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Abstract


Audio processing is an  interesting and challenging area due to  the strict requirements of 

high­level human  ear perception.  Although  audio  processing is a part of digital signal 

processing,  there has not yet been any real­time parallel implementation of the essential 

signal processing tool. We have developed, implemented and analysed a Sliding Discrete 

Fourier Transform algorithm using a particular vector parallel processing. This investiga­

tion is focused on speeding up real­time parallel implementation of the SDFT algorithm. It 

has developed and implemented some real­time parallel algorithms with different methods 

of data copy in order to find the fastest algorithm. In order to achieve a whole signal proc­

essing tool for professional use in the audio processing field a real­time parallel algorithm 

of Inverse Discrete Fourier Transform has been developed. In order to speed up this algo­

rithm some versions were developed with different methods of data copy. All algorithms 

were tested and analysed. Real­time parallel algorithms were achieved with promising re­

sults. The signal processing tool of the SDFT and the IDFT algorithms was attained. 
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Chapter 1 

Introduction 

The mysteries of Time have unceasingly engaged the human intellect. For many centuries 

men  have mused  on the nature of Time with  a philosopher’s eye; they have disputed 

Time’s cause of uncontrollable changes, and attempted to catch the essence of Time. The 

sexagesimal numerical system originated by ancient Sumerians was passed down to An­

cient Babylonians; this system is still used  for measuring time.  In  the Renaissance,  the 

period gave rise to modern science concerning nature and humanity. Time was compre­

hended no longer as an ephemeral substance, but became an essential trait of the Universe. 

There developed a full definition of Time’s behaviour, which could be studied by scien­

tists and thinkers. The German philosopher Immanuel Kant in [1] contests that Time is not 

derived from experience, but is a precondition of experience. 

However, even today no explanation for certain of Time’s features can be found in funda­

mental physical laws. Time still conceals many mysteries that researchers have attempted 

to explain. There are many thoughts about what Time is; Albert Einstein, one of the most 

influential scientists of all time, concedes in [2] that Space, Time and Substance interact 

continuously. Time nevertheless remains a mystery and an indivisible issue for humanity. 
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Scientists have not learned how to manage Time, yet they have studied how to take advan­

tage of it,  and computers are effective tools in  the achievement of this goal. Computers 

have accumulated information and knowledge over many years. However, only in the last 

few decades has the creation of parallel processors led to a promising opportunity to de­

velop real­time applications, and therefore to seize the impetus from the World of Com­

puter Sciences. 

The use of a concurrent process that communicates by message­passing  has its roots in 

operating system architectures studied in the 1960s [3]. There are many cases in which the 

use of a single computer would be possible in principle, but the use of parallel systems is 

beneficial for practical reasons. 

Depending on  the scientific problem, parallel researchers use different kinds of architec­

ture ­ heterogeneous or homogeneous multi­core computers. In the area of High Perform­

ance Audio Computing a vital aspect of research is Digital Signal Processing, which in the 

last decade has become crucial,  in  the light of time delay. This thesis is about a detailed 

description of the research, which has been carried out.  

While computers have been advancing, developing into clusters, multiple processors and 

vector accelerators,  there has barely been  a change in  the audio  computing model.  Re­

cently a specific focus was proposed under the title of “High Performance Audio Comput­

ing (HiPAC)”; this research fits directly into this description. 

Therefore High Performance Audio Computing (HiPAC) has become an essential research 

line in the twenty first century. This is due to the fact that efficient software is a significant 

problem in bridging the gap between the IT industry and its users in music technology. It 

is imperative that parallel programming researchers should create an advanced level of the 

HiPAC, as it is in danger of being left behind. The main focus is on HiPAC that exploits 
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the processing power of all processors in parallel to efficiently support audio programming 

in parallel computers. 

Digital Signal Processing (DSP) is a very wide field, with a variety of applications, espe­

cially DSP used  in multimedia.  In  essence,  it has made a huge improvement in  picture 

processing. In a comparison of picture and sound fundamental features, the sound technol­

ogy is unambiguously more erratic and has high latency requirements.  For instance, con­

sidering a delay in video processing, a program just repeats the previous image, and  the 

eye smoothes the video, whereas in sound processing any delay will give a click sound. 

Consequently,  the general view of information is damaged. Also,  it should be noted that 

Audio Computing is lagging by a decade behind  Image Processing owing to the lack of 

computer performance and now, with  the ability to use multi­core computers,  there is a 

chance to improve this notable area. 

There are different approaches of frequency­domain processing of signal, which use spec­

tral processing tools like: Discrete Fourier Transform, Short time Fourier Transform,  In­

stantaneous Frequency Distribution, proposed by T. Abe in [4] and Sinusoidal Modelling. 

Victor Lazzarini in [5] has explored these methods from basic principles. These tools are 

used in music technology as a conversion from a time domain signal into a frequency do­

main  representation.  V. Lazzarini showed  in  [6] a variety of implementations of fre­

quency­domain digital audio effects, as well as in Csound particularly. 

For this particular research the choice was made to investigate the parallel DFT algorithm, 

owing to  the fact that in  literature one can more usually find  the optimised algorithm of 

DFT, which is Fast Fourier Transform (FFT), yet it needs a certain number of transform 

size, which is power­of­two as well as other restrictions; transform size in the DFT analy­

sis does not have this limitation. Although, David John Wheeler suggests a FFT algorithm 

with complexity of O(N*logN), this algorithm will not feature in our consideration.  
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One approach of this research is to develop a real time parallel DSP algorithm. A null hy­

pothesis is proposed to convert from the time domain to the frequency domain as well as 

the inverse operation within 10 milliseconds, as this limit is imperceptible for experts in 

audio technology. For the DFT inverse calculations were performed by using the Inverse 

Discrete Fourier Transform (IDFT). Due to  the fact that a larger transform size implies 

precise values in  the frequency domain,  it is imperative to  find a balance between trans­

form size or window and  time delay, which  takes calculations (DFT and  IDFT conver­

sions) of one point. In the analysis of parallel algorithms, more attention is usually paid to 

communication operations than computational steps. Therefore, communications were the 

purpose of this investigation. 

In addition to these approaches, the input signal was stored with double precision, which 

takes for each point 8 bytes of memory,  instead of the usual 4 bytes. This method of in­

formation  storing was adopted  for the purpose of making the rounding  error marginal. 

From the audio point of view this error gives rise to noise. So, significant errors in single 

precision  give noise approximately 2  minutes from the beginning,  in  comparison  with 

double precision calculations, which give noise in 2 hours. 

Concurrent programs are more challenging to develop due to parallel architecture intro­

ducing implicit kinds of errors and a variety of restrictions in coding, which influence pro­

gram performance. Communications between  concurrent processors and  shared memory 

were the greatest obstacle in the project; due to the form of parallelism, which is data par­

allelism. Data synchronisation emerges in parallel or distributed computing only if a paral­

lel algorithm requires processes of execution calculations on data in synchrony, each node 

keeps its own copy of data. Data must be copied back and forth coherently with one an­

other. Here, for calculation  of SDFT data has to be transferred from different places in 

shared memory and only then can calculations be done, consequently this parallel problem 

arises in the current project.  
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The project is concerned with a parallel slowdown. Owing to the procedure of data send­

ing it is the most expensive in terms of time due to the physical features of the communi­

cation tools. It is necessary to find the most appropriate size of sending information from 

mono  to poly processors and back.  If the size is wrong then  the accelerator needs more 

time for communications and eventually communication overheads arise. In this case, it is 

necessary to  find equilibrium between  the amount of data, which has been sent,  and  the 

time the communication needs. 

In order to achieve real time for a parallel program it is imperative to choose a computer, 

which is appropriate for calculations and communications in the introduced algorithm. The 

Clearspeed CSX600 accelerator was chosen for the execution of a SDFT parallel imple­

mentation. Clearspeed has both a mono execution unit and a poly execution unit. The Poly 

unit contains 96 processors; each processor has its own poly memory. As the first part is a 

fine­grained  algorithm,  nodes must communicate with  shared  memory many times, 

whereas the second part of the algorithm was IDFT, where nodes needed to communicate 

with shared memory once per loop cycle and the amount of data which was required was 

larger than  in  SDFT. Also we introduced  an  example of parallel program with  straight 

calling data from shared memory. This was done due to the specifics of audio processing 

requirements, such as low latency and the considerable amount of data, which must con­

tinuously be calculated. We needed to answer a crucial question concerning which imple­

mentation  is faster for the fine­grained vector accelerator: whether to  copy a massive 

amount of data from shared memory to poly memory or to do  the calculation on shared 

memory. This question emerged due to each processor element typically having faster ac­

cess to  its local memory than  access to  shared memory,  however this statement was 

checked by developing and implementing 3 algorithms of IDFT as well as analysing these 

results in the chapter “Methodology and Environment”. 

Several algorithms were developed,  implemented  and  analysed,  and  the results of each 

were compared. The aim was to find the fastest DFT algorithm as well as the fastest IDFT. 

More than  four hundred tests we performed  in order to  find  the balance between  loaded 

13




data and delay. Detailed tables with test results can be found in the appendix of this thesis. 

In the chapter “Background and Literature Review” we show the links between computer 

music and  computer science throughout the history of these areas’ development.  The 

background to this research is also demonstrated in this chapter. There are two sections in 

the “Methodology and  Environment” chapter: “Environment” and  “Methodology”.  The 

Environment section contains explicit review of the Clearspeed architecture and the soft­

ware provided  with  the Clearspeed  vector accelerator,  where the project has been  pro­

gramming.  The Methodology contains a description  of the developed  algorithms,  and 

charts of experiment results, where data has been analysed.  In  the “Results and Evalua­

tion” chapter we evaluate the results from all algorithms in order to find the fastest algo­

rithm, which conforms to  the requirements. The conclusion, applications, results and  fu­

ture work can be found in “Results and Future Work” chapter. 
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Chapter 2 

Literature review and background 

The structure of this chapter evolved by virtue of the fact that to the best of our knowledge 

there is no documentation that contains a sophisticated history of modern computer music 

in  the 20th century. We divided  this chapter into  three main sections: a Computer Music 

review, a Computing review and the Background to this research. In the first two sections 

we attempt to show how the areas of Computer Music and Computing have been closely 

interwoven with each other throughout their history. The Background is the last section in 

this chapter, where we talk about the research, which was done previously, and how it is 

connected to our work. 
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2.1 Computer Music review 

2.1.1. Early history of Computer Music 

The Greek philosopher Pythagoras first examined music as a science in the sixth century 

BC, when he considered the beauty of a sound, and found a harmonic overtone series on a 

string. Many significant thinkers and  scientists of Ancient Greece and Rome discovered 

that sound can be represented as a mathematical equation. Among them were Aristotle and 

Galileo Galilei.  Considered to be a father of acoustics, the music theorist Marin Mersenne 

contributed musical tuning and “The first absolute determination of the frequency of an 

audible tone (at 84 Hz) implies that he had already demonstrated that the absolute-

frequency ratio of two vibrating strings, radiating a musical tone and its octave, is 1:2.” 

in his work [7], [8]. 

