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I 

Abstract        

Due to energy scarcity coupled with environment issues, it is likely to see the biggest 

shift in generation portfolio in the UK and world wide, stimulated by various 

governmental incentives policies for promoting renewable generation and reducing 

emission. The generation expansion in the future will be driven by not only peak 

demand growth but also emission reduction target. Thus, the traditional generation 

expansion planning (GEP) model has to be improved to reflect this change against the 

new environment. The policy makers need a better assessment tool to facilitate the new 

environment, so they can make appropriate policies for promoting renewable generation 

and emission reduction, and guide the generation mix to evolve appropriately over time. 

Since the expansion of new generation capacities is highly capital intensive, it makes 

the improvement of GEP quite urgent and important.  

The thesis proposes the GEP modelling improvement works from the following aspects: 

• Integrating short-term emission cost, unit commitment constraints in an emission 

target constrained GEP model.  

• Including the network transmission constraints and generation location optimization 

in an emission constrained GEP.   

• Investigating the impacts of multi-stage emission targets setting on an emission 

constrained GEP problem and its overall expansion cost.  

• Incorporating the uncertain renewable generation expansion and short-term DSR into 

the GEP problem and find out its potential contributions to the GEP problem. 

A real case study is made to determine the optimal generation mix of the Great Britain 

in 2020 in order to meet the 2020 emission reduction target. Different optimal 

generation mixes of the UK in 2020 are identified under a series of scenarios. The 

scenarios are constructed according to different GB network transmission capacity 

hypotheses and demand side response (DSR) level scenarios.  



II 

Acknowledgements 

Firstly, I would like to thank my supervisor, Prof. Furong Li for her unwavering support 

and guidance through out the period of my PhD research. 

I would also like to thank my colleagues, Dr. Chenghong Gu, Miss Zhimin Zhang, Mr. 

Fan Yi, Mr. Mohammad Hidayat, Mr. Zhanghua Zheng, Mr. Ran Li, Mr. Jiangtao Li 

and Miss. Lin Zhou for discussing with me, and sharing knowledge and useful resources 

with me.   

I would also like to express my heartfelt gratefulness to my previous fellow colleagues, 

Dr. Bo Li, Dr. Yan Zhang, Dr. Zechun Hu, Dr. Huiyi Heng, Dr. Bless Kuri, Dr. Vandad 

Hamidi, who gave me too much inspiration, and many constructive suggestions.  

And, I would also thank all my friends in the University of Bath, including Miss. 

Shuang Yu, Miss. Jianyi Chen, Mr. Chao Gao, Mr. Hualei Wang, Miss. Chen Zhao and 

Mr. Zhipeng Zhang, for their help in my PhD life. 

In addition, I am sincerely grateful for the Overseas Studentship that University of Bath 

provided me for my three year PhD study. 

Last but not least, I would like to express my deepest thanks to my beloved parents for 

their endless encouragement and support in my life.   

 



III 

Contents 

Abstract............................................................................................................................ I 

Acknowledgements.........................................................................................................II 

Contents ........................................................................................................................ III 

List of Symbols ............................................................................................................VII 

List of Figures............................................................................................................ VIII 

List of Tables ................................................................................................................ XI 

Chapter 1Chapter 1Chapter 1Chapter 1    Introduction..........................................................................................1 

1.1 Generation Expansion Planning..............................................................................2 

1.2 New Environment for Generation Expansion Planning..........................................4 

1.2.1 Emission Reduction and Emission Cost ..........................................................4 

1.2.2 Generation Gap and Renewable Generation ....................................................5 

1.2.3 Demand Side Response....................................................................................6 

1.3 Research Motivation ...............................................................................................7 

1.3.1 Impacts of Short-term Emission Cost on GEP.................................................9 

1.3.2 Operational Constraints and Renewable Generation Expansion ...................10 

1.3.3 Network Constraints and Generation Location..............................................11 

1.3.4 Impacts of Multi-Phase Emission Targets on GEP........................................11 

1.3.5 Impacts of Demand Side Response on GEP ..................................................12 

1.4 Research Objectives and Contributions ................................................................13 

1.5 Thesis Layout ........................................................................................................14 

Chapter 2Chapter 2Chapter 2Chapter 2    Emission Constrained Generation Expansion.................................16 

2.1 Introduction ...........................................................................................................17 

2.2 Prerequisites ..........................................................................................................19 

2.2.1 Operational Cost Modelling...........................................................................19 

2.2.2 Emission Modelling .......................................................................................21 



IV 

2.2.3 Economic Dispatch (ED) and Unit Commitment (UC) .................................22 

2.2.4 Dynamic Programming ..................................................................................23 

2.3 Problem Formulation ............................................................................................24 

2.3.1 Operational Sub-problem...............................................................................25 

2.3.2 Generation Mix Optimization ........................................................................27 

2.3.3 Wind Power Modelling..................................................................................28 

2.4 Solution Methodology...........................................................................................29 

2.5 Case study .............................................................................................................32 

2.5.1 Test Input .......................................................................................................33 

2.5.2 Implementation ..............................................................................................34 

2.6 Results and Discussion..........................................................................................35 

2.6.1 Effect of Network Constraints .......................................................................37 

2.6.2 Effect of Emission Price ................................................................................38 

2.6.3 Emission Reduction Limit .............................................................................38 

2.7 Chapter Summary..................................................................................................40 

Chapter 3Chapter 3Chapter 3Chapter 3    GEP with Location Optimization .....................................................41 

3.1 Introduction ...........................................................................................................42 

3.2 Prerequisites ..........................................................................................................45 

3.2.1 Linear Programming and Mixed Integer Linear Programming .....................45 

3.2.2 DC Power Flow..............................................................................................46 

3.2.3 Generation Shift Distribution Factor..............................................................48 

3.3 Problem Formulation ............................................................................................49 

3.3.1 The Basic MILP GEP Model .........................................................................49 

3.3.2 Inclusion of DC Load Flow Constraints ........................................................50 

3.3.3 GEP with Unit Location Optimization...........................................................51 

3.3.4 Inclusion of UC constraints............................................................................53 

3.3.5 Model Demonstration ....................................................................................55 

3.4 Solution Method....................................................................................................56 

3.4.1 Introduction of LPSOLVE .............................................................................56 

3.4.2 Building Objective and Constraint Matrix.....................................................58 

3.5 Case Study.............................................................................................................59 

3.5.1 Test Input .......................................................................................................60 

3.5.2 Experiment Implementation...........................................................................61 



V 

3.5.3 Results and Analysis ......................................................................................63 

3.6 Chapter Summary..................................................................................................72 

Chapter 4Chapter 4Chapter 4Chapter 4    GEP with Multi-Phase Emission Targets ........................................74 

4.1 Introduction ...........................................................................................................75 

4.1.1 Multi-Phase Emission Targets Setting...........................................................75 

4.1.2 Literature Reviews .........................................................................................76 

4.2 Problem formulation .............................................................................................78 

4.3 Case Study.............................................................................................................82 

4.3.1 Test System ....................................................................................................82 

4.3.2 Experiment Implementation...........................................................................85 

4.3.3 Results and Discussion...................................................................................86 

4.4 Chapter Summary..................................................................................................97 

Chapter 5Chapter 5Chapter 5Chapter 5    GEP with Renewable Generation and Demand Response .............98 

5.1 Introduction ...........................................................................................................99 

5.1.1 Literature Review.........................................................................................100 

5.2 Prerequisites ........................................................................................................102 

5.2.1 Stochastic Programming ..............................................................................102 

5.2.2 Two-Stage Stochastic Linear Programming ................................................103 

5.2.3 Monte Carlo Simulation...............................................................................104 

5.3 Problem Formulation ..........................................................................................106 

5.3.1 GEP with DSR and Stochastic Wind Generation ........................................107 

5.3.2 Wind Power Output Scenarios Construction ...............................................111 

5.4 Case Study...........................................................................................................112 

5.4.1 Test System ..................................................................................................112 

5.4.2 Experiment Implementation.........................................................................116 

5.4.3 Results and Discussion.................................................................................117 

5.5 Chapter Summary................................................................................................129 

Chapter 6Chapter 6Chapter 6Chapter 6    Optimal Generation Mix of Great Britain in 2020 .......................131 

6.1 Introduction .........................................................................................................132 

6.2 Reduced GB Network Model..............................................................................133 

6.3 GB Case Study ....................................................................................................137 

6.3.1 Test Inputs....................................................................................................137 



VI 

6.3.2 Case Study Implementation .........................................................................144 

6.3.3 Results and Analysis ....................................................................................144 

6.4 Chapter Summary................................................................................................154 

Chapter 7Chapter 7Chapter 7Chapter 7    Conclusions and Future Works ......................................................156 

7.1 Conclusions .........................................................................................................157 

7.1.1 Emission Constrained Generation Expansion in Chapter 2 .........................157 

7.1.2 GEP with Location Optimization and Unit Commitment Constraints in 

Chapter 3 ...............................................................................................................159 

7.1.3 GEP with Multi-Phase Emission Targets in Chapter 4................................161 

7.1.4 GEP with Renewable Generation and Demand Response in Chapter 5 ......162 

7.1.5 Optimal Generation Mix of GB in 2012 in Chapter 6 .................................165 

7.2 Future Works.......................................................................................................167 

7.2.1 GEP under Deregulated Electricity Market Environment ...........................167 

7.2.2 Stochastic Modelling of Wind Generation...................................................167 

7.2.3 Incorporating Reliability Assessment into GEP Model ...............................168 

Appendix. A .................................................................................................................169 

Appendix. B .................................................................................................................171 

Appendix. C .................................................................................................................174 

Appandix. D.................................................................................................................182 

Publications..................................................................................................................188 

Bibliography ................................................................................................................205 

 
 
 



VII 

List of Symbols 
 

Bio Biomass Power Plant 

CC Capital Cost 

CCGT Combined Cycle Gas Turbine Power Plant 

COAL PF Pulverized Fuel Coal Fired Power Plant 

DECC Department of Energy & Climate Change 

EU-ETS European Union Emission Trading Scheme 

FC Fuel Cost 

FET Final Emission Target 

GB Great Britain 

GENCOs Generation Companies 

GEP Generation Expansion Planning 

GHG Green House Gas 

IGCC Integrated Gasification Combined Cycle  

LCPD Large Combustion Plants Directive 

MET Mid-term Emission Target 

MILP Mixed Integer Linear Programming 

NGET National Grid Electricity Transmission plc. 

OCGT Open Cycle Gas Turbine  

PS Pumped Storage Power Plant 

RO Renewable Obligation 

SHETL Scottish Hydro-Transmission Ltd 

SPT Scottish Power Transmission Ltd 

UNFCCC Nations Framework Convention on Climate Change 

  



VIII 

List of Figures 
Fig 2-1 Input-output heat rate curve with valve operations ............................................20 

Fig 2-2 Quadratic input-output cost rate curve ...............................................................21 

Fig 2-3 Dynamic programming for unit commitment solution.......................................23 

Fig 2-4 Flow chart of the generation mix optimization algorithm..................................31 

Fig 2-5 IEEE 30 bus test system [59]..............................................................................33 

Fig 2-6 Optimized Mixes under Different Emission Targets with Network Constraints36 

Fig 2-7 Optimized Mixes under Different Emission Targets without Network 

Constraints ......................................................................................................................36 

Fig 2-8 Cost and Emission Results with Network Constraints .......................................39 

Fig 2-9 Cost and Emission Results without Network Constraints..................................39 

Fig 3-1 Five Bus Test System .........................................................................................55 

Fig 3-2 Generator Distribution, Emission Target =9.5E+06 tonnes, 9.0E+06 tonnes and 

8.5E+06 tonnes................................................................................................................70 

Fig 3-3 Generator Distribution, Emission Target =8.0E+06 tonnes ...............................71 

Fig 3-4 Generator Distribution, Emission Target =7.5E+06 tonnes ...............................71 

Fig 3-5 Generator Distribution, Emission Target =7.0E+06 tonnes ...............................71 

Fig 4-1 EU GHG emissions towards an 80% domestic reduction (100% =1990)[95] ...75 

Fig 4-2 Structure of the Two Phase Emission Targets GEP Model................................78 

Fig 4-3 Five Bus Test System .........................................................................................83 

Fig 4-4 Generation Mix in Initial Year ...........................................................................88 

Fig 4-5 Optimal Generator Location in Step 1 when MET=7.5E06 tonnes, FET=4.0E06 

tonnes ..............................................................................................................................89 

Fig 4-6 Optimal Generator Location in Step 1 when MET=7.0E06 tonnes, FET=4.0E06 

tonnes ..............................................................................................................................89 

Fig 4-7 Optimal Generator Location in Step 1 when MET=6.5E06 tonnes, FET=4.0E06 

tonnes ..............................................................................................................................89 

Fig 4-8 Optimal Generator Location in Step 1 when MET=6.0E06 tonnes, FET=4.0E06 

tonnes ..............................................................................................................................90 



IX 

Fig 4-9 Optimal Generator Location in Step 1 when MET=5.5E06 tonnes, FET=4.0E06 

tonnes ..............................................................................................................................90 

Fig 4-10 Optimal Generator Location in Step 1 when MET=5.0E06 tonnes, 

FET=4.0E06 tonnes ........................................................................................................90 

Fig 4-11 Optimal Generator Location in Step 2 when MET=7.5E06 tonnes, 

FET=4.0E06 tonnes ........................................................................................................93 

Fig 4-12 Optimal Generator Location in Step 2 when MET=7.0E06 tonnes, 

FET=4.0E06 tonnes ........................................................................................................93 

Fig 4-13 Optimal Generator Location in Step 2 when MET=6.5E06 tonnes, 

FET=4.0E06 tonnes ........................................................................................................93 

Fig 4-14 Optimal Generator Location in Step 2 when MET=6.0E06 tonnes, 

FET=4.0E06 tonnes ........................................................................................................94 

Fig 4-15 Optimal Generator Location in Step 2 when MET=5.5E06 tonnes, 

FET=4.0E06 tonnes ........................................................................................................94 

Fig 4-16 Optimal Generator Location in Step 2 when MET=5.0E06 tonnes, 

FET=4.0E06 tonnes ........................................................................................................94 

Fig 4-17 Total GEP Cost Variation with Different MET Settings..................................96 

Fig 5-1 5-Bus Test System............................................................................................113 

Fig 5-2 Optimal Generation Location Distribution without DSR.................................120 

Fig 5-3 Optimal Generation Location Distribution for DR 1 and DR2 ........................120 

Fig 5-4 Optimal Generation Location Distribution for DR 3 and DR4 ........................120 

Fig 5-5 Optimized Load Profiles under DR1................................................................121 

Fig 5-6 Optimized Load Profiles under DR 2...............................................................122 

Fig 5-7 Optimized Load Profiles under DR 3...............................................................122 

Fig 5-8 Optimized Load Profiles under DR 4...............................................................122 

Fig 5-9 Aggregated Optimized Load Profiles of Bus 2, 3 and 4 under DR 1...............123 

Fig 5-10 Aggregated Optimized Load Profiles of Bus 2, 3 and 4 under DR 2.............124 

Fig 5-11 Aggregated Optimized Load Profiles of Bus 2, 3 and 4 under DR 3.............124 

Fig 5-12 Aggregated Optimized Load Profiles of Bus 2, 3 and 4 under DR 4.............124 

Fig 5-13  Optimal Generation Location Distribution for S5 without DSR...................126 

Fig 5-14 Optimal Generation Location Distribution for S1-S4, S6-S10 without DSR 126 

Fig 5-15  Optimal Generation Location Distribution for S5 and DR2 .........................128 

Fig 5-16 Optimal Generation Location Distribution for S1-S4, S6-S10 and DR2 .......128 

Fig 6-1 GB Transmission Boundaries and SYS Study Zones ......................................134 



X 

Fig 6-2 GB Annual Load Duration Curve ....................................................................141 

Fig 6-3 Optimized Load Profiles under DR1 with 2011 Boundary Capacity...............148 

Fig 6-4 Optimized Load Profiles under DR2 with 2011 Boundary Capacity...............148 

Fig 6-5 Optimized Load Profiles under DR1 with 2020 Boundary Capacity...............153 

Fig 6-6 Optimized Load Profiles under DR2 with 2020 Boundary Capacity...............153 

 
 
 
 



XI 

List of Tables 
Table 1-1 Hierarchy of Generation Adjustment[1]...........................................................2 

Table 1-2 Characteristics of different generation technologies[3]....................................3 

Table 1-3 Emission factors for different fuels [20]...........................................................9 

Table 2-1 Problem Decomposition .................................................................................24 

Table 2-2 Generator Data Part 1 .....................................................................................32 

Table 2-3 Generator Data Part 2 .....................................................................................33 

Table 2-4 Emission Reduction Target Scenarios ............................................................34 

Table 2-5 Cost and Emission Results of Optimization with Network Constraints.........37 

Table 2-6 Cost and Emission Results of Optimization without Network Constraints....37 

Table 2-7 Cost Differences between Optimization with and without Network 

Constraints ......................................................................................................................39 

Table 3-1 Construction of Objective Function Coefficient Vector.................................58 

Table 3-2 Line Data of Five Bus Test System ................................................................61 

Table 3-3 Candidate Generation Technology Parameters ..............................................61 

Table 3-4 Minimum Number of Units to Appear in the Target Year .............................63 

Table 3-5 Optimal Generation Mix without Network Constraint...................................65 

Table 3-6 Optimal Generation Mix with Constrained Network and Fixed Location .....65 

Table 3-7 Optimal Generation Mix with Constrained Network and Optimized Location

.........................................................................................................................................66 

Table 3-8 Optimal GEP Results without Network Constraint ........................................66 

Table 3-9 Optimal GEP Results with Constrained Network and Fixed Location ..........66 

Table 3-10 Optimal GEP Results with Constrained Network and Optimized Location.66 

Table 3-11 Optimal Generation Mix without Network Constraint .................................67 

Table 3-12 Optimal Generation Mix with Constrained Network and Fixed Location ...68 

Table 3-13 Optimal Generation Mix with Constrained Network and Optimized Location

.........................................................................................................................................68 

Table 3-14 Optimal GEP Results without Network Constraint ......................................68 

Table 3-15 Optimal GEP Results with Constrained Network and Fixed Location ........68 

Table 3-16 Optimal GEP Results with Constrained Network and Optimized Location.69 



XII 

Table 4-1 Line Data of Five Bus Test System ................................................................83 

Table 4-2 Candidate Generation Technology Parameters ..............................................83 

Table 4-3 Generation Mix in the Initial Year..................................................................84 

Table 4-4  Load Growth Scenario 1................................................................................84 

Table 4-5 Load Growth Scenario 2.................................................................................84 

Table 4-6 Six Emission Target Settings..........................................................................85 

Table 4-7 MET Year Generation Mix under Six Emission Target Settings ...................87 

Table 4-8 FET Year Generation Mix Under Six Emission Target Settings ...................87 

Table 4-9 Total Expansion Cost and Emission under Six Emission Target Settings .....88 

Table 4-10 MET Year Generation Mix under Six Emission Target Settings in Step 2..92 

Table 4-11 FET Year Generation Mix under Six Emission Target Settings in Step 2 ...92 

Table 4-12 Total Expansion Cost and Emission under Six Emission Target Settings in 

Step 2...............................................................................................................................92 

Table 4-13 Total GEP Cost and Emission under Different MET Settings in Step 2......96 

Table 5-1 Line Data of 5-Bus Test System...................................................................113 

Table 5-2 Candidate Generation Technology Parameters ............................................113 

Table 5-3 Minimum Number of Units to Appear in the Target Year ...........................114 

Table 5-4  Load Growth from Initial Year to the Target Year......................................114 

Table 5-5 DSR Flexibility Scenarios ............................................................................115 

Table 5-6  Wind Output Scenarios in Percentage of Rated Capacity ...........................116 

Table 5-7 Optimal Generation Mix under Five Load Flexibility Scenarios .................118 

Table 5-8 Optimal GEP Cost and Emission Results under Five Load Flexibility 

Scenarios .......................................................................................................................118 

Table 5-9 Optimal Generation Mixes for 10 Wind Output Scenarios ..........................125 

Table 5-10 Optimal GEP Results for 10 Wind Output Scenarios.................................126 

Table 5-11 Optimal Generation Mixes for 10 Wind Output Scenarios ........................127 

Table 5-12 Optimal GEP Results for 10 Wind Output Scenarios.................................128 

Table 6-1 SYS Study Zones..........................................................................................135 

Table 6-2 Boundary to Zone Mapping Table................................................................135 

Table 6-3 Zones to Boundaries Incidence Matrix.........................................................136 

Table 6-4 Minimum Capacities of Different Power Plants to Appear in the 2020 Target 

Year ...............................................................................................................................138 

Table 6-5 Candidate Generation Technology Data.......................................................139 

Table 6-6 SYS Boundary Capacity (MW)....................................................................140 



XIII 

Table 6-7 Zonal Peak Demand (MW)...........................................................................141 

Table 6-8 Sampled Load Profile ...................................................................................142 

Table 6-9  DSR Flexibility Scenarios ...........................................................................143 

Table 6-10 Optimal Number of Units to Be Expanded under 3 DSR Scenarios with 

2011 Boundary Capacity...............................................................................................145 

Table 6-11 Optimal GEP Cost and Emission Results under Three DSR Scenarios .....145 

Table 6-12 Optimal GB Generation Mix (MW) without DSR with 2011 Boundary 

Capacity.........................................................................................................................146 

Table 6-13 Optimal GB Generation Mix (MW) under DR1 with 2011 Boundary 

Capacity.........................................................................................................................146 

Table 6-14 Optimal GB Generation Mix (MW) under DR2 with 2011 Boundary 

Capacity.........................................................................................................................147 

Table 6-15 Optimal Number of Units to Be Expanded under 3 DSR Scenarios with 

2020 Boundary Capacity...............................................................................................149 

Table 6-16 Optimal GEP Cost and Emission Results under Five Load Flexibility 

Scenarios .......................................................................................................................149 

Table 6-17 Optimal GB Generation Mix (MW) without DSR with 2020 Boundary 

Capacity.........................................................................................................................150 

Table 6-18 Optimal GB Generation Mix (MW) under DR1 with 2020 Boundary 

Capacity.........................................................................................................................151 

Table 6-19 Optimal GB Generation Mix (MW) under DR2 with 2020 Boundary 

Capacity.........................................................................................................................151 

 
 
 
 
 



Chapter 1  Introduction 

Page1 

 
 
 
 
 
 
 

Chapter 1Chapter 1Chapter 1Chapter 1  
 
 
Introduction 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 

HIS chapter describes the background, motivation, 

objectives, and contributions of this work and the layout of 
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1.1 Generation Expansion Planning 

The big difference between the electricity and other commodities is that electricity 

cannot be stored in large quantity economically. Therefore, electricity has to be 

consumed at the time when it is produced. Almost every effort that the power system 

operator has made is to meet system demand with generation on a minute to minute 

basis. Traditionally, demand has very little flexibility to response to imbalance between 

generation and demand, so adjusting generation following the demand variance 

becomes the major way to keep demand/ supply in  balance [1, 2]. 

This adjustment of generation should be made in different time scales in order to 

guarantee the system can run economically and securely from milliseconds to years and 

with a variety mixes of generation technologies. The hierarchy of the adjustment is 

shown in Table 1-1. This PhD research falls into the generation expansion planning 

(GEP) problem.  

Table 1-1 Hierarchy of Generation Adjustment[1] 

Time scale Supply demand balancing activities 

Milliseconds Generator excitation control 

Seconds-minutes Generator AGC(Automatic Generation Control) 

Minutes-Hours Generation system’s Economic Dispatch 

Hours-days Generation system’s Unit commitment 

Years Generation expansion planning 

There are many types of power generation technologies deployed in power industry. 

They can be classified by the primary energy source. For example, coal, oil, gas fired 

power plants, nuclear power, hydro, wind, solar, biomass and so on. They can be further 

classified by the specific technologies. For example, for gas fired power plant, there are 

combined cycle gas turbine (CCGT) and open cycle gas turbine (OCGT); for coal fired 

power plant, there are Pulverised Fuel (PF), Fluidised-bed (FB) combustion and 

integrated-gasification combined cycle (IGCC); for wind farm, there are on-shore and 

off-shore. Different generation technologies have different characteristics in plant size, 

operation cost, capital cost, emission factors, etc. An example showing these different 

characteristics is given in Table 1-2. 
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Table 1-2 Characteristics of different generation technologies[3] 

Technology Notional Size 
(MW) 

Plant life 
(Year) 

Capital cost 
(M €/MW) 

Operation cost 
(k€/MW per annual) 

Coal PF 1000 30 1.48 34.8 

Coal IGCC 800 25 1.76 69.0 

Coal FB 150 25 1.22 55.2 

OCGT 110 20 0.52 36.0 

CCGT 390 20 0.54 50.0 

Wind(On-shore) 30 20 0.98 34.8 

Wind(Off-shore) 30 20 1.03 54.2 

The traditional GEP problem is to determine what type of generation technologies 

should be adopted, how many generation plants should be built, when the planned 

generation plants should be constructed and sometimes where they should be connected 

in the transmission network.  The objective of the planning is to meet electricity demand 

in the future at the minimal cost, including both the generation capacity investment cost 

and the operational cost in the planning time horizon.  For dynamic GEP problem, the 

decision variables are the numbers of generation units with different generation 

technologies to be constructed over the entire the planning horizon, where earlier 

investment will have an impact on the planning in later years [4]. Static GEP studies on 

the other hand focuses on finding the optimal types and numbers of different generation 

plants in a specific target year, for example, optimal generation mix in 2030 or 2050. In 

this case, dynamic interactions of the generation plant construction over time are 

neglected. This type of research is often named with optimal generation mix or 

portfolios [3, 5-9].   

The GEP problem is very important because new generation capacity can not be 

increased overnight. It takes years and a huge amount of investment to construct a new 

power plant, and once it is constructed, it will be there for years to come. Therefore, it 

needs an appropriate planning to arrange the generation expansion process in advance, 

determining the right generation technologies, the proper capacity and the right time for 

constructing new plants. If the required system’s total generation capacity in future is 

underestimated, then supply security will be compromised in the future. On the other 

hand, if it is overestimated, a huge amount of money will be wasted to build the costly 

but redundant power plants. 
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1.2 New Environment for Generation Expansion 

Planning 

1.2.1 Emission Reduction and Emission Cost 

Global warming presents the biggest threat to human living environment. Many 

countries have been or will be suffering from the problems caused by the rise of the sea 

level and extreme weather conditions. Among the factors accelerating global warming, 

the emission of Green House Gas1 (GHG) is the main contributing factor. In order to 

slow the pace of global warming, many countries have developed ambitious emission 

control schemes or participated in the international or regional emission reduction 

programme. For example, the Kyoto Protocol was established in 1997 under the United 

Nations Framework Convention on Climate Change (UNFCCC), which has come into 

force since 16, February, 2005. The protocol proposed the GHG emission reduction 

obligations to developed countries, while developing countries were not subject to 

emission reduction commitments in the first Kyoto commitment period. By August 

2011, 191 countries have signed up and ratified the protocol. In order to realise the 

emission reduction commitments in the Kyoto Protocol, the European Union Emission 

Trading Scheme (EU ETS) was launched in 2005 within the EU member states to cap 

the total the carbon emission of EU. Under the scheme, total EU emission allowance is 

allocated to each member state via the National Allocation Plans approved by European 

Commission, which is further allocated to different energy intensive industrial sectors in 

individual member state.  Allowance trading can be made between the entities with 

surplus and lack of allowance via the emission allowance trading market. So far, a 

certain part of the emission allowance is granted to each sector mainly according to its 

historical emission data, so called grandfathering, and the other part is allocated by 

auctions. Outside Europe, in Japan, Canada, US, Australia and New Zealand, emission 

trading schemes has been also implemented either in nationwide or regional level. In the 

UK, the Climate Change Act 2008 set legally binding targets of at least 34% and 80% 

cut in greenhouse gas emissions by 2020 and 2050 respectively, both against a 1990 

baseline . 

                                                 
1 The six types GHG identified in Kyoto Protocol are carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), 
sulphur hexafluoride (SF6), hydro fluorocarbons (HFCs) and perfluorocarbons (PFCs). 
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Apart from the carbon emission trading, carbon tax is another financial scheme to limit 

the emission. Unlike the emission trading, the carbon tax directly imposes the cost to 

carbon emitters. Carbon tax policies are usually made by the individual governments.  

Among all the industrial sectors, the power generation industry takes up the biggest 

share of total carbon emission. In order to realise the emission reduction target, power 

generation industry has to contribute disproportionally to emission reduction over the 

other sectors. However, for a fixed generation mix, there is a limit to how much 

emission reduction the mix could achieve. This is because the fixed mix will naturally 

have limited low carbon content. Further, for renewable generation, it will require back 

up generators to balance its intermittency, which produce carbon emissions.  The short-

term emission control could exert financial pressure for power generation companies to 

move away from dirtier and cheaper generation plant, but it can not guarantee that 

emission produced throughout the year will meet the desired target desired, increasing 

emission price alone is not enough [10, 11]. In order to meet a predefined emission 

target, the current generation mix has to be assessed to see if it has enough clean 

generation capacity to realise the target. If not, the generation mix has to be restructured 

around the target alongside short-term emission control through financial incentives 

and/or taxes. Thus, an optimization is needed for restructuring the generation mix 

meeting the emission target at a minimum cost. 

1.2.2 Generation Gap and Renewable Generation 

By 2011, the UK power system had a peak demand for electricity at around 60GW and 

a total transmission connected generation capacity at around 80GW.  However, this 

country will face a large generation gap in meeting projected electricity demand, since a 

number of large power stations are planned to retire in next decade. The EU’s Large 

Combustion Plants Directive (LCPD) has required large electricity generators to meet 

more stringent air quality standards since 1 January 2008. This forces around 12 GW of 

coal and oil-fired power plants to close by 2016 in the UK [12, 13]. Additionally, 

7.5GW nuclear power stations will come to the end of their asset lives by 2020 [13]. In 

order to fill the generation gap, new generation capacities will be required by 2020 [12]. 

Meanwhile, the UK government has committed to source 15% generation consumption 

from renewable energy by 2020 [14]. Due to the weak market competitiveness of 
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renewable generation compared to the fossil fuel generation technologies, the renewable 

supporting mechanism, Renewable Obligation (RO), is applied across the UK.  Under 

the RO, electricity suppliers are obliged to source a specified percentage of electricity 

sales from renewable generation or face penalty.  

RO benefits the large scale transmission connected renewable generation, but for 

promoting the small scale distributed renewable generators up to 5MW, feed-in tariffs 

were announced in 2008 in the UK, supporting the renewable generator with eligible 

technologies.  

In the traditional GEP problem, when making a capacity expansion decision for a 

conventional generation technology, planners know the conventional units can generate 

the expected amount of power at any time of the planning horizon. However, renewable 

generation emerges with new challenges in GEP problem. Take the wind generation as 

an example, in practice, the wind speed forecasting errors could be very large especially 

for a long term wind forecast. The output of a wind farm in the future quite depends on 

the volatile wind speed not the planners’ expectation. These renewable supporting 

schemes in future will attract more and more renewable generation expansion, which 

will uncertainty caused by the renewable generation will increasingly challenge both the 

short-term economic operation and the long-term generation planning [15]. Hence, it 

requires more sophisticated treatment to handle the uncertainty in renewable generation 

expansion in a GEP problem. 

1.2.3 Demand Side Response 

Demand side response (DSR) refers to the modification of end-users’ consumption from 

their original behaviours in response to certain types of demand side management 

programmes, such as price signal, incentives and education.  The purpose of DSR is 

usually to motivate the users to move their consumption from peak time to off-peak 

times [16-19]. 

Due to the uncertain availability of the primary energy (wind, solar radiation, etc), the 

intermittent renewable generation is not a controllable and flexible generation source. It 

is not always available to provide as much output as people desire and acts almost like a 

volatile negative load. In short-term operation, this volatility has to be compensated by 
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adjusting the outputs from other conventional, controllable and flexible generators. 

Therefore, with the rise of its penetration in the system, the traditional approach is to 

expand more and more flexible and expensive generation capacity, such as CCGT and 

OCGT, to cater for the increasing fluctuation from renewable source.  

The flexibility desired for system demand supply balance could in part be provided by 

the use of demand side responses (DSR). However, electricity market is not extended to 

mass consumers, also there lacks of demand side management programmes and services 

that provide easy access for consumers to participate. However, with the development 

of smart grid technologies, such as the communication technologies, smart meters and 

real-time pricing programme, etc, the interface for customers to participate in the DSR 

could become a reality in the future. Furthermore, with increasing use of electric 

vehicles and other energy storage facilities, demand side has more and more flexibility 

in the electricity use.  Therefore, DSR can potentially play a more and more important 

role in the future electricity market, thus its role in future generation mixes need to be 

carefully investigated.  

1.3 Research Motivation 

Due to energy scarcity coupled with environment issues, it is likely to see the biggest 

shift in generation portfolio in the UK and world wide, caused by various governmental 

incentives policies for promoting renewable generation and reducing emission. Thus, 

the traditional GEP model has to be modified to reflect this change against the new 

environment. The policy makers need a better assessment tool to facilitate the new 

environment, so they can make appropriate policies for promoting renewable generation 

and emission reduction, and guide the system generation mix to evolve appropriately 

over time. 

Any improvement in modelling the GEP problem and the associated solutions will 

make the generation expansion plan closer to the real optimal plan, and make the 

estimated cost closer to the real case. Since the expansion of new generation capacities 

is highly capital intensive, it makes the improvement of GEP quite urgent and important. 

This is the major motivation of this research.  
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There have been plenty of works on improving the GEP modelling and solution. Some 

works focus on introducing new optimization theories and techniques to either improve 

the optimization accuracy or speed up the process for solving large scale GEP model. 

Some works focus on transforming the GEP from a centralised planning environment to 

a deregulated competitive market one. However, existing GEP problem formulations 

and solutions still have limitations in the following aspects: 

• The previous GEP model over-simplified the assessment of production cost and 

emission in its operation model. The nonlinear and integer operational variables and 

constraints are often neglected or simplified to linear and continuous ones. The 

impacts of short-term emission pressure on long-term emission constrained GEP are 

seldom discussed. 

• Most previous GEP researches did not consider transmission network limits (line 

flow limits). Although some other researchers considered the network, the generators 

can however only be able to expand at designated nodes. Few GEP models consider 

the optimization of the generation locations. 

• Very few previous GEP researches include the renewable generation expansion 

appropriately in their GEP modelling. For an example, the wind generation is usually 

treated as either a controllable conventional generation technology or a known 

negative demand, similar to load profile. This treatment of renewable generation is 

not able to address the uncertain nature of renewable generation, because they all 

assume wind generation in the future is deterministic. 

• Most previous GEP model made a lot of efforts to model the generation side, but 

treated the demand side simply as a fixed projected load profile. With increasing 

mature conditions for realising DSR in the near future, DSR will potentially play the 

role of traditional generators, as an alternative source, to provide the flexibility to 

maintain the demand supply balance. Therefore, DSR should be incorporated into the 

GEP problem. Short-term DSR implementation has been studied extensively in 

recent years, but very few of them took the DSR into account for long-term GEP 

problem. 
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The ambition of the research documented in this thesis is therefore to address the 

improvements of the above limitations in GEP problem modelling. The specific 

research purposes are listed as follows. 

1.3.1 Impacts of Short-term Emission Cost on GEP 

Different generation technologies emit air pollutants at different rates when generating 

electricity. Table 1-3 shows the emission factors of different types of air pollutants 

released after burning different types of primary fuel. The emission will be financially 

punished by the aforementioned emission policies, and then extra emission cost will be 

brought to the generation companies. Coupling with the economic characteristics shown 

in Table 1-2 , the original economic characteristics of different generation technologies 

will be biased by the additional emission cost. When the emission policies vary, for 

example the carbon tax is raised; the financial pressures added by emission will change 

the market competitiveness of the different generation technologies by different extents.  

Table 1-3 Emission factors for different fuels [20] 

Pollutant Hard coal 
Brown 
coal 

Fuel oil 
Other 
oil 

Gas 

CO2 (g/GJ) 94600 101000 77400 74100 56100 

SO2 (g/GJ) 765 1361 1350 228 0.68 

NOx (g/GJ) 292 183 195 129 93.3 

CO (g/GJ) 89.1 89.1 15.7 15.7 14.5 

Non methane organic 
compounds (g/GJ) 

4.92 7.78 3.7 3.24 1.58 

Particulate matter (g/GJ) 1203 3254 16 1.91 0.1 

Flue gas volume total 
(m3/GJ) 

360 444 279 276 272 

For example, One generation technology may have a very low capital cost but a high 

emission coefficient. Without considering the future short-term emission pressure, this 

generation technology will be considered to expand with higher priority in the future, 

since it has a very low capital cost and the long-term GEP problem aims to minimise the 

sum of the investment costs and short-term operation cost in the future. However, if the 

short-term emission pressure is considered, the high emission coefficient will lead to 

high short-term operation cost for this generation technology. With the increase of the 

short-term emission pressure, the priority of this technology in future generation 

expansion will drop, since its low capital cost will be offset by the increased the short-
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term operation cost. Therefore, from a long-term planning view, short-term emission 

cost will affect the optimal generation mix results.  

1.3.2 Operational Constraints and Renewable Generation Expansion 

As stated in Section 1.1, the objective of a generation expansion planning problem is to 

minimize the total of long-term capacity investment cost and short-term operational cost. 

However, the previous planning approaches over-simplified the assessment of 

production cost and emission in its operation model. Dynamic details were usually 

neglected, such as plant start-up cost, shut-down cost, minimum up/down time, ramping 

rates, and spinning reserve. Since, the dynamic process involves integer variables and 

non-linear constraints, the discreteness and nonlinearity make the GEP optimization 

very difficult. Historically, these dynamic factors can be neglected because the impacts 

of these factors on the generation cost were highly predictable. The unit costs of 

generation production from a generation technology and generation mix do not vary 

significantly from one year to another. That’s why the previous researches simply use a 

linear operational cost multiplied by the power output to estimate the year round 

generation cost. However, this approximation would still stand if the demand profile 

can be accurately predicted based on the historical data and if all generation are 

controllable. In the near future, this case may not stand with the rise of the penetration 

of intermittent renewable generation and the deployment of DSR programme. Hence the 

tradition GEP model should be enhanced by considering a more detailed operational 

modelling.  

Moreover, in traditional GEP problem, when making a capacity expansion decision for 

a conventional generation technology, planners know the conventional units can 

generate the expected amount of power at any time of the planning horizon. However, 

renewable generation emerges with new challenges in GEP problem. Take the wind 

generation as an example, in practice, the wind speed forecasting errors could be very 

large especially for a long term wind forecast. The output of a wind farm in the future 

quite depends on the volatile wind speed not the planners’ expectation. Hence, it 

requires more sophisticated treatment for wind generation expansion in a GEP problem.  

Very few previous GEP researches include the renewable generation expansion 

appropriately in their GEP modelling. Taking the wind generation as an example, the 
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wind generation is usually either treated as a controllable conventional generation 

technology or as a known negative demand, similar to load profile. This treatment of 

renewable generation is not able to address the uncertain nature of renewable generation, 

because they all assume wind generation in the future is deterministic. 

1.3.3 Network Constraints and Generation Location 

An appropriate generation location can help make the most use of existing transmission 

network and future generation capacity and therefore save significant investment and 

operational cost when meeting future demand. On the other hand, in the potential DSR 

market in future, due to network constraints, DSR in different locations will have 

different contributions in providing the flexibility identified in Section 1.2.3. Hence it 

makes big sense to consider the generation location optimization in GEP under the new 

environment. 

Most previous GEP researches did not consider transmission network limits (line flow 

limits). They tried to solve the GEP problem considering infinite network capacity [3, 5-

8, 21-24]. Although some other researchers considered the network, the generators can 

however only be able to expand at designated nodes [9, 25]. However, in transmission 

system, when making a generation mix plan for an extra long-term horizon, when all the 

initial generation units will retire at the target year, such as 2050 target year, it is quite 

important to not only decide the generation type and size, but also allocate not a single 

but multiple power plants to appropriate locations. 

