

University of Bath

MPHIL

The Development, Implementation and Analysis of a Real-Time Parallel Algorithm of
Sliding Discrete Fourier Transform

Tsimashenka, Iryna

Award date:
2011

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161920562?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

University of Bath

Department of Computer Science

The Development, Implementation and Analysis of

a Real­Time Parallel Algorithm of Sliding Discrete

Fourier Transform

Iryna Tsimashenka

Submitted in part fulfilment of the requirements for the degree of

Master of Philosophy in Computer Science

University of Bath, 2011

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author. A copy of this thesis has

been supplied on condition that anyone who consults it is understood to recognise that its copyright rests

with the author and they must not copy it or use material from it except as permitted by law or with the

consent of the author.

This thesis may be made available for consultation within the University Library and may be photocopied or

lent to other libraries for the purposes of consultation.

Signature of Author……………………………………………………………………………………………..
Iryna Tsimashenka

1

Abstract

Audio processing is an interesting and challenging area due to the strict requirements of

high­level human ear perception. Although audio processing is a part of digital signal

processing, there has not yet been any real­time parallel implementation of the essential

signal processing tool. We have developed, implemented and analysed a Sliding Discrete

Fourier Transform algorithm using a particular vector parallel processing. This investiga­

tion is focused on speeding up real­time parallel implementation of the SDFT algorithm. It

has developed and implemented some real­time parallel algorithms with different methods

of data copy in order to find the fastest algorithm. In order to achieve a whole signal proc­

essing tool for professional use in the audio processing field a real­time parallel algorithm

of Inverse Discrete Fourier Transform has been developed. In order to speed up this algo­

rithm some versions were developed with different methods of data copy. All algorithms

were tested and analysed. Real­time parallel algorithms were achieved with promising re­

sults. The signal processing tool of the SDFT and the IDFT algorithms was attained.

2

Acknowledgements

I would like to thank the following people:

•	 My supervisors, Prof. John ffitch and Dr. Russell Bradford for providing stimulus

during my research.

•	 My parents for their great support and love.

•	 The members of the Computer Science Department, relatives and friends for con­

structive discussions and help during the writing of this thesis.

3

The best time to plant a tree is twenty years ago. The second best time is now.

 Chinese proverb

4

Contents

1. Introduction...9

2. Literature review and background .. 15

2.1 Computer Music review ... 16

2.1.1. Early history of Computer Music...16

2.1.2 Signal Processing and Computer Music Review ..17

2.2.1 Signal Processing and Computer Music in the 20 century.................................. 18

2.2.2 Centres and venues for research in Music Technology.......................................20

2.2 Parallel computing review..21

2.3 Background .. 23

2.3.1. High Performance Computing in Music Technology ..23

2.3.2 Goertzel algorithm... 29

2.3.3 Sliding Discrete Fourier Transform .. 30

3. Environment and methodology... 33

3.1 Environment ... 33

3.2 General methodology of the parallel development and implementation of the

SDFT and IDFT algorithms... 42

3.3 Analysis of the successive algorithm ... 48

3.4 Analysis of the synchronous data copy of the SDFT algorithm.............................50

3.5 Analysis of the asynchronous data copy of the SDFT algorithm...........................55

3.6 Analysis of the asynchronous chunk data copy of the SDFT algorithm................58

3.7 Analysis of the asynchronous data chunk for SDFT and input of the SDFT

algorithm..61

3.8 Analysis of the asynchronous chunk data copy of the SDFT values in the

IDFT algorithm.. 64

4. Results and Evaluation.. 67

5. Conclusions and Future Work .. 71

6. Bibliography ... 74

7. Tests of variations of the SDFT algorithm ...78

5

List of Tables

Table 1. Results of successive DFT and IDFT algorithms. .. 78

Table 5. Results of asynchronous chunk data copy of input and previous values of the

Table 6. Results of asynchronous chunk data copy of SDFT values in the IDFT algorithm.

Table 2. Results of synchronous data copy of SDFT and IDFT algorithms. 79

Table 3. Results of asynchronous data copy of the SDFT algorithm. 80

Table 4. Results of asynchronous chunk data copy of input in the SDFT algorithm. 82

SDFT in the SDFT algorithm. .. 84

.. 86

6

List of Figures

Figure 1. CSX600 processor [25]. ... 35

Figure 2. Execution units [25]. .. 36

Figure 3. Communications between CSC and host processors [25]. 38

Figure 4. Description of mono type * poly type [25]. ... 39

Figure 5. Description of poly type * mono type [25]. ... 40

Figure 6. Order of algorithms and data movements. ... 43

Figure 7. Image of storing complex number in mono and poly memories........................ 45

Figure 8. A synchronous order of storing and coping information in the Mono memory. 53

Figure 9. A synchronous order of storing and coping information in the Mono memory. 56

Figure 10. An asynchronous order of storing and coping chunks of information in the

Mono memory. ... 59

Figure 11. An asynchronous order of storing and coping chunks of information in the

Mono memory and within the chunk in the Poly memory................................. 62

7

List of Charts

Chart 1. Dependency of the time delay on the window size in the successive algorithms of

the DFT and IDFT. ... 49

Chart 2. Dependency of time delay on the window size in the synchronous data copy

Chart 3. Dependency of time delay on the window size in the results of asynchronous data

Chart 4. Dependency of the time delay on the window size of the asynchronous algorithm

algorithm... 54

copy implementation of the SDFT algorithm... 57

with chunk data copy of previous SDFT for calculation of the current SDFT. 60

Chart 5. Dependency of time delay on window size. ... 63

Chart 6. Dependency of time delay on the window size of the asynchronous algorithm

with chunk data copy of SDFT for calculation of the IDFT................................. 65

Chart 7. Evaluation of SDFT algorithms. ... 68

Chart 8. Evaluation of IDFT algorithms. .. 69

8

Chapter 1

Introduction

The mysteries of Time have unceasingly engaged the human intellect. For many centuries

men have mused on the nature of Time with a philosopher’s eye; they have disputed

Time’s cause of uncontrollable changes, and attempted to catch the essence of Time. The

sexagesimal numerical system originated by ancient Sumerians was passed down to An­

cient Babylonians; this system is still used for measuring time. In the Renaissance, the

period gave rise to modern science concerning nature and humanity. Time was compre­

hended no longer as an ephemeral substance, but became an essential trait of the Universe.

There developed a full definition of Time’s behaviour, which could be studied by scien­

tists and thinkers. The German philosopher Immanuel Kant in [1] contests that Time is not

derived from experience, but is a precondition of experience.

However, even today no explanation for certain of Time’s features can be found in funda­

mental physical laws. Time still conceals many mysteries that researchers have attempted

to explain. There are many thoughts about what Time is; Albert Einstein, one of the most

influential scientists of all time, concedes in [2] that Space, Time and Substance interact

continuously. Time nevertheless remains a mystery and an indivisible issue for humanity.

9

Scientists have not learned how to manage Time, yet they have studied how to take advan­

tage of it, and computers are effective tools in the achievement of this goal. Computers

have accumulated information and knowledge over many years. However, only in the last

few decades has the creation of parallel processors led to a promising opportunity to de­

velop real­time applications, and therefore to seize the impetus from the World of Com­

puter Sciences.

The use of a concurrent process that communicates by message­passing has its roots in

operating system architectures studied in the 1960s [3]. There are many cases in which the

use of a single computer would be possible in principle, but the use of parallel systems is

beneficial for practical reasons.

Depending on the scientific problem, parallel researchers use different kinds of architec­

ture ­ heterogeneous or homogeneous multi­core computers. In the area of High Perform­

ance Audio Computing a vital aspect of research is Digital Signal Processing, which in the

last decade has become crucial, in the light of time delay. This thesis is about a detailed

description of the research, which has been carried out.

While computers have been advancing, developing into clusters, multiple processors and

vector accelerators, there has barely been a change in the audio computing model. Re­

cently a specific focus was proposed under the title of “High Performance Audio Comput­

ing (HiPAC)”; this research fits directly into this description.

Therefore High Performance Audio Computing (HiPAC) has become an essential research

line in the twenty first century. This is due to the fact that efficient software is a significant

problem in bridging the gap between the IT industry and its users in music technology. It

is imperative that parallel programming researchers should create an advanced level of the

HiPAC, as it is in danger of being left behind. The main focus is on HiPAC that exploits

10

the processing power of all processors in parallel to efficiently support audio programming

in parallel computers.

Digital Signal Processing (DSP) is a very wide field, with a variety of applications, espe­

cially DSP used in multimedia. In essence, it has made a huge improvement in picture

processing. In a comparison of picture and sound fundamental features, the sound technol­

ogy is unambiguously more erratic and has high latency requirements. For instance, con­

sidering a delay in video processing, a program just repeats the previous image, and the

eye smoothes the video, whereas in sound processing any delay will give a click sound.

Consequently, the general view of information is damaged. Also, it should be noted that

Audio Computing is lagging by a decade behind Image Processing owing to the lack of

computer performance and now, with the ability to use multi­core computers, there is a

chance to improve this notable area.

There are different approaches of frequency­domain processing of signal, which use spec­

tral processing tools like: Discrete Fourier Transform, Short time Fourier Transform, In­

stantaneous Frequency Distribution, proposed by T. Abe in [4] and Sinusoidal Modelling.

Victor Lazzarini in [5] has explored these methods from basic principles. These tools are

used in music technology as a conversion from a time domain signal into a frequency do­

main representation. V. Lazzarini showed in [6] a variety of implementations of fre­

quency­domain digital audio effects, as well as in Csound particularly.

For this particular research the choice was made to investigate the parallel DFT algorithm,

owing to the fact that in literature one can more usually find the optimised algorithm of

DFT, which is Fast Fourier Transform (FFT), yet it needs a certain number of transform

size, which is power­of­two as well as other restrictions; transform size in the DFT analy­

sis does not have this limitation. Although, David John Wheeler suggests a FFT algorithm

with complexity of O(N*logN), this algorithm will not feature in our consideration.

11

One approach of this research is to develop a real time parallel DSP algorithm. A null hy­

pothesis is proposed to convert from the time domain to the frequency domain as well as

the inverse operation within 10 milliseconds, as this limit is imperceptible for experts in

audio technology. For the DFT inverse calculations were performed by using the Inverse

Discrete Fourier Transform (IDFT). Due to the fact that a larger transform size implies

precise values in the frequency domain, it is imperative to find a balance between trans­

form size or window and time delay, which takes calculations (DFT and IDFT conver­

sions) of one point. In the analysis of parallel algorithms, more attention is usually paid to

communication operations than computational steps. Therefore, communications were the

purpose of this investigation.

In addition to these approaches, the input signal was stored with double precision, which

takes for each point 8 bytes of memory, instead of the usual 4 bytes. This method of in­

formation storing was adopted for the purpose of making the rounding error marginal.

From the audio point of view this error gives rise to noise. So, significant errors in single

precision give noise approximately 2 minutes from the beginning, in comparison with

double precision calculations, which give noise in 2 hours.

Concurrent programs are more challenging to develop due to parallel architecture intro­

ducing implicit kinds of errors and a variety of restrictions in coding, which influence pro­

gram performance. Communications between concurrent processors and shared memory

were the greatest obstacle in the project; due to the form of parallelism, which is data par­

allelism. Data synchronisation emerges in parallel or distributed computing only if a paral­

lel algorithm requires processes of execution calculations on data in synchrony, each node

keeps its own copy of data. Data must be copied back and forth coherently with one an­

other. Here, for calculation of SDFT data has to be transferred from different places in

shared memory and only then can calculations be done, consequently this parallel problem

arises in the current project.

12

The project is concerned with a parallel slowdown. Owing to the procedure of data send­

ing it is the most expensive in terms of time due to the physical features of the communi­

cation tools. It is necessary to find the most appropriate size of sending information from

mono to poly processors and back. If the size is wrong then the accelerator needs more

time for communications and eventually communication overheads arise. In this case, it is

necessary to find equilibrium between the amount of data, which has been sent, and the

time the communication needs.

In order to achieve real time for a parallel program it is imperative to choose a computer,

which is appropriate for calculations and communications in the introduced algorithm. The

Clearspeed CSX600 accelerator was chosen for the execution of a SDFT parallel imple­

mentation. Clearspeed has both a mono execution unit and a poly execution unit. The Poly

unit contains 96 processors; each processor has its own poly memory. As the first part is a

fine­grained algorithm, nodes must communicate with shared memory many times,

whereas the second part of the algorithm was IDFT, where nodes needed to communicate

with shared memory once per loop cycle and the amount of data which was required was

larger than in SDFT. Also we introduced an example of parallel program with straight

calling data from shared memory. This was done due to the specifics of audio processing

requirements, such as low latency and the considerable amount of data, which must con­

tinuously be calculated. We needed to answer a crucial question concerning which imple­

mentation is faster for the fine­grained vector accelerator: whether to copy a massive

amount of data from shared memory to poly memory or to do the calculation on shared

memory. This question emerged due to each processor element typically having faster ac­

cess to its local memory than access to shared memory, however this statement was

checked by developing and implementing 3 algorithms of IDFT as well as analysing these

results in the chapter “Methodology and Environment”.

Several algorithms were developed, implemented and analysed, and the results of each

were compared. The aim was to find the fastest DFT algorithm as well as the fastest IDFT.

More than four hundred tests we performed in order to find the balance between loaded

13

data and delay. Detailed tables with test results can be found in the appendix of this thesis.

