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ABSTRACT 

There is a growing need to reduce the use of fossil fuels for energy. A twofold reason exists for 

this: firstly these resources are finite; secondly the utilisation of these resources releases 

greenhouse gases which are known to contribute towards climate change. The rise in global 

population and energy use per person is adding to the unsustainable use of fossil fuels.   

There is the potential to reduce fossil fuel consumption in the South West of England. The 

region’s abundant natural resources could be used to reduce the overreliance on energy from 

fossil fuels. A key natural and renewable resource within the region is the availability of 

biomass. Bioenergy is a form of energy, derived from biomass.  

Bioenergy has the capability to displace the use of fossil fuels. Additionally, it has the potential 

to reduce the effect of climate change by absorbing carbon dioxide during the biomass 

production period. It has the possibility of being integrated into existing infrastructure and is 
one of the few renewable technologies which can satisfy an array of end-use energy 

requirements. This thesis highlights a unique method of assessing the potential of bioenergy 

in the South West of England using a multi appraisal technique. 

The initial assessment within this thesis has examined the resource availability of bioenergy 

based on biomass feedstock. Whilst quantifying the overall availability, constraints have been 

examined to determine the realisable potential of biomass as an energy source. The analysis 

has then assessed the drivers and barriers of bioenergy development within the region and 

contextualised this for the UK in general. Following the selection of a single bioenergy 

pathway (biogas production from anaerobic digestion), the technology has been assessed 
using a multi appraisal methodology. This methodology has involved the use of net-energy 

analysis, environmental life cycle assessment and financial investment assessments.  

The thesis demonstrates that the region has a notable resource availability of biomass. 

However, a number of barriers to development have been found which could impede the 

utilisation of this energy source. The selected bioenergy pathway of biogas from anaerobic 

digestion was found to eliminate some of these barriers. Assessing the potential of biogas 

using multi appraisal techniques highlighted that this pathway could, in some cases, offer 

positive environmental, energy and financial benefits.  
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GLOSSARY 

AD (Anaerobic Digester) – This is the biological reaction for biogas production. The biogas is 

produced within an anaerobic digester. 

Biogas – The by-product of AD. The gas is a mixture of methane, carbon dioxide and trace 

elements. It can be highly flammable.  

CV (Calorific Value) – The amount of heat evolved when a unit mass of a fuel is burned 

completely under standard conditions.  

CHP (Combined Heat and Power) - A method of recuperating waste heat from electricity 

generation. 
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Discount Rate – Is the conversion factor by which money is valued at different points in time 

and related to a single point in time. 

ERE (Energy requirement for Energy) – The sum of all primary or resource energy dissipated 

to give one unit of delivered energy (delivered means and end-user energy such as electricity 

or diesel fuel).  

FIA (Financial Investment Appraisal) – The technique for assessing the financial feasibility of 

an investment, taking into account annual revenue, expenditures and capital costs.   

GCV (Gross Calorific Value) – The amount of heat evolved when the products of combustion 

are cooled to ambient conditions (25oC) and water vapour has condensed, evolving its latent 

heat. 

GER (Gross Energy Requirement) -  The sum of all the primary (or resource) energy sources, 

expressed in terms of heat that must be dissipated in order to produce a good or a service.  

LCA (Life Cycle Assessment) – A procedure of study for determining the environmental 

impacts of a product or a process.  

Met Office - An abbreviation for ‘Meteorological Office’, but now the official name of the UK 

national weather service.  

MC (Moisture Content) – The specific water concentration within organic matter. This is often 

represented as a volume percentage. 

NCV (Net Calorific Value) – This is a measure of the heat evolved when the products of 

combustion are cooled to ambient conditions and the latent heat of condensing water is 

deducted.  

Primary Energy – Energy that is extracted from natural resources and not subjected to any 

conversion processes.  

PV (Present Value) – The current monetary value arising at a future date; this is found by 

applying a discount rate.  

SEDBUK - Seasonal Efficiency of Boilers in the UK. 

TS (Total Solids) – A measure of the dry matter within an organic substance. This is related to 

the MC. 

VS (Volatile Solids) – A measure of the active (or volatile) fraction within the TS of an organic 

material.  
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1 INTRODUCTION 

1.1 Energy within a global society 

Human development requires energy. Energy is essential for many aspects of life and the 

demand for energy continuously grows. Globally, this increase in demand is a result of two 
factors. Firstly, the energy requirement per person has increased. Secondly, there is a growing 

population of energy consumers. The United Nations predict that by 2050 the earth’s 

population will be around 9 billion people, an approximate 30% increase on current times 

(Kilbert 2005).  

Energy cannot be created or destroyed. It can only be converted from one form to another. 

Ultimately, all energy on earth is derived from the sun. The solar energy received on earth is 

approximately 11,000 times the global energy demand per year (Ecofys 2005). Due to the high 

dispersion, only a small amount can be recovered for energy purposes.  

Fossilised resources (fossil fuels) are the most common energy source converted to utilisable 
forms such as liquid (oil), gas and solid (coal).  They have amongst the greatest energy per 

unit volume or energy density and are relatively easy to obtain and convert into utilisable 

energy. Fossil fuels used for energy conversion became significant during the 19th century 

through the heavy use of coal. On improving the conversion efficiencies, the power of oil 

became apparent and oil and gas began to substitute the use of coal. Since then the world has 

been heavily reliant on fossil fuels (Ecofys 2005).  

Fossil fuels are recognized as non-renewable sources of energy; signifying they cannot be 

renewed on a timescale which can sustain their consumption. Due to this fact, fossil fuel 

depletion occurs faster then the rate at which they can be created. This would not be 

problematic if there was an infinite supply of fossilised resources within the earth’s crust. 

However, the resource of fossil fuels are globally believed and accepted to be finite and fossil 
fuel discoveries are becoming too costly in monetary or energy terms to be utilisable 

(Longwell 2002).  

1.1.1 Historical energy use 

The demand for energy has increased dramatically over the past 100-150 years and is 
predicted to increase further. Currently, most of the energy demand is met by burning fossil 

fuels (Deublein & Steinhauser 2008). As global energy consumption has increased, so too has 

the use of crude oil, natural gas and coal. The two graphs show how primary energy 

consumption has increased (see Figure 1-1 and Figure 1-2). 
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Between 2005 and 2030, the energy demand is predicted to increase by 50% (EIA 2008). 

Nineteen percent will arise from OECD1 countries whilst over 80% of this increase will come 

from non-OECD countries (EIA 2008). Therefore, the reliance on oil, natural gas and coal will 
increase. Oil production has been closely monitored over the past 50 years by a number of 

organizations. These established sources record and publish annual global oil consumption 

figures (BP 2008;EIA 2008;ENI 2008). These have been displayed in Figure 1-1.  

Figure 1-1 Global oil production (thousands of barrels per day). Source: (BP 2008;EIA 2008;ENI 2008) 

Global oil production has steadily increased over the past 50 years and is predicted to increase 

significantly over the next 40 years (EIA 2008). According to some sources, the proven oil 

reserves could supply global oil demand for the next 40 years and show that global reserves 

have increased at a similar rate to oil consumption/production (BP 2008). However, other 

sources (Longwell 2002) suggest that oil discoveries are significantly lower than predicted and 

publicised. According to one of the largest global oil suppliers, the average size of oil fields 
found from 1950 to 2000 have dropped to 20% of original findings (Tsoskounoglou et al. 2008). 

Tsoskounoglou et al. (2008) stated that global oil discoveries peaked during the 1960s and 

since then discoveries in volumes of oil have reduced (ibid). Therefore the rate of new oil 

reserve discoveries has not expanded at the same rate as global production, indicating that oil 

is being consumed at an unsustainable rate. The discrepancies in the literature make 

estimating the remaining oil reserves difficult.  

                                                        
1   Organisation for Economic Co-operation and Development (OECD) member states are countries 

that represent the principles representative democracy and accept free-market economy. These 

tend to be developed countries with relatively high GDP/person. Currently only 30 countries are 

OECD members. 
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Global energy resources are often associated with fossilised oil, natural gas and coal, due to 

the commanding share that these energy sources have over alternatives such as nuclear and 

renewable energy. In 2005, 34% of the global energy demand was met by oil, 26% from coal 
and 22% from natural gas (EIA 2008). This equates to 82% of the global energy demand, with 

the remaining 18% being supplied by nuclear and renewable energy sources.  

Figure 1-2 Historical global energy use by resource (International Energy Agency 2006) 

Energy conversion through fossilised resources releases the carbon stored internally within 

the material. On release into the atmosphere it generates a carbonic gas bonded with oxygen, 

called carbon dioxide (CO2). Carbon dioxide is recognised as being a greenhouse gas (GHG). 

This gas has the potential to create a change in the earth’s climate; called the greenhouse 

effect. An increase in GHG in the atmosphere changes the balance of solar radiation received 
and rejected from the earth. This is caused by blocking the solar radiation within the earth’s 

atmosphere, consequently altering the climate (IPCC 2007b).  

This effect on the earth’s climate (climate change) is believed to be a natural phenomenon 

possibly contributed towards by human activity; a theory which has been widely recognized 
by scientists globally. As a result of increasing international concerns regarding climate 

change, in 1988 the International Panel on Climate Change (IPCC) was instituted to evaluate 

this risk caused by human activity. Through the IPCC, a number of reports have been 

released, of which the latest was published in 2007 (IPCC 2007a). The report highlighted that 

global average surface temperatures had increased steadily, along with global average sea 

levels whilst northern-hemisphere snow cover had decreased. These trends were found to be 

especially significant from 1950 to present time (IPCC 2007a). 

Following the launch of the IPCC, the United Nations Framework Convention on Climate 

Change (UNFCCC) was established to address the issue of climate change globally (United 

 

0

20

40

60

80

100

120

140

160

180

200

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

T
h
o

u
sa

n
d

s
P

ri
m

ar
y

 e
n

er
g
y

 c
o

n
su

m
p
ti

o
n

 (
P

J)

Petroleum Coal Natural Gas Hydroelectric Nuclear Other renewable



INTRODUCTION 

- 4 - 

 

Nations 2004). This framework is represented by 189 countries highlighting the near global 

participation in tackling climate change.  Adopted in 1997, the Kyoto protocol was 

implemented ensuring countries (of which 184 signed the agreement) had to meet reduced 
targets of six primary GHGs (carbon dioxide, methane, nitrous oxide, sulphur hexafluoride, 

hydro fluorocarbons and per fluorocarbons) (United Nations 2008). Carbon dioxide is 

considered the most critical greenhouse gas as this represents 77% of the total global GHG 

emissions and has risen by 80% during 1970-2004 (IPCC 2007a). The largest contribution to 

these emissions is believed to be the conversion of fossil fuels into energy supplies.  

The need to reduce the global dependency on fossil fuel resources is apparent. This 

requirement is not based solely on the depletion of finite resources, but also the need to reduce 

the possibility of affecting the global climate. The need for change, recognized globally, must 

be initiated on a national level.  

1.1.2 Energy use in the UK 

The UK’s energy position is similar to that of the global representation. Energy consumption 

in the UK has grown steadily and since 2004 the UK has become a net-importer of fuel (BERR 

2008a). In fact, the UK has a higher reliance on fossil fuel energy than the global average (92% 

as opposed to 82% of total energy supply met by fossil fuels). In 2007 the UK required 235 

million oil equivalent tonnes (toe) of primary energy (BERR 2008a), of which 18 million toe 

were from non-fossil resources.  

The rate of energy consumption is related to the growing energy demand in the UK. Energy 

demand in the UK can be categorised by end-user. These include: industry, transport, 

domestic and services. In 2007, the UK transport sector was the most energy intensive 

(requiring 38.5% of the total UK energy); whilst domestic and industrial energy demand 
accounted for 28.5% and 20.5% respectively (BERR 2008a). In 1970, nearly half of the UK’s 

energy consumption lay within the industrial sector (42.5%), with domestic energy 

consumption contributing to 25.5% and transport sector being responsible for 19.5% (ibid). The 

shift in demand was partly caused by a reduction of heavy industry within the UK but also an 

increase in road transportation over the past 40 years. Energy policy in the UK has been 

documented through a number of Energy White Papers (BERR 2007a). The most recent white 

paper highlighted four policy goals for meeting future energy demand. These are as follows 
(BERR 2007a): 

1. To put the UK on a path to cut carbon dioxide emissions by 60% by 2050, with real 

progress by 2020;  

2. To maintain reliable energy supplies and security of energy;  
3. To promote competitive energy markets in the UK and beyond, helping to raise the rate 

of sustainable economic growth and to improve productivity;  

4. To ensure that every home is adequately and affordably heated. 

The Kyoto protocol committed the UK to reduce the country’s GHG emissions by 12.5% 

during 2008 to 2012, based on 1990 levels. Furthermore, the UK launched its own Climate 
Change Programme in 2000. The programme aimed to adhere and surpass the requirements 

set by the Kyoto Protocol and introduced a new target of 20% (23-25% GHG emissions) 

reduction in CO2 emissions from 1990 levels, by 2010 (HM Government 2006).  
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In response to these targets, in November 2008, the UK created the Climate Change Act with 

the aim to reduce GHG emissions to 80% of 1990 levels, by 2050 (HM Government 2008). Prior 

to this, the target had been set at 60% following the recommendations from the Royal 
Commission on Environmental Pollution (RCEP 2000). These recommendations arose from 

research showing that if countries adopted this target, it would limit CO2 concentrations to a 

suitable level to stop rising atmospheric temperatures (around 2oC) (CCC 2008).   

In 2008 a report commissioned by the Committee on Climate Change (CCC 2008) stated that 
the targets set in the RCEP report were based solely on CO2 levels and failed to consider the 

other major GHG emissions. Using updated calculations they reported that mean global 

temperatures would rise considerably more than previously thought by the RCEP. Due to 

these findings, a new target of 80% GHG reduction from 1990 levels was introduced (HM 

Government 2008). In order to meet these targets, the use of low carbon technologies could 

help provide part of the solution. The displacement of conventional carbon emitting energy 

sources could help reduce CO2 emissions. Through the decarbonisation of energy supplies, the 
use of renewable energy is expected to have a significant contribution (CCC 2008).  

In 2009, the UK set-out plans to achieve a 15% renewable energy target by 2020 (HM 

Government 2009). This is primarily to reduce national CO2 emission levels, but also to help 

reach the recent legally binding, renewable energy targets set by the European Commission 

for the UK (European Commission 2009). The aim of the EU targets is to reduce GHG 
emissions by 2020 in order for its member states to meet the Kyoto Protocol targets. To do this, 

they envisage an increase in renewable energy use across Europe. Despite the initiative, the 

renewable energy target for the UK is amongst the lowest of the 27 EU member states (House 

of Lords 2008).  

The UK Government strategy suggests that 30% of electricity, 12% of heat supply and 10% of 

transport energy consumption is obtained from renewable resources (HM Government 2009). 

To do this, the UK has at its disposal a number of renewable energy sources including wind 

energy, solar, hydro and biomass (HM Government 2009).  

1.2 Aim and scope of work 

As the role of renewable energy is set to increase in the UK, energy from biomass (bioenergy) 

is considered to have a crucial role in meeting Government-set targets (BERR 2007b;HM 

Government 2009). The range of end-uses for bioenergy enables it to be used for electricity 
production, heat generation and transport fuel. This makes it one of the few renewable energy 

sources which can contribute towards the whole spectrum of energy demand in the UK. This 

source of energy could potentially contribute to lowering CO2 emissions within the three 

energy demand sectors, highlighted earlier. The flexibility of bioenergy and the range of 

applicable biomass resources available advocate the necessity to quantify and understand the 

true potential of bioenergy in the UK.   

The implementation of biomass technologies within the current energy mix could not only 

reduce carbon emissions but also improve energy security if fuels were sourced and produced 

locally. However, the use of biomass for energy purposes has raised growing concerns over 

the past years. Biomass production may result in a reduction of food availability and cause 
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other environmental issues with unknown results, such as expansion of monocultures (The 

Royal Society 2008;WWF 2007). In some cases, the use of bioenergy may only offer little, if 

any, carbon savings when the whole life cycle of some bioenergy pathways are considered 
(Pool 2007).  

In 2005, the UK Government commissioned the Biomass Task Force (Gill et al. 2005) to 

identify pathways for delivering bioenergy in the UK. The task force identified a lack of 

mature and robust supply chains in bioenergy, a general lack of knowledge of bioenergy and a 
lack of strong market signals for its requirement. The report created a number of 

recommendations in order to develop the use of bioenergy in the UK (ibid).  In 2007 the 

Government produced the UK Biomass Strategy as an obligation in response to the task force 

(BERR 2007b). The strategy addressed the Government’s vision for bioenergy use and 

development in the UK, stating that bioenergy could be enhanced by: 

o Sourcing an additional 1 million oven-dry tonnes (ODT) of wood per annum in England by 

developing currently unmanaged woodland and increasing the recovery of wood from 

managed woodland;  

o Increasing perennial crop production for biomass in the UK, with the potential to use up to 

a further 350,000 ha across the UK by 2020 (capable of yielding around 3.5 million ODT of 

miscanthus per year: assuming a miscanthus yield of 10 ODT/ha per year);   

o Increasing the supply and management of organic waste.  

Within the UK, the region of the South West of England comprises of Bristol, Gloucestershire, 

Somerset, Dorset, Wiltshire, Devon and Cornwall. The region has preferential conditions for 

bioenergy production. These include generally higher climatic temperatures and rainfall than 

the rest of the British Isles, optimal for biomass growth (McKendry 2002a). The South West’s 
large agricultural land area, comprising over 80% of the total available land, makes it an 

attractive location for energy crop production. Extensive farming raises the potential for a 

high supply of organic waste suitable for producing biogas.  Managed woodland accounts for 

around 43% of total woodland in the region which has the potential for an increase in 

woodfuel (Hammond et al. 2008a). 

The regional benefits for bioenergy use have been highlighted in a number of regional 

strategies and policies (O'Rourke 2001;RegenSW 2003). This was also supported by the 

Regional Economic Strategy for the South West of England 2006 – 2015 (SWRDA 2006). This 

source outlined the need to drive the economy forward by the development of alternative 

fuels in light of climate change. It also stated that the South West Region had the capacity to 

become a world leader in renewable energy, although recognising that the natural 
environment is a fragile resource that needs protection (ibid). Due to the region’s strong 

potential from natural and renewable resources, renewable electricity targets have been set 

higher than the national average (of 2006) at 11–15% by 2010 (RegenSW 2003).  

It is evident that there is a need to examine accurately the potential of bioenergy within the 

South West of England. The overall aim of this research is to examine the role of bioenergy 
within this region. This will be done based on biomass resource availability, bioenergy 
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pathway applicability2 and environmental and financial implications. Additionally, an 

understanding of the prospects and barriers faced by the development of bioenergy in the 

South West of England will also be examined. These research aims and objectives require an 
interdisciplinary approach. The integration of diverse disciplines will become apparent when 

addressing the project objectives.  

The research is divided into a number of key sections (research questions). The study 

questions have been listed and detailed within the following sections.   

Research Topic 1 - What is the bioenergy resource potential of the South West? 

The aim of this section was to determine the current use of bioenergy within the region and 

contrast this with the potential availability of bioenergy resources. An analysis of the South 

West’s resources was required, along with an assessment of the region’s energy use and 
potential energy pathways. Bioenergy is considered an umbrella term for a large family of 

biomass-to-energy pathways. Therefore this research enabled an understanding of which 

pathway or pathways could be more favourable for the region, in terms of resource 

availability. Identification of the biomass resources currently and potentially available in the 

region was made and contrasted with earlier renewable energy assessments for the region.  

Research Topic 2 - What barriers are placed on the development of bioenergy in the South West?  

This study determined the technical and other constraints inhibiting the exploitation of 

bioenergy in the region via case studies of recent real-life projects. The analysis was 

subsequently expanded to represent the bioenergy drivers and barriers for the UK as a whole. 

Following an assessment of failed or non-initiated bioenergy projects in the South West a 
stakeholder survey determined the main barriers and drivers to bioenergy development in the 

region. Documentation and analysis of the results then followed.  

In agreement with the UKERC, the study subsequently focused on a single bioenergy pathway, 

biogas from anaerobic digestion. This resulted from the findings of the first research question 
‘What is the bioenergy resource potential for the South West of England’.  

Research Topic 3 - What are the energy benefits of bioenergy (biogas) development? 

The energy analysis addressed the efficiency of the process and examined the net-energy 

benefits (or detriments). It also represented energy requirements for energy and the fossilised 
resource requirements for biogas production. From the study it was possible to determine the 

fossil resource avoidance gained by adopting this technology for electricity production, heat 

or transport energy.  

  

                                                        
2 Throughout the thesis, a bioenergy pathway is defined as the type of conversion process from 

biomass feedstock (raw form) into a utilisable energy form (bioenergy). 
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Research Topic 4 - What are the environmental impacts attributable to bioenergy (biogas) 

development? 

The second part of the energy and environmental impact study was to evaluate the 

environmental impacts of biogas production and its processes. This was done by undertaking 

a full life cycle assessment (LCA) from cradle to grave. The environmental impacts of making 

and using biogas were then reported. From this investigation, the effects of adopting biogas 

energy for the South West of England were discussed, determining whether biogas would 
have positive or detrimental impacts upon the environment.   

Research Topic 5 - What are the financial implications of adopting bioenergy (biogas production 

and use)? 

Specific biogas plants in the UK and Europe were studied so that a financial investment 

appraisal for biogas could be developed. This was then applied to the region, highlighting the 

costs associated with exploiting biogas. Due to the versatility of biogas, a cost comparison 

between different uses was also made. An assessment of the quality of inputted data was 

carried out using a sensitivity analysis.   

1.3 Documenting the research 

The environmental impact assessment, financial investment appraisal and energy analysis 
formed the basis of the multi appraisal technique. The methodology for this appraisal 

technique has been addressed in Chapter 5. The results from these analyses were then 

discussed within the context of the South West of England. Contextualizing the results in this 

way enabled the studies to be interlinked and cross-referenced throughout the thesis. The 

results from the resource assessment study were presented at the 2008 UKERC Annual 

Assembly. The work was then selected for publication in the special issue of the ICE Journal 

‘Energy research in context’ (Hammond et al. 2008a). The results from the study on barriers 
and drivers for bioenergy were also presented at the 2008 Biomass and Energy Crops III 

conference in December 2008.  
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1.4 Thesis structure  

The structure of the thesis focuses primarily around the research questions set out at the initial 

stages of the research. The thesis is divided into eleven chapters, with the core UKERC 

research questions addressed between Chapters 3-9. The first two chapters present the reader 

with an overview of energy use and production, followed by a review of bioenergy pathways. 

The chapters responding to the specific research questions discuss the findings and are 

assessed from a regional perspective. Conclusions, recommendations and further work are 
then addressed in the final chapter, highlighting the author’s final thoughts. The structure has 

been represented in Figure 1-3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-3 Thesis and research structure 
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2 BACKGROUND TO BIOENERGY 

Energy from biomass (bioenergy) is considered a viable option for sourcing energy from 

renewable sources. This chapter details the fundamentals of biomass and its transformation 

into a useable energy source. A critical analysis of bioenergy pathways has also been carried 

out examining the potential of each bioenergy process. 

Throughout this thesis the following terminology will be used (shown in Figure 2-1): biomass 

is a source of feedstock and can be any type of organic matter. Biofuel, biogas or bio-solid is 

the fuel form obtained after processing or preparation. Finally, bioenergy is a measure of the 

energy capability of the biomass. 

 

 

Figure 2-1 Bioenergy supply chain. Adapted from FAO (2004) 

 

Biomass is defined as living or recently living organic matter (White & Plaskett 1981). All 
organic matter is essentially derived (directly or indirectly) from photosynthesis, converting 

energy from the sun into chemical energy stored within organic material. Energy that can 

subsequently be derived from biomass and used for societal energy requirements is called 

bioenergy.  

 

Biomass from plants originates from the sun’s captured energy radiation. In addition to the 

sun’s radiation, carbon dioxide is also absorbed and converted into sugar and starch. The 
photosynthesis process also creates oxygen, essential for humans and animals to survive. The 

photosynthesis cycle in biomass can be displayed in a simplified equation as shown: 

 

2612622 666 OOHCOHCO Sunlight + →+       2-1 

 

The potential for energy recovery from biomass signifies that biomass is a good energy carrier 

(from the sun’s energy to useful energy for society). This makes energy from biomass an 

attractive source of “free” energy, as it does not rely on fossil-based resources. The conversion 

of the sun’s energy into biomass energy is however, very inefficient. For example, solar energy 
intensity in England is approximately 33,000 GJ/ha/yr (White & Plaskett 1981). With a UK land 

covering of around 13 million ha, this equates to a total received solar energy of around 

430,300 TJ/year (roughly equal to 120 million GWh/year). Assuming a total primary energy 

use in England of around 5,000 TJ; the solar radiation could provide more than 86 times the 

country’s energy demand. Although the availability of energy is high, the utilisable energy 

from the sun becomes very low through a number of inefficiencies.   

The theory above shows that photosynthesis is an ineffective method of converting the sun’s 

energy into utilisable biomass. The average conversion efficiency is between 1-2% (Slesser & 

Lewis 1979). This is a result of a number of factors which ultimately reduce the “useful 

energy” received from the sun. The efficiency is affected by the climatic conditions 

experienced by the biomass during the growing stage. For example maize (C4) grown in the 
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USA has a photosynthetic efficiency of 0.5%, whilst in Japan the efficiency rises to 1.1%. This 

ultimately results in a change of annual yield oven dry tonne (ODT) production of 10 

ODT/ha/yr (Cooper 1975). Although crop yields will have increased since this source was 
published, the relationship still holds true. This change is brought about by climate and other 

factors; however it is generally considered that areas at low altitudes with a low occurrence of 

chilling temperatures produce higher biomass yields (Slesser & Lewis 1979). As a result the 

actual utilizable energy from biomass is significantly lower than the received, non-reflected, 

energy from the sun. Consequently biomass production requires large areas of land.  

Once the biomass has been produced it contains the internal energy which through a series of 

processes can be extracted and used. One of the most common energy extraction processes of 

biomass is direct combustion. The combustion of dry biomass releases energy in the form of 

heat up to and over 400oC in some cases (Twidell & Weir 2006). During this combustion, the 

embodied carbon is converted into carbon dioxide (CO2) which is then released into the 

atmosphere. As biomass production requires the absorption of CO2, the overall process can be 
considered as carbon neutral and commonly known as the carbon cycle.  

A schematic of the carbon cycle has been shown in Figure 2-2. The cycle is a closed loop 

resulting in all the carbon emitted from biomass combustion being re-collected through 

photosynthesis. Although this cycle is known as carbon neutral, some energy is required to 

obtain energy from biomass.  Therefore, this prevents the system from being completely 
carbon neutral.  

 

 

 

 

 

 

 

 

 

Figure 2-2 Carbon cycle for biomass with carbon emitting factors for fuel production 

Within the bioenergy supply chain there are four key areas where ‘external’ energy is required 

and subsequently CO2 is released. These consist of growing and collecting the biomass 

feedstock, processing the biomass into a utilisable energy source and transporting the 
bioenergy to its required destination. The energy required during these stages is in the form of 

diesel for transport and fossil fuel combustion for electricity and heat intensive processes. 
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These processes subsequently emit carbon dioxide thereby adding to the emissions associated 

with the bioenergy.  

At present bioenergy is commonly assumed to have external energy inputs derived from fossil 

fuel sources. However, if bioenergy were developed on a larger scale in a sustainable method, 

then these external energy sources could be derived from bioenergy itself. For example, 

biodiesel could be used for transportation and bioenergy from biogas or biomass combustion 

could supply heat and power generation. Consequently the biomass carbon cycle would be 
closed as no fossilised energy sources would be needed. If this approach were undertaken, the 

energy output of bioenergy per unit input of bioenergy would be significantly reduced. A unit 

MJ of bioenergy would require a greater amount of biomass. This could impact upon a 

number of environmental factors, including land-use and resource availability.  

2.1 Types of biomass 

A detailed description classifying and describing biomass types has been illustrated in 

Chapter 3. However, biomass resources can be classified into four groups. These include: 

o Arable/annual crops; 

o Herbaceous perennials; 

o Woody perennials;  

o Residues and waste. 

However, there are other sources of biomass, such as aquatic biomass which do not directly fit 

into these four categories. These categories cover the more commonly used biomass 

feedstocks.  

Biomass plantations are defined either as perennial or annual. Annual plants have a one-year 
lifecycle from seed plantation to growth to seed plantation again. Perennial plants have a 

longer lifecycle (above 2 years). Perennials can include grasses, such as miscanthus and 

switchgrass and woody plantations such as short rotation coppice, pine or spruce. Plants 

which have no ligneous content above ground are defined as herbaceous. These plants can 

either be annual or perennial. Herbaceous plants can also be classified as high or low moisture 

content (McKendry 2002a), which subsequently determines the use of the biomass. Residues 

and wastes include all farming manures and any type of organic derived waste.  

The type of energy desired and the conversion processes available often determines the type 

of biomass feedstock used. However, some sources of naturally occurring biomass (or part of 

the waste cycle of other systems) will often dictate the type of energy that can be supplied 

rather than the type of energy desired, as is often more preferable.  

2.2 Bioenergy conversion processes 

Energy housed within biomass can be stored for long periods and can then be extracted 
through a series of techniques, shown in Figure 2-3. These techniques convert the energy from 

within the biomass into utilizable form. This process is commonly referred to as bioenergy 

conversion process.  
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Figure 2-3 Bioenergy pathways. Adapted from Hammond et al. (2008b) 

Conversion processes for biomass to energy have been established and documented through 

the literature (FAO 2004;Hammond et al. 2008b;McKendry 2002a;McKendry 2002b). The 

process flow chart in Figure 2-3 shows an overview of the major bioenergy pathways. 
Generally conversion techniques can be grouped into three types: thermo-chemical, bio-

chemical/biological and physio-chemical conversion (McKendry 2002a). Thermo-chemical 

conversions include combustion, pyrolysis and gasification. Bio-chemical processes include 

fermentation and anaerobic digestion. Thirdly, physio-chemical conversion processes convert 

crops into liquid forms of bioenergy through processes such as esterification.  

Biomass for bioenergy production can be categorised as primary or secondary resources. 

Primary biomass resource is an organic material that can be used immediately in its organic 
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form, such as wood for combustion. Secondary biomass resources are obtained in the form of 

bio-solid, biofuels and biogases and are available subsequent to a conversion process (FAO 

2004). Bioenergy conversion techniques vary depending on resource availability, conversion 
technology adopted and end-use requirements. Conversion processes available for biomass 

result in a range of bioenergy fuels and subsequent energy uses. The most common 

conversion processes have been described in detail within the following sections.   

2.2.1 Thermo-chemical conversion processes 

Gasification – This is a high temperature conversion process (over 600oC). Biomass is 

subjected to an elevated temperature with limited supply of oxygen. The lack of oxygen in the 

combustion process leads to an energy gas (syngas). A lower calorific value of gas would be 

obtained with air only, which is due to the dilution by the nitrogen. The product gas (a 

mixture of carbon monoxide, carbon dioxide, hydrogen and methane) can then be combusted 

for heat or electricity production. Feedstocks for this process include herbaceous perennial 

grasses, woody perennials, residues and waste. The remaining residue is biochar, which can 
be used as a fertilizer. The typical calorific value of the product gas is between 4-8 MJ/m3 

(Schuck 2006). This is relatively low compared to natural gas or other biogas compositions. 

The process has been shown schematically in Figure 2-4. 

 

 

 

 

 

 

Figure 2-4 Gasification process flow. Adapted from Schuck (2006) 

 

The production of gas from this process offers an attractive proposition over existing standard 

combustion processes as it results in a wider range of uses for the biomass. Additionally, the 
temperatures achieved from gaseous combustion can be considerably higher than combustion 

of some solid biomass. Although a relatively under-utilized technology with commercial 

uncertainties, this technology was used in Germany during the 1930-40s for the gasification of 

wood. However the abundance of financially attractive oil has resulted in slow growth of this 

technology (Ecofys 2005).   

Pyrolysis – Similarly to gasification, this is a high temperature conversion process reliant on 

the removal of oxygen. Biomass is subjected to high temperatures in the absence of air. During 

the process, the residue produced is carbon. Feedstocks for this process include herbaceous 

perennial grasses, woody perennials, residues and waste (Schuck 2006).  
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Pyrolysis produces a wide range of combustible fuels including gases, vapours, liquids and 

oils. The type of yield is dependant on the operating temperature and the type of material 

processed. The process efficiency, which is the energy of combustion produced from the 
secondary fuels divided by the energy of combustion of the input biomass, is between 80-90% 

(Twidell & Weir 2006). From one tonne of dry wood converted through pyrolysis, the 

expected output is as follows: 200 kg of charcoal, 140 m3 of combustible gas, 76 litres of wood 

oil, and 120 litres of other oils or acids (Twidell & Weir 2006). Although the technology 

appears to have a promising potential, it is still at demonstration stage and is considered too 

early and financially unfeasible for commercial implementation (Rosillo-Calle 2006). The 

schematic of the process has been shown in Figure 2-5. 

 

 

 

 

 

 

 

Figure 2-5 Process flow of pyrolysis biomass conversion. Adapted from Schuck (2006) 

Combustion – Direct ignition of biomass can be used to recover thermal energy. The thermal 

energy is generally used as low-grade heat. However it can also be converted into electricity 

through the production of steam. The process can be fuelled by most biomass feedstocks, 

provided the moisture content (MC) of the material is less than 50%. The process is 90% 
efficient for heat production; however this is significantly reduced for electricity production 

(17-25%) (Rosillo-Calle 2006). Gas cleaning process consists of scrubbers, bag filters and other 

systems which can reduce air pollutants (Schuck 2006). 

This technique can be used within co-firing processes. Co-firing is the addition of biomass to a 
primary fossil fuel such as coal. Co-firing can provide significant reductions in carbon 

emissions through its use in large scale applications. However, direct combustion of biomass 

is regarded as relatively limited compared to other conversion techniques such as gasification, 

with limited end-uses for the biomass (Figure 2-6). 
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Figure 2-6 Combustion process flow. Adapted from Schuck (2006) 

2.2.2 Bio-chemical conversion processes 

Fermentation – This process is the conversion of carbohydrates into alcohols or acids through 

a biochemical process. The process is usually carried out under anaerobic conditions; 

however, this can vary depending on the feedstock. Most types of biomass feedstocks can be 

used for fermentation processes, provided sugars such as glucose, fructose and sucrose are 

present. The most common type of fermentation process is the production of bioethanol from 
sugar or starch crops. 

Ethanol production is effectively alcohol production and therefore the process is well 

established and in some cases efficient. The use of this liquid fuel can be integrated into 

existing internal combustion engines (ICE) and used as a transport fuel. However there are 
small modifications required in order to make this operable (such as modifying the ignition 

timing). Ethanol can be used in unmodified engines up to a 10-15% blend, denoted as E10 or 

E15 (Twidell & Weir 2006). The process has varying efficiencies based on the scale of the plant 

and the type of feedstock used. For example, ethanol yields can vary by over 500% depending 

on the type of crop used (sugarcane = 70 litres per tonne of crop, maize = 370 litres per tonne of 

crop) (ibid).  

Hydrolysis and fermentation – This involves a chemical reaction which converts raw 

feedstock cellulose chains into glucose. These can then be fermented for bioethanol 

production. Lignocellulosic biomass can be converted to bioethanol by hydrolysis, followed 

by a fermentation process (Balat & Balat 2009). 

During this operation, the feedstock is pre-treated through a cleaning process. It is then 

crushed into smaller particle sizes. Following these steps, the biomass undergoes chemical, 

physical or biological treatment in order to remove surrounding hemicellulose and lignin 

(Hamelinck et al. 2005). Hydrolysis is then performed when steam is added to the remaining 

free hemi-cellulose polymers (Hamelinck et al. 2005). The extracted sugars are then fermented. 

This process allows woody-biomass feedstocks to be converted in liquid biofuels.  

This type of biofuel (biomass liquid) production is commonly known as a second generation 

biofuel (Zabaniotou et al. 2008). It can become a direct replacement for first generation biofuel 

processes, such as fermentation for bioethanol and esterfication for biodiesel production. The 

primary benefit of second generation biofuels is that higher yields per hectare of biomass are 
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achieved. First generation biofuels have limited performance in terms of conversion efficiency 

and also require a larger amount of land-use (Suurs & Hekkert 2009).   

Another type of second-generation biofuel production is through the gasification of 

lignocellulosic biomass and the subsequent Fisher-Tropsh process. This process converts the 

gaseous energy source from an air rich gasification process into liquid hydrocarbons (Suurs & 

Hekkert 2009). This in turn can produce biodiesel and bioethanol. A schematic of hydrolysis 

for bioethanol production is shown in Figure 2-7.  

 

 

 

 

 

 

 

Figure 2-7 Process flow of hydrolysis fermentation. Source: (Hamelinck et al. 2005) 

Anaerobic digestion (AD) – This process converts organic material directly into methane, 

known as biogas. Biogas is produced from the decomposition of organic material in the 

absence of air and sun light. The biogas is a mixture of methane (50-75%), carbon dioxide, 
hydrogen sulphide, ammonia and other trace elements (Ecofys 2005). Biogas can be used in a 

variety of combustion processes and is a direct replacement for natural gas. Biogas is 

considered combustible if the methane content is above 45% (J.Prior, Summerleaze ltd. 

22/05/2007, personal communication). The gas can also be cleaned (hydrogen sulphide and 

carbon dioxide removed) and compressed, ready to be used as a transport fuel. Feedstocks 

tend to be animal and human produced wastes, including municipal waste; however any 

biomass feedstock is suitable. The process requires biomass to have a high moisture content 
and relatively low total solids concentration (TS) for optimum operability.     

The process undergoes four stages of biodegradation; these stages convert the carbohydrates, 

fats and proteins into sugars, fatty acids and amino acids (Deublein & Steinhauser 2008). 

Acidogenic bacteria break down the components further into hydrogen sulphide, carbon 
dioxide and ammonia. The molecules are broken down through a third stage to create acetic 

acids, carbon dioxide and hydrogen. In the final stages these are converted further into water, 

carbon dioxide and methane (in inverse quantity). Once the methane is extracted the waste 

product can also be used as a natural form of fertiliser. Fertiliser processed through AD is 

deemed to have beneficial properties and increased uniformity of nutrients compared to fresh 

manures (DEFRA 2007c). 
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2.2.3 Physio-chemical conversion processes  

Esterification – This is the process of recovering oil from biomass crops. The oil is converted 

to biodiesel using an esterification process, where an alcohol is reacted with the oil. Biodiesel 
can in most cases be used as a direct substitute to petro-diesel. However due to its increased 

acidic levels it can have higher corrosion rates. Feedstocks for this conversion process include 

oil-based biomass such as oilseed rape, peanuts and sunflower seeds.  

Other feedstocks such as coffee waste can be used to produce biodiesel. A benefit of this 
source is that while classified as waste it does not require any land use for production. 

However, the oil content of this feedstock is 10-15% and therefore the yield per input energy 

during the process may not be as high as conventional feedstocks (Kondamudi et al. 2008). 

Other waste sources such as cooking oil can also be used, ensuring that purification and 

filtration processes are also undertaken. A schematic has been shown in Figure 2-8 

highlighting the key stages of biodiesel production. The catalyst used is usually sodium 

hydroxide or potassium hydroxide. This is then mixed with methanol to create methoxide. At 
the end of the process, the methanol can be recovered through simple distillation.  

 

 

 

 

 

 

Figure 2-8 Biodiesel esterification process flow 

2.2.4 Factors affecting biomass conversion to energy 

When selecting the appropriate biomass conversion process (or vice versa, choosing a suitable 

biomass feedstock for a particular biomass conversion technology) there are a number of 

factors which must be considered. These are the yield or availability of the biomass, the 

moisture content, the calorific value within the biomass feedstock and other biomass specific 
properties. Additionally the energy inputs required to produce the bioenergy can also impact 

on the yield availability. This has been considered in detail for biogas production in Chapter 7.  

The energy output of biomass feedstock is dependent on the density of the material; which is 

affected by the moisture content (MC). Wood density can vary from 150kg/m3 to 800kg/m3 

based on the MC alone (Ecofys 2005). The MC of a feedstock is linearly related to its net 
calorific value (NCV). For example, if a wood had an MC of 50%, then its NCV would be half 

of that of a dry feedstock. The MC is a highly significant factor affecting the energy output of 

biomass feedstock. It is therefore important to reduce the MC to as low as possible for direct 

combustion (ibid).  
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Other technologies such as wet anaerobic digestion (AD) require a high MC. Usually a 

minimum of 80-90% MC is required in AD plants in order for optimal fermentation and ease 

of the material pumping through the plant. This differs significantly from direct combustion 
biomass, where the preferred MC would be 0%. In these two processes however, the water 

content has different effects on the biomass feedstock. In either case the MC has a significant 

impact on storage and transportation of bioenergy. This has been addressed in section 7.2.4 

where the energy consumption in transport biomass fuels is examined.  

For woody biomass, the term oven dry tonne (ODT) is commonly used signifying that there is 
no moisture concentration in the wood, hence MC = 0%. This is unrealistic and usually 

unachievable as there is always a moisture concentration in ambient air. This term is used as a 

base value for defining wood energy quantities, enabling different feedstocks to be easily 

compared. Energy crops such as short rotation coppice and miscanthus also have varying 

calorific contents which are dependant on MC. Miscanthus with a MC of 25% is reported to 

have between 4.7MWh/tonne and 3.6 MWh/tonne (17-13 GT/tonne) of energy content (UK 
Forestry Commission 2007).  

Therefore, the conversion technology is chosen based on the properties of the biomass 

feedstock and vice versa (a suitable conversion process is selected based on the feedstock 

type). This highlights the critical link between these two stages of the bioenergy supply chain 

and that it can operate top-down (conversion technology dictating feedstock) and bottom-up 
(feedstock dictating conversion technology).  

 

2.3 Energy content of bioenergy 

The end-use of the bioenergy fuel is dependant on the internal energy and the thermal quality 

of the fuel. An example used by Slesser & Lewis (1979) is the comparison of wood, coal and 

oil. If the same calorific energy contents were released from these three sources, different 

quantities of mass would be involved. This is because of the fuel’s energy density, i.e. the 

calorific energy content per unit mass. When these three fuels are combusted, although they 

would release the same amount of energy (say 100MJ each) they would deliver the energy at 

different temperatures. The heat from combusting oil is said to be more effective than coal or 
wood, due to the higher temperature obtained (Slesser & Lewis 1979).  

 In general, solid biomass feedstocks such as woody biomass, pellets and woodchip tend to be 

used mainly for heat production. This is due to their lower quality of energy thus delivering 

energy at a lower temperature. Liquid fuels such as bioethanol and biodiesel and gaseous 

fuels such as methane, hydrogen and carbon monoxide (from gasification) are rarely used for 
heat production only (Ecofys 2005). They have a higher thermodynamic quality than solid 

fuels and therefore their capability of producing work will be greater. For this reason the use 

of these higher-grade bioenergy sources are aimed at electricity production and transport 

energy uses. The calorific value of bioenergy feedstocks can also differ significantly. For 

example methane from anaerobic digestion has an energy content of around 50 MJ/kg (net 

calorific value), whilst biodiesel has a net calorific value of 35.7 MJ/kg. A list of energy values 
of utilisable bioenergy sources has been shown in Table 2-1. These show the typical net 

calorific values (NCV) and gross calorific value (GCV). The table highlights the difference in 

energy content between solid bioenergy sources, liquid and gas bioenergy.  
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Table 2-1 Net calorific values and gross calorific values of bioenergy types 

When examining the energy potential of a source or a process, the primary step is to consider 

the combustible energy within the source. It is called the calorific value or known as the 

heating value. This is the total energy emitted from a source in the form of heat when total 

combustion of the source has occurred. The heating value is dependant on the elemental 

composition, the ash content and the fuel moisture content (Knoef 2005). Another definition of 
calorific value is a measure of the amount of heat evolved when unit mass of a fuel is burned 

completely under standard conditions (Slesser 1988). 

When accounting for the calorific value of a fuel, there are two terms which are commonly 

used. These are Net Calorific Value (NCV) and Gross Calorific value (GCV); also known as 

lower heating value (LHV) and higher heating value (HHV). The GCV is obtained when all 
the water formed by combustion is a liquid. This is a measure of the heat evolved when the 

products of combustion are cooled to ambient conditions (25oC) and water vapour has 

condensed, determining its latent heat (Slesser 1988). The NCV takes into account the heat of 

vaporisation of the water formed from the hydrogen in the material and the moisture (Bejan et 

al. 1996). This value is calculated by deducting the latent heat of condensing water from the 

gross value (ibid). The GCV can be calculated by a composition’s specific heat of combustion. 
For example, the specific heat of combustion for methane (from basic chemical equation 

balancing) is as follows: 

molkJHCOOCH lggg
/890022 )(2)(2)(2)(4 ++→+      2-2 

Liquid/Gas bioenergy 

derivatives NCV GCV Unit  

Biodiesel 37.3 39-40 MJ/kg (Gopinath et al. 2009;Stephenson et al. 2008) 

Bioethanol 26.7 29.8 MJ/kg (BERR 2003;Dong et al. 2008) 

Biogas (60% CH4) 30 33 MJ/kg (Fitzpatrick 1998) 

Methane 50 55 MJ/kg (Fitzpatrick 1998) 

Hydrogen 121 143 MJ/kg (Varkaraki et al. 2007) 

Carbon monoxide 10.1 10.1 MJ/kg (Knoef 2005; Forestry Commission 2007) 

     

Delivered solid bioenergy 

sources     

Wood chips (30% MC) 12.6 - MJ/kg (Areikin & Turley 2008) 

Wood pellets (8% MC) 17.5 - MJ/kg (Areikin & Turley 2008) 

Miscanthus bale (25% MC) 13 - MJ/kg (Forestry Commission 2007) 

 

Other     

House coal 29 30.5 MJ/kg (BERR 2008a) 

Straw 12.8 15 MJ/kg (BERR 2008a) 

Short rotation coppice 9.3 11.1 MJ/kg (BERR 2008a) 

Landfill gas 19-23 21-25 MJ/m3 (BERR 2008a) 

Sewage gas 19-23 21-25 MJ/m3 (BERR 2008a) 
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A mole of CH4 has a weight of 16 grams; therefore, the specific heat of combustion for 

methane is 55.6 MJ/kg. The NCV can be calculated by subtracting the specific heat of 

vaporization of the water within the combustion from the GCV (therefore around 50 MJ/kg).  

For woody biomass compositions, the gross calorific value (GCV) of biomass is composed of 

the summation of contents of carbon, hydrogen, sulphur, nitrogen and ash, all on a dry basis 

(Rosillo-Calle 2006). The equation for this can vary depending on the biomass resource used 

(Kathiravale et al. 2003). The typical difference between the NCV and the GCV for woody 
biomass feedstocks is around 1.3MJ/kg according to Rosillo-Calle (2006). Energy calculations 

of processes often use NCV in European analyses, whilst USA analyses tend to use GCV. 

Throughout this study the NCV is used during calculations, unless stated otherwise. 

2.4 Comparison of bioenergy pathways 

Studies have been undertaken to determine the optimal biomass for different energy uses. 

Literature is often contradictory on whether biomass is more cost effective for transport 

biofuels, heat or electricity (Grahn et al. 2007). Most studies carried out to date have assessed 

the potential of bioenergy based on economic factors (BERR 2007c;Hansson & Berndes 2009). 

Studies which concentrate on other aspects of bioenergy use, for example GHG emissions, 
narrow the scope of studies to particular end-use fuels such as biofuels for transport only 

(Cherubini et al. 2009), and fail to assess the bioenergy pathway using alternative appraisal 

techniques. Other techniques can include economic and social implications, along with other 

environmental impacts.  

It is apparent that the suitability of a bioenergy pathway is dependant on the location of the 

resource. Due to biomass feedstock having a relatively lower energy density compared to 

fossil resources, the transport of biomass has a large impact on the energy output of the 

feedstock. Additionally, the growth of different biomass crops is affected by geographic 

location due to climatic conditions. This is also true for waste feedstocks. For example, an AD 

plant should ideally be situated near a farm or group of farms in order for the plant to be as 

efficient as possible. Therefore bioenergy pathways are intrinsically unique and dependant on 
location, geographical and climatic circumstances and the end-use energy requirement. To 

compare bioenergy production and use emissions and its overall impact towards the 

environment is difficult and not straightforward. The environmental life cycle assessment of 

biogas production, documented in Chapter 8, highlights the level of detail at which analyses 

must be taken.  

When determining the optimum bioenergy type for a prospective development, there are two 

techniques which can be used. The first is to determine the optimum bioenergy pathway 

based on feedstock availability and climatic/geographical conditions, termed as a bottom-up 

approach. This is where the feedstock quality and availability is considered, as well as the 

bioenergy conversion process selection and energy output of the plant. The second method, a 

top-down approach would determine the energy requirements and then implement a 
bioenergy conversion technology able to deliver the energy. This would be followed by 

establishing the feedstock availability.   
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Within a single pathway, such as biogas production, the efficiency can vary greatly depending 

on feedstock, size, technology use and energy end-use. Therefore, bioenergy pathways cannot 

be easily compared, due to their large variability. Conversion techniques and uses for 
bioenergy are numerous with some more established than others. For developers it can be 

difficult to determine which bioenergy pathway is most effective. As a result, developers can 

find the vastness of bioenergy pathways a barrier to the development and uptake of bioenergy 

conversion processes (Adams et al. 2008). This also has a similar impact on public perception 

and social acceptance of bioenergy, which has been examined further in Chapter 4 (Adams et 

al. 2008). Despite this, several attempts have been made to publish the comparison of biomass 

conversion processes and bioenergy uses amongst a number of different criteria. A study 
issued by FAO (2004) and conducted by Kaltschmitt et al. (2001) showed a comparison of 

different conversion routes.  

 

 

 

 

 

 

 

 

 

 

Table 2-2 Comparison of biomass conversion pathways (FAO 2004;Kaltschmitt et al. 2001) 

+++ very promising; ++ promising, + less promising. 

 

Table 2-2 compares a number of typical bioenergy conversion routes, which represent the 

potential success of implementation of these bioenergy pathways. For example syngas 

production from gasification can use a wide variety of feedstock (therefore very promising), 

whilst the feasibility of system technology and operability is less certain and therefore less 

financially feasible. This is also true for pyrolysis as this conversion process still remains in its 
infancy in the UK (Mullis 2007).  

The table shows that bioenergy pathways rated ‘less promising’ with regards to cost 

implications mirror relatively well the actual establishment of that particular technology 

today. Large-scale bioethanol and biodiesel plants which promised to supply vast amounts of 

first generation biofuels have halted due to financial obstacles (GSF 2008). Therefore the study 
from FAO (2004) represents this outcome extremely accurately. 
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Further examination of Table 2-2 highlights the complexity and the disputability of the results. 

If one were to take environmental benefits as an example of decision criteria, first generation 

biofuels offered very promising environmental benefits. Meanwhile, AD for electricity offered 
relatively less benefits. Established studies (The Royal Society 2008) have clearly highlighted 

the environmental issues of using first generation biofuels, whilst other studies highlight the 

environmental benefits of producing biogas (Zah et al. 2007).  

When discussing the potential role of bioenergy, it is worth considering the benefits and 
detriments of the energy source. An advantage of all bioenergy is that it can reduce the 

dependency on fossil fuel resources and subsequently reduce carbon dioxide emissions 

(Demirbas et al. 2009). Other benefits are valid only to particular bioenergy pathways. These 

include for example, the use of valuable fertiliser from the by-product of biogas production. 

Additionally, biodiesel production from waste oils can improve waste minimisation and 

recover valuable energy. 

The detrimental effects of bioenergy may prevent the development of this energy source. The 

most common issue is the perception of the intensive land-use requirements for bioenergy 

production. Some biomass feedstocks require land which could otherwise be used for food 

growth (Hall & Scrase 1998). This issue raises the potential risk of deforestation in countries 

keen to harvest biomass for transport fuel due to the financial rewards (RCEP 2004). The 

impact of energy intensive biomass feedstock can also contribute detrimentally to the use of 
bioenergy. This particular point will be discussed further in Chapter 7, through the use of 

energy analysis.    

2.5 Summary and following steps for research 

This chapter gives an introduction to the use of biomass for energy purposes. An appreciation 

of how biomass can be converted into energy forms has been established, highlighting the 

most common bioenergy conversion processes. The chapter also emphasizes the difficulty in 

comparing or amalgamating bioenergy pathways when a cross-comparison is required.    

It has been established that biomass to bioenergy conversion processes are numerous and 

diverse. These bioenergy pathways are dictated primarily by the feedstock availability and the 

end-use of the bioenergy. Due to biomass’ relatively low energy density compared to fossil 

fuels, transportation of this energy is critical in determining the type of bioenergy conversion 

process adopted and the scale at which it should be operated. Literature shows that 
comparison of bioenergy pathways have been made (FAO 2004;Kaltschmitt et al. 2001;Zah et 

al. 2007), however due to the number of factors which could affect each pathway, it has been 

concluded that these are limited and not representative through the range of each conversion 

process. 

The findings conclude that the multiple pathways of bioenergy can perform very differently in 
terms of energy output, environmental benefits or detriments and economically. To assess the 

suitability of a bioenergy pathway an integration of appraisal techniques must be undertaken. 

These techniques should encompass all areas of sustainable development (Parkin 2000). In 

order to assess the potential of bioenergy pathways an integrated appraisal of the 

environmental, thermodynamic and economic considerations should be undertaken. This 
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technique has been developed specifically for the case of the South West of England and is 

used and reported in Chapters 6, 7, 8 and 9.  

In light of the above, the technique used for this thesis is called a multi appraisal 

methodology. The thesis sets a plausible integrated methodology, which enables the holistic 

assessment of a bioenergy pathway. The appraisal technique also coheres with other studies 

from Kaltschmitt et al. (2001), where bioenergy pathways have been assessed based on 

conversion processes (net-energy), environmental benefits (lifecycle assessment) and cost 
reduction appraisal (financial considerations).  

The purpose of the thesis is to determine the potential of bioenergy in the South West of 

England. In agreement with the UKERC, it is acknowledged that to create a significant and 

detailed assessment of the bioenergy potential in the region, the multi appraisal technique 

should be carried out on a single bioenergy pathway. The bioenergy pathway chosen for this 
study was determined from the biomass resource assessment carried out for the region and 

reported in Chapter 3. Based on these results, the most suitable bioenergy pathway was 

chosen and analysed further.   
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3 BIOENERGY RESOURCE ASSESSMENT FOR THE SOUTH WEST OF 

ENGLAND 

A bioenergy pathway must be selected in order to carry out a multi appraisal technique, as 

shown in Figure 2-3.The pathway should be chosen based on the most abundant or available 
biomass resource. This chapter addresses this requirement; additionally it offers a perspective 

of the total biomass resource currently generated in the South West of England and compares 

these findings against the current potential resource and the future potential resource. An 

overview of the general resource flows and energy uses in the region are also depicted in the 

chapter to contextualise the resource assessment findings. The work has been published in the 

Journal of Energy, Institute of Civil Engineering (Hammond et al. 2008a), where the present 
author was lead author. This has been reproduced in Appendix D.  

3.1 Climate and land use 

The South West of England is considered to have good climatic conditions for the growth of 

biomass for bioenergy. Overall the UK has a wetter climate in the west, compared to the east, 

and experiences warmer temperatures in the South compared to the north, shown in Figure 

3-1 (McKendry 2002a). The South West’s climatic conditions make it favourable for agriculture 

and soil formation. However, the high rainfall experienced in the region leads to 

impermeability of soils which causes water logging (Findlay 1984).  

 

 

 

 

 

 

 

 

 

 
 

Figure 3-1 Left: Annual average rainfall - Right: Average annual temperature. Source: (Met Office 2007) 

 

The South West of England is the largest region in England with a total land covering of 

2,382,900 hectares. With a population of just under 5 million, its population density is one of 

the lowest in England. Land use in the region is heavily dominated by agriculture. This type 

of land use accounts for 80% of total land in the region (DEFRA 2007b). Agricultural land 
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cover has remained relatively consistent over the last 30 years and is seen as a secure source of 

income for many landowners in the region (Figure 3-2).  

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 
 

Figure 3-2 Land area allocated for agriculture in the South West of England (DEFRA 2008b) 

 

Although agriculture dominates the regional land use, in terms of the economics of goods and 

services produced (Gross Value Added) this sector contributes to only 1.8% of the region’s 

total GVA. The region’s agricultural land is divided between arable land and permanent 

grassland. Arable land is used for crops such as wheat, barley, oats, potatoes, sugar beet, 

oilseed rape, maize etc. Permanent grassland, of which there is just under 1 million hectares, is 

more suited to dairy farming (this accounts for 65% of the total agricultural land).  

 

 

 

 

 

 

Table 3-1 Livestock for agriculture in the South West of England (DEFRA 2008b) 

 
The region’s extensive permanent grassland, accounting for nearly 30% of the country’s total 

permanent grassland, signifies that arable crop farming is relatively limited, based on arable 

crop area per total agricultural land area. In 2007 however, the region was the leading 

producer of maize (DEFRA 2007b). Up until the early 1940’s intensive cereal production such 
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as wheat, barley and oats was fairly uncommon and even in 1980 this was considered to be a 

relatively new field for farmers in the South West (Findlay 1984).  

Livestock numbers within the region are amongst the highest in England (Table 3-1). 

Although some livestock types have experienced a decline in recent years (dairy cattle, pig 

and sheep), other farming activities have increased such as the beef herd. Between 1987 and 

2000 this sector experienced a 57% increase in holdings (MAFF 2000). Currently beef herd 

livestock population accounts for 31% of total cattle in the South West.  

3.1.1 Forestry and woodland  

Woodland cover in the South West of England represents 8.9% of the total land area in the 

region, constituting 212,022 ha (Forestry Commission 2002). This is broadly similar to the 

woodland cover for England at around 8.4%. Woodland in the region is dominated by 

broadleaved woodland, accountable for 56.7% of total woodland and conifer woodland 

representing 22.8%. Other plantations include mixed species (14%), and coppiced woodland 

(Forestry Commission 2002). Of all the woodland in the region, only 17% is Forestry 
Commission owned, whilst the remaining 83% is divided between personal woodland, 

business, charity, local authority and other public ownership. This is just below the country’s 

average of 22% ownership by the Forestry Commission.  

Woodland cover in the region has steadily increased and has nearly doubled over the past 100 

years, as can be seen in Figure 3-3. This steady growth signifies the drive to improve 
woodland cover in the region either for sustainability and conservation motives (aided by 

financial drivers) or a drive to improve landscape architecture. New woodland plantations 

have been between 100 ha to 300 ha per year from 1997 and 2002 (Wall et al. 2002). It is 

estimated that up to 50% more timber could be harvested sustainably at present (Wall et al. 

2002). 

 

 

 

 

 

 

 

 

Figure 3-3 Woodland cover in the South West of England (1890-2000) (Forestry Commission 2002) 
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A report commissioned by the Department of Trade and Industry (now the Department for 

Business, Enterprise and Regulatory Reform) estimated that the present annual production of 

available biomass through thinning or felling totalled around 460,000 oven dry tonnes (ODT) 
per year (McKay 2003). This was the highest yield for any region in England and contributed 

to over 20% of the country’s potential. Though this estimate signifies the high potential for 

woodfuel in the South West, a large percentage has pre-allocated markets such as construction 

and the furniture industry.  

3.1.2 Waste flows 

Waste is considered an important resource for energy production. As described previously, 

there are a number of techniques for its energy extraction. Although waste is widely 

considered a burden on society which needs to be reduced (DEFRA 2007d), it does provide a 

stable and secure source of energy production independent of climatic or seasonal conditions.  

Waste not derived from agriculture can be classified into three main groups: municipal solid 

waste (MSW), commercial & industrial (C&I) and construction & demolition (C&D). MSW 

incorporates all household wastes and wastes from civic amenity sites. This type of waste 

generally contains a higher percentage of organic content. C&I waste includes paper, food, 

electrical equipment, chemicals and other wastes. This can also be a good source of energy if it 

has a high organic matter percentage. C&D waste includes construction materials such as 

concrete, timber, plastics and metals. Concrete is accountable for nearly a quarter of all C&D 
waste in the region (South West Regional Assembly 2004). 

During 2007-2008, just under 3 million tonnes of MSW were collected in the South West of 

England. This figure has remained between 2.5-3 million for the past 7 years (DEFRA 2008c). 

Of this total just under 60% is sent to landfill, a figure which has experienced a gradual decline 
from 82% since 2001 (DEFRA 2008c). This decline in landfill use can be seen across England. 

This is due to mechanisms put in place to reduce the amount of waste entering landfill sites, 

through the Waste and Emissions Trading Act (2003) and the Landfill Allowance Trading 

Scheme (LATS). As landfill waste has declined, the use of recycling and composting has 

increased to over 40% for 2007/2008 and has been increasing since 2001. At present, the South 

West of England has the highest recycling rates in England (DEFRA 2008c).  

