UNIVERSITY OF

BATH

University of Bath

DOCTOR OF ENGINEERING (ENGD)

Efficient Accumulation, Analysis and Visualisation of Full-Waveform LIiDAR in a
Volumetric Representation with Applications to Forestry

Miltiadou, Milto

Award date:
2017

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. May. 2019

Efficient Accumulation, Analysis
and Visualisation of Full-Waveform
LiDAR in a Volumetric
Representation with Applications

to Forestry
submitted by
Milto Miltiadou
for the degree of Doctor of Engineering
of the
University of Bath
Department of Computer Science
and of the
Plymouth Marine Laboratory

NERC Airborne Research Facility

April 2017

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis/portfolio rests with the
author and copyright of any previously published materials included may rest with
third parties. A copy of this thesis/portfolio has been supplied on condition that anyone
who consults it understands that they must not copy it or use material from it except
as permitted by law or with the consent of the author or other copyright owners, as

applicable.

This thesis may be made available for consultation within the University Library and
may be photocopied or lent to other libraries for the purposes of consultation with effect
from January 2018.

Signed on behalf of the department of Computer Science.

Signature of Author.

Milto Miltiadou

Abstract

Full-waveform (FW) LiDAR is a particularly useful source of information in forestry
since it samples data between tree branches, but compared to discrete LiDAR, there
are very few researchers exploiting this due to the increased complexity. DASOS, an
open source program, was developed, along with this thesis, to improve the adoption
of FW LiDAR. DASOS uses voxelisation for interpreting the data and this approach is
fundamentally different from state-of-art tools. There are three key features of DASOS,
reflecting the key contributions of this thesis:

Firstly, visualisation of a forest to improve field work planning. Polygonal meshes
are generated using DASOS, by extracting an iso-surface from the voxelised data. Ad-
ditionally, six data structures are tested for optimising iso-surface extraction. The new
structure, ‘Integral Volumes’, is the fastest but the best choice depends on the size of
the data.

Secondly, the FW LiDAR data are efficiently aligned with hyperspectral imagery
using a geo-spatial representation stored within a hashed table with buckets of points.
The outputs of DASOS are coloured polygonal meshes, which improves the visual out-
put, and aligned metrics from the FW LiDAR and hyperspectral imagery. The metrics
are used for generating tree coverage maps and it is demonstrated that the increased
amount of information improves classification.

The last feature is the extraction of feature vectors that characterise objects, such
as trees, in 3D. This is used for detecting dead standing Eucalypt trees in a native
Australian forest for managing biodiversity without tree delineation. A random forest
classifier, a weighted-distance KNN algorithm and a seed growth algorithm are used to
predict positions of dead trees. Improvements in the results from increasing numbers
of training samples was prevented due to the noise in the field data. It is nevertheless
demonstrated that forest health assessment without tree delineation is possible. Cleaner

training samples that are adjustable to tree heights would have improved prediction.

Declaration of materials provided

This statement declares that Section 7, which aims to detect dead standing eucalyptuses,
uses materials provided by others. The digital terrain models (DEM) and the field work
were provided by Interpine Ltd group and Forestry Corporation of NSW. The DEMs
were subtracted from the data to create a flat representation of the forest, while the
field data were used for training and testing the classifier. Nevertheless, the conducted
research about the topic, the algorithms implemented and the evaluation were done
by the author of this thesis. Detailed clarifications about the provided materials are

highlighted within the relevant chapter.

Acknowledgements

Above all, I would like to express my great gratitude to my industrial supervisors Dr.
Michael Grant who supported me both emotionally and professionally from the start
till the end of my thesis. He also gave me the freedom to create a project of my own
interest.

Then, I would like to thanks Dr. Matthew Brown, who helped me during the first
years of my studies by giving me valuable and informative feedback. He was always
there to keep me working on the right track.

Equally important is the contribution of my current supervisor Dr. Neill D.F.
Campbell, who helped me relax by making things sounds easy. He was always a positive
present during the last one and half year of my thesis.

Furthermore, special thanks are given to Dr. Mark Warren, Dr. Daniel Clewley,
Dr. Darren Cosker, MSc Susana Gonzalez Aracil, Mr. Tony Brown, Dr. Ross Hill and
MSc Diana Krusteva who occasionally advised me during my studies.

It further worth giving credits to my data providers, the Natural Environment Re-
search Council’s Airborne Research Facility (NERC ARF) and Interpine Group Ltd.

Last but not least, I am extremely grateful to my funding organisations, the Cen-
tre for Digital Entertainment and Plymouth Marine Laboratory, who supported me

financially and consequently made this research possible.

Abbreviations and Glossary

AGC
ALS
APL
ARF
CG
CHM
CUDA

DASOS

DBH
DEM
DTM
FN

FP
FW
GB
K-NN
LiDAR
LWIR
MRI
NASA
NDVI
NERC
NIR
QGIS
SIMD
TB

TP

TN
VIS
VLR
WPDF
UK

Automatic Gain Controller

Airborne Laser Scanning

Airborne Processing Library

Airborne Research Facility

Computer Graphics

Canopy Height Model

parallel computing platform available on nvidia graphic cards
(daoos=forest in Greek), the open source software implemented
for managing FW LiDAR data

Diameter at Breast Height

Digital Elevation Model

Digital Terrain Model (DTM)

False Negative

False Positive

Full-Waveform

Gigabyte

K-Nearest Neighbour

Light Detection And Ranging

Long Wavelength Infrared

Magnetic Resonance Imaging

National Aeronautics and Space Administration
Normalised Difference Vegetation Index
Natural Environment Research Council
Near-Infrared Region of the electromagnetic spectrum
Quantum Geographic Information System
Single Instruction, Multiple Data

Terabyte

True Positive

True Negative

Vlsual Spectrum

Variable Length Records

Waveform Packet Descriptor Format

United Kingdom

Publications

DASOS-User Guide, M. Miltiadou, N.D.F Campbell, M. Brown, S.C. Aracil, M.A.
Warren, D. Clewley, D.Cosker, and M. Grant, Full-waveform LiDAR workshop at In-
terpine Group Ltd, Rotorua NZ, 2016 - (Appendix A)

Improving and Optimising Visualisations of full-waveform LiDAR data, M.
Miltiadou, M. Brown, N.D.F Campbell, D. Cosker, M. Grant, FuroGraphics UK, Com-
puter Graphics € Visual Computing, 2016 (Sections 5.4 and Section 6.4)

Alignment of Hyperspectral Imagery and Full-Waveform LiDAR data for
visualisation and classification purposes, M. Miltiadou, M. A. Warren, M. Grant,
and M. Brown, The International Archives of Photogrammetry, Remote Sensing and
Spatial Information Sciences, vol. 40, no. 7, p. 1257, 2015 - (Section 6)
Reconstruction of a 3D Polygon Representation from Full-Wavefrom LiDAR
data, M. Miltiadou, M. Grant, M. Brown, M. Warren, and E. Carolan,RSPSoc Annual
Conference, New Sensors for a Changing World, 2014 - (Chapter 6)

Awards

EDE and Ravenscroft Prize - Finalist: Selected as one of the five finalists for this
is a prestigious prize that recognises the work of best postgraduate researchers.

Student Poster Competition at Silvilaser.

Conference Presentations

Remote Sensing Cyprus (RSCy) Conference, 2017 , Paphos, Cyprus - Oral Pre-
sentation

ForestSAT Conference,2016 , Santiago, Chile - Oral Presentation

Computer Graphics & Visual Computing (CGVC),2016, Bournemouth, United
Kingdom - Poster Presentation

Silvilaser, 2015, La Grant Motte, France - Oral Presentation

International Symposium of Remote Sensing of the Environment (ISRSE),
2015, Berlin, German - Poster Presentation

Remote Sensing and Photogrammetry Society (RSPSoc) Conference, New
Sensors for a Changing world , 2014, Aberystwyth, United Kingdom - Oral Pre-

sentation

Workshops

Full day workshop about FW LiDAR and DASOS at Interpine Ltd Group, 2016,
Rotorua, New Zealand

Demonstration of DASOS v2 at the practical LIDAR session at the NERC
ARF annual workshop, 2017, Plymouth, United Kingdom

Intended Publications

Data structures for Efficient Surface Reconstruction of Non-Manifold Volu-
metric Data, M. Miltiadou, N.D.F Campbell, D. Cosker, M. Grant,IEEE Transactions
of Visualisation and Computer Graphics - (Chapter 4)

Detection of Dead Standing Eucalypt Trees without Tree Delineation for
Managing Biodiversity in Native Australian Forest, M. Miltiadou, N.D.F Camp-
bell, S.C. Aracil, T. Brown, M. Grant, Remote Sensing of the Environment - (Chapter 7)

Contents

Abstract L
Declaration of materials provided 0L
Acknowledgements
Abbreviations and Glossary Lo
Publications oL
Awards L
Conference Presentations L
Workshopso

Intended Publications

1 Introduction

1.1 Forest Monitoring: Importance and Applications
1.2 Background Information about Remote Sensing and Airborne Laser Scan-

ning Systems oL
1.3 Problem
1.4 Aims and Objectives
1.5 Thesis Overview
1.6 Thesis Structure

2 Acquire Data
2.1 Airborne LiDAR systems: An in-depth Explanation.
2.2 Brief Description of the LAS1.3 File Format
2.3 Leica Vs Trimble Instruments: Limitations, Differences and Advantages

2.4 Hyperspectral Imagery o L

3 The open source software DASOS and the Voxelisation Approach
3.1 State-of-Art FW LiDAR Software Packages
3.2 Voxelisation for Interpreting FW LiDAR data
3.3 The functionalities of DASOS

S O Ot Ot Ut s W N =

10
10

11
13
14
15
16

17
19
20
21
23

3.4 Summary and Discussion Lo L0 35

Surface Reconstruction from Voxelised FW LiDAR Data 37
4.1 Introduction L 37
4.2 Basic Rendering Approaches of the Polygonal-Contours from Volumetric

Data o 37
4.3 Algebraic Definition of the Volume 39
4.4 Surface Reconstruction with the Marching Cubes Algorithm 40
4.5 Results. e 41

Data structures for Efficient Surface Reconstruction of Non-Manifold

Volumetric Data 47
5.1 Problem and Challenges 47
5.2 Related work L 48
5.3 OVErvIEW 20
5.4 Integral Volumes 52
5.5 Octree Maxand Min L oL 26
5.6 Integral Tree 60
5.7 Data Structures Summaryo 62
5.8 Results and Experiments 0oL 63
9.9 Discussion e 70
Alignment with Hyperspectral Imagery 72
6.1 Introduction L 72
6.2 Previous Work L 72
6.3 Spatial Representation of Hyperspectral Pixels for Quick Search 73
6.4 Projecting hyperspectral images into polygon meshes generated using

FW LiDAR data 75
6.5 Tree Coverage Maps 7
6.6 Summary and Conclusions L Lo oL 82

Detection of Dead Standing Eucalypt Trees without Tree Delineation

for Managing Biodiversity in Native Australian Forest 83
7.1 Introduction L 83
7.2 Materials 87
7.3 Classification Challenges 91
7.4 Methodology L 92
7.5 Evaluationo 103

7.6 Conclusions and Future Work

8 Discrete versus Full-Waveform LiDAR
8.1 Imtroduction L
8.2 Polygonal Meshes Comparison
8.3 Interpretation of thedata

9 Summary and Future Work
9.1 Summary
9.2 Future Work

Bibliography
Appendices

A DASOS’s user guide, released on the 20th of January 2017
Al Introduction
A2 License
A.3 Imstallation Guide
A4 Instructionso
ADb Exercises.
A.6 Limitationso
A.7 Related Forums and Social Media,

B Case Study: Field Work in New Forest
B.1 Introduction
B.2 Validation Data Collected,
B.3 Landscape types

B.4 Conclusions and Discussiono

112
112
112
115

116
116
118

120

130

131
131
132
133
134
149
154
155

Chapter 1

Introduction

1.1 Forest Monitoring: Importance and Applications

Forest monitoring involves checking and observing the changes in the structure of the
forests and their foliage over the years. It has a significant value in both sustainable
and commercial forests, because it contributes to managing biodiversity, maintaining

forest health and optimising wood trade procedures as explained below:

e Biodiversity plays a substantial role in ecosystem resilience [1| while various
human activities affect biological communities by altering their composition and
leading species to extinction [2]. For example, in Australian native forests many
arboreal mammals and birds rely on hollow trees for shelters [3]. Hollow trees are
trees that have hollows, which are semi-enclosed cavities on trunks and branches.
They are formed by natural forces, such as bacteria, fungi and insects and may
take tens to hundreds of years to become suitable for animal /bird shelters. Unfor-
tunately recent studies shown that it is likely to be a shortage of hollows available
for colonisation in the near future [4] [5]. Therefore monitoring and protecting

hollow trees has a positive impact in preserving biodiversity.

e Forest Health: Protecting vegetation from pests and diseases. An example of
pests are the Brushtail Possums, which were initially brought to New Zealand
for fur trade, but they have escaped and become a thread to native forests and
vegetation [6]. In addition, anthropogenic factors have a negative impact to
nature. For instance, acid rain is responsible for the freezing decease at red
bruces because it reduces the membrane-associated calcium, which is important
for tolerating cold |7]. Those changes in nature need to be monitor in order to

preserve a healthy and resilience ecosystem.

10

e Wood Trade: Measuring stem volume and basal areas of trees contributes to
forest planning and management [8]. For example, measuring stocking and wood
quality would help into estimating the cost of harvesting the trees in relation to
the stocking [9].

Traditionally, forest monitoring involves field work such as travelling into the area of
interest and taking manual measurements. Regarding the need to monitor hollows, tree
climbing with ladders and ropes gives very accurate results but is dangerous, expensive,
time consuming, and cannot easily scale into surveying large forested areas [10] [11].
Therefore, automated ways of monitoring forests are essential and this is why Remote

Sensing has a significantly positive impact in forestry.

1.2 Background Information about Remote Sensing and

Airborne Laser Scanning Systems

Remote sensing refers to the acquisition of information about objects, for example
vegetation and archaeological monuments, without physical contact and the subsequent
interpretation of that information. The sensors used to capture the information are
divided into passive and active. For example satellite photography is passive because
information are collected from the reflected natural sun light, while Airborne Laser
Scanners (ALS) are active because they emit laser beams and collects information from
the backscattered laser energy [12].

According to Wanger et al, Airborne Laser Scanning (ALS) is a growing technology
used in environmental research to collect information about the Earth, such as veg-
etation and tree species. Comparing ALS with traditional photography, ALS is not
influenced by light and it is therefore less dependent on weather conditions (ie. it col-
lects information from below the clouds, or at night). The laser beam also partially
penetrates the tree canopies allowing it to record information about the forest struc-
ture below the canopy, as well as the ground [13]. ALS methods are divided into
pulse systems, which repeatedly emit pulses, and continuous wavelength systems that
continuously emit light. They both acquire information from the backscattered laser
intensity over time, but continuous wavelength systems are more complicated because
they obtain one extra physical parameter, the frequency of the ranging signal. Further,
according to Wehr and Lohr, continuous wavelength systems are 85 times less accurate
than pulse systems |[14].

LiDAR (Light Detection And Ranging) systems are active and pulse laser scanning
systems [14]. They are divided into two groups according to the diameter of the foot-

print left by the laser beam on the ground, which is primarily dependent on the distance

11

between the sensor and the target (altitude, in most remote sensing) and the beam di-
vergence. The small-footprint group has a 0.2-3m diameter, is widely commercialised
and the sensors are mostly carried on planes (ALS systems). In contrast, the large-
footprint systems have a wider diameter (10-70m) and during experiments they were
mostly mounted on satellites. Small-footprint systems record at higher resolution but
cannot guarantee that every pulse will reach the ground due to the small diameter of
their footprint, making topographic measurements difficult, and are limited to smaller
survey areas due to the cost and availability of aircraft. In contrast, large-footprint
scanners have wider diameters and can therefore scan wider areas with the likelihood
of recording the ground to be higher [15] .

In addition, there are two types of LiDAR data: discrete and full-waveform (FW).
Discrete LiDAR records a few peaks of the reflected laser intensity, while FW LiDAR
stores the entire backscattered signal. The discrete LiDAR has been widely used and a
40% reduction of fieldwork has been achieved with that technology at Interpine Group
Ltd, a world leading forestry company New Zealand. Expect from measuring wood
stocking [9], which is the main interest of Interpine Group Ltd, discrete LIDAR has been
used in monitoring the current state of native forests. Estimating biomass and volume is
important for understanding carbon cycles and the LiDAR technology advanced these
estimations due to the higher resolution acquired in comparison to satellite imagery
[16] [17]. Additionally, canopy caps are important for allowing light passing to the
under-canopy structure of forests. The fraction of the canopy caps can be measured
using terrestrial LIDAR, which are ground based systems [18] [19]. Other applications
include tree species classifications [20] [21] and detection of archaeological monuments
hidden under the forest canopy. The ancient Maya landscape at Caracol was detected
by the identification of geometrical shapes in the digital terrain model derived from the
last returns of the discrete LiDAR [22].

Regarding the newer FW LiDAR, scientists understand their concepts and potentials
but due to the shortage of available tools able to handle these large datasets, there
are very few uses of FW LiDAR [23]. The design of the first FW LiDAR system
was introduced in 1980s, but the first operational system was developed by NASA
in 1999 [24]. The vastly increased amount of information recorded within the FW
LiDAR suggests many new possibilities and problems from the point of view of image
understanding, remote surveying and visualisation. As an indication, a 9.3GB discrete
LiDAR from New Forest, UK, corresponds to 55.7GB of FW LiDAR.

12

1.3 Problem

FW LiDAR systems have been available for a number of years but there still very few
uses of FW LiDAR data. NERC-ARF has been acquiring airborne data for the UK and
overseas since 2010 and it has more than 100 clients of new and archived data. Many
clients request FW LiDAR data to be acquired, but despite the significant number of
requests, the majority of research still only uses discrete LIDAR. Some of the factors

regarding this slow intakes are:

e Typically FW datasets are 5 — 10 times larger than discrete data, with data sizes in
the range of 50GB — 2.5TB for a single area of interest. NERC-ARF’s datasets are
up to 100GB each because most clients are research institutes but for commercial

purposes each FW dataset is a couple of TB.

e Existing workflows are only able to work with the discrete data since the in-
creased amount of information recorded within the FW LiDAR makes handling

the quantity of data very challenging.

13

1.4 Aims and Objectives

This thesis explores visualisation and data-understanding for FW LIDAR systems and

the overarching aim is to increase the accessibility FW LiDAR in remote forest survey-

ing. The objectives are listed in Table 1.1 and they are associated with the Sections
that tackle them.

No. Objective Related
Chapters
1 Enable forestry experts with no computer science expertise 4
to visualise and work with the FW LiDAR data.
2 Enable forest understanding through 3D visualisations of 4
FW LiDAR data.
3 Improve and optimise visualisations of FW LiDAR data and 5&6
hyperspectral images.
4 Enable browsing of very large scale datasets and spectral 5& 6
bands in an efficient manner.
) Investigate data structures for faster iso-surface extraction 5)
of large volumetric datasets and efficient management of
voxels.
6 Estimate tree coverage and investigate the potential of 6
integrating multiple remote sensing datasets in forestry.
7 Dead tree detection in comparison to human detection and 7
remote surveying with FW LiDAR that will benefits
biodiversity management.
8 Research whether terrain classification can be improved by 7
the inference of high quality 3D information.

Table 1.1: Values of divisible sides

14

1.5 Thesis Overview

To address the limitations of existing workflows for using with FW data we developed
the open source software DASOS (named after daoos, which means forest in Greek)
and novel algorithms that allow users, without computer science expertise, to work with
and visualise large volumes of FW LiDAR data. Our open source software DASOS
alms to remove the barriers preventing the use of FW LiDAR. Its contributions are

demonstrated in three applications:

e Firstly, foresters can exploit their domain expertise to derive a wealth of infor-
mation by observing the FW LiDAR data. We therefore improve visualisations
for deriving information directly from the data, thus reducing travelling time and
the associated expenses of getting into the forests. This cost includes appropri-
ate cars and sometimes helicopters depending on the accessibility of the forests.
While previous work on FW LiDAR visualisation talks about point cloud visu-
alisation [25] and transparent voxels [26], DASOS is able to extract 3D surfaces
from the scanned area. This research further introduces new data structures for

accelerating the surface extraction processed.

e Secondly, a fast way of aligning the FW LiDAR with Remotely Sensed Images
has been developed in DASOS. Subsequently, by generating tree coverage maps,
it has been shown that the combination of these datasets confers better remote

survey results [27].

e Finally, DASOS allows the generation of feature vectors characterising objects
like trees. An example usage of this information is characterising dead standing
Fucalypt trees, which as explained at Section 1.1 are extremely beneficial for

managing biodiversity in native Australian forests.

To sum up, FW LiDAR has great potential to improving automated surveying ac-
curacy and consequently reduce the expensive fieldwork conducted in forestry. This
research has already started to have an impact in the FW LiDAR community. DA-
SOS is now used at Interpine Group Ltd, a world leading Forestry Company in New
Zealand, I occasionally receive emails with questions or suggestion about the software
and according to github the visitors are slowly increasing; from the 4th of March till

the 14th of April, 2017, there were six unique visitors and one cloner (Figure 1-1).

15

Git clones

0-®

04/02 04/03 04 04/07 04/08 04/09 04/10 04, 04712 04/13 04714
1 1
Clones Unique cloners
Visitors
., . 2
0 ‘e, o, o, .74- 1
/ .\ %-x / .
0. ') '/ _\'_c c/ ' ———— -0
04/02 04/03 04/04 04/05 04/06 04/07 04/08 04/09 04/10 041 0412 0413 04/14 04/15
24 6
Views Unigue visitors

Figure 1-1: Github statistics from the 4th of March till the 14th of April 2017

1.6 Thesis Structure

This research is focused on the representation and efficient use of FW LiDAR data
and contributes both to forestry visualisations and classifications. Two datasets are
used for testing and evaluation: the New Forest and the RedGum dataset. An in-
depth explanation of LIDAR systems and the specifications, differences and challenges
of the two datasets are given in Chapter 2. Chapter 3 gives an overview of the way
the data are interpreted within DASOS and its functionalities. Chapter 4 focuses on
the reconstruction of polygonal meshes from the FW LiDAR data, while Chapter 5
investigates different data structures for efficient reconstruction. Chapter 6 introduces
the hyperspectral data for improving the visual output of the polygonal meshes and the
generation of tree coverage maps. Chapter 7 suggest a new approach of detecting dead
standing eucalyptuses without tree delineation. Chapter 8 is a comparison between
discrete and FW LiDAR data. Finally, Chapter 9 contains a summary of the thesis and

future work.

16

Chapter 2
Acquire Data

The aim of this chapter is to give a practical and scientific insight about the acquisition
of data, because a good knowledge of these methods and their limitations is essential
for understanding the related research undertaken. The relations between the two main

datasets used in this project are depicted on Figure 2-1 and briefly explained here:

e The New Forest dataset from the UK was provided by the Natural Environment
Research Council’s Airborne Research Facility (NERC ARF). Measurements were
collected simultaneously a Leica ALS50-II LIDAR and AISA Eagle/Hawk hyper-
spectral radiometers on the 8th of April in 2010. It contains Discrete LIDAR, FW
LiDAR and hyperspectral images.

e The RedGum dataset was acquired in Australia using a Trimble AX60 inte-
grated LIDAR/Camera instrument over the time period from the 6th of March in
2015 until the 31st of March in 2015. It was provided by the RPS Australia East
Pty Ltd. Only the FW LiDAR data are used in this thesis.

The ALS data are explained first, because they are the main focus of this research,
and hyperspectral imagery is towards the end of the chapter. In Section 2.1, an in-depth
description of ALS systems and the differences between discrete and FW LiDAR data
is given. Section 2.2 briefly discusses the binary file format of the acquired LiDAR data
and Section 2.3 is a discussion on the limitations, the differences and the advantages of
two LiDAR instruments; the Leica and Trimble. The essential information about the
hyperspectral imagery, which is only associated with the New Forest dataset, is then

covered in Section 2.4.

17

AREA: New Forest, UK REdﬁ:]Qr;?;eSt’
DATA: Hyperspectral - - Full-waveform
Images Discrete LIDAR (FW) LiDAR
INSTRUMENTS: AISA Eagle AISA Hawk Leica ALS 5041 Trimble AX60
0 R
DATA PROVIDERS: NERC ARSF RPS A:tsyt:_atlga East
~ @/
Y
Interpine Ltd Group
INDUSTRIAL i
Plymouth Marine -
COORPORATIONS Laboratory Forestry
Corporation of NSW
— ~_ @@/

Figure 2-1: Data and Instruments

(a) A Pulse: Discrete Vs Full-Waveform (b) A Flightline

Figure 2-2: Airborne Laser Scanning System

18

2.1 Airborne LiDAR systems: An in-depth Explanation

The ALS systems emit laser pulses from sensor mounted in a plane and collects infor-
mation from the time-of-flight and the returned laser intensity. By the time the pulse
has travelled the approximately 1-3km from the aircraft to the ground, it is roughly
20cm in width due to beam divergence. When the pulse hits an object (e.g. the forest
canopy), then some of it reflects back while the rest penetrates through holes between
leaves and branches. The laser pulse continues to hit structures, scattering and par-
tially returning to the sensor until it reaches a solid barrier such as the ground and is
fully blocked from further progress. The LiDAR systems record information from the
backscattered laser pulse, measuring its round trip time and the returned intensity.

As mentioned at Section 1.2, there are two types of LiDAR data, discrete and FW.
The discrete LiDAR observes the returned intensity signals and records a few peak
intensity returns of the signal, while the FW LiDAR system digitises and stores the
enitre backscattered signal into equally spaced time intervals (Figure 2-2a). The deliv-
ered data for the discrete LiDAR is a set of hit points ("returns"), which are associated
with laser intensities. The world position of every return is calculated by measuring the
round trip time of the laser return, giving a distance from the sensor, which is combined
with the precisely known position and orientation of the aircraft/sensor (from GPS, an
inertial measurement unit and precise shot direction of the laser pulse). The waveform
recordings are triggered by and attached to first returns of discrete LiDAR data (to
avoid sampling the uninteresting time period while the pulse travels through the atmo-
sphere) and they are a list of intensities that correspond to the laser intensity returned
over time. There is also an offset vector which defines the distance and direction be-
tween each wave sample (effectively a compression mechanism, which avoids recording
the world position of every sample by replacing it with the location of the first return
and this vector).

As shown in Figure 2-2b, the pulses are scanned back and forth across the land-
scape below (by a rotating mirror) as the plane travels forward. The scanned data
has a limited maximum width according to the flight height and the field of view scan
angle. During processing the track of the plane is divided into easier-to-handle pieces
(flightlines) and saved into separate binary files. The data used in this project were
delivered in the LAS1.3 file format. It worth stating that LAS1.3 files do not store the
position of the plane (like Pulsewaves), but since calibration is not addressed in this

thesis, it is redundant.

19

2.2 Brief Description of the LAS1.3 File Format

There are a few LiDAR file formats but the LAS1.3 was the first format to contain FW
data and it is the one used to store the data for both New Forest and RedGum datasets.
According to the LAS1.3 file specifications [28], a .LAS file contains information about
both discrete and FW LiDAR data, with the waveform packets attached to discrete
returns and saved either internally at the end of the .LAS file or externally in a .WVS
file.

As shown at (Figure 2-3) the .LAS file is divided into four sections and a brief

explanation of each section is given here:

1. The Header contains general information about the entire flightline. For ex-
ample, it includes the maximum scan angle used during the flight, whether the
waveform packets are recorded internally or externally and the number of Vari-
able Length Records (VLR).

2. Regarding the VLR, which contain arbitrary "extension" data blocks, the most
important information given is the waveform packet descriptors that contain es-
sential information on how to read the waveform packets (i.e. an ID, the number

of wave samples and the size of each intensity in bits).

3. The Point Data Records are the discrete points and the waveforms are asso-
ciated with first return discrete points. Each Point Data Record has a spatial
location, an intensity and optionally a pointer to a waveform packet as well as the

ID of the corresponding waveform packet descriptor.

4. The waveform packets is a list of intensities and they are either saved internally
into the Extended Variable Length Records section of the .LAS file or inside
an external .WVS file. Starting from the associated first return point, the spatial
locations of the waveform packet (wave sample intensity) are calculated by adding

an offset defined in the associated Point Data Record.

It worth mentioning that the LAS1.3 file format does not store the position of the
plane, like the more recent Pulsewaves file format. Nevertheless, if the flight height is
constant then this information can be approximated using the direction of the emitted

pulse, the flight height and the position of a wave sample.

20

|

‘-k HEADER

_ VARIABLE LENGTH

RECORDS
| WAVEFORM
PACKETS
__ POINT DATA
RECORDS

| EXTENDED VARIABLE LENGTH RECORDS
~ (WAVEFORM PACKETS)

Figure 2-3: How the FW LiDAR data are stored into a binary file, according to the
LAS1.3 file format specification

2.3 Leica Vs Trimble Instruments: Limitations, Differences

and Advantages

As shown in Figure 2-1, the Leica ALS 50-II instrument was used to capture the LIDAR
data of New Forest dataset and the Trimble AX60 for collecting the RedGum Forest
FW LiDAR data. It is therefore important to clarify the differences, the limitations
and the advantages of each instrument.

The Trimble performs at a pulse frequency of 400kHz, while the Leica’s maximum
pulse frequency is 120kHz. Nevertheless, during experiments there were occasions when
the Leica discarded every other waveform due to I/O limitations despite being at or
below the maximum pulse frequency [29]. The New Forest dataset has been affected
by this and, on average, one third of the saved pulses only contain discrete data. We
should therefore be extremely careful when comparing Discrete with FW LiDAR data.
While [23] concludes that FW LiDAR data worth the extra processing because they
have a better vertical profile, [30] states that extra information (the echo-width) from
the FW LiDAR data are relatively unimportant. But the New Forest datasets were
used for the comparison at [30] and there is no mention about the significantly less
waveforms recorded in comparison to the discrete data. It is therefore suspected that
their results has been affected by the missing waveforms.

Another problem with the Leica system is the small dynamic range of intensities

21

due to the number of bits used for recording them; the Leica system uses 8-bit integers
(0-255 range) while the Trimble uses 16-bit integers (0-65535 range). For increased
dynamic range and finer intensities without doubling storage costs, Leica introduced an
Automatic Gain Controller (AGC). The AGC is an 8-bit number that defines how the
recorded intensity range is shifted across a wider range of intensities. The AGC value
is adjusted according to the reflected laser intensity of the previous 64 pulses and it
therefore varies across a flightline. Consequently, the raw intensities are incomparable
to each other and, since the relation between AGC and the intensities is not linear,
the range normalisation is complicated [31] [32]. In this thesis, the intensities of the
Leica system are used as boolean values (whether something existed or not, using a
user-defined threshold) to quickly overcome that issue and focus on the major research
objectives. Regarding the Trimble instrument, there is no AGC value because the
intensities are saved into a 16bit integer and as long as the flight height is constant
no normalisation is required. In a few words, the raw intensities recorded using the
Leica system are not normalised and therefore not comparable to each other, while the
intensities of the Trimble instrument are more meaningful.

The footprint of the laser on the ground depends on the scanning pattern of the
instruments and the field of view. The sinusoidal scanning pattern of the Leica system
results in a higher density of returns at the edges of the flightline. The footprint of the
Trimble instrument is more equally spaced because they are scanned using a rotating
polygon. The uneven density pattern of the Leica system is resolved by normalisation
during the voxelisation process, but the Trimble’s equally spaced pulse pattern is more
prone to aliasing when voxelised. Regarding the field of view, the Leica is wider but
both systems avoid large angles because otherwise data look deformed at edges of the
flightlines.

Last but not least, the Trimble instrument is a native full-waveform sensor; the
discrete LiDAR data are retrieved by extracting peak points in post-processing (e.g.
Gaussian decomposition). Therefore one of the purported advantages of a FW system,
the concept of extracting a denser point clouds using Gaussian decomposition [13],
does not apply in the Trimble’s case. This was proven by extracting peak points from
Trimble FW LiDAR data using the pulseextract from LAStools [33]; the number of
points extracted was exactly the same as the number of points saved into the associated
discrete LiDAR files. Therefore discrete data from the Trimble instrument are the same
as those generated by echo decomposition and peak points extraction from the FW
samples.