John William Strutt, Baron Rayleigh, was the first to summarize outstanding contributions 

to music theory in his book [9] as well as to  look at sound from both mathematical and 

physical points of view. J.W. Strutt describes in detail the most significant discoveries and 

observations of research that influenced sound theory in the 18th and 19th centuries. In the 

first volume of [9] Baron Rayleigh  looks at sound  from a different point of view: “The 

sensation of sound is a thing sui generis, not comparable with any of our other sensa

tions”. Here J.W. Strutt summarises many distinguished physical experiments, which were 

carried out by François Arago and others, about the velocity of sound. Jean­Daniel Colla­

don  and  Jacques C.F.  Sturm were also investigating the propagation  of sound.  Baron 

Rayleigh  also  summarizes many other experiments regarding the intensity of sound and 

the generation  of a musical note by “revolving a wheel whose milled edge is pressed 

against a card”. He also describes in detail a “Siren”, a remarkable voice­production in­

vention of Charles Cagniard de la Tour. In this volume J.W. Strutt also develops his own 

investigations and observations,  about recognition of sound,  analysis of notes and many 

other fundamental tools of sound. 
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In the second volume of [9] sound is treated mathematically by Lord Rayleigh. He com­

bines vibrations of air with an equation of continuity and Lagrange’s theorem, Poisson’s 

equation, law of reflection, and the Fourier transform. He describes a first theoretical ex­

planation  of the velocity of sound experiments made by Newton. This significant book 

contributes copious points from mathematics and physics to the theory of sound, and in it 

J.W. Strutt opens up a new era of sound. 

The twentieth century was a crucial moment for audio technology and acoustics; it was an 

exuberant time of sound applications in many other areas of science. The first scientist to 

use acoustics as an individual science was an American physicist, Wallace Clement Sabine 

(1868 – 1919), a founder of architectural acoustics. W. C. Sabine improved acoustics in 

the Fogg  Lecture Hall in  1895  [10] and  collaborated  in  the building  of Boston’s Sym­

phony Hall in 1900 [11]. 

2.1.2 Signal Processing and Computer Music Review 

In essence, signal processing is a field where applied mathematics is combined with elec­

trical engineering, and which considers analysis or operations of signal in discrete or con­

tinuous time in order to conduct an operation of signal. A signal can be sound, image, ra­

dio, electrocardiogram and many other things. Each kind of signal imposes constraints on 

features of an operation, which deals with this signal. Sound processing is a signal proc­

essing with  imposes constraints on  latency.  The most common  examples of operations’ 

applications on  sound  analysis are: spectrum analysis,  filtering,  smoothing, modulation, 

and wavetable synthesis.  

The area where mathematics, computer science and music composition are joined together 

is called computer music.  It includes several new technologies: digital signal processing, 

music synthesis,  computer composition,  sound design,  acoustics,  psychoacoustics and 
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many others. In the twentieth century, when personal computers became an everyday phe­

nomenon, and with increased numbers of home recording systems, the definition of com­

puter music changed to mean everything that is created by using a computer. 

2.2.1 Signal Processing and Computer Music in the 20 century 

In the late forties the first few stored­program computer machines with floating point units 

were built in the United Kingdom. At the Computer Laboratory in Cambridge one of the 

world’s first practical stored  program electronic computers “Electronic Delay Storage 

Automatic Calculator” (EDSAC) was built in  1949.  The world’s first taught course in 

computer science was also offered here four years later. At that time one of the earliest 

tasks for computer machines was the calculation  of Mersenne primes,  which  took  ap­

proximately nine hours to run. Also, at the University of Manchester, the Ferranti Mark 1 

was installed. A machine with  a nickname ­ “Babe” [12] ­ this computer faced another 

first calculation: that of the highest factor of a number. 

In  1948,  the first scientist to make a sound  on  the computer was Christopher Strachey, 

who was a mathematics master at Harrow, a private school in London. There are two sto­

ries about the first sound computer program. The first is that Strachey wrote a program 

and ran it on EDSAC and surprisingly, the computer started producing a sound: the sound 

of the national anthem. From that time, in the mid­fifties, scientists started to view com­

puter things differently – musically.  The second story is that the first musical use of a 

computer was at Victoria University in Manchester, with the first musical rhythm of “Baa 

Baa Black Ship” [12]. Also, Christopher Strachey visited Bell Laboratories and other re­

search centres in the United States. He worked on both Ferranti and EMI Groups. Later he 

worked at the University of Cambridge and in the middle of the sixties he became the first 

director of the Programming Research Group at the University of Oxford, where he later 

became the first Professor of Computer Science [13].  Christopher Strachey launched a 

new era of computer music. 
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Nevertheless, it is an American researcher, Max Vernon Mathews, who is considered to be 

the father of computer music. His interests included audio processing, synthesis, and many 

others aspects of computer music. After achieving his ScD, he started work at Bell Labs 

(formerly known as AT&T Bell Laboratories and Bell Telephone Laboratories), where the 

first computer music language MUSIC I was created in 1957. Max Mathews started a new 

epoch of digital sound generation by creating a family of MUSIC languages. Afterwards 

he created MUSIC II and MUSIC V. Also Max Mathews was the first to teach a course of 

computer music at Stanford University, where he later became a professor [14]. 

In the eighties John Robinson Pierce, an American scientist who worked at Bell Labs from 

1936 till 1971, created many outstanding contributions to microwave technology, and ra­

dio and satellite communications. For the latter he was awarded an Edison Medal. At Bell 

Labs Pierce also worked in collaboration with Max Mathews [15]. After resigning from 

Bell Labs, he became professor of electrical engineering first at the California Institute of 

Technology and then later joined the Centre of Computer Research in Music and Acous­

tics (CCRMA) at Stanford University, where he did outstanding research in computer mu­

sic.  The most prominent creation  of J.  Pierce and M. Mathews was the Bohlen–Pierce 

scale, an alternative to the octave musical scale [16]. 

American scientists were not alone in contributing their research to the field of computer 

music. Many researchers and composers from the Old World introduced a variety of sig­

nificant investigations as well. One of the earliest Europeans, who  started work  at Bell 

Telephone Laboratories was Jean­Claude Risset, a French  composer who  worked  with 

Max Mathews at Bell Labs in  the sixties. Risset worked  on  brass synthesis,  pitch  para­

doxes, synthesis of new timbres and the sonic development process. He also wrote many 

articles about computer music. Risset was chair of the computer department at IRCAM in 

the late seventies and worked as a composer at the Media Laboratory at MIT. He received 

a considerable number of prestigious prizes and grants [17]. 
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2.2.2 Centres and venues for research in Music Technology 

IRCAM (Institut de Recherche et Coordination Acoustique/Musique) has developed many 

contributions,  which  have influenced  the computer music world.  Founded  in  1970  by 

French President George Pompidou and Pierre Boulez, it was opened in 1977. IRCAM has 

nurtured many remarkable researchers,  among them John Chowning, Luciano Berio, Pi­

erre Boulez and  Jean­Claude Risset. Many notable research  concepts, music languages, 

environments and technological contributions have been created there. This institution still 

remains a home for many contemporary researchers and composers [21]. 

From the fifties significant scientists worked at Stanford University’s Center for Computer 

Research in Music and Acoustics, which was founded by John M. Chowning. The main 

research is aspects of computer music, which are brought together from music, computer 

science,  physics and  engineering areas.  There are groups like “Music,  Computing,  and 

Design”, “Signal Processing”, “Music in Virtual Words” and many others.  In  the begin­

ning it was created as a high end research centre “A multi-discipline facility where com

posers and researchers work together using computer-based technology both as an artistic 

medium and as a research tool.” [18]. Here Chowning worked on frequency modulation 

(FM) synthesis algorithm (1967), which he invented by an accident of testing a variety of 

vibrato: “Chowning found that when the frequency of the modulating signal increased 

beyond a certain point, the vibrato effect disappeared from the modulated tone, and a 

complex new tone replaced the original.” [19]. Chowning patented his discovery in 1975 

and licensed it to the YAMAHA Corporation. The first commercial device with FM syn­

thesis implementation on it was a digital synthesizer DX7, which came into the world in 

1983. Yamaha patented their hardware implementation and established a monopoly in the 

market of musical hardware technology [20]. Chowning’s invention of FM synthesis is a 

strong example of the long tradition of transferring research from laboratories to industrial 

applications. 
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And  lastly,  ICMC (International Computer Music Conference) ­ the multi­disciplinary 

nature of this conference,  which  covers composition,  computing and  digital signal 

processing, makes it one of the most prominent widespread proceedings where researchers 

now show their inventions in music technology and audio processing [21].  

2.2 Parallel computing review 

In this subsection we are going to look at parallel computing for several reasons. Firstly, 

we want to show how music technology is closely interwoven with concurrent computing. 

Secondly, we attempt to discover what kind of parallel computer will be commonly wide­

spread in the near and distant future, because this acquisition of a future general parallel 

computer will enable the construction of a high performance computer for the purposes 

and requirements of music technology. This knowledge will be a key factor in producing 

high quality software under the title of the HiPAC. Thirdly, we attempt to elucidate the 

heading of audio software for the music community and share gained experience from our 

research in the real­time parallel algorithms and their realisation in Music Technology. 

Improvements in  modern  audio  technology would  not occur without the creation  and 

modernization of a strong engineering, scientific and analytical tool – the computer and its 

development to the parallel computer. The idea of an Analytical Engine, the first mechani­

cal general purpose computer, was conceived by Charles Babbage [22]. Babbage’s inven­

tion was remarkable and initiated the whole of computer development [23], [24]. 

The origin of the multiple instructions and multiple data (MIMD) parallel computer came 

from Charles Babbage’s creation  the Analytical Engine [29],  [30]. The first company to 

start the development of the mass­produced computer was IBM in 1954, supporting the 
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high­level programming languages FORTRAN, LISP and MUSIC. Under the “IBM 704” 

project there were 704  researchers. Among them were pioneers in computer science,  in­

cluding the well­known computer architect Gene Amdahl and the designer of FORTRAN 

John Backus [31],  [33].  In 1962 using the IBM 704  computer American physicist John 

Larry Kelly and Max Mathews synthesized  speech  for the first time.  This was a song 

“Daisy Bell”. It was one of the most illustrious moments at Bell Labs [32].  

During the later fifties and  sixties the foundation  for the modern  parallel computer was 

created. A trend became apparent that whenever a new architecture design was introduced, 

just a few computers were produced, which confirmed the fact that parallel computing was 

built only for scientific computations. In 1965 Gordon Moore, an American scientist, pub­

lished Moore’s Law. It concerned a long­term trend in processor development. Moore said 

that over every 18­24 month period, the number of transistors and, consequently computer 

performance, would be doubled [38]. Moore’s Law for desktop computers stopped work­

ing at the beginning of the 2000’s when chips reached their physical limits in processing 

speed. Also for HiPAC Moore’s Law used to work only partly because of the differences 

and  requirements of audio  processing,  described in  the “Introduction” chapter.  In  1966 

Michael J.  Flynn  introduced  four classifications of parallel computers and  programs, 

which are called Flynn’s taxonomy. This classification is based on a number of concurrent 

nodes and the data flow needed for implementation of an algorithm or available in a classi­

fied computer [39]. In the HiPAC a Single Instruction Multiple Data classification is used, 

or its subclass called a Single Program Multiple Data, which lets the data flow asynchro­

nously. 
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2.3 Background 

2.3.1. High Performance Computing in Music Technology 

Many significant challenges in audio processing have hitherto been avoided as being com­

putationally prohibitive. There have been many positional papers and comments about the 

advantages of using multi­core computers [3], [52]. In [51] it was suggested using multi­

processors only for the calculation of a specific area of tasks and the author of [51] did not 

believe that ways of programming would ever change, a view which is very debatable, but 

if it were true then it would be very challenging to convert general users like music com­

posers towards parallel programming. Also it was proposed to find another style of com­

puting due to the fact that for programmers these changes are very challenging [51]. 