In 2004 a regional waste strategy was introduced for the South West with the aim to 

considerably reduce the waste generated in the region. The strategy aimed to reduce landfill 

use to 20% and increase the use of recycling up to 45%. The ultimate aim was to “become a 

minimum waste producer by 2030” (South West Regional Assembly 2004).  
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3.1.3 Energy focus on the South West of England 

 In 2006, the South West was recorded as the third lowest consumer of energy for transport, 

domestic, commercial and industrial sectors, with a total energy consumption of 250 TWh as 
shown in Figure 3-4 (DECC 2010c). Energy consumption per capita is also relatively low at 

around 27MWh/person/year. In addition to this, due to the region’s extensive total land 

covering, energy use per unit hectare shows that the South West has the lowest energy 

consumption density, at a mere 55MWh/ha; nearly 20 times lower than London. This can be 

good representation of the potential for bioenergy in the South West as the region offers a 

large biomass working area in comparison to the energy consumption.  

 

 

 

 

 

 

 

 

 

Figure 3-4 2006 Primary energy consumption for England regions; data obtained from DECC (2010c) 

 

With only 151MW of renewable heat and electricity generation in 2008 (RegenSW 2008), the 

remaining 99.1% of energy use in the South West is produced either from fossil based fuels 

such as coal, oil and gas or nuclear. As such, the overpowering reliance on fossil-based fuels 

can clearly be seen even at a regional level for the South West.  

Energy consumption can be closely linked to the emission of carbon dioxide (shown in Figure 

3-5). When compared to other regions in England the results are predictably parallel to the 

overall energy use per region (DEFRA 2006). This highlights the strong link between energy 

consumption and carbon emissions. With national targets to reduce carbon emissions (BERR 

2007a) the dependency on fossil fuels must be reduced.  
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Figure 3-5 Carbon dioxide emissions in England for 2006; data from DEFRA (2006) 

3.2 Bioenergy resource assessment – methodology approach 

In order to determine the biomass potential for the South West of England, a quantified 

resource assessment of the biomass was carried out. A resource assessment quantifies the 

supply of available biomass for a specific land area. In general, resource assessments carried 

out, specifically for the South West of England, have concentrated on specifying the biomass 
conversion technologies available, the economic aspects of the biomass in relation to the 

conversion technology and subsequently the feasibility of utilisable biomass (Capener et al. 

2005;O'Rourke 2001). Other studies consider only certain biomass resources and therefore do 

not account for the whole of the bioenergy potential (Scholes 1998). Studies which primarily 

consider economic viability and conversion technology feasibility are called a ‘top-down’ 

approach.  

The methodology carried out in this study examined bioenergy adopting a bottom-up 

approach. A bottom-up resource assessment signifies that the primary considerations of the 

assessment include physical material availability. This is subsequently followed by allocating 

other constraints such as economic considerations, sustainability constraints and accessibility 

concerns.  The ultimate end-use bioenergy was not considered in this section. 

This approach was considered suitable for the study as it enabled all biomass resources to be 

considered and made comparable to each other. For example, if the deployment of a 

technology was a primary consideration for a resource assessment, this would dictate the 

biomass resource required. This would not take into account the natural current status of the 

resources available within the region. The risk associated with a bottom-up approach is the 
result tends to determine the potential supply of biomass, as opposed to the actual supply. 
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When the potential supply of biomass is studied, the feasibility of collecting and using this 

supply should also be considered. This ultimately determines the actual supply of bioenergy.   

Biomass resources vary greatly and as suggested earlier, can be categorised into four main 

groups: woody plants, herbaceous plants, aquatic plants and wastes (McKendry 2002a). 
For simplicity, biomass can be divided into two main categories, woody biomass and non-

woody biomass (Rosillo-Calle 2006), which covers the entire biomass range.  

Woody-biomass comprises of organic material containing ligneous content, it has a slower 

growth rate in comparison to herbaceous plants and has a compilation of tightly bound fibres 
(McKendry 2002a). Non-woody biomass includes plants and also organic wastes. These 

generally have a higher moisture content. Non-woody biomass can then be divided into 

subsequent categories such as manures, herbaceous crops and processing wastes. 

Separating biomass resources into two categories avoids any possibility of overlap or ‘double 
accounting’ for biomass resources. Upon completion of the data collection for both woody and 

non-woody biomass, it was necessary to determine the actual supply of biomass rather than 

the potential supply. This provided a more precise figure of the biomass availability for the 

region. Constraints were put in place to distinguish whether a supply could ultimately be 

used as a biomass resource. These constraints included the elimination of resource with pre-

allocated markets such as wood resource used by the building industry. These constraints 

became apparent when assessing literature sources and databases and have been documented 
within the resource assessment results.  

3.2.1 Woody biomass resource within the South West 

 

For this part of the resource assessment the following biomass resources were considered:  

o Forest and woodland biomass and residue; 

o Energy plantations (lignin type – Short rotation coppice (SRC)). Although miscanthus is 

defined as an herbaceous plant, it was considered to be a woody biomass as it is low in 

moisture content and can be used for biomass combustion. The lignin content of 

miscanthus is approximately 17%, whilst for willow, which is a type of SRC the lignin 
content is around 19%;  

o Arboriculture plantations and residue. 

The data collection procedure for the woody biomass resource assessment is displayed in 

Figure 3-6. The flowchart represents the routes considered for the research. The procedure for 
the resource assessment was divided into three areas: energy plantations, agro-industrial and 

processed biomass. Energy plantations included dedicated energy plantations such as short 

rotation coppice (SRC) and miscanthus. It also included forest and woodland biomass and 

residue.  Agro-industrial plantations consisted of arboriculture residues, such as shrubs, 

hedges etc. Processed biomass included residues from regional sawmills and other processing 

wastes. This section also accounted for packaging and pallet wastes within the region. Primary 

data was collated from Forestry Commission data. However, other sources were included: 
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o Tree surgeon survey – An analysis of the number of tree surgeons and the annual yield 

was determined. This information was gathered by creating a tree surgeon database for 

the South West, followed by contacting a sample size (20) of the regional tree-surgeon 
population to the determine the average annual waste wood production.  The survey was 

carried out by telephone conversation to the randomly selected tree surgeons.  

o Sawmill Survey – Yield data for this section was carried out similarly to the tree-surgeon 

survey. A randomly selected number of saw-mills (20) were contacted to determine the 

amount of wood waste produced per year.  

o Current wood-fuel consumption data – This data was collected from regional agencies 

such as Renewable Energy Association and Regen SW (RegenSW 2008).  

 

 

 

 

 

 

 

Figure 3-6 Data sources for woody biomass resource assessment 

3.2.2 Non-woody biomass resource within the South West 

The methodology for non-woody biomass resource assessment is similar to that of woody 

biomass. Non-woody biomass, as described previously includes plantations and waste. In 

detail, non-woody biomass comprises of: 

o Agricultural crops – Crops currently grown for human and animal consumption such as 

wheat, barley and oilseed rape; 
o Crop residues – Residues from processing agricultural crops including straw, silage, seed 

skins etc; 

o Herbaceous crops – Crops with a dedicated growing season. Growing seasons can be 

annual or perennial;  

o Animal Waste – Wastes produced through manures; 

o Other wastes with organic content – These include household and industry wastes termed 

as municipal solid waste (MSW) and commercial & industrial waste (C&I). 

 The methodology flowchart has been shown in Figure 3-7. However due to the varying types 

of non-woody biomass it was considered easier to separate non-woody plantations and non-

woody waste. The flowchart shows how this was undertaken.  
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The waste and residue resource assessment is more diverse than non-woody plantations and 

woody biomass. Therefore, potentially it could be the area with highest percentage error in the 

findings. These errors can arise due to varying calorific contents of materials, which ultimately 
have an impact on the bioenergy potential. This process involved looking at agricultural 

plantations, crop residues, animal waste production and other waste sources for the South 

West of England.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-7 Resource assessment methodology for non-woody biomass 
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3.3 Determining the fuel energy content of biomass resources 

The primary aim of the study was to determine the resource which contributed the highest 

towards bioenergy supply. Additionally, an overall appreciation of all the resources was also 

required. Biomass resources have varying energy density which is a measure of the energy as 

a fuel, available per unit mass or volume. Representing results in terms of mass or volume 

was considered misrepresentative as it would be difficult to understand whether 1 tonne of oil 

seed rape was more attractive that 1 tonne of miscanthus.  

The use of mass or volume as a measure of resource availability for biomass was therefore 

considered inappropriate and a measure in terms of energy potential as a fuel resource would 

be more suitable. A resource assessment encompassing a wide range of biomasses, such as 

this, required a uniform measure of potential. As a result, the net calorific value (NCV) of the 
resources was used as a measure of the biomass potential.  

The NCV of an energy source takes into account the total energy available and does not 

address the end-use energy conversion efficiency of an energy source (BERR 2008a). The 

conversion of biomass into usable bioenergy such as wood chip, biofuels, biogas and syngas, 

have associated conversion efficiencies. For example, biogas production from AD is only able 
to recover a percentage of the NCV of the feedstock due to its conversion efficiency. 

Furthermore, if that biogas were then converted into electricity, the conversion efficiency of 

electricity production would reduce the actual available energy.  

The use of NCV is a valuable comparison tool for measuring the performance of different 
bioenergy feedstocks. However, when interpreting the results in terms of total bioenergy 

potential for the South West of England, they should only represent the total energy, not the 

delivered energy. In this study the results where represented in terms of NCV as this gave a 

clearer interpretation of the bioenergy potential. This is similar to the methodology laid out by 

Rosillo-Calle (2006); currently one of the most comprehensive biomass resource assessment 

methodologies published.  

Table 3-2 displays the comparison between fossil based fuels (denoted by F) and some 

biomass feedstocks. Generally, primary renewable energy sources as shown in the table have a 

lower overall calorific content compared to fossil-based fuels. Secondary resources, such as the 

ones converted through a bioenergy conversion process, have a higher NCV than primary 

resources. The moisture concentration in feedstocks such as wood also significantly affects the 
NCV of the feedstock.  
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Fuel Type 
GCV NCV 

GJ/tonne GJ/tonne 

Coal – F 26.9 25.6 

Natural gas - F 39.7 35.7 

LPG (propane & butane) – F 49.5 47 

Petrol oil – F 43.6 41.5 

Diesel – F 45.5 43.3 

LPG  49.3 45.9 

Charcoal - 28 

Hydrogen gas - 120 

Miscanthus (25% MC) - 13 

Poultry - 13.5 

Cattle (dry matter) - 14 

Methanol - 21 

Ethanol - 28 

Domestic wood 13.9 12.3 

Oven Dry wood 20.2 18.9 

Wood (10% MC) 20.2 16.56 

Wood (30% MC) 20.2 12.34 

Wood (50% MC) 20.2 8.12 

Wood (70% MC) 20.2 3.89 

Short rotation coppice 11.1 9.3 

Straw 15 12.8 

Poultry litter 8.8 7.4 

Municipal solid waste 9.5 6.7 

Methane 

Landfill gas 

55.6 

21 

50.6 

19 

Sewage gas 21 19 

Biogas (60% CH4) - 20 

 

Table 3-2 Net calorific value and gross calorific value of various energy sources (BERR 2008a; Rosillo-Calle 

2006; Cao & Zheng 2006; Seo et al. 2007; Slesser 1988) 

 

3.4 Results 

The resource collection methodologies for woody and non-woody biomass were carried out 
for three different resource assessments. These assessments were used to give an 

understanding of the current production of bioenergy, the maximum current potential of 

bioenergy and the future maximum potential. The three assessments have been detailed 

below: 

Resource Assessment A – This was an assessment of the current bioenergy production in the 
South West of England.  

Resource Assessment B – This assessed the current theoretical maximum bioenergy potential 

for the South West of England. This assessment did not take into account estimates for future 

crop growth, but only currently available feedstocks, wastes and other resources.  
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Resource Assessment C – This examined the future theoretical maximum bioenergy potential 

for the South West of England. It investigated the feedstocks from assessment B and 

determined whether this could increase or decrease up until 2020. 

3.4.1 Resource assessment A 

The first resource assessment examined the current bioenergy production in the South West. 

This incorporated all sources of bioenergy feedstocks. From the assessment, it was revealed 

that energy from waste (landfill gas, sewage, farm biogas and other forms of energy-from-
waste) is currently the largest contributor to bioenergy in the South West. This energy 

accounted for 54% of the total bioenergy as shown in Figure 3-8. The largest land-fill energy 

recovery plant in the South West is situated in Dorset (Whites Pitt) and has a peak capacity of 

6.92MW of electrical power. The majority of energy produced from waste is derived from 

landfill gas energy production situated across 22 sites within the region. Landfill sites have a 

larger energy capacity, as opposed to sewage-gas energy plants due to the size of biomass 

available at the site. Sewage-gas electricity generation plants do not usually exceed 1MW in 
size. 

 

 

 

 

 

 

 

 

 
 

Figure 3-8 Current available energy from present biomass consumption 

Biodiesel production from oil seed rape was classified as “other energy crops” within the 

study. The production of biodiesel is relatively new as oilseed rape (OSR) plantations have 

been generally used for animal and human consumption. The increased production of biofuels 
has been driven by Government targets to implement renewable resources in transport fuels 

(RFA 2008a). However this target has been pushed back to 2013/2014 after concerns of 

uncontrolled expansion through the use of biofuels were raised by the Gallagher Review in 

2008 (RFA 2008b). Therefore bioethanol and biodiesel production is expected to increase 

within the region. The UK’s largest biodiesel plant is to be built in the region within the 

coming years and is proposed to ultimately produce up to 500,000 tonnes of biodiesel per year 
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(ABS 2008). However, the source of the feedstock was unclear and therefore was not 

considered within the study.  

Biogas from anaerobic digestion (AD) accounted for 4% of the total bioenergy production in 

the region. There are a number of plants situated in more rural locations where animal and 

food waste is readily accessible (Maltin 2004;J.Prior, Summerleaze ltd. 22/05/2007, personal 

communication). Woodfuel contributes to the remaining 8% of the regional bioenergy mix. 

This source of biomass is used mainly for heating, as it is considered too costly for electricity 
generation alone. The lack of managed woodland and the limited plants within suitable 

transport distances represents significant barriers to woodfuel growth.  

3.4.2 Resource assessment B 

The second stage of the analysis considered the current maximum available bioenergy 

potential in the South West. The maximum availability took into account the theoretically 

obtainable biomass.  This included bioenergy that was currently un-marketed as a 

resource or where markets could be altered to allow for increased bioenergy generation. 
The study did not consider altering food or timber production markets, it analysed bioenergy 

on a material-flow basis, assessing the availability of material suitable for bioenergy. The 

assessment examined all possible feedstocks suitable for bioenergy as shown in Fig 3-9. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-9 Resource Assessment B - Current potential bioenergy availability 

One of the highest resources available within the region was found to be straw. Straw is a by-

product of wheat, barley, oats and rye production. The main source of straw in the South West 

is from wheat and barley, which is produced from over a quarter of a million hectares within 
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the region. Straw is currently used within the farming sector as follows: 40% is ploughed back 

into land to improve soil fertility and structure, 30% baled for farmers own use and 30% sold 

by farmers (Nix 2003). Other reports suggest that around 45% of total straw produced in the 
UK is either burnt or ploughed back into fields (Ekmann et al. 1998). Following the launch of 

the Crop Residue Burning Regulations, straw burning post harvest has been banned (Lynch & 

Schepers 2008). Straw availability is dependant on wheat production and therefore may 

fluctuate from year to year. Additionally the use of straw for bioenergy would have 

implications on animal bedding and fertiliser availability. Consequently this route could have 

indirect costs associated to it.  

The UK is reported to produce over 15 million tonnes of straw per year. According to work 

carried out by the Department for Business, Enterprise and Regulatory Reform, 50% of this 

could feasibly be used for energy production (BERR 2003). Within this assessment, a target of 

30% straw-to-bioenergy uptake was envisaged. This was considered suitable as it equalled the 

quantity available for farmers for own use. In reality this figure would be derived from all 
three straw supply chains. Using the assumption of 30% regional straw intake for bioenergy, 

resulted in 6 million GJNCV/year of energy potential. This value accounts for straw cultivated 

from wheat and barley, using a straw production constant of 4.5 tonnes/ha. 

Another abundant biomass resource found in the assessment was derived from non-farm 

waste. This source of energy accounted for nearly 30% of the potential supply for bioenergy in 
the region. Municipal and solid waste (MSW) and Commercial & Industrial (C&I) wastes were 

found to offer between 9 million to 13 million GJNCV annually, based on available resources 

(DEFRA 2007a;South West Regional Assembly 2004). The calculation assumed that only 

wastes entering landfill would be converted into energy. Additionally the net calorific value 

for waste ranged between 3 GJ/tonne and 6.7 GJ/tonne depending on the organic matter 

content. As these wastes are not completely from renewable resources it is questionable 
whether they should be considered as a bioenergy. There is a significant drive to minimise 

waste and therefore the abundance of this resource should not be the focus of this resource 

assessment.  

A Regional Waste Strategy was published in 2004 which underlined the necessity for effective 

waste minimisation (South West Regional Assembly 2004). Various policies were also 
implemented aiming to reduce waste generation in the region. Landfill Tax, packaging 

regulations and the Waste and Emissions Trading Act 2003 contributed to the reduction of 

waste generation. This could therefore, potentially reduce the availability of bioenergy from 

waste sources (BERR 2007c).  

Other sources of available bioenergy included dedicated energy crops grown on set-aside land 

such as miscanthus and short rotation coppice (SRC). Only miscanthus and SRC for both set-

aside and non set-aside land were considered due to the availability of data (H. Hoult, DEFRA 

data centre, 04/03/2008, personal communication). Energy crops were calculated to produce 

up to 3 million GJNCV annually using the land currently allocated to bioenergy in the region. In 

2007 however, energy crops on non set-aside land greatly outweighed crops grown on set-

aside, as farmers were able to choose which land provides the greatest return on their 
investment. 
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Energy crops grown on arable land could become more common within the region as farmers 

are able to obtain competitive annual returns for energy crops as well as food crops DEFRA 

2008a). In 2005, the Common Agricultural Policy (CAP) was reformed and all individual 
payment schemes were replaced with one single payment with more focus on land 

stewardship. This aimed for farmers to grow a greater choice of crops based on the highest 

annual return, thus opening up the potential to use land for energy crop purposes (DEFRA 

2008a). Energy crop grants can be beneficial for crops such as miscanthus and SRC to be 

economically viable.  

Energy from farm-animal waste could provide a significant portion of the bioenergy mix. 

Cattle waste was found to contribute the highest (around 4 million GJNCV/year) of all farm 

wastes. Farm waste calculations adopted standard feedstock availability per animal of 50% 

per year. This factored in the lack of manure collection during summer periods when animals 

are grazing. Additionally, only 20% of the total livestock population was accounted for, in 

accordance with other regional estimates (Capener et al. 2005). This was considered suitable 
for currently available animal manure as it posed possibly very few infrastructural changes to 

farmers.   

In contrast with current bioenergy production, shown in assessment A, woodfuel was found 

to have a much higher contribution. Approximately 463,382 ODT of biomass wood per year 

was determined as being potentially available as biomass. This included all stemwood, tips, 
branches, foliage and poor quality wood. However, of this total, 330,000 ODT was currently 

already marketed for other timber products and was considered unlikely to be used as 

bioenergy (Forestry Commission 2007). Therefore the largest woodfuel resource type was 

arboriculture arisings, followed by small roundwood and branch wood from forestry (McKay 

2006).  

The calculated bioenergy resource availability in the South West was estimated to be between 

28 million GJNCV to 49 million GJNCV per year. This was found to contribute between 2.6-5.5% 

of the region’s primary energy use. When assessing the maximum theoretical bioenergy 

resource, the increase of the available potential was a result of relatively straightforward 

changes to market re-allocation. For example, straw use and animal waste management was 

altered in coherence with recent Governmental strategies (BERR 2007c) and similar regional 
resource assessments (Capener et al. 2005), as opposed to reducing food production and 

creating competition for land use. Therefore, as the data shows, current bioenergy production 

in the South West could be increased significantly, without the increase of new biomass 

production. However, there are uncertainties in the economic and environmental impacts 

associated with these changes. 

3.4.3 Resource assessment C 

Analysis of the South West’s future bioenergy potential as displayed in Fig 3-10, showed 

increases amongst some areas of resource, whilst a decrease in others. Overall, there was an 

increase in future bioenergy resources, compared to currently available resources. The 

analysis considered up to 2020, as data predictions and forecasts were available for this 

timescale. Studies such as RE-vision 2020 (Capener et al. 2005), Rubbish to Resource (South 
West Regional Assembly 2004) and Stepping Forward Reports (Chambers et al. 2005) had all 

set targets for 2020. This also linked to the Government’s plans to cut carbon emissions by 80% 
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by 2050 with real progress by 2020 (BERR 2007a). The third analysis examined the potential 

bioenergy available from biomass feedstocks within the region, using forecasts of land-use, 

waste management and woodland use (Capener et al. 2005; Chambers et al. 2005;South West 
Regional Assembly 2004).   

The analysis showed that bioenergy potential could be as high 54 million GJNCV per year. The 

bioenergy potential increased further from the second analysis due to the maximisation of 

animal waste and exploiting energy crops grown on arable land; considered suitable for 
bioenergy crop growth (Hammond at al. 2008b). Other land suitable for biomass was 

grassland under five years of age (Hammond et al. 2008b). This type of grassland accounted 

for over 200,000 ha, more than four times the land-area allocated in 2007 for set-aside use. 

Although set-aside land in 2008 was set to 0%, it was made clear that the decision would only 

be taken for 2008 (DEFRA Observatory 2008). Surveys carried out in the early part of 2008 

estimated that only 40% of set-aside land and bare fallow land would be used by farmers, 

leaving the rest un-cropped (DEFRA 2008b;Upham & Shackley 2006).   

By eliminating set-aside land, thus increasing the available land for farm-use, a driver was 

created for farmers to grow more profitable energy crops as well as food crops. However, the 

high wheat prices recorded for 2007-2008, peaking at just under £180/tonne resulted in farmers 

growing wheat for food rather than energy crops. This study concluded that energy crops 

could be grown on a land area equivalent to that of set-aside land during 2006-2007, 
approximately 57,000 ha. This accounted for less than 2.7% of total farmed land for the region. 

The change in total farmed area from 2002 to 2006 increased by 112,000 ha alone; therefore a 

bioenergy uptake of 57,000 ha was considered not to have serious impacts on current farming 

land use within the region.    

Findings also showed that although there was a lower contribution from MSW and C&I 

waste, overall bioenergy potential was still higher than current maximum potential. This 

highlighted the region’s potential of moving away from ‘uncontrolled’ sources of bioenergy 

such as waste generation, to a more ‘controlled’ production, such as energy crops. This 

suggested that the region has the capability of producing bioenergy from controlled direct 

sources, rather than a secondary use such as the recovery of energy from waste. Dedicated 

energy crops and managed woodland are imperative in supplying consistent bioenergy 
resources, as they will also maintain a steady source of resource material. 

The analysis highlighted that the bioenergy dependence on waste could gradually reduce, as 

shown in Figure 3-10. It was assumed MSW and C&I would be reduced due to increased 

recycling and stringent regulations posed on landfill sites (South West Regional Assembly 
2004).The combined energy available from MSW and C&I was found to be 7 million GJNCV per 

year. Compared to the current availability of energy from MSW and C&I (9-12 million GJNCV) 

this was reduced. The region’s Waste Strategy, states that by “2030 the region will become a 

minimum waste producer” (South West Regional Assembly 2004) and confirms the proposals 

to reduce waste. Meanwhile, bioenergy from woodfuel in the South West was calculated to 

remain constant until 2021 (Forestry Commission 2007). Predictions from the Forestry 

Commission studies showed that there would be little or no increase in available woodfuel 
biomass until 2021(Forestry Commission 2007).   
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Figure 3-10 Resource assessment C - Future potential bioenergy availability (estimated for 2020) 

The bioenergy potential of animal waste was calculated using a double of the theoretical waste 

intake used in the previous assessment. This equated to 40% of total animal waste (assuming 

again a standard 50% annual collection of the actual waste). This figure would result in a 2% 
increase in uptake per year up to 2020, which was considered a potentially suitable scenario. 

Overall it was calculated that farm waste could realistically contribute to nearly half of the 

region’s bioenergy supply. The resource assessment highlighted the large potential of energy 

from farm waste within the region.  

3.5 Brief analysis of results 

The findings showed that future bioenergy potential for the South West could be increased 

over a range of bioenergy feedstocks whilst MSW and C&I wastes were estimated to reduce. 

Given the stable animal farming population over the past 7 years, the main increased future 
supply of bioenergy relied on maximising usage of arable land and exploiting the use of 

existing farm waste. A comparative table (Table 3-3) highlights the increase between the three 

resources assessments.  

 

 

 

Table 3-3 Maximum and minimum contribution of bioenergy for each resource assessment 

Annual bioenergy availability GJNCV 

Minimum Maximum 

Resource Assessment A 3,865,000 5,292,000 

Resource Assessment B 28,700,000 49,640,000 

Resource Assessment C 32,782,000 53,699,000 
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Another key element to the increase in bioenergy potential was linked to the utilization of 

arable land. The use of this particular land was assumed to produce miscanthus. In reality, the 

land could be used for any other energy crops or a mixture of crops. The choice of miscanthus 
in this analysis was to maximise the available energy as a fuel from the biomass resource. In a 

commercial environment, farmers will probably choose the optimum land-use based on 

maximum financial return. As a result land for energy crops may be diverse or monoculture 

depending on the particular demand in the future.  

One of the key contributions towards bioenergy resources in the South West was animal 

waste. Resource assessment B assumed an uptake of 20% inline with similar resource 

assessments, whilst assessment C envisaged a 40% uptake by 2020. Using these relatively low 

uptake assumptions proved a considerable bioenergy potential for the region. In the UK, 

manures have high moisture concentrations (over 80% generally) and therefore are not 

considered suitable for direct combustion. The use of anaerobic digestion for biogas 

production is often used to extract energy from this resource.   

Total manure production for the UK in 2005 was estimated to be around 88 million tonnes, 

30% of which is liquid slurry (Mistry & Misselbrook 2005). Liquid slurry is considered as an 

ideal feedstock for biogas production from anaerobic digestion. A combination of farm waste 

and industry food waste is often utilised, as non-farm waste provides additional income 

through increased biogas yields. However biogas generation can also be amplified through 
the addition of energy crops during the digestion process. As a result, the arable land 

available in the South West could be used to aid the production of biogas. 

The study found significant benefits of adopting an increase uptake of animal waste for the 

production of biogas. Currently animal manure is ploughed directly back into fields as a form 
of natural fertiliser. However, the digestate from anaerobic digestion of animal waste is 

suitable as a fertiliser and in some cases has advantages over undigested slurries and manure 

as it offers a consistent nutrient concentration (DEFRA 2007c). Theoretically a scenario of 100% 

adoption of animal waste for biogas production could be considered if AD plants were to 

become economically feasible, through grants or funding. However this would be unrealistic 

as the collection and distribution of the waste could have a detrimental impact on road 

transport. Nevertheless, biogas production from anaerobic digestion was considered a suitable 
conversion process for the South West region due to: 

o The majority of current energy from waste in the South West region is collected through 

biogas production and generally is the most used form of energy recovery from waste; 

o The use of biogas from farm waste enables the waste to be used as a natural source of 
fertiliser, thus not affecting current end use of manures; 

o Biogas is considered a renewable energy source and is defined as a primary fuel according 

to the Digest of United Kingdom Energy Statistics (BERR 2008a). 

3.6 Summary 

The resource assessment showed that biomass resources currently utilised were considerably 

fewer than the current available biomass. Current biomass resources were found to originate 

from waste, from either landfill gas or incineration. It was observed that the bioenergy shift 
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could move towards perennial and improved farm manure management as these two biomass 

branches offered greater economic returns than energy recovery from waste in the future. 

Municipal and other non-farm waste types were also estimated to become more stringent in 
terms of availability. The region’s abundant resources of biomass showed that technological 

development could be advanced. Economic constraints ought to, according to the UK Biomass 

Strategy, pose fewer issues due to funding mechanisms currently available.  

It can be concluded that slow development of the bioenergy sector was not dependant on 
biomass resource availability. The results showed that the South West does have extensive 

arable land availability and optimum climatic conditions for bioenergy feedstocks. However, 

the slow uptake of bioenergy technologies has resulted in low stimulation for the bioenergy 

feedstock growth and supply.  

Overall, the resource assessment envisaged the use of anaerobic digestion (AD) for biogas 
production as a suitable bioenergy pathway. This complemented the abundance of resource 

required for this technology, but was also considered a plausible route in merging the 

availability of arable land and the recovery of energy from waste. 

A detailed discussion of these results has been shown in Chapter 10, where it is contextualised 
with the drivers and barriers to bioenergy development for the UK, using specific case studies 

from the South West of England. Resource assessment B and C have been discussed further, 

whilst Resource assessment A should be used to signify the current lack of bioenergy uptake.  
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4 BARRIERS AND DRIVERS TO BIOENERGY DEVELOPMENT 

4.1 Introduction 

The previous chapter highlighted the resource availability for bioenergy development in the 

South West of England. However the use of bioenergy in the region (reflected by the UK as a 
whole) has been limited and the uptake of new bioenergy projects is slow (Adams et al. 2008). 

This chapter examines the potential barriers affecting bioenergy development within the UK, 

whilst also exploring some of the key drivers for this energy source. The research undertaken 

within this particular study is also a tool for addressing the opportunities and weaknesses of 

bioenergy development as a whole. 

The work was jointly undertaken between the lead authors Mezzullo, W. and Adams, P. 
(Adams et al. 2008). The research was presented in December 2008 at the Biomass and Energy 

Crops III conference (Adams et al. 2008). The work has been expanded, updated and reported 

within this chapter. The publication has been attached in Appendix D. 

4.1.1 Background and scope 

Biomass has been embraced as a fundamental part of reducing carbon emissions in the UK. 

Over the current decade there has been a noticeable drive to increase the use of bioenergy. 

One of the first major bioenergy Government reports was published in 2005 (Gill et al. 2005) 
which highlighted the need to secure a strong biomass supply chain from harvest to delivery 

of the energy.  

Increasing the development of bioenergy has been planned through a series of policies, 

legislative changes and financial support mechanisms. The overarching policy driver was a 

series of Energy White papers (BERR 2007a) and the UK Biomass Strategy (BERR 2007b). 
Other policy drivers included Government-set regulations to directly increase the use of 

biomass. These drivers were implemented through the Renewable Obligation scheme (RO), an 

incentive to promote the use of renewable energy for electricity production. The RO scheme 

creates an obligation for UK electricity suppliers to source just under 10% of electricity from 

renewable sources. In addition to this, feed-in-tariffs (FIT) have also been newly introduced. 

These act as a secured additional income for electricity production from renewable energy 
resources which are guaranteed over a period of time (Ofgem 2010). Although there are 

currently no financial drivers for renewable heat generation, the Government is considering 

the introduction of a dedicated renewable heat incentive (BERR 2008b).  

Within the transport sector, similar policies also exist. In April 2008, the Renewable Transport 

Fuel Obligation (RTFO) was launched with a target for 3.25% of road transport fuel (by 
volume) should be obtained from renewable sources by 2010 (RFA 2009). The scheme works 

parallel with the European Union Directive on Biofuels (Adams et al. 2008; RFA 2009). 

The envisaged progress of bioenergy development by policy does not appear to have 

materialised. In recent times 2.3% of the UK’s electricity is generated from biomass sources, 
whilst bioenergy contributes a further 1% towards heat and transport (Adams et al. 2008). It is 

apparent therefore, that bioenergy has not advanced to forecasted or desirable levels.  
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The work detailed in this chapter examines the reasons for the low bioenergy uptake in the 

UK, with a particular focus on the South West of England. The research aimed to understand 

the “barriers” that may be hindering the progress of bioenergy. An understanding of the 
critical barriers was required to determine the areas in which bioenergy is failing across the 

supply chain. Links were established between bioenergy experiences on a regional and 

national level.  

A literature analysis highlighted a number of unsuccessful attempts of bioenergy in UK. In 
2005 for example, 15 out of the 22 proposed biomass electricity plants failed to operate (van 

der Horst 2005). Other examples included various failed bioenergy attempts in the South 

West, which are analysed and discussed in later sections. Commonalities existed in the 

barriers affecting the bioenergy projects and these were considered as a key reason for the 

overall slow-growth of bioenergy. The aim of this chapter is to understand what may have 

been the causes contributing towards these failed bioenergy attempts.  

In addition to examining the barriers to bioenergy development, the drivers to development 
were also analysed to understand the links between the two. A series of barriers and drivers 

were proposed from the literature review and validated through the use of a questionnaire to 

relevant stakeholder groups. From the questionnaire the barriers and driver were ranked in 

order of criticality.   

4.2 Bioenergy experiences from the South West 

In 2004, the Government Office for the South West (GOSW) commissioned a report examining 
the potential of renewable energy for the South West. It concluded that the region could 

produce between 11-15% of its electricity from renewable energy sources by 2010 (RegenSW 

2003). However, no regional targets were set for transport or heat energy. The South West’s 

current renewable energy production has an installed capacity of 150MW (RegenSW 2008). 

Previous work carried out by Hammond et al. (2008a) calculated the actual biomass feedstock 
used in the South West was between 170MW-250MW of installed capacity. This was 

significantly higher and largely due to the region’s landfill energy recovery systems, 

providing over 450GWh of energy per year (Hammond et al. 2008a).  

It is estimated that only around 1% of the region’s total energy consumption for heat and 
power is derived from renewable sources (RegenSW 2008). This is mirrored throughout the 

whole of the UK, where total renewable energy did not exceed more than 50 TWh production 

in 2008 (total UK renewable heat energy consumption in that year was around 2,800 TWh) 

(BERR 2008a;HM Government 2009).  

4.2.1 Current bioenergy projects in the South West 

In 2004, the Government awarded £18m of funds to five bioenergy plants across the UK (HM 

Government 2007). The combined capacity of these plants was 39MWe using a mixture of 

wood and energy crops (Thornley 2006). Four out of the five projects (total of £17.5m) were 

awarded to plants within the South West of England. To date, none of the projects in the South 

West of England are fully operational (RegenSW 2008). Studies carried out on some of the 

projects concluded a number of key reasons for unsuccessful biomass developments. Some of 
these projects have been analysed in the following section. 
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Winkleigh 21.5MWe gasification plant 

In 2001, a plan was outlined to design, develop and install a gasification plant in the town of 

Winkleigh in Devon, UK. The total cost of the gasification plant was predicted to be 
£37million. However, due to local opposition the decision to implement the plant was 

overturned. A survey carried out in 2004 highlighted that 88% of the local community felt 

negatively regarding the installation of the plant (Upham & Shackley 2006). The same study 

also showed there was a significant mistrust between the local community, developers and 

agencies involved. According to Upham & Shackley (2006), local people believed the plant 

had been falsely advertised through the media. Other issues included the location of the plant 

which created issues with residents living near-by and the increased use of local roads which 
could have detrimental environmental impacts (McCormick & Kaberger 2007).  

North Wiltshire biomass plant 5.5MWe 

In May 2000, planning applications for a wood gasification plant was submitted to the North 

Wiltshire District Council. The plant was designed to use up to 36,000 oven dry tonnes of 
wood collected within a radius of 30 miles (Upreti & van der Horst 2004). The plant was 

estimated to create 83 permanent jobs in the area (Upreti & van der Horst 2004). The plans 

received opposition and the community initiated a campaign called “Biomass Lumbered on 

Our Town” (BLOT) to oppose the biomass site. The plans were then terminated on the 

grounds of significant visual harm (Upreti 2004). 

Green Spirit Fuels Ltd, bioethanol manufacturer 

Launched in 2005, the company was created to produce bioethanol for road transport in 

Somerset. This plant was designed to produce 130million litres of bioethanol per year. The 

project secured planning permission in January 2006 and building was intended to commence 

in January 2007. However after a press release in June 2008, it is understood that due to 

funding issues construction has not yet commenced (GSF 2008). 

Other biomass projects in the South West 

Roves Energy was granted £0.96million to build a combined heat and power plant (CHP), 

fuelled by 5000ha of local energy crops in Swindon (HM Government 2007;Thornley 2006). 

The plant was to adopt an electricity generating technology capable of producing 2MWe. The 

fund was granted in 2004 but has not yet been built.   

Another CHP plant project was initially set up in 2003 in Somerset. The plant was to produce 

6.9MWe and 1.5MWt. The project was successfully granted £3.8million of funding for the 

development of the plant. The plant however experienced technical difficulties leading to 

substantial financial challenges. Eventually the plant was closed permanently due to 
undisclosed technology issues associated with the gasification process (Boyle 2004).  

4.2.2 Observed issues with bioenergy development 

Bioenergy’s lacklustre growth in the region can be associated with a number of barriers. These 
barriers are not uncommon in other regions of the UK and in other countries. Several studies 

concluded there is a pattern to the barriers which impede the development of bioenergy (Roos 

et al. 1999;Upham & Shackley 2006;Upreti 2004;Upreti & van der Horst 2004). These barriers to 

bioenergy can be divided into two categories; technical and non-technical challenges (Rosch & 
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Kaltschmitt 1999). This determines whether the actual plant operability is an issue or whether 

challenges arise from outside factors.  

Technical barriers are generally related to modern, often commercially unproven technologies, 
which have yet to become economically viable. An example of this is the conversion of solid 

biomass to liquid biofuels, also known as 2nd generation biofuels. Due to the advanced 

conversion technology adopted, these plants are estimated to cost around 4 times the amount 

of conventional 1st generation biofuel plants and around 2-3 times the cost of producing fossil-
fuel oil derived diesel or petrol (Kavalov & Peteves 2005). Other technical barriers can emerge 

from developments not meeting environmental regulations or quality standards. Operational 

activities of the plant can also encounter technical issues which lead to financial complications 

or ultimately in plant shut down. 

Non-technical barriers govern all the other aspects in which a bioenergy plant may experience 
difficulties. This includes lack of feedstock availability and other financial issues such as 

administrational costs. Perceptual challenges can also hinder the development of bioenergy 

plants, which is clearly seen with some of the case studies above. The ultimate end-user 

request for bioenergy can also vary, subsequently affecting the outcome and success of a 

bioenergy plant. Literature shows that within the UK and in particular the South West, the 

main barriers to bioenergy projects included: 

o Location of bioenergy plant – visual impacts (Upham & Shackley 2006); 
o Transport increase around bioenergy plant (Upreti 2004); 

o Mistrust between local community, developers and agencies – credibility of developer 

(Upham & Shackley 2007;Upham & Shackley 2006); 

o Other environmental impacts – odours emitting etc. (McCormick & Kaberger 2007); 
o Financial implications during operation and lifespan of plant (Piterou et al. 2008); 

o Technical problems associated with conversion techniques (Piterou et al. 2008). These 

technology issues can also include the practicality of installing district heating systems 

from biomass plants to end-users, situating a plant sufficiently close to an electrical grid 

feeder and minimising noise and odour emissions during the plant’s operation.  

From the literature analyses, it was apparent that barriers to the development of a bioenergy 
project differed at varying stages throughout the lifecycle of project implementation. A 

flowchart for a typical bioenergy project is shown Figure 4-1. It should be noted that although 

this flowchart represents the typical stakeholders of a bioenergy operation, there are some 

situations where the feedstock supplier, technology owner and end-user are all represented by 

one stakeholder.  

  

 

  



BARRIERS AND DRIVERS TO BIOENERGY DEVELOPMENT 

- 48 - 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4-1 Linkage between stakeholders groups for bioenergy projects – (Adams et al. 2008) 

The development of a bioenergy project can be affected by a number of externalities outside of 

the developer’s control, shown in Figure 4-1. These externalities, along with the developer’s 

inputs can be categorized into four groups: farmer/supplier of feedstock, developer and user 
of plant, policy/government input and end-user of bioenergy. Although there are many other 

factors that affect the development of a bioenergy project, such as the effects on the local 

community and the contribution from external investors, it was assumed that these four areas 

represented a supply chain to bioenergy development projects.  

4.3 Methodology for identifying barriers and drivers to bioenergy development 

The root causes for unsuccessful bioenergy projects can originate from any or multiple stages 

of the project’s development chain. The supply chain, considered a critical part of the success 

of a bioenergy development (Gill et al. 2005), is ultimately created between the demand for 
bioenergy and the supply of the energy source.  

The demand from the end-user is stimulated mainly by governmental support such as 

mechanisms put in place to develop the market (Gill et al. 2005). These mechanisms can also 

be applied to bioenergy feedstock supply. To date, there are a range of mechanisms 

implemented within the UK to support the development of biomass production. In order to 
identify the barriers to bioenergy development it was necessary to understand whether 

barriers differed throughout the supply chain. In addition, the drivers were also analysed at 

each stage of the bioenergy supply chain to determine the possible links between barriers and 
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drivers for each stage. After identifying the four key stakeholders of a successful bioenergy 

development, they were subsequently defined: 

Farmer/supplier of feedstock  

This group is involved in growing, collecting and overall production of feedstock for a 

biomass plant. The study covered all aspects of bioenergy including biofuels, heat from 

biomass and electricity from biomass. Therefore all potential feedstocks were considered. 

These included (Hammond at al. 2008b): 

o Arable/Annual Crops – Oilseed rape, wheat, sugar beet etc; 
o Herbaceous Crops – Miscanthus, switch grass, reed canary grass; 

o Woody Perennials – Short rotation coppice (SRC), pine/spruce; 

o Residues and Waste – Forest residue, farm waste, organic municipal waste, organic 

industry/other waste. 

Plant developer/owner 

These stakeholders are involved in developing the biomass plant. This included 
building/design and feasibility consultants, engineers, financiers and plant owners. Types of 

biomass plants included: biodiesel production plants, bioethanol production plants, biomass 

combined heat and power (CHP) plants, gasification plants, other biomass electricity, biomass 

heat, anaerobic digestion plants and other waste treatment with energy recovery systems.  

Government/policy 

This stakeholder group included governmental organisations, agencies and local authorities. 

Organisations which lobbied the Government to try and influence bioenergy policy were also 
included. These stakeholders were interested in bioenergy development from a legislative 

standpoint. 

Primary bioenergy end-user 

This group represented the primary end-user or purchaser of bioenergy. This did not include 

the effective end-user of the bioenergy. For example, a vehicle fuel supplier was considered an 

end-user, rather than a road user purchasing the fuel at a forecourt. It was assumed that 

primary end-users would qualify as major stakeholders rather than actual users of the 
bioenergy. Other examples included electricity suppliers which purchase electricity generated 

from biomass. These were considered as end-users as their drivers for biomass electricity 

would be more related to the study than the drivers of the actual end-user of the electricity.  

4.3.1 Linking the bioenergy stakeholder groups 

Barriers to bioenergy development are likely to differ between the four stakeholder groups 
because of different drivers associated with each group. For example, a driver for 

government/policy may be to pursue bioenergy development to help reduce carbon 

emissions; however, for a plant developer/owner this driver may not be as important. These 

links between the four stakeholder groups need to be understood in order to determine the 

most important barriers to the development of bioenergy.   
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Bioenergy as a whole was examined through the four stakeholder groups. This included all 

feedstocks, conversion techniques and end-uses. It was acknowledged that there were a large 

number of bioenergy ‘pathways’ and that potentially the barriers and drivers for each 
pathway could be different.  For example, growing and supplying miscanthus would require 

different sowing, growing and harvesting techniques compared to annual crops such as maize 

and wheat. Additionally this type of feedstock would be very different to supplying waste by-

product feedstocks such as manure. This could therefore, pose barriers to suppliers who wish 

to supply different feedstocks.  

Having acknowledged each bioenergy pathway could have different associated barriers and 
drivers, the study focused on more overarching aspects of development as opposed to 

individual situations. It was acknowledged that identifying specific barriers for each 

bioenergy pathway would narrow the scope of the research and thus would be outside the 

remit of the study. Additionally, the research was intended to review the barriers and drivers 

with a holistic approach in support of Government bioenergy strategies (BERR 2007b; Gill et 
al. 2005). This work clarified the common barriers and drivers throughout all bioenergy 

pathways. 

The bioenergy pathways as shown earlier in Figure 2-3 demonstrate three of the four 

stakeholder groups that are responsible for the development of bioenergy. It was recognised 

that governmental influence was the overarching influence over the three stages of the 
bioenergy supply chain. From this analogy a simplified schematic of the link between the 

three stakeholder groups and the overarching influence of government/policy has been 

displayed in Figure 4-2.  

 
 

 

 

 

 

 

 

 

 

 

 

Figure 4-2 Governmental/policy influence on biomass supply chain 

The study proposed a list of possible barriers and drivers to the development, use and support 

of bioenergy for the four different stakeholder groups. The barriers proposed resulted from an 

extensive literature review and analysis of case studies. To understand the routes of these 
barriers, the bioenergy development drivers were also proposed. It was acknowledged that 

other drivers and barriers may be associated with bioenergy development. The study 

investigated the validity of these barriers and drivers for each stakeholder within bioenergy 

supply chain. Each barrier was then analysed to determine the implications it could have on 

the implementation of bioenergy. 
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4.3.2 Drivers and barriers for feedstock suppliers 

Suppliers of feedstock were partly considered to be farmers able to supply bioenergy crops. 

Other feedstock suppliers included waste suppliers, such as tree surgeons or sawmills. 
Similarly, organic waste suppliers were also included as these could supply feedstock either 

for anaerobic digestion, gasification or incineration. There could be a number of drivers for the 

supply of bioenergy feedstock, but due to a number of challenges, there were also several 

barriers which could discourage bioenergy feedstock suppliers, as detailed in Table 4-1.  

Table 4-1 Proposed barriers and drivers to the development of bioenergy for feedstock suppliers 

There could be a perceived difficulty growing crops for either biofuels (Mattison & Norris 

2007) or other bioenergy fuels instead of other food crops. These issues could arise from 

unfamiliar sowing, growing and harvesting techniques, diverse farming equipment 
requirements or land suitability. However farmers may be willing to overcome these issues as 

bioenergy could offer a diverse market either from previously grown crops or as an 

alternative use of farming by-products. Low or uncertain return on investment may be seen as 

an important barrier to the development of bioenergy feedstock (Sherrington et al. 2008). 

Uncertainties of grant or funding support could also be a potential barrier to bioenergy 

feedstock. Studies have shown that without financial support the uptake of bioenergy crop 

production would have been considerably lower (Sherrington et al. 2008). Additionally, 
locking farmers into long term contracts to supply crops such as miscanthus and SRC could 

also be seen as a barrier to feedstock suppliers. However this sole issue could be represented 

as competition vs. other investments and limited/uncertain return on investment.  

Environmental implications associated with the supply of bioenergy feedstocks were also 
thought as potentially pivotal to supply of feedstock. A potential barrier proposed was the 

uncertain environmental effects of bioenergy feedstock production. Biodiversity effects of 

bioenergy monocultures could drive farmers or landowners away from producing feedstocks. 

In contrast, the belief of environmental benefits through adopting bioenergy could also be a 

driver for suppliers. Possible reductions in carbon emissions and a decreased dependence on 

fossil-based fuels further down the supply chain could also be drivers for bioenergy.  

4.3.3 Drivers and barriers for bioenergy plant developers/owners 

A key proposed barrier for this stakeholder group included adopting a conversion technology 

that could either be financially or practically unproven (Table 4-2). This was considered valid 

 Barriers Drivers 
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A - Competition vs. other investments  

K - Attractiveness of a growing bioenergy 

market 

B - Lack of feedstock experience  L - Availability of financial support 

C - Limited/uncertain return on investment M - Market diversification 

D - Negative environmental impacts of feedstock  N - Meeting governmental targets 

E - Perceptual challenges of feedstock  

O - Other environmental benefits (other 

than CO2 reduction) 

F - Physical resource limitation (i.e. land availability) P - Possible reduction in carbon emissions 

G - Resource intensive feedstock  Q - Profitable return on investment 

H - Uncertainties of financial support R - Reduction in fossil-based fuels 

I - Unclear legislative limitations  

J - Unsettled bioenergy market (unreliable buyer)  
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across the board of bioenergy pathways. The production of biofuels for example could be 

faced with financially unproven or elevated costs of 2nd generation biofuel conversion 

techniques. Meanwhile, for heat production from bioenergy the costs and feasibility of 
implementing district heating systems could be seen as a barrier to the use of such technology.  

 

 
Table 4-2 Proposed barriers and drivers to the development of bioenergy for plant developers/owners 

Other barriers that could hinder the development of bioenergy projects included a lack of local 

supply of feedstock, forcing developers to import biofuels from outside the UK. The import of 

wood-pellets into the UK signifies the lack of feedstock supply within the country (Junginger 
et al. 2008). However, the diverse range of feedstocks available for bioenergy is an attraction to 

the use of bioenergy. Financial considerations also offered a number of potential drivers and 

barriers to the development of bioenergy projects. Proposed drivers for bioenergy included 

Government support mechanisms, such as the bio-energy capital grant schemes and also the 

capability of bioenergy to produce financial rewards such as ROC and FIT. However uncertain 

financial costs associated with operation, maintenance of bioenergy plants and costs of 

bioenergy distribution were also anticipated to be a significant barrier (Piterou et al. 2008).  
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A - Competition vs. other renewable energy options 

J - Availability of financial reward/support 

mechanisms 

B - Lack of feedstock supply 

K - Bioenergy supply consistency vs. other 

intermittent energy options 

C - Low primary-end-user demand L -Bioenergy use versatility 

D - Perceptual challenges of bioenergy plant M - Increase bioenergy interest from end-user 

E - Planning and installation issues N - Market diversification/opportunity 

F -Possible negative environmental impacts O - Possible reduction in carbon emissions 

G - Uncertain development and operational costs P - Reduction in fossil-based fuels 

H - Uncertainty of conversion technology/equipment 

Q - Variety of feedstock use for bioenergy. 

Resource diversification 

I – Unclear and complex legislative issues  
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4.3.4 Drivers and barriers for primary end-users of bioenergy 

  Barriers Drivers 
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A - Bioenergy costs vs. fossil-fuel J - Ability to penetrate most energy markets 

B - Infrastructure and other costs 

K - Bioenergy use consistency vs. other 

intermittent energy options 

C - Legislative issues L - Direct substitute of fossil-based fuels 

D - Low supply of bioenergy 

M - Help in supporting Governmental 

schemes 

E - Perceptual challenges of bioenergy use 

N - Investment opportunity into renewable 

energy 

F – Preferences  of other renewable energy options O - Positive effects on image and PR 

G - Seasonal effects of bioenergy supply P - Possible reduction in carbon emissions 

H - Uncertainty of adaptability Q - Reduction in fossil-based fuels 

I - Unsettled/changing bioenergy market  

 
Table 4-3 Proposed barriers and drivers to the development of bioenergy for primary end-users 

The primary end-users of bioenergy were considered to include a wide range of users from 

electricity suppliers requiring ROCs and FIT, to domestic heating users wanting to reduce 

dependency on fossil-based fuels and improve environmental impacts associated with energy 

use. The barriers (Table 4-3) associated to this stakeholder group included financial 

implications of bioenergy, similar to other stakeholder groups. High buying costs of bioenergy 
with respect to other sources of fossil-fuel derived energy or even other renewable energy 

options could potentially discourage the buying of bioenergy. Similarly, uncertainties within 

the bioenergy market and seasonal variability of feedstock supply would ultimately create 

volatile buying costs for various types of bioenergy. A similar trend can be seen for wheat 

crop prices during the 3rd quarter of 2007, where wheat prices rose from £90/tonne in February 

2007 to £180/tonne in September 2007 (ENAGRI 2007).  

Other barriers proposed for end-users included the uncertainty of adaptability of bioenergy. 
This can be seen within the biodiesel supply chain, where a number of vehicle manufacturers 

do not allow the use of biodiesel in their engines due to uncertainty of engine performance 

and longevity. Legislative issues were proposed as a possible barrier for primary end-users of 

all bioenergy pathways. These include uncertainties associated with international standards 
on the use of renewable fuels in transport and lack of unclear reward mechanisms for the use 

of bioenergy; currently present in the UK for bio-heat.  

Drivers associated with bioenergy use included the ability to penetrate most energy markets, 

including heat generation, power production and transport energy uses. This driver also led 

to the favourable use of bioenergy as a direct substitute to existing energy conversion 
techniques. For example, the use of biofuels as a direct replacement of petro-diesel and petro-

gasoline could favour biofuels over other renewable energy options for transport. Other 

examples include the ability to use cleaned biogas (ultimately pure methane) pumped into 

national gas grid networks and used for domestic heating or cooking. The drivers however 

also led other potential barriers for the adoption of bioenergy. These included uncertainties 

regarding infrastructural costs for using bioenergy. For example, the costs for district heating 
set-ups would also have to be met by the end-user of bioenergy which could result in a barrier 

for the adoption of such a technique.  
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4.3.5 Drivers and barriers for government/policy 

 
  Barriers Drivers 
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A - Competition vs. other renewable energy options 

I - Bioenergy supply consistency vs. other 

intermittent energy options 

B - Lack of feedstock supply resource availability J - Bioenergy use versatility 

C - Legislative issues regarding bioenergy K - Decentralisation of energy capability 

D - Negative effects on food crop prices 

L - Increase rural development and 

economy 

E - Negative global environmental impacts M - Increased fuel security 

F - Negative local environmental impacts N - Possible reduction in carbon emissions 

G - Perceptual challenges O - Reduction in fossil-based fuels 

H - Uncertainty of conversion technology/equipment 

P- Variety of feedstock use for bioenergy. 

Resource diversification 

  

 
Table 4-4 Proposed barriers and drivers to the development of bioenergy for Government/policy 

stakeholders 

Table 4-4 shows the barriers and drivers affecting government/policy stakeholders, reflecting 
how this group would support the use and development of bioenergy. Proposed barriers 

included the uncertainty of financial support mechanisms which may be used on unproven 

conversion technologies that could ultimately not provide a valid return on investment. 

Support mechanisms may also be affected by the environmental benefits or detriments of 

bioenergy use. Recent reports question these benefits when considering biofuels for transport 

(EAC 2008;The Royal Society 2008). 

Other barriers proposed for this stakeholder group include the competition that bioenergy 

could face versus other renewable energy options, such as wind energy or solar. This could 

have implications on obtaining suitable financial support for bioenergy developments. It was 

also suggested that barriers to bioenergy, from a government/policy perspective, could be 
seen as a link between bioenergy crop growth and the potential link to the rise in food crop 

prices. The effects of bioenergy on food crops may be viewed as a significant barrier to the 

development of bioenergy for these stakeholders. Lack of sustainable feedstock availability 

was also proposed as an important barrier for these stakeholders. Sourcing feedstock from 

unsustainable sources could have negative implications on the environmental benefits of 

using bioenergy, which could ultimately hinder government-set targets of carbon reductions, 

and increasing fuel security (BERR 2007a). 

Drivers for the development of bioenergy were derived through a series of Governmental 

strategies (BERR 2007b). These strategies were proposed to develop all routes of bioenergy in 

order to meet governmental energy targets. These targets included: increasing energy security, 

reducing carbon emissions and reducing overall dependency on fossil fuels. Therefore, these 

drivers were seen as important factors from a government/policy perspective for the 
development of bioenergy. Parallel to these drivers are incentives for diversifying the use of 

waste. Reducing waste to landfill through the Landfill Directive encourages the use of 

biomass waste for energy purposes (DEFRA 2007d). 
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4.3.6 Stakeholder survey for barriers and drivers to bioenergy 

Having proposed a number of barriers and drivers for each stakeholder group, a stakeholder 
survey was subsequently prepared to determine the importance of various barriers to 

bioenergy projects. The stakeholders for each group were obtained through a number of 

bioenergy-related events attended during 2007-2008. All bioenergy-related events, seminars, 

conferences and courses were addressed to all bioenergy fields, as opposed to single 

bioenergy pathways. This reinforced the methodology to treat bioenergy as a whole. 
Bioenergy related contacts via personal communications were also considered as suitable 

stakeholders for some of the groups. The stakeholder’s suitability was assessed based on 

previous experience within the bioenergy field, or a relevant interest in bioenergy. 

In order to survey the stakeholder groups, an online questionnaire was constructed. 

Stakeholders were asked how important each barrier and driver was for the development of 
bioenergy. The questionnaire offered the candidates five choices: critical importance, very 

important, moderate importance, unimportant or undecided. The respondents were also able 

to add additional barriers or drivers which they thought to be important in the development 

of bioenergy. The stakeholders were contacted via email with a covering document explaining 

the details of the research. The email enclosed a web link directing them to the online survey. 

Once the questionnaire was completed, the respondent submitted the information which was 

stored in an online database. The response rate of the survey was just over 45% with a total of 
72 respondents. This averaged around 18 responses per stakeholder group.  The stakeholders 

represented all bioenergy types and scales of bioenergy implementation. Screenshots of the 

online survey has been displayed in Appendix E.  

4.4 Results 

The results from the questionnaire highlighted the main drivers and barriers of 

critical/important significance. The technique adopted for displaying the results also 

highlighted the least important drivers and barriers. From these outcomes the possible links 

between barriers of different stakeholder groups were assessed to determine whether there 
were patterns or consistencies of barriers and drivers along the supply chain.  

4.4.1 Farmers/suppliers stakeholders of bioenergy feedstocks 

Critical barriers for the development of bioenergy feedstocks were predominantly the 

competition with other investments and the uncertainty of a return on investment. The latter 
was considered to either be critically important (50%) or very important (35%). However, 

around 25% of the stakeholders also mentioned the uncertainty of funding as being another 

critical barrier. Another significant barrier focused on the issue of physical resource 

availability, which could limit the generation and supply of bioenergy feedstocks. The least 

important barriers recognized by this stakeholder group included the effects on the 

environment of producing bioenergy feedstocks and the perceptual challenges, which could 

be faced; 36% and 48% respectively (low importance).  
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Figure 4-3 Barriers to bioenergy development according to farmers/suppliers of bioenergy feedstock 

The predominantly significant (critically important) driver for the development of bioenergy 
according to farmers/supplier stakeholder was that bioenergy had to be profitable (76%) 

(Figure 4-3). If “very important” was also taken into account then this driver would contribute 

to 90%. The extent of this driver was high enough to mask other drivers. Other drivers 

included reducing the dependency on fossil fuels (75% between critical and moderate) and 
investing in a “growing market” was an important driver with 67% of the questionnaire share 

(between critical and moderate). The questionnaire also highlighted the least important driver 

as helping to meet Government targets (55% said this was least important) and adopting 

bioenergy for its potential environmental benefits (40% low importance). 
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Figure 4-4 Drivers to bioenergy development according to farmers/suppliers of bioenergy feedstock 

4.4.2 Developers/owner stakeholders of bioenergy projects 

Barriers of critical significance to the development of bioenergy included technological 

barriers with conversion technologies/energy production and delivery (42% critical) (Figure 4-

5). Legislative issues were also seen as a critical barrier (36%), whilst resource availability and 
development and operational costs were also of critical significance. Plant owners/developers 

saw perceptual challenges as a bigger barrier to bioenergy than farmers/suppliers did (50% 

very important). Finally, local planning issues and environmental implications of bioenergy 

were also seen as important barriers; 42% and 33% respectively (moderate/very important). 

 

 

 

 

 

 

 
 

Figure 4-5 Barriers to bioenergy development according to developers/owners of bioenergy projects 

The predominant drivers (Figure 4-6) for bioenergy according to the developers/owners 

included the benefits of financial reward/support (91% between critical and very important), 

preferring bioenergy over other renewable energy options due to its constant supply of energy 
(64% critical and very important) and entering a new market opportunity (82% mix of critical 

and very important). However, other benefits included a reduction on the dependency of 

fossil fuels (64% very important) and investing into a market with recent increased interest.  
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Figure 4-6 Drivers to bioenergy development according to developers/owners of bioenergy projects 

The least significant drivers were less pronounced compared to the previous stakeholder 

group. The versatility of bioenergy use/feedstocks was seen as one of the least important 

drivers. This could be because owners/developers have fixed feedstock contracts set prior to 

starting a project. Other drivers of low or moderate importance included the reduction in 
carbon emissions and the potential of biomass resource diversification.  

4.4.3 Primary end-users stakeholders of bioenergy 

The primary barriers highlighted by this group of stakeholders included the elevated buying 

costs with respect to fossil fuels (88% between critical and very important) (Figure 4-7). 

Legislative issues, which included Government policy decisions/uncertainties of standards 

and funding mechanisms also contributed to a significant barrier (73% between critical and 
very important). The requirement for new infrastructure and insufficiency of energy 

availability were also important barriers (both were rated as critical or very important by 67% 

of the stakeholders).    