To sum up, the Trimble AX60 instrument is a newer sensor and therefore has less

problems or design compromises in comparison to the Leica ALS50-IT instrument. Table

22

2.1 summarises the differences between the two sensors.

Table 2.1: Specifications of the LIDAR instruments used

Instrument Name: H Leica ALS550-11 ‘ Trimble Ax60
Scanned Area New Forest, UK RedGum, Australia
. Discrete LiDAR 2009

Year of Introduction: & FW LiDAR 2010 2013

Max Scan Frequency (kHz): || 120 400

Recorded Intensity (bits): 8 16

AGC: Yes No
The footprints are

Scanning Pattern: Sinusoidal more equally spaced
on the ground

Max field of view (degrees): || 75 60

2.4 Hyperspectral Imagery

Hyperspectral imagery has a positive impact in remote sensing because it contains
information beyond human visibility. The human eye receives light from the visual
spectrum into three bands (red, green and blue). The hyperspectral sensors captures
a larger spectrum and divides its light components into hundreds of bands, recording
this way more information than a human eye can receive [12].

Nevertheless, there are other compromises - for example, the time taken to integrate
incoming light as the aircraft carrying the sensors moves. This means the raw airborne
images appear deformed because the pixel length varies across the flightline. NERC-
ARF geo-corrects the data using the Airborne Processing Library (APL) [34]. The
processing levels are numbered. At ‘level 3’ (world coordinate system) the pixels are
equally spaced and sized, which requires resampling and thus may look slightly blurred.
The ‘level 1’ data (what the sensor saw) are non geo-corrected but they are radiometric
calibrated using the APL library and associated with a file that defines the spatial
location of each pixel. In this thesis, the ‘level 1’ data are used to preserve the highest
possible quality.

In practise, the ‘level 1’ data are held in two files, the “.bil’ and the ‘.igm’. The
“bil’ file contains the hyperpsectral cube (Figure 2-4), all the pixel values at different
wavelengths, and the .igm file gives the z,y, z coordinates of each pixel.

The number of bands and the spectrum range captured depends on the hyperspectral

sensor. The data from New Forest were collected using the following instruments:

e the Eagle, which captures the visible and near infra-red spectrum (400-970nm)

23

o the Hawk, which covers short wave infra-red wavelengths (970-2450nm)

Both sensors divide their spectral range into 252 bands (programmable) and each band

is a 2D vector as shown in Figure 2-4).

lines

samples

Figure 2-4: This figure shows the order of the hyperspectral pixels saved into the the
binary .bil file.

The hyperspectral images also come with a number of drawbacks. A few are men-
tioned here but since hyperpsectral imagery is not the main focused of the thesis they

are not addressed:

e System faults sometimes occurs and the affected areas are masked out. This

results in blank areas.

e Ag a passive sensor, it is dependent on the sun for illumination and thus vulnerable

to poor weather conditions

e Due to the high refraction of light at some wavelengths, some bands are highly

influenced by humidity (i.e. wavelength 1898.33nm).

To sum up, hyperpsectral images contain information beyond the visible and they
are delivered in two files, one contains the hyperspectral cube and the other one the geo-
locations of each pixel. In this project, they are used in Chapter 6), where it is shown
that the combination of Remote Sensing data confers better results for generating tree

coverage maps.

24

Chapter 3

The open source software DASOS
and the Voxelisation Approach

As mentioned in Section 1.3, there are very few uses of FW LiDAR data because of the
quantity of the recorded information. For that reason, DASOS was developed (Section
3.3) as an open source software, to help foresters without computer science background
to use FW LiDAR data while simultaneously advancing the research goals of this thesis.

In this section:

e An overview of related software packages is given and we explain how DASOS

differs from those packages (Section 3.1).

e The main method of interpreting the data within DASOS (the voxelisation ap-
proach) is described (Section 3.2).

o All the functionalities of DASOS are listed (Section 3.3)

e and, finally, a summary is provided (Section 3.4).

3.1 State-of-Art FW LiDAR Software Packages

The most common approach for interpreting FW LiDAR is the Gaussian decomposition
of the waveforms for peak-points extraction. Each waveform is modelled as a set of
Gaussian pulses and for every Gaussian peak, a single return (equivalent to a discrete
LiDAR point) is extracted [35]. Neunschwander et al used this approach for Landcover
classification [36] while Reitberger et al applied it for distinguishing deciduous trees
from coniferous trees [37]. Chauve et al further proposed an approach of improving

the Gaussian model in order to increase the density of the points extracted from the

25

data and consequently improve point based classifications of FW LiDAR data [24].
The following tools are able to extract discrete points from the waveforms and visualise

small areas of interest:

e Pulsewaves: visualises a small number of waveforms using different transparen-
cies according to the intensities of the wave-samples and is able to generate discrete
point clouds [25].

Link: <https://rapidlasso.com/pulsewaves/>

e FullAnalyze: supports echo decomposition. Regarding visualisations, the user
can select single trees from the Graphical User Interface (GUI) and, for each
wave-sample, a sphere with radius proportional to its amplitude is created and
visualised [38].

Link: <http://fullanalyze.sourceforge.net/>

e SPDIib: exports discrete LIDAR from the waveforms and visualises either the
samples that are above a threshold level as points or the extracted discrete point
cloud. It also colours them according to their intensity value [39].

Link: <http://www.spdlib.org/>

Echo decomposition and extraction of peak points identifies significant features and
further enables the interpretation of the data within existing workflows and software
that support discrete LIDAR data. For example, the discrete LIDAR can be analysed

using:

e Lag: a visualisation tool for analysing and inspecting discrete LiDAR point
clouds.
Link: <http://arsf.github.io/lag/>

e Quick Terrain Modeller : a 3D discrete LiDAR points visualiser, that can
generate Digital Elevation Models (DEM) and Digital Terrain Models (DTM).
Link: <http://appliedimagery.com/>

e LAStools : a tool set that classifies noise, visualises point clouds, clips data.
Link <https://rapidlasso.com/lastools/>

The DASOS approach to interpreting FW LiDAR data is fundamentally different
from the aforementioned software packages. On the one hand, converting FW LiDAR
into discrete peaks eases their usage, since existing workflows support discrete LiDAR.
On the other hand, FW LiDAR contains information about pulse width that is usually

26

<https://rapidlasso.com/pulsewaves/>
<http://fullanalyze.sourceforge.net/>
<http://www.spdlib.org/>
<http://arsf.github.io/lag/>
<http://appliedimagery.com/>
<https://rapidlasso.com/lastools/>

not preserved after peak point extraction. Also the comparison of point clouds depends
on the density of the emitted pulses; problems arise with the sinusoidal scannng pattern
of, for example, the Leica system, resulting in higher numbers of samples at the edges
of the swath and lower in the middle. For these reasons, in DASOS, this information is
accumulated from multiple shots into a voxel array, building up a 3D density volume.
The correlation between multiple pulses in a voxel representation produces a more
accurate and complete representation, which confers greater noise resistance and it
further opens up possibilities of vertical interpretation of the data. The idea of voxelising
FW LiDAR data is explained in the following section 3.2.

3.2 Voxelisation for Interpreting FW LiDAR data

Voxelisation of FW LiDAR data was first introduced by Persson et al. [26], who used
it to visualise waveforms using different transparencies and it has been adopted as
the future of FW LiDAR data with the literature moving toward that direction. In
2016-17, Cao et al. |40] used it for tree species identification , Hancock et al. [41]
improved canopy height models of vegetation and Sunmall et al. [30] characterised forest
canopy from a voxelised vertical profile. This innovative approach of voxelising the FW
LiDAR data is an integral part of this thesis and it is used for both visualisations and
classifications [42] [27].

The FW LiDAR data are voxelised by inserting the wave samples into a 3D regular
grid and constructing a 3D discrete density volume. According to Persson et al [26],
each wave sample is associated with the 3D cell, named voxel, that it lies inside. If
multiple samples lie inside a voxel then the sample with the highest intensity is chosen.
In order to reduce noise, there are two differences between this approach and the way
FW LiDAR data are voxelised in DASOS.

At first a threshold is used to remove low level noise, because when the length
of a recorded waveform is longer than the distance between the first hit point and the
ground, the system captures low signals for the remaining sampling time period after the
pulse has been absorbed by the ground, which results pure noise. For that reason, the
samples whose intensity is lower than a user-defined noise level /threshold are discarded.

As before, each wave sample is associated with the voxel that it lies inside. The
second difference is how DASOS overcomes the uneven number of samples per voxels,
which is primarily caused by the differing angle at which the LiDAR shot passes through
voxels directly below the sensor and those off to the sides. The intensity of each sample
is the laser intensity returned during the corresponding time interval. For example,

if 5 samples are inside a voxel and the waveform is digitised at 2ns, then the laser

27

intensity associated with that voxel corresponds to a 10ns waveform sampling length.
For comparison purposes, it’s essential to keep the waveform length consistent across
the voxels. To overcome this issue in DASOS, the average intensity of the samples that
lie inside each voxel is taken, instead of choosing the one with the highest intensity [26].
This way, the likelihood that the 3D volume will be affected by outliers and high noise is

reduced. The following equation shows how the intensity value of a voxel is calculated:

[, = 2zl (3.1)
n
where I, is the accumulated intensity of voxel v, n is number of samples associated with
that voxel and I; is the intensity of the sample i.

To sum up, during voxelisation, the area of interest is divided into voxels. The
samples of the FW LiDAR data are inserted inside this 3D discrete density volume and
normalised such that equally sized waveform length is saved inside each voxel. The
result is a 3D discrete density volume of the scanned area. Figure 3-1 depicts this

process in 2D.

~ait

L[[A L[]

++

.

(a) The sensor from the plane (b) The area of interest is (c¢) The accumulated intensi-

emits multiple pulses and col- divided into equally sized ties of wave samples into the

lects information from the re- cubes, named voxels, gener- volume build up the voxelised

turned laser intensity. ating this way a discrete vol- representation of the scanned
ume. area.

Figure 3-1: The above images depict the voxelisation process of the FW LiDAR data in
2D. Please note that the voxelisation output in Figure 3-1c shows how ideally the result
would look. But in reality, a number of trees may be disconnected from the ground due
to missing information about their trunk. !

!The tree and plane images are taken from: http://images.clipartpanda.com/tree-clip-
artKij4jKriq.jpeg & http://gmv.cast.uark.edu/wpcontent /uploads/2013/01/ALS _scematic.jpg

28

3.3 The functionalities of DASOS

So far, an overview of existing software packages supporting FW LiDAR was given
(Section 3.1) and it was explained how DASOS differs from them by voxelising the
waveforms (Section 3.2). In this section, the three main functionalities of DASOS are
described in Tables 3.1, 3.2 and 3.3 and Figure 3-2

Each functionality is linked to a number of thesis sections, which describe the algo-
rithms implemented and the related applications. In a few words, the 3D visualisations
are useful in forestry for reducing fieldwork and improving planning of field trips (e.g.
checking whether a road passes through a fieldplot area). The 2D metrics allow simul-
taneous interpretation of FW LiDAR data and hyperspectral imagery. They could also
be used in GIS software. In this thesis, they are used for generating tree coverage maps.
The last feature is the extraction of feature vectors that enables 3D object detection

and are used for detecting dead standing trees.

First Functionality: 3D Polygon Mesh Generation

Input | Description Output Example Output
Format
LAS1.3| 3D Polygon Mesh .obj

Constructed from the
volumetric representation
(algorithms and user-
defined parameters are
explained in Chapter 4
while optimisation ap-

proaches are discussed in

Chapter 5)
LAS1.3| 3D Coloured .0bj
and Polygon Mesh &
level 1 | Projecting 3 user-defined .png

(.bil & | hyperspectral bands on

dgm the mesh (Chapters 6)

Table 3.1: The 1st functionality of DASOS that generates 3D polygonal meshes.

29

First
Patch
. (3)
Height - Thickness
(DEM) — (6 * voxel size)
(7 * voxel size)
Last
Last _ | Patch
Return 2) -
| (1*voxel size) N : I 5
. on empty voxels
Density = =

Thickness 6

Figure 3-2: Metrics: visual examples of what values a pixel takes in relation to the
spread of non-empty voxels inside its associated column of voxels. Verbal description
and examples are given in table 3.2

Second Functionality: Generation of 2D metrics (Figure 3-2)

aligned with hyperspectral imagery

In Chapter 6 a selection of the following metrics are used

for generating tree coverage maps

Input | Metric Description Output Example Output
(L for LIDAR metrics & H Format

for hyperspectral metrics)

LAS1.3| LO - Digital Elevation
Model - DEM:

The distance between the

.asc

top non-empty voxel and

the lower boundaries of

the volume.

30

LAS1.3

L1 - Thickness:

The distance between the
first and last non empty
voxels in every column of
the 3D volume.

.asC

LAS1.3

L2 - Density:

Number of non-empty
voxel over all voxels
within the range from the
first to last non-empty

voxels.

.asC

LAS1.3

L3 - First Patch:

The number of non-empty
adjacent voxels, starting
from the top non-empty

voxel in that column.

.aSC

LAS1.3

L4: Last Patch:

The number of non-empty
adjacent voxels, starting
from the lower non-empty

voxel in that column.

.asC

LAS1.3

L5 - Edge detection:
The average height differ-
ence of neighbouring pix-

els

.as8C

LAS1.3

L6: Lowest Return
The height of the lowest

non empty voxel

.as8C

LAS1.3

L7: Maximum
Intensity
The maximum intensity of

each column

.as8C

31

LAS1.3 | L8: Average Intensity .asc
The average intensity per
column
LAS1.3| HO : Mean .asc
and The mean of the hyper-
level 1 | spectral spectrum using
(.bil & | all bands.
dgm)
LAS1.3| H1: Standard .asc
and Deviation !
level 1 | The standard deviation
(.bil & | of the hyperspectral spec-
dgm) trum at each pixel using
all the bands.
LAS1.3| H2: NDVI .asc
and The Normalised Differ-
level 1 | ence Vegetation Index in-
(.bil & | dicates whether green veg-
dgm) etation exists or not and

it is derived from the elec-

tromagnetic spectrum as

follow:
NIR-VIS
NDV] = ———{3.2
v NIR+VIS’3)

where the NIR is the
near-infrared region of the
spectrum (700-2500nm)
and VIS is the Visi-
ble/Visual spectrum
(430-770nm) [43].

32

LAS1.3| H3: Spectral . . .asc
and Signature ! % . 4
level 1 | The squared spectral dif-

(.bil & | ference between each pix-

dgm) els’ spectrum and the gen-
eralised vegetation signa-
ture retrieved from USGS
Digital Spectral Library
[44].

LAS1.3 | H4: Band .asc
and A single user defined hy-
level 1 | perspectral band.

(.bil &
dgm)

.aSC

Table 3.2: The 2nd functionality of DASOS that generates 2D metrics in ASCII format.

!The marked metrics of Table 3.2 were implemented specifically for the tree coverage maps [27] and

they are not available on the released version of DASOS.

33

Third Functionality: List of feature vectors ‘

The feature vectors are useful for characterising objects inside the 3D space (e.g.
trees). The system creates a vector either for each column of the voxelised FW
LiDAR or for each column that contains a tree according to an imported field plot
(.csv file). The systems finds the first non empty voxel starting from the top
of the column. By default it moves one voxel upwards and place an abstract shape
(cuboid or cylinder) there, as shown in Figure 3-3. The size of this shape
is user defined. Information that lie inside this shape are stored into

a feature vector.

Input | Description Output Example Output
Format
LAS1.3| List of feature vectors | Please Look at Figure 3-4 .CSV

with raw intensities

LAS1.3| List of feature vectors | Please Look at Figure 3-5 .CSV

with processed intensities

Table 3.3: The three functionalities of DASOS

Figure 3-3: Each feature vector contains information from a local area (e.g. a tree).
Starting from a column, we trace the highest non empty voxel and place an abstract
shape there. Information that lie inside that shape are extracted and stored into a
vector.

34

index | centroid x | centroid y Y000 VOO1 VOO2 |VOO3 VOO4 |VO10 VO11l V012 VO13
0| 251836.109) 6048994.5 7 14 10 26 0 0 9 10.25 11.875
1 251843.906 6048980.5 0] 0] 0 0 0 o 0
2/ 251846.312 6048979 9 60.75 70.75 13 8 0 0 o 7.667
3 251849.312 60490225 4B8.556 93.222 20.5 0 7 0 0 o 0
4 251851.703 6048988 100.2 53.222 10.5 7.143 0 0 0 o 47.25
5 251852.906 6048975 0 0 0 0 0 26.875 0 10.444 13.182
6 251857.109 6048974 0 0 0 0 0 45.667 93 16.333 7.25
7/ 251858.312 6049010.5 0 0 0 0 0 0 0 8 6
8| 251860.703 6048984 0 45.75 8 7.333 0 0 0 0 6.8
9/ 251861.312 6049000 0 0 0 0 0 0 0 0 0

Figure 3-4: Example of an exported .csv file that contains a list of feature vectors with
raw voxel intensities. Each row is a vector. The intensity of a voxel (x,y,z) that lies
within the local area of interest is stored under the column v_x_y z.

Index | centroid_x | centroid_y |Height Middle_Column Height_Mean Height Median Height Std Sum_Int Diff X
0| 251836.109 6048394.5 36 355 36 0.943 95.125
1 251843.906 6048980.5 19.8 20.1 20.4 0.671 0
2| 251846.312 6048979 16.8 16 15.6 1.02 169.167
3| 251849.312| 5049022.5 36 35.7 36.6 0.964 169.278
4| 251851.703 5048988 17.4 16.2 16.2 0.346 408.065
5/ 251852.906 6048975 27 26.4 26.4 0.917 68.537
6 251857.109 6048974 17.4 174 18 0.849 162.25
7 251858.312) G6049010.5 40.8 40 39.6 102 251.36
8/ 251860.703 6048984 17.4 16.6 16.2 0.663 67.883
9/ 251861.312 6049000 19.8 20.1 20.4 0.671 0

Figure 3-5: Example of an exported .csv file that contains a list of feature vectors with
processed information about voxels’ intensities. Each row is a feature vector and each
column corresponds to a feature extracted (e.g. distribution of non-empty voxels). It
is noticeable that both mean and median are stored.The median value confers greater
resistance to outliers but the mean score represents better the central tendency.

The complete user guide of DASOS is given in Appendix A. The user guide gives an
in-depth explanation on how to use the available commands and variables to generate
3D coloured polygonal meshes, 2D metrics algined with hyperspectral imagery and lists
of feature vectors. It also provides information on how to download DASOS with its

source code and on what relevant forums exists for providing support.

3.4 Summary and Discussion

Along with supporting the research in this thesis, the open source software DASOS was
developed to encourage foresters to use FW LiDAR data. The main way of interpreting
FW LiDAR data in DASOS is fundamentally different from the state-of-art available
software packages. In a few words, the FW LiDAR data are voxelised by inserting the
wave samples into a 3D discrete density volume, which preserves an extra parameter
(the echo width) in comparison to point extraction algorithms. It also accumulates

intensity values from multiple shots and stores them into a 3D regular grid, resolving

35

this way the problem with the sinusoidal footprint / uneven scanning pattern of the
Leica system.

There are three main functionalities of DASOS: the construction of 3D polygon
meshes, the generation of 2D metrics aligned with hyperspectral images and characteri-
sation of objects using feature vectors. The visualisation outputs are also the state-of-art
since previous visualisations talk about points [39] or spheres [38], while DASOS is able
to create closed polygon representations. In addition, the integration of various sensors
allows simultaneous interpretation of their data and, in Chapter 6, it is shown that this
confers better results for generating tree coverage maps. The last feature of DASOS
allow local inspection of data and they are used in Chapter 7 for dead standing tree
detection in native Australian forests.

Finally, it worth mentioning that there a few individuals/organisation that showed
interest in using DASOS and, in the future, usage of it, its derivatives or the concepts
employed in it are expected to increase in remote forest surveys (i.e. for commercial

forest stocking estimation or for infected trees detection and treatment).

36

Chapter 4

Surface Reconstruction from
Voxelised FW LiDAR Data

4.1 Introduction

To briefly summarise the previous sections, FW LiDAR data (Section 2) are laser scan-
ning data particularly useful in forestry, but the huge amount of information recorded
make handling of the data difficult. The open source software DASOS (Section 3.3)
was developed along with this thesis to ease the usage of the data. DASOS voxelises
(Section 3.2) the data before interpretation and this approach is fundamentally different
from the related, state-of-art software packages. The output of the voxelisation is a 3D
discrete density volume.

In order to visualise a voxel volume, it must be rendered in some form. This chapter
explains the process of reconstructing the surface of the scanned area from the 3D
voxelised FW LiDAR. At first, volumetric rendering' approaches are briefly explained
in Section 4.2. Section 4.3 gives a mathematical definition to the voxelised data, while
Section 4.4 describes the actual algorithm used to extract a surface. Finally, the results

are given in Section 4.5.

4.2 Basic Rendering Approaches of the Polygonal-Contours

from Volumetric Data

Even though the concept of visualising 3D discrete density volumes (Volumetric Visual-

isations) is new in forestry and remote sensing, it has been widely researched in medical

'Volumetric rendering refers the process of visualising volumetric data (e.g. the 3D voxelised FW
LiDAR data or MRI scans.).

37

imaging and visual effects. There are two approaches to visualising volumetric data.
The first approach is direct rendering, which continuously generates 2D images
according to the position and rotation of the view point. This creates an interactive
view of the scene/object, but an image needs to be generated every time the position
or rotation of the view point is changed. A direct rendering approach is ray-tracing.
Ray-tracing generates images by casting rays from the view point, passing through
each pixel of the image to be generated and continuing until there is an intersection
with an object from the scene (Figure 4-1). Intensity values are assigned to the pixels
according to the nearest intersections between the ray and the scene [45]. Ray-tracing
can be time expensive depending on the complexity of the scene and, for that reason,
some of the literature focuses on parallellising the ray-casting process. By introducing
parallelisation, real time rendering of small volumetric data (256%) was achieved by
Pfister et al. [46]. Also, after the release of the CUDA hardware [47] (which is a parallel
computing platform on recent nvidia graphics cards), Crassin et al. [48] achieved real-

time rendering of billions of voxels in 2009.

Image

View Point

" Scene Object

Figure 4-1: Ray-tracing illustration

The second approach is rasterisation, which is a method that maps primitive poly-
gons (typically triangles) to pixels. It is widely used in computer games, supported
directly by common hardware acceleration systems and it is significantly faster than
ray-tracing. Furthermore, interactive operations (e.g. measuring the distance between
two trees) are trivial calculations on primitives/polygonal meshes and they are easy to
implement. In order to use this approach with volumes, they must be first converted to
primitives. This is commonly accomplished by surface reconstruction, referring to the
extraction of a polygonal mesh, which is a set of primitives such as triangles, from the
volumetric data. Constructing a surface may take several minutes, but real time visu-

alisations of polygonal meshes are supported by free animation packages (like Blender

38

and Meshlab), in addition to being easy to implement. So, even though it is possible
to implement real-time interactive environments using direct rendering of the big voxel
data, volumetric visualisation of FW LiDAR data is a new concept in remote sensing

and, for simplicity, this thesis uses surface reconstruction.

4.3 Algebraic Definition of the Volume

In computer graphics, objects can be defined using a function rather than being con-
structed from primitives. Those objects are called either implicit or algebraic. Implicit
representation of objects enables a mathematical definition of the 3D discrete density
volume generated from the FW LiDAR data (Section 3.2).

Algebraic objects were firstly introduced in computer graphics by Blinn in 1982 [49]
to enable the definition of complex objects without saving a large amount of primitives;
in some cases, primitives cannot accurately represent a shape (e.g. a sphere cannot be
represented fully by a triangle mesh). Each object is defined by a function f(X) and
an iso-surface value a. The iso-surface value (iso-level) defines the boundaries of the
object; for an object [f(x),a] every n-dimensional point X that lies on the surface of
the object satisfies the condition f(X) = a. To be more accurate, the following rules

apply according to Pasko et al. [50]:
e f(X)=a, when X lies on the surface of the algebraic object
o f(X) > a , when X lies inside the algebraic object and
e f(X) < a, when X lies outside the algebraic object

Regarding the algebraic representation of the 3D voxelised FW LiDAR data, X is
a three dimensional point (z,y, z) representing the longitude, latitude and height re-
spectively and f(X) is a function that takes X as input and returns the accumulated
intensity value of the voxel that X lies inside. Also, the iso-surface value « is a user
defined parameter. Even though it closely related to the noise threshold used for fil-
tering during voxelisation (Section 3.2), it is different. The noise threshold filters low
intensity samples before the volume is constructed, while the iso-surface value defines
the boundaries of the object and it can be modified after the voxelisation because it
doesn’t affect the intensity values of the 3D voxelised FW LiDAR. Figure 4-7 demon-
strates how the iso-level parameter affects the output of the surface reconstruction of

the voxelised FW LiDAR data in comparison to the noise filtering.

39

4.4 Surface Reconstruction with the Marching Cubes Al-
gorithm

Even though algebraic representation is beneficial in reducing storage memory, visual-
ising implicit objects is not straight forward, since they contain no discrete values. As
described above in rendering volumes, this problem can be addressed either by direct
rendering or surface reconstruction (Section 4.2).

The Marching Cubes [51] algorithm is an algorithm that extracts an iso-surface from
the implicit volumetric field as a polygonal mesh using a look up table (Figure 4-2 shows
an example of the Marching Cubes look up table). Let’s assume that f(X) defines an
implicit object. At first the space is divided into cubes. Each cube is defined by eight
corner points and each corner point lies either inside or outside the iso-surface. By
enumerating all the possible cases and linearly interpolating the intersections along the
edges, the surface of the implicit iso-surface is constructed. The output is a polygonal
mesh, a number of adjacent triangles constructed according to the user-defined iso-

surface value « of the implicit object.

Figure 4-2: Reference table used in the Marching Cubes triangulation; taken from the
original article [51]

40

The normals? are calculated afterwards. According to Lorensen and Cline [51],
the normal of each vertex is calculated by measuring the local gradient change. Even
though this work well on smooth object (e.g. a sphere defined by its equation), because
of the high gradient changes in the voxelised FW LiDAR data this algorithm results
into normals pointing into inconsistent directions. This is a problem because when the
normals are not consistent, the surface of the object appears rough. For that reason,
in DASOS the normal of each vertex is derived by the average normal of its adjacent
triangles.

Additionally it is worth highlighting that the sampling of the Marching cubes is
independent from the sampling of the 3D density volume. But consistency between the
two is required to avoid artefacts. Let’s assume the discrete volume has (n x m x k)
voxels, then the suggested sampling of Marching Cubes is ((n+1) x (m+1) x (k+1)),
as shown on Figure 4-3; the black grid represents a 2D density grid and the blue grid
represents the suggested sampling of the polygonisation. Please note that every point
that lies outside the volume is considered to be outside the implicit object. Figure 4-3b
shows the effects of oversampling on a low resolution 3D density volume. On the right
image the sampling of the volume appears as linear lines and squares on the forested
areas because of the Marching Cubes’ oversampling. Even though the right polygonal
mesh looks blurred, it has been correctly sampled and the blur is because of the low
resolution of the volume. Nevertheless there are no geometrical shapes on forested areas

and once the resolution is increased then blur will disappear.

4.5 Results

The output of DASOS is a polygonal mesh exported into a .obj file, which is a standard
graphics format. The .obj files can be loaded into various animation software tools like
Maya and Meshlab (Figure 4-4). Figure 4-5 shows polygonal meshes generated using
NERC-ARF data from three different areas in the UK. The region of interest is also user
defined. The user defines whether an entire flightline or selected area is polygonised
(Figure A-1).

Furthermore, there are three main user-defined parameters and Figure 4-7 shows

how the results are affected once modified:

1. The voxel size controls the resolution of the output; the bigger the voxel size is

the lower the resolution and the number of cubes are.

%A normal is a vector that is perpendicular to the surface of a polygonal mesh. In graphics, the
normals are important for calculating light illumination and each vertex is associated with one for
smooth rendering of surfaces.

41

m Oversampling Suggested Sampling

O - -4 --9---a

| 1 1 1 1 \

T —

S R R RO I

I 1 1 1 |

1 1 1 +

| 1 1 1 1 :

¢-l-e-d--o-F-¢-1—0-| -9

I 1 1 1 1 | B

1 : + 3 + | 3 :

I 1 1 1 1 |

L IR RS U B S

[}

e : 1 !

¢-f-¢--|-¢-|-¢-1—-o-|-o

: I ! ! ' !

I 1 1 1 1 :
o T i e B o

I 1 1 1 : :

I 1 1 1 1 |

i St et At Resolution 14.2m

(a) Suggested Sampling (b) Effects of Oversampling
Figure 4-3: The suggested sampling during polygonisation using the Marching Cubes
Algorithm
2. The iso-level is the boundary that defines whether a voxel is inside or outside

the implicit object. When the iso-level is increased, the number of voxels that
are considered inside the implicit object decreases. For that reason, when it is
too high most of the voxels are outside the boundary and the object seems to

disappear.

. The noise level is the threshold of the low level filtering applied during voxelisation

(Section 3.2). If the noise level is too low, then the noise covers significant features
of the data and when it is too high important information are discarded and the

object seems to disappear again.

Aside from computer-based visualisation, it is even possible to 3D print the meshes

using

4-8).

MakerBot. There are some difficulties as the meshes are not manifold® (Figure

Simplification of the mesh would have eased the processing of the .obj file in

MakerBot.

3A
object

non-manifold polygonal object may have triangular primitives below the outside surface of the

42

Meshiab vi 3264t - [Project. 1]

@ Fie EGt Fites Beder View Windows To

Figure 4-4: Visualising the output of DASOS into animation software packages (Maya
and Meshlab)

Figure 4-5: Polygonising NERC-ARF FW LiDAR data captured at different areas (New
Forest, Milton Keynes and Eaves Wood)

43

Flight file name:
LDR-FW-FW10_01-
201009821.LAS
(1.2GB)

MaIAPIS

MaIA JUoLY

Figure 4-6: Selecting Region of Interest

44

Voxel Visualisation with Iso- Visualisations with Noise | Visualisations with
Size different voxel lengths level various isolevels Level | various noise levels

16.67

10.0m

7.14m

5.7m

4.44m

3.33m

2.0m

1.43m

1.2m

1.0m

0.8m

0.67m

Figure 4-7: How the output polygon mesh is affected by modifying the user-defined
parameters (voxel size, iso-level and noise level). A set of base values (voxel size =
1, iso-level = 0 and noise level = 25) is used and one parameter is modified at each
column. Please note that the intensities were scaled to be within the range [-100,100]
and that the currently released version of DASOS does not scale the intensities.

45

-8: 3D printing of New Forest FW LiDAR data

Figure 4

46

Chapter 5

Data structures for Efficient Surface
Reconstruction of Non-Manifold

Volumetric Data

5.1 Problem and Challenges

While Chapter 4 explains a simple approach of extracting a polygonal surface from the
voxelised FW LiDAR data, this section is mainly focused on objective No. 5 from Table
1.1; it tests the performance of six different data structures on the surface reconstruction
and it attempts to improve the interpretation of volumetric data by introducing new
data structures. The main challenges raised for this task are because the input data is
real laser scanning data that contains noise. Some of the challenges that this chapter

attempts to tackle are listed below:

1. The LiDAR sensors are vulnerable to clouds and birds being misinterpreted and
recorded as hit points. Those outliers are much higher than tree canopies but
they are within the boundaries of the scanned area. As a result, on average 97.5%

of the voxels are empty.

2. The Marching Cube, as described in Section 4.4, is a scan line algorithm, which
implies looping through every single voxel, including the empty ones. This is very
time consuming and therefore, algorithms that quickly identify and ignore empty

areas are essential.

3. While loading an entire volume, the huge amount of empty voxels may lead into
exceed memory usage. It is therefore preferable to store the voxels into structure

that avoids storing the empty ones (i.e. hierarchically).

