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Abstract
It is well known that composite materials have a poor resistance to the damage caused

by the impact of foreign objects on their outer surface.

There are various methods for improving the impact damage tolerance of composite

materials, such as: fiber toughening, matrix toughening, interface toughening, through-

the-thickness reinforcements and selective interlayers and hybrids. Hybrid composites

with improved impact resistance would be particularly useful in military and commercial

civil applications.

Hybridizing composites using shape memory alloys (SMAs) is one solution since

SMA materials can absorb the energy of impact through superelastic deformation or

recovery stress reducing the effects of the impact on the composite structure. The SMA

material may be embedded in the hybrid composites (SMAHC) in many different forms

and also the characteristics of the fiber reinforcements may vary, such as SMA wires

in unidirectional laminates or SMA foils in unidirectional laminates only to cite two

examples. Recently SMA fibers have been embedded in 2-D woven composites.

As part of this PhD work, the existing theoretical models for woven composites have

been extended to the case of woven SMAHC using a multiscale methodology in order

to predict the mechanical properties and failure behavior of SMAHC plates.

Also several parts of the model have been coded in MATLAB and validated against

results extracted from the literature, showing good correlation.
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Chapter 1

Introduction

1.1 Motivation

It is well known that composite materials have a poor resistance to the damage caused

by the impact of foreign objects on their outer surface. Impact damage can seriously

affect the structural properties of an aircraft. For example, low velocity impacts on

composite aircraft structures are particularly dangerous because the impact damage

is often hidden beneath the surface of the material generating Barely Visible Impact

Damage (BVID) which may go unnoticed during visual inspections. To date the only

options are manual repair or replacement of the damaged structures.

Therefore aircrafts are usually built with thicker composites than those required for

structural integrity in order to have sufficient reserve to maintain acceptable strength,

stiffness and fatigue performance despite the presence of impact damage. This inefficient

design process leads to higher structural weight and increased cost in terms of raw

materials and fuel consumption.

There are various methods for improving the impact damage tolerance of composite

materials, such as: fiber toughening, matrix toughening, interface toughening, through-

the-thickness reinforcements and selective interlayers and hybrids. Hybrid composites

with improved impact resistance would be particularly useful in military and commercial

civil applications.

It is possible to hybridize composites using shape memory alloys (SMA). The SMA

materials are able to absorb the energy of impact through superelastic deformation or

recovery stress reducing the effects of the impact on the composite structure. These

composites are referred to in literature as SMA hybrid composites (SMAHC).

As will be discussed in chapter 2, the use of SMAHCs permits designing structural

composites with self-sensing and self-healing properties, bringing greater safety and

reduced maintenance costs for aircrafts.

The SMA material may be embedded in the composite materials in many different

forms, e.g. SMA wires in unidirectional laminates (e. g. [243]) or SMA foils in
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unidirectional laminates (e. g. [5]) only to cite two examples. Recently, Foreman et al.

[89] have embedded SMA wires in 2-D woven composites.

Woven SMAHC laminates have a greater percentage increase in impact energy

absorption compared to uni-directional SMAHC laminates (see section 4.3.3). For this

reason the the main focus of this thesis will be on woven SMAHC structures.

1.2 Objectives

The overall objective of this thesis is the experimental-numerical study of the potential

use of shape memory alloys (SMA) embedded into woven composite layers (see figure

2-11) for structural energy dissipation.

As will be discussed in chapter 2, the performance of SMAHCs structures is highly

dependent on parameters such as pre-strain, volume fraction, orientation and position

of the SMA fibers within the laminate, so one of the greatest challenges for designing a

woven SMAHCs is the very large design space. This is the reason why it is a challenge to

optimize the overall structure relying entirely on expensive experimental tests. Modeling

techniques may be both auxiliary and sometimes necessary to the designer in order to

optimize composite structures.

Therefore one particular objective of this work is the development of numerical tools

for modeling woven SMAHC plates and stiffened panels with different SMA layouts.

Another particular objective is to validate the prediction capabilities of the developed

models compared to experimental data and results found in literature.

1.3 Approach

In order to achieve the outlined objectives, this thesis extends to woven SMAHC plates

the theoretical models for predicting mechanical properties and failure behavior of

two-dimensional (2-D) woven composites by using a multiscale methodology.

The mechanical properties, stresses and strains at the micro- and meso-scales

of the Representative Volume Element (RVE) of the SMAHC plate are estimated

taking into account their geometrical characteristics and the mechanical properties

of the constituents (e.g. matrix, reinforcement fibers and SMA wires) using the two-

scale Asymptotic Expansion Homogenization Method (AEHM) [24, 63, 53, 39, 55].

Anisotropic damage mechanics has been integrated with the AEHM to model failure.

Moreover, the AEHM macroscopic problem for SMAHCs has been reformulated

using Transformation Field Analysis (TFA) [72, 75] in order to simplify the analysis in

order to reduce the computational complexity of the full AEHM approach.

At the macro-scale, to achieve a further reduction of the computational burden, the

multiple plate models theory for laminated composite plates is proposed for predicting
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static and dynamic behavior of the SMAHC plate under various loads.

Many different constitutive models have been developed for the SMA. Although in

this thesis the three-dimensional (3-D) constitutive model for shape-memory alloys of

Sadjadpour and Bhattacharya [212] is used, the approach considered in this thesis is

not restricted to this model, but also other existing 3-D models may be employed.

1.4 Thesis Outline

Chapter 2 provides some background information and reviews the literature on the use

of SMA materials embedded in composites for impact energy absorption.

Chapter 3 reviews and compares different homogenization methods for 2-D woven

composites including the AEHM. This chapter also examines how to integrate anisotropic

damage mechanics with the AEHM.

Chapter 4 proposes a multiscale 3-D constitutive modeling approach for SMAHCs

based on the the AEHM approach. The use of TFA for reducing the computational

cost of the analysis is discussed in this chapter.

Chapter 5 discusses the multiple plate models theory for laminated composite plates.

Chapter 6 presents some conclusions on the work carried out and suggestions for

future work.

1.5 Published work

Note that chapters 2, 3 and 5 are based almost entirely on the following published or

accepted journal papers

1. Angioni, S.; Meo, M. and Foreman, A. Impact damage resistance and damage

suppression properties of shape memory alloys in hybrid composites-a review

Smart Materials and Structures, IOP Publishing, 2011, 20, 013001

2. Angioni, S.; Meo, M. and Foreman, A. A comparison of homogenization methods

for 2-D woven composites Composites Part B: Engineering, 2011, 42, 181 - 189

3. Angioni, S.; Visrolia, A. and Meo, M. A hierarchical multiple plate models theory

for laminated composites including delamination and geometrical nonlinear effects

Composite Structures, 2011, 93, 780 - 791

4. Angioni, S.; Meo, M. and Foreman, A. A critical review of homogenization methods

for 2D woven composites Journal of Reinforced Plastics and Composites, 2011,

Accepted for Publication
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5. Angioni, S.; Visrolia, A. and Meo, M. Combining X-FEM and a multilevel mesh

superposition method for the analysis of thick composite structures, Composites

Part B: Engineering, 2011, Accepted for Publication
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Chapter 2

Impact damage resistance and

damage suppression properties of

shape memory alloys in hybrid

composites

2.1 Introduction

Composite materials can support very high loads in the direction of the fibers, but only

low loads in the translaminar direction, as all the load is supported only by the matrix.

Composite materials have a poor resistance under transverse impact loads, because

they dissipate very little impact strain energy (such as plastic yielding in ductile metals)

during impact loading.

The effects [202, 96] of the impact on the composite will generally depend upon

various factors, such as composite’s constituent materials (matrix toughness, fiber surface

treatment, moisture content, fiber stiffness and strength), composite’s construction,

stacking sequence and geometry, and the impact conditions (shape, energy, mass,

geometry of the impactor). Bayandor et al. [19] give an overview of each of these

different failure modes. In particular composites with woven fiber reinforcements have

proven to have superior impact energy absorption capabilities compared to laminates

with uni-directional fibers [96, 201].

There are various methods for improving the impact damage tolerance of com-

posite materials, such as: fiber toughening, matrix toughening, interface toughening,

through-the-thickness reinforcements and selective interlayers and hybrids. Amongst

the through-the-thickness reinforcements methods there are the following: stitching

(Mouritz et al. [160]; Greenhalgh and Hiley [96]), braiding [159], z-pinning [158, 96]

and 3-D weaving [159], knitting [159, 103]. Selective interlayers and hybrids [96] im-
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prove the impact tolerance of the composite material by inserting layers of a secondary

reinforcement material at critical locations in the stacking sequence. The tougher

secondary reinforcement material is used to increase the impact resistance of the hybrid

composite, while the stiffer and stronger primary reinforcement material is used to carry

the majority of the load [249]. Hybrid composites with improved impact resistance are

particularly useful in military and commercial civil applications.

This chapter reviews the possibility of hybridizing composites using Shape-Memory

Alloys (SMAs) in their various forms to improve their impact resistance. These materials

are capable of absorbing the energy of the impact through superelastic deformation or

through recovery stress reducing the effects of the impact on the composite structure.

SMAs are part of the family of the Shape Memory Materials (SMMs), which includes

also shape-memory ceramics and shape-memory polymers [248]. SMAs owe their name

to the shape memory effect (SME) . SMAs were know since the 1950s [248], but their

usefulness in engineering applications was not evident until the discovery in 1963 [37]

of the near-stoichiometric Ti-Ni alloys, the so called NiTiNol (abbreviation for Nickel

Titanium Naval Ordnance Laboratories) . Broadly speaking SMAs are materials that

are able to remember their shape. If they are deformed at room temperature, then,

after being heated, they return to their original shape. Patoor et al. [191] define more

formally SMAs as metallic alloys that can undergo martensitic phase transformations

as a result of applied thermo-mechanical loads and are capable of recovering permanent

strains when heated above a certain temperature (the shape memory effect). SMAs

have been discussed extensively in literature. Duerig et al. [70] cover in great detail the

properties of SMAs with a particular focus on their applications. Otsuka and Wayman

[180] deals more in general with SMMs including alloys and polymers. Bhattacharya

[25] discusses the matensitic phase transformation and the crystallographic reasons

behind the shape memory effect. A recent reference on SMAs with particular emphasis

on modeling is Lagoudas et al. [128].

Moreover, using SMAs it is possible to construct so called smart (or intelligent)

materials and structures (or systems). In most general terms a smart material or

structure [248] is one that is able to respond to a change in the environmental conditions

in a predefined (known) manner (i.e. time end intensity) and that will return to its

original (known) state when the stimulus is removed. Rarely smart materials are single

(monolithic) ones, but they are generally the composition or hybridization or integration

of several different materials and systems. Although there is not yet a unanimous

consensus in the technical community on the terms smart (or intelligent) material and

smart (or intelligent) structure (or system), most authors, e.g. Michaud [151] and

Wei et al. [248], make a distinction between materials and structures. Following these

authors we will define a smart or intelligent material as one that inherently contains

sensing, actuating and controlling or information processing capabilities built into its
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microstructure. While, a smart (or intelligent) structure (or system) is thus an assembly,

which presents the previously mentioned characteristics through the combination of

various materials, and is usually monitored or controlled using an external microprocessor

or computer.

Michaud [151] argues that SMA materials are smart only in a restricted sense

because they need to undergo a phase transformation that modifies their physical and

mechanical characteristics. However, SMAs are generally considered smart materials,

because their various properties allow creating hybrid composites that are able to

modify specific material properties in response to environmental changes. Possible

applications of SMAs as smart materials, include: tunable stiffness, damping capacity,

shape-controllable active surfaces and self-healing capability. Hartl and Lagoudas [97]

give various examples of SMAs used as smart materials for aerospace applications.

In the following, different examples of SMA Hybrid Composites (SMAHC) will be

discussed focusing on the possibility of modifying the stiffness of the material or structure

in response to the impact of a foreign object. In particular, section 2.2 will cover the

basic properties of the SMAs, while section 2.3 will introduce the generalities of the

use of SMAs for improving the impact damage tolerance of hybrid composite materials;

section 2.4 will summarize the main modeling techniques adopted for SMAHC; sections

2.5 and 2.6 will describe passive and active applications, respectively, of SMAHC for

damage suppression; finally, section 2.7 provides a discussion and some conclusion on

the use of SMAHC for damage suppression.

2.2 Basic Properties of Shape Memory Alloys

SMAs are characterized by two stable phases, a high-temperature phase known as

austenitic phase, with a highly symmetric (generally cubic) lattice structure, and a

low-temperature phase known as martensitic phase, with a one or more variants of a very

low symmetric lattice structure. In [25] and [191] the martensitic phase transformation

is defined by as a shear-dominant displacive (no diffusion) and first-order (abrupt change

in the lattice parameter) solid-to-solid phase transformation occurring by nucleation and

growth of the martensitic phase from the parent austenitic phase. The martensitic phase

transformations in most SMAs, except for some iron based alloys [248], are thermo-elastic

transformations, and may be thermally induced or stress- and pressure-induced.

2.2.1 One-Way Shape Memory Effect

In the absence of applied stresses, cooling the solid in the austenitic phase, there is

normal thermal contraction until the deformation temperature Td reaches a critical

temperature T0 where the free energy of Martensite becomes less than the free energy

of Austenite and the lattice structure abruptly changes from the austenitic phase into
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the martensitic phase. This process is called thermo-elastic (forward) martensitic phase

transformation (Austenite-to-Martensite). The temperature T0 is called equilibrium

temperature and is the temperature at which the free energies of the two phases are

equal. During the martensitic phase transformation, although the crystal structure

changes abruptly and the distortion of the cell is significant, there is no diffusion and no

change in the relative position of the atoms during this transformation [25]. This type

of phase transformation is called displacive as the atoms are cooperatively rearranged

into a new more stable crystal structure. In contrast, in diffusional transformations

the new phase can only be formed by moving atoms randomly over relatively long

distances [70]. In reality, the transformation does not begin exactly at T0 , but, in the

absence of stress, at a temperature Ms (Martensite start), which is less than T0. The

transformation continues to evolve as the temperature Td is lowered until a temperature,

denoted by Mf (Martensite finish) is reached and the material is completely in the

martensitic phase, as shown in figure 2-1. Cooling the solid in martensitic phase will

result only in further thermal contraction. The martensitic phase transformation is

crystallographically reversible, in the sense that, in the absence of applied stresses, when

the martensitic phase is heated it undergoes thermal expansion until the temperature Td

reaches the equilibrium temperature T0 where the free energy of Austenite becomes less

than the free energy of Martensite and the crystal structure abruptly changes back to

the original symmetric lattice of the austenitic phase. This process is called the thermo-

elastic reverse martensitic phase transformation (Martensite-to-Austenite). In reality,

the reverse transformation does not begin exactly at T0 but, in the absence of stress, at a

temperature As (Austenite start), higher than T0. The reverse transformation continues

to evolve as the temperature Td is increased until a temperature Af (Austenite finish)

is reached and the material is entirely in the austenitic phase, as shown in figure 2-1.

Heating the solid in austenitic phase will result only in further thermal expansion. The

temperatures Ms, Mf , As and Af in figure 2-1 are called transformation temperatures of

the material. The equilibrium temperature T0 is approximately (Ms +Af ) /2 [191]. The

transformation temperatures and the differences Ms −Mf and Af −As characterizes

the behavior of SMAs. The transformation temperatures depend mainly on the alloy’s

composition and processing. The interface that separates the Martensite phase from

the parent phase is called the habit plane. This plane remains unchanged and exhibits

neither deformation nor rotation [25]. When a SMA is cooled it will transform into a

mixture of different variants of Martensite, which allows the solid to take on a shape that

is different from either. During the transformation the solid can not tear itself apart,

but the mixture must be coherent with rows of atoms unbroken across the interfaces

between the different variants. This process is called twinning, and the two different

variants are said to be twinned across their interface. The variants must create very

complex patterns which constitute the microstructure of the Martensite. The different
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regions of the solid will transform into different variants of Martensite in such a way

that there is no macroscopic change in shape. This transformation of the Austenite

into a microstructure of Martensite with no net change in shape of the solid is called

self-accommodation. SME can be explained [25], linking the symmetry-related variants

of Martensite to the energy in the structure as follows, and is visualized in figures 2-1

and 2-2.

(A→ B) When a SMA in austenitic phase is cooled, it transforms via the forward

martensitic phase transformation from the parent phase into a mixture of twinned

(self-accommodated) variants of Martensite.

(B → C) At a temperature below Mf , under stress SMAs in martensitic phase will

deform by distorting the crystal structure or by crystallographically reorienting the

variants into a single variant microstructure. The second option is preferred, and this

process (the condensation of many twin variants into a single favored variant [70]) is

called (stress induced) detwinning, as the different variants originate from the same

parent so they are equivalent in terms of energy, and changing the microstructure allows

changing the shape of the solid without changing its energy. Vice versa, distorting the

lattice would require energy. De-twinning generates large inelastic strains.

(C → D) When the load is released (always at a temperature below Mf ) there is

no reason why the solid should return to the self-accommodated state as the deformed

state and the self-accommodated are equivalent in terms of energy. The solid stays in

the twinned Martensite phase and the inelastic strains are not recovered.

(D → F ) If the solid is now heated to a temperature above Af , whatever the

microstructure of Martensite and its shape, the reverse martensitic phase transformation

will force the various different variants of Martensite back to the only variant of Austenite,

which is also a minimum energy state, forcing the solid to recover its original shape prior

to the deformation (shape recovery), and recovering the inelastic stains (strain recovery)

generated during the detwinning process. The inelastic strains are recovered since the

Martensite variants were reoriented by stress, then the reversion to Austenite produces

large transformational strains with the same amplitude but in opposite direction to the

inelastic strains.

2.2.2 Stress-Temperature Diagram

If the temperature range is restricted to include only thermo-elastic transformations

and since the martensitic phase transformations do not occur instantaneously, but

over a certain range of stresses and temperatures, the uniaxial thermo-mechanical

response of SMAs is summarized in the phase diagram called the stress-temperature

diagram [191], shown in figure 2-2. The diagram shows that SMAs can be in one

of the three pure phases: Austenite, twinned (self-accommodated) Martensite and

detwinned Martensite. These regions are separated by transformation lines (surfaces in
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(a) Forward and reverse martensitic
phase transformations

(b) Experimental Niti stress-strain-temperature curve

Figure 2-1: Forward and reverse martensitic phase transformations and experimental Niti
stress-strain-temperature curve

multiple dimensions). When the material crosses a transformation surface it undergoes

phase transformation (Austenite-to-Martensite) or detwinning (twinned Martensite to

detwinned Martensite). During the martensitic phase transformation various physical

properties of the material change [81]. Because the martensitic transformations are

of the first-order type then the forward transformation (Austenite-to-Martensite) is

an exothermic phase transformation where latent heat (transformation enthalpy) is

released changing in the transformation enthalpy. Vice versa, the reverse martensitic

phase transformation (Martensite-to-Austenite) is an endothermic phase transformation

accompanied where latent heat is absorbed also changing the transformation enthalpy.

For a given temperature, the amount of heat is proportional to the volume fraction of

the transformed material. A thermal hysteresis is normally present between the forward

and the reverse transformations, ranging from several Kelvin to more than 100 Kelvin

[248] depending on the material composition and microstructure. The two phases have

a different resistance so the phase transformation is also associated with a change in

the resistance of the material.
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(a) Stress-temperature diagram (reproduced
with permission from [97]

(b) Stress-strain curve for a SMA material

Figure 2-2: Stress-temperature and stress-strain curves for a SMA material

2.2.3 Two-Way Shape Memory Effect

If transformation strains are generated during both heating and cooling, this property is

called the two-way shape memory effect (TWSME) . The idealized process is described in

figure 2-1, but in reality the inelastic strain are partially recovered and a residual strain,

called transformation-induced plasticity (TRIP) [128] remains after the completion of

the heating cycle (D → A). Under repeated heating cycles, the residual strain will

increase until saturation. Further cooling of the material in the absence of applied

stress (A→ B) will generate a macroscopic transformation strain. The transformation

hysteresis also stabilizes, as the number of cycles increases. Such repetition until

stabilization is often referred to as training effect or cyclic behavior. The two-way shape

memory is not an intrinsic but an acquired characteristic produced by cyclic repetition

of certain thermo-mechanical loading paths.

2.2.4 Apparent Yield Strength

During the martensitic phase transformation apparent yield strength changes signifi-

cantly. (Here the term apparent is used to distinguish the yield strength due to phase

transformation, from the yield strength classically used in the context of plastic de-
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formation). The Austenite apparent yield strength is much lower than that of the

Martensite, because the former changes its crystal structure via dislocation generation

and movement while the latter changes its crystal structure moving the very mobile twin

boundaries. Only a certain amount of martensitic deformation can be accommodated

by the twinned boundaries, and, once the material is in the fully detwinned phase, then

the material will start deforming elastically again. Once the detwinned Martensite has

reached the maximum deformation that it is able to be accommodated, if the stress

is increased above a value σs, then the apparent yield strength changes again because,

because the crystal structure of the Martensite will start deforming through a dislocation

movement called (plastic) slip which is an irreversible process. In summary, as shown

in figure 2-2, there are two distinct elastic regions and two distinct stress plateaus, the

first due to twin motion (reversible) and the second due to slip (irreversible). The ratio

of resistances to reversible and irreversible deformation (twin movement to slip) should

be maximized, so that all deformation can be recovered upon heating.

2.2.5 Stress-Induced Martensite

Martensite starts forming at the temperature Ms in the absence of stress and can

also form above Ms in the presence of a stress. In this case the Martensite is called

stress-induced martensite (SIM) . The cause is mechanical and not thermal as in

the case of the SME [70]. Above Ms the critical stress σMs required to induce the

martensitic transformation increases linearly with temperature, as dictated by the

Clausius-Clapeyron equation [154]

dσMs

dMs
=

∆H

V T0∆ε
(2.1)

where T0 is the temperature at which the parent and Martensite phases are in equilibrium

at zero stress, ∆H is the transformation latent heat (transformation enthalpy), σMs is

the applied stress, Ms is the shifted Martensite start temperature, V the molar volume

and ∆ε is the transformation strain in the direction of the applied stress. The critical

stress σMs required for SIM increases linearly with temperature until a (dislocation)

temperature Md, above which the temperature required to generate SIM is greater than

that to produce dislocations (plastic slips), i.e. SIM may be generated for temperatures

between Ms and Md. All the transformation temperatures (Ms, Mf , As and Af ) follow

the Clausius-Clapeyron equation, which can be generalized to the form dσ/dT which is

called stress rate of the SMA. Summarizing, for Td < Ms there is Martensite detwinning,

for Ms < Td < Md there is SIM and for Td > Md there is plastic deformation [70]. In

figure 2-3 the stress-strain curves for a SMA at various temperatures is shown.
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Figure 2-3: Stress-strain curves for a SMA at various deformation temperatures (reproduced
with permission from [167])

2.2.6 Pseudoelasticity

With pseudoelasticity (PE) we denote any non linearity observed during the unloading

in the stress-strain curve [70]. It is due to twinning or by SIM phase transformation.

Twinning pseudoelasticity, such as pseudotwinning [70] and rubber-like effect [191], is

caused by the reversible detwinning of twinned Martensite. SIM phase transformation,

also called transformational pseudoelasticity or simply pseudoelasticity by some authors

[153, 180, 128, 126] or superelasticity by others [70, 191] is observed (see figure 2-2)

when the martensitic phase transformation is stress-induced by a uniaxial, isothermal

loading (at a deformation temperature Td above Af ) of the (parent) austenitic phase at

zero stress up to a critical stress level σMs called the transformation stress (1→ 2). The

response is purely elastic up to the critical stress level σMs where the material undergoes

a (forward) SIM phase transformation (2→ 3) which produces detwinned Martensite

phase directly from the Austenite, during which large inelastic (transformation) strains

are developed, represented by the upper plateau on the stress-strain curves in figure 2-4.

When the applied stress reaches the value σMf
the forward transformation is completed

and the SMA is in the fully detwinned Martensite phase (point 3). Further loading above

σMf
of the material in the fully detwinned martensitic phase does not produce further

phase transformation, although reorientation of the martensitic twins may occur in

multiaxial loading conditions, and again only elastic behavior of Martensite is observed.

Upon unloading at zero stress the response is purely elastic (3→ 4) until the reverse

SIM phase transformation initiates at the critical stress σAs and completes at a stress

σAf (4→ 5) during which the large inelastic (transformation) strains are recovered,

represented by the lower plateau on the stress-strain curves in figure 2-4. In order to

produce isothermal condition the loading must be quasi-static (small strain increments),

so that the latent heat generated/absorbed during the forward/reverse martensitic phase

transformation has time to dissipate. The transformation process, due to the difference

between σMf
and σAs and between σMs and σAf , results in the loading/unloading stress-
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strain diagram in a hysteretic loop which reflects the energy dissipated in the cycle. The

capability of SMAs of storing large amount of elastic energy is one of the reasons for

using superelastic SMAs [70]. The energy is defined as the area under the stress-strain

curve. The area under the loading part of the stress-strain curve E1 in figure 2-4 is the

energy per unit volume which is dissipated during one cycle (dissipated energy). The

area under the unloading part of the stress-strain curve E2 is the energy per unit volume

which is stored and available upon unloading (elastic energy). Since the total work

performed on the material is (E1 + E2), the efficiency for energy storage is defined as

E1/ (E1 + E2) [153]. This ratio η is a measure of the degree of pseudoelasticity of SMAs.

In other words, materials with a higher η ratio behave more pseudo-elastically and have

greater capabilities of absorbing impact energy and accommodating deformation with

less damage. For a given deformation temperature Td, E2 and η increase with increasing

the critical stress for inducing Martensite σMs . However, in case σMs exceeds σs, PE

becomes incomplete, since a permanent (non recoverable) residual strain εp is introduced

as shown in figure 2-4. If σt < σs then both the elastic strain εel and transformation

strain εtr is recovered. If σt > σs, then only the plastic strain, εp, remains [128, 70].

This property is called the strain dependence of the PE property. The PE property

also depends greatly on the (deformation) temperature Td. Increasing Td results in

an increase of the values of critical transformation stresses, but does not change the

general shape of the hysteresis. There is temperature below which upon unloading

the inelastic strains are fully recovered (pure superelasticity). Above this temperature

recovery upon unloading is incomplete, but heating after unloading will complete the

recovery (εf = 0). As the temperature is increased above the (dislocation) temperature

Md, then also heating after unloading will not cause a complete recovery (εf > 0). The

pseudoelastic behavior is different for single crystal and polycrystalline SMA materials

[191, 70]. The stress plateaus are normally quite clear for single crystal SMA material,

but are not so evident for polycrystal SMA materials. In single crystal SMA the

stress plateaus in figure 2-4 are caused by the growth of a single variant of Martensite

which possesses the most favorable orientation with respect to the applied stress. In

polycrystalline SMA materials the stress plateaus are caused by the Martensite to form

in different variants as in the case of the SME. Here the difference is that the variants

are selected during the transformation while in the SME the new variants are generated

by consumption of other variants [70]. The recoverable transformation strain for most

polycrystalline SMAs can be as much as up to 8%, while for some single-crystalline

SMAs may exceed 10%, resulting in a very high elastic energy storage capacity [248].

As for the SME also PE is affected by cycling (training). Only stress cycling and not

thermal cycling is of interest for PE. After a certain number of cycles the superelastic

properties stabilize. However, when the number of stress cycles exceeds a certain value

then the SMA material may experience fatigue failure (pseudoelastic transformation
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fatigue). An increase in apparent yield strength is also observed with pseudoelasticity.

For this reason some authors such as Liu and Galvin [136] talk about two criteria (an

increase in apparent yield strength and a deformation temperature exceeding the Af

temperature) being necessary for complete pseudoelasticity, and if either of the two

are violated then complete pseudoelastic behaviour is not displayed. The PE is also

responsible for increasing the wear resistance of SMA compared to e.g. steel [135].

Figure 2-4: Schematic stress-strain curves for single isothermal pseudoelastic loading cycle

2.2.7 Free, Constrained, and Restrained Recovery

In free recovery the SMA is heated and it is able to recover all (or at least most of)

the inelastic stains gained during deformation. If, in figure 2-5a, Td is the deformation

temperature (in the case Td < Ms), εt is the total strain imparted to the material, εp is

the apparent plastic strain upon unloading and εf is the final strain after heating above

A′f the Austenite finish temperature (considering the most general case of irreversible

deformations), then the amount of recoverable strain is εr = εp − εf . Note that the

Austenite start and Austenite finish temperatures A′s and A′f in the presence of stress

must be distinguished from the Austenite transformation temperatures As and Af in

the absence of stress [70]. When free recovery is prevented by an external constraint

before temperature Af is reached, the process is called constrained recovery and a large

tensile stress (recovery stress), up to 800 MPa [70], can be generated. If εc is defined

the contact strain, Tc is the contact temperature, i.e. the temperature at which the

SMA makes contact with the constraint, and σr the recovery stress, then εc − εf is the

unresolved recovery, i.e. the strain that could have been recovered had it been the case

of free recovery. From figure 2-5, Tc is temperature at which the stress starts to build

up, then continues to build linearly with temperature, with a rate equal to the stress

rate dσ/dT , until a maximum value is reached at σr defined as stress recovery.
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(a) Constrained recovery event

(b) restrained recovery event

Figure 2-5: Stress-Strain-Temperature curve

2.2.8 Hysteresis and Damping Capacity

The difference between the transformation regions As to Af and Ms to Mf is called

hysteresis, as shown in figure 2-1. Its magnitude depends upon the alloy, but values of 20-

40◦C are typical for SMAs [70]. Hysteresis can be thought of the friction associated with

the movement of the twin boundaries [70]. The damping capacity is the capacity of a

material to dissipate mechanical energy into heat and depends on various parameters such

as frequency, amplitude and temperature of excitation, and on the difference between

the operating and transformation temperatures [191]. In SMAs it is attributed to the

observed the internal friction [180] and to various interfaces involved in the martensitic

transformation: Austenite and Martensite, those between different variants of Martensite,

and the Martensite’s twin boundaries. Although the martensitic transformation is

theoretically a thermo-elastic transformation, various irreversible events cause dissipation

of energy such as defects, movement of dislocations, etc. For temperatures above

As and stress levels high enough to induce SIM, the damping capacity reaches its

maximum. Creation and displacement of Austenite-Martensite interfaces during the

loading cycles are accompanied by a strong level of defect production and large thermo-

mechanical coupling [191]. In the Austenite phase, the intrinsic damping is relatively

small while the martensitic phase offers a high level of energy dissipation due to the

movement and reorientation of Martensite twin variants under an applied stress. The

hysteresis in pseudoelasticity is also one of the causes of energy dissipation. The greatest
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level of damping is achieved when the material is in a dual phase domain, [134] i.e.

when austenitic and martensitic phases coexist, where internal friction is generated by

the movement of interface dislocations between the Austenite and Martensite phases.

This mixed-phase domain occurs during both thermally induced martensitic phase

transformation or during stress-induced martensitic phase transformation, confirmed

analytically in [259] and [260]. Summarizing, damping in SMA [125] is caused by

damping resulting from thermally induced martensitic phase transformation, from

stress-induced martensitic phase transformation and by intrinsic damping generated by

two coexisting phases.

2.3 SMAHC for Damage Suppression

The concept of SMAHC was first proposed in 1988 by Rogers et al. [206, 207, 204].

Commercial SMAs are available in many different forms, such as fibers (or wires) (e.g.

uni-directional and woven), short fibers (or whiskers), particles (or particulate) and foils

(or sheets or films), allowing the manufacturing of many various types of SMAHC each

with different characteristics and properties. The first examples of SMAHC published

in literature consist of SMA material in the form of wires, ribbons or strips which have

been embedded in an epoxy matrix. SMA materials in the forms of thin films and

particulates embedded in an epoxy matrix followed. More recently the SMA material

has been embedded into polymer composites (a resin matrix reinforced with commercial

fibers such as aramid, carbon or glass) with unidirectional or woven fiber reinforcements.

The SMA material itself may be bulk or porous (e.g. Nemat-Nasser et al. [168] with

12% porosity of volume fraction and Zhao et al. [270] with 13% and 25% porosity of

volume fraction).

2.3.1 Fracture Toughening Mechanisms of SMAHC

The impact damage resistance of composites may be improved by hybridizing them

with SMA fibers because high-strain SMAs have a relatively high ultimate strength and

can absorb and dissipate a large amount of strain energy, first through Stress-Induced

Martensite (SIM) transformation and then through plastic yielding. SMAs dissipate

the strain energy of the order of four times that of high alloy steel and sixteen times

that of many graphite/epoxy composites through SIM transformations [249, 123].

The fracture toughness of the SMAHC may be modified both passively and actively.

Both methods have been used for improving the impact damage resistance of hybrid

composite. When a tensile strain is applied to a SMA fiber or foil before being embedded

at room temperature, then it is said to be pre-strained. Passively, the embedded pre-

strained SMA fibers used to strengthen the matrix can absorb (via SIM transformation)

the impact strain energy thereby improving the creep or crack resistance of the material.

17



Actively, the embedded pre-strained SMA fibers can be activated e.g. by passing an

electric current through them, and, because of the heating, they will undergo the reverse

martensitic transformation trying to contract to their normal length and therefore

generating large uniformly distributed shear loads (tension or compression) along their

length. These shear loads alter the energy balance within the structure, which in turn

may modify the structure’s mechanical response.

The mechanical response of the structure may change only because the stiffness

(inherent modulus) of the embedded SMA fibers has changed or because of the recovery

stress of the plastically elongated SMA fibers. Rogers et al. [204] term these two

techniques as active property tuning (APT) and active strain energy tuning (ASET)

, respectively. The best location of the SMA in the composite structure will depend

on the desired control technique. In the opinion of Sarip et al. [214], SMA is best

situated along the neutral axis of the plates in order to achieve APT. In order to achieve

ASET the SMA wires should be located either along the neutral axis of the structure or

symmetrically through the thickness of the plate [214]. If the embedded SMA wires are

located eccentrically to the natural axis of the composite structure, then the recovery

force of the SMA will generate a bending moment that is used to change shape or

positions of SMAHC structures [214]. This type of ASET is called the Active Shape

Control (ASC).

The SMA wires can be embedded directly in the matrix of the SMAHC or through

sleeves. The recovery stresses generated by the SMA wires depend, in direct embedding,

on the compliance of the surrounding matrix. The lower the compliance, the higher

the level of induced force [237]. In the case of overheating, direct embedding has

the disadvantage of destroying the matrix, while embedding through sleeves prevents

resistive heat to be transferred directly to the matrix. However embedding through

sleeves requires the SMA wires to be clamped at both ends in order to get any recovery

stress, which is impractical [237].

Passive Fracture Toughening

The SMA fiber or foil reinforcements embedded in the matrix of the composites are pre-

strained in the martensitic phase (plastically elongated and constrained from contracting

to their normal length). During curing to become an integral part of the structure,

they are heated to temperatures above the Austenite finish temperature Af to the

austenitic phase and act against the constraining nature of the matrix. During this

reverse transformation process from the soft Martensite to the parent phase (Austenite),

because of the mismatch in the thermal expansion coefficients of the SMA (higher) and

the matrix (lower), the SMA fibers will try to recover their original shape and hence

tend to shrink. This process introduces in the matrix compressive internal (thermal)

residual stresses (constrained recovery stresses) [249, 244] which contribute to the tensile
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properties of the composite and are beneficial to mechanical properties such as the yield

stress and fracture toughness.

The impact energy will be absorbed by the SMA wires embedded in the SMAHC

during the direct transformation from the Austenite phase to Martensite one. This

energy is released afterwards via the reverse martensitic transformation [243].

The improved resistance to fatigue crack propagation of the SMAHC can be at-

tributed to the combination of compressive residual stress, higher stiffness of the

composite, the SIM transformation and the dispersion of the mechanical strain energy

at the crack tip. Both the ultimate strength and the failure strain of the composite are

significantly greater than those of an unreinforced control material with the final failure

strain of the hybrid composite exceeding 15% according to Wei et al. [249].

Active Fracture Toughening

When a pre-strained SMA fiber or foil embedded in the laminate is heated, it tends

to shrink to it original shape and to instantaneously generate recovery compressive

forces along the pre-strained direction in the composite matrix, which are effective at

suppressing the initiation and growth of transverse cracks [4, 5, 173]. This compressive

force is generated by the martensitic phase transformation from the SIM phase to the

Austenite phase.

Ogisu et al. [175] simulated the fabrication and reheating processes of the hybrid

composite, and measured the relationship between recovery stresses generated by the pre-

strained SMA foils embedded in composite laminates and temperature. This relationship

is shown in figure 2-6. The SMA foils were heated while their ends were kept fixed.

After pre-straining the recovery stress was zero at room temperature (RT) . Then a

recovery stress was generated when the SMA foils were heated (above Af ) up to 180◦C,

which was the curing temperature, and it reached 700 MPa. After cooling the SMA foils

down to RT, the recovery stress remained at approximately 100 MPa. The recovery

stress reached 350 MPa by reheating up to 80◦C (again above Af ).

Figure 2-6: Recovery stresses of SMA foils as a function of current heating temperature [175]
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In the opinion of Bollas et al. [28] the most efficient SMAHC are those that consist

of aramid fibers/NiTiCu wires embedded into an epoxy resin matrix, for the following

reasons: (1) fiber reinforcements and SMA wires have similar Young’s moduli (Austenite

phase); (2) the low negative thermal expansion of the aramid fibers generates relatively

small residual thermal stresses within the composite during processing. These authors

also note that an epoxy resin matrix with glass transition temperature (Tg) higher than

the activation temperature (Af ) of the SMA wires must be selected in order to ensure

the generation of recovery stresses. Similar benefits are reported by Zheng et al. [272],

but for Kevlar fibers/3% pre-strained TiNiCu wires embedded in an epoxy resin matrix.

Tsoi et al. [240] note that the issues related to fatigue of the SMA fibers and

their behavior under cyclic conditions must be addressed, when the fibers need to be

continuously activated on and off.

2.3.2 SMAHC Properties

As discussed in Tsoi et al. [243] there is a thermal limit to the generation of SIM and

this occurs at temperatures above the dislocation temperature Md, at which the stress

required to form SIM is greater than that needed to move dislocations. Hence, SIM

is formed at temperatures Td between the Martensite start temperature Ms and Md,

i.e. Ms < Td < Md. Complete superelasticity occurs when SIM is formed above the

austenitic transformation temperature, Af but below Md.

The levels of compressive residual stresses which are generated in the matrix of the

SMAHC during the heating process will vary depending on the fiber pre-treatment, dis-

tribution configuration and host matrix material, as well as on the boundary conditions

[249].

Effects of the constraining Matrix

The functional properties of the SMAHC are directly related to the constraining behavior

that the composite matrix has on the SMA fibers [240]. When the embedded SMA wires

are constrained, they operate against the elastic stiffness of the host matrix biasing its

strain recovery. Psarras et al. [196] point out that the interface between the wire and

the polymer matrix must be sufficiently strong to be able to transmit stresses to the

adjacent material.

Various authors [190, 242, 273, 241] explain the effects of the constraining matrix

on forward and reverse Martensite transformations in terms of self-accommodating

martensite (SAM) and preferentially oriented martensite (POM) . Tsoi et al. [242]

found that there is no significant change in the transformation temperatures of the

constrained SMA wires with increasing pre-strain value, but that the measurable

transformation heats decrease significantly with increasing pre-strain. Comparing the

recovery stress with the heat flow in figure 2-7 (NiTiCu, 3% pre-strain, two cycles shown),

20



it is clear that in the temperature range between 70◦C and 110◦C, where recovery

stresses are generated, no indication of a transformation is observed. This indicates

that the recovery stress generation is not associated with one or more transformation

peaks and vice versa. This observation can be explained by the difference in SAM and

POM martensitic variants that can be both present in an SMA.

When there is no stress applied to the alloy and a forward transformation occurs, the

strain of one martensitic variant is compensated by the other surrounding variants; so

that as the variants grow and shrink self-accommodating groups of martensitic variants

(SAM) form at zero net strain. If a stress is applied to an SMA with SAM-variants,

the boundaries between adjacent variants move through the growth and compensating

contraction of adjacent variants leading to preferentially oriented Martensite (POM)

and a net strain is present. Thus, in a first approximation, a specimen containing

100% volume fraction of SAM-variants can be transformed into 100% volume fraction

of POM-variants, resulting in the maximum shape memory strain of the alloy. Further

straining will induce plasticity. When activated by heating of the SMA, without any

external constraint, the SMA will undergo a reverse martensitic transformation of SAM

and POM into Austenite and recover the induced shape memory strain. The volume

fraction of POM-variants is directly proportional to the amount of shape memory strain.

Figure 2-7: The recovery stress build-up and heat flow vs. temperature for a constrained
shape memory wire (reproduced with permission from [242])

Pre-strained martensitic SMA wires operate, during heating, against the elastic

stiffness of the host matrix, biasing their strain recovery. The reverse transformation of

SAM, in a constrained condition, is not impeded by the matrix because no macroscopic

shape change occurs during the transformation of SAM. Thus, the constraint has no

influence on this transformation. The transformation of POM will be impeded because

it generates a net strain that will be constrained. As a result, the shape memory

strain associated with the reverse transformation of POM is delayed by the matrix,

and recovery stresses are generated gradually by the SMA wires in the composite at a

constant rate dσ/dT beyond the Austenite finish temperature Af . After overcoming a

temperature hysteresis, the reverse process occurs during cooling. The speed at which
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the recovery stresses build up is independent of the percentage of POM.

As pointed out by Parthenios et al [190] the ability of an SMA wire to generate

recovery stress depends on (a) the initial pre-strain of the SMA wire, (b) the stress rate,

dσ/dT , where σ and T are the recovery stress and the activation temperature, and

(c) the width of the hysteresis. The stress rate can be considered a material constant,

while the width of the hysteresis depends on the SMA wire composition. As the pre-

strain increases the amount of POM-variants increases and higher recovery stresses

are generated and, thus, the temperature hysteresis size should decrease. In general,

the hysteresis observed in a SMA is related to friction produced by the movement

of interface boundaries during heating. Thus, if the SMA has a high percentage of

SAM-variants there are many boundaries which move when the SMA is heated, therefore,

there tends to be a larger hysteresis when compared to a SMA with a large percentage

of POM-variants, where there are less boundaries resulting in a smaller hysteresis.

These results were confirmed by Zheng et al. [271] in the case of pre-strained TiNi

fibers embedded in a metal matrix. They found that in the case of SMA wires pre-strained

between 2% and 6% at the beginning of the reverse transformation, the Martensite

volume fraction decreases rapidly, corresponding to the reverse transformation of SAM.