 

 

 

 

 

 

 

 
Figure 4-7 Barriers to bioenergy development according to primary end-users of bioenergy 
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Key drivers for this stakeholder group included reducing the dependency on fossil fuels (86% 

viewed as either critical or very important); shown in Figure 4-8. End-user stakeholders 

viewed bioenergy as beneficial in reducing carbon emissions. The least significant drivers 
included the versatility of fuel options and the opportunity to access a new market gap.  

 

 

 

 

 

 

 
 

Figure 4-8 Drivers to bioenergy development according to primary end-users of bioenergy 

4.4.4 Government/policy stakeholders of bioenergy development 

The key barriers identified by these stakeholders included the availability of feedstock 

resources for bioenergy (63% between critical and very important) and the use of an unproven 

technology (56% between critical and moderate) (Figure 4-9). Other important barriers also 

included the threat that bioenergy could have on rising food prices and the uncertainties in 
identifying clear legislation and support for bioenergy. Although there were significant 

barriers identified, this group had the largest spread of results with no well-established 

patterns forming. 

 

 

 

 

 

 

 
Figure 4-9 Barriers to bioenergy development according to Government/policy stakeholders 

The most important drivers identified by this stakeholder group included the reduction of 
carbon emissions (81% between critical and important) and the reduced dependency on fossil 

fuel for fuel security (70% between critical and very important). The drivers within this group 
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were more pronounced and clearly visible, as can be seen by these two results (Figure 4-10). 

The least important driver was seen as the diversification of resources which could be of 

greater interest to owners/developers of bioenergy projects.  

 

 

 

 

 

 

 

 
Figure 4-10 Drivers to bioenergy development according to Government/policy stakeholders 

 

4.5 Effects of following individual bioenergy pathways on barriers 

The results reinforced that the drivers and barriers to bioenergy would be affected by the 

bioenergy pathway chosen. Based on the obtained correlations, the survey results were 
contextualised for differing bioenergy pathways. 

4.5.1 Feedstock suppliers 

Based on the bioenergy pathway described by Hammond et al. (2008b), it is clear that 

feedstock supply for bioenergy can be grouped into two main categories; controlled 

production of bioenergy and uncontrolled bioenergy feedstock. Controlled production of 

bioenergy is feedstock which is planted and/or grown for cultivation, purposely for bioenergy 

use. The second type (uncontrolled) incorporates all types of waste. Waste is an uncontrolled 
source of feedstock because it is not produced solely for bioenergy. This can include municipal 

waste, animal waste and other farm by-products such as straw or processing residues.  

The key barriers for controlled wastes related more towards the barriers identified within the 

stakeholder survey. For example physical resource, land use competition, return on 

investment and the use of a financially resource intensive feedstock. However, for 

uncontrolled bioenergy feedstocks these barriers may not be as significant. More critical 

concerns may be perceptual challenges, legislative issues and general financial barriers. These 
appeared to be common with AD processing operations (J.Prior, Summerleaze ltd. 22/05/2007, 

personal communication). 

Common barrier elements amongst all suppliers of bioenergy feedstocks were also present. 

These included economic considerations and security of financial reward. A high return on 

investment is essential for bioenergy to be attractive.  However, minimising risks and 

ensuring secure Government support is also a common requirement.  

 

J - Constant supply of energy

K - Bioenergy use versatility

L - Decentralisation of energy

M - Increase in rural economy

N - Increased fuel security

O - Carbon reductions

P - Reducing dependancy on fossil

Q - Resource diversification



BARRIERS AND DRIVERS TO BIOENERGY DEVELOPMENT 

- 61 - 

 

4.5.2 Conversion plant developers/owners 

Technology barriers were believed to have different effects depending on age and 

establishment of the conversion process. Anaerobic digestion for example is more widely used 
and economically viable than Biomass-to-liquid 2nd generation conversion processes. However 

both of these conversions are met with technological barriers. The study also recognized more 

“basic” conversion processes such as wood combustion or biogas direct combustion. These 

processes may not have technological barriers as primary reasons for failure of a project.  

Common elements identified, regardless of the conversion technology, were the 

lack/uncertainty of resource availability. This is a common problem with all bioenergy projects 

and is widely considered the primary obstacle to overcome, prior to installing a bioenergy 

plant. A clear link was also present between critical economic barriers (development and 

operational costs, technology) and important economic drivers (financial reward, market 

opportunity etc). This highlights the strong interest in the economic benefits of bioenergy from 

a developer/owner perspective. This is similar to suppliers who displayed a strong drive 
originating from the economic benefits of bioenergy, but who also showed careful 

consideration of the financial threats which bioenergy could pose.  

Overall, the barriers identified within this stakeholder group could be related to all bioenergy 

conversion processes. Other barrier similarities included competition with other energy 

sources, resource availability and legislative issues. However, the scale of the plant may affect 
other barriers such as local planning and perceptual challenges. For example, a domestic 

wood burner may not have the same visual impacts as a large-scale gasification plant.  

4.5.3 Primary-end users 

Primary-end users are the primary point of contact with the produced energy from biomass. It 
was found that this group also had a large variation in barrier rankings compared to the other 

stakeholder groups.  

The main barriers considered applicable to transport fuel primary-end users were the high 

buying costs with respect to fossil fuels. Currently there are little or no financial savings for 

using biodiesel over fossil diesel (Biosulis 2009). Additionally biodiesel’s lower net calorific 
value equates to higher running costs in respect to fossil fuels. Other barriers which can 

impede on the performance of bioenergy for transport fuel is the compatibility of the fuel 

within existing systems and infrastructures. Although bioethanol and biodiesel are seen as 

direct replacements for fossil-based fuels there are a number of issues when operating these 

fuels within standard internal combustion engines, such as the corrosiveness of the fuel and 

the higher cetane number of the fuel leading to different combustion timing settings.  

Electricity suppliers which are rewarded with ROCs after purchasing electricity (MWh) from 

bioenergy sources are faced with different barriers. The key barrier for this group may be the 

preference of other renewable options over bioenergy. For example if a MWh of wind energy 

is cheaper than a MWh of bioenergy, then the supplier would be more inclined to purchase 

the wind energy. The insufficiency of supply may also create a barrier due to the limited 
feedstock availability for conversion processes. A constant source of electricity is required and 

therefore season intermittency of feedstock supply may become a significant barrier.  
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Due to the lack of established renewable heat financial support, heat energy primary-end 

users are faced with very different barriers for the development and use of bioenergy. These 

include the legislative issues and an unsettled bioenergy market, which could be affected by 
Government policies. Additionally, the lack of increased financial reward could make 

bioenergy economically uncompetitive.  

4.5.4 Government/policy  

The barriers determined for this stakeholder group identified resource availability and 
unproven technology as fundamental barriers to overcome within the bioenergy industry. 

These were considered to be valid for all bioenergy pathways. Other important barriers which 

could affect all bioenergy pathways included the perceptual challenges of bioenergy, the 

competition against other energy sources and the effects on the local environmental. 

It is evident that when considering bioenergy in the UK, the Government has addressed 
bioenergy as a whole, regardless of the specific bioenergy pathway (BERR 2007b). However, 

more recently there is evidence that bioenergy pathways are being addressed individually and 

policies are being created for specific bioenergy sources. This can be seen through the 

introduction of variable ROC values for different bioenergy options, with some bioenergy 

conversion processes being worth 2 ROCs per MWh whilst more conventional bioenergy 

conversion processes are worth less (BERR 2008c). A similar approach can also be seen 

through the FIT incentives (Ofgem 2010).  

4.6 Social impacts of bioenergy 

A key factor affecting the development of bioenergy is how it integrates within society.  

Although society was not considered to be a separate stakeholder, it could have a direct 

impact or an indirect impact on bioenergy development. This study examined the barriers 

from a bioenergy supply chain perspective. Integrating society or public perception within the 

bioenergy supply chain was not considered appropriate as this stakeholder group may or may 

not have a direct interest in bioenergy development.  

Through the literature critique carried out for this study, public perception appeared to have a 

large influence on whether bioenergy projects succeeded or failed.  Extensive studies such as 

(Upham & Shackley 2007;Upham et al. 2007;Upham & Shackley 2006;Upreti 2004;Upreti & van 

der Horst 2004) had previously highlighted the issues of bioenergy developments facing 

opposition from public organizations. Additionally, these studies showed that often public 
opposition was then transposed onto the Local Authorities, subsequently taking action against 

bioenergy projects. As a result this study could assume that Government/policy stakeholders 

should address the interests and values of the general public.  

Overall conclusions from the literature showed that large-scale bioenergy projects were often 

met with hostility and scepticism from public groups situated near the proposed 
developments. This opposition was found to arise from uncertainties such as: understanding 

the impact on the local area; what the benefits to the local area are; how will it operate and are 

there similar past experiences which can be relied on (Upreti 2004). Often commercially 

‘green’ technologies have difficulty answering such issues. The increased risk arising from 

these uncertainties can create a negative public perception.  
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The literature highlighted a number of examples where public opposition was the cause of 

failed bioenergy attempts. These failed attempts have been documented in section 4.2.1. These 

attempts were mostly situated in the South West region, presumably due to the availability of 
biomass resources. Two notable failed bioenergy attempts in the region were both wood 

gasification plants (Upreti 2004). These plants required a large intake of wood resources and 

therefore their location was suited in the South West of England. However, the South West 

region (in particular Devon and Wiltshire, where the plants were being proposed) is 

commonly considered an area of natural beauty and have a significant tourist presence.  

Studies concluded that large biomass plants would encounter difficulty in gaining social 
acceptability from proximate communities (Upham & Shackley 2007). Large developments are 

often associated with visible and intrusive building constructions, increased transportation 

activity, increased pollution and risk of environmental damage, increased noise nuisance and 

potentially a detriment to the current economic value of the surrounding areas. Other 

concerns raised included the apparent mistrust between local communities and developers of 
biomass plants (Upreti 2004). This mistrust was caused by delaying or withholding 

information of the total development, which subsequently lead to negative opposition 

between the two parties.  

A study conducted by Howes & Howlett (2000) and documented by Upreti (2004) highlighted 

that the UK public were generally unaware of bioenergy pathways. The study found that 
people often associated bioenergy to waste incineration or other unclean energy producing 

processes. More recently as general awareness and interest in bioenergy has increased, the 

potential benefits of first generation biofuels have been questioned. Biofuel production 

technology has rapidly become associated with doubtful environmental benefits (Sims et al. 

2010). This was contributed towards by reports claiming that biofuels lead to possible 

deforestation and increased carbon emissions (RCEP 2004;The Royal Society 2008). These 
issues may have added more concern regarding the overall benefits of bioenergy across all 

bioenergy pathways.  

From literature, it appears that bioenergy with respect to societal behaviour offers greater 

risks and concerns than benefits and opportunities. The apparent societal benefits could 

include: enhancing energy independency, achieving national energy targets, increasing rural 
employment and development and reducing the handling and potential cost of waste (IRGC 

2007). However, based on previous experiences of bioenergy development, these 

opportunities could be outweighed by the risks affecting society and hence public perception.  

 

4.7 Concluding remarks 

The main barriers and drivers for bioenergy development were established according to 
different stakeholders along the bioenergy supply chain. The study highlighted the 

requirement for a strong link between the whole supply chain of bioenergy and the 

importance of influence from the Government. The study found that a number of similarities 

existed between the stakeholder groups. These common themes lay within the financial 

aspects of bioenergy projects. This was clear from both a drivers and barriers perspective. It 

was determined that the primary consideration for bioenergy schemes must be that they are 
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economically attractive, which then dictates the success of a project. Carbon reduction and 

reduction of fossil-fuel use was also a common driver amongst stakeholder groups. This 

signified the requirement to evaluate bioenergy systems on a net-energy basis, but also with 
environmental lifecycle assessment techniques. Three out of the four stakeholder groups 

identified resource and supply availability as an important barrier. This emphasizes the 

requirement for supply-chain development and co-ordination for all bioenergy pathways.  

The implications of these results have been discussed in Chapter 10 and linked to the results of 
the resource assessment carried out in Chapter 3. The discussion addresses the link between 

the low uptake of regional bioenergy resource and the dominating barriers which are affecting 

each stage of the supply chain.  
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5 BIOGAS APPRAISAL TECHNIQUES – THEORIES & METHODS   

The results from the regional resource assessment have highlighted the abundance of farm 

waste as a potential for bioenergy. This could highlight a significant uptake of biogas 

production from anaerobic digestion as a way of converting farm waste into useful energy. A 

detailed assessment of the sustainability of biogas production is therefore required in order to 

determine the impacts which this technology could have. The biogas production process will 

be assessed using a number of appraisal techniques which will address economic, 
environmental and thermodynamic capabilities. 

The sustainability of an energy source is dependant on a number of factors. Firstly it needs to 

be energy positive (i.e. produces more energy over its lifetime than the invested energy): 

secondly, it needs beneficial or neutral impacts on the environment and finally it has to be 
economically viable. In addition to these requirements, it must also be sustainable in a social 

context. This thought process is closely linked to the interconnections created between 

engineering constraints, and economic and social spheres (adapted from Hammond (2004) 

following an adaption from Parkin (2000)). This is regarded as a holistic way to conceptualize 

sustainable development.  

 

 

 

  

 

 

 

 

 

 

Figure 5-1 The three spheres of sustainability. Adapted from Hammond (2004) 

 

There are over 200 definitions of sustainable development according to Parkin (2000). This 

particular form (shown in Figure 5-1) gives a clear and coherent representation of what 
sustainable development is and how it can be achieved. Developing a sustainable energy 

source involves three ‘spheres’ of influence: the environmental implications, the economic 

benefits/detriments and the impacts on society. Working on this theory, a methodology was 

developed by Hammond & Winnett (2007) to assess energy systems, by integrating 



BIOGAS APPRAISAL TECHNIQUES – THEORIES & METHODS 

- 66 - 

 

thermodynamic analysis, environmental life cycle assessment (LCA) and economic cost 

benefit analysis (CBA).  

On a local scale, for example the South West of England, an alternative energy system must be 

thermodynamically sound and have positive or neutral effects on the environment. However, 

one of the key concerns of biogas or any bioenergy development is that it must be financially 

secure and offer a good return on investment (Adams et al. 2008). As a result, it is important to 

assess an energy system based on a financial investment appraisal technique. 

The three areas of integrated appraisal in this case include energy analysis, environmental life 

cycle assessment and financial investment appraisal. This cannot be called a true integrated 

appraisal similar to that developed by Hammond & Winnett (2007) as it does not examine the 

economic value of the environmental impacts nor does it monetize the societal impacts. This 

study examined the actual financial appraisal of investing in a technology, which although has 
a narrower scope, is more relevant in addressing the concerns raised and discussed in Chapter 

4. From this point forward, the alternative technique will be called a multi appraisal 

methodology/technique.  

This chapter discusses the techniques adopted for carrying out a multi appraisal methodology 
of biogas for energy from an AD process. These techniques will then be implemented and 

findings will be represented individually in subsequent chapters.   

5.1 The case studies used for the appraisal 

The appraisal methodology was modelled against a number of existing operational AD plants 

(also referred to as case studies). In particular three AD plants were used for various analyses. 

These plants displayed adequate variation to cover most of the commonly used AD 

installations in Europe. The plants/case studies have been denoted as plant A, plant B and 

plant C. Additional data was also used where appropriate in order to compare literature 

theories, determine operational correlations and trends and to assess the impacts on AD 
process parameters. The additional data comprised of 61 AD plants currently operating in 

Germany. This data was kindly supplied by the Fachagentur Nachwachsende Rohstoffe e.V. 

(FNR) which is a government agency for renewable resources, founded by the German 

Ministry of Agriculture. The data was part of a project undertaken by Prof. Dr.-Ing. Weiland 

called “Scientific measurement programme for the evaluation of AD plants in the agricultural 

sector" (FNR 2005).   

5.1.1 Case Study Plant A 

Plant A was an operational AD plant situated in Scotland. The AD plant was considered small 

scale (250m3 digester size) and was fed purely on animal manure. As the most simplistic AD 

setup, it was a good representation of small-scale AD in the UK. The energy use from the 

plant was for thermal applications (hot water and central heating). The data for this plant was 
obtained from site visits, communications with the developer and data supplied through a 

number of reports. These reports have been referenced when mentioned. 
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5.1.2 Case Study Plant B 

Plant B was also situated in the UK (Devon). The plant was amongst the largest installations in 

the UK (and Europe) with a total digester size of 8000m3. The plant was fed on a variety of 
feedstock, predominantly food processing wastes. Other feedstocks such as manure were also 

used. The plant was selected to represent large scale centralised AD. However, it also 

represented AD operating on food processing wastes as opposed to farm wastes. The energy 

from the plant was converted to electrical energy and fed into the national grid. The plant did 

not have a heat recovery system.  The data for this plant was obtained from a site visit, 

communications with the developers and plant operator and finally through a number of 

reports. These reports have been referenced when mentioned.  

5.1.3 Case Study Plant C 

The final plant was also a large scale AD plant (plant C) situated in Germany. The key 

difference here was it relied solely on farm feedstocks including farm manure (generally over 

90%) and some crops. The crops used were commonly silage crops such as maize or grass. The 
plant was indicative of large-scale AD, solely fed from farm feedstock. It also represented an 

example of combining electricity production and heat generation through the use of CHP. 

Both of these energy sources were being commercially sold. This plant was chosen as it 

showed a high gas yielding biogas plant using predominantly animal manure, therefore 

considered suitable for the South West of England. The data for this plant was obtained from 

FNR (2005) and referenced where appropriate.  

5.1.4 Case studies used within the multi appraisal technique 

The type and number of case studies used within each appraisal technique was chosen based 

on the data requirement, the output required and the time constraints. The energy analysis 

used all three case studies to obtain an overall energy performance indication of the plants. 

The financial investment appraisal focused on the best performing case study from the energy 
analysis and compared this against the small scale AD application. The LCA which required 

detailed operational and manufacturing data was applied to one case study (plant A). This 

was chosen as the feedstock was single source and hence the emissions could be calculated 

with the least amount of uncertainty. Additionally the results from the LCA could be readily 

interpreted for larger scale plants using single feedstocks. The choice of case study for each 

appraisal technique has been shown in Table 5-1.    

  Energy Analysis Financial Appraisal Life Cycle Assessment 

Plant A x x x 

Plant B x 
  

Plant C x x 
 

 

Table 5-1 Choice of case study (Plant A, B or C) for each appraisal technique 
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5.2 Energy analysis 

Energy analysis is defined as “determination of the energy sequestered in the process of 

making a good or service within the framework of an agreed set of conventions”, stated by the 

International Federation of Institutes of Advanced Studies (IFIAS) (Slesser 1978). The term to 

describe the total energy requirement of a product or service is called the Gross Energy 

Requirement (GER). This terminology also follows the definitions set out by IFIAS (1974). 

In order to determine the energy requirements to produce a product or service, all the energy 

flows within a system must be examined (Hammond 2007).  This technique is referred to as 

energy analysis and follows the basis of the First Law of Thermodynamics, the conservation of 

energy. Energy analysis encapsulates the whole lifecycle of a process or product and can 

determine the energy use and where appropriate, the net-energy output of a process.  

Lifecycle energy analysis was developed during the 1970s and has been widely used since the 

first oil crisis during the initial period of the 1970 decade (Allen et al. 2008b). A common basis 

for energy analysis was created in 1974 at a workshop organized by the IFIAS (Mortimer 

1991).  Although these conventions were created over 30 years ago, they are still widely 

regarded as the common basis for current energy analysis and are used within renewable 
energy appraisal techniques (Allen et al. 2008b;Gagnon 2008;Herendeen & Brown 1987;Lewis 

1977).  

The concept of energy analysis can also be useful in determining the efficiency of an energy 

producing system and can compare different energy sources. However, there are difficulties 
with this as not all energy sources are equally effective (Slesser & Lewis 1979). An example 

Slesser & Lewis (1979) use is: 

“Examine the production of 45MJ of heat energy from oil, hard coal and wood. 1 kg of oil will produce 

45MJ of heat, whilst for the same amount of heat; one would require 3 kg of wood and 1.5 kg of coal. 

However, the effectiveness of the heat from oil burning is higher than that of the coal and wood, even 
though the energy released is the same. This is because it is at a higher temperature”. 

This approach takes into account the energy source in terms of thermodynamic quality, i.e. the 

Second Law of Thermodynamics. This law states that although work input into a system can 

be fully converted to heat and internal energy, not all the heat input can be converted into 
useful work (Hammond 2007). As a result, maximum conversion efficiency exists between 

heat and work; called the Carnot Cycle (Slesser 1978). An example of this can be seen within 

the UK national electricity production system. The average electrical conversion efficiency for 

UK power generation is 33% (Allen et al. 2008b). The rest of the energy is dissipated through 

heat.  

5.2.1 Methodology for energy analysis of biogas 

To determine the total energy requirement of the biogas production process all the energy 

inputs were examined. These included direct inputs such as electrical work or heat and 

indirect inputs, which consisted of energy requirements to provide the direct inputs. When 

considering an energy production plant such as an AD unit, the energy allocated to the 
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construction material was also taken into account along with the direct and indirect energy 

inputs to generate and use the materials.  

These energy requirements from point of conception to delivery of energy are known as the 

total energy required or alternatively known as the embodied energy. The extent to which this 

iterating process is carried out depends on the system boundaries of the analysis (Slesser 

1978). System boundaries can vary depending on the time-scale, study motives, data 

availability and accuracy requirements of the study. It is therefore important that the system 
boundaries are stated within the study itself.  

Within the analysis reported in Chapter 7, the system boundaries accounted for the extraction 

and production of the materials required for the AD plant construction. The energy required 

to operate the AD plant was considered, as was the energy required for producing, collecting 

and transporting the feedstock (required where appropriate). The energy output of the biogas 
was calculated along with its efficiency conversion into a utilisable energy form. The 

summation of the energy values at each regression was then calculated to be the GER.  

To determine the total energy input of an energy system it was necessary to summate the 

operational energy inputs and the internal energy of the fossil resource used. The internal energy of 
the fossil resource used was included, because the GER is the total amount of energy resource 

sequestered when delivering that end-use energy to society. In order to examine the use of 

fossilised resources it was important to associate the resource with an energy value. This is 

often referred to as the calorific value of the fossil resource. The GER is recognized by the 

following equation (Slesser 1978): 

GER = Energy Resource in the Ground + GER of other inputs (amortised where appropriate) 5-1 

An accounting of fossil resources is required as the quantification of the GER should include 

all the energy flows traced back to their naturally occurring form in the ground. To calculate 

the total energy requirement of a system, the system boundary is taken around the Earth 
(Slesser 1978). Using accumulated resources diminishes the remaining available resource for 

future uses, as is the case with fossilised fuels. Therefore the stored energy within fossilised 

resources was included within the study as this energy would no longer be available.   

Renewable resources are more complex and less straightforward when creating a system 

boundary around their energy flows. Fossil-derived energy forms are a ‘capital’ resource 
which depletes over a period of time. Renewable resources can be viewed as an energy 

‘income’ of the planet (Hammond 2004), as they are renewed over a much shorter period of 

time compared to fossil or nuclear fuels. As a result, they are not a ‘capital’ resource. Using 

biomass for example, the internal energy within the biomass (obtained from solar) should not 

be included in the GER as this is a renewable ‘income’.  

In some cases, the use of GER in energy analysis may not be appropriate. For example if one 

were to compare the conversion efficiency of a solar PV cell against an equivalent power rated 

electricity diesel generator, the use of GER would show a disproportionate disadvantage (in 

terms of conversion efficiency) towards the diesel generator. In this case, the IFIAS identified 

other energy totals: process energy requirement (PER) and net energy requirement (NER). The 
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NER technique is more suited when analysing the process efficiency of energy production 

techniques, rather than assessing the resource savings incurred (Mortimer 1991). It is a useful 

tool to assess and track inefficiencies within a process as it does not include resource 
consumption. Although these terminologies have been addressed, they were not required for 

this study.  

The Energy Requirement for Energy (ERE) is used to describe the energy requirements 

expressed per unit of energy at point of delivery (Slesser 1978). The ERE is therefore the sum 
of all primary energy dissipated to yield one unit of delivered energy (Slesser 1988). The ERE 

should always be greater than one for fossil fuels as energy is required to produce and deliver 

energy. As delivered energy becomes harder to source from fossil fuels, the ERE will 

subsequently increase. Typical ERE values of fossil based energy systems have been displayed 

in Table 6-1 (Allen et al. 2008b;Mortimer 1991). The ERE can be expressed by the following 

equation: 
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Table 5-2 Energy requirement for energy (ERE) for different delivered energy 

The figures in Table 5-2 show that the energy requirement is greater than the delivered energy 

due to accounting for the ‘capital’ sequestration of the particular resource. This highlights the 
consumption of fossil resources as a ‘capital’ resource, which cannot be regenerated. Therefore 

if a comparison were to be made between fossil-fuel energy source and renewable energy 

sources using the ERE, it would not represent the energy efficiency of the process, rather the 

savings (or indeed increased use) of fossil-fuel energy.  This study adopted the use of ERE to 

represent the energy requirements for delivering biogas to different energy uses, such as 

direct heat, electricity and as transport fuel. The results also reflect how this type of data can 

vary significantly between studies. These changes are due to the assumptions made within 
each study and the selection of the system boundary.  

When comparing biomass fuels against fossil-based fuels, literature shows that energy 

analysis can be tailored and manipulated to vary outcomes, either showing them as an energy 

Energy use 
Energy 

source 

ERE MJresource/MJdelivered 

(Mortimer 1991)  (Allen et al. 2008b) 

Heat Coal 1.071 - 

  
Natural 

Gas 
1.141 - 

  Oil 1.131 - 

Electricity Coal 3.21 3.52 

  
Natural 

Gas 
3.52 2.32 

  Oil 3.81 4.62 

Transport  Oil 1.131 - 

  Diesel 1.108 (Elsayed & Mortimer 2001) 

  Petrol 1.18 (Dale 2007) 
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sink (Pimentel & Patzek 2005) or an energy source (Dale 2007). This is because analysts do not 

specify whether the GER or NER is used. Secondly, conventional energy analysis does not 

include energy inputs from labour, whilst some studies include this (Pimentel & Patzek 2005). 
It is apparent that energy analyses do not always follow the guidelines originally set by the 

IFIAS. The aim of this study was to examine the production and use of biogas as energy, 

adhering as best to a standardised energy analysis methodology (IFIAS 1974).  

5.2.2 The system boundary of energy analysis 

The system boundary for energy analyses has been shown in Figure 5-2 and this approach was 

adopted for the study. The analysis included the embodied energy of plant construction, the 

inputs entering the plant and the outputs from the process.  

 

 

 

 

 

 

Figure 5-2 The system boundaries of energy analysis (Slesser 1979) 

Direct energy inputs to an AD process can generally be divided into two areas. These are on-

site energy use and off-site energy use. Off-site energy consumption includes the production 

and collection of the feedstock, the transport and the post-digesting handling energy use of 

the feedstock. Feedstock production energy is more applicable to crops, which are specifically 

grown for biogas purposes. On-site energy consumption is more critical and in the case of 

biogas production, should always be considered within the boundaries of study. The energy 
use on-site includes pumping, mixing and heating requirements for the feedstock. The on-site 

energy can be categorized into two further groups: heat energy and electrical energy. 

For this study, the use of the digestate as a source of natural fertiliser was considered as a 

displacement for the production and use of artificial fertilisers. The study therefore also 
analysed the impact on energy analysis with and without fertiliser as an AD output.  

However, expanding the system boundary further included processes at the wider extremities 

of the study (Hospido et al. 2009), which led to an increased uncertainty. Consequently, the 

energy analysis results were shown with and without the displacement of fertiliser.   

5.2.3 Closing statement on energy analysis  

In order to examine the net energy analysis of an energy system it is essential to adopt a 

standardised approach. Therefore, the system boundary of the study was clearly defined as 

this was a key determining factor affecting the results. The aim of the study was to determine 

the following: 
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o Understand the common energy inputs and outputs of the AD process, highlighting the 

effect of process parameters;  

o Determine the gross energy requirement (GER) of large scale and small-scale biogas 
production units; using a series of case studies;  

o The energy requirement for energy (ERE) for delivered end-use energy for various biogas 

production plants. This was used to determine the process efficiency of biogas production; 

o Determine the effect on energy output from using different feedstocks.  

5.3 Environmental life cycle assessment (LCA) of biogas  

The second step of the multi appraisal technique detailed in this section highlights the 

background and methodology adopted to determine the environmental impacts of biogas 

production from an operating AD plant. The theory of LCA methodology was investigated 
and assessed, along with its application on biogas production from “cradle to grave”. The 

assessment was carried out by using data obtained from visiting an AD plant and collecting 

operating, manufacturing and emission data. This data was then used to carry out an LCA 

using the technique described in the following sections.  

5.3.1  Introduction and overview of LCA 

To evaluate the environmental impacts of a product or process, its entire lifecycle must be 

examined. The life cycle assessment (LCA) evaluates environmental impacts, from raw 

material extraction to the final stages of end-of-life of a product or process. The resource 

extraction and consumption is accounted for, along with air, soil and water discharges at each 

stage. These extractions and emissions are then assessed to examine the environmental 

impacts of the whole life cycle. LCA differs from an energy analysis as it considers a wider 
range of environmental impacts associated with a process. Energy analysis is often used as a 

process optimisation tool (Berglund & Borjesson 2006), whilst LCA is a holistic consideration 

of where the environmental burdens lie within a process (McManus 2001;Spielman et al. 

2007b).  

The first LCA studies originated from the mid to late 1960s. However, the founding of the 
Society for Environmental Toxicology and Chemistry (SETAC) in 1979 resulted in a significant 

development in LCA methodology. LCA then became more coherent and standardised 

(Sonnemann et al. 2003). The first standardisation applied to this methodology was not until 

1993, where the first ISO standards were published to develop international norms and rules 

for LCA (Sonnemann et al. 2003). These created a benchmark for all future LCAs. In 2006 an 

update of these standards resulted in the formation of two standards, ISO 14040:2006 

Environmental management - Life cycle assessment – Principles and framework and ISO 
14044:2006 Environmental management — Life cycle assessment — Requirements and 

guidelines (BSI 2006). According to these standards, the LCA process consists of the following 

stages: 

Goal and scope definition – Clearly defining and describing the process or product. This is 
where the practitioner explains the reasoning of the study and identifies the system 

boundaries.   
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Life cycle inventory (LCI) compilation and analysis – Quantitative data is collected on 

energy, water and materials usage, along with environmental releases for a particular process 

(Curran 2006). This process is iterative and is addressed throughout the entire LCA process. 
Quantities are gathered using S.I base units.  

Life cycle impact assessment (LCIA) – This stage gathers the data from the inventory (LCI) 

and examines the effects of the inventory on human health, ecosystems and natural resources. 

Mandatory elements of this stage include the classification (assigning LCI results to selected 
impact categories) and characterization step (calculating the category indicator results). 

Optional elements include normalising the data (converting it to dimensionless form by 

applying it to base values) and weighting or valuation (converting the indicator results of 

different impact categories to one value or point score). This stage of the LCA is achieved by 

adopting a specific methodology for modelling the environmental impacts associated with 

LCI results.  

Interpretation – This stage identifies issues or significant findings from the results. The 

evaluation also examines the completeness, consistency and sensitivity analysis of the results. 

From this, a conclusion can be drawn highlighting the limitations and recommendations from 

the findings.  

Although the LCA can be grouped into these four stages, the process requires the analyst to 

return to previous sections in order to update and verify the data. Therefore, all four sections 

are linked during an LCA. This has been highlighted in Figure 5-3.  

 

 

 

 

 

 

 

 

Figure 5-3 The LCA framework – Source (BSI 2006;Curran 2006)  

 

LCA can identify areas within the process, where environmental burdens could be alleviated. 

These uses of LCA are considered (by the author) to be on a micro-scale. The benefits of LCA 

on a macro-scale highlight for policy decision-makers the need to address environmental 

concerns. In the more recent applications of LCA, these techniques have been aimed to be 

clear and simple to understand and interpret for non-scientific audiences.   
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Other benefits of LCA include the use of it for promotional marketing purposes. The results of 

LCA in the most simplistic form are relatively easy to understand regardless of the audience’s 

background. For example, if product B creates more ozone depleting gases than product A, 
then the customer would opt for product A over B.  

5.3.2 Limitations of LCA 

Although there are benefits in the use of LCA, the collection of data required to generate 

reliable results can be inaccurate and extremely time consuming. One of the most common 
problems found amongst LCA practitioners was obtaining suitable and qualitative data (Bras-

Klapwijk 1998; McManus 2001; Reap et al. 2008). Often the practitioners of LCA have to weigh 

the availability of data against time required to obtain and subsequently carry out the study 

(Curran 2006). There are a number of other limitations associated with the use of this 

methodology. This section is not intended to address all practitioner issues, as extensive 

studies have already been undertaken and published (ibid). However there are particular 

limitations to this study, which must be acknowledged prior to using such a tool. 

LCA is a holistic approach to assessing environmental burdens. Therefore adopting a broad 

scope within an analysis ultimately affects the quality of the analysis as areas of the study 

must be simplified (Guinée 2002). One of the most common issues raised regarding the use of 

LCA is its inability to address localised impacts. This methodology is suited to global 

environmental impacts such as climate change and ozone layer depletion. However, increased 
toxicity levels and acidification over a small area will have a larger impact than the same 

quantities over a larger area. LCA cannot differentiate between different geographical areas or 

locations.  

LCA is also a time independent analysis tool and in some cases, time aspects are considered 
critical for environmental tools (Hofstetter 1998). In theory, the correct use of a complete LCA 

should only be applied after a process or a product is accomplished. LCA therefore should not 

be used to model or predict the environmental impacts prior to a process or product being 

complete (Hofstetter 1998). The reason for this is that LCA is not capable of modelling the 

effects of the environmental impacts in future scenarios, as this would require modelling for a 

future society and societal values (ibid). Additionally, the data quality and accuracy required 

for LCA studies signifies that only existing processes/products can be assessed using this 
technique. However, LCA has been used during design stages in order to minimise 

environmental impacts from material selection. 

A final issue relating to LCA regards the optional stages within the LCIA stage, which involve 

converting quantitative results into subjective evaluative results. This is achieved by applying 
a weighting value to different environmental impact categories. This evaluates the significance 

or the weight of the environmental impacts against each other. However converting 

quantifiable results into valuation results required value judgement and can be subjective. 

Adopting LCA as an assessment tool for this study was based on a number of motives. Firstly, 

LCA considers process stages in a similar method to energy analysis where direct and indirect 
processes are examined. The assessment was undertaken on an existing AD process; therefore 

the use of LCA was more suitable. Secondly, LCA is a standardised approach with 

international standards associated with the methodology. Therefore LCIA has effectively been 
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validated as a modelling tool for environmental impacts. It is also considered a critical tool for 

undertaking integrated appraisals of technologies. The results of LCA could also be used to 

undertaken cost-benefit analysis (CBA) in order to address the costs associated with the 
environmental impacts.   

5.3.3 Available databases for the lifecycle inventory stage 

A simplistic method for describing lifecycle inventory databases is to use a common 

household product such as a chair. The lifecycle inventory (LCI) would include all the 
emissions and resource requirements from the materials, manufacturing processes and 

assembly processes required in the whole life cycle of the chair manufacture. During these 

processes, the use of electricity may be required at various stages. This must also be accounted 

for, as this is part of the chair’s lifecycle. The production of electricity is commonly known as a 

standard process. This process can be used for a number of different LCAs and does not have 

to be made specifically for an individual LCA.  

There are a number of extensive databases available, which incorporate LCI data for standard 

processes. Information used to create these databases is derived from specialist consultancies, 

extensive literature research and a compilation of measured and calculated data. There are a 

number of available databases for example IDEMAT (Industrial Design Engineering of Delft 

University of Technology). This database however, is based mainly on Dutch datum sources. 

Other databases include the ETH-ESU 96 representing data for Swiss and European processes, 
which comprises of around 1,200 processes.   

One of the most comprehensive databases available is the EcoInvent database. This contains 

over 4,000 processes. The database has been developed by the Swiss Centre for Lifecycle 

Inventories. It is currently the largest and most detailed database available to LCA 
practitioners and is constantly updated by the Swiss Centre for Lifecycle Inventories 

(Frischknecht & Rebitzer 2005).  

Throughout this study, standard process data was obtained from the EcoInvent database, 

whilst specific data was obtained through plant visits and extensive literature reviews of 

similar AD processes. The EcoInvent database was the only database used in this study, due to 
the clarity and transparency of the data collection and calculation. Information regarding the 

EcoInvent database has been published in a series of 25 reports (Swiss Centre for Life Cycle 

Inventories 2007).  

5.3.4 Methodologies for assessing life cycle impact assessments (LCIA) 

When assessing the environmental impacts associated with the AD plant within the study, the 

life cycle inventory (LCI) data represents the environmental loads. The LCI however, does not 

examine the environmental damage of the AD process. LCIA is a method of evaluating the 

implication of potential environmental impacts through computation of the LCI results. This 

process enables an interpretation of how the process behaves based on its environmental 

performance.  

The LCIA process is carried out by applying the LCI data to impact categories and category 

indicators. An example to represent this has been reproduced from Sonnemann et al. (2003);  
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“when considering the environmental impact ‘global warming potential’, it is understood that 

substances such as carbon dioxide, methane, nitrogen oxides and hydrocarbons, all contribute towards 

this environmental impact. To understand the capacity of the pollutants to generate greenhouse effect 
they can be measured by the potential to generate CO2 equivalents. Therefore, the global warming 

potential can then be multiplied by a corresponding factor to obtain a global value of CO2 equivalence. 

As a result the environment impact category has been measured based on the LCI data.”  

Similar to the overall LCA procedure, the LCIA stage incorporates compulsory steps which 
must be taken, governed by the ISO standards (BSI 2006). These steps were carried out within 

this study as part of assessing the LCI data. The procedure steps are as follows: 

o Impact category selection – The impact categories to be evaluated are chosen; 

o Classification stage - Assignment of environmental loads for each impact category, 

aggregating the data into the separate categories; 
o Characterisation stage – This stage calculates the category indicator results. This is done by 

quantifying the contribution each impact category (greenhouse gases, ozone gases etc.) 

makes to environmental damages (global warming potential, acid rain etc.); 

o Normalisation stage – An optional stage where the characterised results are divided by a 

selected reference value for each impact category, making the values dimensionless. 

Ranking and grouping of the impact categories can now take place; 

o Weighting (Optional – not encouraged by ISO Standards )– Based on value choices which 
have been pre-determined, the normalised values are then compared based on the severity 

of the impact. This stage is optional and not encouraged by the ISO Standards, due to the 

subjective nature of the output results (BSI 2006). 

The characterisation process within LCIA requires the use of established and accredited 
methodologies (Curran 1996; Reap et al. 2008).  Examples of these include Eco-Indicator 99, 

CML 2001 and EDIP97, amongst others. Selecting the impact model to use within an LCIA 

depends on the original goal and scope of the study. However, these models also have 

varying levels of data quality, accuracy and validity of computational procedures.  

Previous studies have shown that different results can be obtained for the same impact 
categories depending on which methodology is chosen (Dreyer et al. 2003;Hauschild et al. 

2008). Therefore a careful understanding of how the LCIA methodologies were created must 

be understood. 

LCIA methodologies can be classified into two categories. These are: midpoint-based 
(problem orientated) impact assessment methods or damage orientated (end-point) single 

score methods (Jolliet et al. 2003;Jolliet et al. 2004;Mizsey et al. 2009). Midpoint and endpoint 

refer to the level within the assessment at which the methodology terminates the analysis (the 

point at which the respective effects are characterised (Sonnemann et al. 2003)). Midpoint 

indicators measure a substance effect or strength and do not consider the damage or severity 

of the impact (Sonnemann et al. 2003). For example, when emissions such as CFC and halons 

are analysed within an LCA, a midpoint characterization process would represent the results 
in terms of ozone depletion potential based on the chemical’s reactivity or lifetime in the 

atmosphere. Endpoint characterisation takes the analysis one step further and accounts for the 
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effects of the depletion in ozone layer, for example skin cancer, crop damage, marine-life 

damage etc (Bare & Norris 2003).  

Endpoint methodology analyses the expected consequences (damage level) from the impact 

potentials. Modelling up to this stage increases the risk of uncertainty within the calculation 

procedure, because understanding the damage of an impact category can be subjective. 

Nevertheless, the benefit of this technique is that the results can be represented more clearly 

and effectively. Modelling the effects of an environmental impact is more meaningful to a 
wider audience (and decision-makers) than stating a simplistic, basic emission figures or 

equivalences.  

5.3.5 The LCIA methodology adopted in this study 

Two of the most established and respected LCIA methodologies are called Eco-Indicator 95 

and Eco-Indicator 99 (EI95 and EI99). The normalisation techniques for these LCIA 
methodologies are based on average European figures (based on 15 EU member states rather 

than the current 27 member states). The methodologies are acknowledged as being the 

standard investigation tool for LCA and are practiced in over 100 countries according to 

Mizsey et al. (2009). However, the use of EI95 has been superseded by the use of EI99.  

EI95 results are outputted using SI based unit equivalence. For example, all greenhouse gases 

are grouped and scaled towards an equivalent CO2 in kg; hence kg/CO2eqv. From an 

engineering perspective, this methodology represents clear and tangible results in SI units. 

However, the methodology is now out of date and can no longer be used for an LCA study. 

EI99 is one of the most current methodologies. It considers the endpoints of the impact 

categories, hence the actual effects created on society by (for example) the release of 

greenhouse gases etc. Therefore, EI99 models the impacts further and simulates the effects of 
the impacts.  

In this study, the Eco-Indicator 99 tool was adopted. The methodology focuses on three 

environmental damages (endpoints) which are human health, ecosystem quality and resource 

depletion. A comparison between this methodology (end-point) and EI95 (mid-point) has 

been shown in Figure 5-4.  

 

 

 

 

 

 

 

Figure 5-4 Link between LCIA midpoint and endpoint approach – Source (Goedkoop et al. 2008) 
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Ultimately, the focus of the study was to determine the potential damage which biogas could 

pose on the environment; this is why an end-point methodology such as EI99 was chosen.  

Although there were other end-point LCIA methodologies available, the study focused on 
using EI99. This was because as the study was based in Europe, it was appropriate to focus on 

a methodology specific for this geographical area. 

5.3.6 How EI99 characterises and normalises the LCI data 

An understanding of how EI99 characterises and normalises the data has been explained 
within this section, as this forms the basis of the results from the LCA study. As the 

methodology was used within this study, it is important to understand how the methodology 

was created. This section is therefore a summary of the methodology conception and is based 

on the main EI99 methodology report (Swiss Centre for Life Cycle Inventories 2007).  

The creation of EI99 methodology was created firstly by analysing the weighting stage within 
the impact assessment process. The step was performed by a panel of 365 LCA experts and the 

importance of each of the three main endpoints was weighted. These were: 

o Damage to human health; 

o Damage to ecosystem quality; 
o Damage to resources. 

These were considered to cover most if not all possible environmental concerns, attributed to a 

process or a product. The damage categories were ranked and weighted in terms of 

importance (this stage is subjective). The result from the panel showed that human health and 

ecosystem quality both had a 40% weighting, whilst resource depletion was weighted with the 
remaining 20%.  

The panel was then asked a series of questions regarding attitudes and perspectives on 

society. Based on these results the respondents were grouped into three different archetypes. 

The three groups were established to deal with the uncertainty of the results. The three 
perspectives were as follows: Hierarchist, Individualist and Egalitarian. These three 

archetypes were selected from the Cultural Theory Framework (Hofstetter 1998;Thompson et 

al. 1990), commonly used within social science to establish cultural attitudes. From these 

results, three versions of Eco-Indicator 99 were created based on the perspective choices.  

Following the agreement of different archetypes and the weighting of damage categories, the 
damage models were subsequently created. These models (or the series of processes and 

calculations) are used to convert the LCI data into a characterised data form, which can show 

the effect of each inventory towards the damage category. The three damage models are as 

follows: 

o Damage to human health was modelled using Disability Adjusted Life Years (DALY); 

o Damage to ecosystem quality was modelled using an expression to show the percentage of 

species that have disappeared in a given area over a specified time due to the 

environmental load. The unit of this was PDF*m2*yr; 

o Damage to resources was modelled using a measure of surplus energy required for the 

future mining of resources. This was measured in MJ. 
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DALY (Disability Adjusted Light Year) – DALY is defined as the consideration of loosing 

one whole year of healthy life and is a measure between current health status and an ideal 

health situation (WHO 2010). The model has been developed for five different impact 
categories which fit under the umbrella of human health damage. These include: respiratory 

and carcinogenic effects, climate change, effects of ozone layer depletion and the effects of 

radiation. The use of DALY to quantify these damages was developed by the World Bank and 

the World Health Organisation and is regarded as a common approach for measuring 

damages to human health (Hofstetter 1998). The damage model works in four steps, these are: 

1. Fate analysis - This links the emissions (in basic S.I. units) from the LCI to a change in 

concentration in emission over a specified volume.   

2. The change in concentration is then converted to a dose. This is called the exposure 

analysis.  

3. Once the dose is known, the effects on human health can then be determined, for example 

the number and type of cancer (Goedkoop & Spriensma 2001). This is called the effect 
analysis. 

4. The health effects from the previous section are then linked to DALY. This is done by 

multiplying the disability rating of the health effect by the number of years of life lost or 

affected. The disability rating is a score given between zero and one. A score of one is 

certain death, whilst a score of zero is not serious.  

Ecosystem Quality (PDF*m2yr) – This model gives the results as the percentage of the 

disappeared fraction of a species (PDF) per unit area (m2) over a specific time period (yr). This 

model has been developed for damage occurring to ecosystems such as ecotoxicity, 

acidification, eutrophication and land-use. The model for each impact category is calculated 

slightly differently.  

o Ecotoxicity – This model also incorporates similar procedures as the DALY model, 

including fate, effect and damage analysis. The potentially affected fraction (PAF) of a 

species is measured in relation to a type of toxin and its concentration. This is measured 

against the population of species when no toxic stress is applied. However, the technique 

does not show observable damage and hence cannot be easily convert into PDF. Therefore, 

a conversion factor is used to link these results to PDF. Further literature of this can be 
found by reading Goedkoop & Spriensma (2001). 

o Acidification/Eutrophication – These are considered as one impact category in the model. 

The model also consists of a fate analysis and a damage analysis. The damage to seed-

bearing plants is modelled under normal conditions. The probability that a plant species 

can still thrive once the emission is released is then measured. This is called probability of 

occurrence (POO). PDF is equal to 1-POO. The model has only been used to simulate the 

Netherlands and therefore is representing the whole of Europe, based on a single country 
alone. Although this is a rather crude method, it is one of the only available methods to 

model these effects.  

o Land-use modelling – This is based on the European Land Use Model (Corine 1991;Corine 

1992). In basic terms, the model simulates that the more natural the land use is, the higher 

the species richness and accumulation. Subsequently, the more industrial or urbanized the 

land use is, the lower these values become and hence the higher the PDF*m2yr is. It is based 

on empirical data of plant species occurrence on different land-use types and areas.  
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Resources (MJ) – This models future energy requirement to extract resources and has been 

based on work from Muller-Wenk (1998). The extraction of minerals and fossil fuels was 

considered for this model. The unit is a MJ of surplus energy. For mineral data, various 
established models are used to relate the availability of the resource to its concentration 

(Chapman 1983;Goedkoop & Spriensma 2001). Using a correlation between the greater the 

extraction of the mineral resource and the lower the quality of the resource, this theory 

simulates the effect of depleting minerals (Chapman 1983). Therefore a higher energy would 

be required to extract the same quality of minerals. 

The methodology is also used to model the energy requirements for fossil fuel extraction. This 

models the future use of oil shale and tar sands. Based on a depleting discovery rate and an 

increased extraction rate the model predicts the required energy to extract future fossil fuels. 

Data on the depleting discovery rate is obtained from a number of sources discussed by 

Goedkoop & Spriensma (2001). The model accounts for a number of fossil and mineral 

resources, a detailed list can be found in Appendix C. The model did not account for 
phosphorus depletion.    

There are a total of eleven damage categories, consisting of: respiratory and carcinogenic 

effects, effects from ozone layer depletion and radiation, climate change, ecotoxicity (or toxic 

stress), acidification and eutrophication, land-use and resource depletion of minerals and 

fossil fuels. The methodology clearly states that the models were created based on emissions 
and land-uses in Europe. Therefore all damages occur in Europe, except for damages to 

resources and damages created by climate change, ozone layer depletion, carcinogenic 

emissions, air pollutants and radiation (ibid). A list of the complete characterisation data for 

EI99 has been shown in the Appendix C.  

5.3.7 Allocation of environmental impacts 

In order to determine the environmental implications of the AD process the emissions from 

the process were allocated to the output, known as allocation. In order to carry out an 

allocation process for AD, the functions (outputs) of the process were examined. The 

allocation procedure occurs prior to the actual LCA and therefore has been described within 
the methodology section. The data for this calculation steps was based on the case study Plant 

A, for which the LCA was carried out on. The allocation results are then used throughout the 

LCA (Chapter 8).  

It was apparent that a typical biowaste anaerobic digester could have three output functions. 
These are: 

o Disposing of a waste, therefore avoiding waste entering other streams such as landfill; 

o Producing a biogas for energy purposes; 

o Producing a natural source of fertiliser with uniform fertilisation properties. 

This is a multi-output process (Spielman et al. 2007b) and requires the emissions of the process 
to be allocated to the three outputs. Although the present study was similar to that of 

Spielman et al. (2007b), it was concluded that only two outputs would be considered as 

opposed to the three mentioned. The two outputs considered were: 
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o Producing a biogas for energy purposes; 

o Producing a natural fertiliser thus reducing the use of artificial fertilisers. 

The waste used for the anaerobic digestion process at the farm was entirely cow manure. As a 
result, it was not considered a waste product, therefore it did not require waste disposal. This 

meant that the LCA in this study assumed that the AD process had only two outputs.   

The next stage was to determine the percentage of emissions to be allocated to each output. 
This was carried out using two methods: mass and economic allocation. These are amongst 

the most common methods of allocation, along with energy allocation. Both techniques hold 

different benefits and drawbacks. Economic allocation, which uses a market value, can be 

used to reflect the energy use within a lifecycle. However using this approach only covers one 

aspect of the system (Curran 2006). In addition to this, an economic allocation is subject to 

variable changes in market values within the system. For example if a system output were to 
displace kerosene domestic heating oil, then the variation in market value between July 2008 

(65p/litre) and January 2009 (37p/litre) would be nearly double (BoilerJuice 2009). For the 

purpose of this study, both allocation methods were examined to determine the difference 

between the two. 

5.3.8 Economic (market value) allocation 

Using a detailed calculation procedure (shown in Appendix B) the economic value of biogas 
for heating and the equivalent fertiliser value was calculated. The allocation results show that 

fertiliser value equates to £8.79/m3 of waste and a biogas value is £1.23/m3waste (Table 5-3). 

Therefore, based on economic allocation the environmental impacts associated with the AD 

plant should be allocated 88% towards producing and managing the natural fertiliser and 12% 

towards making biogas for domestic energy consumption. This is based on market values of 
artificial fertilisers and available quantities from dairy manures (Nix 2009). 

 

Table 5-3 Economic value of biogas 

 

5.3.9 Mass (or volume) allocation 

A detailed calculation methodology for these results has been presented in Appendix B. From 

a total annual input of 653m3 of waste, the valuable fertiliser was calculated to be 5,895 kg 

based on assumptions and prices from Nix (2009). The other useful output from the system 

was the biogas used for space heating, hot water and cooking. However, it was not possible to 
determine the exact daily biogas consumption for these requirements as the Rayburn and 

boiler were operated upon requirement. Therefore, average national figures for domestic hot 

water, space heating and cooking energy consumption were obtained using the BREDEM-8 

model for domestic energy demand. These figures have been shown in Table 5-4. 

Economic Allocation      

 Biogas for Heating Biogas for fertiliser Total 

Cost/m3 of Waste (£) 1.23 8.79 10.02 

Allocation ratio 12% 88% 100% 
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Table 5-4 Breakdown of biogas used for domestic energy 

By converting the biogas to weight (assuming a density of 1.225 kg/m3), the biogas output 

could be compared to the fertiliser output. The allocation results have been shown in Table 5-
5. 

 
Table 5-5 Allocation of biogas based on mass 

5.3.10 Correlation between mass and economic allocation 

The results from both allocation techniques suggested that the majority of the environmental 

impacts should be allocated to the fertiliser production. These results were used when 

assessing the environmental impacts of using the biogas and fertiliser. Both allocations 

(economic and mass) have been shown within the LCA study in order to highlight the 
differential results.  

5.3.11 Closing statement on life cycle assessment  

The aim of the LCA study was to determine the environmental impacts associated with biogas 

production. LCA is a technique which enables the examination of a process or product’s 

impact towards the environment. Similarly to energy analysis, the system boundary of an 

LCA is an important part which must be clarified prior to commencing a study. The issues 

and limitations regarding the use of LCA were also addressed. The issues such as system 
boundaries, uncertainty of inventory data and subjectivity of impact assessment 

methodologies cannot be eliminated. However, these uncertainties can be minimised through 

transparency during the study. The use of LCA methodology has subsequently been 

documented in Chapter 8.   

5.4 Financial appraisal techniques 

The study in Chapter 4 found that the growth and development of bioenergy was closely 

dependant on the financial viability of a project (Adams et al. 2008). Financial considerations 

are crucial and often overarching in the deployment potential of bioenergy. For this reason, it 
was necessary to examine bioenergy based on its financial viability.  

Studying the economics of renewable energy systems is another method, similar to energy 

analysis and LCA, to assess the performance of the energy production system. A technique 

commonly used at the University of Bath to assess performance of various energy systems, is 

the ‘integrated appraisal’ study as described at the beginning of this chapter. These studies 

 Space Heating Water Cooking 

Farmhouse energy demand  (MJ/day) 142.74 36.32 21.63 

Methane equivalent per day (m3/day) 3.99 1.02 0.61 

Biogas equivalent (m3/day) 6.88 1.76 1.05 

Total biogas demand                    9 m3/day 

Mass Allocation      

 Biogas for Heating Biogas for fertiliser Total 

Weight dist. Of AD operation (kg) 3,961 5,895 9,856 

Allocation (%) 40 60 100 
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have been carried out successfully on a number of energy generation techniques which 

incorporate energy analysis, environmental life-cycle assessment and environmental cost-

benefit analysis (Allen et al. 2008a). These studies are intended to address a holistic approach 
to assessment of sustainable energy and are carried out by a team of engineers, scientists and 

economists. 

The use of cost benefit analysis (CBA) enables the assessment of a project in terms of its 

economic viability. In order to measure ‘Externalities’ such as a reduction in GHG emissions 
or other pollutant emissions, the use of economic appraisal techniques can be used to measure 

their effect. The method values and monetizes all costs and benefits linked to the externalities. 

This technique is representative of the issues faced by society, thus representing the values of 

energy use to a wider scale of society (Allen et al. 2008a). However, considering 

environmental economics to assess sustainability of an energy system can generalise and 

obscure the impacts of different courses of action (Hammond & Winnett 2007). Environmental 

economics are not able to determine the actual environmental impact of a process or product. 
Therefore, it is critical to use economic analysis in conjunction with other sustainability 

assessment techniques in order to obtain a more holistic assessment.  

Although CBA has the ability to assess environmental externality benefits, the monetary 

realism of whether an energy producing system can be implementable is dependant on 

individual financial appraisal. This technique will clearly indicate whether an energy 
producing system will be financially feasible over the whole life cycle. A financial investment 

appraisal can be used to estimate the net-present value (NPV), the benefit cost ratio (BC) and 

the financial payback time (years).  

The analysis carried out in this study aimed to assess the potential financial viability of a 
bioenergy pathway through the adoption of financial investment appraisal (FIA). The use of 

FIA is well established and has been used to examine the financial payback of micro-

generators (Butcher et al. 2006). This technique can be used to examine the future potential 

savings of a particular bioenergy process by discounting back from the initial investment 

(Slesser & Lewis 1979). This appraisal methodology was considered more appropriate for the 

specific regional case of the South West of England. Understanding and applying the 

methodology of CBA requires a range of skills and expertise, which were outside the remit of 
this study.  

5.4.1 Life cycle costing 

Similarly, to LCA and energy analysis, the financial assessment of an energy system is 

examined over the system’s life cycle. From the author’s experience within industry, LCA and 

life cycle costing (LCC) are commonly carried out alongside each other. LCA seeks to 

minimise the total environmental impact, whilst LCC seeks to minimise the total cost (Finch 

1994). Recent LCA and LCC studies on Brazilian bioethanol production successfully 

highlighted that greenhouse gas emissions and ozone layer depletion were significantly 

reduced when compared to gasoline, whilst in terms of cost; bioethanol in Brazil was more 
economical than gasoline (Luo et al. 2008). This combination of techniques highlights how the 

benefits or drawbacks can be highlighted using two different approaches.  
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An important factor when undertaking LCC is to take into account the ‘time value of money’, 

which is based on the principle that a unit of money today is worth more than the same unit in 

the future (Finch 1994). This is because the money value of today could be invested and 
increased in the future. This technique is called discounting cash flow rate or internal rate of 

return (IRR), which will be explained in the following section.   

5.4.2 Investment appraisal techniques 

In order to quantify and assess the potential of a project, the typical investment is compared 
with the financial return inflows over the project’s lifespan. The most simplistic way to carry 

out this technique is to divide the initial investment costs by the annual operating savings. 

This result calculates the number of years for a project to payback. This is called the simple 

payback period (SPP).  

If one were to take into account the ‘time value of money’ they would use an alternative 
technique. This technique is called present value (PV), which is the future savings discounted 

back from the present (initial investment) date. The difference between the PV and the capital 

investment is the Net Present Value (NPV) (Slesser & Lewis 1979).  

In order to determine the PV, the monetary value is related to time through the discount rate. 
If one wanted to determine the PV of an investment today they would adopt the discounting 

approach, whilst to determine the future value of an investment, the compounding approach 

would be used.  

Following the methodology from Twidell & Weir (2006), an investment of present value V0, 

can be compared to a future value of V1=V0(1+r) after 1 year, where r is the discount rate. 
Applying this to n years and assuming a constant discount rate, results in: 

         5-3 

By rearranging the above equation, it can then be applied to each transaction for each year n as 

shown: 

          5-4 

where the discount factor (DF) is given by:  

          5-5 

When considering an investment into a renewable energy source, such as bioenergy, it is 

generally considered hopeful to receive a saving (an effective income) by displacing other 

energy sources. This is called an annual return, or annuity R. Therefore, the present value Vp of 

the investment over a period of years N is the sum of all the annual present value Vo and is 

calculated by: 
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        5-6 

If an initial capital investment I was outlaid, the net present value NVp  can be simply 

calculated by: NVp = -I+Vp. These calculations assumed a stable, competitive market and 

therefore r would be equal to the market interest rates. 

These two techniques (discounted cash flow and payback period) are two approaches to 

determine the financial feasibility of an investment. However, the discounted cash flow (DCF) 

using the net present value has been more widely used within established literature (Slesser & 

Lewis 1979;Twidell & Weir 2006).  

5.4.3 Choosing an appropriate discount rate 

A discount rate was chosen in order to simulate future cash flows to be estimated and 

discounted to their present value (Twidell & Weir 2006). The discount rate chosen for this 

analysis was based upon the expected return from investing capital rather than investing 

elsewhere (this is known as the opportunity cost of capital). The required rate of return of an 
investment is on the long term cost of borrowing in the market place (Finch 1994). Discount 

rates are often different depending on whether it is public or private investment.  

If a project has a high level of uncertainty and is funded by the private sector, a high discount 

rate is often chosen, as the invested money is desired to be recuperated as quickly as possible. 
However, if a secure investment is made, or if public sector were to invest, a lower discount 

rate would be chosen. The current test discount rate (TDR) employed by the UK Government 

for investment appraisals is 3.5% (Allen et al. 2008a). Some studies of renewable energy 

projects have carried out an investment appraisal with a 0% discount rate (Butcher et al. 2006). 

Due to the relatively high levels of uncertainty of biogas production, a 5% discount rate was 

chosen for this study.  

5.4.4 Other conventions and benchmarks used within financial appraisal techniques 

There are a number of other benchmarks used to display the financial performance of an 

investment. Some of these have been used within the study in Chapter 9, whilst others have 

been discussed for completeness.  

Simple Rate of Return (SRR) – This is expressed as a percentage per year of return. It is the 

inverse of the simple payback period. The value highlights the percentage of the return per 
year. This is a very simplistic approach to financial investment appraisals, which has not been 

carried out within the study.  

