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Summary

In this thesis we study methods for solving the neutron transport equation (or lin-

ear Boltzmann equation). This is an integro-differential equation that describes the

behaviour of neutrons during a nuclear fission reaction. Applications of this equation

include modelling behaviour within nuclear reactors and the design of shielding around

x-ray facilities in hospitals. Improvements in existing modelling techniques are an im-

portant way to address environmental and safety concerns of nuclear reactors, and also

the safety of people working with or near radiation.

The neutron transport equation typically has seven independent variables, however

to facilitate rigorous mathematical analysis we consider the monoenergetic, steady-state

equation without fission, and with isotropic interactions and isotropic source. Due to its

high dimension, the equation is usually solved iteratively and we begin by considering

a fundamental iterative method known as source iteration. We prove that the method

converges assuming piecewise smooth material data, a result that is not present in the

literature. We also improve upon known bounds on the rate of convergence assuming

constant material data. We conclude by numerically verifying this new theory.

We move on to consider the use of a specific, well-known diffusion equation to ap-

proximate the solution to the neutron transport equation. We provide a thorough pre-

sentation of its derivation (along with suitable boundary conditions) using an asymp-

totic expansion and matching procedure, a method originally presented by Habetler

and Matkowsky in 1975. Next we state the method of diffusion synthetic acceleration

(DSA) for which the diffusion approximation is instrumental. From there we move

on to explore a new method of seeing the link between the diffusion and transport

equations through the use of a block operator argument.

Finally we consider domain decomposition algorithms for solving the neutron trans-

port equation. Such methods have great potential for parallelisation and for the local

application of different solution methods. A motivation for this work was to build an

algorithm applying DSA only to regions of the domain where it is required. We give

two very different domain decomposed source iteration algorithms, and we prove the

convergence of both of these algorithms. This work provides a rigorous mathematical

foundation for further development and exploration in this area. We conclude with

numerical results to illustrate the new convergence theory, but also solve a physically-

motivated problem using hybrid source iteration/ DSA algorithms and see significant

reductions in the required computation time.
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Chapter 1

Introduction

Contents

1.1 The Neutron Transport Equation in 3D . . . . . . . . . . . . 5

1.1.1 Simplifying Assumptions . . . . . . . . . . . . . . . . . . . . . 8

1.1.2 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Discrete Ordinates . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.2 Spherical Harmonics . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.3 Diffusion Approximation . . . . . . . . . . . . . . . . . . . . . 12

1.2.4 Finite Element Methods . . . . . . . . . . . . . . . . . . . . . 13

1.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . 14

A central problem in applied nuclear physics is that of accurately and efficiently

modelling the distribution of neutrons within a nuclear reactor. This distribution is very

closely modelled by the neutron transport equation (also called the linear Boltzmann

equation), which is an integro-differential equation with typically seven independent

variables. It is only after many simplifying assumptions are made that this can be solved

exactly. Instead for almost all useful applications this equation is solved numerically,

and there are a variety of different ways this can be done, as we will discuss in Section

1.2.

As well as in nuclear reactor modelling, the neutron transport equation is important

in so-called shielding calculations. These are used whenever radiation from a radioactive

source needs to be prevented from leaking into the surrounding area. Applications

include the design of shielding around x-ray facilities in hospitals as well as for dry and

wet storage of spent nuclear fuel.

The long-term use of nuclear power as a source of clean and reliable energy is

sometimes uncertain. Nonetheless, working to improve the accuracy, efficiency and
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versatility of our existing modelling techniques is an important way to address environ-

mental and safety concerns. This includes not only the safety and efficiency of new and

existing nuclear reactors, but also the safety of people working with or near radiation

in any significant form.

The work in this thesis was conducted during a PhD project at the Universiy of

Bath in liason with the ANSWERSr Software Service, AMEC Foster Wheeler.

We start this introduction in Section 1.1 by introducing the neutron transport

equation along with the most commonly used boundary conditions. This equation

will be our focus for the majority of this thesis, however first we will make several

simplifying assumptions in order to facilitate the later mathematical analysis. These

assumptions are specified in Section 1.1.1, and will be used to give simplified versions

of the neutron transport equation in 3D, 2D and 1D at the start of Chapter 2. In

Section 1.2 we will give a quick overview of some of the main solution methods from

the literature. Lastly, in Section 1.3 we will broadly outline the work carried out in this

thesis and review the related state-of-play in existing literature. We will then specify

the contributions that will be made by this thesis.

1.1 The Neutron Transport Equation in 3D

As we mentioned above, the neutron transport equation models the behaviour of neu-

trons within a nuclear fission reaction. It is derived by carefully considering how a

quantity called the angular neutron density, often denoted N(r,Ω, E, t), changes in

time. This quantity represents the number of neutrons in a unit volume at position

r ∈ V ⊂ R3 travelling in direction Ω ∈ S2 with kinetic energy E ∈ R+ at time t ∈ R+.

Detailed descriptions of this derivation can be found in [57, Chapter 1], [20], [69], [24],

[12, Section 1] and [59, Section 2]. The main quantity of interest in the neutron trans-

port equation is called the (angular) neutron flux (or fluence rate) and is related to the

angular neutron density via

ψ(r,Ω, E, t) = v(E)N(r,Ω, E, t), (1.1)

where v(E) =
√

2E/m is the neutron speed (m being mass). We can obtain a physical

interpretation for the angular neutron flux by considering a small, dimensionless subset

of the domain, dV dΩdE, about (r,Ω, E) at time t. With this we can say that in an

increment dt at time t, ψdV dΩdEdt is the total distance (or path length) travelled by

neutrons in dV dΩdE about (r,Ω, E) during the time interval dt at time t.

To derive the neutron transport equation, it is assumed that neutrons are point

particles and consequently neutron-neutron interactions are neglected (see [57, Section

5



1-2]). Full knowledge of the material properties of the domain is also assumed. Under

these assumptions, the neutron transport equation is derived by carefully considering

the rate of change of the neutron flux in time, ψ(r,Ω, E, t), determined by the difference

between its rate of gain and rate of loss (see e.g. [59, Section 2.5]). Before stating the

equation, we will talk through the various events that can lead to these losses and

gains.

As mentioned, the neutron transport equation describes the behaviour of the neu-

tron flux, ψ(r,Ω, E, t). It bases this description upon the likelihood of various neutron

interactions (or collisions) occurring, and based on the characteristics of a neutron

source. When modelling a nuclear reactor it is generally specified that neutrons can

undergo three types of interaction: they can cause fission, can be scattered or they can

be captured. We consider the three interactions in order.

First of all, a neutron could collide with some fissile material and initiate a fission

event. Fissile material is material which, upon collision with a low-energy (slow or

thermal) neutron, can capture it and then undergo a fission event [69]. This releases

a number of new neutrons, specified by ν(E) ∈ R+ for a collision caused by a neutron

with energy E. This is a fission collision and the likelihood of such a collision occurring

is denoted by the variable σF (r, E) ∈ R+, known as the fission cross section. The

neutrons produced by the fission may be travelling in any direction with no bias (i.e.

they are isotropic in angle) regardless of the direction of travel of the colliding neutron,

and so angle of travel is not a consideration for this type of collision. However, the

neutrons are released over a spectrum of different energies specified by χ(E) ∈ R+,

where χ(E)dE is the probability that a neutron produced during fission will have an

energy within dE of E [57]. This leads to the energy dependence of the fission cross

section.

Next, upon collision with a nucleus, a neutron could be deflected and so end up

travelling in a different direction with different energy. In this case the neutron is said

to have been scattered and the likelihood of such an event occurring is denoted by the

variable σS(r,Ω′ ·Ω, E′, E) ∈ R+, known as the scatter cross section. Here the neutron

is scattered from travelling with energy E′ in direction Ω′ to travelling with energy

E in direction Ω. This interaction is rotationally invariant, and as a result the cross

section depends only on the cosine, Ω′ · Ω.

Lastly, upon collision with a nucleus, a neutron could be captured and so no longer

be considered within the ongoing reaction. The likelihood of such an event occurring

is denoted by the variable σC(r, E) ∈ R+ and is known as the capture cross section. If

we denote by σT (r, E) ∈ R+ a quantity known as the total cross section, defined to be

the likelihood of any collision occurring to neutrons at position r with energy E, then

6



the following relation holds

σT (r, E) = σF (r, E) +
1

4π

∫
R+

∫
S2
σS(r,Ω · Ω′, E,E′) dΩ′ dE′ + σC(r, E). (1.2)

Here we want to include neutrons that are scattered into all other angles and energies,

and so the scattering cross section is integrated over all possible outgoing states. We

will also define for convenience σA(r, E) ≡ σC(r, E) + σF (r, E). This is called the

absorption cross section, and represents all collisions which result in the neutron being

absorbed.

It is important to note that since ψ(r,Ω, E, t) only considers specific angles and

energies, after each of the three collision types the neutron is no longer travelling in

the same direction with the the same energy, and so is no longer a part of that specific

neutron flux.

We will also include a neutron source term, which will be denoted by Q(r,Ω, E, t)

and is a non-fission source term of neutrons from position r with energy E in direction

Ω at time t. This represents an emission of neutrons by some source, such as radioactive

material, without the need for a fission event.

Using this notation we can now state the time-dependent 3D neutron transport

equation as follows

1

v(E)

∂

∂t
ψ(r,Ω, E, t) + Ω · ∇ψ(r,Ω, E, t) + σT (r, E)ψ(r,Ω, E, t) =∫

R+

∫
S2
σS(r,Ω′ · Ω, E′, E)ψ(r,Ω′, E′, t) dΩ′ dE′

+
χ(E)

4π

∫
R+

ν(r, E′)σF (r, E′)

∫
S2
ψ(r,Ω′, E′, t) dΩ′ dE′

+ Q(r,Ω, E, t),

(1.3)

for (r,Ω, E, t) ∈ V × S2 × R+ × R+. This equation describes how the angular neutron

flux, ψ, varies in time. The second and third terms on the left of (1.3) represent neutron

loss from the system, while the terms on the right represent neutron gain.

We will now briefly talk through the physical meanings of each term, starting with

the terms on the left. Firstly, the second term on the left is a convection term and

represents the rate of change of neutrons in the considered space and energy due to

streaming. In this context streaming refers to the motion of neutrons in a straight line

without any collision occurring. The third term is a sink term, representing the loss of
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neutrons that undergo any type of collision since they will now be travelling in a new

direction with new energy.

The terms on the right of (1.3) are all source terms, representing the gain of neutrons

through different physical mechanisms. The first term on the right adds in those

neutrons which have been scattered from other energies and directions (E′ and Ω′)

into the considered energy and direction (E and Ω) at time t, and so are now to be

considered a part of the flux. To consider the in-scatter of neutrons from all other

energies and directions, this term is integrated over the appropriate domains. The

second term adds neutrons that have been produced by nuclear fission, travelling in

the correct direction with the correct energy at time t. Finally Q(r,Ω, E, t) adds in

neutrons produced by the non-fission source.

This equation plays an important role in many different applications of nuclear re-

actors across an array of disciplines. These range from medical applications (such as

the production of radio-isotopes and radiation therapy), through propulsion methods

for ships and also its most well known application in nuclear power stations producing

electricity [69]. Outside of nuclear reactors it is also solved in shielding calculations

(see [59, Section 2.11.4] and elsewhere in [19]), such as are used for ensuring adequate

safety measures around x-ray machines in hospitals. To fulfil these needs, a wide array

of industrial modelling codes rely upon efficient and accurate solutions of the neutron

transport equation. The transport equation, (1.3), is seven-dimensional, which neces-

sitates the use of iterative methods to achieve accurate solutions within a reasonable

amount of time. As a result much interest and ongoing research is focussed around

improving the efficiency of these iterative methods, and it is on this topic that our

work is based.

1.1.1 Simplifying Assumptions

To facilitate rigorous mathematical analysis, the Boltzmann transport equation is often

simplified by making one or more assumptions. Indeed in this thesis we will only be

considering a heavily simplified form of the transport equation, (1.3), given above. In

this section we will carefully describe each of the simplifying assumptions that we will

make and try to give an explanation of the physical impacts of each.

One of the most straightforward simplifications we make will be to consider the

steady-state neutron transport equation. This allows us to remove the time dependence

from all variables and to drop the partial time derivative on the left hand side. By doing

this we will be considering the system at equilibrium, with an enforced balance between

the loss and gain of neutrons. The time-independent form of the transport equation is

often formed as an eigenvalue problem, in which the smallest real eigenvalue determines
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the criticality of the system (see [59, Section 2.7], [67, Section 1.5], [69, Section 2.2]).

We will ignore energy dependence entirely, and instead focus on the so-called one-

speed or monoenergetic version of the transport equation. On the surface this seems to

be a drastic assumption to make since, in reality, the energy a particle has dramatically

affects the cross sections. In fact the variation of the cross sections with respect to a

neutron’s energy is so complex that it cannot be calculated or accurately modelled at

each point. Instead a range of energy intervals (or groups) are considered, leading to

the so-called multi-group equations (see Lewis and Miller [57, Chapter 2], Prinja and

Larsen [59, Chapters 2 and 6]). In practice within the multi-group treatment, solutions

to monoenergetic equations are required and neutron transfers into one energy group

from all others appears as a source term. Consequently work on the monoenergetic

form of the neutron transport equation is still very relevant, and it continues to be

the subject of research and analysis. Another benefit of the monoenergetic form is

that it admits deeper mathematical analysis and, in certain geometries, allows analytic

solutions to be found [59, Section 2.9].

We will assume that scattering interactions are isotropic in angle, i.e. the scattering

cross section is independent of angle. To establish this independence we recall that the

scattering interaction is rotationally invariant, and so the cross section can be written

as an expansion in terms of Legendre polynomials. Defining these polynomials via

Rodrigues’ formula as

Pn(µ) =
1

2nn!

dn

dµn
(
µ2 − 1

)n
, n ∈ N0, (1.4)

we can thus write the monoenergetic scattering cross section as

σS(r,Ω′ · Ω) =
N∑
n=0

2n+ 1

4π
σS,n(r)Pn(Ω′ · Ω), (1.5)

(see [59, Section 3.1]). In most applications this expansion is truncated, and if N = 0

is chosen then the scattering is said to be isotropic. This leaves

σS(r) =
1

4π
σS,0(r), (1.6)

however since this thesis will be solely focussed on the case of isotropic scattering, we

will simply use the notation σS and gain the 1/4π scale.

A seemingly large assumption that we will make will be to assume there are no

fission interactions. By doing this we totally remove the fission term from the right

hand side of (1.3), resulting in a much simpler equation of interest. While this does

appear to be a big assumption, the fission term can be thought to have been included
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implicitly in the scatter term with exactly one neutron being produced per collision.

Because of this our later analysis can be extended to apply to both the with fission and

without fission cases under certain assumptions, and indeed we will see a basic example

of this in the later numerical results sections.

Lastly, while the source can include angular dependency, most natural source ma-

terials are isotropic in angle. Consequently we are physically justified in using a non-

fission source term with no angular dependence.

Under these assumptions the transport equation (1.3) becomes

Ω · ∇ψ(r,Ω) + σT (r)ψ(r,Ω) =
σS(r)

4π

∫
S2
ψ(r,Ω′) dΩ′ +Q(r). (1.7)

for (r,Ω) ∈ V ×S2. This is the form of the linear Boltzmann transport equation that we

will consider for the majority of this thesis. Occasionally we will need to make further

assumptions, and they will be stated and explained when relevant. Whilst we will aim

to work with the 3D form as much as possible, treatment of lower dimensional versions

will be neccesary. These versions will be thoroughly defined in Section 2.2. We finish

this set of assumptions by mentioning that for much of this thesis we will assume that

the cross sections are piecewise smooth. This assumption means our convergence work

in Chapter 2 allows for more general material properties that has been possible before.

We will clarify this assumption when appropriate in Chapter 2.

1.1.2 Boundary Conditions

As with any differential equation, (1.7) can only be solved when combined with some

relevant boundary conditions. These can take different forms and here we will consider

two types: explicit boundary conditions through the imposition of a boundary source

term, and implicit boundary conditions through a reflecting boundary requirement (see

[59, Section 2.4], [57, Section 1-3] among others).

First of all we can explicitly specify an incoming neutron flux on the outer boundary

of the spatial domain, ∂V . This boundary flux, say f(r,Ω), must be specified for all

r ∈ ∂V and for all angles pointing in to the domain. These angles are found by requiring

Ω · n(r) < 0, where n(r) denotes the outward unit vector, normal to the surface ∂V at

r. Therefore, to enforce this boundary condition we require that

ψ(r,Ω) = f(r,Ω) when n(r) · Ω < 0, ∀r ∈ ∂V. (1.8)

A special case of these are vacuum (or zero) boundary conditions with f = 0 to impose

a requirement for zero incoming neutron flux. This means that the only source of

neutrons under consideration is from within the reactor itself, and we impose
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ψ(r,Ω) = 0 when n(r) · Ω < 0, ∀r ∈ ∂V. (1.9)

Next, reflecting boundary conditions specify that the incoming flux and outgoing

flux at the boundary of the spatial domain are equal, and are imposed as follows. For

all points (r,Ω1) ∈ ∂V × S2, define the local reflection to be the reflection of Ω1 in the

tangent plane of ∂V at r. If Ω2 is the local reflection of Ω1, then

ψ(r,Ω1) = ψ(r,Ω2). (1.10)

This ensures that the boundary flux in any outgoing angle equals that of the reflected

incoming angle at each point on the boundary of the domain. This prevents neutrons

from escaping the system, instead reflecting them back inwards. In more complicated

geometries these can be used to model infinite arrays of a certain region. This is done

by defining one copy of the region and then applying reflecting conditions around the

boundary. This implicitly assumes an average flux of zero over boundaries between the

regions, however it can still provide a useful representation of the set up.

1.2 Solution Methods

In this section we will talk about some of the different types of methods that are used

to solve the transport equation in modelling nuclear fission reactors. Broadly these

methods can be broken down into two genres: deterministic methods and Monte Carlo

(stochastic) methods. Monte Carlo methods are discussed widely in the literature (see

[57, Chapter 7], [24, Chapter 9]) and are currently used to model reactor criticality.

These methods have an advantage in that they do not depend upon meshing the do-

main, and so the complexity of the domain does not dramatically affect the solve time.

For this reason they are often preferred for modelling complex geometrical set-ups.

The majority of our analysis will be focussed around deterministic methods, and in

this section we will give a short overview of some of the main deterministic methods

that are used in the literature.

Deterministic methods are those that will always produce the same output for a

given input. These methods discretise the transport equation and form a system of

coupled algebraic equations which can then be solved. This can involve using itera-

tive methods (provided they don’t contain calls to random variables), such as Krylov

methods (see [39], [65], [66]). Deterministic approaches include methods like discrete

ordinates (the SN -method), spherical harmonics (the PN -method) and diffusion ap-

proximation.
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1.2.1 Discrete Ordinates

The discrete ordinates method works by sampling the angular variable at a number

of discrete points, and then replacing integrals over angle by weighted quadrature

summations. The quadrature points and weights should be chosen so that all directions

of the neutron flux are given equal importance, and further detail and an example is

given in Chapter 5. This yields a semidiscrete system of equations, which can then

be discretised in space via some finite difference or finite element method, allowing a

numerical solution method to be applied. This method is often called the SN -method,

and further information on it can be found in [70, Chapter 4], [57, Chapters 3 and 4],

[69, Chapter 9], and [32, Chapter 9] among others.

1.2.2 Spherical Harmonics

The spherical harmonics method for solving the neutron transport equation works by

expanding the angular component of the neutron flux in terms of spherical harmonics.

By truncating this expansion a finite system of semidiscrete equations is obtained, which

can be further simplified using orthogonality. Discretising the spatial variable using

finite difference methods or finite element methods then allows for the application of

a suitable solver. This method is often called the PN -method, and further information

can be found in [12, Chapter 3] or [57, Chapter 3].

1.2.3 Diffusion Approximation

The fundamental idea behind this solution method is that, under certain conditions,

the quantity

φ(r) ≡ 1

4π

∫
S2
ψ(r,Ω) dΩ,

known as the scalar flux can be approximated well by the solution to a specific diffusion

equation. This diffusion equation is given by

− 1

3σT
∇ ·
(

1

3σT (r)
∇Θ(r)

)
+ σA(r)Θ(r) = Q(r), (1.11)

along with appropriate boundary conditions. This equation and its boundary condi-

tions will be rigorously derived (in 1D) in Chapter 3 by following the work in [34].

More information on diffusion theory in the context of neutron transport can be found

in Prinja and Larsen [59, Chapter 8], Stacey [69, Chapter 3], Duderstadt and Martin

[24, Section 4.2], Bell and Glasstone [12, Secion 3.1] or Tait [70, Chapter 5].
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To make this approximation several assumptions are made (see for example [54],

[69, Chapter 3]), which will be given in Chapter 3. Unfortunately these assumptions

do not hold near material interfaces and domain boundaries, but the approximation

can still give accurate predictions by working on a homogenised domain where the

cross sections are averaged spatially (see [69, Chapter 3, p.47], [59, Section 8.4]) and

by working with the more accurate transport theory to ensure accuracy.

Extension of this theory into an iterative acceleration scheme, known as diffusion

synthetic acceleration, will also be addressed in Chapter 3. Good information on this

can be found in Adams and Larsen [2, Chapters 1 and 2], and Lewis and Miller [57,

Section 2-4, p.97], among others.

1.2.4 Finite Element Methods

Finite element methods are a class of discretization method used to approximate the

solution to partial differential equations subject to boundary constraints. Generally

speaking, they work by subdividing the domain into a set of small pieces (or elements)

and then solving a simpler local problem on each element. These local solutions can

then be combined to obtain a finite dimensional approximation to the true solution over

the whole domain. The local problems are found by taking the weak formulation of the

PDE on each element and choosing test functions from a set of basis functions (often

piecewise-polynomial ‘hat’ or ‘tent’ functions are used). This process eliminates the

spatial derivatives and for steady-state problems results in a set of algebraic equations.

Finite element methods are widely used within the nuclear industry, and are a dom-

inant method in industry in general. Their application to neutron transport problems

began in the early 1970s, however it was only after available computer memory grew

rapidly that they began to be used within industrial codes [11, Chapter 2]. Large

amounts of industrial and academic research is devoted to their development. Though

the basic method is fairly straightforward there are many different choices to make,

including the choice of elements and basis functions. These choices are often problem-

dependent and have a big effect on the accuracy of the method. For detailed information

on the theory and application of finite element methods see Brenner and Scott [16] or

Grossmann et. al [33, Chapter 4].

To conduct numerical experiments throughout this thesis we used discontinuous

Galerkin finite elements to discretise the neutron transport equation. This process is

detailed in Chapter 5, where references specific to neutron transport are given. We

also used continuous finite elements to discretise the diffusion equation (see Chapter 3)

however we do not explain this in detail and instead refer the reader to Brenner and

Scott [16], for example.

13



1.3 Literature Review

In this section we will discuss and review existing literature that is relevant to the

work that has been completed in this thesis. We will roughly follow the order in which

work will appear over the coming chapters. To conclude the section we will outline the

specific contributions that this thesis makes to the literature.

One of the most basic iterative methods used to solve the neutron transport equa-

tion is known as source iteration, though it is equivalent to Richardson iteration, a

method proposed by L. Richardson in 1910 [62]. Iterative solvers are used in current

industrial deterministic software for solving criticality problems including the neutron

transport problem. One example is in the WIMS code (part of the ANSWERSr

Software Service provided by AMEC Foster Wheeler) where two of the deterministic

methods mentioned in Section 1.2 can be used (SN and diffusion theory) as well as the

method of characteristics and the method of collision probabilities (more information

on both of these methods within a nuclear physics setting can be found in [19] and [69]),

alongside iterative solvers. They are still a very relevant part of the industry and as

such any improvements in efficiency (and so accuracy) of solves can only be beneficial

for both energy and environmental concerns alike: firstly for reducing associated risks,

and secondly for continuing to satisfy growing energy demands [69, Preface]. Currently

most industrial level nuclear modelling software packages use source iteration to some

extent, which we will introduce in Chapter 2. Information on source iteration can be

found in [2], [32], [67], and many others. Various methods of acceleration, including

Krylov methods, are utilised to speed up the convergence of this method and so work

in this area is still very relevant.

In [26], T. M. Evans et. al. present a new method called Monte Carlo synthetic

acceleration (MCSA) and use it to solve a radiation diffusion equation for the scalar

flux. This method builds upon source iteration, and they demonstrate that for certain

model problems MCSA can outperform standard solution techniques such as CG and

GMRES. Furthermore an important issue in modern computing where massively par-

allel applications are becoming increasingly common robust methods require resiliency

to hardware failures that occur during a solve. T. M. Evans et. al. argue that MCSA

can provide a good basis for such resiliency, lending support the relevance of source

iteration as part of modern iterative methods.

In Chapter 2 we derive new convergence theory for source iteration. We will present

a new tighter bound on the convergence of source iteration for constant cross sections,

as well as presenting a new convergence result that allows for piecewise smooth cross

sections. Later in Section 2.7 we will carry out numerical tests to support our theory.
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We will see that source iteration performs well when applied to systems in which par-

ticles typically undergo only a small number of interactions before being captured. On

the other hand we will observe that in systems where particles undergo a large number

of interactions before being captured, source iteration converges slowly. As explained

in [2, Section I.B], such systems are characterised by scattering dominated interactions

within optically thick domains (where the average distance between successive collisions

is small compared to the domain width). Under these conditions a domain is said to

be diffusive, and we are motivated to seek some way of improving the performance of

source iteration. One way of doing this is examined in Chapter 3.

In the neutron transport literature it is well known that a certain diffusion equation

can provide a good approximation to the scalar flux within a diffusive domain (in

particular, see [59, Chapter 8], [69, Chapter 3], [2, Chapters 1 and 2], [70, Chapter 5],

[54] and good boundary condition discussion can be found in [34], with the discrete case

looked at in [40], [41] and [29]). In the literature, several different methods are used

to derive this equation. One method works by writing the neutron flux as a Legendre

polynomial expansion and then truncating after the first two terms. The resulting

approximate diffusion equation is commonly referred to as the P1-approximation, with

a more accurate PN -approximation following by truncating the expansion later.

In Chapter 3 we derive this diffusion equation following an asymptotic expansion

method used by Habetler and Matkowsky [34], though our work differs slightly as we

treat the non-fission source term explicitly. One advantage of this method is that suit-

able boundary conditions can be found through a subsequent boundary layer analysis.

Other methods of obtaining suitable boundary conditions, such as requiring the dif-

fusion equation to be valid uniformly up to the boundary, do not obtain the correct

conditions (see [40] and [29]).

This diffusion approximation can be used to construct an acceleration scheme known

as diffusion synthetic acceleration (or DSA). This works in conjunction with another

iterative scheme (such as source iteration) and uses diffusion solves to update the ap-

proximate solution at each iteration. See [2, Chapters 2 and 3] and [7] for analysis; see

[5] and [51] for application. A lot of effort has also been put into overcoming numer-

ical instability issues caused by certain discretisations of the transport and diffusion

equations (see [5] for the recognised solution, [51] for some follow up work), and this

has led to a good understanding of how to guarantee stability in diffusion synthetic

acceleration schemes.

Acceleration schemes can be shown to be equivalent to preconditioning methods

([32] and [2, Chapter 1] for discussion). Preconditioning a system involves transform-

ing it (via some process or operator known as a preconditioner) into a form more easily
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solved using iterative methods. The key to this is that the cost of preconditioning

should not outweigh the benefits. Preconditioning is a frequently used process, backed

up with a wealth of mathematical knowledge and understanding (see [32], [66] or [14]).

Preconditioning in a transport-specific setting is considered in Adams and Larsen, [2].

DSA can be formulated as a preconditioner, and this is done in both Faber and Man-

teuffel, [27], and Ashby et. al., [6]. Ashby et. al. then apply DSA as a preconditioner

to source iteration as well as to the Krylov-subspace method GMRES (though Brown

[17] gives a more thorough account of the required discretisation). Later Warsa et. al.

([74], [75]) show that in the presence of material discontinuities, multidimensional DSA

suffers a degradation in effectiveness. They demonstrate that by applying DSA as a

preconditioner to a Krylov method this degradation can be avoided.

DSA converges more quickly than source iteration, particularly in diffusive domains,

however it is also computationally more expensive (per iteration) to implement. As

a result for some problems, though DSA may need fewer iterations to converge, in

reality source iteration might still be the faster method (see Adams and Larsen, [2,

Section II.B], for a discussion of this cost balance). Alternatively source iteration might

converge slowly due to only a small part of a domain exhibiting diffusive behaviour.

In this situation it would be beneficial to apply DSA only in that small part, and

to apply source iteration over the rest of the domain. This provides the motivation

behind our work in Chapter 4, in which we develop two domain decomposition source

iteration algorithms (Algorithms 6 and 8). These algorithms can be applied to 3D

spatial domains decomposed into an arbitrary number of subdomains. We go on to

prove that both algorithms converge (Theorem 4.8 and Theorem 4.4) and in particular

that Algorithm 8 is equivalent to the full source iteration algorithm.

