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Summary

Condition based maintenance is becoming increasingly popular in many industrial con-

texts, offering substantial savings and minimising accidental damage. When applied to

rotating machinery, its most common tool is vibration analysis, which relies on well-

established mathematical models rooted in the theory of cyclo-non-stationary processes.

However, the extraction of diagnostic information from the real world vibration signals

is a delicate task requiring the application of sophisticated signal processing techniques,

tailored for specific machines operating under restricted conditions. Such difficulty in

the current state of the art of vibration analysis forces the industry to apply methods

with reduced diagnostic capabilities but higher adaptability. However in doing so most

of the potential of vibration analysis is lost and advanced techniques becomes of use

only for academic endeavours. The aim of this document is to reduce the gap between

industrial and academic applications of condition monitoring, offering ductile and au-

tomated tools which still show high detection capabilities. Three main lines of research

are presented in this document. Firstly, the implementation of stochastic resonance

in an electrical circuit to enhance directly the analog signal from an accelerometer,

in order to lower the computational requirements in the next digital signal process-

ing step. Secondly, the extension of already well-established digital signal processing

techniques, cepstral prewhitening and spectral kurtosis, to a wider range of operating

conditions, proving their effectiveness in the case of non-stationary speeds. Thirdly,

the main contribution of the thesis: the introduction of two novel techniques capable

of separating the vibrations of a defective component from the overall vibrations of the

machine, by means of a threshold in the amplitude spectrum. After the separation, the

cyclic content of the vibration signal is extracted and the thresholded signals provide

an enhanced detection. The two proposed methods, phase editing and amplitude cyclic

frequency decomposition, are both intuitive and of low computational complexity, but

show the same capabilities as more sophisticated state of the art techniques. Further-

more, all these tools have been successfully tested on numerically simulated signals as

well as on real vibration data from different machinery, lasting from laboratory test

rigs to wind turbines drive-trains and aircraft engines. So in conclusion, the proposed

techniques are a promising step toward the full exploitation of condition based main-

tenance in industrial contexts.

Keywords: vibration analysis - condition monitoring - cyclo-non-stationary vibrations

- variable speed - phase editing - amplitude cyclic frequency decomposition.
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Chapter 1

Introduction

Nomenclature

b(t) vibrations from bearings g(t) vibrations from gears

n(t) vibrations from other components v(t) total vibrations

Tim,p(t) occurrence time of pth impact Θ angular separation between impacts

Ψ random angular jitter between impacts fsh,k(t) mean shaft rotational speed

mb(t) impulse response of single impact w(t) white noise

h(t) impulse response of band pass filter fl, fh cut off frequencies

a exponential decay constant Dp random amplitude of impact

eA,B(t) vibrations from wheels A,B m(t) vibrations from meshing of wheels

EA,B amplitude of vibrations from wheels re harmonic order of A,B

α, θ, β, γ phases of vibrations fA,B rotational speed of A,B

NA,B number of teeth M amplitude of meshing

rm harmonic order of meshing rc harmonic order of phase modulation

rd harmonic order of amplitude modulation CA,B amplitude of phase modulation

DA,B amplitude of amplitude modulation mg(t) impulse response of vibrations from gears

Svv(l, f) spectral correlation of v(t) SESv(l) squared envelope spectrum of v(t)

SKw
v spectral kurtosis of v(t) rcv(q) real cepstrum of v(t)

cpwv(t) cepstral prewhitening of v(t) rkm Kramers rate

∆U height of potential barrier TΩ period of forcing

~F [v(t), tu] vector of features tu utilisation time

1.1 Motivation

The constant demand for a stable economy and high living standards has motivated

technological developments to ensure the reliability and the efficiency of industrial as-

sets. In this context, maintenance has a pivotal role ensuring the maximal performance

of all the machines within the asset and avoiding their failure, or ultimately a com-
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plete breakdown. Historically, maintenance was implemented following a preventive

strategy: interventions on the machines are carried out at predetermined intervals, ac-

cording to criteria recommended by the machine supplier, such that the likelihood of

failure between maintenance interventions is minimised. However preventive mainte-

nance has evident economical disadvantages. As a matter of fact the full life of the

various components is not exhausted, because interventions are scheduled more fre-

quently than needed, resulting in a greater use of spare parts and added maintenance

costs. For this reason, in a wide range of industries, the strategy is changing from

preventive to condition based maintenance. As the name suggests, the idea consists

of scheduling maintenance interventions based on the technical condition of machines,

while they are in operation. The advantages with respect to the traditional preven-

tive strategy, besides the economical ones, are an increased reliability and real-time

monitoring [Al-Najjar, 2007]. Condition based maintenance needs methods able to

both:

1. determine the current condition of the machine, i.e. condition based monitoring

2. give an indication on its remaining useful life, i.e. prognostics

The condition of the machine is monitored by means of a three step procedure. Firstly,

data are gathered using transducers to measure different physical characteristics of the

machines such as vibrations, temperature, acoustic emissions. Secondly, the acquired

data are mapped into a feature space using digital signal processing algorithms. Finally,

features are classified based on the previous history of the machine and the condition

is determined [Jardine et al., 2006]. On the other hand, prognostic information is esti-

mated from data driven approaches applied to the feature space or from physics based

models for the evolution of failures [Heng et al., 2009b]. Based on this information it is

then possible to schedule a maintenance intervention to ensure the proper operational

conditions of the machine. Figure 1.1 shows a schematic overview of condition based

maintenance and emphasises how this new strategy can be seen as a system of systems

engineering and the focus of research could be each block, or conversely the relationship

between different blocks [Vachtsevanos et al., 2006]. Within the framework of condition

based maintenance, this thesis focuses on improving one of these blocks. Specifically,

the research work was on condition monitoring, with the objective of developing signal

processing methods for monitoring bearings using vibration data. The following out-

lines the motivations which led to a focus on this topic in particular.

The focus on vibration analysis among other techniques is motivated by the fact that

by far it is the most commonly used. The reasons are both historical, with some clas-

sical books on vibration analysis more than 30 years old [Braun, 1986], and practical,

2
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Figure 1.1: Schematics of condition based maintenance

with a large class of machines producing vibrations which carry diagnostic information

and ease of positioning of vibration transducers. The sources of these vibrations are

directly linked to events in the operation of the machine. Typical examples are rotating

shafts and bearings, meshing of gears, rotating magnetic fields and combustion events.

The machine in good condition has its typical vibration signature and the presence

of a malfunction in one of its components yields a change in this signature, which

carries all the diagnostic information necessary to drive the maintenance intervention.

In addition, vibration signals from real world machines, comprising engines [Safran,

2017] or gearboxes in electrical power generators [Sheng, 2012], are available online

for research purposes. These data sets have been studied thoroughly in several papers

[Antoni et al., 2017a, Peeters et al., 2016, Siegel et al., 2014], therefore they offer the

possibility of comparing the performance of the signal processing methods proposed in

this thesis with that of state of the art techniques.

Among all the machines producing vibration carrying diagnostic information, rotating

machines are the most commonly used, existing in a wide variety of industrial appli-

cations such as power production, vehicle transportation, process manufacturing. For

such a class of machines, the events producing vibrations occur periodically with re-

spect to the rotating components, and the presence of a malfunction can be effectively

monitored by means of spectral analysis. In a rotating machine the most common

component is the bearing, transferring the working load from the rotating element to

the body, with small motion resistance and good positioning. Bearings operate con-

tinuously for a long time, under various conditions of load and speed hence they wear

3



out, causing friction processes which create point and surface faults in one or multiple

of their parts. In contrast to other components of a rotating machine, the bearing

does not produce significant vibrations when it operates in healthy conditions and the

weak vibration signal produced by the defective bearings is likely to be masked by the

underling vibration signature of the machine and further result in a missed detection.

In addition, it is recognised that the malfunctioning of a bearing brings longer down

times in comparison to other components and can result in catastrophic failures [Ri-

brant and Bertling, 2007]. For these reason, this research work focuses on condition

based maintenance of bearings using vibration data.

After definition of this specific diagnostic objective potential avenues for improving

condition based maintenance capabilities, referring to Fig. 1.1, are either condition

monitoring or prognostics. As a matter of fact, the development of prognostic meth-

ods requires data for all the life span of the machine which is of the scale of years,

in contrast to a few seconds of vibration signals needed in condition monitoring. The

condition based maintenance community is trying to address this intrinsic complexity

in the evaluation of prognostic methods and has developed experimental setups where

bearings are used in abnormal conditions and undergo an accelerated degradation [IMS,

2017, Nectoux et al., 2012, Gebraeel et al., 2004] or where defects are seeded both elec-

tronically or mechanically in the bearings [Singleton et al., 2017, Elforjani and Mba,

2008]. However, these accelerated life tests do not reproduce the real world evolution

of the defect and the research on prognostics suffers from a fundamental limitation

until appropriate databases become available. For this reasons, this thesis focuses on

the task of condition monitoring, in order to develop methods that can be thoroughly

tested on vibration data from machines operating in real conditions. As stated above

these data are currently available from a variety of sources for research purposes.

Two aspects of condition monitoring are interesting from a research point of view:

mathematical modelling of the vibration signals in order to define which features can

provide diagnostics information, and development of signal processing methods for

feature extraction and classification. In the condition monitoring community, it is

well established that vibrations from rotating machines have to be modelled as cyclo-

stationary and cyclo-non-stationary signals and in the last decade several mathematical

models have been proposed [Antoni et al., 2004, Abboud, 2015]. This resulted in the

identification of features calculated from cyclic-spectral analysis as the best candidates

for gathering all the necessary diagnostic information. On the other hand, there is still

disagreement on which signal processing method is both applicable to a wide class of

vibration signal and is reliable from the point of view of real industrial applications.

Feature extraction and classification is indeed a delicate task, because an error at this

4



stage can result in a missed detection of a defective component and then a subsequent

failure in the machine.

The features commonly used in condition monitoring can be divided in three classes,

which are, in order of increasing computational complexity [Samuel and Pines, 2005]:

1. temporal

2. spectral

3. temporal/spectral

4. spectral/spectral.

Of these classes, typical examples are root mean square calculated on the time domain

signals, the amplitude at certain frequencies in the spectrum of the signal or in the

cepstrum, patterns in the short time Fourier transform, wavelet decomposition or in

the spectral correlation. The diagnostic information extracted by the features differs

between classes, and its selection is based on the specific diagnostic needs. Over recent

years, the literature has seen an increasing number of signal processing methods to

extract diagnostic features from vibration signals, driven both by the higher computa-

tional capabilities and growing interest from industries. An interesting aspect of the

research in this field, is that many of the proposed methods accomplish higher diag-

nostics capability only by increasing the number of signal processing steps. However

this adds computational complexity and raises the possibility of errors, therefore it is

not suitable for real industrial applications. In addition, traditionally, feature selection

and classification was done by a trained operator, with expertise in the particular area

of the application. Nowadays the strategy is changing towards the use of semi auto-

mated or fully automated methods, the advantages being avoidance of human errors

and savings in the condition monitoring systems. Therefore the use of signal processing

methods involving several steps results in a difficult automation. For instance, meth-

ods used in commercially available condition monitoring systems offer lower diagnostics

capabilities compared to those developed in the academic context, but are easy to im-

plement and automate, and have higher reliability [Samuel and Pines, 2005, Hedin,

2014]. Another drawback of the signal processing methods currently used in condi-

tion monitoring, is that they are developed for stationary vibration signals, but in real

world scenarios, there are many circumstances where stationarity is violated, due to

machines operating at both varying speed and load, resulting in a deteriorated per-

formance in the extraction of features [Borghesani et al., 2013b, Zimroz et al., 2014].

However, the mathematical modelling of vibration signals in non-stationary operation

has been recently introduced [Abboud, 2015], opening new possibilities of research for
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the community of condition based maintenance, some of which are investigated in this

research work.

To summarise, the field of condition based maintenance with its broad range of tasks

and high impact in the running costs of the industrial assets, is the objective of many

research activities. Among which, this thesis focuses on vibration data for practical

reasons, on monitoring the condition of bearings for applicability reasons while on de-

velopment of signal processing methods because current techniques still have remaining

challenges to address. In such a way it may maximise the possibility of applying the

methods presented hereafter in machines from different industrial scenarios, with the

hope of offering to the condition based maintenance community reliable and ductile

tools.

1.2 Tutorial example of condition based maintenance

This section shows with a tutorial example the application of the condition based

maintenance strategy on a simple machine. The data are artificial, and not from a real

experimental situation and serves only for an illustration.

The machine which is monitored consists of a variable speed motor, a single stage gear,

two rolling element bearings and a load applied to the output shaft of the gear. For this

simple machine it is supposed that the analysis of its vibrations will provide all the nec-

essary diagnostic information. Vibrations are measured by means of an accelerometer

mounted on the housing of one of the bearings as shown in Fig. 1.2. Measurements are

taken at fixed intervals of utilisation time tu, which are decided considering factors such

as history of failures, importance of the machine in the industrial asset, cost of repair.

The utilisation time of the machine is much longer than the time t of the dynamics of

the vibroacoustic processes v(t). On the other hand, the length of each measurement

is defined to ensure enough resolution based on the lowest cyclic frequency of interest,

within the range of operating speed of the machine, usually corresponding to one of

the fault frequencies of the bearings.

motor gear load

tachometer accelerometer

bearingcoupling

Figure 1.2: Schematics of tutorial example
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Following the scheme of Fig. 1.1, the condition of the machine is then monitored study-

ing the evolution of the norm of the features calculated on the vibration measurements

‖~F [v(t), tu] ‖. The definition of the norm in the feature space depends on the history

of failures of the machine, for example kurtosis would have a higher weight with re-

spect to root mean square if the machine had a history of faulty bearings compared to

gears [Randall, 2011]. The norms used in practice range from the simple Euclidean to

statistical-based distances [Cardona-Morales et al., 2014]. In addition, features might

be correlated and some authors propose to reduce the dimension of ~F [v(t), tu] using

principal component analysis, however in the new space the features lose their intuitive

physical interpretation [Malhi and Gao, 2004].

The diagnostic information extracted by the condition monitoring step is then used as

the input for the prognostic methodology implemented in the condition based mainte-

nance program. Prognostic methods provide an estimation of the probability of failure

of the machine [Heng et al., 2009a]. Figure 1.3 shows the condition based maintenance

steps, on the top showing the evolution of the norm of the features of the vibration

signal and on the bottom the probability of failure at two particular utilisation times.

tu (weeks)
1 2 3 4 5 6 7

‖
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[v
(t
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Figure 1.3: Trend of the norm of the vector of features calculated from vibration
measurements, against the utilisation time of the machine (Top). Probability of failure
of the machine calculated at utilisation times of points A and B (Bottom).
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In Fig. 1.3 the regions from green to red correspond respectively to healthy, two warn-

ing regions and a failure region while the red dotted lines represent a threshold above

which maintenance is required. The values of the thresholds are based on statistics of

the machine failures or expertise of the condition monitoring technician.

In this tutorial example, let us suppose that after installation all the components of

the equipment are working in healthy condition and ‖~F [v(t), tu] ‖ shows low values and

that after only a few weeks of operation the diagnostic metric reaches the first warning

level A. It is in this situation that the work presented in the thesis finds its place. Since

the machine is operating in an abnormal way, complex signal processing methods are

applied to the measured vibration signal to determine which specific components are

causing the malfunction. In regards to the specific diagnostic objective of the thesis,

the state of the art methods currently used for detection of defective bearings will be

described in Section 1.3.3, while Chapter 4 and Chapter 5 will introduce the novel

methods proposed by this research work.

Let us suppose that for the warning A of Fig. 1.3, the condition monitoring analysis

does not give a clear indication of defects from any of the components of the machine,

thus the increase in ‖~F [v(t), tu] ‖ is attributed to normal operating wear of the ma-

chine. In addition the probability of failure calculated from the prognostic methods is

likely to be below the threshold for the next weeks, therefore no maintenance inter-

vention is planned on the machine. However, after a further few weeks of operation

‖~F [v(t), tu] ‖ reaches a warning of the second level B. Again, complex signal processing

methods are applied to detect the origin of such malfunctioning. For example, there

is a clear indication of impulsive behaviour at one of the cyclic frequencies of a bear-

ing and an increased kurtosis level of the time domain signal, furthermore prognostic

methods indicate that a failure is likely to occur within the next three weeks. For this

reason the maintenance technician schedules an intervention, direct inspection of the

bearing confirms the presence of a defect, and the component is replaced. After the

intervention ‖~F [v(t), tu] ‖ goes back to nominal levels and the condition based mainte-

nance procedure starts again.

This tutorial example emphasises the importance of the signal processing methods used

for the determination of which specific component needs intervention. As a matter of

fact, ‖~F [v(t), tu] ‖ monitors the overall condition of the machine and the prognostics

methods suggest the appropriate maintenance procedure. Thus they are effective in

minimising the risks of catastrophic failures, however they are unable to drive the

maintenance intervention. Furthermore, both for economic and practical reasons, the

analysis of vibration signals is preferred to disassembling the machine and checking

the health of each component when a warning is triggered. For this reason, when a
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malfunction is observed [Sheng, 2012] the machine is stopped for precaution and more

accurate vibration analysis , as studied in this research, is undertaken.

1.3 Literature review

This thesis is conceived in the framework of condition based maintenance, focusing on

monitoring the condition of bearings from the analysis of vibration data, as explained

above.

With this objective in mind, the following literature review firstly introduces mathe-

matical models for vibrations signals generated by rotating machines, with particular

emphasis on the cyclo-stationary an cyclo-non-stationary cases. Then it describes the

state of the art signal processing methods currently used by the condition monitoring

community, against which those proposed by the thesis will be bench-marked. Finally,

it details the vibration transducers commonly used in the field.

1.3.1 Mathematical model for the vibration signal

The literature offers a wide range of mathematical models for the vibration signal

produced by rotating machines. This section introduces the modelling theory that has

been used in the numerical simulations in this research work.

The vibration recorded by a transducer placed on the housing of a machine is modelled

as the superposition of three components: vibrations from the rolling elements bearings

b(t), vibrations from the gears g(t) and random vibrations n(t).

The vibration produced by a rolling element bearing is modelled following [Randall

et al., 2001, Stack et al., 2006, Borghesani et al., 2013b, Abboud, 2015]. The mechanical

elements of the bearing are the inner race, the outer race, the cage and the rollers.

The bearing produces vibrations when there are defects in one or multiple parts of

its elements. The defect is due to manufacturing imperfections or utilisation wear.

Throughout the rotation the defective component impacts the other components of

the bearing and produces a shock which propagates towards the vibration transducer.

The impacts are locked at fixed angular increments plus a small random angular jitter

due to slippage in the rotation. The reason for the slip is that the ratio of axial to

radial load for individual rollers varies with their position in the bearing, hence they

are trying to roll at different speeds while the cage forces them to maintain a uniform
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mean separation. The occurrence time of the pth impact is then

Tim,p(t) =

p∑

k=1

Θ

2πf sh,k(t)
+ Ψp (1.1)

where fsh,k(t) is the mean shaft rotational speed between the kth and kth-1 impacts.

Θ is a constant depending on the geometry of the bearing, number of rollers and type

of defect, i.e. in the outer race, inner race or roller. Ψ is a random number reproducing

the effect of the slip. The structural resonance excited by each impact is modelled as

impulsive noise decaying exponentially:

mb(t) = (w(t) ∗ h(t)) e−t/a (1.2)

where ∗ is the convolution operator, w(t) is white noise and h(t) the impulse response of

a band pass filter. The cutoff frequencies of the filter fl fh, define the spectral band of

the resonance. The time constant of the decay is a < maxk (Tim,k), ensuring separation

between consecutive impacts. Making use of Eq. 1.1 and Eq. 1.2, the vibration produced

by the sequence of impacts is then modelled as:

b(t) = mb(t) ∗
{∑

p

Dpδ [t− Tim,p(t)]
}

(1.3)

where Dp is the random amplitude of each impulse and δ(t − t∗) is an unitary Dirac

delta function.

The vibration produced by toothed gears is modelled following [McFadden and Smith,

1985, Cempel, 1991, Randall, 2011]. The mechanical elements of the gear are: a slow

speed shaft rotating at speed fA(t), a high speed shaft rotating at fB(t) and correspond-

ing toothed wheels A and B with NA and NB number of teeth. The vibration from

the rotation of the wheels is the superposition of sinusoids at fA,B(t) and harmonics:

eA,B(t) =
∑

re

EA,Bre cos

(
2πre

∫ t

0
fA,B(z)dz + αA,Bre

)
(1.4)

where re is the index of the harmonic order, α is the phase and EA,B the ampli-

tude. In addition the gear produces vibrations at the harmonic frequencies of meshing

10



fM (t) = fA(t)NA = fB(t)NB, amplitude and phase modulated at harmonics of fA,B(t):

m(t) =
∑

rm

Mrmcos

(
2πrm

∫ t

0
fM (z)dz + θArm + cArm(t) + cBrm(t)

)

×
[
1 + dArm(t) + dBrm(t)

]
(1.5)

where the phase and amplitude modulation terms are:

cA,Brm (t) =
∑

rc

CA,Brmrccos

(
2πrc

∫ t

0
fA,B(z)dz + βA,Brmrc

)

dA,Brm (t) =
∑

rd

DA,B
rmrd

cos

(
2πrd

∫ t

0
fA,B(z)dz + γA,Brmrd

)
.

(1.6)

In Eq. 1.5, Eq. 1.6 rm, rc and rd are the indexes of the harmonic orders, θ, β and γ the

corresponding phases and M,CA,B, DA,B the amplitudes. The vibration produced by

the gear, comprising all its mechanical elements, is then modelled as:

g(t) = mg(t) ∗
[
eA(t) + eB(t) +m(t)

]
(1.7)

where mg(t) models the impulse response of the transmission path of the vibrations

from the excitation to the sensor. The number of harmonics, the phase and the ampli-

tude of each of the components of the vibration from the gear are not known a priori

and are considered as random. However indications can be given in accordance with

the state of the gear. For example a gear with wear defects, as a smeared tooth, will

show vibrations characterised by a high number of rm, rc, rd and large values of the

amplitude and phase modulation terms CA,B, DA,B resulting in many sidebands at fM

around harmonics of fM . Finally, making use of Eq. 1.3 and Eq. 1.7 the expected

vibration signal is given by:

v(t) = b(t) + g(t) + n(t) (1.8)

where n(t) is additive noise.

From Eq. 1.8 is possible to derive the following set of observations, of fundamental

importance for selection of the proper signal processing tools.

• When the machine is operating at a speed fsh(t) which varies with time, b(t) and

g(t) become non-stationary.

• The signal b(t) is intrinsically random due to the presence of the slip.
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• The spectral content of the impacts from the defective bearing m(t) is not known a

priori and depends on factors such as the wear state of the machine.

• The amplitude spectrum of g(t) is characterised by a high number of peaks, at

harmonics and sidebands of known frequencies.

• If 1
Tim(t) ' fA,B(t) or one of their harmonics, g(t) and b(t) would be characterised by

the same temporal scale.

1.3.2 The cyclo-non-stationary signal

The model for the vibration signal introduced in the previous section has two sources

of non-stationarity and one source of randomness. The first source of non-stationarity

is the periodically time varying energy, contributed by the series of impacts from the

defective bearing and by the amplitude and frequency modulations in the vibrations

from the gears. The second source of non-stationarity is the shaft rotational speed

which can be time varying, while the source of randomness is the slip term in Eq. 1.1.

In the following, a numerical simulation shows how the vibration signal and its ampli-

tude spectrum are affected differently by these three aspects.

Non-stationary signals that exhibit some hidden periodicity, such as the time-varying

energy of the vibration signal, are mathematically called cyclo-stationary [Gardner,

1994]. When analysed with ad-hoc techniques, cyclo-stationary signals reveal their

periodicity in the cyclic frequency domain. A cyclo-stationary signal can be seen as

an amplitude modulated signal that contributes sidebands in the amplitude spectrum.

These sidebands are spaced around the modulated frequency component by a number

equal to the modulation frequency. Therefore there is a hidden structure in the ampli-

tude spectrum, which can be discovered by correlating the spectrum with itself. The

correlation is non-zero for displacements equal to discrete multiples of the spacing of

the sidebands: the cyclic frequency of the signal [Randall, 2011]. An excellent review

on cyclostationarity with examples and engineering applications is [Antoni, 2009]. Sec-

tion 1.3.3 in the following, introduces signal processing methods to extract the cyclic

information.

The cyclo-stationarity is an intrinsic property of Eq. 1.8 while the shaft rotational speed

can either be stationary or non-stationary. Therefore two cases of vibration signal can

be encountered: the cyclo-stationary and cyclo-non-stationary. In the numerical simu-

lation showed hereafter the jitter term Ψ in Eq. 1.1 is both set to zero or not, resulting

in a total of four different types of signals. However, in real world scenarios Ψ is al-

ways present [Randall, 2011] and here it is set to zero only to show how it changes the
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vibration signal.

The simulated signal is modelled using Eq. 1.7 and Eq. 1.3. It comprises vibrations

produced by a gear, constituted by wheels A-B, and a series of impacts from a defect

on the bearing which supports the shaft rotating at fA(t). The length of the signal is

10 seconds and the sampling frequency is Fs = 20 kHz. The following values are used

for the vibrations from the gear g(t):

NA = 20 NB = 40 CA,Brm,rc = 0

EA1 = 1 EB4 = 1.5 DA
2,5 = 0.8

DB
1,6 = 0.7 M1 = 1.3 M2 = 1.5

(1.9)

and all the phases θA,Brm = αA,Bre = βA,Brm,rc = γA,Brm,rd = 0. The following values are used

for the vibrations from the bearing b(t):

Θ = π rad Dp = 5 a = 5e− 4 s

fl = 1.2 kHz fh = 1.5 kHz
(1.10)

In the stationary case the speed is fixed at fA = 15 Hz, while in the non-stationary case

it increases linearly from fA(0) = 15 Hz to fA(10) = 16 Hz. When the jitter term ψp is

considered, it is a normally distributed random number with zero mean and variance

5% of Θ [Randall and Antoni, 2011]. The overall vibration signal is then obtained, as

in Eq. 1.8, adding white Gaussian noise with SNR=2 dB. Results are shown in Fig. 1.4,

Fig. 1.5, Fig. 1.6 and Fig. 1.7. Each figure displays at the top a zoomed in section of

the signals in the time domain and at the bottom the Welch power spectrum using a

Hamming window of 0.3 s with 50% overlap. In red is shown only the signal from the

bearing while in black the total signal.

Figure 1.4 shows the cyclo-stationary case with the jitter set to zero. In this case the

spectrum is composed of a set of discrete components. At low frequencies it is possible

to see the peaks contributed by the vibrations from the gears. As an example, the

second harmonic of the meshing frequency and a sideband of the first harmonic have

been indicated with arrows. In the resonant band excited by the defective bearing, it

is possible to notice peaks spaced at the occurrence frequency of the impacts 1/Tim.

The signature of the cyclo-stationary signal is the absence of peaks at 1/Tim and har-

monics, in the low part of the spectrum of Fig. 1.4(b) in red , i.e. in the frequency

domain they are present only as sidebands. In contrary, they would be present in the

cyclic-frequency domain.

Figure 1.5 shows the cyclo-stationary case when there is jitter. The spectrum shows

discrete components only for vibrations from the gears and in contrast to the previous
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Figure 1.4: Example of vibration signal in the cyclo-stationary case with no jitter. In
black the vibration v(t) and in red only the component b(t) from the bearing.
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Figure 1.5: Example of vibration signal in the cyclo-stationary case with jitter. In
black the vibration v(t) and in red only the component b(t) from the bearing.

case, a continuous spectrum for the vibrations from the bearing. Comparing the time

signal with Fig. 1.4, it is possible to see how a small change δT in the occurrence times
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Figure 1.6: Example of vibration signal in the cyclo-non-stationary case with no jitter.
In black the vibration v(t) and in red only the component b(t) from the bearing.
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Figure 1.7: Example of vibration signal in the cyclo-non-stationary case with jitter. In
black the vibration v(t) and in red only the component b(t) from the bearing.

of the impacts can drastically modify the spectrum. It is of fundamental importance to

notice that Fig 1.5(b) does not show an indication of events occurring at 1/Tim. Hence
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the combination of cyclo-stationarity and randomness jeopardises the use of classical

spectral analysis in monitoring the condition of a bearing and cyclic-spectral analysis

is needed.

