied to the problem of location prediction on mobile devices, Luštrek and

Kaluža [148] compare alternative learning approaches to fall detection from motion

data and Yang [243] compares a set of common supervised learning techniques when

applied to mobile device activity recognition. Researchers then began to investigate

fully on-device learning and the possible impact it may have on power consumption.

Wang et al. [233] undertook an extensive study of on-device travel, activity and sound

inference using mobile devices, showing that good classification performance could be

achieved without significant impact on device battery life.

Miluzzo et al.’s Darwin phones [153] (Figure 2.9) use a novel approach to learn about

context sensing and inference models entirely from users’ mobile devices. By ‘evolving’

trained classifiers over multiple devices, the authors show how – using a case study of
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Figure 2.9: Darwin phones: demonstrating how machine learning improves inference perfor-
mance. Here, speaker recognition precision (for 3 people) increases as more sound samples are
taken in a noisy restaurant. From [153].

speaker recognition – classification performance can be improved with little need for

user input. Choujaa and Dulay [46, 47] use the Reality Mining dataset to show how

human activities can be predicted through learning about activity patterns over time;

and Lim and Dey [139] compare a range of machine learning approaches to context

inference and prediction when attempting to explain automated inference decisions to

device users. Rachuri et al.’s EmotionSense system [187] is used for the challenging yet

novel task of learning and classifying mobile device users’ emotions for social psychology

research, whilst Sadilek and Kautz [200] use machine learning to infer mobile device

users’ intent in a game scenario.

There are two key research problems associated with learning users’ context with mobile

devices: (i) device resources – particularly power – are limited, therefore the application

of useful and usable machine learning techniques on-device is non-trivial [118, 233];

and (ii) the ideal objective of fully automated context inference through learning is

unrealistic, as automated systems will inevitably make incorrect inferences which – in

a learning situation – may propagate and affect future inferences [153]. Conversely, we

cannot expect mobile device users to diligently correct or update their context without

incentive or tangible purpose. The interesting challenge for researchers, therefore, is

how we engage the user in the learning process with minimal burden, whilst maintaining

or improving context inference performance.

In our work, we are particularly interested in applying machine learning techniques on-
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device in real time, such that mobile devices are reactive to users’ context and context

changes. Much of the previous work in this section uses pre-learned models, e.g. [98], or

post hoc pattern classification, e.g. [137], and few have undertaken real-time learning.

CenceMe [154] moves this forward, but still relies on offline learning to function fully. In

the next section, we look at the feasibility and previous work surrounding a particular

type of machine learning – active learning.

Active Learning

Active machine learning is a branch of machine learning that attempts to engage ‘or-

acles’ – typically humans – in the machine learning process in order to improve clas-

sification performance [49, 210] (see Figure 2.10). Whereas traditional supervised ma-

chine learning requires training using relevant data, and unsupervised learning looks for

structure in data, active machine learning combines both through intelligent reasoning

about the confidence or certainty of classification.

Researchers have begun to use forms of active learning in mobile context awareness

in order to tackle problem (ii) listed above. The most notable of these is MIT’s OIL

[173] indoor localisation system, which prompts users for validation of new, uncertain

location data when attempting to infer indoor location zones (see Figure 2.7a). Other

examples include RedPin [29], Rosenthal, Dey and Veloso’s interruptibility learning

[196] with mobile devices, Fisher and Simmons’ interruptibility learning with reinforce-

ment learning [70] and Kim et al.’s SensLoc [115, 117].

These studies are some of the closest to our later work on interactive intelligence on

mobile devices, and they showcase the issues involved with eliciting feedback from

mobile users in the field, and the advantages of that feedback if it is obtained. Mobile

devices are different to desktop systems for interaction behaviour however, and there

are very few active learning studies involving them. Hence, we feel it appropriate to

incorporate active learning into this dissertation in order to break new ground in this

area.

2.4.6 Resource Efficiency

In the previous section, we reviewed work that used machine learning techniques to infer

and learn about user context through their mobile devices. As we saw, researchers are

often hampered by the resource limitations of mobile devices; mainly battery power

and, to some extent, CPU performance and available memory. The limitation of on-

device resources is an ongoing problem, and researchers have been tackling the issue

by attempting to improve the resource efficiency of their context sensing and inference
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Figure 2.10: The model for active learning, showing how an automated system can prompt
the ‘oracle’ for confirmation on uncertain classifications. (Image from [210].)

approaches.

It is a well-known issue that using mobile device sensors significantly affects battery

life [118, 233], but researchers frequently require continual sensing for good context

inference performance, e.g. [173]. One of the biggest challenges currently faced is

knowing when to use costly sensors to capture context data, and when to turn them

off to save battery resources – the so-called energy-accuracy trade-off [186]. Various

approaches have been taken to address this problem: some systems attempt to balance

resource consuming tasks between the device and external servers, e.g. [153, 154, 173];

whereas others try to predict the best opportunity for turning on sensors when needed,

e.g. [117, 167, 190, 233].

For state-of-the-art resource efficiency, Li et al. [136] implement machine learning

techniques to create sensing models that improve the efficiency of context sensing, and

Ra et al. [183] break up background application tasks in the attempt to optimise energy

use on mobile devices.

We do not focus too heavily on resource efficiency in this work. It is an important

topic, and one that is well studied in mobile context awareness. Because of this, we do

not concentrate on optimising resource usage in our sensing and interactive intelligence

work, but we are aware of it and show, later on, that using event-based sensing policies

actually improves power usage beyond the current state-of-the-art dynamic polling

policies, e.g. [117].
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2.4.7 User Interaction with Mobile Context Aware Devices

Awareness

Context aware computing has played a large role in HCI due to the inherent relationship

between context aware devices and their users. The most relevant area of HCI to

context aware computing is awareness [209], i.e. enabling perception – in this case – of

context. Context aware computing implies that the context aware device is the entity

that is perceiving context, i.e. user context, and many definitions support this, e.g.

[57]. However, in traditional HCI awareness, designers are typically concerned with

making the user aware of events on a computer interface (for example). We therefore

have two key areas of awareness: (i) device awareness of users’ context, i.e. user →
device awareness; and (ii) user awareness of the device interface, i.e. device → user

awareness. User → device awareness concerns the device’s automated inference of user

context – which we have covered in the previous active research sections – but device

→ user awareness is just as important an issue when designing context aware systems;

particularly mobile context aware systems [222].

Peripheral Awareness

Context aware devices may need to make users aware of different things, e.g. the

availability of new information, services, applications, or requests for interaction. Often,

the key issue for researchers is the approach used to raise users’ awareness when the

relevant task is not the user’s primary task [76, 82, 209]. This has been referred to

as “peripheral awareness”, which is described by Pederson and Sokoler [180] as “our

ability to maintain and constantly update a sense of our social and physical context”.

Various methods of enabling peripheral awareness have been made in the literature.

Weiser and Brown’s “Dangling String” [237] project was designed to raise peripheral

awareness of network traffic at Xerox PARC by rotating a motor attached to a plastic

string in proportion to the amount of network traffic passing through an Ethernet cable.

The authors argued that the interpretation of traffic density – which was typically

displayed on a screen – was made simpler by abstracting the information into a simple

artefact, i.e. the string. Simple sounds are commonly used for raising peripheral

awareness of messages, e.g. [201], and have been used for the peripheral awareness of

workers’ presence and availability [161].
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Figure 2.11: Rosenthal, Dey and Veloso use decision-theoretic decision sampling to construct
interruptibility models for mobile devices. Here, the accuracy of interruptibility prediction is
measured according to the prompt conditions; high and low cost refer to users’ self rated cost of
interruption. (Image from [196].)

Interruptibility

Another important research area in mobile context aware systems is interruptibility.

How do we know when users are interruptible? Inferring this is non-trivial (getting

it wrong can lead to frustration cf. Microsoft’s paper clip assistant), particularly in a

mobile environment where users may be carrying their device in different environmental

and on-body locations [152]. Using Moran and Dourish’s example of a phone ringing

(or rather, not ringing) at a concert due to its awareness of its user’s context [157],

Brown and Randell [33] discuss how such a trivially stated problem can be extremely

difficult to implement; due mainly to what Hudson et al. [100] refer to as “a complex

tension between wanting to avoid interruption and appreciating its usefulness”.

Fogarty et al. have shown that, by using a simple set of sensors (namely: desktop event

logs, cameras and microphones), it is possible for context aware systems to predict

interruptibility as well as humans can [71, 101]. Knowing when to interrupt people is a

key issue, and Ho and Intille [92] developed a novel method to identify key points using

activity transitions. By deploying an array of body-worn sensors, the authors showed

that by prompting users at the point of activity transitions, the perceived burden of

interruption was less than if prompted at random. This is a key finding, as it shows that

context transitions are potentially useful indicators of user interruptibility. However,

the requirement for specialist hardware limits the general applicability of the work,

particularly to everyday mobile device users.

However, recent research has explored how interruptibility can be inferred and even

learned using mobile context aware systems. Kern and Schiele [114] show how inter-
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ruptibility can move from body-worn sensors to mobile devices, and Rosenthal et al.

[196] show how models of user interruptibility can be learned using mobile devices (see

Figure 2.11), which stems from Kapoor and Horvitz’s [112] studies of interruptibility

learning methods. Rosenthal et al.’s work is an example of a learning approach to in-

terruptibility, which is more elegant but requires long periods of daily training, whereas

Ho and Intille’s work [92] is an example of a reactive approach, i.e. the point of tran-

sition is assumed to be a good time to interrupt users, which requires little training

but is perhaps more crude in its design. These approaches of predicting interruptibil-

ity using mobile devices do however show that the difficulty of automatically inferring

interruptibility [33] can be somewhat overcome.

Notification

Even when interruptibility can be inferred, there are still issues surrounding the type

of notification used to capture the user’s attention. The modality of notification is an

important design choice, and it is one that has implications for how receptive users

might be to interruption. Hinckley and Horvitz [91] discuss the issues associated with

traditional alerting mechanisms on phones, and early mobile context aware systems, e.g.

the TEA [78] and SenSay [212] projects, were concerned with lessening the negative

impact that notifications have on mobile device users. Hudson et al. argued [100],

however, that notifications should be designed to be more effective rather than the

alternative approach of designing around their ineffectiveness.

Modern smartphones have a range of primary notification modalities: visual (display

notifications), audio (ringtones and notification sounds) and tactile (vibration). Figure

2.12 shows Garzonis’ map of notification modality effectiveness given user context and

device location [75]. As the table shows, audio notifications are generally the most

effective, followed by tactile (if the device is on-body) and visual. This links back to

peripheral awareness; audio and tactile notifications can alert users without distracting

them from their primary tasks, but visual notifications rely on users’ partial or full

focus.

Garzonis’ work using earcons has been of particular influence to us in our later place

awareness study. By showing how users associate particular sound patterns with no-

tifications, his work offers novel means of approaching user feedback elicitation from

mobile devices in the field.
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Figure 2.12: The effectiveness of different mobile device modalities given user context and
device location. V = visual; A = auditory; and T = tactile. (From [75].)

Intelligibility

One of the primary research trends in user interaction design for mobile context aware

systems has been intelligibility. This is the problem of communicating useful informa-

tion about the device’s state or decision making process to the user so that the user

may better understand the reasoning behind the inference [20, 141] and possibly inter-

vene to correct it [210]. User experience may be hampered if the user feels confused or

annoyed by the devices automated inference outputs and, without clear understanding

as to why the device did what it did, or how to remedy the situation, the user is likely

to distrust the application or dismiss it entirely [9, 10].

Much of the recent body of work on intelligibility in mobile devices has been conducted

by Lim and Dey. They have used prototype context aware applications to assess users’

demand for such intelligibility in context aware applications [141]. The applications

include an Instant Messenger (IM) notification plugin; an awareness system that mon-

itors the context of elderly relatives; a reminder system from Dey and Abowd [58]

and a mobile tour guide extended from Abowd et al.’s early work into context aware

computing [1]. The results from this study show that users would be more satisfied

if context aware devices were to present a set of ‘intelligibility types’ to the user –

viz.: application, situation, input, output, model, why, why not, how, what if, what

else, certainty and control – with emphasis on three key elements: why, certainty and

control.

Lim and Dey go on to extend their work with a toolkit to support intelligibility in

context aware applications [139] and early designs of mobile context aware applications

with intelligibility integrated within [140, 142] (see Figure 2.13). The predominance in

this work is on the ‘why’ (and, to some extent, the ‘why not’) explanations for context

inference, with initial exploration into the effects of communicating certainty through

user interfaces – particularly mobile interfaces.
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Figure 2.13: Lim and Dey demonstrate means of communicating intelligibility to the user in
a mobile context aware system; from [139].

2.4.8 Interactive Intelligent Systems (IIS)

As we saw in the introductory chapter, a recent research field that has emerged from

the intersection between AI and HCI is interactive intelligent systems (IIS). An IIS

is an intelligent system that people interact with [105], and it is the combination of

artificial intelligence and human interaction that leads to complex and fascinating re-

search challenges beyond simply telling an intelligent system that it is right or wrong.

For example, how much work should be done by the intelligent system vs the amount

that should be done by the user? Is accuracy a priority, or is it avoiding user burden

[219]? How would interaction design choices, e.g. interface types, affect the learning

and classification performance of an intelligent system, and how might the classification

performance subsequently affect the user experience?

This interesting mixture of HCI and AI problems is especially pertinent for mobile

context aware systems. A mobile context aware device is an intelligent system that

people interact with, and the vast majority of research in mobile context awareness

is either concerned with automated context inference (the intelligence) or the user

interaction and experience (the interaction), or both.

Much of the research involved in IIS is new [105], but it is grounded in a variety of

other fields. Schmidt first defined the idea of implicit HCI (iHCI) [205, 206], where

context awareness could be used to lessen the burden of interaction by removing the

more explicit tasks involved in traditional HCI, e.g. direct manipulation of GUIs.
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Figure 2.14: Schmidt’s implicit human-computer interaction (iHCI) model, from [206]

In [206], Schmidt defines iHCI as “the interaction of a human with the environment

and with artefacts which is aimed to accomplish a goal. Within this process the system

acquires implicit input from the user and may present implicit output to the user”

(see Figure 2.14). The “implicit inputs and outputs” are secondary to users’ primary

tasks or activities, and they allow context aware devices to utilise user input without

demanding their direct attention, e.g. turning off a TV when the user has switched

focus to a book.

In the ACM’s recently launched journal, Transactions on Interactive Intelligent Systems

(TiiS) [105], there have been few mobile IISs and, consequently, few studies on how user

feedback could be integrated in the context inference and learning process in a mobile

environment. Furthermore, there is an interesting question surrounding propagation,

i.e. how does inference that utilises user feedback affect future requests for feedback?

In summary, there are two key problems for IIS design that apply to mobile IIS design:

1. How much of the context inference and learning process can we automate without

requiring user feedback?

2. How can we elicit user feedback in a mobile environment?

The distinct lack of mobile IIS in the literature is what drives a large part of the research

in this dissertation. As we have mentioned previously, mobile devices are very different

to desktop systems when it comes to user interaction behaviour and the practicalities

involved in deploying machine intelligence. Thus, the normative facets of IIS – the

intelligence and the interaction – are likely to be very different for mobile devices. This

gap in previous work has allowed us to focus on new research for both intelligence and

interaction (and their co-existence) on mobile devices.
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2.5 Research Questions

In this section, we narrow the scope of this literature review toward a set of current

research problems and questions that this dissertation will address. These are grouped

by key active research areas within mobile context awareness.

2.5.1 Context Sensing

As we saw in Section 2.4.1, acquiring context is an ongoing research problem. Designers

of context aware systems must first identify potential context sources according to

the requirements of their application, before designing sensors that can transduce raw

context data from the sources into machine readable form. In the mobile environment,

we have an important factor to consider: mobility [131]. By using mobile devices, we

can perform context sensing in a naturalistic manner without impacting too heavily on

ecological validity due to the need for specialist hardware, but we do have to consider

the important and practical constraint of resource consumption, e.g. battery, CPU and

data [118].

Even though context sensing is a popular area of mobile context awareness research,

there are still ongoing research questions to which we can contribute. First, there

is the question of context sourcing and sensing. With the enormous surge of data-

driven software services and applications such as social media, and the ever increasing

sensing capabilities of mobile devices and computing hardware in general, there lies

an interesting question as to what entities we could consider to be context sources

and sensors. As we saw, existing approaches to context sensing on mobile devices focus

heavily on hardware or ‘physical’ sensors; usually those present on the devices itself, e.g.

GPS and accelerometers [131]. Ground for original contribution lies in ‘virtual’ sensing

[15], e.g. where we can sense context data from a user’s Facebook status by using

Natural Language Processing (NLP) techniques. Other researchers have considered

entities as diverse as biological organisms [127] and photographs [41] as virtual context

sensors. This leads us to our first research question:

• RQ 1: What entities might we consider as virtual context sensors?

To answer this question, we should identify a set of virtual context sensors and, for

a case study, ascribe a performance measure for sensing. By measuring the sensor’s

performance during the study, we can evaluate whether or not it can be seriously

considered as a context sensor.

Although broad, RQ 1 implicitly assumes that context sensors are singular entities, i.e.
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a single input (the source) with a single output (the machine readable context data).

However, interesting and useful sensing capabilities may be realised by combining or

fusing sets of context sensors together; which has been previously undertaken in the

literature using sets of traditional sensors, e.g. [2, 102, 169]. However, the idea of

virtual context sensing leads naturally to the possibility of combining multiple virtual

and physical sensors together, with a view to improving sensing performance beyond

that of single sensors. If we can identify a candidate sensor for RQ 1 and evaluate

its performance, we can also naturally ask whether combining it with other, more

traditional context sensors improves overall sensing performance. This motivates our

second research question:

• RQ 2: To what extent does combining multiple context sensors affect sensing

performance?

By addressing these two questions, this dissertation intends to contribute to context

sensing in mobile context aware systems. By focusing on virtual context sensors rather

than the more traditional physical ones, we will advance upon the current state of the

art in mobile context sensing.

2.5.2 Interactive Intelligence: the Intelligence

As we saw in Section 2.4.8, interactive intelligent systems (IIS) have recently emerged

in the intersection between AI and HCI. These two fields form the two fundamental

components of IIS: the intelligence (AI) and the interaction (HCI) [105]. We will

address both of these areas in the scope of mobile context aware systems. For the

first – the intelligence – there are two relevant areas of research: context inference and

context learning on mobile devices.

Context inference is an extremely broad area and, for mobile context awareness, it

encompasses the active research areas that we reviewed in Sections 2.4.1 – 2.4.5. Before

addressing inference and learning techniques, one question that frequently arises –

particularly in mobile context aware systems – is when to turn on or initiate resource-

intensive sensors, e.g. GPS, or expensive inference processes [186]: using sensors too

frequently is costly if there is nothing worth sensing, e.g. the user’s context has not

changed; and, conversely, using them too infrequently saves resources but risks missing

important events. As Greenberg notes [80], context is extremely dynamic in nature,

and knowing when to sense and infer is paramount lest we miss important events or

over-consume our available resources.

Current approaches have used periodic sampling [154] and dynamic sampling [186],

but Ho and Intille’s work [92] using context transition triggers for interruptibility is
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promising. The authors identify key moments in time when an activity has significantly

changed and reason that these moments correspond to moments when users are more

likely to respond to interruptions. These context transitions – which Zimmerman et

al. [246] describe in greater detail – are effectively discrete samples of the continuous

dynamic context model [80]. The property in question is the change in context over

time. Approaches for inferring moments of context change – similar to Ho and Intille’s

– have been used to initiate mobile sensing policies in the literature, e.g. [30, 117, 119],

but these are typically crude, e.g. the use of arbitrary motion trigger thresholds [125]

and other parameters [117], and do not take user variability or subjectivity into account

[68]. Moreover, there are few formal analyses of transition inference performance in each

case; little thought is given to how sensed motion relates to a natural understanding of

context transitions, nor how adjusting processing parameters affects transition inference

performance. These problems form a basis for our third research question:

• RQ 3: To what extent can we infer significant changes in context using mobile

devices?

As we discussed in Section 2.4.5, one of the primary relevant research areas is the

improvement of context inference and learning performance in mobile context aware

systems. The bulk of current research is focused on developing, implementing and

improving algorithms that automatically infer and learn users’ context from sensor

data (see Section 2.4.5), but inferences can still be incorrect due to, e.g. insufficient

sensor data or poor quality sensor data.

Automated inference is often seen as an ideal goal because it removes the need for

the user to supply the ‘answer’. In reality however, it is extremely difficult to make

correct automated inferences to the degree of accuracy that users desire [34, 245]. One

approach to improving inference performance is to learn about users’ context over

time using machine learning techniques, e.g. [153], but this still requires some form

of user input and too much prompting for such input will likely lead to user irritation

[219]. Conversely, too many incorrect inferences are will adversely affect application

functionality, also resulting in user irritation. As we saw in Section 2.4.5, an interesting

approach to this problem is active machine learning [210]; where an intelligent system

can measure the confidence of its own decisions and ask the user for help only when

required. This approach is potentially useful as it could avoid the pitfalls associated

with the aforementioned automation-supervision trade-off. Furthermore, it could allow

us to capture additional data from users – such as intent or meaning – that could

otherwise be non-trivial to sense and infer.

As we saw, only a few studies have used active learning in mobile context aware systems.

Kim et al. propose it for future work in their study of people’s meaningful places, but do
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not implement it [115], and Park et al. [173] use it for indoor location positioning, but

do not study it beyond a single building with specialist devices. The key problem for

researchers is the design of interactive intelligence that will perform well in response to

expected user interaction, not the ideal – we cannot expect users to be ‘perfect oracles’

[218]; in reality they will likely miss prompts or just ignore them, especially in a mobile

environment. Thus, given the potential value of active learning for improving context

inference, and given its lack of implementation in mobile context aware systems, we

can outline another research question:

• RQ 4: To what extent can we infer and actively learn about context using mobile

devices?

So, for the intelligence component of interactive intelligence in mobile context aware

systems, we concentrate on: inferring moments of context change, and the inference

and learning of context itself.

2.5.3 Interactive Intelligence: the Interaction

The other component of interactive intelligence is the user interaction. As Bellotti

and Edwards note [20], “There are human aspects of context that cannot be sensed

or even inferred, so context aware systems cannot be designed simply to act on our

behalf”. Given that users can interact with the intelligent system and provide feedback

for active context learning, we should also study when and how we should attempt to

elicit such feedback from users if we need it. This is perhaps a more complicated issue

than it first appears: prompting users for feedback (if necessary) at the right time is

imperative for useful response [34, 140], but when is the ‘right’ time to prompt? There

is then the question of the mode or modes used for prompting, as well as design choices

for each, e.g. if we use audio prompts, then the choice of whether to use a simple

sound or speech might affect users’ feedback response behaviour [75]. Our objective is

to elicit context feedback from users for active learning, which may prove non-trivial

in a mobile environment where users are unlikely to notice or respond to requests for

feedback. This is our penultimate research question:

• RQ 5: How can we elicit context feedback from users in a mobile environment?

Given the preceding research question, we should also ask how users typically interact

with mobile IISs. As Stumpf et al. noted during their studies of desktop IISs [219,

218, 220], there is little research into how end users interact with intelligent systems;

rather, most work assumes – much like the field of active learning – that the user is
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simply an ‘oracle’ that will tell the intelligent system that it is right or wrong on request

[210]. Given mobile IISs, where user interaction may be complex due to the extremely

dynamic nature of mobile users’ context, this question becomes even more pertinent.

Users are subjected to all kinds of external stimuli, and their mobile device interaction

behaviour can vary significantly [68]. This question of user interaction in interactive

intelligence forms our final research question:

• RQ 6: How do users interact with an interactive intelligent mobile context aware

system?

It would be useful, therefore, to observe typical user interaction behaviour, e.g. feedback

request response rate and time, as well as users’ opinions on the experience of interacting

with a mobile IIS in the field.

2.5.4 Low-level Research Questions

Although the research questions presented here form the guide for the work in this

dissertation, they are high level and, as such, our work will focus on lower level instan-

tiations of each overarching question. Within each chapter, a set of lower level research

questions related to the relevant high-level question will be presented. Of course this

immediately limits the generalisation of some of the work, but we do this in order to

produce tangible research contributions that can enable further research within the

scope of the higher level questions.

To address this further, each study and chapter discussion will assess the implications

of the work in relation to the higher level research questions presented here. There

will be particular focus on the limitations and what still needs to be addressed in light

of the findings. Finally, in the concluding chapter, we will discuss this in the broader

context of the dissertation as a whole, and link the outstanding needs to future research

agendas involving the high-level research questions.

In the next section, we present our layer model that we will use to structure these

research questions in a meaningful and intuitive way. We will first review similar

models and their uses in the literature, before presenting ours along with a summary

of the chapter.

2.6 Research Structure

In this section, we outline a layer model for the research in this dissertation. As we shall

see, layer models are ubiquitous in the literature due to their simplicity, extensibility
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and the intuitive manner in which they represent abstract concepts; and we conjecture

that a layer model is an appropriate choice of structure for our work.

We will first outline various examples of layer models used in existing context aware

and mobile context systems, before describing our layer model and where our research

questions lie within the model.

2.6.1 Layer Models in the Literature

Using a layered structure to model systems is certainly nothing new. Perhaps the

most well known examples are the OSI 7-layer and TCP/IP models used in computer

networks [31] to capture the abstractions and dependencies of remote communication

between applications in a network. Layering is typically used to separate systems

into well-defined components – or modules – with application programmable interfaces

(APIs) separating each layer. This separation allows each layer to manage a particular

system function, and it removes all but the key dependencies between each layer.

In context aware computing, layer models are a popular choice for illustrating sys-

tem designs, categorising functions and capturing the important functions that enable

context awareness.

• Indulska and Sutton [103] (Figure 2.15a) use a five layer approach to manage

location in pervasive systems.

• Hydrogen [93] (Figure 2.15b) was one the first approaches to use a layer model

for mobile context awareness. The lowest layer – the Adapter Layer – was re-

sponsible for context sensing and low level data processing, whilst the middle

layer – the Management Layer – acts as an interface between the Adapter Layer

and the applications present in the Application Layer. Interestingly, the Man-

agement Layer does not appear to perform any inference; rather, it simply routes

application requests for context data and returns the data appropriately.

• Mayrhofer [150, 151] (Figure 2.15c) uses a layered approach to outline, in great

detail, their context sensing and inference processes for context prediction.

• Korpipää et al. [123] (Figure 2.15d) specifically model context information flow

in mobile devices using a layered approach. Unlike other approaches, there is no

‘sensing’ layer; rather, the sensing functions are contained within a single module

on the same level as the inference functions.

• The SOCAM architecture [83] (Figure 2.16a) takes a service-oriented approach,

with a clear focus on formal ontology and reasoning. Again, three layers are
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(a) Indulska and Sutton, from [103]. (b) The Hydrogen model, from [93].

(c) Mayrhofer’s prediction architecture, from
[150, 151].

(d) Korpipää et al.’s mobile context aware-
ness model, from [123].

Figure 2.15: Layer structures in context aware systems.

used: context sensing, which extracts data from physical and virtual sensors;

context middleware, which performs context reasoning, or inference; and context

application, which contains the authors’ proposed services. Unlike many of the

models listed here, the SOCAM model is very abstract, i.e. the authors use it to

structure functions rather than concrete system designs.

• ContextPhone [188] (Figure 2.16b) used a more concrete layer architecture based

around its implementation on the Nokia Series 60 (S60) platform for the Symbian

operating system. ContextPhone was designed to enable the rapid development

of mobile context aware applications by standardising the general structure of a

mobile context aware system. Again, three layers are used, but there is a clear

focus on network-acquired context data; which forms the majority of the lowest

layer. Interestingly, the authors place context sensing in the middle layer, along

with services and communication processes.

• Baldauf et al. [15] – in their survey of context aware systems – note the common

layered approach to context aware system design; also noted by Hong et al. in a
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(a) The SOCAM model, from [83]. (b) ContextPhone, from [188].

(c) MyExperience, from [73]. (d) CenceMe on-device design model, from
[154].

Figure 2.16: Layer structures in context aware systems.

later survey [94] and Figo et al. in their work on context inference [69]. In fact,

the authors use the layer model as a guide throughout their survey, particularly

when discussing the key areas of ongoing research.

• MyExperience [73] (Figure 2.16c) uses a three layer approach to capture user

experience data in the field using mobile devices. Here, the authors use a sensing

layer, but the higher layers are responsible for ‘triggers’ – which are executed upon

interesting sensor events – and ‘actions’ which are controlled by the triggering

layer. This approach allows basic sensor events to drive data logging processes

and user prompts, with well defined interfaces between each.

• Miluzzo et al. [154] (Figure 2.16d) uses a semi-layered approach to modelling both

the on-device and server components of the CenceMe system. Here, once again,

the sensing layer is explicitly defined (along with a graphical user interface (GUI)

layer at the top of the on-device model). The middle layer, however, is further

fragmented into modules with particular inference and storage functions. CencMe

is interesting as it uses two separate models for its client-server components;

somewhat emulating the TCP/IP layer model for computer networking.
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(a) The SeeMon model, from [111]. (b) Hong et al.’s context awareness research
classification model, from [94].

(c) Wang et al., from [233]. (d) Bettini’s model, derived from modelling
survey, from [25].

Figure 2.17: Layer structures in context aware systems.

• SeeMon [111] (Figure 2.17a) uses a classic sensing-inference-application layer

model, but the interface between the sensing and inference layers is explicitly

defined to be wireless.

• Hong et al. [94] (Figure 2.17b) use a layered approach to classify the core areas

of context awareness research in their extensive literature survey. By using the

layered structure, the authors have managed to quantify the amount of research

that has been output according to levels of abstraction.

• Wang et al. [233] (Figure 2.17c) use the layered approach to model the design of

their energy-efficient context sensing system. Like CenceMe [154], the inference

layer is broken into a series of modules that output their decisions to a user

interface.

• Bettini et al. (Figure 2.17d), in their extensive review of context modelling [25],

recommend a layered approach for grouping context sensing, reasoning and ap-
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plication components of a context aware system. The authors cite a series of re-

quirements for rich context modelling, including: sensor heterogeneity, timeliness,

dealing with imperfection, context reasoning and usability. The requirements are

used to derive the layer structure through an analysis of the context modelling

literature, and this layer structure is later used in the authors’ COSAR system

[193].

Clearly, using a layer model to structure both context aware systems and research

helps researchers during the design and implementation of their systems. Many of the

aforementioned layer models tend to have some form of user interaction layer at the

top of the stack, e.g. [154, 233], but the direction of data flow is typically ‘one way’,

i.e. from the low to high towards the application and user interaction layers. Thus,

one of the active research areas not captured by these approaches is user feedback, i.e.

directing data flow back into the inference layer.

We therefore use a modified version of the traditional layer model to structure the re-

search contributions in this dissertation. The key difference between our approach and

existing ones lies in the addition of a user feedback interface, which allows clean de-

sign of user intervention components in both the user interaction and context inference

layers.

The next section presents our layer model, summarises each of the key layers and maps

the relevant dissertation chapters to the layers.

2.6.2 Our Layer Model

As we saw in the previous section, the number of layers in each architecture can vary

between systems. However, descriptions of low, middle and high levels – which imply

a generally increasing level of abstractness – appear frequently in the descriptions of

these systems. This ‘three-layer’ approach encapsulates all things ‘low level’, e.g. hard-

ware, electronics, physics and sensors; ‘high level’, e.g. applications, user interfaces,

behaviours and environments; and ‘everything in between’, e.g. software processes,

algorithms, middleware, data storage, data management, protocols and services.

Like many others, we adopt this approach to structure our research. At the lowest

level – sensing – context data is sourced and sensed, and perhaps preprocessed. At

the middle level – intelligence – the sensed context data is processed in order to draw

conclusions about context. At the highest level – interaction – there is an interface

between system users and applications. Furthermore, between the intelligence and

interaction layers, there is feedback interface (or ‘sub-layer’), which feeds data back

into the intelligence layer from the user (through the interaction layer). The layer
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Figure 2.18: Our layer model for structuring our research.

structure is shown in Figure 2.18.

Sensing Layer

‘Sensing’ context can be quite abstract. We have to identify potential sources of con-

text and, depending on the system requirements, define an appropriate set of sensors

to convert raw context data into machine-readable data. Traditionally, sensors are

transducers of physical phenomena into electrical signals, but the physical definition

has been stretched to include non-physical sensors, i.e. ‘virtual’ sensors, which can

‘sense’ context data from virtual sources such as software applications or network APIs

[15, 83, 103].

In Chapter 3, we begin at the sensing layer to address RQs 1 and 2, which are concerned

with what entities could be considered as context sensors, and how combining sensors

affects sensing performance.
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Intelligence Layer

Inferring and learning about context can often be non-trivial, especially in a mobile

environment where sensors may be rudimentary, resources may be restricted and data

quality may vary, e.g. RF signal strength varying with mobility. As such, the use of

AI and machine learning techniques form a large portion of mobile context awareness

research. This is the intelligence component of interactive intelligence. Because intel-

ligence processes are tasked with reasoning, they must accept observations, i.e. data,

as inputs and output conclusions based on the observations and, possibly, prior knowl-

edge. This fits naturally with the layering ethos [31], where data from the sensing layer

can be input into an intelligence layer which, in turn, outputs conclusions to a higher

layer.

In Chapter 4, we use an intelligence layer to address RQs 3 and 4, with the novel

addition of input from a user feedback interface. We first consider the problem of

inferring significant transitions between context states within a mobile environment

(RQ 3), before moving on to the inference and learning of the context states themselves

using active learning techniques (RQ4).

Interaction Layer

User interaction – the HCI component of interactive intelligence – is equally as impor-

tant as the intelligence component in mobile context aware systems. The functional

requirement of many context aware systems is to provide or enable a service for a set of

end users, so the point of interaction between the end users (or applications) and the

system is a critical design component. Again, this fits naturally into a layer structure

above the intelligence layer, as we can design user/application interfaces whose only

dependence upon the intelligence layer is through the APIs between the interaction

and intelligence layers.

It is at the interaction layer that we design the user interfaces for user interaction

with mobile context aware systems. In Chapter 5, we tackle RQs 5 and 6 through the

interaction layer.

Feedback Interface

One of the key areas that we focus on in Chapters 4 and 5 is the incorporation and

elicitation of user feedback in a mobile IIS. In our layer structure in Figure 2.18, we

describe a feedback interface from the interaction layer to the intelligence layer, which

allows users to intervene and provide feedback on the context inferences; which is
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Figure 2.19: Mapping dissertation chapters to layer model components.

effectively active machine learning.

We investigate the effects of user feedback on the inference process in Chapter 4 as

part of our contribution to RQ 4, but we consider the interface design in greater detail

in Chapter 5 as part of RQs 5 and 6. The definition of this interface is crucial when

considering the design of mobile context aware systems that utilise user feedback and,

because of this, we outline a set of requirements for designers to consider.

Users and Applications

The final components of our layer structure in Figure 2.18 are the users and applications

that will interact with our mobile context aware system. Their interactions are made

through the interaction layer, which contains the user and application interfaces of the

system.

2.7 Model or Architecture?

As we have seen in this chapter, layer models have been used as both representations

of context aware systems, e.g. [154], and more formal software architectures, e.g. [188].

There is a question therefore, as to whether our layer model should be developed into a
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software architecture during this dissertation. As we are using as a guide to our research

structure, its development as an architecture will not be the central theme of the work.

However, we will continually use it during the designs of our studies; especially to map

the modular components of our place awareness system in Chapter 5. In doing this, we

show how the model could be developed into a more formal architecture as an agenda

for future work. By demonstrating its use in our research, we illustrate its potential

as an architecture with formal APIs. In the concluding chapter of the dissertation, we

will critically evaluate how the layer model’s use in our work has strengthened its case

for further development as a formal software architecture for developing mobile context

aware systems with interactive intelligence.

2.8 Conclusion and Chapter Summary

In this chapter, we reviewed the literature surrounding context awareness and mobile

context awareness. We introduced the key background work that has helped to shape

and influence active research into mobile context awareness, including the research

areas specifically related to mobile context systems, namely: context sensing, location

positioning, activity recognition, machine learning, resource efficiency, user interaction

and – importantly – interactive intelligent systems (IIS). The current state of the art

was outlined within each, and this sets the boundary for our research questions.

The scope, problems and high level research questions for the dissertation were then

derived, and these will be addressed in Chapters 3 – 5. In the next chapter, we tackle

our first research questions related to sensing in mobile context aware systems, before

moving on to intelligence and interaction – the two fundamental component of interac-

tive intelligence – in later chapters. Throughout this dissertation, our layer structure in

Figure 2.18 will be used to guide the research and illustrate how our work fits together.
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Chapter 3

Context Sensing

In Chapter 2, we discussed the widespread use of layered approaches when designing,

modelling and classifying context aware systems. The lowest layer in the majority of

these architectures – usually referred to as a ‘sensing’ or ‘hardware’ layer – typically

addresses the task of acquiring or transducing physical data from the world into machine

readable data that can be processed by an ‘inference’ or ‘middleware’ layer. The sensing

layer is an important interface between the context aware system and the outside world,

and it forms the foundation for many context aware systems.

In this chapter, we consider the design and implementation of the sensing layer in

mobile context aware systems. We will be addressing RQ 1 and RQ 2:

• RQ 1: What entities might we consider as virtual context sensors?

• RQ 2: To what extent does combining multiple context sensors affect sensing

performance?

For RQ 1, we describe the requirement for context sensing, before analysing a range

of context sources present in people’s everyday lives; particularly sources related to

the people themselves. In Section 3.2 we link context sources to context facets, and

describe three important categories of source: users, devices and the environment in

which both operate. In Section 3.3, we provide an overview of context sensors, with

focus on the sensing capabilities of mobile devices. We then explain the distinction

between ‘physical’ and ‘virtual’ sensors – a distinction which has arisen in the literature

[15, 103].

For RQ 2, we discuss how context data can be sensed and combined through low level

data fusion; a process that merges data from multiple context sensors in the attempt

to improve sensor accuracy beyond that which is achievable by the individual sensors

alone.
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Figure 3.1: Our layer model, highlighting data sources and the sensing layer; both of which
this chapter will be focusing on.

In order to produce a tangible contribution to these research questions, we present a

case study of mobile context sensing in the field; in which we consider the calendar as

a virtual context sensor. We develop a set of low level research questions for the study,

and analyse the calendars of two software engineering teams in an office environment;

showing that the standalone office calendar is a poor context sensor due to the preva-

lence of ‘noise’ caused by reminders and placeholder events that do not actually take

place. Furthermore, by sensing context with other sensors – Bluetooth (location) and

the workers’ email address directories (social network) – we design and evaluate two

data fusion algorithms that combine the calendar with these other sensors. We show

that, in our study, both algorithms significantly improve context sensing performance

beyond the standalone calendar; a finding which has implications for context aware

presence and availability systems in office environments. Finally, we present a small

range of prototype applications that use calendar-based context sensing to provide

services to mobile device users in an office environment.
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3.1 The Context Sensing Requirement

As Dey’s abstract definition states [57], context is information about a given situation.

