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 Abstract 

Small and medium sized enterprises (SMEs) provide the backbone to the world’s 

economy nowadays. These enterprises represent more than 90% of all the enterprises 

around the globe and are a major source for providing employment and 

entrepreneurship. They contribute as much value to the gross world product (GWP) as 

larger enterprises. However, when it comes to productivity growth, SMEs are falling 

behind. 

 

The focus of this thesis is on machine-manufacturing SMEs especially those which 

design and develop packaging machinery. Their lack of productivity growth is partly 

due to the fact that these enterprises have relied upon natural evolution of their 

existing machine designs and often do not have the resources to fully analyse them. 

For this reason, their design knowledge regarding products is often limited. The 

design process models, which are normally successful in larger manufacturing firms, 

are often not utilised in SMEs due their inherent complexity and the longer 

development times required. SMEs need simpler techniques to develop and refine 

their products that can be easily understood and implemented in these firms.  

 

This thesis presents a novel and easy to use technique which is based upon one-off 

instances (variants) of established working designs. It investigates how the design 

space around these instances can be represented and explored. The exploration can 

help in increasing design knowledge regarding current products and this can further 

lead to: identifying similar and dissimilar designs, locating better design solutions, 

determining design sensitivity and providing a basis for refining existing designs. This 

process strongly depends upon forming a “representation” of the design space and 

clearly the greater the level of detail of the representation, the better investigation that 

can be performed. The approach has been successfully demonstrated with a number of 

case studies. 
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Terminology 

The following table introduces description of some of the terms that have been used in 

this thesis. 

Term Description 

Design 

Knowledge 

Design knowledge encompasses the performance requirements, 

physical constraints, economic drivers, technological issues and 

any decision processes that have influence over the current 

product design (Hicks et al. 2001b) 

Design Space 

(Solution Space) 

Design space is the space in which all possible solutions 

(feasible or unfeasible) lie. It may or may not be bounded by 

limits imposed on design parameters. 

Design Variants 

(Instances) 

Variants  of a design can be formed by varying certain aspects 

of a design such as the sizes and arrangements of parts and 

assemblies within the limits set by previously designed product 

structures (Pahl et al. 2007). 

Topology It is the description of how spatial features are connected to each 

other in any design.  

Morphing 

(Parametric 

morphing) 

Morphing can be defined as a process of generating in-between 

design solutions among the given design variants and is 

accomplished by interpolating between the key parameters of 

these variants. The given variants possess same topology.  

Interpolated 

Space 

Interpolated space is the solution space generated as a result of 

parametric morphing. 

Design space 

exploration 

It is the activity of searching design space in order to identify 

(discover) better solutions. 

Rationalisation Rationalisation of a design can be defined as the organisation of 

its variants according to their performance capabilities so that 

redundant variants are eliminated. 

Sensitivity The ability of a system to accommodate small changes in setup 

parameters or dimensional tolerances without changing its 

output or performance values. 
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SMEs SMEs stands for small and medium sized enterprises employing 

less than 250 people and annual turnover less than 50 million 

Euros (European Commission 2005). 

Visualisation Visualisation (often referred as Scientific visualisation) seeks to 

provide insightful representations for difficult and complex 

problems and helps in solving problems (Jones 1994). 
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Chapter 1: Introduction 

 

Small and medium enterprises (SMEs) play a vital role towards the world’s economy 

by contributing to entrepreneurship, employment and innovation (Morrison et al. 

2003). This claim can be backed up by the fact that most of the businesses around the 

globe are small to medium sized enterprises which employ less than 250 people. 

There are around 23 million SMEs in the European Union, which provide 65 million 

jobs and represent 99% of all enterprises (European Commission 2005). In the US, 

more than 99% businesses are small (Small Business Administration 2007). In 

Australia, these enterprises add to around 96% of non-agricultural industries 

(Australian Bureau of Statistics 1999). In the UK itself, at the start of 2006 there were 

an estimated 4.5 million business enterprises, 99.9% of which were small to medium 

sized (DBER Reform 2007). SMEs account for 58.9% of all UK employment and 

51.9% of UK’s estimated business turnover of £2,600 billion. Thus these enterprises 

make up a significant portion of the world’s economy.  

 

SMEs have certain strengths when compared to larger firms (Ghobadian & Gallear 

1997). These enterprises operate in a very flexible and dynamic environment where 

changes can be introduced within very short timescales. The results of these changes 

are also more visible within a short span of time in these companies. They are 

comparatively less bureaucratic and have simpler and effective communication 

channels. There is people oriented culture of learning and change.  Management is 

more likely to be directly involved with the customers and thus provide rapid 

execution and implementation of decisions (Antony et al. 2007). Overall these 

enterprises are more innovative and responsive to changing market needs. 

 

The focus of this thesis is the manufacturing sector among SMEs. In the UK, the 

manufacturing sector among these SMEs represents 325,875 enterprises (DBER 

Reform 2007). Even in the USA, there are around 400,000 small manufacturing firms 

that employ less than 500 employees (US Department of Commerce 1998). These 

enterprises contribute as much value as larger enterprises, however, they do not 

experience same productivity gains (Stauffer & Kirby 2003). Some researchers 

(Maupin & Stauffer 2000) believe that their productivity growth is almost half when 
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compared to larger manufacturers. This is mainly due to a number of challenges that 

these enterprises face as described in the following section.  
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1.1 Manufacturing SMEs: current challenges and issues 

The major challenge that SMEs face in relation to their lower productivity growth is 

the lack of resources available to these firms (Stauffer & Kirby 2003). There is often a 

lack in terms of cash flow which means that there is limited budget for infrastructure 

(Information Technology, for example), staff training, and incentive or reward 

programs (if any) for employees. Due to inadequately trained workforce, there are 

cases when a single person fulfils multiple job duties (Maupin & Stauffer 2000). In 

larger manufacturers, on the other hand, these jobs would be handled by various 

trained engineers thus increasing the overall productivity and quality of products. 

 

As far as product development is concerned, many of the SMEs have relied upon the 

natural evolution of their existing product designs (Hicks et al. 2001a). The products 

are often developed based upon the empirical knowledge gained through years of 

experience. The product development processes in many cases are ill defined and may 

not explicitly exist at all (Stauffer & Kirby 2003). Traditional trial and error methods 

are still employed which involve continual refinement and development of particular 

aspects of an existing machine design to achieve a revised set of performance 

requirements.  Changes to part of original design in isolation can lead to problems 

with other machine assemblies, which then may be solved in isolation and this process 

continues. 

 

These enterprises are also opportunistic in nature which means that they are more 

individual customer focused than market focused. There is often a common practice 

for the introduction of new products for every new customer requirement with little 

regard for compatibility with other products currently in production (Berti et al. 

2001). Also little attention is given to product development or long-term planning to 

bring new products to the market. This often leads to a collection of essentially one-

off designs (or a large portfolio of products (Maupin & Stauffer 2000)), which then 

have to be supported during their operational lives. 

 

Finally, due to the short timescales available to the design teams of these enterprises, 

the design activities and associated design changes are not properly documented, 

which means that vital information regarding product’s life cycle is not available for 
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future refinements (Hicks et al. 2001b). The situation is exacerbated by the lack of 

human resources and expertise. Some of these companies also rely on key persons’ 

knowledge and expertise for supporting design activities. This can result in serious 

problems when these individuals are no longer part of the design team and the design 

knowledge is unavailable. 

1.1.1 Packaging machinery manufacturers 

One example, where the above stated issues are prevalent, comes from the packaging 

machinery manufacturing industry in the UK. It is mainly dominated by small and 

medium enterprises with over 350 manufacturers and its market has been valued at 

around £429.4 million pounds (Market and Business Development 2005). Packaging 

is a big business in the UK with a turnover of 9.6 billion pounds (The Packaging 

Federation 2006). It represents approximately 0.7% of total UK GDP (gross domestic 

product) and 5.5% of the manufacturing sector GDP. 

 

Packaging machinery manufacturing is also a highly competitive global industry with 

machines being constantly redesigned to accommodate ever changing packing styles. 

There is little time to make these changes (Buske and Liu 2005) and once re-

commissioned there is no room for error. Many of the machines produced are the 

result of incremental improvements which are mainly driven by empirical 

experimentation (McPherson et al. 2004). Thus the fundamental understanding about 

how these work is largely absent. 

  

There are often cases of particular design variants which are specifically created to 

satisfy individual customer needs. This can result in a large portfolio of products 

without any real rationalisation. The variants are normally supported throughout their 

operational lives which puts extra burden on the internal costs that these companies 

incur. Figure1-1 shows such an example of seven design variants of an end load 

cartoning machine that are currently being supported by a packaging machinery 

manufacturer. The main purpose of these variants is to erect packaging cartons from a 

pre-folded, flattened state and the machines essentially differ in the production rates, 

size of cartons that can be handled and degree of automation (further discussed in 

chapter 5).  
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Figure 1-1 Design variants of an end-load cartoning machine    source: www.bradmanlake.com 

 

Changing government legislation and environmental issues are also forcing these 

manufacturers to reduce waste and use recycled material for packaging (Mullineux et 

al. 2007). There is a usual practice to redesign current machine designs in order to 

accommodate products made up of thinner/lighter grade of materials. Redesigning 

existing machines can be a difficult task due to their inherently complex designs. This 

process is also frustrated by the difficult and ill-defined properties of the products 

which are handled with these machines. This may require significant levels of 

resources in order to re-establish the necessary elements of design knowledge 

regarding a particular machine and process (Halon et al.1998). There is also a lack of 

supportive design/redesign methods available to these companies that can provide 

rapid investigation, modelling and analysis of existing machines and new or altered 

machine configurations (Hicks et al. 2001b). 
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1.2 Research aims and objectives 

Machinery producing SMEs have to constantly redesign their products due to several 

factors including changes in customer requirements and government legislation. 

Redesigning existing products can be a difficult task owing to the complex machine 

designs and lack of supportive tools. These enterprises not only struggle with the 

limited resources but also lack in-depth knowledge regarding their products. This 

thesis presents a novel technique that can help SMEs to increase their fundamental 

knowledge about their products and helps to provide a sound basis for redesign 

activities. The technique is specifically tailored to meet the needs of SMEs. The main 

idea underlying this research work is that the existence of examples of workable 

designs (variants) can be used to perform a simplified investigation of the design 

space (formed by base designs) involved. Such an investigation, which is based upon 

design space exploration, can aid a designer in better understanding the existing 

designs and further help in locating better design solutions (Singh et al. 2007a). 

1.2.1 Aim of the research 

The overall aim of this thesis is to propose and demonstrate a novel and easy to use 

technique which can help SMEs to investigate their designs and the related design 

space with the intention of increasing their current design knowledge. 

1.2.2 Objectives 

In order to achieve the above stated aim the following key objectives have been 

identified and are discussed in this thesis. 

1. To investigate current product development practices of SMEs with the aim of 

capturing factors that are hindering their development processes and to identify 

their current needs. 

2. To investigate and critically appraise previous research work that has been 

undertaken to improve product development in SMEs. 

3. To investigate different tools and techniques which are available to analyse 

machinery design in general, and their relevance to support product development 

activities in SMEs. 

4. To investigate the suitability of design space exploration and various visualisation 

techniques for assisting product development in SMEs. 
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5. To propose an easy to use approach that can help SMEs to increase their current 

design knowledge and provide a basis for improving/refining their product 

designs. 

6. To investigate and demonstrate the applicability of the proposed approach to meet 

current needs of SMEs through case study examples. 
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1.3 Overview of the thesis 

The structure of this thesis is discussed below and a graphical overview of the 

chapters is depicted in figure 1-2. 

                    

Introduction

Product development: 

current state and issues in 

SMEs

Tools and techniques to 

model and investigate 

machinery

Multi-instance modelling 

approach

Case study 3 – Computer 

based models are available

Multi-instance modelling 

approach revistied

Case study 1 – Isolated 

machine instances
Case study 2 – Experimental 

investigation is required

Chapter 1

Chapter 2

Chapter 4

Chapter 3

Chapter 5 Chapter 6 Chapter 7

Chapter 8

Conclusions and Future 

workChapter 10

Chapter 9

Case study 4 -Investigation 

of forming shoulders using 

multi-instance modelling 

approach

 

Figure 1-2 Structure of the thesis 
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The following gives an overview of each chapter in the thesis: 

 

2. Product development: current state and issues in SMEs 

This chapter initially describes the need for following a systematic product 

development approach to realise a successful product. The current design practices of 

SMEs are then highlighted. Various factors that are hindering effective product 

development in these enterprises and their current needs are identified. The chapter 

then explores several techniques and methods that can be employed to improve 

product development in general. The suitability of these techniques in the context of 

SMEs is then examined. [Objectives 1 & 2] 

 

3. Tools and techniques to model and investigate machinery 

This chapter discusses various tools and techniques that are useful to model and 

investigate machinery. The suitability of these tools for SMEs is also examined. 

Finally a survey of design visualisation techniques is presented to highlight the 

application of effective visualisation in aiding a designer’s decision making 

capabilities. The chapter also comments on the implications of these techniques for 

SMEs and what is ideally required if such a technique has to be implemented in an 

SME. [Objective 3 & 4] 

 

4. Multi-instance modelling approach 

This chapter introduces a multi-instance modelling approach. A parametric morphing 

technique is initially introduced to generate interpolant designs between available 

instances of a design. A complementary visualisation technique is also proposed here, 

which is used to represent the design space constituting the generated interpolants. 

This technique represents the design space in the form of one or more surfaces. Both 

the morphing and visualisation techniques are then combined in a multi-instance 

modelling approach. This approach helps in exploring the design space existing 

around various variants of a design and can further assist in identifying better 

solutions. Three different situations are also identified in this chapter to which the 

proposed approach can be applied. These situations are: isolated machine instances, 

when experimental investigation is possible and computer based models are available. 

These are dealt with in the following case study chapters. [Objective 5] 
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5. Case study 1 – Isolated machine instances  

This case study describes a situation when isolated machine instances are present. 

However the design knowledge regarding these instances is not fully available to a 

designer. An investigation based upon the proposed approach is applied here that 

helps in identifying the redundant variants. [Objective 6] 

 

6. Case study 2 – Experimental investigation is possible 

This case study highlights the use of proposed approach in a situation when machine 

instances are present and experimental work can be undertaken to establish their 

performance characteristics. A single machine system is investigated here for this 

purpose. Initially a simplified investigation (using a limited set of data) is made which 

shows how the system behaves. A “model” of the system is then generated and this 

provides the basis for a greater level of investigation. In particular, it is used to 

explore the sensitivity of the machine to changes in its set-up parameters. The 

proposed approach is applied to this situation by considering known working set-up 

configurations of the machine as different instances of a successful design. [Objective 

6] 

 

7. Case study 3 – Computer based models are present 

This chapter presents the application of the proposed approach when computer based 

models are available to the designer. These models can predict the performance 

characteristics of a machine/mechanism system. The applicability of the proposed 

approach in this case is illustrated by the instances taken from a catalogue of standard 

mechanisms to find a close match to a given requirement of path matching. The 

proposed approach helps in identifying similar and dissimilar designs, finding better 

design solutions and determining design sensitivity. [Objective 6] 

 

8. Multi-instance modelling approach revisited 

Based upon the findings from the case study examples, this chapter provides an 

overview of the proposed approach. The application of the approach, in the three 

scenarios identified in chapter 4, is also discussed here. [Objective 5] 
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9. Case study 4 – Investigation of forming shoulders using multi-instance 

modelling approach 

This chapter presents an application of the proposed approach where all three 

scenarios identified (chapter 4) are present. A vertical form fill and seal (VFFS) 

machine is investigated for its performance capabilities. The proposed approach helps 

in understanding how the thickness of a certain material affects the performance of a 

particular forming shoulder which is a crucial component of the VFFS machine. 

[Objective 6] 

 

10. Conclusion and future work 

This chapter draws conclusions regarding the current work and discusses them with 

respect to the aim and objectives. The limitations of the proposed method are 

highlighted and potential areas for further research are identified. 
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Chapter 2: Product development: current state and 

issues in SMEs 

 

The main area of concern of this research work is the product development in SMEs 

(Small and Medium Enterprises) especially machine manufacturing firms. This 

chapter presents background literature that is relevant to the current research work. 

The chapter begins with a brief description about the product development process as 

engineering is essentially concerned with developing and supporting a product that 

satisfies some of the human needs. The views of several authors about this 

development process are presented here. The chapter then identifies the current design 

practices of SMEs. Several factors hindering a successful product development are 

identified. A survey of the techniques proposed to improve product development in 

SMEs is done. The chapter concludes by discussing the suitability of available 

techniques to support product development in SMEs and what further needs to be 

done. 
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2.1 Product development  

Product development in engineering design is the process of converting an idea to an 

actual product (figure 2-1). This process normally starts with a list of requirements 

that a customer wants to see in a final product. The designer follows a number of 

procedures to conceive different ideas that are capable of fulfilling the requirements. 

These ideas are then evaluated against initial requirements and a best idea is chosen. 

This idea (often termed as a ‘concept’) is then given a definitive layout. A production 

plan is generated and full scale production is finally commenced. This design process 

is iterative in nature and design knowledge is generated as a designer proceeds 

through a number of iterations. The solution thus produced at the end has evolved 

through various stages of the design process and also strongly depends upon the 

designer’s own knowledge, available resources and experience of the field. 

Idea

Requirements
Concepts generation Embodiment/Layout Production 

Planning

Final Product

Product development process

 

 

Figure 2-1 Product development process 

 

Normally a systematic approach or a model (sequential or iterative) is followed to 

realise a product. This systematic approach is often termed a design process model. 

There are different design process models proposed in the literature such as those of 

French (1971), Pahl et al. (2007), Pugh (1991) and Ullman (2003). The aim of these 

design process models is to guide a designer through a number of procedures so that a 

successful product can be realised, quickly and directly. The number of activities in 

these models varies depending upon the methodology used as every author interprets 
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the design process differently. However, often there is a degree of commonality that 

can be seen across these models. Generally there are four stages present in all of the 

models proposed. 

 

Clarification of the task or specification 

 

This is the first activity of any design process model which normally aims at 

identifying customer requirements about the final product and constraints on the 

design process such as technology, material availability and economical 

considerations (Pahl et al. 2007). A requirement list or, in other words, a  product 

design specification (Ullman 2003) is usually formed at the end of this stage which 

serves the basis for the following activities. The design solutions, formed later, are 

evaluated against this requirement list. Some of the models such as Ullman (2003) 

and Pugh (1991) also explicitly advocate the need for conducting market analysis and 

data collection before the development of a product can be initialised which is 

essential to see if the product launch can be successful, in time and profitable for the 

company in the long run. It also involves assessing the competition that will be faced 

in the future. 

 

Conceptual design 

 

Once the task is clarified, a conceptual design of the product takes place. This activity 

aims at identifying the principle solution and this is achieved by determining 

functions and their structures. The overall function and sub-functions are derived from 

the specification and their solution principles are identified. These solution principles 

can then be combined in accordance to the function structure which results in a 

principal solution (often referred to as a ‘concept’).  A number of concepts may be 

generated here and these are then compared to the original requirement list produced 

earlier on. The concepts that do not conform to this list are dropped. The rest of them 

are then compared according to specific criteria such as technical nature or rough 

economic factors (Pahl et al. 2007). The best concept is then taken to the next stage. 

 

Embodiment design 

 

This stage is concerned with the development of the chosen concept by determining 

its layout and form. A preliminary layout of the concept is initially created. The 



 15 

designer may come up with a number of variants, which may then be compared and 

evaluated against the list of requirements. The most promising layout is selected and 

may further be improved by adding geometry and technology for secondary functions. 

The end result of this stage is a specification of a layout. 

 

Detailed design 

 

The concept is finalised in the last of the four identified stages which is often referred 

to as detailed design.  Here details such as dimensions, surface properties, assembly 

sequences and production processes that are required for production to take place are 

determined. The output of this stage is normally detailed drawings and part lists in the 

form of production documentation. 