1.3.4 Impacts of Multi-Phase Emission Targets on GEP 

In order to fight the global warming, many governments have set various emission 

reduction targets at different time scales. Some of the emission control schemes are to 

be implemented in multiple phases, for example, the UK Climate Change Act 2008 set 

legally binding targets of at least 34% and 80% cut in greenhouse gas emissions by 

2020 and 2050 respectively, both against a 1990 baseline. However, due to the 

generation plant is costly with a long time life span once it is built, the interim emission 

target setting will severely change the trajectory of system's generation mix evolvement 

to the final generation mix, which will have to meet the long-term emission reduction 

target. Therefore, inappropriate multiphase emission target settings will affect the 
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generation mix planning and the related total investment dramatically. These impacts 

will be investigated and presented in this thesis. 

1.3.5 Impacts of Demand Side Response on GEP 

With increasing mature conditions for realising DSR in the near future, DSR will 

potentially play the role of traditional generators, as an alternative source, to provide the 

flexibility to maintain the demand supply balance. Therefore, DSR should be 

incorporated into the GEP problem. 

DSR has been studied demand response level in recent years. Some researchers 

investigated the feasibility and effectiveness of the different DSR programmes, 

incentive based or pricing based [26-32]; some incorporated the DSR into short-term 

generation scheduling optimization [17, 28, 33-35]; some proposed the application of 

emerging smart grid facilities, like energy storage device [36-40]; but very few of them 

took the DSR into account for long-term GEP problem [6]. Most previous GEP model 

made major efforts to model the generation side, but treated the demand side simply as 

a fixed projected load profile. Although [6] innovatively proposed a GEP model 

considering demand side response by demand price elasticity modelling, it has the 

following limitations, which can be improved:  

• This paper over simplified the generation side modelling. The discrete characteristic 

of GEP is neglected.  

• Since this study did not consider the network constraints, the demand response levels 

are assumed the same for the whole system. However, in practice, the demand at 

different locations may have different response capabilities due to the composition of 

the load types (industrial, commercial and domestic). GEP model neglecting the 

network constraints and demand locations can not differentiate the impacts of DSR at 

different locations in the network. 

Improving the above limitations is one of the motivations of this thesis. 
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1.4 Research Objectives and Contributions 

This thesis presents the improved generation expansion planning modelling in the new 

environment indentified in previous sections. The major objectives and contributions of 

this research are as followed: 

• To integrate short-term emission cost, unit commitment constraints, renewable 

generation expansion and network constraints in the GEP model. The enhanced 

model should reflect the impacts of the future new environment on the traditional 

GEP problem.  

In doing so, a novel GEP model is proposed. The model can take into account the 

emission cost, integer variables and nonlinearity at operational level with network 

constraints. The GEP model considers both renewable generation and conventional 

generation. The ratio of the two is constrained by a spinning reserve requirement at 

the operational level. 

• To investigate the impacts of generation location on emission target constrained GEP 

model.   

In doing so, a novel mixed integer linear programming (MILP) based emission target 

constrained GEP model is developed, which can support generation location 

optimization constrained by network overloading limit. The generation location 

number (bus number) is used to index the decision variable. The generation at 

different locations is summed and linearly related to the line flow through generation 

shift factor and based on superposition theory.  

• To investigate the impacts of multi-phase emission targets setting on the GEP 

problem and its overall expansion cost. To reveal how different interim emission 

targets will guide the generation mix to develop in different ways to meet a common 

final emission target 

In doing so, a MILP based two-phase GEP model is developed. The new GEP model 

is constrained by an interim and a final emission target respectively in two 

consecutive time horizons. 

• To incorporate the renewable generation expansion and short-term DSR into the GEP 

problem and find out its potential contributions to the GEP total cost. 
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In doing so, a MILP GEP model is developed with renewable generation expansion 

and short-term DSR integrated. The renewable generation uncertainties are assessed 

by a two stage scholastic linear programming GEP model with Monte Carlo 

sampling technique. 

• To determine the optimal generation mix of the Great Britain in 2020 in order to 

meet the 2020 emission reduction target. 

In doing so, a real case study is made based on a reduced Great Britain transmission 

network. Different optimal generation mixes of the UK in 2020 are identified under a 

series of scenarios. The scenarios are constructed according to different GB network 

transmission capacity hypotheses and demand side response (DSR) level scenarios. 

1.5 Thesis Layout 

The rest of the thesis is organized as follows: 

In Chapter 2, a new generation expansion planning model is proposed, which takes 

account of the emission cost in operational level and explores its impacts on the long-

term emission target oriented generation planning innovatively. Meanwhile, the model 

takes into account the integer variables and nonlinearity of the operational cost with 

network constraints and renewable generation expansion together in one long-term 

generation planning model. A case study on a modified IEEE 30 bus system is 

presented to demonstrate the application of this model and the value of considering 

short-term emission costs and the network constraints on the long-term generation 

expansion. 

In Chapter 3, a novel GEP model based on mixed integer linear programming (MILP) is 

proposed, which can optimize generation locations as well as their technology and 

capacity in the transmission network. DC load flow is used to check the transmission 

line overloading. Comparative studies are made based on a five bus test system to show 

the difference between the GEP with and without network constraints and generation 

location optimization.  

In Chapter 4, a MILP based two-phase GEP model is proposed, considering the 

generation expansion is constrained by different emission targets in two different time 
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horizons, interim and final. It is test on a five bus test system. Comparative studies have 

been made to find out how different interim emission targets will guide the generation 

mix to develop in different ways to meet a common final emission target. 

In Chapter 5, a MILP GEP model with renewable generation expansion and DSR 

integrated is proposed. It is test on a five bus test system. Comparative studies under 

different DSR level scenarios have been made to show how short-term DSR reduces the 

demand peak and fills the demand valley, and additionally save the total expansion cost 

and change the optimal generation mix.  

In Chapter 6, a real case study is made based on a reduced Great Britain transmission 

network. Different optimal generation mixes of the UK in 2020 are identified under a 

series of scenarios, which are constructed according to different GB network 

transmission capacity hypotheses and demand side response (DSR) level scenarios.  

In Chapter 7, major findings and contributions of this thesis are summarized, and the 

potential improvement future works of the research are proposed.   
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HIS chapter introduces an emission constrained GEP model, 

considering short-term emission cost, detailed operational 

modeling, renewable expansion and network constraint. T 
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2.1 Introduction 

Many countries have announced ambitious carbon emission control targets. For 

example, the UK has committed to reduce its carbon emission by 80% by 2050, relative 

to 1990 levels. The power industry, the biggest carbon emitter among all industrial 

sectors, has to take the largest decarbonisation responsibility. Hence, the ambitious 

long-term emission reduction target tends to drive the power system to restructure itself 

radically; for example a big share of clean and renewable generation technologies will 

penetrate into the generation mix. A huge amount of investment will be required for this 

evolution.  

Having a comprehensive optimized generation mix as a reference would assist the 

policy makers in setting the emission reduction target and estimating its total cost 

required.  

A number of previous works have been carried out on the optimal generation mix 

problem to meet forecasted load growth. Morris innovatively employed a dynamic 

programming model for solving the generation mix problem [41]. Masse and Gibrat 

applied the linear programming (LP) to the generation investment optimization problem 

[42]. In [43], three different decomposition approaches were compared to tackle the 

generation planning problem considering the demand uncertainty. More uncertain 

factors, such as renewable generation intermittency, regulatory policy uncertainties and 

fuel price volatility were considered in [44]. In [45], the authors proposed a generation 

expansion planning model in deregulated environment, which was to maximize the 

payoff of the privatized generation companies. A generation mix optimization model 

considering the short-term demand side response was proposed in [6]. However, these 

researches oversimplified the operational modelling: integer variable related costs and 

constraints were neglected, such as unit start-up cost, and minimum up time, and the 

nonlinear fuel cost was simplified to a linear one. These simplifications cannot better 

differentiate the performance (cost and flexibility) of different generation technologies. 

Additionally, these researches consider neither the system network constraints nor an 

interface for renewable generation planning. Therefore, these simplifications will bias 
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the generation planning results. Besides, all the aforementioned studies did not consider 

the emission problem. 

Since Gent and Lamont [46] did the early research on minimum emission dispatch, the 

optimization of the emission reduction has been considered more and more by 

successive researchers, but they mainly concentrated on the area of short-term power 

generation operation [47-50]. Some recent works have been carried out in the area of 

generation expansion planning, which consider the emission. A new efficient GA-

Bender’s approach, solving the power generation expansion planning problems with 

emission constraints, was given in [24]. However, the operational problem was still 

modelled in the aforementioned simplified manner and did not consider renewable 

generation and network constraints in the optimization. In [21], the author proposed a 

low carbon power generation expansion (LCPGE) model, which integrates a 

comprehensive set of low carbon factors. However, the whole problem was only 

formulated as a linear programming model. The integer characteristic of generation 

capacity was even ignored. The simplified linear programming model is also applied to 

[3, 11]. Both [24] and [21] did not explore the impacts of the  short-term emission cost 

on the long-term optimal generation mix. Doherty made a trend analysis of the 

generation portfolio in the Ireland, considering the impact of emission costs to the 

optimal generation investment portfolios [3, 11]. Unfortunately, the study only 

formulated the emission cost in the objective function without setting an emission target 

as a constraint. 

In summary, most of the previous researches on optimal generation mix planning have 

one or more of the following limitations: 

• Integer variable cost and the nonlinearity of the operational level are neglected [3, 6, 

11, 21, 24, 43-45, 50, 51]. Discrete characteristic of generation unit size in the 

investment level is ignored as well [3, 11, 21].  

• There is only limited discussion of the impact of short-term emission cost on the 

long-term investment cost [3, 11].  

• Network constraints and renewable generation expansion are seldom considered in 

the emission target oriented generation planning [3, 11, 21, 24].  
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The contribution of this chapter is that it proposes a static generation expansion 

planning model, which takes account of the emission cost in operational level and 

explores its impact on the long-term emission target oriented generation planning 

innovatively. Meanwhile, the model proposed in this chapter takes into account the 

integer variables and the nonlinearity of operational cost with network constraints and 

renewable generation expansion together into one long-term generation planning model. 

This model attempts to determine the required generation mix which can meet a 

predefined emission target for a given power network at a minimum societal cost, 

overcoming the aforementioned limitations. The methodology developed takes the 

emission target settings, current generation mix, network data and load profiles in the 

target year as inputs. It considers typical thermal generation units and renewable wind 

units, and provides the optimized generation mix and the total cost and emission under 

this mix as outputs. The model proposed in this chapter is a centralized generation 

planning model. It aims to provide a low carbon generation mix assessment tool for 

policy makers when devising emission reduction targets and estimating the related cost. 

The government or other related authorities can use this assessment model to ensure 

long-term emission target could be achieved at a minimum societal cost. Since this 

formulation, taking into account detailed system operation constraints, such as unit 

commitment and network constraints, has a large problem size, an innovative index, 

emission reduction cost (ERC) has been developed to speed up the process of searching 

for the optimal generation technology. A case study based on IEEE 30 bus system is 

provided to verify the effectiveness of this formulation. Optimization results show the 

total cost (including investment) variation with different emission prices. Comparative 

study between optimizations with and without network constraints has been made to 

indicate the importance of network constraints in a generation expansion study.  

2.2 Prerequisites 

2.2.1 Operational Cost Modelling 

There are many types of operational costs for running a conventional power station, 

such as fuel cost, maintenance cost, crew cost. Among these costs, the fuel cost takes 

the largest share and is related to how much electricity is generated by a power plant. 
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While the other costs are relatively fixed, not varying with the amount of electricity 

generation. There are various generation technologies. To generate the same amount of 

electricity, different technologies consume different amounts of primary energy source. 

Normally, burning per unit of coal, oil and gas will generate different amounts of heat.  

For a thermal generator, the relationship between the amount of heat consumed by the 

boiler and the power output from the generator can be represented by an input-output 

heat rate curve. In practice, the steam pipes in some power plants may have multiple 

valves to adjust the steam output pressure. As introduced in [52] by A. J. Wood and B. 

F. Woolenberg, for a thermal generator with four valves, the input-output heat rate 

curve is shown in Fig 2-1. Due to the valves operation, the heat rate curve is not smooth 

and not convex, and this will make the problem intractable. In order to simplify the 

problem for mathematical study, the heat rate curve is often modelled by a quadratic 

function or a piece-wise linear curve or even simply a linear function, depending on 

how precisely the researchers want their analysis implemented. Different fossil fuels 

and generation technologies shape the curves in different ways [52]. 

Referring to the cost (£/kg, £/m3) and the heat conversion rate (kg/Btu, m3/Btu) of the 

fossil fuel, generators’ input-output cost rate curve can be derived. Fig 2-2 shows the 

input-output cost rate in a quadratic curve. In this chapter, quadratic modelling is 

adopted.  

 

Fig 2-1 Input-output heat rate curve with valve operations 
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Fig 2-2 Quadratic input-output cost rate curve  

Apart from the fuel cost, there are other two types of costs related to generation 

operation, which are unit’s start-up cost and shut-down cost. These costs are dynamic 

and appear when generators are turned on or shut down. These costs will be introduced 

later in Section 2.2.3. 

2.2.2 Emission Modelling 

It is a chemical problem to determine precisely how much carbon emission is released 

after burning a unit of fossil fuel. The relation between emission and power output of a 

generation plant could be very complicated when expressed in a mathematical function 

precisely. However, for researches in power generation area, only several simple 

mathematical functions are commonly used to express the relation. They are quadratic 

or cubic polynomials[47, 53], or a combination of polynomial and exponential terms[46] 

or simply a linear function.  Although, these functions can not represent the emission 

variation with power output very precisely, they are indeed good estimations for power 

engineering study, according to the historical statistic data from all kinds of fossil fuel 

fired power plants. Four commonly used modelling functions are listed below: 
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where, E is emission; P is the power output; A1, A2, A3, A4, A5 and A6 are shaping 

factors, whose values depend on the fuels and generation technologies. With the 
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variation of the generation and carbon capture technologies, the shaping parameters 

vary. 

2.2.3 Economic Dispatch (ED) and Unit Commitment (UC) 

Given the mathematical representation of the individual generator, in order to evaluate 

total operational cost of generation system, modelling of system operation is required. 

Solving the ED and UC problem is a good way to estimate this cost.  

ED is an important process of power system operation. It can help save a huge amount 

of cost by determining the optimal power output allocation among the committed 

generation units that can supply a given load at minimum cost. However, ED is only a 

sub-problem of UC. ED only attempts to optimize the output of the units which have 

already connected to the grid and committed to generate power. The UC problem is 

even more sophisticated. Given a series of forecasted load for a planning horizon (one 

day, one week, etc), the UC selects a subset of the complete set of N available 

generation units to serve the load for each scheduling block (usually hourly or half 

hourly) through to the end the of the planning horizon, which finally leads to a 

minimum operation cost for the entire planning horizon. Thus, ED optimizes the single 

block operation, while UC optimizes the operation through the entire time horizon [52]. 

The additional costs and constraints appear in UC process are units’ start-up cost, shut-

down cost, minimum up time, minimum down time and ramping rates. Their definitions 

are: 

• Start-up/shut down costs: the cost required to turn on/off a unit for the transition 

from off/on state in last scheduling block.   

• Minimum up/down time: the minimum time needed before the unit can be turned 

off/on, once it is turned on/off. 

• Ramping rate: the maximum power output variance during unit time.  

With the development of mathematics and computing technologies, the solution 

methods for ED and UC have been developing fast. In next section, important solution 

method for ED and UC, dynamic programming, is introduced, which is adopted for this 

study.   
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2.2.4 Dynamic Programming 

Dynamic programming (DP) is a very powerful optimization algorithm, which breaks 

down a sophisticated problem into a sequence of simpler sub-problems, tackles them 

one by one and finally traces back to find the optimal solution for the whole problem. It 

has been developed since the late 1950s and the study was originally led by Richard 

Bellman[54, 55]. DP is not usually used to solve the ED problem on its own, unless the 

units’ input-output characteristics are modelled by a non-convex function such as a 

piece-wise linear function. It is often used to optimize the entire system UC process, 

when there are integer variables varying from one state to another, such as variables 

representing units’ on/off status. Pang and Chen made the early research to apply the 

dynamic programming algorithm to solve the thermal UC problem [56]. The basic 

principle of DP in UC solution works as Fig 2-3 shows. There are two units waiting to 

be scheduled hourly for 4 hours labelled by T. Two units can form 4 on/off 

combinations. DP will save the combinations’ transition path of the lowest total cost 

including operational cost and start-up cost for each hour until the end hour of the 

scheduling. Then, it traces back from the saved feasible paths to find the path of the 

lowest total cost as the UC problem solution. In the case of Fig 2-3, the path depicted 

bold black is the UC solution duo to its lowest total cost, $190. 

 

Fig 2-3 Dynamic programming for unit commitment solution 

The dynamic programming method is able to find the global optimal solution and is 

easy to add constraints, but it suffers from the curse of dimensionality. When it is 

applied to a large system with a great number of units, it will consume a lot of PC 

memory and take a very long time to find the optimal solution. 
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The rest of the chapter is organized as follows: Section II gives the problem formulation; 

the solution method is presented in Section III; Section IV provides a case study to 

verify the effectiveness of the solution method; conclusions are drawn in Section V. 

2.3 Problem Formulation 

The proposed formulation in this chapter is to determine the optimal generation mix to 

meet a given carbon emission target at a minimum cost considering nonlinear and 

integer operational cost and short-term emission cost, under the constraints of network 

transmission capacity limit. The formulation follows the way that based on an initial 

generation mix, the candidate generators will be added into the mix stage by stage in a 

trial way.  

The detailed structure of the problem is shown in Table 2-1, where the whole generation 

mix optimization problem is split into levels. The master problem is to determine the 

optimal new generators to be expanded, while the sub-problem is to determine the 

optimal power output and unit commitment status, so as to simulate the generation 

system operation and provide the yearly operation cost and emission for a given 

generation mix. The cost and emission results from the sub-problem will be used as 

performance index by the master problem to determine which new generators should be 

introduced in the optimal generation mix.  

Table 2-1 Problem Decomposition 

Hierarchy Sub -problem Master problem 

Division Operational modelling Generation mix optimization  

Decision variables 

Optimal power outputs 
Optimal unit commitment 
status 

Optimal new generator to be 
built 

Solution method 

Unit commitment (Dynamic 
programming)/ 
Economic Dispatch 
(Lagrange multiplier) 

Heuristic discrete gradient 
search 

Correlations 

Assess the cost and emission 
performances for a given 
generation mix 

Based on the assessment of 
operational problem, 
determining the optimal 
generation mix 
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2.3.1 Operational Sub-problem 

In order to assess the performance of a potential generation mix after introducing a 

candidate generator in terms of cost and carbon emission, the operational sub problem is 

modelled first. The operational sub-problem includes two important parts, unit 

commitment (UC) and economic dispatch (ED). UC determines the optimal unit 

combination transition path from one scheduling block to another, while ED determines 

the optimal power output for each committed unit in each scheduling block. 

• Economic dispatch optimization 

In this research, a quadratic function is used to model the fuel cost of a generator unit. 

For a system with N generation units at a time horizon of T, the fuel cost (FCi(Pit)) of 

unit i at interval t is:  

iitiitiiti cPbPaPFC ++= 2)(      2-5 

where, i is the generation unit index, t is the scheduling time interval index and Pit is 

power output of unit i at interval t. ai, bi and ci are the fuel cost function coefficients of 

unit i. 

The carbon emission (Ei) of unit i at interval t is modelled linearly by: 

iitiiti PPE γβ +=)(      2-6 

where, βi and γi are the emission function coefficients of unit i. 

In order to take the financial pressure of emission into account in the power dispatch 

[53], the emission is monetized and incorporated with the fuel cost by a weighting 

factor λ. In this study, emission price (EP) is uniformly used to call the factor λ in the 

rest of this chapter. The objective of the ED is to minimize the summation of fuel cost 

and weighted emission cost (SCt):   
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where, the weighting factor λ is the emission penalty factor, reflecting the extent of 

impact on the power production cost from units’ carbon emissions. In practice, its forms 

can be emission trading price or emission tax depending on which economic scheme is 

implemented for emission control. A higher emission price will exert larger pressure to 

emission reduction during the dispatch, and therefore power is more likely to be 

dispatched from clean but expensive units, vice versa. Pimin and Pimax are the minimum 

and maximum power output of unit i. Dt is the system total demand at the interval t. srit 

is the spinning reserve provided by unit i at interval t, while SRt is the system spinning 

reserve requirement at interval t. SRt at each interval is determined by two parts. DSR is 

a coefficient determining system spinning reserve requirement due to demand 

forecasting errors. WSR is a coefficient determining the spinning reserve requirement 

due to the wind power intermittency. NW is the number of the wind farms, and Pwn is 

the notional installed capacity of wind farm n [51]. Lbt is the power flow of line b at 

time t and Limb is the line flow limit of the line b. 

The ED problem is solved by Lambda-Iteration method which is also known as 

Lagrange multiplier method [52, 57]. 

For each dispatch result in each interval, there is an interface to conduct line flow 

overloading check by load flow calculation to determine if the dispatch results are static 

operational and feasible.  

• Unit commitment optimization 
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ED handles the nonlinear fuel cost, while the integer variable cost and constraints such 

as the unit’s start-up cost, shut-down cost, unit’s, minimum up time (MUT), minimum 

down time (MDT) and ramping rate will be dealt in UC. Dynamic programming 

algorithm is adopted here to solve the UC optimization in this research. The UC 

optimization aims to minimize the aggregated operational cost (Ca) through the whole 

UC horizon T. 

∑∑∑
= ==

+++=
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t
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t

tTa MCSDSTSCC
1 11

)(       2-13 

where, STit is start-up cost of unit i, SDit is shut-down cost of unit i, MCit is maintenance 

cost of unit i. 

2.3.2 Generation Mix Optimization 

The operational sub-problem in Section A essentially acts as an performance evaluator 

for a given generation mix, network data and load profile, evaluating the total 

generation costs and emissions for a desired time period. 

In order to restructure the generation mix, the capacities of some generation 

technologies will be expanded or contracted. So, the investment cost Cc for power plant 

is included in the total cost Ctotal. Since the wind generation expansion is considered in 

this research, a high level of wind power penetration will decrease the reliability of 

power supply, and loss of load probability will increase, which leads to social cost. This 

form of cost is taken into account through augmentation of spinning reserve 

requirements. The parameter, reserve price (RP) represents the price per MW spinning 

reserve capacity from the conventional generation plants. For a simplification, the 

reserve price is assumed to be equal for different conventional generation technologies.  

Therefore, the optimization objective is extended as well:  

minimise ∑∑
= =

++=
T

t

N

i
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where, Etarget is emission limit in the target year.  
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In order to reduce the calculation burden and focus on the main problem, the following 

assumptions are made:  

• The load in the target year is assumed to be well forecasted. Since the electricity load 

growth in a long term is hard to be accurately forecasted, it deserves another big 

research based on stochastic analysis.  

• The network topology in the target year is the same as those given in the initial state. 

• The newly added plant is assumed to be connected to the node where the units of the 

same technology are located initially. 

• No unit is retired from the initial generation mix in the target year. Because: 1) the 

proposed model is static, and therefore the dynamic process is neglected; 

2)conventional generation capacity has to be expanded accordingly to provide 

backup for increased wind capacity. It offsets some units’ retirement. 

2.3.3 Wind Power Modelling 

In this chapter, the wind generation technology is used to stand for the renewable 

generation. The power output of a wind turbine can be described by Equation 2-16 [51, 

58]: 
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where, Pw is the instantaneous output of the wind turbine; Pwr is the rated output of the 

wind turbine. vw, vci, vr and vco are instantaneous wind speed, cut-in speed, rated speed 

and cut-out speed.  

Wind speed probability distribution in this research is modelled by Weibull probability 

function 2-17 . 
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where k is the shaping factor and η is the scaling factor. A set of random numbers are 

generated following the Weibull distribution for the operation scheduling horizon by 

MATLAB, representing the output of a wind farm in each scheduling interval. Wind 

farm output power is taken as negative load and used to mitigate the block total power 

demand in each scheduling block. 

In this wind speed sampling process, the wind speed correlation between consecutive 

hours is neglected for simplicity.  

2.4 Solution Methodology 

Notably, the model proposed is a mix-integer nonlinear programming (MINLP) 

problem. It is hard to be solved directly by a single optimization algorithm, but can be 

tackled by types of decomposition techniques. Bender’s Decomposition is a popular one 

of them. It divides the problem into a relaxed integer linear programming (master 

problem) and a non-integer programming (sub problem). The two problems are solved 

alternately and coupled by Benders’ cuts. In the case of its application in generation 

planning, most previous researches [24, 43] neglected the integer variables in the 

operational level (unit commitment status and associated start up cost, etc.) and only 

considered the integer variables in the capacity investment level (number of new units 

to be built). With this simplification, the original planning problem can be easily 

divided into a mixed integer linear programming based investment master problem and 

a non-integer programming operational sub problem, where Benders’ decomposition 

fits quite well. This chapter, however, has taken account of the integer variables and 

nonlinearity in the operational level, so it is hardly to decompose the problem into an 

integer problem and a non-integer problem. Therefore, this chapter proposes an 

innovative method to solve the MINLP problem. The flow chart of the proposed 

optimization process is shown in Fig.1. It first examines the initial generation mix by 

conducting a UC for a horizon of T, and checks whether the resultant emission meets 

the target or not. If yes, that means the current generation mix can already meet the 

emission target, otherwise, the optimization begins. 
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The relation of the cost and emission performance with a generation mix can be 

represented as follows: 

),......,,( 21 ntotal PPPfC =       2-18 

 

),......,,( 21 ntotal PPPgE =       2-19 

In order to speed up the search for optimal generation mix, a new term named Emission 

Reduction Cost (ERC) is defined to represent the ratio between the cost increase due to 

a candidate generator introduction and the resultant emission reduction, given by the 

following numerical differentiation: 
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The search is essentially based on gradient search using ERC as the goodness measure. 

Based on an initial generation mix, assuming M units are added to form the final 

optimal mix, which meets the emission target, the optimization will be divided into M 

cycles. In each cycle, denoted by m, the program will add one unit ∆P from each 

candidate generation technology respectively to evaluate the ERCs under different 

expanding strategies. The unit whose technology has the lowest ERC will be chosen to 

add into the generation mix for the mth cycle. The decision making for the next cycle, 

the (m+1) th cycle, will be repeated based on the optimal mix determined by the mth 

cycle. The process will iterate M times until no further optimal mix can be found. Fig 

2-4 shows the flow chart for implementing the ERC based gradient search generation 

mix optimization algorithm. Following the algorithm of the flow chart, a programme 

written in C++ is developed to solve the case study model in next section.  
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Fig 2-4 Flow chart of the generation mix optimization algorithm 

The terminating conditions for the iteration are: 

• In the mth cycle, after evaluating the ERCs of N technologies, record the candidate 

technologies which meet the emission target into the set S. From the set, only the 

technology with the least ERC is added into the generation mix, and move on to the 

next cycle; 

• In the final cycle, after evaluating the ERCs of N technologies, if Etotal from all N 

technologies are below the emission target, terminate the iteration and trace back to 

find the solution with the least Ctotal from set S. 

It should be noted that ERCs for the same technology may vary in different cycles. This 

is due to that generation mixes at different cycles are different, resulting in different 

impacts on the costs and emissions from the same technology intervention. 
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In operational sub-problem, Equation 2-10 and Equation 2-11 indicate the system 

minimum spinning reserve requirement. So during the iteration, there is a conventional 

capacity margin check, before adding a new wind unit into the mix each time. If, after 

the new wind unit is added, the total conventional capacity can not afford the peak 

demand plus the peak reserve requirement as Equation 2-22 indicates, the wind capacity 

expansion will not be considered for this cycle. 

)(
1

∑
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+×+<
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n

wnpeakpeak PWSRDDSRDCapacityalConventionTotal    2-22 

2.5 Case study 

In this section, a case study is presented to demonstrate the application procedures of 

the proposed method for determining optimal energy mix to meet a given emission 

target. Sensitivity analysis is conducted to show the impacts of the short-term emission 

financial pressure to generation mix optimization. Comparative study between 

optimizations with and without network constraints is made to indicate the importance 

of considering network constraints in a generation expansion study. 

Table 2-2 Generator Data Part 1 

Technologies 
a 

(£/ 
(MW)2) 

b 
(£/ 

MW) 

c 
(£) 

β 
(tonne/ 
MW) 

γ 
(tonne) 

Cc 
(£/MW) 

CCGT21 0.024 6 300 0.38 0.03 483760 

CCGT2 0.022 6.4 296 0.39 0.02 481880 

COAl PF31 0.032 4.06 630 0.84 0.03 1109175 

COAl PF2 0.035 3.64 595 0.82 0.04 1101075 

IGCC41 0.014 4.06 756 0.6 0.02 1585200 

IGCC2 0.017 3.78 777 0.62 0.01 1573200 

OGCT51 0.03 5 706 0.47 0.02 466580 

OGCT2 0.034 4.6 720 0.45 0.04 465380 

WIND1 0 0 0 0 0 885041 

WIND2 0 0 0 0 0 886340 
 

 
 

                                                 
2 CCGT: combined cycle gas turbine generation technology   

3 COAL PF: pulverized fuel coal fired generation technology 

4 IGCC: integrated gasification combined cycle generation technology 
5 OGCC: open cycle gas turbine generation technology 
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Table 2-3 Generator Data Part 2 

Technologies 
Notional 
capacity 
(MW) 

Pmin 
(MW) 

Pmax 
(MW) 

Bus 
No. 

Initial 
Units 

installed 

CCGT1 300 100 300 11 1 

CCGT2 350 100 350 5 1 

COAl PF1 300 100 600 2 2 

COAl PF2 300 50 300 1 1 

IGCC1 200 80 400 19 2 

IGCC2 250 10 250 14 1 

OGCT1 100 20 200 8 2 

OGCT2 150 50 300 13 2 

WIND1 50 0 150 27 3 

WIND2 40 0 200 24 5 

 

 
Fig 2-5 IEEE 30 bus test system [59] 

2.5.1 Test Input 

An IEEE 30 bus test system [60] was adopted in this research, which is shown in Fig 

2-5. There are comparative studies subsequently between the cases of whether or not 

considering network constraints. For the case of considering the network constraints, the 

thermal ratings of all 41 transmission lines are set to 100MW evenly. For the other case, 

the thermal ratings are set to infinite. Of the 20 units connected to the grid, there are 10 

different generation technologies, of which 8 technologies are conventional fossil fuel 

fired power plants with different performance on fuel cost, emission, and capital cost, 
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and the others are 2 different wind farms which have zero fuel cost and emission output. 

The details of the 10 generation technologies are given in Table 2-2 and Table 2-3, 

where a, b and c are the fuel cost function coefficients; β and γ are the emission function 

coefficients; and Cc is capital cost. The wind turbines’ speed parameters are assumed to 

be the same, as vci = 5m/s, vco=45m/s, and vr=15m/s. Since the turbines have been 

connected to two different locations, the wind speed Weibull distribution parameters for 

the two locations are differentiated.  They are η =10.2, k=1.5 for WIND1, and η=8.6, 

k=1.5 for WIND2. These parameters are set to give a capacity factor of around 40% for 

WIND1 and 30% for WIND2. The load profile in this research is derived according to 

the IEEE Reliability Test System 1996 [61] with a total demand of annual aggregated 

peak demand of 2830 MW scaled base on the demand data provided in the IEEE 30 bus 

test system. The specific load profiling data in the IEEE Reliability Test System 1996 

can be found in Appendix A. The hourly load is determined by the multiplication of 

annual peak demand and the coefficients of weekly peak demand in percentage of the 

annual peak, daily peak demand in percentage of the week peak and hourly peak 

demand in percentage of the daily peak. Although this model allows any long planning 

horizon, in order to reduce the calculation burden, this research only takes four days as 

the samples to estimate the yearly total operation cost. The four days are the first day of 

each season. The DSR and WSR are set to 5% and 80%, and the reserve price (RP) is 

assumed to be 5 £/MW/h. A sensitive analysis is provided to investigate the impacts of 

different emission prices (λ) on the generation planning. 

Table 2-4 Emission Reduction Target Scenarios 

Reduction Target (tonne) Reduction 
 percentage EP=5 EP=10 EP=20 EP=30 

current 8.95E+06 8.85E+06 8.67E+06 8.51E+06 

9.9% 8.06E+06 7.98E+06 7.81E+06 7.67E+06 

14.2% 7.68E+06 7.68E+06 7.44E+06 7.30E+06 

18.5% 7.29E+06 7.29E+06 7.07E+06 6.93E+06 

22.8% 6.91E+06 6.91E+06 6.69E+06 6.57E+06 

2.5.2 Implementation 

The relationship between emission target and the corresponding optimized generation 

mix and its year-round performance in terms of total cost and emission is investigated. 

Based on the emission of the current generation mix, 4 emission reduction targets are 

assumed for 4 different emission prices in the current and target year. The 16 scenarios 
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are listed in Table 2-4. Because the emission price can influence the emission results, in 

order to illustrate the emission reduction achieved entirely by restructuring the 

generation mix,   it is assumed that the target year and current year have the same 

emission price for all scenarios. 

For the 16 scenarios, 16 optimal generation mixes have been found that meet the 

different levels of emission target. The generation mixes under various targets are 

shown in Fig 2-6 and the corresponding total cost and emission for each optimized 

generation mix are listed in Table 2-5 and depicted in Fig 2-8. In order to reflect the 

difference between optimizations with and without considering network constraints, the 

same evaluation has been made without considering the network constraints and the 

resultant generation mixes are shown in Fig 2-7 and the corresponding total cost and 

emission for each optimized generation mix are listed in Table 2-6 and depicted in Fig 

2-9. 

2.6 Results and Discussion 

The Fig 2-6 shows optimal generation mix results under 16 scenarios considering the 

network constraints. There are 4 stack bar charts categorized by the four different 

emission prices, 5, 10, 20 and 30. Each bar chart has 5 to 6 stack bars. The first and last 

bars are the initial generation mix and the optimal generation mix which can realize the 

maximum emission reduction target respectively. Each stack bar has 10 components, 

representing the capacities of the 10 generation technologies in the generation mix. It 

can be seen that for the same reduction target, the resulting optimal generation mixes 

are different with different emission prices. Moreover, if emission prices in target year 

are £5/tonne, £10/tonne and £20/tonne, there will be no generation mixes which can 

meet the 22.8% reduction target. Additionally, the maximum reduction that could be 

achieved by restructuring the generation mix increases with the rise of emission price. 

For example, when the emission price is set at £5/tonne, the maximum emission 

reduction is around 20.0%, but when the emission price rises to £30/tonne, the 

maximum emission reduction can reach 27.1%. Therefore, there is a reduction 

limitation. Finally, it is important to note that the least cost to meet the more stringent 

emission target can only be achieved by a combination of long-term generation 
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expansion and short-term emission control, as shown by the italic cost figures in Table 

2-5. 

 
Fig 2-6 Optimized Mixes under Different Emission Targets with Network Constraints 

 
 

 
Fig 2-7 Optimized Mixes under Different Emission Targets without Network Constraints 
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Table 2-5 Cost and Emission Results of Optimization with Network Constraints 

Total cost (billion £) Total emission (million tonne) Reduction  

percentage EP=5 EP=10 EP=20 EP=30 EP=5 EP=10 EP=20 EP=30 

current 3.14 3.19 3.27 3.36 8.95 8.85 8.67 8.51 

9.9% 3.76 3.79 3.69 3.58 8.04 7.95 7.77 7.65 

14.2% 3.93 3.95 3.90 3.81 7.66 7.59 7.39 7.28 

18.5% 4.31 4.27 4.27 4.03 7.25 7.16 6.96 6.92 

22.8% N/A N/A N/A 4.23 N/A N/A N/A 6.52 

 

Table 2-6 Cost and Emission Results of Optimization without Network Constraints 

Total cost (billion £) Total emission (million tonne) Reduction  

percentage EP=5 EP=10 EP=20 EP=30 EP=5 EP=10 EP=20 EP=30 

current 3.14 3.19 3.27 3.36 8.95 8.85 8.67 8.51 

9.9% 3.66 3.67 3.66 3.51 8.01 7.89 7.77 7.64 

14.2% 3.88 3.83 3.84 3.75 7.63 7.58 7.32 7.28 

18.5% 4.22 4.17 4.01 4.00 7.25 7.16 6.92 6.92 

22.8% 4.42 4.38 4.28 4.16 6.87 6.79 6.64 6.57 

The same calculation has been made without considering network constraints. The 

generation mix optimization results are shown in the Fig 2-7 and the corresponding cost 

and emission results are listed in Table 2-6. It can be seen that after removing these 

constraints, the 22.8% reduction target can be realized even for those modest emission 

prices, £5/tonne, £10/tonne and £20/tonne, which previously are not able to achieve the 

targets. Besides, the maximum reduction could be achieved rises to 27%, 28.3%, 32.6% 

and 35.5% for the emission price equal to £5/tonne, £10/tonne, £20/tonne and £30/tonne 

respectively. Compared to the situation with those constraints, the optimization without 

them can reduce more emission. 

2.6.1 Effect of Network Constraints 

From Table 2-5, Table 2-6, Fig 2-8 and  Fig 2-9, it can be found that in order to reach 

the same emission reduction target, the optimization with network constraints always 

realizes the target at higher or equal total cost compared to the one without network 

constraints. Besides, the optimization with network constraints can not reach 22.8% 

emission reduction target when emission price is set to £5/tonne, £10/tonne, and 

£20/tonne, while it can be reached in the same cases of the optimization without 

network constraints. The cost differences in percentage between the optimization with 

and without network constraints are listed in Table 2-7. The differences vary from 

0.74% to 6.09%, while the biggest difference is the optimization with constraints which 

could not achieve the 22.8% reduction target when emission price is equal to £5/tonne, 



Chapter 2                                          Emission Constrained Generation Expansion 

Page38 

£10/tonne, and £20/tonne. This shows the importance of taking network constraints into 

account to avoid underestimating the cost for generation investment. 

2.6.2 Effect of Emission Price 

From Fig 2-8 and Fig 2-9, it can be observed clearly that with emission target becoming 

stricter, the total emission drops almost at the same rate for different emission price 

cases, while the total cost is rising at different rates of change. Generally for the same 

emission reduction target, a higher emission price can help find the optimal mix to meet 

the target at a lower total cost. For example, in order to meet the 18.5% reduction target 

with network constraints, raising EP from £5/tonne to £30/tonne can help reduce the 

total cost from £ 4.31 billion to £4.03 billion, saving 6.5%. This is because a higher 

emission price can make the clean technologies more cost efficient during the expansion 

process. It can avoid the capacity expansion from the technologies that are less clean but 

expensive.  

The reason behind this observation is that the operation costs of the different 

technologies consist of both fuel cost and emission cost. Increasing the emission price 

will raise the emission cost and change the operation cost order in economic dispatch. 

Units with high fuel cost but low emission rate will be put at more prioritised position in 

the economic dispatch process. Therefore, increasing the emission price in short term 

can help fully use the existing clean generation capacity, and save the unnecessary 

generation capacity expansion. Thus, the large capital cost could be saved. This can be 

verified from Fig 2-6 that in order to meet the 18.5% reduction target, when emission 

price is set to £30/tonne, 350 MW CCGT1 Plant, 50 MW Wind1 farm and 120 MW can 

be saved compared with the case when emission price is set to £5/tonne. This shows the 

importance of considering the short-term financial pressure when optimizing the 

generation investment. 

2.6.3 Emission Reduction Limit 

For a fixed amount of demand, the system’s total emission can not be reduced as much 

as desired merely by increasing the clean units’ penetration. It has a reduction limit. If 

the network constraints are considered, the limit will be much tighter. That is because 

despite the wind energy is modelled as a zero emission generation source, the rise of 
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wind energy penetration must rely on an increase of conventional generation capacity to 

provide sufficient spinning reserve to compensate the intermittency. Meanwhile, the 

conventional power plants have minimum output constraints once they are started up for 

providing the spinning reserve.  Their minimum power output causes a certain amount 

of emission which is the aforementioned emission reduction limit. Only when the 

technologies are improved to diminish the constraints of the current generation and 

operation technologies, could the emission be further reduced. 