To be context aware, a system must process raw context data into useful context

information. Although this process is somewhat loosely defined (and often non-trivial),

the first step is clear: we must obtain raw context data from somewhere. This is the

key requirement for a context sensor – to translate data from one or more context

sources into machine readable data about context facets.

For most mobile context aware systems, the specific sensing requirements and con-

straints will depend on the application under development, but the abstract require-

ment for context sensing remains the same: to translate raw data from context sources

into machine readable data relating to appropriate context facets. Once sensed, the

context data can be passed to higher level processes for inferring context information.

There are a number of questions that should be considered when designing the sensing

component of a mobile context aware system:

• Which facets of context do we need? Depending on the application, we may only

need data relating to a single context facet, e.g. location for the “Where” facet.

However, more complex applications may demand data relating to further facets,

e.g. activity for “What” or identity for “Who”.

• From what sources can we usefully sense context? Once we have identified a set

of context facets, we should identify a set of data sources from which it may be

possible to sense context from. For example, if we wish to sense user activity, we

should identify physical sources of activity, e.g. the user’s body movement.

• What sensors are available to us? Having identified a set of potential context

sources, what sensors can we use to obtain our machine readable data? We may

need to design and implement our own sensing system, or we could utilise existing

infrastructure. Again, this is application dependent, but the choice of sensors will

have an impact on the data quality and implementation costs the system.

• Are there any constraints? We may have cost or availability constraints for sen-

sors, e.g. we may choose a low quality sensor such as a mobile device accelerometer

to sense user activity data due to the ubiquity of mobile devices; this ubiquity

has advantages for large scale, rapid deployment and some guarantee of hardware

standardisation. There may also be legislation and privacy constraints, e.g. even

if it is possible to sense certain context data, we may be restricted in our storage

and usage of it.

With these design questions in mind, we outline a range of context sources and sensors
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before describing the differences between ‘physical’ and ‘virtual’ context sensors. We

will link examples of sensors to their context sources and facets, before reporting on

our field study of the calendar as a context sensor.

3.2 Context Sources

In this section, we outline a set of context sources which, in these cases, are entities

that generate context data.

3.2.1 People

The primary entities from which from which we can source context data are people

[57, 202]. People are an important source of data for each of the key context facets as

they are the users of context aware systems. People have to be somewhere, they have

to be doing something at any given time, and they may also be doing these things with

other people.

3.2.2 Devices

The secondary entities that can generate context data are electronic devices. In the

mobile domain especially, devices are effectively a conduit to the users themselves. For

example, when we attempt to sense a user’s location, we are really sensing the device’s

location and making the tacit assumption that it also the user’s location. Indeed, it

is within the devices that many context sensors are contained and, although we may

assume devices and users are usually in close proximity to each other, we must be aware

that we are not always sensing data from the user directly [175].

3.2.3 Environment

The peripheral entity from which we can source context data is the environment in

which both the user and the device are operating in. Typical data generated by the

environment, e.g. temperature, humidity, pressure, luminosity and ambient noise, can

be useful forms of context data.
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3.3 Context Sensors

Once we have identified the key context sources for our system, we need to determine

sensors that could be used to translate raw data from the context source into machine

readable data about relevant context facets. We constrain our overview here to sensors

that are readily available in most modern mobile environments, i.e. sensors that can be

accessed by mobile devices either locally (on-device) or remotely (through a network),

rather than proprietary sensors that may be embedded in existing infrastructure and

are difficult or impossible for most mobile devices to access, e.g. CCTV cameras. For

our overview of mobile context sensors, we use an important distinction between two

sensor types – physical sensors and virtual sensors [15, 103].

3.3.1 Physical Sensors

Physical context sensors are hardware sensors that are used to sense data about people,

devices and environments through a physical interface; they are explicitly designed as

transducers of physical properties. Figure 3.2 illustrates the relationships between

facets, sources and example physical sensors available to most modern mobile devices.

3.3.2 Virtual Sensors

Virtual sensors are software sensors that are used to sense context data about people,

devices and environments though a virtual interface. Such interfaces are either local or

remote application programmable interfaces (APIs) which can be queried for context

data, e.g. temperature from a weather website API rather than a physical thermometer.

Many modern websites – particularly social media sites such as Facebook or Twitter –

can be seen as virtual sensors; by using their publicly accessible APIs, mobile devices

can access swathes of data relating to people, devices and environments. One of the

main advantages of virtual sensing in a mobile environment is the potential for reducing

resource use, e.g. rather than operating an on-device physical sensor – which is likely

to consume a reasonably large amount of power – a device could simply query an

API. This of course implies a connectivity cost, but in the modern smartphone era,

where data is relatively cheap and battery technology is not advancing as rapidly as

smartphone hardware [118], the cost of power consumption is potentially more valuable

to the user than the cost of data.

Figure 3.3 illustrates a range of virtual sensors and the relationships between context

sources and facets. Many virtual sensors can be accessed locally by a mobile device,

e.g. a contacts address book, but the ‘always on’ nature of smartphones, coupled with
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Figure 3.2: Examples of physical context sensors, with associated sources and facets. Edge
labels from source to sensor show example instances, i.e. the relationship should be read as
“<sensor> senses <edge> about <source>”, e.g. “mic senses identity about people”. Edge
labels from facet to source should be read as “<source> provides data about <facet> through
<edge>”, e.g. “people provide data about ‘who’ through identity”.
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Figure 3.3: Examples of virtual context sensors, with associated sources and facets. Edge labels
from source to sensor show example instances, i.e. the relationship should be read as “<sensor>
senses <edge> about <source>”, e.g. “SocialNetwork senses friendship about people”. Edge
labels from facet to source should be read as “<source> provides data about <facet> through
<edge>”, e.g. “people provide data about ‘who’ through identity”.
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the ubiquity of 3G (and the roll-out of 4G LTE) network coverage and cheap data,

enables continual access to remote virtual sensors.

3.4 Context Data Fusion

Data fusion is the combination of two or more data into a compound datum, usually

with the intent of increasing a particular property, e.g. accuracy, beyond what each

individual datum can achieve. Data fusion has been used in applications such as target

acquisition in defence systems [85] and complex database operations [28] in order to

improve the quality of input data.

In context aware computing, data fusion has been applied to: smart home environments

in order to improve the inference of occupant activity and location [95, 102], and office

meeting detection using both a physical sensor array with probabilistic data fusion [169],

and pressure sensors with logical data fusion [232]. It is a useful low level approach to

improving the quality of context data before it reaches higher level inference processes.

3.5 Study: The Calendar as a Context Sensor

In this section, we perform an in depth study of one particular virtual context sensor:

the calendar. The calendar is an interesting candidate for context sensing because – as

Figure 3.3 shows – it can capture context data about people across all context facets.

Moreover, modern calendars can be shared between groups of people for coordinating

meetings and scheduling events. This raises the question of how useful a calendar-based

sensor might be if we use data fusion to combine multiple users’ calendars and other

context together. As we will see in Chapter 4, inferring meaning (the “Why” facet)

from context data can be a non-trivial problem, so if meaning – in this case calendar

event names – is readily accessible through a virtual sensor, the effort of higher level

inference could be reduced at the sensing layer.

The shared calendar has long been an effective tool for collaborative organisation and

management, especially in office environments. Not only is it a useful indicator of

people’s presence and availability but many people use it for purposes such as archiving

[178] and content management [79]. Shared calendar events can be a useful source of

context as they contain data about groups of people that may otherwise be unavailable

or unobtainable using other physical and virtual sensors.

Given the calendar’s potential as a context sensor, how might we systematically analyse

its sensing performance? The ubiquity of shared calendars in the workplace has resulted
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in computing infrastructure where network servers and databases store the shared

calendar data of employees in a central location [170]. This network-based approach

allows employees to view others’ calendars and schedule meetings at available times

without otherwise contacting the people involved. The office is therefore an ideal

environment to study the calendar as a virtual context sensor, as: it is likely to be used

often; office workers’ location patterns are likely to be within a single building or site;

and the calendar is usually available though some form of network.

• We can distribute multiple context sensors within a single localised environment

where potential participants spend most of their day.

• People are more inclined to share calendar data (and other context data) at work,

where privacy may be less of an issue than in their personal lives [170].

• By using a relatively small physical environment such as an office means that we

can employ both ethnographic and self-report methods to capture actual context.

This will provide a basis for analysing the calendar’s sensing performance.

We begin by outlining the key research questions for the study.

3.5.1 Research Questions

Before we begin outlining our approach, we revisit our design questions from Section

3.1 in order to establish a starting point for our study:

• Which facets of context do we need? To fully evaluate the calendar’s potential

as a context sensor, we would like to consider all facets in the Five Ws model;

the calendar is certainly capable of sensing data about all five. Following Figure

3.4, these data are: event attenders (“Who”); event type, or category (“What”);

event location (“Where”); event start and end times (“When”); and the event

name, or subject (“Why”).

• From what sources can we usefully sense context? We are mainly interested in

people – particularly groups of people – who use and share calendar data on a

daily basis.

• What sensors are available to us? Clearly the calendar is the key sensor, but

we could also deploy further sensors, e.g. location sensors, in order to capture

additional context data from our calendar users.

• Are there any constraints? The initial constraint is the environment for study. We

have already noted the benefits of using an office environment but, in doing this,
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(a) Abstract context facets in the sensing layer.

(b) Concrete context facets for context sensing with the calendar.

Figure 3.4: Context facets that could be sensed with the calendar.

we are restricting the generality of our potential findings, i.e. they may not readily

generalise to calendar environments outside an office. Further constraints lie in

user privacy (calendars could contain sensitive data that require secure capture

and storage); office building infrastructure, safety and security constraints, e.g.

company permissions to capture and store data; and availability of further sensors

for deployment.

These questions provide us with a set of guidelines for approaching the study in a

practical sense, but we must also address the concrete research problems and questions.

The calendar alone is limited as a virtual sensor for a number of reasons. Firstly, it is

unlikely to be a consistently accurate representation of the real world due to events not

occurring, or its common use as a to-do list, i.e. users may use the calendar for purposes

which the designers did not intend. Also, events may occur outside their allotted time

window, and actual event attenders may differ from those invited. If a system were to

use the calendar as a virtual sensor, it would ideally require as little deviation from

66



the real events as possible. Data archiving or mining systems using the calendar for

indexing could experience an impact on reliability for the same reasons. Secondly, the

calendar does not provide dependable real time information. For example, within most

enterprise instant messaging systems, e.g. Microsoft’s Office Communicator, a user’s

availability is automatically changed to ‘in a meeting’ when a calendar event occurs.

If the user is planning to attend the meeting late, or has left the meeting early, it is

not reflected in her online presence. Thirdly, reminders and to-do list items are also

commonly registered as events on such systems and again the user’s availability will be

listed as ‘in a meeting’ when in reality she is not.

There are two key research questions that we aim to address with this study:

• RQ 1.1: How does the calendar perform as a virtual context sensor? This is the

key question; how good is the calendar at sensing context? If we can measure

its sensing performance, we can provide a quantifiable estimate of its use as a

standalone context sensor.

• RQ 2.1: To what extent does combining the calendar with other sources of

context data affect overall sensing performance? This relates to data fusion.

How might we fuse other context data with the calendar, and does data fusion

improve sensing performance beyond the calendar alone?

The aim of the study, as illustrated in Figure 3.5 is to address these questions by: (i)

comparing the calendar with actual events; and (ii) combining the calendar with other

context sensors and comparing the combined output with actual events.

The following sections outline directly related research, our study approach and our

results. As we shall see, the results show that genuine calendar events, i.e. events

on the calendar that actually happened, make up only a small fraction of the total

calendar events, resulting in a low precision measure; suggesting that the calendar

alone is a low fidelity context sensor in practice. Moreover, there are a certain number

of events that do occur but are not on the calendar – so called ad hoc events – which

affect the calendar’s recall measure. Furthermore, for the events that do appear on the

calendar, we show that there are significant deviations in event times when compared

with their real world counterparts, as well as poor location specification in calendar

entries. Interestingly, one result shows that event attender lists are very representative

of reality for the calendar events that do occur.

We approach our study in two parts according to RQ 1.1 and RQ 2.1. Firstly, we

measure the performance of the calendar as a standalone virtual context sensor, and

secondly, we present two simple algorithms for logical data fusion that combine the

calendar with location data from mobile devices and social network data from email
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(a) RQ 1.1 addresses context sensing with the calendar alone.

(b) RQ 2.1 addresses the fusion of other context sensors with the calendar.

Figure 3.5: Visualising the research questions.

networks to sense genuine events in real time. We apply these algorithms to the data

gathered in the field study, showing that event sensing can be significantly improved

through data fusion of the calendar (a virtual sensor), an email network (a virtual

sensor) and Bluetooth (a physical sensor) location data. Consequently, useful context

data within the calendar can be uncovered, enabling the development of new applica-

tions or improvements to existing applications that make use of people’s presence and

availability.

3.5.2 Related Work

Before describing the study approach, we contrast our work with directly relevant lit-

erature. Employing mobile devices within context aware systems and applications are

active research areas. Early work by Schmidt et al. [207] used physical and logical

sensors on a mobile device to demonstrate situational awareness with a similar layered
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model approach to ours, and Indulska and Sutton [103] discuss the idea of physical,

virtual and logical sensors when applied to location management in pervasive systems.

Of particular relevance here is the authors’ layered framework, which features a Fusion

layer combining abstracted outputs from the different sensor types to enhance location

information given by each of the standalone sensors. Fogarty et al. [72] present a con-

text aware communication client that uses data fusion to provide a better interpretation

of how interruptible a user may appear to their colleagues.

Forecasting activity, presence and availability through the use of calendars are also pop-

ular research topics. Various projects have investigated the usefulness of the calendar

in coordination and collaboration [162]; how the calendar is used [178] and applications

to augment the shared personal calendar [227]. Mynatt and Tullio have contributed a

number of studies on the use of the calendar and its applicability to future availabil-

ity prediction. In [160] they present a calendar application as a sensor that provides

a likelihood of users’ future presence and location. The application, Ambush, uses a

Bayesian model to predict attendance likelihood for calendar events based on previous

attendance. In this work, they also show that co-workers in enterprises use their shared

calendar to ‘ambush’ colleagues for ad hoc meetings when they are not busy. In [228]

they discuss the deployment of the application and implications of using forecasting in

groupware system design.

In [226], perhaps the most relevant to our work, Tullio states that during his studies,

events were attended between 52% and 63% of the time. Citing an unpublished study by

Bradner, he notes that calendars are often cluttered with events that were not attended,

highlighting his desire to provide a more informed interpretation of users’ schedules.

Further work on the calendar’s use in the workplace has been undertaken by Palen and

Grudin [170]. They show that office workers frequently use shared calendars to infer

the presence and availability of their colleagues.

Horvitz et al. [97] constructed an interesting system that uses users’ desktop PC activ-

ity to build a Bayesian probabilistic model of presence and availability. By analysing

events such as mouse movement coupled with application use, the prototype applica-

tion attempts to estimate when users are likely to return to their desks, or whether a

particular time of day is preferable for a meeting given potential attendees. However,

there is no evaluation of system performance, so it is difficult to compare how effective

the authors’ approach is at capturing context in real time using the calendar.

Research has also been conducted on the concept and definition of events, as well as

their identification through various sensory inputs. Westermann and Jain [238] present

a common model to describe the facets of an event, broadly classified around key areas

of context, i.e. temporal, spatial and social. Event detection is discussed at length by

Xie et al. [242], who investigate and classify various event detection systems and their
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uses in problems such as media management and data mining. They draw on a 5W1H

model of event classification which is similar to the model presented by Westermann

and Jain. They also look at the role of context when detecting events, alluding to

the advantage of a priori knowledge, or planning, in event classification. The event

detection analysed by this work is generally undertaken post hoc, i.e. mining post-event

multimedia in the attempt to detect the event itself. In contrast, our work focuses on

the real time aspects of event detection, detecting the events as and when they happen.

Eagle and Pentland’s BlueAware and BlueDar [65] systems – used in the collection of

the popular Reality Mining data [67] – use similar methods to ours when identifying

co-present system users. They fuse user profile data with this co-presence information

in an attempt to induce ‘social serendipity’ between proximate users who do not know

each other. Real time meeting detection is also investigated by Wang et al. [232], who

present a meeting identification system that uses data fusion. They attempt to measure

meeting start and end times through pressure sensors in seats, with a 95% success rate.

Other research into the importance of meeting semantics, knowledge of meetings and

capture of meeting metadata is discussed in [84]. This work suggests that there is value

in the consistent and accurate semantic capture of meetings and the advantages these

data bring to knowledge management and legacy searching problems.

3.5.3 Approach

Our field study ran for 6 weeks in an office building for a business group (approx.

200 employees) within a large telecommunications company (approx. 85,000 employ-

ees). The main employee roles within this business focus on software development and

engineering. Scheduled meetings are commonplace among the employees, and the en-

vironment is representative of many modern open plan offices. The company uses the

Microsoft Outlook application with Exchange Server as a shared calendar tool.

We recruited 20 participants from within two closely related teams, with 11 (3 female)

and 9 (1 female) participants from each team respectively. One participant in each team

had a managerial role while the remainder were software developers working under the

managers. We chose the participants from these two teams due to their frequent intra

and inter team meetings in particular meeting areas. All were familiar with mobile

devices and had some experience with the Windows Mobile operating system. 20

participants were chosen as they formed two complete teams and provided a sample

size that would allow us to reliably monitor them ethnographically whilst generating

enough data for statistical analysis.

The following sections describe the data collected during the study, and the methods

used to undertake the collection.
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Capturing Calendar Events

In order to capture our participants’ calendar events, we obtained programmatic access

to their Outlook application via the company’s Exchange Server; we had access to

these throughout the duration of the study. Calendar events were captured ‘live’, i.e.

we recorded the entries in real time, storing any changes made by the participants

during the study, such as amended invite lists, times, locations and event names. The

Exchange Server that manages the Outlook calendar events assigns each event object

a unique ID, so every event had a single identifier even if it were stored in multiple

calendars. Events such as private appointments that were not accessible through the

shared system were ignored.

Capturing Actual Events

Actual events represent what actually happened in terms of meetings involving two or

more of our participants. Our record of these was obtained through a combination of

three methods: ethnographic observation, participant interview and participant self-

report. We restricted our study to four primary meeting areas for the two teams – all

within a few seconds’ walk from each other (see Figure 3.7). For ethnographic observa-

tion, we set up a temporary workspace within the team environment and observed the

participants during their working days; recording any events involving two or more of

our participants that took place in the four meeting areas. We could not monitor all the

participants all of the time however, so we instructed them to keep an event diary for

the 6 week period, within which they recorded details of their workplace meetings (see

the diary template in Appendix A.1). Finally, we conducted weekly interviews with

participants. This included examining their diaries for the week, validating our ob-

served data – i.e. the events we had recorded – against their diary entries and verifying

our recorded events with them through questioning and discussion.

Capturing Context Data

We collected the following additional context data about our participants throughout

the study:

• Location: Each participant was given a mobile device running the Windows

Mobile operating system. (The range of device types is shown in Figure 3.6a.)

We built a small application to run on the devices that performed a Bluetooth

scan of the surrounding environment at 2 minute intervals. After each scan had

completed, the application uploaded the timestamped results to our server using

71



(a) The range of devices provided to the par-
ticipants for the duration of the study. Each
runs Windows Mobile 6.1 and is Bluetooth
compatible.

(b) Photograph of the upper-right meeting
area in Figure 3.7. The Bluetooth icon shows
where the static scanning device was placed –
hidden in the wooden cabinet row.

Figure 3.6: Photographs of the study devices and office locations.

either 802.11 WiFi or a GPRS mobile data connection depending on connectivity,

i.e. if one connection failed, the device would switch to the other. In order

to estimate participant location, we placed 4 static devices in known positions

within the workplace. These locations, shown in Figures 3.7 and 3.6b, were the

key meeting areas for the two teams, and the static devices served as identifiers

for each location. Each device performed a Bluetooth scan at 1 minute intervals

and uploaded the timestamped results to our server. Thus, if a participant were

to move within the ‘hotspots’ in Figure 3.7 there would be a good chance, subject

to the usual vagaries of Bluetooth scanning [168], of their mobile device reporting

a Bluetooth sighting of a static device and vice versa. The area in which the team

desks are located was not covered by a static device. This was to minimise the risk

of the static devices interfering with each other or reporting ambiguous results

due to participants being sighted in two hotspots at once. Although ambiguity

was addressed, this decision did affect the sensing latency of participants’ event

exit times.

• Contacts: In addition to accessing participants’ calendars, we also captured

their manually created contacts, i.e. non-corporate address book contacts, of

each participant through their Microsoft Outlook application. These too were

recorded ‘live’; i.e. when contacts were added, changed or deleted the action was

communicated to our server. Existing contacts, i.e. contacts added to the address

book before the study, were also captured when the applications were installed

on the participants’ computers.
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Figure 3.7: Floor plan showing the office environment for the study, including the desk area
of the two teams. The ‘hotspots’ indicate the placement of the static devices, with approximate
ranges shown. The lower two devices (when orienting the image to landscape) were placed in
meeting rooms, whereas the upper two were in open meeting areas.
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Figure 3.8: The network architecture for the office study, showing mobile and static Bluetooth
nodes connected to our database server; either by 3G or 802.11 WiFi. Calendar and contacts
were supplied by the office’s Exchange Server, to which participant desktop/laptop machines
connected through the Microsoft Outlook application on their computers.

Figure 3.8 shows the network architecture of the field deployment, with the mobile

devices, servers and network connections between them.

Categorising Calendar Events

In order to measure the calendar’s accuracy as a virtual context sensor, we need to

define what is ‘signal’, i.e. useful context data, and what is ‘noise’, i.e. irrelevant data.

In order to do this, we categorise the calendar events into sets according to various

observed characteristics:

• Genuine Event (G): A shared online calendar event involving one or more

study participants that maps to an actual event.

• Placeholder Event (P ): A shared online calendar event involving one or more

study participants that does not map to a actual event because no actual event

occurred, e.g. a recurring daily meeting that does not occur on a particular day.

• Personal Reminder (R): An online calendar ‘event’ created by a participant
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Figure 3.9: Measuring performance: the set C contains all calendar events for our partic-
ipants. O contains the actual events. C is the union of calendar event sets as described in
Section 3.5.3. The set G = C ∩ O contains true positives, i.e. calendar events that occurred;
C\G = P ∪ R ∪ S ∪ Z contains all calendar events that did not occur – for our analysis we
remove R and Z by simple elimination rules to leave the set of false positives FC = P ∪ S, i.e.
calendar ‘noise’; AC = O\G are false negatives, i.e. ad hoc events that occurred but did not
appear in the calendar.

simply as a reminder to herself, e.g. ‘Backup Files’, without inviting anyone else.

• Shared Reminder (S): A shared online calendar event created as a reminder

to two or more study participants, with ‘attenders’ ‘invited’ only to enable the

sharing.

• Out of Scope (Z): A shared online calendar event that: (i) involves a single

study participant and other people not involved in the study or; (ii) was external

to our meeting areas e.g. at a different site or; (iii) is outside office hours.

These sets are disjoint, and the entire calendar set (C) is the union of these category

sets:

C = G ∪ P ∪R ∪ S ∪ Z (3.1)
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Performance Measures

To measure performance, we use the set O as the set of observed calendar events,

i.e. actual events. Figure 3.9 visualises the sets O and C, detailing our performance

metrics. These metrics are detailed as follows:

• True positives: the set of genuine calendar events, G = C ∩O.

• False positives: FC = P ∪ S. Once Z is removed from C, a simple exclusion rule

can be applied to distinguish the personal reminders R from the other categories:

ignore all events with fewer than two invited attenders (including the calendar

event creator). However, it is not so trivial to differentiate between a genuine

event G, a placeholder event P and a shared reminder S as they are all in exactly

the same format in the online calendar and all have two or more invited attenders.

• False negatives: AC = O\G. These are ad hoc events that occurred but did not

appear in the calendar.

Using these metrics, we can measure the calendar’s precision p:

p =
|G|

|G|+ |FC |
(3.2)

Where |G| represents the cardinality (size) of set G. Furthermore, we can measure the

calendar’s recall r:

r =
|G|

|G|+ |AC |
(3.3)

Thus, for our overall performance measure, we use the harmonic mean of precision and

recall – the F1 score:

F1 = 2
pr

p+ r
(3.4)

We also measure the location sensing performance for the events in G using the F1

score in Equation 3.4 with the following metrics:

• True positives (location): calendar events in G with a correct location description.

• False positives (location): calendar events in G with an incorrect location de-

scription.

• False negatives (location): calendar events in G without a location description.
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Category Symbol Contribution

Genuine Event G 38 (0.08)

Placeholder Event P 152 (0.32)

Personal Reminder R 232 (0.49)

Shared Reminder S 52 (0.11)

Out of Scope Z 120 ( n/a )

Table 3.1: The complete set of calendar events C and the measure of contribution for each
subset to C.

To measure the per-event attender classification performance for the events in G, the

metrics are defined as follows:

• True positives (per-event attenders): The number of attenders who are both on

the event’s invitation list and attended the event.

• False positives (per-event attenders): The number of attenders who are on the

event’s invitation list but did not attend the event.

• False negatives (per-event attenders): The number of attenders who are not on

the event’s invitation list but did attend the event.

We can measure the per-event precision, recall and F1 score for the attenders, and we

can aggregate them to give an average performance measure.

3.5.4 Results: Calendar Performance

By the end of the field study, we had collected 594 unique online calendar events from

the participants. In contrast, we recorded only 38 distinct real-world events involving

two or more participants, each of which corresponded to one of these calendar events.

In Table 3.1, we list the number of calendar events according to the categories defined

in Section 3.5.3. Events in set Z are beyond the scope of our analysis since we are

studying only a subset of employees from the whole business, in a sample location

and during normal working hours. Excluding Z from the set of 594 calendar events

leaves 474 in scope events for us to consider. Table 3.1 also lists the proportion of each

category, excluding the events in Z. In addition to these events, we also observed 6 ad

hoc events.

Figure 3.10 shows histograms of calendar event start and end time differences in G –

to the nearest 5 minutes – relative to the equivalent observed event times, i.e. t =

0 represents a actual event occurring within 5 minutes of its calendar entry; t < 0

represents the actual event occurring after its calendar entry; and t > 0 represents the

actual event occurring before its calendar entry.
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(b) End time differences.

Figure 3.10: Histograms showing time difference densities of calendar events in G (with
fitted maximum likelihood normal density functions) relative to their equivalent observed events.
A negative time therefore indicates a delay in actual event time relative to calendar event
counterparts.

The start times of real events are significantly later than the calendar indicates (t37 =

−7.01; p < 0.01; Student’s t-test), though end times are not significantly different

(t37 = −2.01; p = 0.051; Student’s t-test). Table 3.2 lists the summary statistics

for the calendar’s performance as a context sensor, including location and attender

performance measures.

Statistic Value

Event precision 0.16

Event recall 0.86

Event F1 0.27

Start time (x̄s, ss) (−26.6, 23.4)

End time (x̄e, se) (−5.1, 15.7)

Location {p, r,F1} {1, 0.11, 0.2}
Mean attender precision 0.93

Mean attender recall 0.94

Mean attender F1 0.92

Table 3.2: Summary statistics for the calendar’s performance as a virtual sensor of context.
Variables are: x̄ = sample mean; s = sample standard deviation; p = precision and r = recall.
Times are in minutes.
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3.5.5 Discussion

In this section, we discuss our initial findings and address RQ 1.1. As Table 3.1 shows,

nearly half the events in the study are actually personal reminders R. The set of

placeholders P accounts for a third and the set of genuine meetings G accounts for

only 8%, outweighed even by the set of shared reminders S.

RQ 1.1: How does the calendar perform as a virtual context sensor?

The overall F1 score of 0.27 suggests that the calendar alone is an imprecise and

‘noisy’ virtual context sensor. This is chiefly due to the low precision measure, i.e.

a high number of false positive events FC . Along with the 38 genuine events in G,

the calendar contains 204 false events; which are composed of shared reminders and

placeholder events. A recall score of 0.86 shows that the majority of events in the

workplace do appear on the calendar in some form, i.e. ad hoc events are in the

minority. However, the F1 score is dominated by the ‘noise’ of the false positives.

The time differences between the calendar and actual events in G illustrate the cause of

availability discrepancies described earlier, where a presence and availability application

such as Microsoft Communicator will list a user’s presence as ‘in a meeting’ when in

reality she is not. As the results show (see Figure 3.10 and also the calendar condition

in Figure 3.14b), the majority of actual events in this particular office start later than

indicated by the calendar, and the sample standard deviation figures show a large

variability between calendar and observed event start and end times.

Why was this? One of the main observed causes of start time variance was participants

simply turning up to meetings late, though a reasonable number of meetings were

reorganised at the last minute without updating the calendar entry. One meeting

started ≈ 90 minutes later than scheduled (Figure 3.10a) as it was a ‘block booking’

for a meeting room.

The low location F1 score of 0.2 is a result of the calendar event location field not

being consistently populated by participants, suggesting that the calendar is not a

good sensor of event location. Although participants occasionally used the location

field (and correctly, hence the precision of 1), it was usually empty, resulting in a low

recall score of 0.11.

Interestingly, the calendar does appear to be a good sensor of event attendance. With

the high F1 score of 0.92, it appears that the majority of participants attended events

that they were invited to, with only a few absentees or additional (unlisted) attenders.

This has interesting implications for practical application, particularly for presence and
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availability applications: if we could extract the events in G from the calendar events C,

we could increase our belief in users’ reported presence and availability. The problem

with the standalone calendar, of course, is that G is indistinguishable from P and S

without knowledge of further context.

To summarise, we found that in a typical office calendar, the vast majority of ‘events’ are

reminders or placeholders, and few were actually representations of genuine real-world

events. We also found that the similarity between actual events and their calendar

equivalents is variable, and that the calendar is not a reliable sensor of event times or

locations (see Table 3.2 and Figure 3.14). It is, however, a good sensor of event atten-

dance; but this information is hidden among the false events and not easily discernible

without a posteriori knowledge and additional context. Thus, without additional ex-

ogenous knowledge of context, it is difficult to differentiate between genuine events,

placeholders and shared reminders, making the calendar alone an unreliable virtual

sensor.

3.5.6 High-level Implications and Limitations

Here we discuss the implications of our work in relation to the high-level research

question: RQ 1. RQ 1 asks what entities might we consider as virtual context sensors,

and RQ 1.1 asks how the calendar performs as a virtual context sensor. The key

implication for the former in answering the latter is that the calendar can be considered

as a virtual context sensor, but it is not a good quality one. We have shown that the

calendar contains multiple, useful, context data relating in some part to the majority

of the Five Ws context facets. Even though it is ‘noisy’, it is still a veritable source

of context data and, as such, should be considered a viable, canonical virtual context

sensor.

The key limitation in studying one virtual sensor in such detail, however, is that the

breadth of the work is lacking. That is, without repeating similar studies for other

virtual sensors, we cannot fully answer RQ 1. These immediately sets an agenda for

further research in order to explore RQ 1 in greater detail: given our approach in

studying the calendar, use the same methodology to study other potential sensors such

as email, social media content and music players. An ideal output might be a database

or record of virtual sensors – similar to those in Figure 3.3 – in which their usefulness

as a virtual context sensor may be catalogued for researchers and software developers

to use in their work.

80



3.5.7 Data Fusion: Combining Other Context Data

Here we outline our context data fusion approach and the results observed when com-

paring the combined data output with actual events and the calendar.

Data Fusion Algorithms

Given the three context sensors in our study: the calendar, location and social network,

how can we begin to fuse these data and classify the events in real time? We designed

two candidate data fusion algorithms that classify events according to relationships

between users’ context, e.g. shared locations, social connections or shared calendar

events. The algorithms output events by partitioning users into groups according to

context graph ties at a given moment in time, and annotating the groups with calendar

data. But where should we start? What should we use as the first indicator that an

event might be occurring?

Let us consider using social network data to detect event occurrence: searching for

connected components in a global social network would require knowledge of a possi-

bly vast and temporally dynamic social network in which changes to the network over

time, e.g. creation of new edges, vertices or clusters, could somehow be related to event

occurrence. This approach is unlikely to provide a consistent indication of event occur-

rence, however, so we dismiss initially partitioning users through their social network

data. What about using the shared calendar events to trigger data fusion? In this case

the algorithm would be triggered at the start time of each calendar event. As we have

seen, however, the calendar alone is not a good indicator of context – the algorithm

would have to be robust to false positive events, and it would miss ad hoc events.

This leaves location or, more specifically, co-location. Could a sudden gathering of

people indicate the start of an event? This seems likely, but how could we integrate

the calendar and social network data into the process? Our two candidate algorithms

integrate these data in different ways, and we will compare their performance on the

study dataset in the next section. They are formally described in Algorithm 1 and

Algorithm 2 respectively, and example visualisations are shown in Figure 3.11. The

algorithm descriptions are as follows:

1. Algorithm 1 (Figure 3.11a). At the time of execution, users are connected

according to co-location. They are then split into subcomponents according to

calendar event ‘ties’, i.e. shared calendar events that are listed as ongoing at the

time of execution. The remaining co-located users are added to the sets according

to their social ties, i.e. each is assigned to the set with the majority of social ties

to themselves (equal sets are broken at random). Those without any ties to any
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Algorithm 1 Co-located people are connected through calendar graph ties. Those
remaining are connected to these components through social network ties; and events
are named using the calendar event of each connected component.

1: Input: a set P of people.
2: Output: a set V of events that are currently occurring.
3: V ← [] . Initialise events data structure.
4: U ← LocationConnectedComponents(P ) . Location search.
5: for all u ∈ U do
6: if |u| < 2 then
7: continue
8: end if
9: C ← CalendarConnectedComponents(u) . Calendar search.

10: R← Complement(u, Union(C)) . Those without calendar entries.
11: A← [] . Initialise empty ad hoc data structure.
12: for all r ∈ R do
13: AddToSocialMajority(r, C) . Add r to group with most social ties.
14: if ¬Connected(r) then
15: Append(r, A) . No ties, ad hoc candidate.
16: end if
17: end for
18: D ← SocialNetworkConnectedComponents(A) . Connecting ad hoc candidates
19: Append(D, C) . Append ad hoc connected components.
20: for all c ∈ C do
21: if |c| ≥ 2 then
22: Append(CreateEvent(c), V ) . Event has name, location and attenders.
23: end if
24: end for
25: end for
26: return V

set are connected to each other through their social network – these connected

components form an ad hoc event.

2. Algorithm 2 (Figure 3.11b). At the time of execution, users are again connected

according to co-location. They are then split into connected subcomponents

according to social network ties, i.e. each subcomponent is a subgraph within the

co-located social network. Finally, each subcomponent is labelled with the ID of

the calendar event listed in the majority of the subcomponent’s users’ calendars

(ties are broken randomly); subcomponents are then connected if they share an

event ID. If there are no calendar events in any of calendars, the event is classed

as ad hoc.

Figures 3.11b and 3.11a show how – at a given timestep k – these algorithms can result

in different event outputs given the same input data.
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Algorithm 2 Co-located people are connected through social graph ties. Calendar
entries are used to name these components and connect events.

1: Input: set set P of people.
2: Output: a set V of events that are currently ongoing.
3: V ← [] . Initialise events data structure.
4: U ← LocationConnectedComponents(P )
5: for all u ∈ U do
6: if |u| < 2 then
7: continue
8: end if
9: S ← SocialNetworkConnectedComponents(u) . Social network search.

10: E ← [] . Initialise empty event data structure.
11: for all s ∈ S do
12: Append(CreateEvent(s), E) . “Majority wins” event name policy.
13: end for
14: C ← CalendarConnectedComponents(E) . Connected events merged.
15: for all c ∈ C do
16: if |c| ≥ 2 then
17: Append(c, V )
18: end if
19: end for
20: end for
21: return V

To classify events in real time, Algorithm 3 executes periodically to update event start

and end times. It continually maintains two sets of events, Ek and Ek−1 for the current

and previous timesteps respectively. A new event is started if it is an element of Ek

but not Ek−1, and ended if it is an element of Ek−1 but not Ek.

Performance Measure

Each data fusion algorithm in Section 3.5.7 outputs a set of classified events D. Figure

3.12 illustrates our comparison between the classified events in D and the observed

events O.

To measure the performance of the algorithms, we again use the F1 score for classifica-

tion accuracy (see Equation 3.4), defined using true positives (T ), false positives (FD)

and false negatives (AD). These we define as follows, following Figure 3.12:

• True positives: T = D∩O; which are events in D that map to a actual event in O.

We assigned the actual events with calendar entries the same unique ID as their

corresponding calendar entries, so successful event identification is measured by

comparing the ID of the classified event with the ID of the actual event. Ad hoc
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Algorithm 3 Classifying events in real time.

1: Ek−1 ← [] . Initialise previous timestep empty events data structure.
2: Ek ← [] . Initialise current timestep empty events data structure.
3: while True do
4: Ek−1 ← Ek . Previous events’ pointer updated.
5: Ek ← ExecuteDataFusionAlgorithm() . Algorithm 1 or 2.
6: for all ek ∈ Ek do
7: if ek /∈ Ek−1 then
8: StartEvent(ek) . Write start time.
9: end if

10: end for
11: for all ek−1 ∈ Ek−1 do
12: if ek−1 /∈ Ek then
13: EndEvent(ek−1) . Write end time.
14: end if
15: end for
16: Wait(t) . Timestep period.
17: end while

events are manually identified. In addition, the classified event must occur at the

same time as the actual event. ‘At the same time’ means that the time window

of the classified event overlaps the time window of the actual event.

• False positives: FD = D\T are events in D that do not map to any event in O.

That is, an event whose ID either: (i) does not match the ID of any actual event

or; (ii) does match the ID of a actual event but does not overlap the actual event

in time.

• False negatives: AD = O\T are events in O that do not map to any event in D.

These include calendared events in O that are not classified, and ad hoc events

that are not classified.

As with the calendar time measures, start and end time differences are measured rel-

ative to the equivalent observed event times; thus, a negative time difference indicates

that a classified event ‘started’ or ‘ended’ before its observed counterpart. These are

also rounded to the nearest 5 minutes.

As before, we measure location performance for classified events in T using precision,

recall and F1 score; with the base metrics as follows:

• True positives (location): a classified event with a correct location.

• False positives (location): a classified event with an incorrect location.

• False negatives (location): a classified event with no location.