 

These four stages of the design process model can be found in most of the sequential 

design process models proposed by various researchers. One of the first authors to 

model the design process as a series of discrete stages was French (1971). His 

proposed model is shown in figure 2-2 (part a). A widely acclaimed design process 

model (across continental Europe) is proposed by Pahl and Beitz (1984) (figure 2-2, 

part b). This model is divided into four stages which are almost in agreement with the 

four stages described earlier. Another design process model, given by Pugh (1991), is 

shown in figure 2-2 (part c). He describes the ‘design core’ as a central activity that 

constitutes a product development process. There are six stages to this process model 

that are market, specification, concept design, detail design, manufacture and sell.  
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Figure 2-2 Various design process models  sources: (a) French (1971),  (b) Pahl & Beitz (1984), and (c) Pugh (1991) respectively 

 
 

 

b c a 
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2.1.1 Benefits of following a systematic product development process 

model 

Some of the benefits of following a systematic design process model, highlighted in the 

literature, are listed below. A systematic design process model: 

1. Helps to organise the design process effectively and efficiently by providing 

procedural tools to the designers. 

2. Helps in improving the product quality by providing a step-by-step approach of 

constant testing and evaluation. 

3. Helps in reducing the time to market by improving the quality and speed of the 

designer’s work. 

4. Helps in reducing the product development cost by using efficient methods and 

optimising the resources. 

5. Helps in generating alternatives and their evaluation against the requirements. 

6. Helps in keeping better records and more accurate knowledge for the reasons of 

the past work. 

7. Provides an effective way to rationalise the design and production process.  

 

Thus a systematic design process model is useful in realising an effective and efficient 

product development. The need for having such a model has been highlighted by various 

researchers throughout the literature. It is also important to understand the nature of the 

design activities carried out in various parts of the industry. These can be different, 

depending upon the type of the design problem involved. The designer may follow some 

stages of a design process model and omit others. For example, while carrying out a 

redesign work on previous design, the designer may not need to generate new concepts. 

He or she can simply adapt to the older concept and do certain changes to the subsystem 

level. However, it is not easy to clearly define the boundaries of different types of design 

activity as there is always some overlap. The following section aims at capturing the 

extent of different design activities carried through out the industry. 
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2.1.2 Types of design activities 

Numerous researchers have tried to categorise different design activities carried out in 

industry according to their interpretation of the design process. The various categories 

proposed by different researchers include original design, adaptive design, and variant 

design (Pahl et al. 2007), static product and dynamic product (Pugh 1991), evolutionary 

design and non-evolutionary design (French 1988),  selection design, configuration 

design, parametric design, original design and redesign (Ullman 2003). Hicks (2001) 

evaluates and categorises some of these definitions by combining them according to 

similarities and removing the duplicates. Various classes of these activities are 

summarised in the table 2-1. He proposes the following three types of primary design 

activities that encompass most design activities. 

 

Original or creative design 

 

This class of activity involves elaborating or developing an original solution principle for 

a process, component, plant, machine or assembly previously not in existence.  

 

Adaptive, non-routine design or redesign 

 

This activity involves adapting a known system or the modification of an existing product 

to a changed task. It often requires original designs of individual assemblies or 

components.  

 

Variant or routine design 

 

In this class of activity, all the design and the performance variables are known a priori. 

The aim is to determine the values for the structural variables. Here function and the 

solution principles of a system remain unchanged. However, the size and arrangement of 

certain aspects of it may change.  

 

Other activities such as dynamic or non-evolutionary design and static or evolutionary 

design are merely a combination of original and adaptive or adaptive and variant design 

respectively (figure 2-3). This classification of a design task also depends on whether the 
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design specification relates to a system, an assembly or even a subassembly. For example 

an overall product can be of adaptive design in nature but some of its individual 

subassemblies may require original design. 

The spread or division of the design activities has been studied by several authors. Prebil 

et al. (1995) argue that the adaptive and variant design activities correspond to 70% of 

the design work that is carried out in industry. Pugh (1991) indicated that 80% of a 

typical design is adaptive design. Pahl and Beitz (1984) suggested this division as 55% 

adaptive design, 25% percent on the original design and the remaining 20% is variant 

design. Tseng and Jiao (1997) note that evolutionary (evolving from existing products) 

product design is frequently adopted in practice instead of designing a product from 

scratch. This enhances the reusability of knowledge. Wang et al. (2005 a & b) argue that 

variant design is a common practice across the industry to relieve the designer from 

iterating similar design processes, hasten product development, reduce cost and finally 

enable manufacturing companies to develop individualised product based upon existing 

mature designs. This is also backed up by the fact that design uncertainty (uncertainty 

related to knowledge of a product design’s final attributes such as materials, geometries 

and manufacturing processes) is largest for entirely original designs and least for variant 

design (Fitch & Cooper 2005).  Thus it is not surprising given that the most of the 

products that are launched in the market are modifications of existing design concepts. 

 

From the above discussion, it can be concluded that adaptive and variant design form the 

major portion of the design work that takes place in industry. The following sections are 

concerned with product development in small and medium enterprises (SMEs). The 

research focus is mainly on manufacturing firms that design and produce machinery. The 

aim here is to identify the extent to which systematic product development practices are 

being adopted in these firms, the types of design activities that are mainly carried out and 

factors that are hindering their success. 
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Table 2- 1 Classification and definition of design activities Source: Hicks (2001) 

Author/source Type of 
Design 
Activity 

Definition 
Pahl & 
Beitz 

Ullman Pugh French Gero 
BS 
7000 

VDI 
2221 

Ulrich & 
Eppinger 

Original 
Elaborating an original solution 
principle for a system with the 
same, a similar or new task 

● ●     ●  

Adaptive 
Adapting a known system to a 

changed task ●      ● ● 

Creative 
An original design solution to 
an existing or new problem 

 ●   ●    

Variant / 
customized 

Varying the size and/or 
arrangement of certain aspects 

of a chosen system 
●       ● 

Fixed 
Principle 

Solution principle and design 
are the same dimensions of 
individual parts are changed 

●        

Redesign/ 
Development 

The modification of an existing 
product for a new set of 

requirements 
 ●   ●  ●  

Routine 

Design of the artefact can be 
represented by a 

system/network of rules and 
equations 

 ●       

Non-routine 

Not all of the design and 

structure variables, 
performance and behaviour 
variables are known at the 

outset 

    ●    

Mature 

Complete knowledge about the 
design problem exists and 

design focuses on aesthetics 
and optimisation 

 ●       

Static 
Product 

Design changes are 

incremental or non-existent   ●   ●   

Dynamic 
Product 

Design changes are innovative 
and frequent   ●   ●   

Evolutionary 

Continuous product 

improvement to meet slowly 
changing needs or evolving 
science and technology. 

  ● ●  ●   

Non-
evolutionary 

Deliberately innovative design 
using new technology    ●     

Catalogue 
Selecting and assembling of 

catalogue items      ●   
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Figure 2-3 Primary design activities and their combinatorial 

variants Source: Hicks (2001) 
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2.2 Product development in SMEs 

Product development in SMEs has been an area of concern for a number of researchers 

(Berti et al. 2001; Cederfeldt & Elegh 2005; Hicks et al. 2001b; Maupin & Stauffer 2000; 

Stauffer & Kirby 2003). These researchers have highlighted a number of issues that need 

to be tackled in order to increase the productivity and profits of these firms. The issues 

include: lack of resources available to SMEs; their lack of design knowledge regarding 

products; ill defined product development processes and their large portfolio of products. 

These are further discussed in the following sections. 

 

Stauffer and Kirby (2003) conducted a survey on smaller US manufacturers. The 

objective of the study was to gain a better understanding of the product-development 

needs of smaller manufacturers. There were 61 smaller manufacturing companies 

surveyed in 10 states across the US. These companies were from mechanical and electro-

mechanical domains and employed from 20 to 200 employees. The important finding of 

their research work is that in order to increase the competitiveness of these manufacturers 

there is a need to improve project management and product refinement along with 

reducing the cost of the product and processing. Stauffer and Kirby also highlighted the 

fact that lack of resources and often ill defined product development processes are 

hindering the productivity of these firms. 

 

Cederfeldt and Elgh (2005) conducted a study on the current state, potential need and 

requirements of design automation at eleven SMEs. They argue that one way to gain 

competitive advantages is to adopt an approach where products are based upon a prepared 

design. This means that if some of the work related to these products and design tasks is 

automated, the design process can become more effective and efficient. Their study 

revealed that there is currently a varying state of design automation in SMEs. This ranges 

from the systems where design knowledge is fully integrated and orders are automatically 

processed with generation of machine code for manufacture and BOM-lists for 

assemblies, to the use of spreadsheets for specific design tasks. The study also expressed 

the need for a more efficient and effective design processes. 
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Maupin and Stauffer (2000) highlight the problem of product proliferation in SMEs. They 

argue that these manufacturers are often less profitable when compared to large 

manufacturers. There is a common practice of instant introduction of new products, 

which is done with a little regard for compatibility with other products in production. The 

result is a large portfolio of products. The other challenges to SMEs highlighted by 

Maupin and Stauffer include lack of resources, lack of an adequately trained workforce 

and ill defined product development processes. They also indicate the need for simple 

and easy product development processes. The complex design processes that are 

normally successful in larger manufacturing firms are not utilised in smaller firms. One 

reason for this is that their technical team want to see immediate reduction in product cost 

or time required, which may only be long term goals with available design process 

models. 

 

The  problem of product proliferation in SMEs is also illustrated by Berti et al. (2001). 

According to them, these enterprises are more customer focused (concentrating on getting 

product to the customer) than market focused. There is little attention given to product 

development or long-term planning to bring new products to the market. This results in a 

large product portfolio without any real rationalisation. The improvement of product 

development practice can be reached only with less complex modification of processes 

suitable to small manufacturers who are usually short of financial resources and lack a 

broad range of technical skills. Yan et al.(2007) expressed their concern on growing 

complexity within product development process due to ever changing needs of customer 

and the high pace of change of current product markets. They suggest that the problems 

for SMEs are amplified due to their common practice of instant introduction of products.  

 

Schofield and Kelly (1997) highlight the lack of a formalised database and product 

coding/classification system in SMEs that results in a tendency for designers to create 

new designs instead of utilising existing ones. This means increased cost of manufacture 

and inventory. They argue that product rationalisation based upon effective 



 24 

coding/classification techniques, on the other hand, can reduce lead times, reduce 

manufacturing costs and facilitate a more effective spares operation. 

 

O’Donnell et al. (1996) describe the lack of company-wide product structuring models in 

many small manufacturing enterprises. They also discuss the issues of unnecessary 

number of variants in these firms. The variants, which are determined during the initial 

design phase, can increase dramatically and in a poorly controlled manner due to efforts 

to satisfy every potential customer and the increasing global market requiring country 

specific products. They highlight the need for a corporate product structure model that 

can provide help to manage variants, promote design reuse and support the tasks of 

configuration design and management. 

 

Hicks et al. (2001b) state that majority of machinery manufacturing SMEs have relied 

upon natural evolution of their existing machine designs to meet the performance 

requirements demanded by the customers. This natural evolution involves continual 

refinement and development of particular aspects of existing machine design. However, 

the problem with this traditional approach is that revisions to the designs are often carried 

out within shortened development times, with a little consideration being given to the 

effect of the changes on other aspects of the machine. It often leads to problems with 

other machine parts or assemblies, which again may be solved in isolation. Lack of 

documentation is another impeding factor here. Due to shortened time scales the 

important design activities and associated changes are not necessarily documented in 

these firms. Thus the company becomes reliant on key persons’ knowledge regarding the 

history of a particular machine development. This design knowledge is lost when these 

individuals leave the enterprise and can result in serious problems. 

2.2.1 Important findings from the literature 

The following points summarises the factors mentioned above, which are hindering 

effective product development in SMEs: 

1. SMEs, in general, lack in resources in terms of cash flow, number of employees 

and adequately trained workforce.  
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2. These enterprises are opportunistic in nature and very much individual customer 

focused. Due to this, there is often a practise of instant introduction of products 

with little regard for compatibility with other products in production. This results 

in large portfolio of products. 

3. There is also a lack of design knowledge due to natural evolution of product 

designs (mainly redesign and variant design activities carried out) which is 

normally based upon trial and error approach. This is further exacerbated by lack 

of documentation and reliant on key persons’ knowledge regarding the history of 

a particular design development which is lost when these individuals leave the 

enterprise. 

4. The design process models (discussed in section 2.1) which are normally 

successful in larger manufacturing firms are often not utilised in SMEs due their 

inherent nature of complexity and longer development times required.  

 

There are also some basic needs of SMEs that have been highlighted in the literature  

reviewed above. These can be summarised as following: 

1. Most of the researchers agree that there is a need for a simpler technique to 

develop products that can be easily understood and implemented in these firms.  

2. Such a technique should also help designers to investigate existing ranges of 

products in order to tackle product proliferation.  

3. These enterprises also need to increase their understanding (design knowledge) 

regarding their current product designs.  

4. Some authors have stressed a need to improve current product refinement 

methods adopted by these enterprises. 

5. Several authors have advocated the need to promote design reuse. This means 

that new designs should be based upon existing designs. It can help in cutting the 

internal costs incurred by these firms. 

 

The following sections discuss some of the relevant techniques that can be used to 

improve product design and development in SMEs. Some of these techniques are 

successfully implemented in larger manufacturing firms. The aim is to capture the extent 

to which these techniques can be helpful to SMEs. 
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2.3 Relevant techniques to improve product development 

There have been several techniques proposed in the literature in order to improve product 

development in manufacturing companies. Whilst most of these techniques are aimed at 

larger companies, some of them have been applied to SMEs. The following sections 

discuss a few of these techniques. 

2.3.1 Standardisation 

This is the basic approach that has been adopted worldwide for reducing product variety 

and thus manufacturing costs. Standardisation means the use of the same component in 

multiple products (Ulrich 1995). By standardising different parts of a product, one can 

easily automate its production. Standardisation also helps in after sales service, part inter-

changeability and re-manufacturing. This concept was first introduced by Henry Ford, 

who revolutionised production by drastically cutting manufacturing costs. The lower cost 

is possible as standardised components can be produced in high volumes.  

2.3.2 Modular design 

Using this concept, a complex product design is broken into smaller groups of standard 

components. These modules (developed in the early design stages) are reusable in 

different variants of the product and can be manufactured independently. Hence the 

number of products that can be developed using the modules depends upon the number of 

module versions and variants and their physical coupling characteristics (Jose & 

Tollenaere 2005). This concept of modularity was first introduced by Star (1965). There 

are several methods for grouping or distinguishing modules (Dahmus et al. 2001; Hata et 

al. 2001; Sudjianto & Otto 2001) and representing a modular system (He et al. 1998; 

Kusiak & Larson 1995) proposed in the literature that cover different domains and 

dimensions of manufacturing engineering.  

2.3.3 Product platform development 

Meyer and Utterback (1993) define a product platform as “a platform that encompasses 

the design and components shared by a set of products”. A similar description in terms of 

product rationalisation is given by Ericsson and Erixon (1999), “The product platform 
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philosophy mainly concentrates on rationalisation by identifying parts or subsystems of 

the products that should be kept as common units”. Thus a platform is a standard module 

that can be used among different products, and it consists of several other parts that are 

common in different products across the family. Other components are then added onto a 

platform to generate different varieties of the products. A simple example of the product 

platform is a suspension system that is used by car manufacturers among the different 

varieties of the cars. Using the platform based product design, one can emphasise the use 

of common technology, manufacturing process and knowledge that is shared among the 

different products in a family. Hence the platform provides a technical basis for catering 

to customization, managing varieties and improving existing capabilities (Jiao & Tseng 

1999). 

2.3.4 Development of a product architecture 

Robust product platform architecture can bring an important competitive advantage to a 

company (Martin & Ishii 2002). The product architecture is defined by Ulrich (1995) as 

the “scheme by which the function of a product is allocated to physical components”. The 

author further describes the product architecture as: 1) the arrangement of functional 

elements; 2) mapping from functional elements to physical components; 3) the 

specification of the interfaces among interacting physical components. There are two 

distinct platforms identified by Ulrich namely modular and integral. In modular 

architecture, there is a one-to-one mapping from functional elements in the function 

structure to physical components of the product. De-coupled type interfaces are specified 

so that changes made on one component do not lead to changes in other. Integral 

architecture, on the other hand, exhibits a more complex (one-to-many or many-to-one) 

mapping from functional elements to physical components and the interfaces between 

components are coupled. The modular architecture is suitable for supporting product 

variety as it provides the flexibility of carrying out localised design changes with the 

minimum possible number of components involved. These design changes are often 

associated with the product’s function. In actual practice, however, a mixed type of 

architecture may be found in the products (Ulrich 1995). 
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2.4 Application in SMEs 

The following sections briefly discuss how the above stated approaches have been 

implemented in the SMES. 

 

Schofield and Kelly (1997) describe the development of a in-house software system to 

support product rationalisation and lead time reduction for ball valve production. For the 

purpose of rationalisation, they initially identified a standard range of ball valves using a 

parametric approach. A spreadsheet was developed that determined the parameter values 

for each of the nominal sizes. The next stage was to develop a coding/classification 

system that facilitated the retrieval of similar designs. For this, the material types for 

valve body and other parts used in the assembly were classified. A new product code was 

also developed that formed the basis for design retrieval. A software system was 

developed to implement the computer based support. Using this system, the designer can 

input the parameters required by customers in final design such as pressure, temperature, 

construction and materials. There is a standard set of values shown to the designer for 

each parameter. The designer, however, has the ability to override these values if 

necessary. After completing the input, the system generates a valve configuration and a 

product code. It also creates the drawings of the resulting designs which can be used for 

production purposes. According to Schofield and Kelly the system effectively halted 

unnecessary proliferation of products and components. 

 

Maupin and Stauffer (2000) present a methodology that can help small manufacturers to 

reengineer a product family. The methodology presented is based upon the application of 

four metrics: simplicity, standardisation index, direct cost and delayed differentiation 

index. These metrics help designers to evaluate their progress while reengineering a 

product family. Simplification helps reducing the complexity of a product and it can be 

achieved by removing redundant components and integrating (consolidating) component 

functions into a few components. Standardising components and operations provides cost 

reduction. Direct cost provides a measure of materials and labour cost. The aim is to 

reduce the direct costs by minimising the number of components, operations required to 

assemble the product family, required handling and insertion times. Delayed 
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differentiation is a concept where manufacturing starts with making a generic product 

which is later differentiated into specific products. It helps in tackling uncertainty in the 

demand of products.  

 

Yan et al. (2007) argue that modularity within a product can help facilitate enhanced 

design reuse, reduce lead times, decreased cost and higher level of product quality for 

SMEs. They introduce a methodology, named GeMoCURE, which can provide an 

integrated total solution to modular design based on reuse of identified modules from 

similar previous designs. It contains four methods namely generalisation, modularisation, 

customisation and reconfiguration. The generalisation process is aimed at creating 

generalised and generic product development primitives (PDP) by studying existing 

similar products. The output of this process is a series of PDP models and knowledge for 

each PDP. Modularisation is the next stage of the methodology which aims at generating 

and structuring a family of generic modules derived from generalisation. These modules 

are used at the next stage of customisation in order to meet new requirements.  The 

relevant modules are first identified and then tailored to suit a new design solution. 

Reconfiguration is the last stage where available modules are utilised and rearranged in 

different forms to investigate spatial and structural configurations. 

 

Berti et al. (2001) developed a method to support the design of modular products in 

SMEs. This method is also based upon digital spreadsheets linked to a CAD system. The 

basic idea behind their methodology is to support the definition of functional structure by 

providing well-documented studies of product types for an application field. The different 

product types are decomposed according to various functions. The functional groups thus 

identified can serve as a basis for selecting modules for new products. A library of 

modules is thus created that can be used by the designer. The system developed supports 

the configuration of single modules and their assembly. The designer enters the design 

parameters relating to product geometry in the spread sheet. This spreadsheet contains all 

the design knowledge such as design rules, dimensioning relations and standard 

component dimensions. This spreadsheet is connected to a three dimensional CAD 

system and a semi-automatic parametric design can be achieved using this system. The 
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system can be further connected to down stream applications such as FEM (Finite 

Element Method) and CAPP (Computer Aided Process Planning).  