Domain decomposition methods have been applied to solving the neutron trans-

port equation before, both in space (see Yavuz and Larsen [76], [77]) and in angle

(see Y. Azmy [8]). In particular, Yavuz and Larsen developed and implemented a do-

main decomposition source iteration algorithm focussed towards parallelisation. They

demonstrated the speed-up gained by applying it over varying numbers of processors,

with the number of subdomains always equalling the number of processors. The method

they developed is similar to the Jacobi domain decomposed source iteration algorithm

we present in Section 4.2.2, though they differ in when the subdomains communicate.

They also state (though do not implement) a semi-discrete domain decomposed source

iteration algorithm for rectangular grids of subdomains. This is a form of the Gauss-

Seidel domain decomposed source iteration algorithm that we present in Section 4.2.3,

however we work in a continuous setting and allow for decomposition into any number

of convex subdomains. More recently Gonçalves and Coelho [30] considered parallel

16



algorithms for the discrete ordinates method. They implemented the parallel-focussed

method of Yavuz and Larsen, however they did not attempt to analyse the method the-

oretically. We do not know of any other work developing the algorithms of Yavuz and

Larsen, or in particular of any work proving convergence of the two different algorithms

in a fully continuous setting as we do in Sections 4.3 and 4.4.

To carry out numerical tests at the end of each chapter, we discretised the neutron

transport equation using discontinuous Galerkin (DG) finite elements in space and dis-

crete ordinates in angle. This process is detailed in Chapter 5 and is intended to be

used for reference to understand more fully the numerical testing that was carried out.

DG methods were originally proposed in the early 1970s for solving partial differential

equations. In 1973, Reed and Hill [61] published a DG method for solving the neu-

tron transport equation. Following this, LaSaint and Raviart [56] covered the spatial

discretisation in detail, and established uniqueness and existence of the resulting ap-

proximate solution. Later Johnson and Pitkäranta [43] derived a sharp bound on the

error of DG finite element methods using nth degree polynomial basis functions. At

the time it was not know that their bound was sharp, however this was demonstrated

in 1991 by Peterson [58] using a counter example.

We conclude this introductory chapter by outlining the contributions that will be

made by this thesis to the literature.

• We will provide new convergence theory for source iteration which proves conver-

gence assuming piecewise smooth cross sections (Section 2.5.2).

• We will improve upon the existing convergence theory for source iteration assum-

ing constant cross sections (Section 2.5.3).

• We will thoroughly present the asymptotic expansion derivation of the diffusion

equation, and the boundary layer analysis required to obtain suitable boundary

conditions, originally presented by Habetler and Matkowsky [34]. This is not orig-

inal work, but is carefully and thoroughly presented to provide a useful addition

to the existing literature (Section 3.2).

• We explore a new block operator approach to seeing the link between the diffusion

approximation and the transport equation (Section 3.4).

• We present two different domain decomposed source iteration (DDSI) algorithms

which provide various advantages (as well as disadvantages) to solving the neutron

transport equation (Section 4.2).
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• We prove convergence of both of these DDSI algorithms, and so provide a rigorous

mathematical foundation for further development and exploration in this area

(Sections 4.3 and 4.4). These are new results.

Wherever possible we provide numerical results to illustrate and support our theory,

as well as to highlight any limitations. These results are provided in the last section of

each chapter, and the finite element discretisation required to carry out the experiments

is explained in Chapter 5.
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2.1 Introduction

In this chapter we concern ourselves with understanding the most basic iterative method

for solving the neutron transport equation, known as source iteration. We will prove a

new result regarding the convergence of source iteration under more general assump-

tions than has been achieved before in a continuous setting. More precisely, our result

will apply when the cross sections are piecewise smooth. This situation is very relevant

physically since cross sections govern how neutrons interact with the material they are

travelling through. Most physical systems that are modelled contain more than one

material and typically the boundary between these materials is distinct and thus causes

a ‘jump’ in the cross section in space. Therefore results concerning piecewise smooth

cross sections are more relevant than their constant counterparts.

A similar result with spatially dependent cross sections is proved by Ashby et. al

[7, Section 4] in a special discrete case. This motivated us to consider a proof for

the non-discretised problem, which allows the result to be used as a starting point for

understanding the convergence in any discretisation. Consequently our work is a useful

addition to the literature in understanding source iteration.

The method of source iteration itself is still a very relevant method in industry

today. Recently it has been used by Evans et. al [26] as part of a Monte Carlo synthetic

acceleration method. This method is aimed at being a robust iterative solver which can

cope with the occurrence of hardware failures during massively parallel iterations.

We begin in Section 2.2 by defining the transport equation in 3, 2 and 1 spatial

dimensions under the simplifying assumptions that will be required for our convergence

result. Next in Section 2.3 we derive the solution to the transport equation without

scattering and with homogeneous boundary conditions in each dimension with piecewise

smooth total cross section. With these solutions we then define an associated solution

operator, denoted KσT , under the further assumption of zero boundary conditions in

each dimension. This operator has been considered before (see [45], [67, Chapter 2],

[24, Chapter 2]) under the more restrictive assumption of constant cross sections. We

will prove several useful properties of this operator, and in particular will show that it is

positive-definite (see Lemma 2.13). In Section 2.4 we will introduce the source iteration

algorithm, which will then be the subject of our convergence analysis in Section 2.5. The

main convergence result will require preliminary work that will be covered in Section

2.5.1, and using that work our main convergence result, Theorem 2.21, will follow in

Section 2.5.2. Next in Section 2.5.3 we will consider the case of constant cross sections,

and will prove new tighter bounds on the rate of convergence for source iteration in 3D,

2D and 1D. Lastly we will consider the implications of our theory, and in Section 2.7
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will give some numerical results that highlight the benefits and limitations of source

iteration.

2.2 Simplified Transport Equation

In this section we will specify the transport equation in 1, 2 and 3 spatial dimensions

in the forms that will be used throughout this chapter. We will use the simplifying

assumptions explained in Section 1.1.1, which were the following. Firstly we consider

only one energy group and so energy does not feature in our version of the transport

equation. We also consider the equation at steady-state and so there is no time depen-

dency. Lastly, we assume that the cross sections are isotropic (i.e. independent of angle)

and piecewise smooth in space. As mentioned in the introduction, this last assumption

means our convergence result applies to more physically relevant cross sections than

has been possible before. We start by working in three spatial dimensions.

2.2.1 Transport Equation in 3D

We will perform much of the work in this chapter in three dimensions and will only

work otherwise when the extension to lower dimensions is not straightforward. Recall

from Chapter 1, in 3D the transport equation governs the behaviour of the neutron flux,

denoted ψ(r,Ω). Here r ∈ V is a spatial variable, where V is some bounded domain

in R3, and Ω ∈ S2 is an angular variable. Under the assumptions restated above, the

monoenergetic, steady-state neutron transport equation with isotropic interactions and

an isotropic neutron source is defined as

Ω · ∇ψ(r,Ω) + σT (r)ψ(r,Ω) =
σS(r)

4π

∫
S2
ψ(r,Ω) dΩ +Q(r), (2.1)

and we impose the boundary conditions

ψ(r,Ω) = f(r,Ω), when n(r) · Ω < 0, r ∈ ∂V, (2.2)

where f ∈ L2(∂V, L1(S2)) (see Section 2.2.4). As defined in Chapter 1 the functions

σT and σS are the total and scattering cross sections respectively. Together with the

absorption cross section, σA, they satisfy the relation

σT (r) = σS(r) + σA(r), ∀r ∈ V, (2.3)

and are all strictly positive over the whole spatial domain. For the majority of this

thesis we will assume that the cross sections are piecewise smooth and any assumptions
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contrary to this will be explicitly stated.

To simplify this exposition we introduce an operator T , called the transport opera-

tor, which is defined to be

T ψ(r,Ω) ≡ Ω · ∇ψ(r,Ω) + σT (r)ψ(r,Ω). (2.4)

With this, the problem we are interested in solving can be written as

T ψ(r,Ω) = σS(r)φ(r) +Q(r), (2.5)

together with the boundary conditions (2.2). Here φ is known as the scalar flux, and

is defined as the neutron flux averaged over all angles, i.e.

φ(r) ≡ Pψ(r,Ω), (2.6)

with P defined as

P(·) ≡ 1

4π

∫
S2

(·) dΩ. (2.7)

The scalar flux is an important quantity which we will focus on during the next three

chapters. Though it contains less information than the neutron flux, it is often the

case that the direction particles are travelling in is not required (see [57, Section 1-3]).

Also we will see in Section 2.4 that one step of the basic source iteration algorithm

(Algorithm 1) can yield the full neutron flux provided one knows the scalar flux. For

these reasons it is a central quantity of interest.

2.2.2 Transport Equation in 2D

In two dimensions the neutron flux is given by ψ(r̃, Ω̃), where r̃ ∈ V with V a bounded

domain in R2 and Ω̃ ∈ S1. The monoenergetic, steady-state transport equation with

isotropic neutron interactions and isotropic neutron source governing the neutron flux

in 2D is given by

Ω̃ · ∇̃ψ(r̃, Ω̃) + σT (r̃)ψ(r̃, Ω̃) =
σS(r̃)

2π

∫
S1
ψ(r̃, Ω̃) dΩ̃ +Q(r̃), (2.8)

where ∇̃ denotes the 2D gradient. The flux, ψ, is subject to the boundary conditions

ψ(r̃, Ω̃) = f(r̃, Ω̃), when ñ(r̃) · Ω̃ < 0, r̃ ∈ ∂V. (2.9)

where f ∈ L2(∂V, L1(S1)). Again, the cross sections are assumed piecewise smooth

unless we state otherwise. They are all strictly positive at all points in the domain,
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Figure 2-1: Standard polar coordinates on S2, showing the contribution of Ω in the
z-direction. Taken from [67].

and satisfy σT (r̃) = σS(r̃) + σA(r̃).

As in the 3D case, we can define a 2D version of the transport operator, T , via

T ψ(r̃, Ω̃) ≡ Ω̃ · ∇ψ(r̃, Ω̃) + σT (r̃)ψ(r̃, Ω̃). (2.10)

So we can specify the problem of interest by

T ψ(r̃, Ω̃) = σS(r̃)φ(r̃) +Q(r̃), (2.11)

together with the boundary conditions (2.9). Here the scalar flux, φ, is defined via a

2D version of the averaging operator P, specifically

φ(r̃) = Pψ(r̃, Ω̃) ≡ 1

2π

∫
S1
ψ(r̃, Ω̃) dΩ̃. (2.12)

2.2.3 Transport Equation in 1D

In one dimension the neutron flux is a function of space, x ∈ V with V a bounded

domain in R, and angle, µ ∈ S0 = [−1, 1], which is the contribution of Ω in the z-

direction in 3D polar coordinates (see Figure 2-1). The variable µ then parametrises the

unit ‘sphere’ in 1D via µ = cos (θ) for θ ∈ [0, π]. This 1D geometry is often referred to as
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slab geometry, with a very good description given in Prinja and Larsen, [59, Section 3.2].

In this thesis we will usually specify V = [xL, xR]. The monoenergetic, steady-state

transport equation with isotropic neutron interactions and isotropic neutron source

governing this 1D flux is given by

µ
∂

∂x
ψ(x, µ) + σT (x)ψ(x, µ) =

σS(x)

2

∫
[−1,1]

ψ(x, µ) dµ+Q(x), (2.13)

subject to the boundary conditions

ψ(xL, µ) = fL(µ), when µ > 0,

ψ(xR, µ) = fR(µ), when µ < 0,
(2.14)

where fL, fR ∈ L1[−1, 1]. These are a 1D form of the boundary source conditions given

in Section 1.1.2. As in 3D, the cross sections are all piecewise smooth, strictly positive

at all points in the domain, and satisfy the property σT (x) = σS(x) + σA(x) for all

x ∈ V .

As in the 3D case, we can define a 1D version of the transport operator, T , via

T ψ(x, µ) ≡ µ ∂

∂x
ψ(x, µ) + σT (x)ψ(x, µ). (2.15)

So the problem of interest can be written concisely as

T ψ(x, µ) = σS(x)φ(x) +Q(x), (2.16)

together with the boundary conditions (2.14), with the scalar flux, φ, defined using a

1D version of the operator P as

φ(x) ≡ Pψ(x, µ) ≡ 1

2

∫
[−1,1]

ψ(x, µ) dµ. (2.17)

2.2.4 Notation and Space

To allow mathematical rigour in our later analysis, we shall specify the space we are

working within. In 3D, with V ⊂ R3 bounded, define

L2
(
V,L1(S2)

)
≡
{
ψ : V × S2 → R :

∫
V
‖ψ(r, ·)‖2L1(S2) dr <∞

}
,

and for ψ ∈ L2
(
V,L1(S2)

)
we write

‖ψ‖L2(V,L1(S2)) =

(∫
V
‖ψ(r, ·)‖2L1(S2) dr

)1/2

.
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Here

‖ψ(r, ·)‖L1(S2) ≡
∫
S2
|ψ(r,Ω)| dΩ,

is the usual L1-norm with respect to angle. Therefore we can say in 3D that in solving

(2.5) we are looking for some ψ ∈ L2
(
V,L1(S2)

)
that satisfies boundary conditions,

(2.2), with ∇ · ψ ∈ L2
(
V,L1(S2)

)
also. The scalar flux, φ, will be shown to lie within

the space L2(V ), defined with the usual norm ‖·‖L2(V ). These definitions apply also

for 2D and 1D, but using the appropriate spatial and angular domains.

We will use the operator norm as defined by

‖A‖L (L2(V )) ≡ sup
v∈L2(V )

{
‖Av‖L2(V )

‖v‖L2(V )

: v 6= 0

}
,

for any bounded linear operator A : L2(V )→ L2(V ).

2.3 Solution to the Transport Equation in the Absence of

Scattering

We will begin this section by deriving neutron flux and scalar flux solutions to the

transport equation without scattering under non-zero boundary conditions in each di-

mension. Using these we will specify a solution operator, denoted KσT , for the transport

equation without scattering in each dimension, but with the further restrictions of zero

boundary conditions and a homogeneous right hand side. We will go on to prove various

properties of this operator, and in particular we will prove that it is a positive-definite

operator (see Lemma 2.13).

This solution operator (sometimes denoted just K) has been considered in the liter-

ature as far back as Kaper and Kellog, 1977, [45] and Duderstadt and Martin, 1979, [24,

Chapter 2], and was more recently derived in Scheben, 2011, [67, Chapter 2]. Our work

is motivated by that of [67], however we are using spatially dependent cross sections.

2.3.1 Formulae for Angular and Scalar Fluxes

First we define some notation concerning distance in a 3D setting. For any neutron at

position r ∈ V ⊂ R3 travelling in direction Ω ∈ S2, we define the position r′ ≡ r− sΩ,

with s ∈ R+, thus r is a distance s from r′ (see Figure 2-2 for a 2D illustration). We

will denote by sb the specific distance s such that r′ lies in the boundary, ∂V , and we

will denote this boundary point by rb. This can be rigorously defined as

rb ≡ r− sbΩ, (2.18)
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Figure 2-2: Distances related to a neutron in 2D.

with

sb(r,Ω) ≡ max{s ≥ 0 : r− sΩ ∈ ∂V }.

We will also find the following definition useful.

Definition 2.1 (Optical Path Length):

The optical path length between r and r′ is denoted τ(r, r′), and is defined by

τ(r, r′) ≡
∫
l(r,r′)

σT (z) dl(z),

see [12, Section 1.2b, p.24] for details. Here, l(r, r′) is the straight line from r to r′,

and the notation dl(z) represents the integral along this line. Note that in 1D,

τ(x, y) ≡
∣∣∣∣∫ y

x
σT (z) dz

∣∣∣∣ ,
and so τ(x, y) = τ(y, x) as in the higher dimensions.

With this in hand we can prove the following result concerning the solution to the

transport equation without scattering. This result is similar to [67, Lemma 2.1] however

we allow for spatially dependent cross sections and non-zero boundary conditions.

Lemma 2.2:

Let g ∈ L2(V,L∞(S2)) and consider the problem of solving

T ψ(r,Ω) ≡ Ω · ∇ψ(r,Ω) + σT (r)ψ(r,Ω) = g(r,Ω), (2.19)
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with r ∈ V ⊂ R3 and Ω ∈ S2. Here ψ is subject to the boundary conditions

ψ(r,Ω) = f(r,Ω), ∀r ∈ ∂V, such that n(r) · Ω < 0,

where f ∈ L2(∂V, L1(S2)). This problem has a unique solution

ψ(r,Ω) = f(rb,Ω)exp
(
−τ(r, rb)

)
+

∫
l(r,rb)

g(r′,Ω)exp (−τ(r, r′)) dl(r′), (2.20)

where rb is defined in (2.18).

Proof.

Throughout this proof, where it is not ambiguous, we will abbreviate sb(r,Ω) by sb.

Using this we have a point rb ∈ ∂V associated with any pair (r,Ω) ∈ V × S2. More

generally, we can define r′(s) as

r′(s) = r− sΩ,

with 0 ≤ s ≤ sb. Then ‖r− r′(s)‖2 = s and r′(sb) = rb.

First let us evaluate (2.19) at a point r′(s), and then multiply both sides by the

integrating factor exp (−τ(r, r′)). This leaves

[
Ω·∇ψ(r′(s),Ω)+σT (r′(s))ψ(r′(s),Ω)

]
exp

(
−τ(r, r′(s))

)
= g(r′(s),Ω) exp

(
−τ(r, r′(s))

)
.

This can be rewritten as

− d

ds

[
ψ(r− sΩ,Ω) exp (−τ(r, r− sΩ))

]
= g(r′(s),Ω) exp

(
−τ(r, r′(s))

)
. (2.21)

We now integrate (2.21) over s from 0 to sb. Since this amounts to integrating r′ along

the line l(r, rb), the right hand side of (2.21) simply becomes∫
l(r,rb)

g(r′,Ω) exp
(
−τ(r, r′)

)
dl(r′) (2.22)

Next we focus on just the left hand side of (2.21), where integrating over s results in
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∫ sb

0
− d

ds

[
ψ(r− sΩ,Ω) exp (−τ(r, r− sΩ))

]
ds

= −ψ(r− sbΩ,Ω) exp
(
−τ(r, r− sbΩ)

)
+ ψ(r,Ω) exp (−τ(r, r))

= ψ(r,Ω)− ψ(rb,Ω) exp
(
−τ(r, rb)

)
. (2.23)

Now we know that r − sbΩ ∈ ∂V , and also note that at this point on the boundary

Ω points inwards to the domain and so n(r − sbΩ) · Ω < 0. This follows since the

domain is convex, and so any point on the line joining rb and r lies in V . Therefore our

boundary condition tells us that ψ(r− sbΩ,Ω) = f(r− sbΩ,Ω). To conclude the proof

we can combine these boundary conditions with (2.23) and (2.22) to obtain (2.20), as

required.

To verify uniqueness, we just need to assume the existence of two solutions and

show that their difference is always zero. This is done by taking g = 0 and f = 0, then

solving (2.19) as above. This does lead to a zero flux, and hence the solution (2.20) is

unique.

Corollary 2.3:

The scalar flux φ associated with the neutron flux (2.20) is given by

φ(r) =

∫
S2
f(rb,Ω)kσT (r, rb)

∥∥r− rb
∥∥2

2
dΩ +

∫
V
g(r′,Ω(r, r′))kσT (r, r′) dr′, (2.24)

where Ω(r, r′) ≡ (r− r′)/ ‖r− r′‖2, and

kσT (r, r′) ≡ exp (−τ(r, r′))

4π ‖r− r′‖22
. (2.25)

Proof.

The scalar flux is defined to be

φ(r) ≡ 1

4π

∫
S2
ψ(r,Ω) dΩ.

Integrating the boundary term in (2.20) over angle and scaling we find

1

4π

∫
S2
f(rb,Ω)exp

(
−τ(r, rb)

)
dΩ =

∫
S2
f(rb,Ω)kσT (r, rb)

∥∥r− rb
∥∥2

2
dΩ.
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Next we focus on the right hand term in (2.20). We know that

∫
l(r,r′)

σT (z) dl(z) ≡
∫ ‖r−r′‖2

0
σT

(
r− s (r− r′)

‖r− r′‖2

)
ds,

therefore if we average over angle, we get

1

4π

∫
S2

∫
l(r,rb)

g(r′,Ω)exp (−τ(r, r′)) dl(r′) dΩ

=
1

4π

∫
S2

∫ ‖r−rb‖
2

0
g

(
r− s (r− rb)

‖r− rb‖2
,Ω

)
exp

(
−τ
(

r, r− s (r− rb)

‖r− rb‖2

))
ds dΩ.

(†)

By definition we know rb = r− sbΩ, and so

(r− rb)

‖r− rb‖2
=

sbΩ

‖sbΩ‖2
= Ω.

Thus

(†) =
1

4π

∫
S2

∫ sb

0
g (r− sΩ,Ω)

exp (−τ (r, r− sΩ))

s2
s2 ds dΩ, (‡)

and taking spherical coordinates centred at r with r′ = r − sΩ, so ‖r− r′‖2 = s then

results in

(‡) =

∫
V
g(r′,Ω(r, r′))

exp (−τ(r, r′))

4π ‖r− r′‖22
dr′.

From here (2.24) follows immediately.

Equivalent results to Lemma 2.2 can be proved in 2D and 1D also, however the

argument in Corollary 2.3 will only extend to 2D, with 1D requiring us to further

restrict g ∈ L2[xL, xR]. We will give the statements of these extensions informally

here. Firstly in 2D we consider the transport equation without scattering, given by

Ω̃ · ∇ψ(r̃, Ω̃) + σT (r̃)ψ(r̃, Ω̃) = g(r̃, Ω̃),

subject to boundary conditions (2.9), where r̃ ∈ V ⊂ R2, Ω̃ ∈ S1 and we choose

g ∈ L2
(
V,L∞(S1)

)
. The solution is given by
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ψ(r̃, Ω̃) = f(r̃b, Ω̃)exp
(
−τ(r̃, r̃b)

)
+

∫
l(r̃,r̃b)

g(r̃′, Ω̃)exp (−τ(r̃, r̃′)) dl(r̃′) (2.26)

Next applying the 2D version of the operator P to (2.26) we can obtain

φ(r) =

∫
S1
f(r̃b, Ω̃)kσT (r̃, r̃b)

∥∥r̃− r̃b
∥∥

2
dΩ̃ +

∫
V
g(r̃′, Ω̃(r̃, r̃′))kσT (r̃, r̃′) dr̃′, (2.27)

where Ω̃(r̃, r̃′) ≡ (r̃− r̃′)/ ‖r̃− r̃′‖2, and

kσT (r̃, r̃′) ≡ exp (−τ(r̃, r̃′))

2π ‖r̃− r̃′‖2
.

In 1D, we want the solution to

µ
∂

∂x
ψ(x, µ) + σT (x)ψ(x, µ) = g(x, µ)

subject to the boundary conditions (2.14) where x ∈ [xL, xR], µ ∈ [−1, 1], and we

choose g ∈ L2([xL, xR], L∞[−1, 1]). The solution is given by

ψ(x, µ) =


fL(µ)e

−1
µ
τ(xL,x)

+
1

µ

∫ x

xL

g(x′, µ)e
−1
µ

∫ x
x′ σT (z) dz

dx′, µ > 0,

fR(µ)e
1
µ
τ(x,xR) − 1

µ

∫ xR

x
g(x′, µ)e

1
µ

∫ x′
x σT (z) dz

dx′, µ < 0.

(2.28)

Remark 2.4:

The behaviour of the solution (2.28) for µ approaching zero is non-trivial. It was

subject to analysis by Kaper and Kellogg [45] where the differentiability and continuity

of (2.28) are considered. A more general consideration of integral operators of this

form is provided in [31].

As mentioned above, before applying the 1D version of the operator P we need to

assume that the right hand side is only spatially dependent, i.e. g ∈ L2[xL, xR]. Under

this assumption we can apply P to (2.28) and find

φ(x) =
1

2

∫ 1

0
fL(µ)e

−1
µ
τ(xL,x)

dµ+
1

2

∫ 0

−1
fR(µ)e

1
µ
τ(x,xR)

dµ+

∫ xR

xL

g(x′)kσT (x, x′) dx′

(2.29)

where
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kσT (x, x′) ≡ 1

2

∫ 1

0

1

µ
exp

(
−1

µ
τ(x, x′)

)
dµ,

≡ 1

2
E1(τ(x, x′)). (2.30)

Here E1 denotes the exponential integral function, defined in Abramowitz and Stegun,

[1, Equation 5.1.4], as

E1(z) ≡
∫ ∞

1

exp (−zt)
t

dt.

If the total cross section, σT , is constant then τ(x, x′) = σT |x− x′| and (2.30) reduces

to the 1D kernel studied in F. Scheben 2011 [67] (see equation (2.16)).

2.3.2 Zero Boundary Conditions: the operator KσT
Corollary 2.3 and its lower dimensional counterparts ((2.27) and (2.29)) enable us to

give an integral form of a solution operator, KσT , for the transport equation without

scattering. In each dimension we now assume that the boundary function f = 0, and

we work in the special case g ∈ L2(V ). We consider each dimension in turn. Firstly in

3D we consider Corollary 2.3 under these assumptions and find

φ(r) = (KσT g)(r) ≡
∫
V
g
(
r′
)
kσT (r, r′) dr′, (2.31)

where r ∈ V ⊂ R3, and

kσT (r, r′) ≡ exp (−τ(r, r′))

4π ‖r− r′‖22
. (2.32)

Similarly in 2D we use (2.27) and working under our assumptions we obtain

φ(r̃) = (KσT g)(r̃) ≡
∫
V
g
(
r̃′
)
kσT (r̃, r̃′) dr̃′, (2.33)

where now r̃ ∈ V ⊂ R2, and

kσT (r̃, r̃′) ≡ exp (−τ(r̃, r̃′))

2π ‖r̃− r̃′‖2
. (2.34)

Lastly in 1D we work from (2.29) and simply set the boundary conditions to zero

leaving behind

φ(x) = (KσT g)(x) ≡
∫ xR

xL

g
(
x′
)
kσT (x, x′) dx′, (2.35)
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where x ∈ [xL, xR] ⊂ R, and

kσT (x, x′) ≡ 1

2
E1(τ(x, x′)). (2.36)

2.3.3 Properties of the operator, KσT
In this section we aim to establish that the operator KσT is a positive-definite, compact

operator. We will first establish the compactness of KσT in 2D and 3D in Lemma 2.6,

and in 1D in Lemma 2.8. Next we will show (in all dimensions) that KσT is self-adjoint

in Lemma 2.11 before concluding that it is a positive-definite operator in Lemma 2.13.

So we start by proving compactness of the operator, and focus first on the 2 and

3 dimensional cases. We will require the following result from [44, Theorem 6, p.332],

that establishes compactness for operators that fulfil certain requirements.

Lemma 2.5:

Consider L2(D), where D is a d-dimensional bounded region in Euclidean space, and

define the kernel of potential type

k(r, r′) =
b(r, r′)

‖r− r′‖m2
,

where b(r, r′) is a bounded function, continuous for r 6= r′. If d > m then the integral

operator

(KσT g) (r) =

∫
D
k(r, r′)g(r′) dr′, r ∈ D,

is a compact operator mapping L2(D) into L2(D).

Using Lemma 2.5 we can show the compactness of KσT in 2 and 3 dimensions

Lemma 2.6:

KσT is a compact operator in 2 and 3 dimensions on L2(V ).

Proof.

We work first in 3D. In order to utilise Lemma 2.5 we set

b(r, r′) ≡ 1

4π
exp

(
−τ(r, r′)

)
.

Then, with d = 3, m = 2 and D = V ⊂ R3, our kernel kσT = b(r, r′)/ ‖r− r′‖22 is

a kernel of potential type satisfying the assumptions of Lemma 2.5, and thus KσT is

compact. A similar argument holds in the 2 dimensional case using the 2D kernel

(2.34).
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In 1D our kernel, kσT , is not of potential type and so to establish compactness we

require the following result from [38, Theorem 7, p.51].

Lemma 2.7:

Let k(x, y) be such that ∫ xR

xL

∫ xR

xL

|k(x, y)|2 dx dy <∞. (2.37)

Then the operator

(KσT g) (x) =

∫ xR

xL

k(x, y)g(y) dy

is a compact operator on L2([xL, xR]).

A kernel that is square integrable, satisfying (2.37), is known as a Hilbert-Schmidt

kernel (see [38]).

Lemma 2.8:

KσT is a compact operator in L2([xL, xR]).

Proof.

To show that KσT is compact in 1D, Lemma 2.7 requires us to demonstrate that∫ xR

xL

∫ xR

xL

|kσT (x, y)|2 dx dy <∞,

where in our case

kσT (x, y) =
1

2
E1 (τ(x, y))

=
1

2

∫ 1

0

1

µ
e
−1
µ
τ(x,y)

dµ

Applying the change of variable η = µ/ |x− y| for |x− y| ∈ (0, xR − xL), the kernel

becomes

kσT (x, y) =
1

2

∫ 1
|x−y|

0

1

η
e
−1

η|x−y| τ(x,y)
dη

=
1

2

∫ 1

0

1

η
e
−1

η|x−y| τ(x,y)
dη︸ ︷︷ ︸

(I1)

+
1

2

∫ 1
|x−y|

1

1

η
e
−1

η|x−y| τ(x,y)
dη︸ ︷︷ ︸

(I2)

.
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Next, we note that

(I1) =

∫ 1

0

1

η
e
−1

η|x−y|
∫ y
x σT (t) dt

dη

≤
∫ 1

0

1

η
e
−1
η

min
(y,x)
|σT |

∫ y
x

1
|x−y| dt

dη

=

∫ 1

0

1

η
e
−1
η

min
(y,x)
|σT |

dη

= C1, (2.38)

where C1 is some constant. To bound (I2) we note that

exp

(
−1

η |x− y|
τ(x, y)

)
≤ 1,

since η > 0. Therefore

(I2) ≤
∫ 1
|x−y|

1

1

η
dη = ln

1

|x− y|
, (2.39)

and hence using (2.38) and (2.39) we find that

kσT (x, y) ≤ C1 + ln
1

|x− y|
.