84



C1

C1

Co-location Calendar Social Network Output

{tm, l}

A
B

C

D E

F G

1 2 3 4 5

Name: C1
Location: l
Attenders: A, B, C, E, G

Name: C2
Location: l
Attenders: D, F

Event 2

Event 1
A

B
C

D
E

F G

C2
C2

C1

C1

A
B

C

E

G

D

F

C2
C2

(a) Algorithm 1: at each timestep, users are connected through co-location, before being par-
titioned into events according to calendar ties. Remaining users are either connected to these
events through their social ties, or are further partitioned into ad hoc events.
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(b) Algorithm 2: at each timestep, users are connected by co-location, then partitioned into
events according to their social network. Events are classified according to a “majority wins”
calender policy. If there are no calendar events in the partitioned group, then an ad hoc event
is classified.

Figure 3.11: Visualising the data fusion algorithms on an example data set.

As the algorithms always classify a location, location recall is always 1.

Again, to measure the per-event attender classification performance for events in T , we

use the following metrics:

• True positives (per-event attenders): The number of attenders who are both on

the classified event’s attender list and attended the event.

• False positives (per-event attenders): The number of attenders who are on the

classified event’s attender list but did not attend the event.

• False negatives (per-event attenders): The number of attenders who are not on

the classified event’s attender list but did attend the event.
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Figure 3.12: Comparing the data fusion outputs with actual events

3.5.8 Results

The context data collected during the study were input to the data fusion algorithms.

Here we describe the results for each process when their outputs are compared with

the observed event data.

For Algorithm 1, the output was |T | = 38, |FD| = 14 and |AD| = 6; thus p = 0.73 and

r = 0.84. For Algorithm 2 the output was |T | = 43, |FD| = 32 and |AD| = 1; thus

p = 0.57 and r = 0.97. These give F1 scores of 0.78 and 0.72 for Algorithms 1 and 2

respectively.

Figure 3.13 shows the histograms for the start and end time classifications for each

algorithm, and Table 3.3 lists the summary statistics for both algorithms.

Algorithm 1 vs the Calendar

Comparing Algorithm 1 against the standalone calendar, there is a significant improve-

ment in event classification precision (p < 0.01; exact Binomial test; 38 successes, 52

trials, hypothesised probability = 0.16). Comparing the statistics for the calendar

events in G against the events in T , there is a large improvement in location F1 score,

and there is a significant difference in start time estimation (t70.085 = 5.0806; p < 0.01;
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Figure 3.13: Distributions of start and end time differences. Row 1 shows the standalone
calendar events G relative to actual events; row 2 shows Algorithm 1 events relative to actual
events; and row 3 shows Algorithm 2 events relative to actual events.
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Figure 3.14: Comparing performance between the standalone calendar and the data fusion
algorithms.
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Statistic Algorithm 1 Algorithm 2

Event precision 0.73 0.57

Event recall 0.84 0.97

Event F1 0.78 0.72

Start time (x̄s, ss) (−2.23, 17.82) (−3.84, 17.96)

End time (x̄e, se) (−7.49, 21.62) (−3.89, 18.31)

Location precision 0.84 0.97

Location recall 1 1

Location F1 0.91 0.98

Mean attender precision 0.82 0.74

Mean attender recall 0.90 0.96

Mean attender F1 0.83 0.82

Table 3.3: Summary statistics comparing the data fusion algorithm outputs with actual events.

Welch two-sample t-test), with no significant difference in start time deviation from 0

(t37 = −0.7609; p = 0.45; Student’s t-test). There is no significant difference in end

time estimation (t69.474; p = 0.59; Welch two-sample t-test) but there is a significant dif-

ference in end time deviation from 0 (t37 = −2.1619; p < 0.05; Student’s t-test). There

is no significant difference in attender F1 score (p > 0.05, non-parametric bootstrap

1000 replicates).

Algorithm 2 vs the Calendar

Comparing Algorithm 2 against the standalone calendar, there is a significant improve-

ment in event precision (p < 0.01; exact Binomial test; 43 successes, 75 trials, hypoth-

esised probability = 0.16) which, when coupled with high recall, results in an improved

F1 score over the calendar. Comparing the statistics for the calendar events inG against

the events in T , there is a large improvement in location F1 score over the calendar.

There is a significant improvement in start time estimation (t68.947 = 4.8807; p < 0.01;

Welch two-sample t-test), with no significant difference in start time deviation from 0

(t42 = −1.4184; p = 0.16; Student’s t-test). There is no significant difference in end

time estimation (t79.951; p = 0.74; Welch two-sample t-test), with no significant differ-

ence in end time deviation from 0 (t42 = −1.4467; p = 0.16; Student’s t-test). There

is no significant difference in attender F1 score (p > 0.05, non-parametric bootstrap;

1000 replicates).

Algorithm 1 vs Algorithm 2

Comparing Algorithm 1 against Algorithm 2, Algorithm 1 appears to outperform Al-

gorithm 2 for event F1 score. Comparing statistics between events in T for both algo-
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rithms, Algorithm 2 has better location awareness, though there is no significant dif-

ference in start time estimation (t79.415; p = 0.69; Welch two-sample t-test) or end time

estimation (t73.856 = 0.8215; p = 0.414; Welch two-sample t-test). There is no signifi-

cant difference in attender classification F1 score (p > 0.05, non-parametric bootstrap;

1000 replicates).

3.5.9 Discussion

In this section, we discuss our findings and how they address RQ 2.1. We then analyse

possible causal factors that affect performance.

RQ 2.1: To what extent does combining the calendar with other sources of

context data affect overall sensing performance?

From the results, we see that Algorithm 2 outputs a greater number of true positives

and fewer false negatives than Algorithm 1 but with a larger number of false positives.

This results in a lower F1 score for Algorithm 2. Comparing these results to those of the

standalone calendar, we see that data fusion reduces the number of false positives (from

204 to 32 for Algorithm 1 and 14 for Algorithm 2) and false negatives (6 for Algorithm

1 and 1 for Algorithm 2) to improve the F1 score from the standalone calendar.

From the results in Figure 3.14, it would appear that data fusion significantly improves

context sensing from the standalone calendar. Both algorithms increase the event F1

score from 0.27 to above 0.7. This is because the additional context provided by the

mobile devices and email contacts eliminate many of the false positive events in P and

S. Also, because the calendar location field is rarely used (recall score of 0.11), the

introduction of the Bluetooth location sensing significantly increased the location F1

score from 0.2 to above 0.9 for both algorithms.

We also see a significant improvement in start time awareness for both algorithms when

compared with the standalone calendar. However, end time awareness for both methods

do not significantly improve upon the calendar. Possible reasons for this are discussed

shortly. Both algorithms’ mean start time classifications contained the actual events’

time within their 95% confidence intervals, and Algorithm 2’s end time contained the

actual events’ end time within its 95% confidence interval. Algorithm 1, however, had

a slightly poorer estimate of event end time than both Algorithm 2 and the calendar.

Interestingly, both Algorithms do not differ significantly from the calendar in attender

classification performance. In fact, the results show that the calendar is actually a

marginally better attender classifier than the algorithms, due in part to spurious atten-

der classifications from participant ‘walk bys’ (discussed in detail shortly) – affecting
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precision – and Bluetooth failure – affecting recall. This would suggest that, once

events are classified, using the calendar as the attender classifier may give improved

performance.

Overall, it would appear that data fusion improves context sensing performance, and

is therefore a better virtual context sensor than the calendar alone.

Which Algorithm is Best?

The answer to this question depends on the intended application. If event and attender

classification performance were a priority, then Algorithm 1 would appear to be a better

choice. However, if timing and location awareness were higher priorities, Algorithm 2

would be a better choice.

What Affected Performance?

Here the implications of both event and attender false positives and false negatives are

discussed, followed by an review of their root causes.

• False positives: Depending on the type of application that uses calendar-based

context sensing, false positives will vary in their significance. If privacy were

a critical factor, then they would be very significant: we would not want users

added to events that allowed them access to sensitive content intended only for

participants in the event. In this case minimising false attender positives is im-

perative. Moreover, false event positives can be seen as a form of spam. Imagine

a scenario where two users are walking past each other with a calendared place-

holder. A false event may be created around this placeholder since the users are

co-present, in each other’s contact network and sharing a calendar ‘event’. To

the users, who in reality are not part of any such event, this could be irritating if,

for example, the system attempted to remind them of the event or share media

from the event with them.

• False negatives: Failure to identify attenders or entire events results in addi-

tional burden to users of such a system. If a user were not added to an event

they were really part of, then they would have to be manually added. This could

become tedious if failures are common. Failure to identify events can lead to

further burden: users would have to create the event manually.

Here we present a cause and effect review of the false and failed identifications in our

study. Table 3.4 lists the effects along with their likely causes.
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Effect Causes

False positive events False sensor readings; participant mobility

False positive attenders False sensor readings; participant mobility

False negative events Sensor failure; false sensor readings

False negative attenders Sensor failure

Event time deviation Participant mobility; false sensor readings; sensor failure

Table 3.4: Observed effects and their likely causes

False sensor readings are sensors not reporting the true state of the world. Examples

from our study include: (i) Bluetooth radio reflections causing devices to see each other

when outside normal ranges of coverage, e.g. participants at their desks reported as

‘in a meeting area’; (ii) Calendar placeholder events and shared reminders. We use the

original calendar as a virtual sensor in the data fusion algorithms, and the large number

of false events we saw in our analysis manifested as false sensor readings. Thus we saw

examples where users were sighted as co-present at the same time as placeholders or

shared reminders in their calendar. This greatly increased the chance of a false event

or attender classification.

Sensor failure occurred when the sensors did not report data to the system when they

should have. We observed the occasional Bluetooth sighting failure, i.e. participants

not being sighted when in the ranges of coverage depicted in Figure 3.7. Occasional

connectivity issues were observed when Bluetooth scan results were not reported in

real time. Results that were not communicated were stored locally on the participant

devices until a connection was re-established. However, in some cases, the results were

reported after the event had occurred. It is possible to use this data to create the event

post hoc, but real-time functionality is damaged.

In both data fusion algorithms, we requested calendar entries at one particular time

(the time of execution), so entries listed near that time were not considered as possible

candidates. We saw how variable the calendar time differences were, therefore it could

be argued that introducing fuzzy time and requesting entries in a (perhaps weighted)

time window could capture the calendar entries associated with such events, and help

reduce the number of false negative events.

Participant mobility concerns the movement of participants around the study space.

Even though we carefully chose the location of the static devices, we observed cases of

participants moving into these areas when not involved in events there. An example of

this was a participant who would frequently stand in a meeting area making calls on his

mobile phone, which was being identified by the Bluetooth scans. Sometimes a relevant

event was occurring in the meeting area, an attender of which had a social tie to this

participant. The system therefore identified the participant as attending the event,
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resulting in a false attender positive. This problem also occurred when participants

walked by meeting areas with ongoing events; the system would add them to the events

if they had social ties to participant attenders.

3.5.10 High-level Implications and Limitations

RQ 2.1 asks about the extent to which fusing calendar data with other context sensor

data affects sensing performance, and RQ 2 – the high-level research question – asks

about the extent to which data fusion affects context sensing performance in general.

Our findings from this study have shown that, in this case, data fusion significantly

improves overall performance, and that it allows useful data to be extracted from an

otherwise noisy context sensor (the calendar). These findings have promising implica-

tions for the higher level research question; they show that fusing physical (Bluetooth

location) and virtual (calendar and email contacts) sensors appears to be a worthwhile

endeavour, and raises the question of which sensors might perform well together.

The key limitations of studying these particular sensors in this manner include: breadth

of impact in relation to RQ 2 and a narrow scope for data fusion in general. For the

former, we still need to address other combinations of context sensors and, for further

work in order to strengthen the case for answering RQ 2, we could append useful

combinations of sensors (and data fusion methods) to the context sensor catalogue

proposed in Section 3.5.6. Moreover, our study could be easily repeated for various

combinations, but this could be a laborious task given the number of possible sensor

combinations (
∑N

i=1
N !

i!(N−i)! , where N is the number of sensors to test). For the latter

limitation – data fusion scope – the immediate next step to address it would be to

design and compare alternative data fusion approaches for the chosen sensor sets. This

might include probabilistic approaches, e.g. Dempster-Shafer theory, or other logical

ones such as ours. In addition to studying different sensor combinations, this would

significantly strengthen the work for RQ 2.

3.5.11 Prototype Applications

During the course of this work, we developed a small set of prototype mobile applica-

tions that utilised knowledge of classified events to provide various simple services to

a mobile user; particularly office workers. Implemented on Windows Mobile 6, these

services are: a mobile photo sharing service, a people recommendation service and a

mobile Twitter service.
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Figure 3.15: Device screen captures showing the output of the event photo and Twitter shar-
ing services (L) and an example recommendation from the event-based people recommendation
service (R)

Event-Based Mobile Photo Sharing Service

This service allows the user to take and upload photographs from her mobile device

to her online Flickr and Facebook accounts. The photographs are time stamped and

can be uploaded during or after an automatically classified event. The remote photo

destinations (e.g. Flickr URLs) are stored and a web timeline is automatically created

for the event with the event metadata attached; see Figure 3.15. The photos are

displayed in the timeline and are viewable by users who are identified as part of the

event. Thus, through this application, various media content associated with events

can be captured and catalogued according to the event.

Event-Based Mobile Twitter Service

This service is modelled on the photo sharing service. The user can post status reports

to her online Twitter account from her device. The remote destination of the status

is stored, allowing the status to be retrieved from Twitter for display to the event

attenders. As with the photo sharing service, the status reports can be added to the

event timeline and displayed chronologically along with the photographs. Figure 3.15

shows an example timeline consisting of a photograph and Twitter status, with the
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event metadata displayed above.

Mobile People Recommendation Service

Designed for use both during an event and outside specific events, this service analyses

various metrics output from the event history: co-location ratio (a measure of how

often users are identified as being together), mutual contacts, personal data, shared

events and auto-tags. Personal data includes information such as date of birth, taste

in films, music etc. Auto-tagging creates common tags based upon event metadata and

data from event attenders such as personal interests.

A list is produced of recommended people who are not currently contacts but frequently

share user context i.e. ‘familiar strangers’ [177]. The user is able to view the matches

and the reasons for recommendation on the mobile device; see Figure 3.15. She can

make a request to the recommended contact and, if the contact accepts, a social tie is

made between the user and contact. The details of the user and the contact are then

added to each other’s devices.

3.6 General Discussion

In this section, we discuss how the work in this chapter addresses our higher level

research questions surrounding context sensing in mobile context aware systems, as

well as the implications and limitations of the work.

3.6.1 RQ 1: What entities might we consider as virtual context sen-

sors?

As we saw in Sections 3.2 and 3.3, almost anything that can provide data on con-

text facets from people, devices and the environment can be considered as a context

sensor. There are two broad sensor categories in context aware systems [15, 103]: phys-

ical sensors, which supply data about context sources to the system through physical

interfaces, e.g. through an electronic signal; and virtual sensors, which supply data

through virtual interfaces, e.g. software APIs. Virtual sensing is an interesting area for

research due to the proliferation of web-based APIs and social media websites available

to modern mobile devices.

We undertook a study that investigated the calendar’s performance as a virtual context

sensor, and from this we saw that – standalone – it is not particularly good at sensing

context; mainly due to inherent noise, but due also to users not populating it with every
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significant event. The implications for this are twofold: (i) virtual sensors are only as

good as the users who contribute the data to them, e.g. social media websites’ sensing

performance will likely vary according to user activity; and (ii) the entities that we are

terming ‘virtual sensors’ are usually designed for other purposes other than sensing,

e.g. the calendar for scheduling, and so we cannot expect to directly sense context

using them. They are promising as practical context sensors however, as it costs little

in terms of device resources to query them.

The key limitations of our work lie in generality. Firstly, our study only considered

the office calendar as a context sensor. Users are perhaps more likely to use calendars

in an office than in their personal lives due to the large amount of collaboration in

the workplace, so the personal calendar may be an even worse context sensor than the

office calendar. Secondly, we only analysed a single virtual sensor – the calendar. An

interesting avenue for future work in this area would be to study other virtual sensors

such as social media websites, and to analyse their context sensing performance. As

we discussed in Section 3.5.6, further work to address these limitations might include

a catalogue of virtual context sensors and their measures of performance as context

sensors.

3.6.2 RQ 2: To what extent does combining multiple context sensors

affect sensing performance?

From our study, we saw that data fusion generally improved context sensing perfor-

mance when compared to single sensors. This has interesting implications for context

sensing in general: first, with the abundance of physical and virtual sensors available

to a mobile device, we could combine many of them through data fusion and analyse

their overall sensing performance; and secondly, formal measures of context quality and

reliability could be developed that could be used to standardise context sensors – thus,

certain data combinations could be considered as sensors in their own right.

Of course, we only developed and analysed two data fusion algorithms and applied

them to a single field study, but the results showed significant improvement. Perhaps

a general approach to context data fusion could be developed and applied to further

use cases in mobile environments. As we discussed in Section 3.5.10, further work to

improve the generalisation of our work and better answer RQ 2 might be to catalogue

useful combinations of fused context sensors and alternative methods of data fusion for

each.
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3.6.3 Implications and Limitations for Context

One question surrounding the work in this chapter is that of the theoretical under-

standing of context. During the calendar study, we focused on the full set of context

facets, namely: Who (attenders), What (event type), Where (location), When (times)

and Why (event names). However, although we covered a broad set of facets, we only

considered a smaller set of instantiations of these facets. What are the implications for

the theoretical understanding of context? The work shows that the Five Ws can be

usefully applied to a real-world use case of context sensing, and that they capture a

broad set of context data. Of course there are limitations for theoretical understand-

ing: by limiting our instantiations of context to those provided by the calendar, we did

not consider examples such as human emotion, intent or richer activity recognition.

In doing this, there is still work to be done on advancing the understanding of con-

text. Perhaps repeating the study with more sensors to capture facet instances such as

fine-grained activity and integrating work in emotion sensing and intent inference, e.g.

[186], could better improve the richness of context understanding.

3.7 Conclusion and Chapter Summary

In this chapter, we studied context sensing in mobile context aware systems. We began

by specifying the requirement for context sensing, which led to a set of design questions:

(i) what facets of context are we trying to sense?; (ii) from where can we usefully sense

context?; (iii) what sensors are available to us?; and (iv) are there any constraints?.

We then reviewed a set of potential context sources and sensors, before outlining the

difference between physical (hardware) and virtual (software) context sensors. Key

sources of context data are people, devices and the environment in which the people

and devices operate [57].

We then explored how data fusion – in which multiple data sources could be combined

in order to improve the accuracy or fidelity of the data beyond each individual source

alone – could be applied to context sensing. This led us to consider the case of the

office calendar as a virtual sensor of context, a case for which we chose to undertake a

field study. The study resulted in two key concrete findings:

• The standalone office calendar is not a good context sensor, due mainly to low

precision caused by a large number of events that do not actually occur in reality.

Moreover, for the events that do occur, estimations of time are poor, though

attender lists do appear to be accurate.

• By using data fusion to combine the calendar with other context sensors – namely
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social network and Bluetooth location data – we can improve context sensing

significantly beyond the calendar alone; particularly for event classification per-

formance and real time awareness.

These findings have interesting implications for presence and availability systems, par-

ticularly in a workplace environment. By employing our data fusion algorithms, workers

can increase their belief in their colleague’s purported presence and availability. More-

over, the underlying data fusion algorithms can enable unique applications that rely

on the classification of events to provide a service to the end user, e.g. a meeting me-

dia and documentation capture tool. Furthermore, our approaches could assist in the

purging of ‘noise’ from the office calendar, allowing companies and workers to automate

clean-ups of their calendar databases.

Finally, the findings in this chapter have contributed to RQ 1 and RQ 2 by showing

that we can consider multiple entities as physical and virtual sensors of context, and

that combining multiple context sensors together is likely to improve context sensing

performance.

This chapter concentrated on sourcing and sensing context in the sensing layer of

our layer model, and the next chapter moves up to the intelligence layer; in which

sensed context data can be processed for context inference and machine learning. The

implementation of context inference and learning in a mobile environment comes with

its own set of problems and challenges beyond those found in a more traditional desktop

environment. The next chapter will address some of these problems and contribute new

approaches to inference and learning in mobile context aware systems.
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Chapter 4

Interactive Intelligence: The

Intelligence

In the previous chapter, we studied context sensing in mobile context aware systems,

which included a review of context data sources, common context sensors and the

context facets to which they relate. We also showed how we might apply data fusion to

context sensing, before reporting on a case study of the everyday calendar as a virtual

context sensor.

In this chapter, we move up our layer model to the intelligence layer (see Figure 4.1),

in which context data from the sensing layer and interaction data from the interaction

layer are intelligently processed. Intelligence is the first component of interactive in-

telligence in mobile context aware systems. Here we integrate user feedback supplied

from the interaction layer into the inference and learning processes of the intelligence

layer. We address two areas of intelligence in this chapter:

• Context inference: inferring what state of context may have generated a set of

observed – or sensed – context data.

• Context learning: learning from observed context data and supplied context

knowledge in order to improve future inference performance.

As we saw in Chapter 2, context inference and learning – particularly in a mobile

environment – are popular research topics in the UbiComp field. We aim to address

the following two research questions in this chapter:

• RQ 3: To what extent can we infer significant changes in context using mobile

devices?
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Figure 4.1: This chapter will focus on the intelligence layer and introduce the idea of user
feedback in mobile context aware systems.

• RQ 4: To what extent can we infer and actively learn about context using mobile

devices?

RQ 3 is concerned with the problem of knowing when to trigger sensing, inference

and learning processes in a mobile environment. By considering context as discrete

states in a finite state machine (FSM), can we identify the moment of state transition

using mobile devices, and can we use these transitions as triggers for sensing, inference

and learning processes? How well can context states be modelled by a FSM? For

example, should travelling between places be considered a state or a transition? RQ

4 is concerned with real time context inference and learning with user feedback. How

can we design context inference and learning algorithms that integrate user feedback

in real time? Here we use active machine learning [210], a form of machine learning in

which algorithms can query ‘oracles’ – users in our case – for feedback on their outputs.

To address these questions, we will focus on a relevant use case: place awareness, which

is the awareness of places that are personally meaningful to people, e.g. “home” or

“desk at work”, rather than locations, e.g. an address or latitude-longitude coordinate.

We will show how mobile device motion can be used to infer significant transitions

between places (and how different parameters of our approach affect performance), and
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how we can incorporate user feedback into the place inference and learning process.

Using active learning, we can achieve good place inference performance in real time

with relatively little user feedback. This raises interesting questions about the amount

of feedback we can realistically expect from users, and how we might attempt to elicit

this feedback in a mobile environment.

We begin the chapter by providing an overview of intelligence in mobile context aware

systems, including the requirement for the intelligence layer of our model. We also

distinguish between context inference and learning, and discuss how we might design

for interactive intelligence; which incorporates user feedback into the inference and

learning process. By considering context as a series of discrete states in a FSM, we

design a high level context inference and active learning algorithm that is controlled

by the transitions between the FSM states. Following this, we introduce the place

awareness problem in detail, and outline our rationale for choosing it with regard to RQ

3 and RQ 4. We narrow down these research questions to the scope of place awareness,

and present the results from two hybrid laboratory/field studies that were designed to

address the questions. Finally, we reflect on the implications and limitations of the

work with regard to the research questions, and link it to the work in the following

chapter about the interaction side of interactive intelligence.

4.1 Intelligence in Mobile Context Aware Systems

In this section, we provide an overview of intelligence in mobile context aware systems

by defining what we mean by intelligence, and outlining the requirement for intelligence.

Intelligence, in the philosophical sense, is the ability to acquire and apply knowledge

and skills1. Within AI, Russell and Norvig define an intelligent agent to be “anything

that can be viewed as perceiving its environment through sensors and acting upon

that environment through actuators.”[199].

Combining these definitions for context aware systems, intelligence is the ability to

acquire and apply knowledge of context given data obtained through context sensors.

The key element is context knowledge acquisition – how can our system know or reason

about context? This can be broken down into two problems: (i) context inference: given

a set of observed – or sensed – data, can our system reason about what context may

have generated the data? (ii) context learning: can our system learn from experience

in making inferences?

Context inference draws conclusions about context based on a combination of observed

1“intelligence”. Oxford Dictionaries. April 2010. Oxford University Press. http://

oxforddictionaries.com/definition/english/intelligence (Accessed 2012-11-05)
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data and prior knowledge, and context learning is concerned with obtaining the prior

knowledge. Learning is about adaptability and improving future inference performance

given observations over time [199] and context, by its nature, is certainly dynamic [80].

4.1.1 Context Inference in a Mobile Environment

In statistical nomenclature, context inference can viewed as a classification problem,

i.e. how can we assign a meaningful label or category to a context data observation?

Context inference is a large sub-field within context awareness research and – as we saw

in Chapter 2 – a large amount of work has been conducted on inference alone in recent

years. Within the field of mobile context awareness, context inference using mobile

devices poses a variety of interesting problems for researchers. For example, can we

design a context inference process to be as accurate, responsive and resource-efficient

as possible given the various constraints posed by mobile devices, e.g. CPU speed and

battery power? When designing for good inference in a mobile context aware system,

we may often have to deal with requirements that compete with each other, e.g. context

inference accuracy vs resource efficiency [186].

As we saw in the previous chapter, context data can be obtained from a variety of

physical and virtual sensors. In a mobile environment we have the added property of

mobility, where users interact with their mobile devices in variable, dynamic and often

unpredictable situations.

Inferring the context of mobile device users is valuable but typically non-trivial in

practice. If we are to make useful and relevant inferences about context, we should not

only acquire rich data from available context sensors, but we should also take advantage

of the mobility aspect and utilise input from the users themselves.

4.1.2 Context Learning in a Mobile Environment

There are two important types of machine learning [27]: supervised learning – where

the learning process is shown some training data and attempts to learn a function

that predicts outputs based on unseen test data – and unsupervised learning – where

the learning process attempts to recognise certain characteristics about the input data

without assistance.

In a mobile environment – unlike many desktop environments – we rarely have the

luxury of large training data sets with which to train supervised learning algorithms.

Researchers have side-stepped this issue by training models offline, i.e. by gathering

data from the device and sending it to a remote desktop machine to train, before

sending the trained model back to the device for context inference [98, 154]. This
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does not completely solve the problem however, as training data need to be labelled,

communicated remotely, processed and sent back to the device, which could introduce

latency and financial cost into the inference and learning process.

Although data is becoming cheap and connectivity is improving, there is potentially

little latency and financial cost to executing context learning processes – particularly

unsupervised ones – on the device itself. Indeed, with increased smartphone processing

capabilities, this seems very appealing, but it introduces another cost: energy. Turning

on sensors and running sophisticated context learning algorithms is likely to have a

severe impact on mobile device battery power [118]. This could further impact on how

well context learning algorithms and, consequently, inference algorithms perform [186].

This is the crux of the context learning problem: how can we effectively learn about

users’ context over time whilst preserving mobile device usability? Given a potential

lack of training data, could we encourage the user to train their device about their

context with minimal burden?

4.1.3 Eliciting and Incorporating User Feedback

Eliciting input data from users in mobile environments is a well-studied problem in

HCI. For example, the Experience Sampling Method (ESM), e.g. [51] – where users

are encouraged to input feedback data about their experiences into a device – is a pop-

ular approach to eliciting user data in the field. Various methods have been presented

in recent years to balance requests for user input against automated inference pro-

cesses. Rosenthal, Dey and Veloso [196] use a decision-theoretic learning approach to

experience sampling for triggering mobile interruptions, where context is initially sam-

pled periodically to build a learned model of user interruptibility. Kapoor and Horvitz

[112] compare and contrast a range of interruptibility sampling methods, including a

sophisticated decision-theoretic approach that builds a predictive sampling model of

the user. These are good examples of using both machine intelligence and occasional

user input to improve the inference performance of context aware systems in the field.

In the mobile environment, the MyExperience platform [73] and its applications, e.g.

[74], sample both subjective context, i.e., user experience, and objective context, i.e.,

sensor data. The sensor data is logged periodically and used as an event-based trigger

for experience sampling. Mobile event-based sensor sampling methods are used in

both the AndWellNess [88] and EnTracked [119] systems for fitness based experience

sampling and position tracking respectively. Furthermore, event-based sampling using

mobile device accelerometers and cellular events is used to good effect for determining

transportation modes by Reddy et al.[191], and work by Ho and Intille [92], use changes

in motion using body-worn accelerometers to infer transitions between users’ different
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activities.

Incorporating user feedback into the automated inference process in real time can be

seen as a form of active machine learning [210]. Active learning involves the user

directly in the learning process [3] with the intention of improving future inference

performance by telling the system whether it is right or wrong. For context learning,

active learning techniques have been used in a desktop environment, e.g. [112, 196]

and, to some extent, in a mobile environment using wearable sensors, e.g. [125, 217].

4.1.4 The Intelligence Requirement

Following the Five Ws model of context facets, we can outline the key questions and

operational requirement for intelligence in a mobile context aware system:

1. Who: how might we infer and learn about identity from sensed context data?

This could be the identity of a device user, or the users’ friends.

2. What: how can we infer and learn about what the user or device is doing, i.e. the

activity, from sensed context data? This is what activity recognition is primarily

concerned with.

3. Where: can we infer and learn spatial information from the sensed context data?

Due to its increasing popularity in the mobile environment, location-awareness

has become reasonably trivial to implement within services and applications.

There are limitations to location-awareness, however, particularly indoors where

GPS is unlikely to work well. Our goal here may depend on the application

requirements – do we need to know location to a fine degree of accuracy? Are we

inferring a location, address or perhaps the meaning of a location?

4. When: how can we capture temporal patterns from sensed context data? More

importantly, can we tell if the data we are observing are relevant? For some

applications, data that are hours or days old may be deemed relevant; but for

others, data may need to be supplied as close to real time as possible.

5. Why: can we infer and learn about context meaning, e.g. the name of a location,

user emotion or the relationship between the user and another person? This is

perhaps the most non-trivial context facet to infer and learn about [187].

The intelligence requirement for a mobile context aware system – following Dey’s defi-

nition [57] – is to infer and learn about the information that characterises the situation

of the relevant entity. Though simple to state, satisfying this requirement in practice

is non-trivial, especially in a mobile environment.
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4.2 Context Inference and Active Learning

In this section, we outline an abstract approach to context inference and learning in

mobile context aware systems which incorporates user feedback. By first considering

context as a FSM, we develop a high level algorithm that performs real time con-

text inference and incorporates user feedback into the context learning process. This

algorithm will be used in our case study of place awareness in the next section.

4.2.1 Modelling Context for Inference and Learning

As we saw in Chapter 2, context has been classified and modelled using a variety of

means. Unfortunately, there is no de facto standard model of context, as most models

are manifestations of a design process and are therefore specific to the application they

were designed for. There are notable approaches to general modelling, e.g. Dey and

Abowd’s set of criteria [59], and models range from the abstract [109] to the formal

[25], but model choice is still guided by application in much of the literature.

In this chapter, we are interested in modelling context specifically for inference and

learning. In order to do this, we must identify what elements of the inference and

learning problem can be best represented by which model, and what the implications

of our choice might be for other elements of the problem.

In the next section, we outline a rationale for using a finite state machine model of

context for inference and learning. We also outline its advantages and disadvantages

when used to model context in this manner, and reflect on its comparisons with other

alternative approaches.

4.2.2 Context as a Finite State Machine (FSM)

A FSM is an abstract model of a system, in which the system is in a particular state

– one of a finite set – at a given point in a process (or time). FSMs have been used to

model context in previous work, e.g. [231], as they effectively ‘discretise’ the otherwise

abstract and dynamic process of context. Although abstract, FSMs do allow us to

capture some important and useful properties of context in a systematic way.

An example FSM is shown in Figure 4.2. Here, each of the discrete context states

are reachable from a certain subset of the others through state transitions. We are

implicitly implying that state transitions are a temporal process and, as such, there

could be context states that our system has not yet observed or our user has not yet

experienced or defined. This is not easy; as Greenberg notes [80]: “Determining an
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S1

S2

S3

S4

Figure 4.2: Context as a FSM, showing transitions between states and an as yet unobserved
state (S4).

appropriate set of canonical contextual states may be difficult or impossible. Figure 4.2

illustrates the possibility of a self-transition, an example of which might be a person

walking away from their desk and returning to it having forgotten something.

Why then, is an FSM a suitable model for context inference and learning? Here we

list its advantages and disadvantages – comparing them with alternative models where

appropriate. Some of the key advantages of using an FSM in this manner include:

• An FSM can discretise and simplify what is a complex process of context dy-

namics over time [80]. Much like quantisation in digital signal processing, a

‘continuous’ signal can be mapped to a ‘discrete’ space for further processing at

the cost of minor information loss. By considering context as a state-by-state

process, we can use its discrete nature for applications such as mobile device

ringtone profiles (e.g., putting the phone into silent mode for the duration of the

state), notification delivery or application starting/stopping.

• An FSM can model temporal flow very well. Whereas alternative models cap-

ture static abstractions well, e.g. [25, 59], they do not model temporal processes

adequately. As such, the ‘When’ facet of context is often neglected in favour

of the spatial ‘Where’ or identifier ‘Who’. As we are interested in relevant and

reactive context awareness on mobile devices, time becomes very important –

particularly the operation of sensing, inference and reaction in real time. By

using an FSM, we can model context states over time; allowing us to monitor

transitions between states as changes in context over time.
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• An FSM is event-driven, i.e. state transitions are triggered by some pre-defined

criteria. This is particularly attractive for mobile context aware systems as ex-

pensive sensing and inference processes can be event-triggered rather than polled,

thereby saving energy and processing resources on the device. Of course we must

carefully choose the criteria for transition as certain events may be missed [186],

but once done we can effectively ‘assume’ that the current context state is con-

stant until the next transition. Thus we could, for example, execute all our

sensing and inference routines at the moment of transition, and turn them off

until the next transition.

• An FSM is abstract. We define the states and the transition criteria, which

allows for a large and diverse range of FSMs that can be tailored towards certain

applications without being defined by them as other context models are, e.g.

[73, 154]. There are disadvantages to this informality, as we discuss below, but

the chief advantage is its adaptability.

We should note, however, that using an FSM does have potential disadvantages, in-

cluding:

• An FSM does not model concurrency very well. Assuming a user is in one

particular state may simplify the process of context over time, but it does so

at the cost of losing subtler elements of context such as the notion that users

can be in different context states simultaneously. This is arguably possible, e.g.

watching TV whilst typing a document on a laptop, and not well modelled by

the single-state over time approach of an FSM. This could be avoided by using

multiple FSMs concurrently, or modelling a single state as a composition of more

atomic ones, but this can become complicated, and the added complexity may

outweigh the perceived advantages of using the FSM in the first place.

• Similarly, an FSM does not model multi-faceted context well. What defines a

context transition? If we use the Five Ws, should a change in location (Where)

be a transition, even though the activity (What) may not change, e.g. driving?

What about more abstract context changes such as a change of emotion or intent

(Why), even if activity or location remain constant? Unless modelling a single

facet, an FSM may not be an ideal model of implicit context changes over time.

For the purposes of our work in this dissertation, the FSM’s advantages outweigh

its disadvantages. The event-driven discrete nature of the FSM fits well with most

probabilistic inference and learning methods, e.g. probabilistic graphical models, due

to the mapping of events in probability event space to states in the FSM. Moreover,

the modelling of time is especially important for designing interactive intelligence –
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where the implications of user interaction may be different depending on when the

user interacts with the intelligence. Concurrency and multi-faceted context changes

are perhaps a little beyond the scope of this work, though they are certainly grounds

for future work given the research in this dissertation.

Given our choice of using an FSM to model context for inference and learning, we have

three problems:

• How do we know when the context state transitions occur? What defines a

transition?

• What characterises a context state? How do we recognise or infer it?

• How can we introduce new states as they are observed or defined?

The first two problems involve inference and learning, and link to RQ 3 and RQ 4. The

third – which is linked to RQ 5 – is perhaps more complex. Without someone telling the

system about new states or their characteristics, it may be extremely difficult to infer

the identity or meaning of new states on first observation (though it may be somewhat

easier to infer whether the state is simply new). This is Bellotti and Edwards’ argument

[20]: “There are human aspects of context that cannot be sensed or even inferred”, and

it is where the interaction component of interactive intelligence fits in.

With these problems in mind, we develop a general context inference and learning

algorithm that incorporates user feedback into the inference process. The algorithm

will then be applied to the case of place awareness in a series of user studies.

4.2.3 Context Inference and Active Learning Algorithm

The general idea behind active learning is to allow the learning process to choose

the data from which it learns [210], with the intention of improving future inference

performance and learning efficiency [149]. The key component is the query strategy

used by the algorithm, i.e. what criteria are used to select the data for learning.

For our context inference and active learning algorithm, we use a measure of certainty

(or uncertainty [134]) in the context inference. So, if our algorithm is uncertain about

its inference, it will actively query the user for feedback on whether the inference is

correct.

How do we reach this stage? First, we need an inference subroutine that can proba-

bilistically infer the context state and can pass these inferences to the active learning

component. In the general sense, this subroutine need only return a decision about
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Algorithm 4 Context inference and active learning (executed upon transition into a
new state)

1: Input: set of previously observed context states S, their features F
(indexed by state) and a confidence threshold t.

2: Output: the set of states ranked by probability Ŝ; the inferred state
s ∈ S and inference confidence c ∈ [0, 1]; an updated set of states S; and
their features F

3: x̄← ObserveContextData() . Sensing.
4: if x̄ is empty then
5: return
6: end if
7: Ŝ ← InferContext(x̄, S, F ) . Inference.
8: s← Ŝ[1] . The most probable state.
9: c← MeasureConfidence(x̄, S[s]) . A confidence or certainty measure.

10: if c < t then
11: NotifyUser(Ŝ) . Query the user if not confident.
12: else
13: UpdateFeatures(x̄, F [s]) . Learning.
14: end if
15: return

what context may have generated a data observation. Of course, we need to observe

data to do this, which means our sensors need to supply the data. Where do we start?

How do we bootstrap this entire process?

This is where context transitions come in. We have seen that, by using an FSM

to model context over time, context states are effectively static until the moment of

transition into another state. Ideally, if we observe data at the moment of transition,

we shouldn’t need to take another observation until transition into the next state. This

is particularly appealing for mobile context aware systems, where turning on sensors

impacts on battery resources.

We therefore have the key components for our algorithm:

• A bootstrap, or trigger: the moment of transition into a new context state.

• Context inference: a probabilistic measure over each previously observed state,

along with a method for concluding the current state.

• Active learning: choosing which data to learn from, and when to query the user.

The algorithm is displayed formally in Algorithm 4.