When the transformation of SAM is over, POM is still transforming. The total Martensite

fraction is not a linear function with temperature. When the specimen is pre-strained

to 8%, there is no SAM in the TiNi fiber and the reverse transformation of POM occurs

slowly over a large range of temperatures.

Jonnalagadda et al. [115] observe that the restraining effect of the matrix increases

with increasing SMA/polymer adhesion, because the increased bond strength reduces

the displacement of the SMA wires increasing the interfacial shear stress induced in the

matrix.

Effects of Pre-strain and Volume Fraction on the Recovery Force

For a specific SMA material, the constrained recovery stresses will grow in proportion

to the pre-strain and the volume fraction of transformed phase within a certain range

until optimal values can be found [248, 249, 241].

Tsoi et al. [240] showed that the rate of recovery stress build-up depends on the

pre-strain value for a bare SMA wire. The higher the pre-strain value, the slower the

recovery stress build-up is. It might be expected that to an increment in volume fraction

of SMA wires in the SMAHC (i.e. the more wires are embedded) should correspond a

rise in the recovery stress. However, the results in Tsoi et al. [241] show no clear increase

in recovery stress with pre-strain. Vice versa, Psarras et al. [196] found that the residual

compressive stress decreases as the SMA volume fraction grows. The authors consider

this behavior as a direct consequence of the stresses developing during curing. In fact,

since the SMA wires are prevented from contracting (during the Martensite-Austenite

22



transformation), as a result of the imposed pre-strain, the tensile stresses which develop

during curing are transmitted to the neighboring fibers. The net effect is a reduction

of the residual compressive stresses that the fibers would have if the constrained wires

were not present.

Tsoi et al. [241] found that the stress-temperature behavior of the SMAHC was

similar to that of the bare SMA wires and, in particular, the effect of a difference in

the stress rate with temperature. It was found that the SMAHC exhibited a small

stress-temperature hysteresis compared to a Kevlar reference specimen. The smaller

the hysteresis in the strain-temperature curves, the better are the fibers for being

embedded into composites, due to the easier heating capabilities. A small temperature

hysteresis also provides better control over the recovery stresses and the temperature

range in which they can be activated [240]. Tsoi et al. [240] also showed that at different

temperatures the Young’s modulus of the hybrid composites changes very little with

differing pre-strain. The authors explain this as the effect of the decreasing modulus due

to the Kevlar fibers being overcome by the activation of the SMA wires, thus stabilizing

the stiffness of the composite.

Interfacial Bonding

Maximum interfacial adhesion between the SMA fibers or foils and the matrix is

desirable in the SMAHC because most applications require maximum load transfer, and

a strong interfacial bond also increments the structural integrity of the final composites

[182, 172].

Various surface treatments of the SMA fibers can be used to improve the interfacial

bonding. These surface treatments are normally conducted in order to achieve anchor

effects with roughness of the metal surface, to produce a porous oxide layer, or to

improve the wetting properties between metal and resin. Ogisu et al. [172] argue that

the first factor should be the most effective in improving the bonding properties between

SMA and carbon fiber reinforced plastics (CFRP) . According to Wei et al. [249]

sand-blasting of SMA fibers increases the bond strength, while hand sanding and acid

cleaning actually decrease the bond strength. Paine and Rogers [182] found that plasma

coating of the fibers did not significantly alter the adhesive strength. Ogisu et al. [172]

checked various methods for improving the bonding properties between SMA foils and

CFRP. They performed peel resistance and single lap shear strength tests on SMA foils

surface treated with different methods, such as sol-gel method, anodic-oxidation method

and spattering method. They found that the treatment by 10% NaOH anodic oxidation

was the most effective for improvement of bonding properties. The treated surface was

found porous and rough, with improved anchoring effects on the SMA/CFRP interfaces.

Amano et al. [4, 5] also treated the SMA foils with a 10% NaOH anodic oxidation

in order to improve the adhesion performance of the epoxy resin. The same authors
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[173] cleaned and roughened with 3% fluoride acid-15% nitric acid the SMA (NiTi) foils

in order to remove the oxide film created when the material was mechanically rolled.

The SMA foils were also cleaned using a solvent when the laminates were manufactured.

Amano et al. [4, 5] and Ogisu et al. [173, 175] used an epoxy adhesive film to increase

the adhesion between the CFRP laminate and SMA (TiNi) foils. In Jang and Kishi

[108] the surfaces of the SMA (TiNi) wires were chemically etched for 10 min in 3%

HF+15% HNO3 solution in order to obtain strong adhesion between the SMA wires

and a CFRP matrix.

2.4 SMAHC Constitutive Equations and Modeling

Different approaches have been followed for modeling the embodiment of the SMA

material in a composite structure.

2.4.1 Using an axial force or elastic foundation

The first simplest approach is to model the effects of the SMA on the composite

structure as external axial forces [229, 230]. The amount of recovery stress can be

obtained from constrained recovery experiments on shape memory alloy wires or be

based on constitutive models of monolithic SMA. A second approach is to model the

constrained SMA wires as an equivalent elastic foundation acting on the composite [80].

The elastic foundation stiffness is related to the tension in the shape memory alloy wire.

As pointed out by Zhang and Zhao [268], the above approaches amount to neglecting

the change in length of the shape memory alloy elements and the interaction between

the composite and shape memory alloy deformations.

2.4.2 Modeling only SMA-Composite Interaction

A third modeling approach is to consider the SMA wires and the host structure

as separate elements and model their interaction [257, 90, 62]. In Xu et al. [257]

the interaction between SMA and the host structure is developed using the Brinson

constitutive model. One advantage of this approach is that if SMAHC design parameters

change, such as the volume fraction, location and position of the SMA elements in the

SMAHC, there is no need to recalculate the constitutive equations of the SMAHC. This

simplified approach is not very accurate because it is does not model the interactions

between the different constituents in the SMAHC.

2.4.3 Homogenization Techniques

A fourth approach is to model the SMAHC as an equivalent continuum using ho-

mogenization techniques. In simpler homogenization techniques the influence of the

24



SMA on the structure is deduced from the behavior of the monolithic SMA ma-

terial as predicted by constitutive models model or on the basis of experimental

results, assuming perfect bonding and integrating over the beam or plate section

[227, 244, 220, 218, 92, 14, 214, 119, 120, 121, 269]. A three-dimensional homogeniza-

tion technique is developed by Kawai [117].

While such a simplified approach may be satisfactory for structures containing

in-sleeve SMA wires, the analysis of structures consisting of active composites, namely

polymeric or metallic matrices in which SMA wires are directly embedded, should

be based on constitutive relations that have been established by a micromechanical

approach. In the framework of such an approach, the detailed interaction of the SMA

material with its surrounding is taken into account.

More complex homogenization techniques have also been proposed, involving micro-

macro analysis [138, 131, 142, 141, 95, 112]. While Gilat and Aboudi [94] adopted

the SMA model of Lagoudas et al. [127] in their micro-macro approach, Marfia and

Sacco [142] and Marfia [141] adopted the three-dimensional SMA model developed by

Auricchio and Petrini [10, 11]. Jarali et al. [112] extended the model of Marfia and

Sacco [142] to include also hygro-thermal effects.

Homogenization techniques are an accurate way of modeling the interaction between

the different constituents in the composite, Daghia [62] lists some drawbacks of the

homogenization techniques. (a) The non linear behavior of the SMA generates a non

linear equivalent continuum, increasing the problem complexity. (b) Some homoge-

nization techniques require three-dimensional SMA model, while SMA wires usually

introduced in SMAHC are generally well described by with one-dimensional behavior.

The three-dimensional SMA models require greater computational cost respect to one-

dimensional models. (c) If the design parameters of the SMAHC change, this approach

requires recalculating the homogenized constitutive equations for the SMAHC at an

added computational cost.

2.5 Passive Impact Damage Suppression

The passive impact damage suppression mechanism of SMAHC consists in using the

energy dissipation properties of the suprelastic (SE) or SIM phase transformations of

the SMA material embedded in the composite to dissipate the energy of the impacting

object. The passive damage suppression mechanism described above consists simply

in increasing the impact damage resistance of the composite through the incorporated

SMA material. The SMAHC structure is considered to be smart, because it is able to

react to stimuli of the external environment, but the suppression mechanism itself is

considered to be passive, because there is are no activation sensing or functionalities

present in the structure.
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Passive impact damage suppression will be discussed distinguishing between the

different physical forms of SMA material embodied in the hybrid composite and the

impact velocities.

2.5.1 SMAHC with uni-directional SMA Wires

Low-velocity Impact Suppression

(a) Low-velocity impact tests

(b) High-velocity impact tests

Figure 2-8: Impact energy absorption for various composite materials [187]. The dissipated
energies are volume normalized (reproduced with permission from [249])

SMAHC were first used for improving the impact damage resistance by Paine

and Rogers [182, 185, 184, 183, 187, 186]. They performed low-velocity impact tests

with velocities lower than 6 m/s using an instrumented drop-weight impact tester on

graphite/bismaleimide (gr/bis) and glass/epoxy (gl/ep) composites hybridized using

surface layers (to facilitate observation of the failure modes and simplify fabrication)

of NiTi fibers/epoxy with 10-25% volume fraction of SMA. Aluminium/epoxy and

Kevlar/epoxy hybrid layers were used for comparison. The dissipated impact energy and

deflection during impact were determined from force-time data and the ability of various

materials to resist the motion of the top during low-velocity perforation can be illustrated

from the load versus displacement response (see figure 2-8). From the normalized energy

values, which represent the amount of energy per unit volume required to perforate the
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various materials, it was found that the Ti-Ni/graphite composite produces a rise of

35% for the volume-normalized perforation energy over the monolithic graphite/epoxy

(gr/ep) host composite, whereas the aluminium and KevlarTM hybrids produce little or

no increment at all in the energy. Also the monolithic gl/ep composite demonstrated

significantly greater impact toughness than the monolithic gr/ep composite. The

SMAHC demonstrated a slightly improved perforation toughness and visual inspection

showed that they resisted the cutting action through distributing the impact load over

a greater surface area, because SMA remained intact during the perforation event. The

aluminium and KevlarTM hybrid composites showed a diminished benefit and failed

locally from a punched or cut hole from the local transverse shear stresses at the edge

of the impact site.

Paine and Rogers [185] carried out low-velocity tests on a cross-ply layup of

[0◦2, 90◦2, 0
◦
2] of graphite/bismaleimide composite laminates with 2.8% volume fraction of

embodied superelastic NiTi fibers of diameter 0.3 mm, with no pre-strain, embedded in

the lower 0◦/90◦ interface. During the impact tests they found that their specimens were

not clamped sufficiently and underwent large deflections and slippage. Using a visual

inspection method they compared the amount of impact damage against a reference

graphite laminate and found that for high-energy impacts of 18 J and 23 J, the SMA

wires in the hybrid laminate prevented complete perforation during the impact. They

also found that the all graphite laminate specimens had a larger visible delamination

than the hybrid specimens. They then used a special clamping device in order to secure

the specimens and to obtain smaller deflections during impact. For these specimens they

found that is was more difficult to evaluate the amount of impact damage based only

on visual inspection. At the highest impact energy level of 14 J, all graphite laminate

specimens underwent complete perforation whereas with the hybrid specimens only the

layers above the SMA wire layer were perforated. It was also determined that the peak

impact forces of the hybrid specimens were much higher than the all graphite specimens.

The delaminations in the center of the laminate were similar in size for both types of

specimens.

Kiesling et al. [122, 123] performed quasi-static tests and low velocity (13.9 ft/s)

impact tests (resulting in complete penetration) on Graphite/Bismaleimide laminates

embodied with uni-directional (3 vol%) and bi-directional (6 vol%) superelastic Ti-

Ni fibers. Energy absorption during complete penetration of the hybrid composites

was shown experimentally to be significantly improved by low volume fractions of

incorporated superelastic SMA fibers. The results showed that although damage

initiation and peak loads did not seem to be affected by the SMA fibers (i.e. stiffness

and ultimate strength of the composite remained unchanged), the energy absorption

after peak loads was greatly increased (41% was observed in bi-directional SMA hybrids

and 23% in uni-directional SMA hybrids) suggesting that the SMA fibers distributed
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the impact load to a greater volume of graphite. However, C-scans of the bi-directional

SMA hybrids showed a 22% larger delamination area compared to plain graphite epoxy.

Jia et al. [114, 113] developed a one-dimensional analytical model for studying the

impact force and the strain energy absorption of a SMA/graphite/epoxy composite beam

under low-velocity impact relating contact deformation, global bending deformation,

and transverse shear deformation. The energy absorbed by the SMA hybrid composite

is calculated for each contributing factor, and then related to the extent of martensitic

phase transformation of the superelastic SMA fibers. They found that at very low

velocities, the contact energy absorption is the most effective mechanism, while the shear

deformation absorbs most of the impact energy at higher impact velocities and that the

total energy absorption of the SMA hybrid composites grows when the stress-induced

martensitic transformation occurs. An important result is that the superelastic SMA has

better strain-energy absorption capabilities than the martensitic SMA: the maximum

strain energy stored in the superelastic SMA being at least twice the maximum strain

energy stored in the martensitic SMA.

Tsoi et al. [243] compared the effects of embedding in one layer NiTi superelastic

fibers pre-strained to 0, 1.5 and 3% against martensitic NiTi, NiTiCu and steel wires at

different through-the-thickness positions within a cross-ply layup of [0◦, 45◦, 90◦,−45◦]2s
of a glass/epoxy composite. The fibers were aligned along the centre of the plate with a

volume fraction of 0.45% (0.5 fibers/mm), 0.89% (1 fibers/mm) and 1.8% (2 fibers/mm)

and were placed in the centre, off centre at either 1/2, 1/4 or 3/4 of the through-the-

thickness of the plates or in the bottom layer (i.e. 15/16-th). The influence of the wire

pre-strain, the wire volume fractions and the wire position on the composite’s impact

behavior was investigated. It was found that the position of the wires within a laminate

is important, in particular between which plies the wires are embodied. The authors’

conclusions were that wires should be embedded between 0◦ plies and any other ply, in

order to incorporate them into the matrix leaving no brittle areas. Moreover, embedding

the wires in the lower half of the specimen, preferably along the bottom layer, improves

the resistance, in particular, to fiber breakage. In fact the wires positioned along the

bottom of the specimen (15/16) show an improvement in the energy absorbed of around

25% and 19% for 0.89 vol% and 1.8 vol%, respectively. The projected damage area

shows that there is significantly more damage occurring in the plates which contain

the wires positioned in the centre. The reason for this is that when the SMA fibers

are placed in the centre of the laminate they are placed between 45◦ plies, and, during

curing, the glass and SMA fibers are in different directions, which hinder their joining

movement. Because the epoxy matrix runs in between the two types of fibers, a brittle

area is formed. During impact, the material is very brittle and susceptible to greater

damage.

The volume fraction of the fibers also plays an important role. Samples with different
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volume fractions of superelastic SMA fibers embodied along the bottom of the specimen

were impacted with energies of 6, 12 and 18 J. The results for 6 and 12 J show no

significant differences and only at the higher energy level (18 J) the differences are

significant. The higher impact energy needs to be dissipated by the specimen and

usually goes into damaging the specimen, but as the volume fraction of superelastic

SMA fibers grows the amount of energy which goes towards damaging the specimen

decreases, since the SMA fibers absorb some of that energy. For the lower impact

energies (6 and 12 J), the size of damage of SMA-composites, compared with reference

specimens, was equivalent and differs from previously seen results in Paine and Rogers

[184]. These differences may be due to the differing layup of the composites. Also due

to the limited amount of SMA wire compared to the total volume of the SMAHC the

effect of the wire on the impact behavior is limited.

These results are summarized in figure 2-9 using the graph of the PDA slope versus

the IEC slope. The PDA slope is the slope of the damage area versus incident energy

and is an indication of the damage resistance of a material. The IEC slope is the

slope of the absorbed energy versus incident energy and is a measure of the energy

absorption capacity of the material. A high PDA slope is an indication of easier damage

accumulation and a high IEC slope suggests a greater capacity for internal damping and

impact energy absorption. Of the three different types of volume factions of superelastic

SMA fibers, the 0.5fibers/mm samples have good damping properties, absorb a lot of

energy and have a reasonably low damage accumulation. In general, all three types of

superelastic volume fractions show good properties. The choice of wire volume fraction

would depend more on the specific application

Figure 2-9: Impact performance map (reproduced with permission from [243])

Meo et al. [149] carried out a finite element analysis of carbon fiber/epoxy composite

plates incorporated with SMA (NiTi) wires (in the austenitic phase) subjected to low

velocity impact with different volume fractions of SMA wires, studying the energy
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absorbed during the impact, the number of failed plies and the maximum load carrying

capability of the studied composite plate. The authors concluded that the influence of

the embodied SMA wires on the number of failed plies increased as the impact energy

increased. Furthermore, the effect of the SMA wires on the absorption of impact energy

was higher as the SMA wires were closer to the impact location.

High and Ballistic-velocity Impact Suppression

High-velocity impact events refer to cases of foreign objects impacting at speeds in

the range of 30.48 − 243.84 m/s (100− 800 ft/s) including situations such as a bird

colliding with an airplane. Ballistic impact events refer to cases of foreign objects

impacting at speeds exceeding 243.84 m/s (800 ft/s) including situations such as a

projectile fired from a gun [79, 78]. Because the high- and ballistic-velocity impact

events are characterized by a much more local response of the composite than the

low-velocity impact events, these impact results may demonstrate significantly different

behavior from the low-velocity test [249].

Chen and Lagoudas [47] modeled the behavior of a semi-infinite rod of SMA mate-

rial subjected to an end impact load of prescribed constant stress using the thermo-

mechanical constitutive theory developed for bulk SMA by Boyd and Lagoudas [30, 31].

They found that a typical solution is characterized by two wave fronts which are initiated

at the impact surface and propagate into the rod. One wave travels at the acoustic

speed, separating the tranquil and disturbed regions. The other wave travels at a lower

speed, separating the regions of the martensitic and austenitic phases. Furthermore, the

stress and temperature are continuous in the transition region when the impact stress

is below a certain value, and they become discontinuous above this value. A special

feature of the solution is that the temperature jump can be as large as 50◦K under

certain conditions.

Meziere and Millett [150] investigated the influence of impact stress on the mechanical

behavior of SMA (NiTi) subjected to one-dimensional shock loading using a single stage

gas gun. They found that the relationship between shock velocity and particle velocity

was strongly nonlinear, and attributed this behavior to irreversible (slip) martensitic

transformations within the material. The higher the material is shocked, the more

the material changes its crystal structure affecting the dynamic properties of the NiTi,

with the effect of reducing the wave velocity in the material. They used a bilinear

representation to describe this trend (see figure 2-10).

Paine and Rogers [183, 187] performed high-velocity impact tests at a velocity of

up to 152.40 m/s (500 ft/s) by using a non-instrumented gas-gun on composites with

the impacted layer hybridized using superelastic NiTi elements. Graphite/BMI and

glass/epoxy specimens with the impact side surface layers (hybridized) of NiTi/epoxy,

aluminium/epoxy and Kevlar/epoxy were experimentally tested. They found that
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Figure 2-10: Shock velocity versus particle velocity of NiTi (reproduced with permission from
[150])

the SMA hybrid composite increased the composite’s perforation toughness by 100%,

while the glass/epoxy system showed a growth of 67% over comparable monolithic

graphite/BMI specimens. In both the systems, the Kevlar hybrid composites demon-

strated only a slight improvement to impact energy, while the aluminium hybrid showed

little, if any, improvement.

Ellis et al. [78, 79] performed ballistic-impact tests using a 9 mm Beretta hand-

gun with projectiles traveling at velocities greater than 274.32 m/s (900 ft/s) on

graphite/epoxy composites with various SMA component configurations. The uni-

directional Ti-Ni SMA fiber layer with 1.2% volume fraction was embedded on the front

face, in the middle, and on the back face of the host graphite/bismaleimide composite,

respectively, to form three hybrid configurations. From visual observation and energy

absorption values, it appeared that the back face was the most suitable location of the

SMA fibers in the hybrid composite, and no increment in the energy absorption was

observed when the SMA fibers were placed on the front and middle locations. In all

cases, the SMA fibers were typically pulled through the graphite with-out being strained

to their full potential, resulting in a slight, if any, improvement in the high-velocity

impact resistance. Increasing the volume fraction of the uni-directional SMA fibers or

adding two perpendicular layers of SMA fibers on the back face of the composite yielded

no remarkable rise in energy absorption. These facts suggest that the high strain-energy

absorption capabilities of SMA were not fully utilized at ballistic velocities because of

the high strain-rate effects coupled with a strain mismatch between the relatively tough

SMA fibers and the brittle cured epoxy resin [79]. However, the SMA fibers were found

to be more effectively used when embodied between layers of the thermo-plastic high

performance extended chain polyethylene (ECPE or KevlarTM ) prepreg which were

then placed on the back face of the graphite composite: an increment of 23-24% in

the energy absorption was achieved when compared to the plain graphite composite.

Nevertheless, the SMA fibers were still not fully utilized as evinced by the lack of fibers

strained to failure [78].
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2.5.2 SMAHC with Woven SMA Wires

The first example of the use of SMA fabrics for composite structures was reported by

Boussu et al. [29]. The authors manufactured a fabric of NiTi wires and compared the

elastic properties with those of a fabric of stainless steel wires concluding that NiTi has

a better aptitude to weaving than stainless steel. No information is provided in this

chapter about the practical details of the weaving procedure, but no weaving machine

seems to have been utilized.

Masuda et al. [143] produced a fabric of NiTi wires without using a weaving machine,

but by hand using simply an apparatus to keep the wires in place during the weaving

process. They did not precisely control the pre-strain nor the volume fraction of the

SMA wires.

Zhang et al. [265] compared laminated composite plates containing uni-directional

fine SMA (NiTi) wires against laminated composite plates with an embodied woven

SMA (NiTi) layer and compared their mechanical properties, especially for natural

frequency as a function of temperature, after impact vibration tests. The fabric of

SMA wires was hand made using an apparatus to align the SMA wires and to maintain

proper geometries and restraints on the warp and weft wires. The authors reported that

both SMAHC structures seemed very effective in damping the vibrations. They also

highlighted the importance of optimizing in the SMA laminated structures the volume

fraction and pre-strain of the SMA wires in order to control efficiently the mechanical

characteristics of the manufactured hybrid composite.

Figure 2-11: Woven SMA carbon fiber fabric (reproduced with permission from [89])

Foreman et al. [89] studied the improved impact resistance properties provided by

the SMA-reinforced carbon fiber woven fabrics shown in figure 2-11. The SMAHC were

manufactured using an advanced weaving technology that allowed controlling precisely

the volume fraction of the embedded SMA (NiTi) by changing the number of SMA

wires in the warp and weft directions of the fabrics. The authors performed impact
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tests using an instrumented falling weight impactor. Two different NiTi alloy types

were selected; one was in the martensitic phase at the test temperature, while the other

was in the austenitic phase at the test temperature. Different test were performed in

order to evaluate the effect of several different material variables, such as SMA type,

SMA volume fraction, SMA / carbon fiber weave style and distribution of SMA through

the laminate. The results are compared to the baseline composite without SMA wires

using energy absorption normalized per unit mass, i.e. the absolute energy absorbed

divided by the mass of the clamped region of material during test. The SMAHC shows

a performance improvements of 61-227% in the impact energy absorbed compared to

baseline in the case of the 10.8% volume fraction SMA. When normalised for mass, this

corresponded to a growth from 0.42 for the baseline laminate to 0.97 Joules per gram

(see variant 5 in figure 2-12). The authors conclude that the impact energy absorption

does not depend on the position of the SMA reinforcement through the thickness of

the laminates. They also found that SMA volume fraction and energy absorption vary

according to a simple linear relationship. They highlight a significant difference between

the impact energy absorption of composite laminates reinforced with SMA alloy in

martensitic phase and austenitic phase. This was related to the importance in selecting

alloy types which offer similar stress-strain characteristics to the bulk composite, up to

the point of its failure in the impact event, in order to achieve the optimal hybrid effect

from the different materials employed.

Figure 2-12: Woven SMAHC energy absorption per unit mass for different SMA types and
volume fractions (reproduced with permission from [89])
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2.5.3 SMAHC with Stitched SMA Wires

While in the previously reported studies the SMA wires were embedded into the

hybrid composite during the manufacturing process, Lau et al. [130] studied an

alternative approach of using SMA wires (NiTi in full austenitic phase) to stitch a

ten layers composite plate of Glass fiber woven fabric and epoxy resin. The authors

then subjected stitched and unstitched samples to drop-weight tests and calculated the

energy distribution after impact. They found that increasing the volume fraction of

SMA resulted in a reduction of the delamination energy and in a rise of the stiffness

of the stitched composite plates. Moreover, the natural frequency of the composite

plates decreased and the SMA damping energy increased with the increasing of volume

fraction of SMA.

2.5.4 SMAHC with SMA Short fibers and Particles

The strengthening of Aluminium metal matrix composite (MMC) using dispersed SMA

(TiNi) particles was theoretically studied by Yamada et al. [258]. The strengthening

effect is produced by the fact that the SMA filler shrinks in the matrix at the temperature

of operation (because of the higher coefficient of thermal expansion (CTE) of the filler

than that of the matrix) generating a compressive residual stress in the matrix that

increases the tensile properties of the composite [250]. The compressive residual

stress helps improve certain mechanical properties such as yield strength and fracture

toughness.

Murasawa el al. [162] studied the thermo-mechanical properties and damage char-

acteristics of hybrid reinforced composites with short and long SMA (NiTi) wires. In

Murasawa el al. [163] the properties of the hybrid fiber reinforced composites with short

SMA wires were compared to those with long wires when changing the aspect ratio

(i.e. ratio of fiber length to diameter) and volume fraction of the SMA wires. They

found that the shrinkage after heating (and in correspondence compressive residual

stress) in the matrix increased with the increasing of aspect ratio and volume fraction

of the SMA wires. The composite strain history and residual stress history in the

matrix varies depending on the aspect ratio and volume fraction of the SMA wires.

Quite interestingly, the change of aspect ratio has a small effect on the creation of

internal stress in the matrix and deformation of the composite, while the apparent

transformation temperature of SMAHC can be changed by changing the aspect ratio.

They concluded that for an aspect ratio greater than 25.0 the short and long wires have

a very similar performance.

Xie et al. [255] pre-strained the short fibers before embedding them into the matrix

and studied the effects of different pre-strain levels. Zhang et al. [266] and Ni et al.

[169] studied the effects of dispersing SMA (NiTi) (particles or short fibers) fillers into

ER3 epoxy resin. The authors found that by adding 3.5% of SMA fillers to epoxy resin
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there was a rise of storage modulus as large as six times and of natural frequency as

large as 1.26 times that of bulk epoxy resin in the glass transition region; that the loss

factor of the short fiber SMA composites grows with the increasing of filler contents;

and that the composites with SMA particle fillers exhibit higher loss factors than those

with SMA short fiber fillers.

2.6 Active Impact Damage Suppression

The active impact damage suppression mechanism of the SMAHC consists in using

the energy dissipation characteristics of the SME phase transformation of the SMA

material embedded in the composite to dissipate the energy of the impacting object.

Contrary to passive suppression, in this case the phase transformation is stimulated

(activated), normally via the application of heat, by the structure itself. One or more

types of sensors are used to detect the impact damage on the structure. This is again a

smart structure, but the suppression mechanism itself is considered to be active because

of the presence of sensing or activation devices present in the structure. Materials with

active impact damage suppression capabilities can be considered examples of self-healing

materials (e.g. [34, 38]), sometimes called self-repairing materials, which are reviewed

in general by Kessler [118].

Active impact damage suppression will be discussed distinguishing between the

different physical forms of SMA material embodied in the hybrid composite.

2.6.1 SMAHC with uni-directional SMA Wires

Rogers et al. [205] proposed to use SMAs as actuators, because of their good strain

energy absorbing capabilities, in order to actively accelerate closure of fatigue cracks

and to reduce crack propagation speed. By placing the SMA fibers at the bottom of the

notch part where stress concentrates and by applying electric currents in order to heat

the SMA fibers thus causing contraction forces within them, it was possible to lower

average stress values [205].

Kuang and Cantwell [125] performed a study on the effects of impact on a woven

carbon fiber-reinforced epoxy resin beam to which a SMA (NiTi) wire was bonded using

an epoxy adhesive. The SMA wire was trained before being attached to the composite

beam. Plastic optical fibers (POF) were used as sensors to assess the damage produced

by the impacts. The authors first demonstrate theoretically that the damping ratio is

inversely proportional to the square of the material stiffness, and then experimentally

that increasing the impact energy there is a rise in the measured values of damping

ratio, and therefore a reduction of the specimen’s stiffness. When the SMAHC beam is

impacted with energy of approximately 0.25 J, this being sufficient to provide a vibratory

response without damaging the beam, the tests demonstrated that the addition of the
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SMA wire has the ability to change the damping response of a composite beam. They

showed that when the SMA is activated there is a reduction in the vibration amplitude

occurring in the very first cycle compared to when the SMA is deactivated (see figure

2-13). The damping capability of the SMA in the austenitic phase is attributed by

the authors to the energy dissipated due to internal friction at the interface of the

stress-induced Martensite and the parent phases. They also point out that when high

oscillation amplitudes are applied, more energy is available to induce the formation of

Martensite resulting in the creation of more interfaces leading to a growth in damping

capability of the SMA.

Figure 2-13: Dynamic response of an SMAHC impact-loaded beam (reproduced with permis-
sion from [125])

Zhang et al. [267] analyzed the energy absorbing properties of E-glass composite

beams reinforced with a 10% volume fraction of incorporated SMA (NiTi alloy) wires

(a weight penalty of about 6%). The beams were subjected to tensile tests, and the

responses of baseline composite beams was compared with those of SMAHC with no

heating, where the SMA wires were in the Martensite phase at room temperature (RT),

as well with those of SMAHC with resistive heating, where the SMA wires were in the

Austenite phase (75◦C) at RT. The authors found that when the SMA wires were in

the Martensite phase, while there was no significant difference between the hysteresis

levels with and without SMA wires, there was a marginal increment in stiffness due

to SMA wires of about 5% and the failure stress and failure strain were also higher,

resulting in a 50% rise in the strain energy absorption prior to failure. When the SMA

wires were in the Austenite phase, there was a significant decrease in the modulus and

in the failure load, that the authors attribute to the softening of the epoxy during

the heating of the structure required to activate the SMA wires and to failure of the

interface between epoxy and SMA wires when the wires contracted due to the reverse

martensitic transformation. However, when the SMA wires were in Austenite phase,

the composite beam displayed a large hysteresis (and hence damping) compared to the

baseline beam, which the authors ascribed to the softening of the epoxy as well as to the
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large hysteresis associated with the SMA wire response, and the energy absorption prior

to failure showed a 600% increase over that for the baseline composite beam, which the

authors attributed to the large plastic deformation of the SMA wires.

In Ogihara et al. [170] pre-strained (3.7%) SMA (NiTi) wires were embodied in a

symmetrical cross-ply of glass fiber reinforced polymers (GFRP) . The volume fraction

of embedded SMA was 10%. The laminates were pre-heated and subjected to tensile

loading. The results were compared against various combinations of non preheated

samples, non pre-strained samples and samples without the addition of SMA in order to

compare the recoverable deformations in the various cases. The authors found that the

tensile strength of the GFRP samples that had undergone heat treatment was higher,

attributing this behavior to the after cure effect of the heat treatment which enhanced

the adhesion between the GFRP plies and the SMA wires. The GFRP with pre-strained

SMA wires and heat treatment showed the highest tensile strength. They observed both

transverse cracks and delamination in all GFRP laminates during the tensile loading,

but only transverse cracks in the GFRP laminates subjected to the heat treatment. In

GFRP with pre-strained SMA and heat treatment, the strain at the damage initiation

is the highest among the laminates tested. The authors suggested that this implied

that the SME of SMA reduced the thermal residual stress in the 90◦ ply. Moreover,

Ogihara and Uehara [171] found that the fracture toughness is higher in acid cleaned

SMA wires than in untreated SMA fiber, which implies that the acid cleaning enhances

the adhesion between the SMA fiber and the epoxy matrix.

Shimamoto et al. [222, 223] investigated the suppression of crack-tip stress inten-

sity and the change in fracture toughness of composites with an epoxy matrix and

incorporated SMA (NiTi) wires with different pre-strain values (0, 1, 3 and 5%) and

different crack angles (0◦, 15◦, 30◦, 45◦, 60◦). They found that the SMA wires were able

to suppress the stress intensity factor at the crack tips after heating to the Austenite

temperature, and that the suppression effects increased with the increasing of pre-strain

levels. Shimamoto et al. [224] verified that there is a retardation in the fatigue crack

propagation especially in the region very close to the SMA wires. Araki et al. [8, 7]

developed a micromechanics model to study the suppression of crack-tip stress intensity

of SMA (NiTi) wires embodied in an epoxy matrix. They conclude that after the acti-

vation of the SMA wires via heating, the crack-tip stress intensity decreases gradually,

until it reaches a constant value, because of the difference in thermal expansion between

SMA wires and matrix. The crack-tip stress intensity decreases with the the increasing

of (a) the activation temperature of the SMA wires, (b) the thermal expansion coefficient

of the matrix, and (c) the shrinkage of the SMA wires due to the SME.

Jang et al. [111, 109] studied the thermo-mechanical properties of SMAHC composed

of pre-strained impregnated SMA (TiNi) wires and CFRP cross-ply laminates. Applying

a tensile load the SMA wires were pre-strained between 0.5-7% before being embedded
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into the CFRP matrix. The authors concluded that the compressive recovery forces

generated by shrinkage of the SMA wires increased with the increasing of pre-strain

level and number of impregnated SMA wires. They also found that these compressive

recovery forces, induced when the pre-strained SMA wires were electrically heated,

could heal transverse cracks which formed along the 90◦ ply CFRP laminate under

tensile loading. Furthermore, Jang and Kishi [110] found that the tensile strengths

and Young’s moduli of the composites decrease as the stacking angle of the carbon

fibers grows from 30◦ to 90◦. They put this behavior down to the amount of pores

and/or voids that congregate near the embodied SMA wires which were found to rise

proportionally with the stacking angle of the carbon fibers.

Kimura et al. [124] analyzed the change in interlaminar fracture toughness and

crack propagation rate due to the compressive recovery forces, obtained through heating,

generated by SMA (NiTi) wires embedded in CFRP, while performing crack propagation

tests under both fatigue and static loading. The results showed that the fracture

toughness under mode I static loading increased by 1.7 times. This was attributed to

the recovery stress of the SMA wires as well as to the increment in stiffness caused

by the embodiment of the SMA wires into the composite. The effect on the fracture

toughness of the recovery stress resulted larger than that of the rise in stiffness. The

fracture toughness under mode II static loading also increased by 2.3-3.1 times as a

result, according to the authors, of (a) the recovery stress of the SMA wires, (b) the

rise in stiffness caused by the embodiment of the SMA wires into the composite, and

(c) the friction on the fracture surface. Moreover, the fatigue crack propagation tests

highlighted a reduction in the crack propagation rate.

Roh and Kim [208, 209] modeled the effects of low velocity impact on SMAHC

fiber reinforced plates. The SMA (NiTi) wires are embodied within the layers of a

graphite/epoxy composite plate. Three piezoelectric sensors made from polyvinylidene

difluoride (PVDF) films are mounted on the opposite side of the impact and used

to monitor the impact-induced strains. The deflection and stresses are reduced by

employing pre-strained (8%) SMA wires, which are in the martensitic phase when

embedded within the plate. The first-order shear deformation theory (FSDT) of plates

is used in the analysis and also a finite element formulation is developed to model the

dynamic response of the hybrid composite plates. The SMA constitutive used in this

study [209] is the Liang and Rogers model [133]. All edges of the plate are clamped

and the plate is subjected to an impact with the velocity of 38.1 m/s. The bonded

PVDF patches were found to have very little effect on the dynamic response of the

plate. The authors imputed this fact to the flexibility of PVDF films, which prove to

be ideal sensors. The stiffness of the SMA wires is controlled by the addition of heat

(generally obtained by applying a current through the wires), and the resultant in-plane

forces adaptively change the structural response of the plate (i.e. ASET). The authors
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found that, as a result of recovery stress, the maximum deflection of the graphite/epoxy

plate was reduced by about 50% with the volume fraction of SMA wires equal to 0.3%.

They also found that the orientation of the SMA wires influences the relative deflection.

An optimal deflection under the impact can be obtained by considering an appropriate

volume fraction of SMA wires and orientation.

Serry et al. [220, 218] propose a sequential solution procedure based of two nonlinear

finite-element procedures, the first structural and the second transient electro-thermal,

and on the combination of the two after each iteration step. This methodology was then

applied to SMAHC composed of SMA wires incorporated into a polymeric matrix for

the purpose of investigating the self-healing ability of the SMAHC. The structure uses

the variations in the SMA wires as sensor to individuate the presence of a crack (via

the reduction of the martensitic volume fraction in the area of the crack, and therefor

the rise in resistivity) and the SME induced via heating of the SMA wires is used as

actuator to close (heal) the crack. The authors then performed a parametric study to

evaluate the system. The rise in current density in the SMA wires increases the speed

of closure of the crack. It is important to select the proper current density sufficient

to close the crack as too much heat might harm the structure. Increasing the wire

diameter the amount of heat that can circulate in the SMA wire grows and consequently

the recovery forces generated in the wire rises, which speeds up the crack closure. But

it was also found that the SMA wire diameter must not be too high because, as the

SMA wires have a higher CTE than the matrix, they tend to expand more applying

tensile forces on the polymeric matrix that could open the crack instead of closing it.

Increasing the volume fraction of SMA wires (i.e. the number of wires per mm2) was

also found to have a positive effect on the crack closure, as now there are more SMA

wires near the crack. The summation of the recovery forces of all these wires contribute

to closing the crack, and so a smaller force per wire is need. Moreover an increment

in number of SMA wires leads to a rise of the sensibility of the system avoiding that

small cracks in between the wires remain undetected. The authors found that the SMA

wires’ pre-strain seemed to have a minor effect on the crack closing recovery process (a

part for very small values of pre-strain less than 0.02%), but that sufficient pre-strain is

required for obtaining the sufficient volume fraction of detwinned Martensite needed to

develop a recovery force strong enough to close completely the crack. Furthermore heat

dissipation in the system must be reduced for sufficient heat to be able to reach the

SMA wires to generate the recovery forces needed to close completely the crack. Also

the initial temperature is important, because as it gets closer to the Austenite start

temperature As, the reverse Martensite transformation process starts earlier speeding

up the crack closure. If the initial temperature is too low, then the longer time required

to start the reverse Martensite transformation leads to a growth of the difference in

CTE tensile forces and possible harmful effects on the matrix. Serry et al. [219] showed
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that polymeric matrix materials with similar modulus of elasticity, although their CTE

values may be quite different, have similar crack recovery behavior and that the higher

the modulus of elasticity is, the faster the crack recovery process tends to be. Finally,

the modulus of elasticity of the polymeric matrix also has also an important effect on

the SMA wire phase transformation process.

Burton et al. [38] used finite element analysis (FEA) to model the self-healing

effect of the recovery stress, obtained through heating, of pre-strained SMA (NiTi)

wires embodied in a metal matrix composite. In this study the SMA wires and matrix

material are modeled separately in order to allow adapting the method to different

types of composites in terms of material properties, locations and positions of SMA

wires without reformulation of the constitutive model for the whole composite. The

SMA wires were pre-strained to an initial detwinned Martensite fraction of 30%. When

unloaded to zero stress, the initial temperature was midway between the Martensite

start Ms and Austenite start As temperatures and the SMA wires are 100% Austenite.

A uniform temperature field is considered during the healing process, neglecting any

heat transfer to the matrix. The critical stress to debond the matrix is taken as 60 MPa

and the wires transform to a final fraction of 84% detwinned Martensite. Furthermore,

the loading of the composite and the subsequent heating are performed quasi-statically.

The results show that increasing the density of the wires had the effect of proportionally

increasing the closure force upon heating. During heating, the temperature must be

raised to well above the Austenite finish temperature Af to significantly transform the

SMA wires to Austenite. The matrix softens during the heating allowing the SMA wires

to fully close the crack upon heating. Without sufficient softening, the strong resistance

by the matrix would prevent the SMA wires from fully closing the crack.

Khalili et al. [120] divides the effects of embedding SMA fibers on the total stiffness

of the composite structure in two different components: essential stiffness and acquired

stiffness. The essential stiffness is the stiffness that a structure gains during the

manufacturing process and when it is ready to be used, while the acquired stiffness

is the stiffness that a structure gains after its manufacturing process and when it is

already in use. Both component contributions are important when SMA wires are used

to improve the impact resistance of a hybrid composite structure. Because the SMA

wires are embodied in the structure before the manufacturing process of the structure

is finished, the presence of these wires changes the essential stiffness component of the

structure. When the SMA fibers are activated via heating and they apply positive tensile

stresses in the structure this modifies the acquired stiffness component. The authors

used an analytical model [119, 120, 121] to study the effects of various parameters on

the stiffness components of a hybrid composite structure. See figure 2-14 for some of

these parameters.

They considered only cases where the SMA fibers were incorporated in directions
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Figure 2-14: The effect of various parameters on the essential stiffness and acquired stiffness
of a structure (reproduced with permission from [120])

parallel to the reinforcement fibers of each lamina of the composite, corresponding to

the 0◦ and 90◦ fiber orientations, simultaneously and in the same volume fraction in

each lamina, because they state that if the orientation of the SMA wires is not parallel

to the reinforcement fibers of the composite lamina medium, the mismatching of the

fibers and the SMA wires might generate some non-fiber spaces which contain only

brittle resin, resulting in the reduction of structure properties and eventually causing

brittle fracture.

The benefit of embedding the SMA fibers was first studied in relation to increasing

the SMA volume fractions in the hybrid composite analyzing two different parameters:

(a) the first, the reduction of a non-dimensional transverse deflection w/h, which is

the ratio of composite plate deflection to its thickness, is a measure of the benefit

to the essential stiffness of the whole structure; (b) the second, the rise in contact

force, measures the benefit to the acquired stiffness of the whole structure. There is an

interaction between the two stiffness components (interactive effect) (see figure 2-15). It

was found that the increasing of the volume fraction of SMA fibers more than 40 vol%

has only little effect on the reduction of the w/h ratio and so on improving the impact

resistance of the structures [119, 120, 121].