In the chapter “Background and Literature Review” we show the links between computer

music and computer science throughout the history of these areas’ development. The

background to this research is also demonstrated in this chapter. There are two sections in

the “Methodology and Environment” chapter: “Environment” and “Methodology”. The

Environment section contains explicit review of the Clearspeed architecture and the soft­

ware provided with the Clearspeed vector accelerator, where the project has been pro­

gramming. The Methodology contains a description of the developed algorithms, and

charts of experiment results, where data has been analysed. In the “Results and Evalua­

tion” chapter we evaluate the results from all algorithms in order to find the fastest algo­

rithm, which conforms to the requirements. The conclusion, applications, results and fu­

ture work can be found in “Results and Future Work” chapter.

14

Chapter 2

Literature review and background

The structure of this chapter evolved by virtue of the fact that to the best of our knowledge

there is no documentation that contains a sophisticated history of modern computer music

in the 20th century. We divided this chapter into three main sections: a Computer Music

review, a Computing review and the Background to this research. In the first two sections

we attempt to show how the areas of Computer Music and Computing have been closely

interwoven with each other throughout their history. The Background is the last section in

this chapter, where we talk about the research, which was done previously, and how it is

connected to our work.

15

2.1 Computer Music review

2.1.1. Early history of Computer Music

The Greek philosopher Pythagoras first examined music as a science in the sixth century

BC, when he considered the beauty of a sound, and found a harmonic overtone series on a

string. Many significant thinkers and scientists of Ancient Greece and Rome discovered

that sound can be represented as a mathematical equation. Among them were Aristotle and

Galileo Galilei. Considered to be a father of acoustics, the music theorist Marin Mersenne

contributed musical tuning and “The first absolute determination of the frequency of an

audible tone (at 84 Hz) implies that he had already demonstrated that the absolute-

frequency ratio of two vibrating strings, radiating a musical tone and its octave, is 1:2.”

in his work [7], [8].

John William Strutt, Baron Rayleigh, was the first to summarize outstanding contributions

to music theory in his book [9] as well as to look at sound from both mathematical and

physical points of view. J.W. Strutt describes in detail the most significant discoveries and

observations of research that influenced sound theory in the 18th and 19th centuries. In the

first volume of [9] Baron Rayleigh looks at sound from a different point of view: “The

sensation of sound is a thing sui generis, not comparable with any of our other sensa

tions”. Here J.W. Strutt summarises many distinguished physical experiments, which were

carried out by François Arago and others, about the velocity of sound. Jean­Daniel Colla­

don and Jacques C.F. Sturm were also investigating the propagation of sound. Baron

Rayleigh also summarizes many other experiments regarding the intensity of sound and

the generation of a musical note by “revolving a wheel whose milled edge is pressed

against a card”. He also describes in detail a “Siren”, a remarkable voice­production in­

vention of Charles Cagniard de la Tour. In this volume J.W. Strutt also develops his own

investigations and observations, about recognition of sound, analysis of notes and many

other fundamental tools of sound.

16

In the second volume of [9] sound is treated mathematically by Lord Rayleigh. He com­

bines vibrations of air with an equation of continuity and Lagrange’s theorem, Poisson’s

equation, law of reflection, and the Fourier transform. He describes a first theoretical ex­

planation of the velocity of sound experiments made by Newton. This significant book

contributes copious points from mathematics and physics to the theory of sound, and in it

J.W. Strutt opens up a new era of sound.

The twentieth century was a crucial moment for audio technology and acoustics; it was an

exuberant time of sound applications in many other areas of science. The first scientist to

use acoustics as an individual science was an American physicist, Wallace Clement Sabine

(1868 – 1919), a founder of architectural acoustics. W. C. Sabine improved acoustics in

the Fogg Lecture Hall in 1895 [10] and collaborated in the building of Boston’s Sym­

phony Hall in 1900 [11].

2.1.2 Signal Processing and Computer Music Review

In essence, signal processing is a field where applied mathematics is combined with elec­

trical engineering, and which considers analysis or operations of signal in discrete or con­

tinuous time in order to conduct an operation of signal. A signal can be sound, image, ra­

dio, electrocardiogram and many other things. Each kind of signal imposes constraints on

features of an operation, which deals with this signal. Sound processing is a signal proc­

essing with imposes constraints on latency. The most common examples of operations’

applications on sound analysis are: spectrum analysis, filtering, smoothing, modulation,

and wavetable synthesis.

The area where mathematics, computer science and music composition are joined together

is called computer music. It includes several new technologies: digital signal processing,

music synthesis, computer composition, sound design, acoustics, psychoacoustics and

17

many others. In the twentieth century, when personal computers became an everyday phe­

nomenon, and with increased numbers of home recording systems, the definition of com­

puter music changed to mean everything that is created by using a computer.

2.2.1 Signal Processing and Computer Music in the 20 century

In the late forties the first few stored­program computer machines with floating point units

were built in the United Kingdom. At the Computer Laboratory in Cambridge one of the

world’s first practical stored program electronic computers “Electronic Delay Storage

Automatic Calculator” (EDSAC) was built in 1949. The world’s first taught course in

computer science was also offered here four years later. At that time one of the earliest

tasks for computer machines was the calculation of Mersenne primes, which took ap­

proximately nine hours to run. Also, at the University of Manchester, the Ferranti Mark 1

was installed. A machine with a nickname ­ “Babe” [12] ­ this computer faced another

first calculation: that of the highest factor of a number.

In 1948, the first scientist to make a sound on the computer was Christopher Strachey,

who was a mathematics master at Harrow, a private school in London. There are two sto­

ries about the first sound computer program. The first is that Strachey wrote a program

and ran it on EDSAC and surprisingly, the computer started producing a sound: the sound

of the national anthem. From that time, in the mid­fifties, scientists started to view com­

puter things differently – musically. The second story is that the first musical use of a

computer was at Victoria University in Manchester, with the first musical rhythm of “Baa

Baa Black Ship” [12]. Also, Christopher Strachey visited Bell Laboratories and other re­

search centres in the United States. He worked on both Ferranti and EMI Groups. Later he

worked at the University of Cambridge and in the middle of the sixties he became the first

director of the Programming Research Group at the University of Oxford, where he later

became the first Professor of Computer Science [13]. Christopher Strachey launched a

new era of computer music.

18

Nevertheless, it is an American researcher, Max Vernon Mathews, who is considered to be

the father of computer music. His interests included audio processing, synthesis, and many

others aspects of computer music. After achieving his ScD, he started work at Bell Labs

(formerly known as AT&T Bell Laboratories and Bell Telephone Laboratories), where the

first computer music language MUSIC I was created in 1957. Max Mathews started a new

epoch of digital sound generation by creating a family of MUSIC languages. Afterwards

he created MUSIC II and MUSIC V. Also Max Mathews was the first to teach a course of

computer music at Stanford University, where he later became a professor [14].

In the eighties John Robinson Pierce, an American scientist who worked at Bell Labs from

1936 till 1971, created many outstanding contributions to microwave technology, and ra­

dio and satellite communications. For the latter he was awarded an Edison Medal. At Bell

Labs Pierce also worked in collaboration with Max Mathews [15]. After resigning from

Bell Labs, he became professor of electrical engineering first at the California Institute of

Technology and then later joined the Centre of Computer Research in Music and Acous­

tics (CCRMA) at Stanford University, where he did outstanding research in computer mu­

sic. The most prominent creation of J. Pierce and M. Mathews was the Bohlen–Pierce

scale, an alternative to the octave musical scale [16].

American scientists were not alone in contributing their research to the field of computer

music. Many researchers and composers from the Old World introduced a variety of sig­

nificant investigations as well. One of the earliest Europeans, who started work at Bell

Telephone Laboratories was Jean­Claude Risset, a French composer who worked with

Max Mathews at Bell Labs in the sixties. Risset worked on brass synthesis, pitch para­

doxes, synthesis of new timbres and the sonic development process. He also wrote many

articles about computer music. Risset was chair of the computer department at IRCAM in

the late seventies and worked as a composer at the Media Laboratory at MIT. He received

a considerable number of prestigious prizes and grants [17].

19

2.2.2 Centres and venues for research in Music Technology

IRCAM (Institut de Recherche et Coordination Acoustique/Musique) has developed many

contributions, which have influenced the computer music world. Founded in 1970 by

French President George Pompidou and Pierre Boulez, it was opened in 1977. IRCAM has

nurtured many remarkable researchers, among them John Chowning, Luciano Berio, Pi­

erre Boulez and Jean­Claude Risset. Many notable research concepts, music languages,

environments and technological contributions have been created there. This institution still

remains a home for many contemporary researchers and composers [21].

From the fifties significant scientists worked at Stanford University’s Center for Computer

Research in Music and Acoustics, which was founded by John M. Chowning. The main

research is aspects of computer music, which are brought together from music, computer

science, physics and engineering areas. There are groups like “Music, Computing, and

Design”, “Signal Processing”, “Music in Virtual Words” and many others. In the begin­

ning it was created as a high end research centre “A multi-discipline facility where com

posers and researchers work together using computer-based technology both as an artistic

medium and as a research tool.” [18]. Here Chowning worked on frequency modulation

(FM) synthesis algorithm (1967), which he invented by an accident of testing a variety of

vibrato: “Chowning found that when the frequency of the modulating signal increased

beyond a certain point, the vibrato effect disappeared from the modulated tone, and a

complex new tone replaced the original.” [19]. Chowning patented his discovery in 1975

and licensed it to the YAMAHA Corporation. The first commercial device with FM syn­

thesis implementation on it was a digital synthesizer DX7, which came into the world in

1983. Yamaha patented their hardware implementation and established a monopoly in the

market of musical hardware technology [20]. Chowning’s invention of FM synthesis is a

strong example of the long tradition of transferring research from laboratories to industrial

applications.

20

And lastly, ICMC (International Computer Music Conference) ­ the multi­disciplinary

nature of this conference, which covers composition, computing and digital signal

processing, makes it one of the most prominent widespread proceedings where researchers

now show their inventions in music technology and audio processing [21].

2.2 Parallel computing review

In this subsection we are going to look at parallel computing for several reasons. Firstly,

we want to show how music technology is closely interwoven with concurrent computing.

Secondly, we attempt to discover what kind of parallel computer will be commonly wide­

spread in the near and distant future, because this acquisition of a future general parallel

computer will enable the construction of a high performance computer for the purposes

and requirements of music technology. This knowledge will be a key factor in producing

high quality software under the title of the HiPAC. Thirdly, we attempt to elucidate the

heading of audio software for the music community and share gained experience from our

research in the real­time parallel algorithms and their realisation in Music Technology.

Improvements in modern audio technology would not occur without the creation and

modernization of a strong engineering, scientific and analytical tool – the computer and its

development to the parallel computer. The idea of an Analytical Engine, the first mechani­

cal general purpose computer, was conceived by Charles Babbage [22]. Babbage’s inven­

tion was remarkable and initiated the whole of computer development [23], [24].

The origin of the multiple instructions and multiple data (MIMD) parallel computer came

from Charles Babbage’s creation the Analytical Engine [29], [30]. The first company to

start the development of the mass­produced computer was IBM in 1954, supporting the

21

high­level programming languages FORTRAN, LISP and MUSIC. Under the “IBM 704”

project there were 704 researchers. Among them were pioneers in computer science, in­

cluding the well­known computer architect Gene Amdahl and the designer of FORTRAN

John Backus [31], [33]. In 1962 using the IBM 704 computer American physicist John

Larry Kelly and Max Mathews synthesized speech for the first time. This was a song

“Daisy Bell”. It was one of the most illustrious moments at Bell Labs [32].

During the later fifties and sixties the foundation for the modern parallel computer was

created. A trend became apparent that whenever a new architecture design was introduced,

just a few computers were produced, which confirmed the fact that parallel computing was

built only for scientific computations. In 1965 Gordon Moore, an American scientist, pub­

lished Moore’s Law. It concerned a long­term trend in processor development. Moore said

that over every 18­24 month period, the number of transistors and, consequently computer

performance, would be doubled [38]. Moore’s Law for desktop computers stopped work­

ing at the beginning of the 2000’s when chips reached their physical limits in processing

speed. Also for HiPAC Moore’s Law used to work only partly because of the differences

and requirements of audio processing, described in the “Introduction” chapter. In 1966

Michael J. Flynn introduced four classifications of parallel computers and programs,

which are called Flynn’s taxonomy. This classification is based on a number of concurrent

nodes and the data flow needed for implementation of an algorithm or available in a classi­

fied computer [39]. In the HiPAC a Single Instruction Multiple Data classification is used,

or its subclass called a Single Program Multiple Data, which lets the data flow asynchro­

nously.

22

2.3 Background

2.3.1. High Performance Computing in Music Technology

Many significant challenges in audio processing have hitherto been avoided as being com­

putationally prohibitive. There have been many positional papers and comments about the

advantages of using multi­core computers [3], [52]. In [51] it was suggested using multi­

processors only for the calculation of a specific area of tasks and the author of [51] did not

believe that ways of programming would ever change, a view which is very debatable, but

if it were true then it would be very challenging to convert general users like music com­

posers towards parallel programming. Also it was proposed to find another style of com­

puting due to the fact that for programmers these changes are very challenging [51].