There is a final component to the active learning process – what to do when the user

does respond. At the abstract level, the user should only be able to do one of two
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Algorithm 5 User feedback algorithm (executed upon user response)

1: Input: the inferred state sb before user feedback, its confidence measure
cb, confidence threshold t, the state sa after user feedback, i.e. the ‘oracle’
answer, x̄ the context data for the state, S the set of existing states and
their features F

2: Output: the inferred state s ∈ S with confidence c, an updated set of
context states S and their features F

3: if sa 6= sb and cb > t then . If confident and wrong, undo mistake.
4: ReverseFeatureUpdates(x̄, F [sb])
5: end if
6: if sa ∈ S then . Update knowledge of known state.
7: UpdateFeatures(x̄, F [sa]) . Learn.
8: else
9: Fa ← GenerateFeatures(x̄) . New state: characterise it.

10: add Fa to F
11: add sa to S . Add new state to the observed set.
12: end if
13: s← sa
14: c← 1 . ‘Oracle’ confidence set to 1.
15: return

things: (i) tell the system it is correct; or (ii) tell the system it is incorrect and supply

the correct answer. If the user tells the system that it is correct, it should use the data

to continue its learning process. If incorrect, the system should attempt to undo any

erroneous learning before relearning using the correct answer. This algorithm is shown

formally in Algorithm 5; it is bootstrapped by the user response. It should be noted

that the confidence threshold input to both algorithms must be carefully chosen, e.g.

through cross-validation learning or using standard confidence intervals, in addition to

the confidence measure, e.g. statistical confidence or information theoretic measures.

The ‘ReverseFeatureUpdates’ routine on line 4 of Algorithm 5 is designed to recover an

erroneous feature update as a result of an incorrect inference. It works by performing

the inverse operation of the ‘UpdateFeatures’ routine, therefore the feature updates

should be mapped in order to perform this inverse operation. There are limitations to

reversing the feature updates: it can only be applied to the most recent state update,

and may not be viable if the corrected inference occured some time in the past. This is

because the features may have been subjected to further updates since the erroneous

update, and it may not be able to reliably recreate the effects of these intermediate

updates.

In this section, we have developed an abstract algorithm for context inference and

active learning. In the next section, we apply it to a concrete use case in order to

demonstrate its functionality and analyse its performance in the real world.
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4.3 Use Case: Place Awareness

In order to use a concrete basis for study, both this and the following chapter will focus

on the use of mobile devices for place awareness. A ‘place’ is much more than a ‘space’;

as Harrison and Dourish propose [86]:

“Physically, a place is a space which is invested with understandings of behavioural

appropriateness, cultural expectations, and so forth. We are located in ‘space’, but we

act in ‘place’. Furthermore, ‘places’ are spaces that are valued. The distinction is

rather like that between a ‘house’ and a ‘home’; a house might keep out the wind and

the rain, but a home is where we live.”

Following this definition, a place is a physical area of meaning to a user. Rather than a

set of coordinates or an address, a place can be much more loosely defined with rich and

often complex meaning. As such, the subjective nature of place awareness offers a richer

and more personal user experience than the more objective idea of location-awareness.

Indeed, as Barkhuus et al. show using a field study of their Connecto system [17], place

descriptions can be broken down into four key categories of meaning:

• Geographic labels: similar to location or address.

• Place names: meaningful names, e.g. shop names or ‘gym’.

• Activities: verb descriptors, e.g. shopping.

• Hybrids/expressions: sentences or combinations of the above categories.

Of these categories, the place name category was by far the most commonly used among

the study participants, adding further empirical validation of Harrison and Dourish’s

original place vs space argument [86].

Why is place awareness a good case for studying interactive intelligence in mobile

context aware systems? Places have clear personal meaning to people, but their loose,

variable and often ambiguous descriptions present an inference and learning problem

that goes beyond simple location awareness (the intelligence) [89]. Places have meaning,

and it is difficult for intelligent systems to infer this meaning without users explicitly

telling it to them (the interaction) [115]. Moreover, place awareness has practical

applications for mobile service personalisation, e.g. predicting traffic between work

and home; sharing personalised context data with friends and family; or delivering

reminders when the user is at their desk or another relevant place. Place awareness is

an active area of research in the UbiComp community [89, 90, 115, 116, 117, 133, 156].

In this chapter and the next, we engineer a novel mobile place awareness system that

infers and learns about users’ meaningful personal places in real time using their mobile
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(a) Abstract context facets for the intelligence layer.

(b) Concrete context facets for intelligence in place awareness systems.

Figure 4.3: Our layer model, showing the context facets for a place awareness system.

devices and active learning. The system will attempt to capture place meaning by

querying the user for feedback on its inferences, and it will attempt to learn about

places over time using this approach.

In the next section, we outline the low level research questions for inference and active

learning in mobile place awareness.

4.3.1 Related Work and Research Questions

Here we provide some background to place awareness with mobile devices, state our

research questions and directly contrast our contributions for the remainder of this

chapter against relevant work in the field. The problem of place awareness has received

attention from researchers in recent years due to the ubiquity of mobile devices that

can enable such awareness in people’s everyday lives. There are two general approaches

to place awareness: geometric-based, where spatial coordinates are used for clustering

into places; and fingerprint-based, where signatures (typically RF signatures) in the

environment are used to identify place ‘zones’.

Notable geometric-based systems include: Askbrook and Starner’s GPS-based work

[11], which clusters GPS coordinates post hoc to learn users’ significant locations; Kang

et al. [110], who use a time-based approach to cluster GPS coordinates and extract

places in an ad hoc manner; Nurmi and Koolwaaij [164], who use online GPS coordi-
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nate clustering; and Liao et al. [137], who use supervised learning to identify place and

activity transition sequences post hoc. The main disadvantage of these systems, how-

ever, is their dependency on GPS, which means they do not work well for finer-grained

indoor places.

Notable approaches that use fingerprinting include: Hightower et al. [90] and Kim et

al.’s place awareness work using wireless RF fingerprinting [116], SensLoc [117] and

Loci [115]. These later systems operate well indoors, and use device motion averaged

over short time windows to trigger wireless sensing in a fairly simplistic manner, i.e.

through the use of apparently arbitrary motion and window time parameters. However,

no analyses of how well genuine place transitions can be extracted from these motion

data are performed. Similarly, Chon, Tapilov and Cha [42] and Chon et al. [41]

use time-averaged mobile device motion as indicators of place transitions but, again,

arbitrary parameters are used and no analyses of how the choice of parameters affect

transition inference performance are performed. This is also the case in other mobile

context aware systems that use motion-triggering for sensor activation e.g. [30, 119].

Kim et al.’s study of user feedback for place capture [115] is also one of the first

place awareness approaches to consider incorporating user feedback for improving place

inference and learning. Although the authors simply capture in situ feedback and do

not integrate it back into any learning process, they do note the potential value of such

interactive intelligence for place awareness.

The challenges and benefits of implementing interactive intelligence (IIS) have recently

been studied by Acid el al. [3] and Stumpf et al. [218, 219, 220], and applied in the field

for experience sampling by Rosenthal et al. [196]. This work in particular shows that

utilising user feedback is useful for improving future inference performance through

machine learning, but the process of eliciting feedback is challenging, particularly in a

mobile environment.

Given existing work, how might we contribute to RQ 3 and RQ 4 using place awareness

as a use case?

RQ 3.1: To what extent can we infer significant transitions between users’

meaningful places using mobile device motion?

RQ 3 asks how we might infer significant context changes with mobile devices. The

temporal nature of the problem, i.e. identifying when in time context changes occur,

relates to the “When” context facet (see Figure 4.3a). By applying our FSM model

to place awareness, the context transitions take the form of place transitions. So, how

do existing approaches to place awareness infer place transitions, and how might we
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do better? As we saw in the related work, the use of time-average device motion is a

common method for doing this, but – as far as we are aware – no one has analysed

how best to choose these parameters, nor how their choice might affect place transition

inference performance2. Choosing motion and moving average parameters that are

too low risks unnecessarily turning on sensors and executing inference and learning

algorithms which may impact on device battery life but, if they are too high, we risk

missing transitions.

Our research question can therefore be scoped for place awareness – to what extent can

we infer significant transitions between places using device motion? In other words,

how does the choice of parameters for the commonly used smoothed motion triggering

approach affect transition inference performance? The user study that addresses this

question is detailed in Section 4.4.

RQ 4.1: To what extent can we infer and actively learn about users’ mean-

ingful places using mobile devices?

RQ 4 asks about context inference and active learning. For place awareness, this

mainly involves inferring and learning about the “Where” and “Why” context facets

(see Figure 4.3a) from available sensor data. How do existing approaches do this, and

how might we do better? As the related work shows, almost all place inference and

learning approaches – both geometric and fingerprint – prioritise automation, i.e. they

are concerned with automatic identification of the “Where” facet without consideration

of the “Why”. Thus, places are not labelled with anything beyond a unique ID unless

users manually add labels themselves; recent attempts at prompting for labels are

limited to daily surveys [115] where users are unlikely to remember places accurately

a posteriori. As Barkhuus et al. showed, place labels are extremely important to users

[17], and this lack of labelling in existing approaches potentially limits the usefulness

of mobile place awareness.

Our research question can be scoped as follows: how might we infer users’ meaningful

places – including their meaning – and actively learn about them? The novelty will lie

in active learning, i.e. incorporating user feedback into the place inference and learning

process. The user study that addresses this question is detailed in Section 4.5.

2There is a brief analysis of how varying moving average time parameters affects place inference
performance in [117], but not transition inference performance.
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What About the “Who” and “What”?

The reader may have noticed that the “Who” and “What” context facets are not

considered. Like other approaches to place awareness, we are initially concerned with

a single user’s collection of meaningful places rather than any collective interpretation

of a place. This may be a fruitful area for future research, but for parsimony in this

work we limited our study to the places of individuals.

The “What” facet is concerned with activity recognition and, although we should be

aware of user activity within places (particularly when related to transition inference

through device motion), it is a popular area of research that is beyond the scope of this

work.

4.4 Study: Inferring Place Transitions

In this section, we present a user study that addresses RQ 3.1 by analysing how mobile

device motion from the accelerometer can be used to infer place transitions, and how

the parameters of this approach affect inference performance. In this study, we focus

solely on capturing the moments of place transition (rather than inferring the places

themselves) using mobile device motion data from the accelerometer.

One of the most challenging aspects of context inference in mobile systems relates to

time. Ideally, context inference should be reactive, i.e. with minimal inference latency,

and context aware services and applications should operate in real time. Any noticeable

delay between a user entering a context state and the system becoming aware of the

state is likely to impact on user experience and system performance. However, energy

and processing constraints – particularly in mobile devices – can limit the sophistication

of the inference techniques used to enable real time context awareness.

In the case of place awareness, real time awareness is extremely desirable, as many

services and applications such as notification or experience sampling tools can benefit

from ‘event-based’ triggers such as a user entering or exiting each place. Furthermore,

context transitions can act as triggers for resource-intensive sensors or user notifications

[92, 214]

As we saw in the previous section, no one has systemically analysed how place tran-

sitions could be inferred from device motion. This study contributes a systematic

analysis of a place transition inference system that uses mobile device motion sensed

by the accelerometer. More specifically, we analyse two factors – moving average time

windows and weighting methods – and show that they have significant effects on tran-

sition inference performance. We begin by describing a systematic approach to place
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transition inference with mobile device motion. We then outline the design of a hy-

brid laboratory/field study that captures users’ natural transitions between places in

addition to high-precision observations, before reporting the results of our analysis and

discussing how they address RQ 3.1.

4.4.1 Approach

In this section we outline our approach to inferring transitions between users’ meaning-

ful places using mobile device motion. First we outline the specific problems involved

in transition detection from mobile device motion, before using them to inform our

system design. We then describe our hybrid laboratory/field study in which we collect

the necessary data for post hoc analysis of how the factors in our design affect tran-

sition inference performance. We begin by summarising the key problems involved in

inferring the moments of place transition from mobile device motion data:

1. Sources of motion: device motion may be a manifestation of noise or a less

significant activity, e.g. the user idly playing with her device, rather than motion

associated with movement between places. Conversely, device motion may not

always reflect user motion, e.g. the user leaving her device on a desk.

2. Subjectivity: the intensity of motion that indicates a state of ‘stationary’ or

‘moving’ may vary between states and between users.

3. History: motion at a single point in time, or over a short period of time, may

not provide enough information about whether the user is actually moving be-

tween places or not. Conversely, increasing the amount of historical data to be

considered could affect inference performance and latency.

These problems provide a rationale for our design. The requirement for the transition

inference system is – in real time – to broadcast a message when the user is transitioning

into (entering) or out of (exiting) a place. Figure 4.4 shows the components involved

in the system, and the following subsection describes its design.

System Design

The transition capture process is designed to operate on-device and uses two compo-

nents commonly found in mobile motion detection systems: a logistic function and

moving average time window.

• A logistic function addresses problem 2 – subjectivity. It is very unlikely for

motion intensity to be consistent both within and between places, and motion

116



Relative motion

MOVING AVERAGELOGISTIC FUNCTION

Figure 4.4: The process design

patterns will vary between users and the device’s on-body location. The func-

tion outputs values in [0, 1] that represent the probability of the device undergo-

ing significant motion (or the complement probability of insignificant motion) at

timestep k, given the motion observed relative motion vector f :

gθ(f) =
1

1 + e−θTz
(4.1)

Where f is the relative motion vector at timestep k and z is a column vector in

R2, defined:

z =

[
1

‖f‖

]
(4.2)

Here, θ is a parameter vector in R2 that controls the function shape. We can

learn these parameters for a specific user through regularised logistic regression

on a sample of the user’s motion data in various context states.

• A moving average function addresses problems 1 and 3. To minimise the

effect of transient and unimportant motion, we can smooth the logistic function

outputs over a fixed time window, τ , so that only sustained motion can trigger

a transition. This uses historical data and, as such, requires a necessary lag to

operate. In addition to varying τ , we can use weighting methods, w, for the

historical data, which can vary the influence from more recently acquired data.

The moving average outputs high if the weighted average over the logistic function

outputs in τ is ≥ 0.5, and low otherwise. This threshold is chosen for the average

of the logistic function’s output over w, which in turn is learned using regularised
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logistic regression from a set of training data. Thus the threshold at 0.5 gives a

decision boundary for average learned belief of motion-triggered transition.

Study Design

In order to evaluate system performance, we should design a study that will allow us

to capture the data required for analysis in the most natural way possible. We have

two goals: ecological validity, i.e. capturing data that is representative of the real

world; and reliability, i.e. high-precision observations. A field study would satisfy the

ecological validity goal, and a laboratory study would satisfy the reliability goal, but

neither can easily satisfy both.

For place transition inference, we conducted an empirical study of mobile users in a

hybrid laboratory/field study. Participants were asked to visit a set of meaningful

personal places in a natural order, whilst being shadowed by a researcher recording

what actually happened. We recruited 14 participants (11 male and 3 female; aged

20–38, mean age 27) from three different daily environments: an office (7 participants),

a university (6 participants), and a town centre (1 participant). These environments

were chosen to vary the movement patterns between participants and to lessen the

effect of behavioural bias associated with all participants being located in the same

environment. We recruited a mixture of male and female participants in order to

record device motion that may vary between them, e.g. female participants carrying

their device in their handbag rather than their pocket.

In a pre-study interview, we asked them to describe their typical day’s activities chrono-

logically through transitions between meaningful personal places within their environ-

ment. Each participant was told the difference between a place and a space using

the Harrison and Dourish example of ‘Home’ [86] and a verbal explanation of exam-

ple places given by Barkuus et al. in their Connecto system study [17]. Immediately

following the interview, we asked them to choose a sequence of these places (and ac-

tivities) that could be performed as a scripted tour. Each participant was equipped

with an Android mobile device containing an accelerometer, from which the output

was continually logged at ≈ 16Hz throughout the study. The participants underwent

a short training session to train their logistic function parameters, during which they

were asked to perform example within-place and between-place activities, e.g. sitting at

a desk or walking, while carrying the device in a pocket or a bag. Each training session

lasted 30 seconds per activity type, and the parameters were trained using regularised

logistic regression with stochastic gradient descent. Full instructions that were given

to the participants are listed in Appendix B.

The participants were then asked to undergo their previously identified place sequences
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and perform their previously identified example activities in each place whilst carrying

the mobile device in exactly the same manner as they would at and between each place.

A researcher shadowed each participant and recorded the timestamp for the transition

points into and out of each place – notified orally to the researcher by the participant

themselves. Due to the difficulties involved in collecting such fine-grained data over an

extended period of time, the participants were asked to perform shortened versions of

activities in each place, e.g. “working at desk”, which would typically last for 1–2 hours,

was shortened to 5–10 minutes. The transitions between places were not shortened.

Analysis

Upon completion of the hybrid study, we analysed the data in order to observe the ef-

fects of each factor on the transition detection process. The factors are w, the weighting

method for the moving average filter; and τ , the time window for the moving average

filter. Although the data was logged at 16Hz, we sample from it at 1Hz, so the differ-

ence between timesteps k is constant at 1 second. For the participant-specific logistic

regression parameters, θi, we used each participant’s training data to find the maxi-

mum likelihood parameters – θ̂i – for that participant i. Once found, θi was held fixed

at θ̂i for each participant i during analysis.

We chose three moving average weighting methods, w, to analyse (see Figure 4.5):(i)

the simple moving average (SMA), where all classifier outputs in time window τ are

given equal weight; (ii) the weighted moving average (WMA), where the classifier

outputs are weighted linearly over τ (with more weight given to recent motion); and

(iii) the exponential moving average (EMA), where the classifier outputs are weighted

exponentially over τ as follows, 2
Tn+1 , Tn ≤ τ , where Tn is the time-lag between the

current timestep k and timestep n. As a benchmark, we also tested the process with no

moving average. Finally, we evaluated 9 time windows τ at intervals of 5–10 seconds

over 5–60 seconds.

Performance Measure

To measure the performance of each design, we use the precision, recall and F1 scores

which account for true positive (tp), false positive (fp) and false negative (fn) classi-

fications. Their descriptors are as follows:

• A true positive (tp) occurs when the process classifies a correct transition point

according to observed data, i.e. a place entrance or exit transition. This must

be made within an acceptable time window from the observed transition point,

accounting for moving average lag τ .
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Figure 4.5: Illustration of moving average weighting methods w as a function of time lag for
τ = 30s

• A false positive (fp) occurs when the process classifies an incorrect transition

point according to observed data, i.e. classifying a transition outside a viable

observed transition.

• A false negative (fn) occurs when the process fails to classify a transition point

according to observed data, i.e. not classifying a transition at the time of a viable

observed transition.

To account for small deviations between the researcher-recorded observations and the

exact moment of place transition, an observed transition was considered viable for 5

seconds either side of its recorded timestamp.

4.4.2 Results

For the study, the environment for participants 1–6 was a university campus; 7–13

was an office; and for 14 it was a town centre. The median number of transitions

for the 14 participants was 16. Common place labels included: “desk”; “café”; “can-

teen”; “lecture hall”; “car park”; “lab”; “gym” and “meeting”. Common within-place

activities included: “working”, “eating”, “reading” and “relaxing”. Common between-

place activities included: “walking” (all participants); “cycling” (participant 4); and

“driving” (participant 14). Figure 4.6 shows a graph representation of Participant 7’s

place transition sequence, with each edge corresponding to two transition points (en-
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Figure 4.6: Graph of the place transition sequence for Participant 7. Edge labels represent
the transition ordering, and each edge represents an exit and entrance transition point.

trance and exit). Figure 4.7 shows the transition point distribution over each of the 14

participants.

A two-way, within subject analysis of variance (ANOVA) over the factors w and τ

shows that neither have a significant effect on each participant’s true positive tp and

false negative fn count (F2,26 = 1.483, p = 0.25 and F8,104 = 1.746, p = 0.10 in

both cases, respectively), but there is a significant interaction effect (F16,208 = 7.463,

p < 0.01). The same ANOVA shows that both w and τ have a significant effect on each

participant’s false positive fp count (F2,26 = 21.25, p < 0.01 and F8,104 = 30.05, p <

0.01 respectively) as well as a significant interaction effect (F16,208 = 17.87, p < 0.01).

By encoding the tp, fp and fn counts into between-participant comparable statistics

– precision, recall and F1 score – we can perform a post hoc analysis on the effects

of the factors upon performance. As the distributions of these statistics over the par-

ticipants are unknown (and not well modelled using a normal distribution), we use a

non-parametric bootstrapping method with 1000 replicates to estimate the mean and

percentile confidence intervals of each statistic over the participants. Figure 4.8 shows

the mean precision, recall and F1 scores for each w over τ . There is a significant ob-

served improvement in precision and F1 score from no moving average by all levels

of w for τ > 5s (p < 0.05). There is a significant observed improvement in F1 score

(p < 0.05) at τ = 30s from τ < 15s for the SMA; at τ = 50s from τ < 25s for the
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WMA; and at τ = 60s from τ < 20s for the EMA.

Figure 4.9 shows a more detailed overview of the F1 score distribution for the partici-

pants, partitioned by w, at τ = 30s.

4.4.3 Discussion

Here we discuss how the results address RQ 3.1, as well as the observations, limitations

and implications of our approach and results.

RQ 3.1: To what extent can we infer significant transitions between users’

meaningful places using mobile device motion?

The results suggest that the majority of users’ self-defined significant place transitions

can be inferred in real time using mobile device motion data passed through a logistic

function and moving average window. The results further show that moving average

time window τ and weighting method w (and their interaction) have a significant

impact on inference performance. There is weak evidence to suggest that a simple

moving average window is better than a linearly or exponentially weighted one over

time windows ≤ 60s, and that the (simple) moving average window should be ≥ 15s

for significantly improved performance.

Observations

The significant improvement from the absent case by all moving average types w in

Figures 4.8 and 4.9 suggests that smoothing transient motion and requiring sustained

motion over time is an effective method of detecting place transitions.

Interestingly, there is a peak in F1 score performance for the SMA at τ = 30s (see
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Figure 4.7: Transition count distribution over the participants.
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Figure 4.8: Plots showing the mean precision, recall and F1 score of transition inference
performance for the MA weight type w over the time window τ .(.95 CIs shown.)
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Figure 4.9: F1 score, for each moving average factor, over the participants at τ = 30s

Figure 4.8). This is due to an increase in false negatives fn and consequent decrease in

true positives tp causing a minor drop in recall as the time window τ increases beyond

the shorter transitions for many participants, e.g. walking from a desk to a meeting

which may take less than 30s. The peak is more apparent earlier for the SMA due to

its unbiased weighting over the entire time window. The slight improvement using the

SMA rather than the WMA or EMA shows that equal weighting of data in τ – rather

than biasing toward recency – is likely to be the superior choice, not least because of

the improvement in awareness latency (compare the approximately equal performance

in Figure 4.8 of the SMA at τ = 20s to the WMA and EMA at τ = 40s).

Clearly the greatest improvement comes from reducing the per-participant false positive

fp count. Aside from in-place idle motion (e.g. from the device in a pocket, or the user

idly playing with it), these were generally caused by participants undergoing periods

of ‘start-stop’ motion both within and between places, e.g. participant 12 using their

device for a phone call; participant 6 moving within a large shop; participant 4 cycling;

and participant 14 driving. A few false negatives fn were caused by participants leaving

their device at their desk to travel to a nearby location, e.g. a printer (participant 7),

or undergoing short transitions (with duration < τ), e.g. stopping to talk to a colleague

en route to another location (participant 13).

Notable observations from our hybrid study approach included the lack of cognitive

overload for the participants. With the shadow monitoring them, some participants

noted that they didn’t have to “stop and think” (participant 13) about writing some-
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thing down, or what they should be doing next, although some participants noted that

– as well as the presence of the shadow – the time shortening during places felt a little

artificial, even with them performing their natural activities in each. Another notable

observation was the participants’ willingness to undertake the study under the hybrid

conditions: the majority said that – for privacy reasons – they would not undertake

the study if the shadow (or other observation device, e.g. a camera) were to be present

throughout their entire day, i.e. a full observational field study.

Limitations

One of the key limitations of the study were the environments. We were focused on

‘local’ environments – offices, campuses and a town centre – so we cannot easily gener-

alise the performance from these results to multiple, more global, environments. Early

indications of how the detection process deals with vehicular motion, i.e. participant

14, suggest that the stop-start nature of driving will impact on performance due to

the fixed threshold of the trained classifier. However, using multiple fixed or adapt-

able logistic functions (e.g. one for each mode of travel) may alleviate these problems.

Furthermore, data fusion with other sources of context data that suggest, for example,

that the user is in a vehicle, e.g. in-car Bluetooth or GPS speed sensing, could improve

performance in these situations, as could incorporating others’ work into detecting

transport types from mobile device motion, e.g. [191].

There are also limitations with the ecological validity of the hybrid field study. First,

although the participants were asked to carry their mobile device in a naturalistic

manner, e.g. in a pocket or bag, we could not capture entirely realistic idle motion

profiles due to the shortening of the context periods. Furthermore, the performance

of the participants’ activities was necessarily artificial, i.e. they were enacted for the

purpose of the study rather than to achieve a specific goal which could, in turn, affect

the ecological validity of the captured motion data.

Implications

The output of this work results in a lightweight mobile service that can report genuine

place transitions to any application that requires them. This has important implications

for applications that focus on place recognition, e.g. [117], notification delivery systems,

e.g. email or SMS, or in-situ user prompting. The results and feedback from using the

hybrid study approach show that it (the approach) can be used to acquire useful results

that could not otherwise be obtained reliably through laboratory or field studies.
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4.4.4 High-level Implications and Limitations

RQ 3.1 asked the extent to which we can infer significant transitions between people’s

places using mobile device motion. What are the implications of our findings for RQ 3

– which asks about the extent to which significant changes in context can be inferred

– and the limitations? The findings from this study suggest that mobile device motion

and transitions between places form a good basis and trigger for observing changes

in other context facets. Going back to our discussion about when the best time to

sense might be given limited mobile device resources, using place transitions could

bootstrap other processes for inferring changes in, for example, activity or intent. We

have shown that, at least for the ‘Where’ facet, motion is a good indicator of certain

context transitions, but where does this leave other facets?

Clearly, the biggest limitation of these findings is that of generalisation – particularly

to the remaining context facets in the Five Ws. Although motion has been shown to

be a useful indicator of activity transition [92] (What), little has been done to address

subtler yet important transitions between intent, emotion or social network. These

would be valuable to know; in the case of intent transition, this could dictate the

entirety of the remaining facets’ transitions, e.g. someone suddenly dropping in to a

café for a drink en route to elsewhere as they unexpectedly saw some friends inside:

the Who, What, Where, When and Why facets have all effectively transitioned as a

result of this change in intent.

The next stage to better answering RQ 3 might be to repeat a scripted tour method with

additional sensors in order to infer other context transitions beside place transitions.

The broader the range of context transitions studied, the more knowledge is gained for

researchers tackling this problem. In summary, our findings show that place transitions

are possible to infer well from mobile device motion data, but that the study should be

repeated for other sensors and context transitions in order to gain a broader picture of

context transition inference in general.

4.5 Study: Inferring and Actively Learning Places

Now that we have seen how place transitions can be inferred through mobile device

motion, we address RQ 4.1.

As related work in Section 4.3.1 showed, inferring and learning about people’s meaning-

ful places can be non-trivial. Determining the “Where” of places, i.e. their approximate

spatial area, and the “Why”, i.e. their meaning, are the key primary tasks for infer-

ence and learning. For the “Where”, the state of the art inference approaches use RF
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fingerprinting, e.g. [41, 115] while geometric approaches, e.g. [11], are not as popular

currently due to granularity issues with GPS sensing. This is a limitation of sensing

technology however, not the inference approach. Location sensing in mobile devices

is continually improving (see Section 2.4.4) and – at the time of writing – Google’s

Android operating system ships with a very accurate location sensing system, even

indoors3.

Whereas many geo-location services can identify the user’s position and high-level,

e.g. a street name, it is still difficult for a system to infer the personal meaning of

people’s places without being explicitly told. This is where why incorporating user

place feedback into the system is an interesting prospect. The feedback – if successfully

elicited from the user – has two key advantages: (i) places can be created directly from

the user’s labels and seeded from a location observation; and (ii) places can evolve

over time as the user interactively trains the system through their mobile device using

further location observations. This is particularly appealing for dealing with loosely

defined places, e.g. a meeting ‘area’, and place descriptions that update over time,

e.g. new areas of an office building or shopping mall. MIT’s OIL system [173] uses a

similar approach to mapping indoor wireless Voronoi regions. Although the approach

is limited by bespoke hardware, it shows how learning from user feedback in real time

can improve (in this case) wireless zone mapping.

One important challenge in any system that incorporates user feedback is the elicitation

of the feedback from the user. In mobile context aware systems, prompting the user

to intervene may be annoying and – depending on the user’s context – they may not

be aware of the notification or choose not respond to it. However, without feedback,

context learning and future inference performance may be poor. A good approach will

attempt to maximise automated inference and learning while minimising the amount

of user feedback necessary for good performance.

In this study, we apply our general context inference and learning algorithms (Algo-

rithms 4 and 5) to place awareness. We incorporate the work from Section 4.4 to

infer transitions between places and use the transitions to bootstrap Algorithm 4. The

problem of actually eliciting feedback from users is addressed in Chapter 5, but in this

study we simulate feedback using the high-precision data collected from users. This

allows us to implement Algorithm 5.

We first show how we implement the algorithms for place awareness, before detailing our

study and simulation approach. The results show that, given expected user feedback,

good place inference performance can be achieved as the system actively learns about

users’ meaningful places. We also compare three inference approaches and show how

3see http://developer.android.com/reference/android/location/LocationManager.html for
more detail (Accessed 2012-11-07)
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Algorithm 6 Place inference and active learning (executed upon transition into a new
place)

1: Input: set of existing places P , their codebook vectors C (indexed by
place) and a confidence threshold t.

2: Output: the set of places ranked by probability P̂ , the inferred place
p ∈ P and confidence c ∈ [0, 1], an updated set of places P and their
codebook vectors C

3: x̄← ObserveLocation . Sensing location.
4: if x̄ is empty then
5: return
6: end if
7: P̂ ← InferPlaces(x̄, P , C) . Place inference.
8: p← P̂ [1]
9: c← MeasureConfidence(x̄, C[p]) . Inference confidence.

10: if c < t then
11: NotifyUser(P̂ )
12: else
13: UpdateCodebookVectors(x̄, C[p]) . Place learning.
14: end if
15: return

they affect inference performance. Finally we discuss how the results address RQ 4.1.

4.5.1 Approach

In this section we describe our approach, including design and implementation of the

inference and learning algorithms as well as the user study.

System Design

The system is designed to run on a mobile device in real time. The algorithms are for-

mally described in Algorithm 6 and Algorithm 7, which are instantiations for Algorithm

4 and Algorithm 5 respectively. The following subsections outline their implementation

in greater detail. There are a number of alternative design choices that can be made

at the inference stage; details of which will be outlined in the relevant subsection.

Place Representation

To address the problems of loosely defined places and place evolution over time, we

represent each place as a set – or map – of ‘codebook’ vectors C in coordinate space.

This enables two desirable properties: the ability to model places as probability density

functions (PDFs); and allow them to be malleable over time using on-line vector quan-

tisation, similar to training a self-organising map (SOM) [121]. Each codebook vector
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Figure 4.10: Hidden Markov Model (HMM) of place inferences over time. There is a temporal
dependency between each place variable.

has a ‘weight’ associated with it represented by the number of location observations

assigned to it – this is discussed in greater detail shortly.

Place Transition Inference

We use the place transition inference approach from Section 4.4, which uses mobile

device motion to infer the moment of transition between meaningful places. This

trigger initiates the execution of Algorithm 6.

Observing Location

Location sensors are used to report a set of location latitude-longitude coordinates and

the accuracy of the estimate in m. This process is ‘sensor-agnostic’, i.e. it utilises

whichever location sensors are operational on the device at the time, e.g. GPS or

WiFi/Cell providers. If no location is obtained, the algorithm terminates and the

user is notified that location data cannot be obtained. The user is notified of this for

intelligibility and usability reasons: if the device simply cannot sense a location, e.g.

there is no radio signal, it is better to inform the user of this rather than allow them

to think that the system is performing poorly.

If a set of N location coordinates is successfully obtained, the weighted mean of the

set is calculated:

x̄ = LTa (4.3)

Where L is a N×2 matrix of coordinates, and a is a column vector in RN of normalised

inverse accuracies. x̄ is then used as the location observation on line 3 of Algorithm 6.

Place Inference

For the place inference subroutine, we compare and contrast three alternative ap-
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proaches:

1. Hidden Markov Model (HMM):

HMMs are probabilistic graphical models that are used for many applications, in-

cluding voice recognition and natural language processing. Rabiner [185] provides

an excellent introductory overview of HMM theory, construction and implemen-

tation. An HMM assumes the system can be in one of a number of hidden –

or unobservable – states, and our observations of these hidden states are made

through observation variables, whose fidelity of the hidden state may be affected

by corrupting factors such as noise. HMMs are particularly useful for modelling

processes that are temporal in nature, thus allowing the capture of temporal de-

pendencies between successive states in a Markov process. HMMs are generally

modelled under the assumption of the Markov property, i.e. the current hidden

variable is independent of previous variables given its immediate (hidden) prede-

cessor, and the current observation variable is independent of all other variables

given its hidden counterpart.

Figure 4.10 illustrates our application of HMMs to place inference, where the

current place variable is dependent only on the preceding one according to the

Markov property. Here, the place variable at timestep k, Pk, is a hidden variable

that takes the value of one of the Mk existing places at time k and emits an

observation that in our case is the location vector at timestep k: x̄k:

P(Pk|x̄k) = ηP(x̄k|Pk)P(Pk) (4.4)

Where η is a normalising constant described in Equation 4.6 below. Because of

the Markov assumption, there is a dependency between the current place variable

Pk and the previous place variable Pk−1. Using the chain rule of probability to

re-factor the prior P(Pk) and by summing over the previous place variable, we

have:

P(Pk|x̄k) = ηP(x̄k|Pk)
∑
pk−1

P(Pk|pk−1)P(pk−1|x̄k−1) (4.5)

Where conditional independence removes dependent paths between Pk and all lo-

cation observations up to and including time k−1, as well as the dependent path

between the current location observation x̄ and all previous place variables. Equa-

tion 4.5 contains the recursive component P(pk−1|x̄k−1), which can be viewed as

a ‘message’ passed forward through time [185]. The normalising constant η can

therefore be written as:
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η =
∑
pk

P(x̄k|pk)
∑
pk−1

P(pk|pk−1)P(pk−1|x̄k−1) (4.6)

There are two parameters in these equations: the emission probability P(x̄k|Pk),

i.e. the probability of each place given the current location observation, and the

transition probability P(Pk|Pk−1), i.e. the probability of transitioning between

places during successive timesteps. For the emission probability, we model each

place as a multivariate Gaussian PDF in R2 and use this PDF as a likelihood

function. The weighted mean and weighted covariance of the place’s codebook

vectors (weighted by observation count) are used as the maximum likelihood

Gaussian PDF parameters. For the transition probabilities, we store an Mk×Mk

transition count matrix V over the Mk places at each timestep and increment

element vij upon observation of two successive confident inferences of places i and

j respectively. V is initialised with a pseudo-observation count α over all Mk×Mk

elements. V is initially normalised so that the row-wise transition probabilities

sum to 1, and it is re-normalised on each count update to maintain this invariant.

If a new place is created, i.e. Mk = Mk−1 + 1, a new row and column is added

to V with pseudo-observation count α, before the rows of V are re-normalised to

sum to 1.

2. Bayesian Classifier (BC):

Bayesian classification does not model direct dependencies between place transi-

tions, and the posterior probability distribution at time k over the Mk existing

places P given the location observation x̄k is calculated using Bayes’ rule:

P(P |x̄) =
P(x̄|P )P(P )

P(x̄)
(4.7)

Where the likelihood – P (x̄|P ) – is calculated as with the HMM by modelling

each place as a multivariate Gaussian PDF in R2 and using it as the likelihood

function. The weighted mean and weighted covariance of the place’s codebook

vectors are again used as the Gaussian PDF parameters. We use a multinomial

distribution as the prior over P which is calculated using a vector v of confident

observation counts for each place, smoothed using a pseudo-count α, over the

existing Mk places.

If a new place is created, i.e. Mk = Mk−1 + 1, the dimension of v is incremented

and set to pseudo-observation count α.

3. Nearest Neighbour (NN) The nearest neighbour classifier simply computes

the Euclidean distance from the codebook mean of each place in P to the lo-
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Algorithm 7 User feedback algorithm for active place learning (executed upon user
response)

1: Input: place pb classified pre-feedback, its confidence measure cb, con-
fidence threshold t, place pa classified post-feedback, x̄ the location ob-
servation for the place, P the set of existing places and their codebook
vectors C

2: Output: the classified place p ∈ P with confidence c, an updated set of
places P and their codebook vectors C

3: if pa 6= pb and cb > t then . Undo learning if incorrect inference was confident.
4: ReverseUpdateCodebookVectors(x̄, C[pb])
5: end if
6: if pa ∈ P then
7: UpdateCodebookVectors(x̄, C[pa]) . Execute learning.
8: else
9: Ca ← GenerateCodebookVectors(x̄) . New place added.

10: add Ca to C
11: add pa to P
12: end if
13: p← pa
14: c← 1
15: return

cation observation x̄. The location observation is then classified as the nearest

neighbouring place.

The places are then ranked by probability (if applicable) or Euclidean distance from x̄

to give a ranked set P̂ , and the top-ranked place is given a confidence measure. For this

we implement a one-sample Hotelling’s T 2 test that compares the set of C codebook

vectors to the observation x̄ and uses the p-value as the confidence measure.

The inferred place is then assigned to be the top-ranked place unless the user intervenes.

If the confidence of the top-ranked place is less than a certain threshold t, a request for

feedback is sent to the user and – regardless of notification – they are presented with

the ranked list P̂ for feedback.

If the inference is confident however, the user is not notified (though they can inter-

vene without notification if they wish), and the system updates the top-ranked place’s

codebook vectors autonomously (see the following section).

Active Learning

User feedback is one of two possible actions:

• Creation: where the user creates a new place from a meaningful label and the

current location observation x̄.
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Figure 4.11: Before and after updating a place’s codebook vectors: the nearest codebook vector
to the location observation vector is pulled towards the observation.

• Selection: where the user informs the system of the correct place from the ranked

set of places P̂ . This can be a confirmation of a correct inference (if the inference

is not confident.)

A user can create a new place using a label of their choice. On doing so, a new set

of codebook vectors are generated and the place is added to the set of places P . The

generation process uses the location observation as a seed codebook vector and creates

the remaining set of codebook vectors in a circular array around the centre with radius

r.

Algorithm 7 is executed upon the user feedback action.