The authors find that embedding 40% volume fraction of SMA wires in the composite

results in 61% reduction in w/h ratio of the structure, which origins from the increasing

of both the essential stiffness and the acquired stiffness of the structure simultaneously

(an interactive effect). In comparison, embedding 40% volume fraction of steel wires

would result instead in only a 7% reduction in w/h ratio of the structure, which origins

only from the increasing of the essential stiffness of the structure (a non-interactive

effect). Although the stiffness of the SMA wires is less than 35% that of the steel wires,

they can reduce the w/h ratio of the structure by 54% increasing the essential and the

acquired stiffness of the structure together. Note that embedding steel wires instead of

the SMA wires would result in a 12.5% increment in the weight of the hybrid composite

structure [119, 120, 121].

The authors then studied the effect of the location of the SMA fibers in the through

thickness embodied in only two layers of the hybrid composite and keeping a constant
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SMA volume fraction equal to 20%. Because the volume fraction of the SMA wires is

constant, the positive pre-stress in the structure is the same for all cases, so also the

acquired stiffness of the structure is the same for all cases, but the essential stiffness of

the structure changes when the location of the SMA wires through the thickness of the

structure changes (a non-interactive effect). The SMA wires are incorporated in the

composite structure within a cross-ply layup of [0◦, 90◦, 0◦, 90◦, 0◦]s. Embodying the

SMA wires parallel to the reinforcement fibers and only in layers 5 and 6 resulted in the

lowest value of the w/h ratio of the structure (52%) in comparison with all other cases.

Again for a constant volume fraction of SMA fibers equal to 20%, embedding the

SMA wires only in directions parallel or transverse to the reinforcement fibres, but

in more than two layers, was more effective than embedding them in only two layers,

because, the essential stiffness of the structure is distributed more uniformly so the

in-plane strains and stresses on the structure also are distributed in a more uniform

way and the impact resistance of the structure improves too. Embedding the SMA

wires in the parallel direction was more beneficial than embedding them only in the

transvese direction because of the greater negative effect of thermal stresses in the

parallel direction, which can be decreased by embedding more SMA fibers in the parallel

direction. Increasing the volume fraction to 40%, the negative compression thermal

effect of the composite medium decreases, so embedding the SMA wires in direction

transverse to the reinforcement fibers improves the impact resistance of the structure a

little more, because the volume fraction of the reinforcement fibers of the composite

medium in the transverse direction is less than that in the parallel direction. Keeping

constant the acquired stiffness and changing only the essential stiffness of the structure

(a non-interactive effect), the most beneficial properties of the structure are obtained.

Figure 2-15: Effect of increasing the volume fraction of the SMA wires on non-dimensional
deflection (w/h) history and on the contact force history (reproduced with permission from
[120])
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2.6.2 SMAHC with SMA Foils (Thin Films)

Ogisu et al. [175] studied the best stacking location for the SMA foils using the strain

energy release rate, G, as an index of edge delamination growth in the laminates. The

choice of stacking location of SMA foils affects the overall behavior of smart materials.

They found that the best location for suppression of transverse cracks is the 90◦-ply in

terms of minimum value of the normalized strain energy release rate. For this reason the

authors conducted [173, 175, 174] all their tests using the laminates with the stacking

sequence of [+45◦/0◦/ − 45◦/90◦/Ad/SMA/Ad /90◦/ − 45◦/0◦/ + 45◦], where Ad is

the adhesive film. The authors [175] found that the transverse crack onset strain of

CFRP laminates with embodied 2% pre-strained SMA increased by 0.22% strain as

compared with the conventional CFRP laminates (see figure 2-16). The improvement

effect consists of (a) a growth by 0.03% by the incorporated SMA foils, (b) an increment

by 0.14% by the recovery stress at RT, and (c) a rise by 0.05% by the recovery stress

caused by the heating of 2% pre-strained SMA. The test results confirmed that the onset

strain of the transverse crack of CFRP laminates with embodied SMA foils increased by

27% at RT and by 34% at 80◦C as compared with the conventional CFRP laminates.

Figure 2-16: Transverse crack density as a function of applied strain of CFRP laminates with
or without embedded SMA foils [175]

They [175, 174] also found that the recovery stresses of the embodied 2% pre-strained

SMA foils generated by heating up to 80◦C were effective for delaying the delamination

onset, but the suppression effect for the transverse crack onset was mainly generated

by the embedded effects of SMA and the pre-strain of SMA rather than the effects of

the recovery stresses of the SMA foils. One of the reasons why the actuation effect by

heating the CFRP laminates with embodied 2% pre-strained SMA foils is relatively low

when compared with the embedded effect is the low volume fraction of the SMA foils

which was used to avoid the increment in density for the SMAHC [174].

Ogisu et al. [173] conducted a technical verification program on a demonstrator test

article designed as a 1/3-scale model of a commercial airliner’s fuselage structure (B737

class). The purpose of this program was to verify if embodied, pre-strained SMA in CFRP

laminates were able to suppress damage growth of transverse cracks and delamination
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initiating from the transverse cracks when the CFRP laminated structure was subjected

to cyclic loads. The comparison in the crack onset strain increase of the CFRP laminate

with incorporated pre-strained SMA foils (smart area) with respect to standard CFRP

laminates (conventional area) was used as criteria to verify if the damage was suppressed.

Both conventional areas and smart areas were integrated on the same evaluation area.

The lower side of the demonstrator that is in tension was selected as evaluation area. The

conventional area consisted in a [+45◦/0◦/− 45◦/90◦]s ply stack-up, while the smart area

consisted in a [+45◦/0◦/−45◦/90◦/Ad/2% pre-strained SMA/Ad /90◦/−45◦/0◦/+45◦]

ply stack-up, where Ad is the adhesive film. Electric current heating was used in the

demonstrator test article to generate the recovery stress for the SMA foil. The SMA

foils were heated by both electric current heating and a silicon rubber heater in order

to avoid over-heating issues in the demonstrator in local areas at the connecting points

of SMA foils [173]. The results confirmed that the damage onset and growth strain in

the smart area was improved by 30% over that of the conventional area and that the

crack multiplication was suppressed, as shown in figure 2-17.

Figure 2-17: Comparison of the demonstrator test data with the prediction of transverse crack,
delamination and fracture strain using the previous test data (reproduced with permission from
[173])

Amano et al. [4, 5] developed a system for damage detection and suppression based on

embedding pre-strained SMA (TiNi) foils and small-diameter fiber bragg grating (FBG)

sensors simultaneously in a CFRP cross-ply laminate composite structure. The laminate

configuration was a cross-ply [0◦/90◦/Ad/SMA/Ad/90◦/0◦], where Ad represents an

epoxy adhesive film. The small-diameter FBG sensors were embodied into the 0◦ ply

along the reinforcement carbon fibers in contact with the 90◦ ply, so that it was sensitive

to transverse cracks running through the thickness and width of the 90◦ ply. The

pre-strained SMA foils were embedded between two 90◦ plies. When the small-diameter

FBG sensor detects some transverse cracks in the laminates, then the laminate is heated

up so that the TiNi SMA foils, acting as actuators, generate the recovery compressive

forces to suppress the initiation and growth of transverse cracks. It was proven both

experimentally and analytically in Amano et al. [5] that the embodiment of the Ti-Ni

SMA foils into CFRP laminates is effective in suppressing the occurrence and growth
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of the transverse cracks. Figure 2-18 shows a comparison of the rise in the transverse

crack density between the predictions of the simulations and the experimental results

at the temperatures of 25◦C and 90◦C.

Figure 2-18: Comparison of the increase in transverse crack density between experiment and
simulations (reproduced with permission from [5])

The test temperature of 90◦C was selected because this temperature is the maximum

limit for actual applications of aircrafts and it is also sufficiently beyond the Austenite

finish temperature Af (approximately 61◦C) of the TiNi SMA foils. Subsequently Taketa

et al. [233] developed an extended Brinson constitutive model in order to characterize

the thermo-mechanical behavior of the TiNi foils including also the rhombohedral phase

(R-phase) transformation, to which the authors attribute the particular properties of

the TiNi foils used as actuators. Experimental tests were performed on the NiTi foils

for the determination of the parameters of the constitutive equation. Then several

simulations were conducted using this model and the results compared against the

experimental results in order to validate the model finding a good agreement. Finally,

three-dimensional FEA, using the extended Brinson model of Taketa et al. [233], was

conducted by Amano et al. [4] in order to model the behavior the CFRP cross-ply

laminate with embodied pre-strained SMA foils confirming that this mechanism is

effective in suppressing the occurrence and growth of the transverse cracks.

Takeda et al. [232] proposed a technique for damage detection and suppression

(self-repairing) mechanism for smart honeycomb sandwich structures. This is based

on small-diameter FBG sensors embedded in a reticular pattern in the adhesive layer

between the honeycomb core and the facesheet. The density of the sensors is such

that unacceptable damage for the structure can be detected. The honeycomb cell walls

are made of SMA foils which, heated above the martensitic reverse transformation

temperature for shape recovery, are used to repair the BVID, as described in figure

2-19.
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Figure 2-19: Self repairing technique for BVID in Smart Honeycomb Sandwich Structure
(reproduced with permission from [232])

2.6.3 SMAHC with SMA Ribbons

Turner [244] studied the thermo-mechanical properties of SMAHC for glass/epoxy with

embodied SMA (NiTi) ribbons performing static and dynamic finite element simulations

and comparing the results against experimental results. Brinson et al. [34] studied the

self-healing properties of pre-strained SMA actuator ribbons embedded in a polymeric

based composite beam. They experimentally found that when heated, first the beam

buckles before the SMA ribbons are actuated, then the deflection of the beam is reduced

once the ribbons start to generate the recovery stress; finally at a higher temperature it

re-buckles due to dominant thermal effects.

Gao et al. [90] studied, using a commercial FEA tool, the self-healing properties of

clamped SMAHC beams consisting of a matrix of laminated glass-epoxy layers reinforced

with embodied SMA (NiTi) ribbons. The authors found some quantitative differences

between experimental data and simulation results, which they attributed to modeling

approximations, e.g. amongst the others the assumed constant temperature throughout

the model, while in the experiments the SMA ribbons were activated by resistive heating

which caused a non uniform temperature distribution in both the SMA ribbons and the

composite.

2.7 Conclusions

In this chqpter the state of the art of shape memory alloy hybrid composites (SMAHC)

for the purpose of damage suppression has been reviewed. First the general properties of

SMAs and SMAHC were considered, with particular emphasis on the fracture toughening

mechanism. Then a brief overview of constitutive equations and modeling approaches

for SMAHC was given. Finally, both active and passive damage suppression mechanisms

were reviewed distinguishing between the different physical forms of SMA materials

used, e.g. particles, wires, films, etc.

SMAHC have been particularly successful in achieving damage suppression using

both passive and active mechanisms. The active mechanism is not only able to absorb

impact energy, but also to accelerate closure of fatigue cracks and to reduce crack

propagation speed. Both the ultimate strength and the failure strain of the SMAHC

were found to be significantly greater than those of baseline control materials with the
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final failure strain of the SMAHC exceeding 30% that of the baseline. Normally, the

ultimate strain energy was higher for active damage suppression than for passive, but

passive damage suppression is in general cheaper and less complex than active.

A critical aspect is the interaction between the SMA material and the matrix in the

hybridized composite. Maximum interfacial adhesion between the SMA and the matrix

is desirable for obtaining maximum load transfer. Since the structure could get harmed,

it is critical that the heating supplied to the SMAHC be not too high when using the

active mechanism.

The performance of the SMAHC is highly dependent on parameters such as pre-

strain, volume fraction, orientation and position of the SMA fibers within the laminate.

Increasing the pre-strain or volume fraction of SMA is generally beneficial for damage

suppression until optimal values can be found (after that no further benefit is noticed).

The best results are mostly obtained when the SMA material is embedded in the outer

layers, and especially in the bottom layer, of the laminate and when the wires are in a

direction parallel to that of the reinforcement fibers.

47



Chapter 3

Homogenization methods for

two-dimensional woven

composites

3.1 Introduction

The use of composite materials in industrial applications has been increasing over the

past years thanks to their very high specific strength, high specific stiffness, fatigue

characteristics and moderate cost.

Composite materials can support very high loads in the direction of the fibers, but

only low loads in the translaminar direction, as all the load is supported only by the

matrix. Composite materials have a poor resistance to the damage caused by the impact

of a foreign object on their outer surface, because they dissipate very little impact strain

energy (such as plastic yielding in ductile metals) during impact loading.

Composites with woven fiber reinforcements have proven to have superior impact

energy absorption capabilities [201] and to have very good properties in mutually

orthogonal directions as well as more balanced properties [2] compared to laminates

with uni-directional (UD) fibers .

The mechanical properties of the woven composites will depend on the weave

architecture and materials used. For this reason the prediction of the mechanical

properties for the woven composites assumes a critical role when designing the laminate.

Following the of work of Ishikawa and Chou [105, 106], many methods have been

proposed for determining the mechanical properties of two-dimensional (2D) woven

composites. For general reviews into modeling for predicting the mechanical properties

of textile composites refer to [234] or to [60]. These methods can be broadly categorized

in analytical methods based on the mechanics of materials approach (e.g. [2, 165, 3, 68]),

methods based on the finite element analysis (e.g. [251, 148]) and methods based on
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the asymptotic expansion homogenization method (AEHM) approach (e.g. [24, 63, 53,

39, 55]).

Analytical methods based on the mechanics of materials approach use analytical

or semi-analytical expressions which are derived based on certain simplifying assump-

tions, such as iso-strain and iso-stress hypothesis. The designer must select the most

appropriate model amongst those available. This selection is thus a critical phase of the

design process. Very little information is available in literature in terms of comparison

between these different models.

For this reason the present chapter aims to critically compare the analytical methods

based on the mechanics of materials approach with regards to their capability in

predicting the mechanical properties for different fabric architectures and material

constituents. Furthermore the AEHM will be compared with the analytical methods in

order to asses its capability in predicting the mechanical properties for different fabric

architectures and material constituents.

Furthermore, anisotropic damage mechanics has been integrated with the AEHM to

model failure in woven composites by [69, 231].

Section 3.2 reviews the theory behind the analytical methods, the AEHM and

anisotropic damage modeling, while sections 3.3.1 and 3.3.2 presents and discusses the

numerical results. In section 3.4 we draw some conclusions on the effectiveness of these

methods.

3.2 Methods

An orthogonal 2D woven fabric consists of two sets of yarns (or strands) interlaced at

90◦ to each other. In the following the terms yarns and strands are used interchangeably.

The lengthwise yarn is called warp, while the crosswise yarn is called fill (often also

weft). The weave patterns repeat every certain number of warp yarns and fill yarns.

This basic area, which is the smallest periodic region of the woven composite that

repeats itself in the lamina, is a complete representative volume element (RVE) of the

weave, and is sufficient to estimate its mechanical properties. Note that here the RVE

coincides with the repeating unit cell (RUC) typical of periodic structures. Refer to

Pindera et al. [192] for the definitions of RVE and RUC and a discussion on the most

appropriate uses of the two expressions. In the following the term RVE will be used to

conform with previous literature.

There are various weave styles of orthogonal 2D woven composites based on the

way the yarns are interlaced. The different weave patterns are characterized by the

geometrical parameters nfg and nwg , which represent the nth yarn with which an orthog-

onal yarn is interlaced. For example a warp yarn is interlaced with every nfg fill yarn

and a fill yarn is interlaced with every nwg warp yarns. Figure 3-1 [238] gives some
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examples of RVE for some typical 2D weaves. If the yarns have the same size and same

undulation length and nfg = nfg = ng then the fabric is called balanced ; otherwise it is

called unbalanced. Moreover, if the two sets of yarns are of different materials, then

the fabric is called a hybrid weave [68]. In general, the RVE is characterized by two

parameters: (1) the fabric type ng (see Figure 3-1) and, for the satin fabrics, (2) the

satin weave type ndec, which accounts for the position of the interlaced region in the

RVE. In the following, ndec = 1 is assumed.

(a) Plain weave (ng = 2)(b) Twill weave (ng = 3)

(c) 5-harness satin
weave (ng = 5)

(d) 8-harness satin
weave (ng = 8)

Figure 3-1: Representative Volume Elements of typical 2D woven composites (reprinted with
permission from [238, p. 71])

3.2.1 Mechanics of materials based approach

The analytical methods employed for predicting the mechanical properties of 2D woven

composites (e.g. [164, 216, 217]) are based on the multi-scale modeling approach. The

terminology referred to by [129] as top-down-bottom-up method will be used in this

chapter to describe the homogenization process.

In summary, the top-down-bottom-up method consists of two phases: (1) In the

first phase (top-down), one must perform a geometrical analysis of the material in

order to identify fabric type (and, if applicable, satin weave type), element distribution

and fiber volume fraction. (2) In the second phase (bottom-up), in order to identify
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the elastic properties of the woven composite material, one must perform the analysis

in the opposite direction (from composite constituents to macroscopic behavior) by

determining first the yarn and resin properties, then the basic element properties and

finally the homogenized fabric properties.

Once the RVE of the 2D woven lamina has been identified, this area is sub-divided

(top-down phase) into smaller regions, called elements, which in turn can be divided

into even smaller sub-regions, called sub-elements, based on the undulation of the warp

and fill yarns, and the position of the yarns in the element [252]. The mechanical

properties of the RVE (bottom-up phase) are obtained by homogenizing the properties

of the elements (and, in turn, sub-elements) that compose it. In general three different

types of sub-elements (in the local co-ordinate system of the fibers) are present in a

woven lamina: (1) those composed of both matrix and reinforcement fibers in the fill

direction; (2) those composed of both both matrix and reinforcement fibers in the warp

direction; and finally (3) those composed only of matrix. Also there is the possibility

of a presence of a gap gf between the fill yarns and a gap gw between the warp yarns.

The presence of gaps will be considered in sections 3.3.1 and 3.3.2.

With regards to notation, the shorthand (or contracted) notation [226, p. 17] for

Cartesian co-ordinates is adopted for stress σ and strain ε. The co-ordinate axes are an

x-y-z system or a 1-2-3 system. The x-y-z system is called the global or off-axis system,

while the 1-2-3 system is the material or on-axis system. All rotations of co-ordinate

axes are assumed to be about the z-axis, so z is coincident with the 3-direction, which

is consistent with the assumption that individual lamina are modeled as orthotropic

materials. By convention, axis 1 is the direction parallel to the reinforcement fibers,

axis 2 is the in-plane direction perpendicular to fibers and axis 3 is the out-of-plane

direction perpendicular to fibers.

For the matrix the hypothesis of isotropic material will be used, i.e. all planes are

planes of material symmetry and are isotropic.

Em1 = Em2 = Em3 = Em

Gm12 = Gm13 = Em23 = Gm

νm12 = νm13 = νm23 = νm (3.1)

The reinforcement fibers can be assumed to be isotropic materials or transversely

isotropic materials, i.e. the material has an axis of symmetry, e.g. the 1-axis, and any

two fibers having symmetrical position to the axis of symmetry have the same stiffness.

In this case, the 2-axis and 3-axis can be in any direction (but perpendicular to each

other) without altering the value of the compliance and the x-y plane is an isotropic

plane. If the reinforcement fibers are transversely isotropic materials then the following
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equations are valid:

Ef1 = EfL

Ef2 = Ef3 = EfT

Gf12 = Gf13 = GfLT

Gf23 = GfTT

νf12 = νf13 = νfLT

νf23 = νfTT =
EfT

2GfTT
− 1 (3.2)

where L stands for longitudinal direction (along the axis of symmetry), while T

stands for transverse direction (perpendicular to the direction of symmetry).

The mechanical properties of the sub-elements composed of two constituents will be

derived using micro-mechanical models. Micro-mechanical models are generally used to

predict the mechanical properties of uni-directional (UD) fiber-reinforced laminae, so

the underlaying assumption here is that the yarns (strands) have the same mechanical

behavior as in UD laminae.

Various micro-mechanical models can be used to calculate the equivalent mechanical

properties of sub-elements composed of matrix plus fiber reinforcements. See e.g. [45] for

a review of existing micro-mechanical models. The rules of mixtures model [226] gives

very good estimates in the longitudinal direction, but is inaccurate in the transverse

direction. Other micro-mechanical models give a better performance in the transverse

direction, but at the expense of an increased computational cost. Lamers [129] suggests,

as a compromise, using the rules of mixtures only in the longitudinal direction, and a

more precise (but more complex) model in the transverse direction.

In particular, (1) the models termed Chamis [43] and Hashin and Rosen or Composite

Cylinder Assemblage (CCA) for anisotropic constituents [98] are adopted for the sub-

elements composed of matrix and transversely isotropic reinforcement fibers; (2) the

model termed Hashin and Rosen or CCA for isotropic constituents [211] is employed for

the sub-elements composed of matrix and isotropic reinforcement fibers. These models

are summarized in appendix refapp1:microModels.

In all micro-mechanical models one must utilize the fiber volume fraction in the

(warp and fill) yarns. As discussed by [164] and [129] the fiber volume fraction in the

warp and fill yarns V W,F
f are related to the total fiber volume fraction in the composite

Vf as follows:

V W,F
f =

Ω

ΩW,F
Vf (3.3)

where Ω is the total volume of the composite, and ΩW,F is the volume of the warp
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and fill yarns.

Vf is determined by the packing structure, and for square packing is equal to

[129, 252]

Vf =
1
4πd

2

d2
=
π

4
≈ 0.785 (3.4)

where d is the diameter of the fibers; while for hexagonal packing is [129, 252]

Vf =
1
8πd

2

1
4

√
3d2

=
π

2
√

3
≈ 0.907 (3.5)

A lamina in a composite laminate is generally assumed to be specially orthotropic

with the following stress-strain relationships [226]

ε = Sσ (3.6)

σ = S−1ε = Qε (3.7)

Where S is the compliance matrix and Q is the stiffness matrix (sometimes referred

to in literature as C). The compliance matrix can be expressed in terms of elastic

modulus E, Poisson’s ratio ν and shear modulus G as follows



ε1

ε2

ε3

2ε4 = γ23

2ε5 = γ31

2ε6 = γ12


=



1
E1

−ν21
E2

−ν31
E3

0 0 0

−ν12
E1

1
E2

−ν32
E3

0 0 0

−ν13
E1

−ν23
E2

1
E3

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G31

0

0 0 0 0 0 1
G12





σ1

σ2

σ3

σ4 = τ23

σ5 = τ31

σ6 = τ12


(3.8)

Betti’s reciprocal law of orthotropic material properties states that

Qij = Qji i 6= j (3.9)
νij
Eii

=
νji
Ejj

νji
Ejj

=
νij
Eii

(3.10)

where E1 is the elastic modulus in the 1-axis (parallel to the fibers); E2 is the elastic

modulus in the 2-axis (in-plane direction perpendicular to fibers); E3 is the elastic

modulus in the 3-axis (out-of-plane direction perpendicular to fibers); ν12 is Poisson’s

ratio in the 2-axis when the lamina is loaded in the 1-axis; ν13 is Poisson’s ratio in the

3-axis when the lamina is loaded in the 1-axis; and ν23 is Poisson’s ratio in the 3-axis

when the lamina is loaded in the 2-axis.

The sub-elements composed of matrix or of matrix and reinforcement fibers have
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the following constitutive equation in local co-ordinates

σ = Qselε (3.11)

where the reduced orthotropic stiffness matrix can be written as [217]

Qsel =



Qsel11 Qsel12 Qsel13 0 0 0

Qsel12 Qsel22 Qsel23 0 0 0

Qsel13 Qsel23 Qsel33 0 0 0

0 0 0 Qsel44 0 0

0 0 0 0 Qsel55 0

0 0 0 0 0 Qsel66


(3.12)

where [226]

Qsel11 =
1− νsel23 ν

sel
32

Esel2 Esel3 ∆sel

Qsel12 = Qsel21 =
νsel21 − νsel31 ν

sel
23

Esel2 Esel3 ∆sel
=
νsel12 − νsel13 ν

sel
32

Esel1 Esel3 ∆sel

Qsel22 =
1− νsel31 ν

sel
13

Esel1 Esel3 ∆sel

Qsel23 = Qsel32 =
νsel32 − νsel12 ν

sel
31

Esel1 Esel3 ∆sel
=
νsel23 − νsel21 ν

sel
13

Esel1 Esel2 ∆sel

Qsel33 =
1− νsel12 ν

sel
21

Esel1 Esel2 ∆sel

Qsel13 = Qsel31 =
νsel13 − νsel12 ν

sel
23

Esel1 Esel2 ∆sel
=
νsel31 − νsel21 ν

sel
32

Esel2 Esel3 ∆sel

∆sel =
1− νsel12 ν

sel
21 − νsel32 ν

sel
23 − νsel13 ν

sel
31 − 2νsel21 ν

sel
32 ν

sel
13

Esel1 Esel2 Esel3

(3.13)

and sel stands for sub-element, and can assume the values W for Warp, F for Fill

and M for Matrix.

In order to determine the mechanical properties of the woven lamina in the global co-

ordinates the geometrical characteristics and the orientation angles of the reinforcement

fibers in the fill and warp strands must be taken into account. Moreover, the mechanical

properties of sub-elements have to be combined in order to compute the average

properties of the element.

As discussed by various authors [164, 216, 217, 129] in order to calculate the average

mechanical properties of an element in the woven lamina one must consider the fill
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yarn and warp yarn mid-plane functions msel
F (x), msel

W (y), and fill yarn and warp yarn

cross-sectional shape functions sselF (y), sselW (x). The shape functions delimit regions in

the woven composite with pure matrix material and regions with impregnated yarns.

The height position of the yarn surface h in each sub-element is a sum of the

yarn mid-plane shape functions and the cross-sectional yarn shape functions for that

sub-element.

hselFT (x, y) = msel
F (x) + sselF (y)

hselFB (x, y) = msel
F (x)− sselF (y)

hselWT
(x, y) = msel

W (y) + sselW (x)

hselWB
(x, y) = msel

W (y)− sselW (x) (3.14)

hselFT (x, y), and hselFB (x, y) define the fill top and bottom surface functions, while

hselWT
(x, y) and hselWB

(x, y) define the warp top and bottom surface functions for sub-

element sel.

In defining the mid-plane and surface functions, one might also want to account for

the presence of gaps between the fill and warp strands, as will be discussed in sections

3.3.1 and 3.3.2.

The fiber undulation for the fill and warp strands are a function of the yarn mid-plane

shape functions as follows

θF (x) = arctan
dmsel

F (x)

dx

θW (y) = arctan
dmsel

W (y)

dy
(3.15)

These transformation matrices are discussed in appendix B.

Using the stress transformation matrix, the stiffness matrix in the x-y-z co-ordinate

system (off-axis system) can be related to that in the 1-2-3 co-ordinate system (on-axis

system) as follows [217]

Q̄sel = T sel
−1
QselRT selR−1 (3.16)

where Qsel is the stiffness matrix in the on-axis co-ordinate system; Q̄sel is the

transformed stiffness matrix in the off-axis co-ordinate system; T sel is the stress

transformation matrix; R is the Reuter matrix.

The sub-elements composed of matrix and reinforcement fibers in the fill yarn have

the following constitutive equation in the global co-ordinates:
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σ = Q̄F ε (3.17)

The sub-elements consisting of matrix and reinforcement fibers in the warp yarn

have the following constitutive equation in the global co-ordinates:

σ = Q̄W ε (3.18)

For the sub-elements comprised only of matrix, the constitutive equation in global

co-ordinates is the following:

σ = Q̄Mε = QMε (3.19)

The stiffness matrices for an element el can be obtained by integrating the trans-

formed stiffness matrices of the sub-elements Q̄sel through the thickness of the lamina:

(
Aelij (x, y) , Bel

ij (x, y) , Del
ij (x, y)

)
=

∫ helT (x,y)

helB(x,y)

(
1, z, z2

)
Q̄selij (x, y) dz (3.20)

where helB (x, y) and helT (x, y) is the height (with respect to the mid-plane of the

lamina) of the top and the bottom of the element el.

Aelij (x, y) is termed the extensional stiffness matrix. This matrix relates the in-plane

loads to in-plane strains. Bel
ij (x, y) is called the extensional-bending coupling or in-

plane/flexure coupling matrix. This matrix relates in-plane loads to curvatures and

moments to in-plane strains. Del
ij (x, y) is named as the bending or flexural stiffness

matrix. This matrix relates moments to curvatures.

Using the boundaries of the shape functions [165, 216, 129] the components of the

in-plane stiffness matrices for an element can be written according to equations in

table 3.1a. The in-plane compliance matrices for an element can be determined using

equations in table 3.1b [226].

The mechanical properties of the RVE of the 2D woven lamina are calculated from

those of the elements using the averaging approach [165, 217, 129].

There are four different methods for carrying out this operation, depending on how

the stiffness and compliance matrices are averaged across the RVE.

In the Parallel-Parallel (PP) scheme [216, 217, 129] one assumes iso-strain conditions

and averages across the stiffness matrices of the elements as follows:
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Aelij = Q̄Mij [hselWT
(x, y)− helT (x, y) + hselFT (x, y)

− hselWB
(x, y) + helB (x, y)− hselFB (x, y)]

+ Q̄Wij
(
θselW (y)

) [
hselWB

(x, y)− hselWT
(x, y)

]
+ Q̄Fij

(
θselF (x)

) [
hselFB (x, y)− hselFT (x, y)

]
Bel
ij = 1

2Q̄
M
ij [hselWT

(x, y)2 − helT (x, y)2 + hselFT (x, y)2

− hselWB
(x, y)2 + helB (x, y)2 − hselFB (x, y)2]

+ 1
2Q̄

W
ij

(
θselW (y)

) [
hselWB

(x, y)2 − hselWT
(x, y)2

]
+ 1

2Q̄
F
ij

(
θselF (x)

) [
hselFB (x, y)2 − hselFT (x, y)2

]
Del
ij = 1

3Q̄
M
ij [hselWT

(x, y)3 − helT (x, y)3 + hselFT (x, y)3

− hselWB
(x, y)3 + helB (x, y)3 − hselFB (x, y)3]

+ 1
3Q̄

W
ij

(
θselW (y)

) [
hselWB

(x, y)3 − hselWT
(x, y)3

]
+ 1

3Q̄
F
ij

(
θselF (x)

) [
hselFB (x, y)3 − hselFT (x, y)3

]
(a) In-plane stiffness matrices

If the element is non symmetric:

ael (x, y) = A∗el (x, y)−1 −B∗el (x, y)D∗el (x, y)−1C∗el (x, y)

bel (x, y) = B∗el (x, y)D∗el (x, y)−1

cel (x, y) = −D∗el (x, y)−1C∗el (x, y) or

cel (x, y) = bel (x, y)T

del (x, y) = D∗el (x, y)−1

where

A∗el (x, y) = Ael (x, y)−1

B∗el (x, y) = −Ael (x, y)−1Bel (x, y)

C∗el (x, y) = Bel (x, y)Ael (x, y)−1

D∗el (x, y) = Del (x, y)−Bel (x, y)Ael (x, y)−1Bel (x, y)
Otherwise, if the element is symmetric:

ael (x, y) = Ael (x, y)−1

(b) In-plane compliance matrices

Table 3.1: In-plane stiffness and compliance matrices for an element

(
Ãel,PPij , B̃el,PP

ij , D̃el,PP
ij

)
=

1

lx

1

ly

∫ lx

0

∫ ly

0

(
Aelij (x, y) , Bel

ij (x, y) , Del
ij (x, y)

)
dxdy

(3.21)

where lx is the length of the RVE across the x direction, while ly is the length

of the RVE across the y direction. The values Ãel,PPij , B̃el,PP
ij , D̃el,PP

ij represent an

upper boundary for the stiffness of the RVE. These values are adopted to calculate the

compliance matrices ãel,PPij , b̃el,PPij , d̃el,PPij which in turn are used to calculate the elastic

engineering constants of the woven lamina.
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In the Parallel-Series (PS) scheme [165] one first assumes iso-strain conditions

and averages the stiffness matrices along the x-axis determining the average stiffness

matrices along the y-axis.

(
Ãel,Pij (y) , B̃el,P

ij (y) , D̃el,P
ij (y)

)
=

1

lx

∫ lx

0

(
Aelij (x, y) , Bel

ij (x, y) , Del
ij (x, y)

)
dx (3.22)

The average in-plane stiffness matrices along the y-axis Ãel,Pij (y), B̃el,P
ij (y), D̃el,P

ij (y)

are then employed to calculate the compliance matrices ãel,Pij (y), b̃el,Pij (y), d̃el,Pij (y) along

the y-axis, which, assuming now iso-stress conditions, are then integrated along the

y-axis.

(
ãel,PSij , b̃el,PSij , d̃el,PSij

)
=

1

ly

∫ ly

0

(
ãel,Pij (y) , b̃el,Pij (y) , d̃el,Pij (y)

)
dy (3.23)

In the Series-Parallel (SP) scheme [165] one first assumes iso-stress conditions and

averages the compliance matrices along the y-axis determining the average compliance

matrices along the x-axis.

(
ãel,Sij (x) , b̃el,Sij (x) , d̃el,Sij (x)

)
=

1

ly

∫ ly

0

(
aelij (x, y) , belij (x, y) , delij (x, y)

)
dy (3.24)

The average compliance matrices along the x-axis ãel,Sij (x), b̃el,Sij (x), d̃el,Sij (x) are

then used to calculate the average stiffness matrices Ãel,Sij (x), B̃el,S
ij (x), D̃el,S

ij (x) along

the x-axis, which, assuming now iso-strain conditions, are then integrated along the

x-axis.

(
Ãel,SPij , B̃el,SP

ij , D̃el,SP
ij

)
=

1

lx

∫ lx

0

(
Ãelij (x) , B̃el

ij (x) , D̃el
ij (x)

)
dx (3.25)

In the Series-Series (SS) scheme [129] one assumes iso-stress conditions and then

averages across the compliance matrices of the elements as follows:

(
ãel,SSij , b̃el,SSij , d̃el,SSij

)
=

1

lx

1

ly

∫ lx

0

∫ ly

0

(
aelij (x, y) , belij (x, y) , delij (x, y)

)
dxdy (3.26)

The values ãel,SSij , b̃el,SSij , d̃el,SSij are adopted to calculate the elastic engineering

constants of the woven lamina, and to obtain the average stiffness matrices Ãel,SSij ,

B̃el,SS
ij , D̃el,SS

ij , which represent a lower boundary for the stiffness of the RVE.
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The effective properties of the woven lamina can be calculated [93] (dropping the

super-scripts) as follows:

Ẽ11 =
1

htã11
Ẽ22 =

1

htã22
Ẽ33 =

1

htã33

G̃23 =
1

htã44
G̃13 =

1

htã55
G̃12 =

1

htã66

ν̃12 = − ã12

ã11
ν̃13 = − ã13

ã11
ν̃23 = − ã23

ã22

ν̃21 = − ã21

ã22
ν̃31 = − ã31

ã33
ν̃32 = − ã32

ã33
(3.27)

where ht is the thickness of the lamina.

3.2.2 Asymptotic Expansion Homogenization Method

As the woven composite has a periodic structure based on the RVE, then it is possible

to apply the asymptotic expansion homogenization method (AEHM). The mathematical

basis of this method were placed by [22, 213]. Recent reviews on the AEHM applied to

composites are [116, 61, 177].

The AEHM is characterized by analyzing the material at several scales of analysis.

For the woven material it is possible to identify in general three scales (or levels): (1)

the micro scale for the constituents (i.e. fibers and matrix); (2) the meso scale for the

strands and (3) the macro scale for the RVE. Some authors [129] refer to macro scale

as mini scale reserving the term macro scale to the laminate. Here only the two scale

analysis will be discussed, specifically the meso (or local) and macro (or global) scales,

assuming that the mechanical properties of the strands at the meso scale have been

homogenized using micro-mechanics models, as discussed previously in this section.

Refer to [39] for the case of three scales analysis applied to woven composites.

The AEHM assumes a small parameter, often called scale parameter [55] and referred

to here as ε, which is the ratio between the two length scales being considered. The two

sets of parameters for the macro scale x and meso scale y are then related to by the

following equation:

x =
y

ε
(3.28)

The conventional equations of elasticity for a heterogeneous body are given by [116]
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∂σεij (x)

∂xεj
+ fi (x) = 0, (3.29)

σεij (x) = aεijkl (x) εkl (u
ε (x)) , (3.30)

εij (uε (x)) =
1

2

(
∂uεi (x)

∂xεj
+
∂uεj (x)

∂xεi

)
(3.31)

where (3.29) are the balance equations, (3.30) are the constitutive equations and

(3.31) is the strain definition. The super-script ε is used to indicate that the variables

of the problem depend on the true, high-resolution behavior of the material under

consideration. The boundary and discontinuity conditions are the following

σεij (x)nj = 0 on ∂1Ω, (3.32)

uεi (x) = 0 on ∂2Ω, (3.33)

[uεi (x)] = 0 on SJ , (3.34)[
σεij (x)nj

]
= 0 on SJ (3.35)

Square parentheses denote the jump in the enclosed value. u is the displacement

vector, εij (u (x)) is the strain tensor, σij (x) is the stress tensor, aijkl (x) is the elasticity

tensor and fi (x) are the volume forces.

The physical quantities describing the mechanical behavior of the body are approxi-

mated with an asymptotic series representation in ε given by

uε (x) = u(0) (x) + εu(1) (x,y) (3.36)

σε (x) = σ(0) (x) + εσ(1) (x,y) (3.37)

εε (x) = ε(0) (x) + εε(1) (x,y) (3.38)

Here the expansions have been limited to a two scale approximation. The quantities

u(k), σ(k) and ε(k) take the same values on opposite sides of the RVE (i.e. periodic

boundary conditions). Moreover, the introduction of the second coordinate system y

means that the derivatives originally with respect to xεi must now make use of the chain

rule of differentiation given by [116]

∂

∂xεi
f =

(
∂

∂xi
+

1

ε

∂

∂yi

)
f =

∂f

∂xi
+

1

ε

∂f

∂yi
(3.39)

Substituting the approximations in equations (3.36) to (3.38) into the strain definition

equations (3.31) and substituting the resulting strain into the constitutive equations
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(3.30) gives an equation dependent on the powers of ε. Each coefficient of ε is identically

zero to ensure that the asymptotic series approximation is valid as ε→ 0 [53]. When the

first two coefficients are set equal to zero, the equilibrium equations can be reformulated

as the following two hierarchical equations

∂σ
(0)
ij

∂yj
(x,y) = 0 (3.40)

∂σ
(0)
ij

∂xj
(x,y) +

∂σ
(1)
ij

∂yj
(x,y) + fi (x) = 0 (3.41)

while the constitutive equations takes the form

σεij (x,y) = aεijkl (y)

(
∂εk
∂xl

(
u(0)

)
+
∂εk
∂yl

(
u(1)

))
(3.42)

Equation (3.41) is the so-called micro-equation as it relates the micro perturbation

term u(1) to the zeroth order term u(0).

The solution of the perturbative displacement u(1) (x,y) is normally assumed

[22, 213] to take the following form with separated variables

ui (x,y) =
∂εp
∂xq

(
u(0) (x)

)
χpqi (y) + Ci (x) (3.43)

where the functions χpqi (y) are called the homogenization functions [116] for the

displacement or characteristic displacements [61] or elastic correctors [55], and Ci (x)

is a constant of integration.

Given (3.43), the first order component of the equations of equilibrium (3.41) can

be formulated as the following boundary value problem

find χpqi ∈ VY such that: ∀vi ∈ VY∫
Y
aijkl (y)

(
δipδjq +

∂χpqi
∂yj

(y)

)
∂vk
∂yl

(y) dΩ = 0 (3.44)

where VY is the set of kinematically admissible functions that contains the functions

with equal values on the opposite side of the RVE. The six vectors χpq depend only on

the geometry of the RVE and on the jumps of material coefficients across SJ . Functions

vi (y) are test functions defined on the RVE.

In (3.36) the dependence on x alone occurs only on the first term. The functions

depending only on x define the global behavior o the structure. The global behavior of
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stresses the following mean values are defined over the RVE

σ̃
(0)
ij (x) =

1

|Y |

∫
Y
σ

(0)
ij (x,y) dY (3.45)

which gives rise to the following effective constitutive equation

σ̃
(0)
ij (x) = ahijklε

(0)
kl (x) (3.46)

where

ahijkl =
1

|Y |

∫
Y
aijpq (y)

(
δkpδlq +

∂χpqk
∂yl

(y)

)
dY (3.47)

The woven composite can now be studied as a homogeneous material with the

effective properties given by (3.47).

3.2.3 Anisotropic damage modeling using the AEHM

It is very challenging to predict the failure strength of fiber reinforced polymer (FRP)

composites because they are by nature heterogeneous in construction and anisotropic.

Although there has been a great effort in assessing the damage models for predicting

failure strength in FRPs (see e. g. [101]), there is still no conclusive evidence on which

is the best approach.

In section 3.2.2 a two-scale AEHM approach for woven composites was adopted.

For this resaon here only anisotropic mesoscopic damage models will be considered.

Mesoscopic anisotropic damage models have been applied to uni-directional FRPs by

[263] and to woven composites by [137, 264] where the stress-strain analysis is carried

out using a standard finite element modeling (FEM) approach. Anisotropic damage

mechanics has been integrated with the AEHM to model failure in woven composites

by [69, 231].

Mesoscopic damage mechanics differentiate themselves on

1. the choice of the damage initiation criteria,

2. the stiffness degradation method, and

3. the algorithm for damage propagation.

The anisotropic damage model for yarns and the isotropic damage model for matrix

pockets are utilized to simulate the microscopic damage propagation, and thus to

characterize the damage modes.

The Tsai-Wu [239] or Hoffman [102] failure criteria can be used for the yarns. The

Von Mieses Failure criterion is used for the matrix. As the yarns can be regarded as
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transversely isotropic material, then the Tsai-Wu second-order tensor polynomial in

equation (3.48) is adopted as failure criterion for each yarn element.

F11σ
2
1 + F22σ

2
2 + F33σ

2
3 + F44τ

2
23 + F55τ

2
13 + F66τ

2
12

+ 2F12σ1σ2 + 2F13σ1σ3 + 2F23σ2σ3 + F1σ1 + F2σ2 + F3σ3 ≤ 1 (3.48)

where

F11 =
1

σ1tσ1c
, F22 = F33 =

1

σ2tσ2c
, F44 =

1

(τ23f )2 ,

F55 = F66 =
1

(τ12f )2 , F12 = F13 = −1

2

√
F11F22, F23 = −1

2

√
F22F33,

F1 =
1

σ1t
− 1

σ1c
, F2 = F3 =

1

σ2t
− 1

σ2c
,

and σ1t and σ2t are the longitudinal tensile and compressive strength of yarn; σ1c and

σ2c are the transverse tensile and compressive strength of yarn; τ12f and τ23f are the

in-plane and out-of-plane strength of yarn.

As the matrix is an isotropic material, then the Von Mieses failure criterion in

equation (3.49) is adopted as failure criterion for each matrix element.