 

Buske and Liu (2005) provide computer integrated support for design and manufacture of 

packaging machinery. They argue that thousands of machines have been developed over 

the years to automate every aspect of the packaging industry and these machines must be 

constantly redesigned to accommodate ever changing packing requirements. For SMEs 

especially there is little time to make these changes and no room for error. Buske and 

Liu’s aim is to automate the entire customisation process of complicated packaging 

machines. They accomplish this by embedding a knowledge base into solid modelling 

software. The knowledge base contains information regarding different parts such as 

parametric descriptions regarding parts and their assembly and material types. The 

designer can create a custom machine by entering the different input parameters 

according to the changed requirements. The knowledge base is capable of checking for 

errors in the user input, part interferences in the assembly and sends warning signals in 

the event of a problem. It also contains algorithms capable of creating new parts numbers 

and CNC tool paths can also be generated automatically using this system.  
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2.4.1 Challenges for SMEs 

Most of the work identified in the literature (reviewed in the previous section) has 

stressed the need for effective design reuse. This essentially means deriving knowledge 

from existing products and applying it to new products. The common factor in different 

approaches is the identification of standard parts or components (in the form of modules) 

that serve different functions. A generic product model (product platform) can be 

generated from them. These parts (parametric descriptions) are then stored as a database 

that can be accessed during similar product development processes. In the case of the 

ones reviewed earlier, this has been normally accomplished by generating specific 

product codes, developing an expert knowledge base and connecting it to a CAD system 

with the help of a spreadsheet. The designer is presented with standard components 

which he or she can choose and if required, their parameters can be overridden with new 

values. The new components thus generated become standard parts for future product 

developments. Most of the approaches reviewed are based upon the modularisation 

concept. These are useful for generating custom designs based upon the existing designs 

and also make sure that there is always a consistent assembly generated. These can 

certainly help to lower product costs, support product variety and promote the use of 

standard components. However, there are some limitations associated with these 

techniques. 

• These approaches (based upon the modularisation concept) consider the cases 

where the functional requirements of a design are well defined before the actual 

design is created. This may not be true for most of the SMEs. One example comes 

for packaging machine manufacturers in the UK. As mentioned earlier (section 

2.2), the machine designs in these SMEs are evolved through empirical 

knowledge gained during years of work. The design knowledge regarding design 

decisions made is often limited. The underlying designs often adopt an integral 

type of architecture which means that changes made to any component may affect 

other components in the assembly.  

 



 32 

• Developing a new product by incorporating these techniques in design methods 

can be a one-off task. But redesigning current products can be a difficult and 

cumbersome process. Sometimes a complete redesign of existing products is 

required in order to make a design modular. In such cases these methods are 

beneficial in the long run but initially require a lot of redesign effort. Yan et al. 

(2007) describe a case where the concept of modularity was applied to a 

mechanical products producing SME. It was hard to reconfigure the product as its 

design was well founded and evolved (having been in production for twenty 

years). 

 

• Another drawback of adopting modular architecture is  highlighted by Ulrich 

(1995). He says that a modular architecture can help in optimising local 

performance characteristics but fails to address global performance 

characteristics, which can only be dealt with using an integral architecture. Local 

performance here relates to performance characteristics arising from only a local 

region of the product (such as the tail light of a car which can fixed independently 

of other parts of that car) and global performance stands for performance 

characteristics arising from the physical properties of most components of a 

product (such as mass, shape and material that is constituted by all components of 

any machine). These techniques provide no direct support for evaluating or 

modifying (refining) the design for changes in global performance requirements 

such as optimising accelerations produced and increasing efficiency. 

 

• Also, it is not always efficient to spend time and great effort to match modules to 

develop different products when the product variety is low (Jose & Tollenaere 

2005). Optimising and developing products in the individual form (integral 

architecture) can be a better option in theses cases. 

 

Apart from the limitations associated with the application of modularisation techniques 

within SMEs, the overall work done (discussed in the previous section) for improving 

product development in these enterprises does not address all of their needs. Some of the 
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needs such as increasing design knowledge of existing products and improving methods 

for product refinement still seem to remain unanswered. 

 

Based upon the factors that are hindering productivity of SMEs and their needs as 

highlighted in the literature reviewed earlier (section 2.3), it can be deduced that a 

supportive technique is still required in order to develop and refine products in SMEs. 

Such a technique should have following characteristics: 

1. It must be simple to understand and easy to implement. 

2. It should help in increasing the design knowledge of any existing product; in 

particular, the performance capabilities of current designs should be made known 

to the designer. 

3. It should help in rationalising the current ranges of products by identifying their 

performance capabilities. Thus controlling product variety as new products must 

only be launched when existing designs are unable to cope with the changed 

requirements. 

4. It should help in improving/refining current product designs. 

 

The focus of this research work is on machine manufacturing SMEs. It can be beneficial 

to explore and incorporate existing tools that are useful in general to model and 

investigate machinery while developing the above stated technique. The following 

chapter discusses such tools. 
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Chapter 3: Tools and techniques to model and 

investigate machinery 

 

The previous chapter identified current design practices of SMEs with a focus on 

machine manufacturing enterprises. Various factors that are hindering effective 

product development in these enterprises were highlighted and their current needs 

were identified. It was also observed that most of the design activities that take place 

in these SMEs fall under redesign (adaptive) and variant design umbrella as there is 

natural evolution of machine designs. This chapter is focused upon the tools and 

techniques that are useful to model and analyse machinery. The aim is to investigate 

the extent to which these tools can be utilised for tackling the current issues faced by 

SMEs. The identified tools are essentially classified into two categories namely 

computer based tools and practical tools. The computer based tools are helpful in 

modelling and analysing machinery. The practical (experimental) tools on the other 

hand provide strategies to conduct experiments on actual machines and are further 

required to validate computer based models. 

 

The following section discusses the use of computer based tools to model and analyse 

machinery. The scope of the current work, however, is restricted to the final stages of 

a product development process when concepts are already generated and possibly 

redesign or variant design activities are undertaken. Thus the discussion is limited to 

CAD and design optimisation tools for their capabilities and uses for the engineering 

design process. 
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3.1 Computer based tools for the purpose of modelling and 

analysis of machinery 

Computers have been helpful to engineers in automating many of the activities of a 

design process. They are present as various tools that range from a simple 

mathematical tool such as a calculator to sophisticated mainframe computers to carry 

out complicated engineering related tasks. The application of computer support in 

engineering has a wider span on the overall product life cycle. Computer Aided 

Design (CAD) is one among these tools that is widely used in various engineering 

streams. These systems help designers in solving complicated engineering related 

tasks that involve 3D modelling, assembly, virtual prototyping and manufacturing. 

Some of the features of CAD systems are briefly discussed in the following sections. 

3.1.1 Computer aided design (CAD) 

Research work on CAD can be traced back to mid sixties (SKETCHPAD, Sutherland 

(1963)). Earlier CAD systems were developed for the purpose of digitization of paper 

drawings and relied solely upon a 2D wire frame approach. The CAD systems 

nowadays are fully parametric and incorporate both feature based and constraint based 

support in order to create and manipulate geometry. Some of these features are 

discussed in the following sections. 

Parametric CAD modelling 

A parametric solid can be regarded as one whose shape is defined by parameters and 

relations between them. These parameters can be modified at any stage to alter the 

shape of the solid. The CAD system must solve the equations that are present relating 

the parameters in order to evaluate the shape of the artefact. Following the technique 

of parametrics, it is also possible to define the entire class of shapes that can be 

instantiated when required. This gives the designer a flexibility and ease of work. 

Hoffmann & Joan-Arinyo (2002) describe these parametric solid models as a class of 

specific solid models, which include meta-structure from which specific solid models 

can be derived as instances. In modern parametric solid modelling systems, solid 

models are defined using sketches, constraints and features. These are briefly 

discussed in the following sections.  
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Constraint based CAD 

Most modern CAD systems incorporate constraints in their interface for the purpose 

of geometry creation and manipulation. In these systems, the process of geometry 

creation starts with the creation of a 2D sketch. The designer draws a rough sketch 

using different geometric entities available such as points, lines and circular arcs. The 

sketch is then sent to the underlying geometric constraint solver to check for its 

integrity. The purpose of the geometric constraint solver is to solve the constraint 

problem. The geometric constraint solver then highlights the conflicting constraints if 

the sketch is over-constrained or shows a number of possible arrangements of the 

design in case the sketch is under-constrained. Similarly the constraint solver also 

helps in solving different constraints and maintaining various relationships that arise 

while creating, manipulating and assembling 3D geometries. 

Feature based CAD 

Features are nowadays an integral part of parametric modelling. Features are generic 

shapes that contain information relating to their behaviour and engineering 

significance (Hoffmann & Joan-Arinyo 2002). Features are defined by different 

people depending upon their relevance (Shah 1991). These features can be broadly 

classified as features for design and features for manufacture. Features for design 

provide necessary information regarding design tasks and performance analysis by 

capturing engineering attributes and relationships for the product definition. Bosses, 

webs, holes and slots are examples of design features. Features for manufacturing on 

the other hand provide information that is required to generate manufacturing 

information and process planning.  

Benefits of using CAD systems 

There have been continuous developments in the field of CAD. These developments 

include parametric design support, constraint based CAD, feature based CAD and 

more recently collaborative working environments (Hoffmann & Joan-Arinyo 2002; 

Li et al. 2005). These systems help designers in automating many design related tasks. 

Some of the major advantages these systems are listed below: 

• The major application of CAD is in 2D and 3D modelling. Using these 

systems, different parts of a machine system can be modelled separately and 

then assembled together. 
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• The assembly thus generated can be further analysed for studying kinematics 

and dynamics of the overall system and one can easily identify any 

interference or collisions present in the motion. 

• These systems also help in virtual prototyping so that validation/verification of 

design can be done against the given specifications and design rules without 

any need to build physical prototypes. 

• There can be further provisions, in these systems, for promoting design reuse 

by maintaining libraries of standard parts and assemblies. 

• Finally, CAD systems help in generating manufacturing information in the 

form of engineering drawings and CNC part programming. 

 

CAD is widely used across the industry and even these systems are being utilised in 

machine manufacturing SMEs. However, their functionality in normally limited for 

2D and 3D machine modelling purpose only. Once a model is created (or retrieved) 

using any CAD system, it must be evaluated further to satisfy any new design 

requirements and possibly needs modifications for this purpose. One way to 

accomplish this is using specialised design optimisation tools. The technique of 

design optimisation and a tool (Constraint modeller) based upon this technique is 

discussed in the following sections. 
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3.1.2 Design optimisation  

Design optimisation is an important activity carried out by designers in engineering. It 

incorporates numerical algorithms and techniques that assist the designers to improve 

a system’s performance, weight, reliability and cost. These methods can be either 

applied during the product development stage to ensure that the finished design 

conforms to the desired performance levels or to the existing product design in order 

to evaluate it for new design requirements and to improve its performance.  The 

optimisation process normally aims at finding an ideal solution by meeting all the 

design requirements and satisfying all the constraints. Alternatively, in case of 

conflicting constraints, a best compromise is sought.  

 

The optimisation process can normally help at any stage of a typical design process by 

optimising the sub-problem being addressed at that stage. However, following 

conditions are necessary to incorporate this process (Spicer 2002): 

1. The optimality criteria and the constraints are well defined and computable. 

2. Analysis codes to compute these are available. 

3. The design evaluation sequence is well defined. 

 

Figure 3-1 Optimisation process structure Source: Spicer (2002) 
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This process of optimisation in itself is iterative and follows a basic Generate-Realise-

Evaluate structure (Spicer 2002) (figure 3-1). Initially, it can help in selecting a 

candidate from a family of designs. This may be accomplished using sophisticated 

search algorithms. The design thus selected is usually characterised by a small number 

of parameters and hence incomplete design information is available. The optimisation 

process then helps in realising the full geometry of the candidate design that includes 

geometry and materials. Finally the optimisation process also helps in evaluation of 

the design generated. This evaluation is normally done against some criteria to find 

out a best design. 

 

There are several methods available that can be employed for the process of 

optimisation such as direct search, genetic algorithms, simulated annealing and 

particle swarm method. Each method has its own benefits and limitations. However, it 

is not the aim of this thesis to compare and comment upon these methods. Using any 

of these methods, a designer normally seeks to minimise or maximise an objective 

function which represents the design requirements. These optimisation problems can 

be broadly classified as single objective optimisation and multi-objective 

optimisation. 

 

Multi-objective optimisation problems involve finding a solution (or number of 

solutions) to a set of objective functions. These objectives can be competitive, 

cooperative or have no relationship at all (Agrawal et al. 2004). The aim is to find an 

acceptable solution by finding compromises or trade-offs of all the objective 

functions. A single-objective optimisation on the other hand requires the designer to 

specify relative preferences (weights) of design requirements to construct the 

objective function. In such cases, if the resultant solution is not optimal then the 

weights are modified and a new objective function is used. The optimisation process 

is repeated until a desired solution is found. This process is iterative and 

computationally expensive. These drawbacks of a single-objective optimisation are 

overcome by multi-objective optimisation where there is no need to identify trade-offs 

beforehand and multiple solutions can be generated with the help of search strategies 

(Valliyappan & Simpson 2006).  
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3.1.3 Constraint based modelling 

The application and usefulness of optimisation techniques in machine design is shown 

by Mullineux (2001). He introduced a constraint based modelling technique which 

involves identification and resolution of all the constraints known to be acting on a 

system. In this approach, the design requirements are converted into constraints and 

the various design parameters that affect these are identified. Various procedures can 

be used to manipulate the parameters in order to resolve the constraints including 

graph-based searches and optimisation. The approach is open so that users can add 

new constraints and relax existing ones when required. Hence it can be tailored to 

specific applications.  

 

Constraint based modelling has been proved useful in different design applications. 

These areas include redesign of packaging machinery (Hicks et al. 2001b), 

mechanism design (Mullineux 2001), human modelling (Mitchell et al. 2006) and 

manufacturing capabilities (Matthews et al. 2005). In particular, the technique is 

useful for studying mechanism and machine systems as it can represent diverse types 

of machine components such as cams, linkages, rotary and linear actuators from the 

pneumatic, electrical and mechanical domains, within a single environment. This 

ability of the constraint modeller is useful for evaluating interactions between 

different machine components and thus a complete machine system and process can 

be studied. Some of the main features of this environment are listed below. 

 

� The models constructed in this environment are driven purely by the 

constraints rules. Hence by simply inverting these rules one can also modify 

the input parameters. For example, in case of a cam and follower assembly, 

normally a cam profile is specified and then the resultant motion is analysed. 

However, in the constraint modeller environment the desired motion can be 

specified and a cam profile can be created from it. 

 

� The constraint modelling environment provides the flexibility of 

customisation. The designer can add further constraints depending upon the 

nature of the problem involved. 
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These features offered by the constraint modeller are normally absent in most CAD 

systems. CAD systems, as discussed earlier, are highly suitable for 3D modelling, 

performing engineering analysis and generating manufacturing information for the 

designs. One possible area of research can be to combine the constraint modelling 

approach within a CAD system. Incorporating constraint modelling techniques within 

a CAD system can give designer combined benefits of both the systems. This 

integration has been successfully accomplished using Unigraphics NX3 and constraint 

modeller (Singh et al. 2006; Singh et al. 2007a).  

 

However, there is an inherent limitation with implementing such a (design 

optimisation based) tool in SMEs. This is the expertise required to be able to interpret 

current design problem in way that it can be modelled and analysed with these tools. 

SMEs, which may already be struggling with limited resources and expertise, can be 

reluctant to use such tools. One way to overcome this is to provide these enterprises 

with a simple step by step approach to tackle their current design problems. It can 

help designers to model and analyse current design problem with the available tools 

and further helps in improving their designs. Such an approach (redesign 

methodology proposed by Hicks et al. 2001b) is discussed in the next section. 

 

Another important aspect about computer based analysis is that it is always 

incomplete until the model is validated by practical experimentation. For this purpose, 

SMEs may need some sort of practical strategies to conduct experiments on actual 

machines. There are some practical approaches such as design of experiments, which 

can be useful along with computer based analysis, discussed in the following sections. 
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3.2 Practical tools for the purpose of modelling and analysis 

of machinery 

This section discusses some of the practical techniques than can provide strategies 

regarding how to conduct experiments on actual machines and help in 

validating/verifying computer based models. There are two techniques discussed here 

namely a redesign methodology for machinery (Hicks et al. 2001b) and design of 

experiments techniques. The redesign methodology is particularly suitable for SMEs 

for analysing and improving their existing machine designs and design of experiments 

is more general technique to conduct and analyse experiments. It helps in reducing the 

number of experiment runs that are required to predict the response of a system. Both 

of these techniques are briefly discussed in the following sections. 

3.2.1 Redesign methodology 

Hicks et al. (2001b) propose a constraint based methodology for the design and 

redesign of packaging machinery. This methodology incorporates constraint based 

modelling technique (described in section 3.1.3), which involves identification and 

resolution of all the constraints known to be acting on a system. The methodology is 

essentially similar to the design process models discussed in chapter 2 (section 2.1), 

evolving and iterating through different design stages. It is argued that the 

requirements of SMEs for support during redesign (such as the need to represent and 

manipulate design knowledge, model and analyse systems and provide support over 

conceptual, embodiment and detailed phases of design process) can be met in part or 

in full using constraint based modelling techniques. The design knowledge is gained 

through the process of refining constraints and models. The results and implications 

about the design decisions are embodied in the various sets of constraint rules, which 

are later resolved in order to achieve a successful solution.  

 

The main feature of their proposed methodology is its incorporation of two parallel 

activities: practical and analytical (computer based). The practical (experimental) 

investigation helps to identify and develop design constraints and to validate the 

modelling and analysis data resulting from the analytical study. This approach is very 

useful especially for redesign activities carried out in SMEs. A computer model 

(constraint based model in this case) can always be generated by identifying the main 



 43 

design constraints embodied in the existing design. The model can be further 

validated and refined through comparing predicted results with those obtained from 

experimental investigation. Once a successful computer based model is obtained, it 

can be tested with different redesign strategies such as adaptive and variant. The 

designer can interact with the system to change design parameters and investigate 

their effects. Thus the key parameters can be identified and an assessment of the 

robustness of the design can be made. Optimisation techniques can then be applied to 

search for improved designs. 

 

This methodology proposed by Hicks et al. (2001b) is very useful for carrying out 

design/redesign activities in SMEs and can provide a basis for further research in this 

area. However, their approach is limited to investigating a single design only. It does 

not address the issues relating existing variety in products. The following section 

discusses a more general approach to conduct and analyse experiments.  

3.2.2 Design of experiments 

Design of experiments is a methodology for conducting experiments on a physical 

system with the aim to understand its response to input conditions (factors). It is 

essentially an information gathering exercise which uses statistical techniques for 

planning and conducting experiments as well as analysing and interpreting results. It 

is a superior approach than traditional trial and error way of conducting experiments 

(Umetri, 1998). In traditional methods, one normally relies upon one-factor-at-a-time 

approach where only one factor is varied at a time while others are kept constant. 

When interactions are present, the one-factor-at-a-time experiments need to be 

repeated at different levels of the other factors. Thus the number of experiments that 

need to be conducted increases drastically. Hence traditional methods are not cost 

effective for conducting experiments. Whereas statistically designed experiments are 

more efficient for predicting behaviour of complex interactions. The interaction 

between the factors can be estimated systematically and with a limited number of 

experiments using the techniques from design of experiments.   

 

Broadly speaking there are two types of design of experiment strategies available: 

screening design (factorial fractional designs) and response surface model (RSM). 

Screening experiments are useful when large numbers of possible factors are present 
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and the search is then narrowed down in order to reduce the factors to a relatively 

small set (Montgomery, D. C., 2001). Screening experiments can provide an efficient 

way of determining important factors with minimal number of runs. The response 

surface methodology (Khuri & Cornell, 1987) on the other hand helps in setting up a 

series of experiments that yield adequate and reliable measurements of the response of 

interest. A mathematical model can also be determined that fits the data collected 

from the conducted experiments. Finally the optimal settings of the experimental 

factors that produce minimum (or maximum) value of response can be obtained using 

any optimisation strategy. 

 

The tools and techniques discussed so far are helpful in modelling and analysing 

machinery. Most of the tools discussed in the previous sections relied upon 

optimisation techniques to improve product designs. However, there are two major 

limitations associated with the design optimisation process. First is with the traditional 

optimisers (single objective optimisation is one example) that these can operate like a 

black box solver which present the designer with end results from a prescribed input. 

However, the designer gets no information about the alternative solutions and trend 

followed by the optimisation process. The second is with multi-objective optimisation 

where the amount of data generated through these search techniques is vast and it is 

difficult to analyse the results generated. Also no technique, discussed so far, has 

provided any clear support to tackle issues relating existing variety in products such 

as how far the existing range of products can be extended and identifying their 

performance limits.  