Figure 1.6 shows the cyclo-non-stationary case when the jitter is set to zero. As ex-

pected from the stationary case, the spectrum is composed by a set of discrete but

smeared components, both for the vibrations from the gears and the bearing. The

zoomed in section shows that the frequency of the impacts is still visible in this case,

with the vertical dotted lines at harmonics of 1/Tim. In this case Tim(t) varies within

two consecutive impacts, however the speed varies by only 1 Hz in 10 s, therefore this

difference is not noticeable in Figure 1.6(a)

Finally, Fig. 1.7 shows the cyclo-non-stationary case when there is jitter. The spectrum

is composed of a set of discrete and smeared components only for the vibrations from

the gears, while the vibrations from the bearing contribute a continuous spectrum. As

with the stationary speed case, it is possible to notice how small is the change in the

occurrence time of the impacts δT .

1.3.3 Signal processing methods

This Section introduces the background literature relating to common signal processing

methods applied in vibration based condition monitoring. The methods address the

set of observations outlined at the end of Section 1.3.1 and the cyclostationarity of the

vibration signal as shown in Section 1.3.2.

Spectral correlation

The numerical simulation of Section 1.3.2 showed how the intrinsic cyclic property of

Eq. 1.3 combined with the random slip jeopardise the use of classical spectral analysis to

detect a defective bearing from vibration data. In order to extract the cyclic information

hidden in the vibration signal it is necessary to compute the correlation of the spectrum

with itself: the Spectral Correlation (SC) .

Given the cyclo-stationary signal v(t), the spectral correlation Svv(l, f) is defined as

the two dimensional Fourier Transform of the time varying auto-correlation function

function [Randall, 2011]:

Svv(l, f) = lim
W→∞

1

W

∫ W/2

−W/2

∫ ∞

−∞
E[v(t− τ/2)v(t+ τ/2)]e−j2π(fτ+lt)dτdt (1.11)
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where E is the ensemble averaging operator, f is the spectral frequency and l is the

cyclic frequency. An alternative form of expressing SC, which gives insight on its name,

is [Antoni, 2007a]:

Svv(l, f) = lim
W→∞

1

W
E[v̂W (f + l/2)v̂∗W (f − l/2)] (1.12)

where ·̂W denotes the Fourier Transform over a time interval of duration W: v̂W (z) =∫W/2
−W/2 v(t)e−j2πzt.

The SC of the simulated cyclo-stationary signal with random jitter from Section 1.3.2

is shown in Fig.1.8. The spectral correlation is discrete in the cyclic frequency domain,

with non-zero values only at those cyclic frequencies related to time-varying energy

contributed by the impacts from the bearing: 1/Tim and harmonics. Therefore SC

reveals the presence of the defective bearing. In the frequency domain the SC shows

discrete peaks at the frequencies of the gear, while the resonant band excited by the

bearing is continuous due to the presence of the jitter term, similarly to Fig. 1.5.

Equation 1.12 is applied on cyclo-stationary signals. In the case of a machine oper-

ating at varying speed the SC of the cyclo-non-stationary signal is computed as the

two dimensional Fourier Transform of the angle-time auto-correlation function[Abboud

et al., 2016a]:

Svv(l, f) = lim
U→∞

1

U

∫ U/2

−U/2

∫ ∞

−∞
E[v(t(θ)− τ/2)v(t(θ) + τ/2)]e−j2π(fτ+lθ)dτdθ (1.13)
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where the relationship t(θ) is found inverting Eq. 1.16. The SC of the simulated cyclo-

non-stationary signal with random jitter of Section 1.3.2 is not displayed here, being

the same as Fig. 1.8 with only the cyclic order instead of the cyclic frequency.

The spectral correlation is the most versatile and reliable tool for vibration based

condition monitoring, with the only drawback being the computational cost. In this

respect, the fast algorithm for its computation recently introduced by [Antoni et al.,

2017b] represents an important step towards its use in commercially available condition

monitoring software. In Chapter 5 the performance of a novel methodology developed

during this research work will be compared to that of SC.

Squared envelope spectrum

The cyclic content of the vibration signal can also be identified in the Spectrum of the

Squared Envelope (SES). Conventionally the envelope of the signal is calculated using

the absolute value of the analytic representation of the signal

ṽ(t) = v(t) + jṽ(t) (1.14)

where ·̃ denotes the Hilbert transform. The difference between SES and SC is that the

latter is a two dimensional map of frequency vs cyclic frequency, while the first shows

only the cyclic frequencies. Specifically, it was proved [Randall et al., 2001] that the

SES corresponds to the integral over all the frequencies of the SC:

SESv(l) =

∫ ∞

−∞
E
[
|ṽ(t)|2

]
e−2πlt =

∫ ∞

−∞
Svv(l, f)df. (1.15)

Interestingly, the SES was recognised as being one of the most effective diagnostic

tool for bearings well before the introduction of cyclostationarity, under the name of

high-resonance frequency technique or demodulated resonance analysis [McFadden and

Smith, 1984, Dyer and Stewart, 1978]. In other words, the SES can be seen as a quick

way of gathering the cyclic information extracted by the SC, without the need of ac-

tually computing it [Antoni, 2007b]. The advantage is that computation of the SES

uses only the FFT algorithm, two times for calculation of the envelope and one time

for calculation of the spectrum, and results in a much less computationally expensive

scheme than SC. For instance the computation time for the SES for the 2× 106 point

signal of Section 1.3.2 is 0.11 seconds while that of the SC is 11.3 seconds1. However

the reduction from a two dimensional map to the one dimensional SES has two disad-

1Using the fast-SC algorithm with Nw = 212
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Figure 1.9: Squared envelope spectrum of the cyclo-non-stationary vibration signal,
comprising only vibrations from a bearing. (a) Case with no jitter. (b) Case with
jitter. Shaft speed varying of 1 Hz in 10 seconds.

vantages.

The first drawback of the SES is that different components contributing vibrations at

the same cyclic-frequency are not distinguished. For example the integral over f of the

SC of Fig. 1.8 shows peaks at 1/Tim and harmonics which coincide with fA and har-

monics, because Θ = π and the SES does not detect the defective bearing. Therefore

signal pre-processing algorithms for the separation of the vibrations from the gears and

from the bearing have to implemented before the SES. Common methods are: time

synchronous averaging [McFadden and Smith, 1985], self adaptive noise cancellation

[Widrow et al., 1986], linear prediction [Antoni and Randall, 2004], spectral kurtosis

and cepstral prewhitening. In the following sections, the last two of these algorithms

are discussed in detail. The comparison on the performance of these techniques is stud-

ied in [Randall et al., 2011, Kilundu et al., 2014] and it is found that cepstrum editing

outperforms the other methods. Furthermore spectral kurtosis not only separates vi-

brations from the gears and from the bearing, but it also identifies the resonance band

excited by the impacts. Thus these two techniques have been preferred and used in the

rest of this work.

The second drawback of the SES is that when applied to cyclo-non-stationary signals it

shows smeared peaks at the cyclic frequencies of interest. Figure 1.9 shows the SES of

the simulated cyclo-non-stationary signals of Section 1.3.2. Specifically Fig. 1.9(a) of
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the signal from the defective bearing in the case of jitter term set to zero, correspond-

ing to Fig. 1.6 in red. While Fig. 1.9(b) of the signal from the defective bearing when

there is jitter, corresponding to Fig. 1.7 in red. It can be noticed how in both cases

the SES shows smeared peaks at cyclic frequency 1/Tim and harmonics, furthermore

the presence of the jitter term acts as a low pass filter in the cyclic domain. This

drawback of the SES is conventionally addressed by means of a re-sampling procedure,

as introduced in the next section.

Order tracking

In a real world scenario a machine operates at variable speed and as a consequence

its vibrations are cyclo-non-stationary. The classical approach to address this issue is

a re-sampling operation: Order Tracking (OT) [Fyfe and Munck, 1997]. Specifically

the signal is re-sampled from constant increments ∆t in the time domain to constant

increments ∆θ in the angular domain.

The reference signal for the instantaneous speed of the machine is needed to perform

OT. This signal is usually acquired by means of a tachometer placed on one of the

shafts. If it is not possible to place an additional sensor, the instantaneous speed is

reconstructed from the vibration signal. The classical approach is to band pass filter

the Fourier transform around one of the meshing frequencies and then obtain the phase

from the analytic signal calculated using the Hilbert transform [Bonnardot et al., 2005].

Recently, [Leclere et al., 2016] propose a probabilistic approach based on the short-time

Fourier transform while [Randall and Smith, 2016a] the use of the Teager Kaiser energy

operator.

The angular position is then defined from the shaft speed as:

θ(t) = 2π

∫ t

0
f(z)dz (1.16)

and the operation of re-sampling in the angular domain corresponds to the substitution

of Eq. 1.16 in Eq. 1.7 and Eq. 1.3. Digitally this is done by means of numerical

interpolation.

The effect of order tracking is different for the vibration from the gears and from the

bearing. For example if a tachometer is placed on the shaft where the wheel A is

mounted, the vibration due to rotation of the wheel B of Eq.1.4, becomes

eB(θA(t)) =
∑

re

EBrecos

(
re
NB

NA
θA(t) + αBre

)
. (1.17)
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Therefore, in the angular domain, the vibration from the gear is a superposition of

sinusoids. The same applies to Eq. 1.5 and Eq. 1.7 and spectral analysis can be applied

to the resampled signal, independently from the variations in operating speed of the

machine. Conversely, considering a defect on the bearing supporting the shaft rotating

at fA(t), OT yields:

b(θA(t)) = m(θA(t)) ∗
[∑

p

Dpδ (θA(t)−Ψp − pΘ)

]
. (1.18)

Equation 1.18 corresponds to a series of impacts occurring at constant, plus random

jitter Ψ, angular increments Θ for which the spectral content changes accordingly to

the shaft speed. In other words, the resonance frequency excited by each of the impacts

becomes non-stationary. This aspect is based on the model assumption that only the

occurrence time of the impacts is locked at fixed angular position of the shaft, while

the excited resonance does not depend on the rotational speed as shown in Eq. 1.2.

More details on how this drawback of OT affects the task of monitoring the condition

of the machines are discussed in Chapter 3.

Spectral kurtosis

The Spectral Kurtosis (SK) is a method to determine which frequency band contains

events of maximum impulsivity [Dwyer, 1983] and in vibration based condition moni-

toring is used to extract the vibrations from a defective bearing b(t) from v(t) [Antoni

and Randall, 2006].

The SK is calculated from the Short Time Fourier Transform (STFT) of the signal v(t)

as [Antoni, 2006]

SKw
v (f) =

〈
|STFTwv (τ, f)|4

〉
τ

〈|STFTwv (τ, f)|2〉τ
− 2 (1.19)

where ω denotes the window function of the STFT and 〈·〉z the averaging in z. For

a white Gaussian noise the result of Eq. 1.19 is 0 for all the frequencies, while in the

case of an impulsive signal as the impacts from the bearing of Eq. 1.3, returns positive

values for the frequencies of the excited resonant band [fl, fh].

The length of the window Nw used in the computation of the STFT of Eq. 1.19 has

to be shorter than Tim and longer than the exponential decay a of Eq 1.2. However

the optimal length giving the maximum value of SK is not known a priori and is

found by a blind search on a set of Nw. The resulting two dimensional map is called

the kurtogram [Antoni, 2007d], for which a fast computation algorithm is available at
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[Spectral Kurtosis, 2017].

The kurtogram of the simulated cyclo-stationary signal in the presence of jitter, of

Section Ref. 1.3.2 is shown in Fig. 1.10. The vertical scale shows a set of levels related

to the length of the window by

Nw =
2k+1

Fs
(1.20)

The kurtogram correctly identifies that the resonance excited by the impacts has a

bandwidth of ' 400 Hz and central frequency of ' 1.4 kHz. Therefore the signal b(t)

can be separated by the vibrations from other components by means of band pass

filtering, and the SES calculated on the filtered signal reveals diagnostics information

on the defective bearing.

The SK is applied on cyclo-stationary signals, while on the cyclo-non-stationary case

its computation follows a first operation of OT[Randall and Antoni, 2011]. In the

following, Chapter 3 shows that if the machine undergoes large speed variation the

operation of OT jeopardises the use of the SK.
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Figure 1.10: Example of kurtogram of cyclo-stationary signal.
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Real cepstrum

Vibrations from the gears as introduced in Eq. 1.7 produce a spectrum2 characterised

by a series of peaks at harmonics of fA,B,M with sidebands at fA,B, as shown in Fig. 1.4.

This characteristic can be exploited in two ways: indication of the health of the gear,

and separation between deterministic and random sources of vibration, i.e. gears and

impacts from the bearing. The real cepstrum is a technique commonly used in vi-

bration based condition monitoring to accomplish these tasks. An excellent review on

cepstral methods is [Randall, 2016]. The real cepstrum is defined as the Inverse Fourier

Transform (IFT) of the log amplitude spectrum:

rcv(q) = IFT {log |v̂(t)|} (1.21)

where the new variable q is called quefrency and has physical dimension of seconds

or radiant, depending on whether the cepstrum is computed on the time or angular

domain signal. Equation 1.21 checks for periodicity in the amplitude spectrum and

if a peak is present at rcv(q
∗), the amplitude spectrum of the signal v(t) has peaks

occurring periodically at ∆f = 1/q∗.

A numerical example on the application of the real cepstrum is shown in Fig. 1.11.

The signal is the same as in the cyclo-stationary case of Section 1.3.2, with the only

difference a higher number of sidebands around the second harmonic of the meshing

frequency:

DA
2,[1,··· ,8] = 0.8.

The real cepstrum is shown in Fig. 1.11(a). Clear peaks are observed at the quefrency of

1/fA and harmonics, giving an indication of a high number of harmonics spaced at fA.

The health of a gear is then easily monitored tracking the amplitude of peaks at par-

ticular quefrencies. If the real cepstrum is notch filtered at rcv(q
∗), the corresponding

peaks spaced at ∆f = 1/q∗ in the amplitude spectrum are highly suppressed [Randall

and Sawalhi, 2011]. As a consequence, editing the real cepstrum can be used as method

to remove vibrations from the gears. In addition, [Sawalhi and Randall, 2011] intro-

duced the cepstral prewhitening (CPW) as an easy implementation of cepstral editing.

The method consists of setting all the cepstral coefficients to zero. More recently, it

was proved [Borghesani et al., 2013a] that CPW corresponds to the computation of the

2For machines operating at stationary speed the peaks are visible in the spectrum calculated on
the signal in the time domain, while in the case of non-stationary speed in the spectrum of the angular
domain signal after the operation of OT.
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Figure 1.11: Real cepstrum applied on a numerical simulation. (a) real cepstrum. (b)
SES computed on v(t) (black) and on cpwv(t) (red).

IFT on the signal with all the spectral amplitudes set to one :

cpwv(t) = IFT {v̂(t)/ |v̂(t)|} (1.22)

A review on the performance of cepstral editing methods is [Peeters et al., 2017]. The

effect of Eq. 1.22 on the signal is shown in Fig. 1.11(b). Specifically, in black it shows

the SES calculated on the raw signal v(t) and in red on cpwv(t). The signal from the

defective bearing is characterised by impacts occurring at integer orders of fA therefore

vibrations from the gears and from the defective bearing contribute a peak at the same

cyclic frequency 1/Tim = 2fA and harmonics. In such cases the SES calculated on the

full band raw signal loses its detection capabilities. Conversely, as shown in Fig. 1.11(b)

CPW effectively removes the unwanted vibrations from the gear and the presence of

the defective bearing is revealed by the peaks at 1/Tim and harmonics. In the literature

cepstral editing is applied on stationary or cyclo-stationary signals, while on the non-

stationary case its computation follows a first operation of OT. Chapter 3 extends the

existing body of work to show that cepstral prewhitening is effective also on cyclo-non-

stationary signals, when the cepstrum does not present any peak.
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Stochastic resonance

The last signal processing method which has been investigated in this research is a

synchronisation phenomenon which acts as a non linear filter: Stochastic Resonance

(SR). SR was introduced to explain the noise driven amplification of weak signals in

nonlinear systems [Benzi et al., 1981]. The interest in SR from the point of view of

condition monitoring is based on the similarity between the signal amplified by the

SR and the vibration signal described in Section 1.3.1. In the vibration signal, b(t)

corresponds to the weak component and g(t)+n(t) to the masking noise. The literature

on SR is abundant and an excellent review paper is [Gammaitoni et al., 1998]. In the

following its working principle is explained.

The classic SR is described by a one dimensional dynamical system with a bi-stable

symmetric potential function U(x) perturbed by a Gaussian noise of variance σ and

zero mean. The noise triggers random transitions between the stable states which occur

according to the Kramers rate rkr:

rkr [∆U, σ] ∝ exp
(−∆U

σ

)
(1.23)

where ∆U is the height of the potential barrier between the two stable states. SR

studies the response of this system when it is subjected to a weak forcing of amplitude

A and period TΩ, which alone has not enough energy to trigger a transition between the

two stable states. The effect of the forcing is that of periodically raising and lowering

the potential barrier of δ(A). Since Eq. 1.23 depends exponentially on the height of

the barrier, a small change of ∆U is sufficient to trigger a transition with probability

1 at:
TΩ

2
=

1

〈rkr(∆U + δ(A), σ)〉 . (1.24)

As a result the non-linear system is synchronised with the forcing and the output signal

becomes periodic. The peculiar aspect of the SR is that, in contrast to linear filters

where an increase in the input noise deteriorates the output, the synchronisation does

not occur if σ is too small. In other words, an increase in the level of noise improves

the output of the non linear filter.

After the observation of the SR phenomenon in the 1D system as described above,

the positive role of noise in non linear systems has been widely investigated. Firstly,

it was observed SR also for a system subjected to an aperiodic forcing [Gang et al.,

1992], then a SR-like behaviour was found in the case of non-Gaussian noise [Hänggi

et al., 1993]. Furthermore, it was observed that the non-linear system can also be a

static non-linearity [Chapeau-Blondeau and Godivier, 1997]. Finally, a supra threshold
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SR-like phenomenon has been investigated by [Apostolico et al., 1997, Stocks, 2000]. In

the field of vibration based condition monitoring the first use of SR is [Klamecki, 2005],

where vibration signals of an internal combustion engine were enhanced to monitor the

wear of crankshaft bearings. After that a consistent amount of literature can be found

on this engineering application of SR [Tan et al., 2009, He et al., 2012, Ompusunggu

et al., 2013]. In the following, Section 2.3 discusses the problems related to the use of

SR on vibration signals.

Other methods

The signal processing methods introduced so far are the most common in the field

of condition monitoring and since they will be used throughout this thesis, they have

been treated here with particular attention. Nevertheless, the literature offers a much

higher and continuously increasing number of methods, as described in many review

papers from the classical [Howard, 1994] to the more recent [El-Thalji and Jantunen,

2015, Akhand and Upadhyay, 2016]. Among these methods can be identified three

main approaches which need to be mentioned in a literature review on condition mon-

itoring: Wavelet Decomposition (WD), Empirical Mode Decomposition (EMD) and

Higher Order Spectral Analysis (HOSA).

Developed as improvements on the classical short time Fourier Transform, WD [Mallat,

1999] and EMD [Huang et al., 1998] tackle non-stationarity, decomposing the signals

into different time scales. The main difference between EMD and WD is that the

former is performed adaptively and in a data-driven way, whereas the latter uses a

set of pre-defined filters based on the mother wavelet. Both these algorithms act as

a dyadic filter bank [Flandrin et al., 2004, Mallat, 1999], where the central frequency

and bandwidth of each filter is given by the scale level. The presence of impacts in

the resulting band passed signals is then used as diagnostic information [Dalpiaz et al.,

2000, Antoniadou et al., 2015]. In contrast to the SC of Section 1.8 which produces

a frequency-cyclic frequency map, such methods do not give information on the peri-

odic3 repetition of the impacts, achieved only with a further Fourier transform giving

a scale-frequency decomposition.

On the other hand, HOSA is the generalisation of classical spectral analysis and it

was developed to check the presence of non-linear phase coupling between frequency

components [Nikias and Mendel, 1993]. The most used tool of HOSA in condition

monitoring is the bispectrum, from the classical [Sato et al., 1977] to the more recent

[Stack et al., 2004, Guoji et al., 2014]

3in the cyclo-stationary case or after OT in the cyclo-non-stationary case
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The bispectrum of the signal v(t) is defined as [Collis et al., 1998]:

Bv(f1, f2) =

∫ ∫
E[v(t)v(t− τ1)v(t− τ2)]e−j2π(f1τ1+f2τ2)dτ1dτ2 (1.25)

= lim
W→∞

1

W
E[v̂W (f1)v̂W (f2)v̂∗W (f1 + f2)]

and is different from zero only if there is quadratic phase coupling between the frequen-

cies f1, f2 and f1 + f2. In other words, a peak at Bv(f1, f2) identifies that the peak at

f1 +f2 in the spectrum is due to a modulation effect. Similarly to Svv(l, f) of Eq. 1.12,

Bv(f1, f2) decomposes the signal in a two dimensional frequency-frequency map, how-

ever the spectral correlation computes the correlation between two frequencies while

the bispectrum between three. The performance of the cyclo-stationary and bilinear

tools when applied to vibrations, is studied in [Bouillaut, 2001] and it is observed that

they simultaneously detect both non-linear and cyclic properties of the signals and of-

fer similar detection capabilities. However the former has to be preferred due to the

lower computational complexity and more intuitive interpretation. Furthermore math-

ematical evidence suggests that the signal from a defective bearing is cyclo-stationary

[Antoni, 2007c] and this property has been linked [Randall et al., 2001] to the well

established high resonant frequency technique [McFadden and Smith, 1984] for bearing

fault detection.

1.3.4 Transducers

The transducer most commonly used in the field of vibration based condition monitor-

ing is the mono-axial piezoelectric accelerometer. Piezoelectric accelerometers have low

noise density, in the order of µg/
√
Hz, and for this reason they have been historically

preferred to MEMS in commercially available systems. However in this respect, Ana-

log Devices has recently introduced MEMS accelerometers ADXL1001 and ADXL1002

with a comparable noise density [Analog Devices, 2017] and a promising commercial

future. The dynamic range of the accelerometers used in condition monitoring is of

±50 g with a ±3 dB frequency bandwidth up to ' 10 kHz and resonant frequency

at ' 20 kHz, while for measurements at higher frequencies ultrasound sensors [Na-

tional Instruments, 2017] are used. Between these two types is found the shock pulse

transducer, which is an accelerometer with resonant frequency in the band 30-40 kHz

[Sohoel, 1985].

When only contactless measurements are possible, microphones are used to record the

sound produced by the vibrations, for example [Gryllias and Antoniadis, 2013] pro-
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poses a method for instantaneous speed recovery from a microphone record. Recently,

microphones arrays combined with beam forming and SK have been proposed as a way

to visualise defects on gearboxes [Cardenas Cabada et al., 2017].

Commercially available products which use phenomena different than vibrations to

extract diagnostic information from machinery are: infrared cameras and acoustic

emission sensors. A review on thermographic methods for condition monitoring is

[Bagavathiappan et al., 2013] while an automated method to detect defective bearing

from infrared images was recently investigated by [Janssens et al., 2015]. The main

disadvantage of thermography, compared to classical vibration analysis, is that diag-

nostic information can be extracted only at the final stage of the defect, i.e. close to

the failure point. On the other hand, acoustic emission sensors are preferred in the

case of monitoring machines operating at very low speed and for detection of incipient

faults [Mba and Raj, 2006, Al-Ghamd and Mba, 2006], offering a better performance

than vibration analysis. As a drawback, acoustic emission sensors are expensive and

require signal conditioning, such as pre-amplification and amplification. Finally, in

the case of monitoring the bearings of an induction motor, the spectrum of the stator

current contains diagnostic information [Schoen et al., 1995] therefore it can be used

in condition monitoring.

1.4 Objectives

The thesis is conceived in the framework of condition based maintenance described

in Section 1.1 and the general objective is the development of novel signal processing

methods for vibration based condition monitoring of bearings in rotating machines,

offering adaptable diagnostic capabilities and the possibility of automation. The lit-

erature on condition monitoring already offers many signal processing methods for vi-

bration analysis, among which the most commonly used are described in Section 1.3.3.

Thus the introduction of novel techniques in such an already well investigated field is

not trivial. In this regards, two aspects of the currently used methods were recognised

as improvable and have driven the research of this thesis. Firstly, existing techniques

are difficult to implement in an automated way because they need the supervision of

expert users. Secondly, they are developed for ad hoc situations requiring unlikely real

world operating conditions of the machines, such as constant speed and load.

Therefore, with the general objective in mind and considering the weaknesses of the

current state of the art methods, the focus throughout the thesis has been on the

development of methods which are:
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• suitable for automated implementation

• effective on the varying operating conditions of the machines.

Certainly the diagnostic capability of the proposed methods should not be affected by

these characteristics and the performance in the detection of defective bearings has to

be bench-marked with that of state of the art techniques.

Besides focusing on such requirements for the proposed methods, the research was

also aimed towards the development of intuitive algorithms which can be applied in

a computationally inexpensive way, with the aim of offering methods attractive for

commercial applications.

1.5 Thesis structure

The thesis is divided into six chapters and is written in the Bath University alterna-

tive format, i.e. thesis by publication. The number of included publications is five,

comprising 3 peer reviewed papers from international conferences and 2 peer reviewed

journal papers. Each chapter has an introductory section to establish the link between

the included publications and the framework of the research. Each chapter is also con-

cluded with a summary section where the results of the proposed methodologies are

compared against the objectives of the thesis.

In more detail:

• Chapter 1 delineates the framework of condition based maintenance in which the

thesis is conceived and sets the objectives of this research work. It also introduces the

mathematical models used to simulate the cyclo-non-stationary vibration signals and

state of the art signal processing techniques currently used in condition monitoring.

• Chapter 2 investigates the performance of a two dimensional stochastic resonance

system and applies it to enhance vibration signals [Barbini et al., 2015]. In addition,

it introduces a circuit capable of performing stochastic resonance directly on analog

signals. It also elaborates on the problems involved in this approach and justifies the

conclusions that this method is unsuitable for the problem in hand.

• Chapter 3 investigates the effect that large variations in the operating speed of the

machine have on its vibration signature and extends techniques commonly applied

to cyclo-stationary vibration signals to cyclo-non-stationary signals [Barbini et al.,

2018].
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• Chapter 4 presents the core methodology proposed by this research work: phase

editing. It is applied on numerical simulated signals and experimental data and

its performance is compared to that of state of the art techniques. Phase editing

is firstly applied on cyclo-stationary signals [Barbini et al., 2017c] and secondly on

cyclo-non-stationary signals [Barbini et al., 2017a].

• Chapter 5 presents a further extension of the proposed methodology: amplitude-

cyclic frequency decomposition based on phase editing. Its performance is tested

on cyclo-stationary and cyclo-non-stationary vibration signals both from simulated

data and experimental data [Barbini et al., 2017b]. Its performance is compared to

that of state of the art techniques and it matches the objectives of the thesis.

• Chapter 6 concludes the thesis with considerations on the contributions of this re-

search and presents some perspectives on future work.
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Chapter 2

Investigation of stochastic

resonance

Nomenclature

a 2nd order constant of potential b 4rd order constant of potential

(x,y) variables of dynamical system δ coupling constant

A amplitude of sinusoid ω frequency of sinusoid

ε variance of white noise w Wiener process

TR time rescale SR spatial rescale

k rescale constant τ mean residence time

η derivative Wiener process L length of signal

γ constant multypling noise variance rτ degree of SR synchronisation

d(t) data from defective bearing q constant multiplying the data

Ti temporal scale of one impact Tim temporal interval between two impacts

2.1 Introduction

This chapter investigates the use of Stochastic Resonance (SR) as a signal processing

tool in the field of vibration-based condition monitoring. The general background of

SR is discussed in Section 1.3.3.

Despite being introduced as a physical phenomenon to model climate changes [Benzi

et al., 1983] SR has rapidly attracted the attention of engineers. In particular it is used

as a non-linear filter capable of enhancing a signal too weak to be detected by a sensor
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or masked by heavy noise. The most attractive characteristic of the SR mechanism

from an engineering point of view is its easy implementation. For instance an analog

circuit can reproduce the software based SR system.