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 + 6
(
τ2

12 + τ2
23 + τ2

31

)
− 2σ1t ≤ 0 (3.49)

The anisotropic damage modes for yarns can be classified into four types as shown

in figure 3-2. The axes 1, 2 and 3 represent the principle coordinates of the orthotropic

material, and correspond to fiber and transverse directions, respectively. The mode

1 represents schematically the fiber breaking, the others represent the transverse and

shear cracking. The choice of the damage mode is defined by the stress component

corresponding to damaged configuration (normal stress 1, 2 and 3 and shear stress 23,

31 and 12). Damage is registered when one of the stress indices reaches the vale 1.0.

The damage mode of each yarn element can be judged by maximum ratio value

of each stress component divided by the strength component as defined in equation

(3.2.3), where the direction of maximum ratio value is the direction of the yarn element.

For example, if σ2
1/σ1tσ1c is the maximum ratio in equation (3.2.3), then the damage

mode of the yarn element is 1-direction damage.{
σ2

1
σ1tσ1c

,
σ2

2
σ2tσ2c

,
σ3

2
σ2tσ2c

,
(
τ23
τ23f

)2
,
(
τ31
τ12f

)2
,
(
τ13
τ12f

)2}
On the other hand, in order to characterize each one of the damage modes, the

second-order Murakamis damage tensor [161] is used, which, expressed in the principle
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(a) Mode 1 (b) Modes 2 and 12

(c) Modes 3 and 31 (d) Mode 23

Figure 3-2: Anisotropic damage model for yarns (adapted from [264])

material coordinate system, is defined as follows

D =
∑

iDini ⊗ ni (i = 1, 2, 3)

Di and ni are the principal value and principal unit vector of the damage tensor. In

matrix form, this is expressed as follows

[D] =

D1 0 0

0 D2 0

0 0 D3


The eigenvalues of the damage tensor D provide a measure of the fractional reduction

in the original load carrying area. The principle values of the damage tensor Di may

take arbitrary values within the range from 0 to 1. Also a formulation with only two

values, 0 for undamaged initial state and 1 for full damaged state, can be used. The

corresponding principle values of the damage tensors for the four damage modes are

given in table 3.2.

Related to the damage tensor is the second-order integrity tensor, which, expressed
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Damage Mode Stress condition D1 D2 D3
1 σ1 > 0 1 0 0
1 σ1 ≤ 0 0 0 0
2 or 12 σ2 > 0 0 1 0
2 or 12 σ2 ≤ 0 0 0 0
3 or 31 σ3 > 0 0 0 1
3 or 31 σ3 ≤ 0 0 0 0
23 σ2 > 0 and σ3 > 0 0 1 1
23 σ2 > 0 and σ3 ≤ 0 0 1 0
23 σ2 ≤ 0 and σ3 > 0 0 0 1
23 σ2 ≤ 0 and σ3 ≤ 0 0 0 0

Table 3.2: Damage mode and principle values of damage tensor [69]

in the principle material coordinate system, is given by [197]

Ω ·Ω = I −D

Ω =
√
I −D

Ωi =
√

1−Di for i = 1, 2, 3

In matrix form, this is expressed as follows

[Ω] =

Ω1 0 0

0 Ω2 0

0 0 Ω3


The eigenvalues of the integrity tensor Ω provide a measure of the original area that is

still available to carry load.

The constitutive equation for the damaged composite materials can be derived using

the effective stress that refers to cross sectional areas that have been reduced due to the

presence of damage. The effective stress σ? is symmetric and related to the apparent,

actual or nominal stress σ which uses the original undamaged cross sectional area as

follows [58]

σ? = M−1 : σ =
(
Ω−1 ⊗Ω−1

)
: σ =

[(√
I −D

)−1
⊗
(√
I −D

)−1
]

: σ (3.50)

whereM is the fourth-order, doubly symmetric, damage effect tensor, i. e. Mijkl = Mjikl,

Mijkl = Mijlk and Mijkl = Mjilk. Thus as the damage accumulates, i. e. as the Di

increases or as the Ωi decreases, then the load carrying area decreases which causes the

effective stress to increase above the apparent stress.

The components of the effective strain tensor ε? can be derived using the principle

of equivalent strain energy [58]

ε? = M : ε = (Ω⊗Ω) : ε =
[(√

I −D
)
⊗
(√
I −D

)]
: ε (3.51)

The following expressions are valid for the fourth-order damaged compliance tensor
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[197]

S = M−1 : S? : M−1, (3.52)

S =
(
Ω−1 ⊗Ω−1

)
: S? :

(
Ω−1 ⊗Ω−1

)
, (3.53)

S =

[(√
I −D

)−1
⊗
(√
I −D

)−1
]

: S? :

[(√
I −D

)−1
⊗
(√
I −D

)−1
]

, (3.54)

where S? represents the fourth-order compliance tensor of the undamaged material.

The following expressions are valid for the fourth-order damaged stiffness tensor

[197]

C = M : C? : M , (3.55)

C = (Ω⊗Ω) : C? : (Ω⊗Ω) , (3.56)

C =
[(√

I −D
)
⊗
(√
I −D

)]
: C? :

[(√
I −D

)
⊗
(√
I −D

)]
, (3.57)

where C? represents the fourth-order stiffness tensor of the undamaged material.

For the purpose of the numerical simulation, the damage tensor components Di

usually take the value of 0.99 instead of 1.0 [264].

3.3 Results

3.3.1 A critical review of analytical methods

In this section the equivalent mechanical properties predicted by the analytical models

were compared against experimental results found in literature and those from other

theoretical models for the same examples. The results for all four averaging schemes

(PP, PS, SP and SS), discussed in section 3.2, are reported in the following sections.

Three types of weave fabrics were considered: plain, five-harness (5H) satin weave

and eight-harness (8H) satin weave fabrics. Moreover examples of unbalanced weaves,

hybrid weaves and weaves with the presence of gaps between the yarns were considered.

It should be noted that while the predicted results are for laminae, the experimental

results are normally for the entire laminate. It also should be noted, as pointed out by [3],

that not all the mechanical properties are reported in literature because of the difficulties

to measure for example the out-of-plane moduli E3 and G13, measurement that would

require very thick test samples which are very difficult to manufacture. Furthermore,

Naik and Ganesh [164] studied the sensitivity of the predicted parameters with respect

to the height to width ratio a/h of the yarns for a balanced weave. They found that,

in the case of transversely isotropic fibers, increasing the ratio a/h corresponds to a

decrease in E1 and an increase in ν12, while G12 remains constant; in the case of isotropic

fibers, increasing the ratio a/h, all three parameters E1, E12, G12 remain practically
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constant.

The geometrical parameters in the analyzed examples were normally the aver-

age values, within a certain range, determined from measurements using an optical

microscope.

If the values of the fiber volume fraction for the fill and warp yarns was available

then these values were used in the calculations. Otherwise, the values of the fiber

volume fraction for the fill and warp yarns was estimated from the overall fiber volume

fraction in the composite, using equation (3.3). Akkerman [3] notes that there is usually

a scattering of 1-2% in the fibre volume fractions during the manufacturing of the test

samples due to the moulding process, scattering which impacts the predicted results

when using analytical models versus the measured ones.

When not directly available, the composite ply thickness was calculated using the

following equation [129]

ht =
ρw

V C
f ρf

(3.58)

where V C
f is the composite fiber volume fraction, ρf is the fiber density and ρw

is the areal density of the weave (supplied by the manufacturer). When not directly

available, fill yarn width af and the warp yarn width aw were calculated from the values

of the fill yarn counts cf and warp yarn counts cw according to

af =
1

cf
aw =

1

cw
(3.59)

As was discussed in section 3.2, the following micro-mechanical models were used

to calculate the equivalent mechanical properties of the yarns: (1) the Chamis model

[43] and the CCA for anisotropic constituents [98] for the sub-elements composed by

matrix and transversely isotropic reinforcement fibers; (2) the CCA model for isotropic

constituents [211] for the sub-elements composed by matrix and isotropic reinforcement

fibers. These models are summarized in appendix refapp1:microModels. For anisotropic

constituents all calculations were repeated for both available models in order to check

for differences in the results. Since the differences were found to be very small, only the

results using Chamis model are reported.

The sinusoidal functions developed by Scida et al. [216] were used for mid-plane

and cross-sectional shape functions. These functions were extended in order to account

for the presence of a gaps in the fill yarns (gf ) and in the warp yarns (gw). Although

more complex shape functions are available in literature (e.g. [2, 68]), the ones in

[216] provide satisfactory results. Figure 3-3 displays, respectively, the fill and warp

mid-plane shape functions, the top and bottom surface functions and the undulation

angles for a RVE of 5-harness satin weave fabric.
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(a) Fill and warp mid-plane shape
functions

(b) Fill and warp surface functions

(c) Fill and warp undulation angles

Figure 3-3: RVE of 5-harness satin fabric

In order to calculate the compliance matrix, at present only the equation for sym-

metric elements in table 3.1b has been implemented in the software. This approximation

is valid only for balanced and non-hybrid fabrics. As was discussed in section 3.2, the

equations for non symmetric elements in table 3.1b provide more accurate results for

unbalanced fabrics or hybrid fabrics.

Two different numerical integration methods were adopted to calculate the average

mechanical properties of the RVE in the averaging approach: Simpson’s rule and Gauss

Quadrature rule. Significant differences were not evident between the two methods,
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probably because of the high number of integration points utilized (equal to ng1002).

All the results in the following are based on Gauss Quadrature rule of order 2.

The models were developed in MATLAB.

E-Glass/Vinylester plain weave fabric

Scida el al. [217] reported experimental results for an E-Glass/Vinylester plain weave

fabric with elastic properties of fibers and matrix as shown in table 3.3a and geometrical

parameters as shown in table 3.3b. No gaps were reported between the yarns. Given that

the geometrical parameters of the fill and warp yarns are identical, this is a balanced

fabric. It is also a non-hybrid fabric.

Material E1 [GPa] E2 [GPa] G12 [GPa] G23 [GPa] ν12 [-]
E-Glass/Epoxy 55.7 18.5 6.89 6.04 0.22

EGlass/Vinylester 57.5 18.8 7.44 7.26 0.29

(a) Elastic Properties of fibers and matrix [217]

af [mm] hf [mm] gf [mm] af [mm] hf [mm] gf [mm] V C
f [-] V S

f [-]

1.6 0.05 - 0.6 0.05 - 0.55 0.80

(b) Geometrical parameters [217]

Table 3.3: Elastic properties and geometrical parameters for E-Glass/Vinylester plain weave
fabric

In table 3.4 the experimental results (EXP column) are compared against those

predicted by the analytical models and other theoretical results for the same case found

in literature.

EXP [217] PP PS SP SS PP [217]
E1 [GPa] 24.8 ± 1.1 25.42 25.29 24.90 21.46 25.33
E2 [GPa] 24.8 ± 1.1 25.42 22.13 21.86 21.46 25.33
E3 [GPa] 8.5 ± 2.6 13.67 13.24 13.21 12.70 13.46
G12 [GPa] 6.5 ± 0.8 5.25 5.11 5.10 4.93 5.19
G23 [GPa] 4.2 ± 0.7 5.30 5.14 5.09 4.94 5.24
G13 [GPa] 4.2 ± 0.7 5.30 5.20 5.12 4.94 5.24
ν12 [-] 0.1 ± 0.01 0.14 0.15 0.15 0.15 0.12
ν13 [-] 0.28 ± 0.07 0.31 0.31 0.31 0.32 0.29

Table 3.4: Results predicted by analytical models compared against experimental ones for
E-Glass/Vinylester plain weave fabric

The results from the PP scheme present a very good match with the experimental

data, although also the results from the SP and PS are satisfactory. As expected, the in-

plane properties are estimated more precisely than the out-of-plane properties, because

of the assumption that the individual lamina are modeled as orthotropic materials.

Furthermore, note that the elastic properties predicted along directions 1 and 2 by the

SP and PS methods are different because these methods are asymmetric as they make

different assumptions (iso-stress or iso-strain) along these directions.
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T-300 Carbon/PEI 5H satin weave fabric

Akkerman [3] reported experimental results for a T-300 Carbon/PEI 5H satin weave

fabric with elastic properties of fibers and matrix as shown in table 3.5a and geometrical

parameters as shown in table 3.5b. No gaps were reported between the yarns. Given that

the geometrical parameters of the fill and warp yarns are identical, this is a balanced

fabric. This fabric is non-hybrid.

Material E1 [GPa] E2 [GPa] G12 [GPa] G23 [GPa] ν12 [-]
T-300 Carbon 231.0 40.0 24.0 14.4 0.26

PPS 3.8 3.8 1.39 1.39 0.37
PEI 3.0 3.0 1.1 1.1 0.36

(a) Elastic properties of fibers and matrix [252]

af [mm] hf [mm] gf [mm] af [mm] hf [mm] gf [mm] V C
f [-] V S

f [-]

1.5 0.16 - 1.5 0.16 - 0.50 −

(b) Geometrical parameters [252]

Table 3.5: Elastic properties and geometrical parameters for T-300 Carbon/PEI 5H satin
weave fabric

In table 3.6 the experimental results (EXP column) are compared against those

predicted by the analytical models and other theoretical results for the same case found

in literature. Note that the shape functions used by [3] are different from those used in

the present study.

EXP [3] PP PS SP SS PP [3] SS [252]
E1 [GPa] 60 64.21 64.07 59.94 41.78 62.0 54.0
E2 [GPa] 60 64.21 44.25 42.51 41.78 62.0 54.0
E3 [GPa] − 14.12 13.42 13.36 12.64 9.4 8.9
G12 [GPa] 3.5 4.96 4.76 4.74 4.50 3.5 3.4
G23 [GPa] − 4.25 3.93 3.75 3.68 3.8 3.5
G13 [GPa] − 4.25 4.23 3.97 3.68 3.8 3.5
ν12 [-] 0.05 0.05 0.06 0.07 0.07 0.04 0.04
ν13 [-] − 0.45 0.44 0.43 0.45 0.44 0.46
ν23 [-] − 0.45 0.46 0.45 0.45 0.44 0.46

Table 3.6: Results predicted by analytical models compared against experimental ones for
T-300 Carbon/PEI 5H satin weave fabric

The results from the PP scheme present a very good match with the experimental

data, while the others are not particularly satisfactory. Again the elastic properties

predicted along directions 1 and 2 by the SP and PS methods are different.

E-Glass/PPS 8H satin weave fabric

Akkerman [3] reported experimental results for an E-Glass/PPS 8H satin weave fabric

with elastic properties of fibers and matrix in table as shown 3.7a and geometrical

parameters as shown in table 3.7b. No gaps were reported between the yarns. Given

that the geometrical parameters of the fill and warp yarns are not identical, this is an

unbalanced fabric. This fabric is non-hybrid.

In table 3.8 the experimental results (EXP column) are compared against those
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Material E1 [GPa] E2 [GPa] G12 [GPa] G23 [GPa] ν12 [-]
E-Glass 70.0 70.0 28.45 28.45 0.23

PPS 3.8 3.8 1.39 1.39 0.37

(a) Elastic properties of fibers and matrix [129]

af [mm] hf [mm] gf [mm] af [mm] hf [mm] gf [mm] V C
f [-] V S

f [-]

0.45 0.11 - 0.44 0.11 - 0.50 −

(b) Geometrical parameters [129]

Table 3.7: Elastic properties and geometrical parameters for E-Glass/PPS 8H-satin-weave
fabric

predicted by the analytical models and other theoretical results for the same case found

in literature. Note that the shape functions used by [3] are different from those used in

the present study.

EXP [3] PP PS SP SS PP [3]
E1 [GPa] 25 27.29 26.71 26.16 23.14 27.0
E2 [GPa] 25 27.32 24.47 24.13 23.19 27.0
E3 [GPa] − 18.23 17.45 17.34 16.41 27.0
G12 [GPa] 5.1 5.92 5.69 5.68 5.40 5.8
G23 [GPa] − 6.52 6.27 6.19 5.86 6.1
G13 [GPa] − 6.53 6.28 6.15 5.86 6.1
ν12 [-] 0.12 0.17 0.19 0.19 0.19 0.15
ν13 [-] − 0.32 0.32 0.32 0.33 0.37
ν23 [-] − 0.32 0.32 0.32 0.33 0.37

Table 3.8: Results predicted by analytical models compared against experimental ones for
E-Glass/PPS 8H satin weave fabric

Here the results from the PP and SP schemes give the best match with the experi-

mental ones.

E-Glass/Epoxy plain weave fabric N.1

Naik and Gamesh [164] reported experimental results for an E-Glass/epoxy plain weave

fabric with elastic properties of fibers and matrix as shown in table 3.9a and geometrical

parameters as shown in table 3.9b. Here gaps were reported between the yarns. Given

that the geometrical parameters of the fill and warp yarns are not identical, this is an

unbalanced fabric. This fabric is non-hybrid.

Material E1 [GPa] E2 [GPa] G12 [GPa] G23 [GPa] ν12 [-]
E-Glass 72.0 72.0 27.7 27.7 0.30
Epoxy 3.5 3.5 1.3 1.3 0.35

(a) Elastic properties of fibers and matrix [164]

af [mm] hf [mm] gf [mm] af [mm] hf [mm] gf [mm] V C
f [-] V S

f [-]

0.45 0.048 0.30 0.45 0.048 0.30 0.23 0.74

(b) Geometrical parameters [164]

Table 3.9: Elastic properties and geometrical parameters for E-Glass/Epoxy plain weave fabric
N.1

In table 3.10 the experimental results are compared against those predicted by the
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analytical models developed in this work and other theoretical results for the same

case found in literature. Only the in-plane shear modulus measured using ±45◦ off-axis

tension tests has been reported. Note that the shape functions used by [164] are different

from those used in the present study.

EXP [164] PP PS SP SS SP [164]
E1 [GPa] 20 ± 0.8 16.46 15.70 15.28 9.14 14.5
E2 [GPa] 20 ± 0.8 16.46 11.15 10.90 9.14 −
G12 [GPa] 2.95 ± 0.05 3.35 3.05 3.02 2.62 2.96

Table 3.10: Results predicted by analytical models compared against experimental ones for
E-Glass/Epoxy Plain Weave Fabric N.1

Here the PP scheme yields the best results. The predicted values are particularly

good because the presence of gaps has been accounted for in the model.

E-Glass/Epoxy plain weave fabric N.2

Naik and Gamesh [164] reported experimental results for an E-Glass/epoxy plain weave

fabric with elastic properties of fibers and matrix as shown in table 3.9a and geometrical

parameters as shown in table 3.11. This is another example of fabric with gaps between

the yarns. Given that the geometrical parameters of the fill and warp yarns are not

identical, this is an unbalanced fabric. This fabric is non-hybrid.

af [mm] hf [mm] gf [mm] af [mm] hf [mm] gf [mm] V C
f [-] V S

f [-]

0.68 0.09 0.04 0.62 0.09 0.10 0.40 0.71

Table 3.11: Geometrical parameters [164]

In table 3.12 the experimental results are compared against those predicted by the

analytical models and other theoretical results for the same case found in literature.

Only the in-plane shear modulus measured using ±45◦ off-axis tension tests has been

reported. Note that the shape functions used by [164] are different from those used in

the present study.

EXP [164] PP PS SP SS SP [164]
E1 [GPa] 21.5 ± 1.0 21.88 21.36 20.52 16.58 20.2
E2 [GPa] 21.5 ± 1.0 21.03 16.70 16.35 15.35 −
G12 [GPa] 3.3 ± 0.4 4.04 3.84 3.83 3.61 3.89

Table 3.12: Results predicted by analytical models compared against experimental ones for
E-Glass/Epoxy plain weave fabric N.2

Again the PP scheme yields the best results. The predicted values are particularly

good because the presence of gaps has been accounted for in the model.

Hybrid plain weave fabric

Donadon et al. [68] reported experimental results for a hybrid plain weave fabric

with elastic properties of fibers and matrix as shown in table 3.13a and geometrical
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parameters as shown in table 3.13b. This is another example of fabric with gaps between

the yarns. Given that the geometrical parameters of the fill and warp yarns are not

identical, this is also an unbalanced fabric. Moreover, this fabric is hybrid, given that

the fibers in the fill and warp yarns are different.

Material E1 [GPa] E2 [GPa] G12 [GPa] G23 [GPa] ν12 [-]
T-300 Carbon 232.00 23.10 8.96 8.27 0.20

PPG EC09 (Glass) 72.40 72.40 29.27 29.67 0.22
PRIME 20LV 2.97 2.97 1.08 1.08 0.38

(a) Elastic properties of fibers and matrix [68]

af [mm] hf [mm] gf [mm] af [mm] hf [mm] gf [mm] V F
f [-] VW

f [-]

2.350 0.329 0.060 1.112 0.116 4.900 0.688 0.580

(b) Geometrical parameters [68]

Table 3.13: Elastic properties and geometrical parameters for hybrid plain weave fabric

In table 3.14 the experimental results are compared against those predicted by the

analytical models and other theoretical results for the same case found in literature.

Note that the shape functions used by [68] are different from those used in the present

study.

EXP [68] PP PS SP SS SP [68]
E1 [GPa] 100 75.05 75.01 68.08 31.26 114.0
E2 [GPa] 8.11 8.04 7.42 7.40 6.77 9.11
E3 [GPa] − 7.29 7.09 7.08 6.46 14.40
G12 [GPa] 3.88 2.49 2.48 2.48 2.24 4.39
G23 [GPa] − 1.90 1.88 1.88 1.79 4.23
G13 [GPa] − 2.77 2.76 2.52 2.28 4.23
ν12 [-] 0.36 0.24 0.26 0.27 0.32 0.38
ν13 [-] − 0.35 0.34 0.34 0.37 0.43
ν23 [-] − 0.52 0.53 0.52 0.51 0.43

Table 3.14: Results predicted by analytical models compared against experimental ones for
hybrid plain weave fabric

3.3.2 Comparison of analytical methods with the AEHM

In this section the equivalent mechanical properties predicted by the AEHM and

analytical model were compared against experimental results found in literature and

those from other theoretical models for the same examples. The results for all four

averaging schemes (PP, PS, SP and SS), discussed in section 3.2, are reported in the

following sub-sections. The models were developed in MATLAB.

Three types of weave fabrics were taken into account: plain weave, five-harness

(5H) satin weave and eight-harness (8H) satin weave fabrics. Moreover examples of

unbalanced weaves and weaves with the presence of gaps between the yarns were also

considered.

It should be noted that while the predicted results are for laminae, the experimental

results are normally for laminate. It also should be noted, as pointed out by [3], that

not all the mechanical properties are reported in literature because of the difficulties to
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(a) Fill and warp mid-plane shape
functions

(b) Fill and warp undulation angles

(c) Fill and warp undulation angles

Figure 3-4: RVE of plain weave fabric with gaps

measure for example the out-of-plane stiffnesses E3 and G13, measurement that would

require very thick test samples which are very difficult to manufacture. Furthermore,

Naik and Ganesh [164] studied the sensitivity of the predicted parameters with respect

to the height to width ratio a/h of the yarns for a balanced weave. They found that,

in the case of transversely isotropic fibers, increasing the ratio a/h corresponds to a

decrease in E1 and an increase in ν12, while G12 remains constant; in the case of isotropic

fibers, increasing the ratio a/h, all three parameters E1, E12, G12 remain practically

constant.
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(a)

(b)

(c)

Figure 3-5: Tetrahedral mesh for a RVE of plain weave fabric with gaps : strands (a) , matrix
(b) and complete RVE (c)

The geometrical parameters in the analyzed examples were normally the aver-

age values, within a certain range, determined from measurements using an optical

microscope.

If the values of the fiber volume fraction of fill and warp yarns were available then

these values were used in the calculations. Otherwise, the values of the fiber volume

fraction of fill and warp yarns were estimated from the overall fiber volume fraction

in the composite, using equation (3.3). Akkerman [3] notes that there is usually a

scattering of 1-2% in the fibre volume fractions during the manufactures of the test
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(a) χ11 (b) χ22 (c) χ33

(d) χ23 (e) χ13 (f) χ12

Figure 3-6: Microcorrectors for a RVE of plain weave fabric with gaps

(a) Load for χ11 (b) Load for χ22 (c) Load for χ33

(d) Load for χ23 (e) Load for χ13 (f) Load for χ12

Figure 3-7: Characteristic loading vectors for a RVE of plain weave fabric with gaps

samples due to the moulding process, scattering which impacts the predicted results

using analytical models versus the measured ones.
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(a)

(b)

(c)

Figure 3-8: Tetrahedral mesh for a RVE of 8-harness satin fabric : strands (a) , matrix (b)
and complete RVE (c)

When not directly available, the composite ply thickness was calculated using the

following equation [129]

ht =
ρw

V C
f ρf

(3.60)

where V C
f is the composite fiber volume fraction, ρf is the fiber density and ρw

is the areal density of the weave (supplied by the manufacturer). When not directly

available, the fill yarn width af and the warp yarn width aw were calculated from the
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(a) χ11 (b) χ22 (c) χ33

(d) χ23 (e) χ13 (f) χ12

Figure 3-9: Microcorrectors for a RVE of 8-harness satin fabric

(a) Load for χ11 (b) Load for χ22 (c) Load for χ33

(d) Load for χ23 (e) Load for χ13 (f) Load for χ12

Figure 3-10: Characteristic loading vectors for a RVE of 8-harness satin fabric

values of the fill yarn counts cf and warp yarn counts cw

af =
1

cf
aw =

1

cw
(3.61)

As was discussed in section 3.2, the following micro-mechanics models were used

to calculate the equivalent mechanical properties of the yarns: (1) the Chamis model

[44] and the CCA model for anisotropic constituents [98] for sub-elements composed by
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matrix and transversely isotropic reinforcement fibers; (2) the CCA model for isotropic

constituents [211] for sub-elements composed by matrix and isotropic reinforcement

fibers. These models are summarized in appendix refapp1:microModels. For anisotropic

constituents all calculations were repeated for both available models in order to check

for differences in the results. As only a very small difference was found, only the results

using Chamis model are reported.

The sinusoidal functions developed by Scida et al. [216] were used for mid-plane

and cross-sectional shape functions. These functions were extended in order to account

for the presence of a gaps in the fill yarns (gf ) and in the warp yarns (gw). Although

more complex shape functions are available in literature (e.g. [2, 68]), the ones in [216]

provide satisfactory results, as will be shown in the following. Figure 3-4 displays,

respectively, the fill and warp mid-plane shape functions, the top and bottom surface

functions and the undulation angles for a RVE of plain weave fabric with gaps between

the yarns.

In general, as discussed in [139, 23] the asymptotic expansion homogenization can

be implemented using two different approaches: the displacement method (e.g. [24, 63])

and the force method (e.g. [53, 55]). The force method in an ad-hoc code written in

MATLAB was used. As explained in [55, 116, 61] this type of approach could have also

been easily implemented in a standard finite element code.

For a hexahedral RVE with y1 ∈
[
0, y0

1

]
, y2 ∈

[
0, y0

2

]
and y3 ∈

[
0, y0

3

]
the following

periodicity conditions [55, 61] were imposed on the surface boundaries of the RVE

χjki (0, y2, y3) = χjki
(
y0

1, y2, y3

)
,

χjki (y1, 0, y3) = χjki
(
y1, y

0
2, y3

)
,

χjki (y3, y2, 0) = χjki
(
y1, y2, y

0
3

)
(3.62)

An in-house automatic meshing tool was used to discretized the RVE in to tetrahedral

elements for computing the results for the AEHM. Nodes on surface boundaries of the

RVE can be distinguished in: corners, edges and faces. Furthermore, nodes can be

distinguished in master nodes and slave nodes. Corners, edges and face which are slave

nodes must be associated to master nodes on parallel faces.

Figure 3-5 displays the tetrahedral mesh for a RVE of a plain weave fabric with gaps,

in particular for strands, matrix and complete RVE. Figure 3-8 displays the tetrahedral

mesh for a RVE of a 8-harness satin fabric with gaps, in particular for strands, matrix

and complete RVE.

As an unstructured mesh was used in this work there is not a one-to-one association

between master and slave nodes. For this reason the code is programmed to find the

best matching master node for each slave node, as discussed in [61]. Moreover, in
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order to prevent rigid body motion, the correctors of at least one arbitrary point in

the RVE must be fixed. Two different methods were implemented for imposing the

periodic boundary conditions: Lagrange multipliers and static condensation (or simply

condensation). As only very small differences were found between the two methods, as

condensation is more efficient, this method was used for calculating all the results for

the AEHM.

Figures 3-6 and 3-7 display, respectively, the microcorrectors and the characteristic

loading vectors for a RVE of plain weave fabric with gaps. Figures 3-9 and 3-10 display,

respectively, the microcorrectors and the characteristic loading vectors for a RVE of

8-harness fabric with gaps.

E-Glass/PPS Plain Weave Fabric

Akkerman [3] reported experimental results for an E-Glass/PPS plain weave fabric with

elastic properties of fibers and matrix in Table 3.15a and geometrical parameters in

Table 3.15b. No gaps were reported between the yarns. Given that the geometrical

parameters of the fill and warp yarns are not identical, this is an unbalanced fabric.

This fabric is non-hybrid.

Material E1 [GPa] E2 [GPa] G12 [GPa] G23 [GPa] ν12 [-]
E-Glass 70.0 70.0 28.45 28.45 0.23

PPS 3.8 3.8 1.39 1.39 0.37

(a) Elastic Properties of fibers and matrix [129]

af [mm] hf [mm] gf [mm] af [mm] hf [mm] gf [mm] V C
f [-] V S

f [-]

0.95 0.11 - 1.04 0.11 - 0.50 −

(b) Geometrical parameters [3]

Table 3.15: Elastic properties and geometrical parameters for E-Glass/PPS Plain Weave
Fabric

In Table 3.16 the experimental results are compared against those predicted by the

AEHM, the analytical models and other theoretical results for the same case found in

literature. Note that the shape functions used by [3] are different from those used in

the present study.

EXP [3] AEHM PP PS SP SS PP [3]
E1 [GPa] 24 27.56 27.23 26.85 26.38 23.53 25.0
E2 [GPa] 24 27.99 27.14 24.51 24.18 23.41 −
E3 [GPa] − 23.01 18.08 17.43 17.34 16.53 12.0
G12 [GPa] 4.7 6.03 5.87 5.68 5.67 5.44 5.8
G13 [GPa] − 8.90 6.44 6.24 6.12 5.89 6.8
ν12 [-] 0.12 0.18 0.17 0.19 0.19 0.19 0.14
ν13 [-] − 0.30 0.32 0.32 0.32 0.33 0.38

Table 3.16: Results from models compared against experimental ones for E-Glass/PPS Plain
Weave Fabric

The AEHM gives similar results to the PP method, which is the best of the analytical

methods.
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T-300 Carbon/PPS 5H-Satin-Weave Fabric

Akkerman [3] reported experimental results for a T-300 Carbon/PPS 5H-satin weave

fabric with elastic properties of fibers and matrix in Table 3.17a and geometrical

parameters in Table 3.17b. No gaps were reported between the yarns. Given that the

geometrical parameters of the fill and warp yarns are identical, this is a balanced fabric.

This fabric is non-hybrid.

Material E1 [GPa] E2 [GPa] G12 [GPa] G23 [GPa] ν12 [-]
T-300 Carbon 231.0 40.0 24.0 14.4 0.26

PPS 3.8 3.8 1.39 1.39 0.37
PEI 3.0 3.0 1.1 1.1 0.36

(a) Elastic Properties of fibers and matrix [252]

af [mm] hf [mm] gf [mm] af [mm] hf [mm] gf [mm] V C
f [-] V S

f [-]

1.5 0.15 - 1.5 0.15 - 0.60 −

(b) Geometrical parameters [252]

Table 3.17: Elastic properties and geometrical parameters for T-300 Carbon/PPS 5H-Satin-
Weave Fabric

In Table 3.18 the experimental results are compared against those predicted by the

AEHM, the analytical models and other theoretical results for the same case found in

literature. Note that the shape functions used by [3] are different from those used in

the present study.

EXP [3] AEHM PP PS SP SS PP [3]
E1 [GPa] 84 76.99 75.18 75.08 70.12 46.91 77.0
E2 [GPa] 84 81.28 75.18 49.35 47.40 46.91 77.0
E3 [GPa] − 21.53 18.14 16.68 16.52 15.28 14.0
G12 [GPa] 4.1 5.51 5.42 5.22 5.20 4.96 5.9
G23 [GPa] − 5.71 4.42 4.07 3.87 3.83 5.9
G13 [GPa] − 5.74 4.42 4.41 4.13 3.83 5.9
ν12 [-] 0.02 0.01 0.02 0.03 0.04 0.04 0.05
ν13 [-] − 0.57 0.56 0.55 0.54 0.59 0.44
ν23 [-] − 0.57 0.56 0.61 0.61 0.59 0.44

Table 3.18: Results from models compared against experimental ones for T-300 Carbon/PPS
5H-Satin-Weave Fabric

Again, the AEHM gives similar results to the PP scheme, which is the best of the

analytical methods.

E-Glass/Epoxy 8H-Satin-Weave Fabric

Scida el al. [217] reported experimental results for an E-glass/epoxy 8H-satin weave

fabric with elastic properties of fibers and matrix in Table 3.19a and geometrical

parameters in Table 3.19b. No gaps were reported between the yarns. Given that the

geometrical parameters of the fill and warp yarns are identical, this is a balanced fabric.

This fabric is non-hybrid.

In Table 3.20 the experimental results are compared against those predicted by the

analytical model and other theoretical results for the same case found in literature.

The AEHM and the PP scheme yield similar results.
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Material E1 [GPa] E2 [GPa] G12 [GPa] G23 [GPa] ν12 [-]
E-Glass/Epoxy 55.7 18.5 6.89 6.04 0.22

EGlass/Vinylester 57.5 18.8 7.44 7.26 0.29

(a) Elastic Properties of fibers and matrix [217]

af [mm] hf [mm] gf [mm] af [mm] hf [mm] gf [mm] V C
f [-] V S

f [-]

0.6 0.09 - 0.6 0.09 - 0.52 0.80

(b) Geometrical parameters [217]

Table 3.19: Elastic properties and geometrical parameters for E-Glass/Epoxy 8H-Satin-Weave
Fabric

EXP [217] AEHM PP PS SP SS PP [217]
E1 [GPa] 25.6 ± 0.2 27.85 27.52 27.15 26.83 23.13 26.03
E2 [GPa] 25.6 ± 0.2 28.50 27.52 24.13 23.87 23.13 26.03
E3 [GPa] − 16.70 21.48 15.98 15.92 15.05 15.65
G12 [GPa] 5.7 ± 0.3 6.21 5.94 5.69 5.67 5.36 5.67
G23 [GPa] − 5.68 7.84 5.40 5.35 5.12 5.42
G13 [GPa] − 5.68 7.89 5.52 5.45 5.12 5.42
ν12 [-] 0.13 ± 0.005 0.14 0.13 0.15 0.15 0.15 0.12
ν13 [-] − 0.30 0.28 0.30 0.30 0.32 0.28

Table 3.20: Results from models compared against experimental ones for E-Glass/Epoxy
8H-Satin-Weave Fabric

E-Glass/Epoxy plain weave fabric

Naik and Gamesh [164] reported experimental results for an E-Glass/epoxy plain weave

fabric with elastic properties of fibers and matrix in Table 3.21a and geometrical

parameters in Table 3.21b. This is another example of fabric with gaps between the

yarns. Given that the geometrical parameters of the fill and warp yarns are not identical,

this is an unbalanced fabric. This fabric is non-hybrid.

Material E1 [GPa] E2 [GPa] G12 [GPa] G23 [GPa] ν12 [-]
E-Glass 72.0 72.0 27.7 27.7 0.30
Epoxy 3.5 3.5 1.3 1.3 0.35

(a) Elastic Properties of fibers and matrix [164]

af [mm] hf [mm] gf [mm] af [mm] hf [mm] gf [mm] V C
f [-] V S

f [-]

0.86 0.11 0.00 0.84 0.11 0.02 0.46 0.74

(b) Geometrical parameters [164]

Table 3.21: Elastic properties and geometrical parameters for E-Glass/Epoxy plain weave
fabric

In Table 3.22 the experimental results are compared against those predicted by the

analytical model developed in this work and other theoretical results for the same case

found in literature. Only the in-plane shear modulus measured using ±45◦ off-axis

tension tests have been reported. Note that the shape functions used by [164] are

different from those used in the present study.

EXP [164] AEHM PP PS SP SS SP [164]
E1 [GPa] 22.8 ± 1.2 24.26 24.43 23.97 23.19 20.14 22.0
E2 [GPa] 22.8 ± 1.2 25.21 24.19 20.84 20.42 19.65 −
G12 [GPa] 5.5 ± 0.1 4.75 4.69 4.51 4.50 4.31 4.55

Table 3.22: Results from models compared against experimental ones for E-Glass/Epoxy plain
weave fabric N.3

82



Here the AEHM and the PP scheme yield the best results. The predicted values are

particularly good because the presence of gaps has been accounted for in the model.

3.4 Conclusions

This chapter has reviewed the analytical methods based on the mechanics of materials

approach and critically compared their capability in predicting the mechanical properties

of 2D woven composites. Four types of averaging schemes were taken into account:

the parallel-parallel, the parallel-series, the series-parallel and the series-series schemes.

Different types of weave patterns, in particular plain, five-harness satin weave and

eight-harness satin weave, as well as different material properties were taken into

consideration. Also unbalanced weaves, hybrid weaves and weaves with gaps were

analyzed. The results were compared to experimental and numerical results for various

cases found in literature.

These methods provide good estimation of the mechanical properties for all the cases,

especially for the in-plane properties, while the out-of-plane properties are estimated

less precisely, because of the assumption that the individual lamina are modeled as

orthotropic materials. The best results were provided by the parallel-parallel scheme

compared to the other methods. The precision in the results is greatly improved when

the geometry takes in to account the gaps between the yarns. Moreover, the elastic

properties predicted along directions 1 and 2 by the parallel-series and the series-parallel

methods are different because these methods are asymmetric as they make different

assumptions (iso-stress or iso-strain) along these directions.

Furthermore, this chapter has assessed the capability of the asymptotic expansion

homogenization method (AEHM) in comparison to analytical methods based on the

mechanics of materials approach for predicting the mechanical properties of 2-D woven

composites. In terms of analytical methods four types of averaging schemes are taken

into account: the parallel-parallel, parallel-series, the series-parallel and the series-series

schemes. Different types of weave patterns, in particular plain, five-harness satin and

eight-harness satin weave, and material properties were taken into consideration. Also

unbalanced weaves and weaves with gaps were analyzed. The results are compared to

experimental and numerical results for various cases found in literature.

The AEHM provides a good estimation of the mechanical properties for all the cases

especially for the in-plane properties, while the out-of-plane properties are estimated

less precisely, because of the assumption that the individual laminae are modeled as

orthotropic materials. The AEHM compares well with the best results of the analytical

methods which were provided by the parallel-parallel scheme. For all considered methods,

the precision in the results is greatly improved when the geometry takes in account

of gaps between the yarns. Moreover, although not discussed here, the AEHM is
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able to provide localization of stresses and strains directly as part of the methodology

[55, 116, 61], feature that is not provided by the analytical methods.
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Chapter 4

Multiscale three-dimensional

constitutive modeling of shape

memory alloy hybrid composites

4.1 Introduction

When the shape memory alloy (SMA) material is embedded in the SMA hybrid compos-

ites (SMAHCs) in the form of wires the use of a one-dimensional model is a satisfactory

approximation (under the hypothesis of small diameter to length ratios).

Many different constitutive models have been developed to describe the thermo-

mechanical behavior of SMA materials, and this topic would be worthy of whole thesis

in its own right alone.

Different approaches have been adopted for the solution of the problem, and following

Brailovski et al. [32] we will classify them in micro-mechanical, macroscopic and

phenomenological. In this chapter we will very briefly review only the macroscopic

modeling approach. Moreover, Paiva and Savi [188] classify the macroscopic SMA

constitutive models into models with assumed phase transformation kinetics and models

based on the elasto-plasticity theory. There authors also provide some numerical results

comparing the performance of the later type.

We will first cover the topic of models based on assumed phase transformation

kinetics.

Tanaka’s [235] one-dimensional (1-D) model is developed starting from the second

law of thermodynamics written in terms of the Helmholtz free energy and assuming

that the uniaxial strain, temperature, and Martensite volume fraction ξ are the only

state variables. This model adopts an exponential expression of ξ is function of stress

and temperature. Liang and Rogers’ model [133] extended the one-dimensional model

developed by Tanaka using a cosine function to describe the Martensite volume fraction
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ξ is terms of stress and temperature.

The problem with these models is that they only describe the stress-induced Marten-

site phase transformation and they do not describe the strain-induced Martensite

transformation. As Chopra [49] points out these models can not be applied to model

the detwinning of Martensite responsible for the SME at low temperatures.

To overcome this deficiency, the one-dimensional model developed by Brinson [33, 35]

follows a different approach to the phase transformation kinetics, in which, besides

considering a cosine function to describe the Martensite volume fraction ξ is terms

of stress and temperature, the Martensite volume fraction ξ is separated into two

contributions. The first contribution ξM , called multi-variant Martensite faction, is the

part of Martensite induced only by changes in temperature. The second contribution

ξS , called single variant martensitic fraction, is the part of Martensite induced only by

changes in stress. The total volume fraction of Martensite is ξ = ξS + ξM .

The constitutive model developed by Boyd and Lagoudas [30, 31] is derived from

the Helmholtz free energy and can cover three dimensional states and non-proportional

loading. Other models that are worthwhile remembering are those developed by Sun

and Hwang [228] and by Ivshin and Pence [107].

Amongst the SMA constitutive models based on the elasto-plasticity theory firstly

proposed for a one-dimensional media we will mention only the Auricchio model, that

in the first stage was proposed for the one-dimensional case [9], and that in a second

stage was extended to a three-dimensional case [12, 13].

One-dimensional constitutive models are satisfactory for SMAHCs with embedded

uni-directional SMA wires, but three-dimensional (3-D) constitutive models are necessary

for characterizing the thermo-mechanical behavior of SMAHCs with embedded woven

SMA wires.

Recently a 3-D constitutive model has been proposed by Popov and Lagoudas

[193, 194] which, developed using a thermodynamics formulation, has three internal

variables for the Martensite volume fraction ξ and is capable of modeling simultaneously

pseudoelasticity and detwinning of self-accommodated Martensite in polycrystalline

SMAs.

The asymptotic expansion homogenization method (AEHM) has been previously

applied to study the elastic-plastic [56, 88, 221, 246], thermo-viscoelastic creep [54, 52]

and elastic-viscoplatic behavior [144, 145, 176] of composite materials.