 

It is proposed that these issues can be effectively handled with a proper visualisation 

technique. Visualisation has a great impact on the designer’s decision making process 

as design decisions often require specialised knowledge about the solution space. 

Visualisation techniques can be highly effective in identifying a better solution by 

browsing through the information in the solution space.  According to one study, 70% 

of human attention is dedicated to visual input (Helig 1992 as cited in Eddy & Lewis 

2002).  The following sections provide some of the research work that has been done 

to address the above stated issues relating design optimisation process. The basic idea 

is to be able assist a designer’s decision making process with the help of an effective 

visualisation strategy.  An overview of various visualisation techniques is given in the 
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following sections which are being used by the researchers in order to display and 

analyse multi-dimensional data. The aim is to understand various techniques available 

so that a visualisation tool can be proposed that can aid in the designer’s decision 

making process when a number of variants are to be investigated. Ideally, for its 

suitability in SMEs when several variants of a design need to be investigated, a 

visualisation technique with the following characteristics is required:  

1. It should be able to represent a number of (two or more) design variants in a 

single plot. Such a plot will help in investigating current product designs and 

their relative merits. 

2. It should be able to represent the solution space that exists between these 

variants. The solution space will help in identifying better solutions which 

may exist in that space. 

3. It should provide means to plot and compare the performance measures of 

every design solution created within the design space. 

4. It should be easy to understand and identify good design solutions. 

5. There should be provisions to zoom into the areas of interest. 
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3.3 Design space exploration and visualisation techniques 

Design can be seen as a shopping process as proposed by Balling (1999) (‘design as a 

shopping paradigm’), where the designer, first of all, explores the design space and 

then chooses an optimal design among the set of possible designs. This activity is 

analogous to the shopping process, as while shopping a person can look at all the 

available products and select one that suits his or her needs. Such a selection process 

in a design context allows the designer to form his/her design preferences after 

visualising the entire design space and lets them choose an optimal design that is 

based upon the preferences (Stump et al. 2003).  

 

This can be further elaborated with a multi-objective optimisation example. Consider 

a design problem subjected to two objectives (F1 and F2, figure 3-2). The designer’s 

aim is to find a solution where both of the objectives are minimised or at least best 

compromise is obtained. In such situations, a designer can end up with a number of 

optimal solutions. These solutions (points) are known as Pareto-Optimal points. (A 

point in the design space is Pareto-Optimal if no feasible point exists that would 

reduce one objective without increasing the value of one or more of the other 

objectives (Papalambros & Wilde 2000)). 

 

 

Figure 3-2 Pareto Frontier 

 

Thus the designer can select any solution from this set of solutions (referred to as 

‘Pareto set’ or ‘Pareto Frontier’, figure 3-2) that are equally important and global 

optimal solutions. This concept is highly useful in aiding designer’s decision making 

process as by visualising the optimal set of solutions, the designer can articulate his 
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preference pertaining to the different objectives. Balling (1999) also highlighted the 

need for interactive graphical (visualisation) computer tools that can display these 

solution points to assist designers in this shopping process (design space exploration). 

 

This section summarises such visualisation techniques that can be adopted by the 

designers for the purpose of design space exploration. There are numerous methods 

available that can be used for this purpose. These methods include some basic 

techniques such as bar charts, pie charts, histograms, scatter data plot (2D and 3D) 

and surface plots. These representations are widely adopted due to their simplicity and 

ease of understanding. However, these techniques are only helpful when the number 

of variables to be plotted is only two or at the most three. Often in many design 

problems more than two design variables affect the overall performance of the system. 

One way to add an extra dimension to the conventional methods used is to incorporate 

visual aids like colour, shape and relative size. However, there is still a need for multi-

dimensional data representation that incorporates heuristics and design knowledge 

(Eddy & Lewis 2002). In the following sections, some of the techniques developed 

for exploring high dimensional problem spaces in the engineering design are 

presented. 

3.3.1 Scatterplot matrix 

As the name suggests, a Scatterplot matrix presents a grid structure (matrix) of scatter 

plots to represent multi-dimensional data. In such a plot each element of the matrix is 

an individual scatter plot and variables are plotted against each other at least once 

(Stump et al. 2004). This technique can be used to represent any number of variables. 

Figure 3-3 shows an example of a scatterplot matrix. 

 

Here five variables are plotted against each other using this technique along with a 

univariate histogram for each variable. The advantage of using this method is in its 

ease of interpretation. However, with an increase in the number of variables, the space 

available for each element decreases and thus it is suitable for representing only a 

small number of variables. 
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Figure 3-3 A scatter plot  Source: 
http://www.mathworks.com/products/demos/fullsize.html?src=/products/demos/shipping/stats/mvplotdemo_01.png 

3.3.2 Glyph plots 

The glyph plot is a way of adding extra dimensions to a normal scatter plot diagram. 

In this technique more than two variables can be represented by using a glyph symbol 

(Stump et al. 2003). The additional variables are represented by physical 

characteristics of that symbol such as shape, colour, texture, size, length and direction. 

 

Figure 3-4 shows such a glyph plot, representing 7-dimesnional information. It uses 

the spatial position of a glyph symbol (icon) to represent three variables and the other 

four variables are represented by the size, colour, orientation and transparency of the 

symbol. A glyph plot is a good way of plotting multi-dimensional data. However, this 

representation is limited to the number of data elements that can be displayed on the 

available space and also it can be difficult to visually compare glyphs that are 

separated in space. 
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Figure 3-4 A glyph plot Source: Stump et al. (2004) 

3.3.3 Parallel coordinates  

Parallel coordinates, introduced by Inselberg (1990), is a way of representing multi-

dimensional geometry. In this technique, the axes are drawn parallel to one another 

and are equally spaced as opposed to Cartesian coordinates where all axes are 

mutually perpendicular to each other. The observations are plotted in this case as a 

series of connected line segments. Figure 3-5 shows such a representation for a six 

dimensional point (1, 3, -1, 4, 2, -3).   

 

 

Figure 3-5 Parallel coordinate representation of a six dimensional point 

 

It is possible to represent multi-dimensional geometry including multi-dimensional 

lines, hyper-cubes and high dimensional spheres on a 2-D plane using this 

representation. This technique has been widely applied for visualising high 

dimensional space in industry as theoretically it is possible to represent as many 
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dimensions as one wants. However, with larger problems the plot size increases and it 

becomes difficult to interpret the results. 

3.3.4 Dimensional stacking 

Dimensional stacking is a hierarchical technique of displaying multi-dimensional data 

by recursively embedding dimensions within other dimensions. In this technique 

initially, each dimension range is discretised (also known as assigning a number of 

buckets for a dimension or cardinality) and an orientation is assigned to it 

(vertical/horizontal). The next step is then to assign an ordering to these dimensions as 

these are said to have unique “speeds” (Ward 1994). The outer-most dimension is the 

slowest and the inner-most is the fastest. A virtual screen is divided into sections with 

the two dimensions having slowest speeds. The cardinality determines the number of 

sections generated horizontally and vertically. Each of these sections is then used to 

define the virtual screen for the next two dimensions (slowest of the remaining 

dimensions) and the cardinality is used to determine the break up of the virtual screen. 

The process is repeated until all the dimensions are embedded. An example of this 

representation technique is shown in figure 3-6. 

 

 

Figure 3-6 Four dimensional data set representation using dimensional stacking Source: 

Ward (1994) 

 

The figure shows a four dimensional data set (3D drill-hole data with a fourth 

dimension representing ore grade at that location) representation using dimensional 

stacking. Each data point here maps into a unique bucket, which in turn maps to a 
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unique location in the resulting image. This technique is essentially suited for 

representing dense data sets as in the case of sparse data, the screen space expands 

rapidly with increase in the data dimensions (Ward 1994).  Another limitation of this 

technique is in determining spatial relationships between points in non-adjacent 

dimensions as two points, which are closely located in space, may get projected to far 

apart screen locations. 

3.3.5 Dimensional reduction 

Dimensional reduction is another approach used in visualising multidimensional data. 

In this approach, data is processed in such a way that dimensionality is reduced 

without losing the integrity of its meaning. The dimensionality is normally reduced to 

two or three dimensions that can be displayed using conventional visualisation 

techniques such as scatterplots. Carreira-Perpinan  (1997) gives a comprehensive 

review of techniques that are used for dimensional reduction. One of the major 

drawbacks of dimensional reduction is that it can result in loss of meaning, a loss of 

the concept of a neighbourhood, and an associated loss of an ability to understand the 

representation in an intuitive way (Agrawal et al. 2004). 

3.3.6 Nested performance charts 

Performance charts are helpful visual aid for designers for the purpose of exploring 

design space. In such types of charts, normally, performance is plotted against the 

design variables. Using these charts, a designer can understand the effect of a certain 

design variable on the overall performance of the system. The drawback of this 

technique is that it is limited to one or two design variables. Figure 3-7 shows such a 

performance chart. 

 

To overcome this problem Burgess et al. (2004) present a new type of chart known as 

a nested design chart. The proposed method is similar to dimensional stacking. Using 

this chart the designer can visualise the whole design space on one single design chart 

as performance can be presented as a function of more than two variables. Indeed the 

method is capable of representing more than four variables. Figure 3-8 shows a nested 

performance chart with four (two discrete and two continuous) variables. 
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Figure 3-7  An example of a performance chart 

 

 

 

 

Figure 3-8  An example of a nested performance chart source: Burgess et al. (2004) 
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3.3.7 Design visualisation in optimisation 

One way to overcome the drawbacks of the traditional optimisation process, where 

algorithms can blindly run their course to completion, is with the use of computational 

steering (CS). It can be defined as the interactive control over a computational process 

during execution (Mulder et al. 1999). Computational steering provides ability to the 

designer to visualise how the solution procedure is progressing. Using this method the 

designer can actually alter the parameters during the analysis. If the solution seems to 

be diverging, the designer can redirect and even terminate the optimisation process. 

Hence this method enables the designer to steer the solution in the desired direction 

and saves the solution time as well.  

 

There are numerous CS applications and systems described in the literature such as 

SCIRun (Parker & Johnson 1995), VASE (Jablonowski et al. 1993), Magellan (Vetter 

& Schwan 1997), CUMULVS (Geist et al. 1997), and VIPER (Rathmayer & Lenke 

1997). These environments can be classified according to the specific domain and 

application of use. Mulder et al. (1999) recognises three uses of CS in the area of 

scientific and engineering simulations which are model exploration, algorithm 

experimentation and performance optimisation. In model exploration, CS can be used 

to explore parameter spaces and simulation behaviour. Algorithm experimentation 

allows the designer to adapt program algorithms in runtime that means the user can 

experiment with different numerical solving methods. Finally performance 

optimisation can be used to improve an application’s performance.  

 

There is one major drawback associated with CS as it requires very high 

computational power for its calculations and data transfer. Winer and Bloebaum 

(2002) highlight some of the shortcomings of CS that include requirements such as 

highest networking capabilities, high-performance computers, high-end graphics 

boards and specialised tools for every application. 

3.3.8 Implications for SMEs 

This chapter has highlighted some of the visualisation techniques adopted by different 

researchers for representing multi-dimensional design space. The comparatively 

simple visualisation techniques such as scatter matrix, glyph plots, parallel 

coordinates are helpful in visualising multidimensional data but do not possess 
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capabilities to alter the design optimisation process. Other intelligent techniques that 

possess these capabilities such as computational steering techniques are 

computationally expensive, need sophisticated computer hardware to run and are 

sometimes difficult to understand. The area of application of each technique, in 

engineering, may be different from others but these are helpful in adding to the 

decision making process of a designer if considered as a solution tool rather than a 

means to present results. 

 

There had been no explicit work published on visualisation techniques for SMEs 

specifically. However, SMEs and other organisations can benefit from a good 

visualisation technique. It can help them to better develop their products and can 

further assist in meeting their current needs in the following ways. 

• It can provide a simple and convenient way to represent and analyse product 

performance. 

• It can aid a designer’s decision making process when a number of design 

options are to be evaluated. 

• It helps in increasing their design knowledge regarding current products. 

• It can provide basis for carrying out redesign activities. 

 

For SMEs especially, such a technique needs to be simple to understand and easy to 

implement. One of the objectives of this thesis is to propose, demonstrate and test a 

visualisation technique, which allows the design space between a number of design 

variants to be represented and hence explored. None of the visualisation techniques, 

discussed in the previous section, provide such a support. A visualisation technique 

with required characteristics (described earlier in section 3.2.2) is discussed in the 

next chapter.  
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Chapter 4: Multi-Instance modelling approach 

 

The previous chapter highlighted the need for having an effective visualisation 

strategy in order to explore and analyse different product designs in SMEs. Using 

such a strategy various design options and their relative merits can be evaluated. For 

this purpose, a multi-instance modelling approach is presented in this chapter. The 

overall approach is divided into two stages namely parametric morphing and 

visualisation. These stages are described in the following sections. 
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4.1 Parametric morphing 

The idea which underlies the parametric morphing approach is that designers often 

can obtain information from known (successful) designs. Such information can be 

already present in the form of documents or can be generated by modelling the 

existing designs and understanding their functionality. It can be beneficial to use such 

information as a guide to what the full design space looks like. The design space 

usually has a large number of dimensions, corresponding to the number of design 

parameters, which can easily become unwieldy. Additionally, very many 

combinations of the design parameters lead to infeasible designs. Basing design 

exploration upon successful instances can mean that relationships implicitly required 

between the parameters are imposed without the need for a formal investigation of 

what these may be. In this way, although a large number of design parameters are 

likely to be present, the fact that the existing instances are good designs suggests that 

some of the required relations between the parameters are already satisfied (albeit on a 

heuristic basis). An assumption is made here that the instances share essentially the 

same “topology” although the “geometry” of each is different. 

 

It is also necessary to have one or more performance metrics by which any design 

instance can be evaluated. Such metrics might include: cost, weight, ability to reach 

target values. A suitable computer-based model of the design is also required which is 

parametric. This allows different instances to be investigated and the performance 

metric(s) evaluated. 

 

Given a collection of “base” instances, the next stage is to investigate the effect of 

interpolating or “morphing” between them. This starts with identifying the relevant 

parameters. These parameters determine the functionality of a machine system. If p is 

a particular parameter of the design and there are n instances, then there are n values 

of the parameter among the base instances. Denote these by p1, p2, ..., pn. To find a 

new morphed instance, a set of weighting values α1, α2, ..., αn are taken whose sum is 

unity, the same set for all the parameters. The new value of parameter p is then taken 

as 

 p = α1p1 + α 2p2 + ... + αnpn 
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and the similar combination for all the other design parameters. These new values can 

be used within the parametric model and the morphed instance (interpolant) created 

and its performance metric(s) determined. This can be done in discrete steps, for 

different choices of the weights αi, and the performance evaluated for each new 

instance. For example in the case of two instances if h is taken as the step size, the 

weights α1, α2 are changed to α1+h and α2-h so that the their sum remains 1.  The step 

size can be reduced to perform a finer search. The reduction in step size results in an 

increased number of interpolants generated which then have to be analysed 

individually for their performance values. 

 

Depending upon the step size used for morphing, one can end up with a vast amount 

of data to be dealt with. One way to do this is by using a suitable visualisation 

technique. Such a technique for the visualisation of design space among design 

variants is described in the next section. 
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4.2 Visualisation 

The literature survey in the previous chapters highlighted the need for an effective 

visualisation technique. The simplest case of visualisation representation for 

parametric morphing is between just two instances which can be plotted as a curve of 

performance measures. This can be extended to morphing between three base 

instances by creating a surface of performance measures. The surface thus plotted can 

be taken as being over an equilateral triangle whose vertices represent the base 

instances (design variants). The height of the surface gives the value of the metric. 

Any morphed instance corresponds to a point within the triangle and the weights (αi) 

can be regarded as the barycentric coordinates of this with the respect to the triangle.  

 

Figure 4-1 Triangular representation for three instances 

 

Figure 4-1 shows such a triangular representation. Three points A, B and C represent 

three design variants here. There are three weights α1=α, α2=β and α3=γ with  

α + β + γ = 1 

and at each corner just one of the weights is unity. These weights, considered as 

barycentric coordinates, determine a point P.  

 

P = αA + βB + γC 
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The performance values are then plotted in the Z-direction. The various interpolants 

can thus be found inside the triangular surface. If the weights are all non-negative, 

then the new instances lie within the triangle. The weights can of course be taken as 

negative, although, in this case, one is extrapolating away from the base instances 

rather than interpolating between them. 

 

It is also possible to morph between four or more base instances. This can be 

represented in a higher dimensional space, for example a tetrahedron can be used to 

represent four instances. However for ease of visualisation a surface in three 

dimensions is used. Here the surface is again plotted over a (regular) polygon whose 

vertices represent the base instances.  

 

 

 

Figure 4-2 Square surface representation for four instances 

 

Figure 4-2 shows a square surface representation for four base instances. The weights 

for the point P(x,y) are given by the following equations. 

α = (1-x) (1-y) 

β = x (1-y) 

γ = x y 

δ = y (1-x) 
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so that 

α + β + γ + δ = 1 

 

It needs to be noted that with four or more base instances, there is more than one 

choice of weights that can specify any given point within the polygon. Conversely, a 

single surface cannot capture all the possible combinations of the base instances. In 

particular, another ordering of the instances changes the plot (to some extent).  
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4.3 Illustration with different surface examples 

The next step is to analyse the design space represented with the help of a surface. 

The surface may be continuous and reasonably “flat”. This suggests that the base 

instances used all lie within a single “family” of possible designs. The optimal 

member of this family can be found as that new interpolant which provides the best 

performance value(s). It also suggests that this optimal design is relatively insensitive 

to variations in its parameters. Figure 4-3 shows an example of such a surface. It is 

assumed here and elsewhere that the performance measure plotted in the vertical 

direction becomes smaller as the design improves. 

 

Figure 4-3 Example of a flat surface 

 

If the surface rises steeply between some of the vertices, this suggests that the original 

base instances lie in different families and there is some fundamental difference 

between these designs. The sensitivity of the base instances to changes in the 

parameters is likely to be high. Such a surface is illustrated in figure 4-4. An extreme 

case is when the surface is discontinuous or has holes in it. This suggests that there 

are situations where the design has failed and the base instances are definitely distinct 

in some way.  
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Figure 4-4 A steep surface 

 

When a better solution is found, the designer may want to focus on the region of 

interest where this better solution lies. The proposed visualisation approach helps in 

achieving this by subdividing the design space. In the case of three instances, the 

triangular surface can be subdivided into a number of small triangular surfaces around 

a region of interest. This division is carried out by selecting the appropriate weight 

values and generating new instances at the points where the division is required. The 

instances thus generated can now be considered as new base instances and further 

parametric morphing can be carried out between them. Figure 4-5 shows an example 

of triangular subdivision of a triangular surface. The surface shown in part (a) is 

divided into four triangles numbered as 1, 2, 3 and 4, part (b). The minimum lies in 

region (2) which is further morphed by taking A’, B’ and C as base instances. The 

resulting surface is shown in part (c). 
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Figure 4-5 Triangular surface division 
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Similarly in the case of four instances, the square surface can be divided into smaller 

square or rectangular surfaces. This strategy is helpful in focusing on the region where 

the good design solutions lie. Figure 4-6 shows a square surface subdivision where a 

surface (part (a)) is divided into four regions 1, 2, 3 and 4, part (b) and further 

morphing is carried out on region (3) (part (c)). This application of the proposed 

visualisation technique and division of the resulting surfaces is further illustrated by 

case study examples in the following chapters. 
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Figure 4-6 Square surface subdivision 



 66 

4.4 Application of the proposed approach in SMEs 

The underlying idea of the proposed approach is to be able to represent and thus 

explore the design space which lies between different design variants. Such an 

approach has implications in the areas of achieving product rationalisation and can 

help in meeting the current needs of SMEs (identified in section 2.3, chapter 2). Some 

of the possible advantages of implementing such a technique in these enterprises are 

listed below: 

1. It is simple technique to understand and implement as the design space 

between various variants of a design can be represented and understood with 

the help of simple surfaces.  

2. The design knowledge regarding current products is increased using this 

approach as the performance capabilities of current product designs are made 

known to the designer. In many cases the designer may need to follow an 

experimental strategy beforehand, which also helps in gathering fundamental 

knowledge regarding current product designs. 