Concerning the field of condition monitoring, the model of a vibration signal as de-

scribed in Section 1.3.1, matches that of the classical SR system in a superficial sense.

Specifically, the defective component contributes a weak signal masked by the stronger

vibrations from all the remaining components of the machine. Despite this similarity

with the classical SR system, the use of this non linear phenomenon to enhance a vi-

bration signal presents one clear difficulty. The noise considered in the classical SR

theory has a flat spectrum, i.e. white noise. In contrast, in a machine the background

vibrations are concentrated in a set of tonal components. However this aspect only

marginally affects the performance of the SR system, as shown by the vast amount of

research on its application to vibration data, for example [Klamecki, 2005, He et al.,

2012, Ompusunggu et al., 2013] and as a matter of fact 15 papers on the application

of SR in the field of vibration based condition monitoring, have been produced only

in 20161. The work presented here, firstly investigates from a general point of view

the performance of a SR system with two degrees of freedom instead of one, as intro-

duced in [Barbini et al., 2013], in order to verify whether it offers improved enhancing

capabilities. Secondly it focuses on the specific application of SR on vibration data

and differently from the literature it applies the non linear filter directly on the analog

signal from the accelerometer, rather than its digital version, introducing a SR based

circuit.

The chapter is organised as follows. Section 2.2 presents the comparison of the clas-

sical one dimensional SR system with a two dimensional SR system. Section 2.2 is

reproduced from the author’s published work in the proceedings of the 23rd European

Signal Processing Conference (EUSIPCO) [Barbini et al., 2015]. Section 2.3 presents

the analysis carried out to test the performance of the two dimensional SR system

directly on vibration data from an experimental setup and discusses the difficulties

concerning the use of SR in a realistic application. In addition Section 2.3 introduces

an analog circuit implementation of the two dimensional stochastic resonance system

and tests its performance on simulated and experimental data.

1According to a search on ‘web of science’ [WoS, 2017]
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2.2 Weak signal detection based on two dimensional

stochastic resonance
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Weak signal detection based on two dimensional stochastic resonance
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Abstract

The analysis of vibrations from rotating machines gives information about their faults. From the
signal processing perspective a significant problem is the detection of weak signals embedded in
strong noise. Stochastic resonance (SR) is a mechanism where noise is not suppressed but exploited
to trigger the synchronization of a non-linear system and in its one-dimensional form has been
recently applied to vibration analysis. This paper focuses on the use of SR in a two-dimensional
system of gradient type for detection of weak signals submerged in Gaussian noise. Comparing the
traditional one-dimensional system and the two-dimensional used here, this paper shows that the
latter can offer a more sensitive means of detection. An alternative metric is proposed to assess
the output signal quality, requiring no a priori knowledge of the signal to be detected, and it is
shown to offer similar results to the more conventional signal-to-noise ratio.

Keywords: stochastic resonance, weak signal detection, non linear signal processing

1. Introduction

The response of a non-linear system to both the effects of noise and a periodic signal can result
in a phenomenon of synchronization: stochastic resonance (SR) [1]. In the field of mechanical
engineering a problem of great importance is that under operating conditions of many mechanical
equipment, signals carrying useful information are submerged by heavy background noise. Con-
ventional methods for the enhancement of the useful signal, so that it can be detected, consist of
filtering or masking the noise [2, 3] while in the SR mechanism the noise is used to enhance the
signal, reducing the risk of losing the information of interest. In this context the flow of the detec-
tion scheme is as follows. The sum of periodic aperiodic or impact signals [4] and an heavy noise is
preprocessed [4, 5] and taken as the input of the non linear system, usually a 1D double well. Then
will start an algorithm for tuning the parameters of this non-linear system, in order to trigger the
SR mechanism. For each combination of the parameters, the output signal will be collected and
evaluated with certain criteria, such as maximization of the weighted kurtosis index (KC) or of the
signal-to-noise ratio (SNR), so that the best output is found and the signal of interest is detected
[4]. The assumption of the adiabatic approximation for the SR mechanism, i.e. small values of
frequency, amplitude and noise variance, can be avoided [5] hence in practical applications also
high frequency-amplitude signals can be detected (henceforth “large parameter SR”). It is worth
noticing that in the above mentioned detection scheme two key roles are the type of non linearity
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of the system and the optimization criteria; the former because it determines the set of variables
that one is able to tune, the latter because it decides the values of those variables.
In the present paper we investigate both of the above mentioned aspects, firstly we will show
how switching to a non linear system in more than one dimension will allow us to tune another
parameter. Barbini et al. [6] investigated the effect of the addition of another degree of freedom
to the usual bistable system used for the SR mechanism. It was observed a dependence of the
output signal on the coupling constant, due to a change in the transition path among the stable
points. Then the number of parameters which can be tuned increases, now being: the height of the
potential barrier, the position of the stable points and also the coupling constant. One is tempted
to think that for the same input signal, after the tuning process of the parameters, the output
of the SR will be the same in the two cases. We investigate this question, comparing the best
result of the 2D non-linear system with the mono-dimensional one, for the same input signal when
the parameters are tuned in the same range of values. Secondly we propose a new criterion for
selecting the best values of the three tuning parameters. Instead of looking at a time-frequency
transformation we evaluate the degree of synchronization of the output signal using directly the
distribution of the mean residence time in the stable points of the non linear system.
The paper is structured as follows. In section 2 we provide a description of the two dimensional
non linear system, as well as the rescaling for extending the large parameter SR to this model.
In section 3 we test the efficiency of the new tuning criteria for the parameters, detecting signals
using the 1D model. In section 4 we show the dependence of the output in the 2D model on the
coupling constant and comparing with the results obtained in the 1D case. Conclusions and an
outlook for future development are given in the final section.

2. Normalised two dimensional SR

Let us consider the dynamical system associated to the following potential:

U (x, y) = −a
2

(
x2 + y2

)
+
b

4

(
x4 + y4

)
− δ

2

(
x2y2

)
(1)

where a, b, δ are real positive numbers. This potential is the generalization of the one studied in
[6], where a = b = 1. Throughout the paper we will consider the inertia small compared to other
dynamical components.
The origin is an unstable steady point so that if we consider the effect of small fluctuations to
the motionless state, i.e. noise, we will observe the system to stabilize in one of the minima, then
for increasing values of the fluctuations we will have random transition between those minima
symmetrically displaced in the quadrants. The system is two dimensional hence, differently from
the usual double well, as a function of a, b, δ we have the possibility to have saddle points as unstable
steady states and curved transition paths in the (x, y) plane. Respectively a, b define the height
of the potential barrier between the stable steady states and their positions; δ is the coupling.
Whether transitions will take place among saddle points or the maxima as well as the rate, depend
on both the height of the potential barrier and on the curvature of the potential landscape [7]. In
Fig.1 we show the displacement of the steady states and the transitions paths for different values
of the coupling in the case a = b = 1. In green (δ = 0.65) and red (δ = −0.65) stable states lie on
the axes of the plane and transitions occur through an unstable steady state at (0, 1). Due to the
symmetry of (1) such transitions could take place also between the I − II, II − III and III − IV
quadrants (not shown). When the value of the coupling constant is lower than δ < −1 there is a
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change in the stability of the steady states of the potential, in Fig.1 we show in blue transitions
in the case δ = −1.5. It can be noticed that unstable steady states are now situated on the axes
of the plane while steady states are at (0,−1) and (1, 0) respectively. The same considerations on

Figure 1: Paths on the x− y plane for different values of δ: blue −1.5, red −0.65 and green 0.65. Circles and squares
are respectively stable and unstable steady states

Figure 2: Model of the two dimensional SR detector
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the symmetry apply in this case.
Let us consider now the effect of a periodic forcing on the dynamical system of stochastic differential
equations obtained from the potential defined in (1). We add a periodic component Acos(ωt), of
amplitude A and frequency ω, on the first of the two equations:

{
dx =

[
ax− bx3 + δxy2 +Acos(ωt)

]
dt+ ε

1/2
x dwx

dy =
(
ay − by3 + δyx2

)
dt+ ε

1/2
y dwy

(2)

where dw(·) are independent Wiener processes and ε(·) the variances of the noise. The effect of
the periodic component in the first of (2) is that of modulate the potential (1), i.e. the height of
the barrier between stable states changes implying a periodicity in the transition rates [1]. This
synchronization phenomenon is the result of the cooperative effect of the periodic component and
the noise, hence the transition rates are a function of both A,ω, ε, as well as the parameters of the
non linear system a, b, δ.
The theory of stochastic differential equations provides an estimate of the mean exit time from the
basins of attractions of the stable points in the limit of small parameters A,ω, ε [1, 7]. Nevertheless
for a good use of SR in signal detection these limitations on the characteristic of the analysed signal
must be avoided. Then following [5] we extend the rescale transformation to (2). For a, b > 0 we
take a constant k > 0, we let and x̂ = x

√
b/a, ŷ = y

√
b/a, δ̂ = δ/b, t̂ = t/k; hence (2) reduces to

the following system which preserves the gradient type structure:




dx̂ = TR

{(
x̂− x̂3 + δ̂x̂ŷ2

)
dt̂+ SR

[
Acos

(
Ωt̂
)
dt̂+ ε

1/2
x dŵx

]}

dŷ = TR

[(
ŷ − ŷ3 + δ̂ŷx̂2

)
dt̂+ SRε

1/2
y dŵy

] (3)

where TR = ak is the time rescale, SR = b1/2a−3/2 is the spatial rescale, Ω = kω is the new signal
frequency and the Wiener process dŵ keeps the statistical conditions 〈dŵ〉 = 0, 〈dŵ, dŵ′〉 = δ(t̂− t̂′);
in the following we will omit the ·̂ for simplicity.In practical application of SR as a signal detection
method, the input of the nonlinear system is a noisy signal and the main objective is to analyze
whether a periodic component is present or not. Referring to (3) the input is the sum of the last two
terms of the first equation, with unknown A,ω, εx . In system (3) the values of the frequency and
of the amplitude of the input signal can be taken without constraints, being multiplied respectively
by SR, k and the position of the stable points in the (x, y) plane and the height of the potential
barrier are now fixed, being now the dependence on a, b in SR(a, b). The detection problem is
then reduced to finding the values of TR, SR, δ providing a 2D SR mechanism giving an output
signal x which shows a transition rate highly synchronized to the periodic component of the input.
According to the order of magnitude expected for the frequency and amplitude of the periodic
component we will decide the range of values for the parameters TR and SR. Then we will test
all those for a selected range of values of the coupling constant δ, so that we will have to select
the best output from a total number of nTR × nSR × nδ. In the present paper we propose to study
directly the distribution of the transition rates τ i.e. the exit times from the basins of attraction
of stable steady states of (3). Those are obtained from the array of the times of the x-mode zero
crossing for each of the output signals. When the system is out of resonance, the times of the
transitions between stable states are random, then the distribution of τ depicts no structure and
decays exponentially. In [8] Benzi et al. showed that the moments for τ are given by:

〈τn〉 ≈ n! 〈τ〉n (4)
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In contrast, when we have SR the distribution of τ is peaked at the time being half period of the
periodic forcing. In the present paper we use the ratio rτ between the square of the mean and the

variance of τ in order to evaluate the degree of the SR: rτ = 〈τ〉2 /
(〈
τ2
〉
− 〈τ〉2

)
. The control

parameter rτ has to be independent from the time scale at which it is evaluated; this is why it
is normalized with the mean here. According to (4) when the system shows completely random
jumps rτ reaches the value 1, while in the SR case rτ →∞ for a perfect identification of the signal
frequency. The detection ends finding the maximum from all the rτ , the measure of success of
the procedure is that of detecting the signal carrying the useful information, for which the ratio
r = A/εx is the lowest.

3. Numerical results: test of rτ

In this section we test the use of rτ as a control parameter for the SR, all our numerical results
are taken from a Simulink model reproducing system (3), the model is shown in Fig.2, the input
block models the addition of periodic signals and a Gaussian noise:

Input =
∑

n

Ansin (ωnt) + ε1/2
x η(t) (5)

being η(t) = dw/dt, and n the number of components. Within this section we restrict our analysis
to the 1D system, i.e the first equation of (3) with δ = 0. We test the model with an input
signal constructed as follows: n = 3; the amplitudes and frequencies of the periodic components
are chosen randomly in the ranges of values 0.01 to 1 and 0.001 to 1000 Hz respectively; the
variance of the noise is taken as the result of multiplication of the highest of the Ai for a random

Figure 3: a) contour plot of rτ for the 1D detector; b) three output signals obtained for the values of SR, TR
giving the maxima of rτ . In black the periodic components of the input: top (A3, ω3) = (0.2794, 203.6811), middle
(A2, ω2) = (0.2727, 3.1748) and bottom (A1, ω1) = (0.0845, 0.0741)
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number in the range 5 to 10 so that we ensure that the periodic signals are heavily buried into
noise. The following values for the input signal were found: (A1, ω1) = (0.0845, 0.0741), (A2, ω2) =
(0.2727, 3.1748), (A3, ω3) = (0.2794, 203.6811) and εx = (2.3497)2. The tuning parameters TR, SR
are tested in the range 1 to 106, 0.01 to 15 respectively and we decide increment steps so that
we end up in a matrix of dimensions nTR × nSR = 40 × 250. In the simulations for each TR we
change both the integration time step dt = 2−6/TR and the time length of the analyzed signals
L = 10000/TR, while we keep fixed the number of samples and we sub-sample the output of 27, so
that we end up with signals of 5000 samples. In Fig.3(a) we show the contour plot of the values
of rτ for each of the tuning parameter, we have recognized the areas, red green and purple, for
the peaks corresponding to the three periodic components of the input signal.In Fig.3(b) we show
a comparison between the periodic components, black signals, and the three output x obtained
setting SR, TR as for the maxima of rτ ; the time scales of the plots are different and after the
SR we can appreciate the time decomposition of the three components of the input. We show
the classical signal to noise ratio (SNR) metric calculated for the output values for each of the
tuning parameter in Fig.4(a), SNR is defined as the ratio between the power of the spectral line
at the periodic input frequency and that of the noise background [5], we notice that the areas
corresponding to the three input frequencies are visible and comparable with those of rτ and
that a good comparison is possible. In Fig.3(a) we notice the displacement of the peaks in the
SR dimension due both to the ratio ri = Ai/εx and the superposition of the signals at different
frequencies. In order to quantify the dependence of rτ on the ratio r without such a superposition
we test an input signal where there is only one periodic component, n = 1 in (5). Following
the above mentioned construction procedure we found the following values for the amplitude and
frequency (A,ω) = (0.2749, 31.6426) and for the variance εx = (5.4976)2. Then we modify the

Figure 4: a) contour plot of SNR for the 1D detector; b) dependence of maximum of rτ on the amplitude γε
1/2
x of

the input noise; c) amplitude spectra of input noise (red) for γ = 6, εx = (5.4976)2, input noise plus sinusoid (green)
in the case (A,ω) = (0.2749, 31.6426), output of 1D SR detector (black)
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ratio r multiplying the variance for γ = 0.25, 1, 2, 6, 1, 10, 30, 60, 100 while we keep the values of the
periodic component fixed:

Input = Asin (ωt) + γε1/2
x η(t) (6)

In Fig.4(b) we show the maximum values of rτ for each of the inputs as a function of γ; in Fig.4(c)
we show the spectral amplitudes for the case γ = 6, black green and red are respectively the output,
the input and only the noise content of the input. A dotted line is plot at the input frequency
value, the presence of periodicity is completely not detectable before SR, being the difference in
spectra of the noise and sine wave plus noise negligible hence the input signal before SR filtering
could be characterized as white noise.

4. Numerical results: the comparison

In this section we use the 2D model, system (3). The value of the variance of the Gaussian noise
εy of the second degree of freedom will always be taken εy � εx so that the motion will displace
in the (x, y) plane but any transition in the y-mode, being the jumps between stable states of the
x-mode. Firstly we test the dependence of the 2D detector on the value of the coupling constant δ
with the input signal as in equation (6). We want to compare the results of this detector with the
1D one then we use same values A,ω, εx as in the precedent section and γ = 2. In Fig.5 we show the
contour plot of rτ for each of the TR, SR parameters, top left is the 1D case while all the others are
the 2D case for different values of δ, respectively δ = −5,−1.5,−0.95,−0.65,−0.25, 0.25, 0.65, 0.95.
We notice the dependence of the position of the peaks in the (TR, SR) space on the value of the
coupling. Furthermore due to the change on the stability of the steady states of (3) as a function
of δ, we notice a difference on the area of rτ over a threshold, i.e. the area covered by peaks
visible in Fig.5. It increases with the coupling constant value varying from −∞ < δ < −1 then
occurs the change in the position of the steady states at δ = −1 and the area covered by the peaks

Figure 5: contour plot of rτ : top left 1D detector, all the others are for the 2D detector with different δ
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reaches a maximum for δ = −0.95, hence for (3) approaching the case of a dynamical hysteresis
[9], while decreases for −1 < δ < 1. The same dependence on the coupling is found as well on the
maximum values of rτ , in Fig.6 we show such maxima as a function of δ for different values of the
ratio r, plots with different vertical scales. The input signal (6) is taken for four different values
of γ, respectively γ = 0.25, 1, 2, 6, while A,ω, εx are as in the previous simulation. We notice that
the increase in the degree of synchronization of the output signal due to the 2D feature of (3) is
related to the stability change in the (x, y) plane and that the maxima are found for δ > −1, i.e.
transitions path as in the red and green cases in Fig.1. The maxima of rτ for the 1D case are blue
constant lines in Fig.6, within certain values of δ we notice that the 2D detector outperforms the
1D one. In order to investigate such performance we show the comparison between the output
signals of the 1D and 2D detectors for the input signal taken with γ = 2 and A,ω, εx as in the
previous simulation. In Fig.7(a) we show the time domain, respectively blue red and black are
the outputs in the 1D, 2D case and the periodic component of the input multiplied by a factor 3.
Firstly we notice that in the 2D signal the variance of the output around the stable steady states
is lower in respect to the one in the 1D signal; furthermore we notice that the accordance between
the jumps times and the maximum values reached by the sinusoidal component is greater in the
2D case, corresponding in a fixed phase lag. In Fig.7(b) the two output signals are shown in the
frequency domain, blue and red are the 1D and 2D case, dotted vertical lines are plot at the values
of ω and at the first two odd harmonics. The values of the steady states in the 1D case are greater
in respect to the 2D one, amplitude of output signals in Fig. 7 (a), nevertheless we notice that in
the output signal of the 2D detector the power in the range 20 to 40 Hz is lower, this feature is
better noticed in the first odd harmonic, which is visible in the 2D case while it is not in the 1D
one; at the frequency value of 5ω the peak cannot be easily observed even in the 2D case.

Figure 6: maxima of rτ for the 2D detector (red) as a function of δ: a)γ = 0.25, b) γ = 1, c) γ = 2, d) γ = 6; in blue
1D
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Figure 7: comparisons of the best outputs of the 1D (blue) and 2D (red) detectors, for γ = 1, input sinusoid multiplied
for a factor 3 (black): a) time signals b) amplitude spectra

5. Conclusion

This paper introduced a model based on a two dimensional SR mechanism for the detection
of weak periodic signals, of random frequency and amplitude, buried in heavy background noise.
A new measurement index was proposed, calculated directly from the vector of the zero crossing
of the output signal without the need for a time-frequency transformation or a priori knowledge
of the input signal. The new index was first shown to convey similar information to that of the
signal-to-noise ratio, and was then used to evaluate the periodic content in the output signal from
the SR detector. It was shown that the presence of the coupling constant δ, used as a tuning
parameter in the proposed two dimensional SR model, results in a better capacity for the detection
of weak signals when compared with the usual mono-dimensional model. The best results in the
two dimensional detector are found when the value of the coupling is close to δ = −1 corresponding
to the case of a limit cycle for the dynamics of the model. The mechanism of operation in this
case appears to consist of a dynamical hysteresis where transitions occur deterministically as a
function of the amplitude and frequency of the periodic forcing, and further studies are in progress
to explore the nature of this mechanism. Future work will involve the experimental application of
the techniques developed here in the field of condition monitoring, in particular the detection of
weak fault signals in rotating machines.
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2.3 Stochastic resonance applied to vibration signals

In Section 2.2 SR was tested on a numerically simulated signal consisting of a sum of

sinusoids buried in noise, as shown in Eq. 5. In order to investigate the applicability

of SR as a tool for vibration-based condition monitoring, and specifically detection of

a defective bearing, in this section tests are conducted on a vibration signal from an

experimental setup. The data are collected from a test rig consisting of a variable speed

motor, a gearbox and a braking system. The motor drives through a flexible coupling

the input shaft of the gearbox and after a two stage speed reduction, the load is applied

to the output shaft of the gearbox by the braking system. A mono-axial piezoelectric

accelerometer is finally mounted on the gearbox cage to measure its vibrations. The

shaft rotational speed of the motor can be varied from 0 to 3000 rpm while the load

can vary from 0 to 50 Nm. A schematic overview of the setup can be found in Fig. 2.8

with the bearings B1 to B6 supporting the three shafts, the two gear reductions GR,

the coupling in yellow and the accelerometer in red.

The analysed vibration signal is collected when the shaft rotational speed is stationary

at 2.9 Hz, the load is of 6 Nm and B5 presents a fault in the inner cage. Figure 2.9(a)

shows a portion of the raw accelerometer data d(t) believed to comprise two impacts

from the defective bearing. The impacts from the defective bearing are present around

10 ms and 75 ms. Before processing the signal with the SR system, a normalised version

is calculated as:

d̃(t) = q

(
2
|d(t)|2

maxt |d(t)|2 − 1

)
(2.1)

where q is a constant chosen by the user to produce a sub threshold or a supra threshold

signal. The threshold of the SR system corresponds to the height of the potential barrier

between two stable states. The signal is normalised in such a way in order to enhance

Figure 2.8: Experimental setup for testing the use of SR on vibration data
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Figure 2.9: (a) The raw signal d(t) acquired by the accelerometer. (b) The normalised
version of the signal d̃(t) used as input for the SR system.

the impacts from the defective bearings and to simplify the selection of the spatial

rescale parameter SR. Figure 2.9(b) shows d̃(t) corresponding to the selected portion

of data from the accelerometer for the constant q = 1. The threshold is shown with the

red dotted line and corresponds to the height of the potential barrier of the dynamical

system.

The normalised signal d̃(t) is then input in the two dimensional SR system of Eq. 3

instead of the sinusoidal component Acos(Ωt̂), yielding:




dx̂ = TR

{(
x̂− x̂3 + δ̂x̂ŷ2

)
dt̂+ SR

[
d̃(t̂)dt̂+ ε

1/2
x dŵx

]}

dŷ = TR

[(
ŷ − ŷ3 + δ̂ŷx̂2

)
dt̂+ SRε

1/2
y dŵy

] (2.2)

where x̂ = x
√
b/a, ŷ = y

√
b/a, δ̂ = δ/b, t̂ = t/k with a, b, k positive constants and

SR = b1/2a−3/2 the spatial rescale parameter and TR = ak the time rescale parameter to

be tuned. In such a way the temporal scale of the impacts can be changed accordingly,

therefore the assumption of the adiabatic approximation for the SR mechanism, i.e.

small values of frequency, is avoided. All the results discussed in the following are

obtained using the Euler-Matuyama method [Kloeden and Platen, 1992] for integration

of stochastic differential equations.
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Figure 2.10: Test of the SR system on vibration data d̃(t). Numerical simulation with
δ = 0. (a) Input signal in black and output x(t) in red for three different levels of noise.
(b) Potential and output of the system when synchronised.

Figure 2.11: Test of the SR system on vibration data d̃(t). Numerical simulation with
δ = −0.65. (a) Input signal in black and output x(t) in red for three different levels of
noise. (b) Potential and output of the system when synchronised.
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2.3.1 Results

The analysis is restricted to a single impact, using only the first 1500 data points of

d̃(t), corresponding to ' 0.29 s in Fig. 2.9(a). The SR mechanism in the case of a

sub threshold signal is proved to work for four different values of the coupling constant

δ = {0, −0.65, 0.3, −1.3}. The first case analysed is for δ = 0 and there is no coupling

between the two modes of the dynamical system. Therefore Eq. 2.2 corresponds to the

one dimensional SR. In order to have a sub threshold signal q = 0.2 in Eq. 2.1 and the

parameters a and b of the dynamical system are considered unitary, giving SR = 1 and

TR = k in Eq. 2.2.

Figure 2.10(a) shows the results obtained for three different levels of input noise, re-

spectively ε
1/2
x = {0.01, 0.25, 0.5} from top to bottom. The constant k for the time

rescale was estimated2 from Fig. 2.3, specifically considering that the temporal scale is

Ti ' Tim/200 ' 3 kHz. The value used for the time rescale is k = 383, yielding a final

integration step of dτ̃ = 5× 10−8.

In Fig. 2.10(a) the classical dependence of the SR system on the noise can be observed.

For instance on the top plot the noise level is not sufficient for triggering a transition

between two stable states. While in the middle plot the increase in the level of noise

allows the transition, which occurs around 15 ms, exactly at the time of the impact

from the defective bearing. The further increase in the noise level as in the bottom plot,

results in a higher number of transitions occurring at spurious times. Figure 2.10(b)

shows the potential U(x, y) with the points superimposed in red corresponding to the

output of the SR system for ε
1/2
x = 0.25. Because the coupling is δ = 0 the y variable is

constantly unitary and the two dimensional system corresponds to the one dimensional

double well system with the transition occurring at (0,1).

The next test is for δ = −0.65 and q = 0.1 in Eq. 2.1, in order to have a sub thresh-

old SR. The results are shown in Fig. 2.11. Three different levels of input noise

ε
1/2
x = {0.01, 0.2, 0.6} are tested and the constant for the time rescale is selected as

k = 383. The classical SR behaviour is observed also in this case of a two dimensional

system. Specifically, Fig. 2.11(a) shows that an increase in the variance of the noise

enhances the detection of the impact from the defective bearing. Figure 2.11(b) shows

the potential U(x, y) for ε
1/2
x = 0.2 when the SR system is synchronised. In this case

of a two dimensional system, in comparison with Fig. 2.10(b), the superimposed red

points depict the two dimensional behaviour. Specifically the points are not in the

one dimensional line at y=1. They are distributed in the (x,y) plane, in the basin of

2From Fig. 2.3 a rule of thumb is that the integration step has to be around 1/(104 × fsinusoid).
Please notice that in Fig. 2.3 the initial integration step is 2−6, while for the the experimental data
analysed in this section it is 1/51200
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attraction around the stable points calculated from Eq. 2.2:

(±xs,±ys) =

(
1√

1− δ
,

1√
1− δ

)
' (0.78, 0.78). (2.3)

The curved transition path between the stable points is equivalent to Fig. 2.1 for the

case shown in red.

Similar results of Fig. 2.11 are obtained for the other two values of the coupling constant

δ = {0.3, −1.3}, demonstrating the effectiveness of the SR system for bearing fault

detection.

2.3.2 Analog circuit model

The last part of this research on SR focuses on the implementation of a circuit cor-

responding to the analog version of the two dimensional SR system. Currently SR is

applied to vibration signals after digital to analog conversion, either using computer

software [He et al., 2012, Ompusunggu et al., 2013] or embedded systems with dedi-

cated digital signal processing units [Lu et al., 2016, Lu et al., 2014]. For instance the

methodology of Section 2.3 corresponds to the application of two dimensional SR on

the digital version of the accelerometer data using computer software.

The observation of SR in electric circuits dates back to 1983, when [Fauve and Heslot,

1983] used an analog comparator to enhance a sinusoid buried in noise. Afterwards

a diode circuit [Godivier et al., 1997] implementing a static non linearity was used to

test the SR phenomenon. More recently, an electrical circuit implementing the one

dimensional SR system has been proposed in [Luchinsky et al., 1999a, Luchinsky et al.,

1999b, Dai et al., 2011, Dai and He, 2012]. However in the literature there is no direct

application of SR to the analog signal from an accelerometer. Research in this direction

lies in the field of distributed intelligent sensors. For instance when condition moni-

toring is applied in industrial contexts, there is the need to place several transducers.