From this point, we can follow the logic from [67, Lemma 2.14, p32] and note that

ln
1

|x|
≤

{
C2x

− 1
4 , if x ∈ (0, e−4),

4 , if x ∈ (e−4, xR − xL),

where C2 = 4/e. Consequently

kσT (x, y) ≤

{
C1 + C2 |x− y|−

1
4 , if |x− y| ∈ (0, e−4),

C1 + 4 , if |x− y| ∈ (e−4, xR − xL),

and so

∫ xR

xL

∫ xR

xL

|kσT (x, y)|2 dx dy ≤
∫ xR

xL

∫ xR

xL

∣∣∣C1 + C2 |x− y|−
1
4 + 4

∣∣∣2 dx dy <∞.

Therefore we have satisfied the requirements of Lemma 2.7, and so KσT is a compact

operator on L2[xL, xR].
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Remark 2.9:

We note here that having established compactness of KσT in all dimensions, we also

know that it is a bounded, linear and continuous operator. These properties will be

required when showing that KσT is self-adjoint in Lemma 2.11.

We are now in a position to establish the self-adjointness of KσT in 1, 2 and 3

dimensions. This property is defined as follows.

Definition 2.10 (Self-Adjoint):

Let H be a Hilbert space with associated inner-product 〈·, ·〉, then a bounded linear

operator A : H → H is called self-adjoint if 〈f,Ag〉H = 〈Af, g〉H for all f, g ∈ H.

Lemma 2.11:

The operator KσT : L2(V ) → L2(V ) is a self-adjoint operator on the Hilbert space

L2(V ), where V ⊂ Rp for p = 1, 2, 3.

Proof.

In 1, 2 and 3 dimensions the kernel kσT is symmetric. Using this in 3D, we have that

〈f,KσT g〉L2(V ) =

∫
V

∫
V
kσT (r, r′)g(r′) dr′f(r) dr

=

∫
V

∫
V
kσT (r′, r)f(r) drg(r′) dr′

= 〈KσT f, g〉L2(V ).

We can construct equivalent arguments in 1D and 2D also, and so the proof is complete.

Knowing that KσT is a compact, self-adjoint operator in 1, 2 and 3 spatial dimen-

sions, we are in a position to prove that it is positive-definite. First we will define what

we mean by this.

Definition 2.12 (Positive-Definite):

Let H be a Hilbert space. The operator A is positive-definite if it is bounded, self-adjoint

and 〈f,Af〉H ≥ 0 for all f ∈ H, and 〈f,Af〉H = 0 iff f = 0.

To prove that KσT is positive-definite we turn to [67, Lemma 2.17], however we

restate this result in the case of a non-constant total cross section, σT .

Lemma 2.13:

KσT is a positive-definite operator on L2(V ), where V is an n-dimensional closed subset

of Rn, n = 1, 2, 3.
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Proof.

The proof follows by applying the logic of [67, Lemma 2.17] under the assumption that

σT is piecewise smooth.

2.4 Source Iteration Algorithm

The purpose of this section is to describe and define the basic iterative method, often

called source iteration, that will be the focus of our convergence analysis in the next

section. This method can be used to solve the neutron transport equation, and is

a simple Richardson iteration (originally introduced in [62]) applied to the transport

equation for the scalar flux. For the purposes of our analysis, we will present it as a

two-step method.

While very basic, a discretised version of source iteration is used in modern indus-

trial modelling codes and is also a part of many more complicated iterative methods

such as diffusion synthetic acceleration (see Chapter 3) and Monte Carlo synthetic

acceleration, [26].

In practice when used to solve problems where particles are likely to experience

only a small number of collisions, source iteration converges quickly [2]. This situation

is typically presented when either the absorption cross section is large for most of the

domain, or when the system is leaky, i.e. particles frequently leave the domain after a

small number of collisions. On the other hand, for problems in which particles usually

undergo a large number of collisions, source iteration converges slowly. Typically this

occurs when the chance of leakage is small and the scattering cross section is dominant

over most of the domain [2]. Such a situation is referred to as diffusive and is very

physically relevant (see for example [59, Section 8]). These diffusive regimes will be

our focus in Chapter 3.

In the next section we will analyse the convergence of the continuous form of source

iteration, however later we will look at numerical results obtained using a discretised

form. Consequently the theoretical convergence behaviour resulting from our analysis

does not directly apply. However if we succesively refine our discretisation, we expect

the discrete algorithm to more and more closely approximate the continuous version.

Therefore it is reasonable to expect the predicted continuous convergence behaviour to

emerge.

We will now conclude this section by stating the source iteration algorithm, before

moving immediately on to the convergence analysis. In Section 2.2.1 we saw that, in a

3D setting, we are trying to solve the transport equation as given by
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T ψ(r,Ω) = σS(r)φ(r) +Q(r), (2.40)

subject to the boundary conditions

ψ(r,Ω) = f(r,Ω), when n(r) · Ω < 0, r ∈ ∂V,

where f ∈ L2(∂V, L1(S2)). To solve this problem, source iteration is defined as follows.

Algorithm 1: Source Iteration

1. Start with some initial φ(0)(r).

2. Solve

T ψ(k+1)(r,Ω) = σS(r)φ(k)(r) +Q(r), (2.41)

for ψ(k+1)(r,Ω), where ψ(k+1) satisfies

ψ(k+1)(r,Ω) = f(r,Ω), when n(r) · Ω < 0, r ∈ ∂V,

for some f ∈ L2(∂V, L1(S2)).

3. Average over angle to find

φ(k+1)(r) = Pψ(k+1)(r,Ω) ≡ 1

4π

∫
S2
ψ(k+1)(r,Ω) dΩ,

and return to step 2.

Though we have expressed a 3D version of the algorithm here, it is easily written

down in a 2D or 1D setting, and our analysis in the next section will hold in all

dimensions.

2.5 Convergence of Source Iteration

It is known that source iteration converges when solving the neutron transport equa-

tion with constant cross sections (see [67, Chapter 4]). Ashby et. al [7, Section 4]

prove a similar result with spatially dependent cross sections for a special discrete case.

This work motivated us to consider a proof in the underlying continuous case, and in

Theorem 2.21 we will prove that continuous source iteration (Algorithm 1) converges
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when the cross sections are piecewise smooth in space. This argument will require some

preliminary results which we begin by proving in Section 2.5.1.

After our convergence work for piecewise smooth cross sections, we will turn our

attention to the constant cross section case. In Section 2.5.3 we will prove new, tighter

bounds on the norm of the solution operator KσT in Theorem 2.23 for 2D and 3D, and

Theorem 2.25 for 1D. These bounds will allow us to prove a new convergence result

for source iteration with constant cross sections, which provides a tighter bound on the

rate of convergence.

2.5.1 Preliminary Results

Throughout this section we will use V to denote any bounded subset of Rd, with d = 1, 2

or 3, and the results proved will apply to all three of these dimensions. If any result

needs a significantly different argument for a given dimension, this will be dealt with in

the proof. We will further assume that the cross sections (σT , σS and σA) are piecewise

smooth functions in space. During this work we will use work from Riesz and Nagy,

[64], Hochstadt, [38], and Kantorovich and Akilov, [44], and will cite the appropriate

results when they are used.

Our main goal in this section will be to prove the following norm bound.

Theorem 2.14: ∥∥∥σ1/2
T (r)KσT σ

1/2
T (r)

∥∥∥
L (L2(V ))

≤ 1.

Remark 2.15:

We note that this result is a natural generalisation of a result in Scheben [67] since

for a constant total cross section our result reduces to σT ‖KσT ‖L (L2(V )) ≤ 1, which is

precisely Theorem 2.9 in [67].

This result will be instrumental in the proof of our main convergence result, Theo-

rem 2.21 (see specifically (2.55)). This will be our motivation for what follows and the

proof of Theorem 2.14 will be given at the end of the section. However before that we

will prove results about the properties of the operator σ
1/2
T (r)KσT σ

1/2
T (r).

Lemma 2.16:

The operator

σ
1/2
T (r)KσT σ

1/2
T (r) : L2(V )→ L2(V )

is positive-definite.
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Proof.

In Lemma 2.13 we saw that KσT was positive-definite in 1D, 2D and 3D. Let f, g ∈
L2(V ), then

〈σ1/2
T KσT σ

1/2
T f, g〉L2(V ) = 〈KσT σ

1/2
T f, σ

1/2
T g〉L2(V )

= 〈σ1/2
T f,KσT σ

1/2
T g〉L2(V ) = 〈f, σ1/2

T KσT σ
1/2
T g〉L2(V )

thus σ
1/2
T KσT σ

1/2
T is self-adjoint in L2(V ). Next, for all f ∈ L2(V ),

〈f, σ1/2
T KσT σ

1/2
T f〉L2(V ) = 〈σ1/2

T f,KσT σ
1/2
T f〉L2(V ) ≥ 0,

since KσT is positive-definite. Lastly, using this we also know

〈f, σ1/2
T KσT σ

1/2
T f〉L2(V ) = 0 ⇔ σ

1/2
T f = 0, ⇔ f = 0,

since σ
1/2
T (r) > 0 for all r ∈ V . Therefore σ

1/2
T KσT σ

1/2
T is positive-definite as required.

Our next result concerns a bound on the Rayleigh quotient of the operator σ
1/2
T KσT σ

1/2
T .

Lemma 2.17:

Suppose L ≡ σ1/2
T KσT σ

1/2
T , so L : L2(V )→ L2(V ). Then

〈g,Lg〉L2(V )

〈g, g〉L2(V )
≤ 1, ∀g ∈ L2(V )\{0},

Proof.

Take any g ∈ L2(V ) and consider

T ψ ≡ Ω · ∇ψ + σTψ = σ
1/2
T g (2.42)

where ψ satisfies zero incoming boundary conditions, (2.2) where f = 0. Then

φ = KσT (σ
1/2
T g). (2.43)

On the other hand, applying P directly to (2.42) we get

P(Ω · ∇ψ) + σTφ = σ
1/2
T g.

(Note that σ
1/2
T g is independent of angle, so P(σ

1/2
T g) = σ

1/2
T g). If we multiply this

through by σT
−1/2 and rearrange we get

39



σ
1/2
T φ = g − σT−1/2P(Ω · ∇ψ). (2.44)

Combining (2.43) and (2.44) we have that

Lg = g − σT−1/2P(Ω · ∇ψ).

Multiplying by g and integrating over V yields

〈g,Lg〉L2(V ) = 〈g, g〉L2(V ) −
∫
V
σT
−1/2gP(Ω · ∇ψ) dr.

so
〈g,Lg〉L2(V )

〈g, g〉L2(V )
= 1− 1

〈g, g〉L2(V )

∫
V
σT
−1/2gP(Ω · ∇ψ) dr, (2.45)

for all g ∈ L2(V )\{0}. To finish we now show that the second term on the right-hand

side of (2.45) is non-positive.

To begin with, note that 〈g, g〉L2(V ) > 0 for all g ∈ L2(V )\{0}, and so we can

consider the right-hand integral term without this ratio included. Set

A ≡
∫
V
σT
−1/2gP(Ω · ∇ψ) dr

= P
(∫

V
σT
−1/2gΩ · ∇ψ dr

)
. (2.46)

Then using (2.42) we have σT
−1/2g = ψ + σ−1

T Ω · ∇ψ, so

A = P
(∫

V
ψΩ · ∇ψ dr

)
︸ ︷︷ ︸

≡ A1

+P
(∫

V
σ−1
T (Ω · ∇ψ)2 dr

)
︸ ︷︷ ︸

≡ A2

.

We consider the two parts of this in turn. Firstly,

A2 ≥ 0, (2.47)

since clearly (Ω · ∇ψ)2 ≥ 0, and σ−1
T (r) > 0 by its definition.

Secondly we turn to A1. Up until this point our argument has applied in 1D, 2D

and 3D, with mostly notational changes needed to move between them. However we

will now argue for the 2D and 3D cases only, and will look at the 1D case afterwards.

We know by the chain rule that
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∇
(

1

2
ψ2

)
= ψ∇ψ,

and so

A1 = P
(∫

V
Ω · (ψ∇ψ) dr

)
= P

(∫
V

Ω · ∇
(

1

2
ψ2

)
dr

)
= P

(∫
V
∇ ·
(

Ω
1

2
ψ2

)
dr

)
.

Then using the divergence theorem

A1 = P
(∫

∂V

(
Ω

1

2
ψ2

)
· n(r) dr

)
= P

(∫
∂V

1

2
ψ2 (Ω · n(r)) dr

)
.

Now ψ2 is always positive, and by our boundary conditions ψ = 0 whenever Ω·n(r) < 0.

Thus we have

A1 ≥ 0. (2.48)

Next, in 1D A1 is defined as

A1 ≡ P

(∫
[0,1]

ψµ
∂

∂x
ψ dx

)
.

We know by the chain rule that

∂

∂x

(
1

2
ψ2

)
= ψ

∂

∂x
ψ,

and so A1 becomes

A1 = P

(∫
[0,1]

∂

∂x

(µ
2
ψ2
)

dx

)
,

= P
([µ

2
ψ2
]1

0

)
.

Writing this out in full we have found that

A1 =
1

4

∫
[−1,1]

µψ(1, µ)2 dµ− 1

4

∫
[−1,1]

µψ(0, µ)2 dµ.

From the boundary conditions, (2.14) with fL = fR = 0, this becomes
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A1 =
1

4

∫
[0,1]

µψ(1, µ)2 dµ− 1

4

∫
[−1,0]

µψ(0, µ)2 dµ ≥ 0, (2.49)

as we wanted.

From (2.47), and combining (2.48) and (2.49), we therefore know that A ≥ 0, and

so via (2.45) we have the required result.

Remark 2.18:

In this proof we considered the problem (2.42) together with zero incoming boundary

conditions. Despite this apparent restriction, our eventual convergence result will hold

for non-zero boundary conditions also. This is because later we will apply these results

to an error equation rather than the transport equation itself. Therefore any boundary

conditions of the form (2.2) applied to the transport equation result in zero boundary

conditions for the error equation.

The last result needed before we can complete the proof of Theorem 2.14 is Lemma

2.20. To prove this we will require the following result.

Theorem 2.19 ([64], Chapter 104):

Every positive-definite self-adjoint operator A possesses a unique positive-definite self-

adjoint square root, which we denote A1/2.

Lemma 2.20:

If L : L2(V )→ L2(V ) is a positive-definite self-adjoint operator, then

〈g,Lg〉L2(V )

〈g, g〉L2(V )
≤ 1 (2.50)

implies

〈g,L2g〉L2(V )

〈g, g〉L2(V )
≤ 1, ∀g ∈ L2(V )\{0}.

Proof.

By Theorem 2.19, L has a positive-definite self-adjoint square root, which we will denote

L1/2.

Now let us assume (2.50) and take g = L1/2f for some f ∈ L2(V )\{0}. Then using

the self-adjointness of L1/2 we find
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1 ≥
〈g,Lg〉L2(V )

〈g, g〉L2(V )
=
〈L1/2f,LL1/2f〉L2(V )

〈L1/2f,L1/2f〉L2(V )

=
〈f,L1/2LL1/2f〉L2(V )

〈f,L1/2L1/2f〉L2(V )

=
〈f,L2f〉L2(V )

〈f,Lf〉L2(V )
.

Thus for all f ∈ L2(V )

〈f,L2f〉L2(V ) ≤ 〈f,Lf〉L2(V ),

and hence

〈g,L2g〉L2(V )

〈g, g〉L2(V )
≤
〈g,Lg〉L2(V )

〈g, g〉L2(V )
≤ 1, ∀g ∈ L2(V )\{0},

as required.

Using the above results we are now in a position to prove the main lemma of this

section.

Proof of Theorem 2.14

Through the operator norm definition, we know

‖L‖L (L2(V )) = sup
g∈L2(V )

{
‖Lg‖L2(V )

‖g‖L2(V )

: g 6= 0

}

= sup
g∈L2(V )


(
〈Lg,Lg〉L2(V )

〈g, g〉L2(V )

)1/2

: g 6= 0


= sup

g∈L2(V )


(
〈g,L2g〉L2(V )

〈g, g〉L2(V )

)1/2

: g 6= 0

 . (2.51)

Now using Lemmas 2.20 and 2.17 we know that for all g ∈ L2(V )\{0}

〈g,L2g〉L2(V )

〈g, g〉L2(V )
≤ 1,

and so the square root of this ratio is also bounded below one. Thus by (2.51) we have

‖L‖L (L2(V )) ≤ 1,
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as required.

2.5.2 Convergence of Source Iteration

Using Theorem 2.14 we can now prove our main result concerning the convergence of

source iteration with piecewise smooth cross sections. We first set up some notation

that will be used. As stated in Section 2.2.1, the transport equation is given by

T ψ(r,Ω) = σS(r)φ(r) +Q(r),

from which source iteration is given (in Algorithm 1) by

T ψ(k+1)(r,Ω) = σS(r)φ(k)(r) +Q(r).

In both cases the boundary conditions are specified by (2.2). Subtracting these two

equations gives

T
(
ψ − ψ(k+1)

)
= σS

(
φ− φ(k)

)
,

where now ψ − ψ(k+1) satisfies zero boundary conditions. Using Corollary 2.3 with

f = 0 and g = σS
(
φ− φ(k)

)
we get

e(k+1) = KσT σS(r)e(k) (2.52)

where

e(k) ≡ φ− φ(k). (2.53)

Theorem 2.21:

Under the definitions above we have that∥∥∥σ1/2
T e(k+1)

∥∥∥
L2(V )

≤
∥∥∥∥σSσT

∥∥∥∥
L∞(V )

∥∥∥σ1/2
T e(k)

∥∥∥
L2(V )

, (2.54)

and so since

∥∥∥∥σSσT
∥∥∥∥
L∞(V )

< 1 the following limit holds∥∥∥e(k)
∥∥∥
L2(V )

→ 0, as k →∞.

Proof.

If we premultiply (2.52) by σ
1/2
T we get
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σ
1/2
T e(k+1) = σ

1/2
T KσT σS(r)e(k)

= σ
1/2
T KσT σ

1/2
T

(
σS
σT

)
σ

1/2
T e(k)

Thus

∥∥∥σ1/2
T e(k+1)

∥∥∥
L2(V )

=

∥∥∥∥σ1/2
T KσT σ

1/2
T

(
σS
σT

)
σ

1/2
T e(k)

∥∥∥∥
L2(V )

≤
∥∥∥σ1/2

T KσT σ
1/2
T

∥∥∥
L (L2(V ))

∥∥∥∥(σSσT
)
σ

1/2
T e(k)

∥∥∥∥
L2(V )

≤
∥∥∥σ1/2

T KσT σ
1/2
T

∥∥∥
L (L2(V ))

∥∥∥∥σSσT
∥∥∥∥
L∞(V )

∥∥∥σ1/2
T e(k)

∥∥∥
L2(V )

. (2.55)

Using Theorem 2.14, equation (2.55) tells us that∥∥∥σ1/2
T e(k+1)

∥∥∥
L2(V )

≤
∥∥∥∥σSσT

∥∥∥∥
L∞(V )

∥∥∥σ1/2
T e(k)

∥∥∥
L2(V )

.

Now by (2.3) we know σT (r) > σS(r) for all r ∈ V , and so∥∥∥∥σSσT
∥∥∥∥
L∞(V )

< 1.

Consequently ∥∥∥σ1/2
T e(k)

∥∥∥
L2(V )

→ 0, as k →∞.

To finish the proof we note that σT is bounded over the domain V , and so we can

immediately conclude ∥∥∥e(k)
∥∥∥
L2(V )

→ 0, as k →∞,

as required.

This theorem proves that continuous source iteration, when applied to the neutron

transport equation with piecewise smooth cross sections in space, converges to the

scalar flux, φ. As in Section 2.5.1, this result holds in 1D, 2D and 3D.

An immediate consequence of this is the result proved rigorously in [67, Chapter 2]
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that for constant cross sections (both in space and angle)∥∥∥e(k)
∥∥∥
L2(V )

≤ σS
σT

∥∥∥e(k−1)
∥∥∥
L2(V )

,

however we will improve upon this bound in the next section.

2.5.3 Improved Bounds in the case of Constant Cross Sections

We showed in Theorem 2.21 that source iteration converges with piecewise smooth cross

sections, and to do this we utilised a bound on the norm of the operator σT
1/2KσT σT 1/2.

For constant cross sections this result was already known (see for example [67, Chapter

4]) and relies upon the operator norm bound ‖KσT ‖L (L2(V )) ≤ 1/σT (see [67, Theorem

2.9, p.29]). In this section we will prove a stricter bound on the norm of KσT for

constant cross sections, and thus obtain a tighter bound on the rate of convergence for

source iteration in this instance.

Our first focus is on bounding the norm of KσT : L2(V )→ L2(V ) defined in (2.31)

and (2.33) in 3D and 2D respectively. We will use the following definition.

Definition 2.22 (Diameter):

The diameter of a set V ∈ Rk, k = 2, 3, is denoted diam(V ), and is defined as follows

diam(V ) ≡ sup{‖r− r̂‖ : r, r̂ ∈ V }.

Using this concept, we are now able to state and prove the following result.

Theorem 2.23:

Let V ⊂ Rk, k = 2, 3, be an open connected set and suppose all cross sections are

strictly positive constants. Then the solution operator KσT : L2(V ) → L2(V ) defined

in either (2.33) or (2.31) satisfies

‖KσT ‖L (L2(V )) ≤
1

σT
[1− exp (−σTdiam(V ))] (2.56)

where L (L2(V )) denotes the space of linear operators from L2(V ) to L2(V ).

Proof.

The argument in this proof will be presented for the case V ⊂ R3, however in two

dimensional space the argument is similar. First let ϕ ∈ L2(V ), then we know

(KσTϕ) (r) ≡
∫
V
kσT (r, r′)ϕ(r′) dr′,

where
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kσT (r, r′) ≡
exp (−σT ‖r− r′‖2)

4π ‖r− r′‖22
.

The kernel, kσT , satisfies

kσT (r, r′) > 0,

kσT (r, r′) = kσT (r′, r),

for all r, r′ ∈ V . To estimate the norm of KσT we first write, for any ϕ ∈ L2(V )

‖KσTϕ‖
2
L2(V ) =

∫
V

∣∣∣∣∫
V
kσT (r, r′)ϕ(r′) dr′

∣∣∣∣2 dr

≤
∫
V

(∫
V
kσT (r, r′)1/2

∣∣ϕ(r′)
∣∣ kσT (r, r′)1/2 dr′

)2

dr.

Then using the Cauchy-Schwarz inequality

‖KσTϕ‖
2
L2(V ) ≤

∫
V

(∫
V
kσT (r, r′)

∣∣ϕ(r′)
∣∣2 dr′

)(∫
V
kσT (r, r′) dr′

)
dr

≤ max
r∈V

(∫
V
kσT (r, r′) dr′

)∫
V

∫
V
kσT (r, r′)

∣∣ϕ(r′)
∣∣2 dr′ dr

= max
r∈V

(∫
V
kσT (r, r′) dr′

)∫
V

∫
V
kσT (r, r′) dr

∣∣ϕ(r′)
∣∣2 dr′

≤ max
r∈V

(∫
V
kσT (r, r′) dr′

)
max
r′∈V

(∫
V
kσT (r, r′) dr

)∫
V

∣∣ϕ(r′)
∣∣2 dr′

=

[
max
r∈V

(∫
V
kσT (r, r′) dr′

)]2

‖ϕ‖2L2(V ) . (2.57)

Using (2.57) we therefore have that

‖KσT ‖L (L2(V )) = sup
ϕ∈L2(V )
ϕ6=0

‖KσTϕ‖L2(V )

‖ϕ‖L2(V )

≤ max
r∈V

(∫
V
kσT (r, r′) dr′

)
. (2.58)

To get an estimate for (2.58) we will use spherical coordinates centred at r, so

r′ = r− sΩ
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where Ω ∈ S2 and s ∈ R+. Since this gives ‖r− r′‖2 = ‖sΩ‖2 = s, we have that

kσT (r, r′) =
exp (−σT s)

4πs2
,

and so, defining L ≡ diam (V ), we obtain

∫
V
kσT (r, r′) dr′ ≤

∫ L

0

∫
S2

exp (−σT s)
4πs2

s2 dΩ ds

=

∫ L

0
exp (−σT s) ds

=
1

σT
[1− exp (−σTL)] .

Note that in the above an inequality is obtained by using the maximum diameter L,

regardless of angle. Returning to (2.58) we can now conclude

‖KσT ‖L (L2(V )) ≤
1

σT
[1− exp (−σTdiam (V ))] ,

as required.

Next we prove an equivalent result in the 1D case where KσT is defined in (2.35).

To do this, we make note of the following useful integral.

Remark 2.24: ∫ 1

0
exp

(
−a
x

)
dx = E2(a), (2.59)

with a > 0, and where E2 is the so-called exponential integral function defined in

Abramowitz and Stegun [1, p.228, (5.1.4)] to be

E2(z) ≡
∫ ∞

1

e−zt

t2
dt.

The integral (2.59) is found by making the substitution t = 1/x.

Note further this function satisfies 0 < E2(x) < 1 for all x > 0 (E2(x) = 1 iff x = 0)

and is a decreasing function for positive x (as can be verified using [1, (5.1.19),(5.1.23)

and (5.1.26)]).

Theorem 2.25:

Let V = (xL, xR) ⊂ R be an open connected set and all cross sections are positive

constants. Then the solution operator KσT : L2(V ) → L2(V ), as defined in (2.35),
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satisfies

‖KσT ‖L (L2(V )) ≤
1

σT
[1− E2 (σTL)] , (2.60)

with diameter L ≡ xR−xL, and where L (L2(V )) denotes the space of linear operators

from L2(V ) to L2(V ). E2 is an exponential integral function defined in Abramowitz

and Stegun [1, p.228, (5.1.4)].

Proof.

The first half of the proof follows the same logic as that of Theorem 2.23. First let

ϕ ∈ L2(V ), then we know

(KσTϕ) (x) ≡
∫
V
kσT (x, y)ϕ(y) dy,

where in 1D the kernel, kσT , is defined to be

kσT (x, y) ≡ 1

2

∫ 1

0

1

µ
exp

(
−σT
µ
|x− y|

)
dµ.

As in higher dimensions, the kernel satisfies

kσT (x, y) > 0,

kσT (x, y) = kσT (y, x),

for all x, y ∈ V . Taking the norm of KσTϕ we can use identical logic as was used to

find (2.57), and obtain

‖KσTϕ‖
2
L2(V ) ≤

[
max
x∈V

(∫
V
kσT (x, y) dy

)]2

‖ϕ‖2L2(V ) . (2.61)

Using (2.61) we therefore have that

‖KσT ‖L (L2(V )) = sup
ϕ∈L2(V )
ϕ 6=0

‖KσTϕ‖L2(V )

‖ϕ‖L2(V )

≤ max
x∈V

(∫
V
kσT (x, y) dy

)
, (2.62)

which is the same as was obtained in the 3D case, (2.58).

To proceed from here we use the definition of the 1D kernel, (2.30), and find
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∫
V
kσT (x, y) dy =

1

2

∫
V

∫ 1

0

1

µ
exp

(
−σT
µ
|x− y|

)
dµ dy

=
1

2

∫ 1

0

∫ xR

xL

1

µ
exp

(
−σT
µ
|x− y|

)
dy dµ. (2.63)

For µ 6= 0 we can always write y = x + sµ for some s ∈ R (noting that this may be

negative), and so

x− y = −sµ.

Applying this as a change of variables, we continue from (2.63)

∫
V
kσT (x, y) dy =

1

2

∫ 1

0

∫ (xR−x)/µ

(xL−x)/µ

1

µ
exp

(
−σT
µ
|−sµ|

)
µ ds dµ

=
1

2

∫ 1

0

∫ (xR−x)/µ

(xL−x)/µ
exp (−σT |s|) ds dµ. (2.64)

Setting l = max{|xL − x| , |xR − x|} we continue from (2.64) and find

∫
V
kσT (x, y) dy ≤ 1

2

∫ 1

0

∫ l/µ

−l/µ
exp (−σT |s|) ds dµ

=
1

2

∫ 1

0
2

∫ l/µ

0
exp (−σT s) ds dµ

=

∫ 1

0

1

σT

[
1− exp

(
−σT

l

µ

)]
dµ

=
1

σT

[
1−

∫ 1

0
exp

(
−σT

l

µ

)
dµ

]
.