3. If a company produces a range of variants of a particular design, it may be 

interested in knowing whether that range can be reduced or otherwise 

rationalised. If several instances create a roughly flat surface, then, as 

suggested previously, there is commonality between them. The best morphed 

design based upon these may be capable of fulfilling the tasks of the original 

ones and hence these can be replaced by a single design. On other hand, if the 

surface produced rises steeply between instances, it shows that there are some 

fundamental differences in the base designs and helps in differentiating 

products into families.  Thus issues related product proliferation can be tackled 

by the proposed approach. 

4. It further helps in refining/improving product designs. This is accomplished by 

determining the sensitivity of a design to small changes in its parameter values 

which is represented with the help of surfaces. The design is more robust when 

it is less sensitive to its setup parameters. Better design solutions can also be 

identified, which may lie within the design space investigated. If found, these 

designs can replace the current designs and perform better. 
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These points are further elaborated by the case study examples in the following 

chapters. The proposed approach helps in analysing different design variants and 

evaluating their relative merits. These variants can be present in SMEs in many forms 

such as isolated machine instances, choice of setup parameters and components. Most 

of these situations encountered can be broadly classified into three categories.  

1. The first category belongs to the situations when isolated machine instances 

are present and there is limited design information available to the designer.  

2. The second category is when some machine instances are present and the 

designer can also carry out experimental investigation to establish their 

performance characteristics.  

3. The third category is when some form of a mathematical or computer based 

model for the machine instances is available, which is capable of predicting 

the machine performance for a range of instances. 

All three categories are discussed in the following sections and the applicability of the 

proposed approach in these cases is highlighted by case study examples. 

4.4.1 Isolated machine instances – no provision for experimental 

investigation 

This case is encountered when various machine instances are present and are known 

to operate but there is little or no other design information available to the designer. 

The aim is to increase fundamental design knowledge about the product designs and if 

possible, to reduce or rationalise the current variety across the product range. There 

may not be any provision for the designer to carry out any experimental work to 

establish performance characteristics of these machines. For example, consider a case 

of seven design variants of an end-load cartoning machine (discussed further in 

chapter 5). The goal of these machines is to erect packaging carton from a pre-folded, 

flattened state. These machines essentially differ in production rates, size of cartons 

that can be handled and degree of automation. There may not be enough information 

available to carry out a thorough analysis in this case in order to reduce or rationalise 

these variants. However, a simplified investigation based upon the visualisation stage 

of the proposed approach can be performed. This case is further discussed in chapter 

5. 
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4.4.2 Experimental investigation is possible 

In this case, machine instances are present and there are provisions for some 

experimental work to be undertaken, for example investigating the effects on 

performance by changing setup parameter values. The proposed approach can be 

applied to the experimental results in order to gain a better understanding of the 

system. It can also allow some form of mathematical relationship to be obtained to 

represent the system behaviour. If the system is complex it is likely that techniques 

from the design of experiments will be necessary to ensure that a good model is 

obtained without excessive experimental work. 

 

This category also covers the case where a computer based or mathematical model 

already exists (FE model for example) but it is not economical to run it frequently due 

to the amount of computational time required.  

  

Chapter 6 further elaborates this problem and the proposed approach is used here to 

predict the best setup configuration for the machine to erect carton boards.  

4.4.3 Computer based models are available 

This third category occurs where a computer based model is available to the designer 

that can accurately predict performance capabilities of the current design. This may 

have been obtained on the basis of experimental results as suggested in the previous 

subsection. In this case, the proposed approach can help in finding the design 

instances that exist between current design variants. These instances form the design 

space around original base designs. Knowledge of the design space may help in 

identifying a better solution, if one lies within the space. It also provides an insight 

about how sensitive these designs are in small changes to their design parameters. 

 

Chapter 7 presents a case study example where a computer based model is available 

and how the proposed approach can be helpful in this situation. 
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Chapter 5: Case study 1 - Isolated machine instances 

 

The previous chapter (section 4.4) identified three situations where the proposed 

approach can be helpful to a designer for investigating current design variants. This 

case study discusses one such example of isolated machine instances taken from the 

Bradman Lake Group, Bristol. They are a privately owned enterprise specialising in 

design, development, manufacture and service of packaging machinery and represent 

a typical SME in the UK. The different types of machinery they produce include 

cartoning machinery, product handing, feeding distribution and storage systems, flow 

wrapping and end-of line packaging machinery. A variety of products can be seen 

across the entire range of packaging machines they offer. One example comes from 

end load cartoning machinery (SL series) that they design. The purpose of this 

machine is to erect cartons that are initially supplied in the form of pre-folded, 

flattened “skillets”, then to insert the product inside these cartons and finally seal 

them. During its operation, skillets are erected first. The flaps on one end of the 

cartons are then closed and product is inserted through the other open end. This open 

side is finally sealed using hot melted glue. 

 

In the SL series of end load cartoning machinery, there are seven types of machines 

available (figure 1-1, chapter 1). These machines include a single end flap sealer (SL 

50) and six end load cartoners (SL 80, SL 902, SL 903, SL 904, SL 906 and SL 

6000). 

 

In this particular case all the information regarding these variants was obtained from 

the group website (www.bradmanlake.com) and is limited by their description. It is 

interesting to know if the proposed approach can be helpful in analysing these design 

variants. The following sections discuss further investigation of these variants using 

the proposed approach. 
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5.1 Investigating current machine variants using multi-

instance modelling 

All of the end-load cartoning machine variants essentially have similar topology and 

can be investigated with the proposed approach. However, for the end flap sealer 

machine (SL50), the cartons are erected manually by the operators and the machine is 

different from other machines which come with automatic carton erection mechanism. 

Thus this variant of the cartoning machine is not considered for further investigation 

as it only serves limited functionality. 

 

The other six types of machines have the same functionality. However, SL 80 differs 

from the remaining five designs in the way cartons are erected. It incorporates semi-

automatic reciprocating feeder instead of an automatic rotary head. This means the SL 

80 incorporates different technology and thus is not suitable for further investigation. 

 

The five remaining cartoning machines are well suited for performing multi-instance 

modelling. Their description is shown in the figure 5-1 and table 5-1. The figure 

shows two elevations and a plan of the machine. Carton skillets are placed in a hopper 

at the right. They are extracted from the hopper and during extraction are opened up. 

They are then placed between moving lugs on a conveyor. Product is inserted into the 

open skillets as it moves along the conveyor. The end flaps are then folded and glued.  

 

It is clear from their description in table 5-1 that a higher production speed can be 

achieved by increasing the number of the rotary heads of the feeding system. 

However, it seems that the range of carton sizes that these machines can handle at 

higher production speeds is less than the machines with fewer heads at lower 

production speeds.  
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Figure 5-1 End load cartoning machine and various carton parameters Source: 

www.bradmanlake.com 

 
 

Table 5-1 Description of end load cartoning machine variants Source: www.bradmanlake.com 

Machine 

model 

Type Speed carton 

max per min 

Carton size 

min       max 

Feed system 

SL 902 Automatic 

2 head rotary 

135 A 50mm 

B 19mm 

 C 135mm 

D 19mm 

A 254mm 

 B 76mm 

C 305mm 

 D 40mm 

Manual or auto 

SL 903 Automatic 

3 head rotary 

200 A 50mm 

B 19mm 

 C 135mm 

D 19mm 

A 254mm 

B 100mm 

C 304mm 

 D 40mm 

Manual or auto 

SL 904 Automatic 

3 head rotary 

270 A 76mm 

B 19mm 

 C 116mm 

D 19mm 

A 200mm 

B 115mm 

C 305mm 

 D 40mm 

Manual or auto 

SL 906 Automatic 

4 head rotary 

350 A 76mm 

B 19mm 

 C 116mm 

D 19mm 

A 254mm 

B 115mm 

C 300mm 

 D 40mm 

Manual or auto 

SL 6000 Automatic 

2 head rotary 

120 A 50mm 

B 19mm 

 C 114mm 

D 19mm 

A 350mm 

B 100mm 

C 330mm 

 D 40mm 

Manual or auto 

 

An important point here is that there is no further information available on these 

variants. In order to determine the performance characteristics of these machines 

following assumptions are made: 

� The variants can be classified into three categories according to type of rotary 

head used. Thus three types of machines are available namely 2 head rotary, 3 

head rotary and 4 head rotary. These three types can be used as three base 

instances for further investigation. 
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� For simplicity, the volume of the carton (A*B*C, Table 5-2) is considered as 

the size of the carton (minimum or maximum) that a particular instance can 

handle. 

 

Finally the variants are classified (Table 5-3) according to the type of rotary head 

used, maximum production speed, minimum and maximum volume of the cartons that 

a particular rotary head can handle. 

 

Table 5-2 A simplified classification of the variants 

Machine 

model 

Type Speed carton 

max per min 

Carton size in mm
3
  

(volume A*B*C) 

(x10
6
) 

min       max 

SL 902 Automatic 

2 head rotary 

135 0.129 5.9 

SL 903 Automatic 

3 head rotary 

200 0.128 7.722 

SL 904 Automatic 

3 head rotary 

270 0.168 7.015 

SL 906 Automatic 

4 head rotary 

350 0.168 8.763 

SL 6000 Automatic 

2 head rotary 

120 0.108 11.5 

 

Table 5-3 Further simplification of the variants 

 

 

 

 

 

 

 

 

 

 

Type of 

rotary head 

Speed carton 

max per min 

Carton size in mm
3 

 (volume A*B*C) 

(x10
6
)  

min       max 

Automatic 

2 head rotary 

135 0.108 11.5 

Automatic 

3 head rotary 

270 0.128 7.722 

Automatic 

4 head rotary 

350 0.168 8.763 
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Now as there is no quantification criterion available for determining the performance 

characteristics of these machines, so the parametric morphing stage of the proposed 

approach can be omitted. One can start directly by plotting the base instances as three 

corner of a triangular surface. For the first plot, the maximum values of the carton size 

that a particular machine variant can handle are used as a performance criterion and 

are plotted along the z-axis (figure 5-2). Similarly another simplified triangular 

surface can be plotted using the minimum carton sizes that these machine variants can 

handle (figure 5-3). 

 

 

Figure 5-2 A simplified surface plot for maximum carton sizes that can be handled 
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Figure 5-3  A simplified surface plot for minimum carton sizes that can be handled 

 

 

Now these two surfaces can be combined and represented as a single plot (shown in 

figure 5-4). The figure shows that the carton size range that the 2 head rotary machine 

can handle is largest (ranging from 0.108 to 11.5 mm
3
). However, the maximum 

possible production rate that can be achieved with this variant is only 135 cartons per 

minute (CPM). Similarly the 3 head rotary machine can handle a smaller range of 

carton sizes (ranging from 0.128 to 7.722 mm
3
) and is capable of running at the 

production speeds up to 270 CPM. The 4 head rotary machine, however, does not 

follow the same trend. It can handle a better range compared to the 3 head rotary 

system when it comes to handling maximum carton sizes and is not very far away 

either for handling cartons of smaller sizes either (ranging from 0.168 to 8.763 mm
3
).  

 

Figure 5-5 shows the further plotting of carton size ranges that various variants can 

handle. It is clear from the figure that at least two machine variants SL 902 and SL 

903 are redundant. Their functionality can be achieved by variants SL 6000 and SL 

904 respectively, if these machines are made capable of running at their full 

production speed capabilities. 
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On the other hand, as observed earlier, the 4 head rotary machine is better at handling 

maximum carton sizes when compared to the 3 head rotary machine. Also it is not far 

off from 3 head rotary machine when it comes to handling cartons of smaller sizes. 

Now it may also be possible to extend the minimum carton sizes range that it can 

handle to 7.722 mm
3 
from 8.723 mm

3
 without affecting its productivity. If that is 

possible then the entire 3 head rotary machine range is redundant. There is only a 

need of two machine variants that can satisfy all the performance demands being met 

currently. 
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Figure 5-4 Combined plot of the surfaces 
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Figure 5-5 Operating ranges of various instances 
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5.2 Discussion 

This case study presents a simplified investigation of the proposed multi-instance 

modelling approach. In this particular case, the proposed approach helped in 

rationalising the current range of products by identifying redundant design variants.  It 

is shown here that even in the absence of complete design knowledge, the proposed 

approach can be applied and current design variants investigated. The designer can get 

sensible results by re-formulating the limited data available and such an investigation 

can help the top management of the enterprise as well in deciding their future strategy 

regarding supporting the current machine variants.  
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Chapter 6: Case study 2 – Experimental investigation 

is possible 

 

The previous chapter described a case where the proposed multi-instance modelling 

approach was applied to an example where only isolated machine instances were 

available. There was a little information regarding the designs and an investigation 

was performed using the proposed approach. This chapter introduces another 

application of the proposed technique when experimental investigation can be carried 

out to understand the existing designs better.  

 

For this purpose, a carton erection machine is analysed for its ability to erect cartons. 

This machine is normally supplied by various manufactures (mainly SMEs) with 

different setup configurations (parameters). The performance of the machine is 

believed to be directly affected by these parameters. However there is little known 

about their effects on the machine performance. Thus the setup parameters of the 

carton erection machine are investigated here. The different available setup 

configurations in this case are assumed to be base instances for the multi-instance 

modelling approach and the design space between these configurations is further 

explored to investigate design sensitivity to its set up parameters and establish best 

machine settings for erecting cartons. 



 80 

6.1 Background 

As described the previous chapter the purpose of this machine is to erect cartons 

(supplied in the form of pre-folded, flattened skillets), insert product in them and 

finally seal them. A common method to carry out the skillet erection process is using 

epicyclic mechanism (figure 6-1).  

 

 

Figure 6-1Carton erection process using epicyclic mechanism 

 

Ideally skillets should open in a parallelogram fashion as shown in figure 6-1. But 

under certain conditions these skillets tend to buckle (figure 6-2). Here the process is 

same as in figure 6-1, but in part (1) there is no initial separation of the sides. In parts 

(2) and (3) the sides stick together instead of being separated and in part (4) improper 

opening has occurred. The reasons for this buckling are still not well understood.  
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Figure 6-2 Buckling in skillet erection process 

 

 

Figure 6-3 Machine settings investigated 

  

Several factors have been identified, in the previous research work (Sirkett et al. 

2007), which are thought to predispose a skillet to buckling. These factors include 

initial opening of skillet walls (termed “plim”), stiffness of the board and creases in 

relation to the size of skillet, the position and orientation of the backstop (figure 6-3, 

left), positioning of vacuum cup with respect to leading crease (figure 6-3, right) and 
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production speed. These factors can be broadly classified into three categories: 

environmental conditions (storage conditions and moisture content that affects plim), 

material properties and machine setup (production speed, backstop angle and location 

of vacuum cup with respect to leading crease of skillet). The complex 

interrelationships between these factors govern the carton erection process. There is 

little known so far about these complex interactions that take place during the erection 

process and the reasons for buckling of the cartons. However past experiences show 

that buckling is more likely to occur at higher production speeds. It is thought that by 

establishing the best machine settings, buckling of the cartons can be reduced to some 

extent. 

 

Sirkett et al. (2007) created a finite-element computer simulation of carton processing 

to determine ideal machine settings. This carton model was validated against 

experimental results and this showed a good agreement with the physical system. The 

model can be used to study the effects of variation in material properties, pack 

properties (carton design) and machine settings. Sirkett et al. experimented with three 

machine settings (production speed, backstop angle and vacuum cup position) in order 

to investigate response (opening of cartons). Their effect on carton erection was 

studied and validated by analysing the computer model and actual experimentation on 

the machine. This study provided a valuable insight into the effects of changing 

machine settings on the carton erection process at various production speeds. 

However it incorporated one-factor-at-a-time approach, where effects of changing 

machine settings on carton buckling was studied individually.  

 

In order to investigate the effects of interactions present between different factors, 

another study (Singh et al. 2008b) was conducted. This was essentially an 

experimental investigation on an actual machine and it is used here to illustrate how 

the proposed approach can be used with relatively little data and when that data is 

used to obtain some form of computational model.  

 

The machine settings were tested by varying the three different factors (production 

speed P, backstop angle A, and vacuum cup location C). The performance of the 

system was taken as the “opening ratio” R. This quantifies the buckling (distortion) in 
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the skillet walls. It is the ratio of cross sectional area of a partially open carton, Ab, to 

the area, A, of the parallelogram representing a non-distorted carton (figure 6-4). 

AAR b /=
                     

 

 

Figure 6-4 Quantification of buckling 

 

A perfectly opened carton has a parallelogram shape without any distortion in the 

carton walls and the value of the R in that case would be 1. Any other value less than 

1 signifies the presence of buckling. It was shown by Sirkett et al. that the settings 

that produce opening ratio less then 0.6 are less likely to open up during the later 

stages of the erection process and can cause machine jamming. 

 

The values for the opening ration R obtained for various combinations of the factor 

are shown in table 6-1. These combinations were actually chosen using techniques 

from the design of experiments but for the moment that fact is ignored. The results are 

thus simply values of R for some (arbitrary) combination of the inputs. 
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Table 6-1 Box-Behnken design with actual/coded values for various factors and their responses 

 

 

Experiment Production speed 

(P) 

Backstop angle 

(B) 

Vacuum cup location 

(V) 

Opening ratio 

(R) 

1 150 (-1) 0 (-1) 38 (0) 0. 8812 

2 150 (-1) 30 (+1) 38 (0) 0 

3 250 (+1) 0 (-1) 38 (0) 0.3839 

4 250 (+1) 30 (+1) 38 (0) 0 

5 150 (-1) 15 (0) 30 (-1) 0.9277 

6 150 (-1) 15 (0) 46 (+1) 0.9697 

7 250 (+1) 15 (0) 30 (-1) 0.1854 

8 250 (+1) 15 (0) 46 (+1) 0.7306 

9 200 (0) 0 (-1) 30 (-1) 0.47303 

10 200 (0) 0 (-1) 46 (+1) 0.6145 

11 200 (0) 30 (+1) 30 (-1) 0.5765 

12 200 (0) 30 (+1) 46 (+1) 0 

13 200 (0) 15 (0) 38 (0) 0.5356 

14 200 (0) 15 (0) 38 (0) 0.7080 

15 200 (0) 15 (0) 38 (0) 0.5667 
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6.2 Exploring setup parameters sensitivity – a simplified 

investigation based upon the experimental results 

 

Figure 6-5 A simplified investigation 

 

Using the proposed visualisation technique the results can be displayed as shown in 

figure 6-5. Here the response values (opening ratio, R) obtained for various machine 

settings (B & V) at different production speeds (P) are plotted in the figure. It is clear 

from the figure that opening ratio decreases with increase in the production speed. 

Increase in the backstop angle (B) also decreases the opening ratio. The increase in 

vacuum cup location (V) increases the opening ratio, however this effect is small 

when compared to other effects due other two factors. The figure also shows the 

machine is capable of erecting cartons (R>0.6) at production speeds of 250 CPM 

when backstop angle is inclined to 15 degrees and vacuum cup location is 46mm. 

 

Thus the diagram provides a rough picture of how the machine behaves. As noted in 

the last section, the combinations used in table 6-1 are not arbitrary but are based on a 

Box-Behnken design from the design of experiments. These designs are response 

surface designs that can fit a full quadratic model (Khuri & Cornell 1987). 
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Figure 6-6 Box-Behnken design 

 
 

In Box-Behnken design, the experiment combinations are designed at midpoints of 

the edges of the process space and at the centre (shown in figure 6-6). The 

experiments thus generated (in both coded variables and real world units) are shown 

in table 6-1. Once results were obtained, the response surface methodology (RSM) 

was used to derive a mathematical model. The generated (fitted) model is shown 

below: 

 

22 100.0287.0

180.0126.0124.0019.0222.0185.0603.0

VB
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+−

−++−−−=
  (1) 

 

where R is the opening ratio, P is production speed, B is the backstop angle and V is 

the position of vacuum cup from the leading crease X of the skillet. The fitted model 

(equation 1) helped in establishing the optimal setting for erecting cartons at high 

speeds. The predicted results were further validated by performing production trial 

runs at the new optimised settings. 
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6.3 Exploring setup parameters sensitivity – a thorough 

investigation based upon the fitted model 

The creation of equation (1) as a “model” of the system means that a greater level of 

investigation can be undertaken. In particular, it can be used to explore the sensitivity 

of the machine to changes in its set-up parameters. Such an analysis can help in 

refining existing design. The rest of section simply gives some examples of such 

analysis. 