47

4. When extracting a surface from real data, it is very likely to generate non-manifold
objects. Non-manifold objects are not homeomorphic to Euclidean 2-space be-
cause they have crossing points. Some cases of non-manifold polygonal objects
are shown in Figure 5-1. This also occurs at the polygonal meshes generated by
DASOS as explained in Chapter 4.

Figure 5-1: Cases of non-manifold surfaces [52].

5.2 Related work

5.2.1 Full-Waveform LiDAR Visualisation

Summarising previous aforemonetioned related work (Section 3.1), traditional ways of
interpreting the full-waveform LiDAR data suggest echo decomposition for detecting
peak points and interpreting the point clouds extracted [35]. Both SPDIib [39] and
FullAnalyse [38] visualise either the peak extracted points or the raw waveform samples.
On the one hand, SPDIib visulises the samples with intensity above a given threshold
as points, while FullAnalyse generates a sphere per sample, with its radius directly
correlated to the intensity of each wave sample. Similarly, Pulsewaves visualises a
number of waveforms with different transparency according to their intensity [25]. On
the one hand, visualising all the wave samples makes understanding of data difficult
due to the high noise. On the other hand, peak point extraction identifies significant
features but the FW LiDAR data also contains information about echo widths. These
information can be accumulated from multiple shots into a voxel array, building up a
3D discrete density volume [42].

Voxelisation of FW LiDAR data was introduced by [26] who used it to visualise
small scanned areas (15mx15m). The waveforms samples were inserted into a 3D Vox-

elised space and the voxels were visualised using different transparencies according to

48

their intensity. Similarly, as explained at Section 3.2, we adopt voxelisation for surface
reconstruction and applied it on larger areas. Once the 3D density volume is generated,
numerical implicitisation is used to represent the scanned area. Nevertheless, visualising
numerical /implicit objects is not straightforward, since they contain no discrete values
(Section 4.3). This problem can either be addressed by ray-tracing [45] or polygonisa-
tion [51]. In this thesis, the polygonisation direction is taken and a simple approach
is explained in Section 4.4. This chapter introduces new ways of interpreting real vox-
elised data and tests how well six data structures and algorithms perform on surface

reconstruction.

5.2.2 Optimising Volumetric Iso-surface Extraction

Even though volumetric visualisation has only been recently used for FW LiDAR
systems, there are many applications in medical visualisation [53] [54] and visual ef-
fects [48] [55]. Research work exists on optimising both ray-tracing and iso-surface
extraction (surface reconstruction) and it can be categorised into three groups: surface-
tracking, parallelisation and data structures. Those approaches are discussed below
along with their benefits and limitations with respect to voxelised FW LiDAR data.

Surface-tracking was applied at Rodrigues de Araujo and Pires Jorge [56] and Hart-
mann [57]. Starting from a seed point, the surface is expanded according to the local
curvature of the implicit object. This method is considered to be faster and more ef-
ficient in comparison to the Marching Cubes algorithm since huge empty spaces are
ignored. It further opens up possibilities for finer surface reconstruction at areas with
high gradient changes. Nevertheless, surface-tracking algorithms cannot be applied with
real laser scanning data because these data are neither manifold nor closed. For exam-
ple, in a forest scene, a tree canopy may be detached from the ground due to missing
information about its trunk. Therefore, by tracking the surface, the algorithm may
converged at a single tree instead of the entire forest.

Hansen and Hinker [58] proposed parallelising the polygonisation process of Blob-
Tree trees on Single Instruction, Multiple Data (SIMD) machines. The Instruction is
a series of commands to be executed. The longer the series of the commands is, the
greater the speed up is. BlobTree trees represent implicit objects as a combination of
primitives and operations [59]. As the depth of the tree increases, the length of the
parallelised instruction increases as well and therefore a good speed up is achieved.
Nevertheless the function for the implicit representation of the FW LiDAR data at [42]
executes in constant time, making it harder to achieve speed up using SIMD machines.
Further, according to the C++ Coding Standards when optimisation is required is bet-

ter to seek an algorithmic approach first because it is simpler to maintain and less likely

49

to contain bugs [60].

Hierarchical data structures, like octrees, improves the performance of the isosur-
face extraction because of the huge amount of empty voxels that can be ignored during
polygonisation [61]. The literature in the data structures direction aims to either sim-
plify /improve the output mesh, optimise traversal time of hierarchical data structures
or eliminate hierarchy. For example, the extraction of locally finer details either with
dual grids [62] or edge-trees [63| reduces the amount of vertices produced. In addi-
tion, a net of linked surface nodes improved anti-aliasing and reduced artifacts of 3D
Magnetic Resonance Imaging (MRI) [64]. Regarding efficiency of accessing data, franc-
tional cascading slightly improved time complexity of range queries [65]. Sparse Voxel
Octrees improved efficiency by having a pointer pointing to children and packing chil-
dren coherently in memory [55|. Hadwiger et al. used a 3D virtual memory to keep
voxels coherent on GPU and avoid traversal [54]. Nevertheless, due to the adjacency of
neighbouring voxels, data are saved for empty voxels resulting in much wasted mem-
ory. OpenVDB library arranges blocks of grids into a B+ hierarchical data structure
for increased cache coherency and lower tree depth [66]. The bricks stuctured used at
GigaVoxels is similar in terms of blocks, named bricks, and it’s been used for efficient
GPU ray-casting [48]. For eliminating tree traversal time, Warren and Salmon intro-
duced hash octrees for N-body simulation of particles [67]. Similarly, voxel hashing was
proposed for reducing the overheads of the traversal time of hierarchical structures and
real time surface reconstruction using depth cameras online [68]. Most of those data

structure optimisations are based on GPU processing, but they are still very relevant.

5.3 Overview

This thesis compares six approaches for handling and polygonising voxelised full-waveform
LiDAR data. The first three approaches use data structures from the literature includ-
ing the scan line Marching Cubes algorithm. An explanation of their functionalities is
given at Table 5.1. The last three approaches are more complicated because they take
into consideration the chunks of empty voxels and ignore them during surface recon-
struction. A brief summary of them is given in Table 5.2 and an in-depth explanation
is given in Sections 5.4 5.5 5.6 .

It worth highlighting that the resolution of the voxelised space is pre-defined and
constant. Therefore, the depth of each octree type structure is known before construc-
tion; which is the smaller cube that could fit the cuboid area that contains all the
waveforms? The depth is the size of this cube over the voxel size. During construction,

each leaf contains a list with samples that lie inside the corresponding voxel and after

50

normalisation each leaf contains the average intensity of all the waveform samples that
passes through the corresponding voxel. More information about voxelisation are given
in Section 3. Please note that the ‘1D Array’ is the original implementation, while each

one of the other five approaches tackles at least one of the aforementioned challenges

(Section 5.1).

1D Array

Voxel Hashing

Octree

Influenced by [54], all the
data are saved into an 1D
array to guarantee
coherent memory, even
though much memory is
wasted in regards of
empty voxels.

The intensities of the
voxels are saved into a
simple hash table with
key value relevant to
their position into the
volume. Similary to [68],
this approach overheads
traversing time of
hierarchical structures
and on top of that it
reduces memory
allocation because empty
voxels are not stored.

This is a hierarchical
octree with traversal time
to be essential. Please
note that this is a scan
line test and therefore it
does not take into
consideration empty
chunks of memory.

Table 5.1: Brief Description of the Three Scan-Line Tests

Integral Volumes

Octree Max and Min

Integral Tree

This data structure is an
extension of ‘Integral
Images’ to 3D. It was
firstly presented at the

CGVC conference as part

of this thesis [69]. Using
Integral Volumes, the

sum of any cuboid area is
calculated in constant
time. By repeatedly
dividing the space into
cuboids, big empty spaces
are quickly identified and
ignored during the
surface reconstruction.
(Section 5.4)

In this approach, the
values are saved into an
octree, but the surface
reconstruction is built
along the tree. This is
slightly different than a
traditional octree,
because at each branch
node its max and min
values are saved. This
way, areas that are
completely full or empty
are identified during
traversal before reaching
the leaves of the trees.
(Section 5.5)

It is a combination of
octree and integral
volumes; the sum of a
given branch is given at
constant time. That was
an attempt to combine
the idea of ‘Integral
Images’ and octrees.
Nevertheless, traversal
time and backtracking for
finding neighbouring
voxels still exists.
(Section 5.6)

Table 5.2: Description of the Three Optimisation Attempts

ol

5.4 Integral Volumes

The ‘Integral Volumes’ optimisation is based on the idea of Integral Images, which is
an image representation where each pixel value is replaced by the sum of all the pixels
that belong to the rectangle defined by the lower left corner of the image and the
pixel of interest. An integral image is constructed in linear time and the sum of every

rectangular area is calculated in constant time, as shown in figure 5-2 [70]

(x+l,, y+ly)
|
X
(0,0 y
|
Yy

Figure 5-2: Once the Integral Image is constructed, the sum of any rectangular area is
calculated in constant time.

In this thesis, we extend ‘Integral Images’ to ‘Integral Volumes’ and use them to
quickly identify and ignore big chunks of empty voxels during polygonisation. The
following section explains the mathematics behind ‘Integral Volumes’, while sections

5.4.2 and 5.4.3 give an in depth description about the algorithms invented.

5.4.1 Extending Integral Images to Integral Volumes

As shown in Figure 5-2,the area of interest is defined by the pixels (z, y) and (x+15, y+1,)

and the sum S is given by:

S=T(x+1lpy+1ly) —T(x+1lHy—1)—

(5.1)
Tx-1Ly+1l)+T(x—-1,y—1)

where S is the sum of rectangular area of interest, T'(x,y) is the value of the in-
tegral image at (z,y) and I, define the length of the rectangle in the x and y axis

respectively.

52

Extending integral images to 3D, the value of the voxel (z,y,z) in a 3D integral
volume becomes equal to the sum of all the values that belong to the box defined by
the (x,y,2) and (0,0,0) included. Therefore the sum (5) of the box defined by (z,y, 2)
and (z + Iy, y + ly, z + 1) included is given by:

S=T(x—lpy+ly,z+1L)-T(x—-1y+ly,z+1.)-
Tx+lg,y—1lz+10)—T(x+1y+1ly,z— 1)+
Te-Ly—-lz+0L)+T(x—-1y+1l,z—1)+
Tx+lp,y—1,z—1)-T(x—1,y—1,2—1)

where T'(z,y, z) is the value of the voxel (z,y, z) in the 3D integral volume. S is
the sum of voxels inside the box, T'(x,y, z) is the value of the voxel (z,y,2) in the
3D integral volume. and [;,1l,,[. define the length of the box in the x, y and z axis

respectively.

5.4.2 Optimisation Algorithm

As mentioned before, using ‘Integral volumes’ empty areas are quickly identified and ig-
nored during polygonisation. An iterative algorithm is introduced here. This algorithm
continuously splits the volume and checks whether the sub-volumes and its neighbour-
ing voxels are empty using the ‘Integral Volumes’. Please note that all the values below
the threshold boundary of the object must be zero and all the non-empty voxels must

contain a positive value.

Algorithm 1 Integral Volumes Optimisation Algorithm

1: Push the entire Volume as a cuboid inside a Stack

2: while stack is not empty do

3: Cuboid-A <+ next cuboid from the Stack

if Cuboid-A and neighbours are empty then
discard Cuboid-A

else if Cuboid-A consists of only one cube then
polygonise Cuboid-A

else
divide Cuboid-A

10: push the two new Cuboids into stack

Here it is worth highlighting that, on line 3 of the algorithm it is checked if the
neighbouring cubes of a cuboid are empty, because the voxels of the 3D density volume
and the cubes in marching cubes algorithm are aligned with an offset (Figure 4-3a).

If volumes with non-empty neighbouring voxels are ignored, then holes appear on the

53

output polygon mesh.

Figure 5-3: Comparison between including and ignoring neighbouring voxels; holes
appears when ignored. Inside the red boxes, there are two affected areas.

5.4.3 Coding Details for Faster Implementation

Implementation details contributes to the efficiency and speed up of the algorithm.
Significant improvements are achieved by reducing recursions, big memory allocations
and if statements, since memory jumps are time expensive. As shown in algorithm 1, a
while loop is used to avoid recursion. In this section it’s given an explanation on how the
stack controls memory consumption and how bitwise operations reduces if-statement
usage.

Regarding memory consumption, a stack was chosen over a queue, to decrease the
amount of cubes saved into the data structure simultaneously. A queue is a first in
first out data structure, while a stack accesses data in a last in first out order. In every
iteration, it is ideal to interpret the smallest saved cube, such that the possibility of
being polygonised is higher and the possibility of storing another cube is less. A queue
guarantees cubes with approximately the same size, since the big cubes will be added
first and sequentially being divided first. In contrast, a stack guarantees the smallest
possible number of cubes saved. The larger cubes are stored in the bottom of the stack
while the smaller ones are interpreted first because they are always the last one divided
and inserted into the stack. For that reason, a stack guarantees the lowest memory
usage.

Furthermore, in algorithm 1 an issue exists: how to quickly identify the side to be

divided next? Ideally, the usage of if-statements should be low because they contains

54

many time expensive memory jumps. For that reason, bitwise operations were embed-
ded into the program to reduce their usage. A cube is defined with its position, its size,
the next side to be divided s and its divisible sides D. The parameter s takes the values
1, 2, 3 for the x, y, z sides respectively. The parameter D is an integer consisting of
the sum of three numbers (1 or 0) + (2 or 0) 4+ (4 or 0) indicating whether the sides
x, y, z are divisible or not (table 5.3). The parameter D takes the value between [0, 7]
and covering all the possible cases of divisible sides as shown in tables 5.4 and 5.5. For
example if and z are the divisible sides, then D = 14+ 0+ 4 = 5. By the end, the
bitwise operations and the faster implementations of the Integral Volumes optimisations

is shown at algorithm 2.

Decimal Numbers Binary Numbers
Side Divisible | Not Divisible | Not

Divisible Divisible

X 1 0 0001 0000

Y 0 0010 0000

7 4 0 0100 0000

Table 5.3: Values of divisible sides

X 1 - 1 - 1 - 1 -
Y 2 2 - - 2 2 - -
Z 4 4 4 4 - - - -
D 7 6 3 2 1 0

Table 5.4: How to calculate the value of D, which represents the divisible sides of a
cuboid

0001 | - 0001 | - 0001 | - 0001 | -
0010 | 0010 | - - 0010 | 0010 | - -
0100 | 0100 | 0100 | 0100 | - - - -
0111 | 0110 | 0101 | 0100 | 0011 | 0010 | 0001 | 0000

OIN| |~

Table 5.5: How to calculate the value of divisible sides (D) in binary representation

5%)

Algorithm 2 Integral Volumes Optimisation Algorithm

1: Push the entire Volume as a cuboid inside a Stack
2: while stack is not empty do
3: Cuboid-A < next cuboid from the Stack

4: if Cuboid-A and neighbours are empty then

5: discard Cuboid-A

6: else if D is equal to 0 then

7: polygonise Cuboid-A

8: else if (D bitwise add 2°) shift right (s — 1) then
9: divide side s of Cuboid-A
10: if the new length of side s is equal to 1 then
11: D < D bitwise add (7 — 2%)
12: s<4 (s+1) mod3
13: push both new Cuboids into stack

14: else

15: s+ (s+1) mod3

16: push Cuboid-A back into the stack

5.5 Octree Max and Min

‘Integral Volumes’ quickly identifies and ignores empty spaces during polygonisation
(tackles the 1st, 2nd and 4th problem of the original algorithm — Section 5.1), but it
allocates memory for the entire volume (the 3rd problem). For that reason, the ‘Octree
Max and Min’ data structure has been implemented.

The ‘Octree Max and Min’ data structure avoids storing empty voxels and it also
identifies empty areas during polygonisation. The polygonisation is built on the traver-
sal of the octree, as explained in Algorithm 3. Similarly to ‘Integral Volumes’, a stack
is used to avoid recursion and reduce memory jumps. As in the ‘Integral volumes’, it is
essential to check neighbouring voxels when a branch of the ‘Octree Max and Min’ data
structure could be ignored. However, because the branches of the octree are always a
cube, it is not trivial to check whether they are empty or not. For that reason, if a
branch is empty then we loop through its edges and polygonise them according to look
up table of the the Marching Cubes algorithm.

Embedding the polygonisation of volumetric data into an octree has been done
before [61]. Nevertheless, the ‘Octree Max and Mean’ data structure differs in two

ways:

e The max and min values of each branch are stored into the corresponding node

to speed up polygonisation. This enables checking whether the leaves of a branch

56

Algorithm 3 Embedding the Marching Cubes Algorithm into an octree structure

1: Push the Root as a Node into a Stack

2: while stack is not empty do

3: Node-N < next Node from the Stack

4 if Node-N is a Leaf then

5: polygonise Leaf

6 else if Node-N has no children OR max value of Node-N < isolevel
OR min value of Node-N > isolevel then

7 Polygonise edges of cubic with root node-N
8: else
9: push the children of Node-N into the Stack

lie either only inside or only outside the implicit object'. If they do, then no
iso-surface is crossing that branch and it can be discarded (after polygonising its

edges).

e A new algorithm is proposed and implemented for finding neighbouring voxels.
This algorithm reduces comparisons and jumps in memory. An in-depth explana-

tion of this algorithm is given at Section 5.5.1.

5.5.1 Finding Neighbours

Every time a voxel/leaf is polygonised, seven of its neighbours are checked to decide
whether a surface is passing through that area or not. In hierarchical data structures,
the nearest common ancestor is tracked upwards and the branch, with its root as the
common ancestor, is traversed to reach the neighbour. The article |71] uses recursion
that terminates once a common ancestor between a leaf and its neighbour is identified.
According to Scharack [72], finding neighbours in linear octrees? is done in constant
time. Nevertheless, linear octrees are full octrees. Therefore, if used in our appli-
cation, all the empty voxels would have to be stored as well. Lohner 73] suggested
vectorising the space during post-processing for finding the shortest distance between
un-constructed points. However, the 3D voxelised FW LiDAR is a regular grid and,
during polygonisation, the shortest distance to travel is one voxel. For that reason,
simpler approaches with less initialisation time, like [72], could perform equally well.
Castro et al. [74] assume that with hierarchical octrees it is not possible to find neigh-
bours from leaves and suggest using hashed octrees to do that. In contrast, it is possible
to start from the leaves and find the common ancestor using parentship as described
at [71].

'Explanation about implicit/algebraic objects is given at Section 4.3
2Linear octrees are octrees whose leaf nodes are stored into a linear array.

o7

To avoid recursion and reduce comparison, this thesis introduces a new way of
finding the common ancestor using logarithms of 2. The Algorithm 4 explains the
proposed method. As shown in Figure 5-4, there are occasions where it is cheaper to
start searching a neighbour from the root instead of the leaf. For example Node-F' is
the (4+1) neighbour of Node-E. If we start looking for it from the leaves then we need
to travel through 6 nodes, but if we start from the root we only need to travel 5 nodes.
Logarithms helps us decide which route to take, while reducing comparisons since it is

not required to check whether branches has common faces while travelling upwards |71].

Algorithm 4 Finding the number of upward steps required to reach the common
ancestor of a Leaf(x) of interest and its (41) neighbour

1: ¢ « ceil(logax)

2: ¢1 + ceil(loga(x + 1))
3: while ¢ = c1 do
4: z=x— 2D

5: ¢ + ceil(logar)

6: c1 < ceil(loga(z + 1))

7. if Dmaz/Q < ¢1 then

8 Start from Root to find Neighbour Branch +1

9: else

10: Backtrack ¢ parents to find the common ancestor
11: Find neighbour

58

--- Level O
Depthof A =2
Depthof B =2 /
,,,,,, S ..__.___ I Lo
Max Depth = 5 e . Level 1
(Dmax) \

------- V' . Level2
.......................... .\. . ® ~Level3

L]
X=9 16 Leaf Numbers
< >

Each node A and B has 2(5-2) = 23 = 8 children

Figure 5-4: This diagram depicts the parameters used for finding neighbouring voxels.

59

5.6 Integral Tree

5.6.1 Main Idea

The ‘Integral Tree’ is a new term that describes the attempt to preserve some properties
of the ‘Integral Images’ while using a non-full tree structure. Every ‘Integral Tree’
consists of two elements: an integral 1D-array and a tree. All the values of every non-
empty and non-connecting node are saved into an 1D-array, in a way such that the
condition of the ‘Integral Tree’ is fulfilled: all the values of every branch B are adjacent
inside the 1D-array. Afterwards the array is converted to integral; the sum of every n
continuous values is calculated in constant time. Additionally, the root node of each
branch B contains two parameters (xp, k). The number k is the number of nodes, which
contain values, of the branch B (e.g. for an octree, it is all its leaf nodes) and the pointer

«p points to the first one in the 1D-array (Figure 5-5).

Paointer ta the first element

|

L 2
L

k node values

Figure 5-5: Ordering of tree elements

The aforementioned rules can be applied to any tree structures including binary
trees, quadtrees and octrees. To better perceive how this data structure works, let’s
assume that there is a number of 2D spatially distributed values. Figure 5-6 depicts
how they can be saved into an ‘Integral Quad Tree’ in order to fulfil the adjacency
condition of the ‘Integral Tree’. Also, Section 5.6.2 gives an example of an ‘Integral

Binary Tree’.

5.6.2 Integral Binary Tree Example

An example of applying the idea of ‘Integral Tree’ into a binary tree is given for clari-
fication (Figure 5-7). Firstly, the values of the binary tree are sorted into the 1D-array
A as {15, 12, 10, 13, 14, 17, 16, 18, 19} in order to fulfil the adjacency condition.
Secondly, the array A is modified as {15, 27, 37, 50, 64, 81, 97, 115, 134} in order to

become integral using the following equation:

Ali] = A[i] + Ali — 1] (5.3)

60

Ctuad

How data are arrangead in memory:

All elementsin Cuad &

[)
L N I I\ |
| | | Y
All elements all elements All elements All elements
in Cuad O in Cuad 1 in Cuad 2 in Cuad 2

Figure 5-6: Illustration of how to save the values of an ‘Integral Quad Tree’ into the
1D-array, in order to preserve the condition of ‘Integral Trees’

W

p 0 1

=]
5

4 5 6 7 8

1-D Array 15| 12 |10 | 13 |14 [17 |16 | 18 |19
(1% step)

I-DArmay | 45| 27 |37 | 50 |64 |81 |97 |115 |134
(2% step)

1

10

Figure 5-7: Example of ‘Integral Binary Tree’

61

Then the sum S of a branch, with (xp, k) parameters, is calculated at constant time

as follow:
S=Axp+k—1] — Alxp — 1] (5.4)

For instance the sum of the blue branch on Figure 5-7is A[5 +4 — 1] — A5 — 1] =
A[8] — A[4] = 134 — 64 = 70, which is correct since 17 + 16 4+ 18 + 19 = 70.

5.6.3 Integral Octree for Surface Reconstruction

For an ‘Integral Octree’; all the values saved into the integral 1D-array are the values
of the leaf nodes since the rest are connecting nodes. For the surface reconstruction,
an ‘Integral Octree’ is implemented and the same polygonisation algorithm as ‘Octree
Max and Min’ are used (Algorithm 3 and Algorithm 4). The only difference is the
comparison at Line 6 of Algorithm 3; instead of checking the max and min values, the
sum of the branch is checked instead. If the sum is smaller than the iso-surface value

then no surface is crossing that area and the branch is discarded.

5.7 Data Structures Summary

To briefly sum up, the following six data structures has been implemented their perfor-
mance has been tested for reconstructing polygonal meshes from voxelised FW LiDAR
data:

1. 1D-Array: Simple array that keeps data coherent in memory for quick access.

2. Voxel Hashing: A hashed table is used for storing the intensity values of the
voxels [68].

3. Octree: Simple hierarchical structure with a scan-line implementation.

4. Integral Volumes: Extension of ‘Integral Images’ that allows finding the sum of
any cuboid area in constant time. It is a new algorithm and it is used for quickly

identifying and ignoring empty areas during polygonisation.

5. Octree Max/Min: The polygonisation is embedded into an hierarchical data
structure [61]. The max and min values of each branch are stored to identify and
ignore branches that either only contain low level noise or are completely inside
the implicit object. Logarithms are further introduced for faster neighbouring

finding.

62

6. Integral Octree: An attempt to preserve properties from both ‘Octree Max/Min’

and ‘Integral Volumes’.

Each one of the aforementioned data structure has different properties and attempts
to address at least one of the problems mentioned in Section 5.1. The first three
implementations are scanline algorithms, which means that polygonisation is linear and
all the voxels, including the empty ones, are checked for generating triangles primitives.
Some data structures are taken from the literature to test how well they perform on
this specific datasets while others are new and presented into this thesis. Table 5.6

summarises their properties and the problems each data structure attempts to resolve.

Scan-line Identifies Avoids Works on Requires New data
algorithm: | and ignores storing non- Cubic structure,
loops empty areas empty manifold | Boundaries | introduced
through all | during poly- | voxels in objects of the for this
voxels gonisation memory voxelised thesis
(1) (2) (3) (4) data
1D- v - - v - -
Array
Voxel v - - v - -
Hashing
Octree v - v v v -
Integral - v - v - v
Volumes
Octree - v V'3
Max/Min
Integral - v v
Octree

Table 5.6: Summarising the addressed challenges and the properties of all the data
structures implemented. The numbers of the first four columns correspond to the
challenges described in Section 5.1

5.8 Results and Experiments

The implemented algorithms are beneficial in different aspects: speeding up execution
or decreasing memory usage. The performance has been tested within two groups of

test cases:

3Integrating polygonisation into an octree has been done before, but there only a few modifications
to a normal octree; the max and min values stored into the branch and the introduction of logarithms
for finding neighouring voxels.

63

e The results of the first group are given in Table 5.7 and visualised in the Charts
depicted in Figures 5-8, 5-9, 5-10 and 5-11

e The results of the second group are given in Table 5.8. The related charts are
inside Table 5.9.

This section clarifies the various parameters of testing, while the following Section
5.9 discussed the results and explains the behaviour of the algorithms in respect to the
results.

The two test cases have only one difference, with the rest of the parameters be-
ing held the same. The difference is that the first one uses one flightline (the LDR-
FW-FW10_ 01-201009821.LAS from New Forest) and focuses on its performance us-
ing a finer resolution range. In contrast, the second uses three filghtlines from the
NERC-ARF datasets. The first flightline is from the New Forest (LDR-FW-FW10_01-
201009822.LAS), the second flightline is from the Dennys Wood (LDR-FW10_01-
201018713.LAS) and the third one from Eaves Wood (LDR-FW-GB12 04-2014-083-
13.LAS). The second group checks whether there are significant performance differences
when the algorithms are applied on different flightlines.

Except from the flightlines used, the rest of the parameters are the same in both
test cases. In order to understand the size of the data, the voxel length, the number of
voxels in the x,y,z axes and the percentage of empty voxels are stated. The smaller the
voxel length is, the more voxels exist because the boundaries of the voxels in meters are
constant and when the voxel length decreases the resolution of the volume increases.
Additionally, for every resolution, the execution time and maximum memory consump-
tion are measured. Execution time is further divided into data structure construction

(including reading the LAS file) and polygonisation.

64

ATOWBN XRIN=91A(N ‘UOIIBSTUOSAT0J =[0d ‘UOIIONIISUO)=TU0!) ‘UOT}dWNSU0D AIOWLW PUR 9WI) UOIINISXY :SINSIY :1°C 9[qe],

V1'€eeC |P1'8LE |I€°CSE | €8°GC 1L°L80C [88'89€ |L6'8VE | 16°61 99'6998 |C€'CCE |F6°0TIC |8CTIT ||(%¥C 66 | €VFXG0¥EX08 T
€V'890T |89'F%GT |9¥°€ET |CC'IC 8868 |8C°6VT |TCTET |LE8T || L9°299C |8T°9ZT | ¥S'98 | ¥9°6€ || %0L86 |SG6CXC09TXLIE a1
10°0¢L | ¢c'e8 | 80°%9 | PI'8T 10°¢6S | €2°08 | €0'€9 |TC'LT COPETT | T6'€9 | 08°0F | TT°€C ||%IC'86 |CCCX66T11X06¢ 4
L9°TEC | 98°€EV | 9€°9C | 1SLT ¢6'8TC | 6°CF | 91'9¢ | V.91 G6'€9€ | €960 | LEVI | ST'GT || %GV L6 | S8VIX008XT61 €
GC'LIT | eI'L8 | L96 |ST'LI ¥¢01T | L09¢ | G¥'6 |C991 80°6ST | I8°6T | 8%'9 | CEET ||[%I896 | TTIXLEGXSTT v
¥6'89 | 10°¢¢ | €0°¢ |86'91 0629 | €T1¢ | 667 |1€91 888 | ¢09T | 99°€ | CIET ||%BE96 | 68X9LVXITIT G
€6°GC | ¥C'LT | 260 |CEIT 89°G¢ | TOLT | 68°0 |CT'9T €7°0C | 98°CT | 890 | ATCT ||%80°96 | GPXGETXYE 0T
91°0¢ | €T°9T | LE0 |9L°GT 08°6T | S€'9T | ¥€0 |T09T 08°¢T | 6€¢T | 80 | TTCL ||%CET6 | 0EXLETX6E a1
LT8T | 6'GT | €0 |L9°¢T ¢EBT | 98FI | 120 9971 8€°0T | GOET | ST0 | 6CI ||%0T°€6 | €TXITIX6C 0¢
S[OXOA ()
91AgIN | T80, | 10d uoy) AN | 1%L, | 10d uoy) 91AgIN | 18301 | T10d uo)) ||Lyduy Jo "ON ISuor
A10WATN (s) ouary, AI0WOTN (s) owurg, K10WAN (s) ouary, suoryeoyadg

99110 [eI1da9ju]
L .|

UurjA[/XeJN 291190

SOWIN[OA [eI39U]

G08'960¢ |6L°80¢ [88°16% | 16791 || LS°CI6T | G489 |L0°CL9 |€V'CT 8L'9998 | T'8SV | C'C€¥V | CIOTI || %VC 66 |EFFXC0TEX08¢ T
GE'6E8 |67'C8T |€C°99T | 9¢'91 00°88L |T€°0€C |S€9TC |96°ET || L9'999¢ |TE€TIT |8VICT | €8°CT ||%0L86 |96CXC0ITXLIE a1
86°LTV | G¥'16 | 68°CL |9T'9T PE€°68¢ [P4°60T | 98'96 | 69°€T ET'ESTT | 0T°08 | €979 | SV'CT ||%IC'86 |CCTX66T1X06C ¢
LT'8LT | 18°6E | PI'¥C | L9°CT LTEST | 9T'€V | ¥6'6C | €CET €C°C9¢ | 60F7E | 6°'TC | 61°CT ||(%CV L6 | SVIX008XT6T €

1€°08 | 61°9¢ | T9°0T |8G'CT 0,92 | 16'G¢ | €8°CT |8O€ET ¥6'89T | G¥'1C | 186 | VGl ||(%18°96 | TTIXLEGXGTT v
060G | 18°0C | €9°¢ |92¢°¢I 99°L¥ | 96'61 | S6'9 |TO€T GE'88 | C6'9T | 98'F | 80CT ||%8E96 | 68X9LYXITT G
69°9T | ¢8°CT | 160 |C6VI 6T°9T | ¢6'€T | 960 |96°CT 60°0C | L8°CT | 80 | L0CT ||%80°96 | GPXGETXYE 0T
00°¢T | 92°ST | S€°0 |I6°F1 PP IT | €€°€T | LE0 |96°CT 0G°¢T | 8€°CT | C€0 | 90°CT || %CET6 | 0EXLETX6E a1
LO'IT | 9271 | 8T°0 |8S¥I 8L°6 | cO'ET | 61°0 |¥8CI LT°0T | TE2T | 9T°0 | ¥0CT (|%08°€6 | ETXETIX6C 0g
S[OXOA ()
91AgIN | 1830 | 10d uoy) AN | 1%L, | 10d uoy) 9MAgIN | 18301 | 10d uoy) ||Lyduy Jo "ON ISuor
K10WAN (s) euary, KAI0WATN (s) ouury, A10WDTN (s) euury, suoryesyeadg
2213100 Surysef] S[OX0OA Lerry-q1

65

Construction Time
1000

100

Execution time (s)

e

10

20 15 10 5 4 3 2 15 1
Voxel Length
e 1 D-ArTEY e W 2] Hashiing e JCTEE

Integral Volumes e Octree Max and Min s ntegral Octree

Figure 5-8: Time required to build each data structure by voxelising the FW LiDAR
samples and inserting them inside the 3D volume (Table 5.7). Please note that the
y-axis is in logarithmic scale.