I believe that looking back into the history of how computers were created and enhanced it

can be seen that there was always a temptation to develop a faster computer by multiply­

ing processors and using those processors in parallel. Therefore it would not be any new

way of making a computer faster to make it parallel. Peter Van Roy in [50] recalls data­

flow programming as well as designing decentralized systems. An overview of many­core

processors in the past and present was proposed by David Wessel in [49]. Where a differ­

ent kind and level of music software was compared, highlighting the most popular current

software (CSOUND, Max/MSP, FAUST and etc.), he said that a huge majority of these

languages do not support parallelism. On the other hand there have been several concur­

rent developments from the seventies and the eighties (IRCAM Signal Processing Work­

station, multiple Motorola 56000­based Audio Media Nubus Cards, DigiDesign’s DSP­

Farm). The author discusses the architecture of parallel computers to be in use only for

computer composers, saying that it is unclear whether it should be homogeneous or het­

erogeneous architecture but it is clear that the most must be made out of concurrency to

make real­time practical [49]. These papers are positional, so the authors do not present

any research results.

23

John ffitch et al in [48] describes how crucial High Performance Computing for Audio

Technology is. The main necessities here are real­time processing as well as low latency.

This is due to the imperative of improving sound processing, audio synthesis and music

composition, where deep investigation needs to be done in a digital audio stream. Also

they propose different ways of researching HiPAC, including accelerators and multi­core

computers: “…the study of new advanced processor architectures to enhance audio syn

thesis, processing and music composition…” John ffitch et al emphasize significant differ­

ences between High Performance Computing and HiPAC: “Rather than considering the

use of supercomputers and mega clusters we are concentrating on what will within a rela

tively short timescale be consumer grade hardware. The emphasis has to be on affordable

low latency real-time processing”. Also they claim that getting further speed from a one

core consequently requires high power consumption. As a result, it is not profitable in the

light of high energy expenses and it is a source of noise creation in music applications.

The authors also affirm their hypothesis in audio processing definition, that it is serial, as

well as that the implementation of audio processing involves many identical independent

calculations, so the structure of an algorithm is highly data parallel. Some challenging

tasks are defined due to the fact that calculations can be done in real­time, and which re­

quire highly powerful computers, which are going to be built in the next generation for

general purpose.

In [48] there is also included a condensed investigation into parallel hardware. It describes

the differences between SIMD (Single Instruction Multiple Data) and MIMD (Multiple

Instruction Multiple Data) models. The aim of the investigation in [48] is to find out how

to design general parallel audio computers in the light of parallel audio processing needs.

Nowadays, fine­grained concurrent architectures of SIMD look like a vector addition of a

general CPU, and also SIMD includes graphic accelerator cards; these improvements are

important to all computer users. A distinction of the new SIMD accelerator is that it is de­

veloped on one chip and the architecture is monolithic. Also in order to support and make

faster performance growth chip producers have already implemented the procurement of

24

many units for supporting new concurrent processors. Manufacturers have already devel­

oped chips with a performance of one teraflop, but they will be produced commercially

only in 10 years’ time.

Nowadays a serious market has been built for SIMD parallel architectures with the most

noticeable SIMD accelerators being the Tesla system series from nVidia and the

Clearspeed CSX600 and CSX700. The Tesla accelerator introduces the first general­

purpose product, not specified for graphics. Secondly, the floating­point Clearspeed

CSX600 and CSX700 accelerators are presented. In CSX600 each card contains one chip

and the newest version of CSX700 unites two CSX600 processors. In essence, each chip

contains 96 floating point processors in SIMD style. The main advantage of Clearspeed is

low power consumption, which is 30W per card. The most recent release of CSX700 is

significantly cheaper due to the implementation of a PCIe­based microprocessor. This fact

makes Clearspeed CSX700 vie with nVidia Tesla accelerators. Detailed studies were also

done on the Clearspeed processors during the programming, and they are presented in the

chapter of “Methodology and Environment”, which also contains detailed information

about Clearspeed architecture.

Audio processing imposes interesting challenges on computing. So, there is no general

rule on how much speed up can be obtained from parallelism. Amdahl’s law [47], states

the following formula:

1
SpeedUp =

P
(1− S)+

S

Where, S is a sequential part of the algorithm and P is a parallel part of the algorithm and

also P+S =1. Speedup is a time span of a ratio of sequential portion’s time span plus time

span of parallel part takes. It is mainly estimates of overly conservative value in parallel

computing. Hitherto audio processing is without any parallelism evaluation, due to the fact

that it has high concurrency only in data, and the complexity of calculation is low, conse­

quently the concurrent part of a task will mostly depend upon hardware features. There­

25

fore, new paradigms of audio processing must be created. The authors argue in [48] that

audio processing must pay attention to computation requirements. “Even if they are time-

consuming today, they will not be in only a few years, so that we must start investigating

them now...in the HiPAC program the study of no-compromise algorithms – rather than

make simplifications to an algorithm purely for reasons of slowness, HiPAC considers

such algorithms in as pure or “ideal” a form as possible, especially where that ideal form

may lead to musically useful and novel behaviour.”

It is shown as an example that the Sliding Phase Vocoder can make use of HiPAC [46].

The implementation of SPV is based on SDFT, and they show that the process of SDFT

calculations is essentially parallel between the bins and they expect that implementation

SDFT on the Clearspeed microprocessor will be yielding in terms of real­time perform­

ance and latency.

Very new impressive investigations have been done by Yann Orlarey at Grame [45]. The

first investigation is a Jack audio server with low latency, which was previously based on

a sequential machine and it was upgraded to a data flow model with usage of a lock­free

programming technology on multi­core computers. The Jack system works similarly with

a server with natural parallelism, when clients do calculations concurrently even if those

depend on shared variable. An activation model is needed to activate clients simultane­

ously and accurately.

Also the authors underline that Jack has sequential and parallel components. If a parallel

component exists it means that clients can be executed concurrently on different proces­

sors. The data­flow model helps here to describe this system: if all inputs become accessi­

ble then a node in data­flow graph is able to run. The activation counter is used by each

client to find out the number of input clients on which it depends. The activation is trans­

ferred from client to client during all executions of the server. The authors suggest the way

of sequential graph execution, utilizing pipeline techniques. Their suggestion is dividing

an audio buffer into components. But this division means that during running smaller

26

buffers there will be more context­switching between processors, which causes a time de­

lay, so it is imperative to find the equilibrium between the size of divided buffers and the

number of available processors in the project [45].

Another project is a language for High Performance Audio Applications – Functional Au­

dio Stream or “Faust”. Faust is designed to be implemented efficiently as C/C++ plug­ins

for audio applications [44]. It is used for real­time signal processing with transformation

into C++ language; also it does not depend on any DSP library. A programming model of

a language is a combination of mathematical semantics with block­diagram syntax. Re­

cently, the authors started a design of a parallel compiler and they show an example of

their work, where they found it challenging to balance data copy and communication

overheads. Thus efficiency is still an essential domain of the research for achieving real­

time performance. The work done by Y. Orlarey in [45] is promising; however, unfortu­

nately, no results of their experiment are shown. Thus it is impossible to compare with the

results of our project.

A parallel implementation of a partitioned convolution and a non­negative matrix factori­

zation (NMF) were done in The Parallel Computing Laboratory at the University of Cali­

fornia Berkley by Eric Battenberg, David Wessel and Adrian Freed in [43]. This NMF is a

component of a music information retrieval (MIR). A parallel algorithm of a partitioned

convolution a frequency delay line (FDL) was used in [42]. The main approach was to

reach real­time requirements and to harness GPU cards in audio processing.

Eric Battenberg in [43] shows an algorithm to speed up NMF. Implementations were done

on consecutive and concurrent ways in order to optimize and analyse the algorithm to­

wards real­time. The author presents performance results of an execution time for several

implementations of NMF on various architectures. It was done in order to fully use the

potentialities of a multi­core CPU and highly parallel graphic processors.

27

Versions were written in the following languages: MATLAB, C, OpenMP and CUDA.

The MATLAB implementation was done on Intel MKL BLAS Core2 Duo T9300 CPU

while CUDA was run on GTX 280 GPU and 8600 GTS GPU. Results have shown that the

CUDA implementation gave the best execution time; it runs over 30 times faster than the

implementation of MATLAB. And the OpenMP implementation executed in Core i7 920

runs in 7 times faster than the MATLAB version. However, the authors say that to write a

program in CUDA takes 10 times longer than in OpenMP. Therefore CUDA can be used

only in massively intensive calculations.

Due to an implementation of an effective parallel code being the hardest problem in the

utilization of parallel systems, the authors suggest looking at an idea, “Selective, Embed­

ded, Just­In Time Specialization”, (SEJITS) by Catanzaro et al. [41]. The idea of it is that

a computer music composer will write an example of non­negative matrix factorization in

a scripting language like RUBY. The composer must also express operations in time­

frequency representations. This script code is a portable code, which would be run on

SEJITS and if a parallel implementation of the code is accessible, so the system generates

an optimal code on appropriate layer language like C, C++, OpenMP or CUDA. As a re­

sult of the project, the authors recommend SEJITS since this system is the most appropri­

ate way of using parallel systems for general users including computer music composers.

But they also say that SEJITS must have some features like meta­programming and intro­

spection. Developers must also create efficient criteria for the layer programming. The

results of the NMF show the vigour of modern GPUs in order to supply an essential accel­

eration. Lastly, Battenberg et al say that the example of Music Information Retrieval or

MIR systems of SEJITS has not given real­time results and they cannot change it at all

[43].

28

2.3.2 Goertzel algorithm

In this section we shall summarise the main sources of the SDFT algorithm: a Goertzel

algorithm and the SDFT algorithm. We shall discuss the research, which was the main

motivation for this work.

The Goertzel Algorithm [37] is a method for presenting a Discrete Fourier Transform from

time­domain to frequency­domain signals. This technique reduces communication costs in

O(n2). This algorithm was created only for frequencies with particular features. The main

difference of the Goertzel algorithm from the DFT algorithm is that it depends on prede­

termined frequency and some values from the time­domain frequency. As it says in [36]

and [35], the Goertzel algorithm computes a complex DFT value for every N input ele­

ment. Luckily, audio signal processing satisfies these requirements because the time inter­

val between bins is fixed. So for calculation of each bin it is necessary to do only two ad­

ditions and one multiplication and therefore this method performs fast calculations.

This algorithm calculates the k-th bin of DFT with window size N, using the following

equation:

N −1 −2 πijk
NF (x) = ∑ x (j)e Equation 1

j = 0

Where input frequency x(j) must be an integer, also index k is in an interval:

0 ≤ k ≤ N − 1 . The output of the DFT algorithm and the Goertzel algorithm is the same.

Even if it is chosen to use the Goertzel algorithm instead of the DFT algorithm, the first

value must be defined by using equation 1, and then utilize SDFT with all its advantages.

In the Goertzel algorithm, a z-domain transform function is:

1 − e − 2 πjk / N z − 1

H (z) =
1 − 2 cos(− 2πkn / N) z −1 + z − 2

29

where a single z­domain zero is on z = e
−2 πjk / N

and conjugate poles at z = e
±2 πjk / N

. The

zero/pole pair cancels each other at z = e
−2 πjk / N

[34].

For the Goertzel filter the time­domain different equations are:

v (n) = x (n) + 2 cos(2π k / N)v (n − 1) − v (n − 2)

− 2π jk

y (n) = v (n) − e N v (n − 1)

In fact if it is necessary to calculate S different inputs, it is necessary to implement the Go­

ertzel algorithm S times. Also, one of the main advantages of this algorithm is N does not

need to be a power of two. This algorithm is also used for recognition of Dual­Tone Multi­

Frequency (DTMF) signals, produced from a telephone by pushing buttons on a keypad

[34].

2.3.3 Sliding Discrete Fourier Transform

An algorithm of Sliding Discrete Fourier Transform (SDFT) computes DFT with exactly

the same precision as the Goertzel algorithm. The Goertzel algorithm calculates a DFT for

every single element of the input array. As opposed to the Goertzel technique, the SDFT

algorithm can estimate more signal bins with less data and computation. Also in SDFT the

input rate is the same as the output rate [34]. In essence, the SDFT algorithm computes the

current value of DFT in time=t and with a frame = N, when a new input sample comes,

the frame moves by one element in the time =t+1 algorithm calculates a new quantity

considering the new element of input and the previous value of SDFT [34].

The DFT starting at time t with window size = N can be represented as follows:

N −1 −2 πijk
NFt (k) = ∑ x j + t e

j = 0

30

where F t (k) is a k-th value of SDFT in frequency domain. The algorithm of SDFT in the

time =t+1 depends on the value at the time=t:

N −1 −2πijk

Ft +1 (k) = ∑ x j + t +1e N =
j =0

N − 2πi (j −1) k

x e N =∑ j + t
j =1

N −1 − 2πijk 2πik

(∑ x j + t e N − xt + xt + N)e N =
j =0

2πik

(Ft (k) − xt + xt + N)e N ;

whereby the window always moves only by one bin. Not surprisingly this algorithm exists,

due to the fact that when the analysis window moves by a sample the most bins of discrete

frequency in the window will be the same. Most recently, SDFT implementation issue was

highlighted by John ffitch et al in [28]. This paper was the initial point of this research

along with [48], [27]. Also they say it is not necessary that the analysis window remains

power of two.

In [28] John ffitch et al consider the essential question about sliding a window. They ex­

plain that in order to minimise blur and increase frequency resolution an envelope window

to the sample period is applied. Therefore, it is not possible to do it in SDFT in time do­

main but it can be done after applying SDFT. So windowing is used in frequency domain.