 

To fit this analysis into the approach of this thesis, the known working set-up 

configurations are here considered as different instances of a successful design. The 

machine is originally designed to run at P = 250 CPM (cartons per minute) and there 

are three known setup configurations of the carton erector machine.  

 

Configuration 1  

This is the initial configuration of the machine with which it was supplied by its 

manufacturer. The angle of the fixed backstop (B) is 15 degrees (to the vertical) and 

the location of the vacuum cup (V) is 30 mm (figure 6-3) from the leading crease of 

the skillet to be erected. 

 

Configuration 2 

This is the configuration proposed by Sirkett et al. (2007). In this configuration the 

backstop angle (B) is inclined at 0 degrees (to the vertical) and location of the vacuum 

cup (V) is again 30 mm from the leading crease of the skillet to be erected. 

 

Configuration 3 

This configuration was predicted by Singh et al. (2008b) and is thought to be the 

optimal configuration for erecting cartons at high speeds. In this configuration the 

backstop (B) is inclined at 8 degrees (to the vertical) and location of the vacuum cup 

(V) is 46 mm from the leading crease of the skillet. 

 

It is interesting to know what the solution space looks like between these 

configurations. The measure of performance in this case is how efficiently a particular 
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configuration erects the skillets and for this purpose the fitted model (equation 1) is 

used to predict the opening ratio R. 
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6.3.1 Parametric morphing of the given configurations 

The parametric morphing is then conducted to generate the interpolated solution 

space. As mentioned earlier, for the purpose of morphing and obtaining opening ratios 

for various interpolants, the quadratic model proposed by Singh et al. (2008b) is used. 

As the machine is designed to operate at various production speeds (upper limit is 250 

CPM), it is desirable to investigate the setup parameters sensitivity at different speeds. 

The configurations 1, 2 and 3 are represented as three base instances and weights are 

taken as α1 =γ, α2 = β and α3 = α respectively. The surface resulting in-between them 

shows the design interpolants. The height of the surface at any point gives the value of 

opening ratio produced by a particular instance generated at that point. 

 

Case 1 (P = 150 CPM) 

Consider the first case with the production speed of 150 CPM. The three 

configurations are morphed and opening ratios for various interpolants are calculated 

using the fitted model. It is then recorded and plotted according to the proposed 

visualisation strategy. The resulting surface is shown the figure 6-7. 

 

 

Figure 6-7 Opening ratios for various configurations (P = 150) 
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The resulting surface is almost flat. It means that the machine has got a little or no 

sensitivity towards change in setup parameters. This also validates the observation 

that machine performs well at low production speeds. Figure 6-8 shows the side view 

of the same surface as well as the acceptable limit of the opening ratio (R>0.6). 

 

 

 

Figure 6-8 Side view of the surface (P = 150) 

 

It is clear from the figure that all of the designs generated as a result of parametric 

morphing, perform well over the acceptable limits of the required performance 

criteria. However a better solution (point ‘a’ in the figure) is found lying between 

configurations 1 and 2, where the weights at the corresponding instances are 0.3 (γ) 

and 0.7 (β) respectively. The opening ratio found at this point is 1.019.  

 

Case 2 (P = 175 CPM) 

The production speed of 175 CPM is considered during the second case. The resulting 

surface is shown in figure 6-9.  This also results in almost flat surface indicating that 
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machine is still little sensitive to the setup parameters. The overall height of the 

surface, however, is dropped in this case. This is clearly a sign of decreasing 

performance values for each of the interpolants generated as a result of morphing. 

 

The side view of the same surface in figure 6-10, shows that all the generated designs 

are still over the acceptable limits of the performance criteria. This means that any 

configuration of the machine (within the morphed region) can be used to erect cartons 

efficiently.  

 

 

Figure 6-9 Opening ratios for various configurations (P = 175) 

 



 92 

 

Figure 6-10 Side view of the surface (P = 175) 

 

The best instance found in this case is configuration 3 with an opening ratio of 0.905. 

 

Case 3 (P = 200 CPM) 

Now consider the case of production speed at 200 CPM. It can be seen that the surface 

is comparatively less flat this time (figure 6-11 and 6-12). This is an indication of 

sensitivity of the machine to setup parameters at higher speeds.  

 

Figure 6-12 shows that not only is the surface less flat but also some of the region on 

the surface is also lying below the acceptable performance limits. The configuration 2 

produces smallest opening ratio and is no longer acceptable for performing the carton 

erection operation. The other two configurations are still good and over the acceptable 

performance limits. The acceptable region on the resulting surface is shown in figure 

6-13. The best instance found in this case is configuration 3 with an opening ratio of 

0.847. 
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Figure 6-11 Opening ratios for various configurations (P = 200) 

 

 

Figure 6-12 Side view of the surface (P = 200) 



 94 

 

 

Figure 6-13 Acceptable region (P = 200) 

 

Case 4 (P = 225 CPM) 

In this case the production speed is further increased to 225 CPM. The resulting 

surface is shown in figure 6-14. The flatness of the surface is further decreased now 

and both configurations 1 and 2 are now lying below the acceptable performance 

levels (figure 6-15). 

 

It can be seen that the machine is more sensitive to setup parameters now. The 

acceptable region in this case has substantially reduced as shown in figure 6-16. The 

best instance found in this case is configuration 3 with an opening ratio of 0.788. 
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Figure 6-14 Opening ratios for various configurations (P = 225) 

 

Figure 6-15 Side view of the surface (P = 225) 
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Figure 6-16 Acceptable region (P = 225) 

 

Case 5 (P = 250 CPM) 

Finally machine setup is investigated at maximum production speed of 250 CPM. The 

results even in this case are following the earlier trend. The machine is very sensitive 

to the setup parameters as clear from the resulting surface (figures 6-17 and 6-18). 

 

Both configurations 1 and 2 in this case are also lying below the acceptable 

performance levels. The overall height of the surface has dropped as well. There is 

small acceptable region of the interpolated designs is left in this case (figure 6-19). 

The best instance found in this case is configuration 3 with an opening ratio of 0.730. 
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Figure 6-17 Opening ratios for various configurations (P = 250) 

 

Figure 6-18 Side view of the surface (P = 250) 
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Figure 6-19 Acceptable region (P = 250) 
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6.4 Discussion 

To sum up the results, all the surfaces produced so far can be plotted together as 

shown in figures 6-20 and 6-21. The figures show the solution space for the carton 

erector machine for its various configurations at different production speeds. It is clear 

from the figures that machine sensitivity to the setup parameters increases with an 

increase in the production speed. There were three setup configurations investigated. 

At lower speeds (<175 CPM) any configuration can produce desired results. However 

at higher speeds the configuration 2 is the most sensitive and skillet buckling is highly 

likely to occur with this setup. 

 

Configuration 1 is more promising and can be used up to the production speeds of 200 

CPM. Configuration 3, however, is the least sensitive to the production speeds. It 

produced acceptable results across the entire range of production speeds. Figure 6-19 

shows that there is whole set of solutions that can produce desired results at higher 

speeds, though selecting configuration 3 would be the most sensible thing to do as it 

produces the highest opening ratio among all the results. 

 

An important point here is to keep in mind that these results are based upon the model 

fitted by Singh et al.(2008b). It is not the ultimate aim of the thesis or this chapter to 

identify the best settings of the carton erection machine, instead to illustrate the 

applicability of the proposed approach in visualising the solution space and the 

sensitivity of a machine to its setup parameters. 
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Figure 6-20 Opening ratios for various configurations at different speeds 

 

 

Figure 6-21 Side view of the surfaces 
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This case study shows an application of the multi-instance modelling approach when 

the computer based models are absent. The proposed approach in this case helped in 

refining the machine design by evaluating its sensitivity to setup parameters and 

determining the best machine settings for erecting cartons at high speeds. Earlier 

research work showed that the carton erecting machine was sensitive to its setup 

parameters and its ability to erect cartons was affected at higher production speeds. 

The approach helped in visualising machine’s sensitivity at different production 

speeds and highlighted its performance capabilities. Thus the design knowledge 

regarding the current machine design is increased. 
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Chapter 7: Case study 3 – Computer based models are 

available 

 

Chapter 4 introduced an approach of multi-instance modelling in order to explore the 

design space that exists between various instances of a design. The aim is to 

investigate the product variants which essentially possess the same topology. There 

are also three distinct situations identified in chapter 4 for the applicability of the 

proposed approach.  

 

This chapter describes a situation where the computer based models are available to 

the designer. The designer is interested in knowing the performance capabilities of the 

current design models and to investigate possibilities of finding better solutions. The 

advantage of computers based models is that the designer can run any number of 

experiments with ease. These models can accurately predict the performance 

characteristics of a machine/mechanism system. Any changes made to the parameter 

and the effect on the overall system performance can be studied. The models can be 

further analysed and optimised to serve the required (or changed) levels of the 

performance. However, due to black box optimisation methods one can end up with 

numerous feasible solutions. There can be further investigation required to see how 

optimal these solutions are and what is their sensitivity to small changes in the 

parameter values.  

 

The following case study shows the applicability of the proposed approach to these 

kinds of situations. 
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7.1 Catalogue selection 

This section discusses a particular case study example which is based around the use 

of a catalogue of mechanisms. These mechanisms such as four bar and five bars are 

widely used in applications such as pick and place operations, windscreen wipers and 

automobile hoods. A common design task is the selection of a mechanism to achieve 

a prescribed motion. Before the advent of computer aids, one starting point for the 

design of such mechanisms was an atlas of standard mechanisms and the output 

curves that they generate. Today such paper-based catalogues can be set up 

electronically (McGarva & Mullineux 1993). One way to do this is to create a 

parametric model of one or more standard mechanism types. Each is then run with a 

range of choices of the parameters. If the parameter choice is inappropriate, the 

mechanism does not cycle correctly and is not considered. When proper operation 

occurs, the mechanism is stored in a disc data file in terms of its type and parameters 

values, and its corresponding output path. 

 

The path can be stored as a collection of points. However, an alternative is to treat the 

path as a closed planar curve and to form its (complex) Fourier coefficients (McGarva 

& Mullineux 1993; Singh et al. 2008a). These coefficients can then be stored instead 

of points on the path. When a new path is given and a mechanism is sought to create 

it, the first stage is to find its Fourier coefficients. These are then compared with those 

stored in the catalogue. Comparison is by taking the sum of the squares of differences 

of corresponding values (Euclidean distance). Mechanisms with low sum values are 

good. These provide candidate mechanism which can achieve the path required. 

 

In some cases, the “best” mechanism found in this way is good enough to be carried 

forward into the next stages of the design process. In other cases, there may be other 

limitations on what can be done, and so the list of possible candidates needs to be 

inspected. If none is found to be suitable, then one strategy is to try adjusting the 

parameters of one such candidate mechanism in order to try to improve the selection. 

Such adjustment can be made manually (assuming a suitable parametric modeller is 

available). The problem with manual adjustment is that there may be a large number 

of degree of freedom: for instance a four bar linkage has nine independent parameters. 

This makes it a cumbersome process as each parameter can be varied independently 
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and in combination with others. It may also be hard to define clear boundaries (limits) 

on these parameters. Thus the number of iterations required in order to search for a 

suitable mechanism can be high. 

 

The proposed multi-instance modelling approach can be helpful in this kind of 

investigation (Singh et al. 2008b). Its starting point is a number of successful 

instances of a design. Their parameters are varied within the limits placed by the 

initial parameter values of the base designs (starting instances). The fact that the 

instances are good designs suggests that some of the required relations between the 

parameters are already satisfied. The designs thus generated within the interpolated 

space can represent a successful assembly given the fact that base instances share 

same topology. This approach thus reduces the number of iterations (searches) that 

needs to be performed and also provides a visual feedback about the generated design 

spaces. The chance of finding a better solution is higher as the search is based upon 

the successful (working) instances of a design. 

 

Another approach is to use some form of automatic optimisation scheme. If it is just a 

question of path matching, then the objective function for the optimisation is the 

comparison value between the Fourier coefficients and the variables are the 

parameters describing the mechanism. One drawback with the optimisation process is 

that as the search is automatic, the designer has little information about how well the 

search has performed or the sensitivity of the resulting solution to small changes in 

the mechanism parameters. Such feedback can be provided to the designer by giving 

some means to visualise the design space. 

 

The following sections describe such a situation where a path is given and the 

designer need to select an appropriate mechanism from the catalogue. The solution 

instances thus generated closely follow the given path. However, the designer may be 

interested in knowing the solution space that exists between the selected design 

instances. There is also a possibility that a better design can be found by exploring 

this solution space using the multi-instance approach proposed earlier. 
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7.1.1 Case of three design instances: example 1  

As an illustration, consider the three mechanisms shown in figure 7-1. These are all 

obtained from a catalogue as providing paths which match closely the prescribed path 

also shown in the figure. It is clear that these mechanisms are similar to each other 

with same topology. These mechanisms are now investigated with the proposed 

morphing approach in order to find a better solution, if one exists. 

 

 

Figure 7-1 Given path and three base mechanisms 

 

These three instances are taken as successful design instances and morphing between 

them is undertaken as previously described in chapter 4. However first two stages of 

the proposed approach (identification of the variants and initial modelling) are not 

applicable here as the parametric models of these instances are already available. The 

notation of a typical four bar mechanism is depicted in figure 7-2 and the key 

parameters that contribute to the functionality of the selected mechanisms are listed in 

table 7-1.   
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Figure 7-2 Four bar mechanism notation 

 

Table 7-1 Key parameters of the instances selected from a catalogue 

Parameters Instance (A) Instance (B) Instance (C) 

First pivot x coordinate 1.31 2.5 1.99 

First pivot y coordinate -4.19 -3.41 -3.06 

Second pivot x coordinate -3.26 -3.51 -2.76 

Second pivot y coordinate -3.06 -0.63 -2.05 

Crank length 1.18 1.66 1.62 

Coupler length 3.54 4.97 4.86 

Driven length 3.54 4.97 4.86 

Offset point X coordinate 0 2.6 0 

Offset point Y coordinate -5.3 -5.1 -4.86 

Start angle -197 -202.80 -198.252 

 

Each newly created instance, as a result of parametric morphing, is cycled and its 

output compared with the given path. The performance value in this case is the ability 

of a mechanism to closely follow the prescribed path and thus inversely proportional 

to the error values generated in matching the given path. As explained earlier, this 
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error value is sum of the Euclidean distance between the Fourier coefficients of the 

required path and the generated path. A value of zero is ideal which means that the 

generated instance exactly follows the required path. The error value for each instance 

produced as the result of morphing is held and used to plot the surface shown in figure 

7-3. These values for the base instances A, B and C are 0.50, 0.53 and 0.55 

respectively. It is assumed that any instance providing a lesser value is better 

performing than the base instances. 

 

Figure 7-3 Result of morphing between the base mechanisms 

 

The surface is roughly flat. However there is a minimum value of the error value 

within the triangle and this represents a better mechanism providing a better path 

match than the original three. The flatness of the surface suggests that the three 

candidate mechanisms are similar and that any solution in the triangular region is 

likely to be insensitive to small changes. The minimum (best solution) in this case is 

found at a location that corresponds to weights values of 0.4, 0.6 and 0 placed at the 

instances A, B and C, respectively. The mechanism thus produced is depicted in 

figure 7-4. The error in reproducing the given path by the instance at this point is 

0.38.  
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Figure 7-4 Improved mechanism  

 

The proposed approach also helps to divide the design space in order to magnify the 

region of interest. In this case the triangular representation ABC is divided into two 

halves namely, ABC’ and ACC’ (figure 7-5). As the minimum lies in the triangular 

region ABC’, this region can be further explored by performing the parametric 

morphing. The instances at points A, B and C’ are taken as the base instances this 

time. The resulting surface is also shown in the figure. The location of the minimum 

in this region is found to be the same as the previous optimal solution (weights at, 

A=0.4, B=0.6 and C’=0, error = 0.38).  

 

In the previous two iterations the step size for the parametric morphing was kept 

constant. It is, however, interesting to see how the error values change when the step 

size is further reduced (halved). Reducing step size essentially means conducting a 

finer search. In the next experiment the step size is reduced to half and the resulting 

surface generated is shown in figure 7-6. 
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Figure 7-5 Division of the design space 

 

 

Figure 7-6 Resulting surface with step size = 0.5 
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A better minimum is found in this case with an error value of 0.3767. It is located at a 

point corresponding to the weights of 0.35, 0.6 and 0.05 placed at the instances A, B 

and C’, respectively. The parametric description of the generated mechanism is given 

in table 7-2. 

 

Table 7-2 Key parameters of the generated instance 

Parameters Instance producing 

minimum error 

First pivot x coordinate 2.07 

First pivot y coordinate -3.68 

Second pivot x coordinate -3.40 

Second pivot y coordinate -1.52 

Crank Length 1.49 

Coupler Length 4.46 

Driven Length 4.46 

Offset point X coordinate 1.63 

Offset point Y coordinate -5.16 

Start angle -200.54 

 

A further reduction of the step size (step = 0.1) is carried out in the next experiment. 

The resulting surface produced is shown in figure 7-7. 
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Figure 7-7 Design space with step size = 0.1 

 

Another better minimum is found in this case with an error value of 0.373. It is 

located at a point corresponding to the weights of 0.37, 0.58 and 0.05 placed at the 

instances A, B and C’, respectively. The parametric description of the generated 

mechanism is given in table 7-3. 

 

Table 7-3 Key parameters of the instance generated with step size = 0.1 

Parameters Instance producing minimum error 

First pivot x coordinate 2.05 

First pivot y coordinate -3.69 

Second pivot x coordinate -3.40 

Second pivot y coordinate -1.56 

Crank Length 1.48 

Coupler Length 4.44 

Driven Length 4.44 

Offset point X coordinate 1.57 

Offset point Y coordinate -5.17 

Start angle -200.43 
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Comparing table 7-2 and table 7-3, the values of the different parameters of the two 

mechanisms generated are not far off. The search can be further narrowed, however it 

may not be cost effective to manufacture a mechanism with such a dimensional 

accuracy. The mechanism resulting form the last iteration is shown in figure 7-8. 

 

 

Figure 7-8 Resulting mechanism 
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7.1.2 Case of three design instances: example 2 

Three other mechanisms producing good matches to a given path are shown in figure 

7-9. These again come directly from a search of the catalogue. When these are 

morphed and the resultant mechanisms tested, the surface obtained is that shown in 

figure 7-10. 

 

Figure 7-9 Given path and a set of three base mechanisms 

 

What is now seen is that the surface is considerably less flat. There is a ridge 

separating one vertex from the other two. This suggests that the isolated vertex 

represents a mechanism which, in some sense, belongs to a different class. The other 

two can be thought of variations of each other. It is obvious in figure 7-9 that 

mechanism C is inverted in comparison to mechanisms A and B. The surface in figure 

7-10 confirms this. A lowest point in the surface is still available and represents a 

better choice than any of the initial three.  
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Figure 7-10 Surface resulting from morphing the base instances 

 

 

 



 115 

7.1.3 Case of four design instances: example 1 

Figure 7-11 shows four candidate mechanisms selected from the catalogue. Their 

parametric description is given in table 7-4. These can also be morphed and each new 

instance evaluated against the prescribed path. As mentioned in the previous chapter 

the order in which the original four are taken does now affect the resultant surface. 

One such is shown in figure 7-12.  

 

 

Figure 7-11 Given path and four base mechanisms 

 

Table 7-4 key parameters of the instances selected 

Parameters Instance (A) Instance (B) Instance (C) Instance (D) 

First pivot x coordinate -6.77 -10.98 -5.76 -9.37 

First pivot y coordinate 5.01 7.47 7.73 12.50 

Second pivot x coordinate 0.10 -0.28 0.55 -0.63 

Second pivot y coordinate 1.42 1.91 0.77 4.80 

Crank length 3.88 4.01 3.12 2.90 

Coupler length 7.75 12.07 6.27 8.71 

Driven length 7.75 12.07 9.40 8.71 

Offset point X coordinate 3.88 6.02 3.12 8.71 

Offset point Y coordinate -7.75 -12.07 -9.40 -13.09 

Start angle -195.98 -198.28 -213.78 -216.08 
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 Figure 7-12 Four-sided surface 

 

The error values produced by the base instances A, B, C and D in reproducing the 

specified path are 0.684, 0.97, 1.02 and 1.26 respectively. It is seen that the surface is 

roughly flat with a minimum, corresponding to a better choice, lying on the 

interpolation between the instances A and B. The minimum is found at a point 

corresponding to weights 0.9, 0.1,0 and 0 at the instances A, B, C and D, respectively 

with an error value of 0.683. The resulting mechanism is shown in figure 7-13. 
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 Figure 7-13 Produced instance 

 

 Now the search is narrowed by first dividing the surface to region of interest only 

(AB’C’D’, shown in figure 7-14). 