As discussed by [88, 236] the solution of large scale nonlinear structural problems

with accurate resolution of micro-structural fields using the AEHM in not feasible.

For linear analysis the microscopic problem over the representative volume element

(RVE) has to be solved only one, while for nonlinear structural analysis the microscopic

problem over the RVE has to be solved at every increment and for each Gauss point of

the macroscopic problem. Moreover, the history data has to be updated at a number
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of points equal to the number of Gauss points in the microscopic problem times the

number of Gauss points in the macroscopic problem.

Different approaches to overcome this issue can be found in literature. Takano et

al. [231] in order to reduce the computational complexity of the the nonlinear problem

combine the AEHM with anisotropic damage which was discussed in chapter 3 with the

the mesh superposition technique [83], also referred to as s-version or s-refinement of

the finite element method, discussed in chapter 5. Fish and Shek [87, 221] develop a

two-point homogenization scheme with eigenstrains to compute the overall elastic-plastic

response of composite structures, while the microscopic solution is evaluated only in

critical points subjecting the unit cells to the macroscopic solution history. Oskay

and Fish [179] adapt the method to incorporate failure in both micro-constituents and

interfaces between constituents.

The averaging methods developed in [87, 179, 221] are based on the Transformation

Field Analysis (TFA) developed by Dvorak and co-workers. The mathematical founda-

tions have been posed in [72, 75] while the method was initially applied to elasto-plastic

composites in [76, 73, 74].

The AEHM (also referred to as mathematical homogenization method) has been

applied to the constitutive behavior of Shape Memory Alloys by [99] adapting the

methodology developed by Fish and Shek [87, 221] for elasto-plasticity. The authors

in [99] study only a two-phase composite consisting of matrix and pseudoelastic shape

memory alloy (SMA).

In section 4.2 two constitutive models for SMA will be reviewed: the 1-D Brinson

model in subsection 4.2.1 and 3-D Sadjadpour and Bhattacharya model in subsection

4.2.2. Then in subsection 4.2.4 a multiscale approach based on AEHM for modeling the

3-D behavior of SMAHCs will be developed which can easily incorporate TFA. Finally

in subsection 4.2.5 the AEHM macroscopic problem for SMAHCs will be reformulated

using TFA in order to simplify the analysis, when possible.

In section 4.3 we present some results, while in section 4.4 we draw some conclusions.

4.2 Methods

4.2.1 The Brinson 1-D constitutive model for SMA

Many different one-dimensional constitutive models have been developed for the SMA.

The one-dimensional constitutive model was developed by Brinson to characterize

the mechanical behavior of the SMA. This model was initially developed by Brinson

[33] and Brinson and Lammering [36] and later simplified by Brinson and Huang [35].

The model of Brinson will be summarized in this section.

The Brinson model belongs to those macroscopic constitutive models which have

been developed within the theory of irreversible thermodynamics in a small deformations

87



regime and are called rate-independent. It is assumed that the behavior of the material

is a function of stress, strain and temperature, and their corresponding rates of change.

The behavior of the material is a non-linear function of these three variables, which

are interdependent. The control variables are the stress and the temperature, and

the internal variable is the Martensite volume fraction. In this way, the constitutive

equation that relates stress, strain, temperature and Martensite volume fraction is

obtained.

This model has been extensively used in literature and has been proven to be superior

[195, 262, 66, 188] to other one-dimensional models developed by various authors.

The following local forms of the first [140, p. 230] and second law [140, p. 255] of

thermodynamics hold at each point of the original configuration C0
ρ0

du

dt
− σ : ε̇− ρ0r +∇0 · F−1 · q = 0

ρ0
ds

dt
− ρ0rT

−1 + T−1∇0 · F−1 · q − T−2F−1 · q · ∇0T ≥ 0

(4.1)

where : operator is the scalar product or the double contracted product or the double

dot product of two second-order tensors:

A : B =
3∑
i=1

3∑
J=1

AijBji (4.2)

and ∇0· is the divergence operator in the original configuration. σ is the second Piola-

Kirchhoff stress tensor, ε is the Green-Lagrange strain tensor, T is the temperature, s

is the entropy, r is the heat generated by internal heat sources, q is the heat transferred

from the surroundings, F is the deformation gradient tensor and u is the internal

energy.

The constitutive theory for the SMA is formulated using the Helmholtz free energy

g, which is related to the entropy s and the internal energy u as follows [140, p. 262]

g = u− sT (4.3)

In order to express the entropy inequality in terms of the Helmholtz energy, the the last

equation is differentiated with respect to time

dg

dt
=

du

dt
− ds

dt
T − sdT

dt
(4.4)

and combined with equations (4.1) to obtain

ρ0
dg

dt
+ σ :

dε

dt
+ ρ0s

dT

dt
+

1

T
F−1 · q∇T ≥ 0 (4.5)

88



Now the general state variable Λ is defined as

Λ ≡ (ε, T, ξ) (4.6)

and

g = g (Λ) = g (ε, T, ξ) (4.7)

σ = σ (Λ) = σ (ε, T, ξ) (4.8)

s = s (Λ) = s (ε, T, ξ) (4.9)

q = q (Λ) = q (ε, T, ξ) (4.10)

where the independent state variables are the Green-Lagrange strain tensor ε, temper-

ature T and the total volume fraction of Martensite ξ, which is an internal variable

introduced to describe the phase transformation involved in the mechanical behavior of

the SMAs.

A basic assumption of continuum mechanics is that every process related through

equations (4.7)-(4.10) must satisfy the entropy inequality (4.5). The total derivative of

g is
dg

dt
=
∂g

∂ε

dε

dt
+
∂g

∂T

dT

dt
+
∂g

∂ξ

dξ

dt
(4.11)

and substituting into (4.5) yields(
1

ρ0
σ − ∂g

∂ε

)
:

dε

dt
−
(
s+

∂g

∂T

)
dT

dt
− dξ

dt

∂g

∂ξ
− 1

Tρ0
F−1 · q∇T ≥ 0 (4.12)

As a sufficient condition for (4.12) to hold for every choice of dε/dt and dT/dt, their

coefficients must vanish

σ = ρ0
∂g

∂ε
= σ (Λ) = σ (ε, T, ξ) (4.13)

s = − ∂g
∂T

(4.14)

Equation (4.13) is the mechanical constitutive equation of the shape memory alloy

material.

As the Brinson model is only a one-dimensional model, from now on the scalar

notation will be used for second Piola-Kirchoff stress σ and Green-Lagrange strain ε.

Computing the derivative of equation (4.13) with respect to time we have

dσ

dt
=
dσ

dε

dε

dt
+
dσ

dξ

dξ

dt
+
dσ

dT

dT

dt

dσ

dt
= E (ε, T, ξ)

dε

dt
+ Ω (ε, T, ξ)

dξ

dt
+ Θ (ε, T, ξ)

dT

dt
(4.15)
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where E is the elastic modulus, Ω is the transformation tensor and Θ is the thermo-elastic

tensor are

E (ε, T, ξ) = ρ0
∂2g
∂ε2

; Ω (ε, T, ξ) = ρ0
∂2g
∂ε∂ξ ; Θ (ε, T, ξ) = ρ0

∂2g
∂ε∂T

The model of Brinson separates the total volume fraction of Martensite in two

different contributions. The first contribution ξM , called multi-variant martensite

faction, is the part of Martensite induced only by changes in temperature. The second

contribution ξS , called single variant martensitic fraction, is the part of Martensite

induced only by changes in stress. The total volume fraction of Martensite is

ξ = ξS + ξM (4.16)

With the separation introduced by Brinson, any phase transformation which starts

from a phase of 100% Austenite, will produce single variant Martensite (ξS) only via

variation of stress. If we start from a mixed phase of Austenite and single variant

Martensite, then ξM will represent the fraction of Martensite only via variation of

stress and ξS will increase only if the stress applied is sufficient to induce a phase

transformation.

Equation (4.15) in virtue of equation (4.16) becomes

dσ

dt
= E (ε, T, ξS , ξM )

dε

dt
+ΩS (ε, T, ξS , ξM )

dξS
dt

+ΩM (ε, T, ξS , ξM )
dξM
dt

+Θ (ε, T, ξS , ξM )
dT

dt

The constitutive equation used in the Brinson model is the following

σ = E (ξ) ε+ Ω (ξ) ξS + Θ (T − T0) (4.17)

In equation (4.17) T0 is the reference temperature and the transformation tensor is

expressed as

Ω (ξ) = −E (ξ) εL (4.18)

where εL is the maximal recoverable strain.

For the relation between the elastic modulus and the total Martensite fraction we

use the Voigt approximation which considers the material composed by austenitic and

martensitic fibers parallel to the external force being applied. In this case the strain on

the two phases is identical, and the following equations are valid

ε = εM = εA

σ = σMξ + σA (1− ξ)

Eε = εMEMξ + εAEA (1− ξ)

E = EMξ + EA (1− ξ) = EA − ξ (EA − EM ) (4.19)
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Another alternative method that can be used is the Reuss approximation which will

not be discussed here (see e. g. [66]).

Several laws of evolution exist for the internal variable in function of the control

variables (see figure 4-1).

Figure 4-1: The stress-temperature phase diagram for SMA [35, p.109]

These models assumes that tension, temperature and volumetric faction of Martensite

(ξ) are related by a state equation ξ = ξ (σ, T ). This equation can not be directly

integrated in closed form because it depends on the actual value of ξ which depends on

the integration path in the state space.

The Brinson model has three different evolution laws.

Direct phase transformation to single-variant Martensite (T > Ms)

ξS =
1− ξS0

2
cos

{
π

σCRs − σCRf

[
σ − σCRf − CM (T −Ms)

]}
+

1 + ξS0

2
(4.20)

ξM = ξM0 −
ξM0

1− ξS0
(ξS − ξS0) (4.21)

Validity range:

T > Ms and σCRs + CM (T −Ms) < σ < σCRf + CM (T −Ms)

Direct phase transformation to single-variant Martensite (T < Ms)

ξS =
1− ξS0

2
cos

{
π

σCRs − σCRf

[
σ − σCRf

]}
+

1 + ξS0

2
(4.22)

ξM = ξM0 −
ξM0

1− ξS0
(ξS − ξS0) + ∆Tξ (4.23)

whereIf Ms < T < Ms and T < T0: ∆Tξ = 1−ξM0
2 {cos [aML (T −Mf )] + 1}

else: ∆Tξ = 0
(4.24)

Validity range:
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T < Ms and σCRs < σ < σCRf

Reverse phase transformation of single-variant Martensite into Austenite

ξ =
ξ0

2

{
cos

[
aAL

(
T −As −

σ

CA

)]
+ 1

}
(4.25)

ξS = ξS0 −
ξS0

ξ0
(ξ0 − ξ) (4.26)

ξM = ξM0 −
ξM0

ξ0
(ξ0 − ξ) (4.27)

And substituting equation (4.25) in equations (4.26) and (4.27)

ξS =
ξS0

2

{
cos

[
aAL

(
T −As −

σ

CA

)]
+ 1

}
(4.28)

ξM =
ξM0

2

{
cos

[
aAL

(
T −As −

σ

CA

)]
+ 1

}
(4.29)

Validity range:

T > As and CA (T −Af ) < σ < CA (T −As)

The constants aAL and aML in equations (4.22) to (4.29) are defined as follows

aAL = π
Af−As aML = π

Ms−Mf
(4.30)

In all the above equations the subscript 0 refers to the initial conditions.

The Brinson model requires the experimental determination of 12 parameters:

1. Young’s modulus for Austenite EA;

2. Young’s modulus for Martensite EM ;

3. Martensite finish temperature Mf ;

4. Martensite start temperature Ms;

5. Austenite start temperature As

6. Austenite finish temperature Af ;

7. Thermo-elastic tensor Θ;

8. Maximal recoverable strain εL;
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9. Stress influence coefficient CM ;

10. Stress influence coefficient CA;

11. Critical stress at the start for transforming twinned Martensite in detwinned

Martensite σCRs ;

12. Critical stress at the finish for transforming twinned Martensite in detwinned

Martensite σCRf .

As proposed by various authors (e. g. [51] and [91]), Brinsons constitutive model

should be extended to properly account for the loading paths through the overlapping

transformation regions [o, t] in the phase diagram of the original model (see figure 4-2).

Figure 4-2: One-dimensional phase diagram of SMA where the overlapping transformation
region [o, t] is emphasized [91]

Appendix C covers the numerical implementation of this model.

4.2.2 The Sadjadpour and Bhattacharya 3-D constitutive model for

SMA

The three-dimensional constitutive model for shape-memory alloys of Sadjadpour and

Bhattacharya [212] generalizes the one-dimensional model presented earlier by the same

authors [27]. The model of Sadjadpour and Bhattacharya will be summarized in this

section.

This model assumes that the Helmholtz free energy density depends on the strain,

the temperature and the internal variables

g = g (ε, λ, εm, εp, T ) (4.31)

where ε is the linear strain, λ is the martenstic volume fraction, εm is the effective

transformation strain, εm is the plastic strain and T is the temperature.

Neglecting the effects of plasticity, the constitutive equations are

σ = C (ε− λεm) (4.32)

dλ = σ : εm − ω (4.33)

dεm = λσ (4.34)
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where σ is the second Piola-Kirchoff stress tensor, C is the fourth-order stiffness tensor

or the elasticity tensor, dλ, dεm are the driving forces associated with the rates of change

of their conjugate internal variables, λ and εm, respectively, and ω is the difference in

chemical energy between the Austenite and the Martensite.

In terms of Young’s modulus E and Poisson’s ratio ν (which are assumed to be

equal in both the Austenite and the Martensite), Hooke’s law for isotropic materials

can then be expressed as

ε =
1

E
σ − ν

E
[tr (σ) I − σ] (4.35)

where tr is the trace operator of a second-order tensor:

tr (A) =
3∑
i=1

aii (4.36)

and I is the second-order identity tensor.

Note that the effective transformation strain of the RVE is λεm since λ is is the

volume fraction of Martensite, εm is the effective transformation strain of the Martensite

and the transformation strain of the Austenite is 0 by choice of reference configuration.

It is assumed [212] that

ω (T ) =
L
Tcr

(T − Tcr) (4.37)

where L is the latent heat of transformation and Tcr is the thermodynamic transformation

temperature.

The kinetic relation describing the evolution of the martensitic volume fraction λ is

taken to be the following

λ̇ =


λ̇+
(

1 +
(
dλ − d+

λ

)−1
)− 1

P
dλ > d+

λ andλ < 1

λ̇−
(

1 +
(
d−λ − dλ

)−1
)− 1

P
dλ < d−λ andλ > 0

0 otherwise.

(4.38)

where λ̇± , d±λ , p are material parameters.

Note that this law has a stick-slip feature (i.e. it needs a critical driving force before

evolution begins and the evolution proceeds in an effectively rate-independent manner)

at small rates, but becomes rate-independent at high rates.

The effective transformation strain is the average transformation strain of the

different martensitic variants averaged over a representative volume element (RVE)

after the material has formed a compatible microstructure [26]. The evolution of the

effective transformation strain εm describes the processes, such as e. g. twinning and

detwinning, that convert one martensitic variant to another. Not any arbitrary mixture

of martensitic variants can be formed, but εm is restricted to those average values that
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are obtained from compatible arrangements.

In summary, the consequences of the microstructure at a material point is specified

by two internal variables λ and εm, which are subject to the following constraints

λ ∈ [0, 1] and εm ∈ P =
[
εcm, ε

t
m

]
(4.39)

where εcm < 0 denotes the largest recoverable compressive strain and εtm > 0 denotes

the largest recoverable tensile strain.

The set of all possible values of εm is denoted as the set of effective transformation

strains or the set of effective recoverable strains, P . This set P depends on the

crystallography of the material and the texture of the specimen.

P = {εm|tr (εm) = 0, g (εm) ≤ 0} (4.40)

The transformation strain function, g (εm) can be defined by three principal values

of the transformation strain εm, or its three invariants I1 (εm), I2 (εm) and I3 (εm).

Self-accommodation sets the transformation strain εm to be trace-free [25], which forces

I1 (εm) to vanish, so that the set depends only on the second and third invariants.

g (εm) = (−I2 (εm))
3
2 − aI3 (εm)− b− c (ê · εmê)3 (4.41)

where

I2 (εm) = −1

2
tr (εmεm)

I3 (εm) = det (εm)

where ê is the fiber texture vector or special direction vector of the texture.

Shape-memory alloys are often made as wires and tubes by drawing, and as sheets

by rolling. These manufacturing processes confer to the material a crystallographic

texture: i. e. the grains of the polycrystalline specimen are no longer randomly oriented

but show a preferential distribution. It is common to have an uniaxial texture where

one crystallographic axis is preferentially oriented along the drawing or rolling direction.

So this direction is special while all other directions normal to it are equivalent.

The set of transformation strains P is described by three parameters a, b and c.

The parameter b scales the set, while parameters a and c describe the asymmetry and

anisotropy of the set. The value a = 0 corresponds to tension-compression symmetry,

and both sets are ellipses. Positive values of a allows large tensile transformation strain,

and thus requires smaller tensile stress for transformation. Negative values of a reverse

this behavior. The parameter b simply rescales the set of effective transformation strains,

and thus also the transformation yield surface. The case c = 0 corresponds to the

isotropic situation.
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The growth rule for the transformation strain is

ε̇m =


ασ′ g (εm) < 0

α

(
σ′ − σ′ : ∂g

∂εm

∂g
∂εm

| ∂g
∂εm
|2

)
g (εm) = 0

0 otherwise.

(4.42)

where σ′ is the deviatoric stress tensor

σ′ = σ − 1

3
tr (σ) I

and
∂g

∂εm
=

3|εm|√
8
εm − acof (εm)T − 3c (ê · ê) (ê · εmê)2 (4.43)

where cof is the cofactor operator of a second-order tensor. The deviatoric stress tensor

can often be seen as difference between the stress and a mean stress σm, where the

latter is often called the hydrostatic stress [71].

σ′ =

σ11 − σm σ12 σ13

σ21 σ22 − σm σ23

σ31 σ32 σ33 − σm


σm =

σ11 + σ22 + σ33

3

Moreover, for adiabatic conditions the following expression can be used

T (t) = T0 exp

(
(λ (t)− λ0)L

cpTcr

)
(4.44)

where cp is is the heat capacity (assumed to be equal in both the Austenite and the

Martensite).

4.2.3 Finite element modeling of shape memory alloy materials

The implementation of nonlinear finite element methods (FEM) for shape memory alloys

may be displacement based or force based. Here the displacement based approach will

be considered. For force based finite element models of shape memory alloy materials

refer e. g. to [247].

Under small deformation assumption, the strain-displacement relationship is

ε (u) =
1

2

(
∇u+∇uT

)
(4.45)
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The generic shape memory alloy constitutive equation can be written as follows

σ = C
(
ε− εin

)
(4.46)

The Boundary Value Problem (BVP) to be solved may be stated as
∇ · σ (u) = −f , in Ω,

u = uD, in ∂1Ω,

σ · n = g, in ∂2Ω.

(4.47)

The variational formulation of the BVP (4.47) can be written in the following terms

Find u ∈ V D such that:
∫

Ω ε (u) : Cε (v) dp =
∫

Ω f · vdp+
∫
∂2Ω g · vds, ∀v ∈ V

(4.48)

The discrete version of equation (4.48) is

Find uh ∈ V D
h such that:

∫
Ω ε (uh) : Cε (vh) dp =

∫
Ω f · vhdp, ∀vh ∈ Vh (4.49)

where spaces V and V D are replaced by their discrete approximations Vh and V D
h .

If {φj} is the system of piecewise global basis functions of Vh, then the nonlinear

finite element analysis of the shape memory alloy material for the static case is reduced

to the following first order nonlinear system of ordinary differential equations (ODEs)

[199]

K (U)U = F (U) (4.50)

where

Kij (U) =

∫
Ωe
ε (φi (p)) : Cε (φj (p)) dp

Fi (U) =

∫
Ωe
Cεin · ε (φi (p)) dp

and K is the stiffness matrix, F is the force vector and U = {U1, . . . UN}T is the column

vector of nodal displacements, and N is the total number of nodes in the problem under

analysis (i. e. N − 1 elements).

The nonlinear problem (4.50) is solved using the iterative Newton-Raphson method

by linearizing the right hand side

Fi (U + ∆U) ∼= Fi (U) +
N∑
j=1

∂F i (U)

∂Uj
∆Uj
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Defining the k + 1 iteration of the Newton-Raphson formula as follows

U (k+1) = U (k) +L−1
(
U (k)

)
F h

(
U (k)

)
where L is the Jacobian

L
(
U (k)

)
:=

∂F h

(
U (k)

)
∂U

The nonlinear displacement based FEM provides strain increments ∆ε.

Approaches based on return-mapping algorithms similar to those in classical elasto-

plasticity [178, 225] are normally adapted to handle the shape memory alloy constitutive

equations, so that for a given strain increment ∆ε and temperature increment ∆T the

corresponding stress σ is computed from the constitutive equation (e. g. using equation

(4.32)).

An increment in strain ε causes increments in both stress σ and temperature T as

can be seen from the total derivative of stress with respect to strain

dσ

dε
=
∂σ

∂ε
+
∂σ

∂T

∂T

∂ε

Appropriate algorithmic or consistent tangent moduli have to be computed in order

to use iterative procedures such as the Newton-Raphson method to solve the nonlinear

system of algebraic equations that arise from the FEM discretization.

Such an implementation utilizes the following incremental form of the SMA consti-

tutive model

dσ = L : dε+ ΘdT (4.51)

where L is the tangent stiffness tensor and Θ is the tangent thermal tensor. The tangent

stiffness is a fourth-order tensor while the thermal tangent is a second-order tensor.

Each loading step (n+ 1) is defined by specifying the values of strain εn+1 and

temperature Tn+1, thus the constitutive equation can be seen as a function of only these

variables

σn+1 = σn+1 (εn+1, Tn+1)

The tangent stiffness moduli and tangent thermal moduli are defined as

L :=
∂σn+1 (εn+1, Tn+1)

∂εn+1
(4.52)

Θ :=
∂σn+1 (εn+1, Tn+1)

∂Tn+1
(4.53)

Analytical expressions or numerical approximations of the partial derivatives allow to

compute equation (4.51).

The Jacobian may be linked to the algorithmic tangent moduli L as follows (e. g.
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[193])

∂F h

(
U (k)

)
∂U

=

∫
Ωe

∂σ (ε (uh))

∂U
: ε (vh) dp

=

∫
Ωe

(
∂σ (ε (uh))

∂ε (uh)
:
∂ε (uh)

∂U

)
: ε (vh) dp

=

∫
Ωe

(
L (uh) :

∂ε (uh)

∂U

)
: ε (vh) dp

where

L (uh) :=
∂σ (ε (uh))

∂ε (uh)

Moreover, as

∂ε (uh)

∂U
=
∂ε (U · φ (p))

∂U
=
∂U · ε (φ (p))

∂U
= ε (φ (p))

then

Lij =

∫
Ωe
ε (φi (p)) : L (U · φ (p)) : ε (φj (p)) dp (4.54)

Note that, because of the nonlinear dependence of the stiffness on the displacement,

the most time-consuming parts of the FEM procedure are the assembly of the tangent

stiffness matrix and the assembly of the force vector at each Newton iteration. These

operations require the execution once for each element at each Newton iteration of the

stress update procedure via the return-mapping algorithm, which is a computationally

expensive operation. When the Reduced Newton-Raphson Method [199] is applied then

the update procedure can be limited, in the best case, to each Newton step.

Finally note that computer implementations of finite elements resort to the Voigt

notation [21, 71], which consists in expressing the second-order stress σ and strain

ε tensors as one-dimensional arrays and the fourth-order stiffness tensor C as a two-

dimensional array.

σ =

σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

 −→ σ =



σxx

σyy

σzz

σyz = τyz

σzx = τzx

σxy = τxy


,
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ε =

εxx εxy εxz

εxy εyy εyz

εxz εyz εzz

 −→ ε =



εxx

εyy

εzz

2εyz = γyz

2εzx = γzx

2εxy = γxy


.

In the Voigt notation, the shear strain components are stored as engineering shears,

which are twice the corresponding tensor shears, and care must be taken when carrying

out calculations involving stress and strain using the Voigt notation. Often the Reuter

matrix R must be employed to appropriately scale the values of stress and strain (e. g.

see equation (3.16)).

R =



1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 2 1 1

1 1 1 1 2 1

1 1 1 1 1 2


4.2.4 An AEHM approach to constitutive modeling of SMAHCs

In this section a multiscale approach based on the AEHM will be developed for modeling

the constitutive behavior of shape memory alloy hybrid composites.

The Bounday Value Problem (BVP) for small displacements may be witten as

follows

∂σij
∂xj

+ fi = 0 , in Ω, (4.55)

εij (u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (4.56)

σij (u) = Cijkl
[
εkl (u)− εinkl

]
, (4.57)

ui = 0 , on ∂1Ω, (4.58)

σijnj = Fi , on ∂2Ω, (4.59)

where (4.55) are the equilibrium equations, (4.56) are strain-displacement relationships,

(4.57) are the constitutive equations, (4.58) and (4.59) are the displacement boundary

conditions. For the development of the AEHM for large displacments refer e. g. to [236].

The elastic constants Cijkl and inelastic strains εinij (i. e. the eigenstrains) must
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satisfy the following relationships

Cijkl = Cjikl = Cijlk = Cklij ,

εinij = εinji .

Recall from chapter 3 that the AEHM assumes that the macro scale x and meso

scale y are then related through the scale parameter [55] ε, which is the ratio between

the two length scales being considered:

x =
y

ε
(4.60)

and the material properties are periodic in the RVE Y

Cεijkl (x) = Cijkl

(x
ε

)
(4.61)

Thus the fundamental assumption is that the multiple scales exist only in the spatial

variables and no such scaling exists for the time variable [246].

Equations (4.55) to (4.59) can be rewritten as

∂σεij
∂xεj

+ fi = 0 , in Ω, (4.62)

εεij (uε) =
1

2

(
∂uεi
∂xεj

+
∂uεj
∂xεi

)
, (4.63)

σεij (uε) = Cεijkl

[
εkl (u

ε)− εin,εkl

]
, (4.64)

uεi = 0 , on ∂1Ω, (4.65)

σεijnj = Fi , on ∂2Ω. (4.66)

The Y−periodicity of the material requirs that also displacements, strains and

stresses be Y−periodic.

The displacements and inelastic strains can be approximated with an asymptotic

expansion in ε as follows

uεi (x) = u
(0)
i (x,y) + εu

(1)
i (x,y) + ε2u

(2)
i (x,y) + . . . (4.67)

εin,εi (x) = ε
in,(0)
i (x,y) + εε

in,(1)
i (x,y) + ε2ε

in,(2)
i (x,y) + . . . (4.68)

Furthermore, the chain rule must be applied to the derivatives in x

∂

∂xε
=

∂

∂x
+

1

ε

∂

∂y

∂

∂xεi
=

∂

∂xi
+

1

ε

∂

∂yi
(4.69)
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The strain-displacement relationships (4.56) can be written in expanded form as

εij (uε) =
1

2

(
∂uεi
∂xj

+
∂uεj
∂xi

)
=

1

2

(
∂u

(0)
i

∂xj
+

1

ε

∂u
(0)
i

∂yj
+
∂u

(0)
j

∂xi
+

1

ε

∂u
(0)
j

∂yi

+ ε
∂u

(1)
i

∂xj
+
∂u

(1)
i

∂yj
+ ε

∂u
(1)
j

∂xi
+
∂u

(1)
j

∂yi

+ ε2
∂u

(2)
i

∂xj
+ ε

∂u
(2)
i

∂yj
+ ε2

∂u
(2)
j

∂xi
+ ε

∂u
(2)
j

∂yi
+ . . .

)

=
1

2ε

(
∂u

(0)
i

∂yj
+
∂u

(0)
j

∂yi

)
+

1

2

(
∂u

(0)
i

∂xj
+
∂u

(0)
j

∂xi
+
∂u

(1)
i

∂yj
+
∂u

(1)
j

∂yi

)

+
ε

2

(
∂u

(1)
i

∂xj
+
∂u

(1)
j

∂xi
+
∂u

(2)
i

∂yj
+
∂u

(2)
j

∂yi

)
+ . . .

εij (uε) =
1

ε
ε
(−1)
ij (x,y) + ε

(0)
ij (x,y) + εε

(1)
ij (x,y) + . . . (4.70)

The constitutive equation (4.64) can be written in expanded form as

σεij (uε) = Cεijkl (x)
[
εεkl (u

ε)− εin,εkl

]
= Cεijkl (y)

[
1

2ε

(
∂u

(0)
i

∂yj
+
∂u

(0)
j

∂yi

)
+

1

2

(
∂u

(0)
i

∂xj
+
∂u

(0)
j

∂xi
+
∂u

(1)
i

∂yj
+
∂u

(1)
j

∂yi
− εin,(0)

kl

)

+
ε

2

(
∂u

(1)
i

∂xj
+
∂u

(1)
j

∂xi
+
∂u

(2)
i

∂yj
+
∂u

(2)
j

∂yi
− εin,(1)

kl

)
+ . . .

]

σεij (uε) =
1

ε
σ

(−1)
ij (x,y) + σ

(0)
ij (x,y) + εσ

(1)
ij (x,y) + . . . (4.71)

Replacing equation (4.71) in equation (4.62) generates a set of BVPs relevant to

each scale in the multi-scale problem:

ε−1
∂σ

(−1)
ij

∂xj
+ ε−2

∂σ
(−1)
ij

∂yj
+ ε0

∂σ
(0)
ij

∂xj
+ ε−1

∂σ
(0)
ij

∂yj

+ ε1
∂σ

(1)
ij

∂xj
+ ε0

∂σ
(1)
ij

∂yj
+ ε2

∂σ
(2)
ij

∂xj
+ ε1

∂σ
(2)
ij

∂yj
+ · · ·+ fi = 0

102



ε−2
∂σ

(−1)
ij

∂yj
+ ε−1

(
∂σ

(−1)
ij

∂xj
+
∂σ

(0)
ij

∂yj

)
+ ε0

(
∂σ

(0)
ij

∂xj
+
∂σ

(1)
ij

∂yj
+ fi

)

+ ε1

(
∂σ

(1)
ij

∂xj
+
∂σ

(2)
ij

∂yj

)
+ ε2

(
∂σ

(2)
ij

∂xj
+
∂σ

(3)
ij

∂yj

)
+ · · · = 0

These equations must valid for all ε→ 0 which implies that the first three coefficients

must be zero identically.

ε−2:
∂σ

(−1)
ij

∂yj
= 0; (4.72)

ε−1:
∂σ

(−1)
ij

∂xj
+
∂σ

(0)
ij

∂yj
= 0; (4.73)

ε0:
∂σ

(0)
ij

∂xj
+
∂σ

(1)
ij

∂yj
+ fi = 0. (4.74)

Substituting equations (4.71) and invoking the symmetry of the material properties,

the equations (4.72), (4.73) and (4.74) can be written as

ε−2:
∂

∂yj
Cijkl

∂u
(0)
k

∂yl
= 0;

(4.75)

ε−1:
∂

∂xj
Cijkl

∂u
(0)
k

∂yl
+

∂

∂yj
Cijkl

(
∂u

(0)
k

∂xl
+
∂u

(1)
k

∂yl
− εin,(0)

kl

)
= 0;

(4.76)

ε0:
∂

∂xj
Cijkl

(
∂u

(0)
k

∂xl
+
∂u

(1)
k

∂yl
− εin,(0)

kl

)
+

∂

∂yj
Cijkl

(
∂u

(1)
k

∂xl
+
∂u

(2)
k

∂yl
− εin,(1)

kl

)
+ fi = 0.

(4.77)

Because u(0) (x,y) is Y−periodic and the ellipticity of Cijkl, then

∂u
(0)
k

∂yl
= 0

and equation (4.76) can be simplified as follows

∂

∂yj
Cijkl

(
∂u

(0)
k

∂xl
+
∂u

(1)
k

∂yl
− εin,(0)

kl

)
= 0 (4.78)
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which can be rewritten as

∂

∂yj

(
Cijkl

∂u
(1)
k

∂yl

)
= −

∂u
(0)
k

∂xl

∂Cijkl
∂yj

+
∂

∂yj

(
Cijklε

in,(0)
kl

)
(4.79)

To solve equation (4.79) the following separation of variables is adopted [231, 236,

254]

u
(1)
i = −χkl1i (y)

∂u
(0)
k

∂xl
+ χ2

i (y, t) + ũ
(1)
i (x) (4.80)

where, as was shown in chapter 3, the functions χkl
1

i are called the homogenization

functions [116] for the displacement or characteristic displacements [61] or elastic

correctors [55], while χ2
i are inelastic correctors. The function ũ

(1)
i (u) is a constant of

integration independent of y. Note that, as pointed out by [254], χkl
1

i is a function of

only yj because χkl
1

i results from the distibution of Cijkl in Y , while in general χ2
i is

function of both yj and t. For homogeneous problems both correctors are identically

zero, while in the case where no phase transformation occurs in the shape memory alloy

then the problem degenerates to an elastic one.

Substituting equation (4.80) into equation (4.79) gives the following result

− ∂

∂yj
Cijkl

∂χkl
1

k

∂yl

∂u
(0)
k

∂xl
+

∂

∂yj
Cijkl

∂χ2
k

∂yl
= −

∂u
(0)
k

∂xl

∂Cijkl
∂yj

+
∂

∂yj
Cijklε

in,(0)
kl

or  ∂
∂yj

Cijkl
∂χkl

1

k
∂yl

= ∂
∂yj

Cijkl
∂
∂yj

Cijkl
∂χ2

k
∂yl

= ∂
∂yj

Cijklε
in,(0)
kl

which can be written as  ∂
∂yj

[
Cijkl

(
δikδjl −

∂χkl
1

k
∂yl

)]
= 0

∂
∂yj

[
Cijkl

(
∂χ2

k
∂yl
− εin,(0)

kl

)]
= 0

where δij indicates Kronecker’s delta function.

The functions χkl
1

i and χ2
i are determined by solving the following variational

problems:

Find χkl
1

i ∈ VY such that:
∫
Y Cijkl

∂χkl
1

k
∂yl

∂vi
∂yj

dy =
∫
Y vj

∂Cijkl
∂yj

dy, ∀vi ∈ VY

with Y−periodicity of χkl
1

i , and

Find χ2
i ∈ VY such that:

∫
Y Cijkl

∂χ2
k

∂yl
∂vi
∂yj

dy =
∫
Y vjε

in,(0)
kl dy, ∀vi ∈ VY

with Y−periodicity of χ2
i .
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The strains in the microscopic problem can be obtained substituting equation (4.80)

in equation (4.70)

ε
(0)
ij (x,y) =

1

2

(
∂u

(0)
i

∂xj
+
∂u

(0)
j

∂xi
+
∂u

(1)
i

∂yj
+
∂u

(1)
j

∂yi

)

+
1

2

(
∂u

(0)
i

∂xj
+
∂u

(0)
j

∂xi
− ∂χkl

1

i

∂yj

∂u
(0)
k

∂xl
+
∂χ2

i

∂yj
−
∂χkl

1

j

∂yi

∂u
(0)
k

∂xl
+
∂χ2

j

∂yi

)

and because all quantities are symmetric about i and j

ε
(0)
ij (x,y) =

(
δikδjl −

∂χkl
1

i

∂yj

)
∂u

(0)
k

∂xl
+
∂χ2

i

∂yj
(4.81)

The stresses in the microscopic problem can be obtained substituting equation (4.80)

in equation (4.71)

σ
(0)
ij (x,y) = Cijkl (y)

(
ε
(0)
kl (x,y)− εin,(0)

kl

)
= Cijkl (y)

(
δikδjl −

∂χkl
1

i

∂yj

)
∂u

(0)
k

∂xl
− Cijkl (y)

(
ε
in,(0)
kl − ∂χ2

i

∂yj

)
(4.82)

Substituting equation (4.80) into equation (4.77) gives the following result

∂

∂xj
Cijkl

(
∂u

(0)
k

∂xl
−
∂χkl

1

k

∂yl

∂u
(0)
k

∂xl
+
∂χ2

k

∂yl
− εin,(0)

kl

)
+

∂

∂yj
Cijkl

[
∂

∂xl

(
−χkl1k

∂u
(0)
k

∂xl
+ χ2

k

)
+
∂ũ

(1)
k

∂xl
(u) +

∂u
(2)
k

∂yl
− εin,(1)

kl

]
+ fi = 0 (4.83)

Using the fact that u
(2)
i is Y−periodic [56], then equation (4.83) admits a unique

solution if and only if

∫
Y

[
∂

∂xj
Cijkl

(
∂u

(0)
k

∂xl
−
∂χkl

1

k

∂yl

∂u
(0)
k

∂xl
+
∂χ2

k

∂yl
− εin,(0)

kl

)
+ fi

]
dy = 0

and, after dividing both sides of equation (4.83) by the volume |Y | of the RVE and

rearranging, this equation can be written as

∂

∂xj

[
1

|Y |

∫
Y
Cijkl

(
δikδjl −

∂χkl
1

k

∂yl

)
dy

]
∂u

(0)
k

∂xl

− ∂

∂xj

[
1

|Y |

∫
Y
Cijkl

(
ε
in,(0)
kl −

∂χ2
k

∂yl

)
dy

]
+ fi = 0 (4.84)
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Defining the homogenized elasticity tensor as

Chijkl =< Cijkl >=
1

|Y |

∫
Y
Cijkl

(
δikδjl −

∂χkl
1

k

∂yl

)
dy (4.85)

where the brackets <> are the volume average operator

<>=
1

|Y |

∫
Y

()dy.

Using definition (4.85) in equation (4.84), this can be recast in the following form

∂

∂xj

{
Chijkl

[
∂u

(0)
k

∂xl
− 1

|Y |

(
Chijkl

)−1
∫
Y
Cijkl

(
ε
in,(0)
kl −

∂χ2
k

∂yl

)
dy

]}
+ fi = 0 (4.86)

Now defining the homogenized inelastic strain tensor as

εin,hij =< εinij >=
1

|Y |

(
Chijkl

)−1
∫
Y
Cijkl

(
ε
in,(0)
kl −

∂χ2
k

∂yl

)
dy, (4.87)

where

εinij = Cijkl

(
Chijkl

)−1
(
ε
in,(0)
kl −

∂χ2
k

∂yl

)
, (4.88)

the zero-th order stress, which is also the stress in the macroproblem, is

< σ
(0)
ij > = Chijkl

(
∂u

(0)
k

∂xl
− εin,hij

)
= Chijkl

(
< ε

(0)
kl > −ε

in,h
ij

)
. (4.89)

In the absence of inelastic strains, then the stress in the macroproblem can be computed

as

< σ
(0)
ij >= Chijkl < ε

(0)
kl > ,

which is the same result that was found in chapter 3.

The nonlinear homogenized BVP for the shape memory alloy material is

∂

∂xj
< σ

(0)
ij > +fi = 0 in Ω (4.90)

< ε
(0)
kl >=

∂u
(0)
k

∂xl
(4.91)

< σ
(0)
ij >= Chijkl

(
< ε

(0)
kl > −ε

in,h
ij

)
(4.92)

u
(0)
i = 0 on ∂1Ω (4.93)

< σ
(0)
ij > nj = Fi on ∂2Ω (4.94)
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4.2.5 Reformulation of the AEHM macroscopic problem for SMAHCs

using Transformation Field Analysis

In order to reduce the computational complexity of the full AEHM approach, this is

combined with Transformation Field Analysis (TFA). The AEHM macroscopic problem

for SMAHCs is reformulated using TFA and the full AEHM approach is applied only

to critical regions, defined as those regions where macroscopic stresses or macroscopic

inelastic strains exceed certain criteria (refer to section 3.2.3 for more details on how to

incorporate damage in the AEHM).

The TFA is characterized by local fields and overall response (o average fields). The

overall stress σ̄, strain ε̄ and inelastic strain ε̄in are the average of the local stress, strain

and inelastic strain fields which vary pointwise in the RVE.

The average strain ε̄, the average stress σ̄ and the average inelastic strain ε̄in are

obtained by integrating equations (4.70), (4.71) and (4.68), respectively, over the RVE

under the assumption that ε→ 0 [87, 179, 221]

ε̄ij (x, t) =
1

|Y |

∫
Y
εij (x,y, t) dy

=
1

|Y |

∫
Y
ε
(0)
ij (x,y, t) dy +O (ε)

σ̄ij (x, t) =
1

|Y |

∫
Y
σij (x,y, t) dy

=
1

|Y |

∫
Y
σ

(0)
ij (x,y, t) dy +O (ε)

ε̄inij (x, t) =
1

|Y |

∫
Y
εinij (x,y, t) dy

=
1

|Y |

∫
Y
ε
in,(0)
ij (x,y, t) dy +O (ε)

Defining the elastic strain concentrator factor and the transformation strain [72, 75]

as

Aijkl = δikδjl −
∂χkl

1

i

∂yj
,

µij =
∂χ2

i

∂yj

respectively, equation (4.81) can be rewritten as

ε
(0)
ij (x,y, t) = Aijkl

∂u
(0)
k

∂xl
+ µij (4.95)

Defining the elastic stress concentrator factor and the transformation stress [72, 75]
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as

Bijkl = Cijkl (y)

(
δikδjl −

∂χkl
1

i

∂yj

)
,

λij = Cijkl (y)
∂χ2

i

∂yj

respectively, equation (4.82) can be rewritten as

σ
(0)
ij (x,y, t) = Bijkl

∂u
(0)
k

∂xl
+ λij (4.96)

Note from the above equations that

Bijkl = Cijkl (y)Aijkl

λij = Cijkl (y)µij

In particular, considering a two-scale heterogeneous material composed of nph

phases, the RVE volume will be partitioned into subdomains in such a way that each

subdomain Yr, r = 1 . . . Q, where
∑
Yr = Y and Vr = |Yr|/|Y | is the volume fraction of

subdomain Yr, belongs to a single homogeneous phase [87, 179, 221], i. e. ∪nphr=1Yr = Y

and Ys ∩ Yt = ∅ for s 6= t. Denoting the characteristic functions of subdomain Yr by

χr (x) =

1 if x ∈ Yr,

0 otherwise,
Vr =< χr > ,

then the overall fields are the weighted volume sum of the average fields

ε̄ =

nph∑
r=1

Vrεr, (4.97)

σ̄ =

nph∑
r=1

Vrσr, (4.98)

If uniform transformation fields are assumed, which involves two levels of approxi-

mation [152]

1. the internal variables Λr, including the inelastic strain εinr , are considered to be

piecewise constant within each individual phase or subdomain, i. e.