Benefit Cost Ratio – This is an indicator highlighting the ratio between benefits of the 

investment relative to its cost. These benefits are expressed in discounted present values. In 
nontechnical terms this ratio will show how many pounds are expected in return, for every 

pound invested into a project. This indicator can verify quickly whether a project will generate 

or sink money. If the value is greater than 1, the investment will generate money. If the ratio is 

lower than 1, the investment will lose money.  
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5.4.5 Closing statement on financial investment appraisal techniques 

The need to address the financial aspects of bioenergy has been highlighted as a key 

requirement for the successful deployment of bioenergy in the UK (Adams et al. 2008). The 
direct costs and benefits faced by investors therefore needed to be examined. In line with the 

energy analysis and LCA, this procedure was conducted on biogas production and use. The 

key aspects of the analysis included: 

o Examining the life cycle costs of biogas production and use; 
o Examining the life cycle financial benefits of biogas production and use; 

o Assessing the optimum route (financially) for biogas use (transport, domestic gas or 

electricity production); 

o With the information gathered and assessed, concluding whether biogas production is 

commercially viable for the region, whilst highlighting the potential impacts of biogas 

production deployment.  

This study formed the final stage of the multi appraisal of AD biogas production for the South 

West of England. The aspiration of the study was to determine how implementable the AD 

bioenergy pathway would be for the South West of England. Using this multi appraisal 

methodology, this allowed for a holistic examination of the potential for biogas production in 

the region.  

5.5 Summary of adopting a multi appraisal technique 

The adoption of a multi appraisal technique was used within the thesis in order to assess the 
sustainability of biogas production for the South West of England. The study of these three 

chosen appraisal techniques highlighted the extent of detailed examination necessary to 

determine whether a bioenergy pathway is a viable solution for the region. In Chapter 2 it was 

emphasized that there are a large number of bioenergy pathways which are affected by 

feedstock type, conversion process technology and end-use of energy. Each of these pathways 

should be analysed using a multi appraisal technique such as the one described within this 

chapter.  

Through this series of techniques, the suitability of a particular bioenergy pathway for the 

South West of England was made. The assessment of biogas production from AD was chosen 

as a suitable pathway for the South West of England, based on its abundance of feedstock 

resources and its relatively low demand on existing agricultural production systems. The 
multi appraisal technique was intended to complement the results from the resource 

assessment as these alone could not be used as a sole benchmark for determining an optimum 

bioenergy pathway. 
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6 THE POTENTIAL OF BIOGAS FROM ANAEROBIC DIGESTION 

A methodology suitable for assessing biogas production from anaerobic digestion has been 

described in Chapter 5. The methodology requires an in-depth appreciation and 

understanding of the technology. The work reported in this chapter analyzes the process of 
anaerobic digestion (AD) in further detail. The work also highlights how varying AD process 

parameters can influence the performance of biogas production.   

The chapter examines the performance of a range of AD plants across Europe to determine the 

links between performance and operating parameters. The core data enabling this assessment 

was kindly supplied by the Fachagentur Nachwachsende Rohstoffe e.V. (FNR) which is a 
government agency for renewable resources, founded by the German Ministry of Agriculture. 

The data was part of a project undertaken by Prof. Dr.-Ing. Weiland called “Scientific 

measurement programme for the evaluation of AD plants in the agricultural sector" (FNR 

2005).  

 

6.1 Biogas as a bioenergy 

Biogas is one of the most versatile biomass-based fuels for energy conversion, as it can be used 

for a number of energy-related applications. The methane portion (generally 50-75%) can be 
combusted either directly to produce heat or via a reciprocating engine or a gas turbine. 

Methane, which has a net calorific value (NCV) of 35.8MJ/m3 at 15.5oC and 1.01 bar 

(Harasimowicz et al. 2007), is also the prime component of natural gas, which is used for 

domestic heating, cooking and electricity generation. 

The overall energy potential of biogas is determined by its quality. This is the amount of 
methane in relation to carbon dioxide. The higher the methane concentration, the higher the 

gas quality, as there is a larger combustible percentage of gas. The main uses for biogas will be 

discussed in more depth in the following sections.  

6.1.1 Biogas for heat and electricity 

Electricity from biogas can be generated via internal combustion engines (ICE), by combusting 

the methane as a fuel. ICE can operate with a biogas quality as low as 45% methane. Other 

power generators include compression ignition engine (CIE), Stirling engines, fuel cells, or gas 

turbines (Deublein & Steinhauser 2008). The low conversion efficiency of this type of biogas 

utilisation (around 30-40% for an ICE) means that combining electrical generation with heat 
supply is an attractive alternative to recuperating the lost heat from the combustion process. 

This process is called combined heat and power (CHP). CHP enables the heat produced for 

electricity generation to be used for heating requirements such as space heating for example. 

This form of energy use increases the efficiency of conversion to up to 85-90% (Deublein & 

Steinhauser 2008).  

6.1.2 Biogas for transport 

The use of biogas as a transport fuel is not uncommon, and in various countries this setup is 

well-established. For example in Sweden, biogas has been used as a vehicle fuel for nearly two 
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decades. In 2006, the country had over 6000 vehicles registered to run on biogas (Jonsson et al. 

2007). Biogas is mainly used as a road transport fuel, as opposed to air or train transportation. 

Other occurrences from Sweden show that biogas is used on public buses, distribution 
vehicles and taxis (Borjesson & Berglund 2006). Biogas for transport use requires the gas to be 

cleaned to remove hydrogen sulphide, water and other particulates. It is also recommended 

that the remaining CO2 is also removed, as this significantly improves the calorific content of 

the fuel. These two processes are termed as “gas cleaning and upgrading”. The biogas can 

then be injected and used as vehicle fuel (Jonsson et al. 2007). These processes are energy 

intensive and therefore reduce the net-energy output of adopting biogas for vehicle fuel.  

There are two methods of storing the biogas/methane within a vehicle; these are in 
compressed form or liquefied (National Society for Clean Air 2006). Compressed biogas is 

usually compressed to a pressure of around 200bar and is recognized to have significant CO2 

reductions for transport use when its whole life cycle is considered (Concawe 2007). 

Meanwhile, liquefied biogas uses a cryogenic transformation process in order to reduce the 
temperature of the gas in the region of -160oC, thus producing a liquid gas (Johansson 2008). 

This technology can also be used to separate the CO2 within the biogas through condensation; 

due to the condensation point of CO2 being higher than that of CH4 (ibid).  

6.1.3 Biogas injected into a natural gas network 

Biogas is commonly used for cooking in rural areas of developing countries (Limmeechokchai 
& Chawana 2007). In rural India, it is estimated that energy for cooking accounts for over 80% 

of the total energy consumption (Purohit et al. 2002), therefore the use of biogas for cooking 

could have significant environmental and developmental benefits. In the UK, biogas could be 

injected into the national gas grid (NGG). The process for this energy source is very similar to 
that of compressed biogas for transport.  

Interest in the injection of biogas into the national network has gained momentum over the 

past year. A report commissioned by the National Grid claimed that by adopting suitable 

government policies, biogas could offer up to 50% of the UK’s gas demand by 2020 (National 

Grid 2009). However this could only be delivered with an associated cost of around £30 
billion, equating to around £100/MWh, due to the large costs associated with the production of 

biogas. 

 

6.2 The carbon balance of biogas 

Although methane (CH4) can be combusted for energy generation, if allowed to enter the 

atmosphere in its un-combusted form, it becomes a powerful greenhouse gas. Compared to 

carbon dioxide (CO2), methane has been estimated to have a global warming potential up to 23 

times greater for equal volumes of gas (Themelis & Ulloa 2007; IPCC 2006).  Biogas production 
and use for energy can be considered as a carbon neutral or a low carbon technology as the 

carbon dioxide released from the combustion process is subsequently retrieved through the 

photosynthesis of the feedstock.  

One of the most common feedstocks for biogas production is animal manure. It is estimated 
that around 88 million tonnes of manure is produced annually in the UK (Mistry & 
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Misselbrook 2005). This corresponds to just under 900 kt of methane per year; assuming a gas 

density of 0.68 kgm-3, approximately 1,300 million m3 of methane (DEFRA 2008e). In 2007, 

methane accounted for 8% of the UK’s greenhouse gas emissions, based on global warming 
potential. Of this, 38% of methane was contributed by agriculture. By adopting AD within the 

UK agricultural sector, methane emissions that are currently dispersed into the atmosphere 

could be used to generate energy and also reduce the greenhouse contribution from the 

agriculture sector. However, it is often difficult or impossible to accurately quantify the 

methane savings from biogas production. 

6.3 Design of AD systems 

There are a number of potential AD design setups, but overall the process is similar for all 
(Deublein & Steinhauser 2008;Ward et al. 2008). These include batch reactors, continuous flow 

reactors with single or multiple reactor stages and storage process (also known as plug-flow 

digesters). Single stage digester types have a single tank where all four stages of the biological 

breakdown for methane production is carried out. Multi-stage reactors have two or more 

digester tanks and can divide the biological breakdown into separate stages. This improves 

the stability of the process, especially with volatile materials such as fats etc. 

The most common type of digester in Europe is the storage flow-through process in which 

feedstock is fed into the reactor continuously, whilst the digestate is discharged in stages 

(Deublein & Steinhauser 2008). AD designs can vary depending on input material, quantity, 

seasonal ambient temperatures and financial investment availability. The design should 
ideally allow for maximised biogas yield, high organic loading rate and operate over the 

shortest retention time possible (Ward et al. 2008).  

Some of the factors affecting the design of an AD plant include the composition and organic 

content of the intake material, the regularity of available feedstock and the operating 

temperature. Other non-performance factors include the land availability for the plant, the 
climate in which the plant will be operating and the potential use of the digestate at the 

termination of the digestion process.  

A simplified AD process has been shown in Figure 6-1. The feedstock is collected and passed 

onto a digestion tank (digester) where the feedstock is mixed, either by stirring or pumping 
recirculation. The feedstock is maintained at a predetermined temperature in order to 

maximise the efficiency of the methane yield. This process then initiates the methane release 

from the feedstock. The process is undertaken for a number of days, generally between 10-100 

days depending on the operating parameters of the AD plant.  
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When the methane from the feedstock has been maximised, the waste (digestate) is pumped to 

a separate tank and then used either as a natural fertiliser or sent to landfill as general waste.  

The methane produced is subsequently stored in a separate tank or bellows and then 

processed or cleaned ready to be combusted. The heat can be partially inputted back into the 

system to warm the digester, whilst the electricity (if this is produced) can be used to power 

the mixer and pumps. Excess heat and electrical energy can be transmitted outside of the plant 

for external uses.  

6.4 Anaerobic digestion performance parameters 

The production of biogas from AD comprises of bacteria decaying the organic matter in the 

absence of oxygen. The process undergoes four key phases of biological breakdown. These 

include hydrolysis, acidogenesis, acetogenesis and finally methanogenesis, shown in Figure 

6-2. The first stage hydrolysis is where primary compounds such as fats, carbohydrates and 

proteins are broken down into sugars, fatty acids and amino acids. The acidogenesis stage 

converts the latter into carbonic acids, alcohols, hydrogen, carbon dioxide and ammonia.  The 

final two stages convert acetic acids, carbon dioxide and hydrogen into methane and carbon 
dioxide (Deublein & Steinhauser 2008). These processes can be undertaken simultaneously or 

separately.  

 

 

 

 

 

 

The performance of AD can be affected by a number of parameters. Research into the kinetics 

of methane production has led to a greater understanding of what these parameters are. A 

 
Figure 6-1 Simplified process layout of an AD plant 

  

 
Figure 6-2 Biochemistry of methane gas production. Adapted from Ecofys (2005) 
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useful model to describe the behaviour and performance of methane production from 

fermentation was formed by Contois (1959) and successfully used by Chen & Hashimoto 

(1978). This was subsequently used by Chen (1983) to analyse the performance of methane 
production from pig manure. The main process parameters have been shown below, 

highlighting the effects of each factor.  

6.4.1 Total solids and volatile solids concentration 

The total solids (TS) are defined as the residue remaining after a wastewater sample has been 

evaporated and dried at a specified temperature (103 to 105oC) (Tchobanoglous et al. 2003). 

The TS concentration is directly proportional to the viscosity and density of manure (El-

Mashad et al. 2005). As the TS increases within a material, its ability to generate biogas is also 
increased.  

Higher TS concentrations also increase the difficulty in pumping and mixing the material. 

Materials with a high TS content can be used as a co-substrate (an additional feedstock) to the 

AD plant in order to increase the biogas yield when mixed with materials that have lower TS, 
such as waste water or slurry. TS values are generally kept between 2-12%. Above this value, 

the material transfer is impaired (P.McKendry, SLR Consulting, 04/03/2008, personal 

communication). AD plants operating at much higher TS concentrations (i.e. over 40% TS for 

example) require different operational practices (Hilborn 2007) known as dry fermentation. 

The volatile solids (VS) concentration of a particular feedstock is defined as the ability for the 
material to be biologically broken down by the bacteria. The VS is the organic fraction of the 

TS (Hilborn 2007). Therefore an increase in TS also increases the VS concentration, equating to 

a higher methane yield. For on-farm AD plants it is suggested that the VS concentration of 

feedstocks should be between 0.5 kg to 5 kg of VS per m3 of loading rate per day (Ecofys 2005). 

If this limit is exceeded the volatile fatty acids (VFA) limits will be exceeded. This increases the 

ammonia levels within the feedstock, which reduces the methane yield as ammonia acts as an 
inhibitor to this process (Chen 1983).  

6.4.2 Feedstock type 

The feedstock entering a digester system is ultimately the most critical factor in quantifying 

how much methane can be generated. In some cases the AD plant is designed before the   

feedstock types are chosen. Alternatively an AD plant is designed secondarily to the type of 
feedstock that is available. The benefit of the latter is increased efficiency within the process, 

whilst the first approach offers greater versatility.   

In theory any organic material can be used for anaerobic digestion. This includes all biomass 

types such as crops, wood, excreta, etc. as long as they contain carbohydrates, proteins, fats 
cellulose and hemicelluloses as their main components (Deublein & Steinhauser 2008). 

However, the determining factor of the material choice is the rate of decomposition. Wood for 

example, has a very slow decomposition rate and therefore is generally not preferred in an AD 

process. For wood in particular, this is due to the high lignin content, which acts as an 

inhibitor to AD. 
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AD plants situated on or nearby sources of farm waste tend to use animal manure as the main 

source of feedstock. Liquid manure from pig and cattle waste is ideal for biogas generation as 

it has a relatively low TS concentration. Other liquid manures from sheep, horses and poultry 
waste can also be used. However, the TS concentrations for these are higher and they cannot 

be used solely as feedstock. The biogas yield from animal manure can vary significantly 

depending on the animal’s feeding regime. Studies documented by Chen (1983) showed that 

ultimate methane yield for pig manure varied between 0.36 m3CH4/kgVS to 0.53m3CH4/kgVS, 

an increase of almost half. In general, animals fed on a high-grain diet produce a higher 

quality of methane per unit output of waste.  

The ability of manure to degrade its organic substance is also affected by the animal that it 

originates from. The organic substance degradation (OSD) for cattle liquid manure is around 

30%, whilst for pigs this rises to 50% and for poultry up to 65% (Deublein & Steinhauser 2008). 

This rise is proportional to the percentage of ammonia within the waste. Therefore a balance is 

required to obtain the maximum biogas available from the feedstock. Table 6-1, displays the 

TS concentration, VS concentration and typical biogas yields for a range of animal manure 

types.  

 

Manure source 

Total solids (TS) 

concentration 

Volatile solids (VS) 

concentration Biogas yield 

Animal manure 

production 

 % % m3/kg of VS m3/day/animal 

Dairy 12 10 0.1-0.8 0.05 

Beef 8.5 7.2 0.3-0.8 0.055 

Veal 5.2 2.3 0.24-0.4 0.008 

Pig 11 8.5 0.3-0.8 0.0045 

Sheep 11 9.2 0.3-0.4 0.006 

Goat 13 9.5 0.3-0.4 0.006 

Horse 15 10 0.4-0.6 0.033 

Chicken 22 17 0.3-0.8 0.0001 

Turkey 12 9.1 0.4-0.7 0.0002 

Duck 31 19 0.4-0.6 0.0003 

Table 6-1 Typical biogas yield of farm animal waste. Source: (ASAE 2003;Deublein & Steinhauser 2008) 

Feedstocks which can boost biogas yield are called co-substrates. These are defined as a 
supplementary material to animal manure used within AD systems to improve the methane 

production. In general co-substrates have a higher TS and VS concentration and therefore are 

able to generate higher biogas yields. The use of these substrates is limited by the overall level 

of TS concentration at which the plant can operate.  

Materials suitable as co-substrate include dedicated energy crops, such as grasses, cereals, 
vegetables and fruits, crop residues, straw and other vegetable wastes. Other non-plant co-

substrates include animal waste other than excreta, consisting of blood, animal fat, bones and 

other slaughter house waste. Glycerine, the main by-product of biodiesel production can also 

have a very high biogas yield.   

Digested waste from an AD plant is typically used as a form of natural fertiliser. The waste 
can only be classified as a natural fertiliser if it meets the Animal by-Product Regulations 
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(DEFRA 2008d). Adopting the use of co-substrates could affect the quality of the fertiliser and 

consequently various sanitation processes are undertaken to ensure the digestate conforms to 

these regulations. This includes pasteurization, where the waste is heated for one hour up to 
70oC.  

Typical co-substrate biogas yields along with total solids (TS) concentration and volatile solids 

(VS) have been displayed in Table 6-2. Comparing the two tables shows manures produce 

significantly lower biogas yields compared to co-substrates. In general, fats either from animal 
slaughterhouses or other animal waste processing, generate the highest biogas yields per unit 

weight of active ingredient (VS). Overall, feedstocks which have a high fat, carbohydrate and 

protein content will have a high biogas yield.  

 

Co-Substrate 

 

Total solids (TS) 

concentration 

Volatile solids (VS 

concentration) as % of TS Biogas yield 

% % m3/kgVS 

Barley 23 85 0.8 

Carrot 25 95 0.7 

Fodder beet wet 18 87.5 0.7 

Grass Silage 30.5 83 0.65 

Hemp 92 90 0.7 

Mangold 25 95 0.7 

Maize 30 95 0.65 

Oats 88 88 0.6 

Ryegrass 20 95 0.7 

Potatoes 25 79 0.8 

Reed canary grass 20 90 0.6 

Sugar beet wet 23 95 0.7 

Sweet sorghum 26 93 0.8 

Switch grass 37 93 0.8 

Winter wheat 86 90 0.5 

Rapeseed 92 92 0.7 

Animal Fat 90 92 1.14 

Fish Waste 26 80 0.9 

Molasses 82 90 0.5 

Glycerine 98 92 1.1 

Fat and Flotation Sludge 24 98 1.2 

Table 6-2 Typical volatile solids (VS) and total solids (TS) % along with biogas yield for potential AD 

feedstocks. Adapted from Deublein & Steinhauser (2008) and Martinez-Perez et al. (2007) 

Biogas reactors can fail if overloaded with co-substrates. This is due to an imbalance between 

acid forming and methane forming microorganisms (Chen et al. 2008). Co-substrates also 
contain a number of inhibitors which can unbalance the operating conditions. Fats generate 

high levels of ammonia and long-chain fatty Acids (LCFA) which are both considered as 

biogas inhibitors (Chen et al. 2008).  

6.4.3 Methane yield 

The ultimate aim of a biogas plant is to maximise the methane yield based on the feedstock 
and the size of the plant. The methane yield is based on the retention time (RT) for which the 
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feedstock is processed, the specific methane yield of the feedstock and the loading rate of the 

feedstock. A simplified equation to determine the biogas production has been expressed by 

Ecofys (2005), as: 

[ ] [ ]10001000 ××××−+××××= oo BVSTSSubstrateCoBVSTSManureBiogas  6-1 

Where TS is the percentage of total solids within the material, VS is the percentage of volatile 

solids within the material. Bo is defined as the ultimate methane yield at an infinite hydraulic 

retention time. This can also be converted to the ultimate biogas yield.  

Study of the kinetics of methane generation from fermentation show similar results as shown 

in equation 5-2. A model devised by Contois (1959) and also published by Chen (1983) showed 

that the methane yield from organic wastes could be accounted using: 

 

       6-2  

Where, νγ is the volumetric methane yield per m3 of digester volume per day; L  is the VS 

loading rate per day, θ  is the Retention Time (RT), K is the kinetic parameter relating to the 

performance of the digester and mµ  is the maximum specific growth rate of the 

microorganism (Chen 1983). oB  is the maximum theoretical methane yield, which can be 

obtained from literature or laboratory testing.  

The maximum specific growth rate is the inverse of the minimum Retention Time (RT) 

required for the process to generate a sufficient quantity of methane. Therefore the minimum 

RT can be found by calculating the maximum specific growth rate mµ . This parameter is 

linearly dependant on the operating temperature of the process. The Kinetic Parameter 
represents how efficiently the digester operates. It has been found that in some AD plants, 

high concentrations of volatile fatty acids (VFA) and ammonia hinder the digester 

performance. Experimental work highlighted by Chen (1983) showed that as the VS 

concentration increased the specific methane yield would decrease after a certain threshold 

was reached.  This would vary for each particular plant setup.   

6.4.4 Digestion operating temperature 

Methane generation from AD can occur at temperatures ranging between 4-60oC (Price 1981). 

In practice there are three thermal categories at which digesters are designed to operate. These 

are thermophilic (40-60oC), mesophilic (30-40oC) and psychrophilic (below 30oC). 
Thermophilic digesters produce the highest methane yield; however have a larger heat energy 

requirement. Most AD plants in Europe operate within the mesophilic range (Ecofys 

2005;Price 1981). Thermal pre-treatment is also common on some AD setups which help 

sterilization and odour control of the feedstock (Price 1981). 
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6.4.5 Retention time 

The hydraulic retention time (HRT), also known as the residence time is the period in which 
the feedstock is processed within the digester. During this time methane is generated and 

stored in a separate storage unit. The value of HRT can be determined from the inverse of the 

specific growth rate ( mµ ). The optimum HRT is dependant on the operating temperature. As a 

result it can also be grouped into three process ranges similar to that of operating 

temperatures. For psychrophilic process, the HRT can be between 40-100 days, for mesophilic 

the HRT is between 35-40 days, whilst for thermophilic process the HRT is reduced to 15-25 

days (Ecofys 2005). 

6.4.6 Other parameters 

Other significant parameters included the specific surface area of the material. According to 

Deublein & Steinhauser (2008), biogas yields can improve by 12% if the surface area of the 

material is increased. This is often carried out by macerators. These devices powered by 

electric motors are able to reduce particle sizes to around 12mm in diameter.  

The process of AD must also be undertaken with minimum (or no) light as this is an inhibitor 

in the methanation stage. Other factors required to maintain steady and efficient operating 

conditions include the pH level, which should be kept between 6.5 and 7.5. The carbon to 

nitrogen ration (C/N) should also be maintained at around 16:1 to 25:1. Too low a value 
increases the ammonia production because nitrogen levels become too high (Deublein & 

Steinhauser 2008).  
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6.5 Analysis of anaerobic digestion plants in Europe 

An assessment of some performance parameters was carried out using a number of AD plants 

situated in Germany. The AD setups varied in digester size from less than 200m3 to around 

9000m3. From the data, a number of correlations were determined, which have been detailed 

in the following sections.  

6.5.1 Biogas yield vs. total digester volume 

The graph in Figure 6-3 shows the methane yield vs. total digester volume for a number of 
plants. The methane outputs were generated from a range of digestible materials. The graph 

shows that methane yield is roughly linearly proportionate to the digester volume.   

 

 

 

 

 

 

 

 

 
 

Figure 6-3 Relationship between methane production rate and digester volume for mixed wastes: Data 

from FNR (2005) 

The linear regression was found to be relatively low (0.8) indicating that there was a 
significant element of error within the results. This was contributed to a number of factors. 

The most critical factor was the feedstock used within the AD plants. The AD plants operated 

on a primary feedstock of cattle and pig waste. However other wastes were also present, 

including: glycerine, vegetable waste, fats etc. This significantly altered the biogas yield as the 

addition of a co-substrate generated a higher gas yield when fermented.  

Other contributing factors to the non-linearity of methane yield vs. digester volume included 

the set-up design of AD plants. A number of the plants analysed operated using either single 

stage, or multi-stage digester system. In AD plants with one single digester the four anaerobic 

digestion phases (hydrolysis, acidogenesis, acetogenesis and methanogenesis) took place 

simultaneously in one single reactor. However to improve efficiency and increase the use of a 
co-substrate, multi-stage or more commonly 2-stage reactor designs are chosen. These include 

two separate reactor tanks. In the first tank the hydrolysis and acidogenesis takes place, whilst 

the second reactor tank houses the acetogenesis and methanogenesis stages.  
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By assessing AD plants with 90% or more cattle waste feedstock (Figure 6-4), a clearer 
correlation was seen between the digester size and the methane yield. The linear regression is 

within a more acceptable range for deducing an accurate estimate between the digester 

volume and the expected methane yield. As predicted, the methane yield is slightly lower for 

cattle waste than for mixed waste, due to the improved performance characteristics of co-

substrates which enhance the methane yield.  

6.5.2 Other correlations determined between performance parameters 

The analysis attempted to highlight a link between the methane yield per unit weight of input 
material and the hydraulic retention time (HRT). For single stage AD plants there was a 

correlation between the increase in methane yield per tonne of substrate and the HRT, as 

shown in the Figure 6-5. 

Although the data showed a deviation, the results in Figure 6-5 show that as the HRT 
increased the overall methane yield per tonne of substrate also increased. This was caused by 

allowing the material to complete a longer digestion time and hence recover more methane. 

Therefore a longer digestion time is preferable in maximising methane yield. However, as can 

be seen from the study of Karim et al. (2007), as the HRT is increased the rate at which 

methane is produced is significantly reduced, as shown in Figure 6-6.  

 

 

 

Figure 6-4 Relationship between methane production/day and digester volume for cattle waste only: Data 

from FNR (2005) 
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Figure 6-5 Methane output per unit weight input vs. hydraulic retention time (HRT): Data from FNR (2005) 

As the methane production rate reduces with time, an optimum digestate removal time has to 
be determined to ensure the plant efficiency is high. Attempting to recover a small percentage 

of the remaining available methane over an extended period of time may be more costly and 

less time effective than removing the original waste and replacing it with fresh waste with 

higher methane production rates.  

 

 

 

 

 

 

 

 

 
 

Figure 6-6 Experimental findings of methane production vs. HRT from Karim et al. (2007) 
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The rate at which the methane is produced is also dependant on the reduction in VS 

concentration during the AD process. This is the conversion efficiency of the process. Typical 

AD plants aim for a conversion efficiency of around 70-80% (J.Gascoigne, Greenfinch 
05/05/2008, personal communication). If 100% conversion efficiency was achieved then all the 

possible available methane would be extracted. The longer the HRT, the higher the VS 

reduction rate will be. The graph shown in Figure 6-7 highlights how the VS reduction 

efficiency varies with the methane yield per tonne of input.  

 

 

 

 

 

 

 

 

 
 

Figure 6-7 Methane output per unit weight input vs. VS reduction: Data from FNR (2005) 

The results in Figure 6-7 show that as a higher VS reduction is achieved, the methane yield per 

tonne of input also increased. However as can be seen from the data, this is also subject to a 
large error allocation and no clear linear regression could be obtained. This is due to the 

varying HRT which could affect the VS reduction efficiency. 

 

6.6 Concluding remarks  

There are a number of process parameters which have an impact on the performance of AD.  

To understand the performance of AD, the kinetics of bacterial growth has been considered, 

assessing the work of Chen (1983). From this mathematical modelling an appreciation of how 

the methane generation was linked to HRT, the operating temperature and the kinetic 

parameter. The kinetic parameter in turn, was also affected by the organic loading rate of a 
digester. Given this understanding, the operational performance of existing AD plants within 

Europe could be analysed. Trends between the methane yield and the digester input, the HRT 

and the VS reduction rate were found. The following stages of the research use the 

information gathered within this chapter and assess the potential of biogas for the South West 

of England. The appraisal techniques used in the following chapters build on this knowledge 

as it forms the foundations of the study. A study of this nature has been essential in 
appreciating the complexity of AD for biogas production.  
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7 ENERGY ANALYSIS OF BIOGAS 

This chapter reports the work carried out in analysing the potential of biogas production 

using energy analysis techniques, described in Chapter 5. The aim of the chapter is to 

summarise the critical factors affecting the energy inputs and outputs of biogas production, 

followed by an analysis of existing operational biogas plants.  

Throughout the chapter, reference will be made to data from currently operational AD plants 

(also denoted as German AD plant data). Some of this data has been kindly supplied by Mark 

Patterson from Fachagentur Nachwachsende Rohstoffe e.V. (FNR), the German Agency for 

Renewable Resources (FNR 2005). This dataset consists of extensive operating data for 61 

anaerobic digestion plants of varying size and feedstock.  

This data was used to show correlations between AD performance parameters on an energy 

analysis basis. Using these results, three AD plant case studies were examined in detail and a 

complete energy analysis was undertaken. However, wherever possible, actual plant data was 

used; collated from various AD plant visits (J. Gascoigne, Greenfinch 05/05/2008 personal 

communication;J.Prior, Summerleaze ltd. 22/05/2007, personal communication). 

7.1 Motivation for study 

Studies on the performance of biogas production from AD have been found to fall into two 
main categories. These are the studies of kinetics of microbial growth for methane production 

and the high-level plant design/energy studies of AD. The major studies discussing kinetics of 

microbial growth were developed during the late 70s to early 1980s and have been discussed 

in Chapter 6. These studies were a result of a surge of interest in AD technology as a possible 

displacement solution to the (at the time) sudden rise in cost of fossilised fuels. Within the last 

decade however, greater focus within research has been on optimising plant design, layout, 

feedstock and overall- energy output (Berglund & Borjesson 2006; Gerin et al. 2008; Ghafoori 
& Flynn 2007).  

Energy analysis and AD plant design optimisation has shown that the process of biogas 

production is greatly affected by feedstock type and availability. Due to the nature of biogas 

production from AD it is difficult to represent a single result for net-energy analysis. This is 
because feedstocks react differently in different setups at different temperatures and therefore 

often there is little or no uniformity between results. If the net-energy balance were found, 

then a list of assumptions on system boundaries, ambient conditions and process layout 

would also have to be shown.  

Analysing published literature on net-energy analyses of biogas has shown a wide range of 
results; which is expected as AD setups can be very diverse. Biogas production from maize 

silage was found to require 0.04-0.14 MJ of primary (or resource) energy per MJ of energy 

output (also interpreted as the ERE) (Gerin et al. 2008). However, decomposing grass for 

biogas was found to require as little as 0.013-0.03 MJ of primary energy per MJ of energy out. 

The very high energy output of grass from biogas could be a reason why grass silage is 

present in many German AD plants (FNR 2005). 
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A net-energy analysis was carried out on a number of different feedstocks for Swedish setups 

in 2006 (Berglund & Borjesson 2006). They found that the energy requirement for energy 

(ERE) for biogas using grass was around 0.14 MJresource/MJdelivered. The study assumed a 
feedstock transport distance of 10km. These energy inputs were more apparent for the net-

energy analysis of low biogas-emitting feedstocks such as manures (ibid). Due to the larger 

energy output of high biogas-yielding feedstocks such as maize or grass, the energy 

requirements for transport would become less significant.  

Energy analysis has also been used to determine the optimal size of an AD biogas production 
plant. However the main conclusions from the study appeared to be that the optimum size 

was greatly dependant on the local availability of feedstock (Walla & Schneeberger 2008). The 

aforementioned study calculated the optimum size to be between 575kWe to 1150kWe. 

However, these results were linked to financial investment support available and not just the 

energy output in relation to energy input.  

A common element across many studies is that the ERE can be affected by the transport 
distances of the feedstock to and from the AD plant. Generally, this is true for all bioenergy 

feedstocks due to the relatively low energy densities of the material. As a result, transporting 

feedstock can increase the ERE of biogas fuels (Areikin & Turley 2008). This study attempts to 

understand the energy costs in terms of ERE due to the transportation of feedstocks for biogas 

production.  

The net-energy of biogas production is therefore rather more complex than some more simple 

renewable energy systems. All bioenergy systems require operational energy requirements in 

order to produce energy. This is unlike any other form of renewable energy such as solar 

photovoltaic and solar hot water, wind or geothermal. Bioenergy systems, such as biogas 
require energy inputs, which can depend on fossil fuels used, the feedstock extraction, 

feedstock processing, transport (and associated losses) and conversion efficiencies. These 

energy inputs in turn can have a large variability depending on the setup of the biogas 

production plant.  

As a result, ‘simple’ renewable energy systems such as photovoltaic or wind turbines appear 
to have extensive data on comparative net-energy analyses from a wide range of studies 

(Allen et al. 2008a). The few studies, which ultimately show the net-energy analysis of biogas 

also incorporate error margins which can affect the results. This study highlights the 

importance of analysing biogas production using existing operational plants where energy 

inputs, transport distances and actual performance data are present. This study therefore 

examines the energy-analysis of a range of existing operational AD plants. 

7.2 Energy requirements for biogas production  

The energy requirements for biogas production account for all the direct and indirect energy 
inputs into the AD process. Previous studies have shown that operational energy inputs could 

reach up to 80% of the total energy outputs of AD plants (Borjesson & Berglund 2006). The 

importance of operational energy inputs signifies that all energy expenditures, including 

feedstock transport and crop growth should be analysed. This analysis examines the trends in 

heat and electrical energy consumption for a number of existing AD plants, along with a 
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review of the literature surrounding these energy uses. Additionally, this study investigates 

the energy requirements for plant construction. This is an energy input which should be 

assessed, in accordance with standard procedures of energy analysis (IFIAS 1974).  

7.2.1 Plant construction energy input 

The design of an AD plant has been discussed in Chapter 6. The AD unit is a combination of 

vessels, pumps, motors, tubes and peripheral materials, which are determined by the ambient 

conditions, the feedstock digested and the size of the plant. This study examined standard 
Continuously Stirred Tank Reactor (CSTR) systems, as this was the most common plant 

design.  

The most common construction material used for AD plants is steel; however, some plants 

employ concrete or even polymer materials for the primary components (Ecofys 2005). The 

primary components (in terms of material use) of AD plants are the feedstock tanks. A 
description of a typical AD plant has been produced in section 8.6. Structurally, most CSTR 

plants are similar in construction and as a result, material analysis from the case study plant A 

was used in this section. This was due to having obtained detailed material requirements for 

the construction (J. Gascoigne, Greenfinch 05/05/2008 personal communication). This data was 

due to site visits and communication with the plant operator. The use of LCA software 

SimaPro was used to calculate the total embodied energy of the AD plant construction. Using 

the EcoInvent database (Swiss Centre for Life Cycle Inventories 2007), the cumulative energy 
demand of the construction materials was calculated.   

 

 

 

 

 

 

 

Table 7-1 Total embodied energy (primary energy) required for AD plant manufacture 

 

The breakdown of embodied energy of the AD plant is shown in Table 7-1, showing the total 

embodied energy for the manufacture of the plant to be around 2,650 GJ of primary energy. 

The embodied energy was calculated using all the direct and indirect processes required for 

plant manufacture, which have been discussed in section 8.6.1. The embodied energy 

procedure calculated the total (primary) energy use through a life cycle, based on the calorific 

value of fuels. The cumulative energy demand (CED) determined all the energy sources 
required within the manufacturing stages.  

The CED process accounts for all electrical, heat and other process energy requirements up to 

the point of material use. The energy was then converted to its primary resource form based 

Plant components Embodied energy (MJ)  

Digester tank 886,689 

Digestate tank 1,320,357 

Reception  tank 243,970 

Biogas storage tank 7,748 

Heat exchanger unit 143,421 

Stirring device 28,288 

Auxiliary equipment 8,410 

Digester pre-heat 7,109 

Digester heater 7,109 

Other 1,826 

TOTAL 2,654,925 
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on primary energy conversion efficiencies for typical energy forms. For example, in the UK 

current electricity is produced using a mixture of coal, gas, nuclear, hydropower, oil, natural 

gas and renewable energy. This composition was determined using the latest statistics from 
BERR (2008a). The primary energy inputs were determined from the source (ibid) and 

inputted into the life cycle of the plant manufacture.  

7.2.2 Heat energy consumption within an AD plant 

This part of the study assessed the factors which affect the heat energy requirements of AD 
plants. Using data from German operational AD plants, it was possible to examine a number 

of parameters which could affect heat energy requirements (FNR 2005).  

Although the process of anaerobic digestion is exothermic, the actual heat produced is 

negligible, thus source heating is required to operate the process. Depending on the operating 

temperature range (mesophilic, or thermophilic) and the ambient temperature, different levels 
of heat energy are required (Ecofys 2005). Operating temperatures can be as low as 25oC, 

which during UK summer periods of the year result in a lowered heat energy demand within 

the AD plant. However, if operating temperatures of 40oC (thermophilic) are required, then 

heat energy demand can increase. In this energy analysis, a standard operating temperature of 

39oC was selected, as this was the operating temperature of the AD plants investigated (FNR 

2005).  

Heating of the digestate is required to accelerate the anaerobic digestion process (Deublein & 
Steinhauser 2008). Insulation is generally used to maintain a constant temperature and reduce 

energy losses. In the UK, climatic temperatures usually fall below the operating temperatures 

of an AD plant, as shown in Figure 7-1. Seasonal variation can affect the processes’ heat 

energy requirements if insulation is not effective. The average monthly temperature 
recordings of a typical location in the South West (Yeovilton 1971-2000) have been shown in 

Figure 7-1. The temperature can vary by up to 15oC depending on the season and this can be a 

significant contributor to the heat requirements of an AD plant.  

 

 

 

 

 

 

 

 
Figure 7-1 The typical ambient temperatures during the year for Yeovilton (Met Office 2007) 
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Heat energy is supplied through various techniques depending on size and setup of the AD 

plant. On small-scale plants the heat is transferred to the feedstock through heat exchangers 

and then pumped around the digester (J. Gascoigne, Greenfinch 05/05/2008 personal 
communication). Larger setups adopt heating pipes or coils within the digester wall (Ecofys 

2005). It is reported that around 11-15% of the total biogas energy produced is used for heating 

feedstock entering the AD plant (Deublein & Steinhauser 2008). However, recordings from 

existing operating plants showed that heat energy requirements averaged around 24% 

ranging from 1.8%-65% of the total energy production (i.e. the ERE) (FNR 2005).  

 

Solar gain is considered a critical aspect of heating for AD plants. As can be seen in Figure 7-1, 
the operating temperature can be only 10-20oC higher than summer average ambient 

temperatures, in order to reach 39oC. The heat energy requirement is therefore reduced at 

higher levels of solar gain (El-Mashad et al. 2005). One of the most critical factors affecting the 

heat energy consumption is the energy lost through the digester walls (Ecofys 2005). The 

overall heat transfer coefficient of the digester is dependant on the material used for the 

digester insulation. These have been shown in Table 7-2, with their respective U value and the 
typical thickness adopted within an AD setup.  

 

 

 

 
 

 

 

 
Table 7-2 U value (thermal conductivity) for different insulation materials (Ecofys 2005) 

Another factor affecting the plant heat energy consumption is the initial start-up fuel used to 

heat the digester in order to initiate the anaerobic digestion reaction. The data obtained from 

case study plant A showed an annual heat energy consumption of 226 GJ. Approximately 23% 

of this heat energy was obtained from kerosene during the start-up phase, whilst the 

remainder was obtained from the excess biogas. This value resulted in an energy consumption 
of 346 MJ/tonne of feedstock. The value was found to be very similar to other studies 

(Berglund & Borjesson 2006), if kerosene energy consumption was removed. This suggested 

that start-up energy requirements might not have been taken into account within other studies 

as no mention of start-up energy was found.  

By analysing the currently operational German AD plant data (FNR 2005) a correlation was 

found between the heat demand (MJ/day) and the feedstock input quantity (cubic 

metres/day). As the feedstock input increased, the energy consumption (MJ/day) increased by 

just over 4.7MJ/day per tonne of feedstock. To determine the dependency of this parameter on 

the total heat energy requirements, a number of factors were assessed using the ‘power-law’ 

correlation, common amongst practitioners of engineering and physical sciences (Cranston et 

al. 2007;Hammond 2006). Subsequently, a logarithmic plot of heat energy requirement vs. 
quantity of feedstock showed a very strong correlation between these two parameters (close to 

a power of 1). The power value signifies the influence which the parameter has on the heat 

Insulation Material 
U Common Thickness 

W/m2K (Metres) 

Polyurethane 0.03 0.06 

Expanded Polystyrene 0.04 0.08 

Extruded Polystyrene 0.035 0.08 

Mineral Wool 0.043 0.1 

Cork 0.05 0.1 

Sheep Wool 0.035 0.1 
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energy requirement. A value close to one is very influential, whilst a value of one is 

completely influential.   

In order to determine the empirical coefficients of this expression, data from over 60 AD 

operating plants were used. The quantity (tonne/day or m3/day) and the change between 

operating and ambient temperature was assessed, using available data. An average ambient 

temperature of 15oC was used. Using the power-law correlation detailed in Appendix A, the 

results highlighted the strong dependence of heat energy requirement on the feedstock input 
quantity within the AD plant.  

 

 

 

 

 

 

 

 

 

Figure 7-2 Heat demand per day vs. input feedstock per day (using log-scale) 

A correlation was found between the feedstock input into the AD plant and the heat energy 
consumption. Using this correlation (shown in Figure 7-2), the heat energy requirements for 

the three AD plant case studies were calculated, where this was not previously available from 

existing plant operating data. This data was subsequently used for all the multi appraisal 

techniques.  
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7.2.3 Electricity consumption within an AD plant 

In addition to the heat energy input required to maintain the AD process, electricity inputs are 
needed to operate pumps, stirring devices and other components. Feedstock is circulated 

around the AD plant, enabling it to enter and exit a number of processes in the course of 

biogas production. It is important to ensure the waste is relatively free flowing with a 

maximum total solids (TS) concentration of only 12-14%. Centrifugal pumps are used for 

pumping waste around the AD plant. These have a high efficiency and are relatively easy to 
maintain. A macerator is also used to reduce the particle size of the waste.  

Agitation of the waste in the digester is undertaken to ensure heat is received throughout the 

whole process and this increases the efficiency of the biogas production. The feedstock mixing 

system uses electrically powered motors for either paddle stirrers or pumps. Submerged 

propellers tend to use between 2.5kW and 25kW. They are active for half of the operation time 
on an intermittent basis (Deublein & Steinhauser 2008).  

One of the case studies used within the appraisal methodology (plant A) had a recorded 

electrical energy consumption of 4.29 kWh/tonne (15.4 MJ/tonne). Whilst data from currently 

operational plants determined that on average 12.4 kWh of electrical energy was used per 
tonne of input feedstock (FNR 2005). This included all electrical energy in stirring, pumping 

and peripheral equipment. However, the difference between the maximum and minimum 

value was 32 kWh/tonne (maximum electrical energy consumption = 33 kWh/tonne, minimum 

= 1 kWh/tonne). As data variation was so elevated, a relationship between the plant operating 

parameter and electrical energy consumption was found.  

A power-law correlation between the electricity consumption and the dependant parameters 
was performed, due to the number of parameters affecting the electrical energy consumption. 

Electricity consumption within a plant was suggested to depend on the digester volume (and 

related to daily feedstock input) and the material flow characteristics; represented by the TS % 

(Deublein & Steinhauser 2008). This is shown through an initial relationship, below: 
 

Biogas electrical energy requirement (Er) = function {feedstock quality (TS), quantity of feedstock (M)}; 

The above relationship can be converted into a power-law correlating equation in common 
with practice in the engineering sciences (Hammond 2006): 

Er = Constant {TSw Mx },         7-1 

The most critical parameter to electrical consumption was found to be the percentage of dry 
matter (TS) of the input material (a power-law dependency of around 2/3), shown in Figure 

7-3. Although the parameter was found to have a relatively high influence on the electrical 

energy demand, the analysis also showed that the square of the Pearson Product-Moment 

Correlation coefficient (R2) was relatively low at 0.55, thus resulting in a large standard 

deviation from the mean. This was thought to be related to the type of mixing system used 

within the plants. Some digesters operated using single stage and other on two or three stages. 
This would influence the energy consumption for stirring and heating.  
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Figure 7-3 Electricity consumption per day vs. total solids (TS %) of feedstock 

Figure 7-3 demonstrates a relationship between the material composition and the electrical 
energy required within the plant. The analysis was extended to single stage digesters only. 

Carrying out a similar analysis highlighted a closer link between the TS percentage and the 

electrical energy consumption per tonne of feedstock (3/4 rather than 2/3).  

 

 

 

 

 

 

 

 

 

 

Figure 7-4 Logarithmic plot of Er multiplied by TS2/3 against daily feedstock input 
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The study was also extended to assess the relationship between electrical energy consumption 

and the amount of feedstock digested. The power constant of this relationship was determined 

by plotting the combination of TS2/3 and Er against the feedstock input (M); shown in Figure 

7-4. This can be shown in the equation below: 

��. ����/� � �          7-2 

The correlation was plotted on a logarithmic scale. The power constant found and showed in 

Figure 7-4, was the power law correlating factor between daily feedstock input (M) and the 
electrical energy consumption (Er). The power law was 14/25 (0.556) and the constant found to 

be 3.86. Therefore the new equation can be shown as follows: 

�� � 3.86���
�

�� . �
 !

�"� #,        7-3 

The analysis highlighted that the electrical energy consumption within the plant was 

influenced primarily by two parameters: total solids of material (TS %) and the daily feedstock 

input. The analysis has helped understand how the feedstock parameters influence the 

electrical energy consumption within AD plants. The electrical energy data for the three AD 

plant case studies was already known; subsequently actual operating data was used.  

7.2.4 Transport energy use 

The energy consumption during the transport of the feedstock to and from the digester plant 

can have a significant impact on the net-energy of a biogas plant. During contact with an AD 

plant operator (J.Prior, Summerleaze ltd. 22/05/2007, personal communication), it was 
highlighted that feedstock could travel great distances depending on the quality of the 

feedstock. In this particular case, the feedstock glycerine was being transported from Scotland 

to the South West of England, a distance over 500 miles. Assuming a 20 tonne lorry was used 

to transport the feedstock, this results in approximately 11 MWh (37.3 GJ) of energy; 

equivalent to 956 m3 of methane production.  

Large-scale AD plants tend to operate on a variety of organic waste feedstock types. These 
may include municipal solid waste, waste from the food industry, sewage waste and 

dedicated energy crops. This is partly due to the scale of the plant requiring significant 

quantities of waste consistently, which cannot be supplied from farmers. However, more 

importantly other organic wastes are chosen due to the financial incentives available, such as 

the landfill tax avoidance discussed in Chapter 3.  

A study of published literature (Areikin & Turley 2008;Berglund & Borjesson 2006;Walla & 
Schneeberger 2008) showed that transport energy consumptions are primarily dependant on 

the bulk density of the feedstock being transported and its quantity (ibid). Typical energy 

consumptions for truck transportation of animal manure are suggested to be approximately 

1.6 MJ/tonne/km, whilst for crops this reduces to around 1.1 MJ/tonne/km (Berglund & 
Borjesson 2006); therefore dependant on the truck loading.  

Due to the high moisture content of manure, the average density for these feedstocks is 

around 1000 kg/m3. If this feedstock were to be transported using a typical vehicle of 22.5 
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tonne capacity (20m3 volume maximum capacity), the laden weight of the manure would be 

close to 100%, based on fuel consumption literature as shown in Table 7-3 (Areikin & Turley 

2008). 
 

 

 

 

 
Table 7-3 Transport energy consumption. Source (Areikin & Turley 2008) 

 

Crops such as oats, barley and wheat are reported to have a bulk density of 700 kg/m3 

(Halliday et al. 1995). Therefore, a total vehicle loading of around 62% would be expected. 

This was found to use between 13.3 MJ to 14.5 MJ per kilometre travelled. Dryer materials 
were found to have a lower density, whilst manure with a very high moisture content, had a 

higher density, subsequently requiring more energy per m3 for transportation.  

The use of manure for biogas production offers a lower gas (and energy) yield compared to 

crops such as oats, maize, grass etc. (Ecofys 2005). It is evident that manure is limited in 
transportation distance, as it would subsequently become energy negative: i.e. the invested 

energy in obtaining biogas would be greater than the biogas energy content. Energy crops, fats 

and glycerine types of feedstocks can travel much greater distances while remaining energy 

positive as the energy yields of these feedstocks are much higher. It has been reported that 

maximum distances for manures to be transported are in the region of 120 miles, whilst high 

yielding feedstocks such as fats and other animal wastes can be transported up to 470 miles 

prior to becoming energy negative (Berglund & Borjesson 2006). Consequently it can be said 
that AD plants operating using manures may have a higher ERE than those using high biogas-

yielding feedstocks. 

The three case studies in this study adopted different transport distances. Plant A was situated 

inside the farm where the feedstock was produced; as a result no transport energy was 

required. However, according to Spielman et al. (2007b), onsite waste handling equipment 
(such as a mini-digger or tractor) for AD plants is estimated to consume around 18MJ/tonne. 

Subsequently, this energy use was accounted for. As plants B and C were of larger scale, they 

both required energy use to transport the feedstock to the AD plants. Using transport distance 

data from Cumby et al. (2005) for plant B, this was converted to an energy value and 

correlated for the feedstock quantity in plant C.   

7.2.5 Feedstock growth and collection stage 

There are two main sources of feedstock for anaerobic digestion; animal manure and co-

substrates. The energy inputs for animal manure include the waste collection from indoor 

animal housing units and energy expended for loading in tankers or containers (J. Gascoigne, 
Greenfinch 05/05/2008 personal communication). Dedicated energy crops, as shown in Table 

7-4, are more energy intensive. If a crop is grown specifically for biogas production, then the 

 Weight laden Fuel use Energy use 

 % litres/km MJ/ km 

Articulated Vehicle 

22.5 tonne capacity 

0% 0.311 10.885 

25% 0.345 12.075 

50% 0.379 13.265 

75% 0.414 14.49 

100% 0.448 15.68 
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energy required to grow the crop should be included within the energy analysis. This differs 

from animal waste sources, as the purpose of the animal is not for energy production.  

Energy consumptions per hectare of material grown were recorded for a number of crops. 
These were obtained from various literature sources (Deublein & Steinhauser 2008;Ecofys 

2005;Gerin et al. 2008; Martinez-Perez et al. 2007). Energy consumption for growing crops 

included ploughing, seeding, sowing, fertiliser inputs, harvesting and collection and transport 

of harvest. The results were obtained in MJ/ha, although these were subsequently converted to 
MJ/tonne or MJ/m3 of crop used for coherence with the rest of the study, as shown in Table 

7-4.  

 

 

 

 

 
 

 

 

 

 

 

 

Table 7-4 Energy consumption per ha and per tonne for feedstocks grown in the SW 

The table shows crop production energy use per tonne of oilseed rape and wheat were 

amongst the highest. This was a result of the relatively low yield in terms of tonne/ha for 

oilseed rape, whilst energy use per hectare for wheat production was amongst the most 
intensive. This high energy consumption was due to large fuel consumption for preparation, 

sowing and harvesting including energy use associated with herbicide, insecticide and 

fungicide control (BERR 2003). However, energy intensive crops such as oilseed rape and oats 

also generate a high maximum methane production, therefore allowing them to be 

transported over larger distances and validate the expenditure in growth energy. 

In this analysis, the case studies plant A and B did not have any energy expenditures in terms 

of feedstock production. This was because both of these plants operated on waste-derived 

feedstocks. Plant C used maize silage as a supplementary feedstock (co-substrate) and as a 

result had energy expenditure for feedstock production. The quantity of co-substrate was 

obtained from plant operating data (FNR 2005) and applied to the corresponding value shown 

in Table 7-4.   

7.3 Energy output of AD plants 

The output energy of an AD plant is directly linked to the methane production. Estimating 
energy outputs based on a theoretical analysis of methane yield was found to be inaccurate 

and not advisable for mixed feedstock wastes (Chen 1983; Ecofys 2005; Chen & Hashimoto 

1978). However, it is important to understand the parameters affecting biogas output and how 

these affect the energy balance of AD plants.  

Crop 

Crops grown in SW 

(DEFRA 2007b) Energy per ha Yield 

Crop production 

energy requirement 

ha (2007) MJ/ha tonne/ha MJ/tonne 

Barley 94,677 16,563a 5.9c 2,807 

Fodder beet 5,286 18,247a 120d 152 

Maize 58,510 17,630a 9c 1,959 

Oats 21,443 15,094a 6.2c 2,435 

Potatoes 6,996 48,200a 44c 1,095 

Sugar beet 618 21,400a 50d 428 

Wheat 172,045 23,920a 7.8c 3,067 

Rapeseed 52,177 11,645b 3.2d 3,639 
a (Martinez-Perez et al. 2007), b (BERR 2003), c (Nix 2009), d (Soffe 2003) 
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The study of kinetics for methane generation is widely documented and has been addressed 

in a number of literature sources throughout the past 50 years (Chen & Hashimoto 1978;Chen 

& Hashimoto 1980;Contois 1959;Hill 1983;Karim et al. 2007;Linke 2006). This theory has been 
discussed in Chapter 6.  

To calculate the energy output from biogas, a net calorific value (CH4CV) of 35.8 MJ/m3 was 

used for methane (CH4) at standard pressure and temperature (Ecofys 2005). The energy 

available from the biogas can be calculated using: 

)(*)()( 4

3

4 CV
CHmCHMJEnergy = ,       7-4 

In an energy context, the overall methane yield from organic wastes can be expressed by: 

 

,       7-5 

Where, νγ is the volumetric methane yield per m3 of digester volume per day; L  is the 

volatile solids (VS) loading rate per day, θ  is the Retention Time (RT), K is the kinetic 

parameter relating to the performance of the digester and mµ  is the maximum specific growth 

rate of the micro-organism (Chen 1983). oB  is the maximum theoretical methane yield 

(m3CH4/VSkg). The equation can be rearranged to give a methane yield per kg of VS added. 
This is more useful when the digester size is not known:  
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, where B is the methane yield m3CH4/VSkg.   7-6 

The methane yield per kg of VS intake (m3CH4/VSkg) is affected by the reaction time, the 

temperature inside the reactor, the ultimate methane yield and an inhibiting factor (called the 

kinetic parameter). The ultimate methane yield ( oB  ) is found to be independent of the 

operating temperature (Maly & Fadrus 1971) and for livestock waste it is dependant on 

feeding regimes and feedstuff quality which animals digest. According to Chen (1983) the oB

for pig manure can vary between 0.36 m3CH4/VSkg to 0.52 m3CH4/VSkg. This will have a 

significant impact on the overall methane yield of the digester.  

The VS loading rate (L, with the unit VSkg/day) is determined from the individual feedstock type 

and the rate at which the digester is loaded, whilst the kinetic parameter (k) is affected by the 

VS concentration. The maximum specific growth rate ( mµ ) is dependant on the operating 

temperature which subsequently determines the retention time (θ ). The equation calculates 
the actual methane generation from fermentation as opposed to biogas.  

Although the model has been used for studying the methane production for all types of 

organic wastes (Chen 1983;Hill 1983;Karim et al. 2007;Lo et al. 1981), it has not been adopted 

when simulating co-digestion. When two or more organic waste types are mixed together, the 
concentration of VS and TS will subsequently be affected, therefore influencing the methane 
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yield. Through contact with an AD expert (P.Harris, University of Adelaide, 11/04/2008, 

personal communication) it was found that the VS and TS values cannot be directly added 

together to obtain the resulting values. Other studies also indicate the co-digestion of wastes 
cannot be modelled simply by adding the methane yields of separate digestion processes 

(Parawira et al. 2008). Research carried out on the co-digestion of potato waste and sugar beet 

showed that co-digestion could result in 60% higher methane yields per unit kg of VS digested 

(Parawira et al. 2008).  

To summarise, theoretical models for estimating biogas yields cannot be used reliably. As a 

result of these findings and in accordance with other energy analysis studies of biogas 

(Berglund & Borjesson 2006), actual operating plant data was used rather than theoretical 

modelling of biogas yields.   

The biogas (and energy) output from AD is significantly dependant on the material being 
digested. During a normal AD process, only around 50-90% of VS are destroyed (Figure 7-6) 

due to process inefficiencies. As these inefficiencies are extremely difficult to predict, 

theoretical modelling is not appropriate. When representing the biogas potential of the 

feedstock, it is common to show the methane yield from 100% decomposition of VS (Murphy 

& Power 2009;Ward et al. 2008). 

 

 

 

 

 

 

 

 

 

 

Figure 7-5 Energy content and volatile solids (VS) percentage per tonne of feedstock. Deublein & 

Steinhauser (2008); Ward et al. (2008) 

From the literature review, it was found that materials such as fruits or vegetables were 
degraded relatively easily in an AD plant compared to manures, due to their low TS and high 

VS concentrations. Carbohydrate rich feedstocks were found to undergo a rapid hydrolysis 

stage leading to acidification and therefore inhibiting methane gas production (Gunaseelan 

2004). Although animal manures registered at the lower end of the energy output, they are 
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currently the preferred primary feedstock for AD plants. This is due to their abundance and 

supplementary benefits of AD through waste management and odour control.  

7.3.1 Biogas uses for energy systems 

Biogas can be converted into three typical energy uses; thermal generation, electricity 

generation or use as a transport fuel. More recently, another available energy pathway has 

been to upgrade the biogas and inject it into the current national gas network. This requires 

large infrastructure and capital costs; around £100/MWh (National Grid 2009). To convert the 
biogas into any of these energy pathways, energy losses occur within the system.  

The German AD plants analysed in this study operated using an internal combustion engine 

(ICE) setup consisting of a six-cylinder spark ignition or compression ignition engine, fitted 

with an appropriate power generator. Across the data range the electrical conversion 

efficiency ranged from 44% to 24% (FNR 2005). An average value of 34% was determined from 
a range of operating biogas plants. However, other studies indicated that the electrical 

efficiency of a biogas production plant would vary depending on the power rating. A study 

from Walla & Schneeberger (2008) showed that the electrical efficiency increased as the biogas 

plant size increased, through a study of plants between 25 kW to 2,500 kW. This correlation 

could not be seen when analysing the dataset in this study (FNR 2005). The efficiency of 

electricity production varied significantly but not in relation to the overall power rating of the 

plant. It was concluded that a possible cause for this was the varying biogas quality (methane 
concentration) present when fed into the ICE. 

Analysing the operating plants further showed that installations with combined heat and 

power (CHP) had a heat efficiency rating between 17% and 56% (FNR 2005). An average value 

of 39% was determined for heat production. This equated to an overall CHP efficiency of 73%.   

7.4 Results  

A number of stages within the life cycle of biogas production were found to affect the energy 
balance of AD. Although transportation and growing/collecting energy consumption was 

found to be a contributor to energy inputs for biogas production, it appeared to be less 

significant than on-site energy use within the plant process itself (Berglund & Borjesson 2006). 

Heat energy requirements were found to be the largest energy sink within the AD process and 

were heavily dependant on the quantity of input. On average, around 248MJ of heat energy 

was used per tonne of feedstock.  

Electricity consumption was recorded to be approximately 43 MJ/tonne of feedstock. 

Converting this value to primary energy shows an equivalent energy requirement of 

116MJ/tonne; based on an electrical conversion efficiency of 32.7% (Allen et al. 2008b). A 

preliminary analysis therefore suggests that on average, heat energy use contributes towards 

around 70% of the on-site energy requirements, whilst electrical energy requirement accounts 
for the remaining 30%.  

The following section of results shows the energy analysis of biogas production from AD in 

more detail. Additionally, net-energy analyses of the three case studies are also presented thus 

enabling an energy performance comparison between different AD setups.  
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7.4.1 Energy output based on feedstock 

An analysis of energy output against feedstock VS concentration was carried out on German 

AD plants (FNR 2005).  This confirmed the similarities between the theoretical results shown 
in Figure 7-5 and the results obtained from AD plants in Germany, shown in Figure 7-6. The 

energy output per tonne of cattle slurry through a typical AD plant was found to be between 

500 MJ/tonne to 1,500 MJ/tonne (Figure 7-6).   

 

  

 

 

 

 

 

 

 

 

Figure 7-6 Energy output per unit input of feedstock vs. volatile solids percentage (VS %). Data from FNR 

(2005) 

Figure 7-6 showed a clear link between the VS concentration and the energy released from 

digestion process. The results highlighted a strong regression (over 9/10) of energy output 

versus an increase in VS concentration per unit weight of feedstock used. This highlights the 

consistency with the theoretical results obtained from literature (Figure 7-5) and the results 

obtained from operating plants (Figure 7-6). The results highlight a surprisingly similar 
correlation, when considering the instability and sensitive nature of the AD system’s 

parameters. Although there is a large standard deviation from the mean, it is apparent that the 

energy output of a plant is dependant on the VS concentration entering the plant.  