This windowing is discussed only for the purpose of showing integration of SDFT into

Csound.

Thanks to the work of Richard Dobson and Victor Lazzarini, Csound has a well­built

streaming Phase Vocoder. John ffitch et al. in [48] explain the application of SDFT in

Csound: “The process here is to construct a new DFT frame when sufficient samples have

been obtained, with a restriction that this cannot be more than once per k-rate frame. In

ternally the f-variables have a structure to maintain the bin values, window size and type

and various housekeeping data. The SDFT implementation in Csound reuses this struc

31

ture, so from an elementary user point of view the introduction of the sliding option has no

syntactic change.” Basically, the SDFT is a technique with an overlap of 1 bin [28].

In order to reconstruct the signal it was proposed to use a fundamental Discrete Fourier

Transform:

1 N −1

x t = ∑ Ft (j)e 2πijt N
Equation 2 N j = 0

In equation 2 each frame was as a representation of a single sample because there is a

transform for each sample. It is debatable which sample each frame represents. This ques­

tion means that latency depends on choosing the right sample in the frequency: there are

non­latency versions, but very expensive, or other versions which seem very complicated.

The authors say that this process of transformation is not fast and it is necessary to investi­

gate SDFT parallel algorithms in order to achieve real­time performance. They also say

that they have achieved “out-of-real-time” implementation and further research is neces­

sary in the field of High Performance Audio Computing [28]. This paper was one of the

main motivations for this research, owing to the researcher’s belief in the strong future of

parallel computing.

32

Chapter 3

Environment and methodology

3.1 Environment

Nowadays there are many discussions about supercomputers for audio processing, and it is

not clear which kind of architecture fits best for a particular audio processing task. In order

to get a better understanding of the actual needs of parallel algorithms for audio processing

it is necessary to take some steps. The first step is to create a parallel algorithm, secondly,

implement and analyse it, and lastly, to conduct experiments in order to find out how

changing programme variables affect the time delay. A push must come from the area of

HPC by computer scientists and mathematicians in order to give freedom in music science

promotion.

It is reported in the “Literature Review” chapter about the general purpose GPU, which is

produced by NVIDIA. These kinds of processors were not a part of this investigation be­

cause they were not readily available when this research was started. An explanation is

33

also given regarding the research done for non­negative matrix factorisation on several

parallel computers and utilising several parallel languages and extensions. Researchers of

this project believe that the Clearspeed CSX600 computer is an appropriate machine for

audio processing. Therefore, the main interest of the research was to develop, implement

and analyse the algorithm of SDFT on the Clearspeed CSX600, which was chosen because

it has 96 floating point vector processors and the power consumption of parallel processors

is less than 30W per card. So, the null hypothesis was proposed to investigate whether it is

possible to develop the SDFT algorithm, which can fit in the Clearspeed CSX600 ma­

chine, and to get real­time performance out of this parallel algorithm.

ClearSpeed Technology Ltd. was founded in 2001. There are two offices in Bristol, UK

and San Jose, California. The company mainly creates accelerators and vector parallel

processors, which are used to perform tasks with a large data set, high accuracy or in a

short period of time. The company has concentrated on achieving less power, density and

heat problems on HPC [26]. Therefore, this machine was chosen in order to develop, im­

plement and optimise the SDFT algorithm.

To confirm the proposed hypothesis studies were performed on the Clearspeed parallel

computer. Basic subjects for achieving successive results were: Programming on Cn paral­

lel extension of C language, a Clearspeed architecture overview, acquaintance with Cn

Standard Libraries, and an acquaintance with debugging in GDB. A complementary re­

search problem was the studying of properties of a given parallel system.

Clearspeed provides essential material about a general comprehension of the CSX600 par­

allel processor architecture. The most relevant was information about the execution units

of the processor. The authors introduce the main concepts of parallel processing, particu­

larly, SIMD parallelism; and they demonstrate different features of C extensions, which

are used by the CSX processor.

Firstly, in [72] the CSX600 processor architecture was described. Figure 1 from the [72] is

a high­level image of the architecture of the CSX600 processor.

34

Figure 1. CSX600 processor [72].

The parallel machine is composed as a Single Instruction Multiple Data multithreaded

processor core, an embedded SRAM with integration onto a single processor, high­speed

interfaces and an external DRAM interface. An interconnection between all subsystems on

the chip uses a ClearConnect Bus on the chip network.

From a programming point of view, the central parts of the parallel processor are execu­

tion units. There are two central parts: the mono execution unit and the poly execution unit

which is an array of processing elements and each instruction is executed by either the

mono execution unit or the poly execution unit. A mono execution unit contains SRAM,

which has 256 Kbytes of memory. The vector processor core includes 96 processor ele­

ments (PE) and each PE can execute parallel, addition and multiplication operations.

35

There is also support for a fully pipelined operation with execution of one instruction per

cycle [25].

Figure 2. Execution units [72].

The high performance of the CSX600 processor comes when the data is processed concur­

rently in the poly execution unit. As stated above, the poly execution unit is an SIMD ar­

ray with 96 processor elements, where PEs are connected as a vector array by the connec­

tion path. This means that each PE computes the same programming code but on different

data. Each processor element contains 6 Kbytes of SRAM, a register file and an ALU

(arithmetic logic unit), 32 + 64 bit FPU (floating point unit) [72].

Secondly, a programming model is described and the Cn concurrent language, which is a C

language extension. As shown, there are two execution units: poly and mono. Therefore,

36

there are mono and poly memories with two different memory spaces. These spaces have

different basic types of variables: a mono variable, which has only one instance and is

stored in the mono memory; and a poly variable, which stores in each PE with different

values on each processor. In programming for CSX processors multiplicity specifies were

introduced, which let a programmer direct the domain, where the variable will be stored. It

is possible to use poly variables in order to specify PEs, on which the code will be exe­

cuted.

Developers of Clearspeed showed the basic examples of using Cn language. SDK includes

all necessary tools for writing, compilation, debugging and running the code on

Clearspeed accelerators [72].

They showed a good description of the process of running a program on CSX processors.

An executable file can be run on the processor, this demands that while a program is run­

ning on a host computer it is loading executable code to the CSX processor and after that

communicates with it. Generally, the program runs on the host computer and part of it runs

on CSX processors. Communications between the CSX component and the host computer

can be done by using a device driver. This module provides input and output services be­

tween CSX and host processors [72].

37

Figure 3. Communications between CSC and host processors [72].

An explanation is given of the Cn language and its features, which is mainly based on

ANSI C. There is a description of basic types, pointer types, array types, struct and union

types. Due to having mono and poly variables, understanding of pointer types is more dif­

ficult. There is the possibility of creating a pointer mono type * poly type, this means that a

poly object points to an object in mono memory, which is shown in figure 4. This is used

only for data transfer library functions because any manual use of this type of pointers can

involve a serious performance delay.

38

Figure 4. Description of mono type * poly type [72].

Conversely, a pointer poly type * mono type can be created, this means that a mono vari­

able points to a poly variable. It is possible to implement this due to the fact that a poly

variable is stored on each PE at the same address. The figure 5 from [72] shows the con­

nections for this pointer.

39

Figure 5. Description of poly type * mono type [72].

There are some restrictions in order to avoid an extra complexity, for instance, the use of a

goto statement. Owing to mono and poly data stored in different spaces, it is illegal to as­

sign or cast a poly pointer to a mono pointer or vice versa. This was done because the poly

memory uses 16 bit pointers, while the mono memory uses pointers with 32 bit and above.

It is legal to mix poly and mono variables, [72] presents some rules about legal mixing, it

is also concerned about poly conditionals, loops and statements. For instance, implementa­

tion of mono and poly variables in if-condition may look like:

poly short penum;

penum = get_penum();

if (penum < 10){

…

}

else {

…

}

40

There is a mix of mono and poly variables in the pseudo code, which is presented above.

There is a poly condition in if-statement, and if this condition is met, then the first branch

is executed by the enabled PE. Otherwise, the second branch is executed by the disabled

PE. However, for any mono variable there will be executed two branches of if-condition,

due to the fact that the mono execution unit is always enabled for poly conditions.

Input and output operations for the data transfer between poly and mono sections of mem­

ory are also introduced. The CSX processor supports different techniques for data move­

ments. There are synchronous functions of data transfers between different memory sec­

tions. For the correct transfer of information, PEs specify the source or destination ma­

chine address and only elements, which have been enabled and can transfer the same

amount of data from or to a location in the poly memory. There are also asynchronous ver­

sions of the data transfer functions, which let the programmer execute an input or output

copy on a detached thread so calculations can be performed in parallel with data transfer.

Asynchronous data transfer functions use semaphores for synchronisation, data coherency

and completion of data [72].

There are a few examples of Cn programs: concurrent calculation of a Mandelbrot set and

synchronous and asynchronous data distribution in [72]. Finally, developers described

some useful programming and debugging hints in order to avoid basic problems and get

more performance during the first experience of programming for the CSX processor in

[72].

During research of the project on the Clearspeed CSX600 computer, it was found, that the

parallel computer is supposed to permanently coordinate a use of shared resources, but not

conflicts, which occur between parallel processors. Also, a fault­tolerance is the founda­

tion of some difficulties that occur during programming on this parallel system. It is diffi­

cult to recognise that the system does not work entirely. Hanged processors were quite

difficult to identify, because when PEs hanged the whole system remained to work clearly

but it was producing incorrect data. Yet it was easy to identify a dead halt, which ap­

41

peared only if all nodes including the processor in the mono execution unit were halted. In

order to restore the entire system, it is necessary to reboot the whole system and call the

command csreset, which reinitializes the board and its processors. These difficulties

emerged only at the beginning of the project implementation. Therefore, in order to re­

move this obstacle, it is strongly recommended to use a simulator during compilations of

first versions of the projects.

3.2 General methodology of the parallel development and
implementation of the SDFT and IDFT algorithms

In essence, a process of digital signal processing starts when a signal comes from a micro­

phone or a musical instrument, when the signal is converted to a sequence of real numbers,

which is called a time domain digital signal, and so a process of transforming the signal

starts from a real value sequence. This sequence is used as an input array to the SDFT al­

gorithm, which transforms the time domain signal into a complex frequency domain sig­

nal. The next stage is utilization of an application, which can be anything, for example

pitch shifting or filtering. The next stage is an IDFT algorithm, this method is complemen­

tary to the SDFT. The input of the IDFT is the complex frequency domain signal, which

has been transformed during execution of the application. And lastly, the output of the

IDFT is a real time domain signal, which goes directly to a speaker. The development of

the IDFT was done as extra work in order to complete an analysis tool and give free play

to a computer music composer’s imagination.

The following image shows the order of data movements from the microphone to the

speaker.

42

MIC SDFT Application IDFT Speaker

Figure 6. Order of algorithms and data movements.

The input comes directly from the microphone and it is treated as an array of real numbers

in double precision. The reason for using 8 bytes of memory for storing each element of

input is described in the “Introduction” chapter.

The project runs on a SIMD parallel computer and is programmed in C/Cn languages. This

method was optimised in order to carry this out in real time. This investigation benefits the

application of parallel processing to sound synthesis, and aspects of sound analysis and

modification.

The main aim was to find equilibrium between the time delay and the window size. Due to

window size (N) being variable it is possible to get a range of times for the purpose to find

out the marginal time that it takes to calculate the algorithm. Tests were done with a value

of N in the range from 64 to 4096 elements. The N is a significant figure, which deter­

mines how precise the sound can be so the larger the window size the more accurate will

be the resulting output. But with a large window size program it could take a long time for

copying data and the marginal window size could take longer time for calculations due to

the context switch time delay, which is needed for the processor from a mono execution

unit to switch from the current task to the next one. Also during the balancing of the win­

dow size and time, it was necessary to find the smallest value of time in the SDFT algo­

rithm.

43

The hardest part of the algorithm was memory management, which is significant in the

transfer of data accurately from mono to poly memories and back. It was difficult to man­

age each parallel processor to find its own absolute address in memory spaces for data

“copy from” or “copy to”. Also sometimes it was confusing to do management calcula­

tions in bytes so that the physical address in memory cards must be calculated precisely.

The task is subdivided into parts that are calculated individually between each concurrent

processor and then all the results are put back together to make the final result. So, this

architecture of tight coupling, as well as the high communication rate between shared

memory and processors, does not permit use of all the performance from asynchronous

chunk data copy, due to specific problems, which are shown below in the analysis sec­

tions.

An analysis requires taking into account the granularity of the architecture and semantics

of the parallel extension Cn. Thus in the experiments chunks of data need to be of suffi­

cient size to overcome the communication costs.

Algorithms mostly differ from each other due to data transfer management between poly

and mono memory. During tests the number of SDFT input elements (S) was chosen to get

wall clock time within the scope of 1 to 10 minutes. Tests had to run for a sufficiently long

time in order to avoid timing noise during calculations, so that results are more precise on

average.

DFT calculations were done on the Poly Execution Unit with direct data calling from

Mono memory. Each processor sends instructions with specific variables and calls for re­

sults directly without copying of input data. This method of calculations is most appropri­

ate due to the fact that this process is done just once. It means that the result of DFT for­

mula is a complex number, which is treated as two real numbers and stored in the buffer

consecutively:

44

Real

Image

Real

Image

Real

Image

0. Complex
value

1. Complex
value

2. Complex
value

Figure 7. Image of storing complex numbers in mono and poly memories.