Now we can use the integral relation (2.59), which leaves

∫
V
kσT (x, y) dy ≤ 1

σT
[1− E2 (σT l)] . (2.65)

To conclude this, we use the observation in Remark 2.24 that E2 (x) is a decreasing

function for positive x. Consequently (2.65) attains a maximum over x ∈ [xL, xR] when

x lies on either boundary, whereby l = L ≡ xR − xL. Therefore (2.62) becomes

‖KσT ‖L (L2(V )) ≤
1

σT
[1− E2 (σTL)] ,
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as required.

The implications of this bound are not immediately clear, and so we take a moment

here to understand it. As mentioned at the beginning of this section, the previous

known bound on the operator norm of KσT with constant cross sections was (in our

notation) ‖KσT ‖L (L2(V )) ≤ 1/σT given by Scheben [67, Theorem 2.9, p.29]. Recalling

Remark 2.24 we know that E2(x) is a decreasing, strictly positive function bounded

below 1 for x > 0. Consequently 0 < 1 − E2(σTL) < 1 provided σTL > 0, which

holds true for any physically relevant domain and material data. It is thus clear that

our new bound for constant cross sections is always an improvement over the previous

bound. Furthermore it has the greatest improvement for small values of σTL since that

corresponds to when the term in square brackets is smallest.

We can now write down a convergence result for source iteration that uses these

new bounds. Following the same steps as Section 2.5.2 we can find the error equation

for source iteration with constant cross sections

e(k+1) = σSKσT e
(k) (2.66)

where as before

e(k) ≡ φ− φ(k).

With this we have the following convergence result

Corollary 2.26:

Under the definitions above, for V ⊂ Rn, n = 2, 3,∥∥∥e(k+1)
∥∥∥
L2(V )

≤ σS
σT

[
1− exp (−σTdiam(V ))

] ∥∥∥e(k)
∥∥∥
L2(V )

, (2.67)

and for V = [xL, xR] ⊂ R,∥∥∥e(k+1)
∥∥∥
L2(V )

≤ σS
σT

[
1− E2 (σTL)

] ∥∥∥e(k)
∥∥∥
L2(V )

, (2.68)

where L ≡ xR − xL. Therefore in 1D, 2D and 3D it holds that∥∥∥e(k)
∥∥∥
L2(V )

→ 0 as k →∞.

Proof.
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In 1D, 2D and 3D we can take the norm of (2.66) and find∥∥∥e(k+1)
∥∥∥
L2(V )

= σS

∥∥∥KσT e(k)
∥∥∥
L2(V )

≤ σS ‖KσT ‖L (L2(V ))

∥∥∥e(k)
∥∥∥
L2(V )

Now using Theorems 2.23 and 2.25 we immediately obtain the required error norm

bounds. From here the limit holds trivially.

This result gives us a new, tighter bound on the rate of convergence of source

iteration when assuming constant cross sections. Whilst this does not guarantee that

a discrete implementation of source iteration will adhere to this rate, we might expect

to observe such a rate for a sufficiently fine discretisation. Indeed in Section 2.7.1 we

will observe even faster rates of convergence, indicating that this new result is still not

telling us the whole story.

2.6 Benefits and Limitations of Source Iteration

Theorem 2.21 indicates that the rate of convergence of source iteration may be heavily

governed by the maximum norm of the so-called scattering ratio, σS(r)/σT (r). One of

the main advantages of source iteration over other more advanced iterative methods

is the low computational cost per iteration. For situations in which source iteration

converges quickly this can make it a very computationally cheap method to use. One

such situation is when the scattering ratio is small at all points of the spatial domain.

Physically this corresponds to a situation in which the dominant outcome of neutron

interactions is absorption in all regions in the spatial domain, i.e. all materials in the

model have relatively high absorption cross sections.

Theorem 2.21 similarly highlights one of the main limitations of source iteration: a

potential for slow convergence when the scattering ratio is close to one in any region

of the spatial domain, no matter how small. This is quite inconvenient since most

physical situations that are modelled will have at least some material in the domain

that predominantly scatters neutrons during interactions.

Later we will discuss several ways in which this problem can be resolved. One of

our main points of focus will be the diffusion synthetic acceleration method, which

is a type of the more general synthetic acceleration methods. These methods involve

adding an ‘update’ to the approximate scalar flux at each step of source iteration. The

aim is to choose an update that is most accurate in situations when source iteration has

the worst convergence, namely in scattering dominated regions. Such an update can
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be found by utilising a specific diffusion equation that will be introduced in Chapter 3,

leading to diffusion synthetic acceleration (see Section 3.3).

We will also look at a domain decomposition approach to solving the transport

equation in Chapter 4. By breaking the domain into several regions it is possible to use

different solution methods in each region. Consequently, it becomes possible to isolate

the regions where source iteration performs poorly and use a more appropriate solution

method only in that region, keeping source iteration elsewhere. The obvious advantage

this has is in maintaining a lower computational cost. More effective methods require

more calculations per iteration, and so limiting the size of the problem they have to

tackle can help keep these costs low. Another less obvious advantage to the domain-

decomposition approach is in dealing with issues caused by discontinuities, as will be

seen in Chapter 4.

We will conclude this chapter by looking at some numerical results to highlight the

features discussed above. As well as numerically confirming our theory, we will observe

some interesting behaviour that is not predicted by Theorem 2.21, and will discuss

what could be causing this behaviour.

2.7 Numerical Results

In this final section we will present the results of several 2D numerical experiments.

We will consider the problem of numerically solving the neutron transport equation,

subject to zero incoming boundary conditions, for a 2D spatial domain and a 1D angular

domain (see Section 2.2.2). To do this we will discretise in space using discontinuous

Galerkin finite elements (see [61], [42]) with uniform triangular elements, and Mx and

My intervals in the x and y directions respectively (see Figure 5-1). We will also

use discrete ordinates to discretise in angle (see [22], [32, Chapter 9]) choosing N

angular points as detailed in Section 5.2.2. Using this process we produce a linear

system of equations which can be solved numerically. A fully detailed account of this

discretisation is given in Chapter 5 and some knowledge of that chapter will be assumed

here, however we will not rely heavily upon it.

Our experiments will focus on numerically verifying discrete analogues of the two

convergence results in this chapter: specifically Theorems 2.21 and 2.23. We will as-

sume that our discretisation is good enough that the behaviour of these discrete versions

implies similar behaviour of the continuous forms. This is by no means guaranteed,

however by showing that different levels of spatial refinement result in consistent out-

comes we can increase our confidence in this implication.

To verify these results we will consider a simple model problem over a square do-
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main, however for each theorem we will independently vary different features of this

problem. Firstly when looking at Theorem 2.23 we will use cross sections that are

constant over the whole domain, and we will try independently varying the scattering

ratio and the domain diameter. After that when looking at Theorem 2.21 we will use

cross sections that are piecewise-constant over the spatial domain, and will vary the

scattering ratio only in half of the domain. We will conclude in each case that our

experiments support our theory but underestimate the potential rate of convergence.

2.7.1 Verifying Theorem 2.23

We focus first on numerically verifying Theorem 2.23, specifically we would like to see

numerically that

‖KσT ‖L (L2(V )) ≤
1

σT
[1− exp (−σTdiam(V ))] ,

where the cross sections and source are constant in space and angle. We will try varying

two quantities: the scattering ratio, σS/σT , and the domain diameter, diam (V ). In

each case we will see that the bound given in Theorem 2.23 holds. To do this we notice

that, from (2.67), the theoretical error ratio is given by∥∥e(k+1)
∥∥
L2(V )∥∥e(k)

∥∥
L2(V )

≤ σS
σT

[
1− exp (−σTdiam(V ))

]
, (2.69)

It is this bound on the ratio between the norms of successive errors that we will verify,

calculated via the quadrature explained in Chapter 5.

First of all we fix the source and total cross section as Q = 1 and σT = 1, and fix the

domain V = [0, 1]×[0, 1]. Then by choosing the value of σA we vary the scattering ratio

from 0.1 to 2.5. Recall that the the cross sections satisfy σT = σS + σA for all r ∈ V ,

so with σT = 1 the scattering ratio in each of our experiments is given by σS = 1−σA.

For each value of σA we run source iteration until it converges to a tolerance of 10−4, or

until we reach 25 iterations (whichever occurs sooner). We use an initial guess of zero,

with spatial resolutions Mx = My = 8 and angular resolution N = 23. The choice

of angular resolution is motivated by the error estimates in [42], who highlight that

choosing an angular resolution that depends upon the spatial resolution is important.

As a result of this we always choose N =
⌈
8
√

max {Mx,My}
⌉
, where the factor of 8 is

included to ensure a reasonable angular resolution even for coarse spatial grids. More

details on the choices made can be found in Chapter 5.

Previously we have assumed 0 < σS/σT < 1 via strictly positive cross sections,

however here we are taking σS/σT up to 2.5 by allowing σA < 0. This can be interpreted
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Numerically Ratio bound
Scattering Iterations observed given by

ratio, σS/σT to converge error ratio (2.69)

0.1 3 0.036 0.063
0.3 4 0.108 0.190
0.5 5 0.180 0.316
0.7 7 0.252 0.442
0.9 8 0.324 0.569
1.1 10 0.397 0.695
1.3 12 0.469 0.822
1.5 15 0.541 0.948
1.7 19 0.613 1.075
1.9 25 0.685 1.201
2.1 25 0.757 1.327
2.3 25 0.829 1.454
2.5 25 0.901 1.580

Table 2.1: Table of the number of iterations taken for source iteration to converge,
the observed error ratio on convergence, and the new bound on this ratio, for varying
values of the scattering ratio.

as a very basic inclusion of fission in the equation, and we mentioned this briefly when

we initially simplified the transport equation (Section 1.1.1). If we instead restrict the

fission cross section, σF , and the number of secondary neutrons produced, ν, to be

constant (not zero) then the simplified transport equation becomes

Ω · ∇ψ(r,Ω) + σTψ(r,Ω) = (σS + νσF )φ(r) +Q.

Considering a scattering ratio greater than one is consequently a very basic inclusion of

secondary neutrons from collisions. Since it can be interpreted as a physically relevant

situation, and also yields interesting numerical results, we include it here.

In Table 2.1 for each value of the scattering ratio we have given: (column 2) the

number of iterations taken to converge; (column 3) the observed error ratio at conver-

gence; and (column 4) the theoretical bound on this ratio.

Immediately we notice that the observed ratio is always less that than the bound

(given by (2.69)), supporting the result in Theorem 2.23. We also see that the bound is

quite pessimistic, predicting that (for the chosen cross section and source values) source

iteration may diverge for scattering ratios over c.1.6. Surprisingly in this example we

see source iteration converging for ratios in excess of 2.5, suggesting our theory doesn’t

yet tell the whole story. In proving Theorem 2.23 we took several inequalities, which

have clearly had an effect. In our example the error ratio is a constant scaling (c.0.57) of
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Figure 2-3: Plot of the observed error ratio (solid, black, dotted, bottom), the new
bound on this ratio (blue, dashed, crossed, middle), and the old bound on this ratio
(red, dashed, top).

the theoretical bound. Varying the spatial resolution does not influence this constant,

however by changing either the domain diameter or the magnitude of the cross sections

we are able to vary this scale between 0 and 1. Our theory already includes the effect

of the domain diameter (and we will observe its effects in the next section) however

there may be improvements to be made by involving the size of the total cross section

and not just the scattering ratio. Lastly we remark that the ceiling of 25 iterations was

artificially enforced and not an outcome of the numerics.

In Figure 2-3 we have plotted the last two columns of Table 2.1 against the cor-

responding scattering ratio (first column). We have also included the bound derived

by F. Scheben, 2011, [67, Theorem 2.9] for comparison. This figure highlights the in-

creasing pessimism of our bound as the scattering ratio increases, as well as the fixed

ratio between columns 3 and 4 in Table 2.1. It also shows the improvement of our new

bound over the previous known bound from the literature.

Next we will try varying the diameter of the spatial domain, V , whilst fixing the

scattering ratio and source. We achieve this by maintaining a square domain, (x, y) ∈
[0, D] × [0, D], and letting D increase from 1 to 10. For each diameter we again run

source iteration until it converges to a tolerance of 10−4 with an initial guess of zero,

spatial resolutions Mx = My = 8 and angular resolution N = 23. We fix σT = 1,

σA = 0.5 and Q = 1, and so the scattering ratio is always 0.5.

In Table 2.2 we have summarised the same data as in Table 2.1, however we have

instead varied the domain diameter (column 1). Once again we observe that the theo-

retical bound holds in all tested cases, supporting the result of Theorem 2.23. We also
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Domain Numerically Ratio bound
diameter, Iterations observed given by
diam (V ) to converge error ratio (2.69)

1.0 5 0.180 0.316
2.0 8 0.282 0.432
3.0 10 0.344 0.475
4.0 12 0.384 0.491
5.0 13 0.411 0.497
6.0 14 0.429 0.499
7.0 15 0.443 0.500
8.0 15 0.453 0.500
9.0 16 0.461 0.500
10.0 16 0.467 0.500

Table 2.2: Table of the number of iterations taken for source iteration to converge,
the observed error ratio on convergence, and the new bound on this ratio, for varying
domain diameters.

see that column 3 is no longer a constant scale of column 4. In fact for larger domain

diameters our theoretical bound approaches the scattering ratio (0.5) and is closer to

the observed error ratio. We can understand this by observing that increasing the

diameter of the domain increases its optical thickness (the number of mean free paths

that make up its width), and as a result the behaviour of the neutrons is closer to that

of diffusion [54]. As we will discuss in the next chapter this reduces the effectiveness

of source iteration and pushes its rate of convergence closer to the scattering ratio (as

in the bound by F. Scheben, [67]). Trying to include the effects of optical thickness in

Theorem 2.23 might yield a sharper bound.

2.7.2 Verifying Theorem 2.21

Our next aim is to numerically verify the result presented in Theorem 2.21. To do

this we will consider the same problem as in Section 2.7.1 (over the square domain

V = [0, 1]× [0, 1]) however we will choose a piecewise constant absorption cross section,

defined as

σA(r) =

{
σA1, r ∈ V1

σA2, r ∈ V2

,

where V2 ≡ [0, 0.5] × [0, 0.5] ∪ [0.5, 1] × [0.5, 1] and V1 ≡ V \V2. Figure 2-4 contains a

sketch of how the material properties change over the domain. We vary σA2, causing

the scattering ratio in domain V2 to vary between 0.1 and 4, whilst keeping the ratio
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Scattering Numerically Ratio bound
ratio in V2, Iterations observed given by
i.e. σS2/σT to converge error ratio (2.70)

0.1 4 0.126 0.5
0.2 5 0.136 0.5
0.3 5 0.148 0.5
0.4 5 0.163 0.5
0.5 5 0.180 0.5
0.6 6 0.199 0.6
0.7 6 0.219 0.7
0.8 6 0.240 0.8
0.9 7 0.262 0.9
1.0 7 0.284 1.0

1.5 10 0.398 1.5
2.0 14 0.514 2.0
2.5 20 0.632 2.5
3.0 25 0.750 3.0
3.5 25 0.868 3.5
4.0 25 0.987 4.0

Table 2.3: Table of the number of iterations taken for source iteration to converge,
the observed error ratio on convergence, and the new bound on this ratio, for varying
values of the scattering ratio in half of the domain, with the ratio fixed as 0.5 elsewhere.

in V1 fixed as 0.5 (by choosing σA1 = 0.5). For each value we run source iteration until

it converges to a tolerance of 10−4, or until we reach 25 iterations (whichever occurs

sooner). We will use the same spatial and angular resolution as in the previous section,

and we fix σT = Q = 1. With a constant total cross section the multiples of σT
1/2 on

either side of (2.54) cancel, so the bound in Theorem 2.21 becomes∥∥e(k+1)
∥∥
L2(V )∥∥e(k)

∥∥
L2(V )

≤
∥∥∥∥σSσT

∥∥∥∥
L∞(V )

. (2.70)

To numerically verify this bound we solve the transport equation using source it-

eration and measure the observed error ratio between the two iterations immediately

preceding convergence. The data from this experiment is in Table 2.3, where we have

given (column 1) a range of values of the scattering ratio in V2. For each value we

have then listed: (column 2) the number of iterations taken to converge; (column 3)

the observed error ratio at convergence; and (column 4) the theoretical bound on this

ratio.

Straight away we observe that the theoretical bound is always greater than the

observed ratio, supporting the conclusion of Theorem 2.21. As in Section 2.7.1 we see
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Figure 2-4: Figure illustrating the regions of the domain with different material prop-
erties.

that our bound is not strict, however we now find that the observed ratio is no longer a

constant scale of the bound. In fact we see that as the scattering ratio in V2 increases,

the observed error ratio becomes a smaller proportion of the theoretical bound. This is

not surprising since, while our bound only focusses on the ‘worst case’ scattering ratio,

in reality half of the domain has a scattering ratio of 0.5 and so source iteration might

be expected to perform well in that region. Being able to divide the spatial domain

into these ‘good’ and ‘bad’ domains is a driving motivation behind our work in Chapter

4. More generally speaking, since our new bound, (2.70), is very similar to that of F.

Scheben [67] (indeed it is equivalent for constant cross sections) it is not unexpected

that we observe this lack of strictness. As in our earlier test we see that source iteration

converges for scattering ratios in excess of one, though now this excess is only in half

of the domain. In our earlier test source iteration began to diverge for scattering ratios

over 2.5, however by restricting this excess to only half of the domain we have been

able to observe convergence for ratios over 4.0. Interpreting this once again as a very

basic inclusion of fission interactions in the model, we can understand that the higher

levels of fission in V2 are balanced out by the unreactive neighbouring domain, V1.
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Chapter 3

The Diffusion Approximation
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3.1 Introduction

In Chapter 2 we explored the convergence of an iterative method called source itera-

tion. We showed, both theoretically (Section 2.5) and numerically (Section 2.7), that

source iteration in all dimensions can converge slowly if the scattering ratio (a function
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defined by the ratio between the scattering and total cross sections at each point in

the domain) is close to one anywhere in the domain. For constant cross sections, we

also demonstrated in Section 2.7.1 how increasing the domain diameter causes source

iteration to converge more slowly, in agreement with the conclusion of Theorem 2.23.

In this chapter we will examine (primarily in 1D) a specific diffusion equation, the

solution of which is an approximation to the scalar flux, φ. Crucially this approxima-

tion is most accurate under conditions that cause source iteration to converge poorly,

namely when the domain is optically thick (see Section 3.2.1) and the neutron interac-

tions are scattering dominated. It is this complementary feature that allows it to be

used to accelerate the convergence of source iteration, leading to an iterative method

which converges quickly in all situations. This method is known as diffusion synthetic

acceleration or DSA, and a good discussion of the origins of this method can be found

in Adams and Larsen [2, Chapter I.G].

The diffusion equation is used in most reactor core simulations [59]. Before being

applied however, the domain is frequently homogenised by averaging the cross sections

spatially ([69, Chapter 3, p.47]). This is because one of the conditions for the dif-

fusion equation to be valid only holds away from material boundaries. Though this

homogenisation is considered to be necessary, it is difficult to justify theoretically and

the process itself is also not unique. An open question remains about finding an opti-

mal homogenisation method [59, Section 8.2] and this is the source of one of the main

limitations of the diffusion approximation, however accurate approximations can still

be obtained by homogenising.

Unfortunately the conditions for the diffusion equation to be valid are also vio-

lated close to the domain boundaries, and this cannot be resolved by working on a

homogenised problem. It is for this reason that a boundary layer analysis is required

to obtain relevant boundary conditions for the diffusion equation [34], [41]. Conse-

quently, as an approximation to the scalar flux, the diffusion equation is least accurate

near the boundaries. This can be observed numerically, though we will not present

such results here.

The literature contains different methods of deriving appropriate diffusion approxi-

mations. One method, which obtains the so-called P1 approximation, works by expand-

ing the neutron flux in terms of Legendre polynomials and truncating the expansion

after the first two terms (see [71, Section 2.1.3], [57, p.123]). This also naturally results

in the more complicated PN equations (by truncating the expansion at higher order)

which form a better approximation for higher N . The impracticality of utilising the PN

equations in higher dimensions lead to the development of the so-called simplified PN

(or SPN ) equations by E. M. Gelbard in 1960 [28]. A good discussion of the SPN equa-
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tions (including their history and two standard and asymptotic derivations) is given in

[55].

In Section 3.2 we will use a matched asymptotic expansion method to derive an

appropriate diffusion approximation along with suitable boundary conditions. The

derivation of suitable boundary conditions is one of the main advantages of this method

over the PN method. This argument is not new and was first presented almost simul-

taneously in Habetler and Matkowsky, [34], and Larsen and Keller, [53]. Both of these

papers start with the time dependent transport equation, whereas a follow up paper

by Larsen, [49], worked from the steady-state transport equation, which was also con-

sidered later in [50] and [55]. Our work will include a non-fission neutron source term

in the expansion, which was present in [53] but not in [34].

After this asymptotic work is completed, Section 3.3 uses the derived diffusion

approximation to build the iterative method known as DSA as a two-step iterative

method. From there we will move on in Section 3.3.3 to consider how DSA can in-

stead be understood as a preconditioner to source iteration, using work by Faber and

Manteuffel, [27], and Ashby et. al., [7]. Next in Section 3.4 we will introduce a new

interpretation of the link between the transport equation and the diffusion equation,

based on applying Gaussian elimination to a block operator form of the neutron trans-

port equation. The results we present are not as general as the asymptotic derivation in

Section 3.2 and they rely upon the asymptotic results from that section, however they

provide a new way of understanding this well known relationship. As we will suggest in

Chapter 6, future efforts to make this work more independent of the asymptotics could

be very useful in developing our understanding of the diffusion equation and of DSA.

To conclude the chapter we present and discuss several numerical tests in Section 3.5

comparing source iteration and diffusion synthetic acceleration.

3.2 Asymptotic Derivation of the Diffusion Equation and

Appropriate Boundary Conditions in 1D

Different methods for obtaining the diffusion approximation to the neutron transport

equation exist. The usual techniques in the literature use either spherical harmonics

or an asymptotic expansion method: it is the latter which we focus on in this chapter.

This method is explored in both Larsen and Keller’s 1974 paper [53] and in Habetler

and Matkowsky’s 1975 paper [34] (and [40] explores the discrete case). Habetler and

Matkowsky go a step further and use a so-called boundary layer analysis to derive

suitable boundary conditions for the diffusion approximation. While these papers are

comprehensive, they cover a lot of ground very quickly and as a consequence lose clarity

62



by requiring many gaps to be filled in before the logic can be repeated. Furthermore,

Habetler and Matkowsky do not directly include a non-fission source term of neutrons

but instead consider one retrospectively to their calculation. We feel therefore that a

more thoroughly explained asymptotic derivation of the diffusion approximation and

relevant boundary conditions would be a useful addition to the existing literature. Such

a derivation is provided in this section, and we include a non-fission neutron source term

explicitly.

Specifically, we will use an asymptotic expansion method to derive a diffusion equa-

tion whose argument is an approximation to the scalar flux, φ (defined in (2.6)). The

derivation will also yield conditions for when this approximation is most accurate. Fol-

lowing this we will carry out a boundary layer analysis (see Sections 3.2.3 and 3.2.4)

to obtain suitable boundary conditions for this approximation based on the conditions

that are imposed on the neutron flux, ψ. This approach is necessary due to the ex-

istence of so-called boundary layers near either end of the domain in which the flux

exhibits rapid variation, and allows us to reconcile the differences in behaviour inside

and outside of these layers. The analysis utilizes asymptotic expansions of the trans-

port equation both outside and inside the boundary layers (called the outer and inner

expansions respectively), and then later requires that the two expansions match at their

interface. This work is an expanded version of that in [34] with helpful explanation

provided by Jonathan Evans [25] and with reference to E. J. Hinch [37].

3.2.1 Nondimensional Transport Equation

We begin by finding a nondimensional form of the simplified 1D transport equation and

boundary conditions given in Section 2.2.3. We will carry out the asymptotic derivation

of the diffusion approximation on this nondimensional version, and it will allow us to

parametrise the behaviour of the system by a single dimensionless parameter, ε, defined

later.

Firstly, we rewrite the 1D transport equation from Section 2.2.3 as follows

µ

σT (x)

∂

∂x
ψ(x, µ) + ψ(x, µ) =

c(x)

2

∫
[−1,1]

ψ(x, µ) dµ+
Q(x)

σT (x)
,

with x ∈ [0, D], µ ∈ [−1, 1], and subject to boundary conditions

ψ(0, µ) = fL(µ), when µ > 0,

ψ(D,µ) = fR(µ), when µ < 0,
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where c(x) ≡ σS(x)/σT (x). Without losing generality we have assumed xL = 0 and

xR = D, in order to make our nondimensionalisation clearer. We denote by 〈ψ〉 a

representative value of ψ, which may be obtained from the boundary conditions or

other known data. Similarly 〈σT 〉 denotes a representative value of the total cross

section and may be an average over the domain, or other typical value, of the known

function σT .

Using these we nondimensionalise our variables as follows

x = Dx̂, ψ(x, µ) = 〈ψ〉ψ̂(x̂, µ), Q(x) = 〈ψ〉σT (x)Q̂(x̂),

σT (x) = 〈σT 〉σ̂T (x̂), c(x) = ĉ(x̂).

With these our transport equation becomes

εµ

σ̂T (x̂)

∂

∂x̂
ψ̂(x̂, µ) + ψ̂(x̂, µ) =

ĉ(x̂)

2

∫
[−1,1]

ψ̂(x̂, µ) dµ+ Q̂(x̂), (3.1)

where now x̂ ∈ [0, 1], and we have introduced

ε ≡ 1

〈σT 〉D
. (3.2)

This important dimensionless parameter is the ratio between the typical mean free path,

1/〈σT 〉, and the length scale of the domain, D. The mean free path is defined as the

average distance a neutron will travel between successive collisions. Small values of ε

imply the average distance between successive neutron collisions is very small relative to

the width of the domain, in which case the domain is said to be optically thick. During

the coming asymptotic work it will also be seen that small values of ε correspond to

when the neutron interactions are scattering dominated, meaning that the scattering

cross section is a high proportion of the total cross section. These two conditions make

it clear why a domain where ε is small is referred to as diffusive.

We can also use the representative neutron flux value to conveniently scale the

boundary condition functions as follows,

fL(µ) ≡ 〈ψ〉f̂L, fR(µ) ≡ 〈ψ〉f̂R.

The boundary conditions for (3.1) are then given by

ψ̂(0, µ) = f̂L(µ), when µ > 0,

ψ̂(1, µ) = f̂R(µ), when µ < 0.
(3.3)

At thermal energies, values of ε can lie in the range 10−5 ∼ 10−3, and hence we

use ε as a small asymptotic expansion variable when examining the behaviour of the
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nondimensional flux, ψ̂.

The ε multiple of the derivative in (3.1) means this is a singular perturbation prob-

lem, i.e. its behaviour differs greatly between ε > 0 and ε = 0 (see [37, Section 1.2]).

For much of the spatial domain this first order derivative has only an O(ε) effect on the

transport equation. However in thin regions near the boundaries (known as boundary

layers) this derivative is sufficiently large that it outweighs the limiting effect of the

small multiple, ε. It is this difference in behaviour inside and outside of the boundary

layers that motivates the matching of expansions in each region (see [37, Chapter 5]).

When expanding inside the boundary layer we will use a stretched spatial parameter

to allow the behaviour to be captured effectively.

3.2.2 Outer Expansion: expanding away from the boundaries

We will first look at the outer expansion where we consider (3.1) away from the spatial

boundaries. To avoid notational clutter, we will drop the ‘hat’ notation though we are

still working in the dimensionless case, namely (3.1), which we write here again as

εµ

σT (x)

∂

∂x
ψ(x, µ) + ψ(x, µ) =

c(x)

2

∫
[−1,1]

ψ(x, µ) dµ+Q(x), (3.4)

subject to

ψ(0, µ) = fL(µ), when µ > 0,

ψ(1, µ) = fR(µ), when µ < 0.
(3.5)

We will use asymptotic expansions of the neutron flux, ψ, and the functions c and Q in

terms of ε. By doing this we will obtain a diffusion equation governing the behaviour

of the scalar flux, φ, up to O(ε2) away from the boundary layers (see (3.31)). We begin

by expanding as follows

ψ ∼ ψ0 + εψ1 + ε2ψ2 + . . .

c ∼ c0 + εc1 + ε2c2 + . . .

Q ∼ Q0 + εQ1 + ε2Q2 + . . .

(3.6)

where ψi ≡ ψi(x, µ), ci ≡ ci(x), and Qi ≡ Qi(x). We follow the process of substituting

these expansions into the nondimensional transport equation, (3.4), and then equating

successive powers of ε. Our aim is to resolve the coefficients to leading order, and to

obtain an approximate equation for the angularly independent part of the flux, ψ.

Firstly, consider the coefficient of the zero-th power of ε,
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ε0 : ψ0(x, µ) =
c0(x)

2

∫
[−1,1]

ψ0(x, µ) dµ+Q0(x). (3.7)

We can immediately deduce that ψ0 is independent of µ, i.e.

ψ0(x, µ) ≡ ψ0(x), (3.8)

thus (3.7) becomes

(1− c0(x))ψ0(x) = Q0(x). (3.9)

If we allow c0(x) 6≡ 1 then the leading flux term, ψ0, would just be a multiple of the

leading source term, Q0. Therefore in the epsilon limit, the dominant behaviour of the

neutron flux would be governed by the source. To avoid this we require that c0(x) ≡ 1,

and so Q0(x) ≡ 0.