The biogas output for the case study AD plant A was calculated to be 397 MJ/tonne of 

feedstock input. Even for single source dairy cattle manure feedstocks, this value was 
considered very low when compared to other existing operational plants. The low biogas 

output per tonne of feedstock would inevitably increase the energy requirement for energy 

(ERE), as a lower output is obtained per quantity of invested energy. The value of biogas 

output per unit tonne of input was found to be 17.1m3. Usually dairy cattle manure can 

produce over 25m3 (CH4) of biogas per tonne of input (Ecofys 2005).  
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7.4.2 Embodied energy of AD plant construction 

The AD plants investigated were generally of similar plant layout, equipment and 

construction material specification (FNR 2005). Therefore the construction embodied energy 
calculations shown in Table 7-1 were used as a basis for all AD plants. The total embodied 

energy of case study plant A was calculated to be 2,654 GJNCV (NCV denotes Net-Calorific 

Value). The calculated embodied energy of the plant was for a plant size of 250m3. Therefore a 

calculated embodied energy of 10.58GJ/m3 of plant size was obtained. This result was applied 

to the other operating AD plants for single-stage digester systems. This data was then 

compared to the total energy output of the plant assuming a 25-year lifetime.   

The analysis showed that as the lifetime output of the plant decreased, the embodied energy 

of the plant construction contributed to a greater extent (Figure 7-7). In some cases, the 

embodied energy of the plant contributed up to 18% of the total energy output of the plant. 

This was a significant contribution as heat energy, electrical energy, feedstock production and 

transport energy were not taken into account for this part of the study. The results showed 
that if the biogas yield per tonne of feedstock material was high, then the impact of plant 

construction embodied energy was lower. On average, the results showed that embodied 

energy of plant construction contributed to around 10% of the total lifetime energy output.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7-7 Lifetime energy output of single-stage AD plants vs. percentage contribution of plant 

construction embodied energy. Data adapted from FNR (2005) 
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7.4.3 Net energy of small-scale vs. large-scale AD systems 

Having assessed the use of energy within AD plant construction, the following analysis 
compared the net-energy output between small-scale and large scale AD plants. Due to the 

variability of biogas yields depending on a feedstock type, a single feedstock was assumed, 

with a fixed biogas yield (25m3 of biogas per tonne of feedstock inputted). This was a typical 

value common for manure (Ecofys 2005).  

The analysis used typical single stage AD plants varying from 190 m3 in digester size up to 
8000 m3 for a single digester. Using the results obtained for heat and electricity consumption 

from the previous sections, these two extremities were calculated. Analysing the ratio between 

AD plant energy requirements as a percentage of the plant’s energy output (an alternative 

technique of representing the GER) showed that as the AD plant size increased, the ratio 

decreased. This signified that small-scale AD plants offered a lower energy output in relation 
to the GER invested within the system (Figure 7-8).  

 

 

 

 

 

 

 

 

 

 
Figure 7-8 Percentage of GER against total delivered energy over life of AD 

This finding showed a reduction in efficiency for digester sizes smaller than 500 m3, where up 
to and over 50% of the energy produced could represent the GER of the plant. The calculations 

assumed a methane quality of 60% in accordance with common literature (Twidell & Weir 

2006).  

The analysis confirmed that an increase in digester size would ultimately lead to a reduction 
in the use of energy resources and hence an increase in overall efficiency in terms of delivered 

energy (ERE). However due to the large number of operating parameters, care should be 

taken when interpreting these result. The analysis assumed that all plant sizes operated at the 

same digestion temperature and held the feedstock for a similar number of days. By varying 

these parameters, the input energy will vary as will the total output energy.  
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7.4.4 Life cycle energy analysis of case study plant A 

The analysis was carried out for a small-scale AD plant situated in the UK (case study plant 
A), considered as a feasible option for the South West of England. The plant housed around 

100 dairy cattle and waste was collected during the housing and milking period. Although the 

plant has been operating since 2002, there is no information available on the likely plant 

lifetime. Therefore, an assumption of 25 years was made. The biogas was used only for 

domestic thermal purposes and no electricity was made.  

The plant digested around 653 m3 of cattle waste per year, with an average biogas yield of 17.1 

m3/tonne of input. The biogas quality was reported to be between 58-64%; therefore, an 

average was chosen for the analysis. The energy use within the plant was divided into 

mechanical mixing, pumping energy and heating energy requirements. The embodied energy 

of plant construction was based on values from Table 7-1.   

The reported electricity use per year was 2,806 kWh (10,101 MJ); this was equivalent to 30,892 

MJ/year of primary energy, based on a conversion efficiency between primary and delivered 

energy of 32.7% (Allen et al. 2008b). The heat energy required for the plant had not been 

recorded; therefore an average of 244-250 MJ/tonne of feedstock was assumed as heat energy 
requirements (FNR 2005). An additional “start-up” energy input of 1,500 litres of kerosene 

was also used annually (J. Gascoigne, Greenfinch 05/05/2008, personal communication). This 

was effectively used as a process initiation. The heat energy requirement was converted to 

primary fossil-fuel energy use and resulted in a total of 830,000 MJ per year (SEDBUK 2009).  

This was similar to other results reported for small-scale AD plants (Berglund & Borjesson 

2006). The annual energy consumption results have been tabulated in Table 7-5.  

The plant was calculated to produce 5-6,000 GJ of methane (around 170,000 m3 of CH4) over its 
life, with a total gross energy requirement (GER) of 50.9 MJresource/m3CH4. The analysis showed 

the plant had a net-energy output of around -144 GJ per year (total net-energy of around -

3,600 GJ over the plant lifetime). The plant was a net-energy sink rather than a source, thus 

producing less energy per unit of energy used within the plant. The delivered energy was 

used as a domestic heating/cooking gas. As a result the energy required to deliver this type of 
energy (ERE) was calculated to be 1.66 MJresource/MJdelivered. 

The typical cost of a small-scale AD plant (<400m3 digester) is reportedly around £750,000 in 

capital costs and further £190,000 in running and finance costs (Yeatman 2005). Given the costs 

of AD plant manufacture, it is questionable whether the net-energy gains can justify these 
plants as being financially feasible. 
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Table 7-5 Energy analysis for case study AD plant A 

7.4.5 Life cycle net energy analysis of case studies plant B and C 

This study examined another two AD plants, both large-scale but with varying feedstocks 

(plants B and C). One plant (B) was used for electricity generation only, whilst plant C was 
used as a combined heat and power (CHP) plant. Plant B situated in the South West of 

England had a feedstock comprising of 57% farm slurry, 19% blood, 11% food waste, 8% 

chicken manure and 5 % other non-farm wastes (Cumby et al. 2005). The other plant (C) was 

fed with over 90% cattle manure and other crop wastes, but no food or non-farm wastes. The 

two plants were considered large-scale with B = 8000 m3 digester tanks and 277 m3/day input, 

and C = 2800 m3 digester tanks and 92.6 m3/day input.  

The ERE was calculated for both plants based on energy inputs and outputs, in a similar 
manor to the small-scale AD plant (plant A). As shown in Table 7-6 the ERE for both plants is 

reduced when compared to the small-scale AD plant (plant A) in the previous analysis. This 

represented an improvement in net energy performance from that of plant A.  Both plants B 

and C assumed a heat consumption calculated by the correlation found in Figure 7-2. The 
transport energy consumption was obtained from the literature for plant B (Cumby et al. 2005) 

and was correlated for plant C. The electricity consumption was also taken from plant 

operating literature (Cumby et al. 2005;FNR 2005).  

 

 

  

Energy Output 

AD plant biogas yield rate 17.1 m3/tonne 

Annual feedstock input 653.2 tonnes/year 
Annual biogas production 11,170 m3/year 
Annual methane equivalent 7,149 m3/year 
Annual energy output 255,921 MJ/year 

Life cycle energy output from biogas 5,502,293 MJ 

Life cycle displaced energy from fertiliser (used 
for section 7.4.6) 

2,662,000 MJ 

Energy Input 

Transport equivalent input 9,795 MJ/year 
Primary heat energy input 244 MJ/tonne 
Kerosene oil for start-up 227,506 MJ/year 
Primary electricity input 30,892 MJ/year 
Plant construction energy 2,654,925 MJ 

GER of biogas 50.99 MJresource/m3CH4 

ERE biogas fuel 1.66 MJresource/MJdelivered 

Biogas life cycle net-energy -3,613 GJ 
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Table 7-6 Energy analysis of two large-scale plants (Plant B and Plant C) 

The results show that plant B had a GER of around 17.7MJresource/m3CH4, whilst Plant C had a 
GER of 22.9 MJresource/m3CH4. This highlighted that plant B was less energy resource intensive 

than plant C; however both of these larger scale plants used less than half the resources 

required for plant A per unit of biogas produced. Considering the delivered energy, plant B 

showed an ERE of 1.42 MJresource/MJdelivered, whilst plant C 0.88 MJresource/MJdelivered. Although the 

GER of plant B was lower than that of plant C, the delivered energy was only used for 
electricity production. This meant that plant B delivered less energy per unit of energy 

inputted than plant C. The latter plant used a CHP with a conversion efficiency of 73% (FNR 

2005), whilst plant B was only able to deliver electrical energy as an output.  Therefore plant C 

used the biogas more efficiently. 

Plant B required fewer energy resources than plant C due to the latter requiring around 3,900 

GJ per year of energy crops. Although maize silage contributed to less than 10% of the annual 

feedstock intake, 220ha of maize per year required around 18 GJ/ha of energy inputs 

(Martinez-Perez et al. 2007). 

The dominant factor in the ERE calculations was the type of delivered energy provided by the 
system. The lack of heat re-use in plant B meant that it provided less delivered energy from 

the biogas consumed. Plant B was originally designed for CHP operation, but due to financial 

and technical issues, was never implemented. As a result, the biogas was used for electricity 

  Plant B Plant C 

Energy Output   

AD plant biogas yield 10,085 m3/day 3,077 m3/day 
Methane equivalent yield 5,143 m3/day  1,723 m3/day 
Biogas output energy output 184,132 MJ/day 61,688 MJ/day 
Total annual AD plant energy output 67,208 GJ/year 22,516 GJ/year 

Life cycle primary energy output 1,680,204 GJprimary 562,900 GJprimary 

Life cycle delivered energy output 571,269 GJdelivered 410,917 GJdelivered 

Life cycle displaced energy from 

fertiliser (used in section 7.4.6)  
Fertiliser cannot be sold 137,150 GJ  

    
Energy Input   

Heat primary energy input 60,944 MJ/day 21,970 MJ/day 

Electricity primary energy input 10,998 MJ/day 1,019 MJ/day 

Transport energy input 7,812 MJ/day 2,612 MJ/day 
Co-substrate energy inputs - MJ/year 3,878,600 MJ/year 

Total annual energy inputs 29,110,101 MJ/year 13,222,845 MJ/year 

Plant construction energy 84,640,000 MJ 29,624,000 MJ 

GER of biogas 
17.7 GJprimary/m3CH4 22.9 GJprimary/m3CH4 

ERE (delivered energy) 1.42 MJresource/MJdelivered 0.88 MJresource/MJdelivered 

Biogas life cycle net-energy -241,123 GJ 202,705 GJ 
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generation only, reducing the actual delivered energy. The conversion efficiency of the 

electricity generation from both biogas plants was estimated to be around 34% in accordance 

with literature (FNR 2005).  

Comparing the ERE of all three AD case studies showed that plant B performed marginally 

better than plant A, whilst plant C was the only plant to consume less energy than it 

delivered; thus showing an ERE less than one. Although plant A required a significant 

amount of energy resources, the use of the biogas amongst the case studies was the most 
efficient as it was converted directly to heat.  

The GER of the three AD plants was found to be affected by the biogas yield efficiency of the 

materials digested. For plant B, this was around 36.4 m3/tonne of input, whilst for plant C, this 

was found to be 33.2 m3/tonne of input. These outputs were around double that found in the 

small-scale AD plant (17m3/tonne of input). Analysing the GER per methane unit produced, 
(as carried out by Slesser & Lewis (1979)) displayed that the GER of the plants appeared to be 

strongly affected by the biogas yield efficiency of the feedstock material. The scale of the plant 

also allowed the addition of high biogas yielding feedstocks such as food wastes and maize 

silage to boost the biogas output. As the small-scale AD plant operated solely on dairy cattle 

manure, the biogas output was more limited. 

AD plant C was fed using 92% cattle manure. By undertaking a simple further analysis of the 

plant’s total 92.6 m3 of feedstock; 85.1 m3 of manure would be required per day. Using a value 

of 9.6 m3/year/cattle of utilisable manure from dairy cattle (Soffe 2003), an estimate of the 

number of dairy cattle required to feed the digester was calculated. Assuming a 75% capacity 

factor; in line with typical AD plants (FNR 2005), the plant would require manure from 

approximately 2,500 dairy cattle.  

In 2007, there were 652,216 dairy cattle in the South West of England (not including beef cattle 

(DEFRA 2007b). If all dairy cattle waste were to be used in an AD plant such as plant C, the 

region could support around 260 AD plants of this scale. This could provide a significant 

amount of renewable energy to the region, simply from using cattle manure. This will be 

discussed further in the Chapter 10.  

The overall energy analysis study acknowledged that a comparison of the ERE may have 

limitations and should be interpreted with care. This is because the delivered energy of these 

plants differed. The ERE can be used, as in this study, to yield comparative net-energy 

analysis results whilst not taking into account the type of delivered energy. The first law of 
thermodynamics does not differentiate between work and heat, thereby agreeing with this 

analysis in that there is no consideration of the quality of the delivered energy. The second law 

of thermodynamics however, differentiates between energy uses thus allocating a qualitative 

measure to the energy. In this case simply combining electricity and heat delivery together 

may show a misrepresentation of the ERE. The exergy (the measure of the delivered energy 

quality) would have to be considered in order to make the energy uses comparable.  The GER, 

representing the biogas produced in this case, does not take into account the use of the 
delivered energy and as a result can be used as a representation of the energy resource 

requirements of AD plants. 
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7.4.6 Energy analysis including fertiliser as output 

The analyses shown in the previous two sections examined the net-energy analyses based on 

the biogas output from AD only. This gave an understanding of the energy potential of a 
delivered bioenergy fuel such as biogas. Following the conventions of energy analysis the 

‘biogas’ generator could also be credited with the amount of energy (in biogas equivalence) 

that it would have provided in total; thus including the natural fertiliser energy values of the 

digestate (Slesser & Lewis 1979). The study conducted by Slesser & Lewis (1979) calculated the 

displaced energy from adopting natural fertiliser from the digestate as a substitute for 

artificial fertiliser. Slesser & Lewis (1979) added the displaced energy from the fertiliser output 

to the biogas output, to obtain a total energy output of the plant. In this section, a similar 
approach has been undertaken; however there are a number of issues and clarifications which 

have to be addressed.  

The production of biogas is used to deliver an energy fuel. The biogas can be used for any 

chosen delivered energy route. It could also be used as an energy source to manufacture 
artificial fertiliser. The digestate meanwhile, is a by-product of the AD plant. The digestate 

delivers a displacement of artificial fertiliser, rather than delivering a fuel. Additionally the 

fertiliser properties of the digestate would have been present even if the AD process were not 

undertaken. As a result the energy benefits (from displacement) of the digestate as a fertiliser 

were not combined with the delivered energy of the biogas in Table 7-5 and Table 7-6. This 

meant that the ERE of the plants did not take into account the displaced fertiliser energy 

potential. 

The use of the digestate as a fertiliser however could displace the use of artificial fertilisers. 

Considering the embodied energy of fertilisers N, P2O5 and K2O the typical energy consumed 

to manufacture a tonne of each type respectively was found to be 45 GJ, 18 GJ and 11 GJ 

(Nielsen et al. 2003). Nix (2009) reported that from 10 m3 (or 10 tonnes) of cattle farm yard 
manure (FYM), it was possible to recover 17 kg of N, 20 kg of P2O5 and 46 kg of K2O. 

Assuming these energy values for fertiliser production, the energy displaced by the by-

product from AD has been shown in Table 7-5 and Table 7-6. For plant A, 653 m3 of FYM per 

year resulted in a fertiliser energy saving of just under 106 GJ per year. Calculated over the 

whole life of the plant, the energy saving would be 2,662 GJ. Similarly for Plant C, this was 
calculated to be 137,000 GJ. Plant B however, was not eligible to sell its by-product as a 

fertiliser due to the type of waste processed. As this was determined at the time of the site visit 

(May 2008), energy values could not be allocated to the digestate output.   

Assessing multiple outputs from the AD process meant that the energy resource requirement 
(the GER) had to be allocated to the respective output of the AD plant. The outputs were 

considered to be either direct energy fuel as biogas or displaced energy from artificial 

fertilisers. For this, an energy allocation method was chosen in line with the methods 

highlighted in section 6.3.8. Using these allocation techniques the updated GER results have 

been shown in Table 7-7. According to a mass allocation, 40% of the inputs (GER) should be 

accounted for by the biogas production. According to an economic allocation only 12% of the 

inputs should be accounted for by the biogas production. The remainder of the GER inputs are 
allocated to the digestate fertiliser production 
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Table 7-7 Energy analysis of three case study AD plants (biogas & displaced fertiliser as outputs) 

The table shows that as plant B did not produce any artificial fertiliser displacement, it could 

only allocate its GER towards biogas production. Whilst for plants A and C, if an economic 

allocation were used then plant A would show a lower GER for biogas production than plant 
B. As the energy content of a cubic metre of biogas is around 35.8MJ, the results shown in 

Table 7-7 signify that using both economic and mass allocation would result in less energy 

resources being required for biogas production than the energy potential of the gas.   

The analysis has shown how the ERE can produce significantly different results compared to 

the GER as it is affected by the delivery of the energy. Therefore a recommendation is brought 
forward to use the GER to evaluate the operation of an AD plant in terms of energy resources 

for biogas production, whilst the ERE can be used to determine the most efficient way of 

delivering the energy irrespective of the medium.   

7.5 Analysis of energy payback period 

The next stage was to determine the energy payback period (EPP) of the AD plants. The EPP is 

defined as the time taken for the system to output enough energy to cancel out the energy 

invested in the system. In conventional renewable technologies such as wind turbines or solar 

PV, this is simply the amount of time taken for the output energy to equal the invested energy 
at the start of its life. However, as with all bioenergy systems, there is an annual operational 

energy expenditure which must also be taken into account. In this case, the payback is 

determined when the output energy equals the invested initial energy plus the operational 

energy consumption.  

The time taken for an energy system to repay itself is also dependant on how the output 

energy is measured. If the energy outputs of a biogas plant are directly accounted for 

(electricity, CHP or heat delivered from the biogas), then the EPP considers delivered energy 

output only. If the total energy resource that the biogas displaces were considered, then a 

displaced energy payback period is calculated. This is because the biogas has the potential to 

displace existing (predominantly fossil-based) fuel sources.  

The EPP can therefore take two forms: simple energy payback period and displaced energy 

payback period. Although the simple EPP represents a more graspable result, it does not show 

the holistic benefits or drawbacks of an alternative energy source. Additionally, by using a 

simple payback period, the three biogas plants could not be compared as their end-use energy 

pathways differ. For plant A, the displaced heat energy was from kerosene fuel, whilst the 

electricity generation from plant B and C displaced electricity from the National Grid. The 
CHP unit from plant C was assumed to displace natural gas heating.   

  Mass Allocation Economic Allocation 

GER 
Biogas 

(MJresource/m3CH4) 
Fertiliser 

(MJresource/tonne) 
Biogas 

(MJresource/m3CH4) 
Fertiliser 

(MJresource/tonne) 

Plant A 20.4 335.0 6.1 491.3 

Plant B 17.7 - 17.7 - 

Plant C 9.2 257.4 2.7 377.6 
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The displaced electricity assumed a National Grid electricity conversion efficiency of 32.7% 

(Allen et al. 2008b). Plant A was used to displace a kerosene boiler with an average efficiency 

of 85%. Finally, the heat from the CHP plant was assumed to displace a standard natural gas 
boiler of 86% efficiency. Calculations showed that plant A would never be able to payback its 

energy investment, as either simple payback or displaced payback. However when also 

considering fertiliser output, the plant would pay itself back after 22 years, if displaced EPP 

were considered.   Plant B had a payback period of just over a year when considering the fuels 

it was able to displace. Examining the simple EPP, plant B did not pay back over its lifetime. 

Finally, plant C which had an ERE of less than 1, had a simple EPP of 1.2 years and a 

displaced EPP of less than 1 year (shown in Table 7-8). This was lowered further when 
considering the fertiliser output.  

 

 

 

 

 

 

Table 7-8 The energy payback period of three AD plant case studies 

7.6 Summary 

This chapter analysed biogas production with energy analysis techniques. The calculations 
compared the use of large-scale AD plants vs. small-scale AD and a variety of feedstocks. An 

understanding of how biogas output per unit input of feedstock affects the energy output was 

obtained. The most critical factor for an AD plant in terms of energy output is the biogas 

productivity of the feedstock. This result can vary considerably depending on the feedstock 

mixture. However, energy inputs through feedstock production and transportation were 
found to have a significant impact on the ERE of an AD plant. The ERE was also improved by 

around 20% if the fertiliser output is considered in terms of energy.  

The energy analysis represented the energy performance of AD plants taking into account all 

types of outputs. Although the energetic properties of manure as a fertiliser were considered, 

these were not a result of the AD process. Therefore the energy analysis was represented with 
and without the energy benefits of fertiliser displacement.  

These findings, along with LCA results and financial investment appraisal, are discussed in 

Chapter 10. The results are discussed and compared against a number of other renewable 

energy sources and in particular bioenergy production systems. Recommendations are also 
made on the optimum size and setup of AD processes which could be suitable for the South 

West of England.  

Biogas Output Only Plant A Plant B Plant C 

ERE (MJresource/MJdelivered) 1.66 1.42 0.88 
Simple delivered energy (MJ/year) 220,092 22,850,773 16,436,687 
Energy resource saving/year (MJ/year) 258,931 69,880,038 29,734,360 
Simple EPP Never  Never 1.2 years 

Displaced EPP Never 1.3 years 0.4 years 

  

Biogas & Fertiliser Output       
ERE (MJresource/MJdelivered) 1.01 1.42 0.66 
Simple delivered energy (MJ/year) 326,572 22,850,773 21,922,687 
Energy resource saving/year (MJ/year) 365,411 69,880,038 35,220,360 
Simple EPP Never  Never 0.01 years 

Displaced EPP 22 years 1.3 years 0.4 years 
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8 LIFECYCLE ASSESSMENT OF BIOGAS  

This chapter describes the findings from the lifecycle assessment (LCA) study carried out on 

an existing operational AD plant. The work followed the theory described in Chapter 5. The 

LCA studied an AD plant commissioned and owned by the Scottish Executive of the 

Environment and Rural Affairs (SEERAD) since 2003. The plant was designed as an AD 

facility with the aim of biogas production and improved manure management.  

The aim of this study was to assess the environmental impacts associated with production of 

biogas for energy purposes. The feedstock, process layout and biogas use is the same for AD 

processes for energy purposes or pollution control. The overall system therefore did not differ 

and could be used to represent an energy production unit.  

The plant denoted as plant A was suitable for the LCA study due to the extensive availability 

of operational data. Additionally, the plant was found to be one of the few in the UK to 

operate on a single source farm manure feedstock. Based on the findings from the energy 

analysis, it was highlighted that single source (or over 90%) feedstocks appeared to have the 

largest net available energy output.  Therefore this plant was considered as a suitable model 

for the LCA study. Although the plant has been briefly explained and used in the previous 
analyses, a more detailed and comprehensive understanding of the plant has been carried out 

in this chapter. 

8.1 Motivation for study 

Studies of LCA for biogas production were found to be limited and incomplete within the 

literature (Berglund & Borjesson 2006;Ishikawa et al. 2006;Thyø & Wenzel 2007). Although 

there have been studies examining LCA of biogas, these did not appear to follow the 

methodology of standard LCA procedure (BSI 2006). LCA has also been more widely used for 

other bioenergy techniques, rather than biogas production individually (Guine & Heijungs 
2007;Halleux et al. 2008;Nguyen & Gheewala 2008;Spirinckx & Ceuterick 1996).  

The majority of published biogas analyses focused on energy and carbon balances (Berglund 

& Borjesson 2006;Chen et al. 1985; Ishikawa et al. 2006) as opposed to a holistic environmental 

appraisal. Studies which did focus on wider environmental impacts suggested that emissions 
from the AD process can vary significantly depending on feedstock utilisation and end-use of 

biogas (Borjesson & Berglund 2006). Other studies compared biogas against other transport 

fuels and showed that biogas from manure produced the largest reduction in greenhouse gas 

emissions (Thyø & Wenzel 2007). However, biogas from maize silage offered the largest 

greenhouse gas reductions for heat and power (ibid). A recent British study highlighted a 

detailed examination of the environmental impacts of a large-scale AD plant in UK (Cumby et 

al. 2005). However, the study did not examine the environmental impacts in-line with the 
relevant ISO standards for LCA making this study difficult to interpret and compare against 

other future LCAs. This was because the study did not define its system boundaries or follow 

the correct procedure highlighted in 6.3.1.  Similarly, a number of the biogas LCA studies 

mentioned above have not clearly defined the study system boundaries. 

As a result, it appeared that a detailed LCA study of UK biogas production had not been 
carried out. It was concluded that a holistic LCA of a UK biogas plant should be undertaken in 



LIFE CYCLE ASSESSMENT OF BIOGAS 

- 125 - 

 

order to model the environmental implications of using this technology in the South West of 

England. The results could then be compared to previous findings, acknowledging the 

discrepancy between the study’s system boundaries. 

Limitations in data availability and the scarcity of operational data from other AD plants in 

the UK, gave reason for using this AD plant as a basis of study. The importance of using a 

single-source feedstock was also critical. Analysing the effects of other feedstocks would 

change the LCA results considerably. This would have meant that the LCA results were 
unique to a single AD plant only (with specific feedstock), rather than being used a 

representation of possible common AD setups. Therefore, the analysis was representative for 

the digestion of dairy cattle manure only, as this was the most abundant feedstock within the 

South West region and the most common feedstock used in current AD plants. 

8.2 Goal and scope 

The goal of this assessment was to examine and identify the life cycle environmental impacts 
of energy production from anaerobic digestion (AD). The objective was to identify the most 

important factors that affected the environmental load of a biogas generation plant. From 

these factors, the damages caused by the process were analysed, including the damages 

avoided from the displacement of a fossilised fuel.  

By determining the environmental load of biogas production from AD, it was possible to 
identify whether the process had beneficial or detrimental affects on the environment. This 

was assessed using a number of environmental impact categories, including damage to 

human health, damage to ecosystems and the depletion of global resources. The assessment 

examined the production, delivery and the use of the biogas (cradle to grave). The by-product 

of the AD process (the digestate), used as a source of natural fertiliser, was also examined as a 

displacement of mineral-based fertilisers. Throughout the assessment, the production of the 

plant was accounted for and linked to the biogas and natural fertiliser outputs.  The 
environmental impacts were assessed using EI99 LCIA methodology.  

8.3 Plant description 

The plant used for the assessment was based on a farm in the UK and was supplied with 100% 

dairy cattle waste from 130 dairy cattle. The waste was collected during the winter months 

and milking periods. The size of the plant was 250 m3 in digester size.  

The AD setup comprised of a reception pit tank, 80 m3 in size, a single digester tank, a 
digestate tank (1012 m3) and biogas storage tank (5 m3). The feedstock was circulated around 

the plant using a combination of six centrifugal and positive displacement pumps. Other 

components within the AD plant included a macerator used for breaking down the particle 

size of the feedstock, a heat exchanger unit to heat the feedstock and a compressed gas re-

circulation system. All feedstock and gas pumps were powered using individual three phase 

electric motors, controlled by a single control room situated near the heat exchanger unit. A 
schematic of the plant layout is shown in Figure 8-1.  
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Figure 8-1 AD plant layout 

The plant digested 653 m3 of dairy cattle waste (mixture of slurry and manure) per year. The 

plant retention time (RT) was 20 days and the biogas production was measured hourly. On 
average, around 8.89 m3 of biogas was produced per hour during the RT. The feedstock intake 

rate was 12.5 m3/day. The energy used within the plant was divided into two areas: heating of 

the digestate and electricity for pumping, mixing and shaping the feedstock. There was no 

direct water input into the digester; however water from the washing process of the milking 

parlour did enter the reception pit.   The biogas was used primarily for heating the digester 

tank. However, the remaining biogas was delivered to the farmhouse situated on site, used for 

hot water, central heating and used within a Rayburn cooker. The AD plant was too small to 
produce significant biogas for electricity generation, as its feedstock supply was limited.  

8.4 Functional unit 

The functional unit of the analysis was a cubic metre of biogas. As the methane-quality was 

known, this was easily converted to an equivalent cubic metre of methane. The process of AD 

was described to be a multi-output process (see section 6.3.8). As a result, the second output 

(fertiliser) had a functional unit of mass (kilogram). This could be easily converted into a 
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biogas equivalent as it was calculated that one cubic metre of biogas produced 58.47 kg of 

natural fertiliser. 

8.5 System boundaries of the study 

The system boundary of the assessment is shown in Figure 8-2. The analysis system boundary 
commenced when the feedstock was collected from the cattle housing/milking parlour. The 

use of biogas was considered up to the point of use for heating energy. The boundaries did not 

consider the transport and spreading of the digestate as it was unclear as to how the digestate 

was distributed. Emissions associated with the AD plant construction were considered in 

terms of material use (mass) and some key manufacturing processes.  

The biogas was understood to displace kerosene heating oil as a fuel. The fertiliser was 
considered up to production and substitution of artificial fertiliser. The effects of using the 

digestate as an artificial fertiliser were considered outside the scope of the study, as biogas for 

energy use was the primary focus. The study focused primarily on the biogas energy, rather 

than the by-product of AD process. The system boundary was the same as for the energy 

analysis, including the digestate as a potential artificial fertiliser replacement.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8-2 Lifecycle processes involved in biogas production from AD 
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8.6 LCA of plant manufacture 

This section highlights the life cycle inventory LCI calculations and life cycle impact 

assessment (LCIA) results for the manufacture of the AD plant. The data was collected and 

analysed using SimaPro life cycle assessment software. The load towards the environmental 

impact categories was calculated using the Eco-Indicator 99 methodology. The following 

results are for the AD plant manufacture only.  

The LCIA stage enabled the inventory analysis results to be interpreted in terms of 

environmental impacts according to societal preferences (Guinée 2002). The methodology 

assessed the damage of 11 impact categories. These results were then interpreted to determine 

the major contributors affecting the impact categories. In response to this, recommendations 

were made in order to reduce the damage from the impact categories. 

8.6.1 Life cycle inventory data collection 

An inventory of the plant assembly was generated, including major materials and the critical 
manufacturing processes. The material type and quantity was calculated based on findings 

from the manufacturer’s website and site visits to the operational plant (Permastore 2009). The 

analysis also included special coatings and pre-treatment requirements required for the tanks. 

The plant manufacturing data and overall dimensions were obtained from the plant operator. 

A list of materials used within the plant construction is shown in Table 8-1. The list of plant 

components is also given in the Appendix B, with appropriate reference sources for each 

material. 
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Table 8-1 Material weights and volumes for AD plant manufacture 

Plant Components Assembly component Weight/size Material 

Digester Tank Wall 22,307 kg Steel 

 Insulation 623 kg Polyurethane 

 Cladding 1,797 kg Steel 

 Nuts, Bolts and Other 184 kg Stainless Steel 

 Base (for all feedstock tanks) 182 m3 Concrete 

 Seals 25.6 kg Sealant 

Digestate Tank Wall 46,323 kg Steel 

 Nuts, Bolts and Other 310 kg Stainless Steel 

 Seals 42.8 kg Sealant 

Reception Tank Wall 8,379 kg Steel 

 Nuts, Bolts and Other 83 kg Stainless Steel 

 Seals 11.52 kg Sealant 

Biogas Storage 

Tank Lid Weight 0.194 m3 Concrete 

 Outer Skin 80 kg Glass Reinforced Plastic (GRP) 

 Base 0.75 m3 Concrete 

Heat Exchanger 

Unit External Slurry Pipe 555 kg Stainless Steel 

 Slurry Pipe to Digester 472 kg Stainless Steel 

 Internal Water Pipe 101 kg of Stainless Steel 

 Insulation 40 m Lagging Insulation (Rockwool) 

 Container 2,230 kg Steel 

Stirring Device Piping and Valves 214 kg Stainless Steel 

Auxiliary 

Equipment x7 Electric Motors 160 kg Cast Iron 

  23 kg Copper 

   23 kg Steel 

 x3 Centrifugal Pumps 108 kg Cast Iron 

 x2 Positive Displacement Pumps 41.6 kg Cast Iron 

 X2 Other Pumps 21.3 kg Cast Iron 

  0.3 kg Steel 

  0.3 kg Steel 

Electrical Control 

Unit Main Body 9 kg Steel 

 Plastic Components 6 kg Plastics 

 Circuit Board 3 kg of Printed Wiring Board 

 Wiring 2 kg Cables 

Digester Pre-Heat Kerosene Boiler 9 kg Aluminium 

  0.06 kg Brass 

  6 kg Stainless Steel 

  1 kg Plastics 

  10 kg Insulation (Rockwool) 

  140 kg Steel 

  4 kg Copper 

Digester heater Biogas Boiler 14 kg Aluminium 

  0.09 kg Brass 

  9 kg Stainless Steel 

  2 kg Plastics 

  15 kg Insulation (Rockwool) 

  211 kg Steel 

  6 kg Copper 

Other  20 kg Stainless Steel 
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The plant had seven three-phase electrical motors installed. The manufacturing of these 

motors was based on Mueller & Besant (1999), where data was obtained from a range of 

electric motor manufacturers. A similar methodology was adopted for interpreting the 
construction of centrifugal and positive displacement pumps. The primary construction 

material (cast iron) data was then identified within the EcoInvent database (Frischknecht et al. 

2005) and entered in the SimaPro LCA software.  

The AD plant tanks were manufactured from steel. The tank wall thickness was understood to 
be around 12mm, through communications with the plant operator and reviewing the plant 

manufacturer’s website (J. Gascoigne, Greenfinch 05/05/2008 personal communication; 

Permastore 2009). The wall insulation material (polyurethane) within the digester covered the 

inner lining of the tank in order to miminise waste heat. The insulation wall thickness was 

assumed to be approximately 80mm in accordance with literature (Ecofys 2005). The digestate 

and reception pit tank did not require insulation materials as these tanks did not undergo the 

digestion process. The heat exchanger unit was housed within a container of similar size and 
layout as a standard shipping container. The heat exchanger itself was constructed using 

stainless steel piping with a rockwool lagging around the heat exchanger.   

The land requirement of the plant was also considered part of the construction phase. The 

land use for the plant was measured to be approximately 700m2. The original land type was 

‘farmed land’ and it was transformed from farming land into industrial land.   The use of the 
EcoInvent database allowed the input of land use type and the amount of land required (in 

square metres). This accounted for the possible environmental impacts of land transformation. 

The database was based around the CORINE land cover database created by the European 

Environment Agency (European Environment Agency 1999). The database assessed the land-

use of 12 different EU member states incorporating information such as; state of individual 

environments, quality and abundance of water sources, land-cover structure and state of soil, 
quantities of toxic substances discharged into the environment and list of natural hazards. A 

detailed explanation of the CORINE datasets has been published by European Environment 

Agency (1999). 

The manufacture of the plant was then compared to the functional unit (1 cubic metre of 

biogas). This enabled the impacts of the plant manufacture to be evenly distributed across the 
entire biogas output of the plant. Based on a known annual feedstock input, and assuming a 

plant life span of 25 years, this equated to 16,330 m3 (or tonnes) of feedstock used throughout 

the whole life of the plant. One cubic metre of biogas required 58.47 kg of waste as feedstock. 

Therefore, the emissions of the plant manufacture contributed to 3.58e-6 of plant, per metre 

cubed of biogas output. As the plant life span was not known, an estimation was used.  
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8.6.2 Environmental impacts of AD plant manufacture – characterised results  

 According to the EI99 methodology adopted, the results for the characterisation stage were 

obtained by multiplying the inventory quantity (measured in based S.I. units) by the damage 
factors obtained from the Eco-Indicator 99 methodology. Following this, the results were then 

grouped into their corresponding impact categories and the percentage contribution was 

obtained for each impact category. The results show the contribution of each sub-assembly 

towards each impact category (Figure 8-3).  

 

 

 

 

 

 

 
 

 

 

 

 

 
Figure 8-3 Characterised data for AD plant manufacture 

The key findings of the characterised results were as follows: 

o The largest contributors towards the impact categories were the digester and digestate tank 

manufacturing. These two tanks made a relatively large contribution towards impact 

categories: carcinogens, respiratory inorganics, respiratory organics, climate change, 

radiation, ozone layer depletion, ecotoxicity, acidification & eutrophication, minerals and 
fossil fuel resources. 

o The reception tank was the third highest contributor (overall) towards the impact 

categories. As the construction materials for these three tanks were the same, this showed 

that a common material or manufacturing processes could be contributing towards the 

impact categories.  

o The heat exchanger unit contributed towards all the impact categories, with a greater 

contribution towards ecotoxicity.  
o Although ‘miscellaneous pumps’ and ‘miscellaneous motors’ represented 16 separate 

assemblies, the contribution towards the impact categories was insignificant.  

The largest contributors to nearly all the impact categories were the largest sub-assemblies 

within the plant. Both of these assemblies had the highest material usage (a combined 
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consumption of over 60 tonnes of steel). The impact on carcinogenic effects was affected 

greatly by the steel use within the plant. This was due to the disposal of dust by-products 

from steel production. Other contributors to carcinogenic effects were due to the disposal of 
coal ash into landfill, which was used for electricity production. The emissions from iron ore 

extraction, used for steel production, affected the impact category of respiratory inorganics. 

This was due to the particulates emitted from the iron extraction process. Particulate matter 

can be generated by crushing, conveyance of crushed ore, blasting and transportation 

(Graedel & Howard-Grenville 2005).  

Finally, the impact category ‘land use’ was mostly contributed to by the transformation of the 

land (around 700m2) into industrial land. The land was assumed to be converted from normal 

grazing land for cattle to industrial land. This caused damages to ecosystems, because of the 

change in land use. The unit for measuring the effects of land-use was the potential 

disappeared fraction of a species on land per year per square metre (PDF*m2yr).  

8.6.3 Environmental impacts of AD plant manufacture – normalised results 

Characterised data only represented the relative percentage contribution to each impact 

category. Therefore, at this stage it was not possible to determine which impact category was 

most significant, as the impact categories were all scaled to a percentage. The approach used 

by EI99 is to model the impact categories and compare the results against average emissions 

based in Europe. This stage converts the characterised data (DALY, PDF*m2yr and MJ) and 
normalised the data, thus making it dimensionless.  

All the following graphs represented within this chapter will show the normalised data of 

varying parts for the biogas and fertiliser production. The graphs indicate a positive result (i.e. 

positive y axis) if there is a damage caused to the environment; whilst a negative result 
(negative of the y axis) shows a benefit towards the environment.  

The results in Figure 8-4 show how the impact categories compared to the average emissions 

per inhabitant in Europe. Assessing the impact category of climate change, for example, 

showed that the manufacturing of the plant emitted four times more greenhouse gases than 

the average European inhabitant emits in one year. The highest impact category was found to 
be respiratory inorganics, followed by fossil fuel depletion, mineral depletion, land use change 

and climate change.  

The most significant impacting categories (respiratory inorganics and fossil fuel resource 

depletion) were nearly three times greater when combined than the other impact categories. 
Respiratory inorganics, carcinogens, radiation, ozone layer depletion and 

acidification/eutrophication were considered to have minimal impact compared to the other 

categories.  

Depletion in fossil fuel resources was found to occur through the use of heavy oils, natural gas 

and hard coal consumed for electricity production. These resources were also used for heat 
generation, for manufacturing of steel components and transportation requirements. These 

processes were considered necessary within the manufacturing of the AD plant. However, 

efficiency implementations, such as using recycled steel, reducing overall steel use, 

minimising transport distances etc. could reduce the impact on fossil fuel depletion.  
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Figure 8-4 Normalised data for AD plant manufacture 

The use of insulation material within the digester (polyurethane) was also found to have an 
impact on the depletion of fossil fuels. It was estimated that the plant used over 600 kg of 

polyurethane. If other materials were used such as cork or sheep’s wool (organic materials), 

the fossil fuel consumption in the digester tank may have been reduced by over 70%. 

Polyurethane requires 85.2 MJ/kg of fossil fuels, whilst sheep wool and cork require around 

20MJ/kg of material.   

Damages to human respiratory systems can be caused through the emissions of a number of 

inorganic substances. In this study these were found to include particulate matter (PM), 

nitrate and sulphate, sulphur trioxide (SO3), ozone (O3), carbon monoxide (CO) and nitrous 

oxide (NOx). These substances were found to cause chronic health effects and mortality. The 

majority of the contribution towards respiratory inorganics during the plant manufacture was 

due to the initial stages of steel manufacture. When obtaining iron ore, blasting techniques 
were used in order to separate the ore from the original source. The blasting created 

particulates of 2.5-10 µm in diameter. This particle size is sufficiently small to penetrate the 

human respiratory system and bring about serious health effects. Diesel combustion was also 

found to generate particulates, which may have lead to similar health effects.  

Mineral resource depletion was mainly affected by the production of stainless steel (over 70% 
of the total impact). The composition of typical stainless steel (316-grade for example) is as 

follows: 16-19% chromium (Cr), 10-14% nickel (Ni), 2-3% molybdenum (Mo) and less than 2% 

other elements. The use of Ni, Mo and Cr are valuable mineral resources. As a result the 

depletion of these materials contributed significantly towards this impact category. Research 

carried out within the EI99 methodology showed that the resource depletion damage from 
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extracting Ni was 23 times greater (in terms of MJ surplus/kg) than that of Cr. Whilst Mo was 

twice that of Ni (Swiss Centre for Life Cycle Inventories 2007).  

The plant used around 1,750 kg of stainless steel, primarily for heat exchanger pipes and 

circulatory piping around the plant. This piping was required to be durable and maintenance 

free; therefore, a high safety design factor was used when specifying the wall thickness of the 

piping. As a result, this impact could not feasibly be reduced.  

8.7 Life cycle inventory and LCIA of AD plant use 

This section highlights the life cycle inventory calculations and life cycle impact assessment 

results for the AD plant use-phase. The data was collected and analysed using SimaPro life 
cycle assessment software. The load towards the environmental impact categories was 

calculated using the Eco-Indicator 99 methodology. The following results are for the AD plant 

use phase only.  

8.7.1 Life cycle inventory analysis 

The direct inputs into the AD process were the feedstock material, the electricity use within 

the plant and the heat energy required to heat the feedstock. Other indirect inputs included 

the energy consumed in the farming machinery. This was treated as on-site feedstock 

handling energy requirements. Other indirect inputs included the water consumption used to 

wash the milking parlours and cattle housing. This was carried out primarily for hygiene 
purposes, although the addition of water to the feedstock was beneficial to the AD process. 

However, it was considered outside the system boundaries, as the AD process did not affect 

the quantity of water used.   

Under normal operating conditions, the plant produced 8.89m3/hr of biogas. Of this, around 
58-64% was methane (CH4). Using an intake of 12.5m3 per day of feedstock and knowing that 

the total annual feedstock input was 653 tonnes, resulted in a plant operational time of 52.24 

days per year (1,253 hours per year). The findings suggested that the capacity factor of the AD 

plant was as low as 14%. This meant that the impacts of the manufacturing stage were 

distributed over a lower output of biogas. This resulted in a higher environmental impact per 

unit output of biogas from the plant manufacture emissions.   

The feedstock used was understood to be a mix of farmyard manure (FYM) and cattle slurry. 
A ratio of 55:45 was chosen, in accordance with other UK studies (Mistry & Misselbrook 

2005;Williams et al. 2006). This was denoted as ‘cattle waste’ within this study. The Total 

Solids (TS) and Volatile Solids (VS) of the waste were 8% and 85% respectively. Using data 

obtained from the site visit, it was calculated that for every 12.5m3 of waste entering the plant; 

approximately 214m3 of biogas was produced over a 24-hour period. Therefore, the biogas 
production rate was 17.1m3biogas/m3waste.  

8.7.1.1 Heat and electricity consumption 

Although the power ratings were known for most of the electric motors, the plant had no 

recordings of individual equipment usage times. Despite this, results from the plant showed 
that around 2,806kWh of electricity were used annually. Based on 653 m3 of waste, a 
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calculated value of 4.29kWh/m3 of waste was used for total plant electricity consumption. This 

equated to around 0.29 kWh/m3 of biogas generated.  

Heat energy required for the plant was derived from a mixture of burning some of the biogas 
produced and a small quantity of kerosene. The heat exchanger burner used around 11.5m3/hr 

of biogas during operation. However, this was ‘as required’. As the maximum biogas yield 

was only 8.89m3/hr, the heat exchanger usage was maintained at a minimum. Data from 

similar German biogas plants were used to estimate the annual heat energy consumption, 
based on similar scales and feedstock (FNR 2005), as this data were not recorded for the plant 

studied. This was considered acceptable, as climatic conditions in Germany are roughly 

similar to those within the UK. The data showed a heat energy requirement of around 244 

MJ/m3 of waste (14.5MJ/m3 of biogas).  

The average annual domestic biogas energy demand was calculated to be around 3,200 m3, 
with a detailed calculation procedure shown in Appendix B. The remaining biogas was 

assumed to be allocated to the heating of the digester. The calculation steps suggested that the 

AD plant used around 273 MJ/m3 of waste.  

8.7.1.2 Raw materials, diesel use in machinery, kerosene use and carbon balance 

The feedstock collection point was situated less than 20-30 metres from the digester, therefore 
the transport distance was not predicted to have a significant impact. Nevertheless, diesel 

used by farm-machinery was considered. The machinery was estimated to consume 18 

MJ/tonne of feedstock in accordance to similar research on biowaste AD plants (Spielman et al. 

2007b).  

The generation of animal waste was considered outside of the system boundaries, since the 
manure was a by-product of milk production. As a result, the use of manure for energy 

purposes produced a net consumption of CO2 as a resource. This is known as carbon fixation 

where a value is given (kg or grams) to the amount of CO2 used to make biogas. The carbon 

content of the organic matter was used to calculate the effective CO2 savings. This value was 

generated from the composition of the waste, and is shown in Table 8-2.The data obtained to 

calculate this composition was actual data recorded from the plant and was supplied by the 
plant operator.  

 
 Cattle Waste Input (%) 100  

Dry Matter (%) 8 

Source: (J.Gascoigne, Greenfinch 05/05/2008, 

personal communication) 

Organic percentage of dry matter (%) 85 

Source: (J.Gascoigne, Greenfinch 05/05/2008, 

personal communication) 

Carbon content of organic matter (%) 58 Source: (Leeuwen & Vermeire 2007) 

 

Table 8-2 Dairy cattle manure material properties 

The carbon dioxide fixation per volume of cattle waste was calculated to be around 150kg/m3 
of waste. In accordance to similar studies, this result was significantly low. Studies carried out 

for the EcoInvent database showed that CO2 fixation for 1 m3 of biowaste was around 595kg. 
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This was due to the biowaste material’s high dry matter concentration. As the dry matter for 

the FYM was much lower it was concluded that the value obtained was suitable for the 

analysis. Therefore, for this particular biogas plant, 150kg of CO2 was required for biogas 
production for every tonne (or cubic metre) of waste processed. This value accounted for the 

carbon savings by using a biomass fuel as an energy source.  

The study considered the feedstock for biogas production as a “free resource”, implying all 

the inputs and emissions associated with the waste at the point of delivery were not included 
in the LCA. The impacts of making the feedstock (in this case a manure) should not be 

considered as these impacts would still occur if the feedstock was not used for biogas 

production.  

Although the feedstock can be considered as a free resource, it has a carbon content which 

should be accounted for. When focusing on bioenergy forms the balance of the carbon is 
critical. One of the primary attractions for biomass use as a renewable energy source is its 

capability to create a balanced carbon cycle from production, extraction and use. For a correct 

representation of the carbon balance for biomass, the whole balance of carbon should be 

accounted for, signifying the carbon input must be equal to the output carbon. For this reason 

it is considered necessary to include the biogenic carbon potential of the waste.  

This is necessary in order to achieve a neutral carbon balance whilst assessing the 
environmental impacts of bioenergy. If this approach were not used, biomass would be 

represented as a carbon emitting source, as carbon dioxide would be emitted during the 

combustion stage. The stored carbon within the biomass would therefore be accounted for in a 

similar way as the carbon emissions of fossil fuels; thus suggesting that biomass and fossil 

fuels have similar carbon emitting characteristics. An alternative to this could be to extend the 
system boundary to future plantation growth which would then recover the emitted carbon 

dioxide from the biogas combustion. Either way, the carbon within the biomass would 

ultimately be sequestered.  

The AD plant required 1,500 litres of kerosene heating oil per year for the digester pre-heating 

start-up. As soon as a sufficient quantity of biogas was produced the kerosene boiler 
terminated, allowing the biogas boiler to operate and heat the feedstock. The net calorific 

value of kerosene for heating oil was found to be 34.8 MJ/litre (Esso 2004), equating to 52.2 GJ 

of kerosene use per year. The resource requirements for making one MJ of kerosene were 

obtained from the EcoInvent database where the production inputs and outputs were 

analysed. As the dataset was a European representative, it was deemed adequate for the 

analysis.  
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The combustion of one MJ of kerosene, which was not directly available from the EcoInvent 

database, was obtained and compared against a number of literature sources (IPCC 2006;Niels 

et al. 1997; Spielman et al. 2007a). Studying the literature displayed extensive reports of the 
emissions from kerosene combustion as aircraft fuel, whilst combustion from standard boiler 

use was more limited. A number of literature sources covering a wide range of kerosene 

combustion operations, were recorded and shown in Table 8-3.  

Table 8-3 Emissions from kerosene combustion from literature sources (*Swiss Centre for Life Cycle 

Inventories 2007) 

The combustion of kerosene was found to be dependant on the composition and 

characteristics of the fuel. The sulphur dioxide emissions were directly linked to the sulphur 
content of the fuel (Spielman et al. 2007a). The way in which the fuel was combusted also 

affected the emission levels of carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxide. 

Table 8-3 shows a range of emissions from kerosene combustion from a number of literature 

sources. The emissions varied significantly when compared against each other therefore, an 

average was taken from the literature sources.  

The combustion of biogas was also considered in the study. The emissions of farm-scale AD 

combustion were studied extensively by Heck (2003) and reproduced by Spielman et al. 

(2007b). The data from these sources were compared to similar literature studies. Five datasets 

of emissions from biogas combustion were obtained and analysed (one of the datasets was for 

natural gas only, however as the key constituent of natural gas is methane, it was considered 

adequate for this study). The emissions varied depending on the conditions of combustion 
and the plant scale. Hydrogen sulphide emissions were found to be zero because it was 

converted to sulphur dioxide during combustion Cumby et al. (2005).   

 The dataset obtained from Cumby et al. (2005) represented biogas boiler emissions. However, 

the actual power of the boilers was unknown; therefore the emissions data could not be 

converted to unit energy output (MJ). This also applied to data obtained from landfill gas 
engine emissions (Environment Agency 2004). Although the landfill gas was assumed to have 

a similar composition to biogas, the emissions were calculated per cubic metre of exhaust gas, 

which could not easily be converted. An aggregation of the data obtained is shown in Table 

8-4.  

 

(Spielman et 

al. 2007a) 

(Niels et 

al. 1997) 

Light fuel oil 

burners* 

Heavy oil 

burners* (IPCC 2006) 

Manufacturer 

(Grant ltd. 

02/09/2009 

personal 

communication) 

 g/MJ g/MJ g/MJ g/MJ g/MJ g/MJ 

CO2 72.2 157 74 77.9 71.5 75 

CO 0.085 1.09 0.009 0.004 - 0.005 

SO2 0.023 3.36 0.046 0.0468 - - 

NOx 0.32 2.76 0.028 0.05 - 0.057 

HC (VOC) 0.025 - 0.00029 0.00051 - - 

NMVOC 0.024 8.13 - - - - 

CH4 0.0011 1.78 0.0002 0.001 - - 

H2O 28.4 402 - - - - 

N2O 0.00069 0.0019 0.0007 0.0006 - - 
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Table 8-4 Emissions from biogas combustion from literature sources 

8.7.1.3 Emissions to air and soil from AD outputs 

The biogas produced did not undergo any cleaning or scrubbing processes to remove the 
hydrogen sulphide. As a result, these operations were not considered within the study. The 

study also assumed that no leakages occurred through pipes and seals. When digestate was 

stored in a post-digestion container, it maintained decomposition and released biogas at a 

lower rate. However, the analysis discovered it was financially unfeasible for the plant 

operator to extend the RT in order to capture the remaining available biogas. Therefore, the 

digestate emissions were released into the atmosphere through an open-top digestate tank. 

More advanced AD processes recapture the excess biogas through a second stage digestion 
process. 

The analysis concluded that the feedstock was still digesting on entering the digestate tank. 

This was conceivable as the RT for the digester was amongst the lowest researched at just 20 

days (commonly the RT is 30-40 days, if not longer). The Volatile Solids (VS) decomposition 

was approximately 70% within the digester, roughly in line with other similar European 
plants (FNR 2005;J.Gascoigne, Greenfinch 05/05/2008 personal communication). An analysis 

was carried out to determine the CH4 and CO2 yield from the post-digestion storage of the 

waste. 

The analysis used the results obtained from a similar study using single source cattle manure 
as a feedstock (Spielman et al. 2007b). The source suggested that CO2 and CH4 emissions 

occurring from storage and handling (which would not have occurred for non-digested 

manure) were equivalent to 0.0212 kg/m3biogas for CH4 and 0.0759 kg/m3biogas for CO2, published 

by Spielman et al. (2007b) using data from Edelmann et al. (2001). The study from Edelmann 

et al. (2001) only considered the airborne emissions above those which would be naturally 

occurring from non-digestion of manure. Additionally, the study focused only on cattle 

manure feedstock, similar to the present study. As a result, these values were suitable for the 
LCA study. 

The storage of digestate also releases other airborne emissions. These include carbon 

monoxide (CO), ammonia (NH3), hydrogen sulphide (H2S) (Deublein & Steinhauser 2008) and 

dinitrogen monoxide (N2O) (Spielman et al. 2007b). The study analysed the following 

 

(Cumby et 

al. 2005) 

(Borjesson and 

Berglund 

2006) 

(Borjesson and 

Berglund 

2007;Gustavsson 

2002;Ishikawa et 

al. 2006) 

(Borjesson & 

Berglund 

2006;Edelmann 

et al. 2001) 

(Spielman et 

al. 2007b) 

SO2 (mg/MJ) 0.48 mg/s 2.9 0.3889 7.37 5.5 

CO2 (kg/MJ) 3.9 kg/s 0.011 0.0580 0.017886 0.0187 

NOx (mg/MJ) 0.63 g/s 9.5 5.0 11.99 15.4 

CO (mg/MJ) 1.26 g/s 7.6 - 29.92 35.2 

CH4 (mg/MJ) - 1.9 - 0.6116 17.6 

HC (mg/MJ) - 2.9 1.0 0.6116 2.2 

PM (mg/MJ) - 3.8 - 0 0.033 

N2O (mg/MJ) - - - - 1.1 
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emissions: NH3, N2O and H2S. The production of CO was found to be negligibly low (less than 

0.2%) (Deublein & Steinhauser 2008) and therefore was not considered. According to Zicari 

(2003) H2S emissions are combusted and converted into sulphur dioxide SO2. Therefore these 
emissions were only considered for the combustion stage of the biogas.  

It was established that around 182g of N2O was emitted per 10,260 kg of dairy cattle waste 

during animal storage (Williams et al. 2006). This equated to around 0.0177 g/kg (0.00104 

kg/m3biogas) of cattle waste. Other sources showed that N2O emissions were around 0.00105 
kg/m3biogas assuming a biogas quality of 60% (Borjesson & Berglund 2006). This value was 

considered accurate for use within the study as the plant setup was very similar. N2O 

emissions from biowaste (a mixture of food and crop waste) digestion were reported to be 

around 5-6 times greater (Spielman et al. 2007b).  

In large scale AD plants, the use of a nitrogen removal processes (commercially known as 
ANAStrip3) was found to eliminate nearly 100% of ammonia emissions. Ammonia in biogas 

was found to create damage to after burners but was also considered to have detrimental 

effects on the environment (Deublein & Steinhauser 2008). However due to the scale of the 

plant studied, no ammonia filter was used, consequently the emissions of ammonia were 

considered.  

From UK studies of undigested dairy cattle waste, the recorded ammonia emissions per cubic 
metre of waste were around 0.61kg/m3 (Williams at al. 2006). However studies from European 

dairy cattle waste AD plants, reported an ammonia emissions increase from pre to post-

digestion of around 8-9% (FNR 2005). This equated to an ammonia release of around 0.67 

kg/m3 of manure (0.039 kg/m3biogas). The results from Edelmann et al. (2001) showed that 

ammonia released from the storage and digestate handling was calculated to be 0.0102 
kg/m3biogas for cattle manure. The study adopted an average of these results (around 0.025 

kg/m3biogas) and a sensitivity analysis was carried out using both extremities. The overall 

emissions to air from the digestion of cattle waste are shown in Table 8-5.  

 
Emissions to Air Unit Amount 

CH4 Methane kg/m3biogas 0.0212 

CO2 Carbon dioxide kg/m3biogas 0.0759 

N2O Dinitrogen monoxide  kg/m3biogas 0.0012 

NH3 Ammonia  kg/m3biogas 0.0249 

CO Carbon monoxide - Trace 

Table 8-5 Emissions to air from digestate handling 

The emissions to soils were obtained from the composition of the cattle waste pre and post-

digestion. Quantities for calcium (Ca), magnesium (Mg), sodium (Na), zinc (Zn), copper (Cu), 

iron (Fe), manganese (Mn), aluminium (Al) and sulphur (S) were obtained from the Scottish 
Agricultural College (SAC). These were recordings taken during a digestate sampling at the 

plant and have been shown in the Appendix B. Other heavy metals found to be present in 

cattle manure, included: phosphorus (P), cadmium (Cd), chromium (Cr), nickel (Ni), lead (Pb) 
                                                        
3 ANAStrip is a process that re-circulates the gas into a high temperature, low-pressure stripper 

leaving the gas ammonia-enriched. The gas is then passed through a scrubber where the ammonia 

reacts with an absorbent in water to create ammonium sulphate, which can be used as fertiliser.  
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and potassium (K). This data was obtained from various literature sources (Pinamonti et al. 

1997;Sweeten et al. 1986;Van Horn et al. 1994). The total emissions to soil are shown in Table 

8-6. 

The study found that although this chemical composition was present within the digestate 

and could possibly have an impact on environmental emissions, these chemicals were not 

produced as a result of the AD process. Studies from Pinamonti et al. (1997) and Williams et 

al. (2006) only showed the chemical compositions from undigested cattle manure as opposed 
to digested manure. As a result, these values could not be used when creating the LCI. The 

real emissions from AD were therefore from the difference between undigested and digested 

feedstock.   

 

 

 

 

 

 

 

 
 

 

 

Table 8-6 Emissions to soil from digestate. Source (a) denotes data from the SAC, whilst (b) is data 

obtained from Pinamonti et al. (1997), Sweeten et al. (1986), Van Horn et al. (1994)  

Research carried out by the Scottish Agricultural College (SAC) examined the entry feedstock 

composition and the effluent composition of manure as a feedstock. The study found that 

there was a slight increase in all of the chemicals examined, however this change was very 

small. These were considered the actual contributors towards the LCI of the digestate. The 
results in Table 8-6 are recorded data of the actual plant used for this study.  

The digestate from the plant was assumed to displace artificial/inorganic fertilisers. Inorganic 

fertilisers are available in a range of forms with varying compositions of ‘active ingredient’, 

which are N, K2O and P2O5 (Nix 2009). These were found to be the key elements in the 

digested manure making it suitable for fertiliser use. The outputs of these nutrients from the 
AD digestate were obtained from data published in ADAS (2007).  This report published 

actual nutrient values of the AD plant for this study. The values in Table 8-7 show the nutrient 

composition of the digestate along with the potential inorganic fertilisers that the digestate 

could displace. The analysis carried out on the AD plant showed that N nutrients remained 

the same, whilst P2O5 and K2O nutrient values decreased by 2.5% and 2% respectively.  

Emissions to 

Soil 

Digestate 

Value 

∆∆∆∆ Digestate 

vs. intake Unit 

Phosphorus a 0.040 0.00003 kg/m3biogas 

Cadmium b 3.274E-06 - kg/m3biogas 

Chromium b 0.0002 - kg/m3biogas 

Copper a 0.0008 0.0001 kg/m3biogas 

Nickel b 5.613E-05 - kg/m3biogas 

Lead b 0.0001 - kg/m3biogas 

Zinc a 0.0007 0.0002 kg/m3biogas 

Iron a 0.011 0.002 kg/m3biogas 

Calcium b 0.341 0.0299 kg/m3biogas 

Potassium b 0.035 - kg/m3biogas 

Magnesium a 0.114 0.008 kg/m3biogas 

Sodium a 0.049 0.007 kg/m3biogas 

Manganese a 0.002 0.0002 kg/m3biogas 

Aluminium a 0.004 0.0009 kg/m3biogas 

Sulphur a 0.023 0.003 kg/m3biogas 
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The digestate nutrients were understood to be capable of displacing three typical inorganic 

fertilisers. The three inorganic fertilisers, which the digestate could displace, were ammonium 

nitrate (N), triple superphosphate (P2O5) and potassium chloride (K2O). These inorganic 
fertilisers were chosen based on the similarities to the digestate properties (Nix 2009;Soffe 

2003).  