As described in detail in the “Literature review” chapter, the original idea of SDFT came

from the Goertzel algorithm, where the next value of DFT depends on current value and

two values of input:
2πik

Ft +1 (x) = (Ft (x) − x0 + x N)e N

There are several steps for correct algorithm implementation:

At the first stage of the algorithm the calculations of the initial DFT are achieved using the

classic Discrete Fourier Transform equation:

N −1 − 2 π ijk
NFk (x) = ∑ x i e Equation 3

j = 0

At the second stage, direct calculations using SDFT formula are used, as described in the

“Background” chapter. In the implementation of the algorithm a “t-loop” loop was exe­

cuted S times: in each consecutive time, two input values {x0; xN}

were copied and the previous value of SDFT. Because input real values are stored con­

secutively: {x0; x1; x2; … xN-2; xN-1; … }, it is necessary to copy the input from two different

places in the Mono memory. So it means that data copy functions were calling twice. Time

45

costs were essential in this loop and also it was expected a marginal amount of time was

consumed for calculation of this algorithm.

The third stage is for implementation of an Inverse Discrete Fourier Transform. Data,

which is used for calculations, is stored only in one place and it does need to call the func­

tion for data transfer just once. Yet the equation, for implementation of the IDFT is:

1 N −1 2 π jk

x t =
N ∑ Ft (j)e N

Equation 4
j = 0

It is conspicuous from equation 4, that it is necessary to transfer N complex double precise

elements from the Mono memory to the Poly memory. So owing to the fact that the

Clearspeed CSX processor is a fine­grained vector accelerator, the results of IDFT algo­

rithm might be slower than the SDFT implementation.

In the analysis of asynchronous algorithms a complementary buffer was introduced, due to

the fact that real time performance was required. The buffer inherently avoids overlapping

by a small fraction of a sample rate. This fraction was usually 1 or 2 sample rates.

A poly variable k was introduced, whose value varies from 0 to N-1. This poly variable

was presented in order to correctly manage input and output transfers of all processor

nodes. Each parallel node has its own value of k, which is calculated with a library func­

tion get_penum(), the output of this function is a number, which varies from 0 to 95. Due

to the Clearspeed CSX600 having one chip with 96 processors, the number of processors

is fixed. A loop was written for a k-distribution, because the window size is normally

greater then the number of processors. Consecutively it is necessary to distribute correctly

all elements from the Mono memory. This k-distribution loop will always take part in con­

current calculations later.

46

It was developed, implemented and analysed following variants of the original SDFT algo­

rithm:

1.	 the successive SDFT algorithm;

2.	 the synchronous data copy of the SDFT algorithm;

3.	 the asynchronous data copy of the SDFT algorithm;

4.	 the asynchronous data chunk copy for the input of the SDFT algorithm;

5.	 the asynchronous data chunk for the previous SDFT and input elements of the

SDFT algorithm;

6.	 the asynchronous data chunk copy for the SDFT elements of the IDFT algorithm;

7.	 the asynchronous data calculations in the shared memory with results’ copy of the

IDFT algorithm.

During the analysis of algorithms, tables of calculation times were created for the SDFT

loop calculations, and DFT loop calculations were done only for tests, whose wall clock

time fits the requirements described above. Times of DFT loop calculations were calcu­

lated with the initializing of input data, some variables and calculation of DFT of first N

input elements, which are calculated in the “Initialisation” column.

In the rest of this chapter each algorithm will be described in detail; there will also be pre­

sented a pictorial diagram of the algorithm, and a graph of the experiment's results of the

time delay for a range of window sizes for one sample. Additionally there are tables from

the experiments’ results in the “Appendix” section. The results of experiments vary by

± 0 .01 s and in the result tables there are presented examples of experiments, not the av­

erage time delay, since the round error of ± 0 .01 s is negligible and acceptable. Also in

the charts there are two series of time delays, one is the algorithm which is described in

each section and another is a whole project, which are the SDFT and the IDFT algorithm

implementations. The IDFT algorithm was calculated by equation 4 on a mono execution

unit but each PE calls for its own results according its own input data, which are poly vari­

ables. After this calling the results were stored on the poly memory on each PE, this means

47

that computations after calculations on each vector at time = t where done, results were

copied back to mono memory asynchronously.

3.3 Analysis of the successive algorithm

The aim of implementation of a successive algorithm of DFT and IDFT was to compare

the results of concurrent implementation with successive implementation and show that a

parallel version has better performance so it will triumph over the consecutive program­

ming; and computer music society will be prevailed upon to use High Performance Audio

Computing.

For implementation of DFT equation 3 was used and for implementation of IDFT equation

4 was used. The followed chart shows the results of the successive algorithm.

48

125.3

494.2

1.98 7.89 31.43

0

100

200

300

400

500

600

64 128 256 512 1024

W indow size (number of elements)

Ti
m
e
de
la
y
(m
s)

The succesive implementation of w hole project

Chart 1. Dependency of the time delay on the window size in the successive algorithms of the DFT and
IDFT.

The chart below provides an overview of the time delay depending on the window size

that the project runs within 10 ms only with window size equal to 128 elements. The next

window sizes are 256 and 512, and time delays are 31 and 125 ms respectively. When the

number of elements in the window size reached a 1024, the time delay significantly in­

creased to 494.2 ms.

However, in order to achieve professional quality for the tool it is necessary to have a

window size that is more than 128 elements. Also results from DFT and IDFT were not

shown separately because the main interest of this project is the time delay out of the

SDFT parallel algorithm and parallel implementation of the SDFT and the IDFT algo­

rithm. So at the end of this chapter consecutive and concurrent implementations will be

compared.

49

3.4 Analysis of the synchronous data copy of the SDFT
algorithm

Perhaps the simplest model of parallel computing is synchronous data copy, where all

nodes operate in a lockstep manner and this fact prevents data from overlapping. It also

makes it easy to maintain data integrity. During each communication round all parallel

nodes receive the data from the shared memory, perform local calculations, and send mes­

sages back to the shared memory. It was reasonable to develop a synchronous algorithm,

since the architecture of the machine is homogeneous and specifics of the algorithm are

that the amount of data, which was used in input and output operations was the same in

each PE.

The synchronous data copy algorithm provides a simple example of SDFT calculation. In

order to implement this algorithm standard memcpy() library functions were studied.

The next stages of the algorithm describe a data movement from the microphone:

1.	 Input sends N elements, which is enough to find an initial DFT. Values of DFT are

stored in the buffer in Mono memory, so this data is available for every PE. Input data

is also stored in Mono memory. All values are ready and available to calculate the

SDFT algorithm in synchrony.

2.	 Firstly, input is copied by memcpy() function in the t­loop. In the next stage in the k­

distribution loop an appropriate value of previous DFT is copied, this value can be

founded in the buffer by poly number k.

3.	 Calculations of SDFT are done synchronously in parallel, and in order to copy data

back to mono memory poly variable k is used.

Figure 7 displays an illustrative example of data management in time = i+1. It shows that

in this time the next input value xi+N is coming to the buffer, which is stored in Mono

memory. This input is sent to poly processor elements in synchrony with the previous

value of SDFT Fi,k, where k is a poly variable. Parallel processors perform some opera­

tions concurrently and send the result to the mono memory. The result is a SDFT value in

50

time = i+1: Fi+1,k. Once the buffer has received all results in time = i+1, all values of

SDFT are sent to the next stage – IDFT algorithm. This is a stage of calculations showing

one element of the input stream.

51

M
on
o
M
em

or
y

P
ol
y
M
em

or
y

M
on
o
M
em

or
y

B
uf
fe
r
fo
r
SD

F
T

1
,

2
,

1,
0,
...

:
−

−

=

N
i

N
i

i
i

F
F

F
F

i
t In
pu

t {

{

) 1
(

)1
(

)2
(

1
0

1

...
...

+

+

⇓

+
−

+
−

+
+

⇓

+

N
i

N
i

F

N
i

N
i

i
i

x
x

x
x

x
x

x
i

4
4

4
8

4
4

4
7

6

k
iF
,

N
i

i xx
+

P
E

0
k

=
0

x i
 x

i+
 N

 F
i,
0
→

 [S
D

F
T
] →

 F
i+
1,
0

P
E

1
k

=
1

x i
 x

i+
 N

 F
i,1

→

 [S
D

F
T
] →

 F
i+
1,
1

P
E

95
 k

=
95

x i

 x
i+

 N
 F

i,
95

→

 [S
D

F
T
] →

 F
i+
1,
95

B
uf
fe
r
fo
r
SD

F
T

1
,1

2
,1

1,1
0,1

...
:
1

−
+

−
+

+
+

+
=

N

i
N

i
i

i
F

F
F

F
i

t
k

iF
,1+

Fi
gu
re

 7
. D
es
cr
ip
tio
n
of

 th
e
da
ta

 c
op
y
of

 th
e
sy
nc
hr
on
ou
s
al
go
ri
th
m

 o
f S
D
FT
.

52

As previously noted, the most challenging part of implementation is data management to

make input and output data coherent. In this version all concurrent processors work in syn­

chrony and some management is done by library functions in an exchange of valuable time.

In figure 8, there is a view of two­dimensional array from the mono memory, where the

SDFT values are stored.

SDFT
value
from PE0
at t=0

Input is from t-1: SDFTt­1
Output goes to t+1: SDFTt

Column is chosen
by ID of PE: 0..N

Row is a
current
time t

Each cell represents
a value of SDFT Each row is

divided
between PE

0 N

t

k

S

Figure 8. A synchronous order of storing and copying information in the Mono memory.

So each PE, according to its ID copies a piece of data from the specific place in the array.

The figure shows how data moves inside the array, red lines show that data is copied in syn­

chrony, so if the processor finishes a data copy at any stage, it must wait for others to finish

the same procedure. In the array at the first stage data is copied from the first row and moves

53

down, where columns are chosen by the ID of each processor element, so at the time = t,

each processor element copies the SDFT value from the previous row and proceeds with the

calculations, the output data is stored at the row = t and so on. The project was tested on a

finite number of elements in order to optimize performance of the algorithm during imple­

mentation and analysis. After analysis of the synchronous data copy of the SDFT algorithm

the dependency between window size and the time delay was found, which is shown below in

a Chart 2.

The whole project The SDFT algorithm

T
im
e
d
el
ay

 (
m
s)

250

200

150

100

50

0

1.48
0.375

5.17

0.744

14.7

1.426

55.84

2.843

200.08

5.75

64 128 256 512 1024

Window size (number of elements)

Chart 2. Dependency of time delay on the window size in the synchronous data copy algorithm.

Chart 2 reveals dependencies of time delay on the window size. It can be seen that time,

which is needed for calculations, is increased with window size growth. Between 64 and 128

elements the time increases slowly, but with 256 elements the figure rises a little over 10 ms.

In 1024 window size the time delay rises very sharply and reaches 200.08 ms. By contrast,

54

the table from the appendix shows that time needed for SDFT is significantly lower than

IDFT time. For instance, with window size equal 128 SDFT calculates 9 times faster than

IDFT. To sum up, the synchronous version of the IDFT parallel algorithm gives a very good

speed up which is 5.75 ms per sample and N = 1024.

3.5 Analysis of the asynchronous data copy of the SDFT
algorithm

After developing and implementing the synchronous version of data copy of the SDFT algo­

rithm, the asynchronous version of data transfers was developed and implemented. The main

difference here is using library functions of asynchronous data copy: async_memcpym2p,

async_memcpyp2m, whose meaning are asynchronous data copy from mono to poly memory

and asynchronous data copy from poly to mono memory respectively. These functions are

similar to synchronous, but using these library tools allows performing them on a separate

thread and after the thread calculations in order to continue running. In order to synchronize

computations of threads and operations of reading or writing it is necessary to use sema­

phores. Functions of asynchronous data copy take an extra parameter of the identity (ID) of a

semaphore [72].

Generally two buffers are used as a double buffering technique and the functions of asyn­

chronous data copy are applied. The principle of this method is while one buffer (background

buffer) is being filled the data from a second buffer (active buffer) is being calculated.

There are some general steps, which facilitate using this technique:

1. First data are copied into the active buffer.

2. Wait, until the background buffer becomes empty

3. Next data are copied into the background buffer

4. Wait, until the active buffer becomes full and then do calculations on the data

5. Copy data back from poly memory to mono memory

55

6. Swap the two buffers

7. Go to step 2, until the input data finish

Some algorithms of asynchronous data copy of the SDFT were developed. The main differ­

ence between these algorithms was the data management in order to find the balance between

the window size and time delay.

Firstly, the asynchronous data copy algorithm was developed and implemented. The amount

of data, which was transferred between mono memory and PEs was one element. In figure 9

is shown the asynchronous way of data management in the mono array, where data is stored.

Each PE copies to its SRAM the piece of information independently of others, executes a

calculation on it and then the PE copies it back to mono memory. Red lines show that trans­

fers do asynchrony and if any parallel processor finishes data copy to its SRAM, this proces­

sor can do calculations and does not need to wait for others.

Figure 9. A synchronous order of storing and copying information in the Mono memory.

0 N

t

k

S

SDFT value
from PE0 at t=0

Input: SDFTt­1
Output: SDFTt

Column is
chosen by
ID of PE:

Row is a
current
time t

Each row
is divided
between
PE

Each cell
represents
a value of

56

After implementation of the SDFT algorithm many experiments and analyses of it were

made. Chart 3 shows the result data achieved using this new algorithm.