  

 
Fig 2-8 Cost and Emission Results with Network Constraints 

 

 
Fig 2-9 Cost and Emission Results without Network Constraints 

 
Table 2-7 Cost Differences between Optimization with and without Network Constraints 

Total cost difference (£) Reduction 

percentage EP=5 EP=10 EP=20 EP=30 

9.90% 2.66% 3.17% 0.81% 1.96% 

14.20% 1.27% 3.04% 1.54% 1.57% 

18.50% 2.09% 2.34% 6.09% 0.74% 

22.80% N/A N/A N/A 1.65% 

The case study has presented the application of this model under 16 different scenarios 

with different emission reduction targets ranging from 9.9% to 22.8% combined with 
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different emission charge prices ranging from 5 £/tonne to 30£/tonne. It can be found 

that a more stringent emission target can be achieved more economically by a 

combination of long-run generation expansion and short-run emission control. The 

results also indicate a higher emission price can help find the optimal mix to meet the 

target at a lower total cost. They show the importance of including the emission 

financial pressure when optimizing the generation investment. Optimizations are 

conducted both with and without network constraints under the 16 scenarios. The 

comparison between the two optimizations indicates in order to reach the same emission 

reduction target, the optimization with network constraints always realizes the target at 

higher or equal total cost compared to the optimization without network constraints. The 

final cost differences between the two cases vary from 0.74% to 6.09%. It shows the 

importance of taking network constraints into account when optimizing the generation 

investment to avoid underestimating the cost. Besides, ignoring network constraints will 

make the realization of emission targets more possible than it should be. It is also found 

that the system total emission can not be reduced as much as expected by merely 

increasing the clean units’ penetration. It is due to the necessity of increasing 

conventional generation capacity to compensate the rise of the wind generation 

penetration and the minimum output constraints of the conventional power plants.  

2.7 Chapter Summary 

This chapter proposes a new generation expansion planning model, which takes account 

of the emission cost in operational level and explores its impacts on the long-term 

emission target oriented generation planning innovatively. Meanwhile, the model 

proposed in this chapter takes into account the integer variables and nonlinearity of the 

operational cost with network constraints and renewable generation expansion together 

in one long-term generation planning model. The new concept Emission Reduction Cost 

is introduced in the generation expansion phase, which helps determine the most cost 

effective generation technologies to expand. The case study explores the impacts of the 

short-term emission cost on long-term generation planning. It also demonstrates the 

importance of including network constraints in the generation planning. Overall, this 

chapter presents a centralized assessment model to find the most economical generation 

mix pattern in order to meet a predefined emission target, which can assist policy 

makers in setting the emission reduction target and estimating its total cost required. 
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HIS chapter introduces a mixed integer linear programming 

GEP model, which can determine the optimal generation 

mix and the optimal locations for all candidate generators at 

the same time for a single target year. T 
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3.1 Introduction 

As the definition states, the GEP problem is to determine what type generation 

technologies should be adopted, how many generation plants should be built, when the 

planned generation plants should be constructed and sometimes where they should be 

connected in the transmission network. There have been massive research outcomes in 

the past to answer the ‘what’, ‘how many’ and ‘when’ questions under a number of 

scenarios with considering various constraints. Jin [22] developed a two-stage stochastic 

mixed integer linear programming GEP model, with focus on analysing the 

uncertainties coming from the GEP problem, such as load and renewable forecast 

uncertainty, fuel price uncertainty, emission control policy uncertainty, etc. Jonghe [6] 

proposed a GEP model considering the impacts of short-term price based demand side 

response on long-term generation mix. Careri [62] proposed mixed integer nonlinear 

programming GEP model, with focus on investigating the impacts of many types of 

renewable promotion and emission reduction incentive systems on GEP problem.   

Palmintier [23] investigated the impact of unit commitment constraints, such as unit 

ramping rate, operating reserve, etc, on GEP problem with renewable generation. 

Antonio [63] proposed a multi objective linear programming GEP model, considering 

total expansion cost, environmental impacts and environmental cost at different 

weighting in one objective function. However, these previous GEP researches [6, 22, 23, 

62, 63] along with many more other literatures [3, 5, 7, 8, 21, 24, 64-71] did not 

consider transmission network limits (line flow limits) and generation location 

optimization. They tried to solve the GEP problem at only a single node in the network. 

Kaymaz proposed a deregulated generation expansion model, which considered the 

transmission congestion [25].  However this paper did not consider the optimization of 

generation locations, as it was assumed that the generation companies may expand their 

capacity at the nodes where they initially owned generators. Yuan [9] developed an 

emission target constrained GEP model considering the impacts of short-term emission 

prices and unit commitment constraints. This paper took account of transmission 

network limits, but it is assumed that the generation capacity is expanding at their initial 

locations as well. The same assumption can be found in [72]. Kamalinia [72] proposed a 

security-constrained stochastic generation expansion model, considering the 
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uncertainties of system component outage and forecast errors of wind and load. 

Although, this model considered the network transmission constraints, this model only 

attempted to determine the capacity of newly added fast response generators in given 

locations to cater for the wind volatility. Wang [45] proposed a strategic GEP model for 

privatised generation companies under a deregulated electricity market, where 

generation companies invest their own units for maximising their profit based on the 

incomplete investment information of other generation companies. Nevertheless, this 

model still assumed that each generation company invests its generators at a specified 

bus. The similar study with this assumption can also be found in [73].  Although these 

researches [9, 25, 45, 72, 73] along with the GEP model presented in Chapter 2 in this 

thesis considered the network constraints, the generators were assumed to be expanded 

at designated nodes. In other words, the generation location optimization was not 

considered. 

Meza [74] proposed a model considering multi-period and multi-objective GEP, This 

model did consider the network flow constraints and generation location optimization. 

However, the proposed model is only a linear programme. The integer characteristic of 

generation capacity is neglected. Besides, the author did not mention any detail about 

the line flow calculation and how the line flow links to the generation outputs at 

different buses. The integer characteristic of generation expansion was considered in his 

later work [75] by employing heuristic evolutionary programme. 

The generation location optimization was discussed a lot in the distribution generator 

(DG) siting problem [76-81]. However, due to the characteristics of distribution 

networks, the DG siting problem usually aims to minimise distribution active and 

reactive power loss, maintain voltage profiles or reduce the burden of heavily loaded 

feeders. It’s not like the problem of the bulk transmission connected generation 

planning, which mainly aims to minimize the huge investment and operation cost.  

Therefore, based on the literatures reviewed, there are not too many academic 

researches in GEP area well answering the ‘where’ question. Most of the previous GEP 

studies neglected network transmission constraints and generation location optimization. 

Some research considered the transmission constraints but assumed that the generators 

were to be expanded at designated nodes. Very few researches considered both 

transmission network constraints and generation location optimization at the same time. 
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This is possibly because the siting problem of large transmission connected power 

plants does not totally depend on power engineering academic analysis. The 

determination of the location a giant power plant involves too many political, 

environmental, and geographical factors. However, it is still of importance to well 

answer the ‘where’ question, since reasonable siting of new generators can fully take 

advantage of the existing transmission network capacity. Therefore, a huge amount of 

transmission network investment could be avoided and the societal cost can be saved 

potentially. Especially when making a generation mix plan for an extra long-term 

horizon, when all the initial generation units will retire at the target year, such as 2050 

target year, it is quite important to not only decide the generation type and size, but also 

allocate not a single but multiple power plants to appropriate locations. 

Additionally, among all the literatures reviewed above, only the GEP models [9, 23, 72] 

considered the short-term unit commitment constraints, such as unit’s ramping up/down 

rates, minimum up/down time. The model introduced in Chapter 2 tackles the nonlinear, 

non-convex, discrete characteristics in both operational level and generation capacity 

expansion level. The operational level is solved by a dynamic programming algorithm, 

while the capacity expansion level is solved by an innovative heuristic search method. 

Although they can take account of many sophisticated details, such as nonlinear fuel 

cost, integer variables (units’ on/off status, number of units expanded), integer 

constraints (minimum up/down time), spinning reserve and network constraints, it 

suffers from the curse of dimensionality. In this chapter, a more efficient model method, 

MILP is introduced.  

Based on the aforementioned literature analysis, there is not a GEP model which can 

consider both generation location optimization and short-term unit commitment 

constraints simultaneously. This chapter will propose such a model by a mixed integer 

linear programming (MILP) modelling method.  

The rest of this chapter will be organized as:   

Section 3.2 introduces the preparation knowledge which will be employed by the 

developed GEP model. This includes the brief introduction of linear programming and 

mixed integer linear programming, DC power flow analysis and generation shift 

distribution factor. Section 3.3 introduces the problem formulation of the developed 
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GEP model. Section 3.5 presents a case study based on a five bus test system. The 

values of considering the generation location optimization and the short-term ramping 

rate constraint in GEP model are shown by comparative studies. Section 3.6 draws the 

conclusion. 

3.2 Prerequisites 

3.2.1 Linear Programming and Mixed Integer Linear Programming 

• Linear programming 

Linear programming (LP) is a type of optimization modelling method, whose objective 

function and equability or inequality constraints can all be expressed by linear 

polynomials. A standard mathematical expression of a linear programming model with 

N decision variables, p inequality constraints and q equality constraints is: 
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where, x is the decision variable; c is objective function linear coefficient; a is the 

inequality constraint function coefficient; aeq is the equality constraint coefficient 

function.  

For a LP problem with no more than three decision variables, it can be solved easily by 

visualizing the feasible region according to the constraints and finding the optimal point 

manually by observing along the edge of the feasible region. However, if the number of 

decision variables becomes large, the problem can not be visualized. In 1947, Dantzig 



Chapter 3                                                              GEP with Location Optimization 

Page46 

developed the simplex method, which successfully solved the general LP problem and 

made the LP modelling widely adopted in practice [82-84]. 

• Mixed Integer Linear Programming 

When some of the decision variables in the LP problem are required to be integers, then 

this original LP problem becomes a mixed integer linear programming problem (MILP). 

In GEP problem, decision variables like number of generation units to be expanded 

should be integer in practice, while the generation output variables in sub operational 

problem can be real numbers. The added integer constraints increase the difficulty of 

searching the optimal points. Many successive researchers have proposed the methods 

to solve the MILP problem, of which Branch and Bound method proposed by Land and 

Doig in 1960 is the most popular one [84-86].    

Based on the solving methods mentioned above, there have been already various 

commercial modeling and optimization software packages that can tackle both LP and 

MILP problem, such as the optimization toolbox in Matlab, IBM ILGO CPLEX, GAMS, 

LINDO, Gurobi Optimizer, etc. There are also a few good open source optimization 

packages available, such as GNU Linear Programming Kit (GLPK), lpsolve, etc. 

3.2.2 DC Power Flow  

Solving AC power flow equations by Newton-Raphson method requires many iterations 

and modifications of the Jacobian matrix, hence it takes a lot of computation time, 

especially when the size of the problem becomes large. A GEP problem is usually with 

a large size since it considers both capacity variables in expansion problem and 

generators’ operational variables in many scheduling blocks in sub operational problem. 

Therefore, time-efficient power flow analysis method is required when considering the 

network active power flow limit constraints in the GEP problem. DC power flow 

analysis meets this requirement very well, provided that only active power flow is of 

interest and bus voltage and reactive power flow can be neglected during the analysis 

[87, 88].  
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For an AC circuit, if the voltage magnitudes and phase angles are known for both sides 

of a transmission line, the active power flow on the line can be calculated by the 

function below:  

ijijjiijijjiiij bVVgVVVP θθ sin)cos( 2 −−=      3-3 

where Pij is the active power flow on the line from Bus i to Bus j ;  Vi and Vj are the 

voltage magnitudes on Bus i and j; θij is the voltage phase angle difference between Bus 

i and Bus j; gij and bij are conductance and susceptance of the line between Bus i and j. 

For a power system under a steady state, the voltage magnitude on each bus is 

maintained around the rated voltage magnitude (1 per unit) and the voltage phase angle 

difference between the two sides of a transmission line is quite small. Besides, for a 

transmission line, the resistance is far less than the reactance. If it is assumed that: 

Vi=Vj=1; sinθij=θij; cosθij=1; rij=0; 

Then, Equation 3-3 can be approximated by: 

ijjiijijij xbP /)( θθθ −=−=       3-4 

where, xij is the reactance of the line from Bus i to Bus j;  xij= - bij; Referring to Ohm's 

law in DC circuit, Pij can be taken as DC current from Bus i to j; xij can be taken as the 

resistance; while θi  and θj can be taken as the voltages at Bus i and j. That explains what 

the approximation of AC power flow by DC power flow is. 

In order to derive the relationship between line active power flow Pij from Bus i to j and 

active power inject INJ

iP  at Bus i, Kirchhoff's Current Law (KCL) is applied, mimicking 

the KCL in DC circuit:  

∑∑
≠=≠=

−
==

N

ijj ij

ji
N

ijj

ij

INJ

i
x

PP
,1,1

)( θθ
 for i= 1, 2, …, N   3-5 

where, N=n-1, n is the number of buses in the network. Since the slack bus is the 

reference bus, the number of independent buses should be N. Rewrite the above set of 

equations in matrix style: 
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P
INJ
=B0θ           3-6 

where, PINJ is the power injection vector, and θ is the phase angle vector. They are all 

with a dimension of N. B0 is the ‘admittance matrix’, and components are: 
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3.2.3 Generation Shift Distribution Factor  

In GEP problem, the decision variables are generation capacity and generation output. 

Therefore when taking account of the transmission line flow limit constraints in the 

GEP problem, there should be a coefficient to link the generation output at each bus 

with the active power flow on each transmission line. However, Equation 3-6 describes 

the linear relationship between the voltage phase angle and active power injection at all 

buses. Thus, it is better to replace the voltage phase angle with line flow. Based on the 

DC power flow approximation, it can be derived from Equation 3-6 that: 

INJ1

0 PXPBθ
INJ ∆=∆=∆ −
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 where, θ∆  is the phase angle change vector; INJ
P∆ is the active power injection change 

vector; the X is the inverse matrix of B0. If we only consider a change of 

injection, INJ

iP∆ , appears at Bus i, then the corresponding phase angle change vector 

will be: 

INJ
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where, iX  is the ith column vector in matrix X.  Note the change of power flow on Line 

k as i

kP∆ . If the line flow is from Bus m to n, then: 
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where, Mk is Node-Branch Incidence Vector, describing the topology relationship 

between the nodes and branches in a matrix way. For a network with N nodes and K 
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branches, The Node-Branch Incidence Vector for the kth branch from Node m to n is 

defined as: 

Nnm1

]00100100[ LLL −=kM
     3-12 

Equation 3-11 linearly links the active power injection variance at Bus i with the active 

power flow on Line k by a constant factor. This factor is commonly called Generation 

Shift Distribution Factor (GSDF) in previous literatures.  It equals to: 

k

ik
x

GSDF ikXM
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The basic circuit analysis theorem, superposition theorem, states that in a linear electric 

system, one stimulation source can exert the response (current) in a branch 

independently from other sources. If more than one stimulation sources apply to a 

circuit, the response (current) in one branch is equal to algebraic sum of the response 

exerted by applying the every stimulation source individually to the circuit. 

Based on the superposition theorem, the injections from all buses will be linearly and 

respectively distributed on the transmission lines at a rate of GSDF.  Then a GSDF 

matrix can be constructed by identifying the factors relating Bus 1 to N and Line 1 to K. 

GSDF matrix will have a dimension of NK ×  [87, 88]. 

3.3 Problem Formulation 

3.3.1 The Basic MILP GEP Model 

Following the MILP modelling method introduced in Section 3.2, the basic MILP 

model of GEP problem with a total emission limit can be expressed as follows:  
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where, C is the total expansion cost, including generation capacity investment and sub 

operational cost; g is the unit technology index; t is the index of the sub operational 

scheduling block; gtP  is the generation output of technology g at time t; gNp  is the 

number of units of technology g to be expanded; gFC  is the operational cost for unit 

technology g; ⋅gCC is the capacity investment cost for technology g;  gRCap  is the unit 

nameplate capacity of technology g; tD  is the system demand at time t; EP is the 

emission price for penalising emission; tE  is the emission factor of generation 

technology g; targetE  is the emission target in the target year. gNMin  and gNMax  are the 

minimum and maximum number of plants limitation for technology g. T is the 

operational scheduling time horizon; G is the total number of candidate generation 

technologies.  

Equation 3-14 describes the objective which is to minimise the sum of generation 

capacity investment and the operational cost. Constraint 3-15 guarantees the total 

generation outputs from all generators equals to the demand in each sub operational 

scheduling time block. Constraint 3-16 limits the total emission from all generators 

throughout the sub operation horizon by an emission target. Constraint 3-17 gives the 

output limits for all types of generation technologies, which is the maximum nameplate 

capacity multiplied by the number of units to be installed. Constraint 3-18 sets the 

maximum number of units allowed to be expanded for all candidate technologies.  

3.3.2 Inclusion of DC Load Flow Constraints 

In the model proposed in Chapter 2, network transmission capacity limits were 

considered through an AC power flow check for the results from each economic 

dispatch. However, in the GEP model proposed in the Chapter 2, only active power 

overloading check is considered as network constraints. Both objective and constraints 

did not involve any voltage or reactive power analysis. Therefore, it wastes quite a big 
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computation effort in running full AC power flow calculation. In this section, a DC 

power flow constraint is constructed to improve the computation efficiency. Based on 

the basic MILP GEP model in Section 3.3.1, the linear active power flow constraints 

can be added as follows:  
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where, k is the index of transmission line; K is the transmission line set; i is the bus 

index; I is the bus set; kLim  is the active power flow limit of Line k; ktL  is the active 

power flow on Line b at time t;  The generation output, gtP  in Equation 3-14 is extended 

to gitP  with location index i, representing the generation output of technology g at time t 

at Bus i; Similarly, the system demand tD   is differentiated by location of index i,   itD  

is the demand at Bus i, at time t; ikGSDF −  is the generation shift distribution factor from 

Bus i to Line k, whose definition and derivation have been introduced in Section 3.2.3.  

Inequality constraint 3-19 sets the active power flow limits of Line k. It is assumed that 

the flow limits on Line k are all kLim  for both directions; Equation 3-20 linearly links 

the generation at different buses to the line flow through the GSDF. Inequations 3-21 

and 3-22 can be obtained by substituting Equation 3-20 to inequality constraint 3-19 and 

moving the polynomials with the decision variables gitP  to the left hand side and the rest 

constant part to the right hand side, which makes the inequation follow the standard 

form of a MILP model introduced in Section 3.2. 

3.3.3 GEP with Unit Location Optimization 

Similar to the limitation identified for literatures [9, 25, 45, 72, 73], the GEP proposed 

in Chapter 2, takes account of transmission capacity limit, which were seldom 

considered by other GEP studies,  but all the candidate generators were only allowed to 

be expanded at fixed locations, as the assumption in Section 2.3.2 in Chapter 2 states 
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that a newly added plant is assumed to be connected to the node where the units of the 

same technology are located initially. This will make the generation technologies bound 

with initial generation locations. This assumption will not affect the GEP optimization 

results, provided that there are enough transmission capacities throughout the network. 

However, this is not the real case. In practice, if a competitive technology, which should 

be expanded to better approach the object, was initially connected at a congested 

generation bus, the transmission congestion will stop this technology from expanding. 

This inappropriate constraint will misguide the optimization to expand the right 

generation technology. In order to correct this issue, an innovative MILP GEP model 

with generation location optimization has been developed. The developed model can 

determine both the optimal generation mix and the optimal generation locations for all 

generators at the same time. Based on the basic GEP model in Section 3.3.1, the 

decision variables vectors gtP  and gNp  are augmented to gitP  and giNp  respectively, by 

including the bus index i. The new model can be obtained by augmenting the Equations 

3-14 to 3-18 and combining the Equations 3-21 to 3-22 as follows:  
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The core of this model is the application of Superposition Theorem in a linear system. 

As introduced in Section 3.2.3, in a linear system, the stimulation source can exert its 

own influence independently from other stimulation sources. Therefore, in a DC load 

flow approximated power system, the generators with different generation technologies 

at different locations can independently exert their own influence in terms of load flow 
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on each transmission line.  The sum of these influences is the actual load flow across 

each transmission line. 

3.3.4 Inclusion of UC constraints 

The candidate generation technologies in above GEP models are only differentiated by 

four factors: operational cost, emission coefficient, capital cost and nameplate capacity 

size. These factors only describe the static characteristics of the different generation 

technologies. However, generation technologies also have their own dynamic 

characteristics, such as output ramping rate, minimum up and down time.  These 

parameters can indicate how flexible the generation technologies are and are often 

considered during short-term UC scheduling problems. For example, if the ramping rate 

is very large, the unit can change its power output to a large extent between two 

consecutive scheduling intervals, which makes this unit quite flexible.  

Arroyo innovatively proposed a linear UC model in [89], which successively linearises 

the ramping rates, minimum unit up/down time constraints along with the relationship 

between  commitment status, start-up status and shut-down status. There were also 

successive researches based on this linear UC model [90, 91]. However, they all focused 

on short-term operation scheduling, but in this section, the linear UC model is 

augmented by introducing generation expansion decision variables and location 

optimization. The specified modelling is introduced as follows. 

For the ramping up/down constraints, it can be modelled as Inequations 3-30 and 3-31.  

],2[,,0 )1( TtIiGgNpRcapRuPP giggtgigit ∈∀∈∀∈∀⋅⋅≤−≤ −   3-30 

            ],2[,,0 )1( TtIiGgNpRCapRdPP gigggittgi ∈∀∈∀∈∀⋅⋅≤−≤ −    3-31 

where, gRu  and gRd  are the ramping up and down rates of technology g. In order to 

reduce the dimension of the decision variables, the generators with the same technology 

g installed at the same bus i are assumed aggregated to a whole generator with a 

maximum output of gig NpRCap ⋅ . The aggregated generator could ramp up and down at 

the rates of gig NpRu ×  and gig NpRd × respectively. The aggregation assumption also 

applies to the modelling equations from 3-14 to 3-29.  
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However, if considering the commitment, start-up and shut-down state variables, the 

aggregated generators of same generation technology has to be disaggregated into 

individual units, so they can commit, start up and shut down individually. The reason 

for this is that for the aggregated generators, their output can be constrained by 

Inequation 3-26, which is the aggregated maximum output, gig NpRCap ⋅ . However, if 

the unit commitment status is considered, it will also constrain the generation output. 

These two constraints can be expressed by a linear inequation. Therefore, the units of 

the same generation technology should be index individually.  In order to include UC 

details in the GEP model, Inequation 3-26 should be replaced by the following: 

TtiNinIiGgRCapxP gtngitigin ∈∀∈∀∈∀∈∀≤ ),()(,,)()(     3-32 

where, n(i) indexes the nth unit of the generation technology g; tngix )(  is the commitment 

status. Then the unit minimum up time (MUT), minimum down time (MDT), the logic 

relationship between commitment, start-up and shut-down states can be formulated as 

follows: 

MUT limit: 

]1,1[),()(,,

1

)()( +−∈∀∈∀∈∀∈∀⋅≥∑
−+

=
g

UTk

kt

kigingtigin UTTkiNinIiGguUTx
g

   3-33 

],2[),()(,,0)( )()( TUTTkiNinIiGgux g

T

kt

tigintigin +−∈∀∈∀∈∀∈∀≥−∑
=

   3-34 

MDT limit: 

]1,1[),()(,,)1(

1

)()( +−∈∀∈∀∈∀∈∀⋅≥−∑
−+

=
g

DTk

kt

kigingtigin DTTkiNinIiGgvDTx
g

  3-35 

],2[),()(,,0)1( )()( TUTTkiNinIiGgvx g

T

kt

tigintigin +−∈∀∈∀∈∀∈∀≥−−∑
=

   3-36 

Logic relationships between unit commitment, start-up and shut-down states: 

],2[),()(,,)1)(()()()( TtiNinIiGgxxvu tigintigintigintigin ∈∀∈∀∈∀∈∀−=− −   3-37 

TtiNinIiGgvu tigintigin ∈∀∈∀∈∀∈∀≤+ ),()(,,1)()(
  3-38 

Unit commitment status, start-up status and shut-down status integer limits: 
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TtiNinIiGgvux tigintigintigin ∈∀∈∀∈∀∈∀∈ ),()(,,}1,0{,, )()()(
  3-39 

 

where, tiginu )(  is the start-up state; tiginv )(  is the shut-down state; gUT  is the MUT 

requirement for technology g; gDT  is the MDT requirement for technology g.  

3.3.5 Model Demonstration  

 
Fig 3-1 Five Bus Test System 

In this section, the detailed MILP modelling is demonstrated by showing how the 

Constraints 3-28 and 3-29 can be constructed to the standard MILP form. For a system 

with 5 buses and 6 lines as shown in Fig 3-1, Bus 3, 4 and 5 are generator buses, where 

the candidate generators can be connected to; Bus 2, 3 and 4 are load buses; Bus 1 is 

selected to be the slack bus. There are five types of candidate generation technologies 

for selection. The GSDF for three generation buses and six lines can be collected as a 

matrix and noted as GSDFG. Similarly GSDF for three load buses and six lines can be 

collected as a matrix and noted as GSDFD.  GSDFG and GSDFD are defined by 

Equations 3-40 and 3-41. 
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For a single scheduling time block, the generation output decision variables from 5 

generation technologies and 3 generation buses can be written in a vector Pgi, as is 

shown in Equation 3-42. The demands at three demand buses are collected in vector Di 

(Equation 3-43). The transmission limits for 6 lines are collected in vector Limk 

(Equation 3-44). Then, Constraints 3-28 and 3-29 can be expressed by a matrix 

operation, as shown Inequations 3-45 and 3-46. They contribute 12 inequations in the 

MILP model, ensuring the transmission line not overloaded in both directions for the 6 

lines.  

][ 535251434241333231232221131211 PPPPPPPPPPPPPPP=Pgi   3-42 

][ 321 DDD=Di         3-43 

][ 654321 LimLimLimLimLimLim=Limk     3-44 

T

D

TT
DiGSDFLimkPgiGSDFGSDFGSDFGSDFGSDF GGGGG ×+≤×][        3-45 

T

D

TT
DiGSDFLimkPgiGSDFGSDFGSDFGSDFGSDF GGGGG ×−≤×− ][     3-46 

 

3.4 Solution Method 

The proposed MILP GEP model in Section 3.3 is solved by an open source MILP solver 

software package, LPSOLVE. The MILP solver in this software is based on the branch 

and bound algorithm. The software provides a toolbox for Matlab users. The 

specification of LPSOLVE and its usage in Matlab can be found in [92].  

3.4.1 Introduction of LPSOLVE 

For a generic MILP problem as follows: 

Maximise v = f’·x 
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a·x <= b 

vlb <= x <= vub 

x(int) are integer 

The function used to call the MILP solver in Matlab is defined by LPSOLVE as:  

[obj, x, duals] = lp_solve (f, a b, e, vlb, vub, xint, scalemode, keep) 

Where:     

Input Parameters 

f: n vector of coefficients for a linear objective function. 

a: m by n matrix representing linear constraints. 

b: m vector of right sides for the inequality constraints. 

e: m vector that determines the sense of the inequalities: 

          e(i) = -1  ==> Less Than 

          e(i) =  0  ==> Equals 

          e(i) =  1  ==> Greater Than 

vlb: n vector of lower bounds. If empty or omitted, then the lower bounds are set to zero. 

vub: n vector of upper bounds. May be omitted or empty. 

xint: vector of integer variables. May be omitted or empty. 

scalemode: scale flag. Off when 0 or omitted. 

keep: Flag for keeping the lp problem after it's been solved. If omitted, the lp will be 
deleted when solved. 

Output values:  

obj: Optimal value of the objective function. 

x: Optimal value of the decision variables. 

duals: solution of the dual problem 
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Once the input parameters are fed into the LPSOLVE function, the optimization results 

can be obtained, in terms of optimal values of decision variables x and maximum 

objective value. 

3.4.2 Building Objective and Constraint Matrix 

The programme developed in this chapter is coded in Matlab and calls the LPSOLVE 

function to tackle the MILP solution. The major difficulties and efforts are to build the 

input parameter matrix (f, a, b) according to the mathematical model equations in 

Section 3.3 to fit the objective and constraints into LPSOLVE function.  

The objective function coefficient vector, f is relatively easy to build, since it is only a 

vector. Table 3-1 shows the construction f corresponding to each decision variable. The 

generator output decision variables in operational sub-problem are associated with the 

sum of fuel cost and emission cost, while the unit decision variables are associated with 

capital cost. 

Table 3-1 Construction of Objective Function Coefficient Vector 

Dimension GxIxT GxI 

Decision variable vector x Pgit Npgi 

Objective function coefficient vector f -FCg-EP·Eg -Ccg·RCapg 

It should be noted that the default configuration of the LPSOLVE function is to 

maximise the objective function. Therefore, if the users want to minimise an objective, 

the coefficient vectors of the original objective function should be multiplied by -1. 

The construction of linear constraint matrix, a and b, is relatively complex. The detailed 

structures of matrix a and b are provided in Appendix D. In Appendix D, Table. D1 

shows the constraint matrix for line flow limits. Table. D2 shows the constraint matrix 

for generator output upper limits. Table. D3 shows the constraint matrix for generation/ 

demand balance limits. Table. D4 shows the constraint matrix for total emission limits. 

Table. D5 shows the constraint matrix for generator ramping up/down limits. 

Each of the above five constraints matrixes has the same column width, which is the 

number of decision variables, but has different row width. The five matrixes can be 

assembled in column direct to form the entire constraint matrix a, so as to b.  
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Input parameter e is an index vector to indicate whether the rows in constraint matrix a 

are equations or inequations and direction of the inequations. xint is an index factor to 

indicate which decision variables are integer variables. In this case, it should index the 

variables of Npgi.  

After feeding the prepared input parameter vectors and matrixes in the LPSOLVE 

function, optimal decision variables and the associated minimum total cost can be 

obtained. 

3.5 Case Study 

In this section, a case study is presented to demonstrate the application of the proposed 

method for solving the GEP problem with the aim to optimize generation locations. In 

order to demonstrate the value of network constraints and location optimization in GEP 

problem, three different GEP models are solved respectively based on the same test 

input. They are:  

1. Basic GEP as introduced in Section 3.3.1 , which does not consider network 

constraints and generation location; 

2. GEP with network constraints, but the generation locations are fixed, which 

simulates the way of treating the network constraints and locations in the model 

proposed in Chapter 2. 

3. GEP with network constraints and location optimization for all candidate 

generators, which represents the MILP GEP model proposed in this Chapter. 

The results have been compared to show the impacts of network constraints and 

generation location optimization on GEP problem. In order to show the impacts of the 

UC constraints on the GEP problem, the same calculation has been made twice to 

compare the GEP results without and with considering the UC constraints, ramping 

up/down rates. Although, the MUT, MDT constraints can be formulated in the way as 

proposed in Section 3.3.4, it increases the problem size too much due to the introduction 

of three sets of state integer variables. Hence the ramping rate limits can already reflect 
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the dynamic characteristic of a generation technology, so the MUT and MDT 

constraints are neglected for this case study.  

3.5.1 Test Input 

A modified PJM five bus test system was adopted for this case study, which is shown in 

Fig 3-1 as the model demonstration used [93].  Bus3, 4 and 5 are selected to be the 

generation buses, where all candidate generators could be connected. Bus 1 is selected 

to be the slack bus. The parameters of the 6 lines are given in Table 3-2. The 

transmission capacity of each line can be set in two modes, unconstrained and 

constrained.  

There are five types of candidate generation technologies for selection. They have 

different performance indexes in terms of nameplate capacity, operational cost, capital 

cost, emission coefficient, and ramping rate. The details of generation technologies are 

listed in Table 3-3, which are gathered from [65]. Since the impacts of the different 

emission price on GEP results have been investigated in Chapter 2, in this study 

emission price (EP) is set to be 10 £/tonne without analysing its impacts. In this case 

study, we only investigate the carbon emission. Therefore, the emission coefficient 

provided in Table 3-3 refers to carbon emission coefficient, and the word ‘emission’ 

will be used to refer to carbon emission for short for the rest of this chapter.   

Bus 2, 3 and 4 are load buses, each of which has 1000MW annual peak load evenly in 

the planning target year. The load profile in this research is determined according to the 

IEEE Reliability Test System 1996 [61] . The specific load data can be found in 

Appendix A. The hourly load is determined by the multiplication of annual peak 

demand and the coefficients of weekly peak demand in percentage of the annual peak, 

daily peak demand in percentage of the week peak and hourly peak demand in 

percentage of the daily peak. In order to save calculation time and put more efforts on 

investigating the impacts of network constraints and generation locations, this research 

only takes four days as the samples to estimate the yearly total operation cost. The four 

typical days are the first day of each season specified by IEEE Reliability Test System 

1996. Therefore the scheduling horizon T is 24x4 for this study case.  The related 

operation cost and emission results will be scaled up by 91 (52x7/4), since the 

scheduling year has 52 weeks.  
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Table 3-2 Line Data of Five Bus Test System 

Line 1-2 1-4 1-5 2-3 3-4 4-5 

X (%) 2.81 3.04 0.64 0.08 2.97 2.97 

Unconstrained 9999 9999 9999 9999 9999 9999 Transmission 

capacity(MW) Constrained 500 500 300 500 300 500 
 

Table 3-3 Candidate Generation Technology Parameters 

Plant 

 type 

Nameplate 

Capacity 

(MW) 

Operation  

Cost 

(£/MWh) 

Emission 

Coefficient 

(tonne/MWh) 

Capital 

Cost 

(M£/MW) 

Ramping  

Rate 

(MW/h) 

CCGT1 300 6 0.38 0.484 10 

CCGT2 350 6.4 0.39 0.482 50 

COAl PF 300 3.64 0.84 1.109 20 

IGCC1 200 4.06 0.6 1.585 10 

OGCT 100 5 0.47 0.467 20 

3.5.2 Experiment Implementation 

In order to show the generation expansion under different levels of emission limits, the 

GEP problems are solved respectively under six different emission target ranging from 

9.5E+06 tonnes to 7.0E+06 tonnes. 

The case study is executed through the following four steps:  

1. For the basic GEP problem neglecting network constraints and location 

optimization, the objective and constraints from Equations 3-14 to 3-18 are used 

to construct the input matrix. The GEP model is solved six times under six 

different emission targets.  The generation expansion decision results are given 

in Table 3-5, and the related optimal objective values are given in Table 3-8. 

Step 1 presents a very basic GEP case as a contrast.  

2. For the GEP problem with network constraints but at fixed locations, the 

objective and constraints from Equations 3-14 to 3-22 are used to construct the 

input matrix. In this evaluation, the transmission lines are set at the constrained 

mode, while CCGT1 and CCGT2 units are set to be connected only at Bus 3; 

Peat FB and IGCC units are to set to be connected only at Bus 4; OCGT units 

are set to be connected only at Bus 5. This is to simulate the way of treating the 

generation location in the model proposed in Chapter 2. The GEP model is also 

solved six times under six different emission targets.  The generation expansion 

decision results are given in Table 3-6, and the related optimal objective values 
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are given in Table 3-9. Step 2 presents a MILP GEP simulating the GEP model 

proposed in Chapter 2 as a contrast. For short, we call this model, Model 1, from 

here onwards. 

3. For the GEP problem considering network constraints and location optimization, 

the objective and constraints from Equations 3-23 to 3-29 are used to construct 

the input matrix. In this evaluation, the transmission lines are set at the 

constrained mode, while five generation technologies can be freely located in 

any of the three generation buses, Bus 3, 4 and 5. The GEP model is solved six 

times under six different emission targets. The generation expansion decision 

results are given in Table 3-7 and the related optimal objective values are given 

in Table 3-10. Step 3 presents a newly developed MILP GEP model with 

generation location optimization. For short, we call this model, Model 2, from 

here onwards. 

4. Include the Equations 3-30 and 3-31 into the above three models respectively for 

considering ramp rate limits in GEP problem, repeat the above three steps. The 

corresponding results are given in Table 3-11 to Table 3-16. Step 4 attempts to 

show the importance of considering the generators’ dynamic characteristics in 

GEP problem. It is shown by comparing the GEP cases with and without 

including ramping rate constraints. For short, we call this model proposed in this 

study, Model 3, from here onwards. 

In a real GEP problem, it should be consider that some old units may not be retired in 

the target year, or some kind of units must be built in the target year due to political or 

environmental reasons. These units will definitely appear in the generation mix in the 

target year. Hence there should be a lower boundary for the number of the generation 

units of each generation technology. Table 3-4 shows these limits. For the Step 1 and 2, 

since there is not location optimization, the total mix applies as the low bound, as the 

gNMin  in Inequation 3-18. There is no upper boundary for Step 1 and 2. For Step 3, the 

location optimization is considered; therefore, the low bound is given for different 

technologies at different buses respectively. Besides, for the upper bound, maximum 2 

units of the same generation technologies are allowed to be built at each bus. This 

setting is due to the constraints of resource, space, and land availability. 
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Table 3-4 Minimum Number of Units to Appear in the Target Year 

Plant type Bus 3 Bus 4 Bus 5 Total Mix 

CCGT1 2 0 0 2 

CCGT2 1 0 0 1 

COAl PF 0 1 0 1 

IGCC 0 1 0 1 

OGCT 0 0 1 1 

3.5.3 Results and Analysis 

3.5.3.1 GEP without Ramping Constraints 

Table 3-5, Table 3-6 and Table 3-7 show the number of units to appear in the target year 

from the first three steps respectively stated in Section 3.5.2. The top row in each table 

labels the emission targets under which the GEP is executed. The optimized numbers of 

generators of different generation technologies are listed in columns corresponding to 

each emission target.  

Table 3-8, Table 3-9 and Table 3-10 show the GEP optimization results in terms of total 

cost (including capital, operational and emission cost) and total emission. The results in 

these three tables are related to the generation mix results in Table 3-5, Table 3-6 and 

Table 3-7 respectively.  

• Comparison between Model 2 and Model 1 

Comparing Table 3-5 and Table 3-8 to Table 3-6 and Table 3-9, it can be found that 

even though in Step 2, the network constraint is added, the generation mix, the total cost 

and emission results are still the same when ET equals to 9.5E+06 tonnes, 9.0E+06 

tonnes and 8.5E+06 tonnes. However, when the ET becomes more stringent, less than 

8.5E+06 tonnes, the results begin to differ. In Table 3-5, more and more IGCC units are 

replaced mainly by CCGT1 and CCGT2, which have the first two lowest emission 

coefficients. This exactly reflects the ET pressure on the GEP. However, surprisingly, in 

Table 3-6, more and more IGCC units are replaced mainly by OCGT, which have the 

third lowest emission coefficient. This is because in the Step 2, the GEP model includes 

network constraints, but generation location selection is bounded with generation 

technologies. CCGT1 and CCGT2 units are allowed to expand at Bus 3, while OCGT 

are allowed to expand at Bus 5. Due to the transmission capacity limits, when the 
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generation capacity in Bus 3 reaches a saturated level, over expanded capacity will be 

wasted. Therefore, even CCGT1 and CCGT2 have the lowest emission coefficients, but 

it can not play a bigger role even when ET becomes more stringent due to their 

saturated location. However, although OCGT unit has the third lowest emission 

coefficient, it penetrates a lot in the target year due to its connecting to a less crowed 

location. Besides, for Model 2, the total cost increases compared to the results from the 

Model 1 when ET equals to 8.0E+06 tonnes and 7.5E+06 tonnes. It is of more interest 

in Table 3-6 that when ET reaches 7.0E+06 tonnes, there is not a feasible mix solution 

for realising the low emission target. These all shows the from Model 1 to Model 2, the 

optimal generation mix varies; the total cost increases; and the feasibility drops due to 

more constraints added.  

• Comparison between Model 3, Model 2 and Model 1 

Comparing Table 3-6 and Table 3-9 to Table 3-7 and Table 3-10, it can be found that 

after including the generation location optimization in Model 3, the generation mix, the 

total cost and emission results are totally different from that in Model 2, for all ET 

scenarios. For the generation mix results in Model 3, when ET becomes more stringent, 

the IGCC units are replaced mainly by CCGT1 and CCGT2, rather than OCGT. This is 

more similar to the results in Model 1. Additionally, the infeasible scenario, when ET 

equals to 7.0E+06 tonnes in Model 2, however, can be realised in Model 3.  