Next we consider the coefficient of the first power of ε,

ε1 :
µ

σT (x)

d

dx
ψ0(x) + ψ1(x, µ) =

1

2

∫
[−1,1]

ψ1(x, µ) dµ+ c1(x)ψ0(x) +Q1(x). (3.10)

Equation (3.10) implies that ψ1 is linear in µ and so we write

ψ1(x, µ) = ψ10(x) + µψ11(x). (3.11)

Substituting this into (3.10), we can equate the coefficients of different powers of µ,

and after cancellation find

µ0 : 0 = c1(x)ψ0(x) +Q1(x) (3.12)

µ1 : 0 =
1

σT (x)

d

dx
ψ0(x) + ψ11(x). (3.13)

Similarly to above, we wish to avoid forcing the leading order flux term, ψ0, to be a

scale of the source term in the ε limit. Consequently we set c1(x) ≡ 0, and so Q1(x) ≡ 0.

With no new information from (3.12), the leading term ψ0 is still unknown.

Continuing, the coefficient of the second power of ε gives us

ε2 :
µ

σT (x)

∂

∂x
ψ1(x, µ)+ψ2(x, µ) =

1

2

∫
[−1,1]

ψ2(x, µ) dµ+c2(x)ψ0(x)+Q2(x). (3.14)
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With ψ1 linear in µ, we see that ψ2 is quadratic in µ. Thus we write

ψ2(x, µ) = ψ20(x) + µψ21(x) + µ2ψ22(x),

and equating powers of µ in (3.14) then yields

µ0 : 0 =
1

3
ψ22(x) + c2(x)ψ0(x) +Q2(x) (3.15)

µ1 : 0 =
1

σT (x)

d

dx
ψ10(x) + ψ21(x) (3.16)

µ2 : 0 =
1

σT (x)

d

dx
ψ11(x) + ψ22(x). (3.17)

Combining (3.17) and (3.13) gives

ψ22(x) =
1

σT (x)

d

dx

(
1

σT (x)

d

dx
ψ0(x)

)
, (3.18)

which, when combined with (3.15), yields

0 =
1

3σT (x)

d

dx

(
1

σT (x)

d

dx
ψ0(x)

)
+ c2(x)ψ0(x) +Q2(x), (3.19)

which is a diffusion equation for ψ0. This implies that the nondimensional source term

must be O(ε2) for it not to dominate the flux.

We finally look at the coefficient of the third power of ε,

ε3 :
µ

σT (x)

∂

∂x
ψ2(x, µ)+ψ3(x, µ) =

1

2

∫
[−1,1]

ψ3(x, µ) dµ+c2(x)ψ10(x)+c3(x)ψ0(x)+Q3(x).

(3.20)

In the same way as before we see that ψ3 is cubic in µ, and so we write

ψ3(x, µ) = ψ30(x) + µψ31(x) + µ2ψ32(x) + µ3ψ33(x).

Equating coefficients of the powers of µ we get
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µ0 : 0 =
1

3
ψ32(x) + c2(x)ψ10(x) + c3(x)ψ0(x) +Q3(x) (3.21)

µ1 : 0 =
1

σT (x)

d

dx
ψ20(x) + ψ31(x) (3.22)

µ2 : 0 =
1

σT (x)

d

dx
ψ21(x) + ψ32(x) (3.23)

µ3 : 0 =
1

σT (x)

d

dx
ψ22(x) + ψ33(x). (3.24)

Combining (3.23) with (3.16) we find

ψ32(x) =
1

σT (x)

d

dx

(
1

σT (x)

d

dx
ψ10(x)

)
. (3.25)

Using this along with (3.21) we are left with

0 =
1

3σT (x)

d

dx

(
1

σT (x)

d

dx
ψ10(x)

)
+ c2(x)ψ10(x) + c3(x)ψ0(x) +Q3(x), (3.26)

which is a diffusion equation for ψ10.

We can bring together (3.19) and (3.26) to obtain

0 =
1

3σT (x)

d

dx

(
1

σT (x)

d

dx
φ[1](x)

)
+c2(x)φ[1](x)+εc3(x)ψ0(x)+

[
Q2+εQ3

]
(x), (3.27)

where

φ[1] ≡ ψ0 + εψ10. (3.28)

If we were to continue this asymptotic expansion and equating of coefficients we would

obtain higher order terms. This would consolidate the terms with ci(x) coefficients,

however it would also introduce higher order derivatives. Instead we stop at this second-

order diffusion equation, (3.27), albeit with as yet unspecified coefficients and boundary

conditions.

We return for the moment to the dimensional notation of Section 3.2.1, and recall

that we defined the coefficient c(x) = σS(x)/σT (x) = ĉ(x̂). Subsequently we have

resolved an asymptotic expansion of the dimensionless ĉ up to order ε2, leaving

ĉ(x̂) ∼ 1 + ε2ĉ2(x̂) +O(ε3).

Using the relation σS(x) = σT (x) − σA(x) along with σT (x) = 〈σT 〉σ̂T (x̂) and ε =
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1/(〈σT 〉D), it follows that

ĉ(x̂) =
σS(x)

σT (x)
= 1− εDσA(x)

σ̂T (x̂)
∼ 1 + ε2c2(x) +O(ε3).

This implies σA(x) ∼ O(ε), and a simple choice (also used and justified physically in

[34] and elsewhere) is

DσA(x) = εσ̂A(x̂), (3.29)

which when combined with our expansion leaves

ĉ(x̂) = 1− ε2 σ̂A(x̂)

σ̂T (x̂)
. (3.30)

Now returning to (3.27), using (3.30) (and again dropping the hat notation) we have

0 =
1

3

d

dx

(
1

σT (x)

d

dx
φ[1](x)

)
− σA(x)φ[1](x) + σT (x)

Q(x)

ε2
, (3.31)

which is a nondimensional diffusion equation for the unknown φ[1](x) = ψ0(x)+εψ10(x).

To understand exactly how the argument of this diffusion equation relates to the

neutron flux we write the flux expansion in full as follows

ψ(x, µ) =
[
ψ0(x) + εψ10(x) + ε2ψ20(x) + . . .

]
+ µ

[
εψ11(x) + ε2ψ21(x) + . . .

]
+ µ2

[
ε2ψ22(x) + . . .

]
+ . . . .

Averaging over angle to obtain the scalar flux gives

φ(x) = ψ0(x) + εψ10(x) + ε2 [. . .] + . . . , (3.32)

and we see that φ[1], the solution of (3.31), is accurate to O(ε2).

Note that the small ε multiple on the derivative in (3.4) means that, for much of the

domain (namely the interior) the behaviour arising from that term does not influence

the behaviour of the flux. However near the boundaries this leads to so-called boundary

layers in which the behaviour needs to be recovered, and to do this we need to carry

out an asymptotic expansion near the boundary. This is commonly called an inner

expansion and will be our focus for the next section.
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3.2.3 Inner Expansion: expanding near to the boundaries

We focus now on asymptotically expanding the non-dimensional transport equation,

(3.4), inside of a boundary layer near x = 0. The equivalent analysis in the boundary

layer near x = 1 follows a very similar argument.

In the boundary layer near x = 0, the flux, ψ, increases rapidly enough in space to

overcome the small ε multiple on the spatial derivative term. In order to be able to

satisfy any boundary conditions we must capture this behaviour. To do this we scale

the spatial variable as

x = εy,

so we are working in the domain y ∈ [0, 1/ε]. (For the analysis near x = 1, an appro-

priate scaling is x = 1− εy). In terms of this ‘stretched’ variable, we define

ψ(εy, µ) ≡ Ψ(y, µ),

and the transport equation (3.4) becomes

µ

σT (εy)

∂

∂y
Ψ(y, µ) + Ψ(y, µ) =

c(εy)

2

∫
[−1,1]

Ψ(y, µ) dµ+Q(εy). (3.33)

We will carry over our results from Section 3.2.2 concerning c and Q. We will assume

that in the thin boundary layer the cross sections and source are essentially constant,

and indeed they are at least slowly varying in our new scale [34]. Treating them as

such, we set

σT (εy) ≡ σT (0), Q(εy) ≡ ε2Q2(0) +O(ε3).

Also, Taylor expanding the functions ci about 0, c(εy) becomes

c(εy) = 1 + ε2c2(0) + ε3
[
c3(0) + yc′2(0)

]
+O(ε4).

Using these and ignoring terms of order ε3 or higher, (3.33) becomes

µ

σT (0)

∂

∂y
Ψ(y, µ) + Ψ(y, µ) =

1 + ε2c2(0)

2

∫
[−1,1]

Ψ(y, µ) dµ+ ε2Q2(0). (3.34)

We are now working over the stretched domain y ∈ [0, 1/ε] and with µ ∈ [−1, 1]. The

boundary condition (3.5) at y = 0 becomes
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Ψ(0, µ) = fL(µ), for µ > 0. (3.35)

As in the outer case, we pose an expansion of the flux as

Ψ ∼ Ψ0 + εΨ1 + ε2Ψ2 + . . . (3.36)

where Ψi ≡ Ψi(y, µ). Substituting this into (3.34) and equating coefficients of increasing

powers of epsilon yields

ε0 :
µ

σT (0)

∂

∂y
Ψ0(y, µ) + Ψ0(y, µ) =

1

2

∫
[−1,1]

Ψ0(y, µ) dµ, (3.37)

ε1 :
µ

σT (0)

∂

∂y
Ψ1(y, µ) + Ψ1(y, µ) =

1

2

∫
[−1,1]

Ψ1(y, µ) dµ, (3.38)

ε2 :
µ

σT (0)

∂

∂y
Ψ2(y, µ) + Ψ2(y, µ) =

1

2

∫
[−1,1]

Ψ2(y, µ) dµ

+
c2(0)

2

∫
[−1,1]

Ψ0(y, µ) dµ+Q2(0). (3.39)

Similarly substituting the flux expansion into the boundary condition (3.35) we find,

for µ > 0

Ψ0(0, µ) = fL(µ), (3.40)

Ψ1(0, µ) = 0, (3.41)

Ψ2(0, µ) = 0. (3.42)

We note here that the source term only begins to have an influence at O(ε2), and so

does not affect the Ψ0 or Ψ1 equations. At this point, we require the following lemma.

Lemma 3.1:

Homogeneous integro-differential equations (3.37) and (3.38), which are of the form

µ

σT (0)

∂

∂y
Ψ̄(y, µ) + Ψ̄(y, µ) =

1

2

∫
[−1,1]

Ψ̄(y, µ) dµ,

have general solution

Ψ̄(y, µ) = a+ b(σT (0)y − µ) +

∫ 1

−1
A(ν)Mν(µ)e

−σT (0)y

ν dν, (3.43)
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where a and b are constants, and A a function, to be determined. In this,

Mν(µ) =
1

2
Pr

ν

ν − µ
+ λ(ν)δ(ν − µ), (3.44)

with

λ(ν) = 1− ν tanh−1 (ν), (3.45)

in which Pr denotes the Cauchy principle value and δ is the Dirac-delta function.

Proof.

This result is derived in Bell and Glasstone, [12, Section 2.2], but we also repeat it in

Appendix A.1 for convenience.

Using this lemma we know that the solution to (3.37) is given by

Ψ0(y, µ) = a0 + b0(σT (0)y − µ) +

∫
[−1,1]

A0(ν)Mν(µ)e−
σT (0)y

ν dν. (3.46)

If we now apply the boundary condition at y = 0, given by (3.40), to (3.46) we obtain

fL(µ) = a0 − µb0 +

∫
[−1,1]

A0(ν)Mν(µ) dν, µ > 0. (3.47)

To determine a0 and b0 we need to introduce two new functions and an associated

orthogonality relation. First we define

γ(µ) ≡ 3µ

2X(−µ)
, (3.48)

where

X(z) ≡ 1

1− z
exp

[
1

π

∫
[0,1]

1

µ′ − z
tan−1

(
πµ′

2
(
1− µ′ tanh−1 (µ′)

)) dµ′

]
, (3.49)

and also define

γj ≡
∫

[0,1]
µjγ(µ) dµ. (3.50)

These three definitions can be found in [20] as equations (2), (33) and (5b) on pages 131,

130 and 164 respectively. The function X(z) is chosen to satisfy a number of conditions

given in [20, Section 4.8], and in particular is such that γ satisfies the following relation,
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∫
[0,1]

Mν(µ)γ(µ) dµ = 0. (3.51)

This equation can be found as equation (2) in [20, Section 6.9]. To make use of this we

observe that for ν < 0, (3.46) contains a growing exponential term which is not shared

by the diffusion equation, (3.19). Consequently for these solutions to match in some

overlapping region we require

A0(ν) = 0, ν < 0. (3.52)

Multiplying (3.47) by γ(µ) we obtain, for µ > 0

fL(µ)γ(µ) = a0γ(µ)− µb0γ(µ) +

∫
[0,1]

A0(ν)Mν(µ)γ(µ) dν,

whereby integrating over positive µ and utilising (3.51) we find∫
[0,1]

fL(µ)γ(µ) dµ = a0γ
0 − b0γ1. (3.53)

Therefore

a0 =
b0γ

1

γ0
+

1

γ0

∫
[0,1]

fL(µ)γ(µ) dµ. (3.54)

which is an expression for the unknown a0 in terms of b0. An expression for A0(ν) can

also be found by multiplying (3.47) by γ(µ)Mν(µ) and integrating (see [34, equation

(4.27)] and preceding derivation).

In a similar manner, the solution to (3.38) is given by

Ψ1(y, µ) = a1 + b1(σT (0)y − µ) +

∫
[−1,1]

A1(ν)Mν(µ)e−
σT (0)y

ν dν. (3.55)

Using the same procedure as for (3.54) with the correct (zero) boundary condition

given in (3.41) we find that

a1 =
b1γ

1

γ0
. (3.56)

In summary, (3.54) gives a0 in terms of b0, and so by (3.46) we also have Ψ0 in terms

of b0. Similarly, (3.56) gives a1 in terms of b1, and so (3.55) gives us Ψ1 in terms of b1.

In the next section we use our knowledge about the solution in the outer layer to find

the constants b0 and b1 via a process known as matching.
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3.2.4 Matching the Inner and Outer Expansions

At this point we have two asymptotic expansions for the neutron flux: an outer ex-

pansion for fixed x, (3.6), and an inner expansion for fixed y, (3.36). In this section

we will carry out a procedure called matching, in which we will assume that the two

expansions are equal in some overlapping region, where ε � x = εy � 1. We will

follow Van Dyke’s matching rule (see [37, Section 1.5]) and aim to determine b0 and b1

such that this overlap equality occurs.

Employing a Taylor expansion about x = 0, the outer expansion (3.6) becomes

ψ(x, µ) =

[
ψ0(0) + x

∂

∂x
ψ0(0) +

x2

2

∂2

∂x2
ψ0(0) + . . .

]
+ ε

[
ψ1(0, µ) + x

∂

∂x
ψ1(0, µ) +

x2

2

∂2

∂x2
ψ1(0, µ) + . . .

]
+ ε2

[
ψ2(0, µ) + x

∂

∂x
ψ2(0, µ) +

x2

2

∂2

∂x2
ψ2(0, µ) + . . .

]
+ . . .

Fixing x = εy and gathering like powers of epsilon we are left with

ψ(εy, µ) =

[
ψ0(0)

]
+ ε

[
ψ1(0, µ) + y

∂

∂x
ψ0(0)

]
+ ε2

[
ψ2(0, µ) + y

∂

∂x
ψ1(0, µ) +

y2

2

∂2

∂x2
ψ0(0)

]
+ . . .

(3.57)

The inner expansion, (3.36), is given as

ψ(εy, µ) ≡ Ψ(y, µ) = Ψ0(y, µ) + εΨ1(y, µ) + ε2Ψ2(y, µ) + . . . (3.58)

For fixed x( 6= 0) in the limit as ε→ 0 we know that y →∞, and so Ψ0 and Ψ1 (from

(3.46) and (3.55) respectively) behave as

Ψ0(y, µ) ∼ a0 + b0 (σT (0)y − µ) , (3.59)

Ψ1(y, µ) ∼ a1 + b1 (σT (0)y − µ) . (3.60)

If we match the zero-th power of epsilon in (3.57) and (3.58) and use (3.59) we find
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that

ψ0(0) = Ψ0(y, µ) = a0 + b0 (σT (0)y − µ) ,

thus

a0 = ψ0(0), b0 = 0. (3.61)

Next, matching the first power of epsilon in (3.57) and (3.58) and using (3.60) we find

that

ψ1(0, µ) + y
d

dx
ψ0(0) = Ψ1(y, µ) = a1 + b1 (σT (0)y − µ) .

Comparing dependencies on y we obtain

a1 − b1µ = ψ1(0, µ), (3.62)

b1 =
1

σT (0)

d

dx
ψ0(0). (3.63)

Substituting (3.11), i.e. the expansion ψ1 ≡ ψ10 + µψ11, into (3.62) and comparing µ

dependencies, we are left with

a1 = ψ10(0). (3.64)

Note here that knowing (3.56) and (3.63) we also have that

a1 =
γ1

σT (0)γ0

d

dx
ψ0(0). (3.65)

After this matching process, we now have expressions for the constants ai and bi,

for i = 0, 1, using terms from the outer expansion evaluated at the boundary x = 0.

3.2.5 Boundary Conditions for the Diffusion Approximation

In this section we will use the inner and outer solutions (and associated constants)

derived in the previous sections to obtain suitable boundary conditions for the diffusion

equation (3.31).

Going back to the outer asymptotic expansion (3.32) for the neutron flux, ψ, once

more we have
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ψ(x, µ) = ψ0(x) + εψ1(x, µ) +O(ε2)

= ψ0(x) + ε [ψ10(x) + µψ11(x)] +O(ε2). (3.66)

Using our expressions for φ[1](x) and ψ11(x) (i.e. (3.28) and (3.13)) this tells us that

ψ(x, µ) = φ[1](x)− εµ

σT (0)

d

dx
ψ0(x) +O(ε2), (3.67)

which is essentially equation (2.2) from [40]. Working from (3.66) again but setting

x = 0 and using (3.61) and (3.62) we find

ψ(0, µ) = a0 + ε [a1 − b1µ] +O(ε2),

whereby using the definitions of a0, b0, a1 and b1 ((3.54), (3.61), (3.65) and (3.63)

respectively) this results in

ψ(0, µ) =
1

γ0

∫
[0,1]

fL(µ)γ(µ) dµ+ ε

[
γ1

σT (0)γ0

d

dx
ψ0(0)− µ

σT (0)

d

dx
ψ0(0)

]
+O(ε2).

(3.68)

If we equate (3.68) and (3.67) with x = 0, we find

φ[1](0) =
1

γ0

∫
[0,1]

fL(µ)γ(µ) dµ+
εγ1

σT (0)γ0

d

dx
ψ0(0) +O(ε2). (3.69)

Habetler and Matkowsky [34] use formulae from Case and Zweifel [20] to evaluate γ0

and γ1. The coefficient γ1 is also found by Jin and Levermore [40] to a higher accuracy.

These values are

γ0 = 1,

γ1 ≈ 0.710446,

(see [34], equations (4.43) and (4.44) and [40], equation (4.1)). We can now conclude

that, to O(ε2), (3.69) is equivalent to the condition

φ[1](0)− ε γ1

σT (0)

d

dx
φ[1](0) =

∫
[0,1]

fL(µ)γ(µ) dµ. (3.70)

Equation (3.70) is the boundary condition for the lower end of the spatial domain that
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we were aiming for. Note that if we were imposing vacuum boundary conditions on

the transport equation (3.4), then fL = fR = 0 and so the right hand side would just

be zero.

An equivalent inner asymptotic expansion in the boundary layer at the upper end of

the spatial domain (near x = 1, using the scaling x = 1−εy) and appropriate matching

procedure can be carried out in a similar way to our above work. Up to O(ε2) this

results in

φ[1](1) + ε
γ1

σT (1)

d

dx
φ[1](1) =

∫
[−1,0]

fR(µ)γ(µ) dµ. (3.71)

3.2.6 Summary

We have found (through the outer expansion in Section 3.2.2) a diffusion equation that

approximates the scalar flux to an error of O(ε2). We have also obtained (through the

inner expansion and subsequent matching procedure in Sections 3.2.3, 3.2.4 and 3.2.5)

suitable boundary conditions for this equation at each end of the domain. This diffusion

equation can provide a useful approximation under appropriate conditions, and such

conditions could be found by comparing the approximate scalar flux with the flux from

the transport equation. However in the next section we will see that the diffusion

approximation can be used to accelerate the source iteration method. In particular we

will note that in practice, for all tested material properties, this acceleration improves

upon the rate of convergence of source iteration. Consequently the question of whether

to utilize the diffusion approximation comes down to the computational cost of doing

so, and this question is tackled by Adams and Larsen [2, Section II.B]. The importance

of such a consideration will become clear when applying localised diffusion acceleration

as we do in Section 4.5.3.

We will conclude this section by summarising the obtained results in both the

dimensionless and dimensional forms. We will return to using the ‘hat’ notation ( ·̂ )
to denote dimensionless quantities, as in Section 3.2.1.

Firstly, equations (3.31), (3.70) and (3.71) are the diffusion equation and associated

boundary conditions. We restate these here, using the earlier nondimensional notation,

as

− d

dx̂

(
1

3σ̂T (x̂)

d

dx̂
φ̂[1](x̂)

)
+ σ̂A(x̂)φ̂[1](x̂) = σ̂T (x̂)

Q̂(x̂)

ε2
, (3.72)
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subject to boundary conditions

φ̂[1](0)− ε γ1

σ̂T (0)

d

dx̂
φ̂[1](0) =

∫
[0,1]

f̂L(µ)γ(µ) dµ, (3.73)

φ̂[1](1) + ε
γ1

σ̂T (1)

d

dx̂
φ̂[1](1) =

∫
[−1,0]

f̂R(µ)γ(µ) dµ. (3.74)

Next we would like to write down the dimensional form of this system. To do this we

must recall the scalings that were taken in Section 3.2.1, namely

x = Dx̂, ψ(x, µ) = 〈ψ〉ψ̂(x̂, µ), Q(x) = 〈ψ〉σT (x)Q̂(x̂),

σT (x) = 〈σT 〉σ̂T (x̂), c(x) = ĉ(x̂),

as well as the asymptotic variable given in (3.2), the σA scaling from (3.29) and the

boundary condition scalings, which were respectively

ε ≡ 1

〈σT 〉D
,

DσA(x) = εσ̂A(x̂),

fL(µ) ≡ 〈ψ〉f̂L,

fR(µ) ≡ 〈ψ〉f̂R.

With these scalings, the nondimensional diffusion equation is equal to

− d

dx

(
1

3σT (x)

d

dx
φ[1](x)

)
+ σA(x)φ[1](x) = Q(x), (3.75)

in which,

φ[1](x) = 〈ψ〉φ̂[1](x̂),

is a dimensional approximation to the scalar flux. Also, the boundary conditions be-

come

φ[1](0)− γ1

σT (0)

d

dx
φ[1](0) =

∫
[0,1]

fL(µ)γ(µ) dµ, (3.76)

φ[1](D) +
γ1

σT (D)

d

dx
φ[1](D) =

∫
[−1,0]

fR(µ)γ(µ) dµ. (3.77)

This dimensional version of the diffusion equation ties in with the notation used else-
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where in this thesis.

3.3 Diffusion Synthetic Acceleration

In Chapter 2 we proved that source iteration applied to a simplified version of the

neutron transport equation converges provided the uniform norm of the scattering ratio,

‖σS/σT ‖∞, is less than one (see Theorem 2.21). However we will also see in Section

3.5.1 that the rate of convergence of source iteration is potentially impractically poor

when this norm is close to one. In this section we describe a well known method called

diffusion synthetic acceleration (DSA) that has the potential to overcome this slow

down. We start in Section 3.3.1 by understanding what a general synthetic acceleration

method entails. Then in Section 3.3.2 we use the diffusion approximation derived in

Section 3.2 to obtain the method known as DSA in Algorithm 3. Lastly, in Section

3.3.3 we describe how DSA can be understood as a preconditioner to source iteration.

3.3.1 Synthetic Acceleration

Synthetic acceleration schemes were originally introduced by Kopp in 1963 [48]. The

idea of such schemes is to improve the convergence of a basic iterative method by

‘updating’ the current approximate solution at each iteration. Consequently they can

be thought of as two-step methods: the first step is one iteration of the basic iterative

method; the second step is an update to the approximation found in step one. Ideally

the method used to obtain the update should complement the original method, causing

the accelerated method to converge rapidly over a wider range of situations than the

basic method.

We will demonstrate this by building a synthetic acceleration scheme based upon

the source iteration algorithm that was the subject of Chapter 2, and will follow the

method as outlined in [2, Section I.E.]. Within this subsection we will work in the

3D setting defined in Section 2.2.1, and as such will use the equations, operators and

notation introduced there.

We start by rewriting (2.52), the equation for the error at the (k + 1)th step of

source iteration, as

φ(r)− φ(k+1/2)(r) = KσT σS(r)
(
φ(r)− φ(k)(r)

)
,

where, instead of the (k + 1)th iterate, we are now iterating to find a half-step ap-

proximation, denoted φ(k+1/2). Adding and subtracting φ(k+1/2) to the brackets on the

right, expanding and rearranging leaves
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(I − KσT σS(r))
(
φ(r)− φ(k+1/2)(r)

)
= KσT σS(r)

(
φ(k+1/2)(r)− φ(k)(r)

)
. (3.78)

We now have an equation for the correction, φ(r)− φ(k+1/2)(r), via the solution

φ(r)− φ(k+1/2)(r) = (I − KσT σS(r))−1KσT σS(r)
(
φ(k+1/2)(r)− φ(k)(r)

)
, (3.79)

which (as the difference between two functions with equal boundary values) is subject

to zero boundary conditions. However solving for this correction is just as hard as

solving the original transport equation. Instead we introduce a new quantity

δ(r) =MKσT σS(r)
(
φ(k+1/2)(r)− φ(k)(r)

)
, (3.80)

whereby if M ≈ (I − KσT σS(r))−1 then δ(r) ≈ φ(r) − φ(k+1/2)(r). The operator M
should be easy to calculate, but still be a good enough approximate inverse that we

can use δ(r) to improve upon the half-step approximation to the flux via

φ(k+1)(r) = φ(k+1/2)(r) + δ(r). (3.81)

Before we write down Algorithm 2, we first confirm some notation. In Section 2.2 we

introduced two operators, T and P, in 1,2 and 3D in order to simplify the expression of

the dimensional transport equation. We remark here that we will follow the notational

style of Keener, [46, p.151], whereby the symbol T includes both the differential oper-

ator as well as the domain with given boundary conditions. Therefore we can use the

inverse operator, T −1, to denote the action of solving the transport equation subject

to the included boundary conditions, as was completed in Lemma 2.2. This allows one

step of source iteration (Algorithm 1) to be written succinctly as

φ(k+1)(r) = PT −1
(
σS(r)φ(k)(r) +Q(r)

)
.

We can use this convention, along with the above framework, and write down Algo-

rithm 2: a general synthetic accelerated source iteration algorithm aimed at solving

the transport equation given by (2.1), subject to boundary conditions (2.2).
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Algorithm 2: Synthetic Accelerated Source Iteration

1. Start with some initial φ(0)(r).

2. Find φ(k+1/2)(r) that satisfies

φ(k+1/2)(r) = PT −1
(
σS(r)φ(k)(r) +Q(r)

)
, (3.82)

subject to boundary conditions (2.2).

3. Find δ(k+1/2)(r) that satisfies

δ(k+1/2)(r) =MKσT σS(r)
(
φ(k+1/2)(r)− φ(k)(r)

)
, (3.83)

where M≈ (I − KσT σS(r))−1.

4. Update the scalar flux approximation to find

φ(k+1)(r) = φ(k+1/2)(r) + δ(k+1/2)(r), (3.84)

and return to step 2.

The effectiveness of such a method hangs upon the choice of the approximate solu-

tion operator,M. It would be sensible to find an approximation that is most accurate

in situations where source iteration performs poorly, i.e. when ‖σS/σT ‖∞ is close to

one. This is a criteria satisfied by the diffusion approximation derived in Section 3.2,

and using the diffusion approximation as an approximate solution operator results in

the method called diffusion synthetic acceleration.

We conclude this section by mentioning that by writing source iteration as a simple

Richardson iteration (L. F. Richardson, 1911, [62]), it can be shown that synthetic ac-

celerated source iteration is equivalent to a preconditioned Richardson iteration scheme

[35]. Before showing this we first recall that for a model problem, Ax = b, Richardson

iteration is obtained by rewriting as 0 = b−Ax, and then adding x to both sides. As

an iterative scheme this then yields
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x(k+1) = x(k) +
(
b−Ax(k)

)
= (I − A)x(k) + b.