The analysis found that a cubic metre of digestate could contribute approximately 18 kg of 

inorganic fertiliser substitution, if muriate potash, triple superphosphate and ammonium 
nitrate were to be displaced. The LCI data for these three inorganic fertilisers were reviewed 

and obtained from the EcoInvent database (Nemecek & Kagi 2007). These inventories were 

representative for European scenarios and incorporated the same concentration of active 

ingredient as shown in Table 8-7 (Nix 2009; Soffe 2003).  

 

 

 

 

 

 

 

Table 8-7 Nutrient composition of digestate 

8.7.2 Environmental impacts of AD plant use phase – biogas and fertiliser production 

The next stage determined the impact categories affected by the use-phase of the AD plant. It 

then compared these results to the environmental impacts caused by the plant manufacture. 

The impacts from the plant manufacture were scaled to the equivalent of a single unit of 

biogas output (one cubic metre). It was calculated that the emissions from a single cubic metre 
of biogas were equivalent to the emissions from 3.58e-6 parts of the plant (meaning that over 

the plant’s entire life it produced 279,329m3 of biogas and one cubic metre of biogas effectively 

required 3.58e-6 parts of the plant).  

As there were two outputs of the AD plant, it was necessary to adopt the allocation results 

obtained in section 6.3.8. The results showed that according to an economic allocation, 12% of 
the impact category results were allocated towards the biogas production. Following a mass 

allocation, 40% of the impact category results were allocated towards the biogas production. 

The results also displayed the environmental impact categories with no allocation meaning all 

the environmental effects were a result of the biogas production; thus ignoring (momentarily) 

the fertiliser production. This was used simply as a comparative reference point.  

Figure 8-5 shows the allocated and unallocated normalised impact category results, compared 

against the impact category results of the plant manufacture. The allocation methodology was 

found to have a very large effect on the scale of the environmental impacts for biogas 

Nutrient properties Input (feedstock) Output (digestate) 

N Fertiliser (kg/m3) 2.9 2.9 

P2O5 (kg/m3) 1.11 1.08 

K2O (kg/m3) 4.3 4.2 

   

Inorganic fertiliser 

displacement 

  1m3 digestate is 

equivalent to Concentration 

Ammonium Nitrate 35% N conc. 8.29 kg 

Triple Superphosphate 47% P2O5 conc. 2.3 kg 

Muriate of Potash 60% K2O conc. 7.2 kg 

(Potassium Chloride)   
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production. For some impact categories such as respiratory inorganics, the difference in 

allocation percentage had a significant effect on the damage towards that impact category.  

The most significant environmental impact from the normalised results was the effect on 

respiratory inorganic from biogas production. Over 70% of the total impact was contributed 

by the biogas production and the remaining 29% affected by the plant manufacture. The 

emissions contributing towards respiratory inorganics were primarily found to be a result of 

the air emissions from the digestate storage. Other emissions from kerosene combustion at 
start-up, diesel and biogas combustion for digester heating, also contributed to this impact 

category. Emissions such as particulates and sulphur dioxide contributed towards the high 

impact on respiratory inorganics.  

 

 

 

 

 

 

 

 

 

 

 

Figure 8-5 Normalised data of biogas production vs. AD plant manufacture (positive results indicates a 

damage to the environment whilst a negative result indicates a benefit) 

The production of biogas showed a negative effect on the impact category of climate change. 

This was due to the potential carbon dioxide emissions sequestered from the organic matter. 

The CO2 fixation was accounted for as a consumption of the CO2 resource. This theory 
assumed that carbon dioxide was consumed to generate the feedstock (animal feedstock 

production) and therefore was required within the plant. The CO2 is stored within the biogas 

in the form of CH4 (and some CO2) until the biogas is combusted. 

Other areas in which the production of biogas contributed significantly towards the 
environment, was through the detrimental affect on fossil fuel reserves. This was due to the 

depletion of kerosene and diesel fuel. EI99 methodology values the reserves of oil more highly 

than the reserves of coal, based on the energy required for extraction. This may be seen 

through the current market prices of oil and coal where oil is valued at around 3.3p/kWh 

whilst coal is valued at 1.1p/kWh (DECC 2008). However these may be more affected by 
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market demand rather than resource availability. Therefore, the use of kerosene and diesel 

fuel throughout the process contributed significantly to the impact category of fossil fuels. In 

addition to this, the biogas used to heat the digester was relatively high compared to similar 
AD plants for other literature sources (Spielman et al. 2007b). As a result, the plant efficiency 

was lower. 

The end-user demand for biogas (the farmhouse, in this study) was found to be smaller than 

the available biogas. Excess biogas would therefore be used to heat the digester further (on 
occasions it was reported to run at 42oC rather than 37oC). Although the biogas was 

considered a free resource, the LCA accounted for all the resources required to make the 

biogas in the first instance (i.e. kerosene, electricity etc). It was apparent that the excess biogas 

burnt on the digester was detrimental to the environment. The plant could be modified to 

house a larger quantity of biogas rather than the current five cubic metres. This would then 

reduce the need to ‘flare’ excess biogas.  

Emissions such as ammonia, nitrogen dioxides and sulphur dioxides contributed towards the 

impact categories acidification and eutrophication. The combustion of kerosene, diesel and 

biogas emitted nitrogen oxides and sulphur dioxide, whilst ammonia was generated during 

the digestate storage stage. Emissions contributed by biogas could be reduced significantly 

within the plant if appropriate measures were put in place. Nitrogen oxides and carbon 

monoxides could be converted into oxygen, carbon dioxide and nitrogen if the biogas boiler 
were fitted with a catalyst converter. Sulphur dioxide could be reduced by removing the 

hydrogen sulphide through a desulphurisation process within the plant (Ecofys 2005). 

Figure 8-6 shows how the impact categories were allocated to the production of a natural 

fertiliser (denoted as the digestate). The results were similar to those of the biogas production 
for each impact category. However, the digestate was calculated to have a much greater 

allocation of impacts for both methods (mass or economic). 
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Figure 8-6 Normalised data for digestate production vs. AD plant manufacture 

The environmental impact contributions of the digestate were compared against the 

contribution from the plant manufacture and the two different allocation methods. The 

economic allocation method calculated the digestate to be responsible for 88% of the emissions 

from the plant, whilst the mass allocation contributed 60%.  The representation of ‘no 

allocation’ is used for relative comparison towards the allocated results.  

8.8 AD outputs as a displacement for kerosene fuel and inorganic fertilisers 

The following section describes the environmental impact life cycle assessment results of 
using the AD outputs as a displacement of kerosene fuel and inorganic fertilizer. The results 

show the impact of producing the AD outputs compared with the impacts from avoidance of 

kerosene and fertiliser production.  

8.8.1 Environmental impacts of displacing kerosene 

The analysis examined the impacts created and avoided for the biogas used as displacement of 

kerosene. Kerosene was chosen as this was the conventional fuel source used on-farm for 

heating purposes. The first stage of the results showed the normalised data of the production 
of biogas compared to the production of kerosene (Figure 8-7). The production of kerosene 

was based on data collected and stored in the EcoInvent database, representative of kerosene 

production in Europe. In order to displace 1 kg of kerosene, 1.795 m3 of biogas was required. 

The analysis shown in Figure 8-7 represents the displacement results. These values were 

calculated by determining the impacts from the biogas production emissions and subtracting 

the impacts from the displaced kerosene production.  
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The production of biogas had a positive effect on reducing the impact category for fossil fuel 

resource depletion and climate change. This was because the displacement of kerosene 

signified a reduced requirement for fossil fuels. Although the biogas production consumed a 
small amount of kerosene, this caused a significantly lower impact on fossil fuel resource 

depletion in comparison to using kerosene solely as a fuel. The carbon dioxide savings from 

biogas production were also indicative of the reduction on the effects of climate change.  

   

 

 

 

 

 

 

 

 

 

 

Figure 8-7 Normalised data for biogas production and avoided kerosene production 

Analysing the biogas impacts based on the different allocation methodologies showed 

increased benefits towards the impact of fossil fuel resources. This was because the allocation 

methodology reduced the fossil fuel consumption for biogas production. If economic 

allocation were to represent the normalised outputs, the environmental benefits would be 

improved due to the small allocation given towards the biogas production.   

A second analysis was carried out for the combustion of biogas used for domestic heat 

production. The avoidance of combusting kerosene was also analysed. Emissions for both 

energy sources were modelled using data from Table 8-3 and Table 8-4. The normalised 

results are displayed in Figure 8-8. The result of using both allocation methodologies was also 

shown. Overall, the LCA suggested that combusting biogas reduced impacts towards fossil 

fuel resource depletion and climate change. However, depending on the allocation 
methodology chosen, the savings ranged from 55% for impacts on climate change and 76% for 

impacts on fossil fuel resource depletion. 
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The results shown in Figure 8-8 suggest that adopting an economic allocation offered a smaller 

benefit towards climate change which was not seen when using mass allocation. This was the 

reverse for fossil fuel resource savings, even though the allocation was applied equally to all 
the impact category results. This was because the production of biogas (which included some 

combustion of biogas) showed a net saving in contributions towards climate change. This 

clearly showed how the choice of allocation could change the results significantly.  

 

 

 

 

 

 

 

 

 

 

 

Figure 8-8 Normalised data of biogas production and combustion and avoided kerosene production and 

combustion 
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8.8.2 Environmental impacts of displacing inorganic fertilisers 

The final analysis examined the production of the digestate and compared this against the 

displacement of inorganic fertiliser. The results in Figure 8-9 show the normalised data of the 
impact categories for the production of digestate as a fertiliser. The production of the digestate 

was calculated to displace artificial N, P2O5 and K2O and therefore these results were negative. 

Displacing the use of inorganic fertilisers significantly reduced the use of fossil fuel 

consumption and hence the effect on this impact category. The fossil fuel resource savings 

occurred from the displacement of natural gas requirements, predominately for the 

production of ammonia which was then used for the ammonium nitrate fertiliser. 

Additionally, significant quantities of heavy oils were also used during the production of 
these fertilisers.  

 

 

 

 

 

 

 

 

 

 

Figure 8-9 Normalised data of digestate production vs. inorganic fertilisers 

Other significant savings occurred from the reduction in impact towards climate change. This 

was primarily due to the reduced production of nitric acid used in the manufacture of 

ammonium nitrate. The production of nitric acid requires high pressure and high temperature 

steam, which can reach up to 900oC (EFMA 2000). Steam production for this process was 
understood to be from natural gas (Althaus et al. 2007). However, the significant savings in 

the impact category ‘climate change’ were derived from the use of carbon dioxide as a 

resource from the organic matter. Although there were significant reductions amongst some 

impact categories, the displacement of inorganic fertilisers contributed detrimentally towards 

other impact categories such as respiratory inorganics and acidification (Figure 8-10).This was 

due to the emissions created during the operation of the plant, as discussed previously.   

The data highlighted the overall effect towards each impact category, taking into account the 

allocation of the multi-output process. Overall, the use of the digestate offered benefits 

towards eight of the 11 impact categories. However, the two impact categories where the 
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digestate production contributed detrimentally were also amongst the most significant when 

normalised (respiratory inorganics and acidification). This was mainly due to the combustion 

emissions within the AD plant in order to heat the digester and the storage of the digestate. 
However, when a mass allocation was used the contribution towards respiratory inorganics 

and acidification/ eutrophication was halved.  

 

 

 

 

 

 

 

 

 

 

Figure 8-10 Normalised data - Net contribution of digestate as an inorganic fertiliser replacement 

8.9 End-of-life of AD plant 

In order to complete the LCA the end-of-life stage must also be considered. However if the 

plant life has not terminated, the end-of-life cannot be assessed as the analysis would have to 

be carried out in a future scenario. As a result, the end-of-life of the AD plant was considered 

outside of the system boundary and therefore not required for the study.  

 

8.10 Whole lifecycle impact assessment 

The whole life cycle for the two separate outputs of AD has been examined in this section. In 

these two figures (Figure 8-11 and Figure 8-12), the mass allocation of impacts were used, 

rather than economic. Over an operating life of 25 years, a mass allocation would have no 

fluctuation, whilst an economic allocation could change depending on fuel and fertiliser 
prices. As a result, economic allocation was not considered a suitable option for modelling 

whole-life. 

Figure 8-11 shows that over the whole life of biogas production, the emissions from the plant 

use contributed the most towards three environmental impact categories: respiratory 
inorganics, acidification/eutrophication and fossil fuel resource depletion. Over the life of the 

plant, the AD process produced enough emissions to have an impact equivalent to between 

20-60 European inhabitants per year. The plant construction was also found to have 
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insignificant contributions towards the environmental impacts, when compared to the use 

phase of the AD plant. These emissions were produced only once within the lifetime of the 

plant, whilst plant use had reoccurring emissions.  

The most significant result came from the displacement of the kerosene production, using 

biogas. The energy equivalent of kerosene showed a significant reduction in fossil fuel 

resource depletion over the life of the AD process. Additionally, savings in CO2 emissions also 

contributed towards a reduction in climate change impact, giving the plant an overall (net) 
negative output on climate change.  

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 
Figure 8-11 Normalised data - Whole lifecycle environmental impacts of biogas 

Figure 8-12 shows the whole life normalised environmental impacts for the digestate output of 

the AD process. These results also highlighted that the AD plant use phase contributed 

significantly towards respiratory inorganics, acidification/eutrophication and fossil fuels 
resource depletion. However, due to the mass allocation, the emissions allocated towards the 

digestate production were higher. As a result, the overall contribution of the emissions 

towards these environmental impact categories was more significant. Over the life of the plant 

the emissions associated with the plant construction had minimal contribution towards the 

environmental impact categories, which was similar to the biogas production lifecycle.  

The most significant contribution towards the whole-life cycle of the digestate output from 

AD was the savings in displacing inorganic fertiliser. Based on the same quantity of fertiliser 

(in terms of N, P2O5 and K2O properties) the displacement of inorganic fertiliser resulted in a 

significant reduction in impacts towards four main environmental impact categories: 

carcinogenic effects, respiratory inorganics, climate change and fossil fuel resource depletion.  
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 Overall the key benefits from digestate displacing inorganic fertiliser were savings in fossil 

resources which also led to a reduction in carbon emissions (and a lower impact on climate 

change). Additionally, other smaller benefits across most of the environmental impacts were 
also seen.  

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 
Figure 8-12 Normalised data - whole lifecycle environmental impacts of fertiliser (digestate) 

The common factor between both lifecycles was the high emissions contributing towards 

respiratory inorganics and acidification/eutrophication. These emissions, produced during the 

use phase of the AD plant, could have a detrimental impact towards human health and 

ecosystem quality. It also appeared that although there were savings in kerosene and 

inorganic fertilisers, these impact categories were still significant.   

The emissions leading to respiratory inorganics were from the digestate storage, the 

combustion of kerosene, diesel and biogas. These emissions can cause smog leading to 

respiratory effects such as asthma, chest infections and bronchitis amongst other chronic 

obstructive pulmonary disorders. As a result, these emissions could have serious effects on 
human health.  

Acidification can have a severe impact on ecosystems through the increase in the pH acidity of 

waters and soils. Air emissions can also lead to acid rain which can have detrimental effects 

especially on vegetation (for example conifer trees can seriously deteriorate in health through 

acid rain). Eutrophication can lead to an abnormal increase in nutrient concentration over 
specific soil or water volume. The increase in nutrient availability increases the growth of 

aquatic plants and algae. An overproduction of algae and blooms causes an increase of plant 

life on the water surface, which can lead to reduced sunlight and oxygen penetrating the top 

layer of water. Increased nutrients in soil can lead to leaching into water streams causing 
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eutrophication of lakes, rivers or bathing waters (J. Gascoigne, Greenfinch 05/05/2008, 

personal communication). 

This shows how emissions from an industrial process such as AD could have detrimental 

impacts on the delicate balance of natural species and also human health. The detrimental 

environmental impacts affected by the use of AD can have direct or indirect impacts towards 

human health and ecosystem quality. Measures should be taken to minimise the emissions 

within the AD process. Reducing these emissions could minimise the overall environmental 
impact of the AD process, which is significant if the technology were to be used on a large 

scale.  

8.11 Sensitivity analysis of study 

This section reports the work carried out to assess the uncertainty of input data for the LCA. 

The LCIA results have highlighted the most significant environmental impact categories. 

From here it has been possible to determine the emissions relating to these impact categories 

and subsequently the cause (or source) of these emissions. The sensitivity analysis therefore 

examines the emissions, which have had the highest contribution towards the impact 

categories.  

 Although the LCA clearly demonstrated the environmental performance of using an AD 

plant to produce biogas and fertiliser, the results were dependant on the input data quality. 

LCA has been described as a black box (Bras-Klapwijk 1998) due to the lack of transparency of 

how the input data is transformed into relatively easy to understand environmental impacts. 
The significance of the choice of LCIA methodology also has a large impact on the output 

results of an LCA. In fact, studies from Sonnemann et al. (2003) highlighted the ambiguity of 

using the weighting procedure within LCA.  

As a result of these uncertainties, the valuation (through weighting of the impact categories) 

was not carried out in order to minimise subjectivity errors. However, the other source of 
uncertainty originated from the quality of data input at the LCI stage. Throughout the study, a 

number of assumptions and calculations were made due to not having accurate actual plant 

data. The effect of these errors was examined through a sensitivity analysis.   

8.11.1 Sensitivity analysis of plant manufacture 

 

The weights attributed to the components within the plant manufacture were mainly derived 

by reproducing a 3D computer model of the main parts of the AD plant. The analysis of the 

software modelling and the LCA suggested that the majority of the environmental impacts 

were derived from the steel consumption. Therefore, a sensitivity of the steel used within the 

plant was carried out.  

The steel consumption was primarily used for the digester and digestate tank. The selected 

wall thickness for the tanks was 12mm as stated on the manufacturer’s website (Permastore 

2009). However, this data was accessed in March 2008 and at the time of writing the data was 

no longer available. Having contacted another manufacturer (Kirk Environmental ltd. 

24/09/2009, personal communication), it was found that wall thicknesses could range between 
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2-10mm and could be double-fitted creating a wall thickness of 20mm. Following extensive 

discussions with the technical department it was determined that a more suitable wall 

thickness for the tanks in question could be around 9.5mm in thickness. This could be reduced 
even further for the digestate tank. It was concluded by Kirk Environmental ltd. (24/09/2009, 

personal communication) that a 12mm wall thickness was approaching the upper range as a 

design safety factor. The analysis examined a change in 50% of the wall thickness, thus 

varying between 6mm to 18mm. Table 8-8 shows the variation in mild steel use if the wall 

thickness varied between 6-18mm. Although wall thickness could be as low as 2mm, this was 

considered improbable due to the size of the plant.  

 

 

 

Table 8-8 Plant steel use depending on wall thickness 

With a 50% variation in wall thickness, it was apparent that there were differences in 

contribution towards all impact categories. The change affected the overall steel consumption 

by up to 43% between the maximum and minimum. The results, shown in Figure 8-13, 

highlight the greatest influence on the impact categories of ‘respiratory inorganics’ and ‘fossil 

fuel depletion’. Increasing the use of steel in the plant manufacture increased the contribution 

to fossil fuel depletion of just under 30% due to the increased energy consumption in 

manufacturing and processing the steel. This increase in steel production would increase the 
damage to respiratory inorganics by 32%.  

 

 

 

 

 

 

 

 

 

 

Figure 8-13 Normalised data for AD plant manufacture. Sensitivity analysis on steel consumption 

Tank Wall 

thickness 

Digester Tank 

(kg) 

Digestate Tank 

(kg) 

Reception Tank 

(kg) 

Total 

(kg) 

6mm 17,398 37,995 6,376 61,769 

12mm 22,307 46,323 8,379 77,009 

18mm 32,135 62,966 12,374 107,475 
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The second stage of the sensitivity analysis examined the composition and production of the 

steel used within the LCI. The steel manufacture analysis assumed 100% of the steel was 

primary virgin steel. This was replicated through the results as a significant amount of the 
carcinogenic effects was contributed at the iron ore recovery stage. If recycled steel were used 

(or at least a percentage were used), then some of the impact category contributions could be 

lower.  

According to leading UK steel manufactures, the average recycled content in steel was around 
54% (Corus 2007). However, according to the Government backed Waste & Resource Action 

Programme (WRAP), recycled content in steel sections are considered to be 60% in the UK 

(WRAP 2008). The analysis therefore assumed an uptake of 60% recycled steel, with the 

remaining 40% originating from primary sources. The recycled content of the steel was 

assumed to be derived from iron scrap which was collected from waste disposal sites, sorted 

and pressed into usable blocks. The LCI data for producing recycled steel was obtained from 

the EcoInvent database and was representative for a European scenario (Swiss Centre for Life 

Cycle Inventories 2007). 

 

 

 

 

 

 

 

 

 

Figure 8-14 Normalised data of plant manufacture. Sensitivity analysis on % of recycled steel use  

The results shown in Figure 8-14 highlight a reduction in contribution towards respiratory 

inorganics of around 40% through the use of recycled steel. However, the other major impact 

category (fossil fuel resource depletion) remained relatively similar with a small reduction 

only. This was due to the relatively high fossil fuel consumption used for energy production 

during the reshaping of scrap steel into useable steel. In addition to this, the hot rolling 

process used in the manufacture of the tanks was unaffected by the composition of the steel. 

The latter contributed significantly towards the impact category ‘fossil fuel depletion’.  
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8.11.2 Sensitivity analysis of plant use phase 

Throughout the analysis, it was discovered that a number of uncertainties in the plant use 

phase could lead to a large change in contribution towards the impact categories. The largest 
contribution towards the impact categories was determined to be derived from the emissions 

produced during the digestate handling and the combustion of the biogas and kerosene to 

heat the digester. Emissions from diesel burning were also found to have a large contribution 

towards these impact categories.  

The impact category ‘respiratory inorganics’ was primarily affected by ammonia, sulphur 

dioxide, nitrogen oxides and particulate matter emissions. Within the literature sources, the 

emissions for sulphur dioxide from kerosene combustion varied between 23mg/MJ up to 

3360mg/MJ (Niels et al. 1997;Spielman et al. 2007a). However, the latter was considered 

unrealistic for typical kerosene combustion as this represented combustion of unrefined 

kerosene for rural cooking in India.  

The sensitivity analysis concluded that these emissions could have a feasible standard 

deviation of between 40-60% of the chosen average value. As a result, emissions from 

digestate storage, biogas and kerosene combustion (sulphur dioxide, nitrogen oxides and 

particulates) were varied by an average of 50% to determine the effects this had on the overall 

biogas production contribution towards the impact categories. For example, ammonia 

emissions from digestate storage were varied between a maximum 0.039 kg/m3biogas to 0.0102 
kg/m3biogas as this was the range found within the literature (Deublein & Steinhauser 2008).  

 

 

 

 

 

 

 

 

 

 

Figure 8-15 Normalised data for two impact categories. Sensitivity analysis of air emissions 

As shown in Figure 8-15, the change in emissions from biogas and kerosene combustion made 

little change towards the two impact categories. However, the change in ammonia had a 

significant variation by over 50%. In fact, AD studies used within the EcoInvent database used 

a value 35% lower than the ammonia value chosen in this study (0.0102 kg/m3biogas). Therefore, 
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it was concluded that the value for ammonia emissions had the largest impact on the 

sensitivity of the respiratory inorganics and acidification results.   

The final stage of the sensitivity analysis examined the impacts contributing towards fossil 

fuel resource depletion. Throughout the use phase of the LCA, this impact category appeared 

to be amongst the most significant across the normalised data results. The fossil fuel resource 

consumption was derived from the kerosene used for plant start-up and the assumption of 

diesel consumption for farm handling equipment.  

Although an assumption was obtained from Spielman et al. (2007b) of 18 MJ/tonne of diesel 

used for feedstock handling equipment, no specific machinery was observed on site at the 

time of the visit. Therefore, one could assume that no machinery would be required as the 

cattle housing was situated in close proximity to the reception pit tank. Additionally, if the 

collection of the digestate were considered outside of the system boundaries then the diesel 
use within the AD plant would be zero. 

 

 

 

 

 

 

 

 

 

 

Figure 8-16 Normalised data of biogas production. Sensitivity analysis of fossil fuel consumption4  

The kerosene used for start-up was also applied to an AD plant with a greater operational 

output. By calculating a maximum capacity factor for the feedstock availability, this changed 

from 14% to 28%. This meant that the same amount of kerosene (1,500 litres) could have been 

used for nearly double the output in biogas. It was assumed that more kerosene use would not 

be required as the downtime of the plant would be less. Using these assumptions, the 
sensitivity analysis showed that in terms of normalised data, the contribution towards fossil 

                                                        
4 Note: negative climate change occurs due to the carbon fixation within the biogas. This will be 

released once the biogas is combusted  
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fuel resource depletion was reduced by 52%. The overall contribution towards all the impact 

categories of using fewer fossil fuels has been shown in Figure 8-16.  

The condensed use of kerosene and diesel was significant for reducing the contribution 

towards fossil fuel resource depletion. However, this also affected the climate change impact 

as fewer CO2 emitting energy sources were used. This was also true for the affect on 

respiratory inorganics due to the decrease in particulates, NOx, NH4 and SO2 emissions.  

8.12 Summary 

The study analysed the environmental impacts of biogas production and utilization through 

the technique of life cycle assessment (LCA). LCA enabled an understanding of the factors 
which contributed most towards detrimental impacts on the environment, during the life 

cycle of biogas production. The study also examined the environmental benefits of using 

biogas as a domestic heat source, subsequently displacing the use of domestic heating 

kerosene fuel. Due to the data intensiveness of LCA, it was accepted that there could be a 

significant percentage error amongst the results. Consequently, a sensitivity analysis was 

undertaken on datasets, which were recognized as having the most significant impacts. The 

key findings from the LCA results can be summarised: 
 

• The emissions created from the plant manufacture contributed very little towards the 

whole life cycle environmental impacts. This would have been further reduced if a 

higher operating capacity factor were obtainable.  

• The use phase of the AD plant created emissions which appeared to have significant 

impacts towards human respiratory systems and acidification/eutrophication issues 
within ecosystems.  

o The impacts were a result of emissions such as ammonia from the digestate 

storage, sulphur dioxide, nitrous oxide and particulates from the combustion 

of biogas, kerosene or diesel.  

• The production of biogas and fertiliser both created significant impacts towards fossil 

fuel depletion due to the use of diesel and kerosene. However, over the whole life 

cycle, the displacement of kerosene as an end-use energy source and inorganic 
fertilisers, showed a net-benefit in fossil fuel depletion.  

• The study concluded that it is essential to cover the digestate storage tank as biological 

reactions are still occurring thus emitting, methane, ammonia and carbon dioxide. 

Globally a number of AD units do not cover the digestate storage.  

• De-sulpharisation and ammonia removal processes were also considered to be crucial 

within the AD system in order to remove these emissions either entering the 

atmosphere directly or undergoing the combustion process.  
• Ammonia is also released during the spreading of digestate. However, as the lifecycle 

system boundary terminated at the fertiliser production stage, this was not included. 

This could however be included as a further analysis.  
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9 FINANCIAL INVESTMENT APPRAISAL OF BIOGAS PRODUCTION 

9.1 Introduction 

The third and final stage of the multi appraisal technique was to assess the potential of biogas 

using financial appraisal techniques. This chapter discusses the implementation of a Financial 
Investment Appraisal (FIA) on the use of AD. The chapter highlights the financial payback 

period, the net-present value and the benefit-cost ratio of different AD setups. 

The study follows two levels of examination. The first was to assess the economic performance 

of a number of existing operational AD plants, thus examining the cost against a number of 
parameters. The second level of examination was to assess in detail two AD plant case studies 

(Plant A and Plant C), which have been used throughout the multi appraisal technique 

(Chapter 7 & 8). These case studies were examined using current financial data for the UK.      

9.2 Aim and purpose of study 

The aim of the study was to determine the success of biogas production from a financial 

perspective. An FIA was carried out on two of the case studies to examine how different set-

ups performed. These case studies were chosen based on the results obtained from previous 

analyses and the suitability for use within the South West of England. As biogas can 
potentially be used for a variety of energy-end-uses, a further FIA was performed on differing 

energy pathways. The study evaluated the effects of the new ROC banding and the feed-in-

tariffs (FIT) for renewable electricity.  

In this study plant A and plant C were analysed. Plant A is a small-scale AD plant situated in 

the UK fed solely on animal manure. A description of these plants can be found in section 5.1. 
The use of FIA for biogas production in general was also carried out and shown throughout 

the chapter. This included assessing and reviewing a number of software models 

commercially and publically available, used for assessing the financial feasibility of biogas 

production. Financial data for a number of operating AD plants in Germany (FNR 2005) was 

also assessed, to examine patterns and trends between parameters such as digester size versus 

capital costs.  

The FIA subsequently examined the financial implications of adopting biogas for different 

end-uses. Following this, it highlighted the different financial incentives and policy drivers 

which are in place in order to develop the use of biogas as an energy source.  

9.3 A review of biogas economic simulation modelling software 

Due to the multiple benefits envisaged with AD there has been a growing interest in the 

financial feasibility of AD development. As a result, a number of economic costing models 

have been devised either through academia or through direct Government funded initiatives. 
These models are capable of simulating a theoretical AD plant setup, examining the 

performance and costs of the plant depending on the parameters inputted into the models. 

The models researched have been briefly described in the following section. 

Farmware 3.0 (available from www.epa.gov/agstar/) – This is an economic model for AD 
plants created by the US Environmental Protection Agency. It is free to download and operate. 
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The model is extremely detailed in the parameters which the user can input. All economic 

factors can be inputted such as the down payment percentage, interest rate values, discount 

rate etc. The model can only simulate two types of manure: cattle and pig waste. However, the 
model also simulates the climatic conditions depending on the location of the plant, thus 

affecting the energy requirement of the plant. The user can also specify the use of the biogas 

and details the breakdown of the costs.  

Andersons National Non-Food Crop Centre (NNFCC) model (Redman 2008) – This model is 
designed for UK AD operations. It has a much greater range of input feedstocks and can also 

model the effects of growing and supplying dedicated feedstocks. The model is more ‘open’ 

than Farmware and therefore the user can clearly see how each stage is calculated.  

Government financial support mechanisms are also incorporated into the model. The model 

therefore gives detailed analysis of the profit and loss for theoretical AD set-ups. Although the 
model is not location dependant, it can simulate the effects of adopting biogas for heat, power 

or transport fuels.   

BEAT model (available from www.biomassenergycentre.org.uk) – This model was created by 

the UK Environment Agency, primarily to model the emissions of biomass projections. The 
model is not AD specific; however it can compare the use of AD against other energy forms of 

the same end-use. However the model is the most simplified out of the ones tested and 

although it has the function to state whether the plant is centralised or farm-scale, it does not 

let the user input the daily feedstock quantity. The costing analysis of the model is also not as 

advanced and detailed as the previous models. Within the foundations of the model, the 

methane quality per cubic metre of biogas is more optimistic than literature findings. A 65% 

CH4 concentration per cubic metre of biogas from cattle waste is around 5-10% higher than 
literature findings (Ecofys 2005;Fan et al. 1985). The model also does not simulate the use of 

biogas as a vehicle fuel, whilst only modelling heat and/or power.  

Ghafoori & Flynn (2007) AD models – The model is based on AD plants situated in Canada 

and does not take into account climatic conditions. The software is divided into two separate 

models (large scale and small scale). A unique feature of this model is that it takes into account 
the transport distances of the feedstock, which as found in previous chapters, can be a 

significant sink when assessing energy flows within AD plants. The model is similar to the 

NNFCC model, as it is ‘open’ layout, enabling the user to change most of the parameters 

associated with the AD plant. This also includes discount rates, maintenance cost percentage 

allocation and other variables. 

As can be seen from the literature findings, detailed modelling of financial investment 

appraisals for AD is available and abundant. Therefore, a detailed analysis of the basics of AD 

economics is not required. However an understanding of the factors which affect the financial 

viability of AD should be made, in order to assess its potential for deployment within the 

South West. As a result a tailored financial model was created for two plant case studies (Plant 

A and Plant C). The model examined the financial performance of the plants using a range of 
parameters and correlations obtained from literature sources which have been referenced 

where appropriate. 
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9.4 Cost analysis of biogas production and use from AD 

The implementation and use of biogas production technologies incurs costs throughout the 

supply chain similar to other bioenergy pathways. Costs may be classified into four key areas: 

investment costs, operational costs, insurance and taxes and costs associated with handling 

the feedstock off-site (Ecofys 2005). Investment costs are common amongst any renewable 

technology; however bioenergy pathways differ as they also incur significant operational costs 

during their lifetime. In the case of AD these costs are incurred through the operation and 
management of the plant, handling of the feedstock to and from the plant and maintenance of 

the plant components such as digester, piping, pumps and valves and the CHP unit (if one is 

installed). The following sections describe how these costs are incurred and the parameters 

which affect them. 

9.4.1 Cost analysis of plant manufacture 

The use of agricultural AD in the UK is extremely limited, with around 16 installed and 

operating plants. In other countries, such as Germany and Austria, the numbers of AD plants 

are around 3,700 and 309 respectively. Due to the limited use of AD in the UK, the basis of the 

financial data was derived from operational German AD plants. 

Capital costs within literature have been reported to be £2,500 to £6,000 per kW of installed 

electricity generating capacity (Redman 2008). Capital costs from the data obtained for this 

analysis averaged around €3,000 per kW of electrical capacity (roughly equivalent to 

£2,600/kW). As some of the plants operated a CHP unit, a capital cost per electricity output 

was considered misleading. Consequently, a capital costs per unit methane output was 

calculated. This value averaged around £500/m3 of methane per day.  

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 
Figure 9-1 Capital costs of AD plants vs. daily feedstock input capacity- Data from 60 operational AD 

plants (FNR 2005) 
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Further analysis of the German AD plant data showed that there was little correlation between 

the daily biogas output (and methane output) and the capital costs of the plants. A much 

closer correlation was obtained when examining the capital costs of a plant against the daily 
input feedstock. The results in Figure 9-1 show a linear correlation of increase in capital costs 

versus the increase in daily input of feedstock into the plant. The capital cost for these plants 

averaged around £20,000/tonne/cubic metre of feedstock input.  

The costs associated with AD set-up were found to be primarily associated with the digester 
tank manufacture and installation. From the literature the cost of the digester was found to be 

around €50/m3 (£43/m3) for a digester tank and €30/m3 (£25.5/m3) for a digestate tank (Ecofys 

2005). According to this source, CHP units were also a significant expense. The installation 

costs for CHP units were said to vary between €360/kW to €1,200/kW installation capacity 

(£310/kW to £1040/kW). Consequently, the CHP unit could account for 12-40% of the total 

capital investment (ibid).  

The setup costs can vary significantly depending on the equipment and requirements 

adopted. For example, a simple animal waste AD plant would not require the use of a 

pasteurization facility. Other plant equipment, which may or may not be adopted for biogas 

production include hydrogen sulphide reduction systems, post-digestion solid separation 

systems which separate the fibrous fraction of the waste (used as P-fertiliser) from the liquid 

fraction of the waste (used as N-fertiliser) and other gas cleaning equipment.   

The requirement for a CHP unit is necessary solely for electrical power and heat generation. 

Some plants (albeit not a great deal) use the biogas exclusively for heat use. This is the case for 

the case study plant A used throughout the multi appraisal technique. Infrastructural costs for 

this technique are significantly lower (J. Gascoigne, Greenfinch 05/05/2008, personal 
communication). In these cases, the biogas is pumped into conventional gas boilers and 

combusted. The minimum required methane quantity within the biogas, in order for it to 

ignite, is around 45% (J.Prior, Summerleaze ltd. 22/05/2007, personal communication).  

Amongst some literature sources it was observed that setup costs decreased as the daily 

production rate increased (Murphy & Power 2009). According to their findings the financial 
output of biogas production at larger AD setups was more favourable than smaller 

installations. Although this may be true for the setup costs, greater biogas production would 

ultimately require a greater availability of daily feedstock. This could result in increased 

feedstock collection and transport costs during operation. Therefore, there is a trade-off 

between the setup and operational costs and the expected biogas output of the plant. 

For the purpose of this study a capital cost of £20,000/tonne of daily feedstock input was used. 

Using a capital cost in relation to daily feedstock input was seen as a more accurate measure 

than relating it to the biogas output. The biogas output is dependant on the efficiency and 

feedstock of the plant and therefore can also be misleading.   

9.4.2 Cost analysis of AD plant operation and maintenance 

Operating costs associated with AD plants were found to include general operation (water, 
electricity, heat and other energy required around the plant), maintenance costs, labour costs 

and unexpected downtime costs (Deublein & Steinhauser 2008). The main costs associated 
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with operation of the AD plant were found to be linked to electricity consumption, heat 

consumption and feedstock management.  

The cost of heating the digester is often excluded as the heat from biogas combustion is 

utilised. This was true for all the German operating plants for which data had been obtained. 

However, costs were incurred during digester start-up, using kerosene. This was found to 

average around 2.3 litres/tonne of annual feedstock. Assuming a kerosene oil price of around 

40ppl, this equated to £0.92/tonne of annual feedstock input.  

When analysing the use of biogas for transportation fuel, an additional heating cost 

requirement was calculated. This is because the conversion of biogas to a transportation fuel 

does not produce waste heat as a by-product. If biogas were used as transport fuel, then 

external heat costs would be encountered, as biogas would not be combusted on-site. AD 

plants specifically operated for transport fuel production were found to have a cost of heat 
energy between £1.60-1.80/tonne of input feedstock (Murphy & Power 2009).  

Other costs reported by AD owners included maintenance and servicing costs (J. Gascoigne, 

Greenfinch 05/05/2008, personal communication). Literature reports suggested a figure of 

around 2-4% of the total capital cost should be allocated to maintenance costs (Ecofys 2005). 
An analysis of operational AD plants showed that maintenance costs (including spare parts 

and labour) varied significantly. These costs were between  €4,000/annum (£3,400/annum) on 

a capital cost of just under €500,000 (£425,000) up to €72,000 (£61,200/annum) on a capital cost 

of just below €1million (£850,000). Assuming an average life of 20 years, the operation and 

maintenance costs as a percentage of capital costs was around 8-14% (FNR 2008).  

The largest impact on operational costs was found to be dependant on whether feedstocks had 

to be purchased for the plant operation. Manure production generally do not have a cost 

allocated to it, however purchasing substrate feedstocks such as wheat, grain or silage can be a 

significant contributor to operational costs. AD plants which operated using substrates were 

found to have a cost allocation towards substrates of between 15-60% of total operational costs 

(FNR 2005). Literature sources showed this percentage to be slightly lower at around 7% 

(Ecofys 2005). This is ultimately dependant on how much substrate is needed. Other sources 
showed that dedicated feedstocks could contribute up to 60% of the total operating costs 

(Murphy & Power 2009). Typical costs of feedstock from this source have been tabulated 

below in Table 9-1.  

 

 

 

 

Table 9-1 Cost per tonne of biogas production feedstock - (Redman 2008) 

 

Biogas Feedstock 
Cost  

(£/tonne) 

Maize Silage 20.00  

Grass Silage 18.00  

Wheat (grain) 150.00  

Barley (grain) 145.00  

Pig Slurry 0.00  

Cattle Slurry 0.00  
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Literature suggests that one of the most influential factors affecting the uptake of AD in the 

UK and Germany is the use of dedicated crops for co-fermentation (Yeatman 2005). These 

energy crops include maize, grass, etc. Currently in the UK the main energy crop is oilseed 
rape (over 240,000 ha in 2007 (NNFCC 2008)). Oilseed rape is primarily used for biodiesel 

production, which in 2007 was nearly 300% higher than the use of bioethanol (EurObsever 

2008). According to this source, the use of energy crops is extremely limited in the UK. 

There are currently no AD plants in the UK which operate using energy crops as feedstock. 
UK plants appear to have a greater focus on using industry or general food waste as a 

feedstock where gate fees provide additional income. In fact some plants could not operate 

without this supplementary income (J. Prior, Summerleaze ltd. 22/05/2007, personal 

communication).      

9.4.3 Cost analysis of biogas conversion and transport 

Using biogas as road fuel is an alternative to electricity and heat production. The biogas 

upgrade unit used to create road fuel can operate via a water scrubber technique or a pressure 

swing absorption (PSA) technique. Biogas upgrading is extensively used in Sweden, where in 

2006 the use of biogas in road vehicles overtook the use of natural gas (Jönsson 2004).  

Upgrading costs were found to vary significantly depending on the plant scale. However 

according to Jönsson (2004) the typical operating costs for biogas upgrading were: 

o Small Scale (<100 m3/hrbiogas) = €c3-4/kWh of upgraded gas (app. 2.5-3.5p/kWh), 

o Large Scale (200-300 m3/hrbiogas) = €c1-1.5 /kWh of upgraded gas (app.0.85-1.3p/kWh). 

Although these were the operational costs, the total investment costs were reported to be 

around £1,300/m3/hr of biogas entering the upgrade system (Persson et al. 2006). Assuming a 

biogas quality of 60% CH4, this was calculated to be equivalent to £216/kW of upgraded 

biogas. The correlation from Jönsson (2004) showed that this was linear for up to 1,200 m3/hr 

of raw biogas. Thereafter the initial investment costs per cubic metre per hour decreased 
exponentially to as low as £8/kW. The latter was for a large AD plant, capable of outputting 

over 1,500m3/hr of biogas. As a result the correlation from Jönsson (2004) was used. 

The data used for the calculations above was based on research carried out in Sweden on 16 

commercially operational biogas-upgrading plants. To model the use of biogas upgrading for 

the South West of England, ideally an example from the UK should have been analysed. At 
the time of writing there were no commercially available biogas upgrading plants for vehicle 

fuel in the UK.  

9.5 Revenue analysis of biogas use 

Having examined the production and biogas preparation costs, the financial returns of biogas 

were subsequently analysed. This section examines the revenue generated by the three main 

uses for biogas: electricity, heat production and upgrading biogas for transport. In addition to 

this, the analysis also examined the potential revenue from supplying natural fertiliser from 

the by-product of the AD process.   
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9.5.1 Revenue from electricity production  

Renewable Obligation Certificates (ROC) can supplement the production of electricity from 

biogas. Following a series of consultations during the period 2007-2009, the UK Government 
banded the financial support mechanisms for renewable electricity depending on the 

conversion technique used (BERR 2008d;DTI 2006;DTI 2007). The banded ROC scheme was 

introduced in April 2009 (BERR 2008d). The aim of the banding was to increase the 

deployment of less established and commercially uncertain schemes. Schemes with 

established costs were awarded less ROCs per unit energy output, whilst emerging and pilot-

scale conversion technologies were awarded more. The banding favoured bioenergy 

conversion processes, however the funding mechanism only favoured electricity generation.  

As shown in Table 9-2, bioenergy conversion processes such as gasification, AD and pyrolysis 

all receive double ROCs. A typical buy-out value of a ROC at the time of writing is 

£37.19/MWh (Ofgem 2009). The double ROC proposed for AD makes it significantly more 

economically attractive. However this could ultimately reduce the diversity of the biogas fuel 
due to the economic payback offered for electricity generation over heat or transport fuel.  

 

 

 

 

 

 

 

Table 9-2 Overview of ROC banding - Adapted from BERR (2008c) 

The ROC is also supplemented by the standard selling price of electricity which is obtained 

regardless of the electricity generation technology. The cost of this will vary depending on the 

amount of kWh produced and the purchaser of the electricity. The average buying price for a 

single kWh of electricity is between 4-5p/kWh (Eco Centre 2009). The average cost of a 

ROC/kWh is between 3-4p/kWh (ibid). In Germany renewable electricity is rewarded through 

different mechanisms compared to the ROC schemes in the UK. The German financial support 
mechanism in place uses feed-in tariffs (FIT). The tariff is dependant on the type of conversion 

process used and more importantly the scale of the plant. The rate is also guaranteed for 20 

years (Stern 2007). This technique is less uncertain than the ROC scheme currently present in 

the UK as it secures at least 20 years of funding.  

The feed in tariff guarantees a payment per unit of electricity produced for a number of years 

(as long the producers continue to produce the electricity). These tariffs vary according to 

plant size and in the case of AD vary depending on the feedstock used for biogas production. 

A table has been reproduced from Yeatman (2005) to show the difference in feed in tariffs 

based on these dependencies; this is shown in Table 9-3.   

Band  Technology 
Support Level 

ROC/MWh 

Established 1 Landfill gas 0.25 

Established 2 Sewage gas, co-firing on non-energy crops  0.5 

Reference 
Onshore wind, hydro-electric co-firing of energy crops, energy from 

waste with CHP 
1.0 

Post-

Demonstration Offshore wind, dedicated regular biomass 
1.5 

Emerging 

Wave, tidal stream, fuels created using an advance conversion 

technology (anaerobic digestion, gasification and pyrolysis), dedicated 

biomass burning energy crops (with or without CHP), and solar 

photovoltaic, geothermal, tidal impoundment. 

2.0 
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Table 9-3 Feed in tariffs for renewable electricity from biogas in Germany (Yeatman 2005) 

The use of feed in tariffs has also been recently introduced for the UK electricity market 

following the release of the Renewable Energy Strategy for the UK (HM Government 2009). 

According to the latest strategy, these tariffs are intended to incentivise small-scale renewable 
technologies. The scheme is designed for electricity generating capacities between 50 kW up to 

5 MW. Electricity producers using systems under 50kW are only eligible for feed-in tariffs 

(FIT); whilst between 50kW-5MW have the choice between FIT and ROC. Systems above 5MW 

are only eligible for ROC funding (Ofgem 2010). 

The use of feed in tariffs (also commonly known as FIT within UK Government literature) is 
more widely used across Europe than any other support scheme for renewable electricity. Of 

the 27 EU member states, 70% operate using FIT (Brown et al. 2009). Although FIT appears to 

be an attractive proposition for the UK energy sector and one which has been vocally 

favoured over a number of years, there are risks and uncertainties associated with this policy 

support scheme. The issue of a fixed price over a number of years could result in a 

deceleration of technology development and efficiency improvement, as financial income is 

secured. However an argument against this is that an increase in electrical output would yield 
an overall higher financial return, therefore the drive for efficiency would still be present. The 

development of alternative technologies however may be affected if one single technology 

proved to be financially viable.  

Calculating the financial returns from renewable energy technologies can be rather complex as 
it is dependant on the technology, the end-use and the scale of production. Attempts have 

been made by the Energy Saving Trust to simplify the methodology for searching for 

electricity purchasers by launching an online buy-back tariff search engine (Energy Saving 

Trust 2009).  However, this is limited to small-scale generating plants only. Literature sources 

use a typical electricity selling price from biogas of around 7.5-10.25 p/kWh (Yeatman 2005). 

Other sources, have estimated the price of electricity to be around 15 p/kWh (Redman 2008). 

FIT rates for AD are divided into two categories. These are large scale (>500kW) and small 
scale (<500kW). The FIT rates for these are 11.5p/kWh and 9p/kWh respectively (DECC 2010a). 

For the purpose of this study, a range of electricity selling prices were used to account for the 

lowest return and the maximum possible return using the financial support mechanisms 

available.   

9.5.2 Revenue from biogas as heat energy  

There is an aim that 12% of the UK’s total heat requirements will be derived from renewable 

resources, such as biogas (HM Government 2009). Biogas could have a leading role in 

supplying localised or district heating in the future. Although heat energy is not incentivised 

Power Output 
Tariff 

€c/kWh 

Bonus (€c) based on using 

manure or energy crops 

0-150 kW 11.5 6 

150-500 kW 9.9 6 

500-5000 kW 8.9 4 

>5000 kW 8.4 4 



FINANCIAL APPRAISAL OF BIOGAS 

- 165 - 

 

by additional financial support, considerations into the use of financial support for heat have 

been addressed by the Government and are expected to materialise within the following years 

(BERR 2008b). This has progressed further through a consultation of the Renewable Heat 
Incentives (RHI) during the first quarter of 2010 (DECC 2010b). This is proposed to be 

5.5p/kWh of heat produced, whilst cleaned biogas injected into the grid would be eligible for 

4p/kWh (DECC 2010b). These rates of return are amongst the lowest of all renewable heat 

production systems.   

Analysing data from operating AD plants showed that heat energy in Germany was rewarded 

financially under certain circumstances. These included plants that were solely fed by either 

manures or energy crops. The cost of renewable heat in these cases was found to be between 

4-6 €c/kWh (3-5p/kWh equivalent) depending on the plant scale. The percentage of the income 

derived from heat was found to vary between 3-26% of total annual revenue. The majority of 

the income was associated with the electricity production. For the purpose of this study, the 

financial investment appraisal carried out on the case studies assumed a financial return from 
displacing the use of kerosene only. This was considered to be more realistic as the RHI had 

yet to be finalised.   

9.5.3 Revenue from biogas as transport fuel  

Some bioenergy fuels used as a transportation fuel are eligible for 20 pence per litre (ppl) 

discount on fuel excise duty, resulting in a duty of 30.35 ppl (Nix 2009). Excise duty for biogas 
and natural gas is 19.3p/kg of gas (HM Treasury 2009), whilst biodiesel for non-road use is 

eligible for a fuel duty of 9.69ppl (ibid). In addition to this, the implementation of the 

renewable transport fuel obligation (RTFO) obliged companies who supply in excess of 0.5 

million litres of fuel per year to incorporate at least 3.25% by volume of fuel from renewable 

sources. Failure to comply with this obligation would result in a ‘buy-out’ of 15ppl (Nix 2009).  

The energy content of LPG was found to be between 45-47 MJ/kg (Milukas, V 1993;Yan & 

Crookes 2009), whilst the energy content for liquefied natural gas LNG (equivalent to 

upgraded biogas) was around 43 MJ/kg. Estimated revenue per cubic metre of biogas used in 

the NNFCC economic model for UK biogas production (Redman 2008) was around 55 p/m3; 

using an excise duty value of around 10ppl. With the updated excise duty, the new correct 

revenue per cubic metre of biogas (assuming a methane quality of 58%) was calculated to be 
45.3 p/m3. This value was used within the subsequent analyses. 

9.5.4 Revenue from digestate as an artificial fertiliser replacement  

The financial value of digestate as a valuable fertiliser varied significantly throughout the 

literature. A study carried out by Chesshire & Ferry (2006) calculated a value of digestate 
compared with the application of slurry and inorganic fertiliser that would have been applied 

to the field if there was no AD facility. This value was around £1.17/tonne of digestate. This 

value only represented the difference in nitrogen, potassium and phosphate composition (N, 

P2O5, K2O respectively) between the digestate and standard fertiliser techniques.  

Other literature sources showed a financial value of £4-5/tonne of digestate based on UK costs 
of N, P2O5 and K2O (Redman 2008). This figure was cross-referenced against typical mineral 

fertiliser prices (Nix 2009). The calculation carried out and used in this thesis used the N, P2O5 
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and K2O contents in dairy cattle manure and applied to current fertiliser base prices from 

literature (Nix 2009). Using this technique, a mineral-based fertiliser displacement value of 

around £10/tonne was calculated. This highlighted a large difference between literature 
sources. Other sources suggested a fertiliser selling price of €40/tonne (£36/tonne) used for an 

economic assessment of biogas production in Ireland (Murphy & Power 2009). As a result a 

sensitivity analysis was undertaken, which covered a range of the fertiliser values. A base 

value of £4.5/tonne was selected as this was inline with one of the most current sources 

(Redman 2008).  

9.6 Assessing the financial appraisal of AD 

A number of factors can affect the financial performance of an AD plant. These factors include 

the operation, scale, and end-use of the biogas from an AD plant. In many situations referred 
to in literature, the economics of using AD have generally resulted in favourable outcomes 

(Ecofys 2005;Murphy & Power 2009).  

Having examined the techniques for determining the financial investment appraisal (FIA) of 

renewable energy options in general it can be seen that a number of assumptions affect FIA. 

Findings from Slesser & Lewis (1979) stated that this type of assessment is greatly affected by: 
the discount rate chosen, the rate of energy price increase (electricity, heat or transport fuel) 

and the expected life of the plant. When considering AD there are also other considerations 

which affect an economic assessment; these include: 

1. Cost of fertiliser 
2. The type of feedstock chosen 

3. The availability of grants and external funding for initial capital outlay - resulting in 

the possibility of interests on loans.  

4. The operational and maintenance costs associated with the plant (affected by the plant 

downtime also). 

5. The use for the biogas 

To understand how these considerations impact the financial aspects of an AD operation, a 

series of financial investment appraisals were carried out on existing AD plants. The 

assessment was carried out by creating a financial model for two plant case studies (plant A 

and plant C). The models used a 20 year period for discounting inline with the expected plant 

lifetime.   
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9.7 Results - financial appraisal of a small-scale AD plant 

A financial appraisal was carried out on plant A, a small-scale AD plant in the UK. The results 

have been displayed in Table 9-4 and show a range of scenarios, from high financial return 

and low costs, to low return with high costs. None of the three scenarios paid back over the 

life of the plant due to encountering a financial loss each year of operation.   

The AD plant used in the case study (plant A) was recorded to consume 2,806 kWh of 

electricity supply. Assuming a cost of electrical supply for a small-scale non-domestic unit of 

around 8-12p/kWh (DECC 2008) and a fixed cost of 30-40p/day, the electrical energy 

consumption per year for the plant was calculated to be between £335-480/annum. 

 

 

 

 

 

 

 

 

 

 

 

Table 9-4 Financial investment appraisal of small-scale AD plant in the UK (plant A) 

The results show a similar outcome to the energy analysis of the small-scale AD plant. The 

plant does not perform financially. The plant’s very low capacity factor (14%) means that it 

only operates at just over a tenth of its potential. This is due to the lack of feedstock 

availability. Secondly, the biogas output per tonne of input is lower than average values of 

biogas from dairy manure.  

One of the most significant factors affecting the plant’s financial performance is the end-use of 

the biogas. The biogas plant produces more biogas than is required for the nearby property 

where the biogas is used for heating. As a result, excess biogas is burnt off in the digester to 

heat the feedstock to a higher operating temperature. Not all of the biogas is used to obtain 

financial reward, as the demand is very low. Additionally, the cost of displacing kerosene as a 

fuel (i.e. using biogas for heating) is the least financially profitable biogas use, when compared 
to electricity production and transport fuel.  

 Plant A (UK AD Plant) 

Plant Output (biogas/tonne of feedstock) 17.1 m3/tonne of feedstock 

Annual biogas output 11,166 m3/year  

Biogas used for heating (Appendix B) 3,526 m3/year  

Annual Revenue Low return Medium return High return 

Heat (via cost of displaced kerosene) £888 £1,012 £1,234 

Fertiliser (assuming dairy cattle manure) £1,306 £2,939 £6,530 

TOTAL (per annum) £2,194 £3,950 £7,764 

    

Annual Costs    

Electricity £483 £408 £334 

Heat £750 £615 £540 

Maintenance £10,375 £8,152 £5,929 

Financial costs (5% APR over 20 years) £24,097 £14,432 £5,947 

TOTAL (per annum) £35,705 £23,607 £12,750 

Annual Profit/Loss -£33,511 -£19,657 -£4,986 
    

Capital Investment £300,300 £179,852 £74,110 

Simple payback period No Payback No Payback No Payback 

Total present value costs (PV) £844,964 £694,199 £558,888 

Net Present Value (NPV) -£817,616 -£644,969 -£462,133 

Benefit Cost Ratio (BC) £0.03 £0.07 £0.17 
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9.8 Results - financial appraisal of large-scale AD plant 

The AD plant examined in Chapter 7 was denoted as plant C. Based on the energy analysis 

results, this plant is considered as a potentially attractive proposition for implementation in 

the South West of England.  

The operational data used for this financial appraisal included a daily biogas yield of 3077 

m3/day, an input quantity of 92.6 m3 per day (equating to 33,812 m3 per year) and a feedstock 

composition of over 90% dairy cattle manure. Other feedstocks included the use of 220ha per 

year of maize silage, equating to around 2,650 tonnes of silage per year. The cost of this 

feedstock was known and therefore remains constant throughout the analysis.  

 The analysis was carried out using the findings and assumptions stated throughout the 

previous sections. The investigation was then further extended by comparing the end-use 

biogas for either electricity production or as transport fuel. The results have been tabulated in 

Table 9-5 below showing the extremities between the ‘High return’ and ‘Low return’ 

scenarios. These two boundaries used the full range of obtained data for all of the costs and 

revenues affected by the plant.   

 

Table 9-5 Financial appraisal for large scale AD plant (plant C) 

The results of the analysis suggest there could be a considerable difference between high and 

low range results when assessing the range of costing and revenues for AD. Taking electricity 

production for example, the payback time for the plant could either be around 9/10 of a year 

 Combined Heat and Power Transport Fuel 

Annual Revenue High Return Low Return High Return Low Return 

Electricity £331,736 £143,752 - - 

Heat £103,060 £90,492 - - 

Transport fuel - - £527,859 £426,780 

Fertiliser (assuming dairy cattle 

manure) £152,096 £50,699 £152,096 £50,699 

TOTAL (per annum) £586,891 £284,943 £679,955 £477,478 

     

Annual Costs     

Electricity £1,839 £4,904 £1,839 £4,904 

Heat £243 £280 £54,060 £61,233 

Maintenance £32,001 £129,234 £32,001 £129,234 

Other production costs - - £49,641 £87,602 

Financial costs (5% APR over 20 years) £32,098 £74,072 £19,732 £78,496 

Crop expenses (based on 200ha of 

maize) 
£73,514 £73,515 £73,516 £73,517 

     

TOTAL (per annum) £139,694 £282,005 £230,789 £434,986 

Annual Profit/Loss £447,197 £2,937 £449,166 £42,493 

     

Capital Investment £400,010 £923,100 £245,904 £978,230 

Financial payback period 0.89 314.25 0.55 23.02 

Total present value costs (PV) £2,126,854 £4,386,846 £3,070,191 £6,292,440 

Net Present Value (NPV) £6,219,412 -£1,963,562 £5,403,550 -£342,003 

Benefit Cost Ratio (BC) 3.92 0.55 2.76 0.95 
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or, considerably more. It is therefore evident that the assumptions made when carrying out an 

FIA for AD plants are extremely critical to the outcome. Having said this, the all-positive 

outcome is a reassurance that AD of this scale and setup could be financially feasible. 

Furthermore, it emerged that the use of biogas as a transport fuel could be financially more 

attractive than combusting the gas for electricity generation. This estimation was made 

assuming that biogas upgrade facilities were for large scale only (therefore assuming a cost of 

upgrading between 0.85-1.3p/kWh of upgraded biogas). The implications of this were also 
considered within the sensitivity analysis.  

The analysis also assumed that the capital investment was supplied on a loan basis with a 5% 

APR over 20 years, inline with similar studies (Murphy & Power 2009). The capital investment 

figures took into account whether a CHP unit would be required or whether the biogas 

upgrade unit was used. Realistically, when developing a plant of this scale, it would be 
beneficial to apply for support mechanisms available from the Government in order to ease 

the burden of setup costs.  

In order to calculate the PV and NPV a discount factor (DF) of 5% was used. The current test 

discount rate (TDR) employed by the UK Government for investment appraisals is 3.5% (Allen 
et al. 2008a). If an investment has a high uncertainty, then a higher discount rate is used as the 

investor wishes to recuperate the invested capital quickly. Some studies of renewable energy 

projects have carried out investment appraisal with a 0% discount rate (Butcher et al. 2006). 

Due to the uncertainties of AD in the UK a discount rate of 5% was chosen. This was 

considered adequate and represented the TDR between 2003 to present (where in 2003 the 

TDR was 6%). Although a sensitivity analysis on the discount rate was not carried out, a 

higher discount rate would have decreased the NPV of the plant, whilst a lower discount rate 
would have increased the NPV.  

The analysis showed that three of the four scenarios for plant B paid back within an assumed 

plant lifetime of 20 years. The ‘worst case’ electricity production setup did not payback and 

had an NPV of -£2million. The possible reason for this was the lower selling price of electricity 

used (7.5 p/kWh). This price was considered the lowest possible selling price for electricity. 
The displacement of kerosene fuel for heating also affected the low return on investment, 

assuming a low kerosene price of 36ppl. Although this analysis showed a negative payback at 

these prices, other studies have suggested that AD plants could operate at these selling prices 

(Yeatman 2005). The use of biogas for road transport proved to be almost financially viable for 

both scenarios. Although there were additional operating costs associated with this 

technology, the revenue for selling the biogas provided a benefit-cost ratio ranging from 0.95 
to 2.76.  
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9.9 Sensitivity analysis of financial investment appraisal 

9.9.1 Cost of selling electricity  

The electricity selling price was a factor with a considerable percentage uncertainty. The price 

was varied to account for single and double ROC schemes and the recently implemented FIT 

scheme. The cost of selling electricity varied considerably within literature, especially for 

large-scale installations. For a fixed methane quality, the change between 7.5p/kWh to 

15p/kWh showed a change in revenue of over £150,000 for the plant. This variation accounted 
for the range of selling prices which electricity from biogas could reach with the different 

support mechanisms. This has been shown in Figure 9-2. Literature suggested that a single 

ROC scheme system would equate to a selling price of 7-11 p/kWh, whilst a double ROC 

scheme could increase to 10-15 p/kWh. The FIT scheme varied between 9-11p/kWh and 

therefore was within this range.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9-2 Sensitivity analysis of electricity selling price on revenue from electricity sales 

 

Another significant factor affecting the revenue from exporting electricity was found to be the 
methane quality of the biogas produced. The methane quality within the analysis was limited 

to between 52-60% however, in other plants this can vary from 50-70%.  