I believe that looking back into the history of how computers were created and enhanced it 

can be seen that there was always a temptation to develop a faster computer by multiply­

ing processors and using those processors in parallel. Therefore it would not be any new 

way of making a computer faster to make it parallel. Peter Van Roy in [50] recalls data­

flow programming as well as designing decentralized systems. An overview of many­core 

processors in the past and present was proposed by David Wessel in [49]. Where a differ­

ent kind and level of music software was compared, highlighting the most popular current 

software (CSOUND, Max/MSP, FAUST and etc.), he said  that a huge majority of these 

languages do not support parallelism. On the other hand there have been several concur­

rent developments from the seventies and the eighties (IRCAM Signal Processing Work­

station, multiple Motorola 56000­based Audio Media Nubus Cards, DigiDesign’s DSP­

Farm). The author discusses the architecture of parallel computers to be in use only for 

computer composers, saying that it is unclear whether it should be homogeneous or het­

erogeneous architecture but it is clear that the most must be made out of concurrency to 

make real­time practical [49]. These papers are positional,  so  the authors do not present 

any research results. 
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John  ffitch  et al in  [48] describes how crucial High  Performance Computing for Audio 

Technology is.  The main necessities here are real­time processing as well as low latency. 

This is due to  the imperative of improving sound processing, audio  synthesis and music 

composition, where deep investigation  needs to be done in  a digital audio  stream. Also 

they propose different ways of researching HiPAC, including accelerators and multi­core 

computers: “…the study of new advanced processor architectures to enhance audio syn

thesis, processing and music composition…” John ffitch et al emphasize significant differ­

ences between High Performance Computing and HiPAC: “Rather than considering the 

use of supercomputers and mega clusters we are concentrating on what will within a rela

tively short timescale be consumer grade hardware. The emphasis has to be on affordable 

low latency real-time processing”. Also they claim that getting further speed from a one 

core consequently requires high power consumption. As a result, it is not profitable in the 

light of high energy expenses and  it is a source of noise creation  in music applications. 

The authors also affirm their hypothesis in audio processing definition, that it is serial, as 

well as that the implementation of audio processing involves many identical independent 

calculations,  so  the structure of an  algorithm is highly data parallel.  Some challenging 

tasks are defined due to the fact that calculations can be done in real­time, and which re­

quire highly powerful computers, which  are going to be built in  the next generation  for 

general purpose. 

In [48] there is also included a condensed investigation into parallel hardware. It describes 

the differences between  SIMD (Single Instruction Multiple Data) and MIMD (Multiple 

Instruction Multiple Data) models. The aim of the investigation in [48] is to find out how 

to design general parallel audio computers in the light of parallel audio processing needs. 

Nowadays, fine­grained concurrent architectures of SIMD look like a vector addition of a 

general CPU, and also SIMD includes graphic accelerator cards; these improvements are 

important to all computer users. A distinction of the new SIMD accelerator is that it is de­

veloped on one chip and the architecture is monolithic. Also in order to support and make 

faster performance growth chip producers have already implemented  the procurement of 
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many units for supporting new concurrent processors. Manufacturers have already devel­

oped chips with a performance of one teraflop, but they will be produced commercially 

only in 10 years’ time. 

Nowadays a serious market has been built for SIMD parallel architectures with the most 

noticeable SIMD accelerators being the Tesla system series from nVidia and  the 

Clearspeed  CSX600  and  CSX700.  The Tesla accelerator introduces the first general­

purpose product,  not specified  for graphics.  Secondly,  the floating­point Clearspeed 

CSX600 and CSX700 accelerators are presented. In CSX600 each card contains one chip 

and the newest version of CSX700 unites two CSX600 processors. In essence, each chip 

contains 96 floating point processors in SIMD style. The main advantage of Clearspeed is 

low power consumption, which  is 30W per card. The most recent release of CSX700  is 

significantly cheaper due to the implementation of a PCIe­based microprocessor. This fact 

makes Clearspeed CSX700 vie with nVidia Tesla accelerators. Detailed studies were also 

done on the Clearspeed processors during the programming, and they are presented in the 

chapter of “Methodology and  Environment”,  which  also  contains detailed  information 

about Clearspeed architecture. 

Audio  processing imposes interesting challenges on  computing.  So,  there is no  general 

rule on how much speed up can be obtained from parallelism. Amdahl’s law [47], states 

the following formula: 

1
SpeedUp = 

P
(1− S)+ 

S 

Where, S is a sequential part of the algorithm and P is a parallel part of the algorithm and 

also P+S =1. Speedup is a time span of a ratio of sequential portion’s time span plus time 

span of parallel part takes.  It is mainly estimates of overly conservative value in parallel 

computing. Hitherto audio processing is without any parallelism evaluation, due to the fact 

that it has high concurrency only in data, and the complexity of calculation is low, conse­

quently the concurrent part of a task will mostly depend upon hardware features. There­
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fore, new paradigms of audio processing must be created. The authors argue in [48] that 

audio processing must pay attention to computation requirements. “Even if they are time-

consuming today, they will not be in only a few years, so that we must start investigating 

them now...in the HiPAC program the study of no-compromise algorithms – rather than 

make simplifications to an algorithm purely for reasons of slowness, HiPAC considers 

such algorithms in as pure or “ideal” a form as possible, especially where that ideal form 

may lead to musically useful and novel behaviour.” 

It is shown as an example that the Sliding Phase Vocoder can make use of HiPAC [46]. 

The implementation of SPV is based on SDFT, and they show that the process of SDFT 

calculations is essentially parallel between  the bins and  they expect that implementation 

SDFT on the Clearspeed microprocessor will be yielding in terms of real­time perform­

ance and latency. 

Very new impressive investigations have been done by Yann Orlarey at Grame [45]. The 

first investigation is a Jack audio server with low latency, which was previously based on 

a sequential machine and it was upgraded to a data flow model with usage of a lock­free 

programming technology on multi­core computers. The Jack system works similarly with 

a server with natural parallelism, when clients do calculations concurrently even if those 

depend on  shared  variable. An  activation model is needed  to  activate clients simultane­

ously and accurately. 

Also the authors underline that Jack has sequential and parallel components. If a parallel 

component exists it means that clients can be executed concurrently on different proces­

sors. The data­flow model helps here to describe this system: if all inputs become accessi­

ble then a node in data­flow graph is able to run. The activation counter is used by each 

client to find out the number of input clients on which it depends. The activation is trans­

ferred from client to client during all executions of the server. The authors suggest the way 

of sequential graph execution, utilizing pipeline techniques. Their suggestion  is dividing 

an  audio  buffer into  components.  But this division  means that during running smaller 
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buffers there will be more context­switching between processors, which causes a time de­

lay, so it is imperative to find the equilibrium between the size of divided buffers and the 

number of available processors in the project [45]. 

Another project is a language for High Performance Audio Applications – Functional Au­

dio Stream or “Faust”.  Faust is designed to be implemented efficiently as C/C++ plug­ins 

for audio applications [44].  It is used for real­time signal processing with transformation 

into C++ language; also it does not depend on any DSP library. A programming model of 

a language is a combination  of mathematical semantics with  block­diagram syntax. Re­

cently, the authors started  a design of a parallel compiler and  they show an example of 

their work,  where they found  it challenging to  balance data copy and  communication 

overheads. Thus efficiency is still an essential domain of the research for achieving real­

time performance. The work done by Y. Orlarey in [45] is promising; however, unfortu­

nately, no results of their experiment are shown. Thus it is impossible to compare with the 

results of our project. 

A parallel implementation of a partitioned convolution and a non­negative matrix factori­

zation (NMF) were done in The Parallel Computing Laboratory at the University of Cali­

fornia Berkley by Eric Battenberg, David Wessel and Adrian Freed in [43]. This NMF is a 

component of a music information retrieval (MIR). A parallel algorithm of a partitioned 

convolution  a frequency delay line (FDL) was used  in  [42]. The main  approach was to 

reach real­time requirements and to harness GPU cards in audio processing. 

Eric Battenberg in [43] shows an algorithm to speed up NMF. Implementations were done 

on  consecutive and  concurrent ways in  order to  optimize and  analyse the algorithm to­

wards real­time. The author presents performance results of an execution time for several 

implementations of NMF on various architectures.  It was done in order to  fully use the 

potentialities of a multi­core CPU and highly parallel graphic processors. 
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Versions were written  in  the following languages: MATLAB, C, OpenMP and CUDA. 

The MATLAB implementation was done on  Intel MKL BLAS Core2 Duo T9300 CPU 

while CUDA was run on GTX 280 GPU and 8600 GTS GPU. Results have shown that the 

CUDA implementation gave the best execution time; it runs over 30 times faster than the 

implementation of MATLAB. And the OpenMP implementation executed in Core i7 920 

runs in 7 times faster than the MATLAB version. However, the authors say that to write a 

program in CUDA takes 10 times longer than in OpenMP.  Therefore CUDA can be used 

only in massively intensive calculations. 

Due to an implementation of an effective parallel code being the hardest problem in  the 

utilization of parallel systems, the authors suggest looking at an idea, “Selective, Embed­

ded, Just­In Time Specialization”, (SEJITS) by Catanzaro et al. [41]. The idea of it is that 

a computer music composer will write an example of non­negative matrix factorization in 

a scripting  language like RUBY.  The composer must also  express operations in  time­

frequency representations.  This script code is a portable code,  which would  be run  on 

SEJITS and if a parallel implementation of the code is accessible, so the system generates 

an optimal code on appropriate layer language like C, C++, OpenMP or CUDA. As a re­

sult of the project, the authors recommend SEJITS since this system is the most appropri­

ate way of using parallel systems for general users including computer music composers. 

But they also say that SEJITS must have some features like meta­programming and intro­

spection.  Developers must also  create efficient criteria for the layer programming.  The 

results of the NMF show the vigour of modern GPUs in order to supply an essential accel­

eration. Lastly, Battenberg et al say that the example of Music Information Retrieval or 

MIR systems of SEJITS has not given  real­time results and  they cannot change it at all 

[43]. 
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2.3.2 Goertzel algorithm 

In  this section we shall summarise the main  sources of the SDFT algorithm: a Goertzel 

algorithm and the SDFT algorithm. We shall discuss the research, which was the main 

motivation for this work.  

The Goertzel Algorithm [37] is a method for presenting a Discrete Fourier Transform from 

time­domain to frequency­domain signals. This technique reduces communication costs in 

O(n2). This algorithm was created only for frequencies with particular features. The main 

difference of the Goertzel algorithm from the DFT algorithm is that it depends on prede­

termined frequency and some values from the time­domain frequency. As it says in [36] 

and  [35],  the Goertzel algorithm computes a complex DFT value for every N input ele­

ment. Luckily, audio signal processing satisfies these requirements because the time inter­

val between bins is fixed. So for calculation of each bin it is necessary to do only two ad­

ditions and one multiplication and therefore this method performs fast calculations.  

This algorithm calculates the k-th bin of DFT with window size N, using the following 

equation: 

N −1 −2 πijk 
NF ( x ) = ∑ x ( j )e Equation 1 

j = 0 

Where input frequency x(j) must be an integer, also index k is in an interval: 

0 ≤ k ≤ N − 1 . The output of the DFT algorithm and the Goertzel algorithm is the same. 

Even if it is chosen to use the Goertzel algorithm instead of the DFT algorithm, the first 

value must be defined by using equation 1, and then utilize SDFT with all its advantages. 

In the Goertzel algorithm, a z-domain transform function is: 

1 − e − 2 πjk / N z − 1 

H ( z ) = 
1 − 2 cos( − 2πkn / N ) z −1 + z − 2 
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where a single z­domain zero is on z = e 
−2 πjk / N 

and conjugate poles at z = e 
±2 πjk / N 

. The 

zero/pole pair cancels each other at z = e 
−2 πjk / N 

[34]. 