To obtain the preconditioned Richardson scheme we multiply by a preconditioner, say

P, before adding x to both sides. Therefore preconditioned Richardson iteration is

given by

x(k+1) = x(k) + P
(
b−Ax(k)

)
= (I − PA)x(k) + Pb. (3.85)

Now, applying the operators P and T −1 to the simplified neutron transport equation

(2.5) with non-zero boundary conditions (2.2) we obtain an equation for the scalar flux,

(
I − PT −1σS

)
φ = PT −1Q. (3.86)

For this the Richardson iteration scheme is given by

φ(k+1) =
(
I −

(
I − PT −1σS

))
φ(k) + PT −1Q

= PT −1σSφ
(k) + PT −1Q, (3.87)

which is equivalent to the source iteration algorithm presented in Chapter 2. To show

that synthetic accelerated source iteration is the preconditioned form of (3.87) we follow

the work of Adams and Larsen, [2, Section I.E.] and recall equation (3.79), which we

can write as

φ(k+1) = φ(k+1/2) +MPT −1σS

(
φ(k+1/2) − φ(k)

)
.

Eliminating φ(k+1/2) by substituting in (3.82) results in

φ(k+1) = PT −1σSφ
(k)+PT −1Q+MPT −1σS

(
PT −1σSφ

(k) + PT −1Q− φ(k)
)
. (3.88)

After some rearrangement, this becomes
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φ(k+1) = φ(k) −
(
I +MPT −1σS

) (
I − PT −1σS

)
φ(k) +

(
I +MPT −1σS

)
PT −1Q,

and so defining P = I +MPT −1σS we are left with

φ(k+1) =
(
I − P

(
I − PT −1σS

))
φ(k) + PPT −1Q. (3.89)

This is the preconditioned form of (3.87) with preconditioner P, and comparison with

(3.85) shows it is a preconditioned Richardson scheme. If we suppose that M ≈(
I − PT −1σS(r)

)−1
then

P = I +MPT −1σS ≈ I +
(
I − PT −1σS

)−1 PT −1σS

=
(
I − PT −1σS

)−1 (I − PT −1σS + PT −1σS
)
,

leaving us with

P ≈
(
I − PT −1σS

)−1
,

and so (3.89) might be reasonably expected to converge quickly. For further details see

Adams and Larsen, [2, Section I.E.] or Warsa et. al., [75, Section III.B].

3.3.2 DSA Algorithm

In this section we will combine the synthetic acceleration algorithm (Algorithm 2) with

the diffusion approximation derived in Section 3.2. The result will be the well-known

algorithm called diffusion synthetic acceleration, or DSA, which uses the diffusion ap-

proximation (3.75) as the solution operator, M. This name was first used by R. E.

Alcouffe in 1976 [4][5], where it was shown that DSA is rapidly convergent over all spa-

tial mesh sizes, overcoming a problem highlighted earlier by W. H. Reed, [60]. A very

good history of the development of, and subsequent research on, DSA can be found in

Adams and Larsen, [2, Section I.G, p.16]. Later on Adams and Larsen also weigh the

extra computational expense of DSA against its improved convergence rate, using a

Fourier argument to derive conditions for which DSA is more economical than source

iteration (see [2, Section II.B]).

We will work in the 1D slab geometry specified in Section 2.2.3, with spatial do-

main [xL, xR] and angular domain [−1, 1]. Applying the operators P and T −1 to the

simplified neutron transport equation (2.13) with non-zero boundary conditions (2.14)
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we obtain an equation for the 1D scalar flux,

(
I − PT −1σS(x)

)
φ(x) = PT −1Q(x). (3.90)

We also know that (in diffusive regimes, as explained in Section 3.2.1) the solution, φ,

can be approximated by the solution to the diffusion equation (3.75), which we restate

here for convenience

− d

dx

(
1

3σT (x)

d

dx
Θ(x)

)
+ σA(x)Θ(x) = Q(x), (3.91)

subject to boundary conditions

Θ(xL)− γ1

σT (xL)

d

dx
Θ(xL) =

∫
[0,1]

fL(µ)γ(µ) dµ, (3.92)

Θ(xR) +
γ1

σT (xR)

d

dx
Θ(xR) =

∫
[−1,0]

fR(µ)γ(µ) dµ, (3.93)

with γ1 ≈ 0.710446 and where we know φ = Θ + O(ε2) in which ε is an asymptotic

variable. To simplify this notation we will introduce the 1-dimensional differential

operator D : L2[xL, xR]→ L2[xL, xR], defined as follows

Du(x) ≡ − d

dx

(
1

3σT (x)

d

dx
u(x)

)
+ σA(x)u(x), (3.94)

with u satisfying the boundary conditions (3.92) and (3.93). For convenience we will

again follow the notational style of Keener, [46, p.151], and allow the symbol D to

include both the formal differential operation as well as the domain and given boundary

conditions. With this notation the above diffusion problem (3.91)-(3.93) can be written

simply as

DΘ(x) = Q(x).

Remark 3.2:

The diffusion operator, D, is a Sturm-Liouville operator, with corresponding regular

Sturm-Liouville problem

Du(x) = λu(x).

Since in (3.94) σA > 0, the operator D is positive-definite (as can be verified by tak-

ing the inner product 〈Du, u〉 and integrating by parts, see Keener, [46, p.163]). In

particular this implies that
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〈Du, u〉 = 0⇔ u = 0.

Consequently by the Fredholm Alternative Theorem (see Keener, [46, Section 4.3, The-

orem 4.4]) we know that for any f ∈ L2[a, b] the system Du(x) = f(x) has a unique

solution, and so we can say that this system has a solution given by

u(x) = D−1f(x). (3.95)

This inverse operator will be useful later in Section 3.3.3.

Algorithm 3: Diffusion Synthetic Acceleration

1. Start with some initial φ(0)(x).

2. Find φ(k+1/2)(x) that satisfies

φ(k+1/2)(x) = PT −1
(
σS(x)φ(k)(x) +Q(x)

)
, (3.96)

subject to boundary conditions (2.14).

3. Find δ(k+1/2)(x) that satisfies

− d

dx

(
1

3σT (x)

d

dx
δ(k+1/2)(x)

)
+ σA(x)δ(k+1/2)(x) = σS(x)

(
φ(k+1/2)(x)− φ(k)(x)

)
,

(3.97)

subject to

δ(k+1/2)(xL)− γ1

σT (xL)

d

dx
δ(k+1/2)(xL) = 0, (3.98)

δ(k+1/2)(xR) +
γ1

σT (xR)

d

dx
δ(k+1/2)(xR) = 0. (3.99)

4. Update the scalar flux approximation to find

φ(k+1)(x) = φ(k+1/2)(x) + δ(k+1/2)(x), (3.100)

and return to step 2.
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The crucial observation is that the diffusion equation can be used to approximate

the solution to (3.78), and so can provide the required approximate solution operator,

M, in Algorithm 2. By applying the diffusion equation in this way, we find Algorithm

3 for diffusion synthetic acceleration.

The DSA algorithm is also presented in this two-step form in [52].

3.3.3 DSA as a Preconditioner

Algorithm 3 presents DSA as a two-step iterative method. We will now describe how

DSA can be understood as a preconditioning to source iteration, as was initially ex-

plored by Faber and Manteuffel in [27] in a 1D setting. Later in 1991, Ashby et. al.

[6] built on the work of Larsen [51] and found a preconditioner in a discrete setting

that was equivalent to that of Faber and Manteuffel. In 1995 Ashby et. al. [7] gave

a clearer statement of this preconditioner (with the same work for a different discreti-

sation completed in [15]). The equivalence of the two preconditioners can be seen in

(3.106).

Earlier we mentioned that two-step synthetic accelerated source iteration (Algo-

rithm 2) is equivalent to preconditioned Richardson iteration, given by (3.89) (see [2,

Section I.E] for more detail). In Lemma 3.3 we will confirm that DSA can be written

in this way by using the preconditioner found in Ashby et. al. [7].

Lemma 3.3:

Algorithm 3 is equivalent to the preconditioned Richardson scheme,

φ(k+1)(x) =
(
I − P

(
I − PT −1σS(x)

))
φ(k)(x) + PPT −1Q(x), (3.101)

where

P ≡ I +D−1σS(x), (3.102)

with D : L2[xL, xR]→ L2[xL, xR] defined in (3.94).

Proof.

In Algorithm 3 we solve two equations, (3.96) and (3.97), subject to boundary con-

ditions (3.98) and (3.99). We restate these two equations here (dropping the spatial

dependencies and including (3.84) also) as

φ(k+1/2) = PT −1
(
σSφ

(k) +Q
)
, (3.103)

D
(
φ(k+1) − φ(k+1/2)

)
= σS

(
φ(k+1/2) − φ(k)

)
. (3.104)
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Since we know D is invertible (see Remark 3.2) we can solve (3.104) to obtain

φ(k+1) − φ(k+1/2) = D−1σS

(
φ(k+1/2) − φ(k)

)
= D−1σSφ

(k+1/2) −D−1σSφ
(k),

whereby combining terms involving φ(k+1/2), and adding and subtracting φ(k), we have

φ(k+1) = φ(k) − φ(k) −D−1σSφ
(k) +

(
I +D−1σS

)
φ(k+1/2).

Next using (3.103) and combining two terms involving φ(k) we find

φ(k+1) = φ(k) −
(
I +D−1σS

)
φ(k) +

(
I +D−1σS

) (
PT −1σSφ

(k) + PT −1Q
)
.

so that expanding and combining like terms leaves us with

φ(k+1) = φ(k) −
(
I +D−1σS

) (
I − PT −1σS

)
φ(k) +

(
I +D−1σS

)
PT −1Q.

Lastly, using the preconditioner definition (3.102) results in (3.101) as required.

As outlined in Adams and Larsen [2, Section I.E], this preconditioned Richardson

scheme should converge quickly provided P
(
I − PT −1σS(x)

)
≈ I. We will return to

this condition in the discussion at the end of Section 3.4.

As mentioned, a discrete form this preconditioner is given by Ashby et. al. in [7].

They give a preconditioned source iteration algorithm in Section 4, p. 143, with the

preconditioner defined in a discrete block-matrix setting in Section 5, equation (5.6).

Faber and Manteuffel [27] describe a different approach to finding a preconditioned

form of DSA. After some manipulation, the preconditioner they derive can be written

down as

PFM ≡
(
W − σS(x)

σT (x)
I
)−1

W, (3.105)

where

W ≡ 1

σT (x)
D
(
I +D−1σS(x)

)
.

As mentioned before, this is equivalent to the preconditioner found later in [7], and to

see this we once again drop the spatial dependencies and equate
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(
W − σS

σT
I
)−1

W =

(
1

σT
D
(
I +D−1σS

)
− σS
σT
I
)−1 1

σT
D
(
I +D−1σS

)
,

= ((D + σSI)− σSI)−1 σT
1

σT
D
(
I +D−1σS

)
,

= D−1D
(
I +D−1σS

)
=
(
I +D−1σS

)
. (3.106)

In their paper Faber and Manteuffel apply DSA as a preconditioner not only to source

iteration, but also to the conjugate gradient (CG) method (see [66]). They find the

preconditioned CG implementation of DSA to have a considerably faster rate of con-

vergence.

In [9] and [10] it was first understood that discontinuities in material properties can

severely reduce the effectiveness of DSA. Ashby et. al., [6], and later Warsa et. al.,

[74],[75], showed that using DSA as a preconditioner to Krylov methods was an effective

way to overcome this issue as well as having other advantages over preconditioned source

iteration, though we do not explore this idea any further here.

In this thesis we will only implement DSA as an accelerated source iteration algo-

rithm, however the application of DSA as a preconditioner to Krylov methods is very

powerful. In domains with highly discontinuous material properties it has certainly

been seen to converge much faster than diffusion accelerated source iteration [75]. On

the other hand in domains with homogeneous material properties diffusion accelerated

source iteration also converges quickly and is computationally cheaper to execute. Fur-

thermore, away from diffusive regions it may not be necessary to implement any form

of DSA since more basic methods also exhibit fast convergence (see Section 2.7). These

domain-dependent requirements motivated us to consider domain decomposition meth-

ods that would allow the most appropriate iterative method to be applied in different

areas of the spatial domain. This work is presented in Chapter 4 where two different

domain decomposition methods are defined, analysed and implemented numerically.

3.4 Block Operator Diffusion

We have seen, using an asymptotic expansion argument, that under certain conditions

the scalar flux can be well approximated by a diffusion equation of the form (3.72).

In this section we will use a block operator argument to show the link between the

diffusion and transport equations under the assumption of zero boundary conditions.

Specifically we will show that, under certain assumptions, a scaled Schur complement

equation ((3.114) below, arising from a block operator form of the transport equation)
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is an O(ε) approximation of the diffusion equation, (3.72). To do this we will need to

use the nondimensional notation established in Section 3.2.

First we recall the nondimensional transport equation given in (3.1),

εµ

σ̂T (x̂)

∂

∂x̂
ψ̂(x̂, µ) + ψ̂(x̂, µ) =

ĉ(x̂)

2

∫
[−1,1]

ψ̂(x̂, µ) dµ+ Q̂(x̂),

in which

x = Dx̂, ψ(x, µ) = 〈ψ〉ψ̂(x̂, µ), Q(x) = 〈ψ〉σT (x)Q̂(x̂),

DσT (x) = σ̂T (x̂)/ε, c(x) = ĉ(x̂), DσA(x) = εσ̂A(x̂),

where x̂ ∈ [0, 1] is dimensionless, µ ∈ [−1, 1], and ε = 1/(〈σT 〉D). To this we apply

zero boundary conditions, (3.3) with f̂L(µ) = f̂L(µ) = 0, which we restate here

ψ̂(0, µ) = 0, when µ > 0,

ψ̂(1, µ) = 0, when µ < 0.

We also note that during the outer asymptotic expansion (Section 3.2.2) it was shown

that, to have a meaningful, non-trivial solution, we require

Q̂(x̂) = ε2Q̂2(x̂) +O(ε3), (3.107)

ĉ(x̂) = 1− ε2 σ̂A(x̂)

σ̂T (x̂)
+O(ε3). (3.108)

In Section 2.2.3 we defined two operators, T and P, in (2.15) and (2.17) respectively.

We recall here that we are using the notational style of Keener, [46, p.151], and so

the symbol T includes the differential operation as well as the domain and boundary

conditions. We now define the dimensionless operator

T̂ ≡ εµ

σ̂T (x̂)

∂

∂x̂
+ I, (3.109)

where I is the identity operator, and T̂ also imposes the dimensionless boundary con-

ditions (3.3).

Remark 3.4:

Note that the operators T and T̂ are related by

T̂ (·) ≡ εD

σ̂T (x̂)
T (·).

From this we can see that
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T̂ −1(·) ≡ T −1

(
σ̂T (x̂)

εD
(·)
)
, (3.110)

acts as an inverse for T̂ (noting that it contains appropriate boundary conditions), i.e.

w(x̂, µ) ≡ T̂ −1g(x̂, µ) solves

T̂ w(x̂, µ) = g(x̂, µ),

and also satisfies the nondimensional boundary conditions given by (3.3), for w, g ∈
L2([0, 1], L∞[−1, 1]). Therefore, by taking (2.28) as the definition of T −1, we can see

that for any f ∈ L∞[−1, 1] and any h ∈ L2[0, 1], T̂ −1 satisfies

T̂ −1(f(µ)h(x̂)) = f(µ)T̂ −1h(x̂). (3.111)

Using the operator T̂ we can write the dimensionless neutron transport equation in

operator form as

T̂ ψ̂(x̂, µ) = ĉ(x̂)φ̂(x̂) + Q̂(x̂),

with

φ̂(x̂) = Pψ̂(x̂, µ).

We can combine these two equations into a block operator form as follows(
T̂ −ĉI
−P I

)(
ψ̂

φ̂

)
=

(
Q̂

0

)
. (3.112)

Applying a Gaussian elimination type process to (3.112) we pre-multiply as follows

(
I 0

PT̂ −1 I

)(
T̂ −ĉI
−P I

)(
ψ̂

φ̂

)
=

(
I 0

PT̂ −1 I

)(
Q̂

0

)

⇒

(
T̂ −ĉI
0 I − PT̂ −1ĉ

)(
ψ̂

φ̂

)
=

(
Q̂

PT̂ −1Q̂

)
. (3.113)

Here we have obtained a Schur complement equation for the scalar flux, which for later

convenience we will scale by ε−2σ̂T (x̂), and so can be written as

σ̂T (x̂)

ε2
(I − PT̂ −1ĉ)φ̂ =

σ̂T (x̂)

ε2
PT̂ −1Q̂. (3.114)
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Inverting this Schur complement operator is as difficult as solving the original trans-

port equation. Instead, we will show in Theorem 3.5 that the Schur complement can be

approximated by the diffusion equation found in Section 3.2. Furthermore, in Corollary

3.10 we will show how in the limit as ε tends to zero, the right hand side of (3.114) tends

to just a scaling of the source term. Together these results will show a link between

the Schur complement equation, (3.114), and the diffusion equation (3.72) derived in

Section 3.2. This link is a new interpretation of the relationship between the transport

equation and diffusion equation, demonstrated asymptotically in Section 3.2, and we

consider the potential implications of this new link at the end of this section.

We start by proving Theorem 3.5, which relates the Schur operator on the left side

of (3.114) to the diffusion equation, (3.31). In the proof of Theorem 3.5 we will make

use of the fact that for any operator A, if (I +A)−1 exists, then

(I +A)−1 = I − A+A2 −A3 + (I +A)−1A4. (3.115)

Therefore, for any function, f , a bound on (I +A)−1f can be found by bounding the

last term of the expansion, (I +A)−1A4f provided f is smooth enough. Finding such

a bound will occupy us for the second half of the proof of Theorem 3.5.

In the statement of this proof we refer to the Sobolev space, Wm,p[0, 1], which is

defined as

Wm,p[0, 1] ≡ {u ∈ Lp[0, 1] : ∂αu ∈ Lp[0, 1] ∀α ∈ N0 st. |α| ≤ m}

where ∂α represents the derivative in a weak sense. We also use the related Hilbert

space, which can be defined as Hm[0, 1] ≡Wm,2[0, 1].

Theorem 3.5:

Suppose that 1/σ̂T ∈ W 3,∞[0, 1] and σ̂T ∈ L∞[0, 1]. Then under the definitions of T̂
and P above, with zero boundary conditions ( (3.3) with f̂L and f̂R both zero) and using

the dimensionless variables defined in Section 3.2, for any f ∈ H4[0, 1] it holds that

σ̂T (x̂)

ε2

(
I − PT̂ −1ĉ(x̂)

)
f̂(x̂) =

(
D̂ +O(ε)

)
f̂(x̂), (3.116)

where

D̂(·) ≡ − d

dx̂

(
1

3σ̂T (x̂)

d

dx̂
(·)
)

+ σ̂A(x̂)(·), (3.117)

is an operator form of the dimensionless diffusion equation, (3.72), including zero

boundary conditions, ( (3.73) and (3.74) with f̂L and f̂R both zero).
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Proof.

We know

T̂ −1 =

(
I +

εµ

σ̂T (x̂)

∂

∂x̂

)−1

.

Using (3.115) we get

T̂ −1 = I − εµ

σ̂T (x̂)

∂

∂x̂
+

(
εµ

σ̂T (x̂)

∂

∂x̂

)2

−
(

εµ

σ̂T (x̂)

∂

∂x̂

)3

+ µ4T̂ −1

(
ε

σ̂T (x̂)

∂

∂x̂

)4

,

= I − εµ

σ̂T (x̂)

∂

∂x̂
+ ε2µ2

(
1

σ̂T (x̂)

∂

∂x̂

)2

− ε3µ3

(
1

σ̂T (x̂)

∂

∂x̂

)3

+ µ4T̂ −1

(
ε

σ̂T (x̂)

∂

∂x̂

)4

.

Now applying P, and noting that the operator T̂ −1 is only applied to functions of x̂,

we find

PT̂ −1 = I +
ε2

3

(
1

σ̂T (x̂)

∂

∂x̂

)2

+ ε4Pµ4T̂ −1

(
1

σ̂T (x̂)

∂

∂x̂

)4

, (3.118)

in which we have made use of

Pµi =

{
0 , for i odd,
1
i+1 , for i even.

Next, from our asymptotics we know that ĉ(x̂) = 1− ε2σ̂A(x̂)/σ̂T (x̂) +O(ε3), and so

PT̂ −1ĉ(x̂) = I +
ε2

3

(
1

σ̂T (x̂)

∂

∂x̂

)2

− ε2 σ̂A(x̂)

σ̂T (x̂)
I − ε4

3

(
1

σ̂T (x̂)

∂

∂x̂

)2 σ̂A(x̂)

σ̂T (x̂)
+O(ε3)

+ ε4Pµ4T̂ −1

(
1

σ̂T (x̂)

∂

∂x̂

)4

ĉ(x̂).

Now subtracting this from the identity operator we are left with

I − PT̂ −1ĉ(x̂) =
−ε2

3

(
1

σ̂T (x̂)

∂

∂x̂

)2

+ ε2
σ̂A(x̂)

σ̂T (x̂)
I +O(ε3) + ε4Pµ4T̂ −1

(
1

σ̂T (x̂)

∂

∂x̂

)4

ĉ(x̂),

=
ε2

σ̂T (x̂)
D̂ +O(ε3) + ε4Pµ4T̂ −1

(
1

σ̂T (x̂)

∂

∂x̂

)4

ĉ(x̂),

and so scaling results in
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σ̂T (x̂)

ε2

(
I − PT̂ −1ĉ(x̂)

)
= D̂ +O(ε) + σ̂T (x̂)ε2Pµ4T̂ −1

(
1

σ̂T (x̂)

∂

∂x̂

)4

ĉ(x̂). (3.119)

At this point we can see that the proof is almost complete, and it remains to show

that the last term in (3.119) is O(ε) if applied to a smooth enough function. This will

be our sole focus for the remainder of this proof. In fact, since ĉ(x̂) = 1 − O(ε2), we

just focus on just the O(1) multiple of the last term in (3.119) and show that

ε2Pµ4T̂ −1

(
1

σ̂T (x̂)

∂

∂x̂

)4

f̂(x̂) = O(ε),

for any f̂ ∈ H4[0, 1].

We start by recalling the definition of T −1, (2.28), which for zero boundary condi-

tions says

T −1g(x) =


1

µ

∫ x

0
g(x′) exp

(
−1

µ

∫ x

x′
σT (z) dz

)
dx′, µ > 0,

− 1

µ

∫ D

x
g(x′) exp

(
1

µ

∫ x′

x
σT (z) dz

)
dx′, µ < 0,

(3.120)

for any g ∈ L2[0, D]. Because we are interested in the last term of (3.119), we define a

function ĝ via

ĝ(x̂) ≡ σ̂T (x̂)

(
1

σ̂T (x̂)

∂

∂x̂

)4

f̂(x̂). (3.121)

With our assumptions on σ̂T , and with f̂ ∈ H4, we can verify that

∫
[0,1]

∣∣∣∣∣σ̂T (x̂)

(
1

σ̂T (x̂)

∂

∂x̂

)4

f̂(x̂)

∣∣∣∣∣
2

dx̂ <∞,

and so ĝ ∈ L2[0, 1]. This allows us to say

ε2Pµ4T̂ −1

(
1

σ̂T (x̂)

∂

∂x̂

)4

f̂(x̂) = ε2Pµ4T̂ −1 ĝ(x̂)

σ̂T (x̂)

= ε2Pµ4T −1 ĝ(x̂)

εD
,

where we have used the condition (3.111) as well as the definition (3.110). Now sub-
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stituting (3.120) and remembering that x ≡ Dx̂ we obtain

ε

D
Pµ4T −1ĝ(x/D) =

ε

2D

[∫ 1

0
µ3

∫ x

0
ĝ(x′/D) exp

(
−1

µ

∫ x

x′
σT (z) dz

)
dx′ dµ

−
∫ 0

−1
µ3

∫ D

x
ĝ(x′/D) exp

(
1

µ

∫ x′

x
σT (z) dz

)
dx′ dµ

]
,

and as long as the term in square brackets is bounded above, we have the result. By

making the change of variables µ → −µ in the second double integral, we are able to

combine the two spatial integrals, leaving

ε

D
Pµ4T −1ĝ(x/D) =

ε

2D

∫ D

0
ĝ(x′/D)

∫ 1

0
µ3 exp

(
−1

µ
τ(x′, x)

)
dµ dx′, (3.122)

where τ is the optical path length (see Definition 2.1). Now, since we know that

−τ(x′, x)/µ ≤ 0 for µ ∈ [0, 1], we have 0 ≤ exp (−τ(x′, x)/µ) ≤ 1, thus

∣∣∣∣ε2Pµ4T̂ −1 ĝ(x̂)

σ̂T (x̂)

∣∣∣∣ ≤ ∣∣∣∣ ε2D
∫ D

0
ĝ(x′/D)

∫ 1

0
µ3 dµ dx′

∣∣∣∣
=
ε

8

∣∣∣∣∫ 1

0
ĝ(x̂) dx̂

∣∣∣∣ = O(ε), (3.123)

which is what we were trying to show. The proof is now concluded by combining

(3.123) with (3.119).

Remark 3.6:

Theorem 3.5 was presented in the nondimensional setting introduced in Section 3.2.1.

Carefully re-dimensionalising the result using the definitions from that section, we ob-

tain the following equivalent dimensional result

(
I − PT −1σS

)
f =

1

σT
Df +O(ε2), (3.124)

in which f(x) ≡ f̂(x/D).

With this result we have proved that there is a relationship between the left hand

side of the diffusion equation, (3.72), and a scaling of the transport equation in operator

form, (3.114).

Henceforth we shall assume the cross sections are constant. Our focus for the

remainder of this section will be on the right hand side of (3.114), and in Theorem 3.9
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we will prove that the right hand side converges pointwise to just the source term, Q̂,

as ε tends to zero. To prove Theorem 3.9 we will need the following two results.

Lemma 3.7:

If

K(z) ≡ 1

2

∫ b

a

1

µ
exp

(
− |z|
µ

)
dµ, (3.125)

then ∫
R
K(z) dz = b− a. (3.126)

Proof.

The proof of this result is given in the Appendix, Section A.2.

Lemma 3.8:

Let f : R → R, and suppose that f is Lipschitz continuous and also globally bounded

so that maxξ |f(ξ)| = C, where C is constant. Suppose also we have some function

K : R→ R+ such that ∫
R
K(z) dz = α,

where α ∈ R is some constant. Then it holds that

lim
σ→∞

σ

∫
R
K (σ(x− y)) f(y) dy = αf(x), (3.127)

for all x ∈ R.

Proof.

A proof of this result is presented in the Appendix, Section A.2.

Using Lemmas 3.7 and 3.8 we can now prove the following result.

Theorem 3.9:

Let Q ∈ L2([xL, xR]) be Lipschitz continuous, and assume that σT = r
ε where r ∈ R is

constant. Then it holds that

lim
ε→0

σTPT −1Q(x) = Q(x), (3.128)

pointwise, for all x ∈ (xL, xR), where T includes zero boundary conditions (2.14) with

fL = fR = 0.
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Proof.

In Section 2.3 we defined the operator KσT which describes the action PT −1 for zero

boundary conditions, and so we are interested in the behaviour of σTKσTQ(x) as ε→ 0.

From (2.35) we know

σTKσTQ(x) = σT

∫
[xL,xR]

kσT (x, y)Q(y) dy.

Since our cross sections are constant, we can use (2.30) and Definition 2.1 to show that

kσT (x, y) ≡ 1

2

∫ 1

0

1

µ
exp

(
−σT
µ
|x− y|

)
dµ.

Then using the function K, defined in (3.125), with a = 0 and b = 1 we see that

kσT (x, y) = K(σT (x− y)),

and so

σT

∫
[xL,xR]

kσT (x, y)Q(y) dy = σT

∫
[xL,xR]

K (σT (x− y))Q(y) dy. (3.129)

Define an extension, Q̃, of Q to the whole real line by

Q̃(x) ≡



Q(x) if x ∈ [xL, xR],(
xR + η − x

η

)
Q(xR) if x ∈ (xR, xR + η],(

x− xL + η

η

)
Q(xL) if x ∈ [xL − η, xL),

0 else,

(3.130)

for any finite η > 0. This extension is Lipschitz continuous over the whole real line

and has the same global maximum as Q. It also has compact support and satisfies

Q̃
∣∣∣
[xL,xR]

≡ Q. Using this we now split the integral in (3.129) into two domains

σT

∫
[xL,xR]

K (σT (x− y))Q(y) dy = σT

∫
R
K (σT (x− y)) Q̃(y) dy −

σT

∫
R\[xL,xR]

K (σT (x− y)) Q̃(y) dy︸ ︷︷ ︸
≡(†)

. (3.131)
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By Lemma 3.8 we have that

σT

∫
R
K (σT (x− y)) Q̃(y) dy → Q̃(x) = Q(x), ∀x ∈ [xL, xR] as σT →∞, (3.132)

where in this case we knew α = 1 by Lemma 3.7. It remains to show that (†) → 0 as

σT → ∞. To do this we look at the two halves of the domain of integration of (†) in

turn

(†) = σT

∫
(xR,∞)

K (σT (x− y)) Q̃(y) dy︸ ︷︷ ︸
≡(†+)

+σT

∫
(−∞,xL)

K (σT (x− y)) Q̃(y) dy︸ ︷︷ ︸
≡(†−)

. (3.133)

First of all, applying the change of variables z = σT (x− y), we get

|(†+)| =

∣∣∣∣∣σT
(
−1

σT

)∫
(σT (x−xR),−∞)

K(z)Q̃(x− σT−1z) dz

∣∣∣∣∣
=

∣∣∣∣∣
∫

(−∞,σT (x−xR))
K(z)Q̃(x− σT−1z) dz

∣∣∣∣∣ .
(3.134)

Since Q̃ has a global bound (attained within the interval [xL, xR]) we can write

∣∣(†+)
∣∣ ≤ ∥∥∥Q̃∥∥∥

∞,[xL,xR]

∫
(−∞,σT (x−xR))

K(z) dz. (3.135)

Provided that x ∈ [xL, xR), the upper limit tends to −∞ and so the integral tends to

zero as σT → ∞. Using an equivalent argument we can also find that |(†−)| → 0 as

σT →∞ provided that x ∈ (xL, xR]. Thus taking x ∈ (xL, xR) satisfies both conditions,

and together with (3.132) this concludes the proof.