 

Figure 7-14 Division of the surface 

 

A, B’, C’ and D’ now serve as base instances. A further parametric morphing is 

carried out with the same step size. The resulting surface is shown in figure 7-15. 
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 Figure 7-15 Divided surface 

 

A better minimum, with an error value of 0.6809, is found at a point where weights 

are 0.9, 0.1, 0 and 0 corresponding to the instances A, B’, C’ and D’, respectively. 

The parametric description of the instance produced at this point is given in table 7-5. 

 

 Table 7-5 Parametric description of the instance generated 

Parameters Instance producing minimum error 

First pivot x coordinate -7.02 

First pivot y coordinate 5.16 

Second pivot x coordinate 0.08 

Second pivot y coordinate 1.45 

Crank Length 3.88 

Coupler Length 8.013 

Driven Length 8.013 

Offset point X coordinate 4.01 

Offset point Y coordinate -8.013 

Start angle -196.12 
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The minimum lies on the edge AB’ of the surface. It is also interesting to know how 

the design space looks like on the other side of this edge of the surface. For this 

purpose, one can extrapolate away from the edge. Figure 7-16 below shows the same 

design space (figure 7-15) with edge AB’ extrapolated further to A1B1’. 

 

Figure 7-16 Extrapolated surface 

 

 

Figure 7-16 highlights two main features of the design space in this case: 

� Location of the minimum stays the same as of the previous step. 

� The error values starts to rise again as one move away from the base instances 

(A & B’). 

As no better solutions are found during extrapolation, the design space generated in 

the previous step (figure 7-15) is further explored for better solutions in the following 

steps. 
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 Figure 7-17 Surface produced using step size = 0.5 

 

The search is further narrowed by reducing the step size (= 0.5, figure 7-17). The 

location and value of the minimum found in this case is still the same as of the 

previous step with step size of 1. 

 

With further reduction in the step size (step = 0.1) a better minimum is found at a 

point, where weights at the instances A, B’, C’ and D’ are respectively 0.9207, 

0.0693, 0.0007 and 0.0093. The error value in reproducing the given path in this case 

is 0.680379. The search here is not carried out further as the error value is not 

reducing to a great extent. The mechanism found in this step is considered to be the 

best one and is shown in figure 7-18. 
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 Figure 7-18 Mechanism generated 
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7.1.4 Case of four design instances: example 2 

Figure 7-19 shows the same (earlier) example with the exception of mechanism D. 

Mechanism D has been intentionally replaced by one whose path is close to the given 

figure of eight but which is roughly elliptical. The resulting surface is shown in figure 

7-20. It is clear by comparing figures 7-12 and 7-19 that the relationship between 

mechanism A, B and C holds the same as of the earlier case. A better choice is still 

lying on the interpolation between mechanisms A and B. However performance of the 

mechanism D is changed significantly; Point D on the surface is approximately raised 

by a factor of 3 (error = 3.64). There is a ridge separating mechanism D from others 

which indicates that this belongs to a different class. In this particular case, even 

though mechanisms (A, B, C & D) shown in figure 7-19 look similar, the ridge in 

resulting surface shows that mechanism D belongs to a different class. It also 

validates the objective function used which is based upon the comparison value 

between the Fourier coefficients of the prescribed path and the generated path.  

 

 

Figure 7-19 Four mechanisms with one following different path 
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 Figure 7-20 Resulting four sided surface 
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7.1.5 Case of optimisation 

This example is a continuation of example 1 (figure 7-1) for the path matching where 

three mechanisms were selected from a catalogue to achieve a desired path. However 

the designer may further want to optimise these designs. This can be done by using 

any optimisation scheme where objective function is the comparison value between 

the Fourier coefficients and the variables are the parameters describing the 

mechanism. 

 

In this case the mechanisms obtained from the catalogue are further optimised and an 

optimal solution generated for each one of them (shown in figure 7-21). The error in 

matching the path for these mechanism are 0.1734 (A), 0.1048 (B) and 0.1654 (C). 

 

 

Figure 7-21 Given path and three optimised mechanisms 
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As discussed earlier that due to black box type optimisation one can end up with a 

solution which is a good solution to the problem, however no information is available 

about how sensitive is the design to small changes in the geometric parameters. The 

multi-instance modelling approach can help to explore such sensitivity by visually 

representing the design space that exists between the optimal solutions. Figure 7-22 

shows the design space that is generated by parametric morphing of the above 

optimised mechanisms. 

 

Figure 7-22 Resultant surface 

 

 

The surface thus produced is roughly flat. This shows the solution space between 

these instances is fairly insensitive to changes the design parameters. The 

performance values for the designs lying within the morphed space vary but certainly 

there is little variation. One important point to be noted here is that this is not a full 

analysis for the design sensitivity. This is limited to the design space bounded with 

the limits imposed by the parameter values of the base instances. 
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7.2 Discussion 

This chapter discusses a case study based upon the selection of mechanisms from a 

catalogue. The use of catalogues in one way promotes design reuse where already 

proven designs can be adapted for new requirements. In some case these designs can 

be directly used while in other cases some modifications are required to achieve the 

required levels of performance. These modifications can be done manually or 

computer based search strategies can be used to obtain an optimal solution.  

 

The proposed multi-instance modelling approach can be helpful in both cases. In the 

former case, this approach can help in locating a better solution that may lie in the 

design space between the selected design instances from the catalogue. It helps in 

grouping/differentiating these instances into families based upon their performance 

levels. The sensitivity of these design instances to the small parameter changes can 

also be predicted. In the latter case of optimisation, the proposed approach can 

identify how optimal is the solution. It may find a better solution that is missed by the 

optimiser. Nevertheless this approach helps in identifying the sensitivity of the 

optimal solutions to small parameter changes. 

 

Thus the proposed approach is useful in visualising and understanding the design 

space that exists between the known instances of a design. This case study 

successfully demonstrates a situation where computer-based models are available to 

the designer. Using the current approach, these models can be used to investigate the 

design variants and establish their performance capabilities. This can further lead to 

identification of better solutions and even sensitivity of the designs to changes in their 

parameter values can be studied.  
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Chapter 8: Multi-Instance modelling approach 

revisited 

 

The case study examples in the previous chapters highlighted the application of the 

multi-instance modelling approach in the three situations identified in chapter 4 

(section 4.4). It was shown that the proposed approach can be helpful in tackling 

various design problems when a number of design variants need to be investigated. 

Based upon the findings from the various case studies, this chapter provides an 

overview of the proposed approach.  
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8.1 Multi-instance modelling: an overview 

The proposed approach is illustrated in figure 8-1. Considering the three case studies 

discussed so far it is seen that the approach initially involves gathering information 

about existing designs. It may either be a case of simply identifying what instances 

currently exist or further involve undertaking experimental work to establish how 

design performance varies with changes in (design) parameters. This investigation can 

then lead to some form of mathematical model relating these parameters to the 

performance. The experimental investigation and/or the model effectively allow a 

greater range of design instances to be considered. 

 

 
Figure 8-1 Proposed approach 

 

From the information about design instances, surfaces of performance can be created. 

These are naturally more detailed when more information (and more instances) is 

available. The surfaces are based on the idea of morphing between design instances. 

The assumption is made that morphing between successful instances preserves any 

underlying relation between the design parameters. This is an assumption, but it is the 

one that considerably eases the burden of developing a full model of design 
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performance, and it is partly this aspect which makes the approach suitable well suited 

to SMEs with limited resources. 

 

The surface(s) produced represent aspects of the design space close to the known 

instances used. Visualisation of the surface(s) helps in focussing attention of 

particular regions of interest or concern. If necessary, the design space can be 

subdivided (section 4.3, chapter 4). Consideration of the form of the surface(s) allows 

a greater appreciation of the nature of that local design space and helps in increasing 

design knowledge regarding the design instances. In particular, insight can be gained 

in the following areas: 

• Identifying similar products: if the surface is essentially flat it suggests that 

there is no a great deal of difference between the initial design instances and 

they fall into a single family (chapter 5). This might lead into an investigation 

of whether a product range can be rationalised. 

• Identifying dissimilar products: if the surface is (highly) irregular it suggests 

that there are fundamental difference between the original design instances 

and there is more than one family of products present (chapter 7). 

• Improving products: if the surface has a well defined (local) extremum then 

this suggests that this is a design configuration which performs better than 

those around it. If it is not one of the original instances, then the new one 

might be a better design alternative than existing ones (chapter 7). 

• Identifying sensitivity issues: if a surface has steep gradient close to a design 

instance then this suggests that that design is likely to be sensitive to small 

changes in its parameters (chapter 6). This might be an indication that the 

design ought to be modified to one in a flatter region of the design space. 

 

The following section recaps the application of the proposed approach in each of the 

three identified situations. 
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8.2 Application to the three identified scenarios 

This section describes how a number of design variants can be investigated depending 

upon the type of situation involved. 

8.2.1 Isolated instances – no provision for experimentation 

In this type of situation, as highlighted in chapter 5, there is a minimal amount of 

design information available to the designer. Further, there may not be any provision 

for conducting any experimental work. In this case, only a simplified investigation 

can be performed.  The designer can use the limited information available (as shown 

in chapters 5) to obtain a rough representation of the design space. Such a 

representation can still help in increasing the current design knowledge regarding 

products. 

8.2.2 Experimental investigation is possible 

In this type of situation, a number of design variants are available to the designer and 

also there is provision for carrying out experimental work in order to establish 

performance characteristics of the design instances. The visualisation stage of the 

proposed approach can be applied to the experimental results in order to gain a better 

understanding of the system. An application of the proposed approach in this type of 

situation is given in chapter 6. In that particular case, it helps in determining optimal 

setup parameters for a carton erection machine. 

8.2.3 Computer based models are available 

When a computer based model is available that can predict performance capabilities 

of current designs, it can be used to explore the instances between the base design 

variants. This allows more complete surfaces to be created to represent the design 

space. This can help the designer in a number of ways that include identifying better 

design solutions, identifying similar/dissimilar products and exploring sensitivity of 

designs to their design parameters. An application of the proposed approach in this 

type of situation is shown in chapter 7. 

 

It is also interesting to note that these three situations are not distinct. They merge one 

into another. One can start with the limited information available about the designs 

and gain further insights by representing that information in visual form (surfaces). 
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This is the case of isolated machine instances. If some experimental investigation can 

be carried out for further analyses of the designs, there is a move towards the second 

situation. If using the experimental results obtained, one can fit some sort of 

mathematical or parametric model then this leads into the third situation where a 

model of the system is available. The next chapter presents such a case study in which 

all three situations are present. 
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Chapter 9: Case study 4 – Investigation of forming 

shoulders using multi-instance modelling approach 

 

This chapter investigates a vertical form fill and seal (VFFS) machine for its 

performance capabilities using the proposed multi-instance modelling approach. A 

VFFS machine incorporates a forming shoulder for making bags/pouches of packaged 

products. Generally, a different shoulder is used for every product/material type due 

to limited understanding of the relationship between machine and material interface 

which dictates the performance capabilities of the machine. This makes forming 

shoulders a crucial component for these machines. The current design practice for 

these shoulders is to select them heuristically and then to test for a particular type of 

packaging material. This process is not only error-prone but also costly and time 

consuming. It presents a situation where machine manufacturers lack the full 

understanding of machine-material interactions. 

 

This case study investigates a number of forming shoulders using the proposed 

approach with an aim to increase current design knowledge relating machine-material 

interactions that take place during packaging operations. All the three situations 

identified earlier in chapter 4, namely isolated machine instances, experimental 

investigation is possible and computer based models are present, are examined here. 
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9.1 Background 

Vertical form, fill and seal machines are commonly used to package particulate 

products such as pasta, rice and snacks. The products are packed inside bags or 

pouches which are formed from a reel of flat packaging material film. Figure 9-1 

shows a schematic of such a machine that uses a forming shoulder. 

 

 

Figure 9-1 Schematic of a packing system using a forming shoulder Source: (Brody & Marsh, 

1997) 

 

In this packing system, film is drawn from a roll and then fed to the shoulder. The 

film is normally supplied as flat, pre-printed sheet of uniform width and is stored on a 

roll. It is guided by the forming shoulder from a flat sheet to a tubular form. During 

this process, the edges of the film are brought together and then sealed by either 

heating or gluing. This forms a tube of the packaging material. It is then cross-sealed 

at the bottom. The product to be packed is inserted from the top using a product feed 

tube. The process is then completed by advancing the material and forming a final 

seal at the top of the bag. 

 

The performance of the shoulder to successfully create a bag largely depends upon the 

surface geometry of its collar (McPherson et al. 2004), which is closely related to the 

type of packaging material and cross-section shape of the bag to be produced. As 

mentioned before, the current design practice for these shoulders is largely based upon 
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selecting and testing them for a particular type of packaging material and does not 

provide an optimal way for designing shoulders. 

9.1.1 Current design practice for forming shoulders 

 

Mullineux et al. (2007) describe the traditional process of making a forming shoulder.  

A typical shoulder is made up of two parts (namely collar and tube) assembled 

together along a curve (Figure 9-2). 

 

 

Figure 9-2  (a) Bending curve,  (b) collar,  (c) tube and (d) complete shoulder   Source: 

McPherson et al. (2004) 

 

The curve, which is termed as bending curve, can be regarded as a planar curve of 

roughly parabolic shape (part a, figure 9-2). The collar surface (upper portion) is made 

by bending a metal sheet backward to form the shoulder surface. A triangular insert is 

also included in the collar at its highest point in order to have a smooth transition of 

the film from its flat form to tubular form. The tube is made by wrapping round the 

part below the curve into a circular cylinder. The bending curve ultimately forms the 

edge over which the film passes and the overall shape of the forming shoulder depend 

upon the bending curve and the radius of the tube. 

 

This process of manufacturing forming shoulders relies on human experience and 

incorporates trial and error testing (Hicks et al. 2007). There is limited understanding 

about how the geometry of a particular shoulder affects the behaviour of different 

packaging films during the forming process. Ideally, the film should track smoothly 

across the shoulder and there should not be any permanent stretching or tearing of the 
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film. For this purpose, the shoulder has to be matched to a particular material that is to 

be run over it. It is accomplished manually by making slight adjustments to shoulder 

parameters. Normally, minor problems can be compensated by hand tuning. However, 

a complete new shoulder design can be required to tackle major problems. It can take 

up to four or five modifications before a suitable shoulder is manufactured. This 

process is both error prone and time consuming. 

 

There has been some research work undertaken in order to understand the underlying 

theory of forming shoulders so that improved means of manufacturing shoulders can 

be obtained. McPherson et al. (2004 & 2005) proposed a theoretical model of the 

shoulder which helps in defining the bending curve in mathematical form. The model 

can also help in defining the collar surface including a planar triangular insert. They 

also highlighted the four basic design parameters that define the shape of the bending 

curve and thus geometry of the shoulder. These design parameters include (figure 9-

3): 

 

 

Figure 9-3 Basic design parameters Source: McPherson et al. (2004) 

 

h : r = ratio of the overall height h of the wrapped bending curve to the radius R of the 

cylindrical tube 

θ0 = back angle, i.e. the angle between the normal to the surface and the normal to the 

tube at the highest point of the bending curve, which is then also the angle between 

the triangular insert and the vertical generator of the cylinder 
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θ 1 = front angle, i.e. the angle between the normal to the surface and the normal to the 

tube at the lowest point of the bending curve, which is also the angle between the 

tangent plane to the surface and the vertical tangent plane to the tube  

β = opening angle, i.e. the angle at the apex of the triangular insert. 

 

9.1.2 Machine-material interactions: the conventional wisdom and 

related research 

There is little known about how machine-material interactions define the performance 

of the forming shoulders. The aim is to reduce the stress produced in the packaging 

material in order to avoid permanent stretch or tearing. Research conducted by Berry 

et al. (2003), McPherson et al. (2004 & 2005), Hicks et al. (2007) and Mullineux et 

al. (2007) highlighted some interesting observations regarding effects of changing the 

main geometry parameters on the behaviour of a particular type of material. The main 

findings of their research work are listed below. 

• h:r ratio is the key design parameter among four design parameters identified. 

Once it is chosen, strict limitations are imposed upon the values of other three 

by the requirement of the geometry (Mullineux et al. 2007). 

• Material stress, which is directly proportional to pulling force (force required 

to pull a particular material over a particular shoulder), reduces with increase 

in h:r ratio. Thus, there is little damage to material at large h:r  ratios. 

However, the film’s ability to track decreases as the ratio increases. It is also 

hard to manufacture shoulders with large h:r ratios and these shoulders are 

bulky (difficult to handle and setup). A heuristic relationship of material stress 

to h:r  is shown in the figure 9-4. 

• Material stress also reduces with increase in back angle. Also according to 

theoretical model given by McPherson et al. (2004), for the given values of 

h:R , θ1 and  β,  there is only small interval of allowable values for the back 

angle and broadly speaking, back angle increase with increase in h:r  ratio.  

• Material stress increases with increase in web tension (tension in the film due 

to load at the roller, which can be varied) in the film. The process of varying 

the web tension in the film is currently used to improve tracking on the 

forming shoulder. It is believed that tracking is improved by increasing the 

web tension. 
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• Tracking can be further improved by using exact shoulders, which are made 

by milling a solid metal block using machining instructions generated from the 

geometric model (Mullineux et al. 2007). Using exact shoulders requires 

considerably less web tension when compared to the shoulders made up of 

metal sheet using traditional methods. Thus when an exact shoulder is 

designed, there is almost no need to concentrate upon the tracking aspects. 

 

 

Figure 9-4 Heuristic relationship of material stress to the h:r ratio   Source: McPherson et al. 

(2004) 

 

The following sections investigate a number of forming shoulders using the proposed 

multi-instance modelling approach. The aim is to increase current design knowledge 

regarding machine-material interactions that take place during packaging operations. 

There are three possible areas in vertical forming filling and sealing machines where 

machine and material interact. These areas are:  

1. The feed system where the film leaves the roll. 
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2. The shoulder surface over which film is dragged. 

3. The traction system below shoulder which is used to pull film through. 

Each of these tends to increase web tension in the material. According to Mullineux et 

al. (2007), the shoulder surface has the largest effect on web tension. Thus it is 

considered for further investigation. 
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9.2 Investigating forming shoulders - a case of isolated 

instances 

For the purpose of this investigation, a number of typical shoulders were taken as 

examples of isolated design instances. These were measured for their main design 

parameters (h:R , θ1, β and θ0). The variation in front angle (θ0) for these shoulders 

was found to be small (2 degree approx). So, the front angle is assumed to be constant 

across all the available shoulders. Figure 9-5 shows a plot for the remaining design 

parameters. Figure 9-6 (part a) shows the plan view of the same plot and part b fits a 

rough surface by joining the neighbouring points.  

 

 

Figure 9-5 Design parameters for various shoulders 

 

It is clear from the figure that there is a relationship between back angle (θ0) and the 

ratio h:r. The back angle increases with increase in h:r ratio. Also, there is a range of 

values for the back angle for every value of the h:r ratio. This suggests that there is 

some permissible variation in the back angle.  This observation is in agreement with 

the theoretical model given by McPherson et al. (2004). 
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(a) 

 

(b) 

Figure 9-6 Design parameters for various shoulders 
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9.3 Investigating forming shoulders – an experimental 

investigation 

The situation of experimental investigation is also possible in this case. For 

investigating shoulders with the multi-instance modelling approach three shoulders 

with same radius were selected. This helps in investigating the suitability of different 

shoulders for packing same sized bags. The selected shoulders are shown in figure 9-7 

and their description of geometries is given in table 9-1. 