 

 

 

 
 

 

 

 

 

 

 
 

 

 
Figure 9-3 Sensitivity analysis of changing methane quality between 50-70% 
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A sensitivity analysis was carried out for this and showed that for a high buying cost the 

methane quality could have an affect of over £100,000; equivalent to 30-40% of the total 
revenue from electricity sales. This has been shown in Figure 9-3. 

9.9.2 Transport fuel  

Selling biogas as a transport fuel assumed a fuel excise duty of 19.3ppl. It also assumed a 

methane quality of 58% and a cost of fuel displacement of 110 ppl. As vehicle fuel prices vary 

significantly, a range between 85-120ppl was used to show the impact of this on the financial 

return of biogas. This change resulted in a differential of just under £200,000, equivalent to 17 

p/m3 of biogas, as shown in Figure 9-4.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9-4 Sensitivity analysis of biogas for transport revenue based on fossil fuel price change 
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9.9.3 Fertiliser selling price  

The cost of purchasing fertiliser is dependant on a number of factors. These include the 

primary composition of sellable nutrients (N, P2O5 and K2O). The price of the nutrients can 
also vary substantially, as shown in Appendix B where over the recent years the cost of 

fertiliser has significantly increased. The current value for cattle manure digestate was 

assumed to be around £4.5/tonne. For digestate from energy crops this can rise to up to 

€40/tonne (£35/tonne) depending on the quality (Murphy & Power 2009).  

 

 

 

 

 

 

 

 

Figure 9-5 Sensitivity analysis of revenue from fertiliser 

 

Data obtained from German AD plants showed that the selling price of fertiliser from 

digestate was significantly lower than theoretical prices quoted in UK AD scenarios (FNR 

2005). The actual selling price ranged between £0.2-0.5/tonne of fertiliser. The cost of fertiliser 
in Germany may differ from the UK and therefore should not be used within the sensitivity 

analysis. A sensitivity analysis for a fertiliser price range between £2-£10/tonne was carried 

out, as these were the extremities found for digestate fertiliser values in England. In addition 

to this, the analysis only considered the annual digestate derived from cattle manure, 

therefore deducting the digestate from silage. As shown in Figure 9-5, the change in fertiliser 

price by £10/tonne showed a change in annual revenue of £300,000.  

9.10 Additional financial drivers for bioenergy pathways 

All bioenergy types must be financially appealing, both at production and use phase,  in order 

for them to have an increase in implementation (Adams et al. 2008). Within the bioenergy 
supply chain, feedstock suppliers and conversion process operators view this driver as the 

primary objective for a successful bioenergy plant.  

To support the implementation of AD in the UK, there are a number of financial support 

mechanisms. The financial support for bioenergy within the UK is distributed across the 
bioenergy supply chain. One of the most established mechanisms is the Energy Aid Payment. 

This payment funds growers by around €45/ha to grow crops for heat, transport and 

electricity (Nix 2009). Growers in England can also apply for the Energy Crop Scheme 

managed by Natural England. This scheme offers an establishment grant for energy crops 

such as miscanthus and short rotation coppice (SRC). These payments can cover up to 40% of 
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the actual costs (suppliers, materials and contractors) and on-farm costs (machinery, labour, 

etc) (Natural England 2008). The final scheme available to suppliers of feedstock is called the 

Bio-Energy Infrastructure Scheme. This scheme helps develop the supply of energy crops 
through the setting up of producer groups to supply biomass to energy end-users. The scheme 

offers up to £200,000 per project. 

Other direct financial support mechanisms specifically designed for the conversion of biomass 

to bioenergy include the Bio-energy Capital Grant Scheme which supports the development of 
CHP and power generation from biomass feedstocks. The fifth round of this scheme ended in 

July 2009 and it is anticipated that another round will commence within the following years. 

The scheme only supports the energy generation process and not the production of the 

feedstock. The scheme can cover costs of up to 40% to a maximum of £100,000 (Nix 2009).  

Other financial drivers for bioenergy are regarded to be ‘indirect’. Indirect financial drivers 
are possible economic benefits created through the implementation of legislations and 

regulations which do not directly apply to the bioenergy conversion process. An example of 

this is the Landfill Directive which aims to reduce the proportion of biodegradable waste 

entering a landfill. Through this directive and the Landfill Allowance Trading Scheme, a fixed 

penalty of £150/tonne is incurred if biodegradable materials enter a landfill over the permitted 

allowance. This is subsequently an indirect economic driver for energy from waste 

applications (DEFRA 2009a). Energy-from-waste plants can also charge a gate fee of over 
£30/tonne to uptake biodegradable waste, similar to the charge from landfill sites (DEFRA 

2009b).  

9.11 Summary 

The study carried out a series of financial investment appraisals on two AD plant case studies. 

The analysis compared the use of small-scale vs. large-scale biogas production on a financial 

basis. The results re-affirmed the results from the energy analysis. Small-scale biogas 

production was affected by the low feedstock uptake and the low conversion efficiency of the 

feedstock (low biogas yield per tonne of input). These factors, which had a negative impact on 
the energy analysis, also had a disadvantageous effect on the financial appraisal. The scale of 

the plant also resulted in a limited biogas use (heating only). 

The large-scale AD plant showed relatively positive financial benefits if both heat and 

electrical power were given a financial value. Biogas used for electricity alone was found to 
increase the financial payback of the large-scale AD plant significantly. The study then 

analysed the potential of biogas production as a transport fuel. Based on current operational 

costs of biogas conversion to transport fuel, the financial appraisal results showed an 

improvement over the use of biogas for heat and electrical power.  

The implications of the financial investment appraisal have been addressed in Chapter 10. The 
chapter also discusses how the current financial market affects the performance of biogas 

production. Finally, it provides recommendations and conclusions based on the outcomes of 

the financial modelling.  
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10 INTERPRETATION AND DISCUSSION OF FINDINGS 

10.1 Introduction 

The thesis has identified the biomass resource availability in the South West of England, 

followed by an assessment of the barriers and drivers for bioenergy development. These two 
research areas allowed an appreciation of all types of biomass resources, bioenergy pathways 

and their implementation within the region and also within the UK.  

Subsequent to the resource assessment, a multi appraisal technique was applied to a single 

bioenergy pathway: - biogas production from anaerobic digestion (AD). This pathway was 
chosen based on its performance within the resource assessment. The appraisal technique 

assessed the environmental impacts of AD performance based on energy analysis and an 

appraisal of the financial investment.   

The implications of the results have been discussed in the following sections and highlight the 

impact of the data used, the methodology adopted and the significance of the results in a 
regional context.  

 

10.2 Biomass resource assessment for the South West of England 

The study highlighted the potential for bioenergy production in the South West, with the 

prospect to significantly increase its current uptake. The region’s extensive agricultural sector 

and high generation of waste resources favoured the potential increase for bioenergy 

production.  

Results from resource assessment C (see Figure 3-10) showed the maximum contribution from 
biomass sources in the South West could be just under 54 PJNCV of energy per year. Energy 

crops from the previously available set-aside land and other permanent grassland were found 

to contribute up to 9 PJNCV per year. This correlates to similar findings in previous resource 

assessments for the South West (Scholes 1998) in which calculations for bioenergy from energy 

crops revealed a minimum potential contribution of just under 3,000 GWh (10.8 PJNCV). 

However this study has examined bioenergy as a whole rather than focusing solely on one 

type of feedstock.    

It is apparent that for significant development in bioenergy, by-product feedstocks such as 

organic domestic, industrial waste and waste from farming could contribute significantly 

towards the region’s biomass mix. Nevertheless, all feedstocks should be considered further as 

they could provide a more sustainable solution for energy production. The adaptability of 
biomass feedstock allows the adoption of multiple conversion techniques for bioenergy. This 

may be more beneficial than creating a mono-conversion system for bioenergy in the region. 

This would eliminate one of the key benefits and drivers for biomass use, i.e. its diversity.  

In 2001, the South West reportedly consumed 547.2 PJNCV of energy from domestic, industrial 

and service sectors (Chambers et al. 2005). Resource flow scenarios for 2015 predicted energy 
consumption would rise to 573 PJNCV if no energy efficiency measures were considered 

(Chambers et al. 2005). Correlating the trend to 2020, would suggest an estimated energy 

consumption of 599 PJNCV. Adopting Resource Assessment C would suggest that bioenergy 
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could contribute 6% to 9% of the total energy use in the region. Additionally, the study also 

highlighted the potential of currently available biomass within the region (resource 

assessment B, Figure 3-9). Currently available feedstocks for bioenergy were shown to be 
within a similar range as those calculated in assessment C. Both of these resource assessments 

did highlight a significant potential increase in bioenergy compared to the levels currently 

produced in the South West (resource assessment A). This was significant as it showed that 

the bioenergy potential within the region is not being exploited.  

The South West’s main sector for energy use is currently domestic, comprising of nearly 50% 
of the region’s energy mix (Chambers et al. 2005). The highest contributor towards this 

demand was the energy requirement for space heating (ibid). Bioenergy could offer a 

significant contribution towards meeting some of this demand. This could be an efficient use 

of the biomass resource which would also eliminate the requirement for expensive or 

technologically challenging bioenergy conversion techniques (heat from biomass requires 

relatively simple conversion techniques). Table 10-1 shows how the bioenergy potential 
calculated in resource assessment B could contribute towards each of the three main energy 

consumption sectors for the South West of England.  

 

 

 

 
Table 10-1 Potential bioenergy contribution towards South West energy mix, using resource assessment B 

If used solely for the domestic sector, bioenergy could contribute towards 10-20% of the 
region’s energy, whilst for the industry sector alone this could be between 30-55%. The 

diversity of bioenergy would undoubtedly result in a mix-contribution towards all three 

energy-use sectors as opposed to accounting solely for one. A foreseeable concern could arise 

if a particular bioenergy route were to become more profitable than the rest. This could result 
in a single or limited use for bioenergy determined primarily by economic return on 

investment. The environmental issues of adopting monocultures of biomass feedstocks could 

also have a negative impact on the region.  

10.2.1 Implications of the resource assessments 

The key findings from the three resource assessments in Chapter 3 showed that the current 

production of bioenergy within the region is extremely limited. However if measures were 

taken, the uptake of resources used for bioenergy could be significantly higher. The 
significance of this is that currently bioenergy is not being exploited within region. These 

findings can be linked with the findings from Chapter 4, where economic barriers to 

bioenergy feedstock suppliers proved to be a critical factor when considering the increase in 

bioenergy uptake. As a result these findings signify that there is no strong motivation or 

market attractiveness for bioenergy feedstock supply. The potential for bioenergy is clearly 

visible within the region, as the results from resource assessment B and C suggest. However 

the uptake of this resource will remain limited until new market drivers are introduced.  

Energy Consumption for 

2001 

Potential bioenergy contribution 

adopting resource assessment B 

Primary energy consumption by sector PJ Minimum Maximum 

Domestic energy consumption 258.3 10% 20% 

Industry energy consumption 89.7 30% 55% 

Services energy consumption 198.4 14% 25% 
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Another reason for this low resource utilisation could be the lack of conversion technologies 

available within the region (or the UK as a whole). The research from Chapter 4 highlighted a 

number of failed bioenergy plant attempts, which therefore limited the requirement of 
bioenergy feedstocks. The results suggest that a greater demand for biomass as an energy 

source would be needed to increase the bioenergy resource utilisation within the region. This 

could be brought about through increased Government support during the installation of 

conversion technologies or by establishing secure bioenergy supply chains within the region 

(such as AD for biogas production). Further financial incentives or possible financial 

reassurances (such as a secured grant) may also stimulate the bioenergy feedstock production 

market, minimising the risks of investment.  

10.2.2 Implications of barriers for bioenergy development in the South West  

The study carried out in Chapter 4 highlighted the strength and interdependence of the 

supply chain for bioenergy. The link between feedstock availability and supply and the 

adoption of the correct conversion technology is extremely relevant in developing a successful 
bioenergy project. However the demand for the end-use energy must be present in order to 

validate the use of the conversion technology. The support from policy and Government 

legislation can assist all three aspects of the bioenergy supply chain.  

The study found that although similarities in barriers and drivers existed amongst the 

stakeholder groups representing the bioenergy supply chain, some aspects were unique to 
individual groups. For feedstock suppliers for example the key barrier to the development of 

bioenergy was found to be the uncertainty on investment. This is particularly true for 

feedstock suppliers of SRC or miscanthus, where annual returns are not possible due to the 

long growing periods of the crops. The uncertainty of demand for bioenergy feedstock 

inevitably leads to feedstock suppliers feeling insecure about investing in bioenergy. Financial 

aspects of bioenergy were also viewed as a key barrier for primary end-users of bioenergy. 
High buying costs of bioenergy feedstocks with respect to fossil fuels would ultimately lead to 

a reduced demand for bioenergy. 

The barriers identified as most critical amongst conversion technology owners/developers 

were perhaps the most interesting and significant within the study. Technological 

uncertainties and limitations of the conversion technologies were seen as a critical barrier for 
developers/owners or investors. This barrier is highlighted significantly within case studies 

shown in Chapter 4, regarding the failed bioenergy developments. Uncertainties regarding the 

conversion technology could lead to increased investment, operational and maintenance costs. 

This would subsequently create indirect financial barriers for this stakeholder group.  

However, perhaps more significant are the perceptual challenges felt towards uncertain or 

complex conversion technologies of biomass. The study acknowledged that due to limited 

public understanding, bioenergy plants were often associated with waste incineration systems 

which provided questionable benefits to the environment and the local community. This 

would undoubtedly reduce the willingness for local communities to accept a bioenergy plant 

installation in close proximity; particularly if the potential benefits are not transposed directly 

on to the community itself.  
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If the benefits and outcomes of adopting a bioenergy conversion technology were made clear, 

perhaps bioenergy projects within the South West may have been more successful. Bioenergy 

projects have a unique capability of being integrated within a local community. This could be 
a result of obtaining local feedstock, employing locally and using the energy within the 

proximity either through district heating or off-grid electricity production. Often however, 

biomass projects are of large scale, sourcing feedstocks from vast radiuses, which could offer 

limited employment opportunities locally due to the high skill/experience requirements.   

The final part of the study in Chapter 4 confirmed the overarching influence which the 

Government can have across the whole bioenergy supply chain. The cluster of common 

barriers for this stakeholder group included the lack of resource availability, the potential rise 

in food prices and the use of unproven technology. These can clearly be related to the 

requirement of the UK Government to increase fuel security and deliver clean and affordable 

energy (BERR 2007a). The use of unproven technologies could lead to large Government 

investments with limited or very low returns. Although there are a number of Government 
funded schemes to aid financial investment into bioenergy technologies, the risk of the 

investment should be minimised. Financing significant portions of the bioenergy-capital-

grant-scheme in unproven emerging technologies could provide a large uncertainty of return 

and reduce the possibility of funding for projects with more established technologies. 

Government support through direct commercial funding, financing research and development 
or implementing support mechanisms at end-user energy levels (such as the ROC, feed-in-

tariff etc) is present across the whole supply chain. Inevitably this support does not cover all 

aspects of bioenergy due to the vast number of pathways which bioenergy can take. For 

example, Chapter 9 highlighted the recent financial incentives for electricity and heat 

production from bioenergy. This is assisted further through the bioenergy capital grant 

scheme being eligible only for electricity and CHP systems. However, the use of bioenergy as 
a transport fuel does not have similar direct financial benefits.  This consequently favours 

particular bioenergy pathways over others.  

In the case of biogas production from AD, the use of farm manure as a feedstock can also be 

seen as an example of where financial incentives are lacking for particular bioenergy 

feedstocks. This highlights the disparity of how the Government assists particular feedstocks 
using financial aid yet fails to support others. Dedicated energy crops, as highlighted in the 

thesis, are eligible for a number of financial support mechanisms whilst farm manure used in 

favour of industrial waste is not financially rewarded (as was shown to be the case in 

Germany, Table 9-3). A potential recommendation is the possible introduction of financial 

reward systems of energy (electricity, heat and transport fuel) which take into account the 

whole supply chain of the bioenergy pathway. This would include the feedstock source and 

location, the conversion technology adopted and the energy end-use. In Germany for example, 
electricity producing AD plants which are fed from animal manure are eligible for additional 

government financial support. This could be implemented in the UK, thus rewarding the 

whole supply chain rather than limiting support to particular areas.    

10.2.3 The significance of farm waste for the South West of England  

The resource assessment highlighted the significant abundance of farm waste in the South 

West. Biogas production from farm waste is considered a secondary biomass source, 
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signifying the original biomass feedstock will have been processed to make a different type of 

bioenergy (FAO 2004). The benefits which biogas was considered to have were as follows: 

o Biogas is not processed for a particular end-use energy commodity, such as electricity 

generation, heat supply or transport use. Therefore making it a versatile fuel; 

o The majority of the current energy-from-waste in the South West is collected through 

biogas production and is generally the most accepted form of waste-to-energy; 

o The production of biogas from farm waste enables the waste to be used as a natural 
fertiliser, thus not influencing the current end-use of farm manure;  

o Biogas is considered a renewable energy source and is defined as a primary fuel according 

to the Digest of UK Energy Statistics (BERR 2008a); 

o Biomass materials with high moisture concentrations (MC) are suitable for biogas 

production and would not be suitable for direct combustion. Most organic wastes (such as 

farm waste) have a relatively high MC therefore biogas production from these sources 

would be favourable. 

The assessment concluded that a significant portion of bioenergy could be derived from 

organic waste. Organic waste includes organic matter in municipal/industrial waste and 

agricultural organic waste. The results from the resource assessment showed the potential of 

this biomass type was the most abundant throughout the assessments within the region.  

The potential of energy recovery however, should not affect existing practices and techniques 

of handling farm waste. Currently farm waste is distributed in four main ways: incineration; 

pasture range and paddock, where the waste is excreted directly onto pasture land; storage, 

either in liquid form or solid form and daily which is when the waste is dispersed onto the 

land within a month of collection (Mistry & Misselbrook 2005). The use of anaerobic digestion 
(AD) for biogas production could alter the ways in which farm waste is handled. Importantly 

however, farm waste used as a fertiliser substitute would not be affected by biogas 

production. The adaptability of biogas as an energy fuel can also be favourable for exploiting 

this bioenergy option within the region. 

The results from the resource assessment suggest that the use of AD for biogas production 
could be used as a suitable conversion technology capable of utilising the available feedstock. 

The resource assessment has highlighted a bioenergy pathway which could be suitable for the 

region’s energy production. However the impacts of this bioenergy pathway have been 

examined and as a result this technology has been used in the multi appraisal technique. 

Although the study has limited the research area to a single bioenergy pathway it has been 

essential to do so in order to compile an accurate and meaningful assessment.  

10.3 The bioenergy pathway investigated – Anaerobic Digestion (AD) 

The study found that there are a number of operational parameters which affect the 
performance of anaerobic digestion (AD) for biogas production. The complexity of the AD 

process signifies that there is often considerable instability. This instability is instigated by the 

drop in methane generation, drop in pH and an increase in surface scum (Lyberatos & Skiadas 

1999). In the study carried out in Chapter 6 the operating parameters for a number of existing 
AD plants were analysed. It was shown that although the expected correlations existed, the 
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percentage error was too high for them to be used reliably in order to estimate the biogas 

potential for the South West. As a result detailed energy analyses were required for 

individually chosen AD plants, used as case studies.  

Analysing the theory of kinetics for AD along with the operational data obtained from biogas 

producing plants showed broadly similar correlations. The methane yield of a digestion plant 

grows linearly with the increase in size of digester; this was clear from theoretical and actual 

plant data. This rise in methane with respect to digester size was found to be higher (0.65 
m3/m3 of digester) for mixed wastes (manures and co-substrates) than with a single manure 

feedstock (0.55 m3/m3 of digester). In the case of mixed wastes, a rise in methane yield of 

around 15% was seen. However this could not be used as a basis for all biogas calculations of 

mixed feedstocks due to the variability of feedstock biogas yields; but simply to re-emphasize 

the link between digester size and expected methane yield per day. The significance of the 

results showed that the use of co-substrate addition could increase biogas yields without 

significantly increasing the plant size. This could be a consideration if AD were to be 
implemented in the South West of England.   

The results also demonstrated the increase in methane yield per unit volume of feedstock in 

relation to the increase of volatile solids (VS) concentration. This was understood to be due to 

the VS concentration affecting the degradability of the material. Nonetheless, the reduction in 

methane yield as the VS concentration increased was not observed with the German 
operational plant data. This signified that the large variation in feedstock types used in the 

operational plants resulted in changes in total solids (TS) and volatile solids (VS), which 

ultimately had an effect on the overall biogas yield. Different hydraulic retention times (HRT) 

and variation in the use of single or multi-stage AD processes could also have affected the 

results. It was apparent that the main cluster of results showed AD plants operated between 5 

and 15% VS, which subsequently meant the corresponding TS concentrations, were also 
around 5-15%. The findings implied that digester design should be focused on operating using 

an optimum VS concentration and similarly suitable TS concentration. A compromise should 

therefore be obtained between the maximum degradability of the feedstock for biogas 

production and the feedstock which requires the least energy demand during the digestion 

process.  

The findings were significant as they highlighted that AD plants can operate on relatively low 
dry matter concentrations. This means that the majority of the feedstock should always be 

water in order to maintain the TS at appropriate levels. These findings would appear to 

strengthen the theory that AD for biogas tends to be more successful in wetter climates such 

as north Europe and North America. Geographical regions where water is more limited may 

not suit the use of AD.  

Inhibitors which affect the performance of AD plants were found to be varied and generally 
unclear within literature. Although an efficiency parameter could be inversely linked to the VS 

concentration of a feedstock, it did not explain exactly why the parameter was affected. This 

was because there are a number of different inhibitors which are produced at varying stages 

of the process, depending on the setup of the AD plant. The most common type of inhibitor 
was understood to be ammonia, which is formed from the anaerobic degradation of nitrogen 

compounds (Deublein & Steinhauser 2008). Other inhibiting factors included organic acids. If 
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the rate at which these organic acids are fed into the digester is too high, the acidification stage 

of the process is expanded. This subsequently drops the pH value and increases the 

generation of acetic acids ultimately reducing the methanogenesis stage.   

It was understood that the longer the digestion time (HRT) the more methane was captured 

per unit weight of feedstock. According to the model produced by Karim et al. (2007), the 

methane production rate is roughly inversely proportional to the HRT. This is because the 

process is allowed more time to recuperate the remaining available biogas. This 
understanding highlighted the requirement to find a compromise between the time to digest 

the material and the acceptable methane yield to be extracted. A longer digestion time could 

reduce the overall annual biogas output, in an effort to capture as much of the methane as 

possible.  

The study enabled an understanding that the use of biogas from AD as an energy source is not 
solely affected by the conversion technology. The feedstock properties such as VS, TS and 

ultimate methane yield dictate a significant portion of the biogas capabilities of an AD plant. 

The implementation of an AD plant is therefore highly affected by the whole supply chain 

from feedstock production to biogas end-use.  

10.4 Review of the multi appraisal technique for biogas 

The assessment of a single bioenergy pathway for the South West of England was undertaken 

using a multi appraisal technique. The technique examined the net-energy performance, the 

financial capability and the environmental impacts of biogas production from AD. 

The multi appraisal technique was applied in detail and specifically to three case studies. The 

significance of these case studies was to address a range of AD plant sizes, biogas uses and 

feedstock types. The plants were denoted as plant A, plant B and plant C. One of the three 

case studies was an installation within the study area (South West of England). A reminder of 

the plant description can be found in section 6.1.  

Assessing the environmental implications of biogas production proved to be the most time 

and resource intensive of the three appraisal techniques. The validity of LCA was dependant 

on the quality of data collection and the detail of data available. Therefore, non-theoretical 

data was essential in carrying out an LCA. In order to carry out a valid and representative 
LCA, the methodology was carried out on a single AD plant (case study plant A). This was 

considered as a good representation of single-feedstock biogas production as emissions could 

easily be correlated to varying plant scales. The net-energy analysis and financial appraisal 

were comparatively more straightforward and therefore could be applied to a wider range of 

case studies.  

10.5 Review of energy analysis 

Energy analyses carried out for biogas production were found to vary extensively depending 

on the AD plant setup. Therefore, it was difficult and misrepresentative to compare the energy 
analysis in this study with those in the literature. These variations occurred within the system 

boundaries of the studies and the conversion efficiencies used for calculating the primary 

energy of fuels for electricity and heat.   
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The research was significant in showing how energy analysis could be used as a tool in 

examining the energy requirements of the whole product or process chain. Comparing the 

energy analysis results (ERE in particular) calculated for the three case studies used in Chapter 
7, against published literature showed significant discrepancies. Previous analysis showed a 

typical ERE of 2.58 (Lewis 1977), which was then used and referenced in subsequent literature 

sources as a common representation of AD (Mortimer 1991). Closer investigation of the 

literature showed that the calculated biogas yield per unit input of cattle manure (the only 

feedstock selected by Lewis (1977)) resulted in approximately 1.1 m3 of biogas/m3 of waste 

feedstock. This is more than 20 times lower than quoted by some literature (Ecofys 2005) and 

significantly lower than any other related sources (Amon et al. 2007;Callaghan et al. 2002). The 
implications of this comparison meant that it is often difficult to create direct comparisons of 

AD plants as the biogas potential of the feedstock can differ significantly.  

Other studies which carried out energy analyses of AD showed that for large scale electricity 

production biogas plants, an ERE between 0.6-2.4 MJresource/MJdelivered was obtained (Berglund & 
Borjesson 2006). These results were consistent with the findings for the three case studies, 

highlighting the large variation in ERE depending on the efficiency of the conversion process. 

The ERE results obtained in Chapter 7 have been compared against a number of other energy 

sources, shown in Table 10-2. The output biogas has been has been modelled to either produce 

electricity, heat or a methane transport fuel.  

The results shown in Table 10-2 indicate that electricity production from biogas has a lower 

ERE than currently utilised fossil fuel resources. However compared to other renewable 

sources such as hydro and wind, the ERE performs less well. Biogas for heating is also shown 

to have a slightly higher ERE compared to naturally combusting biomass sources. However, 

the thermal quality benefits of biogas, in that it is able to combust at much higher 

temperatures than solid wood for example, is not shown through the ERE calculations. As a 
result, the ERE may not fully represent the energy potential of biogas. In this case, the quality 

of the energy (exergy) for the system could subsequently be analysed. This could be 

considered as further research based on the outcome of the results obtained.  
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Table 10-2 Comparison of energy analysis between biogas and other energy sources (* denotes a theoretical 

setup only) 

10.5.1 Implications of biogas energy analysis findings 

The analysis has demonstrated the energy inputs within a range of typical AD processes. This 
has enabled an understanding that biogas yield is affected by the feedstock type, operating 

temperature, retention time and the rate of feedstock input. Most of the energy input (up to 

80%) of the AD process is concentrated within the plant itself (Berglund & Borjesson 2006). 

Within the AD plant, the majority of energy consumption is allocated to heating the digester, 

as the electrical demand for pumping and mixing is comparatively lower.   

The average heat consumption determined for a number of plants was around 250 MJ/tonne 

whilst electricity consumption was recorded to be approximately 45 MJ/tonne. When 

considering the average operating temperatures of AD plants (commonly mesophilic at 30oC-

40oC) it was apparent how critical the geographical location of an AD plant was. The 
electricity consumption meanwhile was found to correlate to the dry matter percentage (TS %) 

of the material. This was due to the dry matter requiring a greater amount of energy in order 

to displace and deform it.  

Electricity MJresource/MJdelivered    

Biogas Plant A - Based on 33% conversion efficiency  

Biogas Plant B 1.42 Based on 33% conversion efficiency  

Biogas Plant C 0.88 Based on 33% conversion efficiency  

Wood fired Power Plant 0.82 (Mortimer 1991) 

Hydro 0.01 (Allen at al. 2008b) 

Large Scale Wind 0.05 2 MW – 30% capacity factor (Allen at al. 2008b) 

Small Scale Wind 0.05 800 kW – 20% capacity factor (Allen at al. 2008b) 

Solar 0.34 (Allen at al. 2008b) 

     

Heat     

Biogas Plant A 1.66 Based on heating efficiency from SEDBUK (2009) 

Biogas Plant B* 0.52 Based on heating efficiency from SEDBUK (2009) 

Biogas Plant C* 0.70 Based on heating efficiency from SEDBUK (2009) 

Biomass - Pine 0.02 30-90 yr. rotation (Mortimer 1991) 

Biomass - Poplar 0.37 10 yr. rotation (Mortimer 1991) 

   

Transport Fuel   

Biogas Plant A* 1.25 Fuel upgrade based on Borjesson & Berglund (2006)  

Biogas Plant B* 0.50 Fuel upgrade based on Borjesson & Berglund (2006) 

Biogas Plant C* 0.49 Fuel upgrade based on Borjesson & Berglund (2006) 

US Ethanol 0.73 (Dale 2007) 

Biodiesel from Jatropha 0.70 (Prueksakorn & Gheewala 2008) 

Ethanol - Fermentation of 

Maize 2.03 Fermentation type (Mortimer 1991) 

Ethanol - Fermentation of 

Straw 5.26 Fermentation type (Mortimer 1991) 

Petrol 1.29 (Spielman et al. 2007a) 

Diesel 1.19 (Spielman et al. 2007a)  
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The South West of England has on average an annual maximum temperature between 4oC and 

5oC higher than the North of England and Scotland (Met Office 2007). Even within the South 

West there is a variation of temperatures across the region. The slightly elevated temperatures 
in this region could be favourable towards the efficiency improvements of biogas production.  

The transportation of feedstocks was not found to be as energy intensive as expected, with 

other literature revealing that manure can be transported up to 125 miles before it becomes 

energy negative. Energy crops and other “exotic” feedstocks can be transported up to 430 
miles, prior to becoming energy negative (Berglund & Borjesson 2006). The longitudinal 

distance of the region is around 200 miles on road, whilst latitudinal cover is only 90 miles by 

road. Therefore wastes can be transported across the region in order to maximise the digester 

size. Farms could therefore deliver to centralised AD units rather than having individual AD 

plants for each farm. 

The energy analysis carried out on the three AD plant case studies highlighted clear 
correlations between the GER and the scale of the AD plant. Figure 7-8 showed that as the 

plant size increased the energy resource requirement decreased. This emphasized the 

potential benefits of large-scale AD over small-scale. Within the study it was also found that 

the use of high biogas yielding materials could be used to improve the ERE of smaller-scale 

AD plants (this could also be true for large-scale). Therefore it can be concluded that in order 

to maximise the energy output of biogas production, large-scale AD is favourable.  

The use of high biogas-yielding food wastes as a main feedstock is not essential in achieving 

high-energy yields. This is clearly shown through the comparison between plant B and plant 

C. The feedstock for plant B is a mixture of food processing and farm waste, whilst plant C is 

predominantly farm manure waste. As the use of farm waste eliminates the requirement for 
additional (expensive) waste handling processes, it can be concluded that the benefits of using 

‘exotic’ wastes are limited. However, by not using gate fees as a supplementary income, the 

implications on the revenue of the AD plant could mean that return on investment would be 

more limited. Relying on the revenues from landfill avoidance may not appear to be a 

sustainable (or a permanent) solution to the development of this technology.     

The use of all-farm waste favours the South West of England due to its abundant source of 
animal manure. However, the performance of plant C was not due to the manure alone. An 

additional ‘booster’ feedstock or co-substrate is required if AD plants were to operate as 

successfully as the case study plant C. The co-substrate used there was maize silage, which is 

derived from crop processing wastes. In terms of volume or mass, the addition of this co-

substrate is comparatively small against the manure feedstock quantity. However, the use of 
the feedstock adds to the energy requirement of the overall plant.  

The exclusive use of animal manure within the AD process also eliminates the requirement for 

a pasteurization tank meaning the conversion process could require less energy. The digestate 

is considered and recognized as a natural form of fertiliser (DEFRA 2008d), whilst digestate 

from a mixture of wastes is not easily classified as a natural source of fertiliser.  

When interpreting the results for the South West, it can be concluded that the optimal use of 

biogas from AD would either be for CHP or transport fuel. These uses for biogas showed the 
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highest net-energy yields. CHP could be installed within the region to either provide district 

heating for local villages or be used as a source of thermal energy for hot water and heating 

within the agricultural sector. An example of how this could be utilised is a typical small-scale 
dairy farm which can use up to 1000 litres of hot water (80oC) per day for washing and 

cleaning milking parlours. 

The use of AD for the South West region could be favourable if a network of large-scale AD 

plants were strategically placed across the region around the locus of the farming population. 
The transport of animal manures to and from the farms would be outweighed by the energy 

output which large-scale biogas plants can produce; with the addition of a co-substrate. The 

preferred use for biogas within the region, based on energy analysis, would be either for 

combined heat and power (CHP) or use as a transport fuel. Further work could be carried out 

to analyse the exact location of the farms (along with their scale and waste output). Using this 

information and knowledge of main transportation routes within the region, the optimum 

location for centralised AD plants could be determined. One of the key considerations and 
possible limitations of CHP is the capital investment of district heating systems. A further 

analysis would provide a useful guide to the financial payback of this technique depending on 

the location of its installation. 

10.6 Review of life cycle assessment results 

The life cycle assessment (LCA) was carried out on one of the three case studies used for the 

energy analysis. Due to the complexity of LCA it was considered more accurate to undertake a 

detailed analysis for one AD plant. This is because LCA requires actual operating data to 

correctly simulate the environmental impacts of a process. The LCA was undertaken on the 
small-scale AD plant (plant A); as it was the only process to digest a single feedstock. This 

could then be used as a model for other AD plants within the region. Additionally, the plant 

also offered the largest operational and construction data resource.   

The LCA study highlighted the potential contributions and detrimental effects that biogas 

production and use could have towards the environment. As expected, the use of biogas for 
displacing kerosene could offer benefits in terms of lowering CO2 emissions and decreasing 

the consumption of fossil fuel resources. The use of biogas (as a replacement of kerosene for 

heating) was found to displace oil and/or gas-based fossil fuel resources.  

Additionally, the output of the digestate was found to have positive benefits towards climate 
change and fossil fuel resource depletion by displacing energy-intensive inorganic fertilisers. 

Other environmental damages such as carcinogenic effects were found to be minimised if 

digestate were used as a displacement of inorganic fertilisers.  

10.6.1 The potential of methane savings from biogas production 

The benefits to climate change could have been greater if the displacement of naturally 
occurring methane from undigested slurry was also considered. The savings in methane due 

to the process of AD are very difficult to quantify and are often not credited within biogas-

related studies (Ghafoori et al. 2006;Ghafoori et al. 2007). This is because 86% of the methane 

emitted is due to enteric digestion (i.e. emitted within the animal’s digestive system), whilst 

only 14% of methane emissions are associated with the manure storage and handling (Mistry 
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& Misselbrook 2005). Methane emissions from storage are strongly linked to the surface area 

in contact with air. The greater the area, the lower the methane emissions produced (ibid). 

Therefore the uncertainty of how manure is stored can add greater errors when accounting for 
climate change benefits from methane savings.   

The study did not take this into account as the methane yield from aerobically digested 

manure can vary significantly depending on its exposure to air. To reduce the inaccuracies 

within the study this additional benefit of biogas production was truncated outside of the 
system boundary.  A list of rationale was created to justify this decision are as follows: 

• Laboratory studies have shown that over a 30 day period, the gaseous emissions are 

predominantly carbon dioxide. Methane emissions contributed to around 2% (Dinuccio et 

al. 2008).  

• Methane production from AD is significantly higher than aerobic methane generation, 
therefore exact manure storage techniques must be assessed for each individual case study 

of AD.  

• Methane emissions from agriculture are predominantly associated with enteric digestion 

(86%) rather than waste storage and handling (Mistry & Misselbrook 2005).  

10.6.2 Implications of biogas life cycle assessment findings 

Although biogas production offered some environmental benefits, both outputs (biogas and 

fertiliser production) highlighted significant damages towards human health and the quality 

of ecosystems. These damages were found to impact respiratory inorganics and 

acidification/eutrophication. This was primarily due to the ammonia emissions during the 

production phase of biogas, the diesel and kerosene combustion and emissions from the 

biogas combustion (used for the production of further biogas).  

Ammonia release was especially significant as it contributed towards both impact categories. 

These emissions could have been avoided if ammonia filters were put in place such as the 

ANAStrip process (Deublein & Steinhauser 2008). This could significantly reduce the impact 

of these environmental concerns, as it eliminates traces of ammonia within the process. 

Another technique would be to prolong the digestion period so that less ammonia is emitted 
during the digestate stage. A final recommendation would be to create a cover over the 

digestate tank in order to trap the post digestion emissions. This would not only reduce air 

emissions but also recover some of the remaining biogas.  

Emissions such as sulphur dioxide and nitrogen oxide also contributed towards the 
environmental impact from acidification. These emissions were a result of the combustion of 

biogas and kerosene within the AD process. A recommendation could be to install a 

desulphurization procedure within the AD plant. This would eliminate the hydrogen sulphide 

within the biogas and subsequently eliminate the sulphur dioxide emissions from hydrogen 

sulphide combustion. These systems can range from very crude devices such as a container of 

iron filings acting as a filter for the biogas to pass through; to more expensive computer 

controlled gas cleaning processes (Ecofys 2005).  

Another factor found to contribute towards these two environmental impacts was the low 

biogas productivity of the plant (i.e. a low capacity factor). The implication of having such a 
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low capacity factor meant that a larger amount of biogas was combusted per unit output of 

biogas produced. A recommendation for this AD plant would be to increase the feedstock 

availability and also increase the demand for biogas. These two measures would increase the 
capacity factor of the plant and therefore the impact of kerosene combustion (and excess 

biogas combustion) would be reduced. Currently the additional biogas could not be stored in 

the gas-storage tank as it was too small; therefore excess biogas was used to overheat the 

digester. To improve this inefficiency, a larger biogas storage tank could be installed.  

Installing these emission controlling techniques may require additional energy consumption 

and expenses; however the overall environmental benefits would clearly be significant. The 

use-phase of the AD plant was found to contribute most towards the environmental impact 

categories over the whole life of the plant. These emission measures would therefore have an 

impact over the most critical part of the life cycle for biogas production.  

Environmental concerns such as fossil fuel resource depletion were also found to be caused by 

the inefficiencies within this specific AD plant. In particular these were the high start-up 

kerosene use, the excess biogas burnt within the digester due to lack of demand from the 

farm-house and the diesel consumption within the farm for collecting and handling the waste. 

The impact of the latter did have an element of uncertainty and was shown that it could be 

reduced within the sensitivity analysis. The implications of these findings are that the 

environmental impact of fossil fuel resource depletion should not be representative for all AD 
processes. This is because these inefficiencies are site specific and could easily be reduced 

through improved process engineering design.  

The findings from the whole life cycle assessment of the AD plant showed that the plant could 

have a positive impact on climate change (Figure 8-11). This was primarily affected by the 
avoidance of kerosene combustion but also the biogenic use of carbon dioxide during the AD 

process. Therefore the findings advocate the carbon dioxide emissions savings through the use 

of biogas from AD. As the LCA study considered the use of animal manure as a free resource, 

the impact of using biogenic CO2 as a resource should be considered carefully. In this study 

this has been addressed in section 8.7.1.2.  

10.6.3 Recommendations for the South West of England 

 Implementing the use of AD for biogas within the South West of England could offer 

environmental benefits in terms of lowering GHG emissions and the consumption of fossil 

fuels resources. However adopting a similar setup to the AD plant analysed for the LCA 

would offer questionable benefits towards the environment. The design of the AD process 

should incorporate air emission reduction measures such as desulphurization, ammonia 
reduction and process efficiencies. The impacts of not using these measures were made clear 

through the LCA. If these measures were not put in place on large-scale AD plants then the 

effect of these impacts could be even greater. 

It is also recommended that stringent legislation should be put in place for the use of food 

wastes within the AD process, as is the case in case study plant B. The use of undigested food 
wastes also emits higher emissions in terms of ammonia, hydrogen sulphide (Deublein & 

Steinhauser 2008). As a result adopting these feedstocks could amplify the problem further 

making it essential to ensure that air emission reduction measures are implemented on all AD 
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processes. The design of the AD process must also consider the feedstock 

production/collection process. The results in Figure 8-11 showed that the balance of climate 

change impact between production and use of biogas was very similar. This plant did not 
have additional energy expenditures in terms of feedstock production or collection. If these 

were present, the balance may not have been as neutral.  

In conclusion, if a scenario were adopted similar to those described in 7.4.5, biogas production 

could contribute significantly towards the region’s energy supply and lower its impact on 
climate change (shown in Figure 8-11). Additionally, the natural fertiliser (digestate) could 

displace inorganic fertiliser use in a region which is heavily dependent on farming (over 80% 

of the regional land is dedicated to farming). Therefore the potential for using AD should not 

be overlooked.  

Regulatory measures must be taken however, if this technology were to be implemented to a 
large scale within the region. The LCA highlighted the potential damage which the AD 

process contributes towards human health and ecosystem quality. It is recommended that 

biogas production facilities are installed with the correct and adequate emission control 

systems as previously mentioned. Filtration and cleaning techniques in AD plants are vital as 

without these measures the emissions have a significant impact on human health and 

damages to ecosystems which could overshadow the displaced fossil fuel and climate change 

reduction benefits.  

The LCA has provided a scientific means of relating the AD plant design process and the 

capability to minimise the environmental damage of biogas production. Despite the 

uncertainties within the LCIA methodology adopted, the tool has nonetheless provided a 

valid assessment of the areas in which AD design must be improved.   

10.7 Review of financial investment appraisal results 

A financial investment appraisal for biogas production and use has shown that under certain 
conditions, AD can be financially profitable. This is affected by the export value and costs of 

biogas production. Investment costs for AD plants were found to be approximately £20,000-

50,000/tonne of feedstock input per day. Other sources related the investment cost to the 

digester size. Adopting this approach showed that AD setup costs are in the region of £220-

650 per m3 of digester. However, the results in Chapter 6 showed that the daily input rate and 

the digester size were linearly proportional. As a result, it can be assumed that both capital 
cost relationships are valid.  

However, reviewing Figure 9-1 shows that the relationship is not completely linear and that 

capital costs/AD size could decrease as the plant size increases into large setups. Additionally, 

the fluctuation of results from the mean was also noticeable. This implies that using average 

figures to calculate the capital cost of AD plant setups does not give a representative result 
and without knowing the auxiliary equipment within the plant (such as CHP, biogas cleaning 

etc) these averages can be misleading.  

The primary cause of this uncertainty is that AD setups vary greatly in terms of auxiliary 

equipment installations such as desulphurization units, varying sizes of biogas storage which 
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are dependent on demand and different end-use conversion technologies for the biogas itself. 

Additionally the tank construction can vary from concrete, steel and even polymer. These too 

could have an influence on the capital cost of an AD plant. As a result, the averages found for 
capital costs could provide a broad capital cost indication, whilst detailed site assessment 

should be carried for individual plants.  

The capital cost for a large scale AD plant (using the same digester size) was found to vary 

between £400,000 to just under £1 million. A large scale plant such as this is capable of 
producing around 1,500 cubic metres of methane per day (53.7 GJ per day). Converting this 

biogas to electricity would provide 5,000 kWh per day. Assuming a 20-year lifespan and a 

capacity factor of 80%, this equates to around 1.4p/kWh up to 3.4p/kWh of total lifetime 

electricity production. If AD installations were to be implemented for electricity production, 

the investment costs of the plant would have considerable impact on the unit cost of electricity 

production. The cost of electricity production could vary by over 100% depending on the 

initial capital cost of AD. In addition to this, the operation and maintenance costs would also 
increase the production costs of electricity. 

By re-examining the financial support mechanisms supplied by the UK Government it is clear 

that one-off grant schemes such as the capital grant scheme are insufficient as the annual 

operating costs can nearly match the total capital costs. As a result, support mechanisms 

should be a continuous funding stream, in addition to the ROC and FIT schemes which only 
reward the performance of a bioenergy project. However, funding is limited during the initial 

stages of a bioenergy project where there is a greater risk of downtime or technical issues.  A 

solution to this would be to have gradually decreasing financial support mechanisms. This 

would offer higher rewards during the initial phases of the project, which would then 

gradually reduce over time. This could help during the initial phases of the project up to when 

the bioenergy plant can operate successfully with minimum downtime.  

Given the recent doubts cast over the application of bioenergy as a transport fuel, the drive for 

crop fuels such as bioethanol and biodiesel remains uncertain (The Royal Society 2008). The 

use of biogas as a transport fuel is technically less challenging as cleaned biogas is a direct 

replacement of liquefied petroleum gas (LPG). Additionally this technique is a method of 

utilising waste and converting it to an energy source for transport. A recommendation would 
therefore be to implement greater incentives for the use of biogas as a transport fuel as this 

energy source has unique potential within this sector. The use of biogas as a competing energy 

source against other uses such as electricity and heat production may not be maximising the 

potential of this energy source.  

Although the use of biogas as a transport fuel appeared to be financially plausible, the 

uncertainties within the calculated results were clearly highlighted in Table 9-5. The analysis 

showed that both (electricity production and transport fuel production) options could be 

financially feasible depending on the assumptions made. As a result the sensitivity analysis 

highlighted how these assumptions can impact the outcome of the financial investment 

appraisal. The study highlighted that theoretical economic modelling cannot be used to 

accurately assess the financial feasibility of an AD plant setup. Having used a number of the 
available economic models, it is apparent that there are significant limitations with each of 

these models, which have been detailed in section 9.3. 
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The financial feasibility of adopting biogas production for the South West was modelled using 

the AD case-studies for plant A and plant C, the latter showing the best performance in the 

energy analysis study. These two case studies were used to address two areas of interest: 
firstly to allow a comparison between the financial appraisal of a large and small scale AD 

setup, secondly to assess the financial viability of an AD plant which could use feedstocks 

indigenous to the South West of England.  

Plant C performed well in terms of net-energy output but was also well-suited to the resources 
available within the region. If plants of this scale were adopted for the South West of England 

a significant contribution of animal manure could be used as a feedstock. The total dairy cattle 

population in the region is around 650,000 which would in theory equate to the construction 

of around 260 AD plants of this scale. This would obviously vary depending on the size of the 

plants constructed.  

In order for these plants to operate in accordance to the case study example, 220 ha of maize 

silage per plant would be required per year. For the total region, this corresponds to around 

57,000 ha of maize plantations. In 2007 the region produced 58,000 ha of maize, all of which 

were converted to maize silage for animal feed.  An AD operation of this scale would require 

nearly all the maize production allocated to the South West. Using this crop extensively as 

described could have serious implications on the animal feed market, ultimately leading to a 

potential price hike for this feedstock.  

A scheme of such scale (260 large scale AD plants for the SW of England) could produce an 

annual regional revenue of between £78million to £225million depending on the biogas end-

use and the associated retail value of different AD outputs. However the extensive use of 

maize silage could ultimately lead to more expensive animal products such as meat and dairy. 
These external costs were not taken into account within the study as it is not usual practice to 

do so in a financial investment appraisal.  

It is clear that careful attention should be made to the displacement of arable land for the 

production of biogas; or for any other bioenergy resource. Although the production of biogas 

through this scenario requires comparatively little arable land for operation, the impacts are 
still notable. If the use of energy crops for AD were increased or adopted for another 

bioenergy conversion technology such as fermentation or transesterification, then 

considerably more arable land-use would be required. This could have a negative 

environmental impact as increased artificial fertilisation and transport may be required. 

The need to examine the external costs associated with biogas production is therefore a 

recommended future investigation, to enable an understanding of the true economic costs and 

benefits of this bioenergy pathway. External costs such as animal feed displacement and 

increased detrimental effects towards the environment should be assessed as this would be 

representative of the issues for the South West region.  

In conclusion, biogas could be financially viable and potentially suitable for the South West of 

England due to the abundant animal manure and land availability for agricultural crops. 

Although biogas production for transport fuel performed financially better, in reality the 

probability of using the gas in this way would be limited. This could be predominantly due to 
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the limited use of LPG vehicles (suitable for adapting to biogas). However, as highlighted 

previously, the Government financial rewards of using biogas as a transport fuel are not as 

clear and direct as support for electricity and heat production. These issues could influence the 
end use of biogas, by generating a greater use of the fuel for electricity and heat production 

than for transport fuel.  

10.8 Summary and outlook on bioenergy for the South West 

The wealth of bioenergy resources in the South West of England offer a potential to pursue the 

targets set in the UK’s Biomass Strategy (BERR 2007c). There is a clear supply of substantial 

biomass resources in the region; resulting in the potential for the South West to play a 
major/leading role in bioenergy for the UK. The study has shown that biomass resources are 

not fully maximised within the region. This appears to be primarily due to economic and 

technical constraints raising the cost of bioenergy deployment. Public perception of bioenergy 

plants can be linked to the uncertainty of technologies and can create obstacles for planners 

and developers. Examples of this include the failed 21.5 MW biomass gasification site in 

Winkleigh, Devon (Upham & Shackley 2007;Upham & Shackley 2006) and the failed North 

Wiltshire 5 MW wood gasification plant (Upreti 2004;Upreti & van der Horst 2004).  

At present, conventional energy-production techniques are less expensive, more abundant 

and readily available. As a result the need for biomass as an energy source is limited. 

Additionally, the financial reward incentives for consumers to opt for ‘greener’ technologies 

could still be a suitable driving force across the whole bioenergy spectrum. 

As there are established incentives for renewable electricity (Thornley 2006), this could mean 

that at present the favouarable use for bioenergy is electricity generation. This is further 

subsidised by the newly implemented Feed-in-Tariff (FIT), thus increasing the drive for 

electricity production from bioenergy. These established financial reward mechanisms may 

drive the use of biomass away from the potential of heat generation or conversion into 
transport fuel.    

Biomass has a significant potential for renewable heat generation (Slesser & Lewis 1979). If 

bioenergy for heat energy were to be subsidised in a similar way to electricity generation, 

there could potentially be an increase in uptake of biomass for heat. This scheme is envisaged 
to be implemented in the near future through the renewable heat incentive (DECC 2010b). 

Additionally, bioenergy feedstocks are generally available in rural areas, thus making them 

attractive for heat generation in the South West of England. Nonetheless, the expensive 

transport costs due to biomass’ low energy density make it unfavourable in urban areas. This 

could be overcome by transporting the biomass in other forms such as wood pellets, 

pressurized biogas or bioliquids (bio-oils, biodiesel and bio-ethanol); therefore these routes 

should be investigated further. 

It is difficult to estimate the plausibility of exploiting bioenergy as a transport fuel. The biogas 

studies within the thesis have shown that on energy and financial levels this bioenergy 

pathway could be favourable. It would be difficult to quantify the contribution which 

bioenergy could have on reducing carbon emissions and fossil fuel reduction targets, as 
transport energy use is not contained solely within the region. Additionally, the lack of clear 
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financial incentives for renewable sources to enter the transport sector will also deter the use 

of bioenergy to be confirmed for this use.   

10.8.1 Limitations of the resource assessment and examination of barriers & drivers 

The resource assessment carried out was an extensive and detailed representation for the 

South West of England. Due to the scope of the research it did not show how the region 

compared to other regions and therefore could not address whether bioenergy should be 

solely focused on development in the South West or in the UK as a whole. The level of detail 

at which the resource assessment was undertaken would require a period longer than the 

allocated time for this research (based on the time consumption for the SW resource 

assessment). Additionally, the resource assessment is a tool for understanding how and which 
resources should be used, thus it is not a comparative tool to assess different regions.  

A number of limitations were observed after examining the barriers and drivers for bioenergy. 

The number of stakeholders which contributed to the survey could have limited the study 

undertaken, as documented in Chapter 4. Due to the relatively low number of stakeholders 
available and willing to participate, the assessment had to consider bioenergy as a whole. This 

was not preferable as it was acknowledged that there would be different barriers and drivers 

for each bioenergy pathway. However, due to stakeholder limitations bioenergy was 

considered as a whole and interpreted accordingly. Nevertheless, the results have been 

invaluable and were well received by peers (Adams et al. 2008).   

10.8.2 Limitations and recommendations of the analysis in this thesis 

The initial objectives set out for the research assignment were to assess the potential of 

bioenergy for the South West of England, covering all bioenergy feedstocks and pathways. 

The thesis has shown that a valid and representative assessment of bioenergy should assess 

bioenergy pathways individually. Although the study undertook an extensive multi appraisal 

technique there were still key areas of research which were identified for possible future 
analysis for the pathway of biogas production.  

Further analyses could include examining the environmental impacts for a range of biogas 

production plants, covering a variety of feedstocks and biogas end-uses. This would highlight 

the potential environmental impacts of each bioenergy pathway on a broader scale. Similarly 

the costs of the environmental impacts should also be calculated and linked to the external 
costs and benefits of using biogas within the region. The current financial investment 

appraisal highlighted the issues concerning the large-scale adoption of maize silage as a 

feedstock for biogas production. However, due to the nature of a financial investment 

appraisal these externalities were not considered.  

The assessment of bioenergy pathways in this method can be time consuming and may only 

represent one particular set-up within the pathway. However a study such as this clearly 

highlights the overall sustainability of a bioenergy pathway in terms of energy, environment 

and economic implications. An overall recommendation would be to carry out a similar 

assessment for all suitable bioenergy pathways within the region. Once carried out, a matrix of 

outcomes could be used to determine the most suitable bioenergy pathway based on energy, 

environment and economic aspects.  
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11 CONCLUDING REMARKS AND RECOMMENDATIONS 

11.1 Introduction 

To determine the potential of bioenergy, an array of scientific and engineering based research 

techniques were required. These techniques were crucial in developing an understanding of 
the true potential of the energy source, in terms of resource estimation, energetic output and 

feasibility of implementation, financial consideration and assessment of the environmental 

impacts.  

This chapter aims to draw conclusions and make recommendations based on the original 
research objectives. The significance and impact of the results obtained from the various 

studies are also discussed. The closing views and considerations of the biogas potential for the 

region are addressed, focusing on the results and trade-offs obtained between some of the 

analysis techniques.   

11.2 Initial research objectives 

The initial research objectives were as follows: 

o Examine the bioenergy resource potential for the South West region. This should be done 

in terms of actual and theoretically obtainable potential. 
o Examine the drivers and barriers to bioenergy development and use for the region. 

o Considering one bioenergy pathway (biogas); assess the potential of biogas use within the 

region based on the following criteria: 

� Energy analysis of biogas production systems. 

� Environmental appraisal of biogas production and its impacts. 

� Financial investment appraisal of biogas for the SW of England.  

11.2.1 Examine the bioenergy resource potential for the South West of England 

The resource assessment was conducted in accordance with established and published 

resource assessment methodologies. The assessment highlighted that the current highest 

contributor to bioenergy in the South West was energy recovery from waste. This provided 

the majority of the (rather small) energy contribution to bioenergy for the region. However, 

there appeared to be signs that other biomass sources were being adopted for bioenergy 

purposes.  

The resource assessment highlighted the large contribution which farming made towards the 

overall land use (over 80% land use). Subsequently, this emphasized the potential of farm 

waste as a source of bioenergy. Due to the extensive land availability for crop farming, it was 

concluded that the region could offer an excellent contribution to bioenergy by harvesting 

annual and perennial crops, such as oilseed rape, wheat, miscanthus and short rotation 
coppice. However, with the abolishment of set-aside land in 2007, the production of bioenergy 

crops has competed directly with food crop production. This factor, along with additional 

uncertainties regarding first generation biofuels, means that energy from waste could offer a 

substantial contribution without affecting the region’s established farming sector.  



CONCLUDING REMARKS 

- 193 - 

 

11.2.2 Examine the drivers and barriers to bioenergy production and use in the region; also 

examine the social impacts of bioenergy 

The study focused on understanding why a significant number of prosperous bioenergy 
projects launched in early 2000 had not materialised by the end of the decade. The analysis 

called for an understanding of the key barriers and drivers for bioenergy production across 

the whole supply chain: farmers and suppliers of feedstock, bioenergy conversion 

owners/developers, bioenergy primary end-users and finally, Government related bioenergy 

stakeholders.  

A stakeholder survey was undertaken to establish the most important barriers and drivers to 

the development of bioenergy. The study highlighted a strong link between the whole supply 

chain for bioenergy development and the importance of Governmental assistance at each 

stage of the bioenergy development chain. The main focus lay within economic aspects of 

bioenergy projects. This was clear from both a drivers and barriers perspective. It was 

determined that the primary consideration for bioenergy schemes must be that they are 
economically attractive, which then dictates the success of a project. 

However, the importance of bioenergy in its ability to reduce carbon emissions and fossil fuel 

dependency was also seen as relatively significant. It highlighted the need to demonstrate the 

net-energy and carbon benefits of a bioenergy scheme. Supply of resources was highlighted as 

a critical issue, confirming that bioenergy can often compete for land-use against other crops.  

Across the whole study, the social impacts of bioenergy development were appreciated. In 

this particular study the stakeholders were asked whether public perception was seen as a key 

barrier to bioenergy development. The results showed that this barrier was not amongst the 

most significant. However, studies referenced extensively throughout this thesis suggested 
that one of the most common causes for failed bioenergy developments was strong public 

opposition to planned projects.  

11.2.3 Assess the net-energy of biogas production and how this affects the region 

The use of biogas was considered as a suitable option for bioenergy production within the 

South West. The net-energy benefits (or drawbacks) of biogas production were analysed. The 
analysis followed standard, established conventions for assessing the net-energy of a process. 

The results highlighted that small-scale biogas plants appeared to produce less energy than 

the energy invested over their lifetime, therefore being an energy sink. However, this was 

highly dependant on the feedstock input, the operating capacity and the energy quantity 

having to be invested in the plant.  

Large-scale AD plants proved to be much better in terms of net-energy output, compared to 

small-scale AD plants. However, the analysis also highlighted that farm-derived wastes could 

be just as, if not more effective than using industry or food processing wastes. This was due to 

the increased energy requirement to pasteurize and process materials that pose a hygiene risk. 

The theory of energy analysis also highlighted the variation of results depending on where the 

study system boundaries were placed. If the energy benefits of natural fertiliser production 
were accounted for then the AD plants produced an improved net-energy output. 
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Based on the most energy efficient plant analysed within the energy analysis, it was estimated 

that around 260 AD plants of this scale could be installed in the region; based on the feedstock 

availability.  

11.2.4 Assess the environmental impacts associated with the deployment of biogas 

production in the region 

Life cycle assessment (LCA) was used to determine the potential environmental impacts of 

AD. An LCA was carried out on a single AD plant (denoted as plant A in the case studies). 
The LCA showed results that met preconceived expectations in terms of the potential for the 

reduction in fossil fuel resource depletion, along with a potential reduction in climate change 

impacts during the entire lifecycle of biogas production. These were mainly achieved by the 

displacement of kerosene and inorganic fertiliser production. However, these benefits were at 

a cost of increased damage towards human health and ecosystem quality. This was due to 

emissions from the process which contributed towards respiratory inorganics and 

acidification/eutrophication. These were found to be a result of ammonia emissions during the 
digestate storage, followed by diesel and kerosene combustion during the production phase of 

biogas.  

It was found that these damages could be significantly reduced if appropriate emission 

control measures were undertaken. This included: covering the digestate storage so that less 

emissions were able to escape during the post-digestion process; introduction of an ammonia 
removal process, currently commercially available; inclusion of a desulphurisation unit to 

reduce sulphur dioxide in the combustion process and finally installation of catalytic 

converter units on biogas combustion processes to reduce further nitrogen oxide emissions.  

The analysis concluded that if biogas were to be installed in the region, careful measures 
should be undertaken in order to minimise the impacts towards respiratory inorganics and 

acidification/eutrophication. The benefits obtained from biogas production would be 

outweighed by the increased damage to human health and ecosystem quality. The emission 

reduction procedures should be made obligatory if biogas production were implemented in 

the region.  

11.2.5 Assess the use of biogas based on a financial investment appraisal 

The study examined the production and use of biogas based on a financial investment 

appraisal. The assessment examined the variation in plant scale, along with the variation in 

biogas feedstock and end-use. The investment appraisal highlighted the possible financial 

benefits of adopting large scale AD in the region, due to the region’s abundant resource 

supply. The study concluded however, that co-substrate addition for a large AD development 
in the region would require a significant amount of cropland (even if the co-substrate addition 

per plant were very small, i.e. less than 10% per AD plant).  