Polygonisation Time

1000

100

10

Time {s)

01
Voxel Length
e 1 D- AT Y m—oxe| Hashing — DireE
Integral Volumes e (T reE Miax and Min = Cctree Max and Min

Figure 5-9: Time required to reconstruct the surface from the voxelised FW LiDAR
data, after the data are voxelised (Table 5.7). Please note that the y-axis is in logarith-
mic scale.

66

Total Execution Time
1000

100

Time ()

10

20 15 10 5 4 3 2 : Ea 1
Vioxel Length
e 1D-ArTRY e i 0| Hashing e [tEEMEI VOlumes

Integral Volumes — =Octree Max and Min = ntegral Octree

Figure 5-10: The sum of the time required to construct a data structure and the time

required to generate a polygonal mesh (Table 5.7). The fastest one is the ‘Integral
Volumes’. Please note that the y-axis is in logarithmic scale.

Memery Allocated
10000

1000

100

Time ()

20 35 10 5 4
Voxel Length

10 ArTRY Y031 Hashing e | T EE TR VO IUMES

Imegral Volumes — =———Ocree Maxand Min =—ntegral Octree

Figure 5-11: Maximum memory consumption at run time. ‘I1D-Array’ and ‘Integral

Volumes’ consume the highest memory, which is approximately the same (Table 5.7).
Please note that the y-axis is in logarithmic scale.

67

"SOUTIYSI JUSISRIP ¢ wWodf synsal uorjdwnsuod AIoOWoW pue 9WI) UOIINIAXF (]G S[R],

C9'790T |GL°69T |6L°GET | 96°€E GT've6 |0T'89T |9¢°FET |PCEE || TP'GVOE |00°CIT | GL°66 | 9C'C9 ||%B8E'86 |PCVXEeEXITeT a1
68°L8T | 69°LV | 96'CT |€9F¢ CO'E8T | G€'8V | C6FT |EV'EE 91'86¢ | OV'¥E | L8'6 | €9'FC [|%CSL6 | €TCXBLIXEIL €
€E0¥ | 8T'LE | €9'C |997¢E 84y | €9°9¢ | LL'C |9L°€E C0'€9 | ¢67C | 08'T | €I'€C ||%09'96 | 8OTX06XC8E 9
E€V'9VCT | 6'89¢C |98°9C8C | C0°CE C6'€99 |L¥'eve |TV60C |90°€E || 99'8LVY |86'8CC |09°6ST | ¢V'69 ||%0S'86 |8VCXEI0EXB6E a1
G¥'96€ | ¥¥'8L | 0997 |¥6°1E LVOLT | €T°99 | 0L°CE |€V'CE 6.°809 | 06'7S | 98°9C | ¥0'8C ||%VL'96 |VCIXGTSTIX66T €
€689 | 0¥'6€ | 0L9 |0L°CE 98'C8 | €F'LE | LT'G |92°CE 668 | 88°9C | 6T°C | 69°CC [|%EV'¥6 | ¥IX09LX00T 9
9€°LTV | ¥6'TL | 09°€9 | ¥E€'8 60°€VV | CCTL | €L°C9 | 678 TLPILT | TT'F9 | €T°0F | 86'€C ||(%0T'66 |96CXCCTTXI8E a1
89°G0T | 6€'8T | €€'TIT | 90°L CG'TIT | OV'8T | 68°0T | TG'L QL'LET | €6°€T | 089 | €T°L [|%SC'86 | 6VIXTIGXT6T €
88°0¢ | ¥¢'6 | L0C | LT'L 0G°'I€ | L0°TT | 29T | OF'6 GO0V | €49 | €CT | 099 |%PEL6 | 9.X09CX96 9
S[OXOA (ux)
9IAgIN | 2L | 10d uoy) 9IAgIN | 180T, | 10d uoy) 91N | 1101, | [od uo)) ||Lyduyg Jo "ON qi8uo]
AI0WOTN (s) ouurg, A10WDN (s) ew, A10WON (s) oy, suoryeoyadg

99110 [eI39jU]
e /|

Uurj[/Xej 891390

sowIn[oA [eI3899u]

€7°69L | 8°¢0c | 8691 |00°€€ GLL0L [L9°98C (P9°T9¢C | €0°GC 60'F770E |LS°L8T |ELTIT | ¥8°CC (|%8E'86 |PTFXCeeX9gaT a1
LE°LE | CC°€S | 0C'TE |S0°Ce 90'9¢T | €¢'¢S | ¢V'8¢ |18°€C €L7L6€ | ST°0V | 0T8T | 96'TC ||%CS'L6 | €TTXBLIXEIL €
9T'ce | LL'GE | 6T°€ |8SCE L9°6C | ¢E'8C | L¥'E |GPVC 0G°¢9 | 8T°GC | GL'C | €V'CC ||%09°96 | 80TIX06XT8E 9
€V°96ST | 6°8C¢C |98°9¢¢ | €0°CE ¢6°€SCT |L¥'eve |1¥°60C |90°€E 99'8L¥¥ |66'8CC | 9°69T | C¥'69 [|%09°86 |8VTXEINEXV6GE a1
81°¢6c | 9€L | 0L¢cv | 6°0€ 9¢'18¢ | 9¢°¢L | T€TS |C0TC 62809 | G0'T9 | LG'8E | 8V'CT || %VL96 |PCIXGTITXE6T €
€¢es | T1'9¢ | L0°G |PO'TE 0187 | G0°0¢ | OV'9 |99°€C Qe¥8 | 69°9¢ | 8€V | TCCC (|%EV'V6 | ¥9X09LX00T 9
LG°0CT | LL66 | T6C6 | 98°9 19°69¢ |S€°€CT |€¢°LeT | ¢T'9 VL ETLT | €€716 | 1998 | T8¢ ||%0T'66 |96CXTTITXTISE a1
G6°€8 | 68'6T | 8T'ET | 1.9 Gy'08 | €7'CC | 9L°9T | L9°¢ 6€°LET | TT'LT | €L°TT | 8€'G || %SC'86 | 6VIXTISXT6T €
Ge¢'ce | 98 | 16T | #9°9 €I'Tc | 89'L €r'c | 6¢'¢ 10°0¥ | 669 | 04T 60°¢ ||%VE'L6 9.X04CX96 9
S[OXOA (ux)
OGN | T80T, | 1od uoy) 9MAgIN | 1oL | 10d uoy) 9MAgIN | Te19L | Tod uo)) ||L&yduy Jo "ON)8ue]
L1owaTN (s) owrg, K1owdN (s) euLy, K1owoN (s) et suoryeoyroedg
921990 Surysef] s[ox0A Aerry-(T

68

"9Teos
OTIIILIRFO] UL J0U oTe d[qe) STYY Jo sIxe-£ o1y Jeryy 030w osed]d "(SYTET-680-FT0GF0 GTAD-MA-HAT) POOA SOARG WO SO PIE
ou} pue (SYTEILSI0T0-T0 OTMA-UAT) 10se3ep poopy sKuus(] oY) woy st duI[ysty pug oYL (SV1ce860010-10 0TMI-Md
“g) 19sere(1S0I0,] MON o1} WOIJ ST oUIIYSIY IST oY, "§'C O[qR], WOIJ $1INSoI oY) SUISN PojeIousd SUrelseIp 1Ietr)) :6°C 9[qR],

22100 [eibau] —— Ul pue xew 221190 —— sawnjop [eibau] —— 92120 BuiyseH |axon —— Aeuy-qT —
gl € 9 gt £ i 51 € 9 o E .
1118 5L st 0= 8260
000z 051 05 ov 860
000€ SZT e 03 660
€
- g € a 5 € gl g 3 il
s 13 9
uszi a0 ook Tz 8160
0o0sZ 00z 00z o 860
05LE 00 00 09 660
4
———— gl € 9 f\m] U E 9 50 . N
005 e W = 860
LIS 08 08 43 1860
0054 oz oz 8l 660
I
(s014gIN) (spuooag) (spuoooeg) (a8euo0Iog)
AIOWDN WNWIXRA (spuooag)ew], @107, ouIL], UOT)esTuo3A[0g QUILT, UOTIONIISUO)) spxoA Aydwyg

69

5.9 Discussion

Overall, ‘Integral Volumes’, the main new approach proposed, is the fastest one but it
consumes as much memory as the original ‘1D-Array’. It’s performance is better than

the ‘Octree Max and Min’ because:

e Elements are accessed in constant time while traversing a tree requires at least

O(log n) time, when the tree is balanced, and up to O(n) for unbalanced trees.

e The size of the volume is the original cuboid while any octree data structure
requires a cubic space that is a power of two. This results into extending the
boundaries of the 3D voxelised FW LiDAR, including big empty areas and building

deeper and unbalanced trees (increased traversal time).
e Neighbours finding is faster than octrees since no backtracking is required.

e Checking whether a surface is crossing the edges of an empty area is much faster
using the ‘Integral Volumes’ because the sum of any volume is calculated in con-
stant time. Therefore checking whether the neighbours are empty as well is trivial.
While for the ‘Octree Max/Min’ and ‘Integral Tree’ data structures, it’s required
to loop through all the voxels at the edges of an empty branch to avoid holes.

Regarding the ‘Voxel Hashing’, faster results were expected than the ‘Octree’ be-
cause it doesn’t require traversal for reaching elements, but it’s very likely to have more
memory jumps, considering that the implementation of the octree structures keeps the
children of every branch coherent in memory for faster interpretation. Additionally,
during the expansion of hashed tables, many reallocation occurs.

Furthermore, ‘Octree Max and Min’ and the ‘Integral Octree’ have similar results.
In the tests, the isolevel was set lower than the noise threshold and for that reason the
empty branches were the ones discarded at the tests (Line 6 of Algorithm 3). If the
isolevel was lower than the noise threshold, then the low level noise would have affected
the ‘Octree Max and Min’ less than the ‘Integral Octree’; the ‘Octree Max and Min’
check whether the max value is below the threshold, while the ’Integral Octree’ the sum
of the leaves. Additionally, ‘Integral Octree’ consumes more memory for saving the
leaves into an 1D-array, but even though ‘Integral Octree’ generally performed worse
than the ‘Octree Max/Min’ in the tests of Table 5.7 and 5.8, it should be beneficial in
multi-resolution direct volumetric rendering and blurring the volume for noise removal.

Before closing this section, it worth discussing the possibility of striping out the
high ‘noise’ info before data voxelisation. On the one hand, if the noise is removed and

the boundaries are adjusted then it will be much easier to handle the data. There is

70

an algorithm that marks discrete returns as noise, if there are not many close returns
to it. If this is successful then it is possible to modify the boundaries of voxolised
space. Nevertheless, in some cases cloud related noise exist in clusters and they are
consequently not marked as noise. Manual inspection of the data is required in those
cases and this is a very time consuming task. Additionally, even if outlier pulses have
been marked as noise in post-processing, the headers of the LAS1.3 files are not updated
and the "correct" boundaries are not provided, since the files still contain those pulses
and the user decides whether to use them or not. For that reason, to adjust the
boundaries of the voxelised space, it is required to read and loop through all the acquired
pulses twice. This is a very time consuming tasks and even though it worth testing, it
is possible that it may not worth the extra processing.

To sum up, ‘Integral Volumes’ is a new and simple algorithm presented in this
thesis and it is the fastest one for the surface reconstruction of voxelised FW LiDAR in

comparison to ‘Voxel Hashing’ and octrees.

71

Chapter 6

Alignment with Hyperspectral

Imagery

6.1 Introduction

In this chapter, the hyperspectral images are introduced to improve the visual output
of the polygonal meshes derived from the FW LiDAR data (Chapter 4). The combi-
nation of NERC-ARF LiDAR and hyperspectal data from New Forest (Figure 2-1) for
generating tree coverage maps is investigated.

Please note that specialised definitions (i.e. bands and level-1) are used in this
chapter and if you are not familiar with these terms it is highly recommended to consult

Section 2.4, which explains hyperspectral imagery.

6.2 Previous Work

Regarding the integration of FW LiDAR and hyperspectral data in remote forest survey-
ing, there are diverse opinions on whether the integration of multi-sensor data improves
remote forest surveying. Clark et al. [75] attempted to estimate forest biomass but
no better results were observed after the integration, while the outcomes of Anderson
et al. [76] for observing tree species abundances structures were improved after the
integration of the data.

Buddenbaum et al. [77], and Heinzel and Koch [78], used a combination of multi-
sensor data for tree classifications. Buddenbaum et al. [77] use fusion of data to generate
RGB images from a combination of FW LiDAR and hyperspectral features, although the
fusion reduces the dimensionality of a classifier . In that study, three different classifiers

were implemented and the Support Vector Machines (SVMs) returned the best results.

72

SVMs were also used in [78] to handle the high dimensionality of the metrics (464
metrics). In that research a combination of FW LiDAR, discrete LiDAR, hyperspectral
and colour infrared (CIR) images are used. Each of the 125 hyperspectral bands was

directly used as a feature in the classifier, contributing to the high dimensionality.

6.3 Spatial Representation of Hyperspectral Pixels for Quick

Search

For the New Forest Dataset (Figure 2-1), there are both FW LiDAR and hyperspectral
data. The data are collected from two independent instruments and, while they are
flown together, each instrument has a slightly different view point, a different resolu-
tion/sensing mechanism and data collection parameters (e.g. integration time). There-
fore the data collected are not aligned to each other (e.g. for each waveform there is no
trivial-correspondence to a spectral measurement). To integrate the data geo-spatially,
alignment of the data is required. As mentioned at Section 2.4, in order to preserve the
highest possible quality and reduce blurring that occurs during geo-rectification, data
in the original sensing geometry (level-1) are used.

In Anderson et al. [76], an inverse distance weighted algorithm is used to rasterise
the hyperspectral images and the pixel size is constant, 15.8m, while in this study an
approach similar to Warren et al. [34] is used and the resolution is changeable. The main
concept of our geo-rectification algorithm is to be able to find the nearest hyperspectral
pixel to a point (e.g. a vertex) in the fastest possible way. For that reason, a spatial
representation of the hyperspectral pixels is created by importing the pixels into a 2D
grid, similar to [34]. The cell size of the grid in meters is constant, but the dimensions
of the grid in number of squares (ns,n,) can be varied according to the chosen average

number of pixels per square (Aps):

[n2 [n?
T p— 78 = .1
n Aps Ty Aps (6)

Where ng is the number of samples and n; is the number of lines of the hyperspectral
cube (Figure 2-4).

Furthermore, Warren et al. [34] uses a tree-like structure, here a structure similar

to hash tables is used to spatially represent the pixels and speeding up searching. As
shown in Figure 6-1, for each cell there is a bucket containing all the points that lie
inside it. The hash function takes as input the unique key of the cell and returns the

memory location of the corresponding bucket. The key of a cell with coordinates (s, ys)

73

is is equal to (x5 + ys * ny) where n, is the number of pixels in the x-axis.

Hash Bucket

Function with Points
Address

000 —> AB,G

001

002 —> CF

003

135 => D,E H

136

137

Figure 6-1: The hash table of the spatial representation of the hyperspectral pixels;
each bucket containg all the pixels in a square and has a unique key derived from the
coordinates of its square. The hash function takes as input the key and returns the
address in memory of the corresponding bucket.

The next step is for a point (x,, Yy, 2,) to find the pixel whose geolocation is the
closest to it. First we project the point into 2D by dropping the z coordinate and then

we find the square (z,ys) that the projected point v(z,,y,) lies inside, as follow:

Ty — Xmin

° Xmax - Xmin N ()
Yv — szn

Tg = ——————— %N 6.3

’ Ymaa: - Ymm Y ()

Where Xpaz, Xmin, Ymaz, Ymin are the geospatial boundaries of all the hyperspec-
tral image and ng,n, are the number of pixels in the x and y axis accordingly.

From the square (xs,ys) we can get the set of pixels that lie inside the same square
with the point of our interest. Let’s assume that the geospatial locations of these pixels
are the vectors gi1,82,83,...,8n respectively. Then, by looping through that set of
pixels, we can find the pixel ¢ that is most likely to be the closest pixel to the point

74

V(xmyv):
i = argmin |v — g;|°. (6.4)

Finally, there is the case of the closest point to be within an adjacent square and
this occurs when the point is very close to the edges of the square. Even though this
was not implemented in DASOS when the paper [27] was published, it can be done by
checking the distance between the edges of the square and the point. If this distance is
smaller than the distance between pixel ¢ then we can loop through the points of the
corresponding adjacent square and check whether there is another pixel closer to point
v than pixel ¢. Similarly, by checking the distance between the point v and the corners
of the square (x5, ys), the case of the closest point to exist inside a diagonally-adjacent

square is also covered.

6.4 Projecting hyperspectral images into polygon meshes
generated using FW LiDAR data

This section focuses on projecting the (level-1) hyperspectral images onto the polygonal
meshes reconstructed from the FW LiDAR data as explained in Section 4.4. As shown

in Figure 6-2, the result is a coloured polygon mesh. That mesh is saved into two files:
e the .obj file that contains the 3D geometry and
e the .png file that contains the 2D texture image

The (level-1) hyperspectral images look deformed because the pixel size is not consis-
tent (Figure 6-2 shows that inconsistency). DASOS resolves this problem by adjusting
the texture coordinates of the polygonal mesh according to the geolocation of the pixels.
The texture coordinates (u,v) of each vertex lies inside the range [0,1] and if they are
multiplied by the height/width of the texture, then the position of the corresponding
pixel of the texture is given. In order to calculate the texture coordinates of each vertex
(v, Yu, 2v), the spatial representation of the hyperspectral pixels (explained at Section
6.3) is used for quickly detecting the pixel (zp,yp), whose geolocation is the closest to
a vertex. By dividing the pixel position with the number of samples (ns) and lines (1)
in the hyperspectral image, the texture coordinates (u,v) of each vertex v(z,,y,) are

calculated:

6]

Polygonal Mesh Hyperspectral Image Result of Projection
(level 1)

Figure 6-2: Projecting hyperspectral images into the polygonal meshes

Regarding the outputs, the texture coordinates of the polygonal mesh are added
into the .obj file, while the 2D texture is an image generated by applying a min-max
stretch each one of the three bands selected by the user to represent the RGB colours.
The width of the image is equal to the number of hyperspectral samples per line while

its height is equal to the number of lines.

6.4.1 Results

The results of the projection are coloured polygonal meshes. Each coloured polygonal

mesh is exported into two files:

1. the .obj file contains the 3D geometry with all the information about the vertices,

edges, faces, normals and texture coordinates, and

2. the .png is the 2D texture (an RGB image) and it is aligned with the texture

coordinates of the polygonal mesh.

Figure 6-3 shows how the visual output is affected by projecting hyperspectral data

from different sensors and by changing the selected bands.

76

Bands 150th, 60th, 23rd 137th, 75th, 38th Bands| 137th, 75th, 38th 23rd, 120th, 201st

e
Z
54|
2
=
E_<
wl
&
)
2
=
i

—_
]
&
]
H
=
=
o
>
=
b=
=}
e
w2

S~

EAGLE INSTRUMENT

-
=]
[:F)
5
]
g
=
8
1]
[
4
Z
E
=
£
iz
A
=
S

Figure 6-3: Results of Alignment; the left table shows the results of projecting hyper-
spectral images from the Eagle instrument onto the polygonal meshes generated using
FW LiDAR data and the right hand side table shows results using the Hawk instrument.

6.5 Tree Coverage Maps

As mentioned before, there are diverse opinions on whether or not integration of re-
motely sensed data improves forest monitoring |[75] [76]. For that reason, a simple
pixelwise classifier was implemented to test how the integration of NERC-ARF data,
using metrics generated from DASOS, performs for generating tree coverage maps.

The metrics generated from both hyperspectral and FW LiDAR data are 2D aligned
images (Table 3.2). In other words, the pixel (z,y) has the same geospatial coordinates
in every metric. Further the resolution of the metrics depends on the resolution of
the 3D voxelised FW LiDAR data (Section 3.2). If the dimensions of the volume are
(x,y,z) then the dimensions of the metrics are (x,y). For the LIDAR metrics, each
pixel is coloured according to the information derived from the corresponding column.
Regarding the hyperspectral metrics, (level-1) data are used to preserve the highest
possible quality. The method in Section 6.3 was used for finding the pixel from the
hyperspectral data with the closest geospatial location to the centre of each column of
the 3D voxelised FW LiDAR.

The metrics used for generating tree coverage maps are grouped into two categories
(FW LiDAR and hyperspectral metrics):

e FW LiDAR: Height (L0), Thickness (L1), Density (L2) and First Patch (L3)

e Hyperspectral: Mean (HO), NDVI (H1), Standard Deviation (H2) and Spectral
Signature (H3)

For more descriptive information and examples of the metrics please look at Table

7

3.2, where all the functionalities of DASOS are listed.

A Naive Bayesian classifier using a multi-variance Gaussian model is applied for dis-
tinguishing tree covered areas from the ground. The main idea is for each pixel/column
to find the class that is more likely to belong to (Tree or Ground). The Bayesian prob-
abilistic likelihood inference, used to find the probability of a pixel to belong to a given

class, is defined as follow:

Pz|A)P(A)

P(Alz) = P2)

(6.6)

where

x = a vector containing all the values from the metrics at a pixel

A = one of the classes, i.e. ground

P(A|x) = the probability of x to belong to class A

P(z|A) = the likelihood function that gives the probability of x given A

P(A) = the prior probability of a pixel to belong to A

P(x) = the probability of that pixel x
The probability of x to belong to each one of the classes of our interest is calculated
and then the pixel/column z is assigned to the class that is most probable to belong to.
The probability P(z|A) is a likelihood function and a Gaussian probabilistic model is
used for calculating it. After calculating the covariance (C) and mean (u) of the class

cluster, the Gaussian probabilistic model is given as follow:

P(z]A) = ;e(—%(w—u)chl(z—u)) (6.7)

2m4/|C|
6.5.1 Testing and Results

In this case, the total accuracy was increased with the integration of FW LiDAR data
and hyperspectral images. The main idea is for each pixel/column to find the class that
is more likely to belong to Tree or Ground (non-tree). Ground truth data were hand
drawn using 3D models generated with DASOS and were divided into training and
testing data. There are three test cases and, for each test case, the following metrics

are used:
e 1st test case uses the L0-L3 metrics that are generated from the FW LiDAR data.

e 2nd test case uses the HO-H3 metrics that are generated from the hyperspectral

imagery.

e 3rd test case uses LO-L3 & HO-H3 which is a combination of metrics generated

from either FW LiDAR data or hyperspectral imagery.

78

For each test case, an error matrix is generated to indicate the accuracy of the
classification results as verified against the ground truth data (Tables 6.1, 6.2 and
6.3) [79]. Each row shows the number of pixels assigned to each class relative to their
actual class. For example, the first row of Table 6.1 shows that 130445 pixels were
classified as trees, where 125375 were actual trees and the rest 5070 were ground. From
the error matrices, the classification accuracy of each test case was calculated and it is
presented in Table 6.4.

Figure 6-4 depicts the coverage maps generated for each test case. Three areas are
marked for comparison. In Area 1 there is low vegetation, in Area 2 there are short trees
and in Area 3 warehouses. Area 1 was incorrectly classified when only the hyperspectral
data were used; when the height information of the LiDAR data was included into the
classifier, area 1 was correctly classified. Similarly, Area 2 was wrongly classified when
using the only FW LiDAR metrics because the height of the trees was less than the
average training samples. But since features from the hyperspectral data are not height
dependant, the classification results of test case 1 (with hyperspectral metrics) was
better at Area 2. Area 3 seems to confuse the first two classifiers in different ways, but
the combination improved the results.

Finally, to demonstrate the usefulness of DASOS’s polygonal meshes, the results of
the tree coverage maps were projected into the polygon representations as shown in the

following Figure 6-5.

79

Ground truth data

Tree Ground Row Total
2 Tree 125375 5070 130445
% Ground 45093 228495 273588
) Total 170468 233565 404033

Table 6.1: Error Matrix showing the pixel-wise classification results of the 1st test case

that only uses hyperspectral data.

Ground truth data
Tree Ground Row Total
8 Tree 154768 39504 194272
é Ground 15700 194061 209761
Total 170468 233565 404033

Table 6.2: Error Matrix showing the pixel-wise classification results of the 2nd test case
that only uses FW LiDAR data.

Ground truth data

Tree Ground Row Total
. Tree 152597 10548 163145
% Ground 17871 223017 240888
2 Total 170468 233565 404033

Table 6.3: Error Matrix showing the pixel-wise classification results of the 3rd test case

that uses both hyperspectral and FW LiDAR data.

80

H FW LiDAR ‘ Hyperspectral Imagery \ Both ‘

Tree 73.55% 90.79% 89.52%
Ground 97.83% 83.09% 95.48%
Mean Average Precision 87.58% 86.34% 92.97%
Cohen’s Kappa 75.16 72.68 85.94

Table 6.4: Classification accuracy of each test case. Cohen’s Kappa is the percentage
accuracy after the random classification chance of 50% is removed from the consideration

[80].

Hyperspectr

al

Figure 6-4: Visual Comparison of the results of the coverage maps

e

81

Figure 6-5: 3D Coverage model, generated by projecting the results of the tree coverage
classification into a polygonal mesh.

6.6 Summary and Conclusions

In conclusion, this chapter describes an efficient way of aligning the FW LiDAR data
and hyperspectral images using a spatial representation of hyperspectral pixels. The
voxelisation of the FW LiDAR data also eases the generation of aligned metrics from
both datasets. Furthermore, the resolution of the metrics is changeable and depends
on the user-defined resolution of the voxelised FW LiDAR data. Additionally, since the
closest pixel is always selected, regardless of the distance from the point of interest, the
problem of having data at different resolution is automatically resolved.

Regarding the results, coloured polygonal meshes were generated using the align-
ment and the result demonstrated that the integration of this specific data has potential
in remote forest surveying - aside from improving the visual appeal, it also improves
automatic classification. This was shown using a simple classifier for generating tree
coverage maps. The results were positive; the classification accuracy was improved by
5.39% when both datasets were used. A more sophisticated classifier would likely give

even better results.

82

Chapter 7

Detection of Dead Standing
Eucalypt Trees without Tree
Delineation for Managing
Biodiversity in Native Australian

Forest

7.1 Introduction

7.1.1 The Importance of Dead Wood

The value of dead trees from a biodiversity management perspective is large. Once a
tree dies, its contribution to our ecosystem continues. The woody structure remains
for centuries and it contributes to forest regeneration while providing resources for
numerous surrounding organisms [81]. As an indication, more than 4000 species inhabit
dead wood in Finland [82], where an estimate of 1000 species has been extinct [83].
These species do not only include animals and birds but also organisms, like fungi.
Fungi contributes to wood decaying, formation of hollows and biodiversity, which is an
important factor for a resilient ecosystem [84]. Observing the changes of fungal diversity
on decaying wood has an increased interest in science [85] [86] [87] in order to ensure
the continuous existence of decaying wood in forests.

In Australia, tree hollows play a significant role in managing biodiversity. Nearly all
arboreal mammals rely on hollows with the exception of the (Phascolarctos cinereus)

and perhaps Ringtail Possums (Pseudocheirus peregrinus) that preferentially make a

83

stick nest, but they use hollows as well. Additionally, a large number of Australian
bird species rely on hollows for shelters [5]. Nevertheless, Australia has no real hollow
creators unlike the northern hemisphere (e.g. Woodpeckers), and therefore it relies
predominantly on natural processes of limb breakage, insect and fungal attack when
access points are provided through damage caused by wind, storms and fire.

This kind of hollow take hundreds of years to form and because of that it is more
likely to exist on dead trees. In Australia, studies predict shortage of hollows for
colonisation in the near future 3] [4]. Therefore automated detection of them plays
a significant role in protecting those animals. As an indicator of the importance of
hollows in managing biodiversity, a list of a few of the species that rely on hollows was
provided by the Forestry Corporation of NSW. Those species are shown at Figure 7-1.
According to the Department of the Environment of Australian Government and the
Government of Western Australia, three of them are threatened [88] [89]. Figure 7-1
shows the species from the provided list and the three threatened species have a red
border and their names are bold in the description.

For the aforementioned reasons, monitoring dead trees is essential for having a
resilient ecosystem. Nevertheless, the distribution of dead trees significantly varies
making detection of them difficult [90]. Remote sensing approaches has been introduce
to automate the process of monitoring forest and further increase the spatial resolution
of the monitored area. The following section gives an overview of the related work

undertaken in Remote Sensing.

7.1.2 Related Work

Remote Sensing was introduced for automatically detecting dead trees, because field-
work is time consuming considering their variance spread and the size of the relevant
forests. From a classification perceptive, the task of identifying dead standing and dead
fallen trees is different. Fallen trees are identified by detecting segments or line-like fea-
tures on the terrain surface using LIDAR data [91] [92]. Regarding standing dead trees,
their shape (reduced number of leaves or broken branches) [93| and light reflectance
(less green light illuminated) [94] are important factors for identifying them.

Previous work on dead standing trees detection performs single tree crown delin-
eation before health assessment [93] [95]. Tree-crown delineation is usually done by
detecting local maxima from the canopy height model (CHM) and then segmenting
trees with watershed algorithm [96]. Improvements has been achieved by introducing
markers controlled watershed [97] and structural elements of tree crowns with different
sizes [98]. Additionally, Popescu and Zhao [99] analyse the vertical distribution of the
LiDAR points in conjunction with the local maximum filtering of CHM.

84

Figure 7-1: A number of species that rely on tree hollows of which the red ones /
bold ones are threatened: Kookaburra, Sulphur Crested Cockatoo, Corella, Crimson
Rosella, Eastern Rosella, Galah, Rainbow Lorikeet, Musk Lorikeet, Little Lorikeet ,
Red-winged Parrot, Superb Parrot, Cockatiel, Australian Ringneck (Parrot), Red-
rumped Parrot, Powerful Owl, Sooty Ow, Barking Owl, Masked Owl, Barn Owl,
White-throated Treecreeper, Hollow Owl, Brush-tailed Possum (mammal) !