The learning process uses a modified, online version of the k-means algorithm [64]

which updates places using their codebook vectors C and the location observation x̄.

cn := cn +
1

Nn
(x̄− cn) (4.8)

Here, cn is the Euclidean distance nearest-neighbour codebook vector to x̄, and Nn is

the observation count for codebook vector cn, i.e. the number of previous observations

associated with cn. The codebook vectors are therefore – upon observation – ‘pulled’

towards the location observations as in Figure 4.11. The observation count Nn enables

convergence, so that the codebook vectors C for each place form a self-organising map.
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The process can also be reversed if the user corrects a previously confident place in-

ference (line 4, Algorithm 7). This is done by subtracting – or ‘pushing along’ – the

difference vector in Equation 4.8 rather than adding it.

Study Design

Here we describe our user study where we analyse system performance using real-

world data and simulated user responses to notifications. Our aim was to capture

the expected output of the place inference and learning algorithms given typical user

feedback behaviour. Unfortunately, this is practically infeasible to undertake in a field

study: we can model users’ place visits as a series – or chain – of transitions which, even

with a simple binary feedback variable at each place in the chain, results in 2n possible

chain outcomes (where n is the number of place visits in the chain). We can, however,

simulate expected outcomes by sampling from a feedback probability distribution at

each step in the chain.

Data Collection

To collect the real-world data, we recruited 6 participants (all male, mean age 32), 3 of

whom are office workers (IDs 2, 3 and 5) and the rest university students. Although 6

participants is a small sample, we were somewhat constrained by the resources involved

in capturing reasonably long-term fine-grained observations of participants’ place se-

quences in real time. This is a slighty larger sample size than those used in previous

studies that undertake similar fine-grained observation, e.g. [90, 117]. Moreover, as

the onus of this study is on simulated outcomes, we can artificially generate a larger

dataset from the seed observations of 6 participants. In a pre-study interview, we asked

them to describe their typical working week (5 days) as a series of transitions between

self-defined meaningful personal places – along with typical activities within each place

– partitioned between the start and end of each day. As before, we used the Dourish

and Harrison example of ‘place’ vs ‘space’ [86], and examples from Barkhuus et al. [17]

to explain the difference between place and location to the participants. Following this,

we equipped them with an Android 2.3 Nexus S device running the place transition

detection system in [144]. At each transition into a place, the device attempted to

capture 10 location samples with accuracy measures from its available location sensors:

either GPS or Android’s network-based provider depending on which was available.

Samples with an accuracy of > 100m were rejected – which is a standard rejection

threshold used in similar studies, e.g. [115, 117], and a sampling timeout period was

set to 60s.

Each participant was then instructed to undergo a scripted tour of their places in their

self-described order of transition whilst carrying the device ‘naturally’ throughout, i.e.
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Figure 4.12: The number of unique meaningful places and total visits, i.e. place sequence
length, over the participants

as they would carry their own device within and between each place. A researcher

shadowed each participant and recorded what actually happened whilst the partici-

pant transitioned between places and performed their activities within each place. As

recording a week’s worth of observations in this manner is very time consuming, the

participants were asked – if possible – to shorten the duration of time spent within each

place to no less than 5 minutes. The transitions between places were not shortened.

Within each place, the researcher asked each participant to rate how likely – ‘high’ or

‘low’ – they would respond to an audio, visual or haptic notification from their device

given their current context. A more detailed account of the instructions given to the

participants in this study can be found in Appendix B.

Simulation Design

Once the device location traces, participant observations and notification response rat-

ings were captured, we designed a simulation to measure expected system performance

given the large number of possible feedback outcomes for each participant’s place tran-

sition chain. A single run of the simulation steps through each participant’s place

transition chain and – at each recorded transition – executes Algorithm 6. If a no-

tification is raised, the decision as to whether the user responds is sampled from a

Bernoulli distribution with parameter pr set by the participant’s recorded ‘high’ or

‘low’ notification response rating. If true, the simulation executes Algorithm 7.

As we are comparing 3 classification methods – the HMM, Bayesian classifier (BC)

and nearest-neighbour (NN) classifier – we have 3 design choices for the place inference

subsystem. Thus, each design is tested once on each transition chain in the simulation.
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Performance Measure

We measure performance using the standard precision, recall and the F1 scores which

are calculated using the following metrics:

• A true positive occurs when the inferred place at each step in the chain matches

observation at the time of inference.

• A false positive occurs when the inferred place does not match observation at

the time of classification.

• A false negative occurs when the system fails to infer a place as indicated by

observation.

User context is important when considering user feedback behaviour: the user may not

respond to requests for feedback, e.g. they do not notice them, or choose not to respond

to them; or – if they do respond – they may do so at any time within their current

place. Thus, we measure the performance both before and after simulated feedback

responses (if any) within each place. This has real-world implications: if inferences

differ pre and post user feedback, services and applications that rely on real time place

inference may be affected.

• Pre-feedback performance measures the F1 classification performance before

the user intervenes – if at all – within each place.

• Post-feedback performance measures the F1 classification performance after

the user intervenes – if at all – within each place.

We measure user feedback by the number of place creations and selections as frac-

tions of the total number of classifications. Moreover, we measure the level of system

automation as the complement of the total feedback fraction.

4.5.2 Results

Class. Method Precision (pre) Precision (post) Automation Sum

BC 0.70400 0.80738 0.78224 2.29362
HMM 0.70398 0.80737 0.78225 2.29359
NN 0.56944 0.77273 0.77212 2.11430

Table 4.1: Ranked table of designs, sorted by the sum of pre-feedback precision, post-feedback
precision and automation.
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Figure 4.13: Pre and post feedback F1 performance – in addition to user feedback actions as
a percentage of total classifications – for each participant over the 5-day scripted tour for the
BC design.
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For these results, the Bernoulli distribution parameter pr was set to 0.25 for each

participant’s ‘low’ response rating and 0.75 for each ‘high’ response rating. These were

chosen as they are the quantiles that equally bias the postive (< 0.5) and negative

(≥ 0.5) sides of the Bernoulli distribution. This choice may affect the simulation

output, so further work could include analysising the validity of thie parameters. 1000

simulations were run for each of the 6 participants’ datasets and the expected F1

performance is aggregated within each participant over these simulation runs. Each

run is seeded by the initial place in the participant’s transition chain. We used 10

codebook vectors per place with radius r of 10m (using the assumption that places

can ‘grow’, such that we can better catpture smaller places), a classification confidence

threshold t of 0.05 – which is the p-value of statistical significance for the Hotelling’s

T 2 test – and a pseudo-count vector α of 1 over all places to avoid division by zero

in the probablistic classifiers. Again, an agenda for future work could explore how

significantly the variation of these parameters affects performance, if at all.

Figure 4.12 shows the number of unique places chosen by each participant along with

the number of transitions in their chain, i.e. the total number of place visits over the 5-

day scripted tour. Most places were indoors, and common labels used included “desk”,

“canteen”, “bus stop” and “café”.

Location sample accuracy statistics – mean (and sd) in m for each participant in order

– are: 23 (6); 21 (3); 21 (5); 24 (7); 21 (5) and 27 (11).

Inference Performance Results

A two-way paired Student’s t-test between each classification design pair over the

performance metrics shows that: there is no significant effect on pre-feedback true

positives (t5 = 0.063, p = 0.95), pre-feedback false positives (t5 = −0.063, p = 0.95),

post-feedback true positives (t5 = 0.063, p = 0.95) or post-feedback false positives

(t5 = −0.063, p = 0.95) when comparing the Bayesian classifier (BC) to the HMM.

There are significantly more pre-feedback true positives and significantly fewer pre-

feedback false positives when comparing the BC and the HMM with NN (t5 = 3.934; p <

0.05 and t5 = −3.934, p < 0.05 respectively for BC; t5 = 3.933, p < 0.05 and t5 =

3.933, p < 0.05 respectively for HMM). The same comparison for post-feedback true

positives and false positives reveals no significant effects (t5 = 2.463, p = 0.06 and t5 =

−2.463, p = 0.06 respectively for BC; t5 = 2.462, p < 0.06 and t5 = −2.462, p = 0.06

respectively for HMM).

Table 4.1 ranks the designs based upon the sum of pre-feedback precision, post-feedback

precision and automation. (Recall was invariant across the designs.)
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Figure 4.14: Summary statistics for the best design in Table 4.1 (BC) over the participants
for the 5-day scripted tour. Automation measures the fraction of classifications made without
user feedback. (.95 CIs shown.)

Further Results

Figure 4.13 shows the pre-feedback and post-feedback F1 scores for each participant

over the 5-day scripted tour using the BC (the top ranked method in Table 4.1); along

with the measures of user feedback. Figure 4.14 shows the aggregate performance over

the 5 days, in addition to the automation measure, i.e. the fraction of automated

classifications (made without user feedback).

The overall mean scores across the participants are 0.81 (pre-feedback F1 score), 0.88

(post-feedback F1 score) and 0.78 (automation %). User feedback shows a significant

improvement in F1 score for each participant (p < 0.01 in each case, non-parametric

bootstrap; 10000 replicates; N = 1000).

4.5.3 Discussion

Here we discuss how our results from the study address RQ 4.1, as well as further

observations and limitations of our approach.

139



RQ 4.1: To what extent can we infer and actively learn about users’ mean-

ingful places using mobile devices?

The results suggest that good place inference performance can be achieved using active

learning with a small amount of user feedback using our approach. This is shown

specifically by the high inference performance and automation measures across the

participants in Figure 4.14. Moreover, as Figure 4.13 shows, performance remains

reasonably consistent as more places are created and visited by the participants over

their working week. Not only are the places inferred well, but the user feedback aspect

means that labels can be captured from the user in situ; which integrates place meaning

into the learning process.

Which Inference Approach is Best?

As the findings suggest, performance differences between the BC and the HMM infer-

ence approaches are negligible, but both appear to be a better choice than NN. The

significant improvement by the HMM and BC over NN is likely due to the proba-

bilistic approaches (BC and HMM) utilising the weighted covariance of each place’s

the codebook vectors in the inference process. NN simply uses the weighted mean

of each place’s codebook vectors to calculate Euclidean distance, which suggests the

weighted covariance component of the learning process is an important contributor to

performance.

The key difference between the BC and the HMM lies in the direct temporal dependency

between places in the HMM. With the dataset being reasonably small in both sample

size and duration, the benefit of the HMM – if any – is not significantly realised due

to the large amount of data required for realistic modelling of transition probabilities.

Based on our findings and the desire for parsimony, i.e. the negligible performance

difference between the BC and the HMM, the BC appears to be a better design choice

for place inference. At each timestep k, and for Mk places at k, the HMM requires

the update and storage of the RMk×Mk matrix V compared to the BC’s update and

storage of the RMk vector v.

The findings would suggest the BC to be the better choice, but more data over a

longer period of time is required to fully answer this question, i.e. whether or not the

HMM can significantly improve performance through the incorporation of temporal

dependency between places.
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Further Observations

For the BC design, the ‘dip’ on day 3 for participant 6 is caused by a place generation

from a noisy initial location observation, exacerbated by repeated visits with good

quality location data and subsequent incorrect inferences. This raises an important

data quality and user interface issue: user interfaces for feedback should provide a

function to ‘reset’ or ‘recalibrate’ places if seeded from inaccurate location data.

Later in the week, the pre-feedback performance begins to converge on the post-

feedback performance (Figure 4.13). This is due to fewer place creations by users

coupled with increased automated classification performance from place learning.

Even though the majority of the participants’ places are indoors, the location sensing

capabilities of the Android devices are surprisingly good; as shown by the location

accuracy summary statistics, even with a rejection threshold of 100m. (Raw accuracy

data from the field deployment in Chapter 5 can be found in Section C.4 of Appendix

C.) The chief cause of false negatives, however, was location sample accuracy exceeding

this threshold – the system is designed to make no classification rather than one with

noisy data.

The key causes of false positives were false transition detection from the motion trig-

gering system and incorrect classifications made by the classifier.

Overall, we have shown that capturing, recognising and learning meaningful personal

places in real time on mobile devices is feasible with well-timed user prompts and a

small amount of user feedback. Moreover, we have shown that the user can train the

device to recognise places from repeated location observations over time using a form

of active learning. This is a step beyond automated place recognition approaches, as it

allows for content to be captured in addition to place ‘malleability’ and evolution over

time as more location samples are observed.

The Limitations of Simulation

Although these early findings are both interesting and promising, there are some lim-

itations to them. First – although simulation allows us to analyse many user feed-

back outcomes from a single dataset – it does not provide the implementation and

behavioural insights that a long-term field study can offer. Second – although highly

precise and fine-grained – the observed datasets are reasonably short and obtained from

a small number of participants. Therefore further study is needed to fully investigate

the long-term performance and behaviour of the system.

Another key issue is that of modelling user response to notifications. For these simu-
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lations, we have assumed that the user is a ‘perfect oracle’, i.e. they give the correct

answer when responding to notifications. Users are of course prone to error [198], e.g.

spelling errors, and this could have an impact on performance. Moreover, we did not

model user feedback without notification, i.e. users providing feedback of their own

accord without notification from the system. Furthermore, we have not specified what

type of interface the user would be using to intervene with the system – merely that

they create and select places; therefore the type of interface used in deployment is also

an important aspect for design and implementation.

There is also the issue of complexity: modelling user feedback behaviour using a

Bernoulli variable is simplifying what is, in reality, a complex process. Whether a

user provides feedback or not can depend on many factors, including external stimuli

in the user’s environment and – of course – upon the user’s context. Modelling the

feedback process using this ‘black box’ method does at least allow us to observe system

behaviour in response to varying feedback inputs, but it also hides latent variables that

may otherwise be non-trivial to both observe and model.

Finally, there is the issue of arbitrariness. During our simulation analysis, we used a

Bernoulli distribution with parameter pr to sample from for our feedback variable, and

we used a ‘high’ and ‘low’ measure by asking the participants to rate how likely they

would respond to an feedback prompt. Of course the participants can give an estimate

of this, but their response may not consider other complexities and stimuli that may

otherwise be a factor for their true response behaviour.

4.5.4 High-level Implications and Limitations

RQ 4.1 asks the extent to which we can infer and actively learn about people’s places

through their mobile devices. The high-level RQ 4 asks this but for context in general.

Our findings from this study show that active learning is a viable and useful approach

to infer the ‘Where’ and, to some extent, the ‘Why’ facets of context. By capturing user

feedback in situ through active learning prompts, we can not only improve inference

accuracy but also capture richer feedback from users. In our case, it was place names,

but this could extend to other forms of context including meaning or feeling. Similar

to Experience Sampling [50], the potential to capture rich data at the relevant time is

improved, but perhaps the most important implication is the ability to ‘offload’ much of

the work onto the intelligence. Given enough active learning, the process of experience

sampling could be – for the majority of the time – automated, with little burden to

the user.

How might we infer and actively learn about other context facets? Others, particularly

the ‘What’, are likely to be trickier. Users who interact with their device to provide
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feedback on their activity are, through the act of providing feedback, altering their

activity. This could be alleviated somewhat by introducing latency between inference

and the prompts for feedback, but this itself is a further inference and prediction prob-

lem. This example serves to illustrate the potential difficulties of inference and active

learning of other facets, but further study would be beneficial to further answering

RQ 4.

What our findings have further shown, however, is the potential for capturing richer

data such as emotion and intent. In Chapter 3 we discussed the difficulty of sensing

such context data due to its inherently complex nature. The best ‘sensor’ of this data

is the user themselves, and through active learning we can begin to transfer this data

from the user to the intelligence in a way that modern sensing cannot achieve.

The main limitations of this work are, again, generalisation. As we have just discussed,

there are other facets for which it would be interesting to study the potential for active

learning, and whether we would see similar inference performance improvements with

them. Furthermore, other inference approaches and active learning strategies could be

compared in order to build a fuller picture for RQ 4.

4.5.5 Towards Deployment in the Field

Following our discussion on the limitations of simulation, it would be prudent to deploy

the place awareness system in the field in order to observe inference performance and

users’ feedback behaviour when in their natural environments. Simulation has allowed

us to systematically analyse different inference approaches, but it cannot capture the

complexity of the field environment. A field study – although limited in the amount

of control and in-depth analysis that we can perform – will allow us to observe the

feedback behaviour and system outputs in a more realistic setting.

4.6 General Discussion

In this section, we reflect on how the work in this chapter has addressed the higher

level research questions for the intelligence component of interactive intelligence. We

also discuss further generalisations of the work.
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4.6.1 RQ 3: To what extent can we infer significant changes in context

using mobile devices?

By considering the dynamics of context as a FSM that transitions between states

of context over time, we identified the transitions as the points of significant change.

Through the use case of place awareness, we have shown how transitions between users’

meaningful places can be inferred using mobile device motion and how performance

varies with the parameters of this approach. Although we have only shown this for

place transitions, motion can also be used to infer significant context changes in other

cases, e.g. activity transitions [92, 214]. Possible avenues for further work relating to

the inference of context change include: extracting features from other context sensors,

e.g. the microphone or the camera, and evaluating how effectively they can be used to

infer context changes.

4.6.2 RQ 4: To what extent can we infer and actively learn about

context using mobile devices?

For this question, we developed the general context inference and active learning algo-

rithms shown in Algorithm 4 and Algorithm 5. Algorithm 4 is designed to be triggered

at the moment of context change (linking back to RQ 3) and Algorithm 5 when the

user provides feedback to the system. The idea is that the algorithms will perform

context inference and learning in real time; learning as it goes along any only querying

the user for feedback when necessary.

We applied the algorithms to the place awareness use case, using the place transition

inference approach developed to address RQ 3. Results from a user study and sim-

ulation showed that good place inference performance can be achieved with expected

user feedback behaviour. Furthermore, we showed how performance can vary according

to the inference method chosen; with probabilistic inference methods (HMM and BC)

outperforming distance-based methods (NN).

Although using simulation limits the impact of our findings, they do suggest that the

algorithms are viable and that we can infer and actively learn users’ context through

their mobile devices. Along with questions surrounding how we might elicit user feed-

back in response to active learning queries, there is a clear need for study in the field

to further validate the findings of the work in this chapter.

Other paths for future work include: the application of Algorithms 4 and 5 to other

context awareness cases, e.g. activity, user identity or emotion inference and learning;

evaluating the energy-accuracy trade-offs of the context transition triggered algorithm

vs, e.g. periodic or random triggers; and extending the single user model to multiple
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users, e.g. inferring and learning meaningful places for groups of people.

4.6.3 Generalisations

Our approach and findings from this chapter could be generalised to other use cases

beyond place awareness. For example, context transitions could be used for raising

notifications and user prompts in User Experience studies, e.g. as part of an Experience

Sampling Method (ESM) [51]. By providing users with prompts at the critical time of

context state change, responses could be more useful than if the users were prompted

periodically or at random – a conjecture supported by the activity transition work of Ho

and Intille [92]. Context transitions could also bootstrap other useful processes, such as:

data synchronisation on mobile devices (email or file synchronisation); message delivery

notifications; and location based updates that are useful to, for example, on-device map

applications.

Our context inference and active learning approach could be generalised to other con-

text awareness use cases, e.g. activity recognition. Active learning, and our imple-

mentation using SOMs in the place awareness use case, is not restricted to R2 location

space. It can support multiple feature spaces in which unsupervised clustering tech-

niques can be applied, e.g. activity clustering based on device motion and orientation

features.

4.6.4 Implications and Limitations for Context

The primary context facets addressed by the work in this chapter are ‘Where’, ‘When’

and ‘Why’. The key implication for a theoretical understanding of context relates

to ‘Why’: the idea of transferring more complex knowledge from the user to the in-

telligence through active learning. Rather than attempting to ‘sense’ this knowledge

directly, this gradual transfer is a new and potentially novel way of capturing other

context such as human intent. At the cost of some user burden, mobile devices could

be used as a mediator to elicit what technology currently cannot, and further study

would be valuable in uncovering the extent to which this is possible.

We have also argued for the Harrison and Dourish interpretation of ‘place’ and ‘space’

being two different concepts [86]. By allowing users to supply place meaning through

short labels, we can not only capture location, i.e. latitude-longitude or address, but

also some meaning that, again, cannot otherwise be sensed directly. Our findings show

that the somewhat abstract definition of place can be captured and updated through

active learning, which can enable further personalisation of applications, mobile or

otherwise.
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We have further highlighted the importance of ‘When’ which, although is acknowledged

as an important aspect of context [57], is rarely studied and utilised. Our work has

shown that it is valuable, and capturing the moments of context change has value

beyond simply triggering further inference and learning processes, e.g. notification

delivery and resource management.

The main limitations of our work for context understanding lie in the choice of facets.

We have not considered the ‘Who’ or ‘What’ (beyond movement in the transition study)

facets, and therein lie avenues for further work. Applying active learning techniques

to social network inference could be interesting, especially if using mobile devices to

mediate the active learning. Perhaps allowing users to give feedback about who they

are co-present with could enhance context inference and learning. There is also the

possibility of sharing actively learned context models, e.g. a user who has trained an

activity model through active learning could share it with friends, thereby removing

much of the training burden associated with active learning.

In summary, our findings have furthered the understanding of the ‘Where’, ‘When’ and

‘Why’ facets of context, but further work studying the ‘Who’ and ‘What’ facets would

allow for better understanding and application of context.

4.7 Conclusion and Chapter Summary

In this chapter, we have addressed RQ 3 and RQ 4 in the intelligence layer of our

layer model. By modelling context as a FSM, we used the transitions between context

states as event-based triggers for executing context inference and learning algorithms.

We also designed two algorithms for context inference and active learning, in which

the algorithm chooses the data it learns from based on a confidence (or uncertainty)

measure. Bootstrapped by inferred context transitions, the algorithm can infer and

learn about users’ context in real time.

We presented the use case of place awareness – a suitable case for study due to its

relevance and opportunity for extension to existing work in the field. We directly

addressed RQ 3 by showing that significant place transitions can be inferred through

mobile device motion, and that varying the parameters of this approach has significant

effects on performance. We then applied our inference and active learning algorithms

to the place awareness case and showed that our approach is both viable and successful

for place inference and learning.

In the next chapter, we will move up from the intelligence layer to focus on the interac-

tion layer of our layer model. We will address the interaction component of interactive

intelligence in mobile context aware systems; specifically how we might encourage and
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elicit user feedback in mobile IIS through a mobile user interface. We will use our

findings from this chapter to design, implement and deploy the place awareness sys-

tem in the field; where we will observe user behaviour and inference performance, as

well as the efficacy of different feedback request approaches. We will also compare the

simulation results from this chapter with results from the field.
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Chapter 5

Interactive Intelligence: The

Interaction

In the previous chapter, we addressed the intelligence aspect of interactive intelligence

in mobile context aware systems, i.e. the AI aspect and how we might incorporate user

feedback into the context inference and learning process. We presented an approach

for real time context inference and active learning with user feedback, and used the

concrete use case of place awareness to address RQ 3 and RQ 4. We presented two

user studies, one of which simulated user feedback behaviour for the active learning

component of our approach. Although the simulation study was performed using highly

reliable observation data, it was still a simulation and perhaps not as informative as a

more ecologically valid field study.

In this chapter we consider the interaction component of interactive intelligence in

mobile context aware systems, i.e. the human aspect and how we might elicit and

encourage user feedback for active context learning. We primarily address RQ 5 and

RQ 6 – though we further address RQ 4 – by moving up to the user interaction layer

in our layer model (highlighted in Figure 5.1).

To remind the reader, RQ 5 and RQ 6 are the following mid-level research questions

derived in Chapter 2:

• RQ 5: How can we elicit context feedback from users in a mobile environment?

• RQ 6: How do users interact with an interactive intelligent mobile context aware

system?

In Chapter 4, we used active learning as an approach for improving context inference

through in situ user feedback. Eliciting such feedback from users in the field is itself
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Figure 5.1: Our layer model, highlighting the components that this chapter will be focusing
on.

a challenge due to unpredictable external stimuli and the diverse range of possible

context states that users may experience in their daily lives. Therefore, to improve the

validity of the work in this dissertation, we should consider how users might respond

to feedback queries from the system, and how the feedback – if given – affects context

inference in the field. This may reduce the reliability of our measurements, i.e. we

cannot observe reality to such a high degree of precision as before, but we do gain

knowledge of natural user interaction behaviour and the user experience from using an

intelligent interactive mobile context aware system.

The main content of this chapter is the field deployment of an interactive intelligent

mobile context aware system; namely the place awareness system developed in the pre-

vious chapter. The study is controlled such that we can compare different approaches

to user feedback elicitation, and a post hoc performance test allows us to evaluate in-

ference performance. We also present user feedback from the experience of using the

interactive intelligent system.

We first outline the feedback and interaction requirements for the system. Following

this, we report on the field deployment of our case study – the mobile place aware-

ness system – in which we outline: the low-level research questions for the field study;

directly relevant related work; the system design, particularly the design of the user
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interfaces for enabling user feedback; the design of a demonstrator presence and avail-

ability application; and the field study approach. Following this, we report the key

results and findings from the field study – including place inference performance re-

sults from post hoc scripted tours – and discuss how the findings help to answer the

low-level research questions.

The final part of this chapter reflects upon the high level implications and limitations

of our work – specifically the implications for interactive intelligence in mobile context

aware systems – and how they contribute to answering RQ 5 and RQ 6. We then

review a set of potential application areas for the work developed in both this and

the preceding chapter. Although the majority of our work is focused on enabling

technologies for mobile context aware applications, it is important to address potential

application areas.

5.1 Feedback and Interaction Requirements

As Stumpf et al. state, the incorporation of user feedback into machine learning systems

is still an emerging practice [219, 220]. As such there are no standard requirements for

user feedback and interaction in such systems.

Given this lack of standardisation, and in order to provide a basis for system design

that relates directly to user needs, we develop and specify a set of abstract require-

ments for interactive intelligence in mobile context aware systems. These consist of two

components: (i) feedback requirements, which are concerned with the incorporation of

user feedback into the underlying context inference processes; and (ii) interaction re-

quirements, which are concerned with displaying context inferences to the user and

enabling user feedback.

5.1.1 Feedback Requirements

We begin by specifying a set of abstract requirements for user feedback in interactive

intelligent context aware systems. In the previous chapter, we simulated user feedback

from the device’s perspective using two actions: creation, where the user can create

a new context state from a data observation; and selection, where the user can select

the correct context state from a list of existing states. Although these actions were

suitable for our simulation of user input, a field implementation will need specific and

carefully defined feedback requirements from the user’s perspective.

In deriving these requirements, we make use of Stumpf et al.’s series of experiments

[218, 219, 220] that investigate user interaction with machine learning systems. As we
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mentioned above, there are no standard requirements for incorporating user feedback

into machine learning systems, but Stumpf et al.’s work is perhaps the most detailed to

date. The authors note that telling an intelligent system whether it is right or wrong

is a fundamental function for interactive intelligence. They further argue that richer

interaction should be encouraged, and we therefore extend the basic functionality.

Table 5.1 summarises our high level user feedback requirements and relates them to

user needs; they are further developed in the following list of verb actions:

• Create: As we discussed in Chapter 3, context data can be sensed from a range

of sources, e.g. people, devices and environments. However, following our FSM

model of context dynamics in Chapter 41, the users themselves should also be

able to tell the system about new context states (which the system has not yet

seen). Indeed, user-entered data could contain richer context meaning, at the cost

of elicitation, than many automated context inference processes could potentially

output. The key user needs here are knowledge transfer – communicating hu-

man knowledge to the system – control and personalisation. The create action

is one of the most widely used in Stumpf et al.’s interactive email classification

studies [220] (though it is termed ‘Add’).

Of course allowing users to create their own names for states may have its own

difficulties. For example, the user may not be able to think of a good name and

may use a more generic, less meaningful one for want of brevity. Thus, for user

feedback in mobile context aware systems, we should allow the user to enter data

about their context state at any given time. This is the requirement for creation:

a mobile context aware system must allow the user to create (using a human-

readable label) meaningful context states at any given time. That is, when we

design for user feedback, we must design user interfaces to allow context creation.

• Confirm: The act of confirming the output of a context inference process forms

part of the selection action that we used during active learning in Chapter 4. We

distinguish between confirmation and correction functions, as they have different

implications: confirmation implies that the inferred context state is correct and

requires only external verification from the ‘oracle’, i.e. the user, whereas cor-

rection implies that the inferred context is incorrect and requires the additional

input containing correct context data. The user needs that this requirement ad-

dresses are, again, knowledge transfer and the long term reduction in user

burden. As Acid et al. [3] and Stumpf et al. [220] show, users are willing to pro-

vide feedback if they think it will help improve system performance and reduce

burden in the long term. Thus, when necessary, a mobile context aware system

1Section 4.2.2, page 105
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ID Action Description User Needs

II.1 Create The system must allow the
user to create and label mean-
ingful context states.

Knowledge transfer, control
and personalisation [220]

II.2 Confirm The system must allow the
user to provide confirmation
of correctly inferred context
states.

Knowledge transfer and long
term reduction in user burden
[3, 220]

II.3 Correct The system must allow the
user to correct incorrectly in-
ferred context states.

Knowledge transfer, long term
reduction in user burden and
improvement of user experi-
ence [3, 139, 220]

II.4 Delete The system must allow users
to delete context states.

Privacy and control [140]

II.5 Reset The system must allow users
to reset learned context
states.

Long term reduction in user
burden and improvement of
user experience [3, 139, 220]

II.6 Relabel The system must allow users
to change context state labels.

Privacy and control [140]

II.I Input The system must allow the
user to perform the feedback
functions using one or more
input modes

Interaction

II.O Output The system must communi-
cate inferred context to the
user using one or more forms
of output media

Interaction

II.C Certainty The system must communi-
cate a measure of confidence
in its inferred context to the
user.

Intelligibility and control [9,
10, 139]

II.S Simplicity The system must satisfy the
feedback requirements effi-
ciently, i.e. with as few inter-
actions as possible.

Usability and trust [113]

Table 5.1: Table summarising the abstract requirements for interactive intelligence in a mobile
context aware system.
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must allow the user to provide confirmation of correctly inferred context states.

• Correct: The requirement for correction extends that of confirmation. Not only

should a mobile context aware system allow the user to provide confirmation

of correctly inferred context states, it should also allow them to indicate when

inferences are incorrect. Furthermore, it should allow users to supply context

data that they (the user) consider to be correct. It is important to note that

correction implies that the system has observed the correct context state in the

past, or should – for whatever reason – be able to infer a previously unseen state.

Previously unseen states that are non-trivial to infer require creation. The key

user needs here are knowledge transfer, as the user is communicating their

knowledge to the system through the act of correction, long term reduction

in user burden, as the system learns from user feedback and reduces the need

for user intervention [219] and improvement of the user experience, where

the user benefits from a more intelligible system [140].

• Delete: There may be occasion in which users do not want their context data

to be stored or used in future inference processes. This may be, for example,

due to privacy or functionality issues, and we should – wherever possible – allow

users to have control over their data. The delete action is also one of the most

widely used by Stumpf et al.’s participants [220]. There is also a need for user

privacy and control, particularly in relation to intelligibility, as Lim and Dey

point out [140]. Of course, the user deleting a state may have an effect on the

system: if there are dependencies that rely on that state, they must be addressed

in post-deletion updates. Moreover, the question of whether historical records

should be erased is important, particularly for privacy reasons, which may have

caused to user to delete the state in the first place. Thus, a mobile context aware

system must allow users to delete context data, particularly in accordance with

any data protection legislation.

• Reset: When we integrate learning into the context inference processes as we

did in Chapter 4, there comes the risk of error propagation, i.e. an unchecked

incorrect inference is used in the learning process which, in turn, affects future

inference processes. Although it is prudent to design inference processes to avoid

this, we must accept the risk that errors are likely to happen, and we should

therefore design a function that allows users to ‘reset’ corrupted context states.

This differs from deletion as the key context data, e.g. the original context label,

is not removed entirely. As with the correct action, the user needs are long

term reduction in user burden and general improvement of the user

experience. The need for ‘unlearning’ is directly raised by Stumpf et al. in

their interactive email classification studies [220].
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• Relabel: The meanings, or abstract ‘labels’ of users’ context states may change

over time, e.g. a location that is used for meetings may sometimes be used

for socialising. We must therefore cater for this variability and allow users to

relabel context states at any given time. As with deletion, the user needs here

are privacy and control [140].

5.1.2 Interaction Requirements

Here we define a set of interaction requirements which allow us to enable user feed-

back in mobile context aware systems. Beyond the primary input/output interaction

functions, we consider the system’s communication of certainty to the user – which

makes particular use of Lim and Dey’s work [139, 140, 141, 142, 143] on intelligibility

in context aware systems – and simplicity, i.e. minimising the user burden associated

with interaction.

• Input: To enable user feedback, we must design a set of interfaces that allow

users to perform the feedback functions using one or more input modes, e.g. using

a keyboard, touch screen or audio input. We should carefully consider which

input modes support which feedback functions, whilst keeping the requirement

for simplicity (see below) in mind. The user need here is for general interaction,

specifically the ability to perform the aforementioned feedback actions.

• Output: To allow the system to communicate its inferred context states to

users, we must allow communication over one or more output media channels,

e.g. audio, visual or tactile feedback channels. We should consider how and when

requests for feedback should be made to users. Again, the user need is for general

interaction, specifically the ability to perceive the system’s demand for feedback

actions.

• Certainty: Intelligibility is the process of providing the user with explanations

as to what an automated system is doing [143, 159]. Intelligibility requirements

are important as failure to satisfy them can lead to trust issues between the user

and the automated system. Lim et al. [141] have adapted a set of intelligibility

facets in interface design from Dourish et al. [63] and presented a recommended

set of design considerations. These considerations form the basis of our user

needs: intelligibility and control. From these, we consider the communication

of certainty in the system’s inference process, i.e. informing the user of how

confident the system is in its inferred context. Displaying inference certainty

to the user is a tacit method for eliciting feedback in context aware systems

[9, 10, 139].
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• Simplicity: The requirement for simplicity in user interface design has been

championed as a positive attribute [113], particularly in relation to usability

and trust in user-centric systems [225]. In our case, we specify the simplicity

requirement to ‘counterbalance’ the idea of intelligibility, i.e. we do not wish

to overload the user with unnecessary detail on how the system is working or

why it is doing what it is doing. The onus should be on fulfilling the feedback

requirements with minimal burden to the user, and simplicity plays an important

role in this aim.

In the next section, we return to our concrete use case of place awareness, where we

use the requirements from this section to design and implement the components of

our interaction layer, namely: the user interfaces for enabling feedback and displaying

inferred context; and the output media used to request feedback from users.

5.2 Study: An Interactive Intelligent Place Awareness

System

In this section, we outline the development of our mobile place awareness system for

deployment in the field. We first state the low level research questions for study and

review work that is directly relevant to ours. We then describe the concrete design of the

mobile place awareness system, as well as the practical issues involved in development

for the Android mobile operating system.

We then describe the approach to our field study, which consists of a 2 week deployment

with 10 participants, followed by a post hoc place inference performance test. We

present the key results and findings before analysing how we have addressed our research

questions in light the findings. Finally, we summarise a list of recommendations for

designing mobile context aware systems with interactive intelligence, before providing

suggestions future work.

5.2.1 Research Questions

Here we develop the low-level research questions for the field study. The findings

obtained from analysing a field deployment will help to answer these questions and the

mid-level questions of the chapter.

155



RQ 4.1: To what extent can we infer and actively learn about users’ mean-

ingful places using mobile devices?

For a place awareness system to be useful, it should capture as many of the user’s

meaningful places as possible. Moreover, it should learn about these places each time

the user revisits them. There are two key problems surrounding this goal, however: (i)

how do we capture meaningful places in the first place? Some places may be important

to the user, whereas others – although arguably places – may be unimportant; and (ii)

how do we learn about places on revisit? If we wish to use a place awareness system

in real time, the system should learn using new location observations as close to when

they are observed as possible.

These problems are mainly tackled by the inference and learning work in the previous

chapter, and this is the same research question as addressed there. How many mean-

ingful places are captured by the typical user? What characterises the places? Can we

visualise what the system is doing when it learns about places? To answer the research

question, we need to both analyse and visualise users’ place data.

The key question surrounding place awareness is recognition performance: how well

does the system infer places when observing new location data? To measure such

performance, we need a set of test data and labels for the test data. As we saw in

previous chapters, however, observations are usually difficult to capture reliably in

field studies (cf. [22, 51, 52]). Thus, to get an indication of classification performance

in the field, we need to design a test procedure that reliably captures both observation

data and representative test data, i.e. test data that would typically be observed in the

field. By using standard classifier performance metrics, e.g. precision, recall, F1 score

and accuracy, we can analyse classification performance systematically.

RQ 5.1: How do different user feedback requests affect feedback response

rate and time in a mobile environment?

Given the requirements for user feedback, how do we interact with the user in order to

elicit feedback at the right time? The key problem here is that users – particularly in

a mobile environment – are unlikely to intervene in a background inference processes

voluntarily without being requested to, or without incentive. Moreover, even if they

are willing to intervene, they are unlikely to do so at the ideal time, i.e. the moment

the inference is made. In the mobile environment, the probability of users intervening

will almost certainly vary according to their context, e.g. users are less likely to check

their device in a bustling shop than at their (typically quieter) desk. Indeed, user

behaviour also varies such that we cannot reliably predict if or when users will respond
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to a request for feedback in a given context.

Given these problems, can we observe how user feedback behaviour, i.e. users’ responses

to feedback requests from the system, varies according to different request approaches,

e.g. using different output media and timing strategies?

RQ 5.2: How do different audio prompts affect feedback response rate and

time in a mobile environment?

Interrupting users with audio prompts for input is a popular strategy for data elicitation

in ubiquitous computing, but interruptions are annoying and lack of interruptions may

lead to missed events [51, 73]. Given the different feedback request approaches in RQ

5.1, can we also study how users respond to different audio prompts attached to certain

feedback requests?

As others have noted [75, 237], different approaches to audio prompting can have

different effects on user behaviour. How do richer audio prompts such as speech prompts

affect feedback response behaviour when compared with more basic audio prompts?

RQ 5.3: How resource intensive is the interactive intelligent mobile context

aware system?

One of the key practical problems with mobile context aware systems is the use of mobile

resources; particularly power. Employing sophisticated inference techniques and intense

sensing policies can potentially use power to the point of making a device unusable [118].

We must therefore consider the usage of power carefully, and constrain both sensing

and inference processes accordingly. Balancing energy use against performance is an

important trade-off in the development of mobile applications [186], and we should

attempt to maximise performance whilst minimising energy use.

Measuring energy use accurately in mobile systems is difficult without specialist equip-

ment [118], and even more difficult to measure in the field. We can, however, estimate

sensor usage and infer energy use from sensor use durations [117]. Memory use is also

important – and easier to measure – though it is perhaps not as much of an issue as

power.

RQ 6.1: What is the user experience like?