An example is monitoring the condition of a farm of wind turbines. In such cases each

sensor sends the collected raw data to a central server unit which provides analog to dig-

ital conversion and implements digital signal processing algorithms. Afterwards digital

data is sent to a remote server and further analysed by trained technicians [Pylvänen

and Elfström, 2013]. When the signal from hundreds of sensors needs to be sent to a

central unit two main problems arise:

• computational power of the server

• transfer of large amount of data.
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Figure 2.12: The schematics of the two dimensional SR analog circuitry

Figure 2.13: Photograph of the realised analog circuitry
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In this context distributed intelligent sensors find their role. In order to have a low cost

condition monitoring architecture there is the need to develop sensors with the ability

to directly implement basic signal processing algorithms [Lumme, 2012].

Figure 2.12 shows the schematic of the circuit corresponding to the integral version of

Eq. 2 with a=b=1. Integration is implemented using an operational amplifier, shown

in red, while an analog multiplier AD633 is used to have the second and third order

terms. The use of variable resistors allows the selection of the coupling constant δ,

when AD 633 is used in the variable scale factor configuration [AD, 2017]. In addition

AD 633 allows change of sign, for the negative third order term. In each multiplication

a scale factor of 2 is selected to prevent the product voltage exceeding the specified

maximum of the AD 633. Subsequently resistors R1 are chosen as 4R1 = R. Therefore

the time constant of the circuit of Fig. 2.12 is given by RC. Resistor values should

be chosen in the range 1 to 100 kΩ and capacitance of at least 22 pF , in view of the

typical stray capacitance of a few pF [Luchinsky et al., 1999a].

The inputs of the circuit are the signal d̃(t) and the white noise for the x and y variables.

Outputs are taken after the analog inverter circuit, shown with the blue operational

amplifiers. Analog noise can be realised using commercial generators, simple electronic

components [Moss and McClintock, 1988], or by a computer and then digital to analog

converted. In the following experiments the noise was generated using the latter of

these methods. Resistor R3 = 500R in order to have a greater noise in the driving

variable x.

As a first test of the circuit, a sinusoid of amplitude 0.1 V and frequency 80 Hz is selected

as input. Figure 2.13 shows the picture of the realised circuit, the component values

used are R=20 kΩ and C=220 pF, giving a time constant RC = 4.4µs, which allows

synchronisation with the sinusoid. The blue components are variable resistors used to

fine tune the output of the multipliers. The coupling constant is chosen as δ = −0.4.

Results obtained from this circuit are shown in Fig. 2.14(a) for three different levels

of the input noise. The typical SR mechanism is observed. A small amount of noise

does not allow synchronisation, as shown in the top plot, while an increase in the level

of noise results in transitions occurring at the frequency of the sinusoid, as shown in

the second plot. In the bottom plot the further increase in the level of noise results

in uncontrolled transitions. Figure 2.14(b) shows transition between the two stable

states in the potential landscape, for the case of synchronisation of the SR circuit. Is

it possible to notice both the two dimensional shape of the basins of attractions of the

stable points and the curved transition path.

Finally the circuit is tested on the vibration signal from the experimental setup of

Fig. 2.8. The signal is the same as in Section 2.3.1, consisting of 1500 data points
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Figure 2.14: Test of the SR circuit on sinusoid of amplitude 0.1 V and frequency 80
Hz, δ = −0.4. (a) Input signal in black and output x(t) in red for three different levels
of noise. (b) Potential and output of the system when synchronised.

Figure 2.15: Test of the SR circuit on vibration data d̃(t), δ = −0.65. (a) Input signal
in black and output x(t) in red for three different levels of noise. (b) Potential and
output of the system when synchronised.
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and the raw signal is normalised according to Eq. 2.1. In this case a Simulink circuit

simulation is used instead of a real circuit, differently from the previous analysis. In

the simulink model, the coupling constant is chosen as δ = −0.65 and the values used

for the components are R=4 kΩ and C = 22 pF , giving a time constant RC = 88 ns,

which allows synchronisation with the sequence of impacts from the defective bearing.

This value is selected following the analysis of Section 2.3.1 where the time integration

step, after the time rescale, is 1/ (Fs ∗ k) ' 50 ns. Results of the circuit performance

are shown in Figure 2.15 and they can be compared with the results from the numerical

integration shown in Figure 2.11. Specifically three different values of the input noise

ε
1/2
x = {0.0133, 0.20, 0.5} are shown in Fig. 2.15(a) and the classical noise-driven SR

synchronisation mechanism is observed. Figure 2.15(a) shows the potential landscape

in the case of ε
1/2
x = 0.20 when the system shows a transition between two stable states

at the occurrence time of the impact.

2.3.3 Analysis

The application of SR on a signal from a defective bearing presents several difficulties.

The first problem is related to the temporal scale Ti at which the SR system syn-

chronises. The inverse of the temporal scale of interest corresponds to the frequency

at which the jumps between two stable states of the dynamical system should occur.

Unfortunately Ti does not coincide with the interval of time between two impacts Tim,

which is the only known variable related to the defective bearing. Tim is calculated

from the shaft rotation speed and from the mechanical dimensions of the bearing, as de-

scribed in Section 1.3.1. For the Flanders Make 2 setup the inner race defect produces

impacts at Tim ' 1/ (5.43× fshaft) and for the shaft rotational speed of fspeed = 2.9 Hz

analysed here it corresponds to Tim ' 60 ms. From Fig. 2.9 it is possible to verify that

the separation between the two impacts corresponds to this estimate. On the other

hand Ti clearly depends on uncontrolled factors such as the resonant frequency excited

by the impact. As an example in Fig. 2.9(b) Tim and Ti are shown with red horizontal

segments. Specifically Ti is shown for the second impact and Tim between the first and

the second impacts. In order to have an estimate of Ti the interval of time between

two impacts can be used, being:

Ti < Tim (2.4)

However a blind search on a selected range of TR in Eq. 2.2 is needed, as in Section 2.2,

because the exact value of Ti is not known. This results in a computationally expensive

and time consuming process, jeopardising a real time application of the SR mechanism
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Figure 2.16: (a) The normalised signal d̃(t) at lower shaft speed in respect to Fig. 2.9.
(b) The same signal after the operation of cepstrum pre-whitening.

in vibration based condition monitoring.

The second issue with the SR approach is that for the same defective bearing successive

impacts produce different results as can be seen in Fig. 2.9(b). For instance in the

case of a machine operating at varying speed or varying load this aspect is even more

pronounced. Intuitively the higher the shaft rotational speed or the load on the bearing,

the bigger the impacts. Therefore the tuning of the spatial rescale SR in Eq. 2.2

becomes particularly difficult. For the same value of SR sections of the vibration signal

might result in a supra-threshold stochastic resonance while others in a sub-threshold

stochastic resonance. Therefore a step of signal pre-processing is needed. Specifically

the signal should be divided into sections containing impacts of similar amplitudes.

The final issue is that the signal acquired by an accelerometer comprises both vibrations

from the gears and from the defective bearing as shown in Eq. 1.8. Therefore the SR

systems could synchronise with the gear meshing frequency or harmonics instead of

the bearing fault frequency 1/Tim, resulting in a missed detection. Ompusunggu et al.

[Ompusunggu et al., 2013] address this problem and propose the use of cepstral pre-

whitening to suppress components from the gears and use SR to enhance detection in

the residual signal. Details of the cepstral pre-whitening are discussed in Section 1.3.3.

An example of this procedure is presented in Fig. 2.16. The vibration signal is from the

experimental setup of Fig. 2.8 but in this case the acceleration is measured when the

shaft rotation speed is kept stationary at 0.87 Hz, which is different from Fig. 2.9 when

the speed is 2.9 Hz. At this lower shaft speed the impacts from the defective bearing

release less energy and the vibrations from the gear are predominant, Fig. 2.16(a).
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The SR system applied directly to this signal synchronises with the vibrations from

the gears. On the other hand Fig. 2.16(b) shows the signal after the operation of

pre-whitening. The two impacts from the defective bearing are clearly visible. The

application of SR to this signal will further enhance the presence of the defective bearing

however it has to be recognised that the fundamental step towards detection is the

cepstral pre-whitening. There are cases when SR can be applied directly on vibration

signals. For example when there are no gearboxes in the machinery, as for instance in

condition monitoring of the bearings supporting the shaft of a motor [He et al., 2012].

However this scenario is not likely to be realistic for an industrial use of SR, reducing

drastically its range of applicability.

2.4 Summary

This chapter investigated the use of Stochastic Resonance (SR) in the field of vibration

based condition monitoring.

Firstly, the classical one dimensional SR was compared, by means of a numerical sim-

ulation, to a two dimensional SR system. It was observed that the presence of the

coupling constant between the modes of the two dimensional system, increases the

tuning space for the SR and allows a better signal enhancement. As shown in Fig. 2.4

for four different input SNR, the performance of the two dimensional system doubles

that of the classical one dimensional, according to the ratio between the square of the

mean and the variance of the transition rates between stable states.

Secondly, this chapter showed results obtained from the application of the two dimen-

sional SR to vibration data from an experimental setup. SR effectively enhanced the

impact from a defective bearing as shown in Fig. 2.11. An analog circuit was used to

produce the two dimensional SR system matching the results obtained by the numerical

simulations, as shown in Fig. 2.15, proving that SR can be used directly in series with

a vibration transducer.

Finally, problems related to the use of SR on vibration data have been discussed. The

most important recognition is the need for implementing signal processing algorithms

before the SR, in particular on vibration data from complex machinery. Furthermore,

the tuning of the SR system can be highly time consuming and computationally ex-

pensive. Therefore SR does not accomplish the objectives detailed in Section 1.4 and

despite the promising early results the work on SR was discontinued.

The focus of the research hereafter shifts towards the development of novel digital sig-

nal processing algorithms and the extension of existing methods. These algorithms will
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be tested on numerical simulations and experimental data, from simple experimental

setups to complex machinery, working both at stationary and non-stationary speed.
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Chapter 3

Extension of common techniques

3.1 Introduction

This chapter investigates the use of two common techniques, Cepstral Editing (CE)

and Spectral Kurtosis (SK), to enhance the component of the vibrations generated

by a defective bearing on a machine operating at variable speed. Additionally it uses

Order Tracking (OT) and the Squared Envelope Spectrum (SES) to obtain a stationary

signal and subsequently perform diagnostics. The general background on the cepstrum

and SK as well as on OT and the SES is discussed in Section 1.3.3.

In contrast to SR investigated in the previous chapter, CE and SK are well established

methods in vibration based condition monitoring. They suppress the vibrations coming

from the unwanted components, as for instance gears, resulting in the enhancement of

the vibrations from the bearing. In the literature, they are introduced [Antoni and

Randall, 2006, Randall and Sawalhi, 2011] as methods to be applied on machines

operating at constant speed. When applied to signals from machines operating at

variable speed, they follow a first step of OT [Randall and Antoni, 2011].

In the case of varying speed this two steps approach, of OT followed by enhancement of

the defective bearing vibrations, is effective only for small fluctuations around the mean

operating speed. Conversely, in the case of a machine undergoing large speed variations,

the detection capability decreases drastically [Borghesani et al., 2013b, Abboud et al.,

2017]. This is caused by the fact that OT does not preserve the spectral content of the

transient dynamics of the impacts from the defective bearing, as discussed in Section

1.3.1. Figure 3.1 shows by means of a numerical simulation the effect of OT on a

vibration signal modelled according to Eq.1.8, in the case of significant variation in
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Figure 3.1: (a) Impacts from a defective bearing in the time (black) and angular (red)
domain. (b) Power spectra

operating speed. Specifically, the signal comprises the vibrations from a gear and a

sequence of impacts from a defect on the outer race of a bearing. Figure 3.1(a) shows

the signal in the time and angular domain, in black and red respectively, in the case

of a frequency varying from fsh(0) = 7 Hz to fsh(0.1) = 20 Hz. Figure 3.1(b) shows

the power spectra in the case of a frequency varying linearly from fA(0) = 10 Hz to

fA(10) = 60 Hz. It is possible to notice that after OT the chirp signal is transformed to

a sinusoid and that the impacts occur at constant angular intervals as anticipated from

Eq. 1.3. However, the excited resonant frequency becomes non-stationary and varies

between two consecutive impacts. Recently, in order to overcome this drawback of OT,

it has been proposed in a series of papers [Borghesani et al., 2013b, Randall and Smith,

2016b] to enhance the signal from the defective bearing directly in the time domain,

where the vibration signal is cyclo-non-stationary, and only afterwards to re-sample

in the angular domain. The work presented hereafter follows this line of research and

shows, for the first time, that SK and CE are effective also when applied directly on

cyclo-non-stationary signals. Therefore it extends the applicability of such widely used

algorithms to a broader range of real world cases.

The chapter is organised as follows. Section 3.2 uses simulated and experimental data to

compare the results obtained from the application of CE before and after the operation

of OT. Section 3.2 is reproduced from the author’s published work in the proceedings
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of the 5rd international conference on Condition Monitoring of Machinery in Non-

stationary Operations (CMMNO) [Barbini et al., 2018]1. Finally, Section 3.3 compares

the performance of SK before and after OT showing that it is beneficial to apply SK

to the non-stationary signal in the case of varying speed.

1In the literature it is implicit that the signal from the bearing is cyclic and the term was not
included in the title of the paper. According to the models of Section 1.3.2 the signals are cyclo-non-
stationary.
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3.2 Application of cepstrum prewhitening on non-stationary

signals

Article published in the Proceedings of the 5rd international conference on Condition

Monitoring of Machinery in Non-stationary Operations (CMMNO). Reprinted, with

permission, from [Barbini et al., 2018].
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Application of cepstrum prewhitening on non-stationary signals
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Abstract

In the field of vibration based condition monitoring a trusted symptom of a defective bearing is
the observation of peaks, at characteristic frequencies, in the squared envelope spectrum (SES).
If a machine is operating in a varying speed regime the SES is computed on the order tracked
signal, i.e. the signal resampled at constant angular increments, and the SES can still be used for
diagnostic. Despite its versatility a common problem with the SES is that peaks from other sources
of vibrations, as for instance gears, can prevent the diagnosis of a defective bearing. Therefore pre-
processing techniques are applied to the vibrational signal before the computation of the SES to
enhance the signal from the bearings. Among these techniques cepstral pre-whitening (CPW)
has gained much attention offering a remarkable capability of eliminating, in a blind way, both
harmonics and modulation side-bands of the unwanted components. In the case of a varying
speed regime the usual procedure consists of three steps: order track the signal, calculate the
CPW, evaluate the SES. In this paper on the contrary the CPW is applied before the step of
order tracking; therefore the proposed approach is: CPW the raw time signal, order tracking,
evaluation of the SES. The remarkable observation is that for this approach the cepstrum does
not present peaks at characteristic quefrencies, being the raw signal acquired in a varying speed
regime. However this paper shows by means of numerical simulations and analysis of experimental
data, that with the proposed methodology the masking components coming from the gears are
suppressed and the signal from the defective bearing is enhanced.

1. Introduction

In a faulty bearing an impact occurs every time a rolling element hits a defect in the raceway or
a defective rolling element hits the raceway. The detection of the shock generating from each impact
is often a challenge due to the presence of other sources of vibrations, in particular gears, masking
the presence of the defect. Therefore signal pre-processing methods have to be implemented before
the evaluation of the widely established diagnostic technique of the squared envelope spectrum
(SES). Cepstrum editing (CE) has been proposed as an efficient method for the suppression of
gear components from a vibrational signal [1] and it performs well when compared with other
techniques [2]. The working principle uses the fact that vibrations from gears result in a series of
peaks at constant distances in the frequency spectrum. Therefore all these peaks can be eliminated
suppressing, by means of a lifter, the corresponding peak in the cepstrum. Sawalhi et al. [3]

∗Corresponding author
Email address: leo.barbini@bath.ac.uk (L. Barbini )

Preprint submitted to international Conference on condition Monitoring of Machinery in Non-stationary Operations



introduce the cepstral pre-whitening (CPW) as a further application of the cepstrum for the removal
of all the discrete components from the spectrum, both vibrations from the gears and resonance
effects.
When machines are operating at varying speed peaks corresponding to the vibrations from gears
are smeared in the frequency domain and the cepstrum does not present significant peaks. In
such cases the CPW is implemented in the order domain, after the operation of order tracking
(OT)[4, 5]. However changing to a rotation angle basis smears the resonance frequencies excited
by the impacts from the faulty bearing . Recently [6, 7] has been suggested to enhance the signal
from the bearing directly in the time domain and to implement the OT only after this operation.
Borghesani et al. [6] propose to band-pass filter the non stationary signal and Randall et al. [7]
compare the performances of the application of three common techniques:spectral kurtosis for band
selection, minimum entropy deconvolution and an exponential lifter.
The paper follows these methodologies and shows that CPW can be applied directly on time
vibrational signals from machinery operating at varying speed conditions, before the operation of
OT. The paper is organised as follows: section 3 presents the proposed method, section 2 evaluates
its performance on a numerical simulation and section 3 on experimental data sets. Conclusions
are presented in the final section.

2. Methods

In this paper two techniques will be used to pre-process, before the computation of the squared
envelope spectrum (SES), vibrational signals from machines operating at varying speed. The two
techniques are cepstral pre-whitening (CPW) and order tracking (OT). CPW can be implemented
without the computation of the cepstrum [4], using only the Fourier transform:

xcpw = IFT

[
FT (x)

|FT (x)|

]
(1)

This operation is equivalent to setting to zero the real cepstrum and recombine it, in the frequency
domain, with the phase of the original signal. The result is a white signal with a flat spectrum of
amplitude one. OT is applied in the time domain implementing a digital re-sampling of the signal
synchronously with the shaft rotation speed. In this paper the shaft rotation speed is considered
to be provided by a tachometer. The envelope for the computation of the SES is calculated as the
absolute value of the analytical representation of the full band signal. The SES is normalised by
means of the ratio: ˜SES[l] = SES[l]/SES[0]. In the following the ˜ will be omitted. The common
procedure using such techniques consists of a first step of OT and afterwards CPW the xOT signal
[4, 5], as it is shown in Fig. 1(a). However the resonant frequencies excited by the impacts from
a faulty bearing are constant or vary more slowly than the operational speed of the machine. OT
effectively produces a sequence of impacts equally spaced in the time domain, but the resonant
frequencies excited by the impacts will be smeared [6] by the re-sampling. Therefore after OT the
dynamic information is lost and the application of CPW may result in unwanted amplification of
low signal to noise ratio bands [5].
To address this issue in this paper the CPW is applied directly on the non stationary signal and
afterwards the OT is performed. The proposed approach is shown in Fig. 1(b). The central
assumption is that the restriction of applying CPW only to signals showing periodic components
in a spectrum can be relaxed. Eq. 1 is more generally effective and able for instance to enhance
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Figure 1: Schemes of the two processing methods

impacts masked by a strong non stationary signal, as shown by a numerical simulation in the next
section. This follows from the observation that Eq. 1 is equivalent to what has been called the
phase only signal [8] and used in [9] for detection of defects on surfaces.

3. Numerical investigation

The numerical simulation consists on the application of CPW to a signal constructed as the
superposition of a deterministic non stationary component and a sequence of random impacts. Such
signal does not show peaks in the cepstrum, nevertheless it will be shown that CPW is still capable
of enhancing the sequence of impacts. A chirp signal with the frequency increasing linearly from
10 to 200Hz and amplitude 1 [a.u.], is used for the deterministic non stationary component. The
impacts have mean occurrence frequency of 48.7Hz plus a random jitter of 2%, in order to resemble
a random component coming from a defective bearing. The resonance frequency is simulated in
the band 2200 − 3000Hz and the amplitude of the impacts is 0.1 [a.u.]. The signal is shown in
Figure 2(a) in black, the total length is 2 seconds and the sampling frequency is 12.8kHz, zoomed
sections at different times are shown on the left and right sides, in yellow is superimposed only the
sequence of impulses. As expected the real cepstrum of the simulated signal has no clear peaks,
as shown in Figure 3(a). The real cepstrum is calculated as the inverse Fourier transform of the
logarithm of the magnitude of the Fourier transform of the signal. The SES, shown in Figure 3(b),
does not present indications of the presence of impulses, being masked by the high energy chirp.

The signal after the operation of CPW is shown in blue in Figure 2(b), the chirp is completely
removed and the presence of the impacts is highly enhanced, for comparison in yellow it is shown
the original sequence of impacts. The SES of the CPW signal is shown in Figure 3(c) where peaks
are present at the expected mean occurrence frequency of the impacts and the first harmonic.

4. Experimental investigation

This section shows a benchmark comparison between the SES obtained using the proposed
approach of Fig. 1(b) and the SES obtained from the usual procedure of applying CPW in the
order domain Fig. 1(a). The data sets used in this section were provided by the Centre Technique
des Industries Mécaniques (CETIM).
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Figure 2: (a) Simulated non stationary signal. (b) Simulated non stationary signal after CPW. See legend for
description of signals.

4.1. Test rig & data sets

Figure 4(a) shows the photograph of the test rig. A variable speed asynchronous electric motor
drives the input shaft of a parallel spur-gear of ratio one and 18 teeth, and an alternator applies
a constant load. The output shaft is supported by two rolling elements bearings of which the
one close to the gearbox is in healthy conditions while the other one has an outer race defect with
expected repetition of 3.04 orders: Ball Pass Outer race Order (BPOO). An accelerometer mounted
on the casing of the healthy bearing is used as a vibration transducer.
Two signals are analysed in this paper: a run-up profile and a randomly varying speed, the lengths

of the signals are of 15 seconds and 20 seconds respectively, both are sampled at Fs= 12.8kHz.
Figures 4(b-c) show the two speed profiles as a function of time: in the run-up the speed is varying
approximately of 10 Hz increasing constantly from 25 to 35 Hz, while in the case of random
variations the speed changes more drastically for example of approximately 30 Hz in 2.5 seconds.
The SES of the run up signal is shown in Fig. 5(a) and for the random speed signal in Fig. 5(b).
The speed variations are large in both cases therefore the SES are smeared and no clear peaks are
present at the theoretical bearing fault order. The SES after OT the signals are shown in Fig.
5(c-d) and the presence of the defective bearing is revealed, however can be noticed disturbing
components among which 1X has the highest energy and 2BPOO is almost masked. The real
cepstra of the signals before and after OT are shown in Fig. 5(e) for the run up case and Fig.
5(f) for the random speed profile. In both cases after the operation of OT, in black, the gear
components contribute a periodic spectrum resulting in a cepstrum with peaks separated by 1/X.
On the other hand the cepstra for the raw non stationary signals, in blue, do not present peaks.
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Figure 3: (a) Real cepstrum of the simulated non stationary signal comprising the two components, (b) corresponding
SES. (c) The SES of the CPW signal.

Figure 4: (a) The photograph of the test rig. (b) The run up speed profile. (c) The randomly varying speed profile
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Figure 5: (a) SES of raw signal for the run-up speed and (b) randomly varying speed. (c-d) Corresponding SES after
OT. (e-f) Real cepstra: in blue of the original signals and in black of the OT signals.

4.2. Results

The aim of the CPW step in the common procedure of Fig. 1(a), is that of removing the
disturbing components from the SES of Fig. 5(c-d). After the operation of OT the spectrum
shows periodicity contributing the peaks in the cepstra, as shown in Fig. 5(e-f) in black, therefore
this is the typical application of cepstral pre-whitening on a non stationary signal [4].
In the method proposed in this paper, as shown in Fig. 1(b), the CPW is applied directly on
the time non stationary signals for which the cepstra does not presents peaks at characteristic
quefrencies, Fig. 5(e-f) in blue, and the SES Fig. 5(a-b) has smeared peaks. The SES resulting
from the two methods are shown in Fig. 6 for the run up case and randomly varying speed
respectively, top raw is the OT followed by CPW and bottom raw is CPW followed by OT. The
vertical scales are defined, for a comparison, according to the SES of Fig. 5(c-d). The proposed
method performs well when compared to the common procedure: the masking components are
more suppressed and the peaks at characteristic fault frequencies have higher relative amplitude
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Figure 6: SES after processing the signals. OT followed by CPW for (a) run up speed, (b) randomly varying speed.
CPW followed by OT for (c) run up speed, (d) randomly varying speed.

for both the analysed speed profiles.

5. Conclusion

The paper shows the effectiveness of cepstrum pre-whitening to enhance the presence of impacts
from a faulty bearing when applied directly on acceleration signals from machinery operating at
varying speed. The paper also shows that in variable speed situations it is beneficial to apply
cepstrum pre-whitening directly to the time non-stationary signals instead of the order-tracked
signals, because the resonant frequencies appear to change with speed in the order domain. The
method proposed here consists of order tracking the signal only after the operation of whitening the
time non-stationary signal, and finally calculating the squared envelope spectrum for diagnostics.
Both numerical simulations and analysis of experimental data have been carried out. The proposed
method has been compared with the common procedure of order tracking the signal as a first step
and afterwards use the cepstrum pre-whitening in the order domain. The evaluation of the squared
envelope spectra obtained by the two methods shows that, as proposed in this paper, the cepstrum
pre-whitening performs well on the time non-stationary signal and that it is advisable to apply it
before order tracking.
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3.3 Application of the kurtogram on cyclo-non-stationary

signals

This section tests the performance of the SK when applied to cyclo-non-stationary

signals. Spectral kurtosis [Antoni, 2006] and its fast implementation the kurtogram

[Antoni, 2007d], have been introduced as effective tools to determine the optimal de-

modulation band in the classical high resonant frequency approach for bearing fault

detection [McFadden and Smith, 1984, Luo et al., 2010]. SK is a method used on

the vibration signal from a machine operating at constant speed. In the case of vary-

ing speed, it is used following the procedure described in Section 3.2 for the CPW.

Specifically, it is normally implemented after the operation of OT, so that the opti-

mal demodulation band is found on the signal showing impacts at constant angular

intervals [Randall and Antoni, 2011]. In the following, a numerical simulation shows

that in the case of largely varying speed this procedure deteriorates the performance

of the kurtogram and SK has to be used directly on the cyclo-non-stationary signal.

The simulated vibration signal is modelled using Eq.1.7 and Eq.1.3. Specifically the

following values are used for the vibrations from the gear:

rm = [1, 3] NA = 8 NB = 16

θA,Brm = 0 Mrm = 1
2

EA,Bre = 0 CA,Brm,rc = 0 DA,B
rm,rd = 0

(3.1)

and the following values are used for the vibrations from the bearing:

Θ = 1.81 rad Dp = 0.25 a = 2e− 4 s

fl = 2.4 kHz fh = 3.2 kHz
(3.2)

The total length of the simulated signal is 10 seconds and the sampling frequency is

12.8 kHz. The rotational speed of shaft A increases linearly from fA(0) = 7 Hz to

fA(0) = 14 Hz. In addition the signal is buried in white Gaussian noise with SNR=15

dB. The signal corresponds to two linear chirps representing vibrations at gear meshing

frequency and its third harmonic, superimposed to a sequence of impacts, produced by

a defect on the outer race of the bearing supporting the shaft rotating at fA(t).

The results from the application of the kurtogram to this cyclo-non-stationary signal is

shown in Fig. 3.7(a). The kurtogram correctly detects the demodulation band around

2600 Hz. As a matter of fact the impacts excite the same resonant band, irrespective

of their occurrence at non-stationary intervals of time, as shown in Eq.1.3. On the

other hand the result of the kurtogram applied to the OT signal is shown in Fig. 3.7(b)
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Figure 3.7: Kurtogram before (a) and after (b) order tracking the simulated cyclo-non-
stationary vibration signal.
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Figure 3.8: The demodulated signal before (a) and after (b) order tracking. The
demodulation band are selected using the kurtograms

and the optimal demodulation band is wrongly estimated around 4000 Hz. In order

to produce Fig. 3.7(b) the signal resampled in the angular domain is considered in the

time domain. As shown in Section 1.3.3 the operation of re-sampling in the angular
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domain has two consequences: the impacts occur at constant angular intervals and the

excited resonance frequency becomes non-stationary. The latter consequence jeopar-

dises the use of the kurtogram after the operation of OT.