!The images of the birds were taken from the following links (Retrieved on the 27th of April 2016):
Kookaburra: <http://tenrandomfacts.com/blue-winged-kookaburra/>, Sulphur Crested Cock-

atoo: <http://aussiegal7.deviantart.com/art/Sulphur-Crested-Cockatoo-08-153341893>,
Corella: <http://www.theparrotplace.co.nz/all-about-parrots/long-billed-corella/,
Superb Parrot: <http://www.davidkphotography.com/?showimage=637>, Crimson Rosella:

<http://25.media.tumblr.com/tumblr_m3mo89c40rir4tOhiol_1280. jpg>, Eastern Rosella: <http:
//2.bp.blogspot . com/-pYxw51WjSOY/UB-LEFgd2KI/AAAAAAAAAWg/9z60PUWEGTE/s1600/ _GIS6601-
as-Smart-Object-1.jpg>, Rainbow Lorikeet: <https://www.reddit.com/r/pics/comments/328fvc/
a_rainbow_lorikeet_found_in_coastal_regions/>, Musk Lorikeet: <http://www.rymich.com/
girraween/photos/animals/birds/medium/glossopsitta_concinna/glossopsitta_concinna_001.
jpg>, Little Lorikeet: <http://www.pbase.com/sjmurray/psittacidae>, Red-winged Parrot:
<https://www.pinterest.com/pin/395894623469889727/>, Cockatiel: <http://up.parsipet.ir/
uploads/Cockatiels-for-sale. jpg>, Australian Ringneck (Parrot): <http://ontheroadmagazine.
com.au/wp-content/uploads/2015/09/Twenty-eight-parrot-2-min. jpg>, Red-rumped Parrot:
<http://parrotfacts.net/wp-content/uploads/Red-Rumped-Parrot-on-a-tree. jpg>, Pow-
erful Owl: <http://farml.staticflickr.com/219/495796536_£78dac04cl. jpg>, Sooty Owl:
<ttp://www.mariewinn.com/marieblog/uploaded_images/screech2-738532.jpg, Barking Owl:
<http://www.pcpimages.com/Nature-and-Wildlife/Birds/i-7JKSTp5/1/L/owl%20%281%200£%201%
29-L. jpg>, Masked Owl: <http://wuw.survival.org.au/images/birds/masked_owl_2_600.jpg>,
Galah: https://www.pinterest.com/pin/537546905498955709/>, White-throated Treecreeper:
<https://geoffpark.files.wordpress.com/2011/09/female-white-throated-treecreeper. jpg>,
Hollow Owl: <http://www.mariewinn.com/marieblog/uploaded_images/screech2-738532. jpg>

85

<http://tenrandomfacts.com/blue-winged-kookaburra/>
<http://aussiegal7.deviantart.com/art/Sulphur-Crested-Cockatoo-08-153341893>
<http://www.theparrotplace.co.nz/all-about-parrots/long-billed-corella/
<http://www.davidkphotography.com/?showimage=637>
<http://25.media.tumblr.com/tumblr_m3mo89c40r1r4t9h1o1_1280.jpg>
<http://2.bp.blogspot.com/-pYxw51WjSOY/UB-LEFgd2KI/AAAAAAAAAWg/9z60PUWE6TE/s1600/_GJS6601-as-Smart-Object-1.jpg>
<http://2.bp.blogspot.com/-pYxw51WjSOY/UB-LEFgd2KI/AAAAAAAAAWg/9z60PUWE6TE/s1600/_GJS6601-as-Smart-Object-1.jpg>
<http://2.bp.blogspot.com/-pYxw51WjSOY/UB-LEFgd2KI/AAAAAAAAAWg/9z60PUWE6TE/s1600/_GJS6601-as-Smart-Object-1.jpg>
<https://www.reddit.com/r/pics/comments/328fvc/a_rainbow_lorikeet_found_in_coastal_regions/>
<https://www.reddit.com/r/pics/comments/328fvc/a_rainbow_lorikeet_found_in_coastal_regions/>
<http://www.rymich.com/girraween/photos/animals/birds/medium/glossopsitta_concinna/glossopsitta_concinna_001.jpg>
<http://www.rymich.com/girraween/photos/animals/birds/medium/glossopsitta_concinna/glossopsitta_concinna_001.jpg>
<http://www.rymich.com/girraween/photos/animals/birds/medium/glossopsitta_concinna/glossopsitta_concinna_001.jpg>
<http://www.pbase.com/sjmurray/psittacidae>
<https://www.pinterest.com/pin/395894623469889727/>
<http://up.parsipet.ir/uploads/Cockatiels-for-sale.jpg>
<http://up.parsipet.ir/uploads/Cockatiels-for-sale.jpg>
<http://ontheroadmagazine.com.au/wp-content/uploads/2015/09/Twenty-eight-parrot-2-min.jpg>
<http://ontheroadmagazine.com.au/wp-content/uploads/2015/09/Twenty-eight-parrot-2-min.jpg>
<http://parrotfacts.net/wp-content/uploads/Red-Rumped-Parrot-on-a-tree.jpg>
<http://farm1.staticflickr.com/219/495796536_f78dac04c1.jpg>
<ttp://www.mariewinn.com/marieblog/uploaded_images/screech2-738532.jpg
<http://www.pcpimages.com/Nature-and-Wildlife/Birds/i-7JKSTp5/1/L/owl%20%281%20of%201%29-L.jpg>
<http://www.pcpimages.com/Nature-and-Wildlife/Birds/i-7JKSTp5/1/L/owl%20%281%20of%201%29-L.jpg>
<http://www.survival.org.au/images/birds/masked_owl_2_600.jpg>
https://www.pinterest.com/pin/537546905498955709/>
<https://geoffpark.files.wordpress.com/2011/09/female-white-throated-treecreeper.jpg>
<http://www.mariewinn.com/marieblog/uploaded_images/screech2-738532.jpg>

In the case of Eucalypt trees, single tree detection is a challenge on its own, due to
their irregular structure and multiple trunk splits. In other words, each tree trunks splits
create a local maximum leading into over-segmentation when tree crowns are detected
by local maxima filtering. Shendryk published a eucalypt trees delineation algorithm
that starts segmentation from bottom to top. In this paper, the trunks point cloud is
separated from the leaves and individual trunks are identified before proceeding to crown
segmentation [100]. Nevertheless, for that project only 17 flightlines of LIDAR data were
collected. The density resolution starts from 12 points/m? and goes up to 36 points/m?
around forested areas. For small research projects capturing this high resolution is
acceptable, but for commercial use and larger areas, the density of data collected is
above the optimal resolution for a cost effective versus quality acquisition [101]. The
project of this thesis is much larger. The resolution of our acquired LiDAR data has
an average of four pulses per square meter, which is considered an optimal resolution
in relation to the cost. But because of the tree height (up to 43m according to the
fieldwork), a small amount of pulse intensity reached the trunks and the recordered
waveform do not include enough information for individual trunk detection. An example
of this project’s discrete LIDAR data is shown in Figure 7-2 and the missing information

about the trunks is depicted.

Figure 7-2: LiDAR point cloud showing that there are very limited points reflected
from tree trunks.

The acquired data are full-waveform LiDAR data. Traditional ways of interpreting
FW LiDAR data, suggests extraction of a denser points cloud using Gaussian decom-
position [36] [37]. Nevertheless, in this project we uses the open source software
DASOS. DASOS was influenced by Persson et al [26], who used voxelisation to visu-
alise the waveforms . But, it does not only uses voxelisation for visualisations but also
for extracting metrics useful in classification. It further normalises the intensities so
that equal pulse length exists inside each voxel, making intensities more meaningful. It
further seems that the literature is moving towards voxelisation with promising results
obtained at recent publication on tree species classification [40].

Here, it is introduced an approach for quick dead tree detection derived from the

86

boost cascade approach [102] but extended into 3D. This approach further contains
similarities of the 3D tree shape signatures proposed by Dong, 2009 [103], for distin-

guishing Oaks from Douglas fir tree crowns.

7.2 Materials

7.2.1 Study Area

The study area (Figure 7-3) is a native River Red Gum (Eucalypt camaldulensis) forest
of size 95196ha? in south-eastern Australia. The regeneration of the eucalypt trees is
extremely dependant on floods and therefore, their distribution in respect to density,
health and age is highly variance [104]. Additionally, the height of Eucalyptus camal-
dulensis reaches up to 30 — 40m and their structural complexity is high with multiple
trunk splits [105]. The size and structure of the forest, with a human as reference, is
depicted in Figure 7-4, while examples of the variance shape of dead trees is shown in

Figure 7-5.

7.2.2 Acquired full-waveform LiDAR data

FW LiDAR data are supplied by RPS Australia East Pty Ltd. The data were acquired
from 900m above ground level, using the Trimble AX60 Airborne LiDAR sensor, which
was released in October 2013 [106]. The wavelength of the emitted laser was 1062nm,
the maximum scan angle was 60 degrees, and the pulse rate was 400kHz. The acquisition
was held from the 6th of March till the 31st of March 2015. The collected LiDAR were
delivered into 206 flightlines, of which 13 are cross runs used for geometric correction.
There is also a 30% of swath overlap. The point spacing along and across the track is
0.48m and the average point spacing is 4.3 points per square meter. Figure 7-6 shows an
example of a dead tree in respect to the acquired discrete LiDAR point cloud. Detailed

information about FW LiDAR related concepts are given in section 2.

7.2.3 Field Data

The field data were collected in July 2015 during the winter season of Australia and
they include tree and canopy related measurements on circular plots. There are 33 plots
with radius 35.68m and area 0.4ha allocated randomly inside the study area. On these
plots, a total of 2386 trees were individually measured. Tree measurements include the
geo-location, the trunk diameter at the standard height of 1.3m (breast heigh), height,
species and health conditions (i.e. dead or alive). The geo-location of each tree is defined

by the magnetic bearing from the centroid of the plot in degrees (range [1,360]) and

87

2.000 7.000 12.000 17.000

l‘ ‘l 3
16.000 _{:&‘ 16.000
é
\.t v
11.000 11.000
Keys
Locations of
Field Plots
6.000 6.000
25 0 25 50 75 100 km
1.000] T 1.000
2.000 7.000 12.000 17.000

Figure 7-3: The study area is depicted by yellow (95196ha?), the blue strips are the
LiDAR flightlines and the green dots are the position of the field plots.

the distance from the centroid in meters. The northing and easting coordinates of the
geo-location of each tree were calculated in post-processing. Here is worth mentioning
that a single tree may be recorded as multiple trees if there is a trunk split bellow the
breast height of 1.3m. Furthermore, 91.59% are River Red Gum and the rest are Black
Box (Eucalyptus largiflorens) and Wattle group (Acacia spp.).

Inside the field data, there are 260 dead trees recorded. Nevertheless, not all of
those trees are considered useful for biodiversity. Dead trees with big Diameter at
Breast Height (DBH) are more likely to contain hollows. Additionally, trees with DBH

88

Figure 7-4: Structure of Red Gum Forest in south-eastern Australia.

Figure 7-5: Example of dead trees indicating their variance in shape.

89

Figure 7-6: Example of a dead tree in relation to the discrete LiDAR point cloud.

smaller than the footprint spacing of the LIDAR data are not identifiable from the FW
LiDAR data. Table 7.1 shows the number of dead and alive trees in respect to their
DBH.

’ DBH (mm) H Dead Trees | Alive Trees

>2000 0 1
1000-2000 7 21
600-1000 8 146
400-600 26 290
300-400 32 286
200-300 50 462
100-200 125 904
<100 11 16
Total 260 2126

Table 7.1: Number of trees according to their DBH

Please note that the aforementioned field data were provided by Forestry Corpora-
tion of NSW, Wauchope, Australia and Interpine Ltd Group, New Zealand. For this
thesis, a case study for collecting field data was conducted in New Forest, UK. This
helped to better understand classification challenges in forestry applications. More

information about this study is provided in Appendix B.

90

7.3 Classification Challenges

This section focuses on the challenges faced while working on the detection of dead
standing eucalypt trees. Table 7.2 underlines these challenges, categorised into three
groups: the nature of the study area, the acquired data and the field data. All these

challenges influence the quality of the classifier and the accuracy of the results.

Study Area H Acquired Data H Field Data

° The study area
is a native eucalypt for-
est. Native forests contain
trees of different ages and
heights. The height of a
dead tree could be within
the range of [1.5,40] me-
ters.

e There is a high vari-
ance in the density of
the forest. Sometimes
the testing/training sam-
ples of the small dead
trees may contain infor-
mation from either nearby
alive trees or ground.

e A tree may have dead
branches but still be alive.
e Eucalypt trees have ir-
regular shapes and mul-
tiple trunk splits making
tree delineation to require
very dense acquired data.

e The pulse density
of the acquired data
does not allow bottom
to top tree delineation.
Crown detection from
DEM (top) leads to
over-segmentation due to
the multiple trunk-splits.
We, therefore, investigate
the performance of object
detection algorithms that
do not require tree delin-
eation.

e An important factor of
identifying dead trees is
the light reflectance, but
for this project this kind

of data (i.e. coloured
imagery) was not ac-
quired. Therefore, the

classifier is only trained
on tree shapes. But the
shape of the tree is not
an independent factor of
identifying dead trees,
since a tree may not have
leaves but still be alive.

e If a tree has a trunk split
below the 1.3m height,
then it is recorded as mul-
tiple trees within the field
data. This results into an
inconsistency of the "one
tree" concept.

e They contain small trees,
which are non detectable
from the acquired data.

e The accuracy of the
geo-spatial positions is un-
known. Even though it is
claimed to be within cen-
timetres, there are trees
clearing appearing on the
ground, once visualised on
top of the DEM. An exam-
ple is given in Figure 7-7

Table 7.2: The Classification challenges of automated detection of dead eucalypt trees

91

Figure 7-7: Noise contained within the field data. The green starts are the positions of
the trees, while the map is a DEM.

7.4 Methodology

This section provides an explanation of the algorithms implemented. An overview of

the work flow is given here:
1. Subtraction of the Digital Terrain Model (DTM) from the FW LiDAR data

2. Generation of training feature vectors characterising dead and alive trees, as well

as testing samples of unknown population
3. Identification of the most important relevant features using random forest

4. Generation of a probabilistic field using a weighted k-nearest neighbour (KNN)

algorithm.
5. Salt and Pepper noise removal and smoothing filtering
6. Height histogram and ground pixels removal

7. Thresholding dead pixels from alive, filtering, applying a seed growth algorithm

for grouping nearby pixels and assignment of dead trees position.

As shown in Figure 7-5, the shapes of the dead trees significantly vary from one
to another. They may therefore form multiple clusters with variant shapes and tangle
between the clusters of the alive trees. For that reason, it is preferable to use a classifica-
tion algorithm that supports non-linear boundaries and makes no assumptions of them.
All parametric classifiers (e.g. Support Vector Machine and Bayesian) create models

that summarise the properties of the class of interests, while KNN preserves all the

92

information in some way. Nevertheless, KNN is prone to noisy parameters and for that
reason the Random Forest Algorithm is used first for identifying the most significant

features and reduce dimensionality before applying the KNN algorithm.

7.4.1 Subtract DTM from FW LiDAR

A feature was implemented in DASOS for subracting pre-calculated Digital Terrain
Model (DTM) saved into .bil files. Generating a DTM is beyond the scope of this
research and the DTM files used were provided by Interpine Ltd Group. The provided
DTM files were generated using the Quick Terrain Modeller from discrete LIDAR using

the parameters shown in Figure 7-8.

Quick Terrain Modeler (INTL) (x64), v8.0.4.5 - [EC2015_C 19415 _56465.laz]
File Edit Import Export Textures Analysis Display Control Markers Help
e LAS Import B oo
: Ve a0 D 28 %0
Processing Options - . —— i
®) Process as Group Process Individually || Color by Density
P i : x
Gridding Options =] Gridding Options -
Grid Sampling 1 2 Tiling Settings Hole Fil
Eeiia T DR Posiion Size FilMethod | LEGACY TRINGULATION v
Allow Rotated Grid [] P — @ Ao @5 e e
LAS Options () Snap to Grid [Expand) () Maintain Size
n 1 P 10,000000 m
T - e () ShaptoGrid (Contract) () Fised Size (urits) e Butia e Bot
ow eader Info mport Intensi n] 7
: D 4 _) Specily Grid Tiepoint) Fixed Size (pixels) | Max Triangle Side 15.000000 m
Total Points [000.000000)} 000000 m
2474809 Import RGB % 1000000000 \ai [FG0G000000 | Edge Thieshold -
e Lpply Antishasing? || Smooth Interpolation?
Desied Retum | ALL v| ¥ Classification Y 1000.000000 Height 1000.00000
g Smoothing Filter
[Trust LAS Header Extents? (] Fered Snap Increment? Radus [IEE v| ZToewnce [1000 | m
000000
Geo-Registiation SpikeAwell Removal
Source Data Native Coordinate System OTM Active Coordinate System Amount to Trim from Borders | 0.000000 | m ["] Remove Spikes?
Edt |NZGD20007NewZealsn [Unknown Minimum Spike Level 10.000000 m
["] Use Tiepoint as Explicit Grid Origin?
Help | |mebe |Unknown Aggressiveness

®) Compatible CS Set Data to Active C5 Transfoim Data to Active CS ;
0K Cancel Help

Figure 7-8: Parameters used in Quick Terrain Modeller to obtain the DTM used here.

The subtraction of the DTM is done during the voxelisation (Section 3). The terrain
height is subtracted from the position of the sample before it is inserted into the volume.
Please note that each terrain value is not subtracted from the origin of its pulse but
from the position of each sample since the terrain value at the origin and the terrain
value at the position of a sample may differ.

Figure 7-9 shows an example of a DEM generated before and after the subtraction
using DASOS.

7.4.2 Generating feature vectors using DASOS

The generation of feature vectors is a new feature of DASOS (version 2), which was
released on the 20th January 2017 [107]. The dead tree detection is its first application.

93

B! o L T = .
(a) The DEM before subtracting the DTM (b) The DEM after subtracting the DTM

Figure 7-9: The difference of the DEM bhefore and after subtracting the terrain height.
The blue indicates big height, while the darker the red is the lower the elevation is.

This feature is useful for characterising object inside the 3D space (e.g. trees). For
each column of interest within the voxelised FW LiDAR data, information around its
local area are exported as feature vector. Multiple feature vectors are listed within
.csv files for easy manipulation into software packages specialised in statistical analysis
like R and Matlab. There are two types of exported information from these local
areas: processed and raw. If the processed option is chosen, then information like the
distribution of non-empty voxels and the standard deviation of heights are listed. A
sample of the exported processed information along with explanations is given in Table
7.3, while the entire list is provided within the Appendix A. If the exported parameters
are raw, then the corresponding intensity values of the local area’s voxels are exported.
Additionally, there are two available shapes of the local area from where the features
are extracted (the cuboid and the cylinder). The size of each shape is user defined.
Here, the aforementioned feature of DASOS is used for generating feature vectors used
as a likelihood in the classifier.

Within the field data, some plots exist on two flightlines due to the overlapping
of the flights. Overlaps happen at the edges of the flightlines and their scan angle
significantly varies. For that reason, each unique set of field plots and corresponding
flightlines is considered as a test/training plot. This results into 50 plots. These plots
were randomly divided into 5 equal training datasets. Another dataset was also created
by merging the first, second and third dataset in order to check whether the increased
training data improves the classification accuracy.

The feature vectors generated for each field plot are divided into two categories
(processed and raw intensities) and two sub-categories (cylinder and cuboid shape),

resulting into four types of feature vectors per plot. For each type, three .csv files are

94

Explanation of some features of DASOS’s feature vectors proved
to be useful for building the classifier
No Label Description
1 Height Middle Column The height of the middle column of the
cuboid/cylinder
Height Mean The Mean height of all the columns included in
the cuboid/cylinder
Height Median The Median height of all the columns included
in the cuboid/cylinder
1 Height Std The Standard Deviation of the heights of the
columns included in the cuboid/cylinder
2 Top_ Patch Len Std The Standard Deviation of all the first patches
3 Dis Std The Standard Deviation of the distances be-
tween the central voxel and every voxel that
contains an intensity above the isolevel
4 Per Int Above Iso Percentage of voxels that contain an intensity
above the isolevel
) Top_ Patch Len Mean The Mean length of all the first patches
Top Patch Len Median | The Median length of all the first patches
7 Dis_Mean Mean distance from the central voxel to ev-
ery voxel that contain san intensity above the
isolevel
8 Dis_Median Median distance from the central voxel to ev-
ery voxel that contains an intensity above the
isolevel
9 Sum_ Int Diff Z The Mirror Summed Difference of the intensi-
ties using the middle column in the z-axis as
the axis of symmetry
10 Sum_ Int Diff X The Mirror Summed Difference of the intensi-
ties using the middle column in the x-axis as
the axis of symmetry

Table 7.3: Explanation of the tem most significant features of DASOS’s feature vectors
that proved to be useful for building the dead tree classifier.

generated. The first one contains the feature vectors derived from areas where the dead
trees exist, the second one contains feature vectors from alive trees and the third one
contains one feature vector for the area around each column of the voxelised space. The
first two are used for training the classifier and the last one for testing. The feature
vectors represents the area within either a cuboid or cylinder. The dimensions of those
shapes were chosen to be a bit smaller than the estimated average size of the dead trees

to reduce the size of the irrelevant information contained within the feature vectors.

95

Figure 7-10 depicts the divisions of the datasets and the information about the feature

vectors generated.

gie_'g dda_‘at DATASET_1 | DATASET_2 | DATASET_3 | DATASET 4 || DATASET_5 |[DATASET 1_2_3
wided Into

6 datasets

Training:10 plots || Training:10 plots || Training:10 plots || Training:10 plots || Training:10 plots Training:30 plots
Testing: 40 plots J{ Testing: 40 plots)| Testing: 40 plots)| Testing: 40 plots Testing: 20 plots

For Each Dataset the
following Priors are
Created using DASOS

Processed
Intensities Intensities

Shape Same Structure as
Processed Intensities
Cylinder Cuboid
Shape Shape
Diameter: 7.2m Northing_x: 7.2m
. Height 9.6m Easting_y:7.2m
I_P;F?:;Sltles Resolution 0.8m Height_z: 9.6m
Resolution- 0 8m
List of Dead Alive each Dead Alive each
Feature
Trees Trees Column Trees Trees Column
Vectors
Usage Training Testing Training Testing

Figure 7-10: This figure shows what feature vectors were created for testing and how
they are divided for cross validation.

Before proceeding to the next step, the intensities of all the training datasets are
scaled to be in the range [1,100] and a scale factor is identified for each feature. This
scale factor is then used for scaling the testing datasets. Please note that the values
within the testing datasets may be slightly above or below the range of the training

datasets.

7.4.3 Random Forest

Random Forest is able to identify the importance of predicting variables. At first, it
generates multiple regression trees by randomly sampling the data at its nodes and
choosing the best predicting variables for each sampled data. The variable importance
is then defined according to the influence it has to the classification once this variable

is modified and the rest remain unchanged [108|. In this project, the R package is

96

used for finding the most relevant features of the vectors exported from DASOS in
identifying dead trees. The bootstrap replicates (ntree) was set to 100 and the proximity
option was turned on. Regarding the rest of the parameters, the default values of the
"randomForest" function were used.

At this point, it is worth highlighting that Random Forest failed to find relation
between the features of "Raw Intensities" due to the irregular shapes of Eucalypt trees
and the variant scan angle of each field plot. Nevertheless, "Raw Intensities" may be
useful for other classification problems; e.g. pine trees in commercial forests, where
their shape variance is smaller.

Regarding the "Processed Intensities", Figure 7-11 shows a list with the variable
importance according to Random Forest and Table 7.3 gives the explanation of each
important variable identified. The most important one is the standard deviation of
height. This is reasonable since the canopy of dead trees has bigger height variance in
comparison to alive trees whose canopy is leafy. Please note that in Figure 7-11 the
union of all datasets is used and that the significant features slightly vary depending

on each sub dataset used.

Height_Std o
Top_Patch_Len_Std]

Dis_Std o}

Per_Int_Above_lso 0

Top_Patch_Len_Mean o

Top_Patch_Len_Median 5]

Dis_Mean

Dis_Median
Sum_|Int_Diff_Z
Sum_Int_Diff_Y
Ave_Int
Mirror_Diff_X_5Std
Mirror_Diff_X_Mean
Mirror_Diff_Z_Std
Mirror_Diff_Z_Mean
Max_Int
Mirror_Diff_Y_Std
Height_Median
Mirror_Diff_Y_Mean
Top_Patch_Len_Middle_Col
Height_Middle_Column
Height_Mean
Sum_Int_Diff_X
Mirror_Diff_Z_Median
Mirror_Diff_Y_Median
Mirror_Diff_X_Median
Min_Int

Median_Int

o
90

T T T T
10 20 30 40

O 0000000000000 0COQOQ0O00O0Q

Figure 7-11: Importance of variables, identified using Random Forest.

97

7.4.4 Probabilistic Field derived from Weighted K-Nearest Neigh-
bours Algorithm

Once the ten most significant variables are identified using the Random Forest, the
k—nearest neighbour algorithm is applied to generate a probabilistic field. As mentioned
in Section 7.4.2, from DASOS we export training feature vectors of dead and alive trees.
There are positive training feature vectors from dead trees and negative feature vectors
from alive trees. To reduce bias, the number of dead and alive trees used are the same
for each test case; all the dead trees are included and alive trees are randomly selected.

Let’s assume that T is a training dataset with n feature vectors:
T: (zn, f(zn)),n=1...N. (7.1)

The outputs of function f(z,) € {0, 1}. The value 0 indicates that the feature
vector z,, was derived from an alive tree and the value 1 from a dead tree. For example
the dataset T has this form:

T : (tl,l),(tz,O),(t,g,O),(t4,1) (tn,l) (72)

Every feature vector t4 € T contains the 10 most important features exported from
DASOS, as they were identified from the Random Forest algorithm (¢t = {t1,t2,...,t10}).
Additionally, every feature is associated with a weight value according to its importance

(w = {wy,ws,...,wip}). Additionally:

i w1
tQ d w2 d
ty €ER w eER (7.3)
t10 w10
Let’s define a data vector @ = (x1,...,219) of an unknown population. How do we

calculate the probability of vector & to belong to the dead trees population? At first,

the weighted Euclidean distance from x to every t4 € T' is calculated as follow:

10

d(tg.) = | (wi % (tgi — m?) (7.4)

=1

Then the k—nearest training samples are selected. In this project kK = 7 was consid-

ered reasonable in respect to the size of training samples. In the future, testing different

98

values of k could evaluate how well the algorithm performs in relation to k. The nearest

7 indices of the training samples are selected as follow:

g = argmind(t, x) (7.5)
teT
The dataset V = {v1,va,...,v7} is a subset of the training samples T and contains

the k-nearest indices to . The dataset V' may contains samples derived from either
dead trees, alive trees or both.

For each v; € V a distance-weight u; is calculated:

P = 7.6
“ d(t;, 1) (7.6)
By the end, the probability of a dead tree is given by the following equation:
b (wx 81 £(v9))
P(dead) = (7.7)

Ele (ul X 5(1,f(v,-))) + Zle (ul X 5(O,f(vi)))

where the function d(a,b) returns 1 if a is equal to b and 0 otherwise.

For each column of the voxelised FW LiDAR data, a vector & of unknown popu-
lation is created and its probability of been dead is calculated. Figure 7-12 shows the
probability field that each column belongs to the dead trees population. The big circle
is the location of the field plot and the small circles are the locations of the dead trees.
Please note that the white spots contain no data. Those spots appear either when no
LiDAR pulse passes through a column or when the pre-defined height of the shape used

to calculate the corresponding feature vector is bigger than the elevation at this point.

7.4.5 Filtering

As shown in Figure 7-12, the probabilistic field created contains Salt and Pepper noise
because some columns of the data are empty or the shape used to extract the feature
vectors lies outside of the voxelised space (e.g. the height of the ground may be less than
the height of the shape used). This noise is removed using a median filter which assigns
to every empty pixel the median value of its non-empty neighbouring pixels (Figure 7-

13a). A smoothing filter is further applying for further noise reduction (Figure 7-13b).

99

6050360
|

070

6050340
i

065

060

6050320
I

055

0.50

045

6050200
|

6050280
I

250840 250860 250880 250900 250920

Figure 7-12: The results of the KNN algorithm. A probabilistic field was generated
indicating the probability of a pixel to be dead or alive.

6050360
|

6050360
|

065

6050340
I
6050340
I

060

055

6050320
I
6050320
I

050

045

6050300
|
=
o
o
6050300
|

6050280
I
6050280
I

250840 250860 250880 250900 250920 250840 250860 250880 250900 250920

(a) ‘Salt and Pepper’ noise reduction (b) Filtering using a smoothing kernel

Figure 7-13: Filtering the results of the KNN algorithm

7.4.6 Removing Ground Pixels

Removing the ground pixels is a trivial task because the DTM has already subtracted
from the data and therefore the height of the ground is approximately constant. A
histogram of the height values was generated. As shown in Figure 7-14b, there are
three well-defined classes (ground, trees and noise). The ground and noise are removed

using two thresholds. This processed is illustrated in Figure 7-14.

100

6050300 6050320 6050340 6050360
I i |]

6050280
|

T T T T
250840 250860 250880 250900

250920

120

100

80

60

40

20

ground

6000
|

4000
1

trees

Frequency

2000
1

noise
J—

T T T T T 1
20 40 G0 80 100 120
canopy height

(a) Canopy height in relation to voxels as ex- (b) Histogram of heights and the identified

plained in Figure 3-2

6050300 6050320 6050340 6050360
1 1 1 1

6050280
L

T T T T
250840 250860 250880 250900

(c) Visual threshold of the classes indicated in

the histogram of Figure 7-14b

250920

65

20

thresholds of the ground, trees and noise
classes

(=]

w

(5]

8

uw

=]

w

(=)

==

o

8

g 0.65
w

(=]

S 0.60
o

a9

uw

2 055
g

=] 0.50
=

w

(=]

w

(=]

o

o

o |

uw

(=]

w

T T T T T
250840 250860 250880 250900 250920

(d) Results of removing ground pixels and
noise

Figure 7-14: The process of removing the ground pixels

7.4.7 Dead and Alive Threshold, Filtering, Segmentation and Posi-

tion Assignment

In order to obtain the estimated positions of the dead trees, there are four steps left:

1. Thresholding
2. Filtering

3. Segmentation

101

removed (Figure 7-14d). After that a threshold for separating dead and alive pixels is
chosen using the training data and the alive pixels are removed (Figure 7-15a). The
output image contains outliers; pixels which are classified as dead but have no neigh-
bouring pixels classified as dead. To reduce over-detection of dead trees, these pixels
are filtered out (Figure 7-15b). Afterwards, the pixels are grouped into trees relative
to their neighbouring pixels using a seed growth segmentation algorithm (Algorithm 5
and Figure 7-16a). By the end, it is assumed that each segment S is a dead tree and

its position is calculated by taking the average geo-spatial location of the pixels that

4. Position assignment

Up to this stage, we have an image of the probabilistic field and the ground has been

belong to segment S (Figure 7-16b).

6050200 6050320 6050340 6050360
| I i |

6050280
I

6050360
|

6050320 6050340
I I

=
e
o
6050300
l

6050280
I

T
250840

(a) Thresholding dead from alive trees

T T T T T T T
250860 250880 250900 250920 250840 250860 250880 250900 250920

(b) Noise Reduction using a median filter

Figure 7-15: Thresholding and filtering

Algorithm 5 Seed growth algorithm for segmenting pixels classified as dead

1: P « all pixels classified as dead

2: s+ 0

3: while not reached the end of set P do

4: get next pixel p € P that is not assigned to a segment

5: assign pixel p to segment s

6: find K(p1,...,pn) such that K C P and every p; € K is a neighbour of p
7: Vp; € K, p < p; and repeat from line 5

8: all pixels of segment s has been labelled

9: s+ s+1

102

6050360
|
6050360
|

6050320 6050340
I i
6050340
i

6050320
I

6050200
|
6050200
|

6050280
I
6050280
I

T T T T T T T T
250840 250860 250880 250900 250920 250840 250860 250880 250900 250920

(a) Segmentation using a seed grownth algor- (b) The estimated dead tree positions (brown
tihm dots)

Figure 7-16: Segmentation and calculating the dead trees’ position.

7.5 Evaluation

The results are evaluated according to the predicted locations of the dead trees and
their distance from the actual dead trees. There are three different test undertaken
during evaluation: whether the increased training samples improves dead tree detection
or not, what shape (cylinder or cuboid) performs better and whether the predictions
are better than a random prediction or not. The random prediction is simply normally
distributed points and their density is equal to the average density of the dead trees
that exist within each training dataset.

Please note that, the results have been cross-validated using the fieldplots division
depicted in Figure 7-10. The 50 field plots are divided into 5 datasets and each dataset
uses 10 plots for testing and the rest 40 for evaluation. Additionally, an extra dataset
that uses 30 plots for training and 20 for evaluation was created to check whether the
increase number of training samples improve the precision and recall of the results.
Precision is the percentage of how many dead trees were predicted over the entire dead
tree subset, while recall is the percentage of how many of those labelled as dead were
actually dead. For each dataset, feature vectors of processed and raw intensities are
generated. But Random Forest failed to identify important variables from the feature
vectors with the raw intensities due to the irregular shapes of the dead trees. For that
reason, results were only obtained from processed voxel intensity values. The feature
vectors with raw intensities should be useful in other application where trees/object

shapes are similar. Additionally, a random set of results was generated for comparison.

103

This random prediction uses the probability of a squared meter to contain a dead tree or
not and the number of random dead trees distributed within each plot is approximately
the same as the number of dead trees that actually exist within each field plot.