For the Goertzel filter the time­domain different equations are: 

v ( n ) = x ( n ) + 2 cos( 2π k / N )v ( n − 1) − v ( n − 2 ) 

− 2π jk 

y (n ) = v (n ) − e N v (n − 1) 

In fact if it is necessary to calculate S different inputs, it is necessary to implement the Go­

ertzel algorithm S times. Also, one of the main advantages of this algorithm is N does not 

need to be a power of two. This algorithm is also used for recognition of Dual­Tone Multi­

Frequency (DTMF) signals, produced from a telephone by pushing buttons on a keypad 

[34]. 

2.3.3 Sliding Discrete Fourier Transform 

An algorithm of Sliding Discrete Fourier Transform (SDFT) computes DFT with exactly 

the same precision as the Goertzel algorithm. The Goertzel algorithm calculates a DFT for 

every single element of the input array. As opposed to the Goertzel technique, the SDFT 

algorithm can estimate more signal bins with less data and computation. Also in SDFT the 

input rate is the same as the output rate [34]. In essence, the SDFT algorithm computes the 

current value of DFT in time=t and with a frame = N, when a new input sample comes, 

the frame moves by one element in the time =t+1 algorithm calculates a new quantity 

considering the new element of input and the previous value of SDFT [34]. 

The DFT starting at time t with window size = N can be represented as follows: 

N −1 −2 πijk 
NFt (k ) = ∑ x j + t e 

j = 0 

30




where F t ( k ) is a k-th value of SDFT in frequency domain. The algorithm of SDFT in the 

time =t+1 depends on the value at the time=t: 

N −1 −2πijk 

Ft +1 (k ) = ∑ x j + t +1e N = 
j =0 

N − 2πi ( j −1) k 

x e N =∑ j + t 
j =1 

N −1 − 2πijk 2πik 

(∑ x j + t e N − xt + xt + N )e N = 
j =0 

2πik 

(Ft (k ) − xt + xt + N )e N ; 

whereby the window always moves only by one bin. Not surprisingly this algorithm exists, 

due to the fact that when the analysis window moves by a sample the most bins of discrete 

frequency in the window will be the same. Most recently, SDFT implementation issue was 

highlighted by John ffitch et al in [28]. This paper was the initial point of this research 

along with [48], [27]. Also they say it is not necessary that the analysis window remains 

power of two. 

In [28] John ffitch et al consider the essential question about sliding a window. They ex­

plain that in order to minimise blur and increase frequency resolution an envelope window 

to the sample period is applied. Therefore, it is not possible to do it in SDFT in time do­

main but it can be done after applying SDFT. So windowing is used in frequency domain. 

This windowing is discussed only for the purpose of showing integration of SDFT into 

Csound. 

Thanks to the work of Richard Dobson and Victor Lazzarini, Csound has a well­built 

streaming Phase Vocoder. John ffitch et al. in [48] explain the application of SDFT in 

Csound: “The process here is to construct a new DFT frame when sufficient samples have 

been obtained, with a restriction that this cannot be more than once per k-rate frame. In

ternally the f-variables have a structure to maintain the bin values, window size and type 

and various housekeeping data. The SDFT implementation in Csound reuses this struc
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ture, so from an elementary user point of view the introduction of the sliding option has no 

syntactic change.” Basically, the SDFT is a technique with an overlap of 1 bin [28]. 

In order to reconstruct the signal it was proposed to use a fundamental Discrete Fourier 

Transform: 

1 N −1 

x t = ∑ Ft ( j )e 2πijt N 
Equation 2 N j = 0 

In equation 2 each frame was as a representation of a single sample because there is a 

transform for each sample. It is debatable which sample each frame represents. This ques­

tion means that latency depends on choosing the right sample in the frequency: there are 

non­latency versions, but very expensive, or other versions which seem very complicated. 

The authors say that this process of transformation is not fast and it is necessary to investi­

gate SDFT parallel algorithms in order to achieve real­time performance. They also say 

that they have achieved “out-of-real-time” implementation and further research is neces­

sary in the field of High Performance Audio Computing [28]. This paper was one of the 

main motivations for this research, owing to the researcher’s belief in the strong future of 

parallel computing. 
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Chapter 3 

Environment and methodology 

3.1 Environment 

Nowadays there are many discussions about supercomputers for audio processing, and it is 

not clear which kind of architecture fits best for a particular audio processing task. In order 

to get a better understanding of the actual needs of parallel algorithms for audio processing 

it is necessary to take some steps. The first step is to create a parallel algorithm, secondly, 

implement and analyse it, and lastly, to conduct experiments in order to find out how 

changing programme variables affect the time delay. A push must come from the area of 

HPC by computer scientists and mathematicians in order to give freedom in music science 

promotion. 

It is reported in the “Literature Review” chapter about the general purpose GPU, which is 

produced by NVIDIA. These kinds of processors were not a part of this investigation be­

cause they were not readily available when this research was started. An explanation is 
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also given regarding the research done for non­negative matrix factorisation on several 

parallel computers and utilising several parallel languages and extensions. Researchers of 

this project believe that the Clearspeed CSX600 computer is an appropriate machine for 

audio processing. Therefore, the main interest of the research was to develop, implement 

and analyse the algorithm of SDFT on the Clearspeed CSX600, which was chosen because 

it has 96 floating point vector processors and the power consumption of parallel processors 

is less than 30W per card. So, the null hypothesis was proposed to investigate whether it is 

possible to develop the SDFT algorithm, which can fit in the Clearspeed CSX600 ma­

chine, and to get real­time performance out of this parallel algorithm. 

ClearSpeed Technology Ltd. was founded in 2001. There are two offices in Bristol, UK 

and San Jose, California. The company mainly creates accelerators and vector parallel 

processors, which are used to perform tasks with a large data set, high accuracy or in a 

short period of time. The company has concentrated on achieving less power, density and 

heat problems on HPC [26]. Therefore, this machine was chosen in order to develop, im­

plement and optimise the SDFT algorithm. 

To confirm the proposed hypothesis studies were performed on the Clearspeed parallel 

computer. Basic subjects for achieving successive results were: Programming on Cn paral­

lel extension of C language, a Clearspeed architecture overview, acquaintance with Cn 

Standard Libraries, and an acquaintance with debugging in GDB. A complementary re­

search problem was the studying of properties of a given parallel system. 

Clearspeed provides essential material about a general comprehension of the CSX600 par­

allel processor architecture. The most relevant was information about the execution units 

of the processor. The authors introduce the main concepts of parallel processing, particu­

larly, SIMD parallelism; and they demonstrate different features of C extensions, which 

are used by the CSX processor. 

Firstly, in [72] the CSX600 processor architecture was described. Figure 1 from the [72] is 

a high­level image of the architecture of the CSX600 processor. 

34




Figure 1. CSX600 processor [72]. 

The parallel machine is composed as a Single Instruction Multiple Data multithreaded 

processor core, an embedded SRAM with integration onto a single processor, high­speed 

interfaces and an external DRAM interface. An interconnection between all subsystems on 

the chip uses a ClearConnect Bus on the chip network. 

From a programming point of view, the central parts of the parallel processor are execu­

tion units. There are two central parts: the mono execution unit and the poly execution unit 

which is an array of processing elements and each instruction is executed by either the 

mono execution unit or the poly execution unit. A mono execution unit contains SRAM, 

which has 256 Kbytes of memory. The vector processor core includes 96 processor ele­

ments (PE) and each PE can execute parallel, addition and multiplication operations. 
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There is also support for a fully pipelined operation with execution of one instruction per 

cycle [25]. 

Figure 2. Execution units [72]. 

The high performance of the CSX600 processor comes when the data is processed concur­

rently in the poly execution unit. As stated above, the poly execution unit is an SIMD ar­

ray with 96 processor elements, where PEs are connected as a vector array by the connec­

tion path. This means that each PE computes the same programming code but on different 

data. Each processor element contains 6 Kbytes of SRAM, a register file and an ALU 

(arithmetic logic unit), 32 + 64 bit FPU (floating point unit) [72]. 

Secondly, a programming model is described and the Cn concurrent language, which is a C 

language extension. As shown, there are two execution units: poly and mono. Therefore, 
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there are mono and poly memories with two different memory spaces. These spaces have 

different basic types of variables: a mono variable, which has only one instance and is 

stored in the mono memory; and a poly variable, which stores in each PE with different 

values on each processor. In programming for CSX processors multiplicity specifies were 

introduced, which let a programmer direct the domain, where the variable will be stored. It 

is possible to use poly variables in order to specify PEs, on which the code will be exe­

cuted. 

Developers of Clearspeed showed the basic examples of using Cn language. SDK includes 

all necessary tools for writing, compilation, debugging and running the code on 

Clearspeed accelerators [72]. 

They showed a good description of the process of running a program on CSX processors. 

An executable file can be run on the processor, this demands that while a program is run­

ning on a host computer it is loading executable code to the CSX processor and after that 

communicates with it. Generally, the program runs on the host computer and part of it runs 

on CSX processors. Communications between the CSX component and the host computer 

can be done by using a device driver. This module provides input and output services be­

tween CSX and host processors [72]. 
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Figure 3. Communications between CSC and host processors [72]. 

An explanation is given of the Cn language and its features, which is mainly based on 

ANSI C. There is a description of basic types, pointer types, array types, struct and union 

types. Due to having mono and poly variables, understanding of pointer types is more dif­

ficult. There is the possibility of creating a pointer mono type * poly type, this means that a 

poly object points to an object in mono memory, which is shown in figure 4. This is used 

only for data transfer library functions because any manual use of this type of pointers can 

involve a serious performance delay. 
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Figure 4. Description of mono type * poly type [72]. 

Conversely, a pointer poly type * mono type can be created, this means that a mono vari­

able points to a poly variable. It is possible to implement this due to the fact that a poly 

variable is stored on each PE at the same address. The figure 5 from [72] shows the con­

nections for this pointer. 
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Figure 5. Description of poly type * mono type [72]. 

There are some restrictions in order to avoid an extra complexity, for instance, the use of a 

goto statement. Owing to mono and poly data stored in different spaces, it is illegal to as­

sign or cast a poly pointer to a mono pointer or vice versa. This was done because the poly 

memory uses 16 bit pointers, while the mono memory uses pointers with 32 bit and above. 

It is legal to mix poly and mono variables, [72] presents some rules about legal mixing, it 

is also concerned about poly conditionals, loops and statements. For instance, implementa­

tion of mono and poly variables in if-condition may look like: 

poly short penum;


penum = get_penum();


if (penum < 10){


…


}


else {


…


}
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There is a mix of mono and poly variables in the pseudo code, which is presented above. 

There is a poly condition in if-statement, and if this condition is met, then the first branch 

is executed by the enabled PE. Otherwise, the second branch is executed by the disabled 

PE. However, for any mono variable there will be executed two branches of if-condition, 

due to the fact that the mono execution unit is always enabled for poly conditions. 

Input and output operations for the data transfer between poly and mono sections of mem­

ory are also introduced. The CSX processor supports different techniques for data move­

ments. There are synchronous functions of data transfers between different memory sec­

tions. For the correct transfer of information, PEs specify the source or destination ma­

chine address and only elements, which have been enabled and can transfer the same 

amount of data from or to a location in the poly memory. There are also asynchronous ver­

sions of the data transfer functions, which let the programmer execute an input or output 

copy on a detached thread so calculations can be performed in parallel with data transfer. 