The time domain signals after demodulation are shown in Fig. 3.8. For visualisation

reasons only the first 5 seconds of the signal are displayed here. For the kurtogram ap-

plied directly on the cyclo-non-stationary signal, the demodulation is around 2600 Hz

and the resulting signal is shown in Fig. 3.8(a). The sequence of impacts from the

bearing is present for all the duration of the signal and the occurrence time of the im-

pacts is non-stationary. As in Section 3.2, OT should be applied to this signal and the

SES computed afterwards to allow detection. On the other hand, the result of demod-

ulation around 4000 Hz as suggested by the kurtogram applied on the OT signal, is

shown in Fig. 3.8(a). The impacts occur at constant time intervals, however due to the

non-stationary resonant frequency they are present only in the first 2 seconds. In ad-

dition their amplitude is smaller in comparison with that of the impacts in Fig. 3.8(b).

A better result could be achieved selecting a wider demodulation band, i.e. a smaller

level number in Fig. 3.7(b). However this has two drawbacks: firstly it does not allow

the use of the kurtogram in an automated procedure and secondly the vibrations from

the gears could appear in this wider band. In conclusion it is beneficial to apply the

kurtogram directly on the cyclo-non-stationary signal in order to preserve the impacts.

Nevertheless, there are cases in which the resonant frequency excited by the impacts

from the defective bearing changes as a function of speed and the kurtogram, even

applied on the cyclo-non-stationary signal, is not able to select a proper demodulation

band2. Therefore it is suggested that cepstral methods are preferred over SK, as intro-

duced in Section 3.2, for the enhancement of cyclo-non-stationary vibration signals in

the case of large speed variations.

3.4 Summary

This chapter showed how techniques introduced for the enhancement of bearing signals

in machinery operating at a stationary speed are effective also on cyclo-non-stationary

vibration signals. Specifically, the methods studied here are: Cepstral PreWhitening

(CPW) and Spectral Kurtosis (SK). What is proposed is to invert the classical two

step approach, consisting of OT followed by signal enhancement, such that firstly the

cyclo-non-stationary signal is enhanced and only afterwards the signal is resampled in

the angular domain. The analysis conducted here shows that this simple inversion has

2An example is shown in Fig. 4.15(b) in the next chapter
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important consequences.

Firstly, it demonstrates the effectiveness of CPW and SK on cyclo-non-stationary sig-

nals. Secondly it improves the performance of the methods when applied to real world

scenarios, when the speed of the machine is likely to vary. For CPW, comparison of

the conventional procedure and the proposed procedure is shown in Fig 3.6, vibrations

from the gears are suppressed more in the proposed approach. For SK, results are

shown in Fig 3.8, the impacts from the defective bearing are enhanced better when the

demodulation is implemented on the cyclo-non-stationary signal. Furthermore, when

compared to techniques recently developed to deal with cyclo-non-stationary signals

[Abboud et al., 2016b], the simple solution proposed here has two advantages: it is

less computationally expensive and it is easier to interpret, relying only on existing

methods. Therefore, it matches the objectives detailed in Section 1.4. Regarding the

use of SK, it is worth noticing that an expert user should always check the kurtogram

because the algorithm could select the band corresponding to impulsive noise, rather

than impacts from a defective bearing.

In addition, the motivation behind the application of CPW to cyclo-non-stationary sig-

nals was to clarify the relationship to the phase only signal [Oppenheim and Lim, 1981].

To the best of the author’s knowledge, this relationship is ignored in the field of condi-

tion monitoring. Interestingly, [Borghesani et al., 2013b] is among the first suggesting

the enhancement of the component from the bearing directly on signals collected from

machinery operating at varying speed. However, the same author in [Borghesani et al.,

2013a] when applies CPW to cyclo-non-stationary signals, uses the classical approach

as described here in Fig. 3.2(b), i.e. firstly OT to obtain a cyclo-stationary signal.

Therefore we conclude that in the literature there is a misunderstanding on the re-

quirement of the stationarity of a signal for the application of cepstral methods.

This chapter extended techniques already commonly used in vibration based condition

monitoring; the next chapter introduces a novel signal processing technique and tests

its performance on both cyclo-stationary and cyclo-non-stationary signals.
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Chapter 4

Novel technique: phase editing

Nomenclature

x[k] raw signal in time domain x̂[l] signal in frequency domain

p[k] phase edited signal xpe[k] phase edited residual signal

L[l] threshold vector of amplitude spectrum λ threshold level of amplitude spectrum

rced[l] edited real cepstrum xce[k] signal after editing real cepstrum

xce+sk[k] signal after editing real cepstrum fc central frequency of

and spectral kurtosis filtering spectral kurtosis filter

Bw bandwidth of spectral kurtosis filter xzc[k] signal after cepstral whitening

K[n] amplitude gain due to phase editing θ[n] phase delay due to phase editing

lb frequency of maximum value lg frequency of maximum value

of bearing signal of gear signal

Fd,h features estimated from the SES N total number of datapoints

on the defective and healthy case

4.1 Introduction

This chapter introduces a novel signal processing method for enhancing the detection of

defective bearings from vibration data: phase editing (PE). The intuitive idea behind

PE, is that the sequence of impacts generated by the non-smooth rotation of a defective

bearing contributes very little power to the overall vibration signal, both for a machine

operating at constant or varying speed. Surprisingly, this incontestable aspect has not

been investigated by classical methods used in vibration-based condition monitoring as

described in Section 1.3.3, while it will be seen that it can be exploited with remark-

able results using PE. The approach proposed by PE is to filter the vibration signal
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according to the amplitudes of different spectral bands, rather than their frequency.

Specifically this unconventional filter in the spectral amplitudes is implemented using

a simple FFT based algorithm. A qualitative demonstration of the algorithm was in-

troduced by [Wójcicki et al., 2008] and applied to denoise a speech signal, while in the

work presented here the mathematical formulation is subjected to rigorous analysis.

Besides the intuitive interpretation and the low computational complexity, another in-

teresting aspect of PE is that it is implemented on the full band spectrum and its

performance is not affected by changing the resonant band excited by the impacts from

the defective bearing. This aspect will be verified both by means of a numerical simula-

tion and analysis of experimental data. The only method matching this characteristic

is the cepstral prewhitening (CPW), which deals equally with all the spectral bands,

changing their amplitude to one. However, in contrast to PE, the flat amplitude spec-

trum resulting from CPW amplifies spectral bands containing only noise. Therefore

the proposed method can be also seen as an extension of the CPW technique, resulting

in less distortion of the original signal, because PE maintains the original shape of

the amplitude spectrum. The superior performance of the proposed method to that of

CPW has been investigated both on numerical simulations and analysis of experimental

data. Please note that in what follows in this chapter the name zero cepstrum is used

interchangeably with cepstral prewhitening, as it is in the literature on this topic.

Another important aspect of PE is its property of being effective both on cyclo-

stationary and cyclo-non-stationary signals. Therefore it is possible to extend the

procedure introduced in Chapter 3 to this novel method and the vibration from the

defective bearing is enhanced directly on the cyclo-non-stationary signal, maintaining

the spectral content of the transient dynamics, while OT is implemented afterwards

to allow detection using the SES. This important aspect of PE has been investigated

both on numerical simulated signals and experimental data, as shown in the following.

The chapter is organised as follows. Section 4.2 introduces the methodology, tests

its performance and compares it with state of the art techniques: spectral kurtosis

and cepstral editing. Section 4.2 is reproduced from the author’s published work in

the journal Mechanical Systems and Signal Processing [Barbini et al., 2017c]. Sec-

tion 4.3 investigates the relationship between the operating speed of the machine and

the performance of PE. The analysis is performed on experimental data from a ma-

chine operating at stationary speeds. Finally, Section 4.4 tests the effectiveness of PE

to enhance cyclo-non-stationary vibration signals, both from a numerical simulation

and from a machine operating at varying speed. Section 4.4 is reproduced from the

author’s published work in the proceedings of the 1st World Congress on Condition

Monitoring (WCCM) [Barbini et al., 2017a].
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4.2 Phase editing as a signal pre-processing step for au-

tomated bearing fault detection
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Abstract

Scheduled maintenance and inspection of bearing elements in industrial machinery contributes
significantly to the operating costs. Savings can be made through automatic vibration-based dam-
age detection and prognostics, to permit condition-based maintenance. However automation of
the detection process is difficult due to the complexity of vibration signals in realistic operat-
ing environments. The sensitivity of existing methods to the choice of parameters imposes a
requirement for oversight from a skilled operator. This paper presents a novel approach to the
removal of unwanted vibrational components from the signal: phase editing. The approach uses
a computationally-efficient full-band demodulation and requires very little oversight. Its effective-
ness is tested on experimental data sets from three different test-rigs, and comparisons are made
with two state-of-the-art processing techniques: spectral kurtosis and cepstral pre- whitening. The
results from the phase editing technique show a 10% improvement in damage detection rates com-
pared to the state-of-the-art while simultaneously improving on the degree of automation. This
outcome represents a significant contribution in the pursuit of fully automatic fault detection.

Keywords: Phase spectrum, automated diagnostics of defective bearings, comparison with
cepstrum pre-withening, comparison with spectral kurtosis

1. Introduction

Research into fully automated algorithms for the application of condition based maintenance
on an industrial scale has gained much attention in recent years. There is a practical need for
reliable diagnostic methods to help avoid human errors and to allow affordable implementations of
multi-sensor architectures without employing expert users. In this field, vibration based condition
monitoring is a well established approach, present in the literature since the 1980s, and a variety
of vibration transducers are currently used: for example, accelerometers, acoustic emission and
ultrasound [1, 2]. It is well known that bearings play a vital role in the health of many industrial
machines and that they are particularly prone to failure [3]. This paper is concerned with auto-
mated algorithms for the assessment of bearing health using vibrational data.
The mathematical formulation of the second order cyclostationary nature of defective bearings
signal and the clarification of its relationship with the high-frequency resonance technique [4] has

∗Corresponding author
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allowed the introduction of a widely accepted model of bearing faults [5, 6]. According to this
model, features from defective bearings can be extracted by the squared envelope spectrum (SES)
of the vibrational signal, as an estimation of the integrated cyclic coherence. The main difficulty
in such feature estimation is that studying the SES of the full band raw signal usually does not
provide a reliable assessment of the bearing condition and can result in defective bearings being
classified as healthy. In complex machines, such as those used in industrial applications, this is due
to the presence of vibration signals from other sources which are superimposed on those from the
bearing itself. For instance, gears can contribute non-trivial vibration signals masking the presence
of bearing defects. In such cases the SES of the raw vibrational signal shows various peaks, and
the results are difficult to classify without the analysis of an expert user. From the point of view
of an automated feature estimation there is then the need to find reliable methods to process the
raw vibration signals, before the computation of the features from the SES, in order to simplify
the diagnostic of a defective bearing.
Attempts have been made to automate common methods for the enhancement of bearing signals,
however the results are not sufficiently reliable for industrial applications. For example the well
established spectral kurtosis (SK) [7] is often used to select the frequency band containing bearing
impact signals, but when automated there is a high risk of selecting the wrong demodulation band
[8]. One solution to this problem is to edit the vibration signal such that the full frequency band
is considered. This approach can be found in a method introduced by Borghesani [8], known as
the zero cepstrum (ZC), where all the cepstral coefficients are set to zero and the SES is calculated
for the full band edited signal. However this methods results highly sensitive to noise levels, as
will be investigated in the following section. In the paper the focus is on an automated algorithms
and cepstral approaches were preferred to other methods for removal of gear signals, as time syn-
chronous averaging or discrete random separation, because somewhere else [9, 10] they performed
comparably well but require a faster implementation and result easier to automate.
This paper presents a novel automated signal processing method for feature detection in bearing
vibration signals, based on phase editing (PE). As with ZC, the PE method has the advantage of
using the entire band for demodulation, so avoids the risk of selecting the wrong frequency band.
The novelty lies in the procedure for the removal of vibrational signals not originating from bear-
ings. In many enhancement techniques only the amplitude spectrum of a noisy signal is modified
while the phase spectrum is unchanged. The PE approach on the other hand keeps the amplitude
unchanged and recombines the signal with an edited phase spectrum. The result is a modified
spectrum where small amplitude components are attenuated more than large amplitude compo-
nents. It is well established that in a vibrational signal the energy from bearings is low compared
to that from the other components [11], hence in order to discard the misleading information and
enhance the weak signal from the bearings, the final step is to calculate the residual between the
original signal and the PE signal. To the best of authors’ knowledge the present paper is the first
to propose the use of phase editing in the field of condition monitoring. The effectiveness of this
novel technique has been tested by comparing its performance on experimental data sets with that
of two state-of-the-art methods. The first consists of two steps: removal of discrete components,
implemented by means of an automated cepstral editing procedure (ACEP) [12] and SK for selec-
tion of the band for demodulation; the second method tested in the comparison is the ZC.
The paper is structured as follows. Section 2 presents details and discussion of the three methods.
Section 3 describes the experimental rigs. Results are presented in Section 4 and conclusions are
drawn in Section 5.
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2. Methods

In the signal acquired by an accelerometer positioned on a gearbox casing at least three com-
ponents superimpose: vibration induced by gears, vibration from bearings and noise. Usually a
suggested operation is that of order tracking for removal of speed fluctuations [11], however in this
paper machines are operating at a constant speed and this step will be omitted. All the three
methods described below are be intended as enhancement procedures implemented before bearings
fault feature estimation by means of the SES. They are automated such that the user needs to
provide only the bearing defect frequencies and the rotation speed of the shaft where the bearing
is mounted. Diagrams of the three methods ACEP+SK, ZC, PE are shown respectively in Fig.
1-2-4.

2.1. Existing Method (I): ACEP+SK

Method I consists of two blocks, ACEP and SK. The first one minimises the components from
the gears, which are likely to mask the weak signal from bearings. This is achieved using an edited
version of the cepstrum. Advantages on editing the cepstrum are that it can be automated [12],
without the need of adjustment from the user, and that it has performed well when compared with
other methods for gears signal removal as time synchronous averaging, auto regressive modelling,
self-adaptive noise cancellation, discrete/random separation [9, 10]. In more details three steps are
involved in the ACEP block: spectral subtraction is applied to the high-pass liftered real cepstrum
of the raw signal and afterwards a comb lifter is automatically generated for removal of impulses in

Figure 1: Scheme of method I: automated cepstral editing procedure (ACEP)+ spectral kurtosis (SK). Indexes
k, l, m are for the time, frequency and quefrency domains. The green colour is for a signal where both magnitude
and phase information are present while orange and blue are magnitude only and phase only.
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the quefrency domain related to gear vibrations. This procedure provides an edited real cepstrum
which is recombined with the original phase spectrum of the raw signal to obtain an edited vibration
signal with enhanced bearing components xce.
The second step of Method I is the selection of the band of the spectrum where are present mainly
vibrations from bearings, this is achieved using the SK. Its fast implementation was introduced
by Antoni in [13], the algorithm gives as results: the bandwidth Bw and central frequency fc of
the demodulation band where the signal has the highest kurtosis and also the demodulated signal
xce+sk[k]. From the perspective of automation two problems can be identified. Firstly the possible
presence of vibration sources characterised by a kurtosis level higher then that of the defective
bearings; secondly, the presence of peaks from gear harmonics in the selected narrow band for the
demodulation. It should be noticed that the pre-processing with the ACEP algorithm increases
the efficacy of the SK removing harmonics from gear components so to address the second of
this problems. However the first problem is left unsolved and usually only human analysis of the
kurtogram allows the right selection of demodulation band.

2.2. Existing Method (II): ZC

This method was described and exhaustively compared with other techniques by Borghesani
et al. in [8]. ZC enhances the raw vibrational signal by means of editing the real cepstrum,
however two differences with ACEP+SK can be found: firstly not only some impulses but the
whole real cepstrum is set to zero; secondly no band pass filtering is implemented enabling full
band demodulation. As remarked in [8] the computation of the xzc[k] can be accomplished without
the calculation of the real cepstrum, as shown in Fig. 2, but simply modifying the Fourier transform

Figure 2: Scheme of method II: zero cepstrum (ZC). Indexes k, l, m are for the time, frequency and quefrency
domains. The green colour is for a signal where both magnitude and phase information are present while orange and
blue are magnitude only and phase only.
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of the raw signal. The result of this procedure gives the so called ’phase only signal’ [14].
In this framework the ZC edited signal is a filtered version of the raw signal, specifically the filter
g[k] is a function of the input and gives as output a signal with flat amplitude spectrum [15] and
unchanged phase:

g[k] = IFT

{
1

|x̂[l]|

}
(1)

This procedure will perform equally well for a signal with no impulses in the real cepstrum. It
can be interpreted as an amplitude distortion, implemented by means of the zero-phase filter g[k],
yielding to the enhancement of narrow time events. A numerical simulation is presented below in
order to demonstrate the effect of this operation.
The simulated signal is the superposition of three unevenly spaced sinusoids at 11, 23 and 31 [Hz]

with unity amplitudes, an outer race defective bearing with impact frequency fod = 80 [Hz] and
a weak white noise of variance σ = 0.05. In the signal from the bearings a random jitter is
considered for both the occurrence times and amplitudes of impacts, according to [5], and the
excited resonance frequencies are in the band 15− 17[kHz]. The signal has a length of 7.5[s] and
is sampled at 51kHz. Figures 3(a) and (b) show respectively: a segment of the raw signal with
seven recognisable impacts, the amplitude spectrum of the whole raw signal. The real cepstrum
is shown in Fig.3(d) where the range of quefrencies is selected as 1 / 2fod and 3 / fshaft with
the shaft frequency taken as the lowest of the sinusoids fshaft = 11 [Hz]. As expected no clear
peak is present in the real cepstrum at 0.1 [1/Hz]. Figure 3(c) shows the envelope of the zero
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Figure 3: Application of the ZC method to a numerical simulation. The tested signal is realised as the superposition
of three sinusoids at 11, 23 and 31 [Hz], a defective bearing signal and white noise. (a) Time domain: 7 impacts can
be identified. (b) Amplitude spectrum of the raw signal: the tonal components have higher power than the defective
bearing signal, the structural resonance excited by the impacts is in the band 15 − 17[kHz]. (c) Absolute value of
the analytic representation of the zero cepstrum edited signal xzc[k]: sinusoidal components are removed while the
impacts are enhanced. (d) Real cepstrum of the input signal: no clear peak can be identified in the quefrency range
containing 1/10 [1/Hz].
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Figure 4: Scheme of method III: phase editing (PE). Indexes k, l are for the time and frequency domains. The green
colour is for a signal where both magnitude and phase information are present while orange and blue are magnitude
only and phase only.

cepstrum edited signal, calculated as the absolute value of the analytic representation of xzc[k]. It
is possible to identify the seven impacts and no presence of the sinusoids, confirming as anticipated
the usefulness of method II for a signal with real cepstrum without impulses.

2.3. New Method (III): PE

The use of an edited phase spectrum, combined with the original magnitude spectrum, was
first introduced by Wojcicki et al. [16] as a novel approach to speech enhancement. The method
suppresses low-energy signal components through manipulation of the phase of the conjugate signal
components in the frequency domain. In the original application it was used to clarify the high-
energy spectral components and reduce noise. The methods are adapted here to use the residual
from the original signal, thus rejecting the high-energy components and retaining the low-energy
bearing signals of interest.

The schematic of Method III is shown in Fig.(4). The raw signal is first subject to a discrete
Fourier transform. A real value L[l] is then added to each complex component in the frequency
domain, and normalised to the original component amplitude. The value L[l] is of constant am-
plitude λ, and is positive for frequency components in the upper half of the imaginary plane and
negative for those in the lower half-plane:

L[l] =

{
+λ 0 ≤ l < N/2
−λ N/2 ≤ l ≤ N − 1

(2)

with λ a positive real constant. The only parameter to tune in this procedure is λ, and this
determines the amplitude threshold of the filter. The effect is shown in Figure 5(a). When the two
complimentary signal components are recombined it serves to reduce the real part of the signal for
small amplitude signal components. Upon transformation back to the time domain, the imaginary
portion of the signal is discarded and the low-energy components are suppressed accordingly. The
following analysis demonstrates the principle of operation.

The contribution of a frequency component l = n ≤ N
2 to the real signal x[k] having DFT x̂[l]

with k, l = 0, . . . , N − 1 and x̂[N − n] = x̂∗[n], is:

xn[k] =
1

N

{
x̂[n]ej

2π
N
nk + x̂[N − n]ej

2π
N

(N−n)k
}

=
2 |x̂[n]|
N

cos

(
2π

N
nk + 6 (x̂[n])

)
(3)
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For the phase edited signal the contribution of a frequency component n is:

Re {pn[k]} =
|x̂[n]|
N

Re

{
x̂+L [n]∣∣x̂+L [n]

∣∣e
+j 2π

N
nk +

x̂−L [n]∣∣x̂−L [n]
∣∣e
−j 2π

N
nk

}

=
|x̂[n]|
N

[
cos
(
6 x̂+L [n]

)
cos

(
2π

N
nk

)
− sin

(
6 x̂+L [n]

)
sin

(
2π

N
nk

)
+

+ cos
(
6 x̂−L [n]

)
cos

(
2π

N
nk

)
− sin

(
6 x̂−L [n]

)
sin

(
2π

N
nk

)]

=
2 |x̂[n]|
N

cos

(
2π

N
nk +

6 x̂+L [n]− 6 x̂−L [n]

2

)
cos

( 6 x̂+L [n] + 6 x̂−L [n]

2

)
(4)

where x̂+L [l] = x̂[l] + L[l] and x̂−L [l] = x̂∗[l] − L[l]. For the enhancement of low-energy vibrational
signals, in contrast to the case of speech signal denoising [17], the last step is the calculation of the
residual. Using Eqs. (3) and (4), the new phase edited signal is given by

xpe,n[k] = xn[k]−Re {pn[k]} = K[n]
2 |x̂[n]|
N

cos

(
2π

N
nk + 6 x̂[n] + θ[n]

)
. (5)

where K[n] and θ[n] are the gain and phase, respectively, of the PE residual filter, given by

K[n] =

[
1 + cos2

(
α[n] + β[n]

2

)
− 2cos

(
α[n] + β[n]

2

)
cos

(
β[n]− α[n]

2

)]1/2

θ[n] = cos

(
α[n] + β[n]

2

)
sin

(
β[n]− α[n]

2

)/[
cos

(
β[n]− α[n]

2

)
cos

(
α[n] + β[n]

2

)
− 1

]
(6)

The angles α[n] and β[n] are shown in Fig. 5(a) and defined as α[n] = 6 x̂[n] − 6 x̂+L [n], β[n] =

|x̂[n]|/|L|
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Figure 5: Effect of the proposed PE residual method on a single frequency component of a signal. (a) Example of
vector rotation in the complex plane. In black the original vector and its complex conjugate, in blue the added vectors
and in red the rescaled resultants. The angles α[n] and β in red, positive direction counterclockwise. (b) Variation
of gain K[n] with signal component amplitude. (c) Variation of phase modification θ[n] with signal component
amplitude.
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6 x̂∗[n]− 6 x̂−L [n] and for 0 ≤ 6 x̂[n] ≤ π

α[n] = cos−1


 |x̂[n]| /|L| − cos (π − 6 x̂[n])
(

1 + |x̂[n]|2 /|L|2 − 2cos (π − 6 x̂[n]) |x̂[n]| /|L|
)1/2




β[n] = cos−1


 |x̂[n]| /|L| − cos (6 x̂[n])
(

1 + |x̂[n]|2 /|L|2 − 2cos (6 x̂[n]) |x̂[n]| /|L|
)1/2


 (7)

while for π < 6 x̂ < 2π, α = −α and β = −β. Figures 5(b-c) show respectively the gain K[n] and
the phase modification θ[n] as a function of the signal component amplitude |x̂[n]| /|L|, for three
different values of 6 x̂[n].
According to Eq.(5)

xpe,n[k] ' xn[k] for |x̂[n]| � |L|
xpe,n[k] ' 0 for |x̂[n]| � |L| (8)

therefore PE can be interpreted as a thresholding in the amplitude of the spectral components
where the level of the threshold is controlled setting λ = |L|. Spectral components with amplitude
smaller than the threshold are decreased, independently of their frequency, since Eq. 5 is valid ∀n.

2.3.1. Application of PE to vibrational signals

This section describes the mechanism behind the efficacy of the proposed approach for en-
hancing bearing signals in gearbox vibrations. The vibrations from gears can be considered as
amplitude and phase modulations of the fundamental tooth meshing frequency and its harmonics.
In the frequency domain they will contribute a series of peaks [18] among which is possible to select
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Figure 6: Performance of PE for different values of 6 x̂[lg], |x̂[lg]| /|L| and |x̂[lb]| /|L|. The dotted line is at the bisector
and shows the level of no increase in the ratio |x̂[lb]| / |x̂[lg]|
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the frequency lg giving the peak with the smallest amplitude:

lg = min
0<l≤N/2

|x̂[l]|

In contrast vibrations from a defective bearing will contribute a continuous spectrum around the
resonant frequency of the impacts, among which the frequency lb corresponds to the component
with the biggest amplitude:

lb = max
0<l≤N/2

|x̂[l]|

Most commonly, the gear meshing vibrations dwarf the signals from the bearings, and in the case
of |x̂[lg]| � |x̂[lb]| it is possible to select λ such that

|x̂[lg]| � λ� |x̂[lb]| (9)

It is evident from Eqs. (8) that the result of applying the proposed PE residual filter in this case
to almost completely suppress the high energy components from the gears while the low energy
signal from the defective bearing is almost unchanged.

If, however, instead of Eq.(9) the vibrational composition is such that |x̂[lg]| > λ > |x̂[lb]| the
performance of PE depends on the phases of the spectral components of interest and on their ratios
in respect to λ. A numerical investigation of the performance of PE for such a case is presented in
Fig.(6). Three different values of 6 x̂[lg] are considered: 0, π/4 and π/2. For each of these phases
the component from the bearing is considered to have a phase such that 6 x̂[lb] = 6 x̂[lg] + ∆φ. As
shown in the inset plot, the amplitude of |x̂[lb]| is kept constant while |x̂[lg]| varies and |L| is taken
as |x̂[lg]| /2. The plot shows the mean of a Monte Carlo simulation comprised of 103 cases of 6 x̂[lb]
analysed for each value of 6 x̂[lg]. In the worst case, the ratio of the bearing signal over the gear
signal, after the application of PE, is increased of a factor 4. Furthermore as expected from Eq.(5)
the method does not depend on the frequency of the peaks and it shows the same performance
for lb � lg and lb � lg. Thus it is expected that the proposed method will provide useful signal
conditioning wherever a separation in amplitudes exists between gear and bearing signals, and not
only where that separation is large.

Finally a numerical investigation of PE on the same data as in Fig. 3 is presented, however
in this simulation the level of noise is higher, with σ = 0.2. Figures 7(a) and (b), in black, show
respectively a portion in the time domain and the amplitude spectrum of the raw signal. Firstly
method II is implemented in order to check the performance in this noisy scenario. In Fig. 7(c) is
shown the envelope of xzc. It is not possible to identify the seven impulses from the bearing signal,
unlike Fig. 3(c).
Fig. 7(d) shows the result of the application of the PE procedure as introduced in this paper.
The absolute value of the analytic representation of xpe[k] allows the identification of the seven
impulses in this noisy condition. The results of the application of method I for this numerical
simulation are not shown here: SK selects the correct band for demodulation and the xacep+sk
signal is comparable to xpe in 7(d). The amplitude spectrum of xpe is shown in Fig. 7(b) in
yellow, as anticipated the phase editing method yields a signal with strongly decreased high energy
components. In order to quantify the phase distortion due to the rotation of the Fourier vectors,
Fig. 7(e) shows the difference between the unwrapped phases 6 x̂pe[l] and 6 x̂[l], the frequency is
zoomed around the resonance band 15 − 17[kHz]. Phase differences of 2π are mainly identified,
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yielding a good precision in the impulses occurrences as can be noticed by comparing Fig. 3(a-c)
and Fig. 7(d).