There is another interesting observation that for loose ET scenarios, when ET equals to 

9.5E+06 tonnes, 9.0E+06 tonnes and 8.5E+06 tonnes, the total cost in Model 3 is 

greater than that in Model 1 and 2. But for tight ET scenarios, when ET equals to 

8.0E+06 tonnes, 7.5E+06 tonnes and 7.5E+06 tonnes, the total cost in Model 3 is 

greater than that in Model 2 but less than that in Model 1. These are because in Model 3, 

there is an upper boundary, which is maximum 2 units of the same generation 

technologies are allowed to be built at each bus, due to the constraints of resource, space, 

and land availability. But there are no such upper boundaries for Model 1 and Model 2. 

Therefore, when ET is loose, the cost efficient generation technologies will be expanded 

with priority, but the upper boundaries in Model 3 stops it to expand immoderately. For 

example, when ET equals to 9.5E+06 tonnes, 6 IGCC units appear in the optimal 

generation mix of Model 1 and 2, but only 4 appear in that of Model 3 along with one 
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more CCGT1 unit, which has a bit higher operational cost and capital cost compared to 

IGCC. Therefore, when ET equals to 9.5E+06 tonnes, 9.0E+06 tonnes and 8.5E+06 

tonnes, the total cost of Model 3 is higher, which reflects the results closer to the real 

practice. Similarly, when ET becomes tighter, more and more emission efficient 

generation technologies will be expanded with priority. Model 1 allows the emission 

efficient units to expand immoderately, while Model 2 over constrains this immoderate 

expansion by bounding the generation technologies with the expansion location. Only 

Model 3 appropriately constrains the immoderate expansion by optimizing generation 

location to better use the available network transmission capacity and capping the 

maximum number of units at each bus for each generation technology. That is why 

when ET equals to 8.0E+06 tonnes, 7.5E+06 tonnes and 7.5E+06 tonnes, the total cost 

in Model 3 is greater than that in Model 2 but less than that in Model 1. 

Table 3-5 Optimal Generation Mix without Network Constraint 

Emission  
target(tonne) 

9.5E+06 9.0E+06 8.5E+06 8.0E+06 7.5E+06 7.0E+06 

CCGT1 2 2 2 3 3 5 

CCGT2 1 1 1 1 2 1 

COAl 

PF 
1 1 1 1 1 1 

IGCC 6 6 6 4 3 1 

Number 
of 

Installed 
Units 

OGCT 1 1 2 2 1 3 

 
Table 3-6 Optimal Generation Mix with Constrained Network and Fixed Location 

Emission 
 target (tonne) 

9.5E+06 9.0E+06 8.5E+06 8.0E+06 7.5E+06 7.0E+06 

CCGT1 2 2 2 3 2 

CCGT2 1 1 1 1 2 

COAl 

PF 
1 1 1 1 1 

IGCC 6 6 6 4 2 

Number  
of  

Installed 
Units 

OGCT 1 1 2 3 7 

Not 
Feasible 

  

It can be concluded from these observations that Model 3 can better utilise the available 

resources than Model 2 does. Compared to Model 1, Model 3 improves a lot by taking 

account of network constraints and deciding the generation mix and its optimal location 

simultaneously. Additionally, Model 3 is more close to the real GEP problem. Therefore 

its results are more close to the real optimal generation mix and required total cost. In a 

word, compared to Model 1 and Model 2, Model 3 can avoid the overestimation or 
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underestimation of optimal capacities of different generation technologies and required 

total cost, subject to various ETs.   

Table 3-7 Optimal Generation Mix with Constrained Network and Optimized Location 

Emission 
target(tonne) 

9.5E+06 9.0E+06 8.5E+06 8.0E+06 7.5E+06 7.0E+06 

CCGT1 3 3 3 3 3 3 

CCGT2 1 1 1 1 2 3 

COAl 

PF 
1 1 1 1 1 1 

IGCC 4 4 4 4 3 1 

Number 

of 

Installed 

Units 

OGCT 1 1 1 2 1 2 

 
Table 3-8 Optimal GEP Results without Network Constraint 

Emission 
Target 
(tonne) 

Total Cost 
£ 

Total 
Emission(tonne) 

9.5E+06 1203746414 8925363 

9.0E+06 1203746414 8925363 

8.5E+06 1249929997 8500000 

8.0E+06 1331392430 8000000 

7.5E+06 1422341839 7500000 

7.0E+06 1571150045 7000000 

 
Table 3-9 Optimal GEP Results with Constrained Network and Fixed Location 

Emission 
Target 
(tonne) 

Total Cost 
£ 

Total 
Emission(tonne) 

9.5E+06 1203746414 8925363 

9.0E+06 1203746414 8925363 

8.5E+06 1249929997 8500000 

8.0E+06 1377351936 8000000 

7.5E+06 1524288203 7500000 

7.0E+06 Not feasible 

 
Table 3-10 Optimal GEP Results with Constrained Network and Optimized Location 

Emission 
Target 
(tonne) 

Total Cost 
£ 

Total 
Emission(tonne) 

9.5E+06 1285692636 8433461 

9.0E+06 1285692636 8433461 

8.5E+06 1285692636 8433461 

8.0E+06 1331392430 8000000 

7.5E+06 1422341839 7500000 

7.0E+06 1574516289 7000000 
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3.5.3.2 GEP with Ramping Constraints 

As Step 4 states, the first three steps are executed again by adding the unit’s ramping 

rate constraints. The corresponding results are shown in Table 3-11 to Table 3-16. The 

table structure is exactly the same as Table 3-5 to Table 3-10. The difference between 

Models 1, 2 and 3 found in Section 3.5.3.1 still applies. Therefore, it will not be 

repeated in this section. The key point in this section is to investigate the impacts of 

ramping rate constraints on GEP problem.  

Compared Table 3-11 to Table 3-16 with Table 3-5 to Table 3-10, it can be found that 

after adding the ramping rate constraints, the generation mix results of Models 1, 2 and 

3 all changes under some ET scenarios. Especially, it can be seen from Table 3-12 that 

it even can not realise the 7.5E+06 tonnes emission target after considering ramping rate 

constraint. It is more notable that the total costs of Models 1, 2 and 3 with ramping rate 

constraint are all higher then that without ramping rate constraint, no matter under 

which emission targets. This is because ramping rate constraints can reflect the unit’s 

output flexibility, which is also an important characteristic of a generation technology. 

If a GEP problem neglects ramping rate constraints, it equals to make an assumption 

that each generation technology can ramp up or down its output immoderately. But if 

the ramping rate constraints are considered, the cost efficient generator may not be able 

to provide as much as cheap power output whenever it is needed. That is why the total 

cost is underestimated.  

It can be concluded that solving a GEP problem without considering the ramping rate 

constraints may lead to sub optimal generation mix results and will definitely 

underestimate the total cost required. The findings demonstrate the value of the GEP 

model developed in this research.  

Table 3-11 Optimal Generation Mix without Network Constraint 

Emission  
target(tonne) 

9.5E+06 9.0E+06 8.5E+06 8.0E+06 7.5E+06 7.0E+06 

CCGT1 2 2 2 2 4 2 

CCGT2 1 1 1 2 1 4 

COAl 
PF 

1 1 1 1 1 1 

IGCC  6 6 6 5 3 1 

Number 
of 

Installed 
Units 

OGCT 1 1 2 1 2 2 
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Table 3-12 Optimal Generation Mix with Constrained Network and Fixed Location 

Emission 
target (tonne) 

9.5E+06 9.0E+06 8.5E+06 8.0E+06 7.5E+06 7.0E+06 

CCGT1 2 2 2 3 

CCGT2 1 1 1 1 

COAl 
PF 

1 1 1 1 

IGCC 5 5 6 4 

Number 
of 

Installed 
Units 

OGCT 2 2 2 3 

Not 
Feasible 

 

 
 

Table 3-13 Optimal Generation Mix with Constrained Network and Optimized Location 

Emission 
target(tonne) 

9.5E+06 9.0E+06 8.5E+06 8.0E+06 7.5E+06 7.0E+06 

CCGT1 3 3 3 2 4 3 

CCGT2 1 1 1 2 1 3 

COAl 
PF 

1 1 1 1 1 1 

IGCC 4 4 4 4 3 1 

Number 
of 

Installed 
Units 

OGCT 1 1 1 2 2 3 

 
 

Table 3-14 Optimal GEP Results without Network Constraint 

Emission 
Target 
(tonne) 

Total Cost 
£ 

Total 
Emission(tonne) 

9.5E+06 1204337757 8916827 

9.0E+06 1204337757 8916827 

8.5E+06 1249986763 8500000 

8.0E+06 1341135203 8000000 

7.5E+06 1443660987 7500000 

7.0E+06 1599175956 7000000 

 
 

Table 3-15 Optimal GEP Results with Constrained Network and Fixed Location 

Emission 
Target 
(tonne) 

Total Cost 
£ 

Total 
Emission(tonne) 

9.5E+06 1220417392 8977613 

9.0E+06 1220417392 8977613 

8.5E+06 1249986763 8500000 

8.0E+06 1377896582 8000000 

7.5E+06 

7.0E+06 
Not feasible 
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Table 3-16 Optimal GEP Results with Constrained Network and Optimized Location 

Emission 
Target 
(tonne) 

Total Cost 
£ 

Total 
Emission(tonne) 

9.5E+06 1286815472 8513333 

9.0E+06 1286815472 8513333 

8.5E+06 1286830709 8500000 

8.0E+06 1356192809 8000000 

7.5E+06 1443660987 7500000 

7.0E+06 1620607641 7000000 

3.5.3.3 Generation Location Optimization Results 

The above tables do not provide the optimal generation locational distribution results in 

Model 3. These results are shown in Fig 3-2 to Fig 3-5. In each figure, there are two sub 

figures. The figure on the left hand side shows the generator locational distribution 

result in Model 3 without ramping rate constraint, while the figure on the right hand 

side shows the generator locational distribution result in Model 3 with ramping rate 

constraint. The horizontal axis labels the three generation buses, while the vertical axis 

labels the integer number of the generation units to appear in the target year. Different 

generation technologies are differentiated by different colours, with a legend at the top 

right showing the corresponding relation.  

Fig 3-2 shows the generator distribution when ET equals to 9.5E+06 tonnes, 9.0E+06 

tonnes and 8.5E+06 tonnes respectively. It can be seen that the generation mix and 

location allocation results are the same when ET equals to 9.5E+06 tonnes, 9.0E+06 

tonnes and 8.5E+06 tonnes and for whether or not considering generators’ ramping rate 

constraint. This indicates that the GEP will not be constrained by the emission targets 

more than 8.5E+06 tonnes. This is because even without emission constraints, any mix 

of the five candidate technologies found by the GEP model for the least cost solution 

will produce an emission less than 8.5E+06 tonnes. Besides, the unit ramping rate 

constraints will not affect either the generation mix or the locational distribution.  
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Fig 3-2 Generator Distribution, Emission Target =9.5E+06 tonnes, 9.0E+06 tonnes and 8.5E+06 

tonnes 

However, when emission target becomes more stringent, the situation changes as more 

low emission units will be penetrating in the mixes. This can be observed from Fig 3-3, 

Fig 3-4 and Fig 3-5.  

Ramping rate constraints will not only affect the generation mix results, but also affect 

the optimal generation locational distribution. In Fig 3-3, if the ramping rate constraints 

are neglected, there will be a CCGT1 unit connecting at Bus4, but if they are included, 

the CCGT1 unit will be replaced by CCGT2 unit. In Fig 3-4, if the ramping rate 

constraints are neglected, there will be one CCGT1 unit and one CCGT2 unit 

connecting at Bus4, but if they are included, the CCGT2 unit will be replaced by 

CCGT1 unit. Additionally, one more OCGT unit will be connected at Bus4. In Fig 3-5, 

compared with the case neglecting the ramping rate constraints, there will be one more 

OCGT unit connecting at Bus4 in the case including the ramping rate constraints. This 

indicates under the stringent emission target constraints, a small difference in unit’s 

ramping characteristic can significantly affect the generation technologies 

competitiveness in a long-term view.  
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Fig 3-3 Generator Distribution, Emission Target =8.0E+06 tonnes 

 

 
Fig 3-4 Generator Distribution, Emission Target =7.5E+06 tonnes 

 

 
Fig 3-5 Generator Distribution, Emission Target =7.0E+06 tonnes 
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From the above observations, it can be concluded that for loose emission target 

constraints the ramping rate constraints may affect the long-term generation mix and 

generation locational distribution. However, when the emission target becomes stringent, 

the ramping rate constraints will significantly affect not only the long-term generation 

mix but also the generation locational distribution. Besides, neglecting ramping rate 

constraint will definitely underestimate the total cost for the generation expansion. In 

essence, unit’s flexibility (ramping rate), like nameplate size, operational cost efficiency, 

capital cost efficiency and emission efficiency plays a significant role in the GEP 

problem.  

3.6 Chapter Summary 

This chapter proposes a new MILP GEP model. Compared to the previous GEP model, 

the values of this model are that it can deal with generation location optimization and 

the short-term unit commitment constraints together in one GEP model. The network 

constraints and generation location optimization are achieved by employing the 

generation shift distribution factor (GSDF) under the DC load flow approximation. The 

decision variables, generation outputs at different buses, are linearly linked to the load 

flow on each transmission line by GSDF. The unit commitment constraints are also 

expressed linearly and augmented by bus indexes in order to integrate with the MILP 

GEP model.  

A case study is provided to show the effectiveness of the proposed model. The case 

study implemented a GEP problem solution based on a five bus test system. 

Comparison has been made between three different GEP models, which are basic GEP 

model without network constraint, GEP model with network constraint but at fixed 

locations, and the new GEP model with network constraint and location optimization. 

The three models are solved under various emission target constraints, so as to find the 

difference of the three models under different emission reduction pressures. The results 

show that the GEP model with location optimization can better utilises the available 

resources than the second GEP model. Because it can model the GEP problem more 

close to the real case, it generates a more real generation mix and related cost outputs 

than the other two simpler models. Therefore, the new GEP model can avoid the 
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overestimation or underestimation of optimal capacities of different generation 

technologies and required total cost, subject to various emission targets. 

The above three GEP models are augmented by including the ramping rate constraints 

afterwards. The same experiments are executed again to demonstrate the importance to 

take account of ramping rate constraints in GEP model. The results show that solving a 

GEP problem without considering the ramping rate constraints may lead to sub optimal 

generation mix results for some certain levels of emission target pressures. It can be 

concluded from the results that for loose emission target constraints the ramping rate 

constraints may affect the long-term generation mix and generation locational 

distribution. However, when the emission target becomes stringent, the ramping rate 

constraints will significantly affect not only the long-term generation mix but also the 

generation locational distribution. Besides, neglecting ramping rate constraints will 

definitely underestimate the total cost for the generation expansion. In essence, unit’s 

flexibility characteristics (ramping rate), like unit nameplate size, operational cost 

efficiency, capital cost efficiency and emission efficiency play a significant role in the 

GEP problem. 

In summary, the new GEP model can determine not only the optimal generation mix but 

also the optimal location of each generation unit in the mix. Since this model takes 

account of network constraints, location optimization and unit dynamic characteristics, 

it can provide a more accurate generation mix and related total cost results.  
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HIS chapter proposes a multi-phase emission targets 

constrained GEP model, simultaneously considering 

generation location optimization at multi phases.   T 
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4.1 Introduction  

4.1.1 Multi-Phase Emission Targets Setting 

In order to fight the global warming, many governments have enforced various green 

house gas (GHG) emission reduction schemes. Most of these schemes tend to realise the 

emission reduction target step by step in a multi phase way. METs may be set to 

approach the final emission reduction target gradually. For example, the European 

Union enforced the world’s biggest emission cap and trade policy, European Union 

Emission Trading Scheme (EU-ETS) in 2005. EU-ETS was initially designed to be 

implemented through three phases, covering the period from 2005 to 2020. It now has 

entered into the Phase III (2013-2050) [94]. Emission caps are specified for each 

member state for the first three phases. Additional operational phases and related GHG 

reduction specifications are waiting to be conceived and implemented in the future 

potentially by European Commission, in order to realise the even long term GHG 

reduction target in 2050.  

 
Fig 4-1 EU GHG emissions towards an 80% domestic reduction (100% =1990)[95] 

Fig 4-1  illustrates a pathway towards an 80% GHG reduction by 2050 relative to the 

1990 level, shown in 5 year steps. The upper "reference" projection shows how 

domestic greenhouse gas emissions would develop under current policies. A scenario 

consistent with an 80% GHG reduction then shows how overall and sectoral emissions 

could evolve, if additional policies are put in place, taking into account technological 

options available overtime. It can be seen the GHG from power sector will be reduced 
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step by step as those from other sectors [95]. Following the EU-ETS, UK government 

enforced the Climate Change Act 2008, setting legally binding emission reduction 

targets of the UK, which are at least 34% and 80% cut in GHG emission by 2020 and 

2050 respectively, both against a 1990 baseline.  

However, in power industry, the generation plant investment and operation require a 

very huge amount of money, and usually a generation plant has a long time life, 

spanning tens of years, once it has been built. Setting emission reduction targets for the 

whole power industry will push the generation mix to include more low emission 

generators and exclude more high emission generators. During the evolvement to a final 

emission reduction target year, new generators will be constructed while the old 

generators may retire. If there are METs, the settings of these targets may severely 

change the trajectory of system's generation mix evolvement to the final optimal 

generation mix, which tends to meet a long-term final emission reduction target. It can 

be imagined that over stringent METs may lead to excessive clean generation capacity 

expansion in the mid-term periods, and this excessively expanded clean generation 

capacity may be not necessary in the FET year. Therefore, inappropriate multiphase 

emission target settings may affect the GEP in terms of total societal cost dramatically. 

This chapter investigates these effects. 

4.1.2 Literature Reviews 

Massive researches have been done in the GEP area, but all the previous GEP models 

can be categorised into two groups according to their planning time horizons:  

One is the single period GEP model, which only attempts to find the optimal generation 

mix in a single period (target year). For example, in the very early GEP researches [8, 

96-98], the authors considered many factors to improve the GEP modelling, such as 

introducing new solving algorithm, considering uncertainties, multi-objectives, existing 

units and so on. However, they only solved the optimal generation mix in a single 

period. There are also a lot of recent single period GEP researches. Doherty performed a 

generation portfolio analysis considering carbon emission constraints, fuel price 

uncertainties and wind penetration in [3, 65]. Yuan [9] developed an emission target 

constrained GEP model considering the impacts of short-term emission price and unit 

commitment constraints. Jonghe [6] proposed a GEP model considering the impacts of 
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short-term price based demand side response on long-term generation mix. GEP models 

considering deregulated electricity market environment were presented in [99-102]. The 

above models are all single period GEP models. Obviously, these models are not able to 

investigate the impacts of the multiphase emission target settings on the total societal 

cost.  

The other category is multi-period GEP model, which attempts to find the optimal 

generation mixes for more than one period, gapped by a certain time length (one year, 

five years, etc). For example, Sepasian proposed a multi-year security constrained 

combined generation-transmission expansion planning model [103]. Sirikum proposed a 

GA-Benders’ decomposition GEP model to tackle the mixed integer nonlinear 

programming GEP model in [24]. GEP models considering multi-period and multi-

objective GEP can be found in [74, 104].  In [21], the author proposed a low carbon 

power generation expansion (LCPGE) model, which integrates a comprehensive set of 

low carbon factors. Jin [22] developed a two-stage stochastic mixed integer linear 

programming GEP model, with focus on analysing the uncertainties coming from the 

GEP problem, such as load and renewable forecast uncertainty, fuel price uncertainty, 

emission control policy uncertainty, etc. Careri [62] proposed mixed integer nonlinear 

programming GEP model, with focus on investigating the impacts of many types of 

renewable promotion and emission reduction incentive systems on GEP problem. 

Kamalinia investigated the fast-response generation unit planning to accommodating the 

uncertain wind generation in  [51, 72]. Multi-period GEP models considering 

deregulated electricity market environment were presented in [73, 105-107]. 

Among all the above multi-period GEP researches, only [21, 24, 51, 62, 72, 104] 

provide the functional interfaces for considering emission targets constraints in each 

planning period. However, none of them made the numerical analysis for the impacts of 

the multiphase emission target settings on the total societal cost. Furthermore, there is 

no previous numerical analysis for the impacts of the multiphase emission target 

settings on the total societal cost, particularly considering the network constraints and 

generation location optimization. The study in this chapter fills this blank. 

The rest of this chapter will be organized as:   
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Section 4.2 introduces a multi phase GEP problem formulation extended from the GEP 

model proposed in Chapter 3, where the objective functions, constraints and solution 

method are specified; Section 4.3 provides a numerical case study to investigate the 

impacts of multi phase emission target setting on the total societal cost assessment, 

especially under the GEP modelling considering generation location optimization in 

each planning period; conclusions are drawn in Section 4.4. 

4.2 Problem formulation 

In order to address the problem more clearly, a two phase emission targets constrained 

GEP model is proposed in this section. It should be noted that although only two phase 

emission targets are considered in the mathematical formulation, there is no obstacle to 

extend the current model to a multi phase emission targets constrained GEP model.  It’s 

quite straight forward. The problem is formulated by a Mixed Integer Linear 

Programming (MILP) model [89], which extends the GEP model proposed in Chapter 3 

by introducing the two-phase emission targets constraints. The two-phase emission 

targets are set for two separate target years in future, namely mid-term emission target 

(MET) and final emission target (FET).  

The model attempts to find the optimal generation mixes in both target years at the 

minimum total cost, including the total generation capacity investment and the total 

operational cost for both phases. The structure of the proposed model is shown in Fig 

4-2.  

 
Fig 4-2 Structure of the Two Phase Emission Targets GEP Model 

The detailed mathematical MILP formulation is presented as follows: 

The objective function combines the short-term operational and emission cost with 

long-term capital cost: 



Chapter 4  GEP with Multi Phase Emission Targets 

Page79 

IntegernegativeNonNpNp

NpRcapCC

PEEPPFC

NpRcapCC

PEEPPFCMin

gigi

gi

G

g

I

i

gg

T

t

G

g

I

i

gitggitg

gi

G

g

I

i

gg

T

t

G

g

I

i

gitggitg

−∈

⋅+

⋅⋅+⋅+

⋅+

⋅⋅+⋅

∑∑

∑∑∑

∑∑

∑∑∑

= =

= = =

= =

= = =

2,1

2.

)22(

1.

)11(

1 1

1 1 1

1 1

1 1 1

    4-1 

where,  

g Index of generation technology type; 

t Index of scheduling time interval for sub-operational problem; 

i Index of bus; 

G Total number of candidate generation technologies; 

T Scheduling time horizon for sub-operational problem; 

I Total number of buses; 

gitP1  Real power output of unit of generation technology g at bus i at 

time t in the MET year; 

gitP2  Real power output of unit of generation technology g at bus i at 

time t in the FET year; 

giNp1  Integer decision variable for number of unit of generation 

technology g to be built at bus i in the MET year; 

giNp2  Integer decision variable for number of unit of generation 

technology g to be built at bus i in the FET year; 

gRcap  Nameplate capacity of generation technology g; 

gFC  Operational cost of generation technology g; 

gE  Emission rate of generation technology g; 

EP  Emission price; 

gCC  Capital cost of generation technology g; 

The decision variables are gitP1 , gitP2 , giNp1  and giNp2  in Equation 4-1. The 

constraints include the following: 

Supply demand balance in both target years: 
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Transmission capacity limits in both target years: 
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Unit power output limits in both target years: 
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Ramping up/down constraints in both target years: 
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Relationships of unit service status between initial year and MET year and FET year: 
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where, 

itD1  Demand at bus i in time t in MET year; 

itD2  Demand at bus i in time t in FET year; 

k Index of transmission line; 

K Total number of transmission lines; 

kLim1  Transmission capacity limit of line k in MET year; 

kLim2  Transmission capacity limit of line k in FET year; 

ktL1  Active power flow on line k at time t in MET year; 

ktL2  Active power flow on line k at time t in FET year; 

ikGSDF −1  Generation shift distribution factor from bus i to line k in MET 

year; 

ikGSDF −2  Generation shift distribution factor from bus i to line k in FET 

year; 

gRu  Ramping rates of generation technology g; 

1Et  Emission target in MET year; 

2Et  Emission target in FET year; 

gPS10  Binary parameters indicating the service status in MET year of 

generation technology g built in initial year; 

gPS21  Binary parameters indicating the service status in FET year of 

generation technology g in MET year; 

gPS20  Binary parameters indicating the service status in FET year of 

generation technology g built in initial year; 

giNp0  Integer parameter specifying the number of unit of generation 

technology g at bus i in initial year; 

It should be noted that PS10g, PS21g and PS20g are binary parameters to indicate 

whether the generators’ life time can cover the time gaps from initial year to MET year, 

from MET year to FET year and from initial year to FET year. They can be calculated 

simply by subtracting the time gaps from the life times of different generation 

technologies. If the difference is positive, that means units with this technology won’t 
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retire in next target year. Otherwise, if the difference is zero or negative, it means the 

units with this technology will retire in or before next target year. For the values of 

PS10g, PS21g and PS20g, 1 is used to describe the corresponding in-service generation 

technology g and 0 is used to describe the retirement generation technology g.  

PS10g, PS21g and PS20g place constraints that once a generator is built in the previous 

planning periods; it may stay though to the next planning periods. Therefore, Equation 

4-16 and Equation 4-17 respectively describe which generators in the initial year will be 

still in service in MET year and which generators in initial year and MET year will be 

still in service in FET year. 

Same with Chapter 3, the problem formulated above is also coded in Matlab and solved 

by the open source MILP solver, ‘lpsolve’ [92]. The specific method of construction of 

the objective and constraint matrix has been introduced in Section 3.4.  

4.3 Case Study 

In order to verify the effectiveness of the method proposed in this study, a case study is 

presented. Comparative studies have been made to find out the impacts of MET settings 

on the results of a multi phase emission target constrained GEP problem and the 

importance of considering generation location distribution on the multi phase emission 

targets constrained GEP model. 

4.3.1 Test System 

The GEP model with multi-phase emission targets is tested based on the modified PJM 

5 bus test system shown in Fig 3-1 [93], which is also used in Chapter 3. Same as the 

case study in Chapter 3, Bus3, 4 and 5 are selected to be the generation buses, where all 

candidate generators will be connected. Bus 1 is selected to be the slack bus. The 

parameters of six transmission lines are given in Table 4-1. In order to find the impacts 

on total generation expansion cost purely brought by multiphase emission targets setting, 

it is assumed that the transmission network parameters stay the same in both MET year 

and FET year. That means the line parameters in the MET year, kLim1  and ikGSDF −1  

equal to those in the FET year, kLim2  and ikGSDF −2 .  



Chapter 4  GEP with Multi Phase Emission Targets 

Page83 

 
Fig 4-3 Five Bus Test System 

 
Table 4-1 Line Data of Five Bus Test System 

Line 1-2 1-4 1-5 2-3 3-4 4-5 

X (%) 2.81 3.04 0.64 0.08 2.97 2.97 

Transmission capacity(MW) 500 500 300 500 300 500 
 

Table 4-2 Candidate Generation Technology Parameters 

Plant 

Type 

Nameplate 

Capacity 

(MW) 

FC 

(£/MWh) 

Emission 

Coefficient 

(tonne 

/MWh) 

CC 

(M£/MW) 

Plant 

Life 

(Years) 

Ramping 

Rate 

(MW/h) 

CCGT1 300 6.00 0.38 0.48 30 10 

CCGT2 350 6.40 0.05 0.69 20 50 

COAl 

PF 
300 3.64 0.84 1.11 20 20 

IGCC 200 4.06 0.60 1.59 25 10 

OGCT 100 5.00 0.47 0.47 30 20 

Five different candidate generation technologies are to be connected to the grid. They 

have different performances in terms of nameplate capacity, operational cost, capital 

cost, emission coefficient, plant life and ramping rate. The details of generation 

technologies are listed in Table 4-2, which are gathered from [65]. Compared to the 

generator data used in Chapter 3, the technology CCGT2 in this case study is assumed 

to be equipped with carbon capture and storage (CCS) facility. Therefore, CCGT2 has a 

very low emission coefficient, but a bit higher investment cost against CCGT1. The 

reason of introducing the low emission generation technology is to differentiate the 

emission characteristics of the candidate generation technologies and allow the GEP 

planning to achieve an even lower emission targets compared to the case in Chapter 3. 

The generation mix in the initial year is shown in Table 4-3. In order to simplify the 

calculation of the parameters PS1g and PS2g in Equation 4-16 and Equation 4-17, it is 

assumed that all the units in the initial year are newly built, and they will last for their 

individual plant life times. Emission price (EP) is set to be 10 £/tonne in this case study. 
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Table 4-3 Generation Mix in the Initial Year 

Plant type Bus 3 Bus 4 Bus 5 Total Mix 

CCGT1 2 0 0 2 

CCGT2 1 0 0 1 

COAl PF 0 1 0 1 

IGCC 0 1 0 1 

OGCT 0 0 1 1 

Bus2, 3 and 4 are load buses, which have 1000MW annual peak load evenly in the 

initial year. This case study sets the time gaps evenly between initial year, MET year 

and FET year to 15 years. It means the MET year is 15 years after the initial year, and 

the FET year is 15 years after the MET year.  It is assumed that there is load growth 

from the initial year to the MET year and to the FET year. The load growth rate 

scenarios are shown in Table 4-4 and Table 4-5. It should be noted that for both 

scenarios, the total load growth is equal. 

Table 4-4  Load Growth Scenario 1 

Demand Bus Bus 2 Bus3 Bus4 

Initial Year to MET Year 0.05 0.08 0.01 
Load Growth Rate 

MET Year to FET Year 0.05 0.08 0.01 

 
Table 4-5 Load Growth Scenario 2 

Demand Bus Bus 2 Bus3 Bus4 

Initial Year to MET Year 0.01 0.05 0.08 
Load Growth Rate 

MET Year to FET Year 0.01 0.05 0.08 

For the MET year, the total demand is equal for both scenarios as shown in the below 

calculation. 
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And also for the FET year: 
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However, the load growth rates in individual buses are different in each scenario. These 

two load growth rate scenarios are used to make the comparative study to show the 

importance of considering generation location optimization in a multi phase emission 

targets constrained GEP model. 

The load profile in this research is determined according to the IEEE Reliability Test 

System 1996 [61]. The specific load data can be found in Appendix A. The hourly load 

is determined by the multiplication of annual peak demand and the coefficients of 

weekly peak demand in percentage of the annual peak, daily peak demand in percentage 

of the week peak and hourly peak demand in percentage of the daily peak. In order to 

speed up the calculation, and put more efforts on investigating the impacts of the 

multiphase emission target settings on the total generation expansion cost. This research 

only takes one day as a sample to estimate the yearly total operation cost. The day is the 

first day of a year specified by IEEE Reliability Test System 1996. Therefore the 

scheduling horizon T is 24 for this study case.  The related operation cost and emission 

results will be scaled up by 364 (52x7/1), since the scheduling year has 52 weeks.  

4.3.2 Experiment Implementation 

The case study mainly aims to investigate two impacts. The numerical experiment is 

implemented in two steps: 

Step 1:  

The first step is to investigate the impact of multi phase emission targets setting on the 

total cost of generation expansion. In order to do so, the GEP model proposed in Section 

4.2 is solved six times under six different emission target settings as are shown in Table 

4-6. The six settings have the common final year emission target, but different METs.  

Table 4-6 Six Emission Target Settings 

MET(tonne) 7.5E+06 7.0E+06 6.5E+06 6.0E+06 5.5E+06 5.0E+06 

FET(tonne) 4.0E+06 4.0E+06 4.0E+06 4.0E+06 4.0E+06 4.0E+06 

After the calculation, the optimal generation mix results in the MET year are shown in 

Table 4-7, and those in the FET year are shown in Table 4-8. The total expansion cost 

and the total emission results under the six settings are shown in Table 4-9. The 
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optimized generation locational distribution results under the six settings are shown in 

Fig 4-5 through to Fig 4-10. In the first step, load growth scenario 1 shown in Table 4-4 

is adopted to decide the forecasted demand in MET year and FET year. 

Step 2: 

The second step is to investigate the impact of generation location distribution on the 

multi phase emission targets constrained GEP model. In order to do so, the numerical 

experiment in the first step is repeated by modifying the load growth rate to the load 

growth scenarios 2 shown in Table 4-5. 

After the calculation, the optimal generation mix results in the MET year are shown in 

Table 4-10, and those in the FET year are shown in Table 4-11. The total expansion cost 

and the total emission results under the six settings are shown in Table 4-12. The 

optimized generation locational distribution results under the six settings are shown in 

Fig 4-11 through to Fig 4-16. 

4.3.3 Results and Discussion 

4.3.3.1 Impacts of Multi Phase Emission Target Setting 

Table 4-7 shows the number of units to appear in the MET year, and Table 4-8 shows 

that in the FET year. They are both from the numerical results in Step 1. The top row in 

each table labels the MET settings under which the GEP is executed. Since the FET is 

common for all six Emission Target Settings, it is not listed in the tables.   The 

optimized numbers of generators of different generation technologies are listed in 

columns corresponding to each MET.  

It can be seen clearly in Table 4-7  that optimal mid-term generation mixes are the same 

when METs are set to 7.5E+06 tonnes and 7.0E+06 tonnes. However, when MET 

becomes more stringent, the optimal mid-term generation mix becomes (5, 1, 1, 1, 3) 

when MET=6.5E+06 tonnes, (3, 2, 1, 1, 5) when MET=6.0E+06 tonnes, and (2, 3, 1, 1, 

4) when MET=5.5E+06 tonnes and 5.0E+06 tonnes respectively. This is as expected 

that METs becoming more stringent, the optimal generation mix in MET year tends to 

include more low emission but expensive units. 
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Table 4-7 MET Year Generation Mix under Six Emission Target Settings 

MET(tonne) 7.5E+06 7.0E+06 6.5E+06 6.0E+06 5.5E+06 5.0E+06 

CCGT1 4 4 5 3 2 2 

CCGT2 1 1 1 2 3 3 

COAl 

PF 
1 1 1 1 1 1 

IGCC 1 1 1 1 1 1 

Number 

of 

Installed 

Units 

OGCT 5 5 3 5 4 4 

For the optimal generation mix in the FET year, it can be seen from Table 4-8  that 

optimal generation mixes in FET year are all the same (2, 4, 0, 0, 7) except that when 

MET is set to 6.5E+06 tonnes (3, 4, 0, 0, 4). This is an interesting finding because the 

FET is 4.0E+06 tonnes in all six emission target settings, but when MET is set to 

6.5E+06 tonnes, the GEP model generates an optimal generation mix in FET year which 

is different from those when MET is set to other values.  

Table 4-8 FET Year Generation Mix Under Six Emission Target Settings 

MET(tonne) 7.5E+06 7.0E+06 6.5E+06 6.0E+06 5.5E+06 5.0E+06 

CCGT1 2 2 3 2 2 2 

CCGT2 4 4 4 4 4 4 

COAl 

PF 
0 0 0 0 0 0 

IGCC 0 0 0 0 0 0 

Number 

of 

Installed 

Units 

OGCT 7 7 4 7 7 7 

More interesting findings can be obtained from Table 4-9. The total cost (including the 

generation investment and operational cost in both MET year and FET year) tends to 

increase with the MET becoming more stringent, despite of the same FET.  In other 

words, in order to realise the same final target, extra total cost will be required if 

stringent mid-term targets are imposed. This is quite similar to the geometry fact that 

the shortest path between two points is the straight line between the two points. 

Travelling between the two points via a third point that not in the straight line between 

the two will lead to longer distance.  This shows the importance of setting the multi 

phase emission targets appropriately, otherwise, a huge amount of unnecessary cost 

could occur.  
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Table 4-9 Total Expansion Cost and Emission under Six Emission Target Settings 

MET(tonne) FET(tonne) 
Total Cost 

£ 

Mid-term 

Emission 

 (tonne) 

Final 

Emission 

(tonne) 

7.50E+06 4.00E+06 3.615E+09 6.91E+06 3.67E+06 

7.00E+06 4.00E+06 3.615E+09 6.91E+06 3.67E+06 

6.50E+06 4.00E+06 3.671E+09 6.50E+06 3.51E+06 

6.00E+06 4.00E+06 3.703E+09 5.78E+06 3.67E+06 

5.50E+06 4.00E+06 3.745E+09 4.81E+06 3.67E+06 

5.00E+06 4.00E+06 3.745E+09 4.81E+06 3.67E+06 

Table 4-7 and Table 4-8 show the optimal generation mixes in an aggregated way. The 

optimal generation locational distribution results under the six settings are shown in Fig 

4-5 through to Fig 4-10. In each figure, there are two sub stack bar charts. The one on 

the left hand side shows the optimal generator locational distribution result in MET year, 

while that on the right hand side shows the optimal generator locational distribution 

result in FET year. The horizontal axis labels the three generation buses, while the 

vertical axis labels the integer number of the generation units to appear in the target year. 

Different generation technologies are differentiated by different colours, with a legend 

at the top right showing the corresponding relation.  

 
Fig 4-4 Generation Mix in Initial Year 

Although, as Table 4-8 shows, the aggregated generation mixes in FET year is the same 

when MET equals 7.5E+06 tonnes, 7.0E+06 tonnes, 6.0E+06 tonnes, 5.5E+06 tonnes, 

and 5.0E+06 tonnes, their locational distributions are different, which can be clearly 

observed from Fig 4-5 through to Fig 4-10. This can be explained that since the MET 

year and initial year are gapped by 15 years, which is less than plant life of all 

technologies, all the units in initial year will still be in service in the MET year. 
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However, in FET year, all the plants in initial year will retire, but the plants built in 

MET year will still stay. 

 
Fig 4-5 Optimal Generator Location in Step 1 when MET=7.5E06 tonnes, FET=4.0E06 tonnes 

 

 
Fig 4-6 Optimal Generator Location in Step 1 when MET=7.0E06 tonnes, FET=4.0E06 tonnes 

 

 
Fig 4-7 Optimal Generator Location in Step 1 when MET=6.5E06 tonnes, FET=4.0E06 tonnes 
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Fig 4-8 Optimal Generator Location in Step 1 when MET=6.0E06 tonnes, FET=4.0E06 tonnes 

 

 
Fig 4-9 Optimal Generator Location in Step 1 when MET=5.5E06 tonnes, FET=4.0E06 tonnes 

 

 
Fig 4-10 Optimal Generator Location in Step 1 when MET=5.0E06 tonnes, FET=4.0E06 tonnes 
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• Comparison between the cases when MET is set to 7.5E06 tonnes and 6.5E06 

tonnes 

When MET is set to 7.5E06 tonnes and 6.5E06 tonnes, the optimal generation mixes in 

FET year are different as Table 4-8 shows. Contrasting to Fig 4-4 showing the 

generation mix in initial year, when MET is set to 7.5E06 tonnes, one OCGT unit is 

expanded at Bus 3; two OCGT units and two CCGT1 units are expanded at Bus 4; one 

OCGT unit is expanded at Bus 5 in the MET year. But when MET is set to 6.5E06 

tonnes, one OCGT unit is expanded at Bus 3; none OCGT units and three CCGT1 units 

are expanded at Bus 4; one OCGT unit is expanded at Bus 5 in the MET year. These 

MET settings will lead: 

1. There are at least two CCGT1 units connecting at Bus 4 in FET year, when 

MET is set to 7.5E06 tonnes. 

2. There are at least three CCGT1 units connecting at Bus 4 in FET year, when 

MET is set to 6.5E06 tonnes. 

The generation mix in FET year in Fig 4-5 is sufficient to realise the FET when MET is 

set to 7.5E06 tonnes, but if MET is set to 6.5E06 tonnes, one more CCGT1 will be 

forced to connected at Bus 4, which is unnecessary and therefore leads to a sub optimal 

GEP result compared to that when MET is set to 7.5E06 tonnes. In essence, over 

stringent METs will require more clean but expansive units to be built in MET year, and 

these units may be unnecessary for realising the FET, hence, extra total cost arises. This 

explains why the total cost in Table 4-9 tends to increase with the MET becoming more 

stringent, despite of the same FET. 