We can immediately apply this result to the right hand side of (3.114), scaled by

σ̂T /ε
2, to obtain the following.

Corollary 3.10:

Assume σ̂T is constant. In Section 3.2.2 we found that Q̂(x̂) = ε2Q̂2(x̂) + O(ε3), and

in (3.110) we defined

T̂ −1(·) ≡ T −1

(
σ̂T
εD

(·)
)
.

Using these, it holds that

lim
ε→0

σ̂T
ε2
PT̂ −1Q̂(x̂) = σ̂T Q̂2(x̂), (3.136)
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pointwise, for all x̂ ∈ [0, 1].

Proof.

Using the definition of T̂ −1 we know immediately that

σ̂T
ε2
PT̂ −1Q̂(x̂) =

σ̂T
ε2
PT −1 σ̂T

Dε
Q̂(x̂)

=
σ̂T
Dε
PT −1 σ̂T

ε2
Q̂(x̂).

Substituting in the source term expansion, Q̂(x̂) = ε2Q̂2(x̂) +O(ε3), we are left with

σ̂T
Dε
PT −1 σ̂T

ε2
Q̂(x̂) =

σ̂T
Dε
PT −1σ̂T

(
Q̂2(x̂) +O(ε)

)
.

Therefore, applying Theorem 3.9 (where in this case r = σ̂T /D) we obtain the desired

result.

To understand what the two new results (Theorem 3.5 and Theorem 3.9) can tell

us about the DSA algorithm we look again at a block operator equation. This time we

will work from the source iteration algorithm (Algorithm 1), which we summarise here

as

T ψ(k+1/2) = σSφ
(k) +Q,

φ(k+1/2) = Pψ(k+1/2),

subject to boundary conditions, (2.14). Writing this in a block operator matrix form

results in

(
T 0

−P I

)(
ψ(k+1/2)

φ(k+1/2)

)
=

(
0 σSI
0 0

)(
ψ(k)

φ(k)

)
+

(
Q

0

)
. (3.137)

We start by subtracting this from the exact expression in order to obtain an error form,(
T 0

−P I

)(
e(k+1/2)

E(k+1/2)

)
=

(
0 σSI
0 0

)(
e(k)

E(k)

)
, (3.138)

where

e(k) ≡ ψ − ψ(k),

E(k) ≡ φ− φ(k).
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Subtracting
(

0 σSI
0 0

) (
ek+1/2

Ek+1/2

)
from both sides we have

[(
T 0

−P I

)
−

(
0 σSI
0 0

)](
e(k+1/2)

E(k+1/2)

)
=

(
0 σSI
0 0

)[(
e(k)

E(k)

)
−

(
e(k+1/2)

E(k+1/2)

)]
,

⇒

(
T −σSI
−P I

)(
e(k+1/2)

E(k+1/2)

)
=

(
0 σSI
0 0

)(
e(k) − e(k+1/2)

E(k) − E(k+1/2)

)
.

Lastly, we apply the same Gaussian elimination process as in (3.113) via pre-multiplying

by
( I 0
PT −1 I

)
to obtain

(
T −σSI
0 I − PT −1σS

)(
e(k+1/2)

E(k+1/2)

)
=

(
0 σSI
0 PT −1σS

)(
e(k) − e(k+1/2)

E(k) − E(k+1/2)

)
.

(3.139)

The bottom line of (3.139) is precisely the earlier equation (3.78) (where PT −1σS ≡
KσT σS for zero boundary conditions) from our description of a general synthetic accel-

eration method for solving the transport equation. Namely we have

(
I − PT −1σS

)
E(k+1/2) = PT −1σS

(
E(k) − E(k+1/2)

)
= PT −1σS

(
φ(k+1/2) − φ(k)

)
. (3.140)

Applying our new Theorem 3.5 to the left hand side of (3.140) and multiplying through

by σT we have that

DE(k+1/2) +O(ε) = σTPT −1σS

(
φ(k+1/2) − φ(k)

)
.

We then know by Theorem 3.9 that for small enough ε (and for constant cross sections)

the error, E(k+1/2), can be approximated by

DẼ(k+1/2) = σS

(
φ(k+1/2) − φ(k)

)
, (3.141)

which is the approximate additive correction used in DSA (Algorithm 3).

To conclude this section we recall Lemma 3.3 where we saw that DSA was equivalent

to a preconditioned Richardson scheme. It was noted that this scheme would converge

quickly if (I+D−1σS(x))
(
I − PT −1σS(x)

)
≈ I, and in light of our work in this section

we can now comment on this point. Theorem 3.5 showed (in a dimensionless setting)
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that

σ̂T (x̂)

ε2

(
I − PT̂ −1ĉ(x̂)

)
f̂(x̂) =

(
D̂ +O(ε)

)
f̂(x̂),

for a suitably smooth function, f̂ . Using this, some manipulation with careful reference

to the nondimensional definitions of Section 3.2.1 results in, for constant cross sections,

(I +D−1σS)
(
I − PT −1σS

)
= I +O(ε2) +O(ε3)(I +D−1σS). (3.142)

We also know that σS = O(ε−1) and D = O(ε). This indicates that the last term in

(3.142) behaves as O(ε), and so

(I +D−1σS)
(
I − PT −1σS

)
= I +O(ε).

Even though this argument is heuristic, it suggests we should see DSA perform better

as ε decreases. This agrees with the theory in Section 3.2 and will be demonstrated

numerically in Section 3.5.

Summary

In this section we started with a nondimensional Schur complement equation for the

scalar flux, (3.114). We then proved two results, Theorem 3.5 and Theorem 3.9, which

concerned the left and right sides of this Schur complement form respectively. When

used together these two results show that as ε → 0, the Schur complement form con-

verges to the diffusion equation, (3.72), derived in Section 3.2. Furthermore, working

from an operator matrix form of source iteration we can replicate the derivation of a

synthetic acceleration method that was illustrated in Section 3.3.1. Applying our new

theorems to the resulting block operator form yields the basic form of DSA (Algorithm

3). However, currently this is only proved for constant cross sections and under strict

smoothness assumptions on the scalar flux.

Nonetheless, the results in this section present a new way of linking the diffusion

approximation to the scalar flux, (3.72), and the Schur complement form of the neu-

tron transport equation, (3.114). Future improvements to this work could result in a

derivation of the diffusion equation independent of the asymptotic approach. Such a

derivation would have the potential to provide further insight into the use of DSA as a

preconditioner if the operator preconditioner of [27] and [7] could be obtained from it.

However for now the restrictive nature of the required assumptions and reliance upon

the earlier asymptotic work mean it cannot replace other derivations of the diffusion

equation.
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We concluded by giving a heuristic argument for why DSA should perform better as

ε decreases. As mentioned this will be demonstrated numerically in Section 3.5, however

we will also see that DSA converges faster than source iteration over the whole tested

range of epsilon (see Section 3.5.1). Intuitively, even if diffusion isn’t the dominant

process of neutron transport in the domain, there will still be some small amount of

diffusive behaviour and so a diffusion approximation will always add some improvement

to the current approximate scalar flux. Our block analysis might provide an avenue

for a mathematical justification of this physically intuitive statement. Whether the

improvement is big enough to justify the added cost of DSA over basic source iteration

(or some other method) requires a cost analysis of the kind presented in Adams and

Larsen [2, Section II.B] and is not attempted here.

There is certainly plenty of scope for further exploration of diffusion synthetic ac-

celeration from a block operator standpoint. In particular it is likely that the results

presented in this section hold in higher dimensions also, and with less restrictive as-

sumptions.

3.5 Numerical Results

We will conclude this chapter by carrying out some 2D numerical tests aimed at ob-

serving the advantages of diffusion synthetic acceleration over source iteration. To do

this we will be numerically solving the neutron transport equation, with zero incom-

ing boundary conditions, over a simple 2D spatial domain and a 1D angular domain.

We will also be solving a two dimensional version of the diffusion equation derived in

Section 3.2. This is given by

−∇ ·
(

1

3σT (r)
∇φ(r)

)
+ σA(r)φ(r) = Q(r),

with r ∈ V ⊂ R2, subject to the 2D Robin boundary condition

λ

σT (r)
n̂ · ∇φ(r) + φ(r) = 0, ∀r ∈ ∂V,

where λ ≈ 0.710446 (see [40, Section 4]) and where n̂ is the outward pointing unit nor-

mal to the boundary at r. This boundary condition is of the general form given by Bell

and Glasstone [12, Section 3.1e], however we have used the coefficient λ/σT taken from

the 1D boundary conditions found in Section 3.2.5. To solve the 2D diffusion equation

numerically we will use continuous finite elements in space over the same uniform mesh

and spatial resolution as for the transport equation. In Chapter 5 we cover the details

of a discontinuous Galerkin finite element discretisation of the transport equation (and
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we will assume some knowledge of that chapter during this section) however we do not

cover the continuous finite element discretisation used for the diffusion equation. For

information on this, see for example Brenner and Scott [16].

We will start in Section 3.5.1 by directly comparing the convergence of SI and DSA

for a range of values of the scattering ratio. We will use two different methods to vary

the scattering ratio: firstly by varying the absorption cross section (as in Section 2.7)

while keeping other parameters fixed; secondly by using the asymptotic variable, ε, to

parametrise the cross sections and source, and vary ε towards zero. Though there is

slightly different behaviour in each case, generally we will observe that for scattering

ratios less than one DSA never degrades and often improves the rate of convergence of

SI. However if we allow the scattering ratio to increase above one then DSA can converge

more slowly than SI (see Figure 3-1). After that we will focus on the convergence of the

two algorithms with respect to the parameter ε. We will consider the limit ε→ 0 and

will see that DSA can converge quickly in situations where SI converges prohibitively

slowly. However in Section 3.5.2 we will observe that the convergence of DSA is not

straightforward.

3.5.1 Comparing SI and DSA

In our first two numerical experiments we will compare the convergence rates of source

iteration and diffusion synthetic acceleration (DSA) for different values of the scattering

ratio. We will use a square domain, V = [0, 1]× [0, 1], spatial resolutions Mx = My = 8

and angular resolution N = 23. For each value of the scattering ratio we will run both

SI and DSA to a tolerance of 10−12 or for 15 iterations (whichever occurs sooner) and

will measure the ratio between the errors in the last two iterates for each method. By

comparing these error ratios we will be able to see which method is converging faster

and understand how that rate of convergence is related to the scattering ratio.

As mentioned above, we will use two different methods to vary the scattering ratio.

Our first method will be to vary the absorption cross section (as in Section 2.7) whilst

fixing the total cross section, σT = 1, and source, Q = 1. We will vary the absorption

cross section, σA, from 0.9 down to −3.4, causing the scattering ratio to vary from 0.1

up to 4.4. As discussed in Section 2.7.1, values of the scattering ratio over 1 can be

interpreted as a very basic inclusion of fission into the system.

In Table 3.1 for each value of the scattering ratio we have given the observed error

ratio after a fixed number of iterations (we used 15) for source iteration (column 2)

and for DSA (column 3). These values are also plotted in Figure 3-1.

We focus first on Table 3.1 for values of the scattering ratio less than 1. In this range,

both methods converged and DSA consistently had the faster rate of convergence, even
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Observed error ratio
Scattering on convergence

Ratio, σS/σT SI DSA

0.10 0.036 0.008
0.20 0.072 0.016
0.30 0.108 0.024
0.40 0.144 0.033
0.50 0.180 0.041
0.60 0.216 0.048
0.70 0.252 0.054
0.80 0.288 0.067
0.90 0.324 0.075
1.00 0.360 0.074

1.50 0.541 0.162
2.00 0.721 0.415
2.50 0.901 18.763
3.00 1.081 0.490
3.50 1.261 0.405
4.00 1.441 0.354

Table 3.1: Table of the observed error ratios of source iteration and DSA for varying
scattering ratio.

Figure 3-1: Plot of the observed error ratio versus scattering ratio for source iteration
(black, solid line) and DSA (red, dotted line).
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when the scattering ratio was small. The biggest difference in convergence rate was

when the scattering ratio was close to 1, which is exactly the situation that DSA is

targeted towards. Though the example was very basic, this does lend support to the use

of DSA in overcoming source iteration’s deficiencies in scattering dominated domains.

Furthermore it shows that DSA can improve the convergence of source iteration for

all values of the scattering ratio, and if we only cared about the number of iterations

needed to converge, DSA would always be worth implementing. However the added

computational cost of implementing DSA means that in reality SI can be the faster

method for many problems (see Adams and Larsen [2, Section II.B]). A more physically

realistic example motivated by a real-world problem will be considered at the end of

Chapter 4 which will reinforce these conclusions.

Focussing now on the range of scattering ratios greater than 1, we observe that

for ratios between 2.3 and 2.7 DSA had a higher error ratio than source iteration.

To understand this we recall Remark 3.2 where we noted that the strictly positive

absorption cross section implied the diffusion operator was positive-definite. In this

test we have allowed σA to drop below zero and so shift the eigenvalues of the diffusion

operator downwards. For values of this shift close to eigenvalues of D, the operator

becomes nearly singular leading to the observed divergence. The same behaviour was

present for other mesh resolutions, and so this effect is not caused by discretisation.

In allowing the scattering ratio to exceed 1 we were very basically including the fission

interaction. However whilst this is somewhat appropriate for source iteration, including

fission interactions in DSA is more complicated. For a version of DSA including fission

(called fission DSA or FDSA) see T. J. Urbatsch [71, Chapter VII].

We note lastly that for scattering ratios over 2.7 DSA converges once more, despite

the divergence of source iteration. It is hard to draw physically meaningful insight from

this since the considered range of scattering ratios arises from non-physical material

data. Furthermore it seems likely that once the absorption cross section decreases

further it will coincide with another eigenvalue of the diffusion operator, leading to

singularity and divergence once more. Nonetheless it demonstrates the impact that the

diffusion step of DSA has on the convergence of source iteration. Potentially, in this

situation a method solely using the diffusion approximation would be more accurate

than either DSA or source iteration.

In our second test we will vary the scattering ratio by parametrising the cross

sections and source in terms of the asymptotic parameter, ε, and so is consistent with

the asymptotic theory in Section 3.2. Specifically we will define

σT = 1/ε, σA = ε, Q = ε,
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Corresponding Observed error ratio
Epsilon scattering on convergence
value ratio SI DSA

0.97 0.05 0.018 0.004
0.92 0.15 0.057 0.012
0.87 0.25 0.100 0.020
0.81 0.35 0.147 0.030
0.74 0.45 0.200 0.038
0.67 0.55 0.261 0.044
0.59 0.65 0.333 0.057
0.50 0.75 0.423 0.075
0.39 0.85 0.547 0.109
0.22 0.95 0.756 0.191

Table 3.2: Table of the observed error ratios of source iteration and DSA for varying
epsilon.

and therefore the scattering ratio is given by

σS
σT

=
1
ε − ε

1
ε

= 1− ε2. (3.143)

We choose a range of 19 values of ε such that the corresponding values of the scattering

ratio range evenly from 0.05 up to 0.95. By choosing the material data in this way

we are directly considering the transition between a transport dominated regime and a

diffusion dominated regime. Since the diffusion equation best approximates the scalar

flux for small ε, we should expect to see DSA greatly outperform SI as the scattering

ratio (3.143) approaches 1.

The data from this experiment are given in Table 3.2, where as before for each value

of the scattering ratio we give the observed error ratio after 15 iterations for source

iteration (column 2) and for DSA (column 3). We also give this data graphically in

Figure 3-2, where the horizontal axis shows the corresponding scattering ratio and the

vertical axis shows the observed error ratio.

We can immediately observe that, as in our first test, DSA consistently converged

faster than source iteration over the tested range. This is the outcome we expected

since we deliberately used material properties that align with the requirements for the

diffusion equation to provide a good approximation to the scalar flux (see Section 3.2).

However in contrast to our first test, the observed error ratio of source iteration does

not depend linearly on the scattering ratio. Obtaining such different behaviour between

these two tests demonstrates that the scattering ratio is not the only indicator of the

convergence of source iteration. For constant material data this is reflected in our
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Figure 3-2: Plot of the observed error ratio versus scattering ratio (induced by varying
epsilon) for source iteration (black, solid line) and DSA (red, dotted line).

source iteration convergence result, Corollary 2.26, where the domain width and size

of the total cross section come into play.

The convergence behaviour of source iteration suggests that if we were to consider

the limit ε → 0, the observed error ratio would increase towards 1. Indeed this is the

case and in the above example, for a value of ε = 0.01 source iteration would already

need almost 6000 iterations to converge to a tolerance of just 10−4. It is this limiting

behaviour that we will explore for DSA in the final test of this chapter.

We end again by noting that the same convergence behaviour was present for other

tested mesh resolutions, and so is not caused by the discretisation.

3.5.2 DSA in the Epsilon Limit

In this final experiment we will consider only diffusion synthetic acceleration and (as

in our second experiment above) we will parametrise the total cross section, absorp-

tion cross section and the source in terms of the asymptotic variable, ε. However for

this experiment we will allow ε → 0 exponentially in order to more fully explore the

behaviour of DSA in this limit.

As before, we specify σT = 1/ε, σA = ε and Q = ε, over the unit square domain

V = [0, 1] × [0, 1]. We will use the spatial resolutions Mx = My = 16 and angular

resolution N = 32. For each value of ε we will run DSA until it converges to a

tolerance of 10−5. For this experiment we will record the ratio between consecutive
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Figure 3-3: An example of how the observed error ratio may oscillate during the DSA
iterations. This plot is for ε = 10−3.

errors for the last two iterations before convergence, or after a maximum of 25 iterations.

This is because for certain values of ε we will see oscillation in the error ratio as the

iterations proceed and so considering just one ratio is misleading. For an example of

this oscillation, see Figure 3-3 which plots the error ratio at each iteration for ε = 10−3.

The last two data points from this graph are listed in Table 3.3 (line 6).

In Table 3.3, for a subset of the tested epsilon values (column 1) we have given

the observed error ratio of DSA upon convergence (column 2) and one step prior to

convergence (column 3). In Figure 3-4 we have plotted the same data over the full

range of tested epsilon values.

Looking at the data we first notice that DSA converged over the whole tested range

of epsilon. In particular the error ratio remained below 0.7 despite the oscillatory

behaviour that can be seen in Figure 3-4. Using source iteration to solve over this

range of epsilon is infeasibly slow, and so these results support the use of DSA to

overcome the deficiencies exhibited by source iteration.

Next, we can see that for epsilon values between about 10−2 and 10−5 the con-

vergence of DSA is oscillatory. The amplitude of the oscillation can be reduced by

refining the spatial mesh, which we observed by running successive calculations with

Mx = My = 2, 4, 8 and 16. Therefore it is possible that by taking a sufficiently fine

mesh the oscillation may be eliminated, however due to hardware restrictions it was

not possible to refine further than Mx = My = 16 for this test. Indeed recalling the
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Observed error ratio of DSA, measured:
Epsilon at convergence one iteration before convergence

10−0.5 0.141 0.141
10−1.0 0.314 0.314
10−1.5 0.399 0.398
10−2.0 0.429 0.415
10−2.5 0.261 0.581
10−3.0 0.202 0.657
10−3.5 0.264 0.541
10−4.0 0.363 0.474
10−4.5 0.449 0.432
10−5.0 0.441 0.435

Table 3.3: Table of the observed error ratio of DSA, measured at convergence and one
iteration before convergence, for varying epsilon values.

Figure 3-4: Plot of the observed error ratio of DSA, measured at convergence (black
circles) and one iteration before convergence (red crosses), versus epsilon.
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asymptotic theory from Section 3.2, a mesh fine enough to capture the boundary layer

behaviour, or one refined locally near the boundaries, may be necessary.

Alternatively the cause of these oscillations might be our choice of discretisation.

The convergence of DSA is not straightforward and has been studied extensively since

its original development. In particular the discretisation of the diffusion equation is

important (see [60], [4] and [5]) and must be so-called consistent with that of the

transport equation. This idea was originally presented by Alcouffe [4, 5], where it is

explained that the discretisations of the transport and diffusion equations cannot be

independent, and that instead the discrete diffusion equation must be derived from a

discretised form of the transport equation. Larsen [51] gives a summary of the concept

of consistency as well as developments that led up to Alcouffe’s work, and he goes

on to present a so-called four-step method that allows him to derive unconditionally

stable acceleration methods that are appropriate for several different spatial differencing

methods. However the four-step method does not extend to advanced schemes such

as discontinuous finite element methods (DFEM), which led to the development of

partially consistent methods such as the modified four-step (M4S) DSA method of

Adams and Martin [3]. Ultimately fully consistent methods for DFEM were developed

(see for example Warsa et. al. [73]) however the partially consistent methods were seen

to perform better in some situations.

Partially consistent methods give up the some of the stability or effectiveness of fully

consistent methods, however they gain other attributes that make them desirable. For

example, M4S DSA yields a smaller linear system than the fully consistent equivalent,

leading to cheaper iterations. Alternatively Wareing et. al. [72] obtain a partially

consistent scheme that uses a symmetric positive-definite, continuous discretisation of

the diffusion equation, so the resulting DSA method can utilise the conjugate gradients

method and thus be very efficient.

We are using discontinuous Galerkin finite elements to solve the transport equation

and continuous finite elements to solve the diffusion equation. Whilst we are using the

same mesh and the same linear basis elements, it is possible that these oscillations are

the result of only partial consistency in our method.

Conclusion

To conclude, through these numerical results we have seen the following:

• source iteration performs well for scattering ratios close to zero (as seen in Section

2.7);

• for scattering ratios close to one, DSA performs well;
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• DSA always improves upon the rate of convergence of source iteration for physi-

cally valid material data, even when the scattering ratio is close to zero.

Since DSA is always more computationally expensive (per iteration) than source

iteration, it might not be desirable to employ the extra power of DSA when a com-

putationally cheaper method works well enough (see Adams and Larsen [2, Section

II.B]). As we will see in Chapter 4, it can also be the case that only a small part of

the domain contains material whose properties suggest a need for DSA to be used. In

such a situation, applying the more costly DSA method over the whole domain just

to resolve an issue in a small part seems unnecessary, though not doing so can lead to

misleading solutions with localised unresolved errors.

Our work in Chapter 4 is motivated by these situations. We develop two domain

decomposition implementations of source iteration, and later (in Section 4.5) see how

this new framework allows us to apply DSA locally only where it is most needed. We

will see that this approach can indeed resolve the problem explained above, as well as

opening the door to the local application of other numerical methods.

110



Chapter 4

Domain Decomposition
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4.1 Background and Motivation

In this thesis we have looked at the convergence of different iterative methods when

they are used to solve the neutron transport equation, as given in Section 2.2. In

particular, in Chapter 2 we saw how the convergence of source iteration is heavily tied

to the maximum scattering ratio of the domain. Consequently for domains with a small

scattering ratio source iteration converges quickly, but if the domain contains so-called

diffusive regions (characterised by a high scattering ratio) then other faster methods

are required.
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One such faster method was considered in Chapter 3, and uses a specific diffusion

equation to improve upon the output of source iteration at each step. This diffusion

equation approximates the scalar flux and is most accurate in a diffusive domain. In

this way it can counterbalance the slow convergence of source iteration, and combining

both leads to the method known as diffusion synthetic accelerated source iteration

(DSA) given in Section 3.3.2. DSA converges quickly over all values of the scattering

ratio, as was demonstrated in Chapter 3.

This improvement does not come for free and one down side to DSA is that it

is more computationally expensive to implement than source iteration: each iteration

requires the source iteration step plus solving a diffusion equation. Therefore it would

be useful to limit its application only to the parts of the domain in which it will have

the greatest effect. This is the driving motivation behind the work in this chapter, in

which we will develop domain decomposed iterative methods for solving the transport

equation.

Domain decomposition (DD) methods are used to solve partial differential equa-

tions by decomposing the domain into several subdomains. The methods involve solv-

ing subproblems on these subdomains while enforcing suitable continuity requirements

between the subdomains. DD methods lend themselves to parallelisation, and have ad-

vantages in handling complex or irregular geometries. There are many different direct

DD solvers, however we will focus on developing iterative DD algorithms for solving the

transport equation. Iterative DD methods were originally proposed by H. A. Schwarz

in 1870 [68] however interest in these methods picked up during the 1980s as paral-

lel computing architectures became more common, and has continued growing since.

Iterative DD methods can be broadly broken into two types: overlapping methods,

in which the intersection of adjacent subdomains is non-empty, and non-overlapping

methods, in which all the subdomains are disjoint. The methods we will propose fall

into the latter category, meaning the subdomains are only able to communicate across

their shared boundaries. The precise details of how this communication takes place is

the source of the main difference between the two methods we will describe. Further

information on domain decomposition methods can be found in Chan and Mathew [21].

As mentioned in Section 1.3 domain decomposition methods have been applied

to solving the neutron transport equation before, however the focus has been mostly

towards parallelisation. Yavuz and Larsen [76] [77] gave two algorithms similar to

those that we will develop in Section 4.2, however there are differences that we will

identify after each method has been presented (see Algorithms 6 and 8). Furthermore

in Sections 4.3 and 4.4 we prove new results (namely Theorems 4.4 and 4.8) showing

that the two domain decomposition algorithms converge, and we know of no other work
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that achieves this.

The chapter will be structured as follows. Firstly we will start in Section 4.2.1 by re-

introducing the transport equation and recapping the basic source iteration algorithm.

From there in Sections 4.2.2 and 4.2.3 we will build two different domain decomposition

source iteration (DDSI) algorithms: namely Jacobi DDSI and Gauss-Seidel DDSI. The

former will be seen to be more suited to parallelisation, but suffers a slightly worse

rate of convergence. The latter is less amenable to parallelisation but under some

assumptions is equivalent to the full source iteration algorithm. Sections 4.3 and 4.4

will state and prove convergence results for both algorithms under the assumption of

convex subdomains. Lastly in Section 4.5 we will carry out some numerical experiments

to confirm our results and to illustrate further properties of the different methods. We

will also demonstrate the advantages of applying DSA only to specific parts of the

domain through the use of a physically motivated ‘fuel pool’ example.

4.2 Domain Decomposed Source Iteration (DDSI)

In this section we will ultimately introduce and explain two domain decomposition

source iteration (DDSI) algorithms: Jacobi DDSI and Gauss-Seidel DDSI. These both

solve the transport equation over a domain divided into an arbitrary number of sub-

domains. On each of the subdomains we will have an approximation to the scalar flux,

φ; this is our current iterate (or iteration k). We want to define methods of using

the current iterate to obtain a better approximation to φ on each subdomain (called

iteration k + 1).

The two algorithms we will define differ in the way they pass information across

boundaries shared by neighbouring subdomains, and they have different advantages and

disadvantages resulting from this. We will prove that both of these methods converge,

though will highlight limitations of each convergence proof in turn. In particular we

will show that by paying close attention to how the angular variable affects the flow of

information through the domain, the Gauss-Seidel DDSI method is equivalent to source

iteration applied over the whole domain. Consequently, under the assumptions of The-

orem 4.4, Gauss-Seidel DDSI inherits the convergence properties of full SI, which were

proved in Chapter 2. The primary disadvantage of Gauss-Seidel versus Jacobi DDSI

is that it is purely serial in space whereas Jacobi DDSI is highly paralleliseable. This

property means that Jacobi DDSI may be the preferred method for many applications

despite displaying a worse rate of convergence in practice.

Our first goal will be to define both DDSI methods to solve the transport equation

over a domain with only two subdomains. Once that is achieved we will extend the
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methods to work over an arbitrary number of subdomains. However before this we will

restate both the transport equation in 3D and the associated source iteration algorithm

applied over the whole domain.

4.2.1 Source Iteration Recap

In Section 2.2.1 we defined a simplified version of the neutron transport equation in

three spatial dimensions, which was given as

Ω∇ · ψ(r,Ω) + σT (r)ψ(r,Ω) = σS(r)φ(r) +Q(r), (4.1)

for r ∈ V ⊂ R3 and Ω ∈ S2, subject to

ψ(r,Ω) = f(r,Ω) ∀r ∈ ∂V such that n̂(r) · Ω < 0, (4.2)

where n̂(r) denotes the outward unit normal vector to V at r ∈ ∂V , and where

φ(r) ≡ 1

4π

∫
S2
ψ(r,Ω) dΩ. (4.3)

In Chapter 2 we saw the source iteration algorithm applied to this equation, which

we restate here.

Algorithm 4: Source Iteration

1. Start with some initial φ(0)(r).

2. Solve

Ω · ∇ψ(k+1) + σT (r)ψ(k+1)(r,Ω) = σS(r)φ(k)(r) +Q(r), (4.4)

for ψ(k+1)(r,Ω), subject to

ψ(k+1)(r,Ω) = f(r,Ω) ∀r ∈ ∂V such that n̂(r) · Ω < 0. (4.5)

3. Average over angle to find

φ(k+1)(r) = Pψ(k+1)(r,Ω).