Asynchronous data transfer functions use semaphores for synchronisation, data coherency 

and completion of data [72]. 

There are a few examples of Cn programs: concurrent calculation of a Mandelbrot set and 

synchronous and asynchronous data distribution in [72]. Finally, developers described 

some useful programming and debugging hints in order to avoid basic problems and get 

more performance during the first experience of programming for the CSX processor in 

[72]. 

During research of the project on the Clearspeed CSX600 computer, it was found, that the 

parallel computer is supposed to permanently coordinate a use of shared resources, but not 

conflicts, which occur between parallel processors. Also, a fault­tolerance is the founda­

tion of some difficulties that occur during programming on this parallel system. It is diffi­

cult to recognise that the system does not work entirely. Hanged processors were quite 

difficult to identify, because when PEs hanged the whole system remained to work clearly 

but it was producing incorrect data. Yet it was easy to identify a dead halt, which ap­

41




peared only if all nodes including the processor in the mono execution unit were halted. In 

order to restore the entire system, it is necessary to reboot the whole system and call the 

command csreset, which reinitializes the board and its processors. These difficulties 

emerged only at the beginning of the project implementation. Therefore, in order to re­

move this obstacle, it is strongly recommended to use a simulator during compilations of 

first versions of the projects. 

3.2 General methodology of the parallel development and 
implementation of the SDFT and IDFT algorithms 

In essence, a process of digital signal processing starts when a signal comes from a micro­

phone or a musical instrument, when the signal is converted to a sequence of real numbers, 

which is called a time domain digital signal, and so a process of transforming the signal 

starts from a real value sequence. This sequence is used as an input array to the SDFT al­

gorithm, which transforms the time domain signal into a complex frequency domain sig­

nal. The next stage is utilization of an application, which can be anything, for example 

pitch shifting or filtering. The next stage is an IDFT algorithm, this method is complemen­

tary to the SDFT. The input of the IDFT is the complex frequency domain signal, which 

has been transformed during execution of the application. And lastly, the output of the 

IDFT is a real time domain signal, which goes directly to a speaker. The development of 

the IDFT was done as extra work in order to complete an analysis tool and give free play 

to a computer music composer’s imagination. 

The following image shows the order of data movements from the microphone to the 

speaker. 
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Figure 6. Order of algorithms and data movements. 

The input comes directly from the microphone and it is treated as an array of real numbers 

in double precision. The reason for using 8 bytes of memory for storing each element of 

input is described in the “Introduction” chapter. 

The project runs on a SIMD parallel computer and is programmed in C/Cn languages. This 

method was optimised in order to carry this out in real time. This investigation benefits the 

application of parallel processing to sound synthesis, and aspects of sound analysis and 

modification. 

The main aim was to find equilibrium between the time delay and the window size. Due to 

window size (N) being variable it is possible to get a range of times for the purpose to find 

out the marginal time that it takes to calculate the algorithm. Tests were done with a value 

of N in the range from 64 to 4096 elements. The N is a significant figure, which deter­

mines how precise the sound can be so the larger the window size the more accurate will 

be the resulting output. But with a large window size program it could take a long time for 

copying data and the marginal window size could take longer time for calculations due to 

the context switch time delay, which is needed for the processor from a mono execution 

unit to switch from the current task to the next one. Also during the balancing of the win­

dow size and time, it was necessary to find the smallest value of time in the SDFT algo­

rithm. 
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The hardest part of the algorithm was memory management, which is significant in the 

transfer of data accurately from mono to poly memories and back. It was difficult to man­

age each parallel processor to find its own absolute address in memory spaces for data 

“copy from” or “copy to”. Also sometimes it was confusing to do management calcula­

tions in bytes so that the physical address in memory cards must be calculated precisely. 

The task is subdivided into parts that are calculated individually between each concurrent 

processor and then all the results are put back together to make the final result. So, this 

architecture of tight coupling, as well as the high communication rate between shared 

memory and processors, does not permit use of all the performance from asynchronous 

chunk data copy, due to specific problems, which are shown below in the analysis sec­

tions. 

An analysis requires taking into account the granularity of the architecture and semantics 

of the parallel extension Cn. Thus in the experiments chunks of data need to be of suffi­

cient size to overcome the communication costs. 

Algorithms mostly differ from each other due to data transfer management between poly 

and mono memory. During tests the number of SDFT input elements (S) was chosen to get 

wall clock time within the scope of 1 to 10 minutes. Tests had to run for a sufficiently long 

time in order to avoid timing noise during calculations, so that results are more precise on 

average. 

DFT calculations were done on the Poly Execution Unit with direct data calling from 

Mono memory. Each processor sends instructions with specific variables and calls for re­

sults directly without copying of input data. This method of calculations is most appropri­

ate due to the fact that this process is done just once. It means that the result of DFT for­

mula is a complex number, which is treated as two real numbers and stored in the buffer 

consecutively: 
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Figure 7. Image of storing complex numbers in mono and poly memories. 

As described in detail in the “Literature review” chapter, the original idea of SDFT came 

from the Goertzel algorithm, where the next value of DFT depends on current value and 

two values of input: 
2πik 

Ft +1 ( x) = (Ft ( x) − x0 + x N )e N 

There are several steps for correct algorithm implementation:


At the first stage of the algorithm the calculations of the initial DFT are achieved using the


classic Discrete Fourier Transform equation:


N −1 − 2 π ijk 
NFk ( x ) = ∑ x i e Equation 3 

j = 0 

At the second stage, direct calculations using SDFT formula are used, as described in the 

“Background” chapter. In the implementation of the algorithm a “t-loop” loop was exe­

cuted S times: in each consecutive time, two input values {x0; xN} 

were copied and the previous value of SDFT. Because input real values are stored con­

secutively: {x0; x1; x2; … xN-2; xN-1; … }, it is necessary to copy the input from two different 

places in the Mono memory. So it means that data copy functions were calling twice. Time 
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costs were essential in this loop and also it was expected a marginal amount of time was 

consumed for calculation of this algorithm. 

The third stage is for implementation of an Inverse Discrete Fourier Transform. Data, 

which is used for calculations, is stored only in one place and it does need to call the func­

tion for data transfer just once. Yet the equation, for implementation of the IDFT is: 

1 N −1 2 π jk 

x t = 
N ∑ Ft ( j )e N 

Equation 4 
j = 0 

It is conspicuous from equation 4, that it is necessary to transfer N complex double precise 

elements from the Mono memory to the Poly memory. So owing to the fact that the 

Clearspeed CSX processor is a fine­grained vector accelerator, the results of IDFT algo­

rithm might be slower than the SDFT implementation. 

In the analysis of asynchronous algorithms a complementary buffer was introduced, due to 

the fact that real time performance was required. The buffer inherently avoids overlapping 

by a small fraction of a sample rate. This fraction was usually 1 or 2 sample rates. 

A poly variable k was introduced, whose value varies from 0 to N-1. This poly variable 

was presented in order to correctly manage input and output transfers of all processor 

nodes. Each parallel node has its own value of k, which is calculated with a library func­

tion get_penum(), the output of this function is a number, which varies from 0 to 95. Due 

to the Clearspeed CSX600 having one chip with 96 processors, the number of processors 

is fixed. A loop was written for a k-distribution, because the window size is normally 

greater then the number of processors. Consecutively it is necessary to distribute correctly 

all elements from the Mono memory. This k-distribution loop will always take part in con­

current calculations later. 

46




It was developed, implemented and analysed following variants of the original SDFT algo­

rithm: 

1.	 the successive SDFT algorithm; 

2.	 the synchronous data copy of the SDFT algorithm; 

3.	 the asynchronous data copy of the SDFT algorithm; 

4.	 the asynchronous data chunk copy for the input of the SDFT algorithm; 

5.	 the asynchronous data chunk for the previous SDFT and input elements of the 

SDFT algorithm; 

6.	 the asynchronous data chunk copy for the SDFT elements of the IDFT algorithm; 

7.	 the asynchronous data calculations in the shared memory with results’ copy of the 

IDFT algorithm. 

During the analysis of algorithms, tables of calculation times were created for the SDFT 

loop calculations, and DFT loop calculations were done only for tests, whose wall clock 

time fits the requirements described above. Times of DFT loop calculations were calcu­

lated with the initializing of input data, some variables and calculation of DFT of first N 

input elements, which are calculated in the “Initialisation” column. 

In the rest of this chapter each algorithm will be described in detail; there will also be pre­

sented a pictorial diagram of the algorithm, and a graph of the experiment's results of the 

time delay for a range of window sizes for one sample. Additionally there are tables from 

the experiments’ results in the “Appendix” section. The results of experiments vary by 

± 0 .01 s and in the result tables there are presented examples of experiments, not the av­

erage time delay, since the round error of ± 0 .01 s is negligible and acceptable. Also in 

the charts there are two series of time delays, one is the algorithm which is described in 

each section and another is a whole project, which are the SDFT and the IDFT algorithm 

implementations. The IDFT algorithm was calculated by equation 4 on a mono execution 

unit but each PE calls for its own results according its own input data, which are poly vari­

ables. After this calling the results were stored on the poly memory on each PE, this means 
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that computations after calculations on each vector at time = t where done, results were 

copied back to mono memory asynchronously. 

3.3 Analysis of the successive algorithm 

The aim of implementation of a successive algorithm of DFT and IDFT was to compare 

the results of concurrent implementation with successive implementation and show that a 

parallel version has better performance so it will triumph over the consecutive program­

ming; and computer music society will be prevailed upon to use High Performance Audio 

Computing. 

For implementation of DFT equation 3 was used and for implementation of IDFT equation 

4 was used. The followed chart shows the results of the successive algorithm. 
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Chart 1. Dependency of the time delay on the window size in the successive algorithms of the DFT and 
IDFT. 

The chart below provides an overview of the time delay depending on the window size 

that the project runs within 10 ms only with window size equal to 128 elements. The next 

window sizes are 256 and 512, and time delays are 31 and 125 ms respectively. When the 

number of elements in the window size reached a 1024, the time delay significantly in­

creased to 494.2 ms. 

However, in order to achieve professional quality for the tool it is necessary to have a 

window size that is more than 128 elements. Also results from DFT and IDFT were not 

shown separately because the main interest of this project is the time delay out of the 

SDFT parallel algorithm and parallel implementation of the SDFT and the IDFT algo­

rithm. So at the end of this chapter consecutive and concurrent implementations will be 

compared. 
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3.4 Analysis of the synchronous data copy of the SDFT 
algorithm 

Perhaps the simplest model of parallel computing is synchronous data copy, where all 

nodes operate in a lockstep manner and this fact prevents data from overlapping. It also 

makes it easy to maintain data integrity. During each communication round all parallel 

nodes receive the data from the shared memory, perform local calculations, and send mes­

sages back to the shared memory. It was reasonable to develop a synchronous algorithm, 

since the architecture of the machine is homogeneous and specifics of the algorithm are 

that the amount of data, which was used in input and output operations was the same in 

each PE. 

The synchronous data copy algorithm provides a simple example of SDFT calculation. In 

order to implement this algorithm standard memcpy() library functions were studied. 

The next stages of the algorithm describe a data movement from the microphone: 

1.	 Input sends N elements, which is enough to find an initial DFT. Values of DFT are 

stored in the buffer in Mono memory, so this data is available for every PE. Input data 

is also stored in Mono memory. All values are ready and available to calculate the 

SDFT algorithm in synchrony. 

2.	 Firstly, input is copied by memcpy() function in the t­loop. In the next stage in the k­

distribution loop an appropriate value of previous DFT is copied, this value can be 

founded in the buffer by poly number k. 