The whole project The SDFT algorithm

300

250

200

150

100

50

0

Chart 3. Dependency of time delay on the window size in the results of asynchronous data copy implementation
of the SDFT algorithm.

Chart 3 shows the asynchronous implementation of the SDFT algorithm. With the window

size equal to 512 and above time for calculating an element is sharply increased. So with the

window size equal to 64 and 128 elements the time for calculating an element is 0.34 and

1.30 ms respectively. The window size with 256 elements also shows a marginal time delay,

which is 3.83 ms. However, the time results grow considerably with N equal to 512: it takes

more then 15 ms to calculate SDFT for an element and around 70 ms for the calculation in

total. In the chart above, the last number of elements in the time domain digital signal is

T
im
e
d
el
ay

 (
m
s)

16.88

68.256

249.8

15.22

55.459

1.426 5.646

3.8329 0.3407 1.3092

64 128 256 512 1024

Window size (number of elements)

57

1024. The asynchronous SDFT algorithm needed 55 ms in order to compute a sample and

approximately 250 ms is the total time of calculations in the project. In conclusion, the results

of this asynchronous version of the SDFT algorithm show that there are some aspects, which

can be filled in order to make the project faster.

3.6 Analysis of the asynchronous chunk data copy of the SDFT
algorithm

Two asynchronous algorithms of the SDFT with chunk data copy were developed. The first

to be developed was the SDFT algorithm with a chunk data copy of the previous SDFT. Input

elements were transferred one by one. Here, a variable was introduced, which defines the size

of chunk, which is indicated as T, which means number of copied samples per calculation

round, where N / T = k,k ∈ Ν . This algorithm was implemented, tested and analyzed. Figure

10 shows the chunk of data is moved by each parallel processor. The chunk is a piece of vec­

tor from array, this vector is chosen by time = t. And each PE proceeds with this chunk of

data independently from the others, so it means PE communicates with the mono execution

unit only to copy data to poly SRAM or copy results back to mono memory asynchronously.

In the each poly SRAM the parallel processor executes calculations with the chunk of data

and then copies it back to mono memory.

Dividing the input frequency by chunks means that the number of involved PE is N / T so if T

is large then not every PE takes a part in calculations it means the computer is not using the

whole power, which is available. For instance, if N = 1024 and T = 128, than N / T = 8, so

only 8 processors will be involved in this kind of calculation.

58

0 N

k

SDFT value
from PE0 at t=0

Input: SDFTt­1
Output: SDFTt

Column is
chosen by
ID of PE:

Row is a
current
time t

Each cell
represents
a value of

Each row
is divided
between
PE

Chunk
contains T
elements

Hole
chunk is
copied

Figure 10. An asynchronous order of storing and copying chunks of information in the Mono memory.

Chart 4 shows the dependency of the time delay on the window. Tests were conducted where

it varied with window size and for each window size it varied with chunk size.

59

55.917

200.157

5.669

1.466 5.086
14.478

2.856
0.37858 0.743 1.4102

0

50

100

150

200

250

64 128 256 512 1024

Window size (number of elements)

T
im
e
d
el
ay

 (
m
s)

The whole project The SDFT algorithm

Chart 4. Dependency of the time delay on the window size of the asynchronous algorithm with chunk data copy
of previous SDFT for calculation of the current SDFT.

Chart 4 shows that the performance of the SDFT algorithm rose dramatically. Due to the fact

that here, a chunk data copy was used, and the algorithm shows the best performance with

one element in the chunk. Also the algorithm was optimized in the light of results from the

previous version. The SDFT algorithm with an input number of time domain elements equal

to 64 and 128 calculates a sample in less than 1 ms. The algorithm with 256 and 512 samples

per window performed the task within 3 ms. With the number of input elements equal to the

tenth power of two the SDFT algorithm computes in 5.66 ms. To sum up, this algorithm pro­

vided good results, 5.66 ms were needed per sample with the window’s size equal to 1024

samples, so this means that it was chosen as the right way for optimization and software acce­

leration.

60

3.7 Analysis of the asynchronous data chunk for SDFT and input
of the SDFT algorithm

The last version of the SDFT algorithm was developed with a full chunk data copy imple­

mentation. It means that the input frequency sent in chunks of samples into the SDFT imple­

mentation. Also in each loop it was proceeded T elements, so if the current time = t, then the

next time will be t+T and the next T samples will come. In comparison with previous algo­

rithms, where the frequency domain signal was stored in the buffer within the one row, in this

algorithm output data from the SDFT algorithm were stored within T rows. The data manager

in each PE must find the exact row and column for storing a current value of the output. If in

the algorithms above PEs are transferred data within one row, then here, a small two dimen­

sion array with T*T elements is copied. Also there is a limitation on the amount of copied

data due to each SRAM having only 6 Kbytes of memory with a stack for input equal to 3

Kbytes and another 3Kbytes being taken for calculations and using libraries. So finding the

necessary chunk of data in mono memory and finding the exact place where it is needed to

copy it back became a big issue here, but it was solved, tested and analyzed.

61

0 N

t

k

S

SDFT value
from PE0 at t=0

Input: SDFTt­1
Output: SDFTt

Column is
chosen by
ID of PE:

Row is a
current
time t

Each cell
represents
a value of

Each row
is divided
between
PE

T
0

T

n

n

Figure 11. An asynchronous order of storing and copying chunks of information in the Mono memory and
within the chunk in the Poly memory.

62

Figure 11 represents the communications between layers inside the chunk. These communi­

cations are done within a one communication round between poly SRAM and mono memory.

Chart 5 presents the results of the last SDFT algorithm, which was developed. It shows the

best result, which was achieved on ClearSpeed CSX 600 processor. The performance is better

than with chunk data copy of only a vector. After tests, it also showed that the best perfor­

mance was achieved with copy of 4 complex elements between mono memory and proces­

sors, tests were done on window size, with variation from 64 elements to 4096 and with vari­

ation of elements in the chunk from 1 element to 64.

54.677

197.572

1.327
4.822

13.853

3.116
0.24788 0.49155 0.7932 1.631

0

50

100

150

200

250

64 128 256 512 1024

Window size (number of elements)

T
im
e
d
el
ay

 (
m
s)

The whole project The SDFT algorithm

Chart 5. Dependency of time delay on window size.

63

Chart 5 shows the changes of time delay according to the different window sizes. Perfor­

mance of the SDFT algorithm is less than 1 ms with window size 64, 128 and 256. The time

delay increased slightly from 1.63 ms with 512 elements in the window to just above 3 ms in

the next test. The tradition here is that by doubling the window size the time delay is in­

creased by two times as well. On the whole, the development of the SDFT algorithm reveals

the best performance out of the vector computer. Also tests were done with a window size of

2048 and 4096 elements in the window. These data did not feature in the analysis since for

excellent quality of sound 1024 elements are enough, but in the “Appendix” chapter the re­

sults from all the tests are presented.

3.8 Analysis of the asynchronous chunk data copy of the SDFT
values in the IDFT algorithm

After analyzing the SDFT algorithm of chunk data copy of previous SDFT and input. The

whole project is included the SDFT and the IDFT algorithm. Tests show that the IDFT algo­

rithm is in 5 ­ 65 times slower than the SDFT. The main reason for this is that in the IDFT it

is necessary to transfer a much larger amount of data from the mono memory to the poly

memory and back. An initial algorithm of the IDFT was done in the way of not copying input

elements, but doing calculations on the mono memory and these calculations are done by

PEs, so each parallel processor straight calls for the results from mono memory, so the results

are stored on poly memory. And after all calculations are done PEs find the particular address

in the mono memory and copy the results in synchrony. So an algorithm was developed of

asynchronous data copy of the frequency domain signal from mono memory to poly using

double buffering. The resulting implementation issued quite slowly.

The analysis of the asynchronous double buffered IDFT algorithm shows that it is necessary

to improve it. An improvement was made to this algorithm by creating chunks of complex

elements, sending these chunks to each PE, executing calculations on them, and sending back

the results. After the development of such an algorithm and the implementation of it, the al­

gorithm was tested on different window sizes and different numbers of elements in the chunk.

64

Window size varied with 64 to 4096 elements; chunks varied with 1 to 128 complex ele­

ments. It shows much better time delay than the previous implementation of the IDFT algo­

rithm. And also the best time was achieved with 128 complex elements per chunk.

28.9111

117.804

430.19

9.83285 2.57356
0

50

100

150

200

250

300

350

400

450

500

64 128 256 512 1024

Window size (number of elements)

T
im
e
d
el
ay

 (
m
s)

The IDFT chunk data copy algorithm

Chart 6. Dependency of time delay on the window size of the asynchronous algorithm with chunk data copy of
SDFT for calculation of the IDFT.

Chart 6 outlines the results of tests conducted to determine the best performance of the IDFT

algorithm with asynchronous chunk data copy. The time delay gradually increases from 64 to

256 elements in the window. Furthermore, the tendency changes on 512 elements in the win­

dow and time steadily grows to 117 ms per one element. The time delay deteriorated on test­

ing with window size equal to 1024 and rose dramatically to 430 ms. Lastly, we showed two

different IDFT algorithms, and with these performance was much lower than with the SDFT

algorithms; the IDFT algorithm is a performance bottleneck in this project.

65

All things considered, we showed the detailed description of developed and implemented

algorithms. The analysis of parallel algorithms was also done with a description of each algo­

rithm; development and implementation was characterized satisfactorily. We optimized the

SDFT algorithm in order to speed it up. We also developed the IDFT algorithms in order to

get the whole tool for a conversion from a time domain signal into a frequency domain repre­

sentation and vice versa. In the next chapter we will describe the results and conclusions of

the conducted research.

66

Chapter 4

Results and Evaluation

After empirical analysis of the project experiments it is necessary to compare results and find

the fastest algorithm. Firstly, we undertook an evaluation of

•	 the parallel algorithm of asynchronous data chunk copy of the previous SDFT and in­

put elements for the SDFT;

•	 the parallel algorithm of asynchronous data chunk copy of the input signal for the

SDFT;

•	 the parallel algorithm of asynchronous data copy for the SDFT;

• the parallel algorithm of synchronous data copy for the SDFT.

The chart below shows the evaluation of time delays of one sample utilizing a variety of de­

veloped parallel algorithms.

67

0

10

20

30

40

50

60

64 128 256 512 1024

Window size (number of elements)

T
im
e
d
el
ay

 (
m
s)

Chunks of SDFT and input signal Chunks of only input signal

Asynchronous algorithm Synchronous algorithm

Chart 7. Evaluation of SDFT algorithms.

Chart 7 provides an overview of the performance per sample of parallel algorithms. The

asynchronous version is the slowest algorithm, and with a window size of 1024 samples it

executes a sample within 55 ms, while for others it takes less then 5 ms. It is not surprising,

that the synchronous algorithm and the asynchronous algorithm (with chunk data copy of the

input signal) give approximately the same results of 5.66 ms and 5.75 ms respectively. These

algorithms transfer the same number of samples and we did not use any technique to improve

performance in the asynchronous version. The algorithm of asynchronous chunk data copy

of input and previous SDFT arrays showed the best performance; it needed 3.16 ms with a

value of N = 1024 for the calculation of one sample. Consequently, the parallel algorithm that

makes the most of the parallel architecture is the asynchronous chunk data copy of the input

and the previous SDFT frequencies with a chunk of 4 samples.

Secondly, it is necessary to compare the results of IDFT algorithms. We implemented two

algorithms of the IDFT:

68

1.	 the asynchronous chunk data copy of the IDFT algorithm;

2.	 the algorithm with IDFT calculations which were done on poly and mono execution

units asynchrony.

117.804

430.19

13.04

53.02

194.3

2.57356 9.83285 28.9111

1.086 4.34
0

50

100

150

200

250

300

350

400

450

500

64 128 256 512 1024

Window size (number of elements)

T
im
e
d
el
ay

 (
m
s)

Asynchronous chunk data copy of the IDFT algorithm

the IDFT algorithm with calculations on mixed execution units

Chart 8. Evaluation of IDFT algorithms.

Chart 8 shows that the best performance achieved utilising the IDFT algorithm when calcula­

tions are mixed on the poly and mono execution units. The algorithm of the asynchronous

chunk data copy is slower by a factor of 2 on each window size. Therefore, in the IDFT algo­

rithm, where calculations are mixed on poly and mono execution units, performance is sig­

nificantly higher. However, the execution time of the IDFT and the SDFT fastest algorithms

are very different. Furthermore, in the IDFT algorithm it was necessary to manipulate a large

amount of data between execution units, so features of communication tools was a considera­

tion. Also, in order to achieve a real­time performance from the IDFT algorithm with mixed

calculations, it is possible to use it only with a window size of 256 double precise complex

samples.

69

To sum up, the fastest IDFT algorithm is the algorithm of asynchronous chunk data copy of

input and previous IDFT arrays with a performance of 3.16 ms per sample and window size

N = 1024. The best SDFT algorithm is the IDFT algorithm with calculations done on mono

and poly execution units with a performance of 13.04 ms per sample and window size equal

to 256 double precision elements.

The analysis of the parallel implementation of the SDFT showed a great performance. The

achievement of the real time implementation was successful. The optimization of the concur­

rent algorithm reached a real­time performance and maximisation of the performance on the

CSX600 processors was very successful.