 

 

Figure 9-7 Shoulders A, B, and C (from right to left) source: Royce (2008) 

 
Table 9-1 Shoulder geometries 

 Radius (mm) h:r θ0 

Shoulder A 25 2.2 20 

Shoulder B 25 3.2 41 

Shoulder C 25 4.6 65 

 

The main purpose of this investigation is to understand machine-material interactions. 

Previous studies (Berry et al. 2003, Mullineux et al. 2007) have looked at changing 

geometries of the various shoulders with different materials. However, no study has 

investigated the effects of change in material thickness. To understand how the 

thickness of a particular material affects the performance of a shoulder, this study 

mainly uses the same material with varying thickness. The material used (MonoSol 

L330) for experimentation was supplied by MonoSol LLC (MonoSol LLC 2008). 

Table 9-2 shows the thicknesses of the material used for experimentation. MonoSol 

L330 is a polyvinyl alcohol based thermoplastic film, which is soluble in cold water 

and completely biodegradable. This property makes it suitable for a range of 
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packaging applications that include dishwater detergents, liquid and powder laundry 

detergents, agrochemicals and fertilizers. 

 

Table 9-2 Thicknesses of test materials 

Material Thickness (µm) 

MonoSol L330 (30) 30 

MonoSol L330 (50) 50 

MonoSol L330 (80) 80 

 

The experimental values used in this study were obtained (Royce 2008) using the test 

rig shown in figure 9-8. The rig was built to accommodate the three shoulders. 

 

 

Figure 9-8 Test rig for experimentation source: Royce (2008) 

 

During testing the film was loaded uniformly at both ends. The roller end of the film 

was evenly loaded using weights (50g, 250g, 450g and 650g) to test films at different 

web tensions. An Instron 3365 tensile tester with a 5KN load cell was used to drag the 

film over the selected shoulders and to calculate the pulling forces required. Each test 

was repeated three times for each film on every shoulder. The tests were carried out at 

23° ±1°C room temperature and 50 ±2% relative humidity. 
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9.3.1 Multi-instance modelling 

A triangular surface is plotted whose vertices are represented by shoulders A, B and 

C. The height of the surface represents the pulling force that was required to pull a 

certain film over a particular shoulder. Another important feature used in this 

representation is the use of the natural ordering while representing these shoulders. 

The vertices are plotted by mapping h:r and back angle along x- and y- axis 

respectively. This kind of natural ordering of base instances can overcome the 

problem of multiple choices of weights that can specify any given point with in the 

polygon esp. in the case of four or more base instances (discussed in section 4.2, 

chapter 4). 

 

The first experiment was carried out using MonoSol 80 film (thickness = 80µm). 

Figure 9-9 shows the triangular surface representation of three shoulders A, B and C 

for this experiment. There are four surfaces representing the pulling forces required 

for the given shoulders at various web tensions. Figure 9-10 shows the side view of 

the same plot. It is clear from the figures that with increase in web tension the average 

pulling force required for each shoulder increases. It is also observed in this case that 

for all shoulders, irrespective of increasing web tensions, the required pulling force 

decreases with increase in h:r ratio as suggested by McPherson et al. (2004). 

 

The second experiment involved the investigation of MonoSol 50 (thickness = 50µm) 

film. Figures 9-11 and 9-12 show the average pulling force required for three 

shoulders at various web tensions. At low web tensions (50g), shoulders in this case 

also follow a similar trend as of the previous case. However, as the web tension is 

increased, shoulder B starts performing better by requiring the least amount of pulling 

force in every case. This phenomenon is amplified with further increases in web 

tension. 
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Figure 9-9 A surface plot of the shoulders for average force required to pull MonoSol 80 film 

 

 

Figure 9-10 Side view of the plot 
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Figure 9-11 A surface plot of the shoulders for average force required to pull MonoSol 50 film 

 

 

Figure 9-12 Side view of the plot 
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Similarly, the third experiment was conducted using MonoSol 30 (thickness = 30µm). 

Figures 9-13 and 9-14 show the average pulling force required for three shoulders at 

various web tensions. As noted before, at low web tensions (50g) the pulling force 

required by each shoulder decreases with increase in h:r ratio. As the web tension is 

further increased, shoulder B again starts performing better by requiring the least 

amount of pulling force in each case. The only difference in this case, when compared 

to the previous experiment with MonoSol 50, is that at higher web tensions shoulder 

A outperforms shoulder C. 

 

It is interesting to note from the above experiments that materials with high thickness 

follow the conventional wisdom i.e. the required pulling force decreases with increase 

in h:r ratio. However, a different pattern emerges as the thickness of material is 

reduced and web tension is increased. At this stage, shoulders with moderate h:r ratio 

seems to perform well when compared to shoulders with high h:r ratios. This 

observation is very useful especially as the tracking of the material improves with 

reduction in h:r ratio (discussed in section 9.1.2). Thus for thinner materials by 

selecting shoulders with moderate h:r ratios, the material stress reduces considerably. 

Comparing figures 9-10, 9-12 and 9-14 also shows that the pulling force, in general, 

increases with increase in material thickness. 
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Figure 9-13 A surface plot of the shoulders for average force required to pull MonoSol 30 film 

 

 

Figure 9-14 Side view of the plot 
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The above three experiments were conducted using the same material. Another 

experiment was conducted using a different material. For this purpose, Integr8 film 

with 32 µm thickness was used. This film is supplied by BPI films (BPI films 2008) 

and is normally used for industrial composting facilities as it breaks down easily 

leaving no harmful residuals.  

 

 

Figure 9-15 Comparison of the shoulder performances with different materials (MonoSol 30 and 

Integr8) 

 

The experiments were again conducted using the selected shoulders at various web 

tensions. Figure 9-15 shows the performance of three shoulders using Integr8 film 

along with MonSol 30 film. Both of these films have almost same thicknesses 

(Integr8 film with 32 µm thickness and MonoSol 30 with 30 µm thickness). It is clear 

from the figure that both materials exhibit very similar behaviour. Again, in both 

cases, the conventional wisdom is only followed at lower web tensions 
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9.3.2 Fitting a mathematical relationship 

The data obtained from the experimentation with MonoSol films can be used to fit a 

mathematical relationship between pulling force (F), thickness of the film (T), 

height:radius ratio (here termed as R) and web tension/film load (WT) using 

regression.  This can further help in selecting appropriate shoulder that requires 

minimum amount of pulling force required for a particular material thickness. For the 

purpose of fitting the given data, a nonlinear least square method available with 

MATLAB
TM
 was used to fit a cubic model. The cubic model had the following form. 
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Where b0, b1, …, b19 are unknown parameters. These parameters were estimated using 

the “nlinfit” function provided by the statistics toolbox of Matlab (The Math Works 

Inc. 2002). It returns the least square parameter estimates of the coefficients of a 

nonlinear regression function. The fitted model is given below: 
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This model was validated by comparing it to original experimental results. The results 

obtained from the fitted model show a close match with the experimental results. 
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9.4 Investigating forming shoulders – a mathematical 

relationship is available 

Once a mathematical model is available, it is possible to perform a greater level of 

investigation. The design space between shoulders A, B and C is explored and then 

represented using the proposed approach. It is observed that if natural ordering 

(discussed above in section 9.3.1) is applied in this case the resulting surfaces are very 

narrow and difficult to visualise. So here equilateral triangular surfaces are used to 

represent the design space between these shoulders. 

 

9.4.1 Multi-instance modelling 

Consider the case for MonoSol 80 (80 µm thickness). The three shoulders are 

morphed and average pulling forces required for various interpolants are calculated 

using the fitted model. It is then recorded and plotted according to the proposed 

visualisation strategy. The process is then repeated at different web tensions. The 

resultant surfaces are shown in figure 9-16.  

 

 
 

Figure 9-16  Resultant surfaces for MonoSol 80 

 

Figure 9-17 shows a side view of the same surfaces. Various local minima are found 

within the triangle and are highlighted in the figures. It is clear that shoulder C is best 
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suited here as requires least amount of pulling force in almost every case (except at 

650g web tension where minimum pulling force is required when h:r ratio is 4.32). It 

is also important to note that as the minimum lies at the edge of the surfaces in each 

case, there may be a global minimum lying outside of the explored design space. It 

can be located with the help of extrapolation.  

 

 
 

Figure 9-17 Side view of the resultant surfaces for MonoSol 80 

 

Now consider the case for MonoSol 50 (50 µm thickness). Figures 9-18 and 9-19 

show the resulting surfaces. Again, various local minima found are highlighted.  It is 

clear from the figures that at low web tensions (50g) shoulder C with highest h:r ratio 

(4.6) requires the least amount of pulling force. However as the web tension is 

increased this value of h:r ratio (requiring least pulling force) starts decreasing and 

minimum starts shifting away from shoulder C. Similarly, for MonoSol 30 (30 µm 

thickness) figures 9-20 and 9-21 show the resulting surfaces.  A similar trend is noted 

in this case as well. At 50g web tension the minimum pulling force is required by a 

shoulder with h:r ratio equals to 3.66. As the web tension is increased the minimum 

starts shifting towards shoulder B. Based upon these results, it can be said that 

shoulder B is best suited of the three shoulders for the case of MonoSol 30 material at 

high web tensions.  
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Figure 9-18 Resultant surfaces for MonoSol 50 

 

 

 

Figure 9-19 Side view of the resultant surfaces for MonoSol 50 
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Figure 9-20 Resultant surfaces for MonoSol 30 

 

 

 

Figure 9-21 Side view of the resultant surfaces for MonoSol 30 
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Thus, the surfaces obtained give information about how the performance of the 

shoulders change for various films.  The surfaces produced are reasonably flat. It 

suggests that the shoulders are similar in performance and can be said to lie within a 

single family. This family also includes performance with respect to Integr8 film, as 

the results are similar for this film as well (figure 9-15). The flatness also suggests 

that performance is reasonably insensitive to variation in the shoulder geometry. The 

fact that the surfaces are not perfectly flat means that one of the three shoulders is 

better in each case. For a given material (and thickness) the surfaces allow one to 

identify the parameters for an optimal shoulder for that material. 
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9.5 Discussion 

This case study presents an application of the proposed multi-instance modelling 

approach in all the three scenarios identified in chapter 4. A number of forming 

shoulders were investigated and information about their performance capabilities was 

obtained. The proposed approach helped in seeing how the material properties 

(particularly thickness) affected the performance of particular shoulders. It showed 

that there are implicit relationships between the design parameters and allowed 

optimal parameters to be identified. Important findings can be summarised as follows. 

 

Scenario 1: A case of isolated instances 

• An investigation which was based upon isolated instances of forming 

shoulders revealed that there is an implicit relation between the h:r ratio and 

the back angle. The back angle increases with increase in the h:r ratio, and 

there is a small interval of allowable values for the back angle for every value 

of the h:r ratio. (This supports the theoretical model given by McPherson et al. 

(2004)). 

 

Scenario 2: When experimental investigation is performed 

• The results of experimental investigation can be plotted as vertices of a 

triangle and these are roughly flat (for the MonoSol film considered) 

suggesting that the shoulders lie in a single family. 

• The resulting surfaces are similar for a second film (Integr8) which suggests 

that the shoulders lie in the same family for this as well; thus any one of the 

three shoulders is likely to operate adequately with either of the two materials. 

• The shoulder corresponding to the lowest vertex of the triangle varies 

suggesting that in certain cases shoulder B is the best of the three and in other 

cases, it is shoulder C. 

 

Scenario 3: When a mathematical model is available 

• The results from the experimental work can be used to obtain a model relating 

the design parameters and the performance and this allows the design space to 

be explored more fully. 
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• It is seen that the surfaces are reasonably flat suggesting that the shoulders lie 

in the same family. 

• A local minimum can be identified which is either within or on the boundary 

of the surface. When the minimum lies within the surface it allows 

identification of the parameters for an improved shoulder which has better 

performance than any of the initial instances. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



157 

Chapter 10: Conclusions and future work 

 

This thesis has presented a novel and easy to use technique that can help SMEs to 

investigate their current designs and related design space with the intention of 

increasing their current design knowledge. The main idea that has been explored in 

this research work is that the existence of examples of workable designs (variants) can 

be used to perform a simplified investigation of the design space (formed by base 

designs) involved. Associated with the aim of proposing and demonstrating an easy to 

use technique for SMEs in order to investigate their current designs and related design 

space, there are six objectives identified in chapter 1 (page 6). The following section 

describes how the objectives have been met and from this conclusions are drawn. 
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10.1 The objectives of this research work revisited 

The following sections discuss how the six objectives are addressed in the various 

chapters of this thesis. 

10.1.1 Investigation of current product development practises of 

SMEs 

The first objective was to investigate current product development practices of SMEs 

with the purpose of capturing factors that are hindering their development processes 

and identifying their current needs. This was dealt with in chapter 2. It was discovered 

from the literature that there are several factors that are hindering effective product 

development in SMEs. These factors include lack of resources (in terms of cash flow, 

number of employees and adequately trained work force), their focus on individual 

customers instead on the market, lack of design knowledge regarding their products 

and lack of clearly defined product development processes. The basic needs of SMEs 

were also highlighted here. These include the need for simpler techniques to develop 

their products, improved product refinement methods, increased design knowledge of 

existing products and the need for promoting design reuse and controlling product 

proliferation. 

10.1.2 Investigate and critically appraise previous research work 

Again, addressed in chapter 2, the second objective was to investigate and critically 

appraise previous research work that has been undertaken to improve product 

development in SMEs. Views of several researchers were presented in this chapter. It 

was shown that a great deal of research has been done to satisfy some of the basic 

needs of SMEs such as design reuse and control of product proliferation (based upon 

the concepts of modularisation). However, some of other essential needs of SMEs 

such as increasing design knowledge of existing products and improving methods for 

product refinement still remain unanswered. 

10.1.3 Investigating different tools and techniques to model and 

analyse machinery 

The focus of the thesis is on machine manufacturing SMEs. So, the next objective was 

to investigate different tools and techniques which are available to model and 
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investigate machinery. This was dealt with in chapter 3. The identified tools were 

classified into two categories namely computer based tools and practical tools. The 

computer based tools are helpful in modelling and analysing machinery. For this 

purpose, CAD, design optimisation and constraint based modelling were investigated 

for their relevance to support product development activities in SMEs. The practical 

(experimental) tools on the other hand provide strategies to conduct experiments on 

actual machines and are further required to validate computer based models.  

 

However, there is a limited use of these tools/techniques for meeting current needs of 

SMEs. Some of these techniques such as design optimisation and constraint based 

modelling require specialised knowledge (or expertise) to be able solve design 

problems which SMEs often lack. Also, most of the techniques are limited for 

investigating single designs only. There is a need to provide support to the designers 

when a number of design options need to be investigated/evaluated.  

10.1.4 Investigating the suitability of design space exploration and 

various visualisation techniques 

Chapter 3 also tackled the fourth objective of investigating the suitability of design 

space exploration and various visualisation techniques for assisting product 

development in SMEs. The aim was to understand various techniques available so 

that a visualisation tool can be proposed that can aid in the designer’s decision making 

process when a number of variants are to be investigated. The process of design space 

exploration was first explained and then several visualisation techniques were 

investigated that are being used by the researchers in order to display and analyse 

multi-dimensional data.  

 

However, none of the existing techniques discussed here provided a support to 

represent and explore design space around a number of design variants. It was argued 

that such a technique can aid a designer’s decision making process when a number of 

design options are to be evaluated and thus provide invaluable support to SMEs by 

increasing their current design knowledge about existing products and further help to 

improve these products. 
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10.1.5 To propose a simple approach that can help SMEs 

Chapter 4 addressed the fifth objective by proposing a simple approach that can help 

SMEs to increase their current design knowledge and so provide a basis for 

improving/refining their product ranges. A multi-instance modelling approach was 

proposed which takes what information on current design instances is available and 

displays this in terms of surface plots to aid visualisation. Polygonal surfaces are used 

for this purpose whose vertices represent the base instances (design variants).  The 

height of a particular point on this surface represents the performance value of a 

design instance at that point. Such a representation enables the designer to represent a 

number of design variants in a single plot so that current product designs and their 

relative merits can be investigated. 

 

The proposed approach helps in increasing the design knowledge regarding current 

products as the performance capabilities of current product designs are made known 

to the designer. It further helps in identifying similar and dissimilar products, finding 

better design solutions and improving product designs by determining their 

sensitivity to design parameters. 

10.1.6 To demonstrate applicability of the proposed approach to 

meet current needs of SMEs through case study examples 

The sixth objective was dealt with in chapters 5, 6 and 7. These chapters presented the 

application of the multi-instance modelling approach to the three scenarios that can be 

encountered by SMEs (identified in chapter 4, section 4.4). Based upon the case study 

examples presented in these chapters, chapter 8 presented an overview of the 

proposed approach.  The application of the approach in the three identified scenarios 

was also discussed. Finally chapter 9 presented an application of the proposed 

approach where all the three identified situations were present. 

 

Chapter 5 showed an application of the proposed approach in a case of isolated 

machine instances when the amount of design knowledge available to the designer is 

limited. The approach, in this case, helped to identify redundant design variants by 

finding similarities (similar products) in the way current designs perform (chapter 5). 
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Chapters 6 discussed a case when experimental investigation was possible in order to 

gather the required design knowledge. A single complex system (carton erector 

machine) was analysed. The various machine settings were used as different instances 

and the design space between these instances was explored.  The approach helped to 

determine the sensitivity of the machine to its setup parameters and to identify best 

machine settings to use.  

 

Chapter 7 described a case when computer based models were already available. The 

usefulness of the approach was demonstrated by presenting its application to a case of 

selecting mechanisms from a catalogue. The proposed approach not only helped to 

locate better designs by optimising the mechanisms to the given requirement but also 

identified similar and dissimilar designs. It further helped in determining the 

sensitivity of the designs to changes in their parameter values. 

 

Chapter 9 presented a case where all the three scenarios were present. A vertical form 

fill and seal machine was investigated for its machine-material interactions. The 

approach helped in increasing the current design knowledge about the machine-

material interactions. It further helped in identifying a better shoulder for a given 

material (and thickness) at a certain web tension. Also, it was shown that the given 

shoulders belonged to the same family and their performance was fairly insensitive to 

variation in the shoulder geometry.  
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10.2 Conclusions 

The research work presented in this thesis is concerned with supporting various 

design/redesign activities in SMEs. The thesis has successfully achieved the overall 

aim of proposing and demonstrating a technique which can help these enterprises to 

investigate their designs and the related design space with the intention of increasing 

their current design knowledge. The technique is specifically tailored to meet current 

needs of SMEs. It provides means to obtain design knowledge in various situations 

encountered by SMEs. The proposed approach has following characteristics: 

• It is simple to understand and implement as the design space between various 

variants of a design can be represented, visualised and understood with the 

help of surfaces.  

• The design knowledge regarding current products is increased using this 

approach as performance capabilities of current product designs are made 

known to the designer.  

• It helps to identify similar and dissimilar products in case there is a 

fundamental similarity or difference in the way designs perform. In some 

cases, it can also help in reducing/rationalising products if there is an overlap 

of performances of various variants of a design. 

• It helps in determining the sensitivity of a design to small changes in its 

parameter values. The design is more robust when it is less sensitive to its 

setup parameters 

• It further helps in refining/improving product designs by identifying better 

(more optimal) design solutions, which may lie within the design space 

investigated. If found, these designs can replace the current designs and 

perform better. 

The approach has been applied to a number of case study examples and has worked 

successfully. 
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10.3 Limitations 

The following are limitations associated with the current research work: 

� The method of morphing is currently only applicable to designs that share the 

same topology. 

� The sensitivity analysis is limited to the effects of combinations of the key 

parameters. Their individual effects on the design sensitivity are not dealt 

with. 

� The design space exploration process is only based upon the interpolation 

between the base design instances. 

� With four or more design instances the plot of the surface depends upon the 

ordering of the instances and can change with different orders. 
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10.4 Future work 

Some of the limitations given in the previous section can be addressed in the future. 

Following is the list of areas that could be further explored. 

� As essentially interpolation between the design variants has been explored so 

far, the next step can be to explore the extrapolation of the design space. 

Although this is discussed briefly in chapter 7, further work can be done in 

this area. 

� Secondly, in case of four or more design instances, one can rely on some sort 

of natural ordering for the purpose of achieving consistency while plotting the 

surfaces. This ordering is possible in a number of ways such as ordering based 

upon foot print and physical location. This is also briefly discussed in chapter 

8 and can be further explored. 
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