Table 7.4 shows the precision and recall percentage achieved using a cylindrical
shape to extract features for the likelihood. The D1, D2, ... , D5 corresponds the five
divided datasets in the cross-validation. The D 1 2 3 uses all the training samples
from D1, D2 and D3 to train the classifier. As shown in the corresponding charts
of precision (Figure 7-17 and recall 7-18), the increased amount of training samples
do not improve the prediction. On the one hand, the bigger the training sample set
is, the shorter the distances to the k nearest neighbours are. On the other hand, as
mention in the challenges (Section 7.3), the field data contain noise and therefore the
increased noise compensates the value of the increased samples. A more selective and
clean training dataset, that would include trees of similar height and less noise would

have definitely improved the results.

Precision (%)

Distance (m) | 1 2 3 4 5 6 7 8 9 | 10
D1 7.29 | 12.15| 16.1 | 24.31 | 32.21 | 38.9 | 47.11 | 49.84 | 56.23 | 58.35

D2 2 3.67 | 836 | 18.39 | 25.08 | 33.11 | 35.78 | 40.13 | 46.48 | 50.5
D3 148 | 546 | 14.2 | 23.32 | 29.08 | 36.6 | 40.23 | 46.15 | 51.38 | 56.28
D4 0.96 | 7.24 | 20.04 | 28.26 | 33.09 | 40.09 | 44.68 | 52.17 | 56.28 | 62.07
D5 0.75 | 5.26 | 827 | 12.03 | 14.28 | 21.8 | 28.57 | 39.84 | 47.36 | 55.63
D123 0 8.69 | 13.04 | 19.13 | 24.34 | 29.56 | 34.78 | 36.52 | 41.73 | 55.65

Recall (%)

Distance (m) 1 2 3 4 5 6 7 8 9 10
D1 255 | 9.26 | 18.84 | 32.26 | 45.04 | 53.35 | 56.23 | 58.78 | 63.25 | 68.05
D2 8.22 | 13.48 | 23.02 | 31.25 | 38.48 | 51.31 | 62.17 | 65.78 | 66.11 | 69.07
D3 6.69 | 14.49 | 26.55 | 34.77 | 40.97 | 48.6 | 56.61 | 59.18 | 60.71 | 63.41
D4 5.16 | 15.5 | 30.09 | 38.29 | 43.46 | 45.89 | 51.06 | 52.58 | 55.31 | 57.75
D5 0.89 | 4.45 | 12.75| 24.03 | 29.37 | 35.9 | 41.83 | 49.85 | 59.34 | 61.12
D123 0 7.22 | 14.45| 20.07 | 45.19 | 50.6 | 51.8 | 62.65 | 63.85 | 73.49

Table 7.4: The percentage of precision and recall achieved using the cylindrical shape
to extract features.

104

Precision - TP / (TP+FP)
Cylinder

TP / (TP+ FP)
[T T N -\]
=] [==] =] (=] [==] [==] [

=]

1 2 3 4 5 6 7 8 9 10

Distance (m)

D]l emD? (3 D4 eosmD5 oD 12 3

Figure 7-17: Precision results obtained using a cylindrical shape within the voxelised
FW LiDAR to extract features. Dataset D 1 2 3 is the dataset that contains more
training samples than the rest.

Recall - TP / (TP+FN)
Cylinder

TP / (TP + FN)
=R W R Uy~ 0
o o o o o o O O

o

1 2 3 4 5 b 7 8 9 10

Distance (m)

D] ====D? D3 D/ emmmmD5 e===D 12 3

Figure 7-18: Recall results obtained using a cylindrical shape within the voxelised
FW LiDAR to extract features. Dataset D 1 2 3 is the dataset that contains more
training samples than the rest.

105

The second comparison is whether a cuboid or a cylindrical shape performs better in
extracting useful features of dead trees. The previous Table 7.4 and Figures 7-17 and 7-
18 show the results of the prediction using a cylindrical shape to extract features, while
Table 7.5 and Figures 7-19 and 7-20 show the results obtained using the cuboid shape.
The average results are very close but the cuboid shape has a wider range of good and
bad results. It is reasonable for the cylindrical shape to perform better because trees
do not have corners and therefore the information retrieved with the cuboid shape are
less meaningful. Nevertheless, the cuboid shape is slightly bigger and this may be the
justification of the wider range of good /bad results. Since it is a bit bigger it may collect
better information from big trees but more noise in respect to small trees. Therefore,

the size of the trees plays a significant role for the quality of the classifier.

Precision (%)

Distance (m) 1 2 3 4 5 6 7 8 9 10
D1 7.78 | 10.47 | 14.07 | 24.85| 32.63 | 40.11 | 479 | 53.59 | 59.28 | 61.97
D2 3.66 | 12.5 | 16.37 | 22.84 | 26.72 | 34.26 | 42.02 | 46.76 | 51.72 | 56.68
D3 1.24 | 3.42 | 20.56 | 25.23 | 29.28 | 36.76 | 41.74 | 43.92 | 50.15 | 53.27
D4 8.36 | 19.86 | 33.79 | 36.58 | 39.02 | 44.25 | 50.52 | 55.05 | 63.76 | 66.89
D5 1.96 | 1.96 | 5.88 | 15.68 | 19.6 | 25.49 | 35.29 | 41.17 | 45.09 | 62.74

Recall (%)

Distance (m) 1 2 3 4 5 6 7 8 9 10
D1 9.58 | 19.16 | 35.14 | 44.4 | 50.47 | 56.86 | 62.93 | 65.49 | 69.96 | 74.76
D2 10.52 | 20.39 | 33.22 | 37.82 | 47.36 | 62.17 | 67.1 | 70.39 | 74.01 | 75.65
D3 5.48 20 31.93 | 38.7 | 46.12 | 54.83 | 60.64 | 67.09 | 72.9 | 77.09
D4 7.9 17.93 | 24.92 | 26.74 | 33.13 | 38.29 | 45.28 | 47.41 | 50.75 | 52.27
D5 4.74 | 474 | 5.34 | 11.86 | 16.02 | 16.32 | 21.95 | 23.73 | 27.29 | 31.75

Table 7.5: This table gives the percentage of precision and recall achieved using the
Cuboid shape to extract features.

106

Precision - TP / (TP+FP)
Cuboid

TP / (TP+FP)
=) w P [%,] [=)] ~ co
o o O o o o o O o

1 2 3 4 5 6 7 8 9 10

Distance (m)

D] eeD? e—)3 D4 e [} 5

Figure 7-19: Precision results obtained using a cuboid shape within the voxelised FW
LiDAR to extract features.

Recall - TP / (TP+FN)
Cuboid

TP / (TP+FN)
= NWwW s O
o o o o o O

o

1 2 3 4 5 6 7 8 9 10

Distance (m)

Figure 7-20: Recall results obtained using a cuboid shape within the voxelised FW
LiDAR to extract features.

107

The last comparison is in relation to random. For each field plot, a random dataset
is generated with uniformly distributed locations of potential dead trees. The sum of
these locations is approximately the same as the number of dead trees that exist within
the 50 field plots. These random location were evaluated the same way as the as the
predicted result. The average results obtained using a cylindrical shape, a cuboid shape
and the random dataset are shown in Table 7.6 and Figures 7-21 and 7-22. During the
evaluation a detected tree is considered a TP if there is an actual dead tree within the
given distance. Consequently, as the minimum distance to a dead tree increases and
the number of FP reduces. In comparison to the classification results, the precision of
the random classifier significantly increases after the 6m distance from an actual dead
tree. This occurs because the distribution of the random dataset is uniform unlike the
classification results. Additionally, the dimensions of the shapes used are 7.2m diameter
or 7.2m width for cylinder and cuboid respectively. Therefore, prediction above this
distance are above the desired resolution of prediction.

From the aforementioned figures, it is clearly shown that the methodology proposed
performs better than random. This is an indicator that forest health assessment, in-
cluding dead trees detection, is possible without tree delineation. Surveying in the field
could be improved by better planning using the results of our systems. Nevertheless,
due to the noise contained within the field data, manual inspection of the acquired
LiDAR at the predicted locations of dead tree is required. Of course, this is a new
research direction and many improvements are possible (e.g. cleaning the field data
before using them to train the system or create a library with dead trees of different

sizes and uses those for training).

Precision (%)

Distance (m) 1 2 3 4 5 6 7 8 9 10
Cylinder 2.50 | 6.76 | 13.40 | 21.27 | 26.75 | 34.10 | 39.28 | 45.63 | 51.55 | 56.57
Cuboid 4.60 | 9.645 | 18.14 | 25.04 | 29.45 | 36.18 | 43.50 | 48.10 | 54.00 | 60.31
Random 0 0 2.56 | 8.06 | 11.36 | 23.81 | 52.75 | 57.14 | 72.16 | 79.49

Recall (%)

Distance (m) | 1 2 3 4 5 6 7 8 9 | 10
Cylinder 4.71 | 11.44 | 22.26 | 32.13 | 39.47 | 47.02 | 53.58 | 57.24 | 60.95 | 63.88
Cuboid 7.65 | 16.45| 26.11 | 31.91 | 38.63 | 45.70 | 51.59 | 54.83 | 59.00 | 62.31
Random 0 0 6.18 7.34 8.88 | 10.04 | 12.74 | 20.85 | 21.62 | 28.59

Table 7.6: Distance based evaluation. This table gives the percentage of precision
and recall of the average results of each shape (Cylinder and Cuboid), the Random
prediction generated for comparison and the the dataset with that its training dataset
is three times larger.

108

Precision - TP / (TP+FP)
Average vs Random

TP / (TP+FP)

[N
]
w
S

5 6 7 8 9 10

Distance (m)

Cylinder === Cuboid ===———Random

Figure 7-21: The average recall results obtained using a cuboid and a cylindrical shape
within the voxelised FW LiDAR to extract features, as well as the recall of the random
dataset.

Recall - TP / (TP+FN)
Average vs Random

TP/ (TP+FN)
NoOow s o
S © © & & o

i
o

|

6 7 8 9 10

Distance (m)

i
)
w
~

5

Cylinder e====Cuboid ===—=Random

Figure 7-22: The average precision results obtained using a cuboid shape within the
voxelised FW LiDAR to extract features, as well as the precision of the random dataset

109

7.6 Conclusions and Future Work

The importance of dead wood in our ecosystem is large and it is monitored for managing
biodiversity. The study area of these project is a native Australian forest with Red River
Gum (Eucalypt) trees, where shortage of hollows available for colonisation is predicted.
Dead trees are more likely to be aged and have hollows and therefore detecting them is
essential for protecting their inhabitants.

In this chapter, a new direction of detecting dead standing eucalypt trees was pro-
posed. Previous work on forest health assessment uses tree delineation but this leads to
over-segmentation when applied to eucalypt trees due to their irregular shapes and mul-
tiple trunk splits. Additionally the density of the acquired LiDAR data makes bottom
to top delineation impossible since information about the trunks are missing. There-
fore, this thesis investigates the possibility of detecting dead trees from voxelised FW
LiDAR data without tree delineation.

Field data were provided by Forestry Cooperation of NSW., Australia and Interpine
Ltd group, New Zealand. The GPS positions of the dead and alive trees within the
plots are given but the data contain an unknown amount of noise; from the DEM is
shown that some trees are positioned on the ground. Additionally, some trees listed
within the field data are not predictable from the acquired data due to their small size.

Regarding the methodology, DASOS is firstly used to extract feature vectors char-
acterising dead and alive trees. Then those feature vectors are run over the volume to
generate a 2D image for each testing plot with the probability of a pixel to be a dead
tree or not. Salt and pepper noise removal using a median kernel of 3x3 and smoothing
filters of size 3x3, 1/16 1/16 1/16, 1/16 1/2 1/16, 1/16 1/16 1/16, are applied. The
ground is afterwards removed and a threshold is defined to separate pixels containing
dead and alive trees. Then extra salt and pepper filtering is done using the same 3x3
median kernel for removing isolated pixels. Then, a seed growth algorithm is used to la-
bel each segment. Each segment corresponds to a dead tree prediction and its estimated
location is the average position of the pixels that belong to the segment.

The results has been cross-validated. Overall, there are three outcomes. The in-
crease amount of training samples do not improve the results of the classification, prob-
ably because while the training datasets increases, the noise increases as well. The
feature vectors derived from cylindrical shape are more reliable because the range of
the recall and precision percentages was smaller. By the end, the most important out-
come is that the results was clearly better than random prediction, justifying this way
that it is possible to identify dead trees without tree delineation.

Nevertheless, this is the first research attempting health forest assessment without

110

tree delineation and this direction is in early research stages. Therefore many improve-

ments could be done. Some improvements are proposed here:

e Manually check and improve position accuracy of dead trees using visualisations
of the field and acquired FW LiDAR data.

e Separate trees from field data according to their height. Trees with different
heights have different shape properties. In this research, the size of the shapes

used to derive the feature vectors was constant.

e Make the size of the shape, used to extract feature vectors, adjustable and derive

features that are not height dependant.

e Or categorise the trees according to their size and derive a sets of training feature

vectors according to the height of the trees.

o After the application of the seed growth algorithm, check the size and shape of
the segments and look into the possibility of merging two segments into a single

tree or dividing big segments into multiple dead trees.

e The system is usually confused at the edges of the alive trees. Adding negative

samples from ground and edges of alive trees could further improve prediction.

111

Chapter 8

Discrete versus Full-Waveform
LiDAR

8.1 Introduction

In the last decade, LiDAR data acquired from airborne platforms has been widely used
for forest monitoring. LiDAR is an active sensor that sends a laser pulse and records
the signal returned. Traditionally only discrete peaks (discrete LiDAR) have been
recorded, which may correspond to large branches and the ground surface. In these
discrete LiDAR systems, there is a minimum distance between two acquired returns;
for the Leica ALS50 sensor there has to be at least a 2.7m gap between two returns.
In recent years, there has been a shift to digitise and record the entire returned pulse
into equally space time intervals (up to 15cm vertical resolution), as shown in Figure
8-1. According to Anderson et al, 2016, [23| these full-waveform LiDAR systems can
provide more accurate estimates of height and information on canopy, sub-canopy and

under-story structure.

8.2 Polygonal Meshes Comparison

This section is a comparison between polygonal meshes generated from the discrete re-
turns and the waveform samples. Please note that the flightlines used are from the New
Forest dataset and therefore only half of the waveforms has been recorded. Due to the
high speed of the flight, the system failed to record all the waveforms and consequently
the selected areas contain discrete data from double the amount of pulses in relation
to the FW LiDAR data. Additionally, the discrete data used are the ones recorded

from the system and there is no extra processing for extracting more peak returns from

112

r

Full-waveform Discrete
LiDAR LiDAR

distance (m)

Figure 8-1: Full-waveform versus Discrete LiDAR systems (Modified from: <http:
//wwwext.arlut.utexas.edu/glam/full_waveform.html>)

the FW LiDAR. Despite that only half pulses are recorded within the FW LiDAR, the
polygonal meshes generated from the discrete data contain less information compared
to the ones obtained from the FW LiDAR data.

As shown on the 1st example of Table 8.1 the polygonal mesh generated from the
FW LiDAR data contains more details comparing to the one created from the discrete
LiDAR data. The forest on the right is more detailed, the warehouses in the middle-left
side have a clearer shape and the fence on the left lower corner seems continuous while
in the discrete data it is disconnected and merged with aliasing.

FW LiDAR polygons, compared to the discrete LIDAR ones, contain more geometry
below the outlined surface of the trees. On the one hand this is positive because they
include much information about the tree branches but on the other hand the complexity
of the polygons generated is high. The 2nd example in Table 8.1 shows the differences
in the geometry complexity of the discrete and FW polygons using the x-ray shader
of Meshlab. The brighter the surface appears the more geometry exists below the top
surface. The brightness difference between area 1 and area 2 seems less in the discrete
polygon. Nevertheless, the trees in area 2 are much taller than in area 1, therefore
more geometry should have existed in area 2 and sequentially be brighter. But the two
areas are only well distinguished in the FW LiDAR. On average the FW polygon is
brighter than the discrete polygon, which implies higher geometry complexity in the
FW polygon.

113

<http://wwwext.arlut.utexas.edu/glam/full_waveform.html>
<http://wwwext.arlut.utexas.edu/glam/full_waveform.html>

| Discrete LIDAR Full-waveform LiDAR

| 1st Example (File: LDR-FW-FW10 01-201018722.LAS, Resolution: 4.4m)

2nd Example (File: LDR-FW-FW10 01-201018721.LAS, Resolution: 1.7m)

3rd Example (LDR-FW-FW10 01-201018722.LAS, Resolution: 1.7m)

Table 8.1: Comparison between polygonal meshes generated from Discrete and FW

LiDA .
iDAR data 114

The last example of Table 8.1 compares the side views of small regions. On the one
hand the top of the trees are better-shaped in the discrete data. This may occur either
because the discrete data contain information from double pulses than the FW data or
because the noise threshold of the waveforms is not accurate and the top of the trees
appear noisier on the FW LiDAR data. On the other hand more details appear close
to the ground on the FW LiDAR data.

8.3 Interpretation of the data

Traditional ways of interpreting the full-waveform LiDAR suggest echo decomposition

for detecting peak points and interpreting the point clouds extracted [35] [24].

e Peak points extraction identifies significant features (e.g. big branches and the
ground) but the FW LiDAR data also contain information between those peak

points.

e LAS files are designed to store up to four peak returns, since only three bits are

associated for the "Return Number" descriptor.

e Object detection in point clouds depends on the density of the emitted pulses;
problems arise with the sinusoidal scanning pattern of, for example, the Leica

ALS50 system, where more pulses are emitted at the edges of the swath.

This information can be accumulated from multiple shots into a voxel array, building
up this way a more accurate and complete representation, which confers greater noise
resistance. This process, named voxelisation (Section 3.2), was introduced by Persson
et al., 2005 , who used it to visualise small scanned areas (15mx15m). The literature
of interpreting full-waveform LiDAR is also moving towards this direction; Cao et al.,
2016 [40] , used it for tree species identification, Hancock et al., 2017 [41] , improved
canopy height models of vegetation and Sumnall et al., 2016 [30], characterised forest

canopy from a voxelised vertical profile.

115

Chapter 9

Summary and Future Work

9.1 Summary

Monitoring forests is important for managing biodiversity, maintaining forest health
and noting changes of the canopy structures in order to preserve a resilient ecosystem.
Fieldwork is traditionally used to derive information about forests, but it is a time
consuming task and the area that can be surveyed is limited. For that reason remote
sensing was introduced to automate the process and increase the size of the monitored
areas.

Airborne LiDAR systems (ALS) are extremely useful in forestry because the scan-
ning laser beam penetrates the tree canopy and collects information from the backscat-
ter off leaves and tree branches down to the ground. Two types of Airborne LiDAR
were discussed: discrete and FW LiDAR. The output of the discrete LiDAR is a point
cloud which consists of identified peak lager returns. The FW LiDAR systems, for ev-
ery emitted pulse, record the entire back-scattered signal digitised into equally spaced
time intervals, resulting in a set of discretised waveforms. FW LiDAR therefore con-
tains much more information in comparison to discrete but these increased volume of
information makes interpretation difficult.

According to NERC-ARF, full-waveform LiDAR acquisitions are frequently requested
by clients but there very few research studies that use the data because existing work-
flows do not support them. For that reason, the overarching aim of this thesis is to make
the FW LiDAR data accessible to scientists with a limited background in computing.
The open source program DASOS was developed and serves that purpose. The way
DASOS handles the FW LiDAR data is fundamentally different from the existing open
source tools. Instead of peak points extraction (discrete LiDAR extraction), DASOS

voxelises the FW LiDAR data and derives information from the voxelised space; this

116

allows for efficient visualisation and analysis while also allowing multiple laser "shots"
passing through a single voxel to reinforce one another, meaning even fainter features
can potentially be identified. There are three main functionalities of DASOS and for
each one of them an application was presented in this thesis.

The first application is the extraction of an iso-surface from the voxelised FW LiDAR
data. The iso-surface extraction was done by introducing Computer Graphics concepts
into remote sensing. An algebraic definition of the voxelised FW LiDAR data is defined
and the Marching Cubes algorithm is used to extract a set of triangle primitives, which
can easily be rendered with commodity 3D accelerated hardware. New data structures
were introduced for managing real volumetric data, generated from full-waveform Li-
DAR data. Optimisations of real volumetric data are difficult to manage because they
neither manifold or closed. While seeking for an algorithmic approach for optimis-
ing iso-surface extraction, we test the performance of six different data structures, of
which three of them are new. The new structures are: 1. Integral Volumes, which is
an extension of Integral Images into 3D and allows identification of large, potentially
non-cubic, empty areas in constant time; 2. Octree Max and Min, where the minimum
and maximum values are stored into the branch nodes of an octree. Additionally, a
logarithmic approach for efficiently finding neighbouring voxels is introduced; 3. The
Integral Tree, which is an attempt to combine Integral Volumes with octrees. Overall,
Integral Volumes perform the fastest of all the tested approaches, but they require that
all the empty voxels are stored in memory. Depending on the size of the data and CPU
memory available, applicability of the approaches varies.

The second application aims to enhance the visualisations and classifications of
airborne remote sensing data by aligning hyperspectral and FW LiDAR data. In order
to preserve the highest possible quality of the hyperspectral data, their original sense
of geometry (‘level 17) is used to reduce blurring. A spatial representation of the pixel
geo-locations is stored within a hashed table with buckets of points to quickly find the
nearest geo-location of a hyperspectral pixel to a point (i.e. a vertex for the polygonal
meshes or the centre of each column within the voxelised FW LiDAR for generating
aligned metrics). There are two outputs of this application: the coloured polygonal
meshes, which are easier to view and visually interpret, and the tree coverage maps,
which are generated using a probabilistic model. Due to the combination of the data,
higher accuracy classification results are obtained.

The last application is the detection of dead standing eucalyptus trees from a native
Australian forest without tree delineation. Shortage of hollows available for wildlife
colonisation has been predicted and hollows are more likely to exist on aged dead

trees, making rapid and automated identification a priority. Tree delineation is difficult

117

because there are multiple trunk splits and the resolution of the cost-effective acquired
data does not enable bottom to top delineation. Dead tree detection without tree
delineation is a new research direction; this thesis showed that it is possible, although
the results are at an early stage and there is room for improvement. The methodology
uses feature vectors from DASOS to characterise dead and alive trees. The random
forest is used to identify the most significant features. Then an image indicating the
probability of a pixel to be from a dead or a alive tree is calculated using a distance-
weighted k-nn algorithm. The position of the fieldplots is estimated using a seed growth
algorithm to segment different dead trees after the ground and alive trees are removed
from the image. The results showed that the increased amount of training samples do
not improve the results, because of the increased amount of noise included within the
training samples; a fault in the available data more than the approach. Additionally,
the cylindrical shape used to extract features is more meaningful in comparison to the
cuboid. This approach clearly performs better than random prediction but, as it is early
research, improvements could be applied (e.g. categorising feature vectors according to
tree heights).

9.2 Future Work

While this thesis simplifies the handling of huge datasets of FW LiDAR and hyperspec-
tral imagery for forestry applications, there are still many improvements possible for

future work, such as:

e Creating an interactive and friendly graphical user interface of DASOS. This thesis
focuses on the algorithms that optimise handling the data. For that reason, the
user interface of DASOS is scripting based and there are no interactive features
(i.e. being able to measure the distance between two trees). Nevertheless, the
most likely people to use the software are geographers and foresters with no or
very little background in scripting and computer science. For that reason, a
friendlier and interactive environment in DASOS would significantly increase the
usage of FW LiDAR data.

e Another addition is to test whether direct rendering or surface reconstruction of
the FW LiDAR data works more efficiently in interactive and visual environments.
So far, the surface reconstruction approach was tackled. Investigating how well

direct rendering of voxelised FW LiDAR works is another research direction.

e In the southern UK, climate change could significantly affects the health of forests

due to native tree species being unable to adapt to the increased severity and

118

frequency of drought during the summer period, while the possibility of increased
insect pests and tree diseases is high [109]. Since 2015, NERC ARF provides
thermal hyperspectral imaging from the Long Wavelength Infrared (LWIR) bands
of the electromagnetic spectrum collected from the Specim AisaOWL sensor. The
change of heat within a forest is an indicator for assessing forest health. DASOS
could be extended to support LWIR bands and the combination of the structural
information of the FW LiDAR and the thermal parameters could improve forest

health assessment in UK.

Regarding dead tree detection, it was shown that this could be performed without
tree delineation. Nevertheless, the range of heights within the forest is large.
For that reason, the precision and recall of the results could be improved by
categorising the trees according to their heights and generating training feature

vectors relevant to the height of each category.

119

Bibliography

[1]

4]

[5]

[6]

7]

T. Elmqvist, C. Folke, M. Nystrém, G. Peterson, J. Bengtsson, B. Walker, and
J. Norberg, “Response diversity, ecosystem change, and resilience,” Frontiers in
Ecology and the Environment, vol. 1, no. 9, pp. 488-494, 2003.

D. U. Hooper, F. S. Chapin lii, J. J. Ewel, A. Hector, P. Inchausti, S. Lavorel,
and B. Schmid, “Effects of biodiversity on ecosystem functioning: a consensus of

current knowledge,” Ecological monographs, vol. 75, no. 1, pp. 3-35, 2005.

D. B. Lindenmayer and J. T. Wood, “Long-term patterns in the decay, collapse,
and abundance of trees with hollows in the mountain ash (eucalyptus regnans)
forests of victoria, southeastern australia,” Canadian Journal of Forest Research,
vol. 40, no. 1, pp. 48-54, 2010.

R. L. Goldingay, “Characteristics of tree hollows used by australian birds and
bats,” Wildlife Research, vol. 36, no. 5, pp. 394-409, 2009.

P. Gibbons and D. Lindenmayer, “Tree hollows and wildlife conservation in aus-
tralia,” CSIRO Publishing, 2002.

“Animal pests: Poss.” http://www.doc.govt.nz/conservation/threats-and-
impacts/animal-pests/animal-pests-a-z /possums/. Accessed: 19th of September
2014.

D. H. DeHayes, P. G. Schaberg, G. J. Hawley, and G. R. Strimbeck, “Acid rain
impacts on calcium nutrition and forest health alteration of membrane-associated
calcium leads to membrane destabilization and foliar injury in red spruce,” Bio-
Science, vol. 49, no. 10, pp. 789-800, 1999.

J. Holmgren, “Prediction of tree height, basal area and stem volume in forest
stands using airborne laser scanningce,” Scandinavian Journal of Forest Researcht,
vol. 19, no. 6, pp. 543-553, 2004.

120

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

S. G. Aracil and R. B. A. Herries, D.L, “Evaluation of an additional lidar metric

in forest inventory,” Proceedings of Silvilaser, 2015.

M. J. Harper, M. A. McCarthy, R. Van Der Ree, and J. C. Fox, “Overcoming bias
in ground-based surveys of hollow-bearing trees using double-sampling,” Forest
Ecology and Management, vol. 190, no. 2, pp. 291-300, 2004.

L. Rayner, M. Ellis, and J. E. Taylor, “Double sampling to assess the accuracy of
ground-based surveys of tree hollows in eucalypt woodlands,” Forest Ecology and
Management, vol. 36, no. 3, pp. 252-260, 2011.

R. B. Smith, “Introduction to hyperspectral imaging,” Microlmages, 2014.

W. Wanger, A. Ullrich, T. Melzer, C. Briese, and K. Kraus, “From single-pulse
to ful-waveform airborne laser scanners,” ISPRS Journal of Photogrammetry and
Remote Sensing, vol. 60, pp. 100-112, 2004.

A. Wehr and U. Lohr, “Airborne laser scanning - an introduction and overview,”
ISPRS Journal of Photogrammerty and Remote Sensing, vol. 54, pp. 68-82, 1999.

C. Mallet and F. Bretar, “Full-waveform topographic lidar: State-of-the-art,” IS-
PRS Journal of Photogrametry and Remote Sensing, vol. 64, pp. 1-16, 2009.

J. A. van Aardt, R. H. Wynne, and R. G. Oderwald, “Forest volume and biomass
estimation using small-footprint lidar-distributional parameters on a per-segment
basis,” Forest Science, vol. 52, no. 6, pp. 636-649, 2006.

K. Zhao, S. Popescu, and R. Nelson, “Lidar remote sensing of forest biomass:
A scale-invariant estimation approach using airborne lasers,” Remote Sensing of
FEnvironment, vol. 113, no. 1, pp. 182-196, 2009.

S. Hancock, R. Essery, T. Reid, J. Carle, R. Baxter, N. Rutter, and B. Huntley,
“Characterising forest gap fraction with terrestrial lidar and photography: An
examination of relative limitations,” Agricultural and forest meteorology, vol. 189,
pp- 105-114, 2014.

F. M. Danson, D. Hetherington, F. Morsdorf, B. Koetz, and B. Allgower, “Forest
canopy gap fraction from terrestrial laser scanning,” IEEE Geoscience and Remote
Sensing Letters, vol. 4, no. 1, pp. 157-160, 2007.

A. Suratno, C. Seielstad, and L. Queen, “Tree species identification in mixed
coniferous forest using airborne laser scanning,” ISPRS Journal of Photogramme-
try and Remote Sensing, vol. 64, no. 6, pp. 683-693, 2009.

121

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

T. Brandtberg, “Classifying individual tree species under leaf-off and leaf-on condi-
tions using airborne lidar,” ISPRS Journal of Photogrammetry and Remote Sens-
ing, vol. 61, no. 5, pp. 325-340, 2007.

A. F. Chase, D. Z. Chase, J. F. Weishampel, J. B. Drake, R. L. Shrestha, K. C.
Slatton, J. J. Awe, and W. E. Carter, “Airborne lidar, archaeology, and the ancient
maya landscape at caracol, belize,” Journal of Archaeological Science, vol. 38,
no. 2, pp. 387398, 2011.

K. Anderson, S. Hancock, M. Disney, and K. Gaston, “Is waveform worth it? a
comparison of lidar approaches for vegetation and landscape characterization,”

Remote Sensing in Ecology and Conservation, 2015.

A. Chauve, C. Mallet, F. Bretar, S. Durrieu, M. Deseilligny, and W. Puech, “Pro-
cessing full-waveform lidar data: Modelling raw signals,” International Archives

of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2007.

M. Isenburg, “Pulsewaves: An open, vendor-neutral, stand-alone, las-compatible

full waveform lidar standard,” 2012.

A. Persson, U. Soderman, J. Topel, and S. Ahlberg, “Visualisation and analysis of
full-waveform airborne laser scanner data,” V/3 Workshop, Laser scanning 2005,
2005.

M. Miltiadou, M. A. Warren, M. Grant, and M. Brown, “Alignment of hyper-
spectral imagery and full-waveform lidar data for visualisation and classification
purposes,” The International Archives of Photogrammetry, Remote Sensing and
Spatial Information Sciences, vol. 40, no. 7, p. 1257, 2015.

“Las specification version 1.3-r1,” American Society for Photogrammetry and Re-

mote Sensing, 2010.
M. Warren, “Full waveform upgrade,” NERC ARSF wiki, 2012.

M. J. Sumnall, R. A. Hill, and S. A. Hinsley, “Comparison of small-footprint
discrete return and full waveform airborne lidar data for estimating multiple forest
variables,” Remote Sensing of Environment, vol. 173, pp. 214-223, 2016.

K. H. R. A. . Z. A. Lehner, H., “Consideration of laser pulse fluctuations and
automatic gain control in radiometric calibration of airborne laser scanning data,”
Proceedings of 6th ISPRS Student Consortium and WG VI1/5 Summer School,
2011.

122

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

I. Korpela, H. O. Orka, H. V. Hyyppé, J., and T. Tokola, “Range and agc normal-
ization in airborne discrete-return lidar intensity data for forest canopies,” vol. 65,
no. 4, pp. 369-379, 2010.

M. Isenburg, “Lastools - efficient tools for lidar processing,” rapidlasso.

M. Warren, B. Taylor, M. Grant, and J. D. Shutler, “Data processing of remorely
sensed airborne hyperspectral data using the airborne processing library (apl),”

ScienceDirect, Computers and Geosciences, vol. 64, 2014.