70

Chapter 5

Conclusions and Future Work

Traditionally, the development of scientific parallel computing has been tightly coupled with

general computing. It has been shown in the “Literature Review” chapter, that historically the

supercomputer was created as an extension of the computer. This extension was created

mostly on the level of hardware but it seems much more complicated to provide good quality

software in order to fully exploit the potential of the supercomputer. The architecture of the

parallel computer still varies with specific features of applications that are executed on the

machine. Scientific concurrent applications are only used in mathematics, physics, engineer­

ing and computer sciences. Yet, parallel computing has become dominant through science. A

tradition established that beyond the world of computing engineers there is a push towards

HPC and from the other side, from the side of natural sciences, there is a pull, stemming from

their needs for parallel processing. It is also clear that sequential algorithms and programming

have become behind a lesser consideration in computer science.

71

In the beginning, when the decision was made to implement the SDFT algorithm on the

Clearspeed CSX600 processors, it was not known whether parallelisation would be beneficial

for this particular task. The conclusion depends on many complex factors such as synchroni­

sation needs, features of the architecture and the nature of the algorithm. Too many nodes

introduce communication overheads owing to scheduling, redundant PE management as well

as context­switching.

This research shows how time crucial parallel computations are in digital signal processing

and music technology in particular. After analysis and evaluation of the algorithms it is clear

that in order to create a High Performance Audio Computer it is necessary to conduct many

observations of the algorithms, which are in use in the audio processing area. It is necessary

to strive for greater productivity in order to discover how efficient parallel processing can be.

We found a real time algorithm for the SDFT and we developed the IDFT as an extra. The

fastest SDFT algorithm transfers chunks of 4 double précised samples per one communica­

tion round. The fastest algorithm of the IDFT was implemented as a composition of calcula­

tions on mono and poly execution units, whereas in the IDFT algorithm all computations

were done within the poly execution unit. The data management was the most difficult part

during the development and implementation of the algorithms, yet data integrity and valida­

tion were successfully achieved.

After analysis of the developed concurrent algorithms it became clear that the SDFT algo­

rithm runs faster than the IDFT algorithm. The main difference in computations of these al­

gorithms is that the IDFT requires a large amount of data, consequently, communications

between processor elements and mono memory became the most expensive part in terms of

time. Also, each PE has only 6 Kbytes of SRAM, which was not enough for high perform­

ance implementation of the IDFT algorithm with the large window size. The nature of the

project may require a use of a heterogeneous multi­core computer.

The next task is to create algorithms for the heterogeneous parallel computer in order to

achieve better performance on the IDFT algorithm. The real­time performance on the SDFT

72

algorithm was achieved and run within 3 ms with the window size set to 1024. It was sug­

gested that in order to achieve approximate performance for the IDFT algorithm it would be

necessary to employ high bandwidth 20 Kbytes SRAM on each PE, as well as to integrate a

faster PCI host interface. This is due to the fact that communications costs between mono and

shared memories are quite expensive.

The HiPAC has a high reputation within computer music society. The research, which has

been carried out, is only a first step, with yielding results of HiPAC and the research eluci­

dated on a challenging area of audio processing, which limits have not permitted to exploit

parallel processing in extensively free. We believe that this research will reflect an area of

audio performance computing, as well as digital signal processing in general, due to the de­

veloped algorithms widely in use.

To the best of the knowledge of the researchers of the current project, there is not yet any

real­time parallel tool for professional audio processing, which we have made here. The issue

is that researchers have not seriously looked at the problem of parallel computing in audio

processing. Yet to achieve parallel virtue, Parallel Research Centres should recruit more par­

allel computer scientists. Lastly, bridging the gap between computer music composers and

the hardware must be done urgently since otherwise the field of computer music risks becom­

ing completely left behind.

73

Bibliography

1.	 Kant, I., Critique of pure reason. 1781. Modern Classical Philosophers, Cambridge,

MA: Houghton Mifflin, 1908: p. 370­456.

2.	 Einstein, A., The foundation of the general theory of relativity. Annalen Phys, 1916.

49(769­822): p. 31.

3.	 ffitch, J., R. Dobson, and R. Bradford, HIGH-PERFORMANCE AUDIO

COMPUTING—A POSITION PAPER. International Computer Music Conference,

Belfast 2008.

4.	 Abe, T., T. Kobayashi, and S. Imai, The IF spectrogram: a new spectral

representation. Proc. ASVA, 1997. 97: p. 423–430.

5.	 Lazzarini, V., J. Timoney, and T. Lysaght. Streaming Frequency-Domain DAFX in

Csound 5. 2006.

6.	 Lazzarini, V., Developing Spectral Processing Applications. Proc. Of the 2nd Linux

Audio Developer’s Conference (Karlsruhe: Zentrum fuer Kunst­ und

Medientechnologie, 2004)

7.	 Mersenne, M., Harmonie Universelle (1636). Fac­similé F. Lesure éd., Paris, CNRS.

8.	 Koyré, A., Metaphysics and measurement. 1992: Gordon and Breach Science

Publishers : New York.

9.	 Strutt, J., The theory of sound. 1877. London: MACMILLAN AND CO. Vol 1 and

Vol 2.

10.	 Sabine, W., Collected papers on acoustics. 1922: Cambridge : Harvard University

Press.

11.	 Johnson, H. Earle. 1979. Symphony Hall, Boston. New York: Da Capo Press.

12.	 Fildes, J. 'Oldest' computer music unveiled. 2008; [cited 10/2010;

http://news.bbc.co.uk/1/hi/technology/7458479.stm].

13.	 Christopher Strachey, biography. Wikipedia [cited 10/2010;

http://en.wikipedia.org/wiki/Christopher_Strachey].

74

http://news.bbc.co.uk/1/hi/technology/7458479.stm%5d
http://en.wikipedia.org/wiki/Christopher_Strachey%5d

14.	 Max Mathews, biography. Wikipedia [cited 10/2010;

http://en.wikipedia.org/wiki/Max_Mathews].

15.	 Hochheiser, S. John Pierce: Biography. 2008; [cited 10/2010;

http://www.ieeeghn.org/wiki/index.php/John_Pierce].

16.	 John R. Pierce, biography. Wikipedia [cited 10/2010;

http://en.wikipedia.org/wiki/John_R._Pierce].

17.	 Risset, Jean-Claude, biography. The living composers project [cited 10/2010;

http://www.composers21.com/compdocs/rissetjc.htm].

18.	 Center for Computer Research in Music and Acoustics, Stanford University. [cited

10/2010; https://ccrma.stanford.edu/].

19.	 SYNTH SECRETS. Sound on Sound 2000; [cited 10/2010;

http://www.soundonsound.com/sos/apr00/articles/synthsecrets.htm].

20.	 Yamaha DX-7. Vintage synth explorer; [cited 10/2010;

http://www.vintagesynth.com/yamaha/dx7.php:]

21.	 IRCAM, the Institute for Research and Coordination Acoustic/Music. [cited 10/2010;

http://www.ircam.fr/ircam.html?&L=1].

22.	 Walker, J. The analytical Engine, the first computer. Fourmilab Switzerland

[cited 10/2010; http://www.fourmilab.ch/babbage/].

23.	 Babbage, C. The Analytical Engine. 1888 [cited 10/2010;

http://www.fourmilab.ch/babbage/hpb.html].

24.	 Fuegi, J. and J. Francis, Lovelace & Babbage and the Creation of the 1843'Notes'.

IEEE Annals of the History of Computing, 2003: p. 16­26.

25.	 (2008) Introductory Programming Manual The ClearSpeed Software Development

Kit. in Clear Speed Corp. 2007 [cited 10/2009

http://support.clearspeed.com/documentation/hardware/csx600/].

26.	 Summers, B., ClearSpeed CSX620 Overview, in Clear Speed Corp. 2007. [cited

10/2009 http://support.clearspeed.com/documentation/hardware/csx600/].

27.	 Bradford, R. and R. Dobson, John ffitch. Sliding is Smoother than Jumping. SuviSoft

Oy Ltd, Tampere, Finland, editor, in International Computer Music Conference.

2005: p. 287–290.

75

http://en.wikipedia.org/wiki/Max_Mathews%5d
http://www.ieeeghn.org/wiki/index.php/John_Pierce%5d
http://en.wikipedia.org/wiki/John_R._Pierce%5d
http://www.composers21.com/compdocs/rissetjc.htm%5d
http://www.soundonsound.com/sos/apr00/articles/synthsecrets.htm%5d
http://www.ircam.fr/ircam.html?&L=1%5d
http://www.fourmilab.ch/babbage/%5d
http://www.fourmilab.ch/babbage/hpb.html%5d
https://ccrma.stanford.edu/]
http://www.vintagesynth.com/yamaha/dx7.php:]
http://support.clearspeed.com/documentation/hardware/csx600/]
http://support.clearspeed.com/documentation/hardware/csx600/]

28.	 ffitch, J., et al., Sliding DFT for fun and musical profit. in International Linux Audio

Conference. 2008.

29.	 Menabrea, L. and A. Lovelace, Sketch of the Analytical Engine Invented by Charles

Babbage, Esq. 1843: Taylor and Francis.

30.	 Parallel computing, history. Wikipedia [cited 10/2010;

http://en.wikipedia.org/wiki/Parallel_computing#cite_ref­PH753_42­0].

31.	 Cruz, F.d. The IBM 704. [cited 10/2010;

http://www.columbia.edu/acis/history/704.html].

32.	 Background: Bell Labs Text-to-Speech Synthesis: Then and Now Bell Labs and

"Talking Machines". [cited 10/2010; http://www.bell­

labs.com/news/1997/march/5/2.html].

33.	 Gill, S., Parallel programming. The Computer Journal, 1958. 1(1): p. 2.

34.	 Russo, E., Methods for Sinusoidal Analysis and Resynthesis of Musical Signals, in

Universita degli Studi di Milano. 2009: Milano. p. 111.

35.	 Jacobsen, E. and R. Lyons, The sliding DFT. Signal Processing Magazine, IEEE,

2005. 20(2): p. 74­80.

36.	 Oppenheim, A. and R. Schafer, Discrete-time signal processing. Prentice Hall Signal

Processing, 2009: p. 1120.

37.	 Goertzel, G., An algorithm for the evaluation of finite trigonometric series. American

mathematical monthly, 1958. 65(1): p. 34­35.

38.	 Moore, G.E. Gordon E. Moore, Chairman Emeritus of the board Intel Corp. [cited

10/2010; http://www.intel.com/pressroom/kits/bios/moore.htm].

39.	 Flynn, M., Very high-speed computing systems. Proceedings of the IEEE, 2005.

54(12): p. 1901­1909.

40.	 Asanovic, K., et al., The landscape of parallel computing research: A view from

Berkeley. EECS Department, University of California, Berkeley, Tech. Rep.

UCB/EECS­2006­183, 2006: p. 2006­183.

41. Catanzaro, B., et al. SEJITS: Getting productivity and performance with selective
embedded JIT specialization. EECS Department, University of California, Berkeley
2009: Citeseer.

42.	 Garcia, G., Optimal filter partition for efficient convolution with short input/output

delay. Preprints­ audio engineering society, 2001.

76

http://www.columbia.edu/acis/history/704.html%5d
http://www.bell-labs.com/news/1997/march/5/2.html%5d
http://www.bell-labs.com/news/1997/march/5/2.html%5d
http://en.wikipedia.org/wiki/Parallel_computing#cite_ref�PH753_42�0]
http://www.intel.com/pressroom/kits/bios/moore.htm]

43.	 Battenberg, E., A. Freed, and D. Wessel, ADVANCES IN THE PARALLELIZATION

OF MUSIC AND AUDIO APPLICATIONS. in International Computer Music

Conference. 2010.

44.	 Y. Orlarey, D.F., S. Letz Fauts, signal processing language. 2009; [cited 09/2010;

http://faust.grame.fr/].

45.	 Y. Orlarey, S.L., D. Fober. MULTICORE TECHNOLOGIES IN JACK AND FAUST.

in International Computer Music Conference. 2008.

46.	 Bradford, R. and R. Dobson. The Sliding Phase Vocoder. in International Computer

Music Conference. 2007.

47.	 Hill, M. and M. Marty, Amdahl's law in the multicore era. Computer, 2008. 41(7): p.

33­38.

48.	 ffitch, J., Richard Dobson, and R. Bradford, The Imperative for High-Performance

Audio Computing in Linux Audio Conference. 2009.

49.	 Orlarey, D., et al., Reinventing Audio and Music Computation for Many-Core

Processors. in International Computer Music Conference. 2008.

50.	 Van Roy, P. The Challenges and Opportunities of Multiple Processors: Why Multi-

Core Processors are Easy and Internet is Hard. in International Computer Music

Conference. 2008.

51.	 Puckette, M. Thoughts on parallel computing for music. in International Computer

Music Conference. 2008.

52.	 Wang, G., A COMMENT ON MANY-CORE COMPUTING AND REAL-TIME

AUDIO SOFTWARE SYSTEMS (2008). 2008.