Finally, we must consider the question of user experience. Given that interactive in-

telligence requires engagement of the user, we should attempt to make the feedback
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process as free from burden as possible without compromising on the integrity of the

intended feedback, i.e. it should be difficult for the user to mistakenly enter incorrect

data during feedback. To do this requires careful interface design. We can quantita-

tively measure user feedback through the proportion of actions executed in Table 5.2,

but qualitative feedback from users about the experience should also be considered.

RQ 6.2: How does interactive intelligence simulation compare with field

behaviour?

One of the questions that arose from our simulation of interactive intelligence in Chapter

4 was the validity of its approach, i.e. how well does the simulation model real user

behaviour in the field? It would be interesting to compare the outcome of a field study

against the results obtained from simulation to see how valid the simulation approach

was.

5.2.2 Related Work

As we saw in Chapter 2, interactive intelligent systems (IIS) are relatively recent sub-

jects of research in AI and HCI [105], with applications such as: text and email classi-

fication [219]; database classification [3]; and human-robot interaction [197].

In the mobile domain, recent IISs have been developed in the attempt to predict user

interruptibility. Rosenthal et al. [196] use a decision-theoretic approach that interro-

gates users about their interruptibility over time, which draws on similar desktop work

by Kapoor and Horvitz [112]. One interesting finding from this study is that overall

inference performance can be harmed by asking too few questions, i.e. even though

there is an interruption cost to the interruptibility questions, this cost does not out-

weigh the decrease in classification performance gained by prompting the user for input.

Another finding showed that overconfident classifiers that are incorrect result in a bad

user experience due to the users’ perceived intelligibility, i.e. users react negatively to

IISs that appear confident yet wrong.

Other work in mobile IISs include Fisher and Simmons [70], who use uncertainty sam-

pling techniques to learn a model of interruptibility for mobile device users. Here the

authors show that only a small number of user-supplied labels are required to improve

interruptibility classification accuracy in mobile devices. To the best of our knowl-

edge, nobody has yet developed an IIS for mobile place awareness. Our work therefore

extends the IIS research field by contributing this.

The key literature for mobile place awareness has been covered in Section 4.3.1 in
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Chapter 4 2, but we detail how the work in this chapter directly compares with the

place awareness literature. One of the key points to note is that – unlike the state of

the art fingerprint-based methods where both researchers’ and infrastructure conditions

are enforced, e.g. room-level places within a few seconds’ walk are considered a single

place [117], labels are predetermined [155] and places are fixed by sets of WiFi access

points [116, 115] – we adopt a purely organic approach that allows the users to define

their places without restriction (similar to the approach used in the OIL system [173]).

We feel this is a fairer representation of users’ places, and inference accuracy should

measure how well the inference matches the users’ interpretation of the test data.

Another point of note is that our approach also uses fewer resources than fingerprint-

based methods. The state of the art systems that report their resource usage still

require a non-negligible amount of WiFi, GPS and accelerometer use [115, 117] in

order to function.

5.2.3 System Requirements

ID Action Description

II.1 Create The system must allow the user to create and label meaningful
places.

II.2 Confirm The system must allow the user to provide confirmation of cor-
rectly inferred places.

II.3 Correct The system must allow the user to correct incorrectly inferred
places.

II.4 Delete The system must allow users to delete places.

II.5 Reset The system must allow users to reset learned places.

II.6 Relabel The system must allow users to change the labels of their mean-
ingful places.

II.I Input The system must allow the user to perform the feedback functions
using one or more input modes

II.O Output The system must communicate inferred places to the user using
one or more forms of output media

II.C Certainty The system must communicate a measure of confidence in its in-
ferred places to the user.

II.S Simplicity The system must satisfy the feedback requirements efficiently, i.e.
with as few interactions as possible.

Table 5.2: Table summarising the interactive intelligence requirements for the place awareness
system.

In this section, we specify the user feedback and interaction requirements for the mobile

place awareness system. These requirements will be used to design the user interfaces

2Page 112
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within the next section, and they stem from the abstract requirements outlined in

Section 5.1.3

Feedback Requirements

In Section 5.1, we developed a set of high level requirements for interactive intelligence

in mobile context aware systems. In this section, apply these requirements to mobile

place awareness. Table 5.2 contains the set of concrete feedback requirements which

will form the basis for our system design and subsequent field study.

For place creation, we require a label from the user and a location observation from a

set of location sensors as we did in the simulations of Chapter 4. The ‘create’ action

must therefore allow the creation and labelling of meaningful places. This defines the

requirement for the ‘create’ action.

Confirmation is the act of telling the system that it is correct, i.e. the place inference

that it is not confident about is correct. Correction is the act of telling the system

that it is incorrect, i.e. the place inference – regardless of the system’s confidence – is

incorrect, and supplying it with the correct place. The ‘confirm’ action must therefore

allow the user to confirm low-confidence place inferences and the ‘correct’ action must

allow the user to correct an incorrectly inferred places.

The ‘delete’ action is important as users may wish to delete places for a number of

reasons, e.g. they don’t visit certain places very often, or they don’t want their devices

to be aware of particular places. Thus, the ‘delete’ action must allow users to remove

places from their captured set.

The ‘reset’ action is important in the context of place awareness, as there is a risk

of users mistakenly executing incorrect feedback actions, e.g. confirming an incorrect

place when intending to correct it, or anomalous location observations corrupt the

learned place models. In these cases, we should implement the reset function in such a

way that users can effectively regenerate places, i.e. the ‘reset’ action must allow users

to reset learned places.

Finally, the labels of places are extremely important; they serve as human-readable

indicators of place inferences and – as they are user defined – they should be editable

by the users themselves. Thus, in the context of place awareness, the system must

allow users to change the labels of their meaningful places.

Each of these actions, except for relabelling – affect the automated inference process in

the place inference and learning service, and they form the functional interface between

3Page 150
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Figure 5.2: Our layer model illustrating the high level architecture of the place awareness
system.

the user and the place awareness system.

Interaction Requirements

The remaining requirements listed in Table 5.2 are concerned with enabling the user

feedback actions in our mobile place awareness system through user interaction. They

are effectively the same as their abstract counterparts in Table 5.1.

Table 5.2 contains the full set of interaction requirements that will inform our design

of the mobile place awareness system. The requirements are coded with a unique ID

so that we can refer back to them as rationale in the next section.

5.2.4 System Design

The high-level layer architecture for the place awareness system is shown in Figure 5.2.

This section will describe the design and implementation of each component in the

architecture. For the field deployment, the system is implemented using the Android

mobile device operating system, versions 2.3 and above.
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Context Sensing

As in the previous chapter, the data sources we use are: device motion, sensed through

the on-device accelerometer; and location latitude-longitude coordinates provided by

Android’s location provider service (which fuses GPS, WiFi and cellular data sources).

Following energy saving recommendations in [117], we duty cycle the accelerometer to

50% using a period of 30s.

In addition to the sensing capabilities from the previous chapter, we introduce a new

GPS speed rule for motion detection. As we saw in the previous chapter, the accelerom-

eter motion models that are trained on walking patterns do not work well when users

use other modes of transport, e.g. a car, bus or train. However, by using GPS speed,

we can address this issue as GPS typically operates well in most forms of outdoor trans-

port. We therefore sense the user as ‘moving’ if – when the transition inference system

is not detecting the user as ‘moving’ – the GPS speed is reported to be > 1.5ms−1,

which is the upper confidence interval (CI) of the empirically observed mean walking

speed for humans [54].

Intelligence: Context Inference and Active Learning

At the intelligence layer, we implement both the transition inference and place recogni-

tion inference algorithms (Algorithms 6 and 7) from the previous chapter as on-device

services: the transition inference service and place inference and learning service re-

spectively. These are programmed in Java for Android and are designed to be ‘always-

on’ when possible. As Figure 5.2 shows, the transition inference service depends upon

the accelerometer sensor and the place inference and learning service depends upon the

location provider. The transition inference service outputs to the place inference and

learning service alone, i.e. transitions trigger place inferences.

For place inference we use the Bayesian Classifier (BC) from Chapter 4, and we infer

new, previously unvisited places using the Mahalanobis distance:

D(x̄, c̄p) =

√
(x̄− c̄p)TS−1

c (x̄− c̄p) (5.1)

Where D(x̄, c̄p) is the Mahalanobis distance between the location observation x̄ and

the weighted mean of place p, c̄p. Sc is the weighted covariance of the place’s codebook

vectors (weighted by sample count).

To distinguish between known places and previously unseen places, we use the Ma-

halanobis distance corresponding to the χ2 distribution (1 df) value of 6.64, which

corresponds to the statistically significant p-value of 0.01. Thus, location observations
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Figure 5.3: The mapping between user interfaces and the feedback interface. Also shown are
the connections between user interfaces, i.e. an incoming edge to interface B from interface A
implies that B can be accessed from A.

made outside this threshold for any place are inferred to be from a potentially new

place (which will trigger a ‘new place’ suggestion – see the next section).

For this implementation, the place inference and learning service also has a periodic

update timer which triggers the inference and learning process, i.e. Algorithm 6 from

Chapter 4 every t minutes. This is implemented in case place transitions are missed

by the detection service and recent location data is required for place inference.

User Interfaces

This chapter has introduced the interaction layer of our layer model, outlining how we

might elicit user feedback in the place inference process. One of the most important

design considerations in any user-centric system is the user interface, as it can affect

many different functionality and experience factors such as the user experience. In this

work, the user interface is also the interface that will enable the users to intervene in

the place inference process, so it must be carefully designed to fulfil the feedback and

interaction requirements in Table 5.2.

We present the primary user interface components, highlighting which of the require-

ments they are designed to satisfy. In addition to the primary user interface, we will

also describe a series of secondary interfaces which will allow the place awareness system

to be configured prior to and during the field deployment.

Here we will use the requirements that we specified to design the user interface for

the mobile place awareness system. Each interface description will refer back to the

requirements in Table 5.2 that it concerns using the requirement IDs from the table.

Figure 5.3 shows the mapping between the interfaces and functional requirements from

the table, as well as the connections between the interfaces themselves.
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(a) Widget in a high confidence infer-
ence state (text is green).

(b) Widget in a low confidence infer-
ence state, showing the quick confirm
button (text is yellow).

(c) Widget showing new place notifi-
cation (with nearest suggestion).

(d) Widget in a ‘classifying’ state, i.e.
the application is attempting to take
a location sample and make an infer-
ence.

(e) Widget in a sleeping state. (f) Widget in a moving state.

Figure 5.4: Various home screen widget states.

1. Home Screen Widget (II.2, II.I, II.O, II.Cand II.S): Many mobile devices

allow lightweight ‘widgets’ to operate on their home screens. The majority of

Android devices have this feature, and we use it as a miniature user interface

to enable quick place feedback. Figure 5.4 shows the home screen widget de-

sign for our system; the widget can be in one of seven states, and colour codes

communicate inference certainty to the user:

• High confidence place inference (Figure 5.4a): The place inference and learn-

ing service is confident in its current inference; this confidence is indicated

by green text. The user can intervene by clicking on the widget – this brings

up the place selection interface in Figure 5.5a.
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(a) The place selection interface,
where the user can select the correct
place or create a new one.

(b) The place summary interface,
where the user can view her existing
places.

(c) The place profile interface, giving
information about the selected place.

(d) The control panel, where the user
can control system operation; set sleep
times; re-train their motion model and
edit their approved contacts for the
“Where are you?” application.

Figure 5.5: Key information interfaces, which enable the user to intervene in place inference
and view information about their existing places.
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• Low confidence inference (Figure 5.4b): The place inference and learning

service is not confident in its inference. The user can click on the question

mark icon in Figure 5.4b to quickly confirm the inference as correct (require-

ment II.2), or they can select the widget text to bring up the place selection

interface for correction or creation.

• New place inference (Figure 5.4c): The place inference and learning service

thinks the current place is previously unseen. A notification is displayed on

the device’s status bar and the nearest place is displayed in the widget for

quick correction.

• Classifying (Figure 5.4d): The place inference and learning service is ex-

ecuting Algorithm 6, which is either triggered by the transition inference

service or on a periodic update. During this process, the place inference and

learning service attempts to sample a set of location data; this can take a

variable amount of time or fail entirely, therefore a timeout period, TL is set.

• Sleeping (Figure 5.4e): The system is in sleep-mode, the times of which

can be set by the user (see Figure 5.5d). During this state, the system is

effectively shut down in order to preserve battery power.

• In motion (Figure 5.4f): The place inference and learning service has re-

ceived a notification that the device is in motion; either from the transition

inference service or from GPS satellites, e.g. when driving.

• No location: The system cannot obtain a location observation within time

TL and therefore no place is inferred.

All updates to the widget are timestamped and displayed in a text field on the

widget.

2. Place Selection Interface (II.1, II.2, II.3, II.I, II.O, II.Cand II.S): (Fig-

ures 5.5a, 5.6a, 5.6c, 5.6d, 5.7a and 5.7b) The place selection interface displays

the ranked list of places for the current place inference, ranked by probability. If

the inference is incorrect, users can select the correct place – if it exists – from

the ranked list, or they can create a new place with a label. The user can also

confirm low confidence inferences from this interface (as with the home screen

widget above). Probabilistic ranking is used in the attempt to minimise scrolling

(II.S), i.e. if the correct place is near the top of the ranked list, the user does

not have to look far. We use address labels obtained from a geo-location service

coupled with the label for each place’s nearest Euclidean neighbour as a sub-label

in order to defend against ambiguity, i.e. multiple places with the same label.

3. Place Summary Interface (II.Iand II.S): (Figure 5.5b) The place summary

interface displays an alphabetically ordered list of the places the user has created
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(a) The place selection interface, with
low confidence inference.

(b) Confirming a low confidence in-
ference.

(c) The place selection interface, with
high confidence inference.

(d) Correcting one place to another.

Figure 5.6: Confirming and correcting places through the place selection interface
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(a) Creating a new place from the se-
lection interface.

(b) Creating a label for the new place.

(c) The ‘first run’ interface for config-
uring the motion model, sleep alarms
and approved contacts.

(d) The motion training interface

Figure 5.7: Place creation and first run interfaces
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so far. As with the place selection interface, each place is labelled with the user’s

label and stamped with a reverse geo-location address (if available) and the label

of the nearest Euclidean neighbour in coordinate space. Selecting a place from

this list brings up the place’s profile interface.

4. Place Profile Interface (II.4, II.5, II.6, II.Iand II.O): (Figure 5.5c) The

place profile interface shows: a map view of the place’s weighted mean vector; a

list of recent visits; and a list of nearby places. From here, the user can re-label

the place, reset the location data for the place, i.e. regenerate a fresh set of

codebook vectors, or delete the place.

In addition to these key interface components, there are a set of interfaces for config-

uring the system on first-run. These are:

• Sleep Alarm Interface: (Figures 5.5d and 5.7c) Sleep alarms allow the user to

set periods of time during which the application will sleep, i.e. temporarily shut

down. This allows users to save battery for typically long periods of inactivity,

e.g. sleeping. The option to have different sleep times for weekdays and weekends

is provided.

• Motion Trainer Interface: (Figure 5.7d) This allows users to train their motion

model based on sampling both motion and static data for a short period of time.

Pressing both the ‘Sample Motion’ and ‘Sample Static’ button will launch the

accelerometer sampling process, while the objective for the user is undergo a

state of motion or ‘non-motion’ accordingly. Pressing ‘Train Parameters’ will

launch the stochastic gradient descent process for training the logistic regression

classifier, which forms the key component for the transition inference service.

• Approved Contacts: For privacy reasons, the “Where are you?” application

(see Section 5.2.4) allows the user to select a set of approved contacts whom she

feels comfortable sharing her current place with.

Finally, there is a control panel interface which allows the user to control the system’s

operation, including: starting and stopping the system; changing the sleep alarms; and

editing their approved contacts for the “Where are you?” application. This is shown

in Figure 5.5d.

Feedback Requests and Audio Prompts

RQ 5, RQ 5.1 and RQ 5.2 ask about the elicitation of user feedback and how various

approaches might affect users’ response to requests for feedback. In the simulations of
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the previous chapter, we modelled feedback by sampling from a Bernoulli distribution

parameterised by participants’ estimates of how likely they felt they would respond to

a device notification in each given place. Although this is probably a more natural

model than pure random sampling, it still does not capture the intricacies and external

stimuli that users may be subjected to in the field.

Moreover, during the simulations, we made the assumption that the user was a ‘perfect

oracle’, i.e. when they chose to intervene, they would always give the correct response.

Of course there is a risk that they might give an incorrect response, e.g. ambiguous

labelling, where two or more places have the same label, or mistakenly pressing con-

firming a place when they intended to correct it. The place selection interface and the

home screen widget are both designed to guard against these events (see Figures 5.5a

and 5.6b).

The remaining challenge, therefore, is eliciting feedback from the user when required.

Timely requests are extremely valuable for eliciting user feedback [115], and have been

shown to improve the perceived burden of interruption from mobile devices [196]. In-

deed, actively requesting for user input at the point of transition between context

states (specifically activities) is also a useful approach to relieving the burden of user

interruption [92].

Following on from our work in Chapter 4 on inferring transitions between places, we

design a feedback request subsystem that raises the necessary requests for user feed-

back at the moment of inferred transition between places, i.e. during the NotifyUser

subroutine in Algorithm 6.4 Although transition inference performance in Chapter 4

was good, there is still a risk of transitions being missed. The periodic updates de-

scribed in Section 5.2.4 are designed to guard against these missed events, and we can

also attach feedback requests to these updates.

We differentiate between requests for feedback and prompts that are attached to re-

quests. Feedback requests are raised by the inference process when it requires user feed-

back. Prompts are notifications made through various output media in order to make

users aware of feedback requests. For our study, we compare two request approaches

(see Table 5.3 for the relationship between the request types and their prompt media):

• ACTIVE: ACTIVE requests are raised during the NotifyUser subroutine in

Algorithm 6 if the algorithm is triggered by a place transition (as opposed to

a periodic update, described in Section 5.2.4). This subroutine is only called

in the case of a low-confidence inference or new place inference, so confident

inferences will not have requests attached to them. ACTIVE requests will raise

audio, visual and tactile prompts simultaneously on the device. Visual prompts

4Page 128
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Prompt Output Media Time Policy
AUDIO VISUAL TACTILE

Request ACTIVE x x x On transition
Type PASSIVE x Periodic

Table 5.3: Table illustrating the mapping between feedback request approaches and prompt
output media, as well as the requests’ time policies.

update the homescreen widget and place selection interface, whilst tactile prompts

trigger the device’s vibration hardware. Audio prompts are discussed shortly.

• PASSIVE: PASSIVE requests are raised during the NotifyUser subroutine in

Algorithm 6 when the algorithm is triggered by a periodic update. As with AC-

TIVE requests, confident inferences will not raise PASSIVE requests. PASSIVE

requests do not make any audio or tactile prompts for user feedback; rather they

use visual prompts that simply update the home screen widget to a low-confidence

state as in Figure 5.4b. The only indications to the user that a visual prompt

has been raised is a change in widget state and an updated widget timestamp.

There are points at which users may intervene without any request by the system, and

we do not restrict them in doing so. For the study, we measure how much feedback is

given without request, and compare user response behaviour against the ACTIVE and

PASSIVE requests.

Audio prompting is a research subject in its own right [75], and it would be interesting

to compare different approaches to audio prompting for ACTIVE requests. Many

devices nowadays can output speech using text-to-speech (TTS) engines as well as basic

notification tones. As such, we compare two types of audio prompt for our ACTIVE

requests:

• TTS: Audio prompts with TTS allow the device to ‘say’ the inferred place name.

The idea is for TTS prompts to convey more information about the feedback

request than basic audio prompts without TTS can. We use the user’s own labels

in the TTS prompt, i.e. the label used to create a meaningful place.

• NO TTS: Audio prompts without TTS use a non-speech tone as an audio re-

minder.

“Where are you?” – A Presence and Availability Application

The SMS manager in Figure 5.2 manages the SMSs for the “Where are you?” appli-

cation – the algorithm for which is shown in detail in Algorithm 8. By first checking
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Algorithm 8 “Where are you?” SMS algorithm executed upon receipt of an SMS.
Comments indicate SMS reponses

1: Input: SMS – an SMS message; p – classification confidence threshold;
d – distance threshold; r – recency threshold

2: Output: Response – a response string, to be sent as an SMS to the
originating contact

3: contact ← GetContact(SMS)
4: if IsApproved(contact) = False then
5: return
6: end if
7: text ← GetContent(SMS)
8: match ← RegexMatch(SMS, [Ww]h?ere +[Aa]?[Rr]e? +([Yy]o)?[Uu][!\?]*)
9: if match = False then

10: return
11: end if
12: response ← “No recent place information, sorry”
13: place ← GetLatestPlace()
14: time ← GetExitTime(place)
15: conf ← GetConfidence(place)
16: if IsMoving() = True then
17: if conf ≥ p then
18: mins ← GetTimeDifference(time, now, MINUTES)
19: response ← MakeResponse(place, mins) . “Left place mins minutes ago”
20: else
21: place ← GetLatestConfidentPlace()
22: time ← GetExitTime(place)
23: mins ← GetTimeDifference(time, now, MINUTES)
24: if mins ≤ r then
25: response← MakeResponse(place, mins). “Left place mins minutes ago”
26: end if
27: end if
28: else if IsPlaceInferred() = True then
29: if conf ≥ p then
30: response ← MakeResponse(place) . “place”
31: else
32: neighbours ← GetNeighbours(place, d)
33: response ← MakeResponse(place, neighbours) . “Near place, neighbours”
34: end if
35: else
36: mins ← GetTimeDifference(time, now, MINUTES)
37: if mins ≤ r then
38: response ← MakeResponse(place, 0) . “Was at place recently”
39: end if
40: end if
41: return response
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whether the SMS sender is on the approved contacts list, the algorithm will – if the

sender is approved – parse the message using a regular expression for variants of the

phrase “where are you?”. If a positive match is found, the SMS manager creates an SMS

response based on current place conditions and sends the response to the originating

contact.

The “Where are you?” application is an example of a presence and availability appli-

cation that uses the mobile place awareness system to share the user’s current place

with a set of approved contacts if requested by any of the contacts. If instructed by the

SMS manager, the “Where are you?” application will respond on receipt of a “where

are you?” SMS with an estimate of the user’s current place.

The response is built according to a set of conditions:

• If the current place inference is confident, the “Where are you?” application

responds with the user’s place label and an address stamp (if available).

• If the current place inference is not confident, the application responds with a list

of nearby places or – if the distance to the nearest place is greater than a certain

threshold d – the current address from Android’s geo-location service.

• If the system is in a state of motion, the application responds with a “left <place>

x minutes ago”, where <place> is the inferred place within the distance threshold

d of the most recent location observation. (If the inferred place is outside this

threshold, then the application falls back to the first place inference that was

within it.)

• If there is no location data for the user, the application responds with a “No

recent place information, sorry” message.

Thus, the goal of the application is to communicate the device’s current best estima-

tion of the user’s place to the closest members of their social network. If uncertainty

is present, or there is a lack of necessary data, the application attempts to provide

a reasonable estimate of the user’s surrounding or recent places. Only when it has

exhausted these options does it respond with a message of failure.

Detailed Design Architecture

Figure 5.8 shows the detailed architecture of the place awareness system, highlighting

the inference algorithms, the device interfaces, the feedback interface and the “Where

are you?” application.
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Figure 5.8: Detailed architecture of the place awareness system’s inference, feedback and inter-
action components. Algorithms 3 and 4 refer to the place inference algorithms from Chapter 4

5.2.5 Study Approach

Following an initial pilot study of the mobile place awareness system with 5 participants,

we recruited 12 new participants for the main study. 2 participants left the study early,

leaving a final set of 10 (2 female, 8 male, mean age 29.8; sd 6.6). This is a similar

sample size used by previous field work that is closely related to ours, e.g. [17, 156, 155].

The participants were recruited as they owned and were familiar with Android mobile

devices; 7 of the participants used their own devices throughout the duration of the

study, and 3 (IDs 1, 3 and 6) were provided with test handsets as their Android version

was incompatible with the application. These participants used their own SIM cards

and Google accounts in the Android test handsets, however. The participants were also

split across two key demographics: 4 of the participants were working professionals (IDs

5; 8–10) and 6 were postgraduate computer science students. This was done to vary

the participants’ daily environments an increase the range of potential places captured,

rather than capturing a large number of places from the same environment. A similar

split and sample size was used in Barkhuus et al.’s Connecto study [17]. To compensate

participants for their time and data/SMS usage throughout the study, each were paid
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£20.00 upon completion.

The study was undertaken in three phases: a setup and configuration phase, the field

deployment and a performance test phase.

Setup and Configuration

For initial setup and configuration, each participant was provided with a consent form

detailing the study requirements (Appendix C.1) and a brief instruction manual on

how to use the application. The instruction manual contained the Harrison and Dour-

ish example of ‘place’ vs ‘space’ [86], and examples of places from Barkhuus et al.

[17], including ‘work’, ‘home’ ‘café’ and ‘gym’. As with the place studies in the pre-

vious chapter, these differences between place and location – as well as the examples

of places – were explained to the participants verbally. Following this, a researcher

guided each participant through an example of each feedback action in Section 5.1 on

a separate device running a live version of the place awareness system, before starting

the participant’s own system on their device for the first time.

As the first interface to be presented on initial start is the ‘first run’ interface in Figure

5.7c, a researcher guided the participant through the necessary initialisation steps.

Each participant trained a motion model for the transition inference service as before;

by carrying the device as they typically would, e.g. in a pocket or a bag, and recording

30 seconds of motion data when stationary and walking. As before, the parameters for

the logistic function were trained using regularised logistic regression using stochastic

gradient descent on the mobile device.

Following this, each participant selected a set of sleep times for weekdays and weekends,

before marking a list of approved contacts from their device/SIM contacts list in order

to initialise the “Where are you?” SMS awareness service.

Participants were then instructed to select at least one ‘seed’ place to allow the place

inference and learning service to initialise. To do this, each participant chose a nearby

meaningful place at the time of setup and moved to it. Once there, they pressed the

‘Seed new place’ button in Figure 5.7c which prompted them for a label before taking

a location sample to initialise the seed place’s codebook vectors. More details on the

instructions given to participants can be found in Appendix C.

Field Deployment

The field deployment ran for 2 weeks, starting immediately after the setup phase de-

scribed in the previous section. During the field deployment, the participants were
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instructed to allow the place awareness service to operate continually on their mobile

device, i.e. they should avoid stopping, ‘killing’ or un-installing it. They were not told

to keep their devices turned on throughout – rather that they should follow their nor-

mal behaviour patterns, e.g. turning their device off overnight. As the application used

audio prompts even in silent mode, participants were instructed to stop the application

through the control panel if silence was absolutely necessary without device shutdown.

To observe feedback behaviour according to the different feedback request types and

audio prompts (RQ 5.1 and RQ 5.2), we implemented two between group conditions

and two within group conditions as follows:

• Feedback Request Approach (within): All participants were subject to AC-

TIVE and PASSIVE feedback requests as described in Section 5.2.4.

• Audio Prompt Approach (between): Participants were initially split into

two groups of 6 but – following the 2 drop-outs part way through the study –

the actual split was 6 and 4. The first group had TTS audio prompts attached

to their ACTIVE feedback requests (participants 1, 2, 5 and 10), while the other

group had a simple audio notification – the ‘Capella’ tone on Android handsets

– attached to theirs.

The participants were encouraged to choose any label they wished for each place, and no

restrictions were made on characters, length or format of the labels. The participants

were not told that creating places, manually updating places or intervening would

correlate with any reward, i.e. there was no goal to ‘tag as many places as possible’,

nor was there any competition between participants to ‘check-in’ to particular places

more than others. Participants were only told that their device would sometimes make

requests for feedback – as demonstrated in the setup phase – and sometimes wouldn’t,

and that it would always display the home screen widget which would sometimes update

itself. Participants were not told that ACTIVE requests would likely occur on transition

into places, nor that PASSIVE requests were periodic. Each TTS condition group was

not told about the between group condition.

The place awareness system operated continually on each participant’s device through-

out the field deployment. There were three occasions in which participants turned

their device off for 1 day (IDs 5, 7 and 8), and there were occasional system crashes.

However, a crash-detection service immediately restarted the application in each case

and no data were lost due to the crashes.

All transitions, requests, classifications, user feedback actions, location samples and

sensor activations were logged. All sleep times were logged except for participants 3
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and 6, whose sleep data became corrupted during the study and we did not realise until

after the study was complete.

Following the field deployment, each participant was asked to (anonymously) complete

an exit survey relating to their experience of the mobile place awareness system dur-

ing the field deployment. Once all surveys had been completed, we interviewed each

participant for further recorded feedback on the user experience.

Feedback Behaviour Measures

In order to measure user feedback behaviour and answer RQ 5.2, we use three measures:

• Feedback action distribution: given the feedback functions outlined in Section

5.1, we can measure the distribution of each participant’s feedback proportion

over these actions. From this distribution, we can infer further properties, e.g.

a greater proportion of confirmations than corrections implies that the inference

processes are correct and not confident, rather than incorrect.

• Feedback request response rate: by logging when feedback requests are made, and

whether they are ACTIVE or PASSIVE, we can also measure how many requests

the participants respond to; allowing us to estimate feedback request response

rates as a proportion of requests responded to.

• Responded requests’ response time: for requests that are responded to, we can

measure the time period between when the request was raised and when it was

responded to.

Place Inference Performance Measures

In order to test the place recognition performance of the system, we treat it as a

statistical classifier and present it with test examples for classification. By comparing

these test examples with observations, we can measure inference performance using

standard metrics. It is very difficult to capture fine-grained observations in the field

[195] and the use of diary studies – in addition to being unreliable – may affect our

participants’ natural feedback in the field. We therefore do not explicitly analyse

any performance metric during field deployment. Rather, we treat the 2-week field

deployment as a training phase, after which each participant’s places’ codebook vectors

are modelled as a classifier and presented with previously unseen test data from a post

hoc scripted tour to classify. Although this approach does not measure performance in

fine-grained detail in the field, it does provide an indication of how well the actively

learned place models classify new data.
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(a) The test application main inter-
face.

(b) The test application sample inter-
face.

Figure 5.9: The interfaces for the participants’ test application. They allow participants to
select a place (or ‘non-place’) and take a location observation for performance testing.

For the post hoc tests, a small application was developed that presents a list of places

to the participant (see Figure 5.9a). The participant can then select a place and take

a location reading (Figure 5.9b), which is then stored as a test datum with associated

observation. Location data are sampled exactly as in the field deployment, i.e. the

device attempts to take 10 samples per observation; the observation is the weighted

mean of these samples (weighted by inverse reported accuracy).

Thus, following completion of the field deployment phase – and prior to the post hoc

test – each participant was asked to identify a set of nearby places without directly

referring to the list of places created during the field deployment (in case there were

meaningful places nearby that the system did not capture, and to reduce bias in using

the list to pick places). They were also asked to identify a set of meaningless areas

– or ‘non-places’ – in between the meaningful places to fully test inference accuracy.

The place awareness system was then un-installed from each participant’s device, and

the database copied offline for analysis. Following this, the test application in Figure

5.9 was installed on the same device, and the participants were asked to go to each of

their identified meaningful places and take 5–10 location samples at each using the test

application.
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To encourage fairness, the participants were explicitly told to take their samples at

different points within each place, e.g. different rooms of a building, or different areas

of a room. We told the participants that these areas should not be chosen randomly,

rather they should be representative of where they would plausibly go within each

place. They were also asked to capture as many samples from meaningless places as

possible throughout the test. For each sample taken, the participants were instructed

to place the device in a natural position, i.e. how they would normally carry it in each

area within the current place. A small time delay of 10s from button press to sample

was introduced to give the participants time to do this. The full instructions can be

seen in section C.1 of Appendix C.

We use the same classification process for testing as we used in the place awareness

system, i.e. Algorithm 6 without the confidence measure or codebook vector update

sub-routines. Each place is again modelled as a bivariate Gaussian distribution, pa-

rameterised by the weighted mean c̄ and weighted covariance S of the place’s codebook

vectors (weighted by sample count). For the tests, we use the Mahalanobis distance as

a distance measure as in Equation 5.1, and the χ2 1 d.f. critical value of 6.64 (p = 0.01)

as a threshold to distinguish between meaningful and unimportant places.

We measure classification performance using four base metrics:

1. True positives (tp): If the classifier outputs a place with the label matching

observation given a test location input.

2. False positives (fp): If the classifier outputs a place with a label that doesn’t

match observation given a test location input.

3. True negatives (tn): If the classifier outputs a ‘non-place’ matching a meaningless

observation given a test location input.

4. False negatives (fn): If the classifier outputs a ‘non-place’ that doesn’t match

observation, i.e. the test location datum is labelled with a place label.

These metrics can be encoded into various performance measures, namely:

• Precision:

p =
tp

tp+ fp
(5.2)

• Recall:

r =
tp

tp+ fn
(5.3)
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• The F1 score, which is the harmonic mean of precision and recall:

F1 = 2
pr

p+ r
(5.4)

• Accuracy:

a =
tp+ tn

tp+ tn+ fp+ fn
(5.5)
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Size Description

<ROOM A place smaller than a room, e.g. an area within a room.

ROOM A place that is approximately room-sized, i.e., smaller than a
building, or described by a physical room.

BUILDING A place that is approximately building-sized, i.e. the size of mul-
tiple rooms, or described by a physical building.

>BUILDING A place that is larger than a building, i.e. corresponding to mul-
tiple buildings or towns/cities.

Table 5.4: Table summarising the size categorisations of the participants’ places.

Finally, participants were asked to give an estimate as to the approximate size of their

places according to the categories in Table 5.4. This was done to provide information

on the sizes of places, which are likely to have an effect on classification performance

(particularly small places that are in close proximity to each other).
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Label Tested CONFIRMED CORRECTED SIZE

1 desk 1 66 1 <ROOM
2 breakout 1 0 3 <ROOM
3 printers 1 1 7 <ROOM
4 RnD room 2 1 0 1 ROOM
5 kitchen 0 0 2 <ROOM
6 bike shed 1 0 0 ROOM
7 home 0 15 0 BUILDING
8 coffee shop 1 2 0 ROOM
9 Baird house mtg room 1 0 0 BUILDING

10 Nby train station 0 1 0 BUILDING
11 vf Paddington 0 8 0 BUILDING
12 Restaurant 1 3 0 ROOM
13 nby Waitrose 0 0 0 BUILDING
14 one stop 0 1 0 BUILDING
15 sun in wood. pub 0 7 0 BUILDING
16 Babbage house 1 0 0 BUILDING
17 ground floor breakout 1 0 0 <ROOM

Table 5.5: Place data captured by Participant 5 during field deployment, showing: place labels,
feedback actions and size categories

5.2.6 Results

This section details the results obtained from the field study. We first present results

from the places captured during the field deployment, including contour plots of ex-

ample places, labels, sizes and counts. We then present user feedback results obtained

during field deployment, including: automation-supervision results; feedback action

results and distributions; and prompt response times. Following this, we present per-

formance results from the post-study performance testing, including sizes and sample

counts of the places tested. Finally, we present a set of results on resource usage,

location accuracy and results from the post-study exit survey.

The key parameters for the study were instantiated as follows: TL = 60s (the location

sampling timeout period); t = 15mins (the time period for periodic place updates);

d = 200m (the “Where are you?” SMS distance threshold for neighbour places);

r = 10mins (the “Where are you?” recency parameter). These were chosen heuristically

and an interesting avenue for further work could be to explore how varying these

parameters affects performance.

Place Capture and Learning

Here we outline the results of the places captured during the study. Table 5.6 shows

the number of places captured by each participant during the two-week field study.

The median count was 17 (sd = 4.12).
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Participant 1 2 3 4 5 6 7 8 9 10
Count 17 17 13 13 17 20 19 9 13 23

Table 5.6: The place counts over the participants over the 2-week field study

A full collection of the participants’ captured places – including labels, feedback data

and size categories – can be found in Appendix C.2, but Table 5.5 shows these data

for Participant 5.

Figure 5.10 shows the distribution of place counts over the size categories and partici-

pants. The only significant differences are between the BUILDING and >BUILDING

categories, and the ROOM and >BUILDING categories (p < 0.05; non-parametric

bootstrap, 1000 replicates, N = 10).

Figures 5.11, 5.12 and 5.13 show contour visualisations of various places for a selection

of the participants. The bivariate Gaussian contours are fitted to the codebook vectors

using their weighted means and weighted covariance matrices (weighted by the “mass”

of each codebook vector, i.e. the number of location samples associated with it).
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(a) Distribution of place counts over the size categories. (.95 CIs shown.)
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(b) Distribution of place counts over the participants.

Figure 5.10: Place size distributions
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(a) A selection of nearby places in Euclidean space for Participant 2. Each place’s codebook
vectors are shown with bivariate Gaussian density contours (0.95 quantiles are highlighted),
parameterised by the weighted mean and weighted covariance matrix of the codebook vectors. A
collection of ROOM and <ROOM sized places within a single building can be seen on the right.
“Gym” is a BUILDING sized place.
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(b) Two ≤ROOM sized places for Participant 1 that are ≈ 40m apart.

Figure 5.11: Visualising places from their codebook vectors.
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(a) Participant 9’s home, showing how updates from different rooms of a house have affected
the place’s codebook vectors and subsequent density.
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(b) A >BUILDING sized place for Participant 6: the London 2012 Olympic stadium, show-
ing how updates from different areas of a large place have affected the codebook vectors and
subsequent place density.

Figure 5.12: Visualising large places.
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(a) Places that are very close together within Participant 5’s office
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(b) Multiple proximate office places for Participant 8.

Figure 5.13: Visualising small places within an office.
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Feedback Behaviour

Here we outline the user feedback results from the study. Figure 5.14 compares the

supervised and unsupervised inferences during the field study. There was a significantly

greater proportion of unsupervised inferences than supervised ones (p < 0.05; non-

parametric bootstrap; 1000 replicates; N = 10).

Figure 5.14c shows the proportion of inferences that were confident during the field

study, i.e. inferences in which the p-value of the Hotelling’s T 2 confidence measure was

greater than 0.05.
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(c) The percentage of place inferences that were confident over the participants.

Figure 5.14: Unsupervised and supervised place inferences.
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(a) Distribution of feedback proportion over actions for the study. (.95 CIs shown.)
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(b) Distribution of feedback actions over the participants

Figure 5.15: User feedback action data.

Figure 5.15 shows the distribution of user feedback actions, both over the type and

the participants throughout the study. There are significantly more confirmations than

any other action (p < 0.05; non-parametric bootstrap, 1000 replicates, N = 10).
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(b) The median response time for supervised inferences over the request and prompt conditions

Figure 5.16: User feedback response results. The NONE condition shows the measures for
un-requested feedback to allow comparison. (.95 CIs shown.)