3. Experimental setups

The experimental data sets used for the comparison between the three methods are collected
from a gearbox dynamic simulator located in the laboratories of the Flanders Make VZW in
Leuven, Belgium. The test bench is employed in two different configurations, namely Flanders
Make 1 (FM1) and FM2. Also data sets publicly available on the websites of the Prognostics and
Health Management Society (PHM) [19] and Machinery Failure Prevention Technology (MFPT)
[20] are analysed.
Figures 8(a) and (b) show the photograph and schematic top view of the test setup FM1. The
apparatus consists of two gearboxes, namely a parallel-shaft gearbox (2) and a perpendicular-shaft
gearbox (3). The input shaft (8) of the parallel-shaft gearbox is driven through a flexible coupling,
by an electric induction motor (1). The shaft rotational speed of the motor can be varied from 0
to 3000 rpm. The output shaft of the perpendicular shaft gearbox (9) is coupled with a magnetic-
particle brake (4), where the torque can be adjusted from 0 to 50 Nm. The accelerometer A#1 with
sensitivity of 100[mV/g] and ±5% response deviation in the frequency range of 0.5[Hz] to 5[kHz]
is used as vibrations transducer. The parallel-shaft gearbox (3) was designed and built with three
parallel-shafts. Four helical gears are arranged in the gearbox such that it has two-stage reductions.
Two straight bevel gears are assembled on their corresponding shaft, in the perpendicular-shaft
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Figure 7: Application of the PE method to a numerical simulation. The tested signal is the same as in Fig. 3 with
an increased level of noise. (a) The raw signal in time domain. (b) Amplitude spectrum of the raw and phase edited
residual signals in black and yellow respectively. (c) Absolute value of the analytic representation of the ZC edited
signal xzc[k]: no clear impacts can be identified. (d) Absolute value of the analytic representation of the PE residual
signal xpe[k]: the seven impacts are clearly identified. (e) Phase difference between xpe[l] and x[l] in the frequency
range of the structural resonance excited by bearing impacts.
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gearbox, so there is only one-stage reduction. Two different bearing types are assembled in the test
setup, namely MB ER-14K and MB ER-16K. Two bearings (B#1 and B#2) of the former type
are mounted in the parallel-shaft gearbox to support the input shaft (8) and the other bearings
(from B#3 to B#8) of the latter type are mounted to support the other shafts. Details of the
gears assembled in the two gearboxes and the bearings theoretical fault frequencies are listed in
Table 1. For the setup FM1 two different types of defective bearings are tested separately, firstly
a bearing with an inner race fault, secondly one with a rolling element fault, both are mounted
on the input side of the second shaft of the parallel-shaft gearbox, namely (B#3). Two different
load conditions are tested for each configuration, 6[Nm] and 20[Nm] on the output shaft (9).
Furthermore four constant speeds are investigated, on the shaft with the defective bearing they
correspond to: fshaft = {2.9; 8.7; 11.6; 14.5} [Hz]. The accelerometer of FM1 provides a total
of 24 sets, 8 in healthy condition, 8 with inner race fault and 8 with rolling element faults. The
length of each recorded vibrational signal is 5 seconds and the sampling rate is 51.2[kHz].
Figure 8(c) shows the schematic top view for the test setup FM2. The differences between FM1
and FM2 are that the perpendicular-shaft gearbox is removed and that the load is applied directly
on the output shaft of the parallel-shaft gearbox. Gears and bearings are the same as in the FM1
setup and details are listed in Table 1. The accelerometer A#2 has same specifications of A#1
used in FM1, but is placed on the left side of the gearbox. For the setup FM2 a defective bearing

Figure 8: Experimental setups: (a) and (b) are respectively a photograph and the schematic top view of the setup
Flanders Make 1 (FM1), the defective bearing is B#3. (c) Schematic top view of FM2 and PHM. In blue the
accelerometer used in the FM1 setup, with B#3 as defective bearing. In red the accelerometers used in the PHM
setup, with B#1 as defective bearing.
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Component # of teeth Type

G#1 29 Helical
G#2 100 Helical
G#3 36 Helical
G#4 90 Helical
G#5 20 Straight bevel
G#6 40 Straight bevel

Bearing defect Cyclic Order ×fshaft
Fundamental train freq. (FTF) 0.402

Ballpass freq. outer race (BPFO) 3.572
Ballpass freq. inner race (BPFI) 5.430

Ball spin freq. (BSF) 2.322

Table 1: Gears and defective bearing characteristics of the FM setups

MB ER-16K with an inner race fault is mounted on the input side of the second shaft of the
parallel-shaft gearbox, namely (B#3) and again two different load conditions are tested 6[Nm]
and 20[Nm]. Seven constant speeds are investigated, specifically on the shaft with the defective
bearing they correspond to: fshaft = {0.29; 0.58; 0.87; 1.16; 1.45; 1.74; 2.9} [Hz]. The length of
the recorder vibrational signal is selected to obtain 15 revolutions for each fshaft and the sampling
rate is 51.2[kHz]. The accelerometer of FM2 provides a total of 28 data sets, and 14 in healthy
condition and 14 with inner race faults.
Figure 8(c) shows as well the schematic top view for the test setup used by the PHM. In this
apparatus two accelerometers (A#3-A#4) are used as vibrations transducers with sensitivity of
10mV/g, ±1% response deviation and resonant frequency > 45[kHz]. Furthermore all the bearings
(from B#1 to B#5) assembled in the PHM test setup are MB ER-10K. Details of the gears and
the bearings theoretical fault frequencies are listed in Table 2. Several combinations of faulty gears
and bearings are present in the PHM dataset, here the following case is analysed: defective bearing
with an inner race fault mounted on the input side of the first shaft, namely (B#1) tested in two
different load conditions. In this condition the gear on the output shaft, namely (G#4), has a
sheared key-way. Five constant speeds are investigated: fshaft = {30; 35; 40; 45; 50}[Hz], the
length of each recorded vibrational signal is 4 seconds and the sampling rate is 200/3[kHz]. Each
accelerometer of the PHM setup provides a total of 20 data sets, 10 in healthy condition and 10
with inner race faults, only the data from the accelerometer on the input side, namely (A#3), will
be analysed.

Data sets from different types of defective bearings are stored in the MFPT database. Here
three vibration signals from a bearing with an outer race defect and three from an healthy bearing
are analised. The shaft rotational speed of the apparatus is 25[Hz], the sample rate is 97.656[kHz]
and the length of each record is 6 seconds, only one load conditions is tested. The defective bearing
is a NICE and the theoretical fault frequencies are listed in Table 3. The speed of the shaft with
the defective bearings is fshaft = 25 [Hz].

Component # of teeth Type

G#1 32 Spur
G#2 96 Spur
G#3 48 Spur
G#4 80 Spur

Bearing defect Cyclic Order ×fshaft
FTF 0.382
BPFO 3.052
BPFI 3.984
BSF 2.474

Table 2: Gears and defective bearing characteristics of the PHM setup
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Bearing defect Cyclic Order ×fshaft
FTF 0.406
BPFO 3.245
BPFI 5.109
BSF 2.378

Table 3: Defective bearing characteristics of the MFPT setup

4. Results & discussion

This section presents the comparison of the three methods described in Section(1), the analysis
is carried out on data sets taken from the setups detailed in Section(2). A fault feature value
is calculated from the normalised ˜SES of the three edited signals xce+sk, xzc, xpe. From each
experimental configuration two feature values are calculated, one for the healthy case and one for
the corresponding defective case. Features are calculated as the sum of the values of the ˜SES[l]
in a band around the theoretical fault frequency and up to a selected harmonic: [k · fdefect − 0.5 ·
fb, k · fdefect + 0.5 · fb], with k = 1, 2, . . . , n with n =number of harmonics.
Specifically the SES is normalized by means of the ratio:

˜SES[l] = SES[l]/SES[0] (10)

and for the ACEP+SK signal the SES is the Fourier transform of the square of the absolute value
of xce+sk, while for the zero-cepstrum and phase-edited methods the SES is implemented as the
Fourier transform of the square of the absolute value of the analytic representation of xzc and xpe.
The maximisation of the objective value r(λ) has been defined as the criterion for determining the
optimal parameter λ of Eq.2 in method III:

r(λ) =
Fd(λ)

Fh(λ)
(11)

α, λ=rms(x[k])
α
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Figure 10: Performance comparison of the three methods on FM1 data set with a ball defect and fshaft = 8.7[Hz].
SES of signal edited with (a) ACEP+SK, (b) ZC, (c) PE. Yellow and black are respectively healthy and defective
conditions.

where Fh,d(λ) are respectively the feature values calculated for an healthy and defective case. This
is implemented in an automated way varying λ as a power α of the root mean square of the raw
signal x[k]:

λ = rms (x[k])α (12)

Figure 9 shows an example of this procedure on a data set taken from FM1 setup with a shaft
speed of 8.7[Hz] and a ball defect. Yellow and black lines are the features calculated from the
SES of xpe as a function of λ, respectively for the faulty and healthy conditions, while the vertical
black line at the value of α = 2.5 gives max {r (λ(α))}. For each couple of defective-healthy data
sets the optimal parameter λ is computed in an automated way. In a practical application Fh(λ)
is a baseline, measured when the equipment is first commissioned and from this point onwards the
signal processing can operate in a fully automated way with the estimation of features from each
case to diagnose and the respective r(λ). From all the 43 data sets tested in this paper the mean
value of the tuning parameter is λ̄ = 2.29 with standard deviation σλ = 0.13.
Fig. 10-11-12-13 show the normalised SES in order domain for data sets from each of the four
different setups, yellow is healthy case and black is defective case. The plots from top to bottom
are the SES of methods I II and III, namely of xce+sk, xzc and xpe with the tuned λ.
In Fig. 10 the data is from the FM1 setup with a shaft speed of 8.7[Hz] and a ball defect, with all
the methods peaks can be distinguished up to the fifth harmonic of the theoretical fault frequency
BDF = 2BSF , as in Table 1. For the zero cepstrum and the phase edited residual signals peaks
are also present at the odd harmonics of BSF , these are less clear in the SES of xce+sk. The
ball spin frequency is the frequency with which the fault strikes the same race (inner or outer)
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hence in general there are two impacts at BDF per basic period so that its expected that the even
harmonics of BSF are dominant [11].
In Fig. 11 the data is from the FM2 setup with a shaft speed of 0.87[Hz] and inner race defect,
with all the methods peaks can be distinguished up to the fifth harmonic of the theoretical fault
frequency BPFI as in Table 1. Typical sidebands due to the passing of the inner race fault into
and out of the load zone are not clearly detected. This is attributable to the low speed and load
conditions: the load on the shaft with the defective bearing is 20[Nm]
Figure 12 shows the SES of the edited data from the MFPT setup. The shaft speed is 25[Hz] and
the defect is on the outer race of the bearing. The ACEP+SK and phase editing methods, top
and bottom respectively, allow the detection up to the fifth harmonic of the theoretical BPFO,
Table 2, while xzc up to the third harmonic. Furthermore can be noticed some spurious peaks in
the ACEP+SK and that for the zero cepstrum edited signal the amplitude of peaks is one order
of magnitude smaller. The SES is normalized as in Eq.10 hence the latter is the consequence of
an higher value of the DC component and less pronounced impacts in the time domain envelope
of xzc.
In Fig. 13 the data is from the PHM setup with a shaft speed of 35[Hz] and an inner race
defect, peaks up to the third harmonic of the theoretical fault frequency BPFI as in Table 3 can
be distinguished for the three methods, for this data set also the harmonics due to the load are
present. The smearing of spectral peaks could be attributable to the presence of a sheared gear,
or to speed fluctuations; the data is processed without applying order tracking.
Fig. 14 presents the comparison of the performance on all the available 43 data sets. It shows
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for each case the normalised features of healthy and corresponding defective case in a scatter
plot. The ideal detection of a defective bearing corresponds to the point (1, 0). Features are
normalised according to each set up type, defect and load. For example for FM1 in the case
of a ball defect, with small load we normalise the features corresponding to the four frequencies
fshaft = {2.9; 8.7; 11.6; 14.5} [Hz] and for the high load we normalise separately. Following a
recent paper by Smith et al. [15] it is also studied the SES of the full bandwidth raw signals, Fig.
14 (a); as for method II and III the envelope is calculated as the absolute value of the analytic
representation of the signal. Fig. 14(b) shows results from method I and Fig. 14(c-d) from method
II, III. In green it is highlighted the portion of the square where the faulty features are at least three
times bigger than the features of the corresponding healthy cases, providing an high confidence
detection of the presence of a defect. In red the portion where the ratio between defective and
healthy features is less then one; in orange where the ratio is between one and two and in yellow
the portion where the ratio between defective and healthy features is between two and three and
the detection is less reliable. The selection of the value three as good discriminant is made by
the human inspection of the relative SES. Asterisk and triangle markers correspond respectively
to data sets from FM2 and FM1 while circle and cross to PHM and MFPT data sets. The worst
performance is of the envelope of the raw signal Fig. 14(a), in several cases the healthy condition
has a feature higher than the faulty one, nevertheless 11 points reside in the green zone and the
correct detection is accomplished. For the other three methods the results are comparable, with
a slightly better performance of the proposed PE. Method I and II accomplish correct detection
respectively in 31 and 30 cases, while the proposed method III in 34 cases, as shown in Fig. 14(b-
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c-d). Signals with a dominant bearing component can be identified in Fig. 14(a) because these
are diagnosed successfully using the raw, unmodified signal only if the damage is severe. The data
set from MFPT shows a case of dominant bearing damage signal, where the bearing damage was
severe. This can be noticed from Fig. 14(a) with two of the three points in the green area and only
one in the yellow one, indicating a good diagnosis. In Fig. 14(d) the disposition of the markers is
almost unchanged, therefore when there is no need to suppress disturbing components the proposed
method III is shown to be equally effective.

5. Conclusions

This paper proposed and tested a new method for the enhancement of bearing vibration signals
to be used in automated condition monitoring: phase editing. The performance of the method is
evaluated by means of feature estimation from the SES of the signals, with an overall correct
detection rate of 79% when using the enhanced signals, compared with a rate of 25% when using
the raw signals. For each case the ratio between the feature calculated from a faulty bearing and the
feature from an healthy one was computed. The faulty bearing is considered correctly detected if the
value of the ratio is greater than three. The effectiveness of the method compared favourably with
that of two other promising contemporary enhancement approaches, which obtained performances
of 72% (automated cepstral editing procedure with spectral kurtosis) and 69% (zero cepstrum).
The proposed method was applied in an automated way in 43 experimental cases considering inner
and outer race faults as well as ball faults, for machines operating at different speeds and loads.
For each analysed case there is only one parameter to tune for a correct performance and this was
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Figure 14: Healthy-defective scatter plots of features estimated from the SES: (a) of the raw signals, (b) of the
signals edited with ACEP+SK, (c) ZC and (d) PE. Green represents the area where the ratio between the features
is greater than 3 and the detection of the fault is very good. Yellow orange and red are the areas where the ratio is
respectively between 2 and 3, 1 and 2 and smaller than 1. Triangle and asterisk pointers are FM1 and FM2 datasets
while circle and cross to PHM and MFPT datasets

selected by a fully automated optimisation algorithm. Therefore only the bearing specification
characteristics and rotation speed have to be adjusted for each case, so this method is suitable
for use without specialist signal processing expertise from an operator. Furthermore phase editing
uses the full band of the spectrum for demodulation and is computationally easy to implement,
using mainly the FFT algorithm, so that it is a good candidate for an industrial application of
vibration based bearing condition monitoring.
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4.3 Speed dependence of the detection

The previous section introduced Phase Editing (PE) and compared its performance

with that of state of the art techniques. This section investigates the relationship

between detection and the operating speed of the machine1. Intuitively, the higher

the shaft rotational speed, the higher the amount of energy produced by the impacts

from the defective bearing, and detection is easier at higher rotational speeds. To

the best of the author’s knowledge, this relationship is only superficially investigated

in the literature. For example [Al-Ghamd and Mba, 2006] use data at four different

speeds, however the focus of their research is the comparison of acoustic emission versus

accelerometer data and they examine only time domain features, as for instance root

mean square and kurtosis.

In order to conduct the analysis, the FM2 experimental set up of Fig.4.8(c) is used in

a broader range of operating conditions. Specifically

fshaft ={0.29; 0.58; 0.87; 1.16; 1.45; 1.74; 2.9; 4.35;

5.80; 7.25; 8.70; 10.15; 11.6; 13.05; 14.5} [Hz]

for the shaft with the defective bearing. Two load conditions of 6 and 20 [Nm] are

considered. Both data for the healthy and defective cases are collected, the defect

being on the outer race of (B#3) in Figure 4.8(c). Note that the speed is kept constant

during the measured window of time for each of the fshaft, therefore the signals are

cyclo-stationary.

The phase editing method as introduced in the previous section is applied to the raw

signals. For each fshaft speed the best value for λ is selected in an automated way

by maximising r(λ) = Fd(λ)/Fh(λ) where Fd,h are respectively the features calculated

from the SES for a healthy and defective case. Figure 4.15(a) shows the resulting

maximum value of r(λ), in black for the 6 Nm load on the output shaft while in red

for the 20 Nm load. The same four confidence bands as in Fig. 4.8 are used here.

The results show that there is no strong dependence of the detection on the load. On

the other hand, the detection depends strongly on the speed of the shaft. Very good

detection, green area Fd/Fh > 3, is achieved for values of the shaft speed of at least 0.87

Hz. A logarithmic increase in the ratio of the features is observed for the lowest values

of the speed up to 1.74 Hz, while for higher speeds values fluctuate between 10 and

20. Therefore it is concluded that transition from missed to very good detection occurs

by varying the speed over a small range. As mentioned in the previous section, one

1The analysis is restricted to PE, however similar results are obtained using the ZC and ACEP+SK.

94



of the advantages of PE rests on its implementation on the full band of the vibration

signal. Therefore PE does not depend on the band containing the resonant frequency

excited by the impacts from the defective bearing. This important characteristic of

the PE method was shown, by means of a numerical simulation, in Fig.4.6 and here is

verified on experimental data. For the dataset analysed the resonant frequency excited

by the impacts is identified using the Kurtogram, as introduced in Section 1.3.3. The

resulting optimal central frequency for demodulation, for each of the fshaft speeds, is

shown in Figure 4.15(b) and the resonant frequency varies by more than 20 kHz. The

comparison with Fig. 4.15(a) shows, as expected, that the performance of PE is not

affected by the variation of the resonant frequency.

In addition, from this analysis emerges that methods depending on demodulation are

difficult to apply in the case of large speed variations, i.e. for a speed varying in the

same range of the fshaft. For instance, the approach described in Section 3.3 would

result in selecting a low level number giving a filter of ∼ 20 kHz bandwidth. However

components from the gears are likely to be present in such a wide band of the spectrum,

jeopardising the demodulation. Therefore we conclude that it is advisable to use a full

band approach, such as PE, for the enhancement of the vibrations from the bearing in

non-stationary speed conditions.

The next section addresses this issue and shows that PE is effective when directly

applied to cyclo-non-stationary signals.
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4.4 Phase editing to enhance bearing fault detection in

variable speed condition
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Abstract

The computation of the squared envelope spectrum (SES) on vibration data collected from a ro-
tating machine is a common tool used to diagnose a defective bearing. To enhance the diagnosis,
pre-processing methods have to be implemented, before the evaluation of the SES, to suppress
vibrations from sources other than the bearings. Conventionally suppression of the spurious com-
ponents is achieved by exploiting either their separation in the frequency domain or the contrast
between deterministic signals and the random vibration components from a defective bearing. Re-
cently the phase editing method (PE) was used to exploit another characteristic of the vibration
signal to improve diagnosis in stationary speed conditions. PE caters to, and exploits the scenario
where vibrations from a defective bearing have small amplitude compared to vibrations from other
components, effectively thresholding the amplitudes of the spectral components of a signal. In this
paper the PE method is applied analytically and experimentally to a broader class of machinery,
encompassing machines with varying speed conditions. It is demonstrated that the separation of
the bearing component and masking components is equally effective in the non-stationary case.

1. Introduction

The diagnosis of a defective bearing on a rotating machinery can be carried out by analysing
vibration data. A defective bearing produces a series of impacts throughout its rotation and each
impact generates a burst of energy which propagates in the machine, from the bearing to the
vibration transducer. The detection of such impacts is the signature of a defective bearing and
is commonly realised in the spectral domain. However the occurrence time of the impacts is not
periodic, even for a machine operating at constant speed, but is characterised by a random jitter.
For this reason it is recognised that the squared envelope spectrum (SES) has to be preferred to
spectral analysis for bearing diagnosis [1]. A problem with the SES is that vibration transducers
gather vibrations from all the components of the machinery, including for example the gears, and
therefore the SES presents several peaks and the results are difficult to analyse. Several envelope
pre-processing techniques have been introduced to suppress unwanted components. One approach
exploits the separation between the high resonant frequency of the impacts versus the lower gear
meshing frequencies. Common methods include a high pass filter, a kurtosis maximising band-pass
filter [2] or the calculation of the residual after time synchronous averaging (TSA), corresponding to
a comb filter [3]. A different approach exploits the statistical difference between the deterministic

∗Corresponding author
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components from gears versus the random component from the bearing, as in the discrete random
separation (DRS) [4] and the cepstrum pre-whitening [5].
Recently Barbini et al. [6] proposed phase editing (PE) as a novel method to enhance the vibration
component from a defective bearing, as a modification of a speech denoising algorithm [7]. PE uses
the fact that the component from the bearing has a small amplitude compared to the masking
components. It consists of a threshold in the amplitude of the spectral components, independent
of their frequency or statistical properties: components with a spectral amplitude above a thresh-
old are suppressed. Therefore the remaining signal contains the weak vibration from the defective
bearing.
In this paper, PE is applied to vibration signals from machinery operating at varying speed, in
contrast to the stationary signals analysed in previous work [6]. It is shown that PE is effective re-
gardless of the non-stationary speed, as long as the signal exhibits separation in spectral amplitude
between the unwanted components and the bearing component. The paper is organised as follows:
section 1 presents the proposed methodology, section 2 shows a numerical example while section
3 presents results from the analysis of real operational data. Finally conclusions are presented in
section 4.

2. Methods

For the vibration signal x[k] with Fourier transform (FT) x̂[l] where k, l ∈ {0, · · · , N − 1} are
the indexes of time and frequency, the phase editing (PE) method consists of the calculation of the
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Figure 1: Numerical simulation. First row the original signal, second row the signal after high pass filtering, third
row the signal after PE. First column time domain, second column amplitude spectra, third column SES after OT.
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residual with its denoised version p[k]. The denoised signal is given by

p[k] = Real
{
IFT

{
|x̂[l]| e6 x̂L[l]

}}
(1)

where x̂L[l] = x̂[l] + L[l] and

L[l] =

{
+λ[l] 0 ≤ l < N/2
−λ[N − 1− l] N/2 ≤ l ≤ N − 1.

(2)

For each frequency index n PE returns a sinusoidal component [6]:

xpe,n[k] = xn[k]−Re {pn[k]} = K[n]
2 |x̂[n]|
N

cos

(
2π

N
nk + 6 x̂[n] + θ[n]

)
(3)

The differences between the original sinusoid xn[k] and xpe,n[k] are the terms K[n] and θ[n]. In
particular the term K[n] vanishes [6] for |x̂[n]| � |L[n]| while is unitary for |x̂[n]| � |L[n]|.
Therefore PE suppresses all the spectral components with amplitude greater than a threshold,
independently from the frequency index. The value of the threshold is defined by λ[l] which is a
function selected by the user and in the simplest case is a constant. However the threshold can
also be chosen to suppress entire frequency bands of the signal as in a common filter.
Equation 3 is valid also in the case considered in this paper of a machine operating at varying
speed and PE can be applied directly on the time non-stationary signal provided that λ[l] is chosen
as

x̂b[l]� λ[l]� x̂g[l] (4)

Where x̂b[l] and x̂g[l] are the spectral amplitudes of the non-stationary vibrations from the bearing
and from the gears. The approach of enhancing the bearing component directly from the time non-
stationary signal avoids problems with the suppression of masking components after order tracking
(OT)[8]. Recently this approach has been implemented using classical signal separation techniques
such as band-pass filtering [9], spectral kurtosis and cepstral pre-whitening [10], while it is proposed
using PE for the first time in this paper. Only after the enhancement of the bearing components
the signal is subjected to OT and the SES is evaluated in the order domain. The envelope is
calculated on the full band analytical representation of the signal and the SES is normalised as

˜SES[l] = SES[l]/SES[0], the tilde is omitted in the following. The selection of the best threshold
is achieved maximising the peaks in the SES at the bearing characteristic fault orders by user
inspection.
Therefore the proposed approach comprises in total three steps: PE the time non-stationary signal,
re-sample the signal at constant angular increments using a tachometer signal (OT), evaluate the
SES in order domain.

3. Numerical investigation

The proposed methodology is applied on a time non-stationary signal comprising a masking
component, a sequence of impacts and background noise. The masking component is a chirp with
frequency increasing linearly from 10 Hz to 50 Hz. The sequence of impacts has occurrence time
at 3.57 orders of the chirp instantaneous frequency and a random jitter of 1%, and the resonant
frequency is in the band 1700 − 2200 Hz. Total length of the signal is 20 seconds and sampling
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frequency 6.4 kHz. The amplitude of the chirp is ten times that of the sequence of impacts.
Figure 1(a) shows the signal in time domain, in black the simulated signal comprising the three
components, while in red the sequence of noisy impacts multiplied by a factor 10. Figure 1(b) shows
the amplitude spectrum of the signal, with the disturbing chirp and the peak around the resonant
frequency representing the random and time non-stationary sequence of impacts. Fig. 1(c) shows
the normalised SES of the full band signal in the order domain after OT. As expected no peak
at the impacts order (IO) is seen. In the simulated signal the resonant frequency band and the
varying frequency of the chirp are separated, therefore a classical high-frequency filter is sufficient
for the enhancement of the impacts. As an example this is done with a fourth order Butterworth
filter of cut-off frequency 400 Hz. The amplitude response |H[l]| of the filter is shown with the red
dashed line in Fig. 1(b). Figure 1(d) shows the filtered signal in time domain, and Fig. 1(e-f) the
amplitude spectrum and the SES after OT. The masking chirp is suppressed and the SES displays
peaks at the IO and harmonic. We address the question whether similar results are achievable
using the PE method.
Figure 1(b) displays the characteristic which is the key point for the application of PE: the sep-
aration in spectral amplitude between the disturbing components and the impacts for the time

Figure 2: Photograph of the test rig (a). Run-up speed profile (b). Run-up and run-down speed profile (c).
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non-stationary signal. Therefore the enhancement of the impacts can be achieved by a threshold
in the spectral amplitudes and PE results are effective also for machinery operating at varying
speed. In particular for the simulated signal it is sufficient to use a constant value for λ, as shown
in Fig. 1(b) with the red line. The resulting phase edited signal is presented in Fig. 1(g-h-i) with
impacts revealed in the SES at the IO and its harmonics. The amplitude spectrum of the PE
signal, Fig. 1(h), displays the suppression of the spectral components above the selected threshold.
Comparison with the high frequency filtered signal shows a good agreement as well as comparison
with the noisy impacts in time domain, Fig. 1(a) in red.

4. Experimental investigation

4.1. Test rig & data sets

A photograph of the test rig is presented in Fig. 2(a). It consists of a variable speed asyn-
chronous electric motor, a parallel spur-gear of ratio one, and an alternator applying a constant
load. The shaft rotational speed is measured by a keyphasor mounted close to the motor. Two
rolling elements bearings support the output shaft and the one far from the gearbox has an outer
race defect with expected repetition of 3.04 orders (BPOO). An accelerometer mounted on the
casing of the bearing close the gearbox is used as a vibration transducer.
Two varying speed profiles are analysed in this paper as shown in Fig. 2(b-c). The first one is a
run-up profile with a doubling of the rpm, the second one a run-up and run-down of the motor.
The recorded data sets are 20 s long and are sampled at 25.6 kHz. The Welch power spectra of
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the data sets are shown respectively in Fig. 3(a-b), black line, with Hamming window of 10000
samples and 50% overlapping.

4.2. Results

The speed variations for both cases are strong enough to smear out spectral peaks and the SES
computed directly on the time non-stationary signals does not allow diagnosis. On the contrary
after OT peaks appear in the SES as shown in Figure 3(c-d). Peaks at order 1 and harmonics
correspond to vibrations from the gearbox while at orders 3.04 and harmonics correspond to impacts
from the defective bearing. In both cases despite the peak at the characteristic defective bearing
frequency, the diagnosis could be misleading due to the presence of the vibrations from the gearbox,
particularly for the closeness of the BPOO and 3X. Therefore PE is applied for the suppression of
the unwanted peaks.
For the analysed data the resonant frequency of the bearing appears in a band around 2000 kHz
while vibrations from the gears occur at higher frequencies [11]. For this reason a logistic function
was chosen as the threshold for PE, akin to low pass filtering:

λ[l] = α

(
1− 1

1 + e−β(v[l]−1)

)
(5)

where α is the value above which the spectral amplitudes are suppressed and β controls the steep-
ness of the curve. The vector v[l] linearly increases from 0 to r, where r selects the cutoff frequency.
Substitution of Eq. 5 in Eq. 2 gives the anti-symmetric threshold function L[l] as shown in Fig. 4,
with r = 4 and β = 20.
Firstly the high frequency components are suppressed to check whether the detection is enhanced.