• Comparison between the cases when MET is set to 7.5E06 tonnes and 6.0E06 

tonnes 

When MET is set to 7.5E06 tonnes and 6.0E06 tonnes, the optimal generation mixes in 

FET year are the same in aggregated statistics as Table 4-8 shows but different in the 

locational distribution as Fig 4-5 and Fig 4-8 show. The same incremental analysis can 

be made as above. It can be found that in essence, over stringent METs will require 

more clean but expansive units to be built in MET year, and these early constructed 
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units may be placed at less optimal locations for realising the FET (due to transmission 

congestion), hence, extra total cost arises. This also explains why the total cost in Table 

4-9 tends to increase with the MET becoming more stringent, despite of the same FET. 

4.3.3.2 Impacts of Generation Location Optimization on a Multi Phase 
Emission Target Constrained GEP model 

In order to demonstrate the importance of considering network constraints and the 

optimization of generation location in a multi phase emission targets constrained GEP 

problem, the second load growth scenario (Table 4-5) is used to execute the Step 2 

specified in Section 3.5.2. The results follow the presenting style of the results from 

Step 1 and are listed from Table 4-9 to Fig 4-16. 

Table 4-10 MET Year Generation Mix under Six Emission Target Settings in Step 2 

MET(tonne) 7.5E+06 7.0E+06 6.5E+06 6.0E+06 5.5E+06 5.0E+06 

CCGT1 3 4 5 2 4 2 

CCGT2 1 1 1 2 2 3 

COAl 

PF 
1 1 1 1 1 1 

IGCC 1 1 1 1 1 1 

Number 

of 

Installed 

Units 

OGCT 8 5 3 8 2 4 

 
Table 4-11 FET Year Generation Mix under Six Emission Target Settings in Step 2 

MET(tonne) 7.5E+06 7.0E+06 6.5E+06 6.0E+06 5.5E+06 5.0E+06 

CCGT1 2 2 3 2 2 2 

CCGT2 4 4 4 4 4 4 

COAl 

PF 
0 0 0 0 0 0 

IGCC 0 0 0 0 0 0 

Number 
of 

Installed 
Units 

OGCT 7 7 4 7 7 7 

 
Table 4-12 Total Expansion Cost and Emission under Six Emission Target Settings in Step 2 

MET(tonne) FET(tonne) 
Total Cost 

£ 

Mid-term 

Emission 

(tonne) 

Final 

Emission 

(tonne) 

7.50E+06 4.00E+06 3.610E+09 7.15E+06 3.67E+06 

7.00E+06 4.00E+06 3.615E+09 6.91E+06 3.67E+06 

6.50E+06 4.00E+06 3.671E+09 6.50E+06 3.51E+06 

6.00E+06 4.00E+06 3.697E+09 6.00E+06 3.67E+06 

5.50E+06 4.00E+06 3.708E+09 5.50E+06 3.67E+06 

5.00E+06 4.00E+06 3.745E+09 4.81E+06 3.67E+06 
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Fig 4-11 Optimal Generator Location in Step 2 when MET=7.5E06 tonnes, FET=4.0E06 tonnes  

 

 
Fig 4-12 Optimal Generator Location in Step 2 when MET=7.0E06 tonnes, FET=4.0E06 tonnes 

 

 
Fig 4-13 Optimal Generator Location in Step 2 when MET=6.5E06 tonnes, FET=4.0E06 tonnes 
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Fig 4-14 Optimal Generator Location in Step 2 when MET=6.0E06 tonnes, FET=4.0E06 tonnes 

 

 
Fig 4-15 Optimal Generator Location in Step 2 when MET=5.5E06 tonnes, FET=4.0E06 tonnes 

 

 
Fig 4-16 Optimal Generator Location in Step 2 when MET=5.0E06 tonnes, FET=4.0E06 tonnes 

It can be observed that all the findings summarised in last section still stand in this new 

case that optimal generation mixes and their locational distribution in MET and FET 

year vary with different settings of MET, and the total cost tends to increase with the 

MET becoming more stringent, despite of the same FET.  
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However, comparing the results obtained from Step 1 and Step 2. More important 

findings that can be found: 

1. Comparing Table 4-10 to Table 4-7, it can be found that if the load growth 

distribution changes; it can severely affect the optimal generation mixes in MET 

year. 

2. Comparing Table 4-12 to Table 4-9, it can be found that if the load growth 

distribution changes; it can severely affect the total cost of the whole GEP. 

3. Comparing Table 4-11 to Table 4-8, it can be found that although the changes of 

the load growth distribution do not affect the optimal aggregated generation mix 

in FET year. But it severely changes the optimal generation location in FET year, 

which can be found by comparing the generation locational distribution results 

from Step 2 (Fig 4-11 to Fig 4-16) and Step 1 (Fig 4-5 to Fig 4-10). 

The above foundlings indicate the importance of the considering transmission 

constraints and generation location optimization in the multi phase emission targets 

constrained GEP problem. Since the two load growth scenarios used in this case study 

both have a common total load grow rate, but after allocating the total growth to load 

buses in different percentages, different optimal GEP results will be achieved. 

Optimization without transmission constraints and generation location optimization is 

not able to differentiate these differences.  

4.3.3.3 Optimal MET Setting 

Based on the findings in previous two sections, policy makers may wonder how the 

MET should be set that can lead a minimum total cost through multi GEP planning 

horizons. In order to give the implication to policy makers about the optimal MET 

setting based on the work in Section 4.3.3.2, more METs are chosen to perform a broad 

sensitive study. The results are shown in Table 4-13. Compared with Table 4-12, more 

relaxed METs are examined, which are 1.00E+07 tonnes, 9.50E+06 tonnes, 9.00E+06 

tonnes, 8.50E+06 tonnes and 8.00E+06 tonnes. 
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Table 4-13 Total GEP Cost and Emission under Different MET Settings in Step 2 

MET(tonne) FET(tonne) 
Total Cost 

£ 

Mid-term 

Emission 

(tonne) 

Final 

Emission 

(tonne) 

1.00E+07 4.00E+06 3.610E+09 7.15E+06 3.67E+06 

9.50E+06 4.00E+06 3.610E+09 7.15E+06 3.67E+06 

9.00E+06 4.00E+06 3.610E+09 7.15E+06 3.67E+06 

8.00E+06 4.00E+06 3.610E+09 7.15E+06 3.67E+06 

7.50E+06 4.00E+06 3.610E+09 7.15E+06 3.67E+06 

7.00E+06 4.00E+06 3.615E+09 6.91E+06 3.67E+06 

6.50E+06 4.00E+06 3.671E+09 6.50E+06 3.51E+06 

6.00E+06 4.00E+06 3.697E+09 6.00E+06 3.67E+06 

5.50E+06 4.00E+06 3.708E+09 5.50E+06 3.67E+06 

5.00E+06 4.00E+06 3.745E+09 4.81E+06 3.67E+06 

It can be found that when the METs are set above 7.50E+06 tonnes. The METs will not 

constrain the mid-term emission, since the system’s nature emission is only 7.15E+06 

tonnes. The impacts of the different MET settings on the total GEP cost are depicted in 

Fig 4-17. It can be clearly seen that when MET is set at 7.50E+06 tonnes or above will 

give the minimum total GEP cost, while if the MET is set at more stringent values, 

below 7.50E+06 tonnes, the total GEP cost tends to increase. This also verifies that 

METs below 7.50E+06 tonnes tend to constrain the optimization of total GEP cost. The 

findings indicate that the policy makers may need to set the MET to around 7.50E+06 

tonnes in this case, which can force the system generation mix in the mid-term to 

achieve appropriate amount of emission reduction without bringing extra the total GEP 

cost for realising the FET. 

 
Fig 4-17 Total GEP Cost Variation with Different MET Settings 
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4.4 Chapter Summary 

In this chapter, based on the MILP GEP model proposed in Chapter 3, a multi phase 

emission targets constrained GEP model is proposed. This model inherits the 

advantages of the model proposed in Chapter 3 that it can deal with generation location 

optimization and the short-term unit commitment constraints together in one GEP 

model. It also extends the previous model by introducing multi-phase emission targets 

constraints. 

A case study is provided based on a five bus test system. The proposed GEP model is 

solved for twelve times with six different emission target settings and two different load 

growth scenarios. In order to find out the impacts of MET settings on the results of a 

multi phase emission target constrained GEP problem, the six different emission target 

settings have the same FET but different METs. In order to investigate the impact of 

generation location distribution on the multi phase emission targets constrained GEP 

model, the two different load growth scenarios have the same total load growth, but 

different load growth distributions at load buses. 

Comparative studies between different MET settings show that the total cost tends to 

increase with the MET becoming more stringent, despite of the same FET. This is 

because over stringent METs require more clean but expensive units to be built in MET 

year, and these early constructed units may be unnecessary or placed at less optimal 

locations for realising the FET. 

Comparative studies between different load growth scenarios clearly demonstrate the 

importance of the considering transmission constraints and generation location 

optimization in the multi phase emission targets constrained GEP problem. Since the 

two load growth scenarios used in this case study both have a common total load grow 

rate, but after allocating the total growth to load buses in different percentages, different 

optimal GEP results will be achieved. GEP model without transmission constraints and 

generation location optimization is not able to differentiate these differences. 
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HIS chapter proposes a new GEP model, which considers 

both stochastic renewable generation expansion and demand 

side response simultaneously with network constraints and 

generation location optimization. 
T 
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5.1 Introduction  

Due to conventional energy source scarcity coupled with environment issues, the 

renewable generation technology is increasingly accepted as the most feasible energy 

supply solution in the future. Many governments have enforced renewable energy 

promotion polices. For example, the UK government has committed to raise the 

percentage of renewable generation out of total generation to 15% by 2020, while the 

current (2011) UK renewable penetration is around 9.4% [108]. However, due to the 

intermittent and volatile availability of the primary energy (wind, solar radiation, etc), 

the renewable generation is not a controllable and flexible generation source as the 

conventional fossil fuel fired power generation technologies. It is not able to be 

available at any time to provide as much power output as people desire. Therefore, the 

renewable generation acts almost like a volatile negative load. In short-term operation, 

this volatility has to be compensated by adjusting the outputs from other conventional, 

controllable and flexible generators. Therefore, with the rise of its penetration in the 

system, more and more flexible and expansive generation capacity has to be expanded 

as well to cater for the increasing fluctuation from renewable source.  

However, it is likely to see that the desire of the precious flexibility can also be met by 

demand side response (DSR) in the near future, provided that the demand side can be 

appropriately stimulated to adjust its demand according to the requirement for the 

system demand supply balance. In the past, the demand side in electricity market could 

hardly response, due to the lack of demand side management programmes and facilities. 

However, with the development of smart grid technologies, such as the communication 

between system operators and demand side, smart metering and real-time pricing 

programme, etc, the interface for customers to participate in the DSR will become 

mature gradually in the future. Besides, with increasing use of electric vehicles and 

other energy storage facilities, demand side has more and more flexibility in the 

electricity sector.  Therefore, DSR can potentially play a more and more important role 

in the future electricity market. 
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5.1.1 Literature Review 

In traditional GEP problem, when making a capacity expansion decision for a 

conventional generation technology, planners know the conventional units can generate 

the expected amount of power at any time of the planning horizon. However, renewable 

generation emerges with new challenges in GEP problem. The output of a wind farm in 

the future quite depends on the volatile wind speed rather that the planners’ expectation. 

Hence, it requires more sophisticated treatment for wind generation expansion in a GEP 

problem. Not too many GEP researches include the renewable generation expansion 

appropriately in their GEP modelling. In [21, 22, 74, 75, 104, 109], the wind generation 

is simply treated as a controllable conventional generation technology. In [62], 

renewable generation is treated specially by introducing renewable generation 

supporting incentives. In [6, 72], hourly wind generation forecast data is used in 

planning horizon. The wind generation is treated as a known negative demand, similar 

to load profile. However, these treatment of renewable generation is not able to address 

the uncertain nature of renewable generation, because they all assume either the 

renewable generation controllable [21, 22, 62, 74, 75, 104, 109] or the future power 

output from renewable generation is deterministic [6, 72]. Kamalinia proposed a 

stochastic wind thermal GEP planning model to handle the uncertainty of wind 

generation in [51], in which a set of possible wind generation scenarios in the planning 

horizon are generated following a Weibull distribution to perform a Monte Carlo 

simulation. However, it did not consider the impacts of DSR on the GEP problem. 

Additionally, the transmission network constraints and generation location optimization 

were not involved in these researches.  

In addition, with increasing mature conditions for realising DSR in the near future, DSR 

will potentially play the role of traditional generators, as an alternative source, to 

provide the flexibility to maintain the demand supply balance. Therefore, DSR should 

be incorporated into the GEP problem. Short-term DSR implementation has been 

studied extensively in recent years. Some researches investigated the feasibility and 

effectiveness of the different DSR programmes, incentive based or pricing based [26-

32]; some incorporated the DSR into short-term generation scheduling optimization [17, 

28, 33-35]; some proposed the application of emerging smart grid facilities, like energy 

storage device [36-40]; but very few of them took the DSR into account for long-tern 
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GEP problem [6]. Most previous GEP model made a lot of efforts to model the 

generation side, but treated the demand side simply as a fixed projected load profile [3, 

9, 21, 22, 51, 62, 65, 72, 74, 75, 101, 104, 109].  

Martins proposed a multi-objective linear programming GEP model considering the 

demand side management (DSM) [63]. DSM is also included in a GA-Benders’ 

decomposition method GEP model in [24]. In these two papers, the demand side 

management is assumed to be realised by direct load control, which is taken as 

equivalent generator and treated as other conventional generator. The same way of 

treating DSM in a GEP problem can also be found in [110]. However, these papers did 

not consider renewable generation expansion. Although paper [6] innovatively proposed 

a GEP model considering both renewable generation expansion and demand side 

response by demand price elasticity modelling, the discrete characteristic of GEP is 

neglected, and the wind generation is simply modelled by a set of historical wind output 

data. The uncertainty of wind generation is not investigated. Additionally, the 

transmission network constraints and generation location optimization were not 

included.  

The review of the aforementioned literatures indicates that there have been no 

researches on GEP problem that consider both renewable generation expansion and 

DSR simultaneously with network constraints and generation location optimization. The 

GEP model proposed in this chapter will fill this gap.  

The rest of this chapter will be organized as:   

Section 5.2 introduces techniques of stochastic programming and Monte Carlo 

simulation, preparing for the mathematical formulation of uncertain wind generation 

expansion; Section 5.3 proposes the GEP model considering the both renewable 

generation expansion and DSR simultaneously with network constraints and generation 

location optimization; Section 4.3 provides a numerical case study to show the 

effectiveness of the proposed model and investigate the impacts of stochastic wind 

expansion and DSR on GEP problem; Conclusions are drawn in Section 5.5. 
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5.2 Prerequisites 

Prior to describing the mathematical problem formulation of the GEP model 

considering uncertain wind expansion, knowledge about the stochastic programming 

and Monte Carlo simulation techniques will be introduced first, in order to help readers 

better understand the stochastic wind modelling in the rest of the chapter. 

5.2.1 Stochastic Programming 

A mathematical programming problem, also known as optimization problem is the 

selection of best decisions to achieve an optimal target, subject to various constraints. If 

the constraints are all known and deterministic before making the optimal decisions, it 

is a deterministic programming problem. However, if constraints involve some 

uncertain parameters, the problem becomes stochastic. For example, if a factory aims to 

manufacture as many as cars, subject to a certain amount of available budget. This is a 

deterministic programming problem, since the constraint of the available budget is 

known before making the decision that how many cars should be manufactured. 

However, if the factory aims to make as many as profits, also subject to a certain 

amount of available budget, but an uncertain amount of sales, this becomes a stochastic 

programming. Since the objective, making the most profits, depends on not only how 

many cars are manufactured but also how many cars can be sold, but the amount of car 

sale is uncertain and can not be known before making the decision that how many cars 

should be manufactured. 

In GEP problem, there are also some uncertain parameters when making the optimal 

generation expansion decision, such as the demand, fuel prices, investment discount rate, 

components outage, and wind speed profiles in the future target year. However, 

compared to the wind speed profile in the future, the uncertainties of the other 

aforementioned parameters would not be very large and are more predictable. For 

example, due to the relatively fixed custom of people’s electricity usage, the demand 

profile will nearly stay same. Therefore, the demand at the peak time in the future could 

be reasonably predicted. However, wind speed distribution across time is much more 

random, it is very hard to predict what the wind speed will be at the peak time in the 
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target year. Hence, a stochastic programming is required to model the uncertainty of the 

wind in a GEP problem. 

5.2.2 Two-Stage Stochastic Linear Programming 

The most widely applied stochastic programming model is two-stage linear 

programming, which was first studied by Dantzig [111].  In a stochastic programming 

problem, some of the decision variables are constrained by uncertain parameters, which 

will be revealed in the future. However, these decisions have to be made now based on 

the currently available parameters. The two-stage linear stochastic programming is 

designed to convert the stochastic programming to an equivalent deterministic 

programming. Equation 5-1 shows such a two-stage linear stochastic programming 

model. X denotes the first stage decision variable vector. Coefficients A and b only 

constrain the first stage decision variables. While Y denotes the second stage decision 

variable vector, which are constrained jointly by B, D and d. c and f are the objective 

function coefficients. Among these parameters, B and d couple the first and second 

stage variables, which are not deterministic at the first stage, but have Ω possible 

realizations at the second stage. These possible realizations are indexed by ω. E 

represents the expectation of the objective of second stage problem  [112-114] .  
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 If the ωth possible realization of the second stage parameters follows a discrete 

probability distribution, and has a corresponding probability of pω, then Equation 5-1 

can be rewritten as Equation 5-2 provided that there are K possible realizations of the 

second stage constraints. It can be seen that the two-stage stochastic linear programming 

tackles the uncertainty by making a first stage decision X that can meet all the possible 

second stage constraints and generate a minimum expected objective value of the 

second stage problem.  



Chapter 5             GEP with Renewable Generation and Demand Response 

Page104 

0,

:

)minimise:

21

222

111

2211

≥

≤+−

≤+−

≤+−

≤

++++

K

KKK

KK

YYYX

dDYXB

dDYXB

dDYXB

bAXtoSubject

fYpfYpfYpcXObjective

L

MOM

L

    5-2 

It should be noted that in the above mathematical formulation, all the constraints are 

expressed in a way that the left hand side is less or equal than the right hand side. 

However, the direction of the inequalities can be simply changed as required by 

multiplying by minus one for both sides. And it should be noted that the equality 

constraints may also appear in the optimization problem, but it is not written 

particularly in the above mathematical formulation. This is because the equality 

constraint can all be transformed to equivalent inequality constraints: 
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5.2.3 Monte Carlo Simulation 

Solving the above model is only tractable if K is small. However, the above model can 

hardly be solved when K is very large, or even infinite if the ωth possible realization of 

the second stage parameters follows a continuous probability distribution. Under this 

background, Monte Carlo simulation technique can be used to reduce the number of 

scenarios to a manageable size.  

Monte Carlo simulation can be defined as a method to randomly generate a set of 

sample data following a known probability distribution for numerical experiments and 

to investigate the characteristics of the whole sample space by the sample data. This 

technique is a numerical method that makes use of random numbers to solve 

mathematical problems which is difficult to be solved by an analytical method. The 

name of Monte Carlo technique was firstly appeared in the article “The Monte Carlo 

Method” by Metropolis and Ulam in 1949 [112, 115-117]. 
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Monte Carlo simulation is very simple in concept. The difficulties exist in applying the 

algorithm to various problems. For the two-stage stochastic programming model 

proposed in last section, if the second stage random realizations are with a continuous 

probability distribution, then a set of N independent samples could be generated 

following the same probability distribution function. This can be easily done by 

computers. Since they are generated independently following the same probability 

distribution, each sample has the same probability, 1/N.  Based on the sample average 

approximation method [112, 118, 119], the original expected minimum objective value 

for the second stage problem can be approximated as follows: 
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Therefore, the model 5-4 can be reformulated by using the N Monte Carlo samples, 

which is shown in Equation 5-5.  
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The advantage of Monte Carlo simulation is that it can tackle the stochastic problems 

with very large or even infinite number of uncertainty scenarios, which can not be 

practically solved by analytical method.  However, it is indeed an approximation, hence 

the accuracy is sacrificed. Generally, the standard error of the approximation is 

decreasing with the sample size (N). More details about the evaluating the quality of 

approximation by Monte Carlo simulation can be found in [112]. In order to increase 

the approximation accuracy without increasing the number of samples, mathematicians 

on operation research areas have already proposed some scenario reduction methods 

[120, 121]. These methods aim to keep the same approximation accuracy of the 

stochastic problem by using minimum number of scenarios. However, realization of 

these scenario reduction methods requires either expansive commercial software 

packages or sophisticated statistic knowledge and coding work. In order to focus on 
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integrating the stochastic renewable generation expansion and demand side response in 

the GEP problem with generation location optimization, the model developed in this 

chapter will employ the basic Monte Carlo simulation technique to tackle the 

uncertainty of renewable generation without considering the scenario reduction method. 

5.3 Problem Formulation 

The model proposed in this chapter extends the GEP model introduced in Chapter 3, by 

including the stochastic renewable generation expansion and demand side response.  

The renewable generation technology in the mathematical formulation is represented as 

wind generation. The uncertainty of wind generation is modelled by Monte Carlo 

simulation. A number of wind output scenarios are generated following a Weibull 

Distribution. And these wind output scenarios are taken as the negative load and used to 

formulate a two-stage stochastic GEP programming model.  

The demand side response modelling is realized by setting the demands at different 

locations at different time intervals as decision variables. The demands are allowed to 

deviate from their forecasted amount up or down within a pair of certain lower and 

upper bounds. The range between the lower and upper bounds represents the flexibility 

of the demand. Since the load type composition (industrial, commercial and domestic) 

varies for different load buses, the flexibilities on different load buses may be different. 

The fact can also be taken account by the model proposed in this chapter. The demand 

side response is also constrained by a rule that the total demand in a single day after 

DSR should be equal to the total forecasted demand in that day. This constraint models 

the real life case that the demand can only be shifted from one time to another, but can 

not disappear.  

For the DSR market structure, it is assumed that, in the future, there will be a new 

market participant, DSR provider, who is responsible for organize the demand side to 

response following the system total demand variation. However, this chapter will not 

consider the DSR market implementation details and the cost required for realizing the 

demand side response, since they involve too many operational modelling efforts, such 

as the balancing the profit of DSR provider and the custom surplus, analysing electricity 

demand elasticity, forecasting electricity whole sale price, etc. This chapter puts more 
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focus on how the short term demand side response can impacts on the long-term 

generation expansion planning from a centralized planning view, hence to reveal the 

potential contribution of DSR to the savings of the total societal cost.  

5.3.1 GEP with DSR and Stochastic Wind Generation 

The detailed mathematical MILP formulation is presented as follows: 

The objective function combines the short-term operational and emission cost with the 

long-term capital cost: 

IntegernegativeNonNwpNp

NwpRWcapCCW

NpRcapCC

PEEPPFC
N

Min

wigi

wi

W

w

I

i

ww

gi

G

g

I

i

gg

N

n

T

t

G

g

I

i

ngitgngitg

−∈

⋅+

⋅+

⋅⋅+⋅

∑∑

∑∑

∑∑∑∑

= =

= =

= = = =

,

.

.

)(
1

1 1

1 1

1 1 1 1

    5-6 

where,  

n Wind output scenario index; 

g Index of conventional generation technology type; 

w Index of wind generation technology type; 

t Index of scheduling time interval for sub-operational problem; 

i Index of bus; 

N Total number of wind output scenarios generated for Monte Carlo 

simulation; 

G Total number of candidate conventional generation technologies; 

W Total number of candidate wind generation technologies; 

T Scheduling time horizon for sub-operational problem; 

I Total number of buses; 

ngitP  Active power output of unit of conventional generation 

technology g at bus i at time t for scenario n in the target year; 

giNp  Integer decision variable for number of unit of conventional 

generation technology g to be built at bus i in the target year; 
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giNwp  Integer decision variable for number of unit of wind generation 

technology w to be built at bus i in the target year; 

gRcap  Nameplate capacity of conventional generation technology g; 

wRWcap  Nameplate capacity of wind generation technology w; 

gFC  Operational cost of conventional generation technology g; 

gE  Emission rate of conventional generation technology g; 

EP  Emission price; 

gCC  Capital cost of conventional generation technology g; 

Under the two-stage stochastic programming environment, giNp  and wiNwp   are the 

first stage decision variables, and ngitP  is the second stage decision variables. That’s 

because it needs to determine how many conventional and wind generation plants 

should be built first before determining the optimal power output from each constructed 

plants. Since the wind generation output is not completely controllable, its power output 

can only follow the wind speed rather than load variation. Therefore, the wind power 

output can only be taken as negative load instead of decision variables. The Monte 

Carlo simulation will generate N wind output scenarios, which will affect the optimal 

power outputs from conventional generators; hence there are N sets of second stage 

decision variables to be decided. In addition to giNp  and wiNwp , there is one more first 

stage decision variable associated with the DSR modelling,  which is itD , the demand at 

each load bus at each scheduling time interval. It is invisible in the objective function 

because as is stated before that this chapter will not consider the DSR market 

implementation details and the costs required for realizing the demand side response. 

But itD  along with the other two first stage variables, giNp  and wiNwp  and the second 

stage variables ngitP   are limited by the following constraints: 

Supply demand balance in the target year: 
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Transmission capacity limits in the target year: 
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Unit power output limits: 

NnGgTtNpRCapP gigngit ∈∀∈∀∈∀⋅≤≤ ,,0      5-10 

Capacity expansion limits: 

IiGgNMaxNpNMin gigigi ∈∀∈∀≤≤ ,      5-11 

IiWwNWMaxNwpNWMin wiwiwi ∈∀∈∀≤≤ ,     5-12 

It is assumed wind generation is emission free. Therefore, the emission target limits in 

the target year only constrain the conventional generation: 

NnEtPE
I

i

G

g

ngitg

T

t

∈∀≤⋅∑∑∑
= == 1 11

)(     5-13 

Ramping up/down constraints for conventional generators: 

   NnTtIiGgNpRCapRuPP giggtngingit ∈∀∈∀∈∀∈∀⋅⋅≤−≤ − ],,2[,,0 )1(
            5-14 

   NnTtIiGgNpRCapRdPP giggngittngi ∈∀∈∀∈∀∈∀⋅⋅≤−≤ − ],,2[,,0 )1(
    5-15 

Demand response lower and upper boundaries: the demand is assumed to be able to 

response around the forecasted demand up and down within a certain flexibility range. 

The boundaries are modelled as follows: 

TtIiDUDDL ititit ∈∀∈∀≤≤ ,    5-16 

TtIiDfDL itit ∈∀∈∀×−= ,0)1(     5-17 

TtIiDfDU itit ∈∀∈∀×+= ,0)1(     5-18 

In real life case the electricity users normally would not reduce their net demand but 

move it from one time to another. Therefore, the following constraint is applied to 

simulate this demand conservation rule in real life that the total demand after response 

should equal to the total forecasted demand within each day during the sub operational 

scheduling horizon:  
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Wind energy is an intermittent energy source. Excessive penetration of wind generation 

will jeopardize the system power supply reliability. Due to this reason, wind capacity 

penetration limit is introduced to guarantee that the increased uncertainty from 

intermittent wind source will be compensated by certain amount of conventional 

generation capacity [109]. The constraint is as follows:  
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where, 

itD  Demand at bus i in time t in the target year; 

nwitP  Active power output of unit of wind generation technology w at 

bus i at time t for scenario n in the target year; 

k Index of transmission line; 

K Total number of transmission lines; 

kLim  Transmission capacity limit of line k in the target year; 

nktL  Active power flow on line k at time t for scenario n in the target 

year; 

ikGSDF −  Generation shift distribution factor from bus i to line k in the 

target year; 

giNMin  

 

Minimum number of plants required from conventional 

generation technology g at bus i; 

giNMax  Maximum number of plants allowed from conventional 

generation technology g at bus i; 

wiNWMin  Minimum number of plants required from wind generation 

technology g at bus i; 

wiNWMax  Maximum number of plants allowed from wind generation 

technology g at bus i; 

gRu  Ramping rates of generation technology g; 

Et  Emission target in the target year; 
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itDL  Lower boundary for DSR load at bus i at time t; 

itDU  Upper boundary for DSR load at bus i at time t; 

f  Demand flexibility coefficient indicating the percentage of the 

demand deviation from its forecasted level; 

itD0  Forecasted demand at bus i at time t; 

wc The ratio between wind generation capacity and conventional 

generation capacity; 

Referring to Equation 5-5, it can be seen that the two stage stochastic linear 

programming tackles the uncertainty by making first stage decisions, which are the 

capacities of different generation technologies to be expanded. The first stage expansion 

decisions can meet all possible second stage constraints and generate a minimum 

expected operational cost of the second stage generation operation problem. 

Same with Chapter 3 and 4, the formulated problem in this section is also coded in 

Matlab and solved by the open source MILP solver, ‘lpsolve’ [92]. 

5.3.2 Wind Power Output Scenarios Construction 

In this chapter, the wind generation technology is used to stand for the renewable 

generation. The power output of a wind turbine can be described by Equation 2-16 [51, 

58]: 
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where, Pw is the instantaneous output of the wind turbine; wRWcap  is the rated output 

of the wind turbine of technology g. vw, vci, vr and vco are instantaneous wind speed, cut-

in speed, rated speed and cut-out speed respectively.  
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It is assumed in this study that the wind power is subject to a Weibull distribution which 

is adopted by many previous researches [51, 58, 72, 122, 123]. The detailed modelling 

of wind generation uncertainty with a Weibull distribution is shown below:  

Wind speed probability distribution in this research is modelled by Weibull probability 

Equation 2-17. 
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where, q is the shaping factor and η is the scaling factor. Different values of q and η will 

set the Weibull distribution with different expected values and variances. A set of 

random numbers are generated following the Weibull distribution for the sub operation 

scheduling horizon T, representing the output of a wind farm in each scheduling interval. 

Wind farm output power is taken as negative load and used to mitigate the interval total 

power demand in each scheduling time interval. One set of T Weibull random wind 

speed values will be used as one wind scenario.  

The generation of random scenarios of wind speed subject to a Weibull probability 

distribution can be easily realised by calling the ‘wblrnd’ function in MATLAB.  

Same with Chapter 3, the problem formulated above is also coded in Matlab and solved 

by the open source MILP solver, ‘lpsolve’ [92]. The specific method of construction of 

the objective and constraint matrix has been introduced in Section 3.4.  

5.4 Case Study 

In order to verify the effectiveness of the method proposed in this study, a case study is 

presented. Comparisons have been made to find out the impacts of considering DSR 

and stochastic natures of wind capacity expansion in a GEP with generation location 

optimization.   

5.4.1 Test System 

The proposed model is tested based on the modified PJM 5-bus test system shown in 

Fig 3-1 [93]. Same as the case study in Chapter 3 and 4, Bus3, 4 and 5 are selected to be 



Chapter 5             GEP with Renewable Generation and Demand Response 

Page113 

the generation buses, where all conventional candidate generators will be connected. 

Bus 3 is selected to connect all the candidate wind farms. Bus 1 is selected as a slack 

bus. The parameters of six transmission lines are given in Table 3-2.  

 
Fig 5-1 5-Bus Test System 

 
Table 5-1 Line Data of 5-Bus Test System 

Line 1-2 1-4 1-5 2-3 3-4 4-5 

X (%) 2.81 3.04 0.64 0.08 2.97 2.97 

Transmission capacity(MW) 500 400 400 400 400 400 

 
Table 5-2 Candidate Generation Technology Parameters 

Plant 

Type 

Nameplate 

Capacity (MW) 

FC 

(£/MWh) 

Emission 

Coefficient  

(tonne/MWh) 

CC 

(M£/MW) 

Ramping 

Rate 

(MW/h) 

CCGT1 300 6.00 0.38 0.484 10 

CCGT2 350 6.40 0.22 0.883 50 

COAl PF 300 3.64 0.84 1.109 20 

IGCC 200 4.06 0.60 1.585 10 

OGCT 100 5.00 0.47 0.467 20 

Wind 30 0 0 0.914 N/A 

Six different candidate generation technologies including wind are to be connected to 

the grid. They have different performances in terms of nameplate capacity, operational 

cost, capital cost, emission coefficient, and ramping rate. The details of generation 

technologies are listed in Table 5-2, which are gathered from [65]. The wind generation 

is assumed to have negligible operational cost and emission. It should be noted that 

normally, a single wind turbine has rated capacity ranging from hundreds of kW to 

several MW, but a wind farm often includes several to tens of wind turbines. In this 

case study, the rated capacity ( wRWcap ) refers to a wind farm’s total wind installed 

capacity rather than a single wind turbine. In this case study, the ratio between wind 

generation capacity and conventional generation capacity (wc) is set to 20%, which 
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means the wind capacity is not allowed to expand to more than 20% of the conventional 

generation capacity. 

It is assumed that some of the generation units in the initial year will still be in service 

in the target year. These units are listed in Table 3-4. This assumption can not only 

make the GEP model comply with the real life case, but also accelerate the solution 

speed, since they provide an initial condition of the decision variables, giNp  and reduce 

the size of the searching space. Emission price (EP) is set to be 10 £/tonne in this case 

study. The emission target is set to be 4.0E+06 tonnes in the target year. Since the 

sensitivity analysis about the impacts of different emission targets on the GEP results 

has been made in Chapter 2, 3 and 4, this chapter will not repeat this work.   

Table 5-3 Minimum Number of Units to Appear in the Target Year 

Plant type Bus 3 Bus 4 Bus 5 Total Mix 

CCGT1 2 0 0 2 

CCGT2 1 0 0 1 

COAl PF 0 1 0 1 

IGCC 0 1 0 1 

OGCT 0 0 1 1 

Bus2, 3 and 4 are load buses, each of which has 1000MW annual peak load evenly in 

the initial year. There is a peak demand growth forecast for the target year. The 

forecasted load growth rate is shown in Table 4-4. 

Table 5-4  Load Growth from Initial Year to the Target Year 

Demand Bus Bus 2 Bus3 Bus4 

Load Growth Rate 0.05 0.05 0.03 

The forecasted load profile for the target year (D0it) in this research is determined 

according to the IEEE Reliability Test System 1996 [61]. The specific load data can be 

found in Appendix A. The hourly load is determined by the multiplication of annual 

peak demand and the coefficients of weekly peak demand in percentage of the annual 

peak, daily peak demand in percentage of the week peak and hourly peak demand in 

percentage of the daily peak. In order to speed up the calculation, this research only 

takes one day as a sample to estimate the yearly total operation cost. The day is the first 

day of a year specified by IEEE Reliability Test System 1996. Therefore the scheduling 
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horizon T is 24 for this study case.  The related operation cost and emission results will 

be scaled up by 364 (52x7/1), since the scheduling year has 52 weeks.  

The forecasted demand profile reflects the regular pattern of the electricity consumption. 

Based on the forecasted demand profile, the demand side could be guided to response 

via various DSR programs in order to achieve a minimum total GEP cost. Four 

scenarios of demand flexibility coefficients (f in Equation 5-17 and Equation 5-18) are 

used to demonstrate the impacts of different DSR levels on the optimal GEP results. 

The corresponding DSR upper and lower bounds ( itDL  and itDU ) can be calculated 

following Equation 5-17 and Equation 5-18. For scenarios DR1 and DR3, the DSR level 

is relatively low. Averagely, demand side can response within 2% up and down of the 

forecasted level. For scenarios DR2 and DR4, the DSR level is relatively high. 

Averagely, demand side can response within 10% up and down of the forecasted level. 

The four scenarios are differentiated by not only DSR levels, but also locational 

distribution. For example, although the average DSR levels of DR1 and DR3 are the 

same, in DR1, the most flexible load is at Bus 2, while in DR3, it is at Bus 3.  

Table 5-5 DSR Flexibility Scenarios 

Demand Bus Bus 2 Bus3 Bus4 

DR1 Low 0.03 0.02 0.01 

DR2 High 0.10 0.15 0.05 

DR3 Low 0.01 0.03 0.02 

DSR 
Flexibility 
Scenarios 

DR4 High 0.15 0.05 0.10 

In this case study, one wind generation technology is considered. The wind turbines’ 

speed parameters are assumed that vci = 5m/s, vco=45m/s, and vr=15m/s. The Weibull 

distribution parameter for wind speed distribution at Bus 3 are set that η =10.2, k=1.5. 

These parameters are set to give a capacity factor of around 40% for this wind 

generation technology at Bus 3. Ten sets of 24-hour wind output scenarios are generated 

following the specified Weibull distribution to implement the Monte Carlo simulation 

of the wind generation uncertainty. They are listed in Table 5-6, in which the decimals 

indicated the wind farm power output in percentage of its rated capacity ( wRWcap ), 

which is 30MW in this case as listed in Table 5-2 . 
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Table 5-6  Wind Output Scenarios in Percentage of Rated Capacity 

Hour S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

1 0.100 0.068 0.811 0.957 0.000 0.094 0.000 0.000 0.097 0.000 

2 0.000 0.242 1.000 0.436 0.126 0.000 1.000 0.234 1.000 0.876 

3 1.000 0.000 0.590 0.000 0.013 0.300 0.000 0.322 0.000 0.482 

4 1.000 0.000 0.187 0.117 0.000 0.411 1.000 0.392 0.322 1.000 

5 0.000 0.599 1.000 1.000 0.375 0.000 0.388 0.115 1.000 0.644 

6 0.986 0.000 0.000 0.455 0.972 1.000 0.162 1.000 0.706 0.000 

7 1.000 0.398 0.594 0.650 0.128 0.154 0.101 0.233 1.000 0.038 

8 0.628 0.163 0.317 1.000 0.271 0.842 0.249 0.875 1.000 0.000 

9 0.000 1.000 0.408 0.635 0.526 0.465 0.876 0.721 0.815 1.000 

10 0.807 0.614 0.743 1.000 0.000 0.652 0.049 0.672 0.000 0.307 

11 0.170 0.121 0.000 0.399 0.000 0.105 0.788 0.000 0.000 0.410 

12 0.000 0.000 0.000 0.045 0.616 0.000 0.000 0.442 0.020 0.562 

13 0.593 0.000 0.000 0.000 0.158 1.000 0.462 0.258 0.492 0.000 

14 0.885 1.000 0.375 0.000 0.000 0.000 0.473 0.000 0.330 1.000 

15 0.526 1.000 0.589 1.000 1.000 0.025 0.442 0.499 0.000 0.484 

16 0.000 0.457 1.000 0.221 0.000 0.000 1.000 0.097 0.000 0.000 

17 0.000 1.000 1.000 0.261 0.037 1.000 0.000 0.981 0.445 1.000 

18 0.091 0.669 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.619 

19 0.000 0.042 0.091 0.391 0.000 0.000 0.000 0.524 0.910 1.000 

20 0.351 0.000 0.608 1.000 0.483 0.000 0.106 0.000 0.254 1.000 

21 0.813 0.463 1.000 0.000 0.343 0.742 1.000 0.569 0.292 1.000 

22 0.617 0.000 0.543 1.000 1.000 0.008 0.106 0.000 0.325 1.000 

23 0.000 1.000 0.000 0.221 0.000 0.662 0.000 1.000 0.502 0.250 

24 0.103 0.000 0.657 0.000 0.043 1.000 0.000 1.000 0.269 0.000 
 

5.4.2 Experiment Implementation 

The case study includes two parts. The first part is to show the effectiveness of the 

integration of DSR in a GEP model and further investigate the impacts of DSR levels 

and location distribution on the GEP optimization results. The second part is to show 

the effectiveness of using two-stage stochastic programming and Monte Carlo 

simulation to analyse the uncertainty of wind generation in a GEP problem. 

Part 1:  

In this part, the proposed GEP model in Section 5.3.1 is solved five times under five 

different load flexibility scenarios. The first scenario is that there is no DSR in the 

system. The optimal power flow in sub operational problem only needs to guarantee the 

total power output meeting the system total forecasted load. This is the way how the 
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GEP models proposed in Chapter 2, 3 and 4 deal with the demand side. The other four 

are the four different DSR scenarios listed in Table 5-5. 

After the calculation, the optimal generation mix results under the five load Flexibility 

scenarios are shown in Table 5-7. The associated total expansion cost and the total 

emission results are shown in Table 5-8. The associated optimized generation locational 

distribution results are shown in Fig 5-2 through to Fig 5-4. The optimal load profiles at 

three load buses after four response scenarios are shown in Fig 5-5 through to Fig 5-8. 

The associated system total load profiles aggregating of the three load buses are shown 

in Fig 5-9 through to Fig 5-12. 