W. Wanger, A. Ullrich, V. Ducic, T. Maizer, and N. Studnicka, “Gaussian de-
compositions and calibration of a novel small-footprint full-waveform digitising
airborne laser scanner,” ISPRS Journal of Photogrammetry and Remote Sensing,
vol. 60, pp. 100-112, 2006.

A. Neuenschwander, L. Magruder, and M. Tyler, “Landcover classification of

small-footprint full-waveform lidar data,”

vol. 3, no. 1, pp. 033544033544, 2009.

Jounal of Applied Remote Sensing,

J. Reitberger, P. Krzystek, and U. Stilla, “Analysis of full waveform lidar data
for tree species classification,” International Journal of Remote Sensing, vol. 29,
no. 5, pp. 1407-1431, 2008.

A. Chauve, F. Bretar, S. Durrieu, M. Pierrot-Deseilligny, and W. Puech, “Fullan-
alyze: A research tool for handling, processing and analysing full-waveform lidar

data,” IEEE International Geoscience and Remote Sensing Symposium, 2009.

P. Bunting, J. Armston, D. Clewley, and R. M. Lucas, “Sorted pulse data (spd)
library—part ii: A processing framework for lidar data from pulsed laser systems

in terrestrial environments,” Computers & Geosciences, vol. 56, pp. 207215, 2013.

L. Cao, N. Coops, L. Innes, J. Dai, and H. Ruan, “Iree species classification in
subtropical forests using small-footprint full-waveform lidar data,” International
Journal of Applied Earth Observation and Geoinformation, vol. 49, pp. 39-51,
2016.

S. Hancock, K. Anderson, M. Disney, and K. J. Gaston, “Measurement of fine-
spatial-resolution 3d vegetation structure with airborne waveform lidar: Calibra-
tion and validation with voxelised terrestrial lidar,” Remote Sensing of Environ-
ment, vol. 188, pp. 37-50, 2017.

123

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

M. Miltiadou, M. Grant, M. Brown, M. Warren, and E. Carolan, “Reconstruction
of a 3d polygon representation from full-wavefrom lidar data,” RSPSoc Annual
Conference 2014, New Sensors for a Changing World, 2014.

R. Crippen, “Calculating the vegetation index faster,” Remote Sensing of Enuvi-
ronment, vol. 34, no. 1, pp. 71-73, 1990.

R. N. Clark, G. A. Swayze, R. Wise, K. E. Livo, T. Hoefen, R. F. Kokaly, and
S. J. Sutley, “Usgs digital spectral library splib06a,” US Geological Survey, Digital
Data Series, vol. 231, 2007.

P. Hanrahan, “Ray tracing algebraic surfaces,” ACM SIGGRAPH Computer
Graphics, vol. 17, no. 3, 1983.

H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler, “The volume-
pro real-time ray-casting system,” Proceedings of the 26th annual conference on

Computer graphics and interactive techniques, pp. 251-260, 1999.

J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel programming
with cuda,” Queue, vol. 6, no. 2, pp. 40-55, 2008.

C. Cragsin, F. Neyret, S. Lefebvre, and E. Eisemann, “Gigavoxels: Ray-guided
streaming for efficient and detailed voxel rendering,” Proceedings of the 2009 symo-

stum on Interactive 3D graphics and games, pp. 15-22, 2009.

J. F. Blinn, “A generalization of algebraic surface drawing,” ACM Transactions
on Graphics (TOG), vol. 1, no. 3, pp. 235-256, 1982.

A. Pasko and V. Savchenko, “Blending operations for the functionally based con-

structive geometry,” 1994.

W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3d surface
construction algorithm,” ACM Siggraph Computer Graphics, vol. 21, pp. 163-169,
1987.

A. Thakur, A. G. Banerjee, and S. K. Gupta, “A survey of cad model simplification

77

techniques for physics-based simulation applications,” Computer-Aided Design,

vol. 41, no. 2, pp. 65-80, 2009.

M. Levoy, “Volume rendering: Display of surfaces from volume data,” IEEE Com-

puter Graphics and Applications, vol. 8, no. 3, pp. 29-37, 1998.

124

[54] M. Hadwiger, J. Beyer, W. K. Jeong, and H. Pfister, “Interactive volume ex-
ploration of patascale microscopy data streams using visualizatin-driven virtual

memory approach,” IEEE Transactions on Visualisation and Computer Graphics,
2012.

[55] S. Laine and T. Karras, “Efficient sparse voxel octrees,” Visualization and Com-
puter Graphics, IEEE Transactions, vol. 17, no. 8, pp. 1048-1059, 2011.

[56] B. Rodrigues de Araujo and J. A. Pires Jorge, “Adaptive polygonization of implicit
surfaces,” Science Direct, Computer and Graphics, vol. 29, pp. 686-696, 2005.

[57] E. Hartmann, “A marching method for the triangulation of surfaces,” The Visual
computer 14, no, vol. 14, no. 3, pp. 95-108, 1998.

[58] C.D. Hansen and P. Hinker, “Massively parallel isosurface extraction,” Proceedings
of the 3rd conference on Visualization 92, pp. 77-83, 1992.

[59] C. Galbraith, P. MacMurchy, and B. Wyvill, “Blobtree trees,” IEEE Computer
Graphics International, pp. 78-85, 2004.

[60] H. Sutter and A. Alexandrescu, “C++ coding standards: 101 rules, guidlines, and
best practices,” United States: Addison- Wesley, 2004.

[61] J. Wilhelms and A. Van Gelder, “Octrees for faster isosurface generation,” vol. 24,
no. 5, 1990.

[62] . W. J. Schaefer, S., “Dual marching cubes: Primal contouring of dual grids,”
Proceedings of 12th Pacific Conference on Computer Graphics and Applications,
2004.

[63] J. Wilhelms and A. Van Gelder, “Octrees for faster isosurface generation,” ACM
Transactions on Graphics (TOG), vol. 11, no. 3, pp. 201-227, 1992.

[64] S. F. Gibson, “Constrained elastic surface nets: Generating smooth surfaces from
binary segmented data,” International Conference on Medical Image Computing
and Computer-Assisted Intervention, pp. 888-898, 1998.

[65] B. Chazelle and L. J. Guibas, “Fractional cascading: I. a data structuring tech-

nique,” Algorithmica.

[66] K. Museth, “Vdb: High-resolution sparse volumes with synamic topology,” ACM
Transactions on Graphics (TOG), vol. 32, no. 3, p. 27, 2013.

125

[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

[77]

M. S. Warren and J. K. Salmon, “A parallel hashed oct-tree n-body algorithm,”
In Proceedings of the 1993 ACM/IEEFE conference on Supercomputing, pp. 12-21,
1993.

M. Niefsner, M. Zollhéfer, S. Izadi, and M. Stamminger, “Real-time 3d recon-
struction at scale using voxel hashing,” ACM Transactions on Graphics (TOG),
vol. 32, no. 2, p. 169, 2013.

C. M., N. D. F., M. Brown, D. Cosker, and M. Grant, “Improving and optimis-
ing visualisations of full-waveform lidar data,” Proceedings of the conference on

Computer Graphics € Visual Computing.

F. C. Crow, “Summed-area tables for texture mapping,” ACM Computer Graphics,
vol. 18, no. 3, pp. 207-212, 1984.

S. Hanan, “Neighbor finding in images represented by octrees,” Computer Vision,
Graphics, and Image Processing, vol. 46, no. 3, pp. 367-386, 1989.

G. Schrack, “Finding neighbors of equal size linear quadtrees and octrees in con-
stant time,” CVGIP: Image Understanding, vol. 55, no. 3, pp. 221-230, 1992.

R. Lohner, “Robust, vectorized search algorithms for interpolation on unstruc-
tured grids,” Journal of Computational Physics, vol. 118, no. 2, pp. 380-387,
1995.

R. Castro, T. Lewiner, H. Lopes, G. Tavares, and A. Bordignon, “Statistical opti-
misation of octree searches,” Compuler Graphics Forum, vol. 27, no. 6, pp. 1557—
1566, 2008.

M. L. Clark, D. A. Roberts, J. J. Ewel, and D. B. Clark, “Estimation of tropi-
cal rain forest aboveground biomas with small-foorprint lidar and hyperspectral

sensors,” ScienceDirect, Remote Sensing of Enviroment, vol. 115.

J. E. Anderson, L. C. Plourde, M. E. Martin, B. H. Braswell, M. L. Smith,
R. O. Dubayah, M. A. H. Dubayah, and J. B. Blair, “Integrating waveform lidar
with hyperspectral imagery for inventory of a northern temperate forest,” Remote
Sensing of Environment, vol. 112, no. 4, pp. 18561870, 2008.

H. Buddenbaum, S. Seeling, and J. Hill, “Fusion of full-waveform lidar and imag-
ing spectroscopy remote sensing data for the characterization of forest stands,”
International Journal of Remote Sensing, vol. 32, no. 13, pp. 4511-4524, 2013.

126

[78] J. Heinzel and B. Koch, “Investigating multiple data sources for tree species clas-
sification in temperate forest and use for single tree delineation,” International
Journal of Applied Farth Observation and Geoinformation, vol. 18, pp. 101-110,
2012.

[79] R. G. Congalton, “A review of assessing the accuracy of classifications of remotely

sensed data,” Remote Sensing of Enviroment, vol. 37, no. 1.

[80] J. Cohen, “A coefficient of agreement for nominal scales,” Educational and psy-

chological measurement, vol. 20, no. 1, pp. 37-46, 1960.

[81] J. F. Franklin, H. H. Shugart, and M. E. Harmon, “ITree death as an ecological
process,” BioScience, vol. 17, no. 8, pp. 550-556, 1987.

[82] J. Siitonen, “Forest management, coarse woody debris and saproxylic organisms:

Fennoscandian boreal forests as an example,” Fcological bulletins, pp. 11-41, 2001.

[83] I. Hanski, “Extinction debt and species credit in boreal forests: modelling the con-
sequences of different approaches to biodiversity conservation,” Annales Zoologici
Fennici, pp. 271-280, 2000.

[84] G. Peterson, C. R. Allen, and C. S. Holling, “Ecological resilience, biodiversity,
and scale,” FEcosystems, vol. 1, no. 1, pp. 6-18, 1998.

[85] N. Abrego and I. Salcedo, “How does fungal diversity change based on woody
debris type? a case study in northern spain,” Ekologija, vol. 57, no. 3, 2011.

[86] J. N. Stokland and K. H. Larsson, “Legacies from natural forest dynamics: Dif-
ferent effects of forest management on wood-inhabiting fungi in pine and spruce
forests,” Forest Ecology and Management, vol. 261, no. 11, pp. 1707-1721, 2011.

[87] D. Lonsdale, M. Pautasso, and O. Holdenrieder, “Wood-decaying fungi in the
forest: conservation needs and management options,” European Journal of Forest
Research, vol. 127, no. 1, pp. 1-22, 2008.

[88] “List of extinct, threatened and near threatened australian birds,” Environment

Protection and Biodiversity Conservation Act, 1999.

[89] Government of Western Australia, “Oarks and wildlife the list of threatened and
priority fauna list,” tech. rep., November 2015.

[90] Y. Kim, Z. Yang, W. B. Cohen, D. Pflugmacher, C. L. Lauver, and J. L. Vankat,

“Distinguishing between live and dead standing tree biomass on the north rim of

127

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

grand canyon national park, usa using small-footprint lidar data,” Remote Sensing
of Environment, vol. 113, no. 11, pp. 2499-2510, 2009.

P. Polewski, W. Yao, M. Heurich, P. Krzystek, and U. Stilla, “Detection of fallen
trees in als point clouds using a normalized cut approach trained by simulation,”
ISPRS Journal of Photogrammetry and Remote Sensing, vol. 105, pp. 252-271,
2015.

W. Miicke, B. Deak, H. M. Schroiff, A., and N. Pfeifer, “Detection of fallen trees
in forested areas using small footprint airborne laser scanning data,” Canadian
Journal of Remote Sensing, vol. 139, no. s1, pp. S32-540, 2013.

W. Yao, P. Krzystek, and M. Heurich, “Identifying standing dead trees in forest
areas based on 3d single tree detection from full-waveform lidar data,” ISPRS
Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
vol. I-7, pp. 359-364, 2012.

J. Pasher and D. J. King, “Mapping dead wood distribution in a temperate hard-
wood forest using high resolution airborne imagery,” Forest Fcology and Manage-
ment, vol. 258, no. 7, pp. 1536-1548, 2009.

I. Shendryk, M. Broich, M. G. Tulbure, A. McGrath, D. Keith, and S. V. Alexan-
drov, “Mapping individual tree health using full-waveform airborne laser scans
and imaging spectroscopy: A case study for a floodplain eucalypt forest,” Remote
Sensing of Environment, vol. 187, pp. 202-217, 2016.

S. C. Popescu, R. H. Wynne, and R. F. Nelson, “Measuring individual tree crown
diameter with lidar and assessing its influence on estimating forest volume and

biomass,” Canadian journal of remote sensing, vol. 29, no. 5, pp. 564-577, 2003.

L. Jing, B. Hu, J. Li, and T. Noland, “Automated delineation of individual tree
crowns from lidar data by multi-scale analysis and segmentation,” Photogrammet-
ric Engineering & Remote Sensing, vol. 78, no. 12, pp. 1275-1284, 2012.

B. Hu, J. Li, L. Jing, and A. Judah, “Improving the efficiency and accuracy
of individual tree crown delineation from high-density lidar data,” International
Journal of Applied Earth Observation and Geoinformation, vol. 26, pp. 145-15,
2014.

S. C. Popescu and K. Zhao, “A voxel-based lidar method for estimating crown base
height for deciduous and pine trees,” Remote sensing of environment, vol. 112,

no. 3, pp. 767-781, 2008.

128

[100] I. Shendryk, M. Broich, M. G. Tulbure, and S. V. Alexandrov, “Bottom-up delin-
eation of individual trees from full-waveform airborne laser scans in a structurally

complex eucalypt forest,” Remote Sensing of Environment, vol. 173, pp. 69-83,
2016.

[101] J. L. Lovell, D. L. B. Jupp, G. J. Newnham, N. C. Coops, and D. S. Culvenor,
“Simulation study for finding optimal lidar acquisition parameters for forest height
retrieval,” Forest Ecology and Management, vol. 214, no. 1, pp. 398-412, 2005.

[102] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple

features,” Computer Vision and Pattern Recognition, vol. 1, 2001.

[103] P.Dong, “Characterization of individual tree crowns using three-dimensional space
signatures derived from lidar data,” International Journal of Remote Sensing,
vol. 30, no. 24, pp. 6621-6628, 2009.

[104] J. Kerle, “Collation and review of stem density data and thinning prescriptions

for the vegetation communities of new south wales,” 2005.

[105] N. Wilson and N. C. C. of N.S.W, “The flooded gum trees : land use and man-

agement of river red gums in new south wales,” The Council, Sydney, 1995.
[106] E. van Rees, “Trimble’s ax60i and ax80,” GeolInformatics, vol. 7, no. 5.

[107] M. Miltiadou, N. D. F. Campbell, M. Brown, A. S. G., M. Warren, D. Clewley,
and M. Grant, “User guide of the 2nd version o dasos,” 2017.

[108] A. Liaw and M. Wiener, “Classification and regression by randomforest,” R news,

vol. 2, no. 3.

[109] D. J. Read, P. H. Freer-Smith, J. I. L. Morison, N. Hanley, C. C. West, and
P. Snowdon, “Combating climate change: a role for uk forests. an assessment of
the potential of the uk’s trees and woodlands to mitigate and adapt to climate
change,” The Stationery Office Limited, 2009.

[110] M. Sumnall, “Assessment of habitat condition and conservation status for lowland
british woodland using earth observation techniques,” Bournemouth University:
Unpublished PhD thests, 2013.

129

Appendices

130

Appendix A

DASOS’s user guide, released on
the 20th of January 2017

A.1 Introduction

FW LiDAR systems have been available for a number of years but there still very few
uses of FW LiDAR data. NERC-ARF has been acquiring airborne data for the UK and
overseas since 2010 and it has more than 100 clients of new and archived data. Many
clients request FW LiDAR data to be acquired, but despite the significant number of
requests,the majority of research still only uses discrete LIDAR. Some of the factors

regarding this slow takeup are:

e Typically FW datasets are 5 — 10 times larger than discrete data, with data sizes
in the range of 50GB — 2.5TB GB for a single area of interest. NERC-ARF’s
datasets are up to 100GB each because most clients are research institutes but

for commercial purposes each FW dataset is a couple of TB.

e Existing workflows are only able to work with the discrete data since the in-
creased amount of information recorded within the FW LiDAR makes handling

the quantity of data very challenging.

The open source software DASOS was developed to encourage foresters to use the
FW LiDAR data. DASOS was named after the Greek word "ddooc" (=forest) and
it was firstly presented at the 36th International Symposium of Remote Sensing of
the Enviroment, 2015. The main way of interpreting FW LiDAR data in DASOS
is fundamentally different from the state-of-art available software packages. In a few
words, the FW LiDAR data are voxelised by inserting the wave samples into a 3D

discrete density volume. It accumulates intensity values from multiple shots and stores

131

them into a 3D regular grid, resolving this way the problem with the sinusoidal foot-
prints pattern of the Leica system. For more information please refer to the related
paper at <https://www.researchgate.net/publication/277347868_Alignment_of_
hyperspectral _imagery_and_full-waveform_LIDAR_data_for_visualisation_and_
classification_purposes>

This user guide aims to give an in depth understanding of DASOS’s functionalities.

In a few words there are three functionalities of DASOS:
1. the construction of 3D polygon meshes;
2. the generation of 2D metrics aligned with hyperspectral images and

3. the characterisation of objects using feature vectors.

A.2 License

DASOS is released under the GNU General Public Licence, Version 3. The full descrip-
tion of the usage licence is available here:<https://github.com/Art-n-MathS/DASOS/
blob/master/License.txt>

The following paper is the paper that introduced DASOS and it must be cited in
any publications, software or other media using DASOS:

Miltiadou M., Warren M. A., Grant M., Brown M., 2015, Alignment of Hyper-
spectral Imagery and full-waveform LiDAR data for visualisation and classification
purposes, ISPRS Archives 36th International Symposium of Remote Sensing of the
enviroment. [27]

Full paper available here: at:<https://www.researchgate.net/publication/277347868_
Alignment_of_hyperspectral_imagery_and_full-waveform_LIDAR_data_for_visualisation_
and_classification_purposes>

The 1%t sample dataset provided for testing was collected by the NERC Airborne Re-
search and Survey Facility (ARSF). Copyright is held by the UK Natural Environment
Research Council (NERC). The data are free for non-commercial use, but NERC-ARSF
must be acknowledged in any publications, software or other media that make use of
these data.

The 2" sample dataset provided by Interpine Group Ltd. Copyright is held by
Interpine Group Ltd and the data are free for non-commercial use, but Interpine Group
Ltd must be acknowledged for any publications, software or other media that make use
of these data.

132

<https://www.researchgate.net/publication/277347868_Alignment_of_hyperspectral_imagery_and_full-waveform_LIDAR_data_for_visualisation_and_classification_purposes>
<https://www.researchgate.net/publication/277347868_Alignment_of_hyperspectral_imagery_and_full-waveform_LIDAR_data_for_visualisation_and_classification_purposes>
<https://www.researchgate.net/publication/277347868_Alignment_of_hyperspectral_imagery_and_full-waveform_LIDAR_data_for_visualisation_and_classification_purposes>
<https://github.com/Art-n-MathS/DASOS/blob/master/License.txt>
<https://github.com/Art-n-MathS/DASOS/blob/master/License.txt>
<https://www.researchgate.net/publication/277347868_Alignment_of_hyperspectral_imagery_and_full-waveform_LIDAR_data_for_visualisation_and_classification_purposes>
<https://www.researchgate.net/publication/277347868_Alignment_of_hyperspectral_imagery_and_full-waveform_LIDAR_data_for_visualisation_and_classification_purposes>
<https://www.researchgate.net/publication/277347868_Alignment_of_hyperspectral_imagery_and_full-waveform_LIDAR_data_for_visualisation_and_classification_purposes>

A.3 Installation Guide

A.3.1 Windows

The windows executables are available at:
<https://github.com/Art-n-MathS/DASOS/tree/master/DASOS_win>

DASOS is a command line program and a terminal is required. For Windows XP,
Vista and 7, Command Prompt is the default terminal and it can be found from the
search tab on the start menu. If you are using Windows 8, then right click on the start
icon and choose ’'Command Prompt’. Find the directory where DASOS is saved (the
command ’dir’ shows the files inside the current directory and the command ’cd’ to
open folder). Once you are in the correct directory, execute the following command to
test that the program works fine.

$: DASOS --help !

Information of all the available commands should be printed. If an error is occur,

then either a .dll file is missing or DASOS is not supported at your computer.

A.3.2 Linux

The source code is available at: <https://github.com/Art-n-MathS/DASOS>.

For compiling DASOS on Linux, there are three major dependencies:

1. gqmake-qt4 (or later release) / qtcreator

2. gmtl library - please update the .pro file to point to the correct directory
3. -std=c++11

Once those are installed compile DASOS as shown below:
$: gmake-qt4

$: make

To test it, write the following command:
$: DASOS --help

Information of all the available commands should be printed.

'the ’$:’ is not included in the command. It just illustrate the start of a command in the terminal

133

<https://github.com/Art-n-MathS/DASOS/tree/master/DASOS_win>
<https://github.com/Art-n-MathS/DASOS>

A.4 Instructions

A.4.1 Overview

DASOS is a command line program and can either be used in Command Prompt on
Windows or a Linux shell.

At first change directory (cd) to go to the directory DASOS is saved or compiled
in. Then for Windows run:

$: DASOS <argl> <arg2> ... <argN>

or §: DASOS.exe <argl> <arg2> ... <argh>

On Linux run:

$: ./DASOS <aril> <ar2> ... <argh>

For consistency this guide uses the 1% Windows example since all of the inputs,
parameters and output arguments are the same for both Windows and Linux.

The tags of DASOS are divided into three groups: Inputs, Parameters and Outputs.
1. Inputs (Section A.4.2)
2. Parameters (Section A .4.3)

3. Outputs (Section A.4.4)

Even though many tags are optional or contain default values, it’s essential to follow
the order <inputs> <parameters> <outputs> because if the outputs are defined first
unexpected results may occur, due to adding outputs to the stack before parameters
are initialised. The aforementioned Sections give an explanation of all the possible tags
of DASOS.

Before proceeding to the explanation, it worth highlighting and numbering the three
main outputs of DASOS. The corresponding sub-sections do not only explain the output
but also the parameters that are only specific to the corresponding output. The user

guide refers to those outputs using their numbers:

1. The generation of 3D polygonal meshes (Section A.4.4.1)
2. The 2D metrics aligned with Hyperspectral Imagery (Section A.4.4.2

3. The feature vectors for local inspection of data (Sub-section A.4.4.3)

At the end of this guide, there is a list of limitations and the dependencies.

134

A.4.2 Inputs

The inputs are divided into FW LiDAR, Hyperspectral and fieldplots. The FW LiDAR
are compulsory for all the functionalities of DASOS. The Hyperpsectral Inputs are
optional for the 1st and 2nd output of DASOS (3D polygonal meshes and 2D metrics),
while the fieldplots option is compulsory for the 3rd option, the feature vectors.

Table A.1 explains the tags for loading the FW LiDAR files files. Please note that

it is compulsory to load one of those options. If more than one FW LiDAR files are

loaded then it is essential to keep consistency between projects; load only one type of

full-waveform LiDAR data simultaneously. Table A.2 outlines how the hyperspectral

imagery is loaded, how to subtract a pre-calculated DTM and also how the file with

fieldplots is loaded if the 3rd output option is chosen (feature vectors).

Tags

Description

-las <filel> <file2>
. <fileN>

The name/directory of a number of LAS files (i.e.
"C:\Dir Las\LAS1.las"). It is further suggested to man-
ually define the boundaries of the area of interest when mul-
tiples input files are loaded (use command -userLimits ex-
plained at Table A.3). Otherwise the boundaries of the first
LAS file loaded are used, which may lose data from subse-
quent input files. Furthermore DASOS only supports LAS1.3
with waveform packet format 4.

-pw <filel> <file2>
. <fileN>

loads a number of pulsewave files (*.pls). Same rules apply
as the -las tag

-volume <file>

loads an exported volume, generated using DASOS, instead
of reading a LAS or pulsewave file.

-vols <dir>

loads all the exported volume that are inside the given direc-
tory "dir". This option must and only be used for generating
feature vectors (Section A.4.4.3).

Table A.1: DASOS fundamental file inputs

135

Tags

Description

-igm <igmFile-
Name>

The name/directory of the .igm file that defines the geoloca-
tion of the hyperspectral pixels. This file is an ENVI bil with
latitude and longitude per pixel.

-bil <bilFileName>

The name/directory of the .bil file that contains the hyper-
spectral cube.

-fodis <fodisFile>

The name/directory of the fodis (upward looking illumination
sensor) .bil file for hyperspectral imagery

-dtm <dtmFile-
Name>

loads a pre-calculated DTM and subtracts it from the po-
sition of each waveform sample before importing it to the
volume. Please note that the DTM file format must be .bil
and saved into float pointing numbers. Potential further file
format limitations may exist. This is optional.

-csv <field-
plots.csv>

The input csv file that lists all the trees from a number of
field-plot. This is a compulsory input for generating feature
vectors;

Table A.2: Optional or output request dependant.

A.4.3 General Parameters

All the general parameters has been pre-defined and they are therefore optional. Nev-

ertheless, parameters are advised to be adjusted for each project. Table A.3 contains

information about all the parameters and how to modify the the voxelised FW LiDAR

data during construction. Figures A-1 and A-2 show how the results are affected when

these parameters are modified.

136

Tags ‘ Description

-userLimits User define boundaries of the area of interest. If not defined then

<maxNorthY> | the boundaries of the first file loaded are used (as defined in the

<minNorthY > header).

<maxBEastX>

<minEastX>

-vl <voxel- | The voxel length controls the resolution of the output; the bigger

Length> the voxel length is the lower the resolution and the number of
cubes are. Default value is 2.5m

-nl <noise- | The noise level is the threshold of the low level filtering applied

Level > during voxelisation. Default value is 25. Please note that the

intensity of each wave sample is not transformed to volts. Addi-
tionally, it is recommended to use the -exportPulses tag to export
the amplitude of a few pulses and use those as sample data to
define an appropriate noise threshold.

-iso <isolevel >

The iso-level is the intensity boundary that defines whether a
voxel is empty or not. This is mostly used during polygonisa-
tion. The default value is zero. Please note that noise level and
isosurface level are closely related but only the isolevel can be
modified from an exported volume.

Table A.3: Description of the all the available tags that customises voxelisation of the

FW LiDAR data.

137

Flight file name:
LDR-FW-FW10_01-
201009821,LAS
(1.2GB)

M3IA 2PIS

M| A JUoly

Figure A-1: Selecting Region of Interest

- Visualisation with = Visualisationswith || ., _ | Visualisations with
% 2| differentvoxel lengths B various isolevels & % various noise levels
= 5 Z = 3
0 5
15
k4
30
75
135

Figure A-2: Effect of modifying the user defined parameters; voxel length, isolevel and
noise level.

138

A.4.4 Outputs

DASOS has three main outputs and three supplementary. At least one of them must
be requested for the program to run.

The main outputs are the following:

1. Polygonal Meshes: exported into an .obj which is a standard graphics format
that stores the vertices, edges and faces of the polygon. An image is also exported

if hyperspectral data are loaded. (Section A.4.4.1)

2. 2D Metrics: information about the scanned area in .asc format. If hyperspectral
Images are loaded then aligned metrics from both datasets are available. (Section
A4.42)

3. List of Feature Vectors: exported into .csv files. Each row of the spreadsheet

contains information about a local 3D cylinderal or cubic area. (Section A.4.4.3)

The three suplementary outputs are explained in Table A.4 while the main outputs
are explained in Sections A.4.4.1, A.4.4.2 and A.4.4.3 respectively.

Tags Description

--help It prints a list with all the available commands along with their
description.

-exportPulses Method that exports a number of pulses into a .csv file. The input

<noOfPulses> <noOfPulses> the number of sample pulses to be exported into

<fileName.csv> | the <fileName.csv> file. It is used for deciding the noise level
threshold for each project.

-exportVolume ¢ | Exports the volume into an ASCII file to speed up future inter-
<volumeFileName[>polation of the data. ’c’ refers to compressed and it’s an implicit
functionality. If ’c’ is not included then a non compressed file is
exported, which sometimes is too big to be read back into DA-
SOS. Therefore ’c’ should always be included.

Table A.4: The supplementary ouput options of DASOS.

139

A.4.4.1 Polygonal Meshes

1st Main Output: 3D Polygon Mesh Generation

‘ Tags Description Output Example
-obj The input <objFileName> is
<objFileName>| the name of the .obj file where

the polygon representation of
the LiDAR file will be exported
to. A texture is also exported
when hyperspectral images are
loaded.

Table A.5: Description of generating polygonal meshes and example outputs

140

A.4.4.2 2D Metrics Aligned with Hyperspectral Imagery

2nd Main Output: Generation of 2D metrics

aligned with hyperspectral imagery

‘ Tags

Description

-map <type>
<outputName>

The available types are the following. Full description of each

option is given in Table A.7 along with output examples.

e HEIGHT

e THICKNESS

e DENSITY

e FIRST_PATCH

e LAST_PATCH

e AVERAGE_HEIGHT_DIFFERENCE
e LOWEST_RETURN

e INTENSITY_MAX

e INTESNSITY_AVG

e HYPERSPECTRAL_MEAN
e NDVI

o ALL_FW

All the maps are exported into .asc format and can be
loaded into QGIS and other software packages. The
ALL_FW option generates one metric for each available full-
waveform LiDAR related metric and their names are: output-
Name+metricsType+.asc

Table A.7 explains what each metric is and gives output exam-

ples.

-map
HYPERSPECTRAIL
<band>

<outputName>

The hyperspectral map needs an extra parameter defining

which band will be output.

Table A.6: DASOS ouput options

141

Metric Description

HEIGHT (DEM):
The distance between the top non-empty voxel

and the lower boundaries of the volume.

THICKNESS:
The distance between the first and last non

empty voxels in every column of the 3D volume.

DENSITY:
Number of non-empty voxel over all voxels
within the range from the first to last non-empty

voxels.

FIRST PATCH:
The number of non-empty adjacent voxels,
starting from the first/top non-empty voxel in

that column.

LAST PATCH:
The number of non-empty adjacent voxels,
starting from the last /lower non-empty voxel in

that column.

AVERAGE HEIGHT DIFFERENCE:
An edge detection algorithm.

LOWEST RETURN

The height of the lowest non empty voxel (the
actual heights are very low and close to each
but the example image has been scaled and the

different seems bigger)

142

INTENSITY MAX

The maximum intensity of each column

INTENSITY AVG

The average intensity per column

HYPERSPECTRAL MEAN

The mean of the hyperspectral spectrum.

NDVI

The Normalised Difference Vegetation Index in-
dicates whether green vegetation exists or not
and it is derived from the electromagnetic spec-

trum as follow:

NIR-VIS
NDVI = SR vis (A1)

where the NIR is the near-infrared region of
the spectrum (700-2500nm) and VIS is the Vis-
ible/Visual spectrum (430-770) [43].

HYPERSPECTRAL
A single user defined hyperspectral band.

Table A.7: Description of generating polygonal meshes and example outputs

143

A.4.4.3 List of Feature Vectors

This is useful for characterising object inside the 3D space (e.g. trees). For each column
of the voxelised FW LiDAR, information around its local area are exported.

Similar to the previous functionalities of DASOS, the program requires <inputs>
<parameters> and <outputs>. Those requirements are described in Tables A.8, A.9
and A.10 respectively. Please note that these inputs are also described with the rest of

the inputs in Section A.4.2.

‘ 3rd Main Output: List of Feature Vectors - Inputs

|
‘ Tags ‘ Description ‘
|

-vols <volDir> ‘ the directory of the volume of interest generated beforehand.
-icsv the input csv file that contains all information about the field-

<fieldplots.csv> plots.