In Eq. 5 parameters are chosen as α1 = max {|x̂[l]|} and r = 4 so that PE acts similarly to a low
pass filter with cut off frequency of 3200Hz. Figure 3(a-b) in red shows the Welch power spectra
of the time non-stationary PE edited signals. As expected the low frequency amplitudes coincide
with the original, in black. The edited signals are subjected to OT and the SES are computed.
The corresponding SES are shown in figure 3(a-b) respectively for the run-up case and the run-up
run-down case. The suppression of the high frequency components removes all the unwanted peaks
from the SES for the first speed profile, compared to Figure 3(c). On the other hand for the second

-Fs/2 -Fs/4 0 Fs/4 Fs/2

0

α

α

Fs/(2r)

Figure 4: Threshold function L[l] for λ[l] with β = 20 and r = 4.
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Figure 5: Squared envelope spectrum after PE with α1 followed by OT, for run-up (a) and run-up run-down speed
profile (b). PE with α2 for run-up run-down (c).

speed profile, peaks are still present other than the BPOO and its harmonics. These peaks can be
suppressed by exploiting the separation in amplitude between gears and bearing components. The
value of the parameter α in Eq. 5 is decreased so that PE implements simultaneously a threshold
in the spectral amplitudes and a low pass filter. Figure 3(c) in yellow shows the Welch power
spectrum of the resulting PE signal with α2 = 0.07 max {|x̂[l]|}. The SES computed after per-
forming OT on the PE signal is shown in Fig. 5(c). The unwanted peaks are removed, compared
to Figure 3(d), leaving only the BPOO and its harmonic.

5. Conclusion

This paper tested the effectiveness of phase editing (PE) as an envelope pre-processing method
to enhance the diagnosis of defective bearings from a machine operating in non-stationary speed
conditions. The procedure consists of applying PE to the time non-stationary signal, order tracking
the edited signal, and finally computing the SES. The performance was tested both on a simulated
signal and on experimental data.
PE implements a threshold on the amplitude of spectral components. It was shown that if there
is separation between spectral amplitudes, PE works irrespective of the stationary/non-stationary
properties of the signal. It was also shown that the threshold function used for the PE can be
selected to obtain a combination of frequency filtering and suppression of components with higher
spectral amplitudes.
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4.5 Summary

This chapter introduced Phase Editing (PE) as a novel signal processing method for en-

hancing the detection of a defective bearing from a vibration signal, PE was previously

used in speech denoising while here it for the first time applied to vibration signals.

Its mathematical formulation was thoroughly discussed in Section 4.2, showing that

from a theoretical point of view PE accomplishes the objectives detailed in Section 1.4

extremely well, being intuitive, of low computational complexity and effective on both

cyclo-stationary and cyclo-non-stationary signals.

The method was then implemented in an automated way, with no need for supervi-

sion by an expert user. Its performance was tested on numerical simulated signals

and experimental data, from different types of machines operating both at stationary

and varying speed, respectively in Section 4.2 and Section 4.4. The machines con-

tained defective bearings with different types of faults, in the inner race, outer race

and rolling element. PE performed well in the enhancement of the weak vibrations

from the defective bearings masked by the strong vibrations from the gears and in

comparison to state of the art techniques, provided a 10% improvement in detection

capability. Furthermore it was recognised that missed detection occurred in the case of

low operating speeds of the machine, as shown in Section 4.3. Specifically PE detected

the defective bearings mounted on shafts rotating at speeds above 3 Hz. This suggests

that missed detection is caused by the use of accelerometers as vibration transducers,

rather than the specific signal processing method, for instance the literature advises

the use of acoustic emission sensors for condition monitoring of machines operating at

slow speeds, as discussed in Section 1.3.4.

The data used in this chapter were collected from laboratory setups of relatively simple

complexity and despite the excellent results obtained here, PE has to be tested on data

from real world machines. This situation will be investigated in the next Chapter,

which introduces a novel signal processing method based on PE and applies it to data

from complex machines.
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Chapter 5

Novel technique: amplitude -

cyclic frequency decomposition

Nomenclature

x[k] raw signal in time domain xAD[k, l] amplitude-cyclic frequency decomposition

x̂[j] Fourier transform of raw signal p[k] phase edited signal

Nl number of threshold levels x̂m,M min,max of |x̂[j]|
λ threshold level SESAD[m, l] squared envelope spectrum of xAD[k, l]

g[k] vibrations from gears b[k] vibrations from bearing

Ar amplitude of meshing fsh shaft frequency

nt number of teeth g harmonic order of amplitude modulation

r harmonic order of meshing Brg amplitude of amplitude modulation

Tbd occurrence time of impacts τp random time jitter of pth impact

BPOO ball pass order outer race DSESxAD [m] decomposition sqaure envelope spectrum

BPOI ball pass order inner race CO cage order

L[j] asymmetric threshold vector γ[j] threshold function

5.1 Introduction

This chapter introduces a method to decompose a vibration signal into a two dimen-

sional map showing the cyclic content calculated on a set of threshold levels of the

amplitude spectrum: Amplitude-cyclic frequency Decomposition (AD). The method is

implemented using Phase Editing and uses the same principle of separating vibrations

from different mechanical components of the machine based on their amplitude rather

than their spectral frequency. AD is the direct extension of PE, with the advantage of
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showing the cyclic content on all the calculated thresholds, thus with no need for the

selection of the best level. For instance, in the previous chapter the selection was im-

plemented through an automated method which maximises features calculated on the

squared envelope spectrum and it needs vibration signals collected when the machine

is in healthy conditions. In addition the performance of PE was tested in the previous

chapter using data sets coming from relatively simple experimental setups. Here the

AD will be tested on vibration signals from complex machinery, such as a wind turbine

gearbox and a civil engine aircraft, thus proving the effectiveness of PE on real world

scenarios.

In the literature the only method which offers a type of analysis comparable to that

of AD is the Spectral Correlation (SC), as introduced in Section 1.3.3. SC similarly

decomposes the signal into a two dimensional map, but in this case it shows the cyclic

content contained in a set of spectral frequency bands. The two methods differ from a

theoretical point of view, but as shown in the following, the resulting two dimensional

maps are highly comparable and offer the same detection capabilities in all the analysed

data sets. However the proposed AD has a lower computational complexity resulting

in a faster implementation.

The chapter is organised as follows. Section 5.2 describes the experimental setup from

which vibration data will be analysed. Section 5.3 introduces the methodology, tests it

both on numerical simulated signals and real world data and compares it with the SC.

Section 5.3 is reproduced from the author’s published work in the journal Mechanical

Systems and Signal Processing [Barbini et al., 2017b]. Section 5.4 addresses the com-

putational cost of AD and finally Section 5.5 shows two cases of missed detection of a

defective bearing.

5.2 Experimental setups

This section describes two of the three experimental setups from which vibration data

is analysed in Section 5.3, the third experimental setup is from Centre Technique des

Industries Mécaniques (CETIM) and it was already described in Section 3.2.

Wind turbine gearbox

The data on the wind turbine gearbox were provided by the National Renewable Energy

Laboratory (NREL) of the United States. The data were collected under the wind

turbine gearbox condition monitoring round robin study [Sheng, 2012]. Figure 5.1
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shows the configuration of the turbine drive train, with the gearbox in blue. The

turbine has a rated power of 750 kW. Figure 5.2 shows the details of the components

of the gearbox and Figure 5.3 the schematics with corresponding number of teeth of

the gears. The gearbox comprises on the downwind side a low speed planetary stage

and on the upwind side two parallel stages. The planetary stage is connected to the

intermediate speed stage and the high speed stage is connected to the generator. The

complete drive train was first installed in the NREL dynamo-meter test facility and

run-in. Later it was sent to a wind farm for field testing. In the field test, it experienced

two loss of oil events that damaged its internal bearings and gear elements. At this

point it was brought back to the dynamo-meter test facility and run under controlled

loading conditions, in order to avoid catastrophic failure of the gearbox. After collection

of data for condition monitoring purposes, the turbine was disassembled and a failure

analysis was conducted on the gearbox [Errichello and Muller, 2012]. The analysis

found four defective bearings, respectively A, B, C and D in Figure 5.3. The four

bearings presented the following defects:

1. A dents on the outer race and possible damage due to assembly error

2. B overheating on the inner race

3. C dents and scuffing on the inner race and possible damage due to assembly error

4. D scuffing, polishing and fretting corrosion on the outer race.

In addition, the gear of the parallel stage presented scuffing, the gear of the intermedi-

ate stage presented fretting corrosion, scuffing and polishing wear. The annulus of the

planetary stage presented scuffing, polishing and fretting corrosion.

Figure 5.1: Wind turbine drive train, reproduced from [Sheng, 2012]
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AN9
AN6

Figure 5.2: Wind turbine gearbox components, reproduced from [Sheng, 2012]

Figure 5.3: Schematic of wind turbine gear box with number of teeth and locations of
defective bearings

Vibration data was collected by 8 piezoelectric accelerometers IMI 622B01 and Fig-

ure 5.2 shows the locations of the sensors AN6 and AN9 used in the analysis of Sec-

tion 5.3. Both the sensors are placed on the downwind side of the gearbox: AN6 radially

on the intermediate speed shaft and AN9 radially on the high speed shaft. Data sets

are 1 minute long and the sampling rate is 40 kHz. Finally, a tachometer was placed

on the high speed shaft to measure the rotational speed, as shown in Figure 5.3. For

all the length of the measurement the speed was kept constant at 30 Hz with small

variations.
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Figure 5.4: General overview of the aircraft engine and the accessory gearbox, repro-
duced from [Antoni et al., 2017a]

Figure 5.5: Schematic of the aircraft accessory gearbox, with locations of defective
bearings. Reproduced from [Antoni et al., 2017a]

Aircraft engine

The data on the aircraft engine was provided by Safran for the 8th Conference Surveil-

lance held in Roanne, France, October 2015 [Safran, 2017]. The data were collected

during a ground test on a civil aircraft engine which comprises two main shafts and an
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accessory gearbox with equipment such as pumps, starter, Integrated Drive Generator

(IDG) and Electronic Engine Control (EEC) alternator. The general overview of the

engine is shown in Figure 5.4, while Figure 5.5 shows the schematics of the gearbox.

The gearbox is linked to the High Pressure (HP) shaft by a Radial Drive Shaft (RDS)

and a Horizontal Drive Shaft (HDS). Two defective bearings are present on the shafts

L5 and L1 and in the analysis of Section 5.3 they are respectively A and B. The defect

on bearing A is a wide spalled area on the outer race, in a sector of 32◦ along all the

functional line of the race, with a depth of approximately 0.1 mm. While the defect

on bearing B the defect is a scratch on the outer race with a depth of about 0.3 mm

and a width of about 1 mm [Antoni et al., 2017a]. Vibration data were collected by

means of three accelerometers, as shown in Fig. 5.4. Acc0 and Acc1 are located near

the RDS and Acc2 is located on the flange of the accessory gearbox, in the vicinity of

shaft L5. The data is acquired1 at 50 kHz for a total length of 200 s while the engine

is performing an acceleration from idle to full power and the speed was recorded by

a tachometer placed on the shaft L4 as shown in Fig. 5.5. Figure 5.6 shows the non

stationary speed reconstructed from the tachometer signal.

Figure 5.6: Instantaneous rotational speed of the shaft L4 of the aircraft engine

1Please notice that the data downloaded from the supplementary material of [Antoni et al., 2017a]
is in mp3 format and has a sampling rate of 44.1 kHz and a total length of 204.8 s
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5.3 Amplitude-cyclic frequency decomposition of vibra-

tion signals for bearing fault diagnosis based on phase

editing
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et al., 2017b]

Statement of contributions of joint authorship

L. Barbini (candidate): writing and compilation of manuscript, established methodol-

ogy, data analysis, preparation of tables and figures. Presented results at the confer-

ence.

M. Eltabach : provided analysed data set, editing and co-author of manuscript.

A. Hillis : editing and co-author of manuscript.

J. L. du Bois (principal supervisor): supervised and assisted with manuscript compila-

tion, editing and co-author

Copyright

Authors can use their articles, in full or in part, for a wide range of scholarly, non-

commercial purposes as outlined below:

-Use by an author in the authors classroom teaching (including distribution of copies,

paper or electronic)

-Distribution of copies (including through e-mail) to known research colleagues for their

personal use (but not for Commercial Use)

-Inclusion in a thesis or dissertation (provided that this is not to be published commer-

cially)

-Use in a subsequent compilation of the authors works

-Extending the Article to book-length form

-Preparation of other derivative works (but not for Commercial Use)

-Otherwise using or re-using portions or excerpts in other works

These rights apply for all Elsevier authors who publish their article as either a subscrip-

tion article or an open access article. In all cases we require that all Elsevier authors

always include a full acknowledgement and, if appropriate, a link to the final published

version hosted on Science Direct.

112



Amplitude-cyclic frequency Decomposition of vibration signals for bearing
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Abstract

In rotating machine diagnosis different spectral tools are used to analyse vibration signals. De-
spite the good diagnostic performance such tools are usually refined, computationally complex to
implement and require oversight of an expert user. This paper introduces an intuitive and easy to
implement method for vibration analysis: amplitude cyclic frequency decomposition. This method
firstly separates vibration signals accordingly to their spectral amplitudes and secondly uses the
squared envelope spectrum to reveal the presence of cyclostationarity in each amplitude level. The
intuitive idea is that in a rotating machine different components contribute vibrations at differ-
ent amplitudes, for instance defective bearings contribute a very weak signal in contrast to gears.
This paper also introduces a new quantity, the decomposition squared envelope spectrum, which
enables separation between the components of a rotating machine. The amplitude cyclic frequency
decomposition and the decomposition squared envelope spectrum are tested on real word signals,
both at stationary and varying speeds, using data from a wind turbine gearbox and an aircraft
engine. In addition a benchmark comparison to the spectral correlation method is presented.

Keywords: phase editing, diagnostics of defective bearings, spectral correlation, enhanced
squared envelope spectrum, variable speed

1. Introduction

In a rotating machine when a rolling element bearing has a defect it does not operate smoothly
but produces a series of impacts throughout its rotation. The impacts generate vibrations which
propagate through the machine from the bearing to the vibration transducer. Diagnosis of a
defective bearing is subject to the observation of such vibrations. The literature on signal processing
methods for the ad-hoc treatment of vibrational signals is abundant, as are mathematical models
for the expected vibrations from defective bearings [1, 2]. In particular it is commonly accepted
that the signal from a defective bearing is cyclostationary and that the most appropriate tool for
its analysis is Spectral Correlation (SC). Specifically [3] shows that the integral over all spectral
frequencies of the SC is equivalent to the spectrum of the squared envelope, therefore it is related
to the high resonant frequency technique [4]. Recently Antoni et al. [5] introduced an algorithm
for the fast computation of the SC. The algorithm was successfully used to detect faulty bearings
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on machines operating both at stationary and non-stationary speeds.
The SC achieves detection of a defective bearing exploiting two aspects of a vibrational signal,
namely its statistical properties and the separation of the vibrations in spectral frequency. The
first aspect uses the presence of peaks in the cyclic domain for a series of impacts from the defective
bearing. The latter exploits the fact that vibrations from different components of the machine
occupy different spectral bands. Usually gears contribute peaks at low frequencies versus the high
resonant frequencies excited by the impacts from a defective bearing. The combination of these
two aspects in the SC allows detection of the defective bearing without any preceding steps for
suppression of vibrations from gears or other unwanted components. Therefore a 2-dimensional
decomposition simplifies, conceptually and practically, the usual procedure of first pre-processing
the vibration signal and afterwards calculating the Squared Envelope Spectrum (SES) [6].
This paper introduces a novel method to decompose a vibrational signal in a 2-dimensional map.
The method is implemented using Phase-Editing (PE) [7] to threshold spectral amplitudes at
different levels. It exploits the fact that components of a vibrational signal can be separated
according to their amplitudes independently from their frequency in the spectrum. For instance,
in the case of a small defect on a bearing, vibrations from the gears contribute a series of high
amplitude peaks, while the impacts from the bearing contribute a low amplitude resonance around
the excited resonant frequency. The SES is then calculated for each threshold level, in order to
observe peaks in the cyclic domain. Therefore the proposed method decomposes the vibrational
signal in a 2-dimensional map of which the characteristic dimensions are: the spectral amplitude
level up to which the signal has been thresholded and its corresponding cyclic content. The name
of the proposed method is Amplitude-cyclic frequency Decomposition (AD).
Differently from phase editing [7], AD does not require the optimisation step for the selection of the
best threshold level, in addition the 2-dimensional map allows the simultaneous visualisation of the
cyclic content of vibrations from gears and bearings at different spectral amplitudes. The method
does not require any pre-processing of the vibration signal and it can be applied also to machines
operating at non-stationary speeds. Only one parameter has to be tuned, namely the number of
thresholds. In addition the computational cost for each threshold level of the AD consists of four
computations of the fast Fourier transform of the vibration signal. For these reasons AD is well
suited for an automated detection scheme.
The paper is structured as follows: Section 2 introduces the method and, by means of a numerical
simulation, compares the performance of AD with that of SC. Section 3 presents the results of
AD applied to three experimental data sets: a laboratory set-up characterised by largely varying
speed, a wind turbine gearbox, and a civil aircraft engine. Comparison with the results obtained
from SC is presented for the three cases. Section 4 draws some conclusions.

2. Methods

This section shows how to obtain the amplitude-cyclic frequency decomposition of the raw
vibration signal x[k], with Fourier transform x̂[j] where k, j = {0, · · · , Nk − 1} are the indices in
the time and frequency domains, respectively.
Firstly xAD[k, l] is computed using the phase editing method to threshold | ˆx[j]| at Nl levels [7]:

xAD[k, l] = x[k]− Real
(
p(l)[k]

)
. (1)

where l = {0, · · · , Nl − 1} is the index of the threshold level and p(l)[k] is the phase edited vector
obtained for the l level. For each level the phase editing method suppresses spectral components
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with amplitude smaller than the selected threshold and can be seen as a denoising procedure.
This is achieved rotating in the complex plane pairs of conjugate vectors of x̂[j]. The degree of
rotation is defined by the ratio between the amplitude of the vector and the value of the threshold
level. Specifically, if the conjugate vectors have an amplitude smaller than the threshold they are
significantly rotated, while in the opposite scenario, the vectors are rotated of a small quantity. As
a final step the Inverse Fourier Transform (IFT) is calculated on this modified spectrum, adding
pairs of complex vectors which cancel out or reinforce accordingly to the degree of rotation. The
result of this operation is a denoised complex signal in the time domain of which the real part
only is retained. Following this procedure, in Eq. (1) p(l)[k] is defined as the IFT of the modified
amplitude spectrum of the raw vibration signal:

p(l)[k] = IFT
{
p̂(l)[j]

}
= IFT

{
|x̂[j]| exp

{
i6
(
x̂[j] + L(l)[j]

)}}
(2)

where L(l)[j] is the threshold vector for the level l. In Eq. (2) L(l)[j] is an antisymmetric vector:

L(l)[j] =

{
+λ(l) 0 ≤ j < Nk/2

−λ(l) Nk/2 ≤ j ≤ Nk − 1
(3)

where for each l the constant λ(l) is found in an automated way from x̂[j]:

λ(l) = x̂M

(
x̂m
x̂M

)l/(Nl−1)
(4)

x k
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Figure 1: Scheme of proposed method for the Amplitude-cyclic frequency Decomposition (AD).
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with x̂M = max
0≤j<Nk/2

{|x̂[j]|} and x̂m = min
0≤j<Nk/2

{|x̂[j]|}.
Barbini et al. in [7] showed that in the case of a single threshold level, for each frequency index
j = n ≤ Nk/2, PE returns the sinusoidal component:

xpe,n[k] = xn[k]− Real {pn[k]} = K[n]
2 |x̂[n]|
N

cos

(
2π

N
nk + 6 x̂[n] + θ[n]

)
(5)

where the differences with the original sinusoid xn[k] are the terms K[n] and θ[n], representing the
gain and phase modifications, respectively. In particular,

K[n] ' 0, |x̂[n]| � |L[n]|
K[n] ' 1, |x̂[n]| � |L[n]|. (6)

Equations (5) and (3) are valid for all the Nl threshold levels of Eq. (4). Therefore xAD[k, l] of
Eq. (1) is interpreted as Nl vibration signals from which are systematically removed components
with spectral amplitude above a threshold logarithmically decreasing from x̂M to x̂m. For instance
xAD[k, 0] is equivalent to the original vibration signal and xAD[k,NL − 1] can be interpreted as
being similar to the cepstral pre-whitened signal [8] where instead of unity, the spectral amplitude
is x̂m. As a final step the squared envelope spectrum is computed, giving the SESxAD [m, l], with
m = {0, · · · , Nk − 1} the index in the cyclic order domain. The envelope is calculated as the
absolute value of the analytical representation of the signal. For each l the SES is normalised
according to ˜SESxAD [m, l] = SESxAD [m, l]/SESxAD [0, l], and henceforth the tilde (˜) is omitted.
The above methodology is applied as described to a time stationary signal. For time non-stationary
signals order tracking (OT) is required. Specifically in the case of large speed variations [9] shows
that separation of vibrations from the gears and from the defective bearing should be performed
directly on the time non-stationary signal, before order tracking (OT). This paper deals with
non-stationary signals in a similar manner, computing OT after the thresholding in the spectral
amplitude domain. Eq. (5) is also valid for frequency components in the case of non-stationary
speeds, therefore OT is computed for each of the NL vectors of xAD[k, l] yielding xAD[a, l] where
a = {0, · · · , Nk − 1} is the index in the angle domain. Finally the SESxAD [m, l] is calculated from
xAD[a, l].
A schematic depicting the proposed methodology is shown in Fig.1.

2.1. Numerical investigation

This section presents the performance of SESxAD [m, l] on a numerically simulated signal.
The signal is the superposition of three components. It comprises vibrations from a defective gear

Gear Value Bearing Value Noise Value

fsh 8 [Hz] Tbd 58.10 [ms] E{n[k]} 0 [a.u.]

nt 33 [a.u.] E{τp} 0 [s] E{n[k]}1/2 0.65 [a.u.]

r [7, 8, 9] E
{
τ2p
}1/2

2.50 [ms]
g [1, 2] a 2.00 [ms]
Ar [1, 2, 1] f1 1.70 [kHz]

Brg




0 0
0.5 0.25
0 0


 f2 2.70 [kHz]

Table 1: Values used in the numerical simulation.
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g[k] from a defective bearing b[k] and Gaussian noise n[k].
The defective gear has nt teeth and rotates at fsh contributing vibrations of the form:

g[k] =
∑

r

Arcos

(
2πrfshnt

k

Fs

)[
1 +

∑

g

Brgcos

(
2πgfsh

k

Fs

)]
(7)

where fshnt = fmg is the meshing frequency and the values of r, Ar g, Brg depend on the defect.
In contrast to [10], Equation (7) includes only amplitude modulations and the phases of all the
sinusoids are set to zero.
The defective bearing contributes a series of impulses occurring every Tbd plus a random jitter τp:

b[k] = m[k̃] ∗
[∑

p

δ

(
k

Fs
− pTbd − τp

)]
(8)

where ∗ is the convolution operator and m[k] represents the excited waveform equal for all the
impacts, with k̃ =

{
0, · · · , Nk̃ − 1 = TbdFs

}
. The excited waveform is a colored noise decaying

exponentially:

m[k̃] =
(
w[k̃] ∗ h[k̃]

)
e−k̃/(aFs) (9)

where a < Tbd to ensure temporal separation between successive impacts, w[k̃] is a Gaussian noise
and h[k̃] is a second order band pass filter of cut-off frequencies f1, f2. In contrast to [3] the
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amplitude of all the impacts is unitary and Eq. (8) models an outer race fault.
The values used in the numerical simulation can be found in Table 1, the signal is sampled at
Fs=5.12 × 10+4 [Hz] and the total length is Ts = 10[s]. The amplitude spectrum obtained for
the signal g[k] + b[k] + n[k] is shown in black in Fig.2(a), the frequency is zoomed around the
three meshing harmonics, and 5 threshold functions L(l)[j] are shown in red. Fig.2(b) shows the
amplitude spectrum of the signal after the thresholding; the peaks from the gears are systematically
suppressed. For each component the next step is to compute the SES as shown in Fig.2(c). It is
possible to notice how after the thresholding the SES reveals gradually the presence of peaks at
the expected bearing fault order Obd = (fshTbd)−1 = 2.15 [orders] and harmonic, while the peaks
from the gears at integer orders are removed.
The SESxAD [m, l] obtained applying the proposed algorithm with Nl = 50 threshold levels, to the
signal g[k] + b[k] + n[k] is shown in Fig.2(d). For displaying purposes a lower limit in the colour
map was implemented. Firstly it is noticed that the presence of the defective bearing is displayed
by the two vertical lines at 2.15 and harmonic cyclic orders, extending roughly from the amplitude
threshold λ(l) = −10 [dB] to λ(l) = −60 [dB]. Secondly the component from the gear contributes
lines at integer cyclic orders for threshold levels from roughly λ(l) = 6 [dB] to λ(l) = −10 [dB].
Therefore this 2D map shows that the g[k] has higher spectral amplitude then b[k], in addition
it shows the decreasing amplitudes of the modulation in Eq. (7) as expected from Brg, with the
harmonics at 3rd and 4th cyclic order reaching smaller spectral amplitudes.
Figure 3(a) shows the spectral coherence of the signal g[k] + b[k] + n[k], obtained by applying the
fast spectral correlation (SC) algorithm. For display purposes a lower limit in the color map was
implemented and for comparison the SESxAD [m, l] of Fig2(d) is shown in Fig.3(b). The size of
the window for the short time Fourier transform (STFT) of the fast spectral correlation algorithm
was selected as Nw = 211. For this selection the spectral frequency resolution is ∆f = 25 [Hz].
The component b[k] contributes the two vertical spectral lines at Cyclic orders 2.15 and harmonic.
While g[k] contributes the three horizontal cyclic lines around the harmonics of the gear meshing
frequency as well as the peaks at integer cyclic orders from the amplitude modulation in Eq. (7). It
is interesting to notice from Fig.3(a) that what masks the defective bearing in the integral over all
the frequencies, as for instance in the top SES of Fig.2(c), are the horizontal lines from the meshing
frequency components which contribute a peak at 33 cyclic orders. This was further verified by
repeating the numerical simulation with the matrix Brg = 0. Also in this case the SES does not
show peaks at the bearing defect orders, not shown here.
Figure 4 shows the envelope spectra obtained from sections of the 2D maps of Fig.3. Specifically
Fig.4(a) shows the Enhanced Envelope Spectrum (EES) obtained from the integral over the spectral
frequencies in the band (1.90, 2.03) [kHz] while Fig.4(c) in the band (2.07, 2.15) [kHz]. The selected
bands exploit the spectral frequency separation to distinguish between g[k] and b[k]. Figure 4(b-
d) shows the sum in spectral amplitude bands of the SESxAD [m, l] obtained from the proposed
amplitude-cyclic frequency decomposition:

DSESxAD [m] =

l2∑

l1

SESxAD [m, l] (10)

Decomposition Squared Envelope Spectrum (DSES) is computed for the thresholds in the range
(-20, -40) [dB] in Fig.4(b) and (6, 0) [dB] in Fig.4(d). The selected bands exploit the spectral
amplitude separation to distinguish between g[k] and b[k]. The DSES calculated on the band at
high spectral amplitudes shows peaks at the gear cyclic orders, on the other hand the DSES of the
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band comprising low spectral amplitudes shows the peaks at the defective bearing orders. In the
case of a signal dominated by vibrations from a bearing the bands in the DSES are interchanged.
Therefore DSES gives information on the magnitude of the vibrations from a defective bearing,
relative to vibrations from other components.
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CETIM NREL Safran

Sensor Acc1 Sensor AN9 Sensor AN6 Sensor Acc2
Fs=25.60 [kHz] Fs=40.00 [kHz] Fs=40.00 [kHz] Fs=44.10 [kHz]
Ti=25 [s] Ti=0 [s] Ti=0 [s] Ti= 113[s]
Tf=45 [s] Tf=20 [s] Tf=60 [s] Tf= 133[s]
BPOO =3.04 [orders] BPOOA=3.52 [orders] BPOIC=2.46 [orders] BPOOA=7.76[orders]

BPOIB=11.51 [orders] BPOOD=0.29 [orders] COA= 0.43 [orders]
BPOOB=4.00 [orders]

Table 2: Values describing the analysed data sets.