Part 2: 

In order to show the effectiveness of using two-stage stochastic programming and 

Monte Carlo simulation to analyse the uncertainty of wind generation in a GEP problem, 

in this part, the proposed GEP model in Section 5.3.1 is solved ten times with each of 

ten wind output scenarios in Table 5-6 individually without demand side response. The 

results are compared with the case with the GEP considering 10 wind output scenarios 

in the two-stage stochastic programming. The associated optimal generation mix results 

under the ten different wind output scenarios are shown in Table 5-9. The associated 

total expansion cost and the total emission results are shown in Table 5-10. The 

associated optimized generation locational distribution results are shown in Fig 5-13and 

Fig 5-14. 

The above assessment is executed again under DR2 load flexibility scenario. The 

corresponding results are shown in Table 5-11, Table 5-12, Fig 5-15 and Fig 5-16 

respectively. 

5.4.3 Results and Discussion 

5.4.3.1 Impacts of DSR Levels and Location Distribution on GEP 

Table 5-7 shows the optimized number of units of each candidate generation technology 

to appear in the target year in Part 1. The top row labels demand side flexibility 

scenarios under which the GEP is executed, where No DSR stands for the case that 

demand is inflexible, and DR1 to DR4 stand for the four DSR scenarios in Table 5-5. 
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The optimized numbers of generators of different generation technologies are listed in 

columns corresponding to each scenario.  

It can be seen clearly in Table 5-7 that optimal generation mixes are affected by the 

demand flexibility scenarios. Compared to the case without DSR, the optimal 

generation mix under scenarios DR1 requires one less OCGT unit and three less Wind 

farms; that under scenario DR2 requires one less CCGT1 unit and eight less wind farms; 

that under scenario DR3 requires one less OCGT unit and two less wind farms; while 

that under scenario DR4 requires one less CCGT1 unit, one less OCGT unit and nine 

less wind farms. It can be found that in order to meet a fixed load growth and emission 

target, with the increase of demand flexibility, more and more generation capacity 

investment could be avoided.  

Table 5-7 Optimal Generation Mix under Five Load Flexibility Scenarios 

DSR Scenarios No DSR DR1 DR2 DR3 DR4 

CCGT1 3 3 2 3 2 

CCGT2 6 6 6 6 6 

COAl PF 1 1 1 1 1 

IGCC 1 1 1 1 1 

OGCT 2 1 2 1 1 

Number 

of 

Installed 

Units 

Wind 24 21 16 22 15 

More interesting findings can be found from Table 5-8. The total cost (including the 

generation investment and operational cost in the target year) tends to decrease with the 

increase of demand flexibility. This is just as expected, since the DSR saves the 

generation capacity investment, as Table 5-7 shows. 

Table 5-8 Optimal GEP Cost and Emission Results under Five Load Flexibility Scenarios 

DSR Scenarios 
Total Cost 

£ 

Total Emission 

(tonnes) 

No DSR 3.826E+09 3.79E+06 

DR1 3.699E+09 3.78E+06 

DR2 3.468E+09 3.85E+06 

DR3 3.726E+09 3.78E+06 

DR4 3.394E+09 3.83E+06 

 

As mentioned in Section 5.4.1, the demand flexibility scenarios DR1 and DR3 have 

similar average demand flexibility, but the different location allocation. The DR2 and 

DR4 are arranged in the same way. However, it can be seen that the optimal generation 
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mix and total cost results between DR1 and DR3 are different, so are those between 

DR2 and DR4. These can be explained that in optimal power dispatch process, the 

system will first fully load the cheapest generation units to meet the demand. However, 

some units may partially loaded, which are also called marginal units. They are partially 

loaded because either they are expensive units or located at a congested bus even though 

they may be cheaper than the other fully loaded units. In this chapter, we give the 

location where the expansive marginal unit (EMU) stay a name as expansive marginal 

bus (EMB) and give the location where the congested marginal unit (CMU) stay a name 

as congestion marginal bus (CMB). When the EMU has to start up to supply the load at 

peak load time, if the demand at EMB is more flexible, more demand could be moved 

to off-peak time to save the output from EMU, hence total generation cost is reduced. 

On the other hand, when there is one or more transmission lines are overloaded, the 

units connected may become CMUs, which has to be partially loaded even they are very 

cheap. The short of supply has to be provided by more expensive units. However, as 

introduced in Chapter 3, according to the network’s generation shift distribution factor 

(GSDF), power injections at some buses are more sensitive to the congested lines than 

those at other ones. Hence, if the demand at these sensitive buses is more flexible, more 

demand could be moved from the congestion time and further alleviate the 

corresponding line overloading. Therefore, the cheap CMU could contribute more, and 

total generation cost is reduced.  

That is to say the demand response can contribute more at EMB or the most sensitive 

bus to congestion lines compared with that at other locations. The findings explain why 

the demand flexibility scenarios DR1 and DR3 have similar average demand flexibility, 

but results in different generation mix plans and costs, and so DR2 and DR4 do. 

Table 5-7 shows the optimal generation mixes in an aggregated way. Fig 5-2 shows the 

optimal conventional generation location results when the GEP model is solved without 

considering DSR. Those when the GEP model is solved under DR1, DR2, DR3 and 

DR4 are shown in Fig 5-3 and Fig 5-4. The horizontal axis labels the three generation 

buses, while the vertical axis labels the integer number of the generation units to appear 

in the target year. Different generation technologies are differentiated by different 

colours, with a legend at the top right showing the corresponding relation. From these 
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figures, it can be seen not only the generation mix variance due to different DSR 

scenarios, but also the location where the variance takes place, compared with Table 5-7.  

 
Fig 5-2 Optimal Generation Location Distribution without DSR 

 

 
Fig 5-3 Optimal Generation Location Distribution for DR 1 and DR2 

 

 
Fig 5-4 Optimal Generation Location Distribution for DR 3 and DR4 

 

As mentioned in problem formulation, in this GEP model, the demand at each bus at 

each scheduling interval becomes a decision variable. The optimal demand response 
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results under DSR scenarios DR1, 2, 3 and 4 are shown from Fig 5-5 through to Fig 5-8 

respectively. In each figure, the black solid line represents the original forecasted load 

profiles; the optimized DSR load profiles at three load buses are depicted by dash lines 

in different colours as the legend indicates. The horizontal axis labels the 24 hours in 

the sample day for the sub operational problem. The vertical axis labels the hourly 

demand in the percentage of the annual peak demand at corresponding buses. For 

readers who are interested in how the curves are depicted, the experiment results data 

for original and DSR load profiles are provided in Appendix B.  

For the weak DSR scenarios DR1 and DR3, very slight valley filling and peak clipping 

effect can be observed compared with the forecasted load profile. Just as expected, the 

green dash curve shows the biggest deviation from the black curve in Fig 5-6 as in DR2, 

the demand at Bus 3 has the biggest flexibility at 0.15. While the red dash curve shows 

the biggest deviation from the black curve in Fig 5-8 as in DR4, the demand at Bus 4 

has the biggest flexibility at 0.15.  A very interesting observation can be found in Fig 

5-6 that at Hour 17 quit close to the peak time, the demand at Bus 3 chooses to increase 

to a very high level surprisingly, which is even much higher than the forecasted peak. 

However, at this time the demands at Bus 2 and 4 choose to drop below the forecasted 

value. The same effect can also be found in Fig 5-8. The implication of the effect will 

be addressed next by comparing with Fig 5-9 to Fig 5-12. 

 
Fig 5-5 Optimized Load Profiles under DR1 
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Fig 5-6 Optimized Load Profiles under DR 2 

 

 
Fig 5-7 Optimized Load Profiles under DR 3 

 

 
Fig 5-8 Optimized Load Profiles under DR 4 

Fig 5-9 to Fig 5-12 show the aggregated optimized load profiles of load Bus 2, 3 and 4 

under demand flexibility scenarios DR1, 2, 3 and 4. In these four figures, the vertical 

axis labels the specific demand rather than percentage. Although there are load spikes 

that exceed the forecasted peak load at individual buses as the aforementioned 

interesting observation in Fig 5-6 and Fig 5-8, the aggregated load profiles give very 
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good demand responses. The demand valley is well filled and the demand peak is well 

clipped, no matter for which demand flexibility scenario. This indicates the raised 

demand at Bus 3 at Hour 17 is dragged down by the dropped demand at Bus 2 and 4, 

which leads to a net reduced total demand. It is out of expectation that the demands at 

three buses choose to response in this way, rather than drop evenly all. The reason is 

that the raised demand could make better use of the lightly loaded transmission line, 

while the dropped demand could alleviate the corresponding line congestion or directly 

reduce the load level of the EMU. It can be concluded that the coordinated demand and 

generation response at different buses can make better use of the transmission capacity 

and cheap generation and avoid drawing power from EMU.  

From the long term GEP view, it can take full advantage of the current network by 

allocating the expanded generation units at smart locations and more importantly save 

expensive peak unit investment. All the above results and analysis demonstrate the 

value of considering DSR simultaneously with the network constraints and generation 

location optimization in a GEP problem.  

 
Fig 5-9 Aggregated Optimized Load Profiles of Bus 2, 3 and 4 under DR 1 
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Fig 5-10 Aggregated Optimized Load Profiles of Bus 2, 3 and 4 under DR 2 

 

 
Fig 5-11 Aggregated Optimized Load Profiles of Bus 2, 3 and 4 under DR 3 

 

 
Fig 5-12 Aggregated Optimized Load Profiles of Bus 2, 3 and 4 under DR 4 

5.4.3.2 Importance of Considering Wind Uncertainty in GEP 

In order to address the difference between deterministic and stochastic treatment of 

wind generation, GEP model is solved under each individual wind output scenario (S1 

to S10) listed in Table 5-6. The deterministic treatment of wind generation is assumed 
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that the wind farm will precisely generate the predicted amount of power at the 

forecasted time, which was adopted in literatures [3, 9, 21, 22, 51, 62, 65, 72, 74, 75, 

101, 104, 109]. 

• Comparison between Deterministic and Stochastic GEP Model without DSR 

In the first step, the GEP model is solved without considering DSR. The optimal 

generation mix results are shown in Table 5-9. It can be seen that all the ten scenarios 

except S5, have the same optimal conventional generation mix. S5 requires one more 

CCGT2 unit compared with other nine scenarios. However, the ten scenarios require 

very different numbers of optimal wind farms ranging from 13 to 19. The conventional 

generators’ locational distribution for S5 is shown in Fig 5-13, while for S1 to S4 and 

S6 to S10, they have the same conventional generators’ locational distribution as is 

shown in Fig 5-14. 

The optimal generation mix obtained from the GEP model proposed in this chapter is 

shown in the last column of Table 5-9 in bold, which is just copied from Table 5-7. 

Compared with deterministic GEP model, the stochastic one gives a very different mix 

solution with more units included especially wind farms. Since the more units are 

expended, the generators’ locational distribution for the stochastic GEP model is 

different from that for the deterministic one. This can be seen by comparing Fig 5-2 to 

Fig 5-13 and Fig 5-14. 

Table 5-9 Optimal Generation Mixes for 10 Wind Output Scenarios 

Wind Scenarios S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MC 

CCGT1 2 2 2 2 2 2 2 2 2 2 3 

CCGT2 5 5 5 5 6 5 5 5 5 5 6 

COAl PF 1 1 1 1 1 1 1 1 1 1 1 

IGCC 1 1 1 1 1 1 1 1 1 1 1 

OGCT 1 1 1 1 1 1 1 1 1 1 2 

Number 

of 

Installed 

Units 

Wind 19 19 16 16 16 19 18 18 19 13 24 
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Fig 5-13  Optimal Generation Location Distribution for S5 without DSR 

 

 
Fig 5-14 Optimal Generation Location Distribution for S1-S4, S6-S10 without DSR 

 

Table 5-10 Optimal GEP Results for 10 Wind Output Scenarios 

Wind 
Scenarios 

Total Cost 

£ 

Total 

Emission(tonnes) 

S1 3.194E+09 3.996E+06 

S2 3.195E+09 3.992E+06 

S3 3.111E+09 3.992E+06 

S4 3.112E+09 4.000E+06 

S5 3.427E+09 3.992E+06 

S6 3.194E+09 3.994E+06 

S7 3.168E+09 4.000E+06 

S8 3.167E+09 4.000E+06 

S9 3.194E+09 4.000E+06 

S10 3.031E+09 4.000E+06 

MC  3.826E+09 3.79E+06 

Since more generation units are expanded, the total cost from the stochastic GEP model 

must be higher than that from each deterministic GEP model. The guess is verified by 

the data provided in Table 5-10, showing the cost results of the ten solutions for a 
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deterministic GEP model. The last row in bold is the cost of the stochastic GEP model, 

also shown in Table 5-8. It can be seen the total expansion cost from stochastic model is 

indeed higher than those from the deterministic one. The reason of these differences is 

that the two stage stochastic linear programming GEP model can tackle the uncertainty 

of wind farm output by Monte Carlo simulation. The first stage decisions, capacities of 

different generation technologies to be expanded are made to meet all second stage 

constraint scenarios and generate a minimum expected operational cost of the second 

stage generation operation problem. In optimization theory, more second stage 

constraints added may narrow the feasible region and hence affect the value of optimal 

solution.  

• Comparison between Deterministic and Stochastic GEP Model with DSR 

In the second step, in order to investigate whether DSR will affect the observation in the 

first step experiment, the above assessment is made again, keeping all the input 

parameters the same except the demand flexibility scenario. In this assessment, the DR2 

scenario is adopted. The optimal generation mix results are shown in Table 5-11. The 

optimal generation locational distribution results are shown in Fig 5-15 and Fig 5-16. 

The cost results of the ten solutions for a deterministic GEP model are shown in Table 

5-12. All the observation of the first step results still exists. Therefore, no matter what 

demand flexibility level is, the stochastic GEP model with multi wind output scenarios 

will produce a solution with more generation capacity and more total cost, compared 

with the case with deterministic GEP model with only a single wind output scenario.  

All the above comparison and analysis show the importance of considering the wind 

uncertainty in a GEP problem. The GEP model with a deterministic wind output profile 

may underestimate the optimal generation capacities and the required total cost. 

Table 5-11 Optimal Generation Mixes for 10 Wind Output Scenarios 

Wind Scenarios S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MC 

CCGT1 2 2 2 2 2 2 2 2 2 2 2 

CCGT2 5 5 5 5 6 5 5 5 5 5 6 

COAl PF 1 1 1 1 1 1 1 1 1 1 1 

IGCC 1 1 1 1 1 1 1 1 1 1 1 

OGCT 1 1 1 1 1 1 1 1 1 1 2 

Number 

of 

Installed 

Units 

Wind 15 15 13 13 8 15 16 15 15 11 16 
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Fig 5-15  Optimal Generation Location Distribution for S5 and DR2 

 

 
Fig 5-16 Optimal Generation Location Distribution for S1-S4, S6-S10 and DR2 

 
 
 
 

Table 5-12 Optimal GEP Results for 10 Wind Output Scenarios 

Wind 
Scenarios 

Total Cost 

£ 

Total 

Emission(tonnes) 

S1 3.087E+09 4.000E+06 

S2 3.088E+09 4.000E+06 

S3 3.032E+09 4.000E+06 

S4 3.033E+09 4.000E+06 

S5 3.211E+09 4.000E+06 

S6 3.087E+09 4.000E+06 

S7 3.114E+09 4.000E+06 

S8 3.087E+09 4.000E+06 

S9 3.087E+09 4.000E+06 

S10 2.978E+09 4.000E+06 

MC  3.468E+09 3.85E+06 
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5.5 Chapter Summary 

In this chapter, a new GEP model is proposed, which considers both stochastic 

renewable generation expansion and demand side response simultaneously with 

network constraints and generation location optimization. This GEP model inherits the 

advantages of the model proposed in Chapter 3 which can deal with generation location 

optimization. Additionally, wind generation capacity expansion is included, whose 

uncertainty is taken account of by a two stage scholastic linear programming model. 

The uncertain wind output profile in the future is handled by Monte Carlo simulation 

technique, which generates a number of wind output scenarios following a given wind 

speed probability distribution. A basic introduction about the two-stage stochastic 

programming and Monte Carlo simulation technique is provided to help readers better 

understand the stochastic GEP in this chapter. 

The demand side response modelling is realized by setting the demands at different 

locations at different time intervals as decision variables. The demands are allowed to 

deviate from their forecasted amount up or down within a pair of certain lower and 

upper bounds. The range between the lower and upper bounds represents the flexibility 

of the demand. Since the load type composition (industrial, commercial and domestic) 

varies for different load buses, the flexibilities on different load buses may be different. 

The demand side response is also constrained by a rule that the total demand in a single 

day after DSR should be equal to the total forecasted demand in that day. This 

constraint models the real life case that the demand can only be shifted from one time to 

another, but can not disappear. 

A case study is provided based on a five bus test system to verify the effectiveness of 

the method proposed in this study. Five load flexibility scenarios are used to investigate 

the impacts of DSR on GEP problems. Ten wind output scenarios for two-stage 

stochastic programming are generated following a Weibull distribution.   

Comparisons have been made to find out that with more flexible demand, the load 

valley can be better filled and the load peak could be better clipped. Therefore, more 

generation capacity expansion can be avoided and the huge cost could be saved. 

Moreover, the results also indicates that for the same flexibility level, demand response 
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can contribute more if it is located at the bus where the system marginal units stay or the 

most sensitive bus to congestion lines ( with biggest GSDF), compared with other 

locations. From the long term GEP view, raising the demand flexibility at the most 

sensitive locations by applying appropriate DSR programmes can help take full 

advantage of the current network and generation capacity and more importantly help 

save the future expensive peak unit investment. 

In order to address the difference between the deterministic and stochastic treatment of 

wind generation, GEP model is solved under each of the 10 wind output scenarios 

individually. This deterministic treatment of wind generation is assumed the wind farm 

will precisely generate the predicted amount of power at the forecasted time, which was 

adopted in literatures [3, 9, 21, 22, 51, 62, 65, 72, 74, 75, 101, 104, 109]. Results show 

that no matter what demand flexibility level is, the two-stage stochastic GEP model 

with multi wind output scenarios will produce a solution requiring more generation 

capacity expansion and more total cost, compared with the results from the 

deterministic GEP model with only a single wind output scenario. The reason of these 

differences is that the two-stage stochastic linear programming GEP model can tackle 

the uncertainty of wind farm output by Monte Carlo simulation. The first stage 

decisions, capacities of different generation technologies to be expanded are made to 

meet all second stage constraint scenarios and generate a minimum expected operational 

cost of the second stage generation operation problem. In optimization theory, more 

second stage constraints added may narrow the feasible region and hence affect the 

value of optimal solution.  

In summary, this chapter proposes a new GEP model, which considers both stochastic 

renewable generation expansion and demand side response simultaneously with 

network constraints and generation location optimization. The comparison and analysis 

of the results show the importance of considering DSR and the wind uncertainty in a 

GEP problem. The GEP model ignoring the potential impacts of DSR may overestimate 

the required optimal generation capacities and total cost; whereas those may be 

underestimated if the GEP model doesn’t recognise the stochastic nature of the wind 

output and use a deterministic wind output profile instead. 
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HIS chapter presents a case study specifically for 

investigating the optimal generation mix of Great Britain 

(GB) in 2020.  T 



Chapter 6                               Optimal Generation Mix of Great Britain in 2020 

Page132 

6.1 Introduction 

In Chapter 2, the GEP model has been enhanced by taking account of the emission cost 

in operational level. Meanwhile, the model proposed in this chapter takes into account 

the integer variables and nonlinearity of the operational cost with network constraints 

and renewable generation expansion together in one long-term generation planning 

model. Dynamic programming and a heuristic gradient search method are employed to 

tackle the short-term operational optimization and long-term expansion optimization 

respectively.  

Although the GEP model in Chapter 2 considers the network constraints, the new 

generation capacities are assumed to be expanded at designated locations. The 

generation location optimization is ignored. In order to include the location optimization 

in the GEP problem, the dimension of the decision variable has to be augmented to 

represent the location index. The combined dynamic programming and heuristic 

gradient search method is hard to cope with the new optimization problem with the 

increased the search space for generation location decision. Hence, in Chapter 3, the 

research direction is switched to a mixed integer linear programming (MILP) based 

GEP modelling method, which can handle the optimization problem with much larger 

dimension. However, in a MILP model, all the objective and constraint should be 

expressed linearly respect to the decision variable. Compared with the modelling 

method in Chapter 2, nonlinear operation cost function has to be approximated by a 

linear one in a MILP GEP model. However, as a trade-off, the optimal generation 

location can be decided in the new MILP GEP model. 

Lately, the MILP GEP model proposed in Chapter 3 is enhanced by taking account of 

multi-phase emission targets in Chapter 4. In addition, it is enhanced by incorporating 

stochastic renewable generation and demand side response in Chapter 5. 

In Chapter 2, 3, 4 and 5, the proposed models are all tested by case studies. However, 

the case studies in previous chapters are all based on test systems. In order the show the 

practical effectiveness of the proposed modelling methods and answer the question 

specified by the thesis title, this chapter will propose a case study specifically for 

investigating the optimal generation mix for Great Britain (GB).  
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6.2 Reduced GB Network Model 

The GEP model proposed in Chapter 5 is adopted to assess the optimal generation mix 

of GB, which considers the generation location optimization simultaneously with 

stochastic wind generation and demand side response. However, before introducing the 

specific assessment detail, a slight modification of the adopted GEP model shall be 

explained. 

The modification is made to accommodate the GB network data. Therefore, the GB 

network data will be introduced firstly, which can help the readers better understand the 

reasons and details of the modification to the GEP model. 

 In this chapter, the real case study is made based on a reduced Great Britain (GB) 

transmission network, whose data is obtained from the Seven Year Statement (SYS), 

which is the yearly published UK power system report by National Grid (UK) [12]. In 

the SYS, the UK transmission network is simulated by 17 study zones and 17 

transmission boundaries. The 17 zones represent 17 different areas of the Great Britain, 

in each of which, the power plants and demands from different buses are aggregated. 

The transmission network inside a zone is neglected. However, the transmission 

capabilities between zones are constrained by 17 transmission boundaries. A boundary 

can be linked to multiple zones. The total flow across the boundary will be the sum of 

the difference between generation and demand in all the zones affecting that boundary. 

The geographic zone division map is shown in Fig 6-1. The 17 study zones are listed in 

Table 6-1. The 17 study boundaries are listed in Table 6-2, where the zones affecting 

the each boundary are listed in the last column. As is stated in SYS report, “the 17 

boundaries have historically reflected some of the main weaknesses on the 

interconnected system. Such weaknesses can lead to the need to restrict power flows 

across the system; possibly through the potentially uneconomic constrained operation of 

generating plant. Alternatively, weaknesses in transmission may be removed by 

transmission reinforcement. Although the most critical boundaries may not be precisely 

the same as those studied, the 17 boundaries which have been used remain relevant for 

illustrating system trends and limitations.” [12] 
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Fig 6-1 GB Transmission Boundaries and SYS Study Zones 
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Table 6-1 SYS Study Zones 

Zone Number Zone Name Licensee 

Z1 North West (SHETL) SHETL6 

Z2 North (SHETL) SHETL 

Z3 Sloy (SHETL) SHETL 

Z4 South (SHETL) SHETL 

Z5 North (SPT) SPT7 

Z6 South (SPT) SPT 

Z7 North & NE England NGET8 

Z8 Yorkshire NGET 

Z9 NW England & N Wales NGET 

Z10 Trent NGET 

Z11 Midlands NGET 

Z12 Anglia & Bucks NGET 

Z13 S Wales & Central England NGET 

Z14 London NGET 

Z15 Thames Estuary NGET 

Z16 Central S Coast NGET 

Z17 South West England NGET 

 
Table 6-2 Boundary to Zone Mapping Table 

Boundary 
Number 

Boundary Name Zone Numbers 

B1 North West Z1 

B2 North-South Z1, Z2 

B3 South West Z3 

B4 SHETL-SPT Z1, Z2, Z3, Z4 

B5 North-South Z1, Z2, Z3, Z4, Z5 

B6 SPT-NGET Z1, Z2, Z3, Z4, Z5, Z6 

B7 Upper North-North Z1, Z2, Z3, Z4, Z5, Z6, Z7 

B8 North to Midlands Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9 

B9 Midlands to South 
Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, 

Z10, Z11 

B10 South Coast Z16, Z17 

B11 North East & Yorkshire Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8 

B12 South & South West Z13, Z16, Z17 

B13 South West Z17 

B14 London Z14 

B15 Thames Estuary Z15 

B16 
North East, Trent & 

Yorkshire 
Z1, Z2, Z3, Z4, Z5, Z6, Z7,Z8, Z10 

B17 West Midlands Z11 

                                                 
6 SHETL: Scottish Hydro-Transmission Ltd. 
7 SPT: Scottish Power Transmission Ltd 
8 NGET: National Grid Electricity Transmission plc. 
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Compared with the topology of the traditional power system network model, the zones 

act like the buses (nodes), and the boundaries act like lines (branches). As introduced in 

Chapter 3, the DC power flow over a line can be expressed linearly by the power 

injections at all nodes multiplied by their corresponding generation shift distribution 

factors (GSDF). 

For the reduce GB network obtained from SYS by Nation Grid, the 17 boundaries are 

not given a reactance data. Therefore, it is not feasible to calculate the GSDF between 

zones and boundaries. It is not necessary either, since the zones that affecting the 

boundary flow have been identified already, which is shown in third column of Table 

6-2. Base on the linking relation between zones and boundaries, a zone to boundary 

incidence matrix (ZB) is developed, showing in Table 6-3. In ZB matrix, zones are 

indexed by Z1 to Z17 and boundaries are indexed by B1 to B17. The value “1” means 

the power-demand imbalance in the zone will contribute to the power flow on the 

boundary, and “0” means the reverse. For example, B1 will affected by Z1, while B12 

will be affected by Z13, Z16 and Z17 together. 

Table 6-3 Zones to Boundaries Incidence Matrix 

 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 Z12 Z13 Z14 Z15 Z16 Z17 

B1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

B2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

B3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

B4 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

B5 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

B6 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 

B7 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

B8 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

B9 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 

B10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

B11 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 

B12 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 

B13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

B14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

B15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

B16 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 

B17 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

In order to accommodate difference in network power flow modelling, the transmission 

capacity constraints used in the GEP model in Chapter 3, 4 and 5 should be modified 

slightly. Firstly, all the bus indexes refer to zone indexes, and all the line indexes refer 

to boundary indexes in this chapter. Secondly, in the previous GEP model the power 
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injection at nodes are linked to the power flow linearly by GSDF, which are shown as in 

Equation 6-2, and flow is constrained by transmission limits Limk bidirectionally as 

Equation 6-1 shows: 
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In the reduced GB zone boundary model, Equation 6-2, 
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where, ZB is the zone to boundary incidence matrix, ZBk-i reflects whether Zone i will 

affect the power flow on Boundary k. Limk is used to index the transmission capacity of 

Boundary k. 

All the other modelling details are still kept the same as the GEP model proposed in 

Section 5.3 in Chapter 5. Therefore, they are not repeated here.  

6.3 GB Case Study 

6.3.1 Test Inputs 

6.3.1.1 Generation Mix in 2011 

The generation mix subtotalled by plant type and SYS study zone in 2011 can be found 

in [12], which is listed Table.C1 in Appendix C. This table lists 25 different plant types. 

However, some plants have a zero or very small capacities such as thermal, tidal, wave 

and woodchip plant. Some plants have similar characteristic, such as five nuclear power 

plants, named Nuclear AGR, Nuclear APR, Nuclear EPR, Nuclear Magnox and Nuclear 

PWR, which are just operated by different companies. In order to simplify the 

calculation burden, the large unit coal power plant and large unit coal +AGT plant in 

Table. C1 in Appendix C are aggregated as simply coal plant. The five nuclear power 

plants are aggregated as simply nuclear power plant. Plant types with zero or relatively 

small penetration are discarded from the generation expansion planning in this chapter, 
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which are CHP, clean coal, IGCC, medium and small unit coal, OCGT, oil, thermal, 

tidal, wave and woodchip.  

Finally, eight generation technologies are selected to perform the case study. The 

selected candidate generation technologies are nuclear, coal, CCGT, pumped storage 

hydro plant (PS), hydro, biomass (bio), on-shore wind and off-shore wind. Table 6-4 

shows the GB generation mix by the selected eight generation technologies in 2011. In 

practice, by the time of doing this case study, there have been already a certain amount 

of planned new generation capacity under construction or will be constructed between 

2011 and 2020. On the other hand, some of the existing units have be planned to close 

or will be closed sometime between 2011 and 2020. These actions are planned by 

individual generation companies and long time before this research.   This case study 

will not consider these previous planned actions and will purely calculate the optimal 

generation mix made by the GEP model proposed in the thesis. Therefore, assumption is 

made that the generation mix listed in Table 6-4 will be the minimum capacities of 

different power plants to appear in the 2020 target year. In other words, the previous 

planned unit construction and closure is neglected between 2011 and 2020. 

Table 6-4 Minimum Capacities of Different Power Plants to Appear in the 2020 Target Year 

Plant Type Nuclear Coal CCGT PS Hydro Bio 
Wind 

On-shore 
Wind 

Off-shore 

Z1 0 0 0 300 577 0 651 0 

Z2 0 0 1,180 0 18 0 0 0 

Z3 0 0 0 0 230 0 172 0 

Z4 0 0 0 0 259 0 103 0 

Z5 0 2,284 0 440 0 0 35 0 

Z6 2,289 0 20 0 33 45 1,327 0 

Z7 1,207 0 1,974 0 0 0 0 0 

Z8 0 7,832 4,945 0 0 0 0 0 

Z9 3,368 1,987 2,934 2,004 0 0 0 182 

Z10 0 3,987 2,975 0 0 0 0 0 

Z11 0 4,003 0 0 0 0 0 0 

Z12 1,207 0 3,050 0 0 0 0 815 

Z13 430 3,723 4,431 0 0 0 0 0 

Z14 0 0 2,123 0 0 0 0 0 

Z15 1,081 1,966 3,165 0 0 0 0 201 

Z16 0 0 1,320 0 0 0 0 0 

Z17 1,261 0 905 0 0 0 0 0 

Sub total 10,843 25,782 29,022 2,744 1,117 45 2,288 1,198 

Penetration 14.8% 35.3% 39.7% 3.8% 1.5% 0.1% 3.1% 1.6% 
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6.3.1.2 Candidate Generation Data 

The characteristics of the selected eight candidate generation technologies are shown in 

Table 6-5, which are gathered from [62]. They have different performances in terms of 

nameplate capacity, operational cost, capital cost, and emission coefficient. The wind 

generation is assumed to have negligible operational cost and emission. It should be 

noted that normally, a single wind turbine has rated capacity ranging from hundreds of 

kW to several MW, but a wind farm often includes several to tens of wind turbines. In 

this case study, the rated capacity refers to a wind farm’s total wind installed capacity 

rather than a single wind turbine. In this case study, the ratio between wind generation 

capacity and conventional generation capacity (wc) is set to 20% for reliability reasons, 

which means the wind capacity is not allowed to expand to more than 20% of the 

conventional generation capacity. Emission price (EP) is set to be 10 £/tonne in this 

case study. 

Table 6-5 Candidate Generation Technology Data 

Plant Type 
Nameplate 

Capacity (MW) 
FC 

(£/MWh) 

Emission 
Coefficient 

 (tonne/MWh) 

CC 
(M£/MW) 

Nuclear 1,200 14 0 2.50 

Coal 600 34 0.92 1.00 

CCGT 400 72 0.47 0.47 

Pumped Storage 300 50 0 1.70 

Hydro 10 20 0 3.00 

Biomass 20 147 0.22 2.35 

Wind On-shore 100 N/A 0 1.20 

Wind Off-shore 100 N/A 0 2.80 

It should be noted that in this case study, hydro and nuclear technologies are considered 

in sub operational problem but they are not included in the generation capacity 

expansion level. Since their expansion plans are almost set by the government. It is not 

realistic to incorporate too many changes on them. For coal, CCGT and biomass power 

plants, they are allowed to be expanded at any of the 17 study zones. However, due to 

the wind speed distribution characteristics in the Great Britain, they should be expanded 

at the zones with rich wind source. Referring to the locations the planned wind farm 

construction between 2011 and 2017 in SYS 2011, the wind zones are identified for this 

case study. For candidate on-shore wind farms, they can be expanded freely in Z1 Z2 

Z3 Z4 Z5 Z6 Z9 and Z13. For off-shore wind farms, they can be expanded freely in Z1 

Z4 Z5 Z8 Z9 Z12 Z13 and Z14. 
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6.3.1.3 Boundary Capacity 

The transmission capacities of the 17 boundaries are shown in Table 6-6, which is 

collected from SYS 2011 [12]. There are two columns of transmission capacity. One is 

for the year 2011. The other is for the year 2017, which considers the planned 

transmission reinforcement and expansion. The capacities of the boundaries (B1 to B7) 

in the northern Great Britain will be expanded a lot. In the case study, the optimal GB 

generation mix is calculated under two boundary capacity scenarios. The first one is 

based on the capacity in 2011, which represents the existing transmission capability. 

The second one is based on the capacity in 2017, which represents the transmission 

capability in the 2020 target year. (Boundary capacity variance between 2017 and 2020 

is neglected due to lack of data.) 

Table 6-6 SYS Boundary Capacity (MW) 

Boundary Number Year 2011 Year 2017 

B1 450 2,300 

B2 1,600 3,400 

B3 350 500 

B4 1,700 3,650 

B5 3,050 5,350 

B6 2,700 8,050 

B7 3,691 6,600 

B8 10,669 11,035 

B9 10,889 10,985 

B10 6,051 6,167 

B11 10,218 9,556 

B12 4,338 4,804 

B13 2,201 3,264 

B14 9,633 9,849 

B15 5,817 6,121 

B16 15,264 16,909 

B17 5,049 5,706 

6.3.1.4 Demand Data 

The forecasted zonal peak demand of the 17 zones in 2017 are shown in Table 6-7, 

which is also collected from SYS 2011 [12]. In the case study, the forecasted demand in 

2017 is used to represent the forecasted peak demand in the 2020 target year. The 

demand growth between 2017 and 2020 is neglected due to lack of data. 
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Table 6-7 Zonal Peak Demand (MW) 

Zone Number Year 2017 

Z1 506 

Z2 609 

Z3 67 

Z4 545 

Z5 1,169 

Z6 3,131 

Z7 3,303 

Z8 5,094 

Z9 7,625 

Z10 828 

Z11 7,325 

Z12 5,127 

Z13 5,083 

Z14 10,205 

Z15 2,322 

Z16 4,237 

Z17 3,053 

All 60,229 

In SYS 2011, the half hourly annual load duration curve is provided, which records the 

GB system total demands for 17520 half hourly intervals in 2011, which is shown as 

Fig 6-2. The 17520 demand levels are sorted in descending order. The vertical axis 

labels the demand value in percentage of the annual peak demand, which is 59,132MW 

in 2011. The horizontal axis labels the percentage of time in the year against the 

proportion of the year’s peak. For example, demand exceeded 50% of the annual peak 

for 78% of the time. 

 
Fig 6-2 GB Annual Load Duration Curve 
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The demand profile used in this chapter is sampled from this curve. The sampling 

principle is: 

1. Divide the load duration curve into 10 sections evenly by time. 

2. Get the average demand in each section as the sample demand for the 

corresponding section. Therefore, each sample demand represents 876 hours of a 

year in the sub operational problem of the master GEP problem. (A year has 

8760 hours.) In addition, the related operation cost and emission results will be 

scaled up by 876. 

3. The annual peak demand is also sampled to reflect the demand intense at peak 

time, which is critical for generation capacity expansion. However, it only 

represents 1 hour of a year in the sub operational problem of the master GEP 

problem. 

Therefore the scheduling horizon for the sub operational problem is 11 hours for this 

study case. The sample load profile is shown in Table 6-8. It is assumed that the 

demands in the 17 study zones are all following this load profile.  

Table 6-8 Sampled Load Profile 

Index 
Hours  

Represented 
% of 
Peak 

1 1 100.00% 

2 876 84.92% 

3 876 75.40% 

4 876 69.85% 

5 876 66.76% 

6 876 63.74% 

7 876 59.42% 

8 876 55.62% 

9 876 51.49% 

10 876 45.40% 

11 876 39.07% 

The forecasted demand profile reflects the regular pattern of the electricity consumption. 

Based on the forecasted demand profile, the demand side could be guided to response 

via various DSR programs in order to achieve a minimum total GEP cost. In order to 

investigate the impacts of DSR on the optimal GB generation mix, Zone 8, Zone 11 and 

Zone 13 are assumed to have DSR programmes deployed by 2020. Two scenarios of 
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demand flexibility coefficients are constructed to demonstrate the impacts of different 

DSR levels on the optimal GEP results, which is listed in Table 6-9. For scenarios DR1, 

the DSR level is relatively low. Averagely, demand side can response within 2% up and 

down of the forecasted level. For scenarios DR2, the DSR level is relatively high. 

Averagely, demand side can response within 10% up and down of the forecasted level. 

Table 6-9  DSR Flexibility Scenarios 

Demand Zone Zone 8 Zone 11 Zone14 

DR1 Low 0.03 0.02 0.01 DSR 
Flexibility 
Scenarios 

DR2 High 0.10 0.15 0.05 

6.3.1.5 Wind Generation Data 

In this case study, the wind speed distribution characteristics are differentiated by 

geographical condition. Off-shore wind farm places in Z1 Z4 Z5 Z8 Z9 Z12 Z13 and 

Z14 are assumed to have the largest wind speed expectation. Northern on-shore wind 

farm locations in Z1 Z2 Z3 Z4 Z5 and Z6 have medium wind speed expectation. 

Southern on-shore wind farm locations in Z9 and Z13 have the smallest wind speed 

expectation. 

In this case study, it is assumed the on-shore and off-shore wind turbines have the same 

speed parameters which are cut-in speed = 5m/s, cut-out speed=45m/s, and rated 

speed=15m/s. The wind speeds are subject to the Weibull distribution. For off-shore 

wind zones, the Weibull parameters are set as η =12.8, k=1.5. These parameters are set 

to give an expected load factor of around 50% for off-shore wind units in off-shore 

wind zones.  For northern on-shore wind zones, the Weibull parameters are set as η 

=10.2, k=1.5. These parameters are set to give an expected load factor of around 40% 

for northern on-shore wind units in northern on-shore wind zones. For southern on-

shore wind zones, the Weibull parameters are set as η =8.6, k=1.5. These parameters are 

set to give an expected load factor of around 30% for southern on-shore wind units in 

southern on-shore wind zones. Ten sets of 11-hour wind output scenarios are generated 

following the specified Weibull distribution to implement the Monte Carlo simulation 

of the wind generation uncertainty. They are listed in Table C2 in Appendix C, in which 

the decimals indicated the wind farm power output in percentage of its nameplate 

capacity. 
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6.3.2 Case Study Implementation 

UK government enforced Climate Change Act 2008, setting legally binding emission 

reduction targets of the UK, which are at least 34% and 80% cut in GHG emission by 

2020 and 2050 respectively, both against a 1990 baseline. The UK carbon emission in 

1990 from power industrial sector is around 200 million tons (Mt) according to the 

report from DECC [124]. However, there are no published documents specifying 

emission reduction targets for power industrial sector. Therefore, an emission reduction 

target at around 34% is set for power industry in 2020 for this case study. At the 

beginning, the GB GEP model with a 34% reduction target has been solved. Results 

show that the existing generation mix in 2011 shown in Table 6-4 can already realise 

the 34% target, no more clean generation units need to be expanded before 2020. In 

order to shows the effectiveness of the GEP model, 50% emission reduction target is set. 

That means maximum 100 Mt carbon emission is allowed from power industry in 2020.  

Under this target, some new clean generation capacities have to be expanded. The 

results are shown in next section. 

In order to show the impacts of the boundary capacity on the optimal GB generation 

mix in 2020, the GB GEP model is solved under two boundary capacity scenarios. One 

is the existing boundary capacity scenario in 2011.  The other is the expanded boundary 

capacity scenario in 2020. The two boundary scenarios are listed in Table 6-6. 