The study highlighted that the unit selling price of electricity and biogas transport fuel was 

similar in some circumstances. Due to the low conversion efficiency of electricity production a 

lower amount of marketable energy would be obtained from this process. As a result, biogas 
for transport fuel production was found to be more profitable. However, as profitability is 

linked to demand, it is envisaged that the demand for biogas for transport will be much lower 
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than electricity production. The study concluded that biogas production could contribute 

towards £78-225 million annually for the region, depending on the end-use of biogas and the 

investment costs. However, careful consideration would have to be made to check other 
markets (such as the maize production market in the SW) would not be impacted by biogas 

production.  

11.3 Issues found from attempting research 

The initial research objectives were created with a holistic view of bioenergy. The research was 

intended to focus on a broad range of bioenergy types, focusing on a particular geographical 

region. This was achieved in part by conducting a resource assessment for bioenergy, as all 

biomass types could be examined. However, subsequent research objectives, such as energy 

analysis, environmental assessment and financial assessment posed a greater challenge in 
creating detailed research for such as broad range of bioenergy pathways. 

Appreciating all bioenergy feedstocks, conversion processes and end-uses highlighted the 

extent of the bioenergy pathways. It was concluded that in order to achieve the level of 

qualitative research required, a single bioenergy pathway would have to be analysed.  

As a result, the pathway was selected based on the results from the resource assessment, 

where organic waste was highlighted as one of the most abundant and least impacting 

resources on current markets. The issue with this approach was that many other bioenergy 

pathways which could have been beneficial for the region were excluded. However, to carry 

out an interdisciplinary integrated appraisal methodology for just one bioenergy pathway 
proved extremely time and resource intensive. The issue therefore, may have been with the 

initial research objectives either being too ambitious or not fully understanding the time 

resource requirements for undertaking energy analyses, environmental impact assessment 

and financial appraisal techniques.  

Having limited the scope of the research to just one bioenergy pathway enabled a true 
understanding of the potential for this pathway within the region. Additionally, the outcome 

of the research could provide a blueprint procedure for assessing the suitability of other 

bioenergy pathways for particular geographical regions.  

11.4 Overall contributions from research findings  

The thesis represented an extensive and detailed study of bioenergy for the South West of 

England. The resource assessment methodology detailed in Chapter 3 identified that the use 

of bioenergy in the South West of England was considered to have a strong potential. 

Furthermore, few detailed studies had been previously undertaken to determine what sort of 
biomass was available and how the biomass could be used to optimise the production of 

bioenergy. Therefore this resource assessment makes a valid contribution towards the region’s 

appraisal of bioenergy. The study also enabled an understanding of the motives for the 

region’s (and UK in general) lacklustre deployment of bioenergy. The links between the 

drivers and barriers of bioenergy enabled an understanding of the motives for slow bioenergy 

development. This is an important factor when addressing future bioenergy developments for 

the UK; to gain a clear understanding of why previous bioenergy project attempts have failed.  
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The outcome of the resource assessment highlighted that one of the most feasible uses of 

biomass for bioenergy was the exploitation of organic matter for biogas production. In a 

region such as the South West where farming has an important role, the use of land is critical 
in maintaining the economic and ecological structure of farming within the region. Therefore 

reducing the land requirement for biomass in the region could be beneficial. Introducing the 

use of bioenergy (on a scale large enough to make a significant contribution) could have 

serious implications of the delicate and established farming life within the region. For this 

reason, the use of biogas for bioenergy could be a plausible solution for the region. However 

the scale and overall size of implementation should be examined in greater detail. In this 

thesis, the author was hesitant to elaborate on the proposed scenario of 260 AD plants, as this 
was used solely as a representation of the theoretical potential, but was not considered 

realistically feasible for the region due to uncertain environmental and economic outcomes.  

The research concluded that large scale biogas production was favourable compared to small-

scale applications. This was highlighted through the energy analysis but also through the LCA 
analysis where the inefficiencies of small-scale AD were clearly emphasized. Within the 

energy analysis, it was also concluded that biogas for transport would result in the highest 

energy gain. However, the use of biogas could only be used as a replacement fuel within 

liquefied petroleum gas (LPG) fuelled vehicles. Currently in the UK, the number of LPG 

fuelled vehicles is significantly fewer than petrol or diesel vehicles. Therefore, the limited 

supply of biogas for this energy-use would significantly reduce the beneficial impacts of the 

fuel. A more suitable use for biogas appears to be the combination of electrical power and heat 
production (CHP). The electricity could be used to feed the national electric grid whilst 

thermal energy could have more localised uses such as industry and agricultural 

implementations through district heating systems.  

11.5 Further work  

The research on the feasibility of biogas production and use enabled an understanding of the 

impacts of energy resource requirements for biogas as fuel. One of the energy requirements 

was found to be the transportation of feedstock to and from the AD plant. It was understood 

that there would be a trade-off between transport distances for feedstock collection and the 
amount of net-energy which would then be obtained from the biogas production. As a result, 

an extensive attempt was made to obtain exact locations of the farms in the region, along with 

feedstock types and quantities. However, the author was informed that due to privacy laws, it 

was forbidden to share such information. This information could have been used to determine 

the optimum location and size of biogas plants across the region, in order to maximise the net-

energy benefits of the plant.   
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This is a potential area for future work, in order to complete an extensive analysis of 

bioenergy potential for the region. A list of other possible future work for the region has been 

shown below: 

o Finalise the suitability-assessment of biogas by: 

o Analysing the farm location (and feedstock availability) to determine the optimum 

transport distances and AD plant size for the region;  

o Carry out an LCA assessment for a large scale single source AD plant and an LCA 
for a large scale mixed source AD plant. Use these findings to compare the results. 

These LCAs would have to be done with the same system boundaries and process 

assumptions as the LCA in Chapter 8; 

o Examine the indirect costs of this technology by assessing the external costs and 

benefits. This would require the use of Cost-Benefit Analysis techniques;   

o Carry out a similar study as shown in Chapter 4 (assessing bioenergy drivers and barriers) 

for specific bioenergy pathways including biogas production; biofuels production and use; 
energy crops for electricity and heat etc.  

o Carry out the multi appraisal technique (energy analysis, environmental assessment and 

financial feasibility) for other bioenergy pathways, which could be used within the region. 

Use these results to create a comparison of different bioenergy pathways for the South 

West.  

11.6 Overall concluding remarks  

The thesis has assessed the bioenergy potential within the South West of England with a 

particular focus on one bioenergy pathway. The thesis has used a range of techniques to 
determine the resource, production and use of biogas energy. The range of techniques has 

created a basis on which future appraisal methods could be carried out when assessing the 

suitability of bioenergy projects within a region.  The multi appraisal technique has formed a 

possible blueprint methodology for decision makers and investors wishing to deploy the use 

of bioenergy.  

The appraisal technique appeared to have a number of small flaws and these limitations have 

been addressed, followed by recommendations. The main uncertainty arose when addressing 

the outcomes of the environmental impact life cycle assessment (LCA). The use of LCA 

produces clear and powerful results; however, the risks of errors in achieving these results are 

currently very high. This is due to the volume of data required and number of assumptions 

which have to be made during an LCA. Although this technique is an established tool, there is 

still a lack of uniformity amongst LCA practitioner’s approach when undertaking the 
assessments. These affect the outcome of an LCA and therefore reduce the evaluation 

capability of it. The study clearly showed the need to carry out a range of appraisal techniques 

to highlight the true potential of bioenergy. A single technique, such as LCA alone would not 

create a comprehensive and representative view of a bioenergy pathway’s potential.     

Overall, the research concluded that there is a strong potential for bioenergy within the region. 

The use of sustainable bioenergy, regardless of the feedstock, is closely linked to land-use and 

ultimately the farming capacity of a region. Notwithstanding the greatest efforts to minimise 
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the influence on existing economic and ecological farming characteristics within the region, 

ultimately the use of bioenergy will affect this sector.  

The research has clearly highlighted the further analysis that ought to be undertaken to 

finalise the ultimate suitability of biogas production within the region. Additionally, the multi 

appraisal technique should also be used for other bioenergy pathways which could be 

favourable towards the region’s energy supply. This would give a clearer representation of the 

true bioenergy potential, not just a single pathway. The research outlines this technique as a 
possible standardised method of assessment for future bioenergy projects for the UK as a 

whole.  
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APPENDIX A 

HEAT AND ELECTRICAL ENERGY DEMAND COMPUTATIONS FOR ANAEROBIC 

DIGESTION (AD) 

Heat Energy Use for AD 

Due to data availability the two primary factors; digester volume (related to input quantity) and 

the difference between digester temperature and ambient temperature were assessed. The power-

law correlation shows the relationship between size and rank in a sample, represented by an 

equation in which the independent variables are raised to powers.  By using the ‘power-law’ 

correlating equation, the heat energy requirement (Q) can be expressed as a function of these 

parameters as shown below.  

),( TVfQ ∆=   

This can be re-written using the power-law technique by: 

[ ]))(( ba TVkQ ∆=  

Where k is a constant and the constant a and b denote the dependants of the variable towards the 

outcome of the equation (the heat requirement). The two dependencies were plotted against the 

heat energy requirement and have been shown below (Figure A1, Figure A2 and Figure A3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1 -Heat energy demand of anaerobic digestion vs. digester size 
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Figure A2 - Heat energy demand of AD vs, feedstock input per day 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A3 - Heat energy demand for AD vs. delta temperature 
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tenths 9/10), whilst the operating temperature is significantly lower at around (with a 

dependency of two thirds 2/3).  

However the scatter of the temperature results also represents a large potential error in the 

correlation. The large scatter could be contributed to by the difference in insulation materials 

chosen for the AD plants analysed. In addition to this, a base ambient temperature of 15oC was 

also assumed. In reality the ambient temperatures would differ between the plants and hence 

would ultimately lead to different results.  

Electrical energy consumption for AD 

The use of electricity in the plant is dependant on: the size of the digester (V), the daily input of 

feedstock, the flow characteristics of the feedstock (TS%) and the time which the digester is 

operating for (retention time, RT). However electricity consumption per day is not dependant on 

the RT. This can be represented by: 

[ ]))(%( ba VTSkW =  

 Where k is a constant and the constants a and b represent the value of dependency of these 

parameters against the electricity consumption (W). The first correlation, shown in Figure A4, 

highlights the dependency of the daily input feedstock (m3/day) on the plant electricity 

consumption. As can be seen the dependency is relatively low at around 0.37 (approximately 

2/5).  

 

 

 

 

 

 

 

 

 

 

Figure A4 - Electricity generation vs. feedstock input of digester for AD plants 
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When analysing the likelihood of the material’s resistance to deformation (linked to the TS% of 

the material), the results show a much higher dependence between the TS% and the plant 

electricity consumption. This has been shown in the Figure A5.  

 

 

 

 

 

 

 

 

 

Figure A5 - AD electrical consumption vs. feedstock total solids (TS%) 
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APPENDIX B 

BACKGROUND AND CALCULATIONS FOR LIFE CYCLE ASSESSMENT (LCA) 

Alternatives to LCA 

There are a number of other methodologies capable of assessing the environmental impacts of a 

process or product. These techniques are applicable to different circumstances, stages-of 

development and end-user requirements. Environmental Impact Assessment (EIA) for example is 

a technique of predicting the environmental impacts of a process prior to construction, through 

the compilation of an Environmental Statement (ES). The EIA is prepared based on a specific 

plant or site and therefore is site specific. However, this type of assessment can be generic as 

plant or process details are not considered. Risk Analysis is a technique of assessing the 

environmental, health and safety risks associated with a plant or site. This can be done pre or 

during the plant operation and is often continuous. Risks are site dependant and therefore are 

localised. Finally, design-for-x methodologies can also help designers in the initial and detailed 

design stages, to simulate the potential environmental impacts of a product or process.  

These environmental tools can be placed on two axes depending on whether they are time or 

location dependant. A useful comparison of these tools has been created by Hofstetter (1998) and 

has been re-created in part in Figure B1. 

 

 

 

 

 

 

 

 

 

 

 

Figure B1 – Assessment of environmental tools relative to location and time. Adapted from Hofstetter (1998) 
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Calculation of the breakdowns for LCA 
 

Life cycle inventory data - Manufacturing of anaerobic digester (Table B1) 

This section highlights all the construction materials used for manufacturing the AD plant. 

The list also highlights the appropriate references from which the data was obtained.  

(a) – Data based from dimensions obtained from the plant, a reconstruction of the plant 

layout using solid edge 3D CAD package and understanding the techniques from the 

Permastore (2009).  

(b) – Plant Visit and talking to plant operator (J. Gascoigne, Greenfinch).  

(c) – The heat exchanger unit was remodelled in solid edge. Diameters for the pipes were 

estimated based on the overall dimensions of the unit. Stainless steel was assumed to be 

used as this was seen throughout the plant. The insulation was assumed to be Rockwool. 

The data for Rockwool was subsequently obtained from EcoInvent (Swiss Centre for Life 

Cycle Inventories 2007). 

(d) The stirring device was mainly constructed from stainless steel piping running around 

the plant. This was taken into account and an estimate was made on the quantity of 1” 

piping used. The motor and pump were accounted for elsewhere.  

(e) – Auxiliary equipment included seven 3 Phase electric motors. The dimensions were 

obtained from some of the manufacturers of the motors (AEG etc), along with the overall 

weight of the motors. A breakdown of the materials used within the motors was obtained 

from Mueller & Besant (1999). The pumps were divided into centrifugal and positive 

displacement pumps. Overall weights and dimensions for these pumps were considered 

to be similar to motors, however the primary material (cast iron) was accounted for. 

(f) The electrical control unit was around 0.8m in height, 0.4m in depth and around 0.7m in 

width. Analysis of material use for control units was carried out by EcoInvent (Swiss 

Centre for Life Cycle Inventories 2007) and inputted into their database. Typical 

breakdown of material composition for electrical control units was described to be: 46% 

steel, 32% plastic, 14% printed wiring board and the remaining 8% cables etc. (ibid). This 

breakdown used an estimate of 20kg for the total weight of the control unit.  

(g) The digester pre-heater used a kerosene boiler from Trainco Eurostar. The model was 

determined to be a Premier 100/125 condensing boiler model, which had a dry weight of 

170kg. According to EcoInvent (Swiss Centre for Life Cycle Inventories 2007) typical 

small scale (<100kW) boilers were manufactured using a range of materials involving: 

83% steel, 6% insulation (rockwool), 5% aluminium, 4% stainless steel and the remaining 

copper and brass. This was considered to be representative for small-scale boilers across 

Europe.  

(h) The digester heat was supplied using a biogas boiler by the manufacturer, Kayanson. The 

model used was the Hydra range. This boiler was estimated to weigh around 210kg 

according to manufacturer’s data. The same material composition as the kerosene boiler 

was used.  

(i) A survey was made around the plant of the total number of nuts and bolts used 

(excluding the number of nuts and bolts used on the tanks themselves). This resulted in 

approximately 300 nuts and bolts of M10 size. The weights of these fixings were obtained 

from standard manufacturing data (http://www.portlandbolt.com/bolt-weight-

calculator.html) and the material was assumed to be stainless steel. 
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Table B1 - List of components for AD plant manufacture - materials breakdown 

Plant Components Component  Material 

Digester Tank (a) Wall 25,636 kg Steel 

 Insulation 623 kg Polyurethane 

 Cladding 1,797 kg Steel 

 Nuts, Bolts and Other 184 kg Stainless Steel 

 

Base (for all feedstock 

tanks) 182 m3 Concrete 

 Seals 25.6 kg Sealant 

Digestate Tank (a) Wall 52,563 kg Steel 

 Nuts, Bolts and Other 310 kg Stainless Steel 

 Seals 42.8 kg Sealant 

Reception Tank (a) Wall 9,823 kg Steel 

 Nuts, Bolts and Other 83 kg Stainless Steel 

 Seals 11.52 kg Sealant 

Biogas Storage Tank (b) Lid Weight 0.194 m3 Concrete 

 Outer Skin 80 kg Glass Reinforced Plastic (GRP) 

 Base 0.75 m3 Concrete 

Heat Exchanger Unit (c) External Slurry Pipe 555 kg Stainless Steel 

 Slurry Pipe to Digester 472 kg Stainless Steel 

 Internal Water Pipe 101 kg of Stainless Steel 

 Insulation 40 m Lagging Insulation (Rockwool) 

 Container 2,230 kg Steel 

Stirring Device (d) Piping and Valves 214 kg Stainless Steel 

Auxiliary Equipment (e) x7 Electric Motors 160 kg Cast Iron 

  23 kg Copper 

   23 kg Steel 

 x3 Centrifugal Pumps 108 kg Cast Iron 

 

x2 Positive Displacement 

Pumps 41.6 kg Cast Iron 

 x3 Other Pumps 21.3 kg Cast Iron 

  0.3 kg Steel 

  0.3 kg Steel 

Electrical Control Unit (f) Main Body 9 kg Steel 

 Plastic Components 6 kg Plastics 

 Circuit Board 3 kg of Printed Wiring Board 

 Wiring 2 kg Cables 

Digester Pre-Heat (g) Kerosene Boiler 9 kg Aluminium 

  0.06 kg Brass 

  6 kg Stainless Steel 

  1 kg Plastics 

  10 kg Insulation (Rockwool) 

  140 kg Steel 

  4 kg Copper 

Digester heater (h) Biogas Boiler 14 kg Aluminium 

  0.09 kg Brass 

  9 kg Stainless Steel 

  2 kg Plastics 

  15 kg Insulation (Rockwool) 

  211 kg Steel 

  6 kg Copper 

Other Nuts and Bolts (i)  20 kg Stainless Steel 
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Emissions to soil 

 

The emissions to soil were obtained from the Scottish Agricultural College (SAC). The SAC 

had carried out a digestate examination on the plant in 2007 and the results have been shown 

in Table B2.  

 

 

Table B2 - SAC data for digestate heavy metals composition 
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Detailed calculations of the LCA allocation procedure 

Economic Allocation 

Under normal operating conditions, an anaerobic digestion plant releases biogas as a source of 

energy. Once the digestion process has terminated the digestate can then be distributed on 

farming land as a source of natural fertiliser. Dairy cattle waste is composed of 45% slurry and 

55% farm yard manure (FYM) which is solid (Mistry & Misselbrook 2005). This correlated with 

results of studies from Williams et al. (2006) of 44:56. Due to the uncertainty of the composition of 

the feedstock entering the digester it was assumed that this ratio would be used in order to 

determine the fertiliser values of the feedstock.  

By examining 1m3 of feedstock comprising of a 45:55 ratio between slurry and FYM it was 

determined that the following compositional values could be used as plant nutrients: 

  

Table B3 - Market value of 1 cubic metre of cattle waste 

From Table B3 the calculated total market value of a 1m3 of cattle waste was £8.79, i.e. the 

summation of all three fertiliser types. These market figures were obtained from 2009 data 

sources (Nix 2009). These three types of nutrients provide valuable natural sources of fertiliser for 

plants, which are both economically attractive and environmentally less burdening. In the UK 

alone it is reported that around £60 million per annum is saved on artificial fertiliser through the 

use of naturally occurring nitrogen from animal waste (Soffe 2003).  

Having obtained an economic value for one of the outputs from the life cycle study, the next 

stage was to allocate an economic value to the second output, biogas. The biogas produced was 

used for three main purposes, which are as follows: biogas used for: 

o Heating digester tank 

o Providing energy for farm house central heating and hot water 

o Providing energy for farm house cooking (Rayburn) 

From the visit to the anaerobic digestion plant, it was determined that around 55% of the biogas 

was re-circulated back into the anaerobic digestion process in order to heat the feedstock. Less 

than 25% of the remaining biogas was used for hot water and central heating for the farm house. 

The final 20% was used for cooking and additional heating/water with a Rayburn Stove. The 

recorded methane quality of the biogas was between 58-64% and assuming methane content of 

around 35.8MJ (Ecofys 2005) the calculated heat power rating was 68 kW.  

However, the actual recorded biogas required for heating the digester is a fixed 11.5m3/hr, as 

shown in Figure B1. This is obviously greater than the overall biogas production; however the 

biogas heat requirement is intermittent throughout the day and dependent on the seasonal 

climate.   

Cattle 

Waste 

£/kg of 

fertiliser 

Fertiliser/m3 

slurry 

Fertiliser/m3 

of FYM 

Fertiliser/m3 

(45:55) 
(ADAS 2007) 

Corresponding 

Market Value 

£ Kg Kg kg kg £ 

N 1.07 3.5 1.7 2.5 2.9 3.10 

P2O5 1.50 1.1 2 1.6 1.08 1.62 

K2O 0.97 5.8 4.6 5.1 4.2 4.07 



 

The total useful energy out from the biogas is delivered by the sum of the hot water, central 

heating and cooking biogas which equates to 3.99m

order to obtain the original 3.99m

output in the economic allocation. The use of biogas for domestic hot water, space heating and 

cooking displaces the use of an oil

calculation assumed that around 17.1m

was calculated using a figure of 8.89m

12.5m3/day). The calculation steps to determine the financial displacement 

use of kerosene has been shown in

processed of 653.2 m3, which was used to determine total annual biogas yield.  
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Figure B1 - Biogas flows around the plant 

The total useful energy out from the biogas is delivered by the sum of the hot water, central 

heating and cooking biogas which equates to 3.99m3/hr. The remaining 5.01m

original 3.99m3/hr of useful energy and therefore 

in the economic allocation. The use of biogas for domestic hot water, space heating and 

cooking displaces the use of an oil-burning boiler for heating water, radiators and cooking. The 

lation assumed that around 17.1m3 of biogas would be produced from 1m

was calculated using a figure of 8.89m3/hr of biogas for a period of 24hrs (daily waste intake 

/day). The calculation steps to determine the financial displacement 

use of kerosene has been shown in Table B4. The calculation also considered a total annual waste 

, which was used to determine total annual biogas yield.  
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The total useful energy out from the biogas is delivered by the sum of the hot water, central 

/hr. The remaining 5.01m3/hr was required in 

and therefore was not considered as an 

in the economic allocation. The use of biogas for domestic hot water, space heating and 

burning boiler for heating water, radiators and cooking. The 

of biogas would be produced from 1m3 of waste. This 

/hr of biogas for a period of 24hrs (daily waste intake 

/day). The calculation steps to determine the financial displacement of the biogas from the 

. The calculation also considered a total annual waste 

, which was used to determine total annual biogas yield.   
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Table B4 - Cost of oil displacement from biogas 

The calculation’s assumptions for kerosene oil price, gas and oil burner efficiencies have all been 

referenced accordingly. Using the above calculation steps it was determined that the cost of oil 

displacement for household energy consumption was approximately £1.23/m3waste. The total 

biogas used within the farmhouse was calculated to be 4.96 m3/m3waste inputted into the digester. 

This was achieved by taking into account the total waste per day, which was recorded to be 

12.5m3/day and distributing the waste input evenly over a 24 hour period (J. Gascoigne, 

Greenfinch, 2008, personal communication). The domestic energy demand was determined using 

the BREDEM-8 model.  

  

Waste entered into digester per year 653.2 m3  

Biogas produced from digester 17 m3/m3 of waste 

Methane produced equivalent 9.86 m3/m3 of waste (58% conversion) 

Methane energy (Net) 35.8 MJ/m3 Source: (Ecofys 2005) 

Kerosene energy (Net) 34.8 MJ/litre (43.61 MJ/kg) Source: (Esso 2004) 

Biogas used within house (annual)    

Energy demand from house 73.3 GJ/annum 

Biogas demand 3,530 m3/annum 

Biogas per unit input  5.40 m3/m3 of waste 

Methane equivalent 3.13 m3/m3 of waste 

Energy provided by biogas 112.2 MJ/m3 of waste 

        

Energy lost through efficiency     

Gas Burner Efficiency 90% Source: (SEDBUK 2009) 

Oil Burner Efficiency 97% Source: (SEDBUK 2009) 

     

Cost of Kerosene 28 sec spec. 0.41 £/litre  Source: (BoilerJuice 2009) 

Effective end-use energy 101.00 MJ/m3 of waste 

Oil required energy value 104.12 MJ/m3 of waste 

        

Oil required 2.99 litre/m3 of waste 

Cost of oil displacement 1.23 £/m3 of waste 
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Mass Allocation 

Mass allocation differs from economic allocation, as it utilises the physical properties of a multi-

output process. This type of allocation can be applied by computing the share in physical 

quantity of a product. The benefit of a mass-based allocation method is that it is independent of a 

variable financial market. Compound fertiliser for example (N-P-K combination of fertiliser 

compounds) has increased significantly during 2006-2008. As shown in Figure B2, the price index 

compared to 2000 has increased significantly in a very short period. Therefore, results from an 

economic allocation could change significantly.  

Figure B2 - Artificial fertiliser value between Jan 07-Dec 07 

Mass allocation for this study examined the mass entering the system and the mass exiting for 

different outputs. From the mass balance shown in Table B5, it was assumed that useful biogas 

used for domestic purposes was just over 9m3/day; this was equated using the BREDEM-8 

domestic energy consumption model for UK houses.  

 

Raw material into digester 12,500 kg/day 

 653,200 kg/annum 

Biogas produced from digester 17.1 m3/m3waste 

 12,487 kg/annum 

Raw material out of digester 12,260 kg/day  

 640,513 kg/annum 

Domestic heat biogas used 10.85 kg/day 

 3,961 kg/annum 

1m3 of Farm waste delivers: 2.5 kg N Fertiliser (Nix 2009)  

 1.6 kg P2O5 Fertiliser (Nix 2009) 

 5.1 kg K2O Fertiliser (Nix 2009) 

Fertiliser Available from digester 5,895 kg/annum 

Table B5 - Calculation of biogas use based on mass allocation 
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Calculating energy demand for the domestic farm house 

This section highlights the calculation procedure for determining the energy demand of the farm 

house. This subsequently determines the biogas demand. 

Cooking energy requirement 

The energy supplied for cooking within the farmhouse was delivered through the use of a 

Rayburn cooker. From the BREDEM-8 model, it was determined that the energy supplied from a 

typical gas cooker can be deduced using the current equation: 

 

NEk 6.098.2 +=  

Where kE is the fuel requirement used for cooking (GJ) and N is the number of occupants. The 

constants A and B are equal to 2.98 and 0.6 respectively and these values change for different fuel 

types. However, the constants used were for gas cooking.  

The use of cooking also has an effect on the space heating requirements of a domestic property. 

The losses through cooking energy can be associated with the gains in the space heating energy. 

These energy gains appear throughout the house and will be discussed in more detail later on. 

However for gas cooking the energy gains experienced are equal to: 

NGk 3.149.70 +=  

Where kG  is the energy gain from gas cooking (GJ) and N is the number of occupants. The 

farmhouse was also considered to have above average cooking energy consumption and 

therefore adopted the assumption of 20% increase on the results in accordance with the 

BREDEM-8 model. 

Hot water energy demand 

The hot water demand was based on assuming occupancy of 6 residents within the house. The 

determination of hot water demand was calculated using a combination of the BREDEM-8 model 

and work carried out by the Energy Saving Trust. The demand from the BREDEM-8 model 

estimated the volumetric demand (in litres) as: 

NltrsDHW 2538)( +=  

Where N is the number of occupants. However studies from the Energy Saving Trust (EST) 

determined that a more suitable volumetric demand equation for a household of 5 or fewer 

would be (Domestic Hot Water DHW): 

NltrsDHW 2840)( +=  

The BREDEM-8 model also assumed delivered hot water would be based on a 50°C in 

temperature rise, thus estimating an intake temperature of 10°C. However cold water inlet 

temperatures from the EST report were 15.2°C and that house with regular boilers would require 
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a typical hot water temperature of 52.9 ± 1.5°C. From these results and by applying the specific 

heat capacity of water ( pc = 4200J/kgK) the energy demand can be deduced by: 

( )21)( TTmcJDHW p −=  

Where 
1T  is the hot water temperature and 

2T  is the inlet water temperature. Upon completion 

of the calculation for domestic hot water the distribution losses were also taken into 

consideration. These losses were reported to be around 15% of the total energy use. The 

calculated DHW requirement using four occupancies was 188 litres of hot water per day. From 

this, the overall energy demand was calculated.  

Space heating 

Space heating energy requirements proved to be the most challenging figure to calculate. A 

number of aspects affect the typical space-heating requirement of a domestic property: 

o Heat losses through walls, windows, doors 

o Heat losses through air ventilation and occupant ventilation 

o Outdoor temperature and windspeed 

o Sunlight – resulting in solar gain 

o Other gains 

The overall simplified equation for space heating requirements for a domestic house is: 

[ ]GTTHdQ ext −−×= −
)(1064.8 int

5
 

Following Newton’s law of cooling, where:  

Q  is the monthly energy requirement (GJ) 

d is the number of days in the month 

H  is the heat loss (W/°C) 

G is the heat gains (W) 

intT  and extT  are the internal and mean external temperatures of the house (°C) 

Determining intT and extT  

The mean external temperature of the farmhouse has been shown below with maximum and 

minimum temperatures per month. The average temperature demand of a domestic building was 

reported to be between 21°C and 18°C depending on the area of the house in the BREDEM-8 

model. However the report from the Building Research Establishment (BRE) stated that for a 

centrally heated home the mean comfort temperature would be 21°C. The temperature 

requirement for this study assumed a fixed temperature of 21°C, in accordance with the 

BREDEM-8 model. The requirement for heat energy (neglecting gains) was shown in Figure B3. 
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The maximum and minimum external temperatures were obtained from the Met Office (2008) for 

the Aspatria weather station (closest to the farmhouse).  

 

 

 

 

 

 

 

 

 

 

Figure B3 - Maximum and minimum ambient temperature within farm surroundings 

The actual energy requirement for space heating is dependant on several factors as mentioned 

previously. The calculation steps for determining the gains and heat losses have also been shown 

below. 

Space heating gains 

The gains for space-heating a building can come from a number of areas these include: 

o Gains from cooking 

o Solar gains  

o Domestic hot water gains 

o Metabolic gains 

These gains have an ultimate effect on the energy demand for space heating. The demand is 

likely to reduce the more these gains are generated. To calculate the gains for each of these factors 

the BREDEM-8 model uses extensive knowledge and data regarding the positioning of the house 

towards sunlight, the insulation material used for domestic hot water systems and so forth. Due 

to the scope of the present work, it was considered outside of the remit of study to pursue the 

calculation for overall heat gains. Consequently, an average figure was obtained from the BRE 

energy fact file to determine the useful heat gains from a domestic property.  
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The results from the calculations have bee shown in Table B6. 

 

 

 

 

 

 

 

 

 

Table B6 - Calculation of building heat gains throughout year 

The difference between the total gains and useful gains considers whether the gains are of any 

benefit to the space-heating requirement. For example, heat wasted from domestic hot water and 

cooking during the summer months was not considered a useful gain. These figures obtained 

from the BRE Energy fact file reflect these considerations. The gains used in the BREDEM-8 

model allocate gains in terms of power (W) therefore the calculated average monthly gain was 

1014 W based on the result from Table B6.  

Heating losses 

Heating losses occur through a number of factors within a domestic property. These include heat 

losses through material by conduction, heat losses through ventilation and infiltration and also 

occupant ventilation. The typical U-values for building materials were also obtained from the 

BREDEM-8 model and have been detailed in the table below (Table B7). 

 

 

 

 

 

 

 

 

 

 

Table B7 - Typical U values for building materials (* denotes material selected for study) 

Gains (2006)   

Solar 353.8 PJ/year 

Metabolic 110.0 PJ/year 

Cooking 52.4 PJ/year 

Lights & appliances 268.8 PJ/year 

Water heating 460.1 PJ/year 

Total Gains 1,245.1 PJ/year 

   

Actual useful heat gains 836.3 PJ/year 

Total delivered energy UK 1,904.1 PJ/year 

Household numbers (2006) 26,142,000 houses 

   

Heat gains per house 32.0 GJ/year 

 87.65 MJ/day 

 U-Value 

Walls W/m2°C  

Solid 0.35 

Cavity 0.35 

Timber Frame 0.35 

Roof  

Solid 0.35 

Insulation (100mm) 0.4 

Total 0.375 

Windows - UPVC/Wood  

Double glaze 2.8 

Triple glaze 2.1 

Single glaze 4.8 

Windows – Metal  

Double glaze 3.4* 

Triple glaze 2.6 

Single glaze 5.7 

Solid wood door 3 



 

A schematic of the house was re

schematic below shows how the building 

window area and door and roof areas

front in terms of windows and door. Standard U

obtained from the BREDEM

determined. These dimensions were considered adequate for an average 4

house. The total heat loss calculated was 203.58 W/°C. This value was then incorporated into the 

overall heat energy demand calculation. 

 

 

 

 

 

 

 

Figure 
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A schematic of the house was re-created using a 3D modelling package (SketchUp). 

schematic below shows how the building was recreated in 3D to determine the overall wall area, 

window area and door and roof areas. The rear of the house was considered symmetrical to the 

front in terms of windows and door. Standard U-values and thicknesses for materials were 

BREDEM-8 model. From the model, the following dimensions were 

determined. These dimensions were considered adequate for an average 4

house. The total heat loss calculated was 203.58 W/°C. This value was then incorporated into the 

heat energy demand calculation.  

Figure B4 - Schematic design for sizing of domestic heat demand
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created using a 3D modelling package (SketchUp). The 

was recreated in 3D to determine the overall wall area, 

. The rear of the house was considered symmetrical to the 

values and thicknesses for materials were 

8 model. From the model, the following dimensions were 

determined. These dimensions were considered adequate for an average 4-5 bedroom detached 

house. The total heat loss calculated was 203.58 W/°C. This value was then incorporated into the 

Schematic design for sizing of domestic heat demand 



 

Total energy (and biogas) demand for the farm house

The overall heat energy demand was calculated for cooking energy, domestic hot water an

space heating. Table B8

cooking included house occupancy of four and that the energy used would be derived from gas

The total domestic hot water was calculated to

equated to approximately 36.3 MJ/day of hot water demand, taking into account a 15% 

distribution loss within the system

 

 

 

 

 

 

The demand for space heating took into account the variability throughout the year as a result of 

the change in external temperatures. These were obtained using standard data for the area of 

interest (Met Office 2008)

has been shown in Figure B5

and an overall heat loss of 203.58 W/°C. Using these figures, the overall monthly heat energy 

demand was calculated. 

obtain a mean daily heat energy demand

As shown in Figure B5

summer months. This is because mean external temperatures 

energy demand was approximately 200.69 MJ/day. This was slightly higher than the average 

domestic dwelling, recorded to be around 172MJ/day 

 

Biogas Required
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Total energy (and biogas) demand for the farm house 

The overall heat energy demand was calculated for cooking energy, domestic hot water an

heating. Table B8 shows the results from the calculations. 

cooking included house occupancy of four and that the energy used would be derived from gas

The total domestic hot water was calculated to be around 188 litres per day

equated to approximately 36.3 MJ/day of hot water demand, taking into account a 15% 

in the system. 

Table B8 - Total annual biogas demand for domestic uses

Figure B5 - Domestic heat demand throughout the year

The demand for space heating took into account the variability throughout the year as a result of 

the change in external temperatures. These were obtained using standard data for the area of 

(Met Office 2008). A graph showing the distribution of heat energy demand for the ho

has been shown in Figure B5. The calculations assumed a constant energy gain of 87.65MJ/day

and an overall heat loss of 203.58 W/°C. Using these figures, the overall monthly heat energy 

demand was calculated. The figure was converted to an annual total then a daily total in order to 

obtain a mean daily heat energy demand.  

As shown in Figure B5 it appears that there is an energy demand for space heating even in the 

This is because mean external temperatures were used.

energy demand was approximately 200.69 MJ/day. This was slightly higher than the average 

domestic dwelling, recorded to be around 172MJ/day (BERR 2008a). 

Total Energy Demand for House     

Space Heating 142.74 MJ/day

Hot Water 36.3 MJ/day

Cooking 21.63 MJ/day

   

Total 200.69 MJ/day

  73.3 GJ/annum

Biogas Required 8.88 m3

 3241.2 m3

APPENDIX B 

The overall heat energy demand was calculated for cooking energy, domestic hot water and 

shows the results from the calculations. The assumptions made for 

cooking included house occupancy of four and that the energy used would be derived from gas. 

be around 188 litres per day demand. This 

equated to approximately 36.3 MJ/day of hot water demand, taking into account a 15% 

Total annual biogas demand for domestic uses 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Domestic heat demand throughout the year 

The demand for space heating took into account the variability throughout the year as a result of 

the change in external temperatures. These were obtained using standard data for the area of 

eat energy demand for the house 

tant energy gain of 87.65MJ/day 

and an overall heat loss of 203.58 W/°C. Using these figures, the overall monthly heat energy 

converted to an annual total then a daily total in order to 

it appears that there is an energy demand for space heating even in the 

were used. The total calculated 

energy demand was approximately 200.69 MJ/day. This was slightly higher than the average 

.  

MJ/day 

MJ/day 

MJ/day 

MJ/day 

GJ/annum 

3/day 
3/annum 
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APPENDIX C 

UNDERSTANDING ENVIRONMENTAL ISSUES AND A BACKGROUND TO LIFE CYCLE 

IMPACT ASSESSMENT 

Explaining Environmental issues 
This section outlines the environmental effects considered in Eco-Indicator 99 (E199).  

 

Carcinogenic effects  

These effects are caused by any substance which can increase the chance of human cancer. The 

severity of different exposures and emissions of carcinogenic effects has been grouped into 

several categories by the International Agency for Research on Cancer (IARC). The groups 

categorise the emissions into those with the highest probability of cancer to the emissions with 

the lowest probability. The deadliest group (Group 1) include asbestos, benzene, cadmium, 

chromium and phosphorus, amongst many others. These are considered single source emissions. 

However, mixtures, which are also considered as having a high impact towards the risk of 

cancer, include household combustion of coal, wood dust, aluminium and steel production, 

rubber industry and tobacco smoking, amongst many others (IARC 2009).  

Biogas production plants often require special treatments and coatings on the inside walls of 

tanks. If coatings containing cadmium, nickel or chromium are used then this could significantly 

increase the risks of carcinogenic emissions. Additionally the high use of stainless steel in piping 

containing chromium also has a high potential towards this environmental damage.  

Respiratory effects  

Respiratory effects can be classified into two groups; organic and inorganic. Respiratory organic 

effects tend to result from summer smog and cause difficulties to the human respiratory system. 

The pollutants are generally caused from combustion of various fuels, such as diesel and coal. In 

this situation the sunlight reacts with the pollutants to cause ozone, thus affecting human 

respiratory effects.  

Respiratory inorganics result from winter smog caused by dust, sulphur and nitrogen oxides in 

the air (Goedkoop et al. 2008). The pollutants are generally the same as summer smog, however 

due to climatic temperatures, these pollutants act differently. During cold temperatures, these 

pollutants remain relatively close to the ground and if there are limited wind speeds, the 

concentration is increased significantly. The pollutants of winter smog can cause severe 

respiratory effects. These respiratory effects can lead to illnesses such as asthma, chest infections, 

bronchitis and other types of chronic obstructive pulmonary disorders. Although some of these 

are significantly affected by smoking, inhalation of fumes (such as fuel combustion) can also lead 

to these health effects. 

Overall, there are a number of critical substances which cause respiratory effects including: 

emissions from particulates (found in dust emitting mining and combustion of diesel), nitrate 

and sulphate, sulphur and nitrogen oxides and carbon monoxides (Goedkoop & Spriensma 2001). 

The combustion of biogas is similar to the combustion of fossilised natural gas. This can lead to 

emissions such as sulphur dioxide and nitrogen oxides, whilst combustion of diesel could lead to 
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particulate emissions. The production and use of biogas is expected to have significant effects on 

respiratory damages due to the high level of combustion during production and use of biogas.  

Climate Change  

Increased man-made greenhouse gas emissions enhance sun-radiation, causing average, global 

ambient temperatures to rise. Climate change is probably one of the most recognized and 

discussed environmental concerns in recent years through the Kyoto Protocol, as discussed in 

Chapter 1. However, this environmental concern is of equal importance to other environmental 

impacts. Additionally, although global temperatures are rising, the cause has not yet been 

established (McManus 2001).  

Climate change can cause unfavourable effects on ecosystem health and human health 

(Goedkoop et al. 2008).  It can be affected by a number of greenhouse gases of which the most 

commonly known include carbon dioxide (CO2) and methane (CH4). The potential effects of 

climate change have been discussed in Chapter 1. Damage from climate change is not as direct 

and instantaneous as other environmental issues and present emissions are likely to create 

damage for future years. Therefore, damage from climate change is usually modelled through the 

use of scenarios (Goedkoop & Spriensma 2001).  

The overall cause of climate change is known as global warming. The expected impacts of global 

warming are a gradual glacial retreat, where the global mass of ice is gradually reduced. This in 

turn will raise sea levels, receding coastal lines. Geographical regions already receiving high solar 

radiation could experience even higher peak ambient temperatures possibly leading to the 

resident population experiencing sun-stroke and dehydration (Poumadère et al. 2005). These are 

some of the potential implications of global warming however, the total damage to ecosystems 

and human health is difficult to concretise.  

One of the primary goals for adopting an alternative energy source such as biogas is to reduce the 

potential of climate change by lowering the CO2 and CH4 emissions entering the atmosphere. 

Through the natural carbon cycle of biomass, CO2 emissions should in theory be greatly reduced 

when energy is produced in this form. The LCA will be critical in determining whether a net CO2 

reduction is actually feasible through the production and use of biogas. If the process emits more 

CO2 than it consumes then the benefits of this energy source should be questioned.  

Radiation  

Radiation damage is caused by radioactive compounds emitting radiation into living organisms. 

Radiation is categorised into two forms: ionizing and non-ionizing. Non-ionizing radiation 

(electromagnetic radiation) does not pose a health risk as it is not mutagenic. Ionizing radiation 

however, which includes alpha, beta, gamma and ultra violet (UV) is mutagenic. This type of 

radiation affects cells within living organisms. Increased exposure to radiation is linked to cancer, 

tumours and other genetic damage (Goedkoop & Spriensma 2001).  

There are a number of materials such as iodine, uranium, caesium, cobalt and lead which emit 

radiation and thus are harmful to human health and ecosystems. However, within standard 

manufacturing processes of metals, these materials are not present and therefore the 

manufacturing of a biogas plant should not increase the risk of radiation. However, increased use 

of lead either through electronic circuit boards or electrical wire soldering could lead to over 

exposure of radiation emitting particles. If an LCA study were to be undertaken on nuclear 
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energy production, this impact category would be the one with highest impact. However, the 

LCIA methodology EI99 does not consider the potential impact of large leaks of radiation 

(Goedkoop et al. 2008). 

Ozone layer depletion  

 The depletion of the ozone layer is caused by the emission of chloride and bromide-containing 

halocarbons; the most common of which is chlorofluorocarbon (CFC). The emissions react with 

the sunlight and destroy the ozone. The ozone layer prevents harmful radiation from the sun, 

such as UV, entering the earth’s atmosphere. As mentioned in the previous section, UV radiation 

is mutagenic and can cause cancer. However, other impacts include detrimental effects on 

terrestrial and aquatic ecosystems and organic materials.  

Ozone layer depletion can therefore affect human health and ecosystem quality. Refrigerant 

materials used in cooling, dehumidification and refrigeration units use substances such as HCFC 

gases which can cause ozone depletion. The use of ozone depleting gases during the production 

of biogas is not expected to be significant. However, as an important environmental concern, 

capable of impacting human health and ecosystem damage, this impact was examined in the 

LCA. 

Ecotoxicity 

This impact involves substances which are toxic to organisms in a way that affects the 

functioning and structure of the ecosystem. An ecosystem is a biological community within a 

specific area affected by the physical elements of its environment. Toxic substances such as 

cadmium, lead, copper and zinc all contribute to toxic stress when presented to ecosystems. 

These can be delivered through water, soil and air. They subsequently have detrimental effects 

on the ecosystem quality and ultimately the population of organisms which are affected (or 

depleted) by the exposure.  

The damage from ecotoxicity could be significant within biogas production, through the use of 

chromium and nickel within the manufacturing processes of the plant. These are commonly used 

to make stainless steel and nickel-alloy coatings on manufactured components. However, during 

the production of biogas plant a range of plastic and rubber materials are used. These materials 

may have benzene as an additive, which in turn is a carcinogen. Benzene has significant health 

risks and is toxicity can lead bone marrow damage and affect the immune system. 

Acidification  

This is degradation of ecosystems (aquatic and terrestrial) due to an increase in acid (nitric acid 

and sulphuric acid) concentration in soil and water. The emissions of nitrous oxides and sulphur 

dioxides are responsible for the increased acidity within rainwater, subsequently creating acid 

rain. These emissions are predominantly released during the combustion of fossil fuels; however, 

combustion of some biomass fuels can also produce these emissions. Catalytic converters 

installed on modern vehicles are able to eliminate these emissions. However, in the aviation 

industry these emissions cannot be reduced via catalysis, as there is no system in place similar to 

that of a catalytic converter for road vehicles. Acidification leads to detrimental effects especially 

on conifers (Sonnemann et al. 2003), whilst acidification in water systems is extremely harmful to 

fish. Acidification is also detrimental towards building materials, metals and surface coatings.   
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Eutrophication  

This effect is a result of an increased concentration of nutrients; phosphorus, nitrogen and other 

nutrients, in a specific area. This commonly takes place in water systems such as lakes, rivers, 

bathing waters etc. where nutrients have either leaked or have been disposed into these systems. 

The increase in nutrient availability increases the growth of aquatic plants and algae. An 

overproduction of algae and blooms causes an increase of plant life on the water surface, which 

can lead to reduced sunlight and oxygen penetrating the top layer of water. This will ultimately 

have adverse effects on aquatic life, which requires both of these resources.  

Land-use  

This is a change in the use of a particular land area. An example would be the conversion of grass 

pastureland into industrial land use. This change would have an impact on a number of aspects. 

Firstly, species which use the pastureland for either shelter or feed would no longer have access. 

Secondly, the conversion into industrial land could also have detrimental local environmental 

effects due to an increase in industrial materials present on the land itself. However, this would 

depend highly on the type of industrial application.  

Natural (non-industrialised) land can accommodate a vast number of ecosystems and wildlife 

species.  Changing the land-use drastically affects the biodiversity of the land and subsequently 

the ecosystem quality. Land quality has been monitored by scientists for a number of years. 

Land-use quality is often scaled by the number of species and the diversity per type of land. 

Damage to land-use or changes of the land have a detrimental effect on the species biodiversity, 

which can take many years to recover.  

An example of potentially detrimental land-use is the plantation of monocultures for biomass 

growth. These monocultures can attract and deter particular species depending on whether the 

monoculture meets the requirements of the species. Plantations such as miscanthus and SRC, 

which are cropped on a large scale, can lead to a dramatic reduction in shelter and food 

availability for species living within these plantations. If the land were used as unmanaged 

woodland, these negative effects on species and other plantations would not be observed.  

Minerals  

 This is a measure of the rate of depletion of non-renewable resources. This has a negative affect 

as it reduces the availability of these resources, which humans are dependent on. These minerals 

include all metal types, sand, gravel and lime. The concentration of these minerals will decrease 

as extraction continues. This is due to a greater extraction rate than the production rate. This 

distribution is known as lognormal and is commonly supported amongst resource geologists 

(Geodkoop et al. 2008).   

Fossil Resources  

This environmental impact is similar to mineral resource depletion, however it accounts for all 

fossilised resource types. This includes crude oil, natural gas and coal. These fossil fuels can 

either be used for energy purposes or material production such as polymers, tars, fertilisers and 

solvents etc. Fossilised resources, which are not used for energy, account for 16% of total 

extraction.  

Due to the uncertainty of fossil resource availability, it is difficult to predict or estimate the 

damage of this depleting resource. An accepted method used within some LCAs is to assume that 
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for each unit of fossil resource mined, an increase in extraction energy would be required to 

extract future fossil resources. The effect of this resource is measured by the relationship between 

the increased extraction and the increase in energy required to extract future supplies. This is 

defined as the difference between current resource extraction energy and energy requirement at 

some future point (Geodkoop et al. 2008).  

Ultimately, a higher energy requirement in mineral and fossil resource extraction will lead to 

increased global prices of these commodities. If these commodities become too expensive, 

alternatives will be found at a lower cost. However, these commodities are extremely important 

globally. A damage or decrease in availability of these resources could have severe detrimental 

impacts globally.  

Background of the chosen LCIA methodology (EI99) 
A brief appreciation of four of the most common impact assessment methodologies commercially 

available has been made. There are many more LCIA methodologies which are available. Further 

information can be found from referenced reports associated to each methodology. 

CML methodologies (mid-point) – The CML methodology was one of the first LCIA 

methodologies publically available, launched in 1992. The methodology was created by the 

‘Centre for Environmental Studies’, University of Leiden. It has now been updated to CML 2001 

(Guinée 2002). The method uses a problem orientated approach (mid-point analysis). The 

normalisation is carried out by multiplying the characterisation factor by the relevant emissions. 

A summation of these results for each impact category then gives the normalised data.  

EPS 2000 (end-point) – The methodology analyzes five impact categories: human health, 

ecosystem production capacity, abiotic stock resource, biodiversity and cultural and recreational 

values. The methodology is able to characterise, damage assess and evaluate the environmental 

impact categories. The evaluation stage is carried out by applying weighting factors. These are 

factors represent the willingness to pay to avoid environmental changes. The creators of this 

methodology are Chalmers University of Technology, Centre for Environmental Assessment of 

Products and Material Systems (Steen 1999). 

Eco-Indicator 95 (mid-point) – The creators (Pré consultants) of Eco-Indicator, released two 

methodologies, called Eco-Indicator 95 and Eco-Indicator 99 (denoted as EI95 and EI99). EI95 is a 

mid-point approach methodology; however, it does have a basic weighting procedure 

incorporated. The characterisation stage characterises the impacts by representing them as 

equivalence towards a standard unit impact. For example, all greenhouse gases are converted 

into kg of CO2 equivalence, with CO2 having a value of 1kg. The normalisation stage is carried 

out by comparing each impact category to the average European effect of each impact category. 

This is done by dividing the emissions from the process by the average European emissions per 

capita (Goedkoop 1995).  

Eco-Indicator 99 (end-point) – This method analyses the impacts towards the end-point, thus 

assessing the damages of the impacts. This is done through the weighting procedure of which the 

first stage is carried out when creating the methodology. The normalisation stage is similar to 

that of EI95. However as the units of the characterisation stages are different, they measure the 

damage as opposed to the emission; the damage from the process is compared to the average 
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European damage per capita for each process. The methodology was created by the Dutch Pré 

consultants (Steen 1999). 

The creation of EI99 

There are a wide range of Life Cycle Impact Assessment (LCIA) databases available which can be 

used to model the impacts of a given inventory of results. The LCIA stage assists “the 

understanding of the Life Cycle Inventory (LCI) results, making these results more manageable 

in relation to the natural environment, human health, and resources and may identify the relative 

significance of the LCI results” quoted from the ISO standards for LCA.  

Eco-Indicator 99 is a Life Cycle Impact Assessment (LCIA) methodology. This has been used for 

the research carried out. The methodology was created using a “top down” approach as opposed 

to a “bottom up” approach. This meant that instead of starting with the emissions from the 

inventory and examining the environmental impacts, the reverse was adopted. Traditional LCIA 

methodologies examined the environmental impacts starting from the product system. However, 

the top-down approach starts with the ‘end-goal’ of the LCA. This alternative methodology 

determines: what the aim of the LCA is; what are the environmental impacts and what are the 

ᑤāᑤᑤ 

ts which should be reduced; which type of environmental interventions cause the impacts.  

This methodology starts by looking at the inventory data and emissions associated with the 

inventory. Subsequent to this the effect of the emissions on the environment are examined. The 

Eco-Indicator 99 methodology was carried out starting with the weighting procedure. This was 

done in order to remove or reduce the ambiguity in the final weighting stage.  

The weighting stage was carried by a panel of LCA experts and users. The creators of Eco-

Indicator 99 decided that an effective way of obtaining information from the panel was to have 

the least possible number of damages caused by various impact categories and not to ask the 

panel to weight the impact categories themselves. The overall objectives of questioning the panel 

were to: 

o Items should not be too abstract and therefore easy to understand. 

o Number of items should be limited to as few as possible.  

o Items should include all relevant environmental effects.  

The weighting procedure was carried out through a questionnaire sent to 365 Swiss LCA experts 

and users. 85 responded, of which only 45 result sets were used. The panel members were asked 

to weight three damage categories: human health, ecosystem quality and resource. These were 

considered to incorporate all relevant environmental effects. The results of the weighting have 

been shown in Table C1.  

  Mean Rounded St. Deviation Weighting Allocated 

Human Health 36% 40% 19% 400 

Ecosystem Quality 43% 40% 20% 400 

Resources 21% 20% 14% 200 

 

Table C1 -Valuation of the three damage categories 

The results from the expert panel showed that ecosystem quality and human health were given 

the same importance, whilst resource was given half importance. The panel was then asked a 
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series of questions regarding attitudes and perspectives of society. Based on these results the 

respondents could be grouped into three different archetypes. The three groups were addressed 

to deal with the uncertainty of the results. The three perspectives were as follows: Hierarchist, 

Individualist and Egalitarian. These have been summarised in Table C2.  

 

Perspective  Time view Manageability Level of evidence 

Hierarchist 
Balance between 

short and long term 

Proper policy can 

avoid many 

problems 

Inclusion based 

on consensus 

Individualist Short time 

Technology can 

avoid many 

problems 

Only proven 

effects 

Egalitarian Very long term 
Problems can lead 

to catastrophe 

All possible 

effects 

 

Table C2 - Three archetypes used to model life cycle assessment within EI99 

These three archetypes have been attained from the cultural theory framework (Hofstetter 1998), 

which are commonly used within social science. From these results, three versions of Eco-

Indicator 99 were created based on the perspective choices.  

The creation of Eco-Indicator 99 methodology can be grouped into three steps. These three steps 

are also the inverse process of the LCIA methodology set-out by the standard procedure (British 

Standards 2006). These three steps include: 

1. Weighting Stage 

2. Creating the damage models  

3. Creating an Inventory of the processes 

Weighting Stage (Stage 1) 

The aim of this stage was to weight the damage categories initially. The damage categories were 

chosen based on the criteria that they had to be: as few as possible, easy to understand and cover 

all relevant environmental effects.  

Creating the damage models (Stage 2)  

In order to assign a value to each damage category, damage models were created. The damage 

models are required to link the damage categories with the inventory results. Figure C1 

represents how the damage models link the inventory results to the damage categories.  
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Figure C1 - The creation process of EI99 

Damage model for emissions  

In general, damage models were created for three main areas: emissions, land-use and resources. 

The methodology for creating emission damage models was the same regardless of the impact 

category which was chosen. The emission damage model was created using: 

Fate analysis – The fate analysis examines the behaviour of a chemical substance during its 

lifetime and how the chemical behaves when it is released into the environment, assessing the 

behaviour of the chemical and the degradation of the substance in an environment. The 

concentration in air, water, soil and food can then be examined.  

Exposure analysis – Taking the results calculated of the concentration of a substance, the next 

stage is to determine how much of the substance will be received by humans, plants and other 

life forms.  

Effect analysis - Once the exposure is determined the next stage is to determine the types of 

diseases and the frequencies at which these may occur.  

Damage analysis – This stage examines how many years of life lost or disabled a certain disease 

causes and the criticality of the disease. However this can only be applied to human health. For 

ecosystems quality, another procedure must be undertaken. For ecotoxicity modelling, the 

percentage of plants and species which are exposed to toxic stress are calculated (Potentially 

Affected Fraction PAF). For acidification and eutrophication the percentage of plants which are 

likely to disappear is calculated (Potentially Disappeared Fraction PDF). These damages are 

modelled to European scale. However, more researched effects such as green-house gases, ozone 

layer depleting substances etc. are calculated using world-wide data.  
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Damage model for land-use 

The unit taken for this damage is the disappearance of species. The methodology developed a 

scale to express the species diversity per type of land use. This methodology is able to model the 

percentage of disappearance of species depending on the land use.  

Damage model for resources 

For minerals it was observed that when these are extracted initially, eventually it will be more 

difficult (energy intensive) to find others and the quality will also be of lower grade. Therefore for 

this impact category the damage to the resource will be experienced by future generations as 

more resources will be needed to extract the remaining resource. Therefore this is expressed as 

surplus energy; a measure of the predicted future energy required for extracting resources.  

Fossil fuel extraction operates on a similar level, however the concentration will not vary as it 

does with minerals. The research carried out in this field clearly indicates that easily accessible 

fossil fuels are in decline. Therefore based on this assumption, more energy will be needed to 

extract future resources. This is therefore also measured as surplus energy (MJ).  

Inventory of the processes (Stage 3) 

Once the damage models were created, the inventory processes to which the damage models 

could be allocated towards were subsequently determined. This inventory was then able to have 

a damage factor assigned to it. This is the final stage of the Eco-Indicator 99 creation. The Eco-

Indicator methodology was based on the energy database developed by ESU-ETH in Zurich. The 

creators of the Eco-Indicator tool warn not to mix databases with indicators that have been 

developed with different methodologies.  

Normalisation stage in EI99 

The following stage of the LCIA is the normalisation step. The normalisation technique enables 

all the impact categories to become dimensionless. The reference system chosen is based on 

European normalisation values. For the case of EI99, the normalisation factors were calculated 

using two steps: 

1. Finding the total emissions and resource consumption caused by the reference system 

during a reference period (a year usually). 

2. Calculating the impact categories and if applicable, the damage scores, using the 

characterisation and damage factors. This value is then divided by the number of 

inhabitants.  

The normalisation figures are calculated using published data based on European emissions. The 

theory adopted to determine the European emissions assumes that the industrial structure and 

therefore the emission pattern are represented well by the energy use in the country (Goedecke & 

Spriensma 2001). To determine the total European emissions the formula: 
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Where  is the total emissions in Europe,  is the total energy use in Europe, is the energy 

use of countries with known emissions and finally is the known emissions (Goedecke & 

Spriensma 2001). The emissions are then grouped into the categories stated by Eco-Indicator 99 

methodology and the damage factor for each emission is then applied. This gives a result for the 

total European emissions for each substance under each Impact Category in units of DALY, 

PAF*m2*yr and MJ.  

The total European emissions for each category are then combined to give a total for the three 

different damage categories (human health, ecosystem quality and resource damage). These 

values are then divided by the total European inhabitants to determine a specific European 

emission value. The results for the three different perspectives (egalitarian, hierarchist and 

individualist) have been shown in Table C3. The inverse of the total per inhabitant is then 

multiplied by the calculated characterized value. This manipulation makes the value 

dimensionless and therefore enables the 11 Impact categories to be compared.  

 

 

 

 

 

 

 

 

 

Table C3 - Normalised data from EI99 methodology 

 

 

Damage factors used in Eco-Indicator 99  
The following pages are obtained from the methodology report for Eco-Indicator 99. These show 

the damage factors used within the methodology. These factors form the basis of the calculations 

for the characterised and normalised data within the LCA. The full report can be obtained from 

the Pre website: http://www.pre.nl/download/EI99_methodology_v3.pdf  

 

 

tE tP KP
KE

  Unit Total 

Per 

Inhabitant  

Inverse per 

Inhabitant 

Egalitarian     

Human Health DALY/yr 5.88E+06 1.55E-02 6.45E+01 

Ecosystem Quality PDFm2yr/yr 1.95E+12 5.13E+03 1.95E-04 

Resource Damage MJ/yr 2.26E+12 5.94E+03 1.68E-04 

Hierarchist     

Human Health DALY/yr 5.84E+06 1.54E-02 6.49E+01 

Ecosystem Quality PDFm2yr/yr 1.95E+12 5.13E+03 1.95E-04 

Resource Damage MJ/yr 3.20E+12 8.41E+03 1.19E-04 

Individualist     

Human Health DALY/yr 3.13E+06 8.25E-03 1.21E+02 

Ecosystem Quality PDFm2yr/yr 1.71E+12 4.51E+03 2.22E-04 

Resource Damage MJ/yr 5.61E+10 1.50E-03 6.67E+02 
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APPENDIX D 

PUBLISHED PAPERS  

 

 

The following papers are reproduced in the Appendix: 

 

Adams, P., Hammond, G., McManus, M. C., & Mezzullo, W. 2008 “Barriers to UK Bioenergy 

Development: Experiences from the South West of England”, In Biomass and Energy Crops III York: pp. 

41-51. 

Hammond, G., McManus, M.C., & Mezzullo, W. 2008a. “A bioenergy resource assessment for the 

South West of England”, Proceedings of the Institution of Civil Engineers – Energy, vol. 161, no. 4, pp. 159-

173. 
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APPENDIX E 

MISCELLANEOUS  

Screenshots of barriers & drivers questionnaire 
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Example of financial model created for plant C 
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Example of financial model created for plant A 
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