εin =

nph∑
r=1

εinr χr (x) ;

2. the evolution of the internal variables Λr follows exactly the constitutive relations
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in phase r, the strain being estimated as the average strain in phase r;

then the local fields in the subdomains are found by superposition of mechanical and

transformation field contributions as

ε̄r =< εr >= Ar : ε̄+

nph∑
s=1

Drsε
in
s , (4.99)

σ̄r =< σr >= Br : σ̄ +

nph∑
s=1

F rsλs = Cr :
(
ε̄r − εinr

)
, (4.100)

where Ar and Br are the strain and stress concentration factors, Drs and F rs are the

transformation influence functions, and Cr is the stiffness tensor for subdomain Yr.

Both the concentration factors and the transformation influence functions depend on

the micro-geometry and phase distribution of the RVE.

Under the above assumption, considering a SMA hybrid woven composite of three

phases, matrix, yarns and SMA occupying subdomains Ym, Yy and Ysma, and with

volume fractions Vm = |Ym|/|Y |, Vy = |Yy|/|Y | and Vsma = |Ysma|/|Y |, respectively,

then Ym + Yy + Ysma = Y and Vm + Vy + Vsma = 1.

The average strain and stress concentration factors can be defined for matrix, yarns

and SMA

Am =
1

|Ym|

∫
Ym

Aijkldy, Ay =
1

|Yy|

∫
Yy

Aijkldy, Asma =
1

|Ysma|

∫
Ysma

Aijkldy;

Bm =
1

|Ym|

∫
Ym

Bijkldy, By =
1

|Yy|

∫
Yy

Bijkldy, Bsma =
1

|Ysma|

∫
Ysma

Bijkldy;

and, in the absence of transformation fields, the overall elastic stiffness and compliance,

are [100]

C̄ = VmAmCm + VyAyCy + VsmaAsmaCsma,

S̄ = VmBmSm + VyBySy + VsmaBsmaSsma,

where S̄ = C̄−1.

Assuming matrix and yarns to have a purely elastic behavior, then equations (4.99)
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for the matrix, yarns and SMA subdomains can be written as

ε̄m = Am : ε̄,

σ̄m = Cm : ε̄m;

ε̄y = Ay : ε̄,

σ̄y = Cy : ε̄y;

ε̄sma = Asma : ε̄+ ε̄insma,

σ̄sma = Csma :
(
ε̄sma − ε̄insma

)
;

respectively.

For a SMAHCs, equation (4.98) reduces to

σ̄ = Vmσm + Vyσy + Vsmaσsma (4.101)

4.3 Results

4.3.1 Brinson-Voigt Model for SMA

Here the results of the Brinson-Voigt model for Nitinol alloy are described. This model

was implemented in MATLAB and run for different initial conditions and temperatures.

The thermo-mechanical properties are the following [77, 133, 33]

EA = 67x103MPa

EM = 26.3x103MPa

Mf = 9◦C

Ms = 18.4◦C

As = 34.5◦C

Af = 49◦C

Θ = 0.55
MPa
◦C

εL = 0.067%

CM = 8
MPa
◦C

CA = 13.8
MPa
◦C

σCRs = 100MPa

σCRf = 170MPa

In figure 4-3 the SMA has a super-elastic behavior at T = 60◦C. The SMA material

is initially in 100% Austenite phase (0% Martensite phase), and then during loading,
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it transforms to 100% single-variant Martensite. After unloading the SMA material

transforms back to 100% Austenite phase.

(a) Stress-strain curve (b) Total martensitic volume
fraction versus stress curve

(c) Martensitic volume
fraction versus time curve

(d) Elastic modulus versus
time curve

Figure 4-3: Brinson-Voigt Model for NiTi (T = 60◦C)

In figure 4-4 the SMA has a pseudoelastic behavior at T = 40◦C, because the initial

temperature is lower than Af f. The SMA material is initially in 100% Austenite phase

(0% Martensite phase).

In figure 4-5 (T = 25◦C) the SMA has SME behavior, because the initial temperature

is lower than As. Here the hypothesis is that the material comes from a heating process

with 0% Martensite phase.

In figure 4-6 (T = 15◦C) and figure 4-7 (T = 12◦C) the SMA has SME behavior,

because the initial temperatures are lower than Ms. Here the hypothesis is that the initial

multi-variant Martensite phase is proportional to the difference between transformation

temperatures (i. e. a mixture of Austenite phase and Martensite phase).

In figure 4-8 (T = 5◦C) the SMA has also SME behavior, because the initial

temperatures are lower than Mf . The initial multi-variant Martensite phase is equal to

100%.

4.3.2 3-D isotropic and asymmetric transformation

Stress-controlled tests

In the stress-controlled tests the values of σ11, σ12 or both are imposed, while the

corresponding values of strain ε are derived.
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(a) Stress-strain curve (b) Total martensitic volume
fraction versus stress curve

(c) Martensitic volume
fraction versus time curve

(d) Elastic modulus versus
time curve

Figure 4-4: Brinson-Voigt Model for NiTi (T = 40◦C)

(a) Stress-strain curve (b) Total martensitic volume
fraction versus stress curve

(c) Martensitic volume
fraction versus time curve

(d) Elastic modulus versus
time curve

Figure 4-5: Brinson-Voigt Model for NiTi (T = 25◦C)

For NiTi the following parameters are considered [146]

Ms = −51.55 [◦C] and As = −6.36 [◦C]

L = 79
[
MJ
m3

]
and cp = 5.4

[
MJ
m3◦K

]
εcm = −2.5 [%] and εtm = 5 [%]

E = 65 [GPa] and σy = 1500 [GPa]

(4.102)
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(a) Stress-strain curve (b) Total martensitic volume
fraction versus stress curve

(c) Martensitic volume
fraction versus time curve

(d) Elastic modulus versus
time curve

Figure 4-6: Brinson-Voigt Model for NiTi (T = 15◦C)

(a) Stress-strain curve (b) Total martensitic volume
fraction versus stress curve

(c) Martensitic volume
fraction versus time curve

(d) Elastic modulus versus
time curve

Figure 4-7: Brinson-Voigt Model for NiTi (T = 12◦C)

where Ms and As are the Martensite start and Austenite start temperatures, respectively,

and σy is the plastic yield stress.
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(a) Stress-strain curve (b) Total martensitic volume
fraction versus stress curve

(c) Martensitic volume
fraction versus time curve

(d) Elastic modulus versus
time curve

Figure 4-8: Brinson-Voigt Model for NiTi (T = 5◦C)

(a) Martensitic volume
fraction versus time curve

(b) Stress-strain curve (c) Temperature versus time
curve

Figure 4-9: Uniaxial tension-compression stress-strain curves under stress-controlled propor-
tional loading for 3-D isotropic and asymmetric transformation

(a) Martensitic volume
fraction versus time curve

(b) Stress-strain curve (c) Temperature versus time
curve

Figure 4-10: Pure shear stress-strain curves under stress-controlled proportional loading for
3-D isotropic and asymmetric transformation
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The following material parameters are assumed [27]

d+
λ = d−λ = L

(
As−Ms
As+Ms

)
, Tcr = As+Ms

2 , T0 = 295◦K

a = 1.035, b = 0.000049, c = 0

Moreover, ê = [100].

The following kinetic coefficients are assumed

λ̇+ = λ̇− = 104, α = 10−3, p = 2

All tests were carried out in adiabatic conditions.

Figure 4-9 shows results of the simulation of the uniaxial tension-compression tests

for different initial temperatures T0.

Figure 4-10 shows the growth of volume fraction of Martensite and temperature as

a function of time and the stress-strain response for pure shear tests for different initial

temperatures T0.

Figure 4-11 shows the stress-controlled tension-torsion simulations of the same NiTi

sample on four additional stress paths. The material in these tests is stress-loaded

axially, followed by a shear stress of equal maximum value.

Strain-controlled tests

In the strain-controlled tests the values of ε11 and ε12 are imposed, while the corre-

sponding values of stress σ are derived.

The material parameters and kinematic coefficients are the same as those in the

stress-driven tests, except for the following material parameters:

a = 1.5, b = 0.000049, c = −0.6

Figure 4-12 shows the strain-controlled tension-torsion simulations of the same NiTi

sample on four different strain paths. The material in these tests is strain-loaded axially,

followed by a shear strain of different maximum value.

4.3.3 Comparison of impact testing results for woven and uni-directional

SMAHCs

Impact testing on SMA hybrid composites (SMAHCs) was conducted for the purpose

of concept-proving and validating the modeling results.

Six samples of SMAHCs were constructed: three woven laminates and three uni-

directional laminates.

The three woven laminates were composed of eight plies of five-harness (5H) satin

fabric with stacking sequence [0◦/0◦/0◦/0◦]S . Note that, as discussed in chapter 3, in

115



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4-11: Nonproportional stress-controlled loading for 3-D isotropic and asymmetric
transformation

each woven ply the warp and fill yarns are interlaced by 90◦. The baseline laminate

(laminate n.1 from now on) was made up comprising sixteen plies of conventional woven

carbon fiber preform in a matrix of Hexcel R© 8552 epoxy resin. The other two laminates

were hybridized with NiTi SMA wires: in the first the SMA wires were embedded in

only the bottom two plies (laminate n.2 ), while in the second the bottom two and top

two plies were hybridized (laminate n.3 ). In particular, the incorporation of SMA wires

was carried out in such a way that the warp and fill directions comprised a series of

combination threads each comprising a flat tow of carbon fibers and a pair of two SMA

wires, one at each lateral edge of the respective tow, as shown in figure 2-11. Please
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4-12: Nonproportional strain-controlled loading for 3-D isotropic and asymmetric
transformation

refer to patent [46] for more details.

For comparing results, the three uni-directional (UD) laminates were composed

of sixteen plies with stacking sequence [0◦/90◦/0◦/90◦/0◦/90◦/0◦/90◦]S . The baseline

laminate (laminate n.4 ) was made up comprising sixteen plies of conventional uni-

directional carbon fiber preform in a matrix of Hexcel R© 8552 epoxy resin. The other

two laminates were hybridized using NiTi SMA wires: in the first the SMA wires were

incorporated only in the bottom four plies (laminate n.5 ), while in the second the

bottom four and top four plies were hybridized (laminate n.6 ). The incorporation of

the SMA wires in the uni-directional laminates followed in the same lines that of the
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woven laminates with one SMA wire at each lateral edge of the respective tow of carbon

fibers.

The decision to embed the SMA wires in the outer layers was based on previously

published results [243]. The different distribution of SMA wires in the plies of laminates

2, 3, 5 and 6 determines a variation in the volume fraction of SMA between the different

samples. Moreover, as highlighted in chapter 2, incorporating the SMA wires in the

composite results in an increment in the overall weight, i. e. a weight penalty, which is

given in table 4.1 for each SMAHC laminate compared to its baseline.

SMAHC Increase [%]
UD SMA-TB 55.02
UD SMA-B 26.71
5H SMA-TB 71.58
5H SMA-B 38.19

Table 4.1: Percentage increase in weight of each SMAHC laminate compared to its baseline.

The SMA wires in the structure were designed to function in a purely passive sense,

i. e. only the passive impact damage suppression properties of the SMA are used here,

in contrast to active impact damage suppression mechanism where the shape memory

effect (SME) is deliberately provoked by supplying heat to the structure, e. g. applying

an electrical voltage to the wires. Refer to chapter 2 for a detailed discussion on the

differences between the passive and active damage suppression methods. Moreover the

SMA wires were not prestrained within the woven preform.

Each sample, held in a 100mm diameter Crag ring, was subjected to a full penetration

impact energy absorption test in a Rosand R© Instrumented Falling Weight Impact Tester,

using a 16mm hemispherical indenter at a velocity of about 5m/s delivering 80J impact

energy. Because of the asymmetry in samples 2 and 5, these were impacted on both the

top and bottom surfaces. Examples of the damage inflicted to the samples can be seen

in figure 4-13.

(a) Laminate n.2 (b) Laminate n.5

Figure 4-13: Examples of impact damage.

Figures 4-14 and 4-15 display the impact energy absorbed per unit mass and per unit

thickness, respectively, for the SMAHC laminates, i. e. the maximum impact energy

absorbed divided by the mass and the thickness, respectively, of the clamped region of

material during test.
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(a) Uni-directional SMAHC
laminates

(b) Five-harness satin weave
SMAHC laminates

Figure 4-14: Impact energy absorbed per unit mass.

(a) Uni-directional SMAHC
laminates

(b) Five-harness satin weave
SMAHC laminates

Figure 4-15: Impact energy absorbed per unit thickness.

Figures 4-14 and 4-15 show that the uni-directional SMAHC laminates have a greater

impact energy absorption compared to the five-harness satin weave SMAHC laminates,

as the thickness, and therefore stiffness, of the uni-directional laminates is higher.

Moreover, the highest impact energy, compared to the baseline, is absorbed by the

SMAHC laminates which incorporate SMA wires in both the top and bottom plies (UD

SMA-TB and 5H SMA-TB, in the figures). Next best are the SMAHCs hybridized only

in the bottom plies (UD SMA-B and 5H SMA-B, in the figures) when impacted on the

top surface, i. e. on the side opposite to the one with the plies containing the SMA

wires. Last come the SMAHC laminates hybridized on the bottom plies when impacted

on the bottom surface. These findings support previously published results [243].

Table 4.2 gives the percentage increase in impact energy absorption of each SMAHC

laminate compared to its baseline. Note that embedding the SMA wires in a five-harness

satin weave composite gives a higher percentage increase in impact energy absorption

than in the case of uni-directional composites.
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SMAHC Increase [%]
UD SMA-TB 90.33
UD SMA-B impact on T 53.32
UD SMA-B impact on B 59.76
5H SMA-TB 145.67
5H SMA-B impact on T 91.17
5H SMA-B impact on B 59.80

(a) Per unit mass

SMAHC Increase [%]
UD SMA-TB 147.80
UD SMA-B impact on T 77.90
UD SMA-B impact on B 85.37
5H SMA-TB 219.06
5H SMA-B impact on T 127.49
5H SMA-B impact on B 90.16

(b) Per unit thickness

Table 4.2: Percentage increase in impact energy absorption of each SMAHC laminate compared
to its baseline.

4.4 Conclusions

In this chapter first the one-dimensional Brinson constitutive model and the three-

dimensional (3-D) Sadjadpour and Bhattacharya constitutive model for shape-memory

alloy (SMA) are reviewed. The finite element implementation of these models is also

considered. Then a multiscale 3-D constitutive modeling approach for shape-memory

alloy hybrid composites (SMAHCs) based on the the AEHM approach is proposed.

Finally, the use of transformation field analysis (TFA) for reducing the computational

cost of the analysis is discussed.

Results for the Brinson model and the Sadjadpour and Bhattacharya model are

given. Moreover, samples of SMAHCs were manufactured and tested in laboratory,

and a comparison of impact testing results for woven and uni-directional SMAHCs is

presented.

Although the 3-D constitutive model for SMA of Sadjadpour and Bhattacharya is

used, the approach considered in this chapter is not restricted to this model, but also

other existing 3-D models may be employed.
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Chapter 5

Multiple plate models theory for

laminated composite plates

5.1 Introduction

5.1.1 Motivation

Key components of primary aircraft structures, such as wing skins, wind turbines etc...

are currently being designed using laminated composites. Although the structural

designer is interested in the global behavior of the structures, phenomena such as impact

loading and relative damage have a localized structural effect. Furthermore, for large

3D scale finite element simulation of thick laminate with complex geometries ( tapered

geometry, non-uniform ply distribution etc...) using finite element methods (FEM)

would result in a high computational and meshing time in order to calculate accurate

interlaminar stress. In the following we will use the expressions plate model and assumed

displacement field interchangeably.

5.1.2 Mathematical models for laminated composite plates

Plate models dimensionally reduce the full, three-dimensional elasticity problem by

imposing constraints on the through-the-thickness variation of the displacement field.

A number of reviews [210, 156, 41, 198] have been conducted into the different plate

models available for the analysis of laminated composites. In general, these models

can be separated into two categories: (i) equivalent single layer (ESL) or smeared

models; and (ii) discrete layer (DL) or layerwise theory (LWT) models . The equivalent

single layer models (for example the classical lamination plate theory (CLT)) offer a

computationally efficient method, whereby the number of degrees-of-freedom in the

model is independent of the number of laminae, and, especially in case of thin laminates,

can offer accurate modeling of the global displacements. However, using the CLT for

the estimation of interlaminar stress would be inaccurate since the theory assumes a
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state of plane stress within each ply and interlaminar shear stresses are obtained from

the three-dimensional equilibrium equations. first-order shear deformation plate theory

(FSDT) and higher order plate models take into account transverse shear stresses, but

have limited accuracy in predicting interlaminar stresses, can not accurately estimate

rapid change of slope of the displacement fields across layer interfaces due to variation

of mechanical properties with thickness, known as zig-zag effect, and do not satisfy

the continuity of the interlaminar stress field. The layerwise models offer a solution

for thick laminates, at the cost of increased complexity: in full layerwise models the

number of degrees of freedom in the model is proportional to the number of laminae in

the material. Carrera and Ciuffreda [42] conducted an extensive review of these models

using various orders of polynomials, and assess their performance under a variety of

transverse loading conditions.

Using a low order plate model throughout the structure would not allow users to

obtain accurate interlaminar stresses while a discrete layer approach may be compu-

tationally expensive. In this chapter a different approach is proposed to accurately

calculate interlaminar stress, by employing hierarchical multiple plate models that offer

global-local analysis capabilities where different subregions of laminates are analyzed

using different plate models. The total displacement field is represented as the mesh

superposition of the displacements of a number of plate models. The displacement field

is enriched locally where accurate through-the-thickness stresses are required. In this

manner, a computationally efficient low order global model can be used to determine

gross displacements, and the enriched models can be used to determine stresses at

lamina interfaces for the accurate prediction of localized phenomena such as damage

initiation and growth. The proposed modeling technique is implemented by combining

an extended FEM (XFEM) and multilevel mesh superposition approach (MMSA) . Ex-

tra degrees-of-freedom are added to the model to represent the additional displacement

fields, and the meshing process remains independent for each field.

5.1.3 Multiple plate models theories

A number of authors have proposed multiple plate models for laminated composites

which simultaneously combine various plate models.

Barbero and Reddy created the generalized plate theory [16, 15] which combines the

CLT plate model with a layerwise expansion for the in-plane displacement components,

and is defined as a partial layerwise plate model by Reddy [200]. The model can be

augmented with a discontinuous field using a step function, as explained in [17], in order

to model delamination. Robbins and Reddy [198, 203] proposed a hierarchical multiple

plate models approach called the variable kinematic model (VKM) that combines a

FSDT plate model and a full layerwise plate model, as well as a discontinuous field for

modeling delamination. This is achieved by superposition of meshes in subregions of
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the model where more accurate information is required. The VKM is expanded in [261]

by making the model automatically adaptive. The VKM is limited to only two specific

plate models (i.e. FSDT and layerwise).

In Mohite and Upadhyay [156] a region-by-region modeling strategy is adopted

whereby full layerwise, partial layerwise and equivalent plate models are used in different

regions of the domain. Any model can be placed in any region of the domain. In each

region the plate model is fixed. A three-dimensional mesh is required. Changing the

type of model in any region of the domain would require remeshing the whole domain.

The use of Murakami’s zig-zag function [67] is always as an enhancement to a simpler

model, such as FSDT, and can itself be seen as an example of the unification of two

different displacement fields.

5.1.4 Hierarchical plate models

The hierarchical modeling of composite structures is achieved through the use of sequence

of plate models, each identified by specific parameters, of which the exact solutions

constitute a converging sequence to the solution of the fully three-dimensional model.

This modeling approach uses a defined methodology for selecting the model with the

appropriate level of sofistication from the sequence.

Cho and Oden [48] applied the concept of hierarchical modeling to ESL and DL

plates and shells identifying as relevant parameter the order of the displacement field

in the through the thickness direction. However, when they applied this concept to

laminated structures, the authors did not take into account the microstructure of the

laminae.

As pointed out by Actis et al. [1] the concept of hierarchical plate models must not

be confused with that of hierarchical finite element spaces. Hierarchical finite element

spaces produce a converging sequence of approximate solutions, the limit of which is

the exact solution of the particular mathematical model of interest. Hierarchical plate

models provide means for controlling modeling errors while hierarchical finite element

spaces provide means for controlling discretization errors. Zienkiewicz and Taylor [274]

present a review of hierarchical finite element spaces methods.

Williams [253] proposes a model referred to as a two length scale or global-local

approach, by introducing a coupling between the displacement fields used on the two

different length scales. The through the thickness displacement function is of arbitrary

selection. Delamination can be incorporated using an arbitrary choice of interfacial

constitutive relationships. This global-local strategy is presented in its linear form in

[157], and proves to be both accurate and efficient. Its worth noting that most authors

(e.g. [116]) speak about multiscale modeling only when local information is present in

the model along all the axis and not only the z-axis.
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5.1.5 Mesh superposition techniques

Of particular interest to this work is the concept of multilevel mesh superpositioning,

which was first introduced by Fish et al. [83] as the s-version or s-refinement of the

finite element method, where the s stands for superpositioning.

This technique was first developed for the two level case where a coarse mesh (global

mesh) is superpositioned by an independent, refined mesh (overlay mesh or local mesh)

in order to form a composite mesh. The total displacement field on the composite mesh

is the sum of the displacement field interpolated on the global mesh (global displacement)

and the displacement field interpolated on the local mesh (local displacement). The

important aspects of this method is that the original mesh does not need to be changed,

global and local meshes do not need compatible discretizations and the local mesh can

enhance the global mesh regardless of the original global mesh topology. The mesh

superpositioning is called structured when the superpositioning elements fit entirely

within the domain of the superpositioned element. Otherwise the technique is called

unstructued. The technique was extended to the multilevel case in [85, 87, 189] and to

handle discontinuous fields in [82]. The method was applied to laminated composites in

[86, 84]. In these applications the displacement fields at the various levels are all based

on the same assumed displacement field, hence the subregions differ only in the level of

refinement of the interpolated solution.

The approach used to tackle cracks in the s-version FEM is to mesh the superposi-

tioning elements so that they follow the shape of the crack, and to double the number of

nodes within the elements on the crack surface in order to represent the discontinuity.

5.1.6 Modeling of delamination using enrichment methods

Another method for handling discontinuities and cracks is the extended finite element

(XFEM) or generalized finite element [20], which, using the partition of unity property

of finite elements [147], allows local enrichment functions to be easily incorporated into

a finite element approximation for modeling discontinuities without requiring remeshing.

There are two ways of carrying out the enrichment [155]: enriching the shape

functions (intrinsic enrichment) or adding to the problem additional unknowns or

degrees of freedom associated to the enriched solution (extrinsic enrichment).

As discussed by Belytschko et al. [20], the s-version FEM is closely related to

the XFEM. Lee et al. [132] combined XFEM and s-version FEM for modeling cracks

proposing a hybrid method called XSFEM.

Local enrichment can be used for modeling delamination in laminated composites,

as delamination can be considered as a particular form of fracturing in which the planes

of fracturing are known a priori [59].
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5.1.7 Scope of this work

While previous authors limit the analysis to only two levels of superposition [198, 203]

or only to specific plate models [86, 84], this paper proposes a hierarchical multiple

plate models approach for modelling structural response of thick laminated composite

plates in which any number and type of plate models can be superimposed by using a

multilevel mesh superposition approach.

Both equivalent ESL and DL plate models are incorporated into the general frame-

work. Geometric nonlinearities are also included in the form of von Kármán equations.

Discontinuous through the thickness displacement fields, such as delaminations, are

integrated by performing an extrinsic enrichment of the assumed displacement fields. A

cohesive law between laminae is used where appropriate.

In implementation, an adaptive method may be adopted to automatically enhance

the model in the appropriate regions to the appropriate level of complexity. When a

higher level of precision (accurate stress distribution) is required, then the approximation

is enhanced in a hierarchical fashion by adding the extra degrees of freedom needed to

represent the additional plate models in the regions of interest.

The outline of the chapter is the following. Section 5.2 outlines the general theory of

the hierarchical multiple models theory, while sections 5.3 and 5.4 describe the theory

in more detail and the finite element formulation, respectively. Section 5.5 evaluates

and discusses the accuracy of this approach in determining displacement and stress for

various plate geometries and load cases. Section 5.6 draws some conclusions from the

results.

5.2 Overview

The general form for the finite element equations for a single plate model is the following

[200]

MÜ +KU = F (5.1)

where M is the system mass matrix, K is the system stiffness matrix, U is the

vector of the nodal degrees of freedom of the system and F is the system force vector.

The authors [6] extend equations (5.1) to any number and type of plate models

by calculating the total displacement field u as the multilevel mesh superposition

[82, 87, 189] (see figure 5-1) of the displacements uα of the M models being considered.

u (x, y, z, t) =
M∑
α=1

uα (x, y, z, t) (5.2)
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Figure 5-1: Example of multilevel mesh superposition finite element model. The displacement
uα of each plate model being considered is assigned to a different mesh level. Note that the
meshing process remains independent for each plate model, which allows the higher mesh levels
to be more refined as more localized information is generally needed. In areas where more than
one mesh level is present, the total displacement is the superposition of all the displacements in
those areas.

As the full, three-dimensional elasticity problem is computationally expensive to solve,

plate models dimensionally reduce the problem by constraining the admissible solutions

to have a specific dependence on the transverse variable z [215]. The components of

the displacement uα are expressed as follows

uαi (x, y, z, t) = Uαi (x, y, t)Fαi (z) (5.3)

where i = 1, 2, 3.

For each plate model α the thickness h of the plate is discretized along the z axis

(see figure 5-2a) into a number of mathematical layers [200, 203] that may consist of

several material laminae (sub-layers), of a single material lamina (layer) or a sub-region

of a material lamina (sub-lamina). The layers may be assumed to be perfectly bonded

together or have displacement steps across interfaces to simulate a delamination event.

Each individual lamina and consequently each mathematical layer is assumed to have

homogenized mechanical properties.

The displacement uα is approximated out-of-plane within each mathematical layer

using predefined functions, as stylized in figure 5-2b, where for example two plate

models are being considered. In this case, model u1 has one equivalent single layer

model simulating the three physical layers, while model u2 has one mathematical

layer coinciding with only the physical layer in the middle of the plate. Moreover

u1 approximates the displacement through-the-thickness of the plate using a linear

approximation function, while the displacement is approximated by u2 with a cubic

interpolation function. The total displacement field u is the summation (figure 5-2b) of

u1 and u2.

When writing the finite element equations, the displacement uα is further discretized
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(a) Out-of-plane (z-axis) and
in-plane (xy-plane)

discretization

(b) Out-of-plane approximation
function

Figure 5-2: Stylized representation of the hierarchical multiple plate models approach. The
domain of the plate is discretized both out-of-plane (z-axis) and in-plane (xy-plane). The
displacement uα is approximated out-of-plane within each mathematical layer using predefined
functions. The total displacement field u is the summation of u1 and u2.

in the xy-plane (see figure 5-2a). After assembly, the discretized finite element equations

for the proposed hierarchical multiple plate model theory are given as follows

Mαβ
IJ
Üα
I +Kαβ

IJ
Uα
I = FαI (5.4)

where symbols α and β represent different plate models, while I and J represent

different nodes in the out-of-plane discretization of the plate models (or, in equivalent

terms, they represent different interfaces between the mathematical layers of the plate

models).

In summary, in each node of the 2-D mesh level (in-plane discretization in figure

5-2a) the displacement uα has a number of degrees of freedom that depends on the

number of mathematical layers being considered for model α or, in equivalent terms, on

the number of nodes in the out-of-plane discretization (see figure 5-2a) being considered

for that model.

It is worth pointing out that using this modeling approach only a 2-D mesh is

required instead of a 3-D mesh for a full three-dimensional solid finite element analysis,

which simplifies the analysis especially when remeshing is required.

To ensure compatibility of the total displacement field and uniqueness of the solution

certain degrees of freedom (DOF) should be constrained. For this reason, besides

physical boundary conditions additional boundary conditions need to be imposed before
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Figure 5-3: Compatibility and uniqueness conditions for the case of structured mesh superpo-
sition. Note that the compatibility conditions are not imposed on boundaries that coincide with
physical boundaries.

the finite element equations (5.4) can be solved. The additional boundary conditions

are generally referred to as compatibility and uniqueness conditions [261, 189], and

are shown in figure 5-3. Note that the compatibility conditions are not imposed on

boundaries that coincide with physical boundaries, as displayed in figure 5-3. Here DOF

need only to be suppressed in accordance with the physical boundary conditions.

Using an extended finite element modeling (XFEM) approach [155], by appropriately

defining the boundaries of the enhancing displacement fields, the superposition of

additional plate models can be used to locally enrich the solution. In this manner,

a coarse global plate model can be used to determine gross displacements, and the

enriching plate models can be used to determine stresses at lamina interfaces for the

accurate prediction of localized phenomena. This is achieved by extending the degrees

of freedom of the global plate model with the degrees of freedom of the enriching plate

models in nodes of the 2-D mesh where accurate interlaminar stresses are required. This

technique is normally referred to as extrinsic enrichment [155].

5.3 Theory

5.3.1 Notation

Let us consider a open and bounded domain Ω ∈ <3 with piecewise smooth boundary

∂Ω. The plate is the closure Ω of Ω. The global (laminate) orthonormal Cartesian

co-ordinate system of the plate is denoted as (x1, x2, x3) = (x, y, z) with unit vectors

(n̂1, n̂2, n̂3) = (n̂x, n̂y, n̂z). We further assume the z-axis is pointing upward and a

right-handed (or positive) system. The boundary ∂Ω is decomposed as ∂Ω = ∂Ωu ∪∂Ωt,
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where ∂Ωu is the boundary where the prescribed displacements are imposed (Dirichlet

boundary conditions) and ∂Ωt is the boundary where the prescribed tractions are

imposed (Neumann boundary conditions). In general, ∂Ωt is a curved surface with a

unit normal n̂n = nxn̂x + nyn̂y defined to be outward with respect to Ω.

Figure 5-4: Geometry of a laminated plate with curved boundary, including coordinate systems
and layer numbering

We will assume the xy-plane (reference plane) of the problem to coincide with

the midplane (z = 0) of Ω and the total thickness of Ω to be h, as shown in Figure

5-4. Moreover, the midplane is assumed to be an open and bounded region ω ∈ <2

with piecewise smooth boundary ∂ω, so that the total domain Ω = ω × (−h/2, h/2).

The boundary ∂Ω then consists of the union of the plate’s top and bottom surfaces

∂Ωu = ω × {−h/2, h/2} and by the lateral surface ∂Ωt = ∂ω × (−h/2, h/2). A typical

point P in Ω is denoted by x = (
˜
x, x3) = (

˜
x, z), where

˜
x ∈ ω and −h/2 ≤ z ≤ h/2.

5.3.2 Total displacement field

The total displacement field u in the proposed hierarchical multiple plate models

approach is given in (5.5) by the superposition [85, 87, 189] in Ω of all the individual
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plate models uα being considered

u (x, y, z, t) =
M∑
α=1

uα (x, y, z, t) (5.5)

where M is the total number of plate models. A material point occupying the position

(x, y, z) in the undeformed laminate moves to the position (x+ u, y + v, z + w) in the

deformed laminate, where u = uêx + vêy + wêz.

5.3.3 Dimensional reduction

As discussed in section 5.1, the full, three-dimensional elasticity problem is computa-

tionally expensive to solve. For this reason the problem is dimensionally reduced by

semi-discretization. Each plate model α is obtained by constraining the admissible solu-

tions of the three-dimensional problem to have a specific dependence on the transverse

variable z. In particular, the problem is discretized only in the transverse direction z

[215], while the spatial x and y and time t co-ordinates are left unchanged.

Based on the above assumptions, the components of assumed displacement field for

any plate model α can be expressed as follows

uαi (x, y, z, t) = Uαi (
˜
x, t)Fαi (z) (5.6)

where i = 1, 2, 3. Uαi is function only of the variables associated with the midplane
˜
x

and time t, while Fαi is function only of the transverse variable z

5.3.4 Material layers

The composite laminated plate is composed of Nm orthotropic material laminae, as

shown in Figure 5-4. Each lamina k is of uniform thickness h(k) = z(k+1) − z(k), where

z(k) is the co-ordinate of the interface between the k-th and the (k + 1)-th material layers.

The local (layer or material) Cartesian orthonormal co-ordinate system of the k-th

layer is denoted as
(
x

(k)
1 , x

(k)
2 , x

(k)
3

)
=
(
x(k), y(k), z(k)

)
, with x(k) oriented at an angle

θ(k) with respect to the global co-ordinate x. The angle θ(k) is aligned with the direction

of the fibers in the lamina k. The k-th material layer is defined in z(k) ≤ z ≤ z(k+1).

The global and local co-ordinate systems are collinear along the z directions.

5.3.5 Out-of-plane discretization

In order to determine the through the thickness stresses, the microstructure of the

laminate, e. g. fibers and matrix constituents and fibers/matrix interface of each lamina,

has to be accounted for. We will take into account only of the homogenized mechanical

properties of each individual lamina. For each model α the thickness h of the plate
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can be discretized along the z axis into a number of mathematical layers Nα
L that is

independent from the number of material layers Nm. A mathematical layer may consist

of several material laminae (sub-layers), of a single material lamina or a sub-region of a

material lamina (sub-lamina). Under the above assumptions, each mathematical layer

can be represented by the equivalent homogeneous mechanical properties of the laminae

that compose it. The layers may be assumed to be perfectly bonded together or have

displacement jumps across interfaces due to delaminations.

Formally, the out-of-plane discretization can be viewed as a partition Pαz of the z

axis into Nα
L intervals through the thickness of the plate.

Pαz =
{
z ∈ ZαI | ZαI =

(
zαI , z

α
I+1

)
, ZαI ∈ (−h/2, h/2) , I = 1, . . . , Nα

L

}
(5.7)

where ZαI
⋂
ZαJ = ∅, if ZαI ∈ Pαz and ZαJ ∈ Pαz and I 6= J , and

⋃
Z̄αI = [−h/2, h/2].

We define the measure (length) of subdomains ZαI as λ (ZαI ). The out-of-plane

discretization step is then equal to λ (ZαI ). The exact solution of the semi-discretized

problem converges asymptotically to the continuous one [64] as the discretization step

along z tends to zero.

5.3.6 Domain of a model

It’s useful at this stage to introduce the concept of domain of a model. This concept

will be used later for example for imposing compatibility conditions on the assumed

displacement fields, i.e. boundary conditions between different models domains.

As we have seen in equation (5.6), the dimensionally reduced displacement field α

is the product of an in-plane function and an out of plane function. The domain of a

model α is then the product of an in-plane domain and an out-of-plane domain.

If the set of available mathematical models in Ω is defined asM = {1, . . . ,M}, then

the domain ω can be partitioned into P subdomains ωi with boundaries ∂ωi, where

within each subdomain ωi only a subset of models Mi ⊆M are used. This partition is

called Pω, and can defined formally as follows

Pω = {ωi | ωi ⊆ ω, 1 ≤ i ≤ P} (5.8)

where ωi
⋂
ωj = ∅, if ωi ∈ Pω, ωj ∈ Pω and i 6= j, and

⋃
ω̄i = ω̄.

The number of elements of Mi is called the cardinality of Mi and is denoted |Mi|.
The greatest element Si of Mi is the element of Mi which is greater than or equal to

any other element of Mi.

We define the in-plane domain ωα with boundary ∂ωα of a model α as a subdomain

of ω which is the union of all subdomains ωi where the model α is utilized. Formally

we can write, ωα =
⋃
ωi for all subdomains ωi such that α ∈Mi. The elements of the

in-plane domain are
˜
x ∈ ωα.
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We define the out-of-plane domain of a model α as any subset of intervals
{
Zα1 , Z

α
2 , . . . , Z

α
Nα
I

}
within the partition Pαz , with Nα

I ≤ Nα
L , where the model α is utilized. Some of these

intervals may be contiguous, but in general this is not a requirement for the intervals.

The elements of the out-of-plane domain are zα ∈
{
Zα1 , Z

α
2 , . . . , Z

α
Nα
I

}
and zαI ∈ ZαI .

The domain of a model α then is ωα×
{
Zα1 , Z

α
2 , . . . , Z

α
Nα
I

}
, which in general is equal

to one or more disjoint volumes.

Figure 5-5: Superposition of a FSDT model with a linear LWT model

For example, in the case of the superposition of a FSDT with a linear LWT model

displayed in Figure 5-5, as the FSDT theory can be represented by the superposition

of two assumed displacement fields {1, 2} and we refer to the linear LWT as model 3,

the set of available mathematical models in Ω is M = {1, 2, 3}. In subdomain ω1 only

the FSDT model is available, so M1 = {1, 2}. In subdomain ω2 both FSDT and linear

LWT models are available, so M2 = {1, 2, 3}. The in-plane domain of the FSDT model

coincides with ω, while the in-plane domain of the linear LWT model equal to ω2.

5.3.7 Out-of-plane approximation functions

In each interval ZαI the displacement variables U
α
I
i

can be approximated using a prede-

fined approximation function F
α
I
i

of degree L
α
I
i
. For simplicity, if we assume that the
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components of the displacement are approximated using the same functions then we

can drop the index i and write

FαI (zαI ) =

LαI∑
l=0

F
α
I
l

(zαI )l (5.9)

for zαI ∈ ZαI . Note that here l is the exponential operator.

5.3.8 Number of nodes through the thickness

The number of nodes through the thickness of the plate in each point
˜
x for a model α

is equal to

Nα
p =

Nα
I∑

I=1

(LαI + 1) (5.10)

if all Nα
I intervals are contiguous. Otherwise the expression in (5.10) is increased by

one for every non contiguous intervals.

For example, in the case of the superposition of a FSDT with a linear LWT model

displayed in Figure 5-5, there is one node through the thickness for the FSDT model in

ω, while there are Nm + 1 nodes through the thickness for the linear LWT model in ω2,

if a number of subdivisions through the thickness equivalent to the number of material

layers Nm is used for the LWT.

5.3.9 Layer semidiscretized displacement fields

Now, introducing the concept of mathematical layers into definition (5.6), we can write

uαi (
˜
x, z, t) =

Nα
p∑

I=1

U
α
I
i

(
˜
x, t)F

α
I
i

(z) (5.11)

where i = 1, . . . , 3,
˜
x ∈ ωα and z ∈

{
Zα1 , . . . , Z

α
Nα
I

}
.

In equation (5.11) the variables Uα
I are called the generalized displacements or

kinematic variables for the assumed displacement field α, and are the unknowns of

the problem. In the global coordinate system (x, y, z) the components of Uα
I are

(UαI , V
α
I ,W

α
I ).

F α
I are 1-D a-priori selected approximation functions that are continuous within one

or more contiguous mathematical layers. Here, for simplicity, the functions are assumed

to have the same components (FαI , F
α
I , F

α
I ) along the x-, y- and z-directions, then the

same number of points through the thickness Nα
p can be used for the components of

displacement field α
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Equation (5.11) can be written as

uα =

Nα
p∑

I=1

UαI F
α
I vα =

Nα
p∑

I=1

V α
I F

α
I wα =

Nα
p∑

I=1

Wα
I F

α
I (5.12)

5.3.10 Functional degrees of freedom

The functional degrees of freedom (FDOF) or nodal degrees of freedom of the multiple

models theory can be very useful when comparing different combinations of models.

This parameter has the following definition

FDOF = 3

(
M∑
α=1

Nα
p

)
(5.13)

and is in general a function of
˜
x.

5.3.11 Displacements and strains

The nonlinear strains associated with the total displacement field in equations (5.3.2)

and (5.11) can be calculated using the von Kármán equations [57]. The nonlinear strains

are given in equations (5.14).

εxx =

M∑
α=1

(Nα
p∑

I=1

∂UαI
∂x

FαI

)
+

1

2

M∑
α,β=1

[(Nα
p∑

I=1

∂Wα
I

∂x
FαI

)(Nβ
p∑

J=1

∂W β
J

∂x
F βJ

)]
(5.14a)

εyy =
M∑
α=1

(Nα
p∑

I=1

∂V α
I

∂y
FαI

)
+

1

2

M∑
α,β=1

[(Nα
p∑

I=1

∂Wα
I

∂y
FαI

)(Nβ
p∑

J=1

∂W β
J

∂y
F βJ

)]
(5.14b)

εzz =
M∑
α=1

(Nα
p∑

I=1

Wα
I

dFαI
dz

)
(5.14c)

γyz =

M∑
α=1

(Nα
p∑

I=1

V α
I

dFαI
dz

+

Nα
p∑

I=1

∂Wα
I

∂y
FαI

)
(5.14d)

γzx =

M∑
α=1

(Nα
p∑

I=1

UαI
dFαI
dz

+

Nα
p∑

I=1

∂Wα
I

∂x
FαI

)
(5.14e)
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γxy =

M∑
α=1

[Nα
p∑

I=1

(
∂UαI
∂y

+
∂V α

I

∂x

)
FαI

]
+

M∑
α,β=1

[(Nα
p∑

I=1

∂Wα
I

∂x
FαI

)(Nβ
p∑

J=1

∂W β
J

∂y
F βJ

)]
(5.14f)

5.3.12 Equations of motion

The equations of motion can be derived using the dynamic version of the principle of

virtual displacements

0 =

∫ T

0
(δU + δV − δK ) dt (5.15)

where δU is the virtual strain energy, δV is the virtual work done by the applied forces,

δK is the virtual kinetic energy and T is the time interval.

The virtual strain energy can be expressed as

δU =

∫
Ω

{
σxxδεxx + σyyδεyy + σzzδεzz + σyzδγyz + σzxδγzx + σxyδγxy

}
dΩ (5.16)

The virtual work done by the applied forces, in the case of a distributed load, is

δV = −
∫

Ω
qδwdΩ (5.17)

The virtual kinetic energy is

δK =

∫
Ω

{
ρ0

(
u̇δu̇+ v̇δv̇ + ẇδẇ

)}
dΩ (5.18)

where ρ0 is the density of the plate material and a dot on the variable indicates time

derivative.

For laminated plate structures the following relation stands true

∫
Ω

{}
dΩ =

∫
ω

{∫ h
2

−h
2

{}
dz

}
dxdy =

∫
ω

{Nm∑
k=1

∫ z
(k)
t

z
(k)
b

{}
dz

}
dxdy (5.19)

where Nm is the number of material layers in the laminate, z
(k)
b = z(k) and z

(k)
t = z(k+1)

are the co-ordinates of the bottom and top of the k-layer.