Figure 5.16 shows the user feedback response statistics. As Figure 5.16a shows, there is

a small but insignificant increase in mean response rate between ACTIVE and PASSIVE

requests within each prompt condition, and a small but insignificant increase in mean

response rates for ACTIVE and PASSIVE requests between the prompt conditions

(p > 0.05, non-parametric bootstrap, 1000 replicates, N = 10 in all cases). Figure 5.16a

also shows the proportion of unprompted feedback, i.e. the proportion of confident

inferences in which the user intervened.

Figure 5.16b shows a significant decrease in median supervised inference response time

between ACTIVE and PASSIVE requests for the non-TTS prompt group (p < 0.05,
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non-parametric bootstrap, 1000 replicates, N = 10), and a small but insignificant

decrease for the TTS prompt group. There is a small but insignificant decrease in

response time for ACTIVE and PASSIVE requests for the TTS group compared to

the NO TTS group (p > 0.05, non-parametric bootstrap, 1000 replicates, N = 10 in

all cases). The median was chosen as a measure due to its outlier insensitivity and

because the response times are not normally distributed, and Figure 5.17 shows the

grouped histogram plots for the supervised inference response times over the request

and prompt conditions. There is no significant correlation between the number of

“Where are you?” messages received and the response rate or median response time

for all conditions (p > 0.05 in all cases; Kendall’s τ).
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Figure 5.17: Histograms of response times for supervised inferences over the request and
prompt conditions
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(b) Median response times for the prompt types over the participants.

Figure 5.18: Participant distributions for request responses.

Figure 5.18 shows the distribution of response rates and median response times over

the study participants, grouped by request type.
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(b) Test place and sample counts for the participants’ post hoc place inference tests.

Figure 5.19: Post hoc place inference performance.

Place Recognition Performance

Here we present the results of the post hoc place inference tests that were used to

quantitatively measure the performance of the place inference process. Figure 5.19a

shows the F1 score and accuracy results over the participants for their test runs. The

mean F1 score is 0.82; 99% CI = (0.75, 0.87) (non-parametric bootstrap, 1000 replicates,

N = 10); sd= 0.07, with mean accuracy 0.75; 99% CI = (0.67, 0.83) (non-parametric

bootstrap, 1000 replicates, N = 10); sd= 0.1. There is no significant difference in F1

score or accuracy between the two prompt groups (p > 0.05, non-parametric bootstrap,

1000 replicates, N = 10).

Figure 5.19b shows the place and sample counts for the participants’ test runs. The

mean number of samples taken per participant was 54 (sd= 23.8) and the mean number

of places tested was 7.5 (sd= 2.3).
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(b) Number of places tested over the participants.

Figure 5.20: Post-study test run performance

The place size distributions for the participants’ test runs are shown in Figure 5.20.

Significantly fewer >BUILDING sized places were tested than ROOM sized places

(p < 0.05; non-parametric bootstrap 1000 replicates, N = 10)

Table 5.7 shows the distance matrix in metres for Participant 1’s test run. All partici-

pants’ distance matrices can be found in Appendix C.3.

Desk Kitchen Costa Music.room Claverton.rooms ICIA SU.upstairs Balcony

Desk 0 160 220 340 400 300 220 0
Kitchen 0 360 500 540 440 360 40

Costa 0 140 180 80 0 360
Music room 0 60 80 140 500

Claverton rooms 0 100 180 540
ICIA 0 80 440

SU upstairs 0 340
Balcony 0

Table 5.7: Distance matrix for Participant 1’s test places. Distances are in metres rounded to
the nearest 20m.
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Figure 5.21: Mean daily sensor usage over the participants throughout the duration of the
study. Accelerometer data for participants 3 and 6 are not shown due to a technical issue with
logging sleep data. (.95 CIs shown.)

Resource Usage

Figure 5.21 shows the mean daily sensor usage for the participants throughout the

study. The mean data storage per device for the two week field deployment was ≈
600kB.
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(b) Mean overall location accuracy for the study over the participants.

Figure 5.22: Location accuracy data. (.95 CIs shown.)

Figure 5.22 shows the summary statistics for location accuracy over the participants

and sensors. The raw location accuracy data is detailed in Figure C.1 in Section C.4

of Appendix C.

User Experience

Figures 5.23 – 5.25 show the exit survey questions and participant responses to each

question.
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(b) Do you like or dislike the idea of your device being aware of your personal places?
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(c) How easy or difficult did you find the process of CREATING places?
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(d) How easy or difficult did you find the process of CORRECTING places?

Figure 5.23: Survey Questions 1 – 4.
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(a) How easy or difficult did you find the process of CONFIRMING places?
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(b) How irritating did you find the AUDIO/VIBRATION prompts for input?
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(c) How much or how little did you feel the AUDIO/VIBRATION prompts for input
affected the amount of input you actually provided?

Figure 5.24: Survey Questions 5 – 8.
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(b) How much did you like or dislike the “Where are you?” application?

Figure 5.25: Survey Questions 9 – 10.
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Figure 5.26: Usage data from the “Where are you?” application.

Figure 5.26 shows the usage data for the “Where are you?” application over the

participants, and Figure 5.27 shows an example screenshot of the “Where are you?”

application being used within the Android SMS application. An example of a low

confidence inference – “Near Work and Work Car Park” – is shown, where nearby

neighbours are listed (see lines 32–33 of Algorithm 8).
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Figure 5.27: Screenshot from Android’s SMS application showing a series of “Where are
you?” SMSs and their auto-replies as the participant is: (i) walking between their work office
and car park; (ii) driving home from work; and (iii) at work.

5.2.7 Discussion

In this section, we discuss our results according to a set of key research questions. We

also discuss the implications and limitations of the work, including lessons learned and

possible extensions for future work.

RQ 4.1: To what extent can we infer and actively learn about users’ mean-

ingful places using mobile devices?

Without a report of what actually happened, it is difficult to speculate on the pre-

cise capture and learning efficacy of the place awareness system over the 2-week field

deployment. However, with a median place count of 17 per participant, and a range

from 9–23 places over all participants, it appears that the system captured many of

the important places in each participant’s daily lives. This is similar to the 2-week

Connecto observational study [17] (6–20 places, mean 10), in which various methods

to record what actually happened were employed. Moreover, during the performance
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testing, no participant identified a nearby ‘missed’ place, i.e. a place that was never

captured by the system. Although the set of test places was smaller than the complete

set of places captured, it does suggest that place capture was reasonably effective.

A particularly interesting finding is that the majority of captured places were approxi-

mately room-level size or smaller (Figures 5.10a and 5.10b), suggesting that users’ place

definitions are finer-grained and richer than other studies suggest, e.g. [115]. There

is also a performance implication here – if many <ROOM sized places are in close

proximity, it becomes extremely challenging to differentiate between them in real time

without specialist location positioning hardware, cf. Participant 1’s cluster of indoor

places in Figure 5.11a. Kim et al. avoid this problem in [117] by considering places

within a few seconds walk – that is, proximate room-level places – as a single place.

This enhances the performance of their fingerprinting system, but it detracts somewhat

from the idea that users should be able to define their own places without restrictions

imposed upon them. Montoliu et al.’s approach [155] avoids the problem still further

by using pre-defined place labels of places no smaller than building-level.

The learning effect was apparent in the dispersion of the field deployment codebook

vectors in Figures 5.11 – 5.13, and their visual effect on the ellipses of the Gaussian

density functions fitted to them. Further evidence of learning is reflected in the test

performance results of Figure 5.19a and size distribution over the participants in Figure

5.20b, where participants’ systems with a large range of tested place sizes (IDs 5 and

9) did not perform significantly worse than the mean F1 or accuracy scores.

The key result from the post hoc inference performance testing was that a mean F1

score of 0.82 and accuracy of 0.75 can be achieved on user-defined places in the field us-

ing this approach with only a small amount of user feedback. This is good performance

considering the range of captured place sizes (Figure 5.10a), the high proportion of

≤ROOM sized places tested (Figure 5.20a), the mean location accuracy (Figure 5.22)

and the absence of restrictions or assumptions placed on participants’ places, e.g. size

restrictions [117, 155, 133], naming restrictions [156, 155] and place variability restric-

tions [90, 116, 117, 115].

Figures 5.14 and 5.15 give an indication of performance in the field. Figure 5.15a in

particular shows that participants were confirming significantly more inferences than

they were correcting, suggesting that the many of the low confidence inferences were also

correct. Moreover, as Figure 5.14a shows, there were significantly more unsupervised

inferences (i.e. where users did not intervene) than there were supervised, suggesting

that the device is performing the majority of place updates – ≈ 76% – without any

user feedback. Indeed, the device performed the majority of the place updates across

all participants, as Figure 5.14b shows.
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There are of course limitations when using a scripted tour approach to testing, particu-

larly the range of places that can be tested with a high degree of observation precision.

Indeed, participants could not test all of their meaningful places, and the majority of

tested place sizes were ROOM sized rather than BUILDING sized (compare Figure

5.10a with Figure 5.20a); thus the test size distribution differs slightly from the field

deployment size distribution.

Overall, place inference performance was good and required only a small amount of user

feedback. Although feedback may be seen as a cost, it does provide various benefits: (i)

it allows the capture of in situ place names and meaning through user-defined labels;

(ii) it allows the capture and recognition of places from smaller than room level to

greater than building level; (iii) it engages the user and provides intelligibility about

the underlying system operation; and (iv) automated inference failures can be corrected

with simple, low-burden user feedback.

RQ 5.1: How do different user feedback requests affect feedback response

rate and time in a mobile environment?

There are a number of interesting findings from the results in Section 5.2.6. First, the

participants only responded to ≈ 26% of ACTIVE requests and ≈ 20% of PASSIVE

ones for the NO TTS prompt condition, and ≈ 38% of ACTIVE requests and ≈ 32%

or PASSIVE ones for the TTS prompt condition (Figure 5.16a). This suggests that

in the field, participants do not usually notice the prompts, or they choose to ignore

them. It should be noted that ACTIVE requests are raised far more frequently than

PASSIVE ones, which results in more missed requests. For example, short visits to

multiple places in succession could result in multiple ACTIVE requests and, if the

user does not respond within the short time window of the visit, the next request will

override its predecessor. However, even with a low request response rate, the capture,

learning and inference performance was still good, indicating that little user feedback

is required to achieve good performance.

ACTIVE requests are responded to significantly faster than PASSIVE ones (Figure

5.16b) for the NO TTS prompt condition. This is not particularly surprising, but

it does indicate that notifying users on transition is likely to elicit a response that

is relevant, with Figure 5.17 showing that a large number of ACTIVE requests were

responded to within 1 minute. This significant difference in request response time is

not apparent in the TTS prompt group however.

Many participants felt that the haptic feedback (vibration) component of the ACTIVE

requests was the most effective at capturing their attention, e.g. Participant 8 “only

really heard the sounds at [their] desk or meetings, but [they] felt the vibration a lot
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more”. Participant 7 commented that they “thought [they were] getting a text at first,

but [they] got used to it buzzing after a while”. This raises an important issue when

considering the efficacy of ACTIVE requests – mobile device users are often used to re-

quests from, for example, SMS, and this familiarity may affect their response behaviour

in the field.

RQ 5.2: How do different audio prompts affect feedback response rate and

time in a mobile environment?

Comparing the two prompt groups, there is weak evidence to suggest that using TTS

audio prompts rather than simple audio prompts results in a better prompt response

rate and shorter response time. However, the differences between the groups are not sig-

nificant, so the results do not strongly suggest this. Therefore, although TTS prompts

are a novel method for indicating inference uncertainty, the results suggest that TTS

is not a useful feature to include when prompting for user feedback.

Participant 2 thought that “they [the TTS prompts] were funny more than anything”

and even used them as an audio confirmation (even though they were designed to elicit

confirmation): “hearing the voice say the right place sometimes made me think, ah, I

don’t need to bother correcting it”. Participant 2 also indicated that they had deleted

a place – “Loo” – out of social embarrassment in response to a TTS prompt.

RQ 5.3: How resource intensive is the interactive intelligent mobile context

aware system?

The resource use of the place awareness system is reasonable. As Figure 5.21 shows,

the resource-intensive GPS sensor need only be on for a few minutes per day, with WiFi

on for approximately an hour. By including a sleep function in the device, and by duty

cycling the accelerometer to 50%, the accelerometer is on for approximately 6–7 hours

per day. Comparing this with the state of the art WiFi fingerprinting method [115, 117]

– where GPS, WiFi and the accelerometer are activated for approximately 2h, 4h and

20h respectively – our approach shows a significant improvement in energy use. Other

real time approaches, e.g. [155] do not report their sensor usage, so we cannot compare

our results with theirs.

RQ 6.1: What is the user experience like?

The user experience appears to be mainly positive. Referring to the exit survey re-

sponses in Figures 5.23 – 5.25, all participants liked the idea of using their own labels
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to identify places (rather than pre-defined categories), and half of participants liked

the idea of their device being ‘place-aware’. However, the remaining half were either

neutral (40 %) or negative (10%) about ‘place-aware’ devices. During the post-study

interviews, some participants said they were put off by the privacy aspect of place

awareness. Participant 6 said that she “liked the idea of [their] phone automatically us-

ing [their] names and things, but [they] don’t like the thought of it knowing and sharing

[their] names”.

All participants found the CREATE and CORRECT feedback processes ‘Somewhat

easy’ (50%) or ‘Very easy’ (50%) to execute, suggesting that the user burden associated

with these functions is low. The majority (90%) of participants found the CONFIRM

process ‘Very easy’ (70%) or ‘Somewhat easy’ (20%), suggesting that the user burden

associated with CONFIRM is very low – especially pertinent given that CONFIRM was

the most common feedback function (Figure 5.15a). Interestingly, a single participant

rated the CONFIRM process as ‘Somewhat difficult’; during the post-study personal

interview, this participant – having identified themselves as the one who selected this

option – explained that this was because they “didn’t like the [‘Are you sure?’] pop-up;

[they] didn’t want to click another button to tell it it’s right”.

Half of the participants found the ACTIVE requests ‘A little irritating’ and the remain-

ing half found them ‘Not irritating’. This would suggest that the ACTIVE requests are

not excessively irritating, but they do cause some annoyance. Participant 8 – in the

NO TTS group – commented that “the beep was similar to [their] text beep, but [they]

got annoyed thinking [they were] getting loads of texts”. The majority of participants

felt that the ACTIVE requests helped them to provide input, with 40% rating them

‘often helpful’ and 50% ‘sometimes helpful’.

All participants found the home screen widget helpful in enabling feedback, suggesting

that colour coding the inference certainty has a positive impact. It should be noted,

however, that participants were instructed to place the widget on their device’s home

screen as part of the study, thus it was very visible to them throughout. This finding

does suggest that embedding a small widget such as this within applications would be

favourable for eliciting user feedback.

3 participants (1–3) thought that a place hierarchy system would be useful. “I’d like to

have been able to say oh, this place is in this one. It would be great to fall back onto the

higher one if it wasn’t sure about the lower one” (Participant 3). This is potentially a

very useful design feature, as falling back on higher-level places if location observations

were inaccurate could improve the user experience.

The “Where are you?” application was reasonably popular. As Figure 5.25 shows,

the participants who used the application all responded positively with “I quite liked
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it” (50%) and “I really liked it” (10%). The remaining 40% said they did not use it

beyond two test messages. As 5.26 shows, most participants chose a small range of

close approved contacts with which to automatically share their place labels with. Of

the participants that used the application, each received between 5 – 10 messages from

approved contacts over the 2-week field deployment.

One feature of the application that participants liked was the ability to communicate

presence without explicitly revealing location, and the use of personal names for places.

Participant 3: “My girlfriend liked that we used names we both knew; it was nice and

personal. We both know where my desk is, so sending [’desk at work’] meant that she

knew where I was, and anyone spying may not unless they knew me better”.

Although the application was not the focal point of the study, it was received positively

by all participants who used it, therefore supporting the notion that place awareness

between close contacts is a useful application for this work. The lack of correlation

between the number of messages received and the request response rates and times

suggests that receiving queries from close contacts neither encourages nor discourages

users to respond to feedback requests.

RQ 6.2: How does interactive intelligence simulation compare with field

behaviour?

Comparing the performance test results in Section 5.2.6 with the simulation results in

Section 4.5.2, we see that performance is very similar – with mean F1 of 0.82 in the

field and 0.88 in simulation. Furthermore, we see that the amount of automation in

the field is similar to the simulation (0.76 field; 0.78 simulation), suggesting that the

Bernoulli sampling model that we used in simulation is a useful feedback model when

parameterised by the participants themselves. Care should be taken however, as the

simulation data in Chapter 4 were collected from 6 participants, and the field study

data from 10; therefore further verification with larger datasets would be beneficial to

increase the validity of the simulation approach.

Nevertheless, the comparison lends credibility to the simulation approach, which raises

the possibility of prototyping context aware system designs whilst initially avoiding the

expensive efforts of collecting observations.

Field Study Implications and Limitations

The key implication from this study is that good place inference performance can be

achieved with only a small amount of user feedback. Our system is more resource effi-

cient than the state of the art, and there are no limitations on infrastructure, i.e. there
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is no requirement for specialist location-positioning hardware, or place definition, i.e.

users may define places however they like. Places are malleable and are updated over

time as users revisit them; thus there is no dependency on existing wireless infrastruc-

ture (as fingerprint-based methods are).

There are, however, a number of limitations to this study, and they should be considered

in future design. First, many participants’ places are room-sized or below, and location

sensing technology is not yet accurate enough to reliably differentiate between small,

proximate places. Although some were successfully classified in the field (Figure 5.11b),

others were too close to be reliably classified in the long term (the cluster of small

proximate places in Figure 5.11a).

Other limitations lie in resource usage. Although our system is more resource efficient

than the state of the art WiFi fingerprinting system, there is still room for improve-

ment. The key problem – certainly in the Android operating system – is accelerometer

sampling (see power statistics in [115]). If the sampling process were made more ef-

ficient by handset manufacturers, then this limiting factor could be reduced and the

resource efficiency further improved.

The final limitation is the size of test performance place set. The problems with

collecting high-quality observation data remain and, although scripted tours allow for

a representative sample of places to be taken, they do not represent the whole captured

place set.

5.2.8 High-level Implications and Limitations

RQ 5 asks how we might elicit context feedback from users in a mobile environment.

Our low-level research questions – RQs 5.1–5.3 – break this down into elicitation strate-

gies and resource use. Our findings from the field study help to answer the high-level

RQ 5 by showing how users provide feedback to prompts from mobile interactive intel-

ligence in the field. The lack of difference in elicitation metrics between audio prompt

groups and within subject prompt strategies suggest that users do provide feedback

regardless of small differences in the prompt methods. We have also shown that users

only respond to a small proportion of prompts – mainly due to the mobile environment

and variable attention of mobile users compared to desktop ones – but this does not

have an adverse effect on inference and learning performance.

The key limitations of the work lie in the range of prompt strategies. We only explored

audio and visual media, but tactile prompting could be considered (we did use tactile

prompts simultaneously with audio ones in our study, but all participants received the

same treatment so we did not compare presence and absence of tactile prompts) in
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addition to further visual or audio approaches, e.g. flashing LEDs or earcons [75].

Other limitations lie in the nature of the feedback options presented to users. We had

a range of actions, including create or confirm, but these are by no means exhaustive.

An interesting agenda for future work would be to define a standard set of feedback

actions for users of mobile IIS, or even IIS in general given the lack of requirements

in the literature [219]. Thus, the key areas that remain in order to fully answer RQ

5 are the exploration of other feedback elicitation strategies (and media) in a mobile

environment, as well as testing them in a variety of use cases beyond place awareness.

RQ 6 asks about users’ behaviour when interacting with a mobile IIS. The two low-

level RQs explored the user experience and comparisons between field and simulation

behaviour. Our findings show that the user experience is perhaps not as bad as one

might think for a system involving user prompting and burden. The most novel aspect

of the work is the validation of simulation, as this strengthens the case for using simu-

lation of user behaviour in IIS – particularly when reliable empirical data is difficult or

laborious to collect. We have also shown that users do not interact very often with the

mobile IIS, which is different to more traditional desktop IIS that hold users’ attention.

This is perhaps not surprising, but it does highlight the differences in user interaction

between desktop and mobile IIS.

Work still needs to be done in order to fully answer RQ 6, however, including direct

comparisons between desktop and mobile IIS. This work could also better inform the

development of simulation models (ours was a simple stochastic Bernoulli model) and

ranges of such models could be compared so that researchers could select ones most

appropriate to their work in the future. Moreover, a richer analysis of user experience

could be undertaken, particularly given the recent focus on user experience in both

academia and industry. A more formal undertaking should be conducted that not only

identifies key metrics by which to measure user experience in mobile IIS, but also to

test a range of prompt strategies using these metrics in order to better design mobile

IIS interfaces.

5.2.9 Study Conclusion and Future Work

In this field study of the mobile place awareness system, we have shown that good

place inference performance can be achieved in the field with only a small amount

of user feedback and with the use of fewer resources than current RF fingerprinting

methods. Captured places are entirely user defined, with no restrictions places upon

size or labels. Moreover, the place models are malleable, and can evolve over time as

more location observations are associated with each place. Further findings show that,

although users typically respond to the minority of requests for feedback, this does not
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appear to adversely affect performance. By requesting user feedback at the moment

of transition between places, it appears that we can receive timely feedback with little

burden on the user’s part.

We have also shown that text-to-speech (TTS) prompting does not appear to affect

feedback request response rates or times, but a home screen widget that displays both

the device’s current inference and confidence – as well as allowing users to quickly

intervene with the inference – is a useful interface component for enabling user feed-

back on mobile devices. Although a home screen widget is a highly visible component,

the findings associated with it have implications for application-embedded user inter-

face components, e.g. enabling painless user feedback as a ‘side task’ within another

application.

Direct extensions to this work include the development of a hierarchy system of place

inference, where ‘places within places’ could be defined and classified according to the

certainty of each inference. 3 participants in our study mentioned the potential use-

fulness of this feature, and its possible improvement to the user experience. Although

this work has attempted to avoid restrictions upon user-defined places, a simple ‘this

in that’ hierarchical rule may offer improvement with little drawback associated with

applying restrictions to users’ place definitions.

Further extensions lie in the investigation of different inference confidence measures.

We used a probabilistic measure that was reasonably static, i.e. it relied on standard

but arbitrarily defined probability thresholds to determine if a inference was confident

or not. Other measures could be used, e.g. distance-based measures, and thresholds

could vary dynamically over time or respond to user feedback frequency, e.g. increasing

the leniency of the confidence intervals as user feedback frequency increases, and vice

versa. Furthermore – as was explained in the studies – further work could investigate

the impact on results of varying such thresholds and possible methods of learning them

for large scale deployment.

5.3 General Discussion

In this section, we discuss the extent to which we have contributed to answers for RQ

5 and RQ 6, as well as discussing some of the high level implications and limitations of

the work in this chapter.
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5.3.1 RQ 5: How can we elicit context feedback from users in a mobile

environment?

The performance and feedback behaviour results from our field study support the

results from Chapter 4 and suggest that user feedback has a positive effect on inference

performance. Through the feedback provided by feedback, the inference processes can

actively learn about users’ important context states and improve their performance

beyond what might be achievable through fully automated processes.

We should be careful to highlight, however, that our studies in this and the preceding

chapter concentrated on the concrete use case of place awareness and – although it

is feasible to generalise our approach to other context facets such as activities – more

work is needed to further answer this research question for other forms of context.

5.3.2 RQ 6: How do users interact with an interactive intelligent

mobile context aware system?

Our work in this chapter has shown that requesting user feedback at the moment of

context transition is a viable strategy for eliciting feedback in a mobile environment.

Moreover, we have shown that using speech audio prompts may positively affect feed-

back request rates and response times when compared to simple audio prompts; though

more work is needed to determine whether the effects are significant.

We have also shown that requesting feedback through a visible interface component

(in our case, a homescreen widget) can help elicit feedback when users interact with

their devices for other reasons. This further suggests that embedding feedback inter-

face components into other mobile applications may be a viable approach to feedback

elicitation in a mobile environment.

Further extensions to this work are needed to fully answer this question however. For

example, studying the effects of ‘earcons’ as well as TTS prompts on user feedback re-

sponse behaviour [75], or different input modalities for providing feedback, e.g. through

voice or gesture.

5.3.3 Implications

The key output from this work is an approach to real time mobile context awareness,

which uses users’ own labels and user feedback to enhance its context inference per-

formance. Although we have used the case study of mobile place awareness, our work

can generalise to further context facets, e.g. activity or social context awareness. The

work results in the following design recommendations for mobile place aware systems
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that utilise user feedback:

• Use inferred context transitions as triggers or events, e.g. for notifications, syn-

chronisation or application updates. These are independent of the place inference

components of our work, and they can be used for a large range of event-based

applications. We used them for triggering sensors and inference algorithms, as

well as prompting users when necessary. We have shown that they have a posi-

tive effect on inference performance, sensor ‘on time’ and the elicitation of user

feedback in the field.

• Use a combination of on-transition and periodic feedback requests. For on-

transition requests, using speech-based audio prompts may result in better feed-

back request responses.

• Use small embedded components within the device’s user interface that provide

visual indicators of context inference certainty. We used our home screen wid-

gets to both indicate the certainty level of place inference, and to enable simple

user feedback. Participants found this component useful, and it could certainly

generalise as an feedback component in multiple applications beyond place aware-

ness, e.g. activity recognition, on-device contacts management or social media

management.

We have also better explored the “Where” context facet, particularly in relation to the

‘place’ vs ‘space’ conjecture [86]. The work in this and the previous chapter has helped

in the understanding of context, and illustrates that even in a seemingly well-defined

facet, there is more to be explored (cf. Schmidt et al ’s argument that there is more to

context than location [208]).

5.3.4 Limitations

Our findings from both the simulation study in Chapter 4 and the field study in this

chapter clearly show that user feedback allows for good context capture, recognition

and learning in mobile context aware systems. What is less clear, however, are the

efficacy of methods used to elicit user feedback. In the place awareness field study, we

have only analysed a small set of modes for user feedback, but other modes, e.g. voice

or gesture input [241], could and should be considered in future research.

Furthermore, we have only analysed the performance of a place awareness system,

which is chiefly concerned with the “Where”, “Who” and “When” facets of context

awareness. We have not considered the “What” in our study, i.e. user activity, but our

approach can be generalised to other context facets and other use cases. For example,
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we could employ the same algorithms from Chapter 4 in RN feature space (we are not

constrained to R2 latitude longitude space) so that we can employ user feedback in the

capture, recognition and learning of further context facets.

Additionally, as discussed in Chapter 4, we have not considered the “Why” facet, which

contains more complex and harder to obtain data such as human emotion or intent.

We have alluded to the capture of meaning in place awareness, and this – as we have

said before – opens up the possibility of using active learning to transfer intent and

emotion data from the user to the machine intelligence, but more in-depth study is

needed to improve the understanding of the “Why” facet.

Other limitations lie in providing incentives for users. Although our studies have shown

that only a small amount of user feedback is required for good inference performance,

there is still the question of user burden during feedback. Without a tangible reward

for their efforts, users may quickly tire of feedback even if machine learning techniques

lessen the requirement for it over time. Eliciting feedback implicitly within applications

may help to alleviate this problem, e.g. embedding small widgets into application user

interfaces that allow users to quickly confirm their context.

5.4 Applications for this Work

The final part of this chapter reviews a list of potential applications for the work covered

in Chapter 4 and this chapter.

Although the key contributions of this thesis have focused upon the lower layers of our

layer model, we should always be aware of potential applications for our work. Here we

outline a set of potential applications directly related to mobile context aware systems.

We broadly describe these applications according to a set of high-level categories, in

which mobile context aware applications are commonly designed for.

5.4.1 Presence and Availability Applications

Presence and availability applications are fundamentally designed to communicate

users’ whereabouts to others. These may include basic location sharing applications,

e.g. Google Latitude5 or Foursquare6, or instant messaging services and presence aware-

ness services, e.g. Microsoft’s Office Communicator or Google Talk. The goal of these

applications is to relieve the burden associated with managing communication between

users, e.g. attempting to call someone and discovering that they are unavailable, by

5URL: http://www.google.com/latitude (Accessed 2012-10-28)
6URL: https://foursquare.com/ (Accessed 2012-10-28)
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communicating presence and availability over various channels.

Presence and availability applications are a key target application for context aware

systems. Indeed, the “Where are you?” application used in our field deployment

of the mobile place awareness system is a presence and availability application. By

communicating user-defined place labels between a set of close friends, family or work

colleagues, presence and availability can be shared without necessarily revealing exact

locations, e.g. a husband is likely to know immediately where his wife is when shown her

place label ‘Desk’. This has further implications for encouraging privacy in location-

based services, where awareness is communicated through shared knowledge of labels

[179] rather than an absolute reference, i.e. latitude and longitude.

At the time of writing, Google have started to utilise high-level place awareness as part

of the ‘Google Now’ service within their Android mobile operating system7. Here, users’

days are partitioned into ‘Home’ and ‘Work’, and services such as traffic or timetable

information are delivered to the user just before they depart from one to the other.

5.4.2 Recommendation Applications

One of the more popular applications for mobile context aware systems are recom-

mender systems. Hundreds of applications exist that recommend films, books, restau-

rants, attractions, friends, business connections and music based upon sensed and in-

ferred context [4]. The reason these applications are so popular lies in the economic

value of connecting the right people with the right product: manufacturers and service

providers want to sell their products and services, and consumers only want to buy

what is relevant to them. Any service or application that can broker such a trans-

action, i.e. enabling both a sale and customer ‘delight’, is valuable; hence there is a

substantial industry and a large body of research surrounding recommender systems.

Amazon’s recommendation engine is a ubiquitous presence on its website8, and Netflix

famously ran a competition for researchers to design its film recommendation algorithm

– the winner received $1M; Netflix received a world-class recommendation algorithm

[24]. Google uses location to tailor its mobile search results, with the goal of increasing

relevance, and its maps service can recommend nearby businesses and restaurants based

on location. These are only a few notable examples, but they serve to illustrate the

popularity of recommender systems.

Recommender systems are therefore an ideal application for mobile context awareness.

Both content-based and collaborative [5] recommender systems can make use of context

7URL: http://www.google.com/landing/now/ (Accessed 2012-10-28)
8URL: http://www.amazon.com (Accessed 2012-10-28)
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labels and knowledge of users’ real time context states. For example, user-defined

meaningful context labels could be more valuable to a content-based algorithm than a

location description or address, and collaborative algorithms could match similar users

based on the similarity of context labels. By increasing the level of personalisation,

recommendations could become more relevant to the end user.

5.4.3 Resource Saving Applications

Another popular objective for context aware applications is resource efficiency. By

‘resources’ we mean anything of value to the user that requires expenditure for func-

tionality, e.g. money, time, mobile phone battery power, processing capability or data

transfer. Particularly in the area of power saving on mobile devices, simple ideas such

as turning off power-intensive features on a device overnight to the switching of low-

consumption radio when in a period of low activity can have positive effects. Indeed,

many ‘task killer’ applications exist that allow users themselves to free up device re-

sources; thereby giving them control and an incentive for use.

5.5 Conclusion and Chapter Summary

In this chapter, we studied the feasibility of interactive intelligence in mobile context

aware systems, a key component of which is user feedback, i.e. the user affecting

automated inference by providing feedback directly to the inference processes through

a mobile user interface. User feedback can be seen as a component of active machine

learning [210], and it allows a human user – or ‘oracle’ – to be involved in key stages of

an automated inference process. We investigated interactive intelligence in the concrete

case of mobile place awareness, a currently popular research area within mobile context

aware systems.

In Chapter 4 we developed a place inference system using simulated user feedback.

This simulation approach allowed us to compare designs for a prototype place inference

system that utilised user feedback. Simulations are limited in their reflection of reality

however, and the purpose of this chapter was to design for interactive intelligence in

the field, and to gather field-based observations through our case study of mobile place

awareness.

We therefore built upon our work from Chapter 4 by defining a set of key user feedback

requirements that were used to design and implement a mobile device interface for user

feedback in the field. We also defined a set of user prompting mechanisms in order

to compare their effects on the elicitation of user feedback, and implemented a small
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place aware presence and availability application that used SMS to communicate places

between users.

We deployed our system in an observational field study, in which 10 participants used

the system for a 2-week period. During this study, we gathered data to analyse the

capture and learning of places, as well as the frequency and types of user feedback that

occurred. Following the field deployment, each participant’s place models were tested

as classifiers using previously unseen test data.

The key findings from this study showed that good place capture, recognition and

learning performance can be achieved with only a small amount of user feedback and

reasonable resource usage. A large number of places of various sizes were captured

across all participants, with a mean inference performance (F1 score) of 0.82. Moreover,

the performance and feedback results from the field study appeared to support those

from the simulations in Chapter 4. Other findings showed that prompting users actively,

i.e. with audio and haptic feedback at the moment of transition into a place, typically

elicits a faster feedback response than prompting them passively, i.e. with a silent

visual update to their home screen, although no significant difference in the amount

of feedback elicited between prompting approaches was found. There was also no

significant difference in feedback response rate or time when using text-to-speech (TTS)

prompts, in which place labels are ‘said’ by the device instead of using a default prompt

alert.

Participant feedback showed that participants were generally positive to the idea of

user feedback in automated place awareness. The majority of participants found the

feedback processes simple and not overly burdensome, and almost all felt that both

ACTIVE and PASSIVE prompts were helpful in encouraging user feedback. However,

there was a mixed response to the idea of mobile devices being aware of personally

meaningful places, and some participants were frustrated by the lack of hierarchical

awareness and the communication of inference uncertainty. Those participants that

used the “Where are you?” place awareness application appeared to like it, with many

citing it as a useful augmentation to traditional location sharing applications.

The final part of this chapter reviewed a set of application categories in which our

work could be usefully applied, with the “Where are you?” place awareness application

serving as an example of a presence and availability application. In conclusion, this

chapter addressed RQ 5 and RQ 6 through a field study of mobile place awareness with

interactive intelligence. We showed that good inference performance can be achieved

with only a small amount of user feedback – the majority of which is confirmatory, i.e.

users are simply telling the system that its inferences are correct. We also showed how

users respond to requests for feedback in the field using different request approaches

and audio prompt approaches.
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Chapter 6

Conclusion and Future Work

This dissertation has addressed a set of key issues related to the design and implemen-

tation of mobile context aware systems. In this chapter, we conclude the dissertation

by summarising the key motivations behind our work, the scope of the work and the

specific research questions that we addressed with the work. We then summarise our

contributions and describe how they address the specified research questions, before

analysing the work’s implications for mobile context aware systems, as well as specific

limitations of the studies that we undertook.

6.1 Dissertation Summary and Outcomes

The chief motivation of our work is the sheer popularity of mobile devices such as

smartphones and tablets in everyday life. Their use by so many people means that

there is opportunity to improve people’s lives through these devices. The benefits

of incorporating context awareness into mobile devices are becoming slowly realised

outside academia; systems such as Google Now and Apple’s Siri are good examples of

this, as they demonstrate how context awareness can be used to lessen the burden of

everyday tasks such as travelling and scheduling meetings with colleagues.

The key research problem that motivated our work is the lack of systematic design

principles in mobile – and indeed general – context aware systems. The field of context

awareness spans AI and HCI and, as such, it is a broad research area that is particularly

fragmented, i.e. researchers typically concentrate on either the HCI or AI principles;

few address the complex interactions between the two disciplines. This is the chief

motivation behind the emerging field of interactive intelligent systems (IIS) [105], which

studies the intersection between AI and HCI.

This dissertation has coupled these approaches together, provided a structure and
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addressed a set of practical issues associated with the implementation of mobile context

aware systems, namely: the availability of context sources and sensors in a mobile

environment; the difficulties of designing and implementing interactive intelligence on-

device; and how users may be able to assist in context inference and learning process

by providing feedback to the system.

The overarching question that our thesis addressed was:

• RQH: How can we improve the design and implementation of mobile context

aware systems?

Chapter 2 set the scene for the dissertation and reviewed key literature in the fields of

context awareness and mobile context awareness. A range of active research areas in

mobile context awareness were identified and used to derive a set of concrete research

questions to address our high level research question. We approached these questions

using a layer structure similar to ones so often seen in context aware systems (see

Section 2.6.1). Using this structure, our concrete research questions are grouped as

follows:

• Context sensing:

1. RQ 1: What entities might we consider as virtual context sensors?

2. RQ 2: To what extent does combining multiple context sensors affect sens-

ing performance?

• Interactive intelligence: the intelligence:

3. RQ 3: To what extent can we infer significant changes in context using

mobile devices?

4. RQ 4: To what extent can we infer and actively learn about context using

mobile devices?

• Interactive intelligence: the interaction:

5. RQ 5: How can we elicit context feedback from users in a mobile environ-

ment?

6. RQ 6: How do users interact with an interactive intelligent mobile context

aware system?

Chapter 3 – Context Sensing – addressed RQs 1 and 2 by describing the distinction be-

tween ‘physical’ and ‘virtual’ sensors of context. Physical sensors are typically hardware
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sensors that are designed for sensing a specific property, e.g. temperature or – more

abstractly – location. Virtual sensors are typically software services or applications

that are not designed for sensing, but can be used as such, e.g. social media or email

applications. In Chapter 3, we considered the everyday calendar as a virtual context

sensor and conducted a field study in an office to assess its fidelity performance. Our

findings showed that the calendar is a poor context sensor due to the inherent ‘noise’

of reminders and so-called placeholder events, i.e. events that appear in the calendar

but do not occur. For RQ 2, we fused a range of context sensors that are homogeneous

to the calendar’s data fields and showed that sensing performance can be significantly

improved through this approach.

One of the key problems in context awareness is knowing when to sense and infer

context; particularly in resource limited mobile devices. Chapter 4 – Interactive In-

telligence: the Intelligence – addressed RQ 3 by considering context as discrete states

in a finite state machine (FSM), with transitions between the states. By linking these

significant transitions to mobile device motion (something considered by Ho and Intille

for identifying activity transitions [92]), we considered the case study of identifying

transitions between users’ meaningful places with mobile devices. For this, we devel-

oped an approach to processing motion data and undertook a hybrid field/laboratory

study of users carrying mobile devices through sequences of their everyday places. We

systematically analysed how the parameters of our design affected transition inference

performance, and showed that good, real time transition detection performance can be

achieved.

We further addressed the design and implementation of the intelligence component of

interactive intelligence in Chapter 4. We approached RQ 4 by developing a context

inference and learning algorithm – triggered by context transitions – that incorporates

user feedback into the inference and learning process using a branch of machine learning

known as ‘active learning’ [210]. By continuing our case study of place awareness, we

applied this algorithm to data collected during another hybrid field/laboratory study of

users undertaking a week’s worth of transitions through sequences of their meaningful

places. Using a simulation of user feedback – seeded by survey data provided by partic-

ipants during the study – we systematically analysed how place inference performance

might vary in response to ‘natural’ user feedback in the field. We compared three al-

ternative implementations of the algorithm, showing that a probabilistic approach to

place classification – rather than a geometric approach – appears to be the superior

design choice.