3.	 Calculations of SDFT are done synchronously in parallel, and in order to copy data 

back to mono memory poly variable k is used. 

Figure 7 displays an illustrative example of data management in time = i+1. It shows that 

in this time the next input value xi+N is coming to the buffer, which is stored in Mono 

memory. This input is sent to poly processor elements in synchrony with the previous 

value of SDFT Fi,k, where k is a poly variable. Parallel processors perform some opera­

tions concurrently and send the result to the mono memory. The result is a SDFT value in 
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time = i+1: Fi+1,k. Once the buffer has received all results in time = i+1, all values of 

SDFT are sent to the next stage – IDFT algorithm. This is a stage of calculations showing 

one element of the input stream. 
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As previously noted, the most challenging part of implementation is data management to 

make input and output data coherent. In this version all concurrent processors work in syn­

chrony and some management is done by library functions in an exchange of valuable time. 

In figure 8, there is a view of two­dimensional array from the mono memory, where the 

SDFT values are stored. 

SDFT 
value 
from PE0 
at t=0 

Input is from t-1: SDFTt­1 
Output goes to t+1: SDFTt 

Column is chosen 
by ID of PE: 0..N 

Row is a 
current 
time t 

Each cell represents 
a value of SDFT Each row is 

divided 
between PE 

0 N 

t 

k 

S 

Figure 8. A synchronous order of storing and copying information in the Mono memory. 

So each PE, according to its ID copies a piece of data from the specific place in the array. 

The figure shows how data moves inside the array, red lines show that data is copied in syn­

chrony, so if the processor finishes a data copy at any stage, it must wait for others to finish 

the same procedure. In the array at the first stage data is copied from the first row and moves 
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down, where columns are chosen by the ID of each processor element, so at the time = t, 

each processor element copies the SDFT value from the previous row and proceeds with the 

calculations, the output data is stored at the row = t and so on. The project was tested on a 

finite number of elements in order to optimize performance of the algorithm during imple­

mentation and analysis. After analysis of the synchronous data copy of the SDFT algorithm 

the dependency between window size and the time delay was found, which is shown below in 

a Chart 2. 
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Chart 2. Dependency of time delay on the window size in the synchronous data copy algorithm. 

Chart 2 reveals dependencies of time delay on the window size. It can be seen that time, 

which is needed for calculations, is increased with window size growth. Between 64 and 128 

elements the time increases slowly, but with 256 elements the figure rises a little over 10 ms. 

In 1024 window size the time delay rises very sharply and reaches 200.08 ms. By contrast, 
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the table from the appendix shows that time needed for SDFT is significantly lower than 

IDFT time. For instance, with window size equal 128 SDFT calculates 9 times faster than 

IDFT. To sum up, the synchronous version of the IDFT parallel algorithm gives a very good 

speed up which is 5.75 ms per sample and N = 1024. 

3.5 Analysis of the asynchronous data copy of the SDFT 
algorithm 

After developing and implementing the synchronous version of data copy of the SDFT algo­

rithm, the asynchronous version of data transfers was developed and implemented. The main 

difference here is using library functions of asynchronous data copy: async_memcpym2p, 

async_memcpyp2m, whose meaning are asynchronous data copy from mono to poly memory 

and asynchronous data copy from poly to mono memory respectively. These functions are 

similar to synchronous, but using these library tools allows performing them on a separate 

thread and after the thread calculations in order to continue running. In order to synchronize 

computations of threads and operations of reading or writing it is necessary to use sema­

phores. Functions of asynchronous data copy take an extra parameter of the identity (ID) of a 

semaphore [72]. 

Generally two buffers are used as a double buffering technique and the functions of asyn­

chronous data copy are applied. The principle of this method is while one buffer (background 

buffer) is being filled the data from a second buffer (active buffer) is being calculated. 

There are some general steps, which facilitate using this technique: 

1. First data are copied into the active buffer. 

2. Wait, until the background buffer becomes empty 

3. Next data are copied into the background buffer 

4. Wait, until the active buffer becomes full and then do calculations on the data 

5. Copy data back from poly memory to mono memory 
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6. Swap the two buffers 

7. Go to step 2, until the input data finish 

Some algorithms of asynchronous data copy of the SDFT were developed. The main differ­

ence between these algorithms was the data management in order to find the balance between 

the window size and time delay. 

Firstly, the asynchronous data copy algorithm was developed and implemented. The amount 

of data, which was transferred between mono memory and PEs was one element. In figure 9 

is shown the asynchronous way of data management in the mono array, where data is stored. 

Each PE copies to its SRAM the piece of information independently of others, executes a 

calculation on it and then the PE copies it back to mono memory. Red lines show that trans­

fers do asynchrony and if any parallel processor finishes data copy to its SRAM, this proces­

sor can do calculations and does not need to wait for others. 

Figure 9. A synchronous order of storing and copying information in the Mono memory. 
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After implementation of the SDFT algorithm many experiments and analyses of it were 

made. Chart 3 shows the result data achieved using this new algorithm. 

The whole project The SDFT algorithm 
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Chart 3. Dependency of time delay on the window size in the results of asynchronous data copy implementation 
of the SDFT algorithm. 

Chart 3 shows the asynchronous implementation of the SDFT algorithm. With the window 

size equal to 512 and above time for calculating an element is sharply increased. So with the 

window size equal to 64 and 128 elements the time for calculating an element is 0.34 and 

1.30 ms respectively. The window size with 256 elements also shows a marginal time delay, 

which is 3.83 ms. However, the time results grow considerably with N equal to 512: it takes 

more then 15 ms to calculate SDFT for an element and around 70 ms for the calculation in 

total. In the chart above, the last number of elements in the time domain digital signal is 
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1024. The asynchronous SDFT algorithm needed 55 ms in order to compute a sample and 

approximately 250 ms is the total time of calculations in the project. In conclusion, the results 

of this asynchronous version of the SDFT algorithm show that there are some aspects, which 

can be filled in order to make the project faster. 

3.6 Analysis of the asynchronous chunk data copy of the SDFT 
algorithm 

Two asynchronous algorithms of the SDFT with chunk data copy were developed. The first 

to be developed was the SDFT algorithm with a chunk data copy of the previous SDFT. Input 

elements were transferred one by one. Here, a variable was introduced, which defines the size 

of chunk, which is indicated as T, which means number of copied samples per calculation 

round, where N / T = k,k ∈ Ν . This algorithm was implemented, tested and analyzed. Figure 

10 shows the chunk of data is moved by each parallel processor. The chunk is a piece of vec­

tor from array, this vector is chosen by time = t. And each PE proceeds with this chunk of 

data independently from the others, so it means PE communicates with the mono execution 

unit only to copy data to poly SRAM or copy results back to mono memory asynchronously. 

In the each poly SRAM the parallel processor executes calculations with the chunk of data 

and then copies it back to mono memory. 

Dividing the input frequency by chunks means that the number of involved PE is N / T so if T 

is large then not every PE takes a part in calculations it means the computer is not using the 

whole power, which is available. For instance, if N = 1024 and T = 128, than N / T = 8, so 

only 8 processors will be involved in this kind of calculation. 
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Figure 10. An asynchronous order of storing and copying chunks of information in the Mono memory. 

Chart 4 shows the dependency of the time delay on the window. Tests were conducted where 

it varied with window size and for each window size it varied with chunk size. 
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Chart 4. Dependency of the time delay on the window size of the asynchronous algorithm with chunk data copy 
of previous SDFT for calculation of the current SDFT. 

Chart 4 shows that the performance of the SDFT algorithm rose dramatically. Due to the fact 

that here, a chunk data copy was used, and the algorithm shows the best performance with 

one element in the chunk. Also the algorithm was optimized in the light of results from the 

previous version. The SDFT algorithm with an input number of time domain elements equal 

to 64 and 128 calculates a sample in less than 1 ms. The algorithm with 256 and 512 samples 

per window performed the task within 3 ms. With the number of input elements equal to the 

tenth power of two the SDFT algorithm computes in 5.66 ms. To sum up, this algorithm pro­

vided good results, 5.66 ms were needed per sample with the window’s size equal to 1024 

samples, so this means that it was chosen as the right way for optimization and software acce­

leration. 
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3.7 Analysis of the asynchronous data chunk for SDFT and input 
of the SDFT algorithm 

The last version of the SDFT algorithm was developed with a full chunk data copy imple­

mentation. It means that the input frequency sent in chunks of samples into the SDFT imple­

mentation. Also in each loop it was proceeded T elements, so if the current time = t, then the 

next time will be t+T and the next T samples will come. In comparison with previous algo­

rithms, where the frequency domain signal was stored in the buffer within the one row, in this 

algorithm output data from the SDFT algorithm were stored within T rows. The data manager 

in each PE must find the exact row and column for storing a current value of the output. If in 

the algorithms above PEs are transferred data within one row, then here, a small two dimen­

sion array with T*T elements is copied. Also there is a limitation on the amount of copied 

data due to each SRAM having only 6 Kbytes of memory with a stack for input equal to 3 

Kbytes and another 3Kbytes being taken for calculations and using libraries. So finding the 

necessary chunk of data in mono memory and finding the exact place where it is needed to 

copy it back became a big issue here, but it was solved, tested and analyzed. 
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Figure 11. An asynchronous order of storing and copying chunks of information in the Mono memory and 
within the chunk in the Poly memory. 
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Figure 11 represents the communications between layers inside the chunk. These communi­

cations are done within a one communication round between poly SRAM and mono memory. 

Chart 5 presents the results of the last SDFT algorithm, which was developed. It shows the 

best result, which was achieved on ClearSpeed CSX 600 processor. The performance is better 

than with chunk data copy of only a vector. After tests, it also showed that the best perfor­

mance was achieved with copy of 4 complex elements between mono memory and proces­

sors, tests were done on window size, with variation from 64 elements to 4096 and with vari­

ation of elements in the chunk from 1 element to 64. 
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Chart 5. Dependency of time delay on window size. 
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Chart 5 shows the changes of time delay according to the different window sizes. Perfor­

mance of the SDFT algorithm is less than 1 ms with window size 64, 128 and 256. The time 

delay increased slightly from 1.63 ms with 512 elements in the window to just above 3 ms in 

the next test. The tradition here is that by doubling the window size the time delay is in­

creased by two times as well. On the whole, the development of the SDFT algorithm reveals 

the best performance out of the vector computer. Also tests were done with a window size of 

2048 and 4096 elements in the window. These data did not feature in the analysis since for 

excellent quality of sound 1024 elements are enough, but in the “Appendix” chapter the re­

sults from all the tests are presented. 

3.8 Analysis of the asynchronous chunk data copy of the SDFT 
values in the IDFT algorithm 

After analyzing the SDFT algorithm of chunk data copy of previous SDFT and input. The 

whole project is included the SDFT and the IDFT algorithm. Tests show that the IDFT algo­

rithm is in 5 ­ 65 times slower than the SDFT. The main reason for this is that in the IDFT it 

is necessary to transfer a much larger amount of data from the mono memory to the poly 

memory and back. An initial algorithm of the IDFT was done in the way of not copying input 

elements, but doing calculations on the mono memory and these calculations are done by 

PEs, so each parallel processor straight calls for the results from mono memory, so the results 

are stored on poly memory. And after all calculations are done PEs find the particular address 

in the mono memory and copy the results in synchrony. So an algorithm was developed of 

asynchronous data copy of the frequency domain signal from mono memory to poly using 

double buffering. The resulting implementation issued quite slowly. 