Defining the force resultants, the moment resultants and the mass moments of
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inertia as

{
N
α
I
1

N
α
I
2

N
α
I
4

N
α
I
5

N
α
I
6

}T
=

Nm∑
k=1

∫ z
(k)
t

z
(k)
b

{
σxx σyy σyz σzx σxy

}T
FαI dz

{
Ñ
α
I
3

Ñ
α
I
4

Ñ
α
I
5

}T
=

Nm∑
k=1

∫ z
(k)
t

z
(k)
b

{
σzz σyz σzx

}T dFαI
dz

dz

{
N̂

α
I
nn

N̂
α
I
ns

N̂
α
I
nz

}T
=

Nm∑
k=1

∫ z
(k)
t

z
(k)
b

{
σ̂nn σ̂ns σ̂nz

}T
FαI dz

{
Q
αβ
IJ
1

Q
αβ
IJ
2

Q
αβ
IJ
6

}T
=

Nm∑
k=1

∫ z
(k)
t

z
(k)
b

{
σxx σyy σxy

}T
FαI F

β
J dz

I
αβ
IJ =

Nm∑
k=1

∫ z
(k)
t

z
(k)
b

ρ
(k)
0 FαI F

β
J dz (5.20)

and integrating through the thickness of the laminate, we can write

δU =

∫
ω

M∑
α=1

{ Nα
p∑

I=1

[
N
α
I
1

∂δUαI
∂x

+N
α
I
2

∂δV α
I

∂y
+N

α
I
4

∂δWα
I

∂y
+N

α
I
5

∂δWα
I

∂x
+N

α
I
6

(
∂δUαI
∂y

+
∂δV α

I

∂x

)
+Ñ

α
I
3
δWα

I + Ñ
α
I
4
δV α

I + Ñ
α
I
5
δUαI

]}
dxdy

+

∫
ω

M∑
α,β=1

{ Nα
p∑

I=1

Nβ
p∑

J=1

[
Q
αβ
IJ
1

∂δWα
I

∂x

∂W β
J

∂x
+Q

αβ
IJ
2

∂δWα
I

∂y

∂W β
J

∂y
+Q

αβ
IJ
6

(
∂δWα

I

∂x

∂W β
J

∂y
+
∂Wα

I

∂x

∂δW β
J

∂y

)]}
dxdy

(5.21)

δV =−
∫
ω

[
qb
(
˜
x
)
δw
(
˜
x,−h/2

)
+qt
(
˜
x
)
δw
(
˜
x, h/2

)]
dxdy −

∫
∂Ωt

∫ h
2

−h
2

(
σ̂nnδun + σ̂nsδus + σ̂nzδw

)
dzds

δV =−
∫
ω

M∑
α=1

(
qbδW

α
1 + qtδW

α
Nα
p

)
dxdy −

∫
∂Ωt

M∑
α=1

[Nα
p∑

I=1

(
N̂

α
I
nn
δU

α
I
n

+ N̂
α
I
ns
δU

α
I
s

+ N̂
α
I
nz
δWα

I

)]
ds

(5.22)

δK =

∫
ω

M∑
α,β=1

[Nα
p∑

I=1

Nβ
p∑

J=1

I
αβ
IJ

(
U̇αI δU̇

β
J + V̇ α

I δV̇
β
J + Ẇα

I δẆ
β
J

)]
dxdy (5.23)

where qb (
˜
x) and δw

(
˜
x,−h/2

)
are respectively the distributed stress and the com-

ponent along z of the displacement on the bottom of the plate
(
z = −h

2

)
, qt (

˜
x) and

136



δw
(
˜
x, h/2

)
are respectively the distributed stress and the component along z of the

displacement on the top of the plate
(
z = h

2

)
and q = qb + qt. ds is the arc-length of an

infinitesimal line element along the boundary. (σ̂nn, σ̂ns, σ̂nz) are the specified stress

components on the portion ∂Ωt of the boundary, where n is the normal direction and s

is the tangential direction on ∂Ω, as shown in Figure 5-4. Note that if the unit outward

normal vector is oriented at an angle θ from the x-axis with cosine directors nx = cos θ

and ny = sin θ, then the transformation between the coordinate systems (x, y, z) and

(n, s, r) is

n̂x = cos θn̂n + sin θn̂s

n̂y = − cos θn̂n + sin θn̂s

n̂z = n̂r (5.24)

In virtue of equations (5.24) the displacements
(
U
α
I
n
, U

α
I
s

)
are related to

(
UαI , V

α
I

)
by

U
α
I
n

=nxU
α
I + nyV

α
I (5.25)

U
α
I
s

=− nxUαI + nyV
α
I (5.26)

Substituting the expressions of δU , δV and δK in equations (5.21), (5.22) and

(5.23) in equation (5.15), collecting the coefficients of each generalized displacement

(δUαI , δV
α
I , δW

α
I ) and setting these coefficients to zero separately over ω, we obtain the

following Euler-Lagrange equations of the theory

δUαI :
∂N

α
I
1

∂x
+
∂N

α
I
6

∂y
+ Ñ

α
I
5

=

M∑
β=1

(Nβ
p∑

J=1

I
αβ
IJ
∂UβJ
∂t2

)

δV α
I :

∂N
α
I
2

∂y
+
∂N

α
I
6

∂x
+ Ñ

α
I
4

=
M∑
β=1

(Nβ
p∑

J=1

I
αβ
IJ
∂V β

J

∂t2

)

δWα
I :

∂N
α
I
4

∂y
+
∂N

α
I
5

∂x
+ Ñ

α
I
3
− qb − qt +

M∑
β=1

{Nβ
p∑

J=1

[
∂

∂x

(
Q
αβ
IJ
1

∂W β
J

∂x
+Q

αβ
IJ
6

∂W β
J

∂y

)

+
∂

∂y

(
Q
αβ
IJ
2

∂W β
J

∂y
+Q

αβ
IJ
6

∂W β
J

∂x

)]}
=

M∑
β=1

Nβ
p∑

J=1

I
αβ
IJ
∂W β

J

∂t2
(5.27)

Note that in the equations above integration-by-parts (spatial and time) was used

to relieve the generalized displacements of any differentiation of the variational operator

δ, in order to use the fundamental lemma of calculus. Also the terms in ω evaluated at

t = 0 were set to 0 because the generalized displacements are zero there.
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The essential (geometric) boundary conditions for the theory are imposed on UαI ,

V α
I and Wα

I . The natural (force) boundary conditions for the theory are

N
α
I
nn
− N̂

α
I
nn

= 0

N
α
I
ns
− N̂

α
I
ns

= 0

N
α
I
nz
− N̂

α
I
nz

= 0 (5.28)

where

N
α
I
nn

=N
α
I
1
nx +N

α
I
6
ny

N
α
I
ns

=N
α
I
6
nx +N

α
I
2
ny

N
α
I
nz

=N
α
I
5
nx +N

α
I
4
ny +

M∑
β=1

[Nβ
p∑

J=1

(
Q
αβ
IJ
1

∂W β
J

∂x
+Q

αβ
IJ
6

∂W β
J

∂y

)
nx +

(
Q
αβ
IJ
2

∂W β
J

∂y
+Q

αβ
IJ
6

∂W β
J

∂x

)
ny

]

The primary variables (displacements) and secondary variables (forces) for the

hierarchical multiple plate models theory are

Primary variables: U
α
I
n
, U

α
I
s

;Wα
I (5.29)

Secondary variables: N
α
I
nn
, N

α
I
ns

;N
α
I
nz

(5.30)

5.3.13 Laminate Constitutive Equations

For the k-th (orthotropic) mathematical layer we have the following 3-D stress-strain

relationships

σxx

σyy

σzz

σyz

σzx

σxy



(k)

=



C̄
(k)
11 C̄

(k)
12 C̄

(k)
13 0 0 C̄

(k)
16

C̄
(k)
21 C̄

(k)
22 C̄

(k)
23 0 0 C̄

(k)
26

C̄
(k)
31 C̄

(k)
32 C̄

(k)
33 0 0 C̄

(k)
36

0 0 0 C̄
(k)
44 C̄

(k)
45 0

0 0 0 C̄
(k)
54 C̄

(k)
55 0

C̄
(k)
61 C̄

(k)
62 C̄

(k)
63 0 0 C̄

(k)
66



(k)

εxx

εyy

εzz

γyz

γzx

γxy



(k)

(5.31)

where C̄
(k)
ij are the transformed elastic coefficients in the global (laminate) co-ordinates,

which are related to the elastic coefficients in the local (layer) co-ordinates C
(k)
ij by the

following relationship

C̄ = TCT T (5.32)
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where T is the transformation tensor with components

Tij =



cos2θ(k) sin2θ(k) 0 0 0 −sin2θ(k)

sin2θ(k) cos2θ(k) 0 0 0 sin2θ(k)

0 0 1 0 0 0

0 0 0 cosθ(k) sinθ(k) 0

0 0 0 −sinθ(k) cosθ(k) 0

sinθ(k)cosθ(k) −sinθ(k)cosθ(k) 0 0 0 cos2θ(k) − sin2θ(k)


(5.33)

The laminate stiffnesses are defined as follows

A
αβ
IJ
ij

=

Nm∑
k=1

∫ z
(k)
t

z
(k)
b

C̄
(k)
ij F

α
I F

β
J dz Ā

αβ
IJ
ij

=

Nm∑
k=1

∫ z
(k)
t

z
(k)
b

C̄
(k)
ij F

α
I

dF βJ
dz

dz

¯̄A
αβ
IJ
ij

=

Nm∑
k=1

∫ z
(k)
t

z
(k)
b

C̄
(k)
ij

dFαI
dz

dF βJ
dz

dz B
αβγ
IJK
ij

=

Nm∑
k=1

∫ z
(k)
t

z
(k)
b

C̄
(k)
ij F

α
I F

β
J F

γ
Kdz

B̄
αβγ
IJK
ij

=

Nm∑
k=1

∫ z
(k)
t

z
(k)
b

C̄
(k)
ij F

α
I F

β
J

dF γK
dz

dz D
αβγδ
IJKL
ij

=

Nm∑
k=1

∫ z
(k)
t

z
(k)
b

C̄
(k)
ij F

α
I F

β
J F

γ
KF

δ
Ldz (5.34)

The laminate constitutive equations can be written as

N
α
I

i=1,2,6
=

M∑
β=1

{Nβ
p∑

J=1

[
A
αβ
IJ
i1

∂UβJ
∂x

+A
αβ
IJ
i2

∂V β
J

∂y
+ Ā

αβ
IJ
i3
W β
J +A

αβ
IJ
i6

(
∂UβJ
∂y

+
∂V β

J

∂x

)]}

+

M∑
β,γ=1

[Nβ
p∑

J=1

Nγ
p∑

K=1

(
1

2
B
αβγ
IJK
i1

∂W β
J

∂x

∂W γ
K

∂x
+

1

2
B
αβγ
IJK
i2

∂W β
J

∂y

∂W γ
K

∂y
+B

αβγ
IJK
i6

∂W β
J

∂x

∂W γ
K

∂y

)]
(5.35a)

N
α
I

i=4,5
=

M∑
β=1

[Nβ
p∑

J=1

(
Ā
αβ
IJ
i4
V β
J +A

αβ
IJ
i4

∂W β
J

∂y
+ Ā

αβ
IJ
i5
UβJ +A

αβ
IJ
i5

∂W β
J

∂x

)]
(5.35b)

Ñ
α
I
3

=

M∑
β=1

{Nβ
p∑

J=1

[
Ā
βα
JI
31

∂UβJ
∂x

+ Ā
βα
JI
32

∂V β
J

∂y
+ ¯̄A

βα
JI
33
W β
J + Ā

βα
JI
36

(
∂UβJ
∂y

+
∂V β

J

∂x

)]}

+
M∑

β,γ=1

[Nβ
p∑

J=1

Nγ
p∑

K=1

(
1

2
B̄
βγα
JKI
31

∂W β
J

∂x

∂W γ
K

∂x
+

1

2
B̄
βγα
JKI
32

∂W β
J

∂y

∂W γ
K

∂y
+ B̄

βγα
JKI
36

∂W β
J

∂x

∂W γ
K

∂y

)]
(5.35c)
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Ñ
α
I

i=4,5
=

M∑
β=1

[Nβ
p∑

J=1

(
¯̄A
βα
JI
i4
V β
J + Ā

βα
JI
i4

∂W β
J

∂y
+ ¯̄A

βα
JI
i5
UβJ + Ā

βα
JI
i5

∂W β
J

∂x

)]
(5.35d)

Q
αβ
IJ

i=1,2,6
=

M∑
γ=1

{ Nγ
p∑

K=1

[
B
αβγ
IJK
i1

∂UγK
∂x

+B
αβγ
IJK
i2

∂V γ
K

∂y
+ B̄

αβγ
IJK
i3

W γ
K +B

αβγ
IJK
i6

(
∂UγK
∂y

+
∂V γ

K

∂x

)]}

+

M∑
γ,δ=1

[ Nγ
p∑

K=1

Nδ
p∑

L=1

(
1

2
D
αβγδ
IJKL
i1

∂W γ
K

∂x

∂W δ
L

∂x
+

1

2
D
αβγδ
IJKL
i2

∂W γ
K

∂y

∂W δ
L

∂y
+D

αβγδ
IJKL
i6

∂W γ
K

∂x

∂W δ
L

∂y

)]
(5.35e)

Sometimes it is useful to express the equations of motion (5.27) in terms of generalized

displacements (UαI , V
α
I ,W

α
I ). This can be achieved by substituting the expressions for

the force and moment resultants from equations (5.35) in to equation (5.27).

5.4 Finite element formulation

5.4.1 In-plane discretization

The in-plane discretization is based on the multilevel mesh superposition approach

[83], which is shown in Figure 5-6. In the multilevel mesh superposition finite element

analysis, the domain ω̄ is discretized into a collection of elements such that each in-plane

model domain ωα is discretized independently with its own mesh

ω̄α ≈
Nα
e⋃

e=1

ω̄αe (5.36)

ω̄α = ωα
⋃
∂ωα (5.37)

ω̄αe = ωαe
⋃
∂ωαe (5.38)

We define the measure (area) of subdomain ωαe as λ (ωαe ). In each subdomain ωi there

will be |Mi| non overlapping meshes, where each level of mesh is more refined than the

previous ones in the hierarchy, i. e. λ
(
ωα+1
e

)
≤ λ (ωαe ). In general the boundaries of

the models in Mi do not coincide.

The highest level of mesh in ωi is the one for model Si. This mesh will be referred

to [261] as the top mesh, while the meshes of the remaining plate models within Mi

are referred to as non-top meshes.

The representative element domain ωe of this mesh will be used to derive the weak

forms of the equations for the theory, under the assumptions that each element has a

known shape and associated interpolation functions.
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Figure 5-6: Multilevel mesh superposition finite element model

5.4.2 Weak forms

Multiplying the three equations in (5.27) by δUαI , δV α
I and δWα

I , respectively, then

integrating over the representative element domain ωe and finally integrating per parts

using the component forms of the Green-Gauss theorem (gradient or divergence theorem)

to weaken the differentiability of UαI , V α
I and Wα

I results in the following equations

0 =

∫
ωe

[
∂δUαI
∂x

N
α
I
1

+
∂δUαI
∂y

N
α
I
6

+ Ñ
α
I
5
δUαI − δUαI

M∑
β=1

Nβ
p∑

J=1

I
αβ
IJ
∂UβJ
∂t2

]
dxdy −

∮
∂ωe

(
N
α
I
1
nx +N

α
I
6
ny

)
ds

(5.39a)

0 =

∫
ωe

[
∂δV α

I

∂y
N
α
I
2

+
∂δV α

I

∂x
N
α
I
6

+ Ñ
α
I
4
δV α

I − δV α
I

M∑
β=1

Nβ
p∑

J=1

I
αβ
IJ
∂V β

J

∂t2

]
dxdy −

∮
∂ωe

(
N
α
I
6
nx +N

α
I
2
ny

)
ds

(5.39b)
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0 =

∫
ωe

[
∂δWα

I

∂y
N
α
I
4

+
∂δWα

I

∂x
N
α
I
5

+ Ñ
α
I
3
δWα

I − qbδWα
I − qtδWα

I

]
dxdy +

∫
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Q
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IJ
2
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J

∂y
+Q

αβ
IJ
6
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J

∂x

)
ny

]}
ds

(5.39c)

where (nx, ny) are the cosine directors of the unit normal on the element boundary ∂ωe

and ds is the arc-length of an infinitesimal line element along the boundary. Integration-

by-parts is performed on the terms containing moment resultants in equation (5.39c),

so that the resulting weak form is symmetrical. This leads to symmetrical mass and

linear stiffness matrices in the finite element model.

5.4.3 In-plane spatial discretization

For simplicity, we will use in the following the same interpolation functions for the

components of the generalized displacements. Because each in-plane model domain ωα

has its own mesh, then in each element domain ωαe an approximation of the following

form shall be assumed

U
α
I
i

(
˜
x, t) =

Lαe∑
m=0

U
e
αI
im

(t)ψ
α
e
im

(
˜
x) (5.40)

where i = 1, . . . , 3 and Lαe + 1 is the number of nodes per 2-D element domain ωαe used

to approximate the generalized displacements for model α and interface I and ψ
α
e
im

(
˜
x)

are two-dimensional interpolation functions in ωαe .

5.4.4 Order of a model

We will assume the models within M to be defined in a hierarchical fashion. In

particular, we will assume that the properties of the models determining their hierarchal

nature are the following

λ
(
Z1
I

)
≥ · · · ≥ λ (ZαI ) ≥ · · · ≥ λ

(
ZMI

)
L1
I ≤ · · · ≤ LαI ≤ · · · ≤ LMI

λ
(
ω1
e

)
≥ · · · ≥ λ (ωαe ) ≥ · · · ≥ λ

(
ωMe
)

L1
e ≤ · · · ≤ Lαe ≤ · · · ≤ LMe (5.41)

The order of a model α within the hierarchy M is identified by parameters
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(λ (ZαI ) , LαI , λ (ωαe ) , Lαe ). A higher order model can be added to a sequence of models by

creating a new model where any one of the above parameters is increased with respect

to greatest element in the set M.

5.4.5 Finite element model

Substituting equation (5.40) in to the weak forms in equations (5.39) we obtain the

semidiscrete finite element model of the hierarchical multiple plate models theory.

K
e
αβ
IJ
U
e
α
I

+M
e
αβ
IJ
Ü
e
α
I

= F
e
α
I

(5.42)

where the matrix K
e
αβ
IJ

is the direct element stiffness matrix, the matrix M
e
αβ
IJ

is

the element mass matrix, the column vector F
e
α
I

is the element force vector and

the column vector U
e
α
I

=
{
U

e
αI
1
,U

e
αI
2
, . . . ,U

e
αI

Lαe+1

}
is the vector of the nodal de-

grees of freedom per element ωe, where U
e
αI
j

=
{
U
e
αI
ij
, U

e
αI
ij
, U

e
αI
ij

}
=
{
U
e
αI
j
, V

e
αI
j
,W

e
αI
j

}
,

I = 1, . . . ,

 ∑
α∈Mi

Nα
p

, i = 1, . . . , 3 and j = 1, . . . , Lαe + 1.

Equation (5.42) has 2ne unknowns, where

ne = 3

 ∑
α∈Mi

Nα
p

 (Lαe + 1) (5.43)

Because of the adopted modeling approach, both discretization and modeling errors

can be reduced within a certain region of ωi by selecting, in a hierarchical fashion, the

effective number of models fromMi that are used within that region. Every time a new

model α is superimposed on the previous models in certain region, the nodal degrees

of freedom of that region are enriched by the degrees of freedom of new model. As

consequence this will increase the total number of nodal degrees of freedom ne per

element domain ωe in that region, so other elements where less precision is required

should not be enriched is order to keep the computational cost to the minimum required

for the analysis.

For example, in the case of the superposition of a FSDT with a linear LWT model

displayed in Figure 5-5, the set of available mathematical models in Ω is M = {1, 2, 3}.
In subdomain ω2 the subset of available models is M2 = {1, 2, 3}. During normal

operation only models 1 and 2 are used, but when discretization and modeling errors

need to be reduced then model 3 can be superimposed in ω2 on models 1 and 2, at the

expense of increasing the number of nodal degrees of freedom and consequently the

computational efficiency.
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The direct element stiffness and element mass matrices can be expressed as follows

K
e
αβ
IJ

=


K
αβ
IJ
11

K
αβ
IJ
12

K
αβ
IJ
13

K
αβ
IJ
21

K
αβ
IJ
22

K
αβ
IJ
23

K
αβ
IJ
31

K
αβ
IJ
32

K
αβ
IJ
33



M
e
αβ
IJ

=


M

αβ
IJ
11

0 0

0 M
αβ
IJ
22

0

0 0 M
αβ
IJ
33

 (5.44)

where α, β ∈Mi. The direct stiffness matrix is symmetric only in the linear case, while

the mass matrix is always symmetric.

Substituting the laminate constitutive equations (5.35) in to the weak forms (5.39)

we can express the element stiffness matrix and element mass matrix in terms of the

laminate stiffnesses (5.34) as follows

K
αβ
IJ
ij

= f

(
A
αβ
IJ
ij
, Ā

αβ
IJ
ij
, ¯̄A

αβ
IJ
ij
, B

αβγ
IJK
ij

, B̄
αβγ
IJK
ij

, D
αβγδ
IJKL
ij

)
(5.45)

M
αβ
IJ
ii

= f
(
I
αβ
IJ

)
(5.46)

where i, j = 1, 2, 3.

It’s important to note that the diagonal terms in K
e
αβ
IJ

present linear and nonlinear

self coupling contributions plus non linear coupling contributions from all the other

models. The non diagonal terms instead present linear and non linear coupling con-

tributions between each two models. This is summarized as follows (dropping indices

IJ)

K e
αα = K

e
αα
L

+K
e
αα
NL

+
M∑
β=1
β 6=α

K
e
αβ
NLC

K e
αβ = K

e
αβ
LC

+K
e
αβ
NLC

(5.47)

Moreover, the general form of the above contributions is independent of any two models

being considered. The expressions of the element secant stiffness matrix and element

secant stiffness matrix are given in appendix D.

After assembly, the semidiscretized finite element equation can be given in the

following form

Kαβ
IJ
Uα
I +Mαβ

IJ
Üα
I = FαI (5.48)
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where α, β ∈Mi.

The fully discretized finite element model is obtained using a time approximation,

e.g. the Newmark scheme.

5.4.6 Multiple models compatibility and uniqueness conditions

Certain degrees of freedom (DOF) should be suppressed to ensure compatibility of

the total displacement field and uniqueness of the solution of the multiple assumed

displacement fields. For this reason additional boundary conditions need to be imposed

on top of the physical boundary conditions before the finite element equations (5.48)

can be solved. The additional boundary conditions are generally referred to [189, 261]

as compatibility and uniqueness conditions, and are shown in Figure 5-7.

Compatibility conditions

The total displacement field should be continuous throughout the composite mesh, which

is the requirement of compatibility or C0 continuity. For this reason, homogeneous

essential boundary conditions must be enforced on incompatible regions, setting to zero

the DOF of the plate models in those regions. Note that the compatibility conditions

are not imposed on boundaries that coincide with physical boundaries, as displayed

in Figure 5-7. Here DOF need only to be suppressed in accordance with the physical

boundary conditions.

Given two neighboring subdomains ωi and ωj , if an assumed displacement field α

is in Mi, but not in Mj , then the region ∂ωi
⋂
∂ωj is defined to be an incompatible

region. Homogeneous essential boundary conditions must be enforced on incompatible

regions, setting to zero the DOF of model α in those regions. An example is displayed

in Figure 5-7 for the case of structured mesh superposition.

Uniqueness conditions

The other issue is the singularity of the assembled stiffness matrix in equation (5.48),

which is caused by redundant rigid body modes. In fact there may be more than one set

of assumed displacement fields that can be summed to yield the total displacement field,

as shown in Figure 5-7 for the case of structured mesh superposition. To guarantee

uniqueness of the solution, homogeneous essential boundary conditions must be enforced

in coinciding nodes of different mesh levels by setting to zero the redundant DOF. These

should be selected between the DOF of the highest level mesh, as shown in Figure 5-7.

For the case of the superposition of a FSDT with a linear LWT model there are

five redundant variables that need to be set to zero to permit a unique solution for

the remaining variables. Figure 5-8 shows the in-plane deformation u (x, y) = u1 (x, y)

along a transverse material line A−B for a 4 layer plate. Two variables need to be set
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Figure 5-7: Compatibility and uniqueness conditions for the case of structured mesh superpo-
sition

to zero. In this case the particular pair of variables is arbitrary [200], and although the

same deformation is achieved in 5-8a and 5-8b, the numerical values of the remaining

five nonzero values are different.

5.4.7 Calculation of the coupling terms

The coupling terms in equation (5.47) are the result of an integral whose integrands

contain products of in-plane interpolation functions defined for different mesh levels. A

mapping between the different co-ordinate systems of the overlaid meshes is necessary

to perform the numerical integration.

This can be quite complex when unstructured mesh superposition is used. In the case

of structured mesh superposition displayed in Figure 5-6, a top/non-top transformation

matrix [261] can be calculated that allows expressing the interpolation functions of any

mesh level α ∈Mi to those of mesh level Si. A specific form of this matrix exists for

any pair of mesh levels considered.
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(a) u3
1 = u3

5 = 0 (b) u3
2 = u3

3 = 0

Figure 5-8: Suppression of redundant in-plane deformations for the case of superposition of
FSDT, u1 and u2, and linear LWT models, u3

5.4.8 Inclusion of delaminations

The occurrence of delaminations is common in composite laminates [148, 18], so it is

important to incorporate the kinematics of single and multiple delaminations in to the

general theory presented here.

For the purpose of the following discussion it is assumed that the domain Ω is

crossed by D discontinuities ∂Ωd
I , where I = 1, . . . , D, between the laminae, i. e. one

or more delaminations. As shown in Figure 5-9, the two resulting parts of the domain

are called ΩI
+ and ΩI

−. n̂dI is the unit vector along the normal to ∂Ωd
I pointing into ΩI

+.

The following relation holds for all discontinuities: ΩI
−
⋃

ΩI
+ = Ω, ∀I = 1, . . . , D.

Furthermore, it is assumed that the delaminated interface ∂Ωd
I has coordinate zdI .

Recalling that x = (
˜
x, z), then x ∈ ΩI

+, if
˜
x ∈ ω and z ≥ zdI . Otherwise, if x ∈ ΩI

−,

then
˜
x ∈ ω and z < zdI .

Discontinuous through the thickness displacement fields, such as delaminations, are

incorporated in the theoretical framework by performing an extrinsic enrichment of one

or more of the assumed displacement fields. This can be achieved when, for the set of

nodes that belong to the domain of the discontinuity, the functions F α
I are multiplied

by discontinuous enrichment functions, such as the Heaviside unit step functions [155]

defined as follows

HI

(
z − zdI

)
=

{
1 if z ≥ zdI ;

0 if z < zdI .
(5.49)

Another possible choice is the Heaviside sign-functions [155].

The additional generalized displacements udI are physically meaningful and they

represent jump discontinuities in the displacement components of the total displacement

field across the delamination. A cohesive law between laminae is incorporated where
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Figure 5-9: The domain Ω is crossed by a delamination ∂ΩdI at coordinate zdI

appropriate. This approach is outlined in section 5.4.9.

For example, Figure 5-10 shows the in-plane deformation u (x, y) = u1 (x, y) along a

transverse material line A−B for the case of a 4 layer plate and the superposition of

FSDT, linear LWT and delamination models. A single delamination (field u4) occurs

at z = 0.

5.4.9 Cohesive zone model

We assume that the tractions between layers can be modeled using a cohesive zone

model (CZM) [166, 245, 40, 65, 256]. Note that only the presence, and not the particular

form, of the CZM is assumed.

Considering the the discontinuities ∂Ωd
I as an internal boundary condition, the

following relationships can be added to the boundary conditions of the problem

n̂dIσ = tdI x ∈ ∂Ωd
I (5.50)

where tdI are the tractions at the internal boundaries ∂Ωd
I .

In the co-ordinate system aligned with the orientation of the discontinuity, which is

displayed in Figure 5-11, the tractions tdI are related to the displacement jumps vdI via
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Figure 5-10: In-plane deformation for the case of superposition of FSDT, u1 and u2, linear
LWT, u3, and delamination models, u4

tangent stiffness matrix of the traction-separation law [40]

tdI = T dvdI x ∈ ∂Ωd
I (5.51)

Note that normally in the co-ordinate system aligned with the orientation of the

discontinuity the z-direction is chosen to coincide with the direction normal to the

discontinuity.

In general, the displacement jumps vdI are related to the additional generalized

displacements udI via the magnitude of the jump in the step function, which in the

present case is equal to one.

vdI = udI x ∈ ∂Ωd
I (5.52)

The tangent stiffness matrix in the global co-ordinate system is equal to

T̄
d

= LTT dL (5.53)

where the orthogonal transformation matrix L performs the transformation from the

coordinate system aligned to the discontinuity to the global co-ordinate system.

Therefore there is a new contribution δVczm to the virtual work energy given in

equation (5.15) performed by cohesive forces amongst the layers, which has the following

form

δVczm =

D∑
I=1

[∫
∂ΩdI

tdI · δudI

]
dxdy =

D∑
I=1

[∫
ΩdI

(
T̄ dxxU

d
I δU

d
I + T̄ dyyV

d
I δV

d
I + T̄ dzzW

d
I δW

d
I

)]
dxdy

149



Figure 5-11: Orientation of the discontinuity within the laminate deformed configuration

If tractions between layers are modeled using a CZM, then the force resultants in

equations (5.20) can be modified as follows for the delamination field

{
N
d
I
1

N
d
I
2

}T
=

Nm∑
k=1

∫ z
(k)
t

z
(k)
b

{
σxx σyy

}T
HIdz +

{
T̄ dxx T̄ dyy

}T
Ñ
d
I
3

= T̄ dzz (5.54)

The terms introduced by the cohesive forces in equation (5.54) will have to be taken

into account on top of the contributions given in (5.45) when computing the element

stiffness and mass matrices for the delamination field.

5.5 Results

5.5.1 Accuracy of the linear analysis

In this section the accuracy of the displacements and stresses calculated by the proposed

approach for the case of linear analysis is compared to data presented in literature for

plates of different geometries and loading conditions. In particular, the results reported

in [42] are used for the comparison because these authors present many different plate

models. The 3-D analytical solution is taken from [42].

The second matter that will be addressed is to check that, when applying an enriching

plate model to the total domain of a global model, the results are the same as those

obtained with the enriching plate model alone.

For ease of comparison, the same acronyms found in [42] are used to describe the

plate models used in the following. The structure of the acronyms will be described

briefly here. Acronyms for plate models are composed by three digits [42]. The first digit
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(a) ED1 plate model (b) LDN plate model

(c) ED1+LDN-full plate
model

(d) ED1+LDN-part plate
model

Figure 5-12: Four plate models are used for each test case. This figure represents the domain
of the models within the plate. This ranges from the whole plate for models ED1, LDN and
ED1+LDN-full to selected areas of the plate for model ED1+LDN-part.

indicates the type of plate model and can assume the values L for layerwise and E for

equivalent single layer. The second digit in the acronym refers to the type of formulation

(D for principle of virtual displacement ; and M for Reissner mixed variational theorem)

used in the plate model, and although not immediately useful in the following this

digit will be used throughout. The third digit is the order of the through-the-thickness

(z-axis) approximation function (e.g. 1 for linear, 2 for quadratic, 3 for cubic and 4 for

fourth-order and so on), which was discussed in section 5.3. For example the acronym

ED1 stands for an equivalent single layer plate model based on the principle of virtual

displacement formulation using a linear out-of-plane approximation function. Another

example is LD4, which is a layerwise plate model based on the principle of virtual

displacement formulation using a fourth-order out-of-plane approximation function.

Length and width of the plate are indicated respectively by a and b, while the total

thickness of the plate is indicated by h. Again for ease of comparison with [42] in this

section the components of the displacement along the x, y and z-axis are defined as u,

v and w.

Four different plate models (figure 5-12) will be considered for each test case. The

first (in figure 5-12a) is an ED1 plate model used throughout the plate. The second plate

model that will be examined is the LDN (or LMN) (see 5-12b), again used throughout
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(a) Test case N.1: harmonic
distribution of transverse

pressure

(b) Test case N.2:
bi-harmonic distribution of

transverse pressure

(c) Test case N.3: transverse
distribution of constant

pressure

(d) Test case N.4: triangular
distribution of transverse

pressure

Figure 5-13: A different load is applied to the surface of the plate in each of the four test
cases considered.

the plate, where the order N of the out-of-plane approximation function will be taken

in the range of 1 to 4, depending on the test case under examination. In the third

case (indicated with the term ED1+LDN-full in subsequent tables and figures) two

plate models, ED1 and LDN, are superpositioned throughout the plate (in figure 5-12c),

and N again is in the range 1 to 4. In the fourth (indicated with ED1-LDN-part in

subsequent tables and figures) the superpositioning of the plate models ED1 and LDN

is only partial, and the enhancing plate model LDN is used only in the center and sides

of the plate, as shown in figure 5-12d.

In summary the first two plate models used here are standard single plate models,

while the second two are multiple plate models. The code was developed in MATLAB.

Only structured mesh superpositioning [274] will be considered, i. e. the superposi-

tioning elements fit entirely within the domain of the superpositioned element, which

simplifies the programming. Moreover, as a further simplification, the superpositioning

elements have the same size as the superpositioned ones, i. e. the two meshes in

overlapping regions are identical.

Four different test cases are considered. Each test case has a different kind of load

applied to the surface of the plate, as shown in figure 5-13, and a different geometry.

Furthermore, each test case will be analyzed for different values of the ratio a/h. The

range of values considered for a/h goes from 4 - for thick plates - to 100 - for thin plates.

For symmetrical loads only a quarter of the plate is modeled, as shown in figures
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(a) Test case N.1:
harmonic distribution of
transverse pressure for
a/h = 6 and plate model

LD4

(b) Test case N.2:
bi-harmonic distribution of

transverse pressure for
a/h = 10 and plate model

LD3

(c) Test case N.3:
transverse distribution of

constant pressure for
a/h = 100 and plate model

LD1

(d) Test case N.4:
triangular distribution of
transverse pressure for
a/h = 4 and plate model

LD3

Figure 5-14: Transverse displacement w in each of the four test cases considered for plates
with three layers

(
00/900/00

)
. In these figures the deformation is scaled by a factor of ten. Note

that for symmetrical loads only a quarter of the plate is modeled.

5-13a, 5-13b and 5-13c which display the transverse displacement w for particular values

of a/h and particular plate models.

In all test cases simply supported boundary conditions of type SSSS1 will be used.

The notation adopted for specifying the boundary condition is the following. On each

edge of the plate the boundary condition is specified with a letter. S stands for simply

supported, F for free and C for clamped. The edges are taken in the sequence: x = 0,

x = a, y = 0 and and y = b. A combination of different boundary conditions is in

general possible. Moreover, two types (1 or 2) [200] of simply supported boundary

conditions are available. The type is specified for last in the notation. For simply

support boundary conditions of type 1 (SSSS1), u = w = 0 is imposed on edges x = 0, a,

while v = w = 0 is imposed on edges y = 0, b.

Both symmetric
(
00/900/00

)
and anti-symmetric laminates are considered

(
00/900/00/900

)
:

the first kind of laminate will be referred to in the following as NI = 3, while the second

as NI = 4. The laminae have equal thickness. All test cases will be studied for the case

of symmetric laminate, while only two test cases - the first and the third - will be taken

into consideration for the case of anti-symmetric laminate.

The material properties for each lamina used in all test cases are given in equation
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NI = 3
a/h = 4 a/h = 6

w̄
PM [42] PM [42]

3D [181] 2.887 1.635
LD4 2.889 2.887 1.633 1.634

ED1+LD4-full 2.889 1.633
ED1+LD4-part 2.208 1.300

ED1 2.091 2.091 1.210 1.209

(a) Test case N.1: harmonic distribution of
transverse pressure

NI = 3
a/h = 4 a/h = 10 a/h = 20

w̄
PM [42] PM [42] PM [42]

3D [181] 2.820 0.919 0.610
LD3 2.821 2.821 0.919 0.919 0.610 0.609

ED1+LD3-full 2.821 0.919 0.610
ED1+LD3-part 2.166 0.806 0.586

ED1 2.051 2.051 0.750 0.750 0.563 0.565

(b) Test case N.2: bi-harmonic distribution of transverse
pressure

NI = 3
a/h = 4 a/h = 10 a/h = 100

w̄
PM [42] PM [42] PM [42]

LD3 3.0451 3.0446 1.1544 1.1541 0.6713
LD1 0.6704

ED1+LD3-full 3.0451 1.1544
ED1+LD1-full 0.6704
ED1+LD3-part 2.4648 1.0251
ED1+LD1-part 0.6687

ED1 2.3346 2.3344 0.9548 0.9546 0.6620 0.6618

(c) Test case N.3: transverse distribution of constant pressure

NI = 3
a/h = 4 a/h = 10 a/h = 100

w̄
PM [42] PM [42] PM [42]

LM4 1.5222 0.5771 0.3356
LD3 1.5224 0.5772
LD1 0.3352

ED1+LD3-full 1.5224 0.5772
ED1+LD1-full 0.3352
ED1+LD3-part 1.2311 0.5116
ED1+LD1-part 0.3336

ED1 1.1672 1.1672 0.4774 0.4773 0.3310 0.3310

(d) Test case N.4: triangular distribution of transverse pressure

Table 5.1: Comparison of different plate models against superposition of models for non-
dimensional transverse displacement for plates with three layers

(
00/900/00

)
.

(5.55).

EL
ET

= 25;
GLT
ET

= 0.5;
GTT
ET

= 0.2; νLT = νTT = 0.25 (5.55)

Non-dimensional physical properties will be used when comparing the results for

different values of a/h and NI . The non-dimensional transverse displacement w̄ is

calculated using the formula (5.56), where w is evaluated at (a/2, b/2, 0). The non-

dimensional in-plane stress σ̄xx is calculated according to formula (5.57), where σxx

is evaluated at (a/2, b/2, h/2). The non-dimensional transverse shear stress σ̄xz is

calculated according to formula (5.58), where σxz is evaluated at (0, b/2, 0).

w̄ =
w100ETh

3

q0a4
(5.56)
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NI = 4
a/h = 4 a/h = 6

w̄
PM [42] PM [42]

3D [181] 4.181 2.556
LD3 4.276 4.180 2.617 2.556

ED1+LD3-full 4.275 2.617
ED1+LD3-part 3.195 2.114

ED1 2.996 2.924 1.958 1.917

(a) Test case N.1: harmonic distribution of
transverse pressure

NI = 4
a/h = 4 a/h = 10 a/h = 100

w̄
PM [42] PM [42] PM [42]

LM4 2.9679 1.1817 0.8123
LD3 2.9679 1.1817 0.8114

ED1+LD3-full 2.9668 1.1816 0.8114
ED1+LD3-part 2.2654 1.0773 0.8084

ED1 2.1095 2.1096 1.0068 1.0068 0.7997 0.7997

(b) Test case N.3: transverse distribution of constant pressure

Table 5.2: Comparison of different plate models against superposition of models for non-
dimensional transverse displacement for plates with four layers

(
00/900/00/900

)
.

NI = 3
a/h = 4 a/h = 10 a/h = 100

σ̄xx PM [42] PM [42] PM [42]
LD3 1.1169 1.1174 0.8720 0.8708 0.8083
LD1 0.8090

ED1+LD4-full 1.1169 0.8720
ED1+LD1-full 0.8090
ED1+LD4-part 0.8687 0.8567
ED1+LD1-part 0.8086

ED1 0.6665 0.6648 0.7753 0.7733 0.8038 0.8037

(a) Test case N.3: transverse distribution of constant pressure

NI = 3
a/h = 4 a/h = 10 a/h = 100

σ̄xx PM [42] PM [42] PM [42]
LM4 0.5592 0.4355 0.4042
LD3 0.5592 0.4364
LD1 0.4045

ED1+LD3-full 0.5592 0.4364
ED1+LD1-full 0.4045
ED1+LD3-part 0.4352 0.4303
ED1+LD1-part 0.4040

ED1 0.3353 0.3324 0.3901 0.3866 0.4020 0.4019

(b) Test case N.4: triangular distribution of transverse pressure

Table 5.3: Comparison of different plate models against superposition of models for non-
dimensional in-plane stresses for plates with three layers

(
00/900/00

)
.

σ̄xx =
σxx

q0 (a/h)2 (5.57)

σ̄xz =
σxz
q0a/h

(5.58)

In tables 5.1, 5.2, 5.3, 5.4 the results obtained with the present modeling approach

are indicated by the acronym PM standing for present model.
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(a) Test case N.1: harmonic distribution of
transverse pressure for a/h = 6

(b) Test case N.2: bi-harmonic distribution
of transverse pressure for a/h = 10

(c) Test case N.3: transverse distribution of
constant pressure for a/h = 100

(d) Test case N.4: triangular distribution of
transverse pressure for a/h = 4

Figure 5-15: Comparison of different plate models against superposition of models for non-
dimensional transverse displacement for plates with three layers

(
00/900/00

)
.

Test case N.1: cross-ply plate in cylindrical bending loaded by harmonic

distribution of transverse pressure

The harmonic distribution of transverse pressure in (5.59) is applied to the top surface

of the plate (see Figure 5-13a) and b = 3a.

qz = q0 sin
(πx
a

)
(5.59)

The results for different a/h configurations are displayed in tables 5.1a (case NI = 3)

and 5.2a (case NI = 4). The non-dimensional transverse displacements, in-plane stresses

and transverse shear stresses are plotted, respectively, in figures 5-15a, 5-16a and 5-17a

for the case of a/h = 6.

The results for the present model in tables 5.1a and 5.2a are equivalent to the

analytical results in [181] and in good agreement with those previously published in

[42].

Moreover, table 5.1a and figures 5-15a, 5-16a and 5-17a show that, as expected,

superpositioning the ED1 plate model with an LD4 plate model throughout the plate
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(a) Test case N.1: harmonic distribution of
transverse pressure for a/h = 6

(b) Test case N.2: bi-harmonic distribution
of transverse pressure for a/h = 10

(c) Test case N.3: transverse distribution of
constant pressure for a/h = 100

(d) Test case N.4: triangular distribution of
transverse pressure for a/h = 4

Figure 5-16: Comparison of different plate models against superposition of models for non-
dimensional in-plane stresses for plates with three layers

(
00/900/00

)
.

(ED1+LD4-full) generates the same results as those of the LD4 plate model alone. This

is confirmed by the results in table 5.2a for the case ED1+LD3-full.

Finally, by superpositioning these two plate models only in the center and the sides

of the plate (ED1+LD4-part or ED1+LD3-part) the approximation is improved yielding

better results compared to ED1 alone.