3. Experimental Results & discussion

This section presents results from the application of the proposed method to real world data.
First, data sets from a laboratory set-up are analysed, provided by the Centre Technique des
Industries Mécaniques (CETIM), France. Second, data sets from a wind turbine gearbox are
analysed, provided by the National Renewable Research Laboratory (NREL), United States. Last,
data sets from an aircraft engine are analysed, provided by Safran.
These three data sets are well documented in other publications[11, 12, 13] with diagrams of the
machines, explanations of sensor locations, descriptions of faults and diagnostics challenges. In this
paper, for simplicity, only the values used for each data set are stated, sufficient for the reproduction
of results. Specifically Table 2 summarises for each data set the sampling rate Fs, the initial and
final times Ti and Tf , the sensor specification and the expected fault orders. BPOO is the ball
pass order on the outer race while BPOI is that on the inner race, and CO are the cage orders.
In the following, the results obtained applying the amplitude-cyclic frequency decomposition to the
three datasets are shown. A comparison with the results obtained from the spectral correlation is
presented as well.

3.1. CETIM: Benchmark of bearing faults in large speed variations

The data set provided by CETIM is characterised by a motor operating at largely varying
speed, specifically the random-speed profile in [14]. In this paper the dataset is used to show the
effectiveness of the amplitude-cyclic frequency decomposition in non stationary speed regimes. The
dataset comprises a signal from a tachometer for computation of order tracking.
The SESxAD [l,m] with Nl = 50 threshold levels is shown in Fig.5(a-b), with zoomed in sections
around BPOO=3.04 and 2xBPOO cyclic orders. As can be noticed the method performs well
allowing detection of the defective bearing. In addition the method achieves separation between
the vibrations from the gears, at integer cyclic orders, and the bearing. For this data set it is
observed that vibrations from the bearing have greater amplitude than vibrations from the gears.
Figure5(c-d) shows for comparison the spectral coherence obtained with the fast SC algorithm with
the size of the window for the STFT Nw = 28, giving spectral frequency resolution of ∆f = 100
[Hz]. In this paper the the fast-SC algorithm is modified such that it uses a STFT resampled in
the angular domain for each spectral frequency. The SC is also effective in the diagnosis of the
defective bearing. The excited resonant frequency appears in the spectral band around 2 [kHz], as
observed also in the order-frequency spectral correlation [12]. In addition SC achieves separation
of gear and bearing vibrations and the results are comparable with the proposed AD.
Figure 6(a-b) shows the DSES and EES around the bands containing the component from the
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defective bearing. The DSES is in the band (-50, -55) [dB] while the SES is in the band (1.8,
2.1) [kHz] and the peaks at BPOO and 2xBPOO are evident in both plots. For the SC the peaks
around 2, 4 cyclic orders are modulation sidebands of the BPOO at ± 1 order of shaft frequency.
Such modulations are absent in the DSES, however the detection of the defective bearing is still
evident. Figure6(c-d) shows the bands containing the component from the gears. The DSES is in
the band (-75, -80) [dB] while the EES is in the band (7.5, 8.0) [kHz].
Finally, for visualization of the operational workflow of AD on a real world dataset, Fig.7 shows
the signals resulting from each step of Fig.1. Fig.7(a-b-c) shows respectively: the raw acquired
signal, the real part of the PE signal thresholded at the level l∗ = 6 and the PE residual signal of
Eq.(1). It is possible to notice how in the PE residual signal the impacts from the defective bearing
are clearly visible, showing the effectiveness of the PE algorithm when applied to non stationary
signals. On the other hand Fig.7(d) shows the PE residual signal in the angular domain as well
as the square of the absolute value of the analytical representation of the signal in red, used for
the computation of SESXAD

[m, l∗]. In the angular domain it can be verified that there are three
impacts per revolution of the shaft according to BPOO.

3.2. NREL: Benchmark of bearing faults in a wind turbine gearbox

The dataset provided by NREL is from a wind turbine gearbox with both multiple defective
bearings and gears. The defects are due to assembly damage as well as working wear. The dataset

x
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includes a signal from a tachometer for the computation of order tracking. The operating speed of
the wind turbine is almost constant for the selected interval of time but OT was computed also in
this case. However due to the limited variation of the speed OT is computed directly on the x[k]
and afterwards is used the algorithm of Fig. 1 for a signal at constant speed.
Table 2 gives four defective rolling element bearings, respectively named A B C D, however from
the analysis conducted in this paper only three are identified. The proposed amplitude-cyclic
frequency decomposition misses the detection of the defect at BPOOD=0.29 cyclic orders. In
addition the defect at BPOOA is not found at the fundamental but at even harmonics, in particular
2×BPOOA=7.04. The results obtained here corroborate the findings of [11, 15].
Figure 8(a-b) shows respectively the SESxAD [m, l] around the 2×BPOOA and BPOIB cyclic orders;
the number of threshold levels is Nl = 50. In Fig. 8(a) the cyclic order of the defective bearing
at 2×BPOOA is close to the 7X harmonic of the gear component. However the different sources
of vibration can be separated according to their spectral amplitudes. Vibrations from the gears
contribute high spectral amplitudes around -10 [dB] while vibrations from the bearing contribute
small spectral amplitudes around -65 [dB]. This example shows how a 2-dimensional map simplifies
the detection of a defective bearing in the case of components contributing peaks at the same
cyclic order. In particular there is no need to pre-process the signal to suppress masking vibrations
before the computation of the SES. Similar results are obtained for the defect at BPOIB as shown
in Fig.8(b). For this case the component from the gears, at high spectral amplitudes, is at ∼
11.52 cyclic orders. It is due to modulation at 0.25 orders from a defective gear and therefore it
corresponds to 11X+2×0.25. Vibrations for the defective bearing on the other hand correspond
to the line at BPOIB cyclic orders around -70 [dB]. Figure 8(c-d) shows the spectral coherence
zoomed in around the same cyclic orders, the window size of the STFT is Nw = 28, giving ∆f= 156
[Hz]. The results match those obtained with the proposed methodology. The spectral coherence
in Fig. 8(c) shows that around the 7X cyclic order there are two sources of vibrations, with the
gears at lower frequencies than the defective bearing. Similarly in Fig. 8(d) the gears contribute a
peak at ∼ 11.52 cyclic orders at low spectral frequencies. On the other hand the defective bearing
excites a resonance around 17 [kHz] contributing a clear line around BPOIB cyclic orders. Further
analysis of the second harmonic can be found in Appendix A. Figure 9(a-b) shows the DSES in the
band (-65, -70) [dB] where the component of vibrations from the defective bearing is found. The
peaks at 2xBPOOA and BPOIB are observed respectively in Fig. 9(a) and Fig. 9(b). Figure 9(c-d)
shows for comparison the EES in the band (15.5, 17.5) [kHz]. The peaks from the two defective
bearings are also clearly present in this case.
A first investigation of SESxAD [l,m] did not reveal the presence of the defect at BPOIC , therefore in
this case spectral frequency separation was also used to achieve detection. The set of constants λ(l)

of Eq.4 is multiplied by a function of frequencies 0 ≤ γ[j] ≤ 1 so that to implement simultaneously
a filter in the spectral frequencies and a threshold in the spectral amplitudes:

L(l)[j] =

{
+λ(l)γ[j] 0 ≤ j < Nk/2

−λ(l)γ[N − 1− j] Nk/2 ≤ j ≤ Nk − 1.
(11)

The function γ[j] is chosen as a 6th order band-pass Butterworth filter of bandwidth 2 [kHz] and
central frequency 10 [kHz]. The band of interest was chosen by the user after investigation of the
SESxAD [l,m] for different values of the central frequency.
Figure 10(a) shows the resulting SESxAD [l,m] around the BPOIc cyclic orders. The spectral
frequency filtering in the thresholds of Eq. 11 shifts the component from the defective bearing at
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Figure 10: NREL dataset. (a) SESxAD with Nl=50 levels, zoom around BPOIC=2.34. (b) spectral coherence with
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high spectral amplitudes, around -45 [dB] from Fig. 8(a-b), meaning that in this spectral frequency
band vibrations from the bearing have dominant amplitudes. For comparison the spectral coherence
is shown in Fig. 10(b), the window size for the STFT is Nw = 211 giving a frequency resolution
∆f=20 [Hz]. The defect at BPOIc cyclic orders is observed around 9 [kHz], corresponding to the
selected central frequency for the spectral filter of Eq. 11. Further analysis of the second harmonic
can be found in Appendix A.
Finally Fig. 10(c-d) shows the DSES and EES around the band containing the defective bearing
vibrations, respectively (-45, -50) [dB] for the SESxAD [l,m] and (8.5, 11) [kHz] for the spectral
coherence.

3.3. Safran: Benchmark of bearing faults in an aircraft engine

The dataset provided by Safran was acquired on a civil aircraft engine with multiple damaged
bearings. The defects are seeded. The dataset includes a signal from a tachometer for the compu-
tation of order tracking. Table 2 shows two defective bearings, respectively A and B, however from
the analysis conducted in this paper only one is found. The proposed amplitude-cyclic frequency
decomposition misses the detection of the defect at BPOOB=4.00 cyclic orders. This results cor-
roborates the analysis of [13].
Figure 11(a) shows the SESxAD with Nl=50 levels, zoomed around BPOOA=7.76 cyclic orders. A
clear line at the expected fault order extends up to -100 [dB] showing that the defective bearing
contributes strong vibrations. Sidebands at the OCA can be seen around the line at BPOOA. The
presence of such sidebands at the cage orders is unusual for an outer race fault, however can be
confirmed by the findings of [13] where it was shown an amplitude spectrum characterised by a
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Figure 11: Safran dataset. (a) SESxAD with Nl=50 levels, zoom around BPOOA=7.76 comprising sidebands at
COA=0.43. (b) spectral coherence with Nw = 28. (c) DSES in the band (-60, -80) [dB]. (d) EES in the band (8, 12)
[kHz].

series of peaks at BPOOA and harmonics, with sidebands equispaced by OCA. Figure 11(b) shows
for comparison the spectral coherence calculated with a STFT window size Nw = 28, giving a fre-
quency resolution ∆f=175 [Hz]. The defective bearing is found also in this case with the sidebands
at the cage orders less evident but still present. Further analysis of the second harmonic can be
found in Appendix A.
Finally Fig. 11(c-d) shows respectively the DSES and EES in the bands containing the defective
bearing vibration. The plots are smoothed in the cyclic order domain, so that the cyclic resolution
for both plots is ∆α = 2.60× 10− 3 [a.u.]. The DSES is in the band (-60, -80) [dB] while the EES
is in the band (8, 12) [kHz], peaks at BPOOA and sidebands at COA are present in both plots.

4. Conclusions

This paper has introduced a new method to decompose a vibration signal in a 2-dimensional
map: the Amplitude-cyclic frequency Decomposition (AD). The method can be used to analyse vi-
bration signals of rotating machines operating in both stationary and non stationary speed regimes.
In addition, the Decomposition Squared Envelope Spectrum (DSES) has been computed as the
sum over the spectral amplitudes of the AD. It is proved that the DSES is as an enhancement of
the usual SES.
In this paper the AD and DSES have been applied on three vibration signals in order to show their
ability to detect defective bearings. The analysed data sets are from a wind turbine gearbox, a
civil aircraft engine and a laboratory set-up characterised by large speed variations. These three
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data sets are well documented in the literature and the results obtained by other methods can be
used for comparison. In this paper the performances of AD and DSES have been compared with
those of the fast Spectral Correlation algorithm and the Enhanced Envelope Spectrum. Matching
results were obtained for all the analysed data sets. The proposed methodology is computationally
easy to implement, relying only on the fast Fourier transform algorithm. In addition it requires the
selection of only one parameter, which for all the data sets analysed in the paper was kept constant
at Nl = 50, therefore it is proposed as a good candidate for an automatic industrial application.
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Appendix A. Second harmonic

The first column of Fig. A.12 shows a zoomed in section of the SESxAD [m, l] for the data
from NREL, the second column shows for comparison shows a zoomed in section of the spectral
coherence. The cyclic orders are zoomed in around the expected second harmonics of the defective
bearings, from top to bottom for BPOOA, BPOIB and BPOIC according to Fig. 8 and Fig. 10.
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Figure A.13: Safran dataset, zoomed in section around second harmonic. (a) AD, (b) spectral coherence.

For BPOOA there is no clear evidence of the higher harmonic. Following the analysis of Fig. 8, the
vertical line close to 14 cyclic orders in Fig. A.12(a-b) has been assumed from the gears. On the
other hand the second harmonic of BPOIB is found by both methods, Fig. A.12(c-d). Finally, for
BPOIC there is no clear evidence of the second harmonic from AD while there is a weak indication
from the spectral coherence.
Figure A.13 shows zoomed in section of the data from Safran, respectively SESxAD [m, l] in Fig. A.13(a)
and for comparison the spectral coherence in Fig. A.13(b). The cyclic orders are zoomed in around
the expected second harmonic of the defective bearing BPOOA, according to Fig. 11. Both meth-
ods clearly reveal the presence of the second harmonic, in addition they give a weak indication on
the presence of the sideband at COA.
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[12] D. Abboud, S. Baudin, J. Antoni, D. Rémond, M. Eltabach, O. Sauvage, The spectral analysis of cyclo-non-
stationary signals, Mechanical Systems and Signal Processing 75 (2016) 280 – 300.
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5.4 Computational cost

The proposed AD is a computationally inexpensive method and this section investigates

an interesting aspect: evaluating the computational cost of AD and comparing it with

that of the SC, implemented with the fast-SC algorithm [Antoni et al., 2017a]. In the

following AD and SC are implemented in Matlab 2014b on a i5-4590 CPU with up to

3.3 GHz clock cycles.

The computational cost of the AD is addressed in terms of the number of complex

multiplications. For a signal of length Nk the implementation of AD consists of 5

FFT for each of the Nl threshold levels, where the 5 FFT are respectively 2 from the

PE, 2 from the Hilbert transform and 1 from the computation of the spectrum of the

envelope, thus giving a complexity of

CAD ∼ Nklog2(Nk)5Nl. (5.1)

Figure 5.20(a) shows in black the Elapsed Time (ET) for the implementation of AD

on Nk = 8× 105 samples, for different numbers of thresholds Nl, while in red it shows

the expected ET from Eq. 5.1. This can be seen as a common application, with the

vibration signal consisting of a measurement of 20 seconds sampled at 40 kHz.

Figure 5.20(b) shows the ratio between the ET of the SC and the ET of the AD, for

a signal of different lengths and for different threshold levels. In red it shows the ratio

equal to one as a reference. The ratio is calculated in such a way that the 2D matrix

computed by the AD and SC have respectively the same number of threshold levels
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Figure 5.20: (a) Elapsed time of AD on a signal of Nk = 8 × 105. (b) Ratio of the
elapsed time between SC and AD.
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and the same number of frequency (spectral) bands:

Nl =
Fs/2

∆f
(5.2)

where ∆f of the FastSC for a window length of Nw is ∆f = Fs/Nw. Figure 5.20(b)

shows that the AD is significantly faster than SC for increasing number of thresholds,

while the relative performances do not depend as heavily on the length of the analysed

signals. Another aspect qualifying AD as a computationally superior method compared

to SC is that the SES calculated for a threshold level in AD computes all the cyclic

orders from 0 to Fs/
(
2f̄shaft(t)

)
, where ·̄ denotes the mean value. In contrast the

SC computes up to a maximum pre-selected cyclic order value, because the compu-

tational cost increases quadratically with it. Thus the computation time of SC varies

significantly with the mean operating speed of the machine, while that of AD is fixed.

5.5 Missed detection

This section shows two cases of missed detection of defective bearings from the analysis

of vibration data from the experimental setups described in Section 5.2. Following the

analysis of Section 5.3 the defects which can not be detected by vibration analysis are

respectively:

1. the outer race defect in the bearing D supporting the planet carrier of the wind

turbine gearbox, as shown in Fig.5.3

2. the outer race defect in the bearing B on the shaft L1 of the accessory gearbox of

the civil aircraft engine, as shown in Fig.5.4.

For both cases results are shown from the application of the proposed AD and for

comparison from the fast-SC. In addition, analysis of the same data sets can be found

in [Sheng, 2012, Peeters et al., 2016] and [Antoni et al., 2017a, Gryllias et al., 2017],

respectively for the data sets from NREL and Safran, confirming that such faults are

not detectable by existing vibration analysis methods.

Figure 5.21 shows the AD and spectral coherence2, respectively top and bottom, for

the NREL data set zoomed into the cyclic orders around the expected BPOOD = 0.29

of Table 5.2. The data analysed here is from the sensor AN7 and the total length is

60s. The AD is calculated for Nl = 26 levels and the SC for Nw = 8. Similar results are

obtained from the analysis of data from the other sensors. It can be seen that in the

2The spectral coherence is a normalised version of the spectral correlation [Antoni et al., 2017b].
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Figure 5.21: Missed detection in the wind turbine gearbox. (a) SESxAD with Nl = 26

levels, zoom around BPOOD=0.29. (b) spectral coherence with Nw = 28.
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Figure 5.22: Missed detection in the Aircraft engine. (a) SESxAD with Nl = 26 levels,
zoom around BPOOB=4.00. (b) spectral coherence with Nw = 28.
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region highlighted by the red vertical dotted lines around BPOOD, there is no evidence

of the defect from either of the two methods. On the other hand, Figure 5.21 shows

a vertical line at around 0.25 orders, which corresponds to the rotational frequency

of the pinion in the intermediate gear set of Figure 5.3. Both the methods show

that this line is present simultaneously at high spectral amplitude/low frequency and

low spectral amplitude/high frequency. This situation is similar to the analysis of

2×BPOOA = 7 orders for the NREL data set in Section 5.3, suggesting that the cyclic

content highlighted by the red circles is due to the presence of impacts with a small

amplitude in the vibration signal. However the relative deviation from the expected

BPOOD is too large therefore is not attributed to the defective bearing.

Finally, Fig. 5.22 shows the AD and spectral coherence for the data from Safran,

zoomed into the cyclic orders around the expected BPOOB = 4.00 of Table 5.2. The

data analysed here is from sensors Acc1 for a total length of 20 seconds with Ti,f

as in Table 5.2 and the AD is calculated for Nl = 26 levels while the SC for Nw =

8. Vertical red dotted lines highlight the region of interest, showing no evidence of

the defective bearing. A possible motivation for these missed detection, even by the

combined analysis with AD and SC, is the presence of structural damping between the

location of the defects and the position of the accelerometers.

5.6 Summary

This chapter introduced a novel signal processing method for the detection of defec-

tive bearings from vibration measurements: Amplitude-cyclic frequency Decomposition

(AD). The proposed method thresholds the amplitude spectrum of the signal on a set

of Nl values and for each threshold level shows the corresponding cyclic content, thus

decomposing the vibration signal into a two dimensional map. The algorithm is de-

scribed in detail in Section 5.3.

AD uses the PE algorithm of Chapter 4 to threshold the signal, from which it follows

that it is applicable to both vibration signals from machines operating at constant and

variable speed. In addition, AD needs very little supervision by an expert user, Nl

being the only parameter to be selected. In this regard, it was noticed that AD is not

particularly sensitive to the number of levels, for instance the same Nl = 50 was used

in all the analysed data sets.

The performance of AD has been tested on data from three different experimental

setups, as described in Section 5.2 and compared to that of the Spectral Correlation

(SC) algorithm, which among the state of the art techniques is the most similar one,
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decomposing the vibration signal into a two dimensional map. The results are shown

in Fig. 5.11, Fig. 5.13, Fig. 5.15, Fig. 5.16 from which it is possible to conclude that

the detection capability of AD is comparable to that of SC.

Finally, regarding the computational complexity, AD is a fast algorithm and being

based on PE it only performs 5 calls of the FFT for each threshold level. As shown in

Fig. 5.20, it is up to 10 times faster than the fast-SC algorithm for the range studied.

For these reasons it can be concluded that the proposed method shows all the key

characteristics detailed in Section 1.4 and is believed to be one of the best perform-

ing techniques currently available for the detection of bearing damage from vibration

signals.
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Chapter 6

Conclusions

This thesis introduces novel signal processing methods to monitor the condition of ro-

tating machines from their vibration signature, specifically to perform diagnostics of

rolling element bearings. The aim throughout the work was to provide practical and

applicable tools to the industry and the focus was the development of methods both

applicable without supervision by an expert user and capable of monitoring machines

operating in non-stationary conditions. The strategy adopted during the research work

was twofold, encompassing both analog and digital signal processing methods. In a first

stage the work focused on the development of a circuit capable of enhancing the signal

to noise ratio of the analog signal from an accelerometer, while in a second stage the

strategy shifted towards the introduction of digital signal processing algorithms for fea-

ture extraction. The following discusses separately for both of the strategies the main

results and future research perspectives.

The analog circuit described in Chapter 2 uses the phenomenon of Stochastic Reso-

nance (SR) to enhance the cyclic content of vibration signals. SR is already a well

established method in the field of vibration based condition monitoring and in its clas-

sical implementation the vibration data, after analog to digital conversion, is used as

the input of a 1D SR system. The SR system then resonates at the cyclic frequency

of the vibrations generated by the defective bearing and its output is a signal show-

ing enhanced diagnostic information. With respect to this conventional procedure, the

thesis contributes two novelties. Firstly, it uses a 2D SR system instead of the 1D

system, the advantage being that the 2D system, due to the presence of the coupling

constant between the two modes allows a finer tuning of the resonance, and shows

superior enhancement capabilities [Barbini et al., 2015]. Secondly, it implements SR in

an electrical circuit capable of reproducing the software based system, allowing its use
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directly on analog signals in series with an accelerometer.

Despite the promising results obtained during the research on SR, it was observed that

its application on real world vibration signals needs a time consuming tuning of several

parameters and requires pre-processing methods, otherwise SR applied on the raw sig-

nal resonates with the vibrations coming from components different from the defective

bearing. These drawbacks jeopardise the advantage resulting from the easy implemen-

tation achieved with the analog circuit, and force the user to prefer the use of SR in

its digital version where pre-processing methods can be implemented. However in the

domain of digital signal processing, the state of the art algorithms for cyclic spectral

analysis perform better than SR, being specifically developed for such a purpose. For

these reasons the research on the SR circuit was discontinued and the focus was shifted

towards the development of digital signal processing methods other than SR.

Further investigations on SR in the field of condition monitoring must take into account

the drawbacks identified in this thesis and discard both the software and circuit based

systems. The author believes that the only possible direction for research is on the

implementation of SR in a digital processing unit, in order to enhance the signal before

its analysis with dedicated software.

Regarding the research on digital signal processing methods, the thesis both investi-

gates the extension of conventional techniques in Chapter 3 and introduces two novel

approaches in Chapter 4 and Chapter 5.

The extension of the conventional techniques addresses an actual need of the industry

for condition monitoring methods applicable in real world scenarios, when machines

operate under varying loads and speeds. This topic has attracted the attention of re-

searchers during recent years, following the mathematical modelling of the vibration

signature of a defective machine as a cyclo-non-stationary signal. In this respect, the

contribution of this thesis is the observation that two techniques commonly used in the

cyclo-stationary case for the suppression of masking vibrations, cepstral prewhiten-

ing [Barbini et al., 2018] and spectral kurtosis, can be directly applied to cyclo-non-

stationary signals. This demonstrates to the condition monitoring community that

there is no need to develop sophisticated and computationally expensive techniques to

address the non-stationarity.

The main contribution of the thesis is the introduction of two novel methods to enhance

diagnostics of defective bearings. The underlying idea of the proposed approaches is

both simple and distinctive with respect to the current state of the art: separation

of the vibrations from different components of the machine by exploiting their diverse

amplitude rather than their frequency. This is achieved by suppressing all the values

lower than a chosen threshold in the amplitude spectrum, independent of their position
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in the frequency spectrum. Two remarkable aspects can be recognised: firstly this ap-

proach works on the full band of the spectrum, without the need for selecting a spectral

band of interest. On the contrary this is the main problem encountered by the classical

methods. Secondly it works for machines operating in non-stationary conditions. As a

matter of fact in the non-stationary case the peaks in the amplitude spectrum will be

smeared but are still separated in their amplitude levels.

Regarding the first novel method, the algorithm used to threshold the vibration sig-

nals is called Phase Editing (PE) and its mathematical description and application to

real world signals is discussed in [Barbini et al., 2017c]. The proposed technique is

firstly implemented in an automated way on a set of cyclo-stationary signals, with the

selection of the best threshold level achieved by the maximisation of cyclic features.

It is then extended to the case of cyclo-non-stationary signals [Barbini et al., 2017a].

When compared with state of the art techniques PE showed a 10% improvement in

the performance of detection. Combined with its simple implementation, based on the

fast Fourier Transform, and intuitive interpretation, this makes it a method suitable

for industrial applications.

The final method introduced by this thesis is the Amplitude - cyclic frequency Decom-

position (AD) which uses PE to produce a two dimensional map of the vibration signal,

showing its cyclic content calculated on a set of threshold levels. The method is fully au-

tomated with the threshold linearly chosen between the maximum and minimum value

of the log amplitude spectrum and the user has only to pre-select how many levels to

compute. AD inherits all the benefits of PE and is effective both on cyclo-stationary

and cyclo-non-stationary signals, works on the full spectral band of vibration signals

and is computationally inexpensive. AD is mathematically introduced and tested on a

set of experimental data sets in [Barbini et al., 2017b]. Its performance has also been

thoroughly compared to that of the fast Spectral Correlation (SC) algorithm, showing

very similar detection capabilities and smaller computation times, thus proving that

the results obtained here are remarkable and unmatched by the current state of the

art.

Regarding future research on PE and AD it is of interest to investigate the use of

thresholds for simultaneously suppressing spectral amplitudes and specific spectral

bands. Here this concept was introduced in Chapter 4 where in [Barbini et al., 2017a]

a threshold level dependent on the frequency was also used to implement a low pass

filter. However this was manually chosen by the author while it is preferable to study

automated algorithms to optimise the shape of the threshold. Furthermore, in the pro-

posed algorithms the instantaneous speed of the machine in the cyclo-non-stationary

case was taken as input data, but in some industrial contexts this is not available and
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it might be difficult to place an encoder on the machine. For this reason it is suggested

to use one of the methods for instantaneous speed estimation from the vibration signals

before the implementation of PE or AD, in such a way as to offer a more ductile tool to

the industry. In a broader perspective, it is also of interest to use the proposed meth-

ods on condition monitoring applications other than diagnostics of defective bearings,

for example of internal combustion engines or in modal analysis, and to test them on

currents or pressure signals.

Finally, the two cases of missed detection described at the end of Chapter 5 suggest

possible directions for increasing the reliability of a condition monitoring system. From

the analysis conducted here, it appeared that the vibrations occurring on the location

of the defect do not reach the transducer, presumably due to structural and mate-

rial damping along the transfer path. Thus physical phenomena other than vibrations

should be simultaneously measured, for instance acoustic emissions and temperature,

maximising the probability of gathering diagnostics information and further allowing

sensor fusion. In addition this limitation suggests a change to the view of the condition

monitoring system. Currently this is seen as a tool to be applied to an existing machine,

whereas its presence has to be planned at the design stage, placing transducers inside

the machine close to components subjected to failures. From the broader perspective

of condition based maintenance, this will also allow the collection of large data sets for

evaluation of prognostics methods, which is currently the fundamental problem for the

researchers in the field. Such a change of view will therefore dramatically extend the

performance of the maintenance system and will open new research frontiers for the

community.
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