For each boundary capacity scenario, the GB GEP model is solved under three DSR 

scenarios. The first one is No-DSR scenario, which totally neglects the demand 

flexibility. The other two are low and high DSR scenarios. The demand flexibility 

parameters for the two scenarios are shown in Table 6-9. 

6.3.3 Results and Analysis 

6.3.3.1 Optimal GB Generation Mix in 2020 with 2011 Boundary 
Capacity Scenario 

 

Table 6-10 shows the optimized number of units to be expanded for realizing the 2020 

emission target (50% reduction) under three different DSR scenarios with 2011 

boundary capacity. For No DSR scenario, it requires one new CCGT unit built in Z11 
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and twenty two new on-shore wind farms built in Z2, Z3 and Z4. For DR1 scenario, two 

less wind farms are required in Z4, which is replaced by one more biomass unit in Z14. 

For DR2 scenario, only one CCGT and sixteen wind farms are required. It can be found 

that compared with the GEP without DSR, the low level DSR programme can help save 

investment by replacing the two 100 MW on-shore wind farms with a 20 MW biomass 

power plant. However, the high level DSR programme can help save investment for six 

100MW on-shore wind farms. 

Table 6-10 Optimal Number of Units to Be Expanded under 3 DSR Scenarios with 2011 Boundary 

Capacity 

Demand  
Flexibility Scenarios 

No DSR DR1 DR2 

Expanded 
 Plant  
Types 

CCGT 
Wind 

On-shore 
CCGT Bio 

Wind 
On-shore 

CCGT 
Wind 

On-shore 

Z1       2 

Z2  7   7  5 

Z3  1   1  3 

Z4  14   12  6 

Z11 1  1   1  

Z14    1    

Subtotal 1 22 1 1 20 1 16 

Table 6-11 shows the related optimized GEP cost and emission results. It can be seen 

that in order to realise the common emission reduction target, the GEP without DSR 

will generate a total cost of 16.9 billion pounds including the new generation capacity 

investment and the annual generation operation cost in the target year. However, with a 

very low level (averagely 2%) DSR implemented in Z8, Z11 and Z14, the total cost can 

be saved by 0.11 billion pounds, which is around 0.7% of the No DSR case. If a bit 

higher level (averagely 10%) DSR implemented, it can be saved by 0.64 billion pounds, 

which is around 3.8% of the No DSR case. This reveals the import role of DSR in the 

GEP problem. 

Table 6-11 Optimal GEP Cost and Emission Results under Three DSR Scenarios 

DSR Scenarios 
Total Cost 

£ 

Total Emission 

(tonne) 

No DSR 1.690E+10 1.00E+08 

DR1 1.679E+10 1.00E+08 

DR2 1.626E+10 1.00E+08 
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Table 6-12 Optimal GB Generation Mix (MW) without DSR with 2011 Boundary Capacity 

 Nuclear Coal CCGT PS Hydro Bio 
Wind 

On-shore 
Wind 

Off-shore 

Z1 0 0 0 300 577 0 651 0 

Z2 0 0 1,180 0 18 0 700 0 

Z3 0 0 0 0 230 0 272 0 

Z4 0 0 0 0 259 0 1,503 0 

Z5 0 2,284 0 440 0 0 35 0 

Z6 2,289 0 20 0 33 45 1,327 0 

Z7 1,207 0 1,974 0 0 0 0 0 

Z8 0 7,832 4,945 0 0 0 0 0 

Z9 3,368 1,987 2,934 2,004 0 0 0 182 

Z10 0 3,987 2,975 0 0 0 0 0 

Z11 0 4,003 400 0 0 0 0 0 

Z12 1,207 0 3,050 0 0 0 0 815 

Z13 430 3,723 4,431 0 0 0 0 0 

Z14 0 0 2,123 0 0 0 0 0 

Z15 1,081 1,966 3,165 0 0 0 0 201 

Z16 0 0 1,320 0 0 0 0 0 

Z17 1,261 0 905 0 0 0 0 0 

Sub total 10,843 25,782 29,422 2,744 1,117 45 4,488 1,198 

Penetration 14.3% 34.1% 38.9% 3.6% 1.5% 0.1% 5.9% 1.6% 

Total 75,639 

 
Table 6-13 Optimal GB Generation Mix (MW) under DR1 with 2011 Boundary Capacity 

 Nuclear Coal CCGT PS Hydro Bio 
Wind 

On-shore 
Wind 

Off-shore 

Z1 0 0 0 300 577 0 651 0 

Z2 0 0 1,180 0 18 0 700 0 

Z3 0 0 0 0 230 0 272 0 

Z4 0 0 0 0 259 0 1,303 0 

Z5 0 2,284 0 440 0 0 35 0 

Z6 2,289 0 20 0 33 45 1,327 0 

Z7 1,207 0 1,974 0 0 0 0 0 

Z8 0 7,832 4,945 0 0 0 0 0 

Z9 3,368 1,987 2,934 2,004 0 0 0 182 

Z10 0 3,987 2,975 0 0 0 0 0 

Z11 0 4,003 400 0 0 0 0 0 

Z12 1,207 0 3,050 0 0 0 0 815 

Z13 430 3,723 4,431 0 0 0 0 0 

Z14 0 0 2,123 0 0 20 0 0 

Z15 1,081 1,966 3,165 0 0 0 0 201 

Z16 0 0 1,320 0 0 0 0 0 

Z17 1,261 0 905 0 0 0 0 0 

Sub total 10,843 25,782 29,422 2,744 1,117 65 4,288 1,198 

Penetration 14.4% 34.2% 39.0% 3.6% 1.5% 0.1% 5.7% 1.6% 

Total 75,459 
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Table 6-14 Optimal GB Generation Mix (MW) under DR2 with 2011 Boundary Capacity 

 Nuclear Coal CCGT PS Hydro Bio 
Wind 

On-shore 
Wind 

Off-shore 

Z1 0 0 0 300 577 0 851 0 

Z2 0 0 1,180 0 18 0 500 0 

Z3 0 0 0 0 230 0 472 0 

Z4 0 0 0 0 259 0 703 0 

Z5 0 2,284 0 440 0 0 35 0 

Z6 2,289 0 20 0 33 45 1,327 0 

Z7 1,207 0 1,974 0 0 0 0 0 

Z8 0 7,832 4,945 0 0 0 0 0 

Z9 3,368 1,987 2,934 2,004 0 0 0 182 

Z10 0 3,987 2,975 0 0 0 0 0 

Z11 0 4,003 0 0 0 0 0 0 

Z12 1,207 0 3,050 0 0 0 0 815 

Z13 430 3,723 4,431 0 0 0 0 0 

Z14 0 0 2,123 0 0 0 0 0 

Z15 1,081 1,966 3,165 0 0 0 0 201 

Z16 0 0 1,320 0 0 0 0 0 

Z17 1,261 0 905 0 0 0 0 0 

Sub total 10,843 25,782 29,022 2,744 1,117 45 3,888 1,198 

Penetration 14.5% 34.5% 38.9% 3.7% 1.5% 0.1% 5.2% 1.6% 

Total 74,639 

The 2020 optimal GB generation mix results under three DSR scenarios with 2011 

boundary capacity are listed in Table 6-12, Table 6-13 and Table 6-14 respectively. It 

can be found that with increasing of the demand flexibility in the three DSR zones, the 

optimal penetration of on-shore wind farms drops from 5.9% of the No DSR case to 

5.7% (DR1) and 5.2% (DR2), and the total installed generation capacity drops from 

75,639 MW of the No DSR case to 75,459 MW (DR1) and 74,639 MW (DR2). 

The optimal demand response results under DSR scenarios DR1 and 2 are shown in Fig 

6-3 and Fig 6-4 respectively. In each figure, the black solid line represents the original 

forecasted load profiles; the optimized DSR load profiles at three load zones are 

depicted by dash lines in different colours as the legend indicates. The horizontal axis 

labels the 11 sampled hours for the sub operational problem. The vertical axis labels the 

hourly demand in the percentage of the annual peak demand at corresponding zones. 

For both DSR scenarios DR1 and DR2, valley filling and peak clipping effect can be 

observed compared with the forecasted load profile.  

For readers who are interested in how the curves are depicted, the experiment results 

data for original and DSR load profiles are provided in Table C3, Table C4 and Table 
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C5 in Appendix C. Aggregated Optimized Load Profiles of Zone 8, 11 and 14 under 

DR1 and DR2 are also provided in Fig C-1 and Fig C-2 in Appendix C. 

 
Fig 6-3 Optimized Load Profiles under DR1 with 2011 Boundary Capacity 

 

 
Fig 6-4 Optimized Load Profiles under DR2 with 2011 Boundary Capacity 

 

6.3.3.2 Optimal GB Generation Mix in 2020 with 2020 Boundary 
Capacity Scenario 

Similar to the results in Section 6.3.3.1, Table 6-15 shows the optimized number of 

units to be expanded for realizing the 2020 emission target (50% reduction) under three 

different DSR scenarios with 2020 boundary capacity. For No DSR scenario, it requires 

nineteen new on-shore wind farms built in Z1, Z2, Z3 and Z4. For DR1 scenario, two 

less wind farms are required. For DR2 scenario, only ten wind farms are required. It can 
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be found that compared with the GEP without DSR, the low level DSR programme can 

help save investment for two 100 MW on-shore wind farms. However, the high level 

DSR programme can help save investment for nine 100MW on-shore wind farms. 

Table 6-15 Optimal Number of Units to Be Expanded under 3 DSR Scenarios with 2020 Boundary 

Capacity 

Demand Flexibility Scenarios No DSR DR1 DR2 

Expanded Plant Types 
Wind 

On-shore 
Wind 

On-shore 
Wind 

On-shore 

Z1 5 2 1 

Z2 5 6 5 

Z3 2 1 1 

Z4 7 8 3 

Subtotal 19 17 10 

However, compared with the results in Table 6-10, it can be found that after boundary 

capacity expansion, the generation capacity required to expand is obviously reduced for 

all the three DSR scenarios. For No DSR scenario, it requires one CCGT and twenty 

two on-shore wind farms if the boundary capacity is not expanded, but it only requires 

nineteen on-shore wind farms, if the boundary capacity is expanded. The differences are 

one CCGT unit and three on-shore wind farms. For DR1 scenario, the differences are 

one CCGT unit, one biomass unit and three on-shore wind farms. For DR2 scenario, 

they are one CCGT unit and six on-shore wind farms.  

Table 6-16 shows the related optimized GEP cost and emission results. It can be seen 

that in order to realise the common emission reduction target, the GEP without DSR 

will generate a total cost of 16.9 billion pounds including the new generation capacity 

investment and the annual generation operation cost in the target year. However, with a 

very low level (averagely 2%) DSR implemented in Z8, Z11 and Z14, the total cost can 

be saved by 0.15 billion pounds, which is around 0.9% of the No DSR case. If a bit 

higher level (averagely 10%) DSR implemented, it can be saved by 0.68 billion pounds, 

which is around 4.5% of the No DSR case. This reveals the import role of DSR in the 

GEP problem. 

Table 6-16 Optimal GEP Cost and Emission Results under Five Load Flexibility Scenarios 

DSR Scenarios 
Total Cost 

£ 

Total Emission 

(tonne) 

No DSR 1.633E+10 1.00E+08 

DR1 1.618E+10 1.00E+08 

DR2 1.565E+10 1.00E+08 
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Compared with the results in Table 6-11, it can be found that after boundary capacity 

expansion, the total cost required is reduced as well for all the three DSR scenarios. For 

No DSR scenario, it is reduced from 16.90 billion to 16.33 billion, saving around 3.4%. 

For DR1 scenario, it is reduced from 16.79 billion to 16.18 billion, saving around 3.6%. 

For DR2 scenario, it is reduced from 16.26 billion to 15.65 billion, saving around 3.8%.   

The 2020 optimal GB generation mix results under three DSR scenarios with 2020 

boundary capacity are listed in Table 6-12, Table 6-13 and Table 6-14 respectively. It 

can be found that with increasing of the demand flexibility in the three DSR zones, the 

optimal penetration of on-shore wind farms drops from 5.6% of the No DSR case to 

5.3% (DR1) and 4.4%(DR2), and the total installed generation capacity drops from 

74,939 MW of the No DSR case to 74,739 MW (DR1) and 74,039 MW (DR2). 

Compared with the results in Table 6-12 to Table 6-14, the optimal total installed 

generation capacities are 75,639 MW for No DSR scenario, 75,459 MW for DR1 

scenario and 74,639 MW DR2 scenarios respectively. After boundary capacity 

expansion, the optimal total generation capacities can be saved by 700MW, 720MW 

and 600MW for the three DSR scenarios respectively. 

Table 6-17 Optimal GB Generation Mix (MW) without DSR with 2020 Boundary Capacity 

 Nuclear Coal CCGT PS Hydro Bio 
Wind 

On-shore 
Wind 

Off-shore 

Z1 0 0 0 300 577 0 1,151 0 

Z2 0 0 1,180 0 18 0 500 0 

Z3 0 0 0 0 230 0 372 0 

Z4 0 0 0 0 259 0 803 0 

Z5 0 2,284 0 440 0 0 35 0 

Z6 2,289 0 20 0 33 45 1,327 0 

Z7 1,207 0 1,974 0 0 0 0 0 

Z8 0 7,832 4,945 0 0 0 0 0 

Z9 3,368 1,987 2,934 2,004 0 0 0 182 

Z10 0 3,987 2,975 0 0 0 0 0 

Z11 0 4,003 0 0 0 0 0 0 

Z12 1,207 0 3,050 0 0 0 0 815 

Z13 430 3,723 4,431 0 0 0 0 0 

Z14 0 0 2,123 0 0 0 0 0 

Z15 1,081 1,966 3,165 0 0 0 0 201 

Z16 0 0 1,320 0 0 0 0 0 

Z17 1,261 0 905 0 0 0 0 0 

Sub total 10,843 25,782 29,022 2,744 1,117 45 4,188 1,198 

Penetration 14.5% 34.4% 38.7% 3.7% 1.5% 0.1% 5.6% 1.6% 

Total 74,939 
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Table 6-18 Optimal GB Generation Mix (MW) under DR1 with 2020 Boundary Capacity 

 Nuclear Coal CCGT PS Hydro Bio 
Wind 

On-shore 
Wind 

Off-shore 

Z1 0 0 0 300 577 0 851 0 

Z2 0 0 1,180 0 18 0 600 0 

Z3 0 0 0 0 230 0 272 0 

Z4 0 0 0 0 259 0 903 0 

Z5 0 2,284 0 440 0 0 35 0 

Z6 2,289 0 20 0 33 45 1,327 0 

Z7 1,207 0 1,974 0 0 0 0 0 

Z8 0 7,832 4,945 0 0 0 0 0 

Z9 3,368 1,987 2,934 2,004 0 0 0 182 

Z10 0 3,987 2,975 0 0 0 0 0 

Z11 0 4,003 0 0 0 0 0 0 

Z12 1,207 0 3,050 0 0 0 0 815 

Z13 430 3,723 4,431 0 0 0 0 0 

Z14 0 0 2,123 0 0 0 0 0 

Z15 1,081 1,966 3,165 0 0 0 0 201 

Z16 0 0 1,320 0 0 0 0 0 

Z17 1,261 0 905 0 0 0 0 0 

Sub total 10,843 25,782 29,022 2,744 1,117 45 3,988 1,198 

Penetration 14.5% 34.5% 38.8% 3.7% 1.5% 0.1% 5.3% 1.6% 

Total 74,739 

 
Table 6-19 Optimal GB Generation Mix (MW) under DR2 with 2020 Boundary Capacity 

 Nuclear Coal CCGT PS Hydro Bio 
Wind 

On-shore 
Wind 

Off-shore 

Z1 0 0 0 300 577 0 751 0 

Z2 0 0 1,180 0 18 0 500 0 

Z3 0 0 0 0 230 0 272 0 

Z4 0 0 0 0 259 0 403 0 

Z5 0 2,284 0 440 0 0 35 0 

Z6 2,289 0 20 0 33 45 1,327 0 

Z7 1,207 0 1,974 0 0 0 0 0 

Z8 0 7,832 4,945 0 0 0 0 0 

Z9 3,368 1,987 2,934 2,004 0 0 0 182 

Z10 0 3,987 2,975 0 0 0 0 0 

Z11 0 4,003 0 0 0 0 0 0 

Z12 1,207 0 3,050 0 0 0 0 815 

Z13 430 3,723 4,431 0 0 0 0 0 

Z14 0 0 2,123 0 0 0 0 0 

Z15 1,081 1,966 3,165 0 0 0 0 201 

Z16 0 0 1,320 0 0 0 0 0 

Z17 1,261 0 905 0 0 0 0 0 

Sub total 10,843 25,782 29,022 2,744 1,117 45 3,288 1,198 

Penetration 14.6% 34.8% 39.2% 3.7% 1.5% 0.1% 4.4% 1.6% 

Total 74,039 
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It may be hard to imagine that under the expanded boundary capacity scenario, the 

required wind capacities in north wind zones drops compared with the 2011 boundary 

capacity case. This is because according Table 6-6, the boundary capacities related to 

north wind zones are all expanded. Especially for B1 which is solely related to Zone 1, 

According to Table 6-7, the peak demand in Zone in 2020 is only 506 MW. Based on 

the load profile in Table 6-8, the valley demand is 506*39.7%=197 MW. However, the 

initial total installed capacity in 2011 is already 1,528 MW as shown in Table 6-4. 

Therefore, there is 1,528-506=1,022MW extra generation capacity need exporting even 

at peak load time. However, in 2011, the B1 has only a capacity of 450MW, which 

severely block the power exporting from Zone 1. The capacity of B1 in 2020 is 

massively expanded to 2,300MW, which radically releases the potential of generation 

capacity in Zone 1. The same situation also can be found for Zone 3, which also has 

generation exportation congestion under the 2011 boundary capacity.  This explains 

why the 2020 boundary case requires less wind generation capacities, since the 

expanded boundary capacity in northern wind zones can help further take advantage of 

the existing generation capacities. 

Similar to in Fig 6-3 and Fig 6-4 in Section 6.3.3.1, the optimal demand response results 

under DSR scenarios DR1 and DR2 are shown in Fig 6-5 and Fig 6-6 respectively. For 

readers who are interested in how the curves are depicted, the experiment results data 

for original and DSR load profiles are provided in Table C3, Table C6 and Table C7 in 

Appendix C. Aggregated Optimized Load Profiles of Zone 8, 11 and 14 under DR1 and 

DR2 are also provided in Fig C-3 and Fig C-4 in Appendix C. 

The comparative analysis between results from different DSR scenarios shows that in 

order to realise the same emission reduction target, it can help save the future generation 

expansion cost by up to 0.68 billion pounds (4.5%) by raising the demand side 

flexibility by appropriate DSR programmes. Additionally, different levels of DSR at 

different locations will also affect the optimal generation type and location to be 

expanded. 
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Fig 6-5 Optimized Load Profiles under DR1 with 2020 Boundary Capacity 

 
 

 
Fig 6-6 Optimized Load Profiles under DR2 with 2020 Boundary Capacity 

 

Comparison of the GEP results between low and high boundary capacity scenarios 

indicates that in order to realise the same emission reduction target, increasing the 

transmission capacities can help fully use the existing generation capacity and also save 

the future generation expansion investment by up to 0.64 billion pound (3.8%). 

Although the above results show the generation expansion cost can be saved by large 

amounts by raising DSR levels and expanding transmission capacities, there are also 

DSR implementation costs and transmission expansion costs associated. Therefore, a 

new question arises for the policy maker that how to optimize the combined generation 
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investment, transmission investment and DSR deployment investment in one 

optimization problem. The combined optimization problem needs to be investigated in 

future works.  

6.4 Chapter Summary  

The case studies in previous chapters are all based on test systems. In order the show the 

practical effectiveness of the proposed modelling methods and answer the question 

specified by the thesis title, this chapter proposes a case study specifically for 

investigating the optimal generation mix for Great Britain (GB).  

The GEP model proposed in Chapter 5 is adopted to assess the optimal generation mix 

of GB, which inherits the advantages of the model proposed in Chapter 3 that it can deal 

with generation location optimization and the short-term unit commitment constraints 

together in one GEP model. It also extends the previous model by incorporating 

stochastic renewable generation expansion and demand side response (DSR). In order to 

accommodate the boundary data, a slight modification is made that the generation shift 

distribution factor (GSDF) based transmission constraints in the GEP model in Chapter 

5 is replaced by a boundary based one. This modification is due to the available GB 

network data format. 

The real case study in this chapter is made based on a reduced Great Britain (GB) 

transmission network, whose data is obtained from the Seven Year Statement by 

National Grid (UK) in 2011. The UK transmission network is simulated by 17 study 

zones and 17 transmission boundaries. The 17 zones represent 17 different areas of the 

Great Britain, in each of which, the power plants and demands from different buses are 

aggregated. The transmission network inside a zone is neglected. However, the 

transmission capabilities between zones are constrained by 17 transmission boundaries. 

A boundary can be linked to multiple zones. The total flow across the boundary will be 

the sum of the generation less demand in all the zones affecting that boundary.   

Based on the network data collected from the Seven Year Statement (2011) publish by 

National Grid (UK), different optimal GB generation mixes in 2020 are identified under 

a series of scenarios, which are constructed according to two boundary capacity 
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hypotheses (2011 and 2020 boundary capacities) and three demand side response levels 

(No DSR, DR1(2%) and DR2 (10%)). 

Results show that in order to meet a 50% emission reduction target for power industry 

in 2020, the GEP without DSR will lead to a total cost of 16.9 billion pounds including 

the new generation capacity investment and the annual generation operation cost in the 

target year. However, with a very low level (averagely 2%) DSR implemented in Z8, 

Z11 and Z14, the total cost can be saved by 0.11 billion pounds, which is 0.65%. If a bit 

higher level (averagely 10%) DSR implemented, it can be saved by 0.64 billion pounds, 

which is 3.79%. Therefore, in order to realise the same emission reduction target, it can 

help save the future generation expansion investment by raising the demand side 

flexibility by appropriate DSR programmes. 

Comparison of the GEP results between low and high boundary capacity scenarios 

indicate that in order to realise the same emission reduction target, increasing the 

transmission capacities can help fully use the existing generation capacity and also save 

the future generation expansion investment. For example, for the same DR2 scenario 

and same 50% emission reduction target, optimal GEP results under the 2011 boundary 

capacity scenario require to expand one CCGT unit and sixteen on-shore wind farms, 

which lead a total cost of 16.26 billion pounds. However, those under expanded 2020 

boundary capacity scenario, only 10 on-shore wind farms are required, which leads a 

total cost of 15.65 billion pounds, saving by 3.8%. 
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7.1 Conclusions 

7.1.1 Emission Constrained Generation Expansion in Chapter 2 

Most of the previous researches on optimal generation mix planning have one or more 

of the following limitations: 

• Integer variable cost and the nonlinearity of the operational level are neglected [3, 6, 

11, 21, 24, 43-45, 50, 51]. Discrete characteristic of generation unit size in the 

investment level is ignored as well [3, 11, 21].  

• There is only limited discussion of the impact of short-term emission cost on the 

long-term investment cost [3, 11].  

• Network constraints and renewable generation expansion are seldom considered in 

the emission target oriented generation planning [3, 11, 21, 24].  

The GEP model proposed in Chapter 2 attempts to determine the required generation 

mix which can meet a predefined emission target for a given power network at a 

minimum societal cost. The methodology developed takes the emission target settings, 

current generation mix, network data and load profiles in the target year as inputs. It 

considers typical thermal generation units and renewable wind units, and provides the 

optimized generation mix and the total cost and emission under this mix as outputs.  

Compared with previous researches, this GEP model can take account of the emission 

cost in short-term operational level and explores its impacts on the long-term emission 

target oriented generation planning. In addition, the model proposed in this chapter 

takes into account the integer variables and the nonlinearity of operational cost with 

network constraints and renewable generation expansion together into one long-term 

generation planning model. Dynamic programming and a heuristic gradient search 

method are employed to tackle the short-term operational optimization and long-term 

expansion optimization respectively. 

This GEP model is a centralized generation planning model. It aims to provide a low 

carbon generation mix assessment tool for policy makers when devising emission 
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reduction targets and estimating the related cost. The government or other related 

authorities can use this assessment model to ensure long-term emission target could be 

achieved at a minimum societal cost. Since this formulation, taking into account 

detailed system operation constraints, such as unit commitment and network constraints, 

has a large problem size, an innovative performance index, emission reduction cost 

(ERC) has been developed to speed up the process of searching for the optimal 

generation technology.  

The case study has presented the application of this model on the IEEE 30-bus system 

under 16 different scenarios with different emission reduction targets ranging from 

9.9% to 22.8% combined with different emission charge prices ranging from 5 £/tonne 

to 30£/tonne. It can be found that a more stringent emission target can be achieved most 

economically by a combination of long-run generation expansion and short-run 

emission control. The results also indicate within a certain price range, a higher 

emission price can help find the optimal mix to a meet the target at a lower total cost. 

For example, in order to meet the 18.5% reduction target with network constraints, 

raising emission price from £5/tonne to £30/tonne can help reduce the total cost from £ 

4.31 billion to £4.03 billion, saving 6.5%. These show the importance of including the 

emission financial pressure when optimizing the generation investment. Optimizations 

are conducted both with and without network constraints under the 16 scenarios The 

comparison between the optimizations with and without network constraints indicates in 

order to reach the same emission reduction target, the optimization with network 

constraints always realizes the target at higher or equal total cost compared to the 

optimization without network constraints. In the case of study, the final cost differences 

between optimization with and without network constraints vary from 0.74% to 6.09%. 

This shows the importance of taking network constraints into account when optimizing 

the generation investment to avoid underestimating the cost. In addition, ignoring 

network constraints will underestimate the difficulty and effort to realise the emission 

target. It also can be found that the system’s total emission can not be reduced as much 

as people desired by merely increasing the clean units’ penetration, which is caused by 

both the necessity of increasing conventional generation capacity to back up the rise of 

the wind generation penetration and the minimum output constraints of the conventional 

power plants. 
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7.1.2 GEP with Location Optimization and Unit Commitment 

Constraints in Chapter 3 

Most of the previous GEP studies neglected network transmission constraints and 

generation location optimization. Some research considered the transmission constraints 

but assumed that the generators were to be expanded at designated nodes, such as the 

GEP model proposed in Chapter 2. Very few researches considered both transmission 

network constraints and generation location optimization at the same time.  

Additionally, there is not a GEP model which can simultaneously consider both 

generation location optimization and short-term unit commitment constraints, such as 

unit’s ramping up/down rates, minimum up/down time. Chapter 3 proposes such a GEP 

model by a mixed integer linear programming (MILP) modelling method. 

Compared to the previous GEP model, the values of this model are that it can deal with 

generation location optimization and the short-term unit commitment constraints 

together in one GEP model.  

Although the GEP model in Chapter 2 considers the network constraints, the new 

generation capacities are assumed to be expanded at designated locations. The 

generation location optimization is ignored. In order to include the location optimization 

in the GEP problem, the dimension of the decision variable has to be augmented to 

represent the location index. The combined dynamic programming and heuristic 

gradient search method is difficult to cope with the new optimization problem with the 

increased search space for generation location decision. Hence, in Chapter 3, the 

research direction is switched to a mixed integer linear programming (MILP) based 

GEP modelling method, which can handle the optimization problem with much larger 

dimension. However, in a MILP model, all the objective and constraint should be 

expressed linearly respect to the decision variable. Compared with the modelling 

method in Chapter 2, nonlinear operation cost function has to be approximated by a 

linear one in a MILP GEP model. However, as a trade-off, the optimal generation 

location can be decided in the new MILP GEP model. 

The network constraints and generation location optimization are achieved by 

employing the generation shift distribution factor (GSDF) under the DC load flow 
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approximation. The decision variable, generation at each bus is linked to the load flow 

on each transmission line by GSDF. The unit commitment constraints are also 

expressed linearly and augmented by bus index in order to integrate with the MILP GEP 

model.  

The case study solves a GEP problem based on a 5-bus test system. Comparison has 

made between three different GEP models. The first one is a basic GEP model without 

network constraint. The second one is a GEP model with network constraint but at fixed 

locations, which represents the way of treating generation location in Chapter2. The 

third one is the new GEP model with network constraint and location optimization 

which is proposed in Chapter 3. The three models are solved under various emission 

target constraints, so as to find the difference of the three models under different 

emission reduction pressures. The results show that the GEP model with location 

optimization can model the GEP problem more close to the real case, it generates a 

more real generation mix and related cost outputs than the other two simpler models. 

For example, considering the ramping rate constraints, when emission target is set to 8 

million tonnes, the total cost from the third model is 1.36 billion pounds total cost, 

while those from the first model and second model are 1.34 billion and 1.38 billion 

pounds respectively. Therefore, the new GEP model can avoid the overestimation or 

underestimation of optimal capacities of different generation technologies and required 

total cost, subject to various emission targets. 

The above three GEP models are augmented by including the ramping rate constraint 

afterwards. The same experiments are executed again to demonstrate the importance to 

take account of ramping rate constraint in GEP model. The results show that solving a 

GEP problem without considering the ramping rate constraint may lead to sub optimal 

generation mix results for some certain levels of emission target pressures. It can be 

concluded from the results that for loose emission target constraints the ramping rate 

constraint may affect the long-term generation mix and generation locational 

distribution. However, when the emission target becomes stringent, the ramping rate 

constraint will significantly affect not only the long-term generation mix but also the 

generation locational distribution. Furthermore, neglecting ramping rate constraint will 

definitely underestimate the total cost for the generation expansion. For example, in 

order to meet the 7.0 million tonnes emission target, the third GEP model considering 



Chapter 7                                                               Conclusions and Future Works 

Page161 

ramping rate constrains will cost 1.62 billion pounds, while the that without ramping 

rate constraints will cost 1.56 billion pounds, which underestimates the cost required by 

around 3%. In essence, unit’s flexibility characteristic (ramping rate), like unit 

nameplate size, operational cost efficiency, capital cost efficiency and emission 

efficiency plays a significant role in the GEP problem. 

7.1.3 GEP with Multi-Phase Emission Targets in Chapter 4 

Many governments have enforced various green house gas (GHG) emission reduction 

schemes. Most of these schemes tend to set some mid-term emission reduction targets 

for realising a final reduction target. In order to consider the impacts of the multi-phase 

emission targets on GEP problem, Chapter 4 proposes a multi-phase emission targets 

constrained GEP mode. This model inherits the advantages of the model proposed in 

Chapter 3 that it can deal with generation location optimization and the short-term unit 

commitment constraints together in one GEP model. It also extends the previous model 

by introducing multi-phase emission targets constraints. 

The case study is provided based on a 5-bus test system. The proposed GEP model is 

solved for twelve times with six different emission target settings and two different load 

growth scenarios. In order to find out the impacts of mid-term emission target (MET) 

settings on the results of a multi-phase emission target constrained GEP problem, the 

six different METs are set (ranging from 7.5 million tonnes to 5 million tonnes) to meet 

the common final emission target (FET) (4 million tonnes). In order to investigate the 

impact of generation location distribution on the multi-phase emission targets 

constrained GEP model, the two different load growth scenarios are set to have the 

same total load growth, but different load growth distributions at load buses. Load 

growth scenario 1 is 5%, 8% and 1% for Bus 2, 3 and 4, and Load growth scenario 2 is 

1%, 5% and 8% for Bus 2, 3 and 4. 

Comparative studies between different MET settings show that the total cost tends to 

increase with the MET becoming more stringent, despite of the same FET. For example, 

in order to meet the common FET (4 million tonnes), the total cost will be 3.615 billion 

pounds if the MET is set to 7.5 million tonnes. However, it will increase to 3.745 billion 

pounds if the MET is set to 5 million tonnes, which leads to 3.5% extra costs. This is 

because over stringent METs will require more clean but expansive units to be built in 
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MET year, and these early constructed units may be unnecessary or placed at less 

optimal locations for realising the FET. 

Comparative studies between different load growth scenarios clearly demonstrate the 

importance of the considering transmission constraints and generation location 

optimization in the multi-phase emission targets constrained GEP problem. Since the 

two load growth scenarios used in this case study both have a common total load grow 

rate, but after allocating the total growth to load buses in different percentages, different 

optimal GEP results will be achieved. For example, for the same MET (5.5 million 

tonnes) and FET (4.0 million tonnes), the total cost will be 3.708 billion pounds if 

growth scenario 1 is selected. However, it will increase to 3.745 billion pounds if 

growth scenario 1 is selected, which leads to around 1% extra costs. GEP model without 

transmission constraints and generation location optimization is not able to differentiate 

these differences. 

7.1.4 GEP with Renewable Generation and Demand Response in 

Chapter 5 

In traditional GEP problem, when making a capacity expansion decision for a 

conventional generation technology, planners know the conventional units can generate 

the expected amount of power at any time of the planning horizon. However, renewable 

generation emerges with new challenges in GEP problem. Take the wind generation as 

an example, in practice, the wind speed forecasting errors could be very large especially 

for a long term wind forecast. The output of a wind farm in the future quite depends on 

the volatile wind speed not the planners’ expectation. Hence, it requires more 

sophisticated treatment for wind generation expansion in a GEP problem.  

Very few previous GEP researches include the renewable generation expansion 

appropriately in their GEP modelling. Take the wind generation as an example, the 

wind generation is usually either treated as a controllable conventional generation 

technology or as a known negative demand, similar to load profile. This treatment of 

renewable generation is not able to address the uncertain nature of renewable generation, 

because they all assume either the renewable generation controllable or the future power 

output from renewable generation is deterministic. 
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In addition, with increasing mature conditions for realising DSR in the near future, DSR 

will potentially play the role of traditional generators, as an alternative source, to 

provide the flexibility to maintain the demand supply balance. Therefore, DSR should 

be incorporated into the GEP problem. Short-term DSR implementation has been 

studied extensively in recent years, but very few of them took the DSR into account for 

long-tern GEP problem. Most previous GEP model made a lot of efforts to model the 

generation side, but treated the demand side simply as a fixed projected load profile.  

Moreover, there have been no researches on GEP problem that consider both stochastic 

renewable generation expansion and DSR simultaneously with network constraints and 

generation location optimization. 

In order to catch the impacts of stochastic renewable generation and demand side 

response on GEP problem, Chapter 5 proposes a new GEP model, which considers both 

stochastic renewable generation expansion and demand side response simultaneously 

with network constraints and generation location optimization. This GEP model also 

inherits the advantages of the model proposed in Chapter 3 that it can deal with 

generation location optimization. Additionally, wind generation capacity expansion is 

included, whose uncertainty is taken account by a two-stage scholastic linear 

programming model. The uncertain wind output profile in future is handled by Monte 

Carlo simulation technique, which generates a number of wind output scenarios 

following a given wind speed probability distribution. A basic introduction about the 

two-stage stochastic programming and Monte Carlo simulation technique is provided to 

help reader better under the stochastic GEP in this chapter. 

The demand side response modelling is realized by setting the demands at different 

locations at different time intervals as decision variables. The demands are allowed to 

deviate from their forecasted amount up or down within a pair of certain lower and 

upper bounds. The range between the lower and upper bounds represents the flexibility 

of the demand. Since the load type composition (industrial, commercial and domestic) 

varies for different load buses, the flexibilities on different load buses may be different. 

The demand side response is also constrained by a rule that the total demand in a single 

day after DSR should be equal to the total forecasted demand in that day. This 

constraint models the real life practice that the demand can only be shifted from one 

time to another, but can not disappear. 
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A case study is provided based on a 5-bus test system to verify the effectiveness of the 

method proposed in this study. Five load flexibility scenarios are used to investigate the 

impacts of DSR on GEP problem, which are no DSR scenario and other four DSR 

scenarios, indexed by DR1, DR2, DR3 and DR4. DR1 and DR3 have relatively low 

demand response capability, averagely, responding within 2% up and down of the 

forecasted level. DR2 and DR4 have relatively high demand response capability, 

averagely, demand side can response within 10% up and down of the forecasted level. 

The four DSR scenarios are differentiated by not only DSR levels, but also locational 

distribution. For example, although the average DSR levels of DR1 and DR3 are the 

same, in DR1, the most flexible load is at Bus 2, while in DR3, it is at Bus 3. Ten wind 

output scenarios are generated following a Weibull distribution for two-stage stochastic 

programming.   

Comparisons have been made to find out that with more flexible demand, the load 

valley can be better filled and the load peak could be better clipped. Therefore, more 

generation capacity expansion can be avoided and the huge cost could be saved. For 

example, the GEP costs for no DSR, DR1 and DR2 are 3.826, 3.699 and 3.468 billion 

pounds respectively. The results indicate that compared with no DSR scenario, a low 

DSR (2%) can help save the total cost by around 3.3%, while a higher DSR (10%) can 

help save the total cost by around 9.3%. Moreover, the results also indicates that for the 

same flexibility level, demand response can contribute more if it is located at the bus 

where the system marginal units stay or the most sensitive bus to congestion lines ( with 

biggest GSDF), compared to other locations. For example, DR2 and DR4 have the same 

average demand response level (10%) but different locational distribution, the optimal 

generation mix results for DR2 requires one more OCGT unit and one more wind farm 

that that for DR4.  From the long term GEP view, raising the demand flexibility at the 

most sensitive locations by appropriate DSR programmes can help take full advantage 

of the current network and generation capacity and more importantly help save the 

future expensive peak unit investment. 

In order to address the difference between deterministic and stochastic treatment of 

wind generation, GEP model is solved under each of the 10 wind output scenarios 

individually. This deterministic treatment of wind generation is assumed that the wind 

farm will precisely generate the predicted amount of power at the forecasted time, 
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which was adopted in literatures [3, 9, 21, 22, 51, 62, 65, 72, 74, 75, 101, 104, 109]. 

Results show that no matter what demand flexibility level is, the two-stage stochastic 

GEP model with multi wind output scenarios will produce a solution requiring more 

generation capacity expansion and more total cost, compared to the results from 

deterministic GEP model with only a single wind output scenario. For example, in the 

comparison under DR2, the deterministic wind GEP model will underestimate the total 

cost by 7.4% at least and by 14%.1 at most. The reason of these differences is that the 

two-stage stochastic linear programming GEP model can tackle the uncertainty of wind 

farm output by Monte Carlo simulation. The first stage decisions, capacities of different 

generation technologies to be expanded are made to meet all second stage constraint 

scenarios and generate a minimum expected operational cost of the second stage 

generation operation problem. In optimization theory, more second stage constraints 

added may narrow the feasible region and hence affect the value of optimal solution.  

7.1.5 Optimal Generation Mix of GB in 2012 in Chapter 6 

The case studies in previous chapters are all based on test systems. In order the show the 

practical effectiveness of the proposed modelling methods and answer the question 

specified by the thesis title, Chapter 6 proposes a case study specifically for 

investigating the optimal generation mix of Great Britain (GB) in 2020.  

The GEP model proposed in Chapter 5 is adopted to assess the optimal generation mix 

of GB, which inherits the advantages of the model proposed in Chapter 3 that it can deal 

with generation location optimization and the short-term unit commitment constraints 

together in one GEP model. It also extends the previous model by incorporating 

stochastic renewable generation expansion and demand side response (DSR). In order to 

accommodate the boundary data, a slight modification is made that the generation shift 

distribution factor (GSDF) based transmission constraints in the GEP model in Chapter 

5 is replaced by a boundary based one. This modification is due to the available GB 

network data format. 

In Chapter 6, a real case study is made based on a reduced Great Britain (GB) 

transmission network, whose data is obtained from the Seven Year Statement by 

National Grid (UK). The UK transmission network is simulated by 17 study zones and 

17 transmission boundaries. The 17 zones represent 17 different areas of the Great 
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Britain, in each of which, the power plants and demands from different buses are 

aggregated. The transmission network inside a zone is neglected. However, the 

transmission capabilities between zones are constrained by 17 transmission boundaries. 

A boundary can be linked to multiple zones. The total flow across the boundary will be 

the sum of the generation less demand in all the zones affecting that boundary.   

Based on the network data collected from the Seven Year Statement (2011) publish by 

National Grid (UK), different optimal GB generation mixes in 2020 are identified under 

a series of scenarios, which are constructed according to two boundary capacity 

hypotheses (2011 and 2020 boundary capacities) and three demand side response levels 

(no DSR, 2% and 10%). 