Test case N.2: cross-ply plate loaded by bi-harmonic distribution of trans-

verse pressure

The bi-harmonic distribution of transverse pressure in (5.60) is applied to the top-surface

of a cross-ply plate (see figure 5-13b) and b = 2a.

qz = q0 sin
(πx
a

)
sin
(πy
b

)
(5.60)

The results for different a/h configurations are displayed in table 5.1b, while the

non-dimensional transverse displacements, in-plane stresses and transverse shear stresses

are plotted, respectively, in figures 5-15b, 5-16b and 5-17b for the case of a/h = 10.
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The results for the present model in tables 5.1b are equivalent to the analytical

results in [181] and in good agreement with those previously published in [42].

As for the previous test case, table 5.1b and figures 5-15b, 5-16b and 5-17b show that

the results obtained by superpositioning the ED1 plate model with an LD3 plate model

throughout the plate, i.e using the plate model ED1+LD3-full are equivalent to those

of the LD3 plate model alone. Furthermore, by superpositioning these two plate models

only in the center and the sides of the plate (ED1+LD4-part), the approximation again

is improved compared to ED1 alone.

Test case N.3: cross-ply plate loaded by transverse distribution of constant

pressure

A square plate (b = a) is loaded by the transverse distribution of constant pressure in

(5.61) (see figure 5-13c).

qz = q0 (5.61)

The results for different a/h configurations are displayed in tables 5.1c (case NI = 3),

5.2b (case NI = 4), 5.3a and 5.4a, while the non-dimensional transverse displacements,

in-plane stresses and transverse shear stresses are displayed, respectively, in figures

5-15c, 5-16c and 5-17c for the case of a/h = 100.

NI = 3
a/h = 4 a/h = 10 a/h = 100

σ̄xz PM [42] PM [42] PM [42]
LD3 0.44675 0.44343 0.63403 0.62784 0.72009
LD1 0.72641

ED1+LD3-full 0.44675 0.63403
ED1+LD1-full 0.72641
ED1+LD3-part 0.30081 0.50739
ED1+LD1-part 0.72600

ED1 0.23515 0.64669 0.25853 0.70600 0.26512 0.72096

(a) Test case N.3: transverse distribution of constant pressure

NI = 3
a/h = 4 a/h = 10 a/h = 100

σ̄xz PM [42] PM [42] PM [42]
LM4 0.1656 0.2281 0.2499
LD3 0.1667 0.2314
LD1 0.2524

ED1+LD3-full 0.1667 0.2314
ED1+LD1-full 0.2524
ED1+LD3-part 0.1034 0.1840
ED1+LD1-part 0.2514

ED1 0.0759 0.2106 0.0884 0.2394 0.0926 0.2489

(b) Test case N.4: triangular distribution of transverse pressure

Table 5.4: Comparison of different plate models against superposition of models for non-
dimensional transverse shear stresses for plates with three layers

(
00/900/00

)
.

The results for the present model in tables 5.1c, 5.2b, 5.3a and 5.4a are in good agree-

ment with those previously published in [42], except for the values of non-dimensional

transverse shear stresses for plate model ED1 in table 5.4a. By superpositioning the ED1

plate model with an enhancing plate model the approximation is improved, compared
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to using only the ED1 plate model alone, yielding more accurate results.

Test case N.4: cross-ply square plate loaded by triangular distribution of

transverse pressure

The triangular distribution of transverse pressure in (5.62) is applied to the top surface

of a square (b = a) plate (see figure 5-13d).

qz = q0
x

a
(5.62)

The results for different a/h configurations are displayed in tables 5.1d, 5.3b and 5.4b,

while the non-dimensional transverse displacements, in-plane stresses and transverse

shear stresses are displayed, respectively, in figures 5-15d, 5-16d and 5-17d for the case

of a/h = 4.

(a) Test case N.1: harmonic distribution of
transverse pressure for a/h = 6

(b) Test case N.2: bi-harmonic distribution
of transverse pressure for a/h = 10

(c) Test case N.3: transverse distribution of
constant pressure for a/h = 100

(d) Test case N.4: triangular distribution of
transverse pressure for a/h = 4

Figure 5-17: Comparison of different plate models against superposition of models for non-
dimensional transverse shear stresses for plates with three layers

(
00/900/00

)
.

The results for the present model in tables 5.1d, 5.3b and 5.4b are in good agreement

with those previously published in [42]. As for the previous case there was a discrepancy

between the values of the non-dimensional transverse shear stresses for plate model ED1
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in table 5.4b.

Also in this case, by superpositioning the ED1 model with an enhancing plate model,

the approximation is improved compared to the case of considering ED1 alone.

5.6 Conclusions

In this chapter, a new computational approach for the accurate estimation of interlaminar

stresses in thick layered material is presented. The approach combines an extended

FEM to a multilevel mesh superposition approach.

First the general theory and then the finite element formulation based on a multilevel

mesh superposition method was derived. A cohesive zone model was included in the

development.

The results for the multiple plate models demonstrate an improvement in the

computed transverse displacements and stresses compared to equivalent single layer

plate models used alone. Results are also in excellent agreement with 3-D analytical

solutions and show good correlation with those previously published in literature.

The theory presented in this chapter can be extended to incorporate thermal effects,

shell structures, mixed variational formulations and multifield problems.
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Chapter 6

Conclusions and future work

6.1 Summary of work carried out

The overall objective of this thesis was the experimental-numerical study of the potential

use of shape memory alloys (SMA) embedded into woven composite layers for structural

energy dissipation. The work carried out to date is summarized here.

In chapter 2 the basic properties of shape memory alloys (SMAs) have been examined.

In this chapter the constitutive equations for SMA hybrid composites (SMAHCs) have

been discussed, and the impact damage resistance and damage suppression properties

of SMAHCs have been reviewed distinguishing between active and passive methods.

In chapter 3 the analytical methods based on the mechanics of materials approach

for homogenization of two-dimensional (2-D) woven composites have been critically

reviewed. The analytical methods have been compared with the asymptotic expansion

homogenization method (AEHM) approach, and anisotropic damage mechanics has

been integrated with the AEHM to model failure in this chapter. These methods have

been coded in MATLAB and tested against data extracted from the literature.

In chapter 4 the Brinson one-dimensional constitutive model and the Sadjadpour and

Bhattacharya three-dimensional (3-D) constitutive model for SMA have been reviewed,

and results of these models implemented in MATLAB have been given. The finite

element implementation of these models has also been considered. In this chapter a

multiscale 3-D constitutive model for SMAHCs based on the AEHM approach has been

proposed, and the AEHM macroscopic problem for SMAHCs has been reformulated

using Transformation Field Analysis (TFA). Moreover, samples of SMAHCs were

manufactured and tested in laboratory, and a comparison of impact testing results for

woven and uni-directional SMAHCs has been presented in this chapter.

In chapter 5 the multiple plate models theory for laminated composite plates has

been formulated. The accuracy of the linear analysis for the multiple plate models

theory has also been reported in this chapter.

This work was carried out between November 2007 and September 2010.
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6.2 Original contributions

Original contributions of this thesis are the following:

1. A thorough review of impact damage resistance and damage suppression properties

of SMAHCs.

2. The comparison of homogenization methods for 2-D woven composites including

analytical methods and the AEHM approach.

3. A theoretical framework for multiscale 3-D constitutive modeling of SMAHCs

based on the AEHM approach and TFA.

4. A comparison of the impact testing results for woven and uni-directional SMAHCs.

5. The formulation of the multiple plate models theory for laminated composite

plates.

6.3 Scope for future work

There was never any certainty in receiving from the sponsor QinetiQ Limited samples

of woven SMAHC, which were finally made available only in July 2010, very late into

the research project.

For this reason, from year two of project, more emphasis was placed on developing

advanced methodologies for modeling composite laminates giving rise to the methods

described in chapter 5. The techniques specific to woven SMAHC discussed in chapter

4 were formalized only theoretically and have not been fully implemented in code.

As a result there is scope for future work, and specifically the following activities

are suggested:

1. Coding of the proposed multiscale 3-D constitutive model for SMAHCs.

2. Integration of the multiscale model for SMAHCs with the multiple plate models

theory for laminated composite plates.

3. Inclusion of the delamination models discussed in chapter 5 into the multiple plate

models software.
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Appendix A

Micromechanical models

In the following Sections, m stands for matrix, and f stands for reinforcement fibres,

and Vf is the volume fraction of fibre reinforcements, while Vm = 1− Vf is the volume

fraction of the matrix.

A.1 Rule-of-Mixtures

For the rule-of-mixtures the following equations are valid:

Esel11 = E11fVf + EmVm (A.1)

Esel22 =
E22fEm

EmVf + E22fVm
(A.2)

Gsel12 =
G12fGm

GmVf +G12fVm
(A.3)

νsel12 = ν12fVf + νmVm (A.4)

A.2 Chamis Model

For the micromechanical model developed by Chamis [43] the following equations are

valid
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Esel11 = E11fVf + EmVm (A.5)

Esel22 =
Em

1−
√
Vf

(
1− Em

E22f

) (A.6)

Gsel12 =
Gm

1−
√
Vf

(
1− Gm

G12f

) (A.7)

Gsel23 =
Gm

1− Vf
(

1− Gm
G23f

) (A.8)

νsel12 = ν12fVf + νmVm (A.9)

νsel23 = ν23fVf + Vm

(
2νm −

νsel12

Esel11

Esel22

)
(A.10)

A.3 Hashin and Rosen Model for Anisotropic Constituents

For the micromechanical model developed by Hashin and Rosen (or Composite Cylinder

Assemblage model (CCA)) for anisotropic constituents [98] the following equations are

valid:

Esel11 = E11fVf + EmVm +
4 (ν12f − νm)2 VfVm

Vm
kf

+
Vf
km

+ 1
Gm

(A.11)

νsel12 = ν12fVf + νmVm +
(ν12f − νm)

(
1
km
− 1

kf

)
VfVm

Vm
kf

+
Vf
km

+ 1
Gm

(A.12)

Gsel12 = Gm
GmVm +G12f (1 + Vf )

Gm (1 + Vf ) +G12fVm
(A.13)

(A.14)

where

kf =
E11fE22f

2E11f (1− ν23f )− 4ν2
12fE22f

(A.15)

km =
Em

2 (1− νm − 2ν2
m)

(A.16)
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If kf > km and G12f > Gm

Gsel23(−) = Gm +
Vf

1
G23f−Gm + km+2Gm

2Gm(km+Gm)Vf
(A.17)

Gsel23(+) = Gm +
1 + (1 + βm)Vf

ρ− Vf
(

1 + 3β2
mV

2
m

αV 3
f +1

) (A.18)

else

Gsel23(−) = Gm
1 + (1 + βm)Vf

ρ− Vf
(

1 + 3β2
mV

2
m

αV 3
f −βm

) (A.19)

Gsel23(+) = Gm
Vf

1
G23f−Gm + km+2Gm

2Gm(km+Gm)Vf

(A.20)

where

βm =
km

km + 2Gm
(A.21)

βf =
kf

kf + 2G23f
(A.22)

γ =
G23f

Gm
(A.23)

α =
βm − γβf
1 + γβf

(A.24)

ρ =
γ + βm
γ − 1

(A.25)

Esel22(±) =
4Gsel23(±)

1 +

(
Gsel

23(±)

k

)(
1 +

4kνsel12
2

Esel11

) (A.26)

νsel23(±) =

(
1−

Gsel23(±)

k

)
1 +

4kνsel12
2

Esel11

1 +
Gsel

23(±)

k

(
1 +

4kνsel12
2

Esel11

) (A.27)

where

k =
km (kf +Gm)Vm + kf (km +Gm)Vf

(kf +Gm)Vm + (km +Gm)Vf
(A.28)

A.4 Hashin and Rosen Model for Isotropic Constituents

For the micromechanical model developed by Hashin and Rosen for isotropic constituents

[211] (also called CCA model for isotropic constituents) the following equations are
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valid:

Esel11 = EfVf + EmVm +
4 (νf − νm)2 VfVm
Vm
kf

+
Vf
km

+ 1
Gm

(A.29)

Gsel12 = Gm
GmVm +Gf (1 + Vf )

Gm (1 + Vf ) +GfVm
(A.30)

νsel12 = νfVf + νmVm +
(νf − νm)

(
1
km
− 1

kf

)
VfVm

Vm
kf

+
Vf
km

+ 1
Gm

(A.31)

where

kf =
Ef

2
(

1− νf − 2ν2
f

) (A.32)

km =
Em

2 (1− νm − 2ν2
m)

(A.33)

Gsel23 = Gm
(α+ βmVf )

(
1 + ρV 3

f

)
− 3VfV

2
mβ

2
m

(α− Vf )
(

1 + ρV 3
f

)
− 3VfV 2

mβ
2
m

(A.34)

where

βm =
1

3− 4νm
(A.35)

βf =
1

3− 4νf
(A.36)

γ =
Gf
Gm

(A.37)

α =
γ + βm
γ − 1

(A.38)

ρ =
βm − γβf
1 + γβf

(A.39)

Esel22 =
4kGsel23

k +Gsel23

(
1 +

4kνsel12
2

Esel11

) (A.40)

where

k =
kmkf + (Vfkf + Vfkm)Gm

Vmkf + Vfkm +Gm
(A.41)
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νsel23 =
Esel22

2Gsel23 − 1
(A.42)
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Appendix B

Fill and warp fibres

transformation matrices

B.1 Transformation Matrix

Figure B-1: Principal and global coordinate systems [226]

The stress transformation between the global and local coordinate systems for a

composite lamina is given by [226]

σ1

σ2

σ3

τ23

τ31

τ12


= [Tε]



σx

σy

σz

τyz

τzx

τxy


(B.1)

where transformed stiffness matrix is

[Tε] =



l21 m2
1 n2

1 2m1n1 2n1l1 2l1m1

l22 m2
2 n2

2 2m2n2 2n2l2 2l2m2

l23 m2
3 n2

3 2m3n3 2n3l3 2l3m3

l2l3 m2m3 n2n3 (m2n3 +m3n2) (l2n3 + l3n2) (l2m3 + l3m2)

l1l3 m1m3 n1n3 (m1n3 +m3n1) (l1n3 + l3n1) (l1m3 + l3m1)

l1l2 m1m2 n1n2 (m1n2 +m2n1) (l1n2 + l2n1) (l1m2 + l2m1)


(B.2)
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and the cosine directors are defined as

li = cos (i, x) mi = cos (i, y) ni = cos (i, z) (i, j = 1, 2, 3) (B.3)

B.2 Fill Fibres Transformation Matrix

For a woven composite lamina two coordinate transformations are necessary [50], and

the cosine directors are given byl1 m1 n1

l2 m2 n2

l3 m3 n3

 =

 cosβ cos θ cosβ sin θ sinβ

− sin θ cos θ 0

− sinβ cos θ − sinβ sin θ cosβ

 (B.4)

Figure B-2: Coordinate transformations for the woven composite lamina [50]

Because the Fill fibres orientation is along the x−axis, imposing in [Tε] that θ = 0

and β = θF , the stress transformation matrix, and its inverse, for the Fill strand become

[
TF
]

=



c2
F 0 s2

F 0 2cF sF 0

0 1 0 0 0 0

s2
F 0 c2

F 0 −2cF sF 0

0 0 0 cF 0 −sF
−cF sF 0 cF sF 0 2c2

F − 1 0

0 0 0 sF 0 cF


(B.5)

[
TF
]−1

=



c2
F 0 s2

F 0 −2sF cF 0

0 1 0 0 0 0

s2
F 0 c2

F 0 2sF cF 0

0 0 0 cF 0 sF

sF cF 0 −sF cF 0 2c2
F − 1 0

0 0 0 −sF 0 cF


(B.6)
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where sF = sin (θF ), cF = cos (θF ) and the Reuter matrix and its inverse are given by

[R] =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2


(B.7)

[R]−1 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1
2 0 0

0 0 0 0 1
2 0

0 0 0 0 0 1
2


(B.8)

The transformed stiffness matrix for the Fill strand in the global coordinates is

[
Q̄F
]

=



Q̄F11 Q̄F12 Q̄F13 0 Q̄F15 0

Q̄F12 Q̄F22 Q̄F23 0 Q̄F25 0

Q̄F13 Q̄F23 Q̄F33 0 Q̄F35 0

0 0 0 Q̄F44 0 Q̄F46

Q̄F15 Q̄F25 Q̄F35 0 Q̄F55 0

0 0 0 Q̄F46 0 Q̄F66


(B.9)
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where

Q̄F11 = QFxx = c4
FQ

F
11 + 2c2

F s
2
FQ

F
13 + s4

FQ
F
33 + 4s2

F c
2
FQ

F
55

Q̄F12 = QFxy = c2
FQ

F
12 + s2

FQ
F
23

Q̄F13 = QFxz = c2
F s

2
FQ

F
11 + c4

FQ
F
13 + s4

FQ
F
13 + s2

F c
2
FQ

F
33 − 4s2

F c
2
FQ

F
55

Q̄F15 = QFxr = c3
F sFQ

F
11 − c3

F sFQ
F
13 + s3

F cFQ
F
13 − s3

F cFQ
F
33 − 4sF c

3
FQ

F
55 + 2sF cFQ

F
55

Q̄F22 = QFyy = QF22

Q̄F23 = QFyz = s2
FQ

F
12 + c2

FQ
F
23

Q̄F25 = QFyr = sF cFQ
F
12 − sF cFQF23

Q̄F33 = QFzz = s4
FQ

F
11 + 2c2

F s
2
FQ

F
13 + c4

FQ
F
33 + 4s2

F c
2
FQ

F
55

Q̄F35 = QFzr = s3
F cFQ

F
11 − s3

F cFQ
F
13 + c3

F sFQ
F
13 − c3

F sFQ
F
33 + 4sF c

3
FQ

F
55 − 2sF cFQ

F
55

Q̄F44 = QFqq = c2
FQ

F
44 + s2

FQ
F
66

Q̄F46 = QFqs = −cF sFQF44 + sF cFQ
F
66

Q̄F55 = QFrr = c2
F s

2
FQ

F
11 − 2c2

F s
2
FQ

F
13 + s2

F c
2
FQ

F
33 + 4c4

FQ
F
55 − 4c2

FQ
F
55 +QF55

Q̄F66 = QFss = s2
FQ

F
44 + c2

FQ
F
66

B.3 Warp Fibres Transformation Matrix

Because the Warp fibres orientation is along the y−axis, imposing in [Tε] that θ = π
2

and β = θW , the stress transformation matrix, and its inverse, for the Warp strand

become

[
TW

]
=



0 c2
W s2

W 2cW sW 0 0

1 0 0 0 0 0

0 s2
W c2

W −2cW sW 0 0

0 0 0 0 −cW sW

0 −cW sW cW sW 2c2
W − 1 0 0

0 0 0 0 −sW −cW


(B.10)

[
TW

]−1
=



0 1 0 0 0 0

c2
W 0 s2

W 0 −2cW sW 0

s2
W 0 c2

W 0 2cW sW 0

cW sW 0 −cW sW 0 2c2
W − 1 0

0 0 0 −cW 0 −sW
0 0 0 sW 0 −cW


(B.11)
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where sW = sin (θW ) and cW = cos (θW ). The transformed stiffness matrix for the

Warp strand in the global coordinates is

[
Q̄W

]
=



Q̄W11 Q̄W12 Q̄W13 Q̄W14 0 0

Q̄W12 Q̄W22 Q̄W23 Q̄W24 0 0

Q̄W13 Q̄W23 Q̄W33 Q̄W34 0 0

Q̄W14 Q̄W24 Q̄W34 Q̄W44 0 0

0 0 0 0 Q̄W55 Q̄W56

0 0 0 0 Q̄W56 Q̄W66


(B.12)

where

Q̄W11 = QWxx = QW22

Q̄W12 = QWxy = c2
WQ

W
12 + s2

WQ
W
23

Q̄W13 = QWxz = s2
WQ

W
12 + c2

WQ
W
23

Q̄W14 = QWxq = sW cWQ
W
12 − sW cWQW23

Q̄W22 = QWyy = c4
WQ

W
11 + 2c2

W s
2
WQ

W
13 + s4

WQ
W
33 + 4s2

W c
2
WQ

W
55

Q̄W23 = QWyz = c2
W s

2
WQ

W
11 + c4

WQ
W
13 + s4

WQ
W
13 + s2

W c
2
WQ

W
33 − 4s2

W c
2
WQ

W
55

Q̄W24 = QWyq = c3
W sWQ

W
11 − c3

W sWQ
W
13 + s3

W cWQ
W
13 − s3

W cWQ
W
33 − 4sW c

3
WQ

W
55 + 2sW cWQ

W
55

Q̄W33 = QWzz = s4
WQ

W
11 + 2c2

W s
2
WQ

W
13 + c4

WQ
W
33 + 4s2

W c
2
WQ

W
55

Q̄W34 = QWzq = s3
W cWQ

W
11 + c3

W sWQ
W
13 − s3

W cWQ
W
13 − sW c3

WQ
W
33 + 4sW c

3
WQ

W
55 − 2sW cWQ

W
55

Q̄W44 = QWqq = c2
W s

2
WQ

W
11 − 2c2

W s
2
WQ

W
13 + s2

W c
2
WQ

W
33 + 4c4

WQ
W
55 − 4c2

WQ
W
55 +QW55

Q̄W55 = QWrr = c2
WQ

W
44 + s2

WQ
W
66

Q̄W56 = QWrs = −cW sWQW44 + sW cWQ
W
66

Q̄W66 = QWss = s2
WQ

W
44 + c2

WQ
W
66
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Appendix C

Numerical implementation of the

Brinson model

For the numerical simulation of the Brinson model, the evolution equations are discretized

in time using the Backward Euler method or implicit method by assuming strain and

temperature as control variable, and treating the non-linear behavior of the material as

a strain-driven, temperature-driven and time-discrete problem.

To develop the solution for the time-discrete model, a suitable return-mapping

algorithm [178, 225] similar to those in classical elasto-plasticity, such as the elastic

predictor-transformation corrector is used. The algorithm known as elastic predictor-

transformation corrector return mapping algorithm consists of two stages:

1. The elastic stage aims at determining whether or not phase transformation is to

occur, and giving the directions of evolution of transformation in the positive case.

2. The stage of transformation correction to update the transformation strain tensor,

the volume fraction of Martensite and the stress tensor, for the total strain found

in stage 1. The transformation correction is carried out to correct the stress and

transformation strain tensors corresponding to the current state of temperature

and total strain.

Given strain ε and temperature T at time (n+ 1), the numerical solution procedure

consists in finding the factions of Martensite (ξS and ξM ) at time (n+ 1) solving a non-

linear algebraic system of equations using the multivariate Newton-Raphson method,

and then finding the stress σ at time (n+ 1).

dξS
dt

= f1 (ξS , ξM , σ, T )

dξM
dt

= f2 (ξS , ξM , σ, T )

dσ

dt
= g (ξS , ξM , ε, T ) (C.1)
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Using the chain-rule of derivation, equations (C.1) become

dξS
dt

= ξ̇S =
∂ξS
∂ξM

ξ̇M +
∂ξS
∂σ

σ̇ +
∂ξS
∂T

Ṫ (C.2)

dξM
dt

= ξ̇M =
∂ξM
∂ξS

ξ̇S +
∂ξM
∂σ

σ̇ +
∂ξM
∂T

Ṫ (C.3)

dσ

dt
= σ̇ =

∂σ

∂ξS
ξ̇S +

∂σ

∂ξM
ξ̇M +

∂σ

∂T
Ṫ (C.4)

Often a model with incremental strains and incremental temperatures can be used

in which case the following equation will be very useful

dσ = Ldε+ ΘdT (C.5)

where L is the tangent stiffness tensor and Θ is the tangent thermal tensor.

The numerical implementation of the Brinson model for the direct phase trans-

formation to single-variant Martensite for the case (T > Ms) will be given in the

following subsections. The implementation for the direct phase transformation to single-

variant Martensite for the case (T < Ms) and for the reverse phase transformation of

single-variant Martensite into Austenite follow along the same lines.

C.1 Direct phase transformation to single-variant Marten-

site (T > Ms)

C.1.1 Calculation of the values of ξS and ξM at step (n+ 1)

Using equation (4.22), equation (C.2) becomes

∂ξS
∂ξM

= 0

∂ξS
∂σ

= −1− ξS0

2
sin

{
π

σCRs − σCRf

[
σ − σCRf − CM (T −Ms)

]} π

σCRs − σCRf
= A1

∂ξS
∂T

= −1− ξS0

2
sin

{
π

σCRs − σCRf

[
σ − σCRf − CM (T −Ms)

]}
CM = −A1CM

ξ̇S = A1

(
σ̇ − CM Ṫ

)
(C.6)
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Using equation (4.23), equation (C.3) becomes

∂ξM
∂ξS

= − ξM0

1− ξS0
= R

∂ξM
∂σ

= 0

∂ξM
∂T

= 0

ξ̇M = Rξ̇S (C.7)

Using equation (4.17), (4.18) and (4.19), equation (C.4) becomes

σ = E (ξ) ε+ Ω (ξ) ξS + Θ (T − T0)

σ = E (ξ) (ε+ εLξS) + Θ (T − T0)

where

E (ξ) = EA + ξ (EM − EA) = EA + (ξS + ξM ) (EM − EA)

∂σ

∂ε
= E (ξ)

∂σ

∂ξS
= (EM − EA) ε− (EM − EA) εLξS − E (ξ) εL = E? (ε− εLξS)− E (ξ) εL = H1

∂σ

∂ξM
= (EM − EA) ε− (EM − EA) εLξS = E? (ε− εLξS) = H2

∂σ

∂T
= Θ

σ̇ = Eε̇+H1ξ̇S +H2ξ̇M + ΘṪ (C.8)

where

E? = EM − EA (C.9)

Now, after substitution of equations (4.19) and (C.8) in equation (C.6), equations

(C.6) and (C.7) can be rewritten as follows{
ξ̇S = A1 (ε, ξS , ξM , T )

[
E (ξS , ξM ) ε̇+H1 (ε, ξS , ξM ) ξ̇S +H2 (ε, ξS) ξ̇M + ΘṪ − CM Ṫ

]
ξ̇M = Rξ̇S

{
(1−A1H1) ξ̇S −A1H2ξ̇M = A1

(
Eε̇+ (Θ− CM ) Ṫ

)
ξ̇M = Rξ̇S ξ̇S =
Z2(ε̇,ε,ξS ,ξM ,T,Ṫ)
Z1(ε,ξS ,ξM ,T )

ξ̇M =
Z3(ε̇,ε,ξS ,ξM ,T,Ṫ)
Z1(ε,ξS ,ξM ,T )

(C.10)
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where

Z1 (ε, ξS , ξM , T ) = 1−A1 (ε, ξS , ξM , T ) [H1 (ε, ξS , ξM ) +H2 (ε, ξS)R]

Z2

(
ε̇, ε, ξS , ξM , T, Ṫ

)
= A1 (ε, ξS , ξM , T )

[
E (ξS , ξM ) ε̇+ (Θ− CM ) Ṫ

]
Z3

(
ε̇, ε, ξS , ξM , T, Ṫ

)
= RZ2

(
ε̇, ε, ξS , ξM , T, Ṫ

)
Now equations (C.10) are discretized in time using the Backward Euler method or

implicit method by assuming strain and temperature as control variable
ξS,n+1 − ξS,n −∆t

Z2(ε̇n+1,εn+1,ξS,n+1,ξM,n+1,Tn+1,Ṫn+1)
Z1(εn+1,ξS,n+1,ξM,n+1,Tn+1)

= 0

ξM,n+1 − ξM,n −∆t
Z3(ε̇n+1,εn+1,ξS,n+1,ξM,n+1,T,Ṫn+1)

Z1(εn+1,ξS,n+1,ξM,n+1,Tn+1)
= 0

where

ε̇n+1 = εn+1−εn
∆t ; Ṫn+1 = Tn+1−Tn

∆t

The system of equations (C.1.1) is solved using the Multivariate Newton-Raphson

Method.

Now defining the solution vector as [104]

F̄
(
ξ̄n+1

)
=

{
F1 (ξS,n+1, ξM,n+1)

F2 (ξS,n+1, ξM,n+1)

}
=


ξS,n+1 − ξS,n −∆t

Z2(ε̇n+1,εn+1,ξS,n+1,ξM,n+1,Tn+1,Ṫn+1)
Z1(εn+1,ξS,n+1,ξM,n+1,Tn+1)

ξM,n+1 − ξM,n −∆t
Z3(ε̇n+1,εn+1,ξS,n+1,ξM,n+1,T,Ṫn+1)

Z1(εn+1,ξS,n+1,ξM,n+1,Tn+1)


and the Jacobian matrix as

[
DF̄

(
ξ̄n+1

)]
=

∂F1(ξ̄n+1)
∂ξS,n+1

∂F1(ξ̄n+1)
∂ξM,n+1

∂F2(ξ̄n+1)
∂ξS,n+1

∂F2(ξ̄n+1)
∂ξM,n+1


where

∂F1

(
ξ̄n+1

)
∂ξS,n+1

= 1−∆t

∂Z1(ξ̄n+1)
∂ξS,n+1

Z2

(
ξ̄n+1

)
− Z1

(
ξ̄n+1

) ∂Z2(ξ̄n+1)
∂ξS,n+1

Z2
1

(
ξ̄n+1

)
∂F1

(
ξ̄n+1

)
∂ξM,n+1

= −∆t

∂Z1(ξ̄n+1)
∂ξM,n+1

Z2

(
ξ̄n+1

)
− Z1

(
ξ̄n+1

) ∂Z2(ξ̄n+1)
∂ξM,n+1

Z2
1

(
ξ̄n+1

)
∂F2

(
ξ̄n+1

)
∂ξS,n+1

= −∆t

∂Z1(ξ̄n+1)
∂ξS,n+1

Z3

(
ξ̄n+1

)
− Z1

(
ξ̄n+1

) ∂Z3(ξ̄n+1)
∂ξS,n+1

Z2
1

(
ξ̄n+1

)
∂F2

(
ξ̄n+1

)
∂ξM,n+1

= 1−∆t

∂Z1(ξ̄n+1)
∂ξM,n+1

Z3

(
ξ̄n+1

)
− Z1

(
ξ̄n+1

) ∂Z3(ξ̄n+1)
∂ξM,n+1

Z2
1

(
ξ̄n+1

)
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If ξ̄n+1,0 is our initial guess, then for the Multivariate Newton-Raphson Method

F̄
(
ξ̄n+1,0

)
+
[
DF̄

(
ξ̄n+1,0

)] (
x̄− ξ̄n+1,0

)
= 0

[
DF̄

(
ξ̄n+1,0

)] (
x̄− ξ̄n+1,0

)
= −F̄

(
ξ̄n+1,0

)
x̄ = ξ̄n+1,0 −

[
DF̄

(
ξ̄n+1,0

)]−1
F̄
(
ξ̄n+1,0

)
If x̄ = ξ̄n+1,1 is our new guess, then we iterate again

[
DF̄

(
ξ̄n+1,1

)] (
x̄− ξ̄n+1,1

)
= −F̄

(
ξ̄n+1,1

)
until the solution is within the tolerance required.

C.1.2 Calculation of the value of σ at step (n+ 1)

From equation (C.8) we have

σn+1 = σn + E (εn+1 − εn) +H1 (ξS,n+1 − ξS,n) +H2 (ξM,n+1 − ξM,n) + Θ (Tn+1 − Tn)

C.1.3 Calculation of the values of the tangent moduli at step (n+ 1)

After substitution of equations (C.6) and (C.7), equation (C.8) can be written as

dσ =
E

L1
dε+

Θ−A1CMH

L1
dT

where

L1 = 1−A1H

H = H1 +H2R = E? (ε− εLξS) (1 +R)− εLE

E? = EM − EA
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Appendix D

Element stiffness matrices for the

multiple models theory

In this appendix the same notation used in chapter 5 will be adopted except for the

fact that symmetries in the laminate stiffnesses will not be exploited.

D.1 Laminate stiffness matrices

The laminate stiffness matrices are defined as follows

Aαβ
IJ =



A
αβ
IJ
11

A
αβ
IJ
12

A
αβ
IJ
13

0 0 A
αβ
IJ
16

A
αβ
IJ
21

A
αβ
IJ
22

A
αβ
IJ
23

0 0 A
αβ
IJ
26

A
αβ
IJ
31

A
αβ
IJ
32

A
αβ
IJ
33

0 0 A
αβ
IJ
36

0 0 0 A
αβ
IJ
44

A
αβ
IJ
45

0

0 0 0 A
αβ
IJ
54

A
αβ
IJ
55

0

A
αβ
IJ
61

A
αβ
IJ
62

A
αβ
IJ
63

0 0 A
αβ
IJ
66



Ā
αβ
IJ =



Ā
αβ
IJ
11

Ā
αβ
IJ
12

Ā
αβ
IJ
13

0 0 Ā
αβ
IJ
16

Ā
αβ
IJ
21

Ā
αβ
IJ
22

Ā
αβ
IJ
23

0 0 Ā
αβ
IJ
26

Ā
αβ
IJ
31

Ā
αβ
IJ
32

Ā
αβ
IJ
33

0 0 Ā
αβ
IJ
36

0 0 0 Ā
αβ
IJ
44

Ā
αβ
IJ
45

0

0 0 0 Ā
αβ
IJ
54

Ā
αβ
IJ
55

0

Ā
αβ
IJ
61

Ā
αβ
IJ
62

Ā
αβ
IJ
63

0 0 Ā
αβ
IJ
66
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¯̄A
αβ

IJ =



¯̄A
αβ
IJ
11

¯̄A
αβ
IJ
12

¯̄A
αβ
IJ
13

0 0 ¯̄A
αβ
IJ
16

¯̄A
αβ
IJ
21

¯̄A
αβ
IJ
22

¯̄A
αβ
IJ
23

0 0 ¯̄A
αβ
IJ
26

¯̄A
αβ
IJ
31

¯̄A
αβ
IJ
32

¯̄A
αβ
IJ
33

0 0 ¯̄A
αβ
IJ
36

0 0 0 ¯̄A
αβ
IJ
44

¯̄A
αβ
IJ
45

0

0 0 0 ¯̄A
αβ
IJ
54

¯̄A
αβ
IJ
55

0

¯̄A
αβ
IJ
61

¯̄A
αβ
IJ
62

¯̄A
αβ
IJ
63

0 0 ¯̄A
αβ
IJ
66



¯̄̄
A
αβ

IJ =



¯̄̄
A
αβ
IJ
11

¯̄̄
A
αβ
IJ
12

¯̄̄
A
αβ
IJ
13

0 0
¯̄̄
A
αβ
IJ
16

¯̄̄
A
αβ
IJ
21

¯̄̄
A
αβ
IJ
22

¯̄̄
A
αβ
IJ
23

0 0
¯̄̄
A
αβ
IJ
26

¯̄̄
A
αβ
IJ
31

¯̄̄
A
αβ
IJ
32

¯̄̄
A
αβ
IJ
33

0 0
¯̄̄
A
αβ
IJ
36

0 0 0
¯̄̄
A
αβ
IJ
44

¯̄̄
A
αβ
IJ
45

0

0 0 0
¯̄̄
A
αβ
IJ
54

¯̄̄
A
αβ
IJ
55

0

¯̄̄
A
αβ
IJ
61

¯̄̄
A
αβ
IJ
62

¯̄̄
A
αβ
IJ
63

0 0
¯̄̄
A
αβ
IJ
66



Bαβγ
IJK =



B
αβγ
IJK
11

B
αβγ
IJK
12

B
αβγ
IJK
13

0 0 B
αβγ
IJK
16

B
αβγ
IJK
21

B
αβγ
IJK
22

B
αβγ
IJK
23

0 0 B
αβγ
IJK
26

B
αβγ
IJK
31

B
αβγ
IJK
32

B
αβγ
IJK
33

0 0 B
αβγ
IJK
36

0 0 0 B
αβγ
IJK
44

B
αβγ
IJK
45

0

0 0 0 B
αβγ
IJK
54

B
αβγ
IJK
55

0

B
αβγ
IJK
61

B
αβγ
IJK
62

B
αβγ
IJK
63

0 0 B
αβγ
IJK
66



B̄
αβγ
IJK =



B̄
αβγ
IJK
11

B̄
αβγ
IJK
12

B̄
αβγ
IJK
13

0 0 B̄
αβγ
IJK
16

B̄
αβγ
IJK
21

B̄
αβγ
IJK
22

B̄
αβγ
IJK
23

0 0 B̄
αβγ
IJK
26

B̄
αβγ
IJK
31

B̄
αβγ
IJK
32

B̄
αβγ
IJK
33

0 0 B̄
αβγ
IJK
36

0 0 0 B̄
αβγ
IJK
44

B̄
αβγ
IJK
45

0

0 0 0 B̄
αβγ
IJK
54

B̄
αβγ
IJK
55

0

B̄
αβγ
IJK
61

B̄
αβγ
IJK
62

B̄
αβγ
IJK
63

0 0 B̄
αβγ
IJK
66



¯̄̄
B
αβγ

IJK =



¯̄̄
B
αβγ
IJK
11

¯̄̄
B
αβγ
IJK
12

¯̄̄
B
αβγ
IJK
13

0 0
¯̄̄
B
αβγ
IJK
16

¯̄̄
B
αβγ
IJK
21

¯̄̄
B
αβγ
IJK
22

¯̄̄
B
αβγ
IJK
23

0 0
¯̄̄
B
αβγ
IJK
26

¯̄̄
B
αβγ
IJK
31

¯̄̄
B
αβγ
IJK
32

¯̄̄
B
αβγ
IJK
33

0 0
¯̄̄
B
αβγ
IJK
36

0 0 0
¯̄̄
B
αβγ
IJK
44

¯̄̄
B
αβγ
IJK
45

0

0 0 0
¯̄̄
B
αβγ
IJK
54

¯̄̄
B
αβγ
IJK
55

0

¯̄̄
B
αβγ
IJK
61

¯̄̄
B
αβγ
IJK
62

¯̄̄
B
αβγ
IJK
63

0 0
¯̄̄
B
αβγ
IJK
66
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Dαβγδ
IJKL =



D
αβγδ
IJKL

11
D
αβγδ
IJKL

12
D
αβγδ
IJKL

13
0 0 D

αβγδ
IJKL

16

D
αβγδ
IJKL

21
D
αβγδ
IJKL

22
D
αβγδ
IJKL

23
0 0 D

αβγδ
IJKL

26

D
αβγδ
IJKL

31
D
αβγδ
IJKL

32
D
αβγδ
IJKL

33
0 0 D

αβγδ
IJKL

36

0 0 0 D
αβγδ
IJKL

44
D
αβγδ
IJKL

45
0

0 0 0 D
αβγδ
IJ
54

D
αβγδ
IJ
55

0

D
αβγδ
IJKL

61
D
αβγδ
IJKL

62
D
αβγδ
IJKL

63
0 0 D

αβγδ
IJKL

66


where

A
αβ
IJ
ij

=

Nm∑
k=1

∫ z
(k)
t

z
(k)
b

C̄
(k)
ij F

α
I F

β
J dz

Ā
αβ
IJ
ij

=

Nm∑
k=1

∫ z
(k)
t

z
(k)
b

C̄
(k)
ij F

α
I

dF βJ
dz

dz

¯̄A
αβ
IJ
ij

=

Nm∑
k=1

∫ z
(k)
t

z
(k)
b

C̄
(k)
ij

dFαI
dz

F βJ dz

¯̄̄
A
αβ
IJ
ij

=

Nm∑
k=1

∫ z
(k)
t

z
(k)
b

C̄
(k)
ij

dFαI
dz

dF βJ
dz

dz

B
αβγ
IJK
ij

=

Nm∑
k=1

∫ z
(k)
t

z
(k)
b

C̄
(k)
ij F

α
I F

β
J F

γ
Kdz

B̄
αβγ
IJK
ij

=

Nm∑
k=1

∫ z
(k)
t

z
(k)
b

C̄
(k)
ij F

α
I F

β
J

dF γK
dz

dz

¯̄̄
B
αβγ
IJK
ij

=

Nm∑
k=1

∫ z
(k)
t

z
(k)
b

C̄
(k)
ij

dFαI
dz

F βJ F
γ
Kdz

D
αβγδ
IJKL
ij

=

Nm∑
k=1

∫ z
(k)
t

z
(k)
b

C̄
(k)
ij F

α
I F

β
J F

γ
KF

δ
Ldz

D.2 Element secant stiffness matrix

The expression for the element secant stiffness matrix is

Kαβ
IJ = K

αβ
IJ
L

+K
αβ
IJ
NL

(D.1)

where, defining the transpose operator as T , the element linear stiffness matrix KL for

models αβ and interfaces IJ is

K
αβ
IJ
L

= (Lb)
T Aαβ

IJLb + (Lb)
T Ā

αβ
IJLm + (Lm)T ¯̄A

αβ

IJLb + (Lm)T
¯̄̄
A
αβ

IJLm,
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the element nonlinear stiffness matrix KNL for models αβ and interfaces IJ is

K
αβ
IJ
NL

=
M∑
γ=1

N∑
K=1

(Lb)
T Bαβγ

IJKL
γ
K
θ

+
M∑
γ=1

N∑
K=1

(Lm)T
¯̄̄
B
αβγ

IJKL
γ
K
θ

+
M∑
γ=1

N∑
K=1

2
(
L
γ
K
θ

)T
Bαβγ
IJKLb +

M∑
γ=1

N∑
K=1

2
(
L
γ
K
θ

)T
B̄
αβγ
IJKLm

+

M∑
γ=1

M∑
δ=1

N∑
K=1

N∑
L=1

2
(
L
γ
K
θ

)T
Dαβγδ
IJKLL

δ
L
θ

,

and

Lb(6×3m) =



∂ψi
∂x 0 0

0 ∂ψi
∂y 0

0 0 0

0 0 ∂ψi
∂y

0 0 ∂ψi
∂x

∂ψi
∂y

∂ψi
∂x 0


,

Lm(6×3m) =



0 0 0

0 0 0

0 0 ψi

0 ψi 0

ψi 0 0

0 0 0


,

L
β
J
θ (6×3m)

=
1

2



0 0
∂wβJ
∂x

∂ψi
∂x

0 0
∂wβJ
∂y

∂ψi
∂y

0 0 0

0 0 0

0 0 0

0 0
∂wβJ
∂x

∂ψi
∂y +

∂wβJ
∂y

∂ψi
∂x


,

and M , N , m and ψi are, respectively, the number of models, number of interfaces,

number of nodes and the shape functions of the element.

D.3 Element tangent stiffness matrix

The expression for the element tangent stiffness matrix is

T αβIJ = Kαβ
IJ +

∂Kαβ
IJ

∂∆β
J

∆α
I (D.2)
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where

∂Kαβ
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}

and

∆α
I (3×1) =

{
uαI vαI wαI

}T
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