The analysis of the asynchronous double buffered IDFT algorithm shows that it is necessary 

to improve it. An improvement was made to this algorithm by creating chunks of complex 

elements, sending these chunks to each PE, executing calculations on them, and sending back 

the results. After the development of such an algorithm and the implementation of it, the al­

gorithm was tested on different window sizes and different numbers of elements in the chunk. 
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Window size varied with 64 to 4096 elements; chunks varied with 1 to 128 complex ele­

ments. It shows much better time delay than the previous implementation of the IDFT algo­

rithm. And also the best time was achieved with 128 complex elements per chunk. 
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Chart 6. Dependency of time delay on the window size of the asynchronous algorithm with chunk data copy of 
SDFT for calculation of the IDFT. 

Chart 6 outlines the results of tests conducted to determine the best performance of the IDFT 

algorithm with asynchronous chunk data copy. The time delay gradually increases from 64 to 

256 elements in the window. Furthermore, the tendency changes on 512 elements in the win­

dow and time steadily grows to 117 ms per one element. The time delay deteriorated on test­

ing with window size equal to 1024 and rose dramatically to 430 ms. Lastly, we showed two 

different IDFT algorithms, and with these performance was much lower than with the SDFT 

algorithms; the IDFT algorithm is a performance bottleneck in this project. 
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All things considered, we showed the detailed description of developed and implemented 

algorithms. The analysis of parallel algorithms was also done with a description of each algo­

rithm; development and implementation was characterized satisfactorily. We optimized the 

SDFT algorithm in order to speed it up. We also developed the IDFT algorithms in order to 

get the whole tool for a conversion from a time domain signal into a frequency domain repre­

sentation and vice versa. In the next chapter we will describe the results and conclusions of 

the conducted research. 
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Chapter 4 

Results and Evaluation 

After empirical analysis of the project experiments it is necessary to compare results and find 

the fastest algorithm. Firstly, we undertook an evaluation of 

•	 the parallel algorithm of asynchronous data chunk copy of the previous SDFT and in­

put elements for the SDFT; 

•	 the parallel algorithm of asynchronous data chunk copy of the input signal for the 

SDFT; 

•	 the parallel algorithm of asynchronous data copy for the SDFT; 

• the parallel algorithm of synchronous data copy for the SDFT. 

The chart below shows the evaluation of time delays of one sample utilizing a variety of de­

veloped parallel algorithms. 
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Chart 7. Evaluation of SDFT algorithms. 

Chart 7 provides an overview of the performance per sample of parallel algorithms. The 

asynchronous version is the slowest algorithm, and with a window size of 1024 samples it 

executes a sample within 55 ms, while for others it takes less then 5 ms. It is not surprising, 

that the synchronous algorithm and the asynchronous algorithm (with chunk data copy of the 

input signal) give approximately the same results of 5.66 ms and 5.75 ms respectively. These 

algorithms transfer the same number of samples and we did not use any technique to improve 

performance in the asynchronous version. The algorithm of asynchronous chunk data copy 

of input and previous SDFT arrays showed the best performance; it needed 3.16 ms with a 

value of N = 1024 for the calculation of one sample. Consequently, the parallel algorithm that 

makes the most of the parallel architecture is the asynchronous chunk data copy of the input 

and the previous SDFT frequencies with a chunk of 4 samples. 

Secondly, it is necessary to compare the results of IDFT algorithms. We implemented two 

algorithms of the IDFT: 

68




1.	 the asynchronous chunk data copy of the IDFT algorithm; 

2.	 the algorithm with IDFT calculations which were done on poly and mono execution 

units asynchrony. 
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Chart 8. Evaluation of IDFT algorithms. 

Chart 8 shows that the best performance achieved utilising the IDFT algorithm when calcula­

tions are mixed on the poly and mono execution units. The algorithm of the asynchronous 

chunk data copy is slower by a factor of 2 on each window size. Therefore, in the IDFT algo­

rithm, where calculations are mixed on poly and mono execution units, performance is sig­

nificantly higher. However, the execution time of the IDFT and the SDFT fastest algorithms 

are very different. Furthermore, in the IDFT algorithm it was necessary to manipulate a large 

amount of data between execution units, so features of communication tools was a considera­

tion. Also, in order to achieve a real­time performance from the IDFT algorithm with mixed 

calculations, it is possible to use it only with a window size of 256 double precise complex 

samples. 
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To sum up, the fastest IDFT algorithm is the algorithm of asynchronous chunk data copy of 

input and previous IDFT arrays with a performance of 3.16 ms per sample and window size 

N = 1024. The best SDFT algorithm is the IDFT algorithm with calculations done on mono 

and poly execution units with a performance of 13.04 ms per sample and window size equal 

to 256 double precision elements. 

The analysis of the parallel implementation of the SDFT showed a great performance. The 

achievement of the real time implementation was successful. The optimization of the concur­

rent algorithm reached a real­time performance and maximisation of the performance on the 

CSX600 processors was very successful. 
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Chapter 5 

Conclusions and Future Work 

Traditionally, the development of scientific parallel computing has been tightly coupled with 

general computing. It has been shown in the “Literature Review” chapter, that historically the 

supercomputer was created as an extension of the computer. This extension was created 

mostly on the level of hardware but it seems much more complicated to provide good quality 

software in order to fully exploit the potential of the supercomputer. The architecture of the 

parallel computer still varies with specific features of applications that are executed on the 

machine. Scientific concurrent applications are only used in mathematics, physics, engineer­

ing and computer sciences. Yet, parallel computing has become dominant through science. A 

tradition established that beyond the world of computing engineers there is a push towards 

HPC and from the other side, from the side of natural sciences, there is a pull, stemming from 

their needs for parallel processing. It is also clear that sequential algorithms and programming 

have become behind a lesser consideration in computer science. 
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In the beginning, when the decision was made to implement the SDFT algorithm on the 

Clearspeed CSX600 processors, it was not known whether parallelisation would be beneficial 

for this particular task. The conclusion depends on many complex factors such as synchroni­

sation needs, features of the architecture and the nature of the algorithm. Too many nodes 

introduce communication overheads owing to scheduling, redundant PE management as well 

as context­switching. 

This research shows how time crucial parallel computations are in digital signal processing 

and music technology in particular. After analysis and evaluation of the algorithms it is clear 

that in order to create a High Performance Audio Computer it is necessary to conduct many 

observations of the algorithms, which are in use in the audio processing area. It is necessary 

to strive for greater productivity in order to discover how efficient parallel processing can be. 

We found a real time algorithm for the SDFT and we developed the IDFT as an extra. The 

fastest SDFT algorithm transfers chunks of 4 double précised samples per one communica­

tion round. The fastest algorithm of the IDFT was implemented as a composition of calcula­

tions on mono and poly execution units, whereas in the IDFT algorithm all computations 

were done within the poly execution unit. The data management was the most difficult part 

during the development and implementation of the algorithms, yet data integrity and valida­

tion were successfully achieved. 

After analysis of the developed concurrent algorithms it became clear that the SDFT algo­

rithm runs faster than the IDFT algorithm. The main difference in computations of these al­

gorithms is that the IDFT requires a large amount of data, consequently, communications 

between processor elements and mono memory became the most expensive part in terms of 

time. Also, each PE has only 6 Kbytes of SRAM, which was not enough for high perform­

ance implementation of the IDFT algorithm with the large window size. The nature of the 

project may require a use of a heterogeneous multi­core computer. 

The next task is to create algorithms for the heterogeneous parallel computer in order to 

achieve better performance on the IDFT algorithm. The real­time performance on the SDFT 
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algorithm was achieved and run within 3 ms with the window size set to 1024. It was sug­

gested that in order to achieve approximate performance for the IDFT algorithm it would be 

necessary to employ high bandwidth 20 Kbytes SRAM on each PE, as well as to integrate a 

faster PCI host interface. This is due to the fact that communications costs between mono and 

shared memories are quite expensive. 

The HiPAC has a high reputation within computer music society. The research, which has 

been carried out, is only a first step, with yielding results of HiPAC and the research eluci­

dated on a challenging area of audio processing, which limits have not permitted to exploit 

parallel processing in extensively free. We believe that this research will reflect an area of 

audio performance computing, as well as digital signal processing in general, due to the de­

veloped algorithms widely in use. 

To the best of the knowledge of the researchers of the current project, there is not yet any 

real­time parallel tool for professional audio processing, which we have made here. The issue 

is that researchers have not seriously looked at the problem of parallel computing in audio 

processing. Yet to achieve parallel virtue, Parallel Research Centres should recruit more par­

allel computer scientists. Lastly, bridging the gap between computer music composers and 

the hardware must be done urgently since otherwise the field of computer music risks becom­

ing completely left behind. 
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Appendix A 

Tests of variations of the SDFT algorithm 

Number of 
DFT input 
elements 

Number 
of SDFT 
input 
elements 

Algorithm 
wall clock 
time (s) 

Time of 
calculation an 
element (ms) 

Initialisation 
time (s) 

Time of SDFT 
loop 
Calculation (s) 

Time of 
IDFT loop 
Calculation (s) 

64 1000 0m1.972 

64 10000 0m19.852 
64 50000 1m39.249 1.98 0m0.003 0m1.701 1m37.560 
128 1000 0m7.917 
128 10000 1m18.952 7.89 0m0.006 0m0.69 1m18.213 
256 1000 0m31.453 
256 10000 5m14.386 31.43 0m0.017 0m1.385 5m12.559 
512 1000 2m5.389 125.3 0m0.063 0m0.334 2m5.010 
1024 1000 8m14.263 494.2 0m0.963 0m0.785 8m13.772 
2048 100 3m18.463 1984.6 0m0.961 0m1.070 3m18.212 
4096 100 13m18.461 7984.6 0m3.888 0m4.110 13m17.942 

Table 1. Results of successive DFT and IDFT algorithms. 
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N S Algorithm wall 
clock time (s) 

Time of 
calculation an 
element 
(ms) 

Initializati 
on time (s) 

Time for 
SDFT 
calculation 
(s) 

Time of 
SDFT per 
sample (ms) 

Time of 
IDFT loop 
Calculation(s) 

64 1000 0m1.525 

64 50000 1m14.402 1.48 0m0.027 0m18.789 0.375 0m55.837 
128 1000 0m5.216 
128 10000 0m51.733 
128 20000 1m43.437 5.17 0m0.029 0m14.880 0.744 1m28.741 
256 1000 0m14.825 
256 10000 2m27.063 14.70 0m0.034 0m14.263 1.426 2m12.722 
512 1000 0m55.950 
512 10000 9m18.459 55.84 0m0.055 0m28.439 2.843 8m49.921 
1024 1000 3m20.088 200.08 0m0.123 0m5.759 5.75 6m59.693 
1024 100000 332m56.532 
1024 1000000 3329m22.400 
2048 1000 13m8.606 788.60 0m0.403 0m11.648 11.648 12m57.294 
4096 500 25m32.399 3064.7 0m1.477 0m12.696 25.392 25m21.094 

Table 2. Results of synchronous data copy of SDFT and IDFT algorithms. 
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Number 
of DFT 
input 
element 

Number 
of SDFT 
input 
elements 

Algorithm 
wall clock 
time (s) 

Time of 
calculation 
an element 
(ms) 

Initialisatio 
n time (s) 

Time of 
SDFT loop 
Calculation 
(s) 

Time for 
SDFT calc. 
per 
element 
(ms) 

Time of 
IDFT loop 
calculation 

Time of 
IDFT 
calculations 
per element 
(ms) 