Results show that in order to meet a 50% emission reduction target for power industry 

in 2020, the GEP without DSR will lead to a total cost of 16.9 billion pounds including 

the new generation capacity investment and the annual generation operation cost in the 

target year. However, with a very low level (averagely 2%) DSR implemented in Z8, 

Z11 and Z14, the total cost can be saved by 0.11 billion pounds, which is 0.65%. If a bit 

higher level (averagely 10%) DSR implemented, it can be saved by 0.64 billion pounds, 

which is 3.79%. Therefore, in order to realise the same emission reduction target, it can 

help save the future generation expansion investment by raising the demand side 

flexibility by appropriate DSR programmes. 

Comparison of the GEP results between low and high boundary capacity scenarios 

indicate that in order to realise the same emission reduction target, increasing the 

transmission capacities can help fully use the existing generation capacity and also save 

the future generation expansion investment. For example, for the same DR2 scenario 

and same 50% emission reduction target, optimal GEP results under the 2011 boundary 

capacity scenario require to expand one CCGT unit and 16 on-shore wind farms, which 

lead a total cost of 16.26 billion pounds. However, those under expanded 2020 

boundary capacity scenario, only 10 on-shore wind farms are required, which leads a 

total cost of 15.65 billion pounds, saving by 3.8%. 
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7.2 Future Works 

7.2.1 GEP under Deregulated Electricity Market Environment 

The GEP models proposed in Chapter 2, 3, 4 and 5 are centralised planning models. It 

aims to provide a generation mix assessment tool for policy makers when devising 

emission reduction targets and estimating the related cost. The government or other 

related authorities can use this assessment model to ensure long-term emission target 

could be achieved at a minimum societal cost. 

However, in deregulated electricity markets, such as the UK electricity, the generation 

capacity expansion decision is made by individual generation companies (GENCOs). 

Their decisions are made to maximise their own profits. The government or other 

related authorities can not directly force the GENCOs to implement the centralised 

optimal generation expansion plan. They can only disapprove or encourage some types 

of plants to be built somewhere. Therefore, in order to model the GEP more close to the 

real practice in deregulated electricity market, game theory and other similar techniques 

can be employed to simulating competition between different GENCOs in the future 

study.  

In addition, the demand side response in Chapter 5 is modelled as a flexibility load with 

certain upper and lower limits. The cost for market implementation of the demand side 

response is neglected. In practice, the modification of electricity customers’ behaviour 

requires extra cost to pay off their consumer surplus. The pay-off could be realised by 

price-based DSR programmes or incentive-based DSR programmes. The future GEP 

model can further incorporate the market implementation of the DSR in order to reflect 

the cost from realising DSR. 

7.2.2 Stochastic Modelling of Wind Generation 

The GEP model proposed in Chapter 5 employs two-stage stochastic programming 

method to make the stochastic GEP decisions. 10 wind output scenarios by Monte Carlo 

sampling are generated subject to Weibull distribution to simulate the wind generation 

uncertainty. However, the accuracy of the Monte Carlo simulation is decreasing with 

the sample size (number of wind output scenarios). The relationship between the sample 
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size and the results accuracy is not discussed in Chapter 5. This could be done in the 

future work.  

Additionally, in order to increase the approximation accuracy without raising the 

number of samples, mathematicians on operation research areas have already proposed 

some scenario reduction methods [120, 121], these methods could be employed in the 

future to keep the same approximation accuracy of the stochastic problem by using 

minimum number of scenarios..  

7.2.3 Incorporating Reliability Assessment into GEP Model 

The GEP models proposed in this thesis do not involve too much power system 

reliability assessment. The components in power system, such as generators and 

transmission lines, could come across faults subject to certain probabilities. The power 

supply could be suspended in some load buses due to either generation or transmission 

capacity shortages during some component outages. 

In order to maintain a certainty reliability level, the in power system operators should 

reserve a certain amount transmission and generation capacity margin to cope with the 

component outages. Therefore, GEP models should take account of the generation 

capacity margin for maintaining the reliability. Otherwise, it would underestimate the 

generation capacity and investment. The power system reliability is typically indexed 

by Loss-of-Load Probability (LOLP), Loss-of-Load Expectation (LOLE), and Expected 

Energy not Supplied (EENS). The GEP model proposed in this thesis could be 

enhanced by taking account of component outages and the reliability indices can in 

future works.  
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Appendix. A 
 

IEEE Reliability Test System 1996 

 
Table.A1 Weekly Peak Load in Percent of Annual Peak Load profile 

Week Peak Load Week Peak Load 

1 86.2 27 75.5 

2 90 28 81.6 

3 87.8 29 80.1 

4 83.4 30 88 

5 88 31 72.2 

6 84.1 32 77.6 

7 83.2 33 80 

8 80.6 34 72.9 

9 74 35 72.6 

10 73.7 36 70.5 

11 71.5 37 78 

12 72.7 38 69.5 

13 70.4 39 72.4 

14 75 40 72.4 

15 72.1 41 74.3 

16 80 42 74.4 

17 75.4 43 80 

18 83.7 44 88.1 

19 87 45 88.5 

20 88 46 90.9 

21 85.6 47 94 

22 81.1 48 89 

23 90 49 94.2 

24 88.7 50 97 

25 89.6 51 100 

26 86.1 52 95.2 

 
Table.A2 Daily load in Percent of Weekly Peak 

Day Peak Load 

Monday 93 

Tuesday 100 

Wednesday 98 

Thursday 96 

Friday 94 

Saturday 77 

Sunday 75 
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Table.A3 Hourly Peak Load in Percent of Daily Peak 

Winter Weeks 
1 -8 & 44 - 52 

Summer Weeks 
18 -30 

Spring/Fall Weeks 
9-17 & 31 - 43 Hour 

Week day Week end Week day Week end Week day Week end 

12-1 A.M 67 78 64 74 63 75 

1-2 63 72 60 70 62 73 

2-3 60 68 58 66 60 69 

3-4 59 66 56 65 58 66 

4-5 59 64 56 64 59 65 

5-6 60 65 58 62 65 65 

6-7 74 66 64 62 72 68 

7-8 86 70 76 66 85 74 

8-9 95 80 87 81 95 83 

9-10 96 88 95 86 99 89 

10-11 96 90 99 91 100 92 

11-Noon 95 91 100 93 99 94 

Noon-1 P.M 95 90 99 93 93 91 

1-2 95 88 100 92 92 90 

2-3 93 87 100 91 90 90 

3-4 94 87 97 91 88 86 

4-5 99 91 96 92 90 85 

5-6 100 100 96 94 92 88 

6-7 100 99 93 95 96 92 

7-8 96 97 92 95 98 100 

8-9 91 94 92 100 96 97 

9-10 83 92 93 93 90 95 

10-11 73 87 87 88 80 90 

11-12 63 81 72 80 70 85 
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Appendix. B 
 
 

Table.B1 Original Load Profile 

Time Bus2 Bus3 Bus4 

1 0.537 0.537 0.537 

2 0.505 0.505 0.505 

3 0.481 0.481 0.481 

4 0.473 0.473 0.473 

5 0.473 0.473 0.473 

6 0.481 0.481 0.481 

7 0.593 0.593 0.593 

8 0.689 0.689 0.689 

9 0.762 0.762 0.762 

10 0.770 0.770 0.770 

11 0.770 0.770 0.770 

12 0.762 0.762 0.762 

13 0.762 0.762 0.762 

14 0.762 0.762 0.762 

15 0.746 0.746 0.746 

16 0.754 0.754 0.754 

17 0.794 0.794 0.794 

18 0.802 0.802 0.802 

19 0.802 0.802 0.802 

20 0.770 0.770 0.770 

21 0.730 0.730 0.730 

22 0.665 0.665 0.665 

23 0.585 0.585 0.585 

24 0.505 0.505 0.505 

 
Table.B2 Optimized Load Profile for DSR Scenario 1 

Time Bus2 Bus3 Bus4 

1 0.553 0.548 0.542 

2 0.520 0.515 0.510 

3 0.495 0.491 0.486 

4 0.487 0.482 0.478 

5 0.487 0.482 0.478 

6 0.495 0.491 0.486 

7 0.611 0.605 0.599 

8 0.710 0.676 0.696 

9 0.739 0.777 0.764 

10 0.747 0.785 0.777 

11 0.778 0.754 0.762 

12 0.780 0.746 0.754 
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13 0.739 0.746 0.754 

14 0.739 0.746 0.754 

15 0.723 0.731 0.738 

16 0.772 0.738 0.746 

17 0.770 0.794 0.786 

18 0.778 0.786 0.794 

19 0.778 0.786 0.794 

20 0.747 0.754 0.762 

21 0.713 0.744 0.737 

22 0.685 0.679 0.672 

23 0.603 0.597 0.591 

24 0.520 0.515 0.510 

 
 

Table.B3 Optimized Load Profile for DSR Scenario 2 

Time Bus2 Bus3 Bus4 

1 0.591 0.618 0.564 

2 0.556 0.581 0.530 

3 0.529 0.553 0.505 

4 0.520 0.544 0.497 

5 0.520 0.544 0.497 

6 0.529 0.553 0.505 

7 0.653 0.682 0.623 

8 0.716 0.704 0.724 

9 0.710 0.736 0.772 

10 0.714 0.712 0.731 

11 0.738 0.654 0.731 

12 0.706 0.647 0.800 

13 0.740 0.647 0.723 

14 0.740 0.647 0.723 

15 0.702 0.846 0.783 

16 0.742 0.641 0.716 

17 0.732 0.898 0.754 

18 0.731 0.681 0.762 

19 0.731 0.681 0.762 

20 0.724 0.654 0.731 

21 0.724 0.726 0.693 

22 0.722 0.765 0.699 

23 0.644 0.673 0.614 

24 0.556 0.581 0.530 

 
Table.B4 Optimized Load Profile for DSR Scenario 3 

Time Bus2 Bus3 Bus4 

1 0.542 0.553 0.548 

2 0.510 0.520 0.515 

3 0.486 0.495 0.491 

4 0.478 0.487 0.482 

5 0.478 0.487 0.482 

6 0.486 0.495 0.491 

7 0.599 0.611 0.605 
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8 0.696 0.669 0.703 

9 0.754 0.784 0.746 

10 0.762 0.773 0.754 

11 0.777 0.747 0.754 

12 0.763 0.739 0.746 

13 0.754 0.739 0.746 

14 0.754 0.739 0.767 

15 0.738 0.768 0.760 

16 0.761 0.731 0.738 

17 0.786 0.770 0.778 

18 0.794 0.778 0.786 

19 0.794 0.778 0.786 

20 0.762 0.747 0.754 

21 0.722 0.751 0.744 

22 0.672 0.685 0.679 

23 0.591 0.603 0.597 

24 0.510 0.520 0.515 

 
 

Table.B5 Optimized Load Profile for DSR Scenario 4 

Time Bus2 Bus3 Bus4 

1 0.618 0.564 0.591 

2 0.581 0.530 0.556 

3 0.553 0.505 0.529 

4 0.544 0.497 0.520 

5 0.544 0.497 0.520 

6 0.553 0.505 0.529 

7 0.682 0.623 0.653 

8 0.708 0.724 0.758 

9 0.709 0.752 0.754 

10 0.724 0.731 0.693 

11 0.701 0.731 0.693 

12 0.682 0.723 0.685 

13 0.694 0.723 0.685 

14 0.725 0.723 0.685 

15 0.692 0.766 0.820 

16 0.727 0.716 0.678 

17 0.710 0.833 0.750 

18 0.717 0.762 0.721 

19 0.717 0.762 0.721 

20 0.724 0.731 0.693 

21 0.697 0.727 0.802 

22 0.714 0.699 0.732 

23 0.673 0.614 0.644 

24 0.581 0.530 0.556 
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Appendix. C 
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Table.C1 Subtotals of TEC (MW) by Plant Type and SYS Study Zone, 2010/11 

 

Plant Type Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 Z12 Z13 Z14 Z15 Z16 Z17 

Biomass     0 45 0 0 0    0     

CCGT  1,180    20 1,974 4,945 2,934 2,975 0 3,050 4,431 2,123 3,165 1,320 905 

CHP  12   139 120  1,218 365  228     158  

Clean Coal      0 0           

Hydro 577 18 230 259  33            

IGCC with CCS        0          

Large Unit Coal     2,284        2,058     

Large Unit Coal + AGT        7,832 1,987 3,987 4,003  1,665  1,966   

Medium Unit Coal      1,102            

Medium Unit Coal + AGT               1,131   

Nuclear AGR      2,289 1,207  2,408      1,081  1,261 

Nuclear APR         0         

Nuclear EPR         0   0 0  0  0 

Nuclear Magnox         960    430     

Nuclear PWR            1,207      

OCGT             100 144  195 140 

Oil + AGT              1,245 1,355 1,036  

Pumped Storage 300    440    2,004         

Small Unit Coal       420      363     

Thermal      0            

Tidal 0  0              0 

Wave 0                 

Wind Offshore 0   0 0   0 182 0  815 0  201   

Wind Onshore 651 0 172 103 35 1,327   0    0     

Woodchip             0     
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Table.C2 Wind Farm Output Scenarios for GB Case Study 

Off-shore Wind Farm Output Percentage 
Northern On-shore Wind Farm Output 

Percentage 

Southern 
 On-shore  

Wind  
Farm  

Output 
Percentage 

Wind 
Scenario 

Index 
Time 

Zone 
1 

Zone 
4 

Zone 
5 

Zone 
8 

Zone 
9 

Zone 
12 

Zone 
13 

Zone 
14 

Zone 
1 

Zone 
2 

Zone 
3 

Zone 
4 

Zone 
5 

Zone 
6 

Zone 
9 

Zone 
13 

1 0.47 1.00 0.47 0.50 0.09 0.17 0.00 0.00 1.00 0.17 0.00 1.00 0.46 0.54 0.00 0.72 

2 0.00 0.00 1.00 0.35 1.00 0.77 0.15 0.98 0.00 0.06 0.61 1.00 0.21 0.30 0.08 1.00 

3 1.00 0.01 0.48 0.64 0.13 1.00 0.00 0.04 0.15 0.00 0.00 0.04 0.00 0.00 0.20 1.00 

4 0.50 0.00 0.53 0.67 0.47 0.36 1.00 0.00 0.73 0.00 0.00 0.48 0.16 0.00 1.00 0.00 

5 0.16 1.00 0.07 0.92 0.10 0.68 0.92 1.00 0.00 0.00 0.03 0.85 0.00 0.00 0.47 0.21 

6 0.00 0.13 0.54 0.77 0.00 1.00 0.00 0.00 0.00 0.42 0.00 0.00 0.60 0.25 0.00 0.60 

7 0.35 0.89 1.00 0.49 0.72 0.00 0.01 0.81 0.00 0.00 0.24 0.04 1.00 1.00 0.29 0.00 

8 0.00 0.31 0.52 1.00 0.00 1.00 1.00 0.13 0.46 0.31 0.99 0.16 0.87 1.00 0.39 0.00 

9 0.49 1.00 0.46 0.00 0.05 1.00 0.27 1.00 0.09 0.45 1.00 0.40 1.00 0.00 0.00 0.00 

10 0.00 0.35 0.00 0.45 0.00 0.58 0.64 1.00 0.69 0.16 0.56 0.67 0.14 0.00 0.99 0.00 

WS1 

11 0.25 0.00 1.00 0.00 1.00 0.60 0.00 0.72 0.00 0.00 1.00 1.00 0.00 1.00 0.28 0.00 

1 0.04 0.61 1.00 1.00 1.00 1.00 0.08 0.06 0.00 0.00 1.00 0.07 0.36 1.00 0.00 0.23 

2 0.00 0.37 0.24 0.60 0.49 0.00 0.00 1.00 0.62 0.00 0.00 0.00 0.60 0.00 0.00 0.52 

3 0.62 1.00 1.00 1.00 0.14 1.00 0.74 1.00 1.00 0.36 0.00 0.73 1.00 0.84 0.68 0.41 

4 0.87 0.36 0.12 0.00 1.00 0.85 0.14 0.96 1.00 0.70 0.46 0.00 0.01 0.27 0.62 0.91 

5 0.95 0.12 0.00 0.07 1.00 0.00 0.00 1.00 0.00 0.08 1.00 1.00 0.00 0.00 1.00 0.00 

6 1.00 0.73 0.21 0.87 0.35 0.00 0.34 0.94 0.83 0.94 0.12 1.00 0.00 0.06 0.00 0.14 

7 1.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.14 0.00 0.00 0.25 0.70 1.00 0.50 0.00 

8 0.00 0.87 0.09 0.18 1.00 0.23 0.00 0.00 0.32 0.33 0.00 0.00 1.00 1.00 0.09 0.27 

9 0.67 0.23 0.00 0.01 0.20 0.09 0.34 1.00 0.39 0.00 0.78 0.00 0.81 0.00 0.17 0.00 

10 0.00 1.00 0.55 0.63 0.26 0.00 0.48 0.03 0.33 0.00 0.39 0.03 0.53 1.00 0.53 0.00 

WS2 

11 0.80 0.81 1.00 0.04 0.26 0.86 0.54 0.00 0.77 0.00 0.75 1.00 0.00 1.00 0.12 0.37 

1 0.52 0.00 1.00 0.66 0.15 1.00 1.00 1.00 0.00 0.16 0.00 1.00 0.15 0.55 1.00 0.17 

2 0.00 0.36 0.00 0.41 0.00 0.69 0.32 1.00 0.26 0.00 0.00 0.00 0.16 1.00 0.00 0.19 

3 1.00 1.00 0.10 0.03 0.54 0.00 0.00 0.12 1.00 0.32 0.33 0.36 0.61 0.00 0.00 0.00 

4 1.00 0.72 0.00 1.00 0.34 0.87 0.21 0.84 0.00 0.00 0.48 0.18 0.00 0.04 0.00 1.00 

5 1.00 0.00 0.48 0.82 0.00 0.00 0.22 1.00 0.00 0.00 0.00 0.51 0.28 0.50 0.87 0.00 

6 0.35 0.75 0.60 0.35 1.00 0.16 0.06 0.22 1.00 0.44 0.00 0.26 0.46 0.00 0.65 0.00 

7 0.00 0.72 0.00 0.00 1.00 0.00 1.00 1.00 0.00 0.27 0.00 0.00 0.68 0.00 0.00 0.00 

8 0.06 0.34 1.00 0.82 0.11 0.00 1.00 0.60 1.00 0.42 0.00 0.59 0.32 0.00 0.26 0.17 

9 1.00 1.00 0.00 0.18 0.01 0.00 0.00 0.23 0.85 0.34 0.04 0.15 0.00 0.17 1.00 0.19 

10 0.26 0.00 1.00 1.00 1.00 0.55 0.01 1.00 0.00 0.22 0.00 0.43 0.71 0.17 0.00 0.78 

WS3 

11 1.00 1.00 0.75 0.00 0.00 0.74 1.00 0.57 1.00 0.00 0.42 0.88 0.00 0.53 0.12 0.00 

1 0.44 1.00 1.00 1.00 0.00 0.87 1.00 0.26 1.00 1.00 0.65 0.05 0.63 0.00 0.28 0.02 

2 0.29 0.36 0.00 0.62 0.00 1.00 0.16 1.00 1.00 0.19 0.96 1.00 0.14 1.00 0.00 0.00 

3 0.69 0.01 0.00 1.00 0.00 1.00 0.61 0.47 1.00 1.00 0.00 0.84 0.01 0.37 0.00 0.00 

4 0.68 0.97 0.29 0.38 1.00 0.77 0.80 0.70 0.41 0.00 0.00 0.00 0.00 0.61 0.71 0.62 

5 0.18 1.00 1.00 1.00 0.09 0.09 0.49 1.00 0.55 0.03 0.31 0.12 0.00 0.00 0.00 0.76 

6 0.00 0.41 0.30 0.08 0.00 0.78 1.00 0.81 0.00 1.00 0.00 0.69 0.99 0.00 0.00 0.00 

7 1.00 0.00 0.63 0.00 0.00 0.00 0.67 1.00 1.00 0.00 1.00 0.10 1.00 1.00 1.00 1.00 

8 0.00 0.59 0.64 0.00 1.00 0.50 0.00 1.00 0.56 0.72 0.39 0.20 1.00 0.00 0.29 0.37 

9 0.67 0.12 0.26 0.28 0.15 0.59 0.52 0.71 1.00 0.06 1.00 0.08 0.71 1.00 0.00 0.57 

10 1.00 0.87 0.32 0.40 0.12 0.36 0.12 0.00 0.00 0.00 1.00 0.21 0.82 0.00 0.59 0.61 

WS4 

11 0.85 0.67 0.86 0.32 1.00 0.00 0.00 0.23 1.00 1.00 0.02 0.00 1.00 0.00 1.00 0.00 
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1 0.70 0.89 0.86 0.00 0.41 0.97 0.48 1.00 0.97 0.26 0.00 1.00 0.15 0.63 0.84 0.00 

2 0.51 0.00 1.00 0.26 0.00 0.00 0.78 1.00 0.07 1.00 0.00 0.00 0.83 1.00 0.42 0.00 

3 0.00 1.00 0.55 1.00 0.78 0.38 0.61 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.17 0.44 

4 0.45 0.00 0.00 0.00 0.68 0.95 0.87 1.00 0.03 0.42 0.00 0.23 0.00 0.48 0.37 0.22 

5 0.60 0.05 0.58 1.00 0.70 0.83 1.00 0.07 0.49 0.07 0.00 0.42 0.74 0.00 0.29 0.24 

6 0.00 0.94 0.45 1.00 0.44 0.00 1.00 0.00 0.45 0.00 0.00 0.00 0.06 1.00 0.10 0.00 

7 0.43 0.02 1.00 0.00 1.00 1.00 1.00 0.00 0.37 0.34 0.00 0.00 0.00 0.29 0.68 1.00 

8 0.16 0.22 1.00 0.19 0.00 0.00 0.00 0.49 0.00 0.05 0.20 0.11 0.00 0.60 0.43 0.09 

9 0.00 0.91 1.00 1.00 0.76 0.36 0.34 0.00 0.36 1.00 1.00 0.62 1.00 0.00 0.58 0.77 

10 0.04 0.23 0.00 1.00 1.00 1.00 0.20 0.70 0.58 0.02 0.09 0.65 0.00 0.00 0.55 1.00 

WS5 

11 0.53 0.74 0.00 0.56 0.25 1.00 0.66 0.40 0.27 0.62 0.79 1.00 0.25 1.00 0.00 0.00 

1 0.69 0.50 1.00 0.05 0.41 0.62 0.79 0.58 0.98 0.83 1.00 0.19 0.07 0.52 0.11 0.30 

2 1.00 1.00 0.98 0.29 0.00 0.00 1.00 0.83 0.00 0.00 0.20 0.84 0.00 0.00 1.00 0.65 

3 1.00 0.80 0.27 1.00 0.58 0.10 0.00 0.06 0.28 0.00 0.22 0.38 0.00 0.63 0.43 0.00 

4 0.00 0.00 1.00 0.94 0.36 0.59 1.00 1.00 0.09 0.30 0.00 0.22 0.00 0.54 1.00 0.00 

5 1.00 0.64 0.00 0.67 0.63 0.00 1.00 0.32 0.84 1.00 0.00 0.26 0.61 0.79 0.00 0.43 

6 1.00 0.00 1.00 0.23 1.00 0.26 1.00 0.31 0.00 0.00 0.09 0.70 0.16 0.14 0.67 0.70 

7 1.00 0.27 0.00 0.00 0.65 0.00 1.00 1.00 0.07 0.18 0.92 0.64 0.04 0.12 0.48 0.48 

8 0.58 0.31 0.00 0.78 1.00 1.00 1.00 0.69 0.20 0.00 0.80 0.10 0.01 0.86 0.26 0.00 

9 1.00 1.00 1.00 1.00 1.00 0.00 0.75 1.00 0.35 0.00 1.00 0.33 0.00 0.11 0.18 0.89 

10 0.91 0.57 1.00 0.00 0.00 0.00 1.00 0.09 0.00 0.00 0.62 1.00 0.00 0.05 0.00 1.00 

WS6 

11 0.48 0.00 0.59 1.00 0.71 0.07 0.64 0.55 0.07 0.05 0.00 0.00 1.00 0.88 1.00 0.32 

1 0.00 0.97 0.00 0.02 0.68 1.00 0.57 0.01 0.00 0.03 0.00 0.27 0.43 0.66 1.00 0.00 

2 1.00 0.70 1.00 0.54 0.01 1.00 1.00 0.11 0.19 0.04 0.47 0.00 1.00 1.00 0.12 0.00 

3 0.45 0.00 0.60 0.00 1.00 1.00 0.00 0.84 0.64 0.00 0.00 0.28 0.01 0.18 1.00 0.42 

4 0.72 0.94 0.00 0.80 1.00 1.00 0.27 0.00 0.60 0.00 0.13 0.84 0.00 0.13 0.00 0.73 

5 0.57 0.20 1.00 1.00 1.00 0.25 0.51 0.86 0.23 1.00 0.54 0.03 0.53 0.00 0.19 0.00 

6 1.00 0.02 0.56 0.00 0.52 0.00 0.36 1.00 0.70 0.83 0.73 0.00 0.50 0.04 0.00 0.00 

7 0.00 0.17 0.00 0.00 0.26 1.00 0.00 1.00 0.98 0.09 0.13 0.00 0.00 0.00 1.00 0.00 

8 0.66 0.08 1.00 0.00 0.00 0.46 1.00 0.02 0.00 0.00 0.94 0.06 0.00 0.00 0.04 0.22 

9 0.90 1.00 0.21 0.27 0.00 1.00 0.51 0.00 0.72 0.00 0.39 0.01 0.27 0.60 0.00 0.00 

10 0.04 0.16 0.46 0.00 0.00 0.07 1.00 0.35 0.09 0.96 1.00 1.00 1.00 0.00 0.30 0.35 

WS7 

11 0.23 1.00 0.53 0.29 0.87 1.00 0.92 0.98 1.00 0.00 0.00 0.00 0.00 0.71 0.01 0.73 

1 1.00 0.25 0.00 0.54 0.48 1.00 0.06 1.00 1.00 0.12 0.00 0.16 0.08 0.18 0.23 1.00 

2 0.00 1.00 0.26 0.12 0.14 0.00 1.00 1.00 0.04 0.77 0.62 0.00 1.00 1.00 1.00 0.00 

3 0.66 0.78 0.99 0.31 0.07 0.00 0.52 0.42 0.00 0.00 1.00 0.17 0.00 1.00 0.24 0.23 

4 0.31 0.81 0.21 0.15 0.94 1.00 0.16 0.03 0.09 0.35 1.00 1.00 0.00 0.37 0.47 0.00 

5 0.49 0.75 0.06 0.00 0.47 1.00 0.61 1.00 0.00 0.88 1.00 0.00 0.00 0.00 0.00 0.00 

6 1.00 0.59 1.00 0.93 0.59 0.94 1.00 1.00 0.49 0.00 0.82 0.59 0.09 0.01 0.17 0.00 

7 0.37 0.93 0.84 0.12 0.87 0.69 0.11 1.00 0.06 1.00 1.00 0.16 0.23 0.00 0.77 1.00 

8 0.29 0.13 0.00 1.00 0.46 0.64 1.00 1.00 0.00 0.00 0.42 1.00 0.03 0.53 0.03 0.16 

9 0.13 0.27 1.00 0.00 1.00 0.00 0.35 0.91 0.12 1.00 0.00 1.00 1.00 0.00 0.52 0.03 

10 0.87 0.16 0.08 0.12 0.00 0.80 1.00 0.00 1.00 1.00 0.84 0.21 0.30 0.30 0.00 0.00 

WS8 

11 0.31 1.00 1.00 0.00 0.00 0.72 0.17 0.02 0.00 0.34 0.00 0.00 0.32 0.00 0.34 0.00 

1 0.00 0.00 0.00 1.00 1.00 0.00 0.15 0.86 0.00 0.18 0.00 0.00 0.00 0.05 0.00 0.48 

2 0.01 1.00 0.00 1.00 0.00 0.27 1.00 0.84 0.32 0.00 0.41 0.58 0.43 0.00 0.00 1.00 

3 0.42 0.44 0.06 1.00 0.29 0.54 0.07 0.28 1.00 0.67 0.80 0.00 0.34 0.27 0.00 0.24 

4 0.31 0.00 0.39 0.91 0.30 0.00 0.97 0.40 0.00 1.00 0.00 1.00 0.64 0.72 0.00 0.66 

5 1.00 0.12 0.00 1.00 0.68 0.74 1.00 1.00 0.07 1.00 0.49 1.00 0.00 0.25 0.00 0.45 

6 1.00 1.00 1.00 1.00 0.76 1.00 1.00 0.53 0.97 0.57 0.30 0.08 0.34 0.25 0.96 0.00 

7 1.00 1.00 0.98 1.00 0.00 0.54 0.14 0.76 0.09 1.00 0.08 0.40 0.96 0.04 0.17 0.10 

8 0.02 1.00 0.00 0.80 0.70 0.86 1.00 1.00 0.33 0.69 1.00 0.29 0.73 0.27 0.15 0.00 

WS9 

9 1.00 1.00 0.00 1.00 0.04 1.00 0.11 1.00 0.30 0.15 0.00 0.24 0.13 0.48 0.68 0.00 
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10 1.00 0.89 0.00 0.36 1.00 0.56 0.00 0.00 0.77 1.00 0.98 0.12 0.00 0.29 0.00 0.00 

11 0.40 1.00 0.59 0.00 0.00 0.00 1.00 1.00 0.00 0.32 0.02 0.00 0.65 0.00 0.00 0.07 

1 0.00 0.10 1.00 0.00 0.35 1.00 1.00 0.18 0.04 0.00 0.32 0.31 1.00 1.00 0.00 0.00 

2 0.00 1.00 0.45 0.83 0.30 0.00 1.00 0.00 0.51 0.04 1.00 1.00 0.31 0.66 0.00 0.68 

3 1.00 1.00 1.00 0.28 0.58 0.84 0.43 0.73 0.00 0.00 0.86 0.12 1.00 1.00 0.00 0.00 

4 1.00 0.00 0.00 0.37 1.00 0.00 0.00 1.00 0.00 1.00 1.00 0.06 0.74 0.62 0.00 0.00 

5 0.00 1.00 0.00 1.00 1.00 0.38 0.04 0.35 0.67 0.45 1.00 0.07 0.00 0.27 0.00 0.00 

6 0.00 1.00 0.81 0.00 0.44 0.00 0.68 0.22 1.00 0.44 0.61 0.59 0.34 0.00 0.00 0.98 

7 0.58 1.00 1.00 0.00 1.00 0.00 0.00 0.25 0.00 0.43 1.00 0.00 0.40 0.34 0.00 0.00 

8 0.39 0.00 0.00 1.00 0.41 0.75 1.00 1.00 0.75 0.15 0.00 1.00 0.00 0.00 0.00 0.25 

9 0.13 1.00 0.39 1.00 0.46 0.00 0.37 1.00 0.81 1.00 0.88 0.04 1.00 1.00 0.11 0.10 

10 0.58 0.52 0.54 0.91 0.00 0.83 0.06 1.00 0.00 0.00 0.23 0.00 0.00 0.79 0.00 0.41 

WS10 

11 0.89 0.00 0.40 0.92 1.00 0.10 0.72 1.00 0.37 0.03 0.00 0.81 0.41 0.90 0.00 0.42 

Average 0.50 0.53 0.48 0.49 0.46 0.50 0.53 0.60 0.40 0.33 0.40 0.37 0.37 0.40 0.31 0.29 

 
 
 

Table.C3 Original Load Profile 

Time Bus8 Bus11 Bus14 

1 1 1 1 

2 0.849247 0.849247 0.849247 

3 0.753957 0.753957 0.753957 

4 0.698538 0.698538 0.698538 

5 0.667585 0.667585 0.667585 

6 0.637427 0.637427 0.637427 

7 0.594174 0.594174 0.594174 

8 0.556195 0.556195 0.556195 

9 0.514896 0.514896 0.514896 

10 0.454026 0.454026 0.454026 

11 0.390688 0.390688 0.390688 
 

 

 

Table.C4 Optimized Load Profile under DR1 with 2011 Boundary Capacity 

Time Bus8 Bus11 Bus14 

1 0.97 0.983415 0.99 

2 0.82377 0.832262 0.840755 

3 0.731338 0.738878 0.746417 

4 0.719494 0.707828 0.705523 

5 0.663675 0.654233 0.667906 

6 0.656549 0.650175 0.631052 

7 0.611999 0.606057 0.600116 

8 0.539509 0.557081 0.561757 

9 0.530343 0.525194 0.520045 

10 0.467647 0.463107 0.458567 

11 0.402409 0.398502 0.394595 
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Table.C5 Optimized Load Profile under DR2 with 2011 Boundary Capacity 

Time Bus8 Bus11 Bus14 

1 0.9 0.868903 0.9522 

2 0.764322 0.72186 0.806785 

3 0.72861 0.689283 0.716259 

4 0.768392 0.689283 0.733465 

5 0.734344 0.646049 0.700964 

6 0.673114 0.689283 0.669298 

7 0.580614 0.6833 0.616724 

8 0.611814 0.639624 0.584005 

9 0.504474 0.517727 0.489152 

10 0.499429 0.52213 0.476728 

11 0.351619 0.449291 0.371154 
 
 

Table.C6 Optimized Load Profile under DR1 with 2020 Boundary Capacity 

Time Bus8 Bus11 Bus14 

1 0.97 1.001059 0.99 

2 0.82377 0.832262 0.840755 

3 0.731338 0.738878 0.746417 

4 0.719494 0.712509 0.705523 

5 0.657545 0.657152 0.665663 

6 0.656549 0.624678 0.643801 

7 0.611999 0.606057 0.598691 

8 0.572881 0.567319 0.561757 

9 0.530343 0.525194 0.520045 

10 0.440406 0.453123 0.449486 

11 0.402409 0.398502 0.394595 
 

Table.C7 Optimized Load Profile under DR2 with 2020 Boundary Capacity 

Time Bus8 Bus11 Bus14 

1 0.9 0.850547 0.95 

2 0.764322 0.72186 0.806785 

3 0.678561 0.640863 0.733691 

4 0.768392 0.778976 0.733465 

5 0.662146 0.767723 0.683858 

6 0.701169 0.73304 0.632874 

7 0.534757 0.567205 0.564465 

8 0.611814 0.639624 0.584005 

9 0.566386 0.445472 0.540641 

10 0.499429 0.52213 0.476728 

11 0.429757 0.449291 0.410222 
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Fig C-1 Aggregated Optimized Load Profiles under DR1 with 2011 Boundary Capacity 

 

 
Fig C-2 Aggregated Optimized Load Profiles under DR2 with 2011 Boundary Capacity 

 

 
Fig C-3 Aggregated Optimized Load Profiles under DR1 with 2020 Boundary Capacity 
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Fig C-4 Aggregated Optimized Load Profiles under DR2 with 2020 Boundary Capacity 
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Appandix. D 
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Table.D1 Linear Constraint Matrix for Line Flow Limits 

LPSOLVE input  

parameters 
a b 

GxIxT GxI 

GxI GxI … GxI GxI 

P111- 
PI11 

P121- 
PI(G-1)1 

P1G1- 
PIG1 

P112- 
PI12 

P121- 
PI(G-1)2 

P1G2- 
PIG2 

P113- 
PIG(T-1) 

P11T- 
PI1T 

P121- 
PI(G-1)T 

P1GT- 
PIGT 

Np11-NpGI 
 Dimension 

I … I I … I  I … I I … I 

column vector 

K GSDF … GSDF           Lim+GSDF·D1 

K    GSDF … GSDF        Lim+GSDF·D2 

…       ……       … 

Line flow  

Upper 

 Limit 

KxT 

K        GSDF … GSDF    Lim+GSDF·DT 

K -GSDF … -GSDF           Lim-GSDF·D1 

K    -GSDF … -GSDF        Lim-GSDF·D2 

…       ……       … 

Line flow  

Lower Limit 
KxT 

K        -GSDF … -GSDF    Lim-GSDF·DT 

  *The annotations used in the above table are from the problem modelling in Chapter 3. 
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Table.D2 Linear Constraint Matrix for Generator Output Upper Limits 

LPSOLVE input  

parameters 
a b 

GxIxT GxI 

GxI GxI … GxI GxI 

P111- 
PI11 

P121- 
PI(G-1)1 

P1G1- 
PIG1 

P112- 
PI12 

P121- 
PI(G-1)2 

P1G2- 
PIG2 

P113- 
PIG(T-1) 

P11T- 
PI1T 

P121- 
PI(G-1)T 

P1GT- 
PIGT 

Np11-NpGI 
 Dimension 

I … I I … I  I … I I … I 

column vector 

GxI Eye(GxI)    -Eye(GxI)·RCap 0 

GxI  Eye(GxI)   -Eye(GxI)·RCap 0 

…   ……  …… … 

Generator 

Output 

Upper 

Limit 

GxIxT 
 

GxI    Eye(GxI) -Eye(GxI)·RCap 0 

       *The annotations used in the above table are from the problem modelling in Chapter 3. Eye(GxI) is a function in Matlab to build a  GxI by GxI identity (unit) matrix . 
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Table.D3 Linear Constraint Matrix for Generation Demand Balance Limits 

LPSOLVE input  

parameters 
a b 

GxIxT GxI 

GxI GxI … GxI GxI 

P111- 
PI11 

P121- 
PI(G-1)1 

P1G1- 
PIG1 

P112- 
PI12 

P121- 
PI(G-1)2 

P1G2- 
PIG2 

P113- 
PIG(T-1) 

P11T- 
PI1T 

P121- 
PI(G-1)T 

P1GT- 
PIGT 

Np11-NpGI 
 Dimension 

I … I I … I  I … I I … I 

column vector 

1 [1,1,1,1,1,…1]  D1 

1 [1,1,1,1,1,…1]  D2 

… ……  … 

Generation 

/Demand 

Balance 

T 
 

1 [1,1,1,1,1,…1]  DT 

*The annotations used in the above table are from the problem modelling in Chapter 3.  
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Table.D4 Linear Constraint Matrix for Emission Target Limits 

LPSOLVE input  

parameters 
a b 

GxIxT GxI 

GxI GxI … GxI GxI 

P111- 
PI11 

P121- 
PI(G-1)1 

P1G1- 
PIG1 

P112- 
PI12 

P121- 
PI(G-1)2 

P1G2- 
PIG2 

P113- 
PIG(T-1) 

P11T- 
PI1T 

P121- 
PI(G-1)T 

P1GT- 
PIGT 

Np11-NpGI 
 Dimension 

I … I I … I  I … I I … I 

column vector 

Emission 

Target 
1 [E1…E1] … [EG…EG] [E1…E1] … [EG…EG] … [E1…E1] … [EG…EG]  Etarget 

*The annotations used in the above table are from the problem modelling in Chapter 3.  
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Table.D5 Linear Constraint Matrix for Generator Ramping Rate Limits 

LPSOLVE input  

parameters 
a b 

GxIxT GxI 

GxI GxI … GxI GxI 

P111- 
PI11 

P121- 
PI(G-1)1 

P1G1- 
PIG1 

P112- 
PI12 

P121- 
PI(G-1)2 

P1G2- 
PIG2 

P113- 
PIG(T-1) 

P11T- 
PI1T 

P121- 
PI(G-1)T 

P1GT- 
PIGT 

Np11-NpGI 
 Dimension 

I … I I … I  I … I I … I 

column vector 

GxI Eye(GxI) -Eye(GxI)   -Eye(GxI)·Rd·RCap 0 

GxI  Eye(GxI)   -Eye(GxI)·Rd·RCap 0 

…   ……   … 

Ramping 

Down 

Rates 

GxIxT 
 

GxI    -Eye(GxI) -Eye(GxI)·Rd·RCap 0 

GxI -Eye(GxI) Eye(GxI)   -Eye(GxI)·Ru·RCap 0 

GxI  -Eye(GxI)   -Eye(GxI)·Ru·RCap 0 

…   ……   … 

Ramping 

Up 

Rates 

GxIxT 
 

GxI    Eye(GxI) -Eye(GxI)·Ru·RCap 0 

       *The annotations used in the above table are from the problem modelling in Chapter 3. Eye(GxI) is a function in Matlab to build a  GxI by GxI identity (unit) matrix . 
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Publications 
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Constrained Generation Mix”, IEEE Transactions on Power Systems, 2013 (accepted 
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