Table A.8: Explanation of how to define the two compulsory inputs to get the 3rd main
output of DASOS

Figure A-3 shows an example of a file with fielplots. A file may contain multiple
fieldplots, but it has to have at least 6 columns: the 3 columns define the fieldplot
(northing, easting and radius) and the rest give information about the trees (northing,
easting and class). The order of the columns has no significance. Figure A-3 shows an
example. The labels of the those columns could vary and can be defined as explained
in Table A.9.

IsDead Morthing Easting X Y RADIUS

Live 60 70| 55/ 75 40
Live 60 70 75 85 40
Dead 60 70| 65 55 40
Live 60 60 20 60 40

Figure A-3: Example of fieldplot input

Additionally, the size and shape of the investigated area from where the features are

extracted is user defined and Table A.9 lists all the related, modifiable parameters.

144

3rd Main Output: List of Feature Vectors - Parameters

Tags

Description

-column <label>

the label of the column that defines the class of each entry (e.g.
<label> = isDead)

-class <className
or ALL>

the name of the class (e.g. dead or alive) of interest or ALL. If a
class is chosen, then only the columns that contain a tree of that
class are taken into consideration; a feature list is exported for each
tree that belongs to this class only. The ALL option is the area of
interest and generates a template for each column that lies inside

the voxelised space.

-ttype square <x>
<Ly <z>

generates a feature vector derived from a cuboid area of size x, y, z
voxels. The systems finds the first non empty voxel starting from
the top of the column. By default it moves one voxel upwards
and sets that to be the top of the cuboid/cylinder. It is highly
recommended to use odd numbers, otherwise the centre of the
cuboid/cylinder will be wrongly set and unpredicted output values

may occur.

-ttype cylinder

<h> <r>

generates a cylindrical template with height h and diameter (2 x
r + 1) voxels and height h. The systems finds the first non empty
voxel starting from the top of the column. By default it moves one

voxel upwards and sets that to be the top of the cuboid/cylinder.

-mheight <n>

moves the template into the y-axis n voxels upwards instead of one

which is the default. The value n must be a positive number.

-eparameters

<raw Oor pro-

cessed >

the ‘raw’ option saves all the intensity values of the template and
the ‘processed’ option saves parameters derived from the raw in-
tensities. Table A.11 explains how each processed parameters is

derived.

Table A.9: Explanation on how to Modify the Parameters of the 3rd Main Output of

DASOS

145

3rd Main Output: List of Feature Vectors - Outputs

‘ Tags Description
-ocsv <nameS- | For each .vol file found in the given directory (using -vols), a csv
tart> file is exported. The name of each file exported is:

<nameStart> + <volFileName> + ".csv”
and it contains the list of the feature vectors generated from the

corresponding volume

Table A.10: Explanation of the tag that exports the list of feature vectors

Figure A-4 shows examples of two exported list of feature vectors: one with pro-
cessed parameters and one with raw intensities. In each .csv file exported, each line is a
feature vector. The first column is its ID as it defined during run time. The second and
third columns define the centroids of each investigated local area (cuboid/cylinder). The
other columns contain either processed or raw parameters. If they are processed, then
information like mean height and standard deviation of heights are listed. Table A.11
is a full list of all the proccessed parameters. If the parameters are raw, then the cor-
responding voxel intensity values are exported. The label of each voxel is "v_x_y z",
where "v_0_0_0" is the lower voxel of the cuboid/cylinder and it has the minimum

easting and northing it as well.

Index | centroid_x | centroid_y Height_Middle_Column Height_Mean Height Median Height_Std Sum_Int_Diff_X

0 251836.109 6048994.5 36 35.5 36 0.943 95.125
1 251843.906 6048980.5 19.8 20.1 20.4 0.671 0
2| 251846.312 6043979 16.8 16 15.6 102 169.167
3 251849.312 6049022.5 36 35.7 36.6 0.964 169.278
4| 251851.703 6048988 17.4 16.2 16.2 0.346 408.065
5/ 251852.906 6048975 27 26.4 26.4 0.917 68.537
6/ 251857.109 6048974 17.4 17.4 18 0.849 162.25
7/ 251858.312] 6049010.5 40.8 40 39.6 102 251.36
8/ 251860.703 6048984 17.4 16.6 16.2 0.663 67.883
9/ 251861.312 6049000 19.8 20.1 20.4 0.671 0

Index | centroid_x centroidy VO OO VOO1 vooOo2 VOO3 VOO4 VWO 10 VO11 WVO12 VWOo13

0 251836.109 6048994.5 7 14 10 26 0 0 9 10.25 11.875
1 251843.906 6048980.5 o 0 0 o 0 0 o 0 0
2/ 251846.312 6048979 9 60.75 70.75 13 =] 0 o 0 71.667
3 251849.312 6049022.5 48.556 93.222 20.5 o 7 0 o 0 0
4/ 251851.703 6048988 100.2 53.222 10.5 7.143 0 0 o 0 47.25
5/ 251852.906 6048975 o 0 0 o 0 26.875 0 10444 13.182
6/ 251857.109 6048974 o 0 0 o 0 45.667 93 16.333 7.25
7 251858.312 6049010.5 o 0 0 o 0 0 o 8 6
8 251860.703 6048984 o 45.75 8 7.333 0 0 o 0 6.8
9/ 251861.312 6049000 0 0 0 0 0 0 0 0 0

Figure A-4: Example of .csv files with a list of feature vectors exported.

146

Explanation of the List of Feature Vectors Output

with the Processed Intensities

| Label

Description

Height Middle Column

The height of the middle column of the
cuboid/cylinder

Height Mean

The Mean height of all the columns included in the

template

Height Median

The Median height of all the columns included in the

template

Height Std

The Standard Deviation of the heights of the columns

included in the template

Sum Int Diff X

The Mirror Summed Difference of the intensities us-
ing the middle column in the x-axis as the axis of

symmetry

Sum Int Diff Y

The Mirror Summed Difference of the intensities us-
ing the middle column in the y-axis as the axis of

symmetry

Sum_Int Diff Z

The Mirror Summed Difference of the intensities us-

ing the middle column in the z-axis as the axis of

Ssymmetry

Max_Int The maximum intensity found inside the
cuboid/cylinder

Min Int The minimum intensity found inside the
cuboid /cylinder

Ave Int The average intensity of the voxels that contain an
intensity above the isolevel

Median Int ‘ The median intensity of the voxels

Per Int_Above Iso

Percentage of voxels that contain an intensity above

the isolevel

Dis Mean

Mean distance from the central voxel to every voxel

that contain san intensity above the isolevel

147

Dis_ Median

Median distance from the central voxel to every voxel

that contains an intensity above the isolevel

Dis_Std

The Standard Deviation of the distances between the
central voxel and every voxel that contains an inten-

sity above the isolevel

Top Patch Len Middle C

olThe length of the top patch of the middle column of
the cuboid/cylinder

‘ Top Patch Len Mean

‘ The Mean length of all the top patches

‘ Top_ Patch Len Median

‘ The Median length of all the top patches

‘ Top Patch Len Std

‘ The Standard Deviation of all the top patches

Mirror Diff X Mean

The Mean Mirror Difference of the voxel intensities
with the middle column of the x-axis as the symmetric

axis

Mirror Diff X Median

The Median Mirror Difference of the voxel intensities
with the middle column of the x-axis as the symmetric

axis

Mirror_Diff X Std

The Standard Deviation Mirror Difference of the
voxel intensities with the middle column of the x-axis

as the symmetric axis

Mirror Diff Y Mean

The Mean Mirror Difference of the voxel intensities
with the middle column of the y-axis as the symmetric

axis

Mirror Diff 'Y Median

The Median Mirror Difference of the voxel intensities
with the middle column of the y-axis as the symmetric

axis

Mirror Diff Y Std

The Standard Deviation Mirror Difference of the
voxel intensities with the middle column of the y-axis

as the symmetric axis

Mirror Diff 7Z Mean

The Mean Mirror Difference of the voxel intensities
with the middle column of the z-axis as the symmetric

axis

148

Mirror Diff Z Median

The Median Mirror Difference of the voxel intensities
with the middle column of the z-axis as the symmetric

axis

Mirror Diff 7Z Std

The Standard Deviation of the Mirror Difference of

the voxel intensities with the middle column of the

z-axis as the symmetric axis

Table A.11: Explanation of the processed parameter exported within a feature vector

A.5 Exercises

A.5.1 Sample Data

These exercises will give you an in depth understanding of DASOS, while working

with real examples. At first, copy the folder "DASOS_userGuide" into your C:\ drive.
This folder is available to download from <https://github.com/Art-n-MathS/DASOS/

tree/master/DASOS_win>: To ease typing, all the example commands are given in the

ExerciseCommands.bat file, which can be opened in a text editor.

There are three datasets provided for the following exercises and they are available
at: <https://www.dropbox.com/sh/hzpl16guebxvjmb/AADQsJ0sqKkx01CX4mJjvBPVa?
d1=0> and <https://plymouthmarinelaboratory.webex.com/plymouthmarinelaboratory/
j.php?MTID=m305f59dda16e653b2946c6a3b00e93f4>. Please copy the data inside the
directory <DASOS/DASOS_win/SampleDATA > check that the following files are in-

cluded:

1. 1% sample dataset inside < C:\DASOS_userGuide\SampleDATA\DATASET_1>:

(a
(

(c
(d

(e
(f

)
)

(h) Readme.txt

€098211b_osgn.igm

LDR-FW-FW10_01-201009821.LAS

)
b) €098211b_FODIS.bil
) €098211b_FODIS.bil.hdr

e098211b_masked.bil
e098211b_masked.bil.hdr

)
€098211b_osgn.igm.hdr
(g) gn.ig
)

2. 2" sample dataset inside < C:\DASOS_userGuide\SampleDATA\DATASET_2>

149

<https://github.com/Art-n-MathS/DASOS/tree/master/DASOS_win>
<https://github.com/Art-n-MathS/DASOS/tree/master/DASOS_win>
<https://www.dropbox.com/sh/hzpl16gue5xvjmb/AADQsJOsqKkx0lCX4mJjvBPVa?dl=0>
<https://www.dropbox.com/sh/hzpl16gue5xvjmb/AADQsJOsqKkx0lCX4mJjvBPVa?dl=0>
< https://plymouthmarinelaboratory.webex.com/plymouthmarinelaboratory/j.php?MTID=m305f59dda16e653b2946c6a3b00e93f4>
< https://plymouthmarinelaboratory.webex.com/plymouthmarinelaboratory/j.php?MTID=m305f59dda16e653b2946c6a3b00e93f4>

Australia_1.pls
Australia_1.wvs
Australia_1_dtm.bil
Australia_1_dtm.hdr
Australia_2.las
Australia_2.wdp
Australia_2_dtm.bil
Australia_2_dtm.hdr
Australia_3.las

Australia_3.wdp
3. 3"% sample dataset inside < C:\DASOS_userGuide\SampleDATA\DATASET_3>

(a) myTestVol_.vol
(b) myTestVol_flat.vol

(c) testFieldplot.csv

Information about data usage and related license are given in Section A.2

Once all the files are copied across, open the command Prompt and type:
$: cd C:\DASOS_userGuide\DASOS
This will bring you to our working directory. In case you are using a different directory
then go to your work directory inside the folder DASOS and the rest of the commands
should work OK.

A full guide of all the available tags is given with the following command.

$: DASOS --help

The same information can be found inside the Readme.txt file and this User Guide
(Section A.4).

A.5.2 Exercises

A.5.2.1 Deciding Noise Threshold

The following examples export the amplitudes of 12 pulses into a .csv file to help us

decide what noise threshold to use.
$:DASOS -las ..\SampleDATA\DATASET_1\LDR-FW-FW10_01-201009821.LAS

150

-exportPulses 12 ..\LAS21pulsesSamples.csv

$: DASOS -las ..\SampleDATA\DATASET_2\Australia_2.las -exportPulses 12

. .\Australia_2_pulsesSamples.csv

A.5.2.2 Exporting metrics from DASOS

The following commands export a height map into .asc files. These files can be used in
QGIS. This will give us the location of the flightlines and the relation between them.

$: DASOS -las ..\SampleDATA\DATASET_2\Australia_2.las -nl 6 -vl1 2 -map
height ..\Australia_2_v12_height

$: DASOS -las ..\SampleDATA\DATASET_2\Australia_3.las -nl 6 -vl1 2 -map
height ..\Australia_3_v12_height

Generating a single map at the beginning is useful for deciding which flightlines lie

inside the area of interest.

A.5.2.3 Loading Multiple Flightlines

As mentioned before, for loading multiple flightlines it is suggested to manually define
the boundaries of the area of interest. The following command loads two flightlines,

generates a volume from the area of interest and exports it into the Australia2-3.vol file.

$: DASOS -las ..\SampleDATA\DATASET_2\Australia_3.las
. .\SampleDATA\DATASET _2\Australia_2.las -nl 6 -vl 2 -iso 4 -userLimits
6199990 6199639 762405 761951 -exportVolume c ..\Australia2-3.vol

A.5.2.4 Exporting Metrics

The following command loads the pre-computed volume and creates a height map and
all the FW related metrics. Please note that height is also a FW related metric, therefore
it will be created twice.

$: DASOS -volume ..\Australia2-3.vol -map height ..\Australia2-3 -map
all_fw .. \Australia2-3

151

A.5.2.5 Subtracting Pre-computed Digital Terrain Model

The next command loads two LAS files, a pre-computed DTM file is subtracted from
the wave samples’ positions while the volume is created, the volume is exported into
the Australia2-3_dtm.vol file and finally it exports a height metric.

Please note that when a DTM is introduced, a new volume must be created. Since the

volumetric files are raster data and contain no information about pulses.

$: DASOS -las ..\SampleDATA\DATASET_2\Australia_3.las
. .\SampleDATA\DATASET 2\Australia 2.las -dtm
. .\SampleDATA\DATASET_2\Australia_2_dtm.bil -nl 6 -vl 2 -iso 4
-userLimits 6199990 6199639 762405 761951 -exportVolume
¢ ..\Australia2-3_dtm.vol -map height ..\Australia2-3_v12_dtm_height

You may then use the same volume to export more metrics:
$: DASOS -volume ..\Australia2-3_dtm.vol -map AVERAGE_HEIGHT_DIFFERENCE
..\Australia2-3_dtm_AVG_height_diff

A.5.2.6 Pulsewave Data

As mentioned before, it is suggested to first export the amplitudes of a few pulses to
decide on an appropriate noise threshold.
$: DASOS -pw ..\SampleDATA\DATASET_2\Australia_1.pls -exportPulses 15

. .\PLS_amplitudeSamples.csv

And then you can generate the desired metrics:
$: DASOS -pw ..\SampleDATA\DATASET_2\Australia_1.pls -nl 5 -dtm

. .\SampleDATA\DATASET _2\Australia_1_DTM_1im.bil -vl1 3 -map thickness
PLS_v13_thickness -exportVolume ..\Australia 1_v13_dtm.vol

A.5.2.7 Polygon Representation

DASOS create 3D polygon representation using the ’-obj’ tag. The 3D polygon rep-
resentations are exported into .obj format, which can be visualised using animation
software packages. For this workshop we are using Meshlab because it is a free tool and
it can handle millions of triangles.

Meshlab is available to download from here: <http://meshlab.sourceforge.net/>

and it is also included into our working directory "DASOS_userGuide".

152

<http://meshlab.sourceforge.net/>

An example of generating polygons is given below:
$: DASOS -las ..\SampleDATA\DATASET_1\LDR-FW-FW10_01-201009821.LAS -nl 20
-vl 1.7 -obj ..\LAS21.0bj -exportVolume c ..\LAS21 _v11.7.vol

The generated volume is also saved because we need it for the following exercises.

A.5.2.8 Hyperspectral Imagery

One of the key functionalities of DASOS is the alignment with the hyperspectral im-
agery. DASOS can export 3D coloured polygon representations and aligned metrics
between FW LiDAR and hyperspectral data.

For the 3D coloured polygon representations you must not use any directory for the
exported .obj file Analysisname because the link between the texture and the .obj file
will not work. Here is an example:
$: DASOS -volume ..\LAS21 v11.7.vol -bil

. .\SampleDATA\DATASET_1\e098211b_masked.bil -igm

.. \SampleDATA\DATASET _1\e098211b_osgn.igm -fodis

. .\SampleDATA\DATASET _1\e098211b_FODIS.bil -rgb 240 78 23 -obj

LAS21_coloured.obj

The LAS21.0bj file will be saved into the current directory, which in our case is:
C:\DASOS_userGuide\DASOS.

Please note that the following command should give the same results, but as men-
tioned before importing an exported volume is faster than generating from scratch.
$: DASOS -las ..\SampleDATA\DATASET_1\LDR-FW-FW10_01-201009821.LAS -nl 20
-vl 1.7 -bil . .\SampleDATA\DATASET_1\e098211b_masked.bil -igm

. .\SampleDATA\DATASET_1\e098211b_osgn.igm -fodis

. .\SampleDATA\DATASET_1\e098211b_FODIS.bil -rgb 240 78 23 -obj

LAS21_coloured.obj

An examplre of generating aligned metrics is given below. The NDVI map is quite
slow, so we may need to wait a bit for that.
$: DASOS -volume ..\LAS21 v11.7.vol -bil

. .\SampleDATA\DATASET_1\e098211b_masked.bil -igm

. .\SampleDATA\DATASET _1\e098211b_osgn.igm -fodis

.. \SampleDATA\DATASET _1\e098211b_FODIS.bil -map hyperspectral 140
..\LAS21_band140 -map height ..\LAS21_height -map NDVI ..\LAS21_ndvi

153

A.5.2.9 All Commands Together

Of course, we are able to use multiple outputs into a single command, even though
that’s not recommended due to the long processing time. An example of merging pre-
vious commands into one is given below:
$: DASOS -las ..\SampleDATA\DATASET_1\LDR-FW-FW10_01-201009821.LAS -nl 20
-vl 1.7 -bil . .\SampleDATA\DATASET_1\e098211b_masked.bil -igm
. .\SampleDATA\DATASET _1\e098211b_osgn.igm -fodis
. .\SampleDATA\DATASET_1\e098211b_FODIS.bil -rgb 240 78 23 -obj
LAS21_coloured.obj -map
hyperspectral 140 ..\LAS21_band140 -map height ..\LAS21_height -map
NDVI ..\LAS21 _ndvi -exportVolume ..\LAS21 v11.7.vol

A.5.3 Exporting feature vectors from exported voxelised FW LiDAR

This examples takes as input two test .vol files and a fieldplot file. The file named
"myTestVol flat.vol" contains a flat surface, while inside the "myTestVol .vol" the
middle column of the first dead tree that is defined inside the "testFieldplot.csv" is one
voxel higher. The covered area of the two .vol files is identical and for that reason the
fieldplot circle lies inside both files. The following command produces a list of vectors
with features derived after processing the voxel intensities of the cuboids that contain
dead trees according to the input field data:
$: DASOS -vols ..\SampleDATA\DATASET_3 -icsv
. .\SampleDATA\DATASET_3\testFieldplot.csv -eparameters processed -column

isDead -class dead -ttype square 3 3 5 -ocsv templatesProcessedCuboid

The following command produces a list of vectors with the voxel intensities of cylin-
ders that contain dead trees according to the input field data:
$: DASOS -vols ..\SampleDATA\DATASET_3 -icsv
. .\SampleDATA\DATASET_3\testFieldplot.csv -eparameters raw -column
isDead -class ALL -ttype cylinder 5 3 -ocsv templatesALLRawCylinder

A.6 Limitations

Limitation and bugs have been reported throughout the report, but here is a short

summary of them.

154

e Exporting polygon representation could end up generating a bunch of cones in-

stead of a nice smooth surface.

e Subtracting DTM depends on the input file format and, by subtracting the height,

the input data may end up outside the boundary of the volume.

e DASOS may be not be perfectly portable to all systems as development and

testing was done on two computers only.

e The raw waveform amplitude is used as intensity and it hasn’t been converted to
an absolute digitizer voltage, for the LIDAR systems where these raw values are

scaled.
e Intensities also have not been calibrated.

e Sometimes memory allocation exceptions occur.

For full bug reports and under development improvements please check the following
link:
<https://docs.google.com/spreadsheets/d/10yEbp463cLA_GtKkyiaWEzScW7N9cVxbPsbyOmuXuzZY/

edit?usp=sharing>

A.7 Related Forums and Social Media

Ounline social media are used for sharing DASOS updates and discussing issues or po-

tential improvements. Information about DASOS can be found in the following:

e Google Groups: DASOS - the native full-waveform (FW) LiDAR software
<https://groups.google.com/forum/#!forum/dasos---the-native-full-waveform-
fw-lidar-software>
This group is used for bringing potential issues and possible improvements up in

discussion.

e Blogger: ART & M@thS
<http://miltomiltiadou.blogspot.co.nz/2015/03/1las13vis.html>
This blog is more general. The blog contains updates and explanation of DASOS
but usually the code used in DASOS is broken down into small projects and

explained how they can be used in other applications.

o Twitter: @MiltoMiltiadou
Milto Miltiadou’s twitter, where all the updates and news of DASOS are pub-
lished.

155

<https://docs.google.com/spreadsheets/d/10yE5p463cLA_GtKkyiaWEzScW7N9cVxbPs5y0muXuZY/edit?usp=sharing>
<https://docs.google.com/spreadsheets/d/10yE5p463cLA_GtKkyiaWEzScW7N9cVxbPs5y0muXuZY/edit?usp=sharing>
<https://groups.google.com/forum/#!forum/dasos---the-native- full-waveform-fw-lidar-software>
<https://groups.google.com/forum/#!forum/dasos---the-native- full-waveform-fw-lidar-software>
<http://miltomiltiadou.blogspot.co.nz/2015/03/las13vis.html>

Appendix B

Case Study: Field Work in New

Forest

B.1 Introduction

This section is a case study containing field work to better understand the challenges
of working remotely with forests. Remotely sensed data contain a great amount of
information but in order to build a good system for identifying trees and materials, an
in depth knowledge of them is required [12]. For that reason, this case study was created;
information about the New Forest, which is a forest in the south of United Kingdom,
were collected and a small validation dataset was created. The dataset created includes
the tree species and approximate heights of the trees in two areas of interest.

Before travelling to the New Forest, two areas of interest were selected. These areas

were selected according to the following criteria:

e There were LIDAR data of the selected area to be able to compare what we can

see on the ground with the scanned data

e Areas that had a variation of tree species were selected. This was done according
to the (non-validated) results of a thesis of Bournemouth University that classified
the tree species of the New Forest [110]. This helped get a broader range of tree

species.

The following sections give a detailed description of the information gathered during
the trip. This includes the species and height maps generated, the different types of

landscapes found and the challenges faced.

156

B.2 Validation Data Collected

The tree classes were initially defined by the provided Bournemouth thesis [110]. A
colour was chosen for each tree class and, while being in the New Forest, the aim
was to mark each tree on the paper map with the corresponding colour. Using QGIS
(Quantum Geographic Information System) the classification results of the forest as-
sessment, undertaken by Sumnall in 2013 [110], were coloured with the same colours to
ease comparison.

At the aforementioned forest assessment, there were 26 classes from 14 different
species; the remaining 12 classes were young versions of the 14 species. Here the classes
are reduced to 14 by merging all the young trees into the tree species classes (in the
4 years gap between the 2010 assessment and and the visit to new Forest in 2014, the
young trees would have aged). See table B.1 for the initial 14 classes. Nevertheless,
more tree species existed in the areas of interest in New Forest than those 14 classes.

The colours and symbols of the extra tree classes are shown on table B.2.

Tree Colour
Beech

2. 0ak
3. Silver Birch
4. Sweet Chestnut
5. Corsican Pine
6. Coast Redwood
7. Douglas Fir
8. Grand Fir
9. Japanese Larch
10. Lawson Cypress
11. Norway Spruce
12. Scots Pine
13. Western Hemlock
14. Common Adler

Table B.1: Colours of the initial 14 classes

During the visit, tree species maps were generated for a few square meters. The
position of the trees were found relative to easily-spotted refereence points (e.g. road
crossing) that were marked in advanced. That was done because, according to Dr. Ross
Hill, no GPS can be accurate enough when trees are around since the satellite signal
bounces off the leaves and reduces the positioning accuracy. In professional fieldwork, a
total station is used but, for the purposes of this visit, it was not considered necessary.

By the end of the case study, ground maps were coloured according to the tree species

157

Tree Colour / Symbols

15. Ash A

16. Hawthorn Blue pen colour

17. Malus (Crabapple) Highlighter

18. Holly Tree

19. Trees that have been cut down X

20. Trees that are mixed together // (added on top of the normal colour)

Table B.2: Classes that were added during the trip

identified and estimates of the approximate heights of the trees were also noted down.

The following four maps were created for each selected area. The first two maps were
created before the trip during preparation, while the last two contain the information
collected during the field work.

e a screen shot of the area from Google map,

e the classification results from the forest assessment [110],
e the coloured tree species map and

e the approximated height map.

Comparing the validation dataset created with the classifications done at Bournemouth
University (which were not validated), it is clear there are misclassifications. This is
shown in Figures B-1 and B-2 and it is likely that is occurs due to the over-segmentation
of trees. Those wrong classifications justify that validation and field work data are es-

sential for building a good classifier.

158

The first area is included in the LAS file named LDR-FW-FW10 01-201018715.LAS
and it lies inside the limits: X = (433453 - 433761), Y = (102193 - 102405) [British
National Grid coordinates|. The four maps that relate to these areas are shown in
Figure B-1.

(a) Google map screenshot

(c) Tree species map, from field work (d) Approximate heights of the trees, from field
work

Figure B-1: The first area of interest and the related maps.

159

The second area is included in the LAS files named LDR-FW-FW10_ 01-201018719.LAS
and LDR-FW-FW10 01-201018718.LAS and it lies inside the limits: X = (436442 -
436835), Y = (102334 - 102585) [British National Grid coordinates|. The four maps

created for these areas are shown in Figure B-2.

-

#h .
e N

(b) Forest assessment classifications

nsfer Report of Milto - with 2nd coections.docx [Compatibility Mode] - Word
VIEW

L e [. o=
S e P
o) :

(] \J

S -
23 "ﬁ‘

aem- % 7]
¥ 4;6‘5‘ 2 L‘“[)‘
12

(c) Tree species map, from field work (d) Approximate heights of the trees, from field
work

Figure B-2: The second area of interest and the related maps.

160

B.3 Landscape types

During the forest assessment in New Forest, not only validation data were collected, but

also useful information about classifying the data. The following images show examples

of the five landscape types that were found in New Forest:
1. Heather fields:

Figure B-3: Trees that have been cut down

2. Grass with a few scattered trees:

Figure B-4: Grass with a few scattered trees

3. Dense Forest:

Figure B-5: Dense forest

161

4. Bushes and Shrubs

Figure B-6: Trees that have been cut down

5. Lakes and rivers, which are more rarely found

Figure B-7: Lakes and rivers

Please note that the landscape types could significantly differ according to the
scanned area. For example, the landscape of New Forest is flat while the landscape
of Eaves Wood (another scanned forest in UK) is hilly. The landscape type should be

taken into consideration during classifications.

B.3.1 Classification challenges

This case study brought further understanding of the challenges of creating validation
data and writing a tree species classifier. These challenges are listed and explained
below with some photos taken during field work:

1. Field work and remotely sensed data collection should happen around the same
time to avoid changes that happens over time. In the New Forest case, the airborne
data were collected in 2010 and many changes occurred in the intervening time - in the
most extreme cases, some trees had been cut down.

2. Machine learning becomes more time consuming as the number of classes in-
creases. Regarding tree species classes, it is unrealistic to expect that all tree species

will be identified. This point is underlined by the fact that the list of tree species used

162

Figure B-8: Trees that have been cut down

in the tree assessment held by Sumnall [110] didn’t include a number of trees (e.g. holly
trees and crabapple) that were widespread in New Forest.

3. There is much more than just trees in the forest, including mobile animals, that
may confuse a classification if LIDAR returns hit rocks, animals, vehicles or buildings
instead of branches, leaves and trunks. Any classification must account for inevitable

errors due to background clutter that need to be invariant to.

Figure B-9: Animals in New Forest

4. Large validation datasets from a single area will not be sufficient, because trees of
the same species are usually gathered together. For instance, the first selected area has
many pine trees while the second one has many oak trees. Therefore, it is important to
have many field plots spread well within the area of interest.

5. Further, some trees are entwined together which makes it difficult to identify
from the data whether they are one or two trees. Examples are shown in Figure B-10;
in the left image, the trunks of the two trees are very close to each other and, in the

right image, a crabapple and an oak tree have grown together.

163

Figure B-10: Trees, which are mixed together

B.4 Conclusions and Discussion

To sum up, the trip to the New Forest was essential for better understanding the
challenges of remote monitoring of forests. During the visit, a small validation dataset
was generated; the species and height of trees that are inside the two areas of interest
were noted down. Field work is a time consuming task and weeks are required for
generating a big enough validation dataset, but it is essential for understanding the
object of interest (trees) in relation to the scanned data. Challenges identified were
also explained and this increased knowledge about forests should lead to implementing

a better classifier.

164

	Abstract
	Declaration of materials provided
	Acknowledgements
	Abbreviations and Glossary
	Publications
	Awards
	Conference Presentations
	Workshops
	Intended Publications
	1 Introduction
	1.1 Forest Monitoring: Importance and Applications
	1.2 Background Information about Remote Sensing and Airborne Laser Scanning Systems
	1.3 Problem
	1.4 Aims and Objectives
	1.5 Thesis Overview
	1.6 Thesis Structure

	2 Acquire Data
	2.1 Airborne LiDAR systems: An in-depth Explanation
	2.2 Brief Description of the LAS1.3 File Format
	2.3 Leica Vs Trimble Instruments: Limitations, Differences and Advantages
	2.4 Hyperspectral Imagery

	3 The open source software DASOS and the Voxelisation Approach
	3.1 State-of-Art FW LiDAR Software Packages
	3.2 Voxelisation for Interpreting FW LiDAR data
	3.3 The functionalities of DASOS
	3.4 Summary and Discussion

	4 Surface Reconstruction from Voxelised FW LiDAR Data
	4.1 Introduction
	4.2 Basic Rendering Approaches of the Polygonal-Contours from Volumetric Data
	4.3 Algebraic Definition of the Volume
	4.4 Surface Reconstruction with the Marching Cubes Algorithm
	4.5 Results

	5 Data structures for Efficient Surface Reconstruction of Non-Manifold Volumetric Data
	5.1 Problem and Challenges
	5.2 Related work
	5.3 Overview
	5.4 Integral Volumes
	5.5 Octree Max and Min
	5.6 Integral Tree
	5.7 Data Structures Summary
	5.8 Results and Experiments
	5.9 Discussion

	6 Alignment with Hyperspectral Imagery
	6.1 Introduction
	6.2 Previous Work
	6.3 Spatial Representation of Hyperspectral Pixels for Quick Search
	6.4 Projecting hyperspectral images into polygon meshes generated using FW LiDAR data
	6.5 Tree Coverage Maps
	6.6 Summary and Conclusions

	7 Detection of Dead Standing Eucalypt Trees without Tree Delineation for Managing Biodiversity in Native Australian Forest
	7.1 Introduction
	7.2 Materials
	7.3 Classification Challenges
	7.4 Methodology
	7.5 Evaluation
	7.6 Conclusions and Future Work

	8 Discrete versus Full-Waveform LiDAR
	8.1 Introduction
	8.2 Polygonal Meshes Comparison
	8.3 Interpretation of the data

	9 Summary and Future Work
	9.1 Summary
	9.2 Future Work

	Bibliography
	Appendices
	A DASOS's user guide, released on the 20th of January 2017
	A.1 Introduction
	A.2 License
	A.3 Installation Guide
	A.4 Instructions
	A.5 Exercises
	A.6 Limitations
	A.7 Related Forums and Social Media

	B Case Study: Field Work in New Forest
	B.1 Introduction
	B.2 Validation Data Collected
	B.3 Landscape types
	B.4 Conclusions and Discussion