64 1000 0m1.464 

64 50000 1m11.335 1.426 0m0.027 0m17.038 0.340 0m54.331 1.086 
128 10000 0m56.490 
128 20000 1m52.928 5.646 0m0.030 0m26.185 1.309 1m26.811 4.34 
256 1000 0m16.943 
256 10000 2m48.885 16.88 0m0.034 0m38.329 3.832 2m10.455 13.04 
512 1000 1m8.256 68.256 0m0.055 0m15.220 15.22 0m53.023 53.02 
512 10000 11m21.51 
1024 1000 4m9.855 249.8 0m0.123 0m55.459 55.45 3m14.316 194.3 
2048 100 1m40.930 1009.3 0m0.402 0m22.611 226.1 1m18.765 787.6 
4096 100 6m33.780 3937.8 0m1.476 1m28.174 881.7 5m7.786s 3077 

Table 3. Results of asynchronous data copy of the SDFT algorithm. 
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Number 
of DFT 
input 
elements 

Number of 
SDFT 
input 
elements 

Number of 
elements in 
a chunk 

Algorithm 
wall clock 
time (s) 

Time of 
calculation an 
element (ms) 

Time of calculation an 
element in SDFT 

Time of 
SDFT loop 
Calculation 
(s) 

64 1000 32 0m2.643 

64 1000 64 0m3.831 
64 50000 16 1m41.079 2.021 0m48.393 
64 50000 32 2m10.749 2.614 1m19.822 
64 50000 64 3m10.155 3.803 2m22.612 
64 50000 8 1m26.258 1.725 0m32.677 
64 50000 4 1m18.842 1.576 0m24.797 
64 50000 2 1m15.149 1.502 0m20.880 
64 50000 1 1m13.313 1.466 0.37858 0m18.929 
128 20000 1 1m41.729 5.086 0.743 0m14.860 
128 20000 2 1m43.204 5.16 0m16.421 
128 20000 4 1m46.158 5.306 0m19.553 
128 20000 8 1m52.092 5.604 0m25.856 
128 20000 16 2m3.982 6.199 0m38.446 
128 20000 32 2m27.738 7.386 1m3.608 
128 20000 64 3m15.269 9.763 1m53.847 
256 10000 1 2m24.781 14.478 1.4102 0m14.102 
256 10000 2 2m25.910 14.591 0m15.219 
256 10000 4 2m28.159 14.815 0m17.470 
256 10000 8 2m32.685 15.215 0m22.000 
256 10000 16 2m41.740 16.174 0m31.054 
256 10000 32 2m59.847 17.984 0m49.164 
256 10000 64 3m36.024 21.602 1m25.345 
512 10000 32 10m28.346 
512 10000 64 11m40.707 
512 1000 1 0m55.917 55.917 2.856 0m2.856 
512 1000 2 0m56.143 56.143 0m3.079 
512 1000 4 0m56.59 56.593 0m3.530 
512 1000 8 0m57.499 57.499 0m4.437 
512 1000 16 0m59.309 59.309 0m6.248 
512 1000 32 1m2.931 62.931 0m6.248 
512 1000 64 1m10.167 60.167 0m17.107 
1024 1000 1 3m20.157 200.157 5.669 0m5.669 
1024 1000 2 3m20.569 200.569 0m6.081 
1024 1000 4 3m21.396 201.369 0m6.908 
1024 1000 8 3m23.059 203.059 0m8.569 
1024 1000 16 3m26.381 206.381 0m11.890 
1024 1000 32 3m33.022 213.022 0m18.532 
1024 1000 64 3m46.288 226.288 0m31.798 
2048 100 1 1m20.006 800.06 15.10 0m1.510 
2048 100 2 1m20.094 800.094 0m1.593 
2048 100 4 1m20.267 800.267 0m1.758 
2048 100 8 1m20.614 800.614 0m2.090 
2048 100 16 1m21.306 801.306 0m2.754 
2048 100 32 1m22.690 802.690 0m4.083 
2048 100 64 1m25.453 805.453 0m6.736 
4096 100 1 5m10.315 3103.15 36.687 0m3.687 
4096 100 2 5m10.474 3104.74 0m3.847 
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4096 100 4 5m10.792 3107.92 0m4.171 
4096 100 8 5m11.431 3114.31 0m4.820 
4096 100 16 5m12.711 3127.11 0m6.118 
4096 100 32 5m15.268 3152.68 0m8.715 
4096 100 64 5m20.378 3203.78 0m13.901 

Table 4. Results of asynchronous chunk data copy of input in the SDFT algorithm. 
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Number of 
DFT input 
elements 

Number of 
SDFT input 
elements 

Number of 
elements in a 
chunk 

Algorithm 
wall clock 
time (s) 

Time of 
calculation an 
element (ms) 

Time of SDFT 
loop 
Calculation (s) 

Time of SDFT 
calculations per 
element (s) 

64 50000 1 1m13.333 1.466 0m18.978 
64 50000 2 1m6.764 1.335 0m12.614 
64 50000 4 1m6.399 1.327 0m12.394 0.24788 
64 50000 8 1m11.817 1.436 0m18.250 
64 50000 16 1m27.131 1.742 0m31.715 
64 50000 32 1m57.968 1.959 1m1.620 
64 50000 64 3m0.360 3.607 2m2.159 
128 20000 1 1m41.714 5.085 0m14.873 
128 20000 2 1m36.591 4.829 0m9.93 
128 20000 4 1m36.448 4.822 0m9.831 0.49155 
128 20000 8 1m40.748 5.037 0m14.542 
128 20000 16 1m52.630 5.631 0m25.344 
128 20000 32 2m16.889 6.844 0m49.261 
128 20000 64 3m6.076 9.303 1m37.783 
256 10000 1 2m24.786 14.478 0m14.103 
256 10000 2 2m19.329 13.932 0m8.855 
256 10000 4 2m18.539 13.853 0m7.932 0.7932 
256 10000 8 2m21.502 14.150 0m10.893 
256 10000 16 2m30.623 15.062 0m20.017 
256 10000 32 2m49.285 16.928 0m38.679 
256 10000 64 3m27.317 20.731 1m16.708 
512 1000 1 0m55.914 55.914 0m2.855 
512 1000 2 0m54.788 54.788 0m1.812 
512 1000 4 0m54.677 54.677 0m1.631 1.631 
512 1000 8 0m55.270 55.270 0m2.223 
512 1000 16 0m57.127 57.127 0m4.081 
512 1000 32 1m1.001 61.001 0m7.954 
512 1000 64 1m8.728 68.728 0m15.680 
1024 10000 16 32m48.545 196.854 
1024 1000 1 3m20.151 200.151 0m5.668 
1024 1000 2 3m17.743 197.743 0m3.551 
1024 1000 4 3m17.572 197.572 0m3.116 3.116 
1024 1000 8 3m18.610 198.610 0m4.152 
1024 1000 16 3m21.989 201.989 0m7.532 
1024 1000 32 3m29.078 209.078 0m14.620 
1024 1000 64 3m43.237 223.237 0m28.778 
2048 100 1 1m20.003 800.03 0m1.510 
2048 100 2 1m19.465 794.65 0m1.089 
2048 100 4 1m19.492 794.92 0m1.002 10.002 
2048 100 8 1m19.745 797.45 0m1.242 
2048 100 16 1m20.455 800.45 0m2.050 
2048 100 32 1m22.353 802.35 0m4.028 
2048 100 64 1m25.753 805.75 0m7.568 
4096 100 1 5m10.304 3103.04 0m3.691 
4096 100 2 5m9.152 3091.52 0m2.843 
4096 100 4 5m9.246 3092.46 0m2.663 26.630 
4096 100 8 5m9.696 3096.96 0m3.126 
4096 100 16 5m11.207 3112.07 0m4.703 
4096 100 32 5m14.967 3149.67 0m8.568 
4096 100 64 5m21.700 3217.00 0m15.486 
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4096 50 1 2m37.408 3148.16 0m2.587 
4096 50 2 2m36.830 3136.60 0m2.163 
4096 50 4 2m36.902 3138.04 0m2.096 
4096 50 8 2m37.167 3143.34 0m2.36 
4096 50 16 2m38.083 3161.66 0m3.324 
4096 50 32 2m39.739 3194.78 0m5.026 
4096 50 64 2m43.106 3262.12 0m8.485 

Table 5. Results of asynchronous chunk data copy of input and previous values of the SDFT in the SDFT 
algorithm. 
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Number of DFT 
input elements 

Number of SDFT 
input elements 

Number of 
elements in 
IDFT chunk 

Algorithm 
wall clock 
time 

Time of SDFT 
calculations per 
element 

64 50000 1 2m23.585s 2.8717ms 
64 50000 2 2m18.303s 2.76606ms 
64 50000 4 2m11.025s 2.6205ms 
64 50000 8 2m13.363s 2.66726ms 
64 50000 16 2m12.458s 2.64916ms 
64 50000 32 2m8.158s 2.56316ms 
64 50000 64 2m8.678s 2.57356ms 
128 20000 1 3m41.220s 11.061ms 
128 20000 2 3m36.190s 10.8095ms 
128 20000 4 3m32.551s 10.62755ms 
128 20000 8 3m21.620s 10.081ms 
128 20000 16 3m29.398s 10.4699ms 
128 20000 32 3m28.629s 10.43145ms 
128 20000 64 3m19.424 9.9712ms 
128 20000 128 3m16.657s 9.83285ms 
256 10000 1 5m12.949s 31.2949ms 
256 10000 2 5m7.702s 30.7702ms 
256 10000 4 5m3.338s 30.3338ms 
256 10000 8 5m0.943s 30.0943ms 
256 10000 16 4m50.805s 29.0805ms 
256 10000 32 4m58.692s 29.8692ms 
256 10000 64 4m58.153s 29.8153ms 
256 10000 128 4m49.111s 28.9111ms 
512 1000 1 1m58.931s 118.931ms 
512 1000 2 2m1.148s 121.148ms 
512 1000 4 1m59.833s 119.833ms 
512 1000 8 1m59.081s 119.081ms 
512 1000 16 1m58.616s 118.616ms 
512 1000 32 1m54.857s 114.857ms 
512 1000 64 1m58.027s 118.027ms 
512 1000 128 1m57.804s 117.804ms 
1024 1000 1 7m11.081s 431.081ms 
1024 500 2 3m33.831s 427.662ms 
1024 500 4 3m38.475s 436.950ms 
1024 500 8 3m37.260s 434.520ms 
1024 500 16 3m36.477s 432.954ms 
1024 500 32 3m35.898s 431.796ms 
1024 500 64 3m29.282s 418.564ms 
1024 500 128 3m35.095s 430.190ms 
2048 100 1 2m58.565s 1785.81ms 
2048 100 2 2m57.319s 1773.19ms 
2048 100 4 2m55.837s 1758.37ms 
2048 100 8 2m49.732s 1697.32ms 
2048 100 16 2m49.230s 1692.30ms 
2048 100 32 2m48.864s 1688.64ms 
2048 100 64 2m48.581s 1685.81ms 
2048 100 128 2m53.231s 1732.31ms 
4096 50 1 5m52.095s 7041.90ms 
4096 50 2 5m49.929s 6998.58ms 
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4096 50 4 5m47.159s 6943.18ms 
4096 50 8 5m45.475s 6909.50ms 
4096 50 16 5m34.236s 6684.72ms 
4096 50 32 5m33.539s 6670.78ms 
4096 50 64 5m32.978s 6659.56ms 
4096 50 128 5m32.565s 6651.30ms 

Table 6. Results of asynchronous chunk data copy of SDFT values in the IDFT algorithm. 
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