In Chapter 5, we considered the interaction component of interactive intelligence in

mobile context aware systems. Here we addressed RQs 5 and 6 by implementing our

place awareness system on mobile devices in the field. Through a 2 week field study
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with a post hoc performance test, we showed that good place awareness performance

can be achieved with comparatively little user feedback – a finding which supported

the results of our simulation in Chapter 4 and contributes to answering RQs 4 and

5. We also designed a set of user interfaces to allow users to provide feedback in

our mobile place awareness system, and compared alternate request types and modes,

including: requesting feedback actively at the moment of transition vs requesting it

passively when they interacted with their devices; and, for active requests, comparing

how a simple audio prompt compared to a speech prompt (where the user’s own place

label was spoken to them at the point of transition). Our findings from the field study

showed that: active requests significantly improve user response time for the simple

audio condition, but no significant difference was observed for the speech condition.

There was also no significant difference in response rate for either prompt condition or

request type. We also showed that our approach used fewer sensing resources than the

current state of the art, and that the user experience was generally positive.

6.2 General Implications

There are several implications of the work in this dissertation. First, in reference to our

high level research question, the work can better inform the design and implementation

of mobile context aware systems. By structuring a mobile context aware system using

a layered approach at the design stage, designers can concentrate on developing each

of the layers independently of the others; agreeing only upon the interfaces between

them. At the implementation stage, developers can ask specific questions relating

to each layer, e.g. what sources and sensors can we use to satisfy our application

requirements, given our potential constraints? What inference and learning methods

can we use? Do we involve users in the inference process? If so, how? Second, our

work considers interactive intelligence in mobile context aware systems. Although

much of the existing work in mobile context awareness focuses on either intelligence,

i.e. context inference and learning, or user interaction, the intersection between the two

has largely been neglected; as it has until recently in desktop systems [219, 218, 220].

It is an important area however, as intelligence should be designed with interaction in

mind and vice versa. This is being somewhat addressed by the interactive intelligent

systems (IIS) community [105] due to its important implications for both intelligence

performance and user experience. Our work has implications for both the intelligence

and interaction components of mobile IISs.

The concrete implications of our work are as follows:

• For context sensing, designers should consider the fusion of multiple sensors
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in order to improve sensing performance. We showed how data fusion of the

calendar with other context data can improve sensing, and this has implications

for mobile context aware systems that connect to calendar systems. For example,

traffic monitoring systems can use the calendar with other context sensors, e.g.

location, to give predictive traffic updates with more confidence than simply

reading the calendar näıvely.

• For context inference and learning, designers should consider using context

transitions as triggers for more sophisticated inference processes that may also

involve expensive sensing processes. We showed how mobile device motion can be

used to infer transitions between users’ meaningful places, which has implications

for event-based triggers, e.g. triggering message synchronisation or notification

prompting at the moment of transition into a new place. Designers should also

consider involving the user in the inference and learning process by allowing the

user to give feedback, in real time, on the inferences. Not only does this increase

inference accuracy but, through the use of active machine learning techniques,

users need not provide large amounts of feedback to ensure good performance.

Indeed, as we have also shown through our mobile place awareness field deploy-

ment, users are unlikely to respond to the majority of requests for assistance but,

as we have also shown, active learning allows inference processes to be robust to

this.

• For user interaction, designers should – if user feedback can be incorporated

into the context inference and learning process– raise requests actively at the

moment of context transition using simple audio prompts (rather than speech

prompts) in addition to tactile and visual prompts. We have shown how this

results in faster prompt response times (though there appears to be no increase

in response rate), which allows feedback to be provided in real time whilst the

inference and learning processes are also executing in real time.

6.3 General Limitations

There are of course limitations to the work in this dissertation, and we summarise

them here as caveats to the aforementioned implications. These are wider limitations

than the individual limitations of each study (which are summarised in their relevant

chapters).

The first key limitation of this work relates to the collection of real world observation

data. We chose a range of methods according to each study, but collection remains a

challenge in research [22, 52, 156, 195]. For the calendar study in Chapter 3, we used
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a combination of ethnography – observing participants in their natural environment –

and self report with diary studies. Even with these approaches, we could not observe

reality to as fine a degree of granularity as we would have liked. For our studies on

context transitions and user feedback effects upon context inference in Chapter 4, we

used scripted tours of participants’ everyday place transition sequences for reliability

purposes – a common approach for this type of study, e.g. [117]. Scripted tours are

a hybrid approach with both laboratory and field components [195] that, although

they allow reliable capture of reasonably valid data, compromise on pure ecological

validity, i.e. the fully natural environment of a field study [156]. The simulation results

are further validated from the post hoc performance results from our field study in

Chapter 5, but these were also obtained using scripted tours (albeit without researcher

accompaniment), and methodology limitations should still be noted when interpreting

the results.

Another limitation relates to the generality of this work. For our studies, we necessarily

had to choose case studies for evaluating our designs which, although they provide

good data for analysis, do limit the generality of the results. One solution to this is to

evaluate designs in multiple case studies, something which we will discuss further in the

next section. Other generality issues to consider relate to our demographics, e.g. office

workers in the calendar study, or the student/office worker demographics in subsequent

studies, and also sample sizes. The laborious nature of capturing reality in our studies

meant that we could not collect data from large samples of participants. Although

similar to many other sample sizes in other UbiComp studies, e.g. [17, 50, 90, 117], we

are still aware that larger sample sizes would increase the validity of the work. Further

generality issues relate to mobile device types used in the studies: due to development

constraints, we were only able to use a single device type or operating system, e.g.

Android. Where possible, we tried to chose our participants based on their everyday

use of particular device (usually by using their own, e.g. the field study in Chapter 5)

but, again, we are aware that this restricted range may somewhat limit the validity of

our work.

6.4 High and Low Level Research Questions

Here we discuss the implications and limitations of taking reductionist approach to

the work in this dissertation. We began the dissertation by outlining a set of high-

level research questions. For each chapter, we broke these down into sets of low-level

questions in order to guide the tangible outputs of the research. There are of course

implications and limitations to this approach, particularly in relation to the general

impact and completeness in answering the original high-level questions.
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In each of the study and chapter discussions, we have outlined the direct implications

and limitations of the respective findings in the context of the higher level research

question for which the work was carried out. In each case we discussed the extensive

depth of the findings, but also their lack of breadth. We have partially answered each

of the high-level questions, but there is still scope for further, broader work in order to

better answer them in the long term.

In Chapter 3, we showed how our discovery that the calendar is a bad yet viable virtual

context sensor contributes to the high-level research question RQ 1, which asks what

might be considered a virtual sensor of context. The key limitation here lies in the

lack of similar study for other virtual sensors, e.g. email or social media. The next

stage to better address RQ 1 is to repeat our calendar study for a number of candidate

virtual sensors, particularly those listed in Figure 3.3. A long term objective might be

to formally catalogue virtual context sensors, along with a measure of quality relating

to each context facet.

Also in Chapter 3, we also showed how fusing multiple context data improved the overall

sensing performance compared to the calendar alone. This shows how a particular set of

sensors behaves when combined, which is the purpose of RQ 2. If this could be repeated

using different combinations of context sensors, as well as using different approaches to

data fusion, then the breadth of knowledge for RQ 2 could be increased beyond what

our findings have contributed.

In Chapter 4, we explored how well place transitions could be inferred using mobile

devices. Place transitions are an example of a more general context change, and RQ

3 asks how well such changes might be inferred using mobile devices. Our study used

motion to infer place change, and previous work has used motion to infer activity

change [92], but other transitions remain to be studied. To further contribute to RQ

3, other context changes need to be defined and sensor data utilised to determine the

extent to which general changes in context can be inferred.

In the latter half of Chapter 4, we explored RQ 4, which asks the extent to which we

can infer and actively learn about context using mobile devices. We studied the case of

place inference and active learning, and showed how inference performance is improved

through active learning. The chief implication of our findings relates to the ‘Why’ facet

of context: active learning could be used as a means of knowledge transfer between the

user and the intelligence for more complex data such as emotion or intent. Rather

than attempting to directly sense this data, which is demonstrably non-trivial [186],

active learning could be used to elicit it instead. Furthermore, using active learning in

data collection methods such as Experience Sampling [50] could ‘offload’ the burden of

collection from the user to the intelligence, thereby retaining high accuracy with lower

effort cost. There are areas that still need addressing in order to completely answer RQ
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4, however. Namely, looking at other use cases beyond place awareness, and comparing

further methods of active learning beyond the set that we explored [210].

In Chapter 5, we studied our mobile IIS – a place awareness system – in the field.

Here, we were concerned with RQs 5 and 6, which ask about user feedback elicitation

strategies and interaction in mobile IIS. Our findings showed that users are willing to

provide feedback, but the proportion of prompts responded to is low. However, this

did not adversely affect inference performance as intelligence is capable of functioning

in the face of low user feedback rates. We also showed that there is little difference in

elicitation strategies in a mobile environment and that the user experience is favourable.

These findings help to answer RQs 5 and 6 but again, there are further avenues of

research that are still required in order to fully answer them. Firstly, a range of

mobile IIS and users’ interactions with them should be studied in the field. This would

increase the breadth of mobile IIS knowledge and better inform designers of likely

user behaviour in relation to mobile IIS. Secondly, a standard set of feedback actions

should be produced. We discussed the lack of such actions in Chapter 5 [219]. Finally,

further output media and prompting strategies should be explored. We only considered

visual and audio media, but additional knowledge could be gained by studying tactile

prompts, or other forms of visual and audio prompts such as earcons [75].

In summary, our reductionist approach has yielded findings through deep exploration

with narrow scope. The limitation of this is therefore breadth and, to fully address the

high-level RQs, more breadth of work, rather than depth, is required.

6.5 From Layer Model to Architecture

In Chapter 2 and throughout this dissertation, we have used a layer model to guide

and structure the research in a modular fashion. We raised the question of whether the

layer model should be developed into a more formal software architecture for future

developers of mobile context aware systems. Extending the model from its current

state into such an architecture is certainly grounds for future work, but we have shown

through its application in our studies that it is useful as an abstract representation of

a mobile context aware system, and that it can be used to develop a fully functioning

system with formal APIs (in particular, the place awareness system in Chapter 5).

The first steps toward this might be to formalise and document a standard set of

APIs between the layers, and develop the underlying functionality of the lower layers

into libraries for various languages such as Java (for Android), Objective C (for iOS)

and C/C++ for native operation on mobile devices and other embedded systems. A

template for an API that could be engineered from the layer model is shown in Table

6.1. Here, each layer is a black box module with input and output methods based
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I/O Method Description

Sensing Layer

Output

Who

Raw context data from individual or fused
sensors.

What
Where
When
Why

Intelligence Layer

Input

(Sensing layer outputs)
Create

Context inference feedback from
interaction layer, i.e. actions in Chapter 5

Confirm
Correct
Delete
Reset
Relabel

Output

Who
Inferred context using richer data
structures, e.g. a ‘Who’ object listing
nearby people and their data.

What
Where
When
Why

Interaction Layer

Input
(Intelligence layer outputs)
(Device interaction inputs) Interaction data from user and application

interfaces

Output

Create

Mapping interaction events to strict
feedback actions, and outputting these
actions through the API.

Confirm
Correct
Delete
Reset
Relabel

Table 6.1: Abstract template for a software API for the layer model used in this dissertation.

around the Five Ws context model and the user feedback actions seen in Chapter 5.

The methods of each layer can be called independently of other layers. This modularity

allows developers to use smaller components of the model for their own needs, rather

than implementing the model as a whole.

Indeed, each layer could be treated as its own library, where developers might choose

to use the sensing layer on its own (and obtain context data from physical, virtual and

fused sensors through a sensing API), or feed their own data into the intelligence layer

and use its outputs for their own applications. The flexibility of the layered approach

means that developers need not be limited to using the entire architecture or nothing,

but can pick and choose according to their application requirements.
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6.6 The Five Ws as a Theory for Context?

Also in Chapter 2, we discussed how the Five Ws might form a good basis for a general

context theory. A standard theory of context is lacking in the literature, and it would

benefit the UbiComp community if a standard theory existed and its validity tested.

We discussed how the intuitive notion of the Five Ws might be a good candidate for

this.

How has the work in this dissertation furthered the theoretical understanding of con-

text? Although the work is very empirical, there are certain elements of theory that

have been advanced as a consequence of this work. Firstly, we have shown how the

Five Ws can naturally describe context facets in multiple studies (see the layer model

applied to the calendar in Chapter 3, and to place awareness in Chapter 4). Although

we did prioritise some facets over others for our studies, there is huge potential for

exploration of, for example, the ‘Why’ facet in relation to inferring human emotion

and intent. Secondly, we have shown how context data sources and sensors can map to

the Five Ws (Chapter 3) – both for physical and virtual sensors.

Of course there are elements of context that are difficult to define and model, and

need further consideration in the development of a context theory. An example of

this is concurrency – how do we define what might be considered parallel context, e.g.

multiple instantiations of activity and continual transitions?

Nevertheless, there is a clear need for a standard context theory in UbiComp, and the

work in this dissertation has shown how the Five Ws method might contribute towards

such a theory.

6.7 Future Work

The work in this dissertation has contributed to the field of mobile context awareness,

but there are still plenty of extensions to be made as well as directions for future

work. To extend the context sensing work in Chapter 3, we could investigate further

combinations of context sensors and the effects of their fusion on sensing performance.

By considering software applications and services as virtual context sensors, there are

innumerable possibilities for data fusion. We could further study the fidelity of unusual

virtual sensors, e.g. measuring the performance of a user’s Twitter feed or Facebook

data as context sensors, and develop a set of standard metrics for measuring the quality

of an entity as a context sensor. These metrics could then be used to aid designers in

their choice of sensors in mobile context aware systems.

In Chapter 4, we evaluated our transition inference approach using the case study of
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place awareness. This is only one facet of context – the “Where” – and further work

should be undertaken to extend detection inference from other facets, e.g. the “What”

from activity transitions, which has been explored using body-worn motion sensors

[92], but not mobile device sensors. The application of transition detection is broad, as

it the transitions can be used as triggers for higher order processes. For example, we

could study how responsive users are to unread message notifications when reminded on

transition vs when the message arrives. We could even use the transitions as triggers in

experience sampling; by prompting users for experience feedback on-transition rather

than at random or periodically [51].

Also in Chapter 4, we developed a context inference and learning algorithm that: (i)

was triggered by context transitions; and (ii) incorporated user assistance into the

inference and learning process by prompting for user feedback when context reasoning

was uncertain, i.e. a form of active machine learning. We applied our algorithm to place

awareness once again, but we could further apply it to other use cases, e.g. museum

tours, or incorporate other users’ learned models of places to produce aggregate places –

something that is beginning to gain interest in the literature, e.g. crowd sourced activity

inference [132]. One of the limitations in our comparison of classification approaches

in Chapter 4 was the duration of data collection, which goes some way to explaining

the lack of difference between using an Hidden Markov Model and Bayesian Classifier.

Thus, a further avenue of study lies in obtaining longer, fine-grained datasets upon

which to test the efficacy of HMM-based classification.

In Chapter 5, we implemented our algorithm on the Android operating system and

deployed in a field study with a view to observing how different approaches to and

modes of user prompting affected feedback elicitation. Clearly other modes are possible

for enabling feedback, e.g. gesture or more sophisticated tactile feedback, and further

study could uncover the efficacy of these modes on obtaining intervention in the field.

One of the key areas for future work here is the development of applications that can

implicitly provide feedback from the user to the inference process, e.g. prompting the

user within an application while another process is loading. It would be interesting to

identify key moments such as this within applications and further measure how users

respond to feedback requests during these moments.

There are two other areas for further study: (i) resource efficiency; and (ii) applica-

tions. For (i), we showed how our approach to place awareness is significantly more

resource efficient than the state of the art, but further improvements could be made to

reduce power and memory consumption. One direction of further study could be, for

example, to develop sensing policies that optimally balance energy consumption with

the requirement for sensed data; similar to approaches taken recently by Li et al. [136].

For (ii) – developing further mobile context aware applications – is an ongoing and

224



popular research area. Much of the existing work in mobile context awareness concen-

trates on underlying technologies to enable context awareness, but comparatively little

is done at the application level. We have presented a few prototype applications, but –

with the exception of the “Where are you?” SMS application in Chapter 5 – none were

systematically evaluated or user feedback sought. One of the primary areas for new

research, therefore, is the further development of mobile context aware applications.

Indeed, such developments would further take us towards the goal of making people’s

lives easier.
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Calendar Study Consent Form 
Tom Lovett 

Study Overview 
In this study, we will be exploring your calendar use in the office and comparing other data with it – 

namely basic location data from mobile phones and contacts data from your email account. For the 

study, we ask that you carry a mobile device with you (we will provide the device) when you are in 

the office, and for you to keep a written diary of meetings that you attend. A researcher will show you 

the data that you need to record, but please record all meetings – however spontaneous or informal 

they may be. There will also be a weekly interview session with a researcher, during which the 

researcher will go through your calendar entries for the preceding week and compare them with their 

observations and your diary. 

Please be aware: for their observations, the researchers will be monitoring your local team area and 

recording meeting data throughout the study (see the Data Collection section below). If you are 

uncomfortable with this, please do not consent to the study. 

The study will last for 6 working weeks, and researchers will be on hand throughout for you to ask 

any questions. You do not need do anything beyond carrying your device, recording your important 

events in your diary and participating in the weekly interviews. Please try to keep your mobile device 

charged whenever you can as their batteries are likely to drain quickly. 

Data Collection 
In addition to your diary data and our observation data, the following data will also be collected and 

stored during the study: 

• Location data: this is a log of the Bluetooth ID of your mobile device over time. We will store 

the ID along with time records of observations from our static devices placed in your office. 

• Email contact data: we will be storing your personal (not global) email contacts from your 

Outlook application on our server. These will be stored anonymously; identified only by a 

unique alphanumeric contact id. You and other participants in the study will have our 

uniquely assigned ID linked to this unique ID. 

• Calendar event data:  we will also be storing your calendar data from your Outlook 

application on our server. These will be stored exactly as you see them in Outlook, but 

contacts will be assigned an anonymous unique ID. The event names will be stored in plain 

text, however. 

Your data will be stored anonymously, and will not knowingly be shared with any third parties. It will 

not be used to identify you to anybody. It will not be passed on to anyone within your company who 

is not involved in this research project, e.g. managers or executives. 

 

 



Personal Data 
ID .......................................................................... 

Age .......................................................................... 

Sex .......................................................................... 

Nationality .......................................................................... 

Role .......................................................................... 

 

Consent 
Name: .......................................................................... 

Signature: .......................................................................... 

Date: .......................................................................... 

 

 

Diary Meeting Template 
 

Participant ID: 

Meeting Name (leave blank if no name): 

Start time (day/month/year hh:mm): 

End time (day/month/year hh:mm): 

Location (please be as precise as possible): 

Attendees: 
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Place study consent form

Tom Lovett

1 Overview
The study is conducted in two parts:

1. A short interview

2. A field study

Both parts are about identifying the moments at which you enter and exit daily places that are
meaningful to you. During the interview, the researcher will ask you to describe your typical day in
terms of visits to your meaningful places and activities performed while in these places, before asking
you to identify a set for you to perform.

During the field study, the researcher will either – depending on the capabilities of your personal
mobile device – provide you with a mobile device with a pre-installed application, or install the appli-
cation on to your personal mobile device. This application will be continuously logging data from a
set of motion sensors on the device. The researcher will then ask you to undertake your identified se-
quence of place visits whilst carrying the mobile device. Each visit must last at least 5 minutes, during
which you should perform your identified activity (or activities) as you normally would outside this
study. During the study, the researcher will be monitoring you and recording data about your visits;
you will be asked to identify the moment in time at which you consider yourself to have entered or
exited each place.

2 Information
During the study, the following data will be recorded:

• Details on your activities and places as described by you, and as recorded by the researcher.
Only your place labels will be recorded, not their location.

• Details on your motion as recorded by the mobile device motion sensors.

These data will be stored in a pseudo-anonymous format: the only identifying feature will be your
initials, and these will only be used by the researcher for identifying data sets. Any results published
will be anonymous. The data will not be passed to third parties.

If you agree to participate in this study as described, please indicate your agreement by writing
your name and email address below, followed by your signature and the date. Thank you for you
participation in this research.

Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Email . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1
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Place Sequence Consent Form

Tom Lovett

1 Study Overview

This study aims to capture data about your personally meaningful places using a mobile device. A
‘meaningful’ place is an area which has particular personal meaning to you when you are present at it.

Prior to the study, we will install an application onto your mobile device which will log data through-
out the study. You will then be interviewed by a researcher who will ask you to identify a typical week’s
worth of meaningful places and activities performed within each place in the sequence that you would
visit them. Once this place sequence has been identified, you will be asked to physically undertake the
sequence whilst carrying your device. Just prior to this, you will be required to undertake a short training
session (no more than 5 minutes) to calibrate your device.

During the place visits, you will be asked to rate how likely you would be – given your location,
activities and surrounding noise levels – to respond to an audio/vibratory notification from your mobile
device. This should be rate on a ‘high’ and ‘low’ scale, and a researcher will provide you with the
equipment to do this.

While you undertake your place visits, we ask that you stay at each place for at least 5 minutes
and perform the activities that you identify in the interview at each. Please try to carry your mobile
device exactly as you would outside the study. A researcher will be following you at a short distance and
recording what you do as you go along. You are free to withdraw from the study at any time, and we
thank you for your participation.

2 Data Collection

Throughout the study, the device will be collecting various forms of data, namely:

• Time-stamped location data, in the form of latitude-longitude coordinates.

• Place labels specified by you.

• Your sequence of places and activities

• Your rating of how likely you would respond to notifications at any given place.

The location data is stored locally on the device only. It is not knowingly sent remotely to
anyone. After the study, it will be removed from your device by a researcher using a USB cable under
your supervision. It will then be purged from your device.

The data is anonymous, i.e. your identity is not stored, and will be identified using a unique number.

3 Demographics

• ID: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• Age: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• Sex: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• Nationality: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• Occupation: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1



4 Consent

I agree to undertake this study, knowing that I may withdraw at any time.

Name: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Signature: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Date: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Appendix C

Chapter 5 Companion

This appendix contains the consent form for the field study in Chapter 5, as well as raw

data on participants’ places as collected during study. Section C.1 contains the consent

form, and Section C.2 consists of one place table per participant, each containing data

on place labels, place sizes and user actions for each place. There is also a column

indicating which places were included in the participant test runs.

Section C.3 consists of one distance matrix per participant, each containing data on

distances between test places.

C.1 Study Consent Form and Test Instructions
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Place Recognition Consent Form

Tom Lovett

1 Study Overview

This study aims to capture and learn about your personally meaningful places using a mobile device. A
‘meaningful’ place is an area which has particular personal meaning to you when you are present at it.

Prior to the study, we will install an application onto your mobile device which will – throughout the
study – attempt to recognise these meaningful places, requiring your help to do so.

Your task, therefore, is to tell the device about these places when you are present in them. The device
will sometimes notify you audibly and visually (using the widget on your homescreen) when it requires
your feedback, but at times it will silently recognise your places and not notify you.

You can intervene in the device’s current decision using a variety of methods, and you can edit the
recognised places throughout the study; we will give you a full set of illustrated instructions and a
training session on how to do this.

Finally, the application contains a small SMS service that will allow contacts selected by you to
receive your device’s current or latest place estimate when they send an SMS to you containing various
forms of the phrase “Where are you?”.

You are free to withdraw from the study at any time. If you do complete the study, you will be paid
£20.00 for your time and effort.

2 Data Collection

Throughout the study, the device will be collecting various forms of data, namely:

• Time-stamped location data, in the form of latitude-longitude coordinates.

• Place labels created by you.

• A history of your interventions.

This data is stored locally on the device only. It is not knowingly sent remotely to anyone. After
the study, it will be removed from your device by a researcher using a USB cable under your supervision.
It will then be purged from your device.

The data is anonymous, i.e. your identity is not stored, and will be identified using a unique number.

3 Demographics

• ID: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• Age: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• Sex: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• Nationality: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• Occupation: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1



4 Consent

I agree to undertake this study, knowing that I may withdraw at any time. I also acknowledge that I
will be paid £20.00 if I complete the study in full.

Name: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Signature: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Date: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2



Place Testing Instructions

Tom Lovett

1 Test Overview

Thank you for completing the first part of this study. For this part, please install a test application that
will be provided to you by a researcher. The application is simple, and the researcher will show you how
to use it.

For testing:

• Please think of a few meaningful places that are within walking distance from you now. Once
you have done this, please write them down on a separate sheet of paper provided to you by a
researcher.

• Next, please identify a natural path between these places. You do not need to visit a place more
than once.

• Next, please write down a list of places along the identified path that are not meaningful to you.

• Now, you will be asked to follow your identified route and at each place along this route – both
meaningful and not meaningful – you will be asked to open the test application on your mobile
phone, select the place (or ‘non-place’) from the menu, and press the ‘Sample’ button. Each time
you press ‘Sample’, place the device in a natural position according to how you would normally
carry it in each spot, e.g. in your pocket or a bag.

Please do this 5–10 times in each place but do not take samples whilst standing at the same spot;
rather, move to separate locations within each place before pressing ‘Sample’ again. These separate
locations should be plausible, i.e. locations that you would likely visit in each place, not random
locations.

Once you have finished your route, return to the researcher. The test application and its data will then
be removed from your device. The original application used in the first part of the study will also be
removed. All data related to this study will be purged from the device.

Once done, you will be asked to fill in a short survey on your study experience. Thank you again for
your participation.

2 Demographics

• ID: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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C.2 Participants’ Places
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Label Tested CONFIRMED CORRECTED DELETED RELABELLED SIZE

1 Desk 1 29 14 0 0 <ROOM
2 Kitchen 1 0 3 0 0 ROOM
3 Costa 1 1 2 0 0 ROOM
4 Home 0 48 0 0 1 BUILDING
5 Home upstairs 0 0 5 1 0 ROOM
6 Alex’s house 0 8 0 0 0 BUILDING
7 Pitstop 0 0 0 0 0 ROOM
8 Music room 1 11 0 0 0 ROOM
9 Sainsbury’s 0 0 1 0 0 BUILDING

10 Claverton rooms 1 5 0 0 0 ROOM
11 Tiki 0 2 0 0 0 ROOM
12 Kate’s house 0 27 0 0 0 BUILDING
13 Town 0 11 0 0 0 >BUILDING
14 ICIA 1 2 0 0 0 ROOM
15 SU upstairs 1 0 0 0 0 ROOM
16 Balcony 1 1 0 0 0 <ROOM
17 Parade 0 4 3 0 0 BUILDING

Label Tested CONFIRMED CORRECTED DELETED RELABELLED RESET SIZE

1 Desk 1 16 57 0 0 2 <ROOM
2 Procrastination chairs 1 13 14 0 0 3 <ROOM
3 HCI Lab 1 20 48 0 0 2 ROOM
4 Costa 1 10 1 0 0 0 ROOM
5 Loo 0 0 0 1 0 0 ROOM
6 Kitchen 0 0 2 1 0 0 ROOM
7 Bus stop - uni 1 4 0 0 0 0 ROOM
8 Home 1 67 0 0 0 0 BUILDING
9 Bus stop - home 0 5 0 0 0 0 ROOM

10 Fresh 1 3 0 0 0 0 BUILDING
11 Kitchen 0 5 13 0 1 0 ROOM
12 Gym 0 12 1 0 0 0 BUILDING
13 Town 0 12 0 0 0 0 >BUILDING
14 Balcony 0 0 0 1 0 0 <ROOM
15 Parade bar 0 4 0 0 0 0 ROOM
16 balcony 1 0 3 0 0 0 <ROOM
17 bath spa station 0 1 1 0 0 0 BUILDING

Label Tested CONFIRMED CORRECTED DELETED RELABELLED RESET SIZE

1 work.working 1 18 37 0 1 1 <ROOM
2 work.procrastinating chairs 0 0 0 1 1 0 <ROOM
3 on the bus home 0 4 0 1 1 0 <ROOM
4 sainsburys town 0 4 0 0 0 0 BUILDING
5 home 0 88 0 0 0 0 BUILDING
6 Med center 1 0 1 0 0 0 BUILDING
7 hci lab 0 0 2 1 0 0 ROOM
8 su 0 1 0 0 0 0 BUILDING
9 moorland road 0 6 0 0 0 0 >BUILDING

10 bus stop for home to uni 0 2 0 0 0 0 ROOM
11 uni bus stop 1 2 0 0 0 0 ROOM
12 Tkd dojo 0 2 0 0 0 0 ROOM
13 Victoria park 0 0 0 0 0 0 >BUILDING
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Label Tested CONFIRMED CORRECTED RESET SIZE

1 Kitchen 0 0 3 0 ROOM
2 Desk 1 16 26 0 <ROOM
3 Uni bus stop 1 2 3 1 ROOM
4 Home 0 28 1 0 BUILDING
5 Stv 1 3 0 0 BUILDING
6 Hci lab 1 0 9 0 ROOM
7 Morrison’s 0 0 0 0 BUILDING
8 Swindon 0 0 0 0 >BUILDING
9 London 0 2 0 0 >BUILDING

10 City’s Bus stop 0 0 0 0 ROOM
11 Green outside office 1 0 0 0 ROOM
12 Toilet 1 0 0 0 ROOM
13 Jjb bus stop 0 0 0 0 ROOM

Label Tested CONFIRMED CORRECTED SIZE

1 desk 1 66 1 <ROOM
2 breakout 1 0 3 <ROOM
3 printers 1 1 7 <ROOM
4 RnD room 2 1 0 1 ROOM
5 kitchen 0 0 2 <ROOM
6 bike shed 1 0 0 ROOM
7 home 0 15 0 BUILDING
8 coffee shop 1 2 0 ROOM
9 Baird house mtg room 1 0 0 BUILDING

10 Nby train station 0 1 0 BUILDING
11 vf Paddington 0 8 0 BUILDING
12 Restaurant 1 3 0 ROOM
13 nby Waitrose 0 0 0 BUILDING
14 one stop 0 1 0 BUILDING
15 sun in wood. pub 0 7 0 BUILDING
16 Babbage house 1 0 0 BUILDING
17 ground floor breakout 1 0 0 <ROOM

Label Tested CONFIRMED CORRECTED RELABELLED SIZE

1 Desk 1 6 0 0 <ROOM
2 Emma’s House 0 0 0 0 BUILDING
3 Home 0 5 1 0 BUILDING
4 Coop 0 0 0 0 BUILDING
5 Beautician 0 0 0 0 BUILDING
6 STV 1 2 0 0 BUILDING
7 library 1 0 0 0 BUILDING
8 Costa SU 1 0 0 0 ROOM
9 World’s best coffee shop 0 0 0 1 ROOM

10 Kai’s Flat 0 27 0 0 BUILDING
11 Peckham Rye Station 0 3 0 0 BUILDING
12 Hyde Park 0 1 0 0 >BUILDING
13 Olympic Park 0 1 0 0 >BUILDING
14 Clapham Junction Station 0 1 0 0 BUILDING
15 Eton Dorney Canoe Sprint Venue 0 0 0 1 >BUILDING
16 Windsor + Eton Riverside 0 0 0 1 >BUILDING
17 Roskilde Hotel 0 5 0 0 BUILDING
18 Roskilde University PDC2012 0 1 0 0 BUILDING
19 Copenhagen airport 0 1 0 0 BUILDING
20 Paddington Station 0 0 0 0 BUILDING
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Label Tested CONFIRMED CORRECTED RELABELLED SIZE

1 desk at work 1 23 28 0 <ROOM
2 Costa coffee 1 3 4 0 ROOM
3 home 0 30 0 0 BUILDING
4 bus stop in town 0 3 1 0 ROOM
5 HCI Lab 0 0 0 0 ROOM
6 SU Shop 1 0 0 0 ROOM
7 uni bis stop 1 1 2 0 ROOM
8 tiki coffee 0 2 0 0 ROOM
9 balcony seats 0 0 2 0 <ROOM

10 Southgate shopping... 0 1 0 0 BUILDING
11 small park 0 0 0 0 >BUILDING
12 Starbucks next to bus stop 0 0 0 0 ROOM
13 Tesco 0 2 0 0 >BUILDING
14 East Building 1 4 6 1 BUILDING
15 east building chairs by kitchen 0 0 0 0 <ROOM
16 mums house 0 10 0 0 BUILDING
17 Greek market maidstone 0 1 0 0 >BUILDING
18 maidstone 0 0 0 0 >BUILDING
19 Nero maidstone 0 0 0 0 BUILDING

Label Tested CONFIRMED CORRECTED SIZE

1 Vodafone meeting tables 1 0 0 <ROOM
2 Tom’s desk 1 2 1 <ROOM
3 Kevs desk 1 0 7 <ROOM
4 VF canteen outside 1 0 0 ROOM
5 Home 0 41 0 BUILDING
6 Sanctus drive 0 7 0 ROOM
7 Thatcham bus stop 20 0 2 0 ROOM
8 VF bus stop 1 2 0 ROOM
9 Printer 1 0 0 <ROOM

Label Tested CONFIRMED CORRECTED SIZE

1 Home 1 34 0 ROOM
2 Post Office 0 0 0 BUILDING
3 Work 1 17 0 BUILDING
4 Work Car Park 1 0 1 BUILDING
5 Waterloo Car Park 1 2 2 BUILDING
6 Wedding 0 0 0 ROOM
7 Ant’s House 0 0 0 BUILDING
8 Storyteller’s 1 0 0 ROOM
9 Wedding reception 0 0 0 BUILDING

10 M&S 1 0 0 BUILDING
11 Fat face 1 0 0 ROOM
12 Tom’s Parents 0 15 0 BUILDING
13 Coffee no.1 0 0 0 BUILDING
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Label Tested CONFIRMED CORRECTED DELETED RESET SIZE

1 Home 0 19 0 1 4 BUILDING
2 Home 1 52 0 0 0 BUILDING
3 Starbucks 0 1 0 0 0 BUILDING
4 Desk 1 30 5 0 0 <ROOM
5 Kitchen 1 0 2 0 0 ROOM
6 Chairs 1 0 2 0 0 <ROOM
7 Fresh 1 1 0 0 0 ROOM
8 Library 1 0 0 0 0 BUILDING
9 Costa 1 1 0 0 0 ROOM

10 Meeting area 1 0 0 0 0 <ROOM
11 Desk 1 11 0 0 1 <ROOM
12 Printer 0 0 1 0 0 <ROOM
13 South tables 0 0 0 0 0 <ROOM
14 Kitchen 0 1 2 0 1 <ROOM
15 Wedding 0 0 0 0 0 BUILDING
16 Daphne 0 0 0 0 0 BUILDING
17 Ant’s 0 0 0 0 0 BUILDING
18 Storyteller 0 0 0 0 0 BUILDING
19 Wedding reception 0 0 0 0 0 >BUILDING
20 M and S 0 0 0 0 0 BUILDING
21 Finance 1 0 0 0 0 BUILDING
22 Parents 0 2 0 0 0 BUILDING
23 Red Lantern 0 1 0 0 0 BUILDING
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C.3 Test Place Distance Matrices

The following matrices contain approximate distances in metres between test places

(one matrix per participant).

Desk Kitchen Costa Music.room Claverton.rooms ICIA SU.upstairs Balcony

Desk 0 160 220 340 400 300 220 0
Kitchen 0 360 500 540 440 360 40

Costa 0 140 180 80 0 360
Music room 0 60 80 140 500

Claverton rooms 0 100 180 540
ICIA 0 80 440

SU upstairs 0 340
Balcony 0

Desk Procrastination.chairs HCI.Lab Costa. Bus.stop...uni. Home Fresh balcony

Desk 0 20 20 360 180 2840 680 0
Procrastination chairs 0 20 400 200 2840 700 0

HCI Lab 0 380 180 2820 680 20
Costa 0 180 2620 320 380

Bus stop - uni 0 2700 500 200
Home 0 2460 2840
Fresh 0 700

balcony 0

work.working. Med.center. uni.bus.stop.

work.working 0 640 60
Med center 0 640

uni bus stop 0
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Desk Uni.bus.stop Stv Hci.lab Green.outside.office Toilet

Desk 0 140 100 0 360 20
Uni bus stop 0 160 140 500 160

Stv 0 100 420 120
Hci lab 0 360 20

Green outside office 0 340
Toilet 0

desk breakout printers RnD.room.2 bike.shed coffee.shop Baird.house.mtg.room Restaurant Babbage.house ground.floor.breakout

desk 0 20 20 20 80 120 140 80 60 20
breakout 0 0 0 100 100 120 80 60 0
printers 0 0 80 100 120 80 40 20

RnD room 2 0 80 100 120 80 60 20
bike shed 0 200 180 160 60 100

coffee shop 0 80 40 140 100
Baird house mtg room 0 80 120 120

Restaurant 0 100 60
Babbage house 0 60

ground floor breakout 0

Desk STV library Costa.SU

Desk 0 180 380 260
STV 0 460 380

library 0 60
Costa SU 0

desk.at.work Costa.coffee SU.Shop uni.bis.stop East.Building

desk at work 0 260 280 100 80
Costa coffee 0 20 160 340

SU Shop 0 180 360
uni bis stop 0 180

East Building 0

Vodafone.meeting.tables Tom.s.desk Kevs.desk VF.canteen.outside VF.bus.stop Printer

Vodafone meeting tables 0 500 480 460 540 460
Tom’s desk 0 20 60 80 40
Kevs desk 0 60 80 20

VF canteen outside 0 80 80
VF bus stop 0 100

Printer 0

Home Work Work.Car.Park Waterloo.Car.Park Storyteller.s M.S Fat.face

Home 0 27060 26820 100 24180 300 720
Work 0 440 26960 3360 26920 26660

Work Car Park 0 26740 3360 26700 26440
Waterloo Car Park 0 24080 220 620

Storyteller’s 0 24040 23740
M&S 0 420

Fat face 0

Home Desk Kitchen Chairs Fresh Library Costa Meeting.area Desk Finance

Home 0 55040 55040 55040 55460 55300 55260 55020 78760 55500
Desk 0 20 20 680 440 360 40 111620 700

Kitchen 0 0 680 440 360 40 111640 700
Chairs 0 680 440 360 40 111640 700
Fresh 0 240 320 660 112300 40

Library 0 80 440 112060 260
Costa 0 360 111980 340

Meeting.area 0 111640 680
Desk 0 112320

Finance 0
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C.4 Raw Location Accuracy Data

Figure C.1 shows the raw location accuracy data for the participants during field de-

ployment, grouped by location provider.
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Figure C.1: Location accuracy, i.e. metres radius, of all location samples over the participants
and location sensors.
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