77

http://faust.grame.fr/%5d

Appendix A

Tests of variations of the SDFT algorithm

Number of
DFT input
elements

Number
of SDFT
input
elements

Algorithm
wall clock
time (s)

Time of
calculation an
element (ms)

Initialisation
time (s)

Time of SDFT
loop
Calculation (s)

Time of
IDFT loop
Calculation (s)

64 1000 0m1.972

64 10000 0m19.852
64 50000 1m39.249 1.98 0m0.003 0m1.701 1m37.560
128 1000 0m7.917
128 10000 1m18.952 7.89 0m0.006 0m0.69 1m18.213
256 1000 0m31.453
256 10000 5m14.386 31.43 0m0.017 0m1.385 5m12.559
512 1000 2m5.389 125.3 0m0.063 0m0.334 2m5.010
1024 1000 8m14.263 494.2 0m0.963 0m0.785 8m13.772
2048 100 3m18.463 1984.6 0m0.961 0m1.070 3m18.212
4096 100 13m18.461 7984.6 0m3.888 0m4.110 13m17.942

Table 1. Results of successive DFT and IDFT algorithms.

78

N S Algorithm wall
clock time (s)

Time of
calculation an
element
(ms)

Initializati
on time (s)

Time for
SDFT
calculation
(s)

Time of
SDFT per
sample (ms)

Time of
IDFT loop
Calculation(s)

64 1000 0m1.525

64 50000 1m14.402 1.48 0m0.027 0m18.789 0.375 0m55.837
128 1000 0m5.216
128 10000 0m51.733
128 20000 1m43.437 5.17 0m0.029 0m14.880 0.744 1m28.741
256 1000 0m14.825
256 10000 2m27.063 14.70 0m0.034 0m14.263 1.426 2m12.722
512 1000 0m55.950
512 10000 9m18.459 55.84 0m0.055 0m28.439 2.843 8m49.921
1024 1000 3m20.088 200.08 0m0.123 0m5.759 5.75 6m59.693
1024 100000 332m56.532
1024 1000000 3329m22.400
2048 1000 13m8.606 788.60 0m0.403 0m11.648 11.648 12m57.294
4096 500 25m32.399 3064.7 0m1.477 0m12.696 25.392 25m21.094

Table 2. Results of synchronous data copy of SDFT and IDFT algorithms.

79

Number
of DFT
input
element

Number
of SDFT
input
elements

Algorithm
wall clock
time (s)

Time of
calculation
an element
(ms)

Initialisatio
n time (s)

Time of
SDFT loop
Calculation
(s)

Time for
SDFT calc.
per
element
(ms)

Time of
IDFT loop
calculation

Time of
IDFT
calculations
per element
(ms)

64 1000 0m1.464

64 50000 1m11.335 1.426 0m0.027 0m17.038 0.340 0m54.331 1.086
128 10000 0m56.490
128 20000 1m52.928 5.646 0m0.030 0m26.185 1.309 1m26.811 4.34
256 1000 0m16.943
256 10000 2m48.885 16.88 0m0.034 0m38.329 3.832 2m10.455 13.04
512 1000 1m8.256 68.256 0m0.055 0m15.220 15.22 0m53.023 53.02
512 10000 11m21.51
1024 1000 4m9.855 249.8 0m0.123 0m55.459 55.45 3m14.316 194.3
2048 100 1m40.930 1009.3 0m0.402 0m22.611 226.1 1m18.765 787.6
4096 100 6m33.780 3937.8 0m1.476 1m28.174 881.7 5m7.786s 3077

Table 3. Results of asynchronous data copy of the SDFT algorithm.

80

Number
of DFT
input
elements

Number of
SDFT
input
elements

Number of
elements in
a chunk

Algorithm
wall clock
time (s)

Time of
calculation an
element (ms)

Time of calculation an
element in SDFT

Time of
SDFT loop
Calculation
(s)

64 1000 32 0m2.643

64 1000 64 0m3.831
64 50000 16 1m41.079 2.021 0m48.393
64 50000 32 2m10.749 2.614 1m19.822
64 50000 64 3m10.155 3.803 2m22.612
64 50000 8 1m26.258 1.725 0m32.677
64 50000 4 1m18.842 1.576 0m24.797
64 50000 2 1m15.149 1.502 0m20.880
64 50000 1 1m13.313 1.466 0.37858 0m18.929
128 20000 1 1m41.729 5.086 0.743 0m14.860
128 20000 2 1m43.204 5.16 0m16.421
128 20000 4 1m46.158 5.306 0m19.553
128 20000 8 1m52.092 5.604 0m25.856
128 20000 16 2m3.982 6.199 0m38.446
128 20000 32 2m27.738 7.386 1m3.608
128 20000 64 3m15.269 9.763 1m53.847
256 10000 1 2m24.781 14.478 1.4102 0m14.102
256 10000 2 2m25.910 14.591 0m15.219
256 10000 4 2m28.159 14.815 0m17.470
256 10000 8 2m32.685 15.215 0m22.000
256 10000 16 2m41.740 16.174 0m31.054
256 10000 32 2m59.847 17.984 0m49.164
256 10000 64 3m36.024 21.602 1m25.345
512 10000 32 10m28.346
512 10000 64 11m40.707
512 1000 1 0m55.917 55.917 2.856 0m2.856
512 1000 2 0m56.143 56.143 0m3.079
512 1000 4 0m56.59 56.593 0m3.530
512 1000 8 0m57.499 57.499 0m4.437
512 1000 16 0m59.309 59.309 0m6.248
512 1000 32 1m2.931 62.931 0m6.248
512 1000 64 1m10.167 60.167 0m17.107
1024 1000 1 3m20.157 200.157 5.669 0m5.669
1024 1000 2 3m20.569 200.569 0m6.081
1024 1000 4 3m21.396 201.369 0m6.908
1024 1000 8 3m23.059 203.059 0m8.569
1024 1000 16 3m26.381 206.381 0m11.890
1024 1000 32 3m33.022 213.022 0m18.532
1024 1000 64 3m46.288 226.288 0m31.798
2048 100 1 1m20.006 800.06 15.10 0m1.510
2048 100 2 1m20.094 800.094 0m1.593
2048 100 4 1m20.267 800.267 0m1.758
2048 100 8 1m20.614 800.614 0m2.090
2048 100 16 1m21.306 801.306 0m2.754
2048 100 32 1m22.690 802.690 0m4.083
2048 100 64 1m25.453 805.453 0m6.736
4096 100 1 5m10.315 3103.15 36.687 0m3.687
4096 100 2 5m10.474 3104.74 0m3.847

81

4096 100 4 5m10.792 3107.92 0m4.171
4096 100 8 5m11.431 3114.31 0m4.820
4096 100 16 5m12.711 3127.11 0m6.118
4096 100 32 5m15.268 3152.68 0m8.715
4096 100 64 5m20.378 3203.78 0m13.901

Table 4. Results of asynchronous chunk data copy of input in the SDFT algorithm.

82

Number of
DFT input
elements

Number of
SDFT input
elements

Number of
elements in a
chunk

Algorithm
wall clock
time (s)

Time of
calculation an
element (ms)

Time of SDFT
loop
Calculation (s)

Time of SDFT
calculations per
element (s)

64 50000 1 1m13.333 1.466 0m18.978
64 50000 2 1m6.764 1.335 0m12.614
64 50000 4 1m6.399 1.327 0m12.394 0.24788
64 50000 8 1m11.817 1.436 0m18.250
64 50000 16 1m27.131 1.742 0m31.715
64 50000 32 1m57.968 1.959 1m1.620
64 50000 64 3m0.360 3.607 2m2.159
128 20000 1 1m41.714 5.085 0m14.873
128 20000 2 1m36.591 4.829 0m9.93
128 20000 4 1m36.448 4.822 0m9.831 0.49155
128 20000 8 1m40.748 5.037 0m14.542
128 20000 16 1m52.630 5.631 0m25.344
128 20000 32 2m16.889 6.844 0m49.261
128 20000 64 3m6.076 9.303 1m37.783
256 10000 1 2m24.786 14.478 0m14.103
256 10000 2 2m19.329 13.932 0m8.855
256 10000 4 2m18.539 13.853 0m7.932 0.7932
256 10000 8 2m21.502 14.150 0m10.893
256 10000 16 2m30.623 15.062 0m20.017
256 10000 32 2m49.285 16.928 0m38.679
256 10000 64 3m27.317 20.731 1m16.708
512 1000 1 0m55.914 55.914 0m2.855
512 1000 2 0m54.788 54.788 0m1.812
512 1000 4 0m54.677 54.677 0m1.631 1.631
512 1000 8 0m55.270 55.270 0m2.223
512 1000 16 0m57.127 57.127 0m4.081
512 1000 32 1m1.001 61.001 0m7.954
512 1000 64 1m8.728 68.728 0m15.680
1024 10000 16 32m48.545 196.854
1024 1000 1 3m20.151 200.151 0m5.668
1024 1000 2 3m17.743 197.743 0m3.551
1024 1000 4 3m17.572 197.572 0m3.116 3.116
1024 1000 8 3m18.610 198.610 0m4.152
1024 1000 16 3m21.989 201.989 0m7.532
1024 1000 32 3m29.078 209.078 0m14.620
1024 1000 64 3m43.237 223.237 0m28.778
2048 100 1 1m20.003 800.03 0m1.510
2048 100 2 1m19.465 794.65 0m1.089
2048 100 4 1m19.492 794.92 0m1.002 10.002
2048 100 8 1m19.745 797.45 0m1.242
2048 100 16 1m20.455 800.45 0m2.050
2048 100 32 1m22.353 802.35 0m4.028
2048 100 64 1m25.753 805.75 0m7.568
4096 100 1 5m10.304 3103.04 0m3.691
4096 100 2 5m9.152 3091.52 0m2.843
4096 100 4 5m9.246 3092.46 0m2.663 26.630
4096 100 8 5m9.696 3096.96 0m3.126
4096 100 16 5m11.207 3112.07 0m4.703
4096 100 32 5m14.967 3149.67 0m8.568
4096 100 64 5m21.700 3217.00 0m15.486

83

4096 50 1 2m37.408 3148.16 0m2.587
4096 50 2 2m36.830 3136.60 0m2.163
4096 50 4 2m36.902 3138.04 0m2.096
4096 50 8 2m37.167 3143.34 0m2.36
4096 50 16 2m38.083 3161.66 0m3.324
4096 50 32 2m39.739 3194.78 0m5.026
4096 50 64 2m43.106 3262.12 0m8.485

Table 5. Results of asynchronous chunk data copy of input and previous values of the SDFT in the SDFT
algorithm.

84

Number of DFT
input elements

Number of SDFT
input elements

Number of
elements in
IDFT chunk

Algorithm
wall clock
time

Time of SDFT
calculations per
element

64 50000 1 2m23.585s 2.8717ms
64 50000 2 2m18.303s 2.76606ms
64 50000 4 2m11.025s 2.6205ms
64 50000 8 2m13.363s 2.66726ms
64 50000 16 2m12.458s 2.64916ms
64 50000 32 2m8.158s 2.56316ms
64 50000 64 2m8.678s 2.57356ms
128 20000 1 3m41.220s 11.061ms
128 20000 2 3m36.190s 10.8095ms
128 20000 4 3m32.551s 10.62755ms
128 20000 8 3m21.620s 10.081ms
128 20000 16 3m29.398s 10.4699ms
128 20000 32 3m28.629s 10.43145ms
128 20000 64 3m19.424 9.9712ms
128 20000 128 3m16.657s 9.83285ms
256 10000 1 5m12.949s 31.2949ms
256 10000 2 5m7.702s 30.7702ms
256 10000 4 5m3.338s 30.3338ms
256 10000 8 5m0.943s 30.0943ms
256 10000 16 4m50.805s 29.0805ms
256 10000 32 4m58.692s 29.8692ms
256 10000 64 4m58.153s 29.8153ms
256 10000 128 4m49.111s 28.9111ms
512 1000 1 1m58.931s 118.931ms
512 1000 2 2m1.148s 121.148ms
512 1000 4 1m59.833s 119.833ms
512 1000 8 1m59.081s 119.081ms
512 1000 16 1m58.616s 118.616ms
512 1000 32 1m54.857s 114.857ms
512 1000 64 1m58.027s 118.027ms
512 1000 128 1m57.804s 117.804ms
1024 1000 1 7m11.081s 431.081ms
1024 500 2 3m33.831s 427.662ms
1024 500 4 3m38.475s 436.950ms
1024 500 8 3m37.260s 434.520ms
1024 500 16 3m36.477s 432.954ms
1024 500 32 3m35.898s 431.796ms
1024 500 64 3m29.282s 418.564ms
1024 500 128 3m35.095s 430.190ms
2048 100 1 2m58.565s 1785.81ms
2048 100 2 2m57.319s 1773.19ms
2048 100 4 2m55.837s 1758.37ms
2048 100 8 2m49.732s 1697.32ms
2048 100 16 2m49.230s 1692.30ms
2048 100 32 2m48.864s 1688.64ms
2048 100 64 2m48.581s 1685.81ms
2048 100 128 2m53.231s 1732.31ms
4096 50 1 5m52.095s 7041.90ms
4096 50 2 5m49.929s 6998.58ms

85

4096 50 4 5m47.159s 6943.18ms
4096 50 8 5m45.475s 6909.50ms
4096 50 16 5m34.236s 6684.72ms
4096 50 32 5m33.539s 6670.78ms
4096 50 64 5m32.978s 6659.56ms
4096 50 128 5m32.565s 6651.30ms

Table 6. Results of asynchronous chunk data copy of SDFT values in the IDFT algorithm.

86

	Iryna Tsimashenka
	Introduction
	Literature review and background
	Environment and methodology
	Results and Evaluation
	Conclusions and Future Work
	Bibliography
	Tests of variations of the SDFT algorithm