4. Increment k and return to step 2.

This method is known to converge, with convergence rate dependent on the scattering

ratio (see Section 2.5 for more detail).
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Over the next two sections we will present the two different domain decomposition

methods talked about in the introduction, namely Jacobi DDSI and Gauss-Seidel DDSI.

As mentioned these differ in how they handle passing information across subdomain

boundaries and we will both discuss the differences theoretically and observe them

numerically after the algorithms have been defined.

4.2.2 Jacobi DDSI

Our aim in this section is to build a domain decomposition source iteration algorithm

to work over an arbitrary number of subdomains. This we will refer to as Jacobi domain

decomposition source iteration (Jacobi DDSI). This algorithm will be focussed towards

being highly paralleliseable, but we will see that to achieve this we have had to sacrifice

convergence rate to some extent.

We will consider a domain V ∈ R3 decomposed into a set of n open, connected

and pairwise disjoint subdomains {Vi : i = 1, . . . , n}, where V =
⋃n
i=1 V i. However we

will first consider the case where n = 2 and will build a 2-subdomain version of Jacobi

DDSI in Algorithm 5. Using that as a conceptual basis, it will be easy to progress on

to an n-subdomain version, given in Algorithm 6.

2-subdomain Jacobi DDSI

We begin by considering the case n = 2, so our domain V ∈ R3 is decomposed into two

subdomains, V1 and V2. The intersection, ∂V1 ∩ ∂V2, gives the shared (red, shaded)

boundary illustrated in Figure 4-1. To make this easier to refer to, we will use the

notation

Γij ≡ ∂Vi ∩ ∂Vj .

In general this is a 3D surface and not necessarily a plane. This point is worth noting:

Jacobi DDSI allows both concave and convex subdomains, meaning the intersection

between subdomains need not be a flat surface (or a straight line in 2D). This is an

advantage over the Gauss-Seidel DDSI algorithm presented in the next section, and we

will expand on this in the discussion at the end of Section 4.2.3.

For each subdomain we need to incorporate boundary conditions along the shared

boundary between V1 and V2. This can be done in different ways which will form

the fundamental difference between Jacobi DDSI and Gauss-Seidel DDSI. In Jacobi

iteration we form an intuitive approach in which each updated iteration depends solely

upon information from the previous iteration. We will use the notation that, for any

function F defined on V , we write
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Figure 4-1: Domain V with two subdomains V1 and V2.

Fi ≡ F
∣∣∣
V i
, (4.6)

where i = 1, 2. The DDSI method will iterate over the subdomains, solving for the

neutron flux, denoted ψ
(k+1)
i , in each. To do this we need to impose subdomain-specific

boundary conditions that specify the incoming flux along both the subdomain’s shared

boundary and its external boundary. For each subdomain we split the boundary into

two parts: ∂Vi∩∂V and ∂Vi\∂V (≡ Γ12 for two subdomains). For r ∈ ∂Vi∩∂V , and for

appropriate Ω, we can simply impose the boundary condition, f , as in the full source

iteration algorithm. For r ∈ ∂Vi\∂V we will instead match the incoming boundary flux

in domain i with the equivalent flux in the neighbouring subdomain at the previous

iteration. If we use n̂i(r) to denote the outward unit normal to ∂Vi at r ∈ ∂Vi, then

for domain V1 this means that ∀r ∈ ∂V1 such that n̂1(r) · Ω < 0 we impose

ψ
(k+1)
1 (r,Ω) =

{
ψ

(k)
2 (r,Ω) when r ∈ ∂V1\∂V
f(r,Ω) when r ∈ ∂V1 ∩ ∂V.

(4.7)

Under this specification we obtain Algorithm 5 given below.
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Algorithm 5: Jacobi DDSI - 2 subdomains

1) Start with some initial φ
(0)
1 (r) and φ

(0)
2 (r).

2) In any order

• Solve

Ω · ∇ψ(k+1)
1 + σT 1ψ

(k+1)
1 = σS1φ

(k)
1 +Q1 (4.8)

for ψ
(k+1)
1 (r,Ω) where, ∀r ∈ ∂V1 with n̂1(r) · Ω < 0, we impose

ψ
(k+1)
1 (r,Ω) =

{
ψ

(k)
2 (r,Ω) if r ∈ Γ12,

f(r,Ω) if r ∈ ∂V1 ∩ ∂V.

• Solve

Ω · ∇ψ(k+1)
2 + σT 2ψ

(k+1)
2 = σS2φ

(k)
2 +Q2 (4.9)

for ψ
(k+1)
2 (r,Ω) where, ∀r ∈ ∂V2 with n̂2(r) · Ω < 0, we impose

ψ
(k+1)
2 (r,Ω) =

{
ψ

(k)
1 (r,Ω) if r ∈ Γ12,

f(r,Ω) if r ∈ ∂V2 ∩ ∂V.

3) Average over Ω to find φ
(k+1)
1 (r) and φ

(k+1)
2 (r) via,

φ
(k+1)
i (r) =

1

4π

∫
S2
ψ

(k+1)
i (r,Ω) dΩ, (4.10)

for i = 1, 2.

4) Increment k and return to step 2.

Though simple, this 2-subdomain Jacobi DDSI algorithm covers all the concepts

needed to build an n-subdomain version of Jacobi DDSI.

n-subdomain Jacobi DDSI

We now consider the general decomposition of domain V into n subdomains Vi for i ∈
{1, . . . , n} as specified earlier. Since any subdomain may border any other subdomain,

subdomain-specific boundary conditions in the n-subdomain version of Jacobi DDSI

will need to allow for boundary information coming from any other subdomain. This

is fairly straightforward, and results in Algorithm 6 below.
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Algorithm 6: Jacobi DDSI - n subdomains

1) Choose some initial φ
(0)
i (r) for all i ∈ {1, . . . , n}.

2) For all i ∈ {1, . . . , n}, solve

Ω · ∇ψ(k+1)
i + σT iψ

(k+1)
i = σSiφ

(k)
i +Qi,

where, ∀r ∈ ∂Vi with n̂i(r) · Ω < 0,

ψ
(k+1)
i (r,Ω) =

 ψ
(k)
j (r,Ω) if r ∈ Γij , i 6= j,

f(r,Ω) if r ∈ ∂Vi ∩ ∂V.

3) Average over Ω to find φ
(k+1)
i (r) for all i ∈ {1, . . . , n} via

φ
(k+1)
i (r) =

1

4π

∫
S2
ψ

(k+1)
i (r,Ω) dΩ.

4) Increment k and return to step 2.

This is the continuous version of the algorithm. In practise we discretise via finite

elements and discrete ordinates in order to solve using this algorithm.

So at each iteration, the boundary conditions for each subdomain depend only

upon the previous iteration in their neighbouring subdomains. This is different to the

method of Yavuz and Larsen [77], which is presented with the understanding that each

subdomain will be assigned a unique processor. They take advantage of this by taking

internal boundary data to be the most recent version of the flux available when it is

needed. So for example if, at iteration k, subdomain A needs boundary data from

subdomain B, but it turns out that subdomain B has already finished iteration k then

the new data will be passed to subdomain A. On the other hand, if subdomain B has

not yet completed iteration k, then data from the previous iteration will be passed to

subdomain A. This approach is likely to converge faster than our method since it uses

more up-to-date boundary data whenever possible. However our method is presented

without assuming any parallelisation, and its consistent internal boundary condition

strategy allows for the convergence analysis presented in Section 4.4.

Algorithm 6 easily allows for more complicated geometries, which is a big advantage

over the method we will present next. As mentioned it is also very open to parallelisa-

tion since each angle can be treated independently, and for each angle we can also solve

over each subdomain separately. However, as we will see numerically in Section 4.5, one

118



downside is that the method converges more slowly than source iteration applied over

the whole domain. This may be related to the more restricted communication between

the subdomains in the Jacobi version when compared to the Gauss-Seidel version that

will be described below.

4.2.3 Gauss-Seidel DDSI

In this section we will build a different domain decomposition source iteration algo-

rithm, which we refer to as Gauss-Seidel DDSI. This algorithm improves upon how

the boundary conditions between subdomains were imposed in Jacobi DDSI by more

carefully considering the effect of angle on the flow of information through the domain.

This improvement comes at the cost of the parallelisation potential that Jacobi DDSI

has, and the relative advantages and disadvantages will be discussed fully once the

algorithm has been presented.

Similarly to Jacobi DDSI, our goal is to consider decomposing a domain V ⊂ R3

into n subdomains Vi for i ∈ {1, . . . , n}. As before we will say that these are open,

connected and pairwise disjoint, with V =
⋃n
i=1 V i, however we will also say that each

Vi is convex which we define here.

Definition 4.1 (Convex [23]):

A subset of Rn is convex if the line segment joining any two points inside it lies wholly

inside it.

Note that convexity of the subdomains was not a requirement for Jacobi DDSI.

This is one of the main differences between the two algorithms and will be considered

again at the end of this section. We will first consider the case where n = 2 and obtain

the 2-subdomain Gauss-Seidel DDSI algorithm given in Algorithm 7. From there we

will progress to an n-subdomain version in Algorithm 8, and to do so we will have to

more carefully consider the order in which we solve the subdomain problems.

2-subdomain Gauss-Seidel DDSI

We start by considering the case n = 2, and so have two subdomains V1 and V2. Since

we require both of them to be convex, the boundary Γ12 is necessarily a plane. This

allows for the angular domain, S2, to be separated into three disjoint subdomains:

U1 =
{

Ω ∈ S2 : Ω · n̂12 < 0
}
,

U2 =
{

Ω ∈ S2 : Ω · n̂21 < 0
}
,

UB =
{

Ω ∈ S2 : Ω · n̂12 = 0 (= Ω · n̂21)
}
,

(4.11)
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i.e. Ui consists of all angles that are incoming for Vi on the subdomain boundary

Γ12, with UB containing angles parallel to Γ12. Here we have used n̂ij to denote the

constant outward unit normal vector from subdomain Vi pointing into Vj (note that

n̂12 = −n̂21).

This is a big difference between Jacobi DDSI and Gauss-Seidel DDSI and will be

discussed further at the end of this section. The observation fundamental to this

algorithm is then that, for Ω /∈ U1, the angle points from V1 into V2. Consequently

Γ12 is an outflow boundary from V1, and so the current iterate of the neutron flux on

domain V1 is independent of the current neutron flux iterate on domain V2. Similarly,

for Ω /∈ U2 the current neutron flux iterate on V2 is independent of the current neutron

flux iterate on domain V1. As a result of this, provided we solve the subdomains in the

correct order for each angle, we can always use current iterates of the neutron flux to

impose boundary conditions on the internal subdomain boundary. This is in contrast

to the Jacobi DDSI algorithm where we always use information from the previous

iteration.

To write down an algorithm that uses this approach we have noted that for angles

in U1, solving for ψ2 on V2 does not require a boundary condition to be imposed on

the internal boundary, Γ12. Similarly for angles in U2, solving for ψ1 on V1 does not

require the imposition of a boundary condition on Γ12. Lastly for angles in UB, neither

subdomain requires the imposition of boundary conditions on Γ12. Suppose therefore

that for all angles in U1 we first solve for ψ
(k+1)
2 on V2. Then when we come to solve

for ψ
(k+1)
1 on V1 and need to impose a boundary condition on the internal boundary

Γ12, we can use the most up-to-date version of the flux, ψ
(k+1)
2 . In the same manner,

if for all angles in U2 we begin by solving for ψ
(k+1)
1 , then when solving on V2 we can

use ψ
(k+1)
1 to apply the incoming boundary condition on Γ12. Lastly for all angles in

UB we solve over the subdomains in either order, requiring only the external boundary

conditions.

Exploiting the flow of information in this manner leads to the following source

iteration algorithm for two subdomains.

120



Algorithm 7: Gauss-Seidel DDSI - 2 subdomains

1) Start with some initial φ
(0)
1 (r) and φ

(0)
2 (r).

2)

∀Ω ∈ U1



First solve:

TσTψ
(k+1)
2 = σSφ

(k)
2 +Q2

subject to:

ψ
(k+1)
2 (r,Ω) = f(r,Ω)

∀r ∈ ∂V
with n̂2(r) · Ω < 0

Then solve:

TσTψ
(k+1)
1 = σSφ

(k)
1 +Q1

subject to:

ψ
(k+1)
1 (r,Ω) =


ψ

(k+1)
2 (r,Ω) ∀r ∈ Γ12

f(r,Ω) ∀r ∈ ∂V1 ∩ ∂V
with n̂1(r) · Ω < 0

∀Ω ∈ U2



First solve:

TσTψ
(k+1)
1 = σSφ

(k)
1 +Q1

subject to:

ψ
(k+1)
1 (r,Ω) = f(r,Ω)

∀r ∈ ∂V
with n̂1(r) · Ω < 0

Then solve:

TσTψ
(k+1)
2 = σSφ

(k)
2 +Q2

subject to:

ψ
(k+1)
2 (r,Ω) =


ψ

(k+1)
1 (r,Ω) ∀r ∈ Γ12

f(r,Ω) ∀r ∈ ∂V2 ∩ ∂V
with n̂2(r) · Ω < 0

∀Ω ∈ UB



Solve:

TσTψ
(k+1)
1 = σSφ

(k)
1 +Q1

subject to:

ψ
(k+1)
1 (r,Ω) = f(r,Ω)

∀r ∈ ∂V
with n̂1(r) · Ω < 0

Solve:

TσTψ
(k+1)
2 = σSφ

(k)
2 +Q2

subject to:

ψ
(k+1)
2 (r,Ω) = f(r,Ω)

∀r ∈ ∂V
with n̂2(r) · Ω < 0

3) Average over Ω to find φ
(k+1)
1 (r) and φ

(k+1)
2 (r) via

φ
(k+1)
j (r) =

1

4π

∫
S2
ψ

(k+1)
j (r,Ω) dΩ, j = 1, 2.

4) Increment k and return to step 2.

Intuitively this presentation of the algorithm makes sense, however to make the step

up to n-subdomains we will need to focus more on the ordering of the subdomains.
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n-subdomain Gauss-Seidel Domain Decomposed Source Iteration

To define the n-subdomain version of Gauss-Seidel DDSI, we will need to order our

subdomains in an appropriate way for each angle. To define what we mean by this, let

us first define an arbitrary ordering of the subdomains using a set O as follows

O ≡ {o1, . . . , on},

where the order of subdomains is then Vo1 , . . . , Von .

Definition 4.2 (Appropriate Subdomain Ordering):

For some angle Ω ∈ S2, we define an appropriate ordering of the subdomains, denoted

OΩ ≡ {o1, . . . , on}, (4.12)

to be such that any point on the incoming boundary of subdomain Voi is a point on either

the outgoing boundary of Voj for some j < i, or a point on the incoming boundary of

the whole domain, ∂V .

The question of whether such an ordering exists for all Ω ∈ S2 for any particular

choice of subdomains is important, and we will discuss it further at the end of this

section.

For now let us assume that, for each angle Ω ∈ S2, there is an appropriate ordering

of the subdomains. Recall that in the 2-subdomain case we broke S2 into three pieces

(U1, U2 and UB) and used these to determine the order in which we solved over our two

subdomains. For the n-subdomain algorithm we do not follow this approach. Instead,

for each angle Ω ∈ S2, we use the ordering OΩ to specify the order in which we solve

over the subdomains. Because of the way OΩ is defined we know that every point on

the incoming boundary of a subdomain, say Vi, lies either on the domain boundary ∂V

or on the outgoing boundary of some previously considered subdomain Vj , j 6= i. This

means that when imposing incoming boundary conditions for Vi it is always possible

to use the current iterate on neighbouring subdomains, or to use the known boundary

conditions for the whole domain, V .

With this concept and notation in hand, we can easily write down the n-subdomain

version of Gauss-Seidel DDSI as follows.

122



Algorithm 8: Gauss-Seidel DDSI - n subdomains

1) Choose some initial φ
(0)
i (r) where r ∈ V i for all i ∈ {1, . . . , n}.

2) For all Ω ∈ S2, loop over all i ∈ OΩ in order, and solve

TσT iψ
(k+1)
i = σSiφ

(k)
i +Qi,

where, ∀r ∈ ∂Vi with n̂i(r) · Ω < 0,

ψ
(k+1)
i (r,Ω) =

 ψ
(k+1)
j (r,Ω) ∀r ∈ Γij , i 6= j,

f(r,Ω) ∀r ∈ ∂Vi ∩ ∂V.

3) Average over Ω to find φ
(k+1)
i (r) for all i ∈ {1, . . . , n} via

φ
(k+1)
i (r) =

1

4π

∫
S2
ψ

(k+1)
i (r,Ω) dΩ.

4) Increment k and return to step 2.

Algorithm 8 (Gauss-Seidel DDSI) does lend itself to parallelisation, however less

so than Algorithm 6 (Jacobi DDSI). The reason for this is that whilst each angle can

be considered independently, within each angle the subdomains must be solved in a

particular order. In certain cases there may be scope for parallelisation inside each

specific subdomain ordering, but this is not easy to see in general. Gauss-Seidel DDSI

does have an advantage over Jacobi DDSI in its storage requirements since only the

most recent version of the neutron flux needs to be stored at any time. Conversely

in Jacobi DDSI the previous iteration must also be stored to facilitate the internal

boundary conditions.

As mentioned in Section 1.3, a version of this method is presented by Yavuz and

Larsen [77]. They give a semi-discrete algorithm in which the angular variable has

already been discretised using discrete ordinates. They assume that the domain is

rectangular and has been decomposed into a grid of rectangular subdomains. Then for

each angle the subdomains are solved in an appropriate order, as we do in Algorithm

8. In contrast we work with angle as a continuous variable, and allow for the domain

to be decomposed in any way provided an appropriate ordering of subdomains exists

for every angle, Ω ∈ S2. This requirement is more restrictive than that of Jacobi

DDSI for which any choice of decomposition is permissible. It is reasonable to want to

decompose the domain into geometrically complicated subdomains motivated by the
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physical properties of the problem (as specified by the cross sections) and Jacobi DDSI

allows for such generality.

To ensure an appropriate ordering exists in 2D for all Ω ∈ S1 it is sufficient to

require only convex subdomains, though concave subdomains can be present under

certain conditions (for example on the outer boundary). Whilst we were unable to find

a result proving this in the literature, it can be proved using an inductive argument

focussing on the overlaps of subdomain boundaries that face the incoming angle (but

the proof will not be presented in this thesis). This result is useful since, provided

your subdomains are polygonal, it is always possible to further decompose them into a

collection of convex subdomains. Similarly we know of no results of this kind for the

3D case. It is possible that our 2D result may also extend to 3D easily, however we

have not done this. Practically, for structured grids of convex subdomains appropriate

orderings can be easily found on a one-off basis.

We note that it is not required by the algorithm that the whole domain V is convex,

only the subdomains. However in Section 4.3 we will prove equivalence of Algorithm

8 to full source iteration applied over the whole domain, V , where the proof requires

domain V to be convex.

4.3 Convergence of Gauss-Seidel DDSI

In this section we look at the convergence of Algorithm 8. More precisely, in Theorem

4.4 we will prove that Gauss-Seidel DDSI is equivalent to full source iteration applied

over the same domain. As a result it inherits the convergence properties of the well

understood source iteration algorithm, which we studied in Chapter 2. This theorem

also shows that source iteration can be implemented instead by sweeping through the

domain, subdomain by subdomain, solving smaller problems at each iteration. To prove

this result we will need to assume that both the whole domain, V , and the subdomains,

Vi ⊂ V with i ∈ {1, . . . , n}, are convex (see Definition 4.1).

To prove our main result we will require Lemma 2.2 and Corollary 2.3 from Chapter

2 concerning the solution to the transport equation under non-zero boundary condi-

tions. We will also need the following lemma linking volume and line integrals.

Lemma 4.3:

Let the domain V ⊂ R3 be convex with convex subdomain W ⊂ V . Suppose that, for

any point r ∈ W and angle Ω ∈ S2, the ray from r in direction −Ω intersects ∂W at

r1 = r− s1Ω, and intersects ∂V at r2 = r− s2Ω (so s2 ≥ s1, see Figure 4-2). Then∫
S2

∫
l(r1,r2)

g(r′) dl(r′) dΩ =

∫
V \W

g(r′)

‖r− r′‖22
dr′, (4.13)
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where g is any suitably smooth function. (Note that ri and si are both functions of r

and Ω for i = 1, 2.)

Proof.

The result follows by converting a spherical coordinate integral into a volume integral.

We work from the left hand side and by applying the change of variables, r′ = r− s′Ω,

we find

∫
S2

∫
l(r1,r2)

g(r′) dl(r′) dΩ =

∫
S2

∫ s2

s1

g(r− s′Ω) ds′ dΩ

=

∫
S2

∫ s2

0
g(r− s′Ω) ds′ dΩ−

∫
S2

∫ s1

0
g(r− s′Ω) ds′ dΩ.

Now using the volume element dV = (s′)2ds′dΩ, and noting that s′ = ‖r− r′‖2, we

obtain

∫
S2

∫
l(r1,r2)

g(r′) dl(r′) dΩ =

∫
V

g(r′)

‖r− r′‖22
dr′ −

∫
W

g(r′)

‖r− r′‖22
dr′

=

∫
V \W

g(r′)

‖r− r′‖22
dr′.

In Figure 4-3 we illustrate some new notation that will be instrumental in our next

result. We will consider subdomain Vj , for some j ∈ {1, . . . , n}, and will work at a

point r ∈ Vj . From there, a line traced in direction −Ω crosses the incoming boundary

Figure 4-2: Definitions for Lemma 4.3.
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Figure 4-3: Showing a trace back through a domain from pair (r,Ω).

of Vj at the point rbj . We denote the next subdomain the line passes through by Vj′ ,

and similarly denote by rbj′ the point where the line crosses the incoming boundary of

Vj′ . We continue this naming convention until the line hits the outer boundary, ∂V .

It is worth noting that the sequence of values, (j′, j′′, . . . ), and also the associated

points rbγ are dependent upon the pair (r,Ω), however we will not usually state this

explicitly. We will also recall our earlier notation, rb, defined in (2.18) as the point

lying on the boundary ∂V in direction −Ω from r, i.e. rb(r,Ω) ≡ r− sbΩ, where

sb(r,Ω) ≡ max {s ≥ 0 : r− sΩ ∈ ∂V } .

With this notation in hand, we can state and prove the main convergence result for

Gauss-Seidel DDSI.

Theorem 4.4:

Let the domain V ⊂ R3 be convex, and suppose there are n convex, open, connected

and pairwise disjoint subdomains Vi for i ∈ {1, . . . , n}, such that V =
⋃n
i=1 V i. Let us

assume that for any angle Ω ∈ S2 there is an appropriate ordering of the subdomains

(see Definition 4.2). Consider the transport equation as given by

Ω · ∇ψ(r,Ω) + σT (r)ψ(r,Ω) = σS(r)φ(r) +Q(r), (4.14)
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with r ∈ V ⊂ R3 and Ω ∈ S2, subject to boundary conditions

ψ(r,Ω) = f(r,Ω), ∀r ∈ ∂V, such that n(r) · Ω < 0, (4.15)

where f ∈ L2(∂V, L1(S2)) and we assume σS, σT and Q are smooth on each subdomain.

Solving this using Gauss-Seidel DDSI (Algorithm 8) applied over the n subdomains,

V1, . . . , Vn, is equivalent to solving using full source iteration (Algorithm 1) applied

over the whole domain, V .

Proof.

In this proof (unless otherwise stated) subscript i denotes restriction to subdomain Vi,

and we use the convention that

φ(k)(r) = φ
(k)
i (r), (4.16)

where r ∈ Vi for any i ∈ {1, . . . , n}.
We start by choosing an arbitrary subdomain, Vj , where j ∈ {1, . . . , n}. Fix a point

r ∈ Vj and assume that for all Ω ∈ S2, the line traced from r in direction −Ω passes

through at least three other subdomains (Vj′ ,Vj′′ and Vj′′′) before hitting the outer

boundary, ∂V (see Figure 4-3 for an illustration of this).

The majority of this proof will be dedicated to finding an equation for the scalar

flux in Vj , and we begin this task now. In Gauss-Seidel DDSI (Algorithm 8) we solve a

source problem on Vj with right hand side σSφ
(k)
j +Q, so applying the 3D scalar flux

solution, (2.24), we have

φ
(k+1)
j (r) =

∫
S2
ψ

(k+1)
j′ (rbj ,Ω)

exp
(
−τ(r, rbj)

)
4π

dΩ +

∫
Vj

(
σSφ

(k)
j +Q

)
(r̃)kσT (r, r̃) dr̃.

(4.17)

Next we obtain a formula for the neutron flux term, ψ
(k+1)
j′ (rbj ,Ω), that occurs in the

right hand side integral of (4.17). By Algorithm 8 and Lemma 2.2 we have

ψ
(k+1)
j′ (rbj ,Ω) = ψ

(k+1)
j′′ (rbj′ ,Ω) exp

(
−τ(rbj , r

b
j′)
)

+

∫
l(rbj ,r

b
j′ )

(
σSφ

(k)
j′ +Q

)
(r̃) exp

(
−τ(rbj , r̃)

)
dl(r̃). (4.18)

Substituting (4.18) into (4.17) leaves
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φ
(k+1)
j (r) =

∫
S2
ψ

(k+1)
j′′ (rbj′ ,Ω)

exp
(
−τ(r, rbj)− τ(rbj , r

b
j′)
)

4π
dΩ

+

∫
S2

∫
l(rbj ,r

b
j′ )

(
σSφ

(k)
j′ +Q

)
(r̃)

exp
(
−τ(r, rbj)− τ(rbj , r̃)

)
4π

dl(r̃) dΩ

+

∫
Vj

(
σSφ

(k)
j +Q

)
(r̃)kσT (r, r̃) dr̃. (4.19)

Recalling Definition 2.1 of the optical path length, τ , we observe that for any three

points r1, r2, r3 ∈ R3 satisfying

r1 + sΩ = r2 + tΩ = r3,

with s > t > 0 and Ω ∈ S2 fixed, it holds that

τ(r1, r2) + τ(r2, r3) =

∫
l(r1,r2)

σT (z) dl(z) +

∫
l(r2,r3)

σT (z) dl(z)

=

∫
l(r1,r3)

σT (z) dl(z)

= τ(r1, r3).

This is simply saying that integrating over a line is equivalent to splitting the line into

two pieces, and then summing the integrals over those pieces. Consequently we can

combine the terms in (4.19) to leave

φ
(k+1)
j (r) =

∫
S2
ψ

(k+1)
j′′ (rbj′ ,Ω)

exp
(
−τ(r, rbj′)

)
4π

dΩ

+

∫
S2

∫
l(rbj ,r

b
j′ )

(
σSφ

(k)
j′ +Q

)
(r̃)

exp (−τ(r, r̃))

4π
dl(r̃) dΩ

+

∫
Vj

(
σSφ

(k)
j +Q

)
(r̃)kσT (r, r̃) dr̃. (4.20)

Continuing this process to write ψ
(k+1)
j′′ (rbj′ ,Ω) in terms of information from Vj′′′ in an

analagous way, we obtain the formula
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φ
(k+1)
j (r) =

∫
S2
ψ

(k+1)
j′′′ (rbj′′ ,Ω)

exp
(
−τ(r, rbj′′)

)
4π

dΩ

+

∫
S2

∫
l(rbj ,r

b
j′′ )

(
σSφ

(k) +Q
)

(r̃)
exp (−τ(r, r̃))

4π
dl(r̃) dΩ

+

∫
Vj

(
σSφ

(k) +Q
)

(r̃)kσT (r, r̃) dr̃. (4.21)

Here we have dropped the subscript on the iterates, φ(k), in favour of the combined

notation, (4.16). We have then combined two line integrals to obtain the second term

on the right hand side of (4.21).

It is clear that we can continue expanding in this manner until we reach the outer

boundary at the point rb. Doing this results in

φ
(k+1)
j (r) =

∫
S2
f(rb,Ω)

exp
(
−τ(r, rb)

)
4π

dΩ

+

∫
S2

∫
l(rbj ,r

b)

(
σSφ

(k) +Q
)

(r̃)
exp (−τ(r, r̃))

4π
dl(r̃) dΩ

+

∫
Vj

(
σSφ

(k) +Q
)

(r̃)kσT (r, r̃) dr̃. (4.22)

Directly applying Lemma 4.3 to the second term on the right hand side of (4.22) leaves

∫
S2

∫
l(rbj ,r

b)

(
σSφ

(k) +Q
)

(r̃)
exp (−τ(r, r̃))

4π
dl(r̃) dΩ

=

∫
V \Vj

(
σSφ

(k) +Q
)

(r̃)
exp (−τ(r, r̃))

4π ‖r− r̃‖22
dr̃,

=

∫
V \Vj

(
σSφ

(k) +Q
)

(r̃)kσT (r, r̃) dr̃,

where we have used the definition, (2.32), of the kernel kσT . Substituting this back

into (4.22) and combining the last two integrals leaves us with a complete formula for

φ
(k+1)
j (r), reliant only upon the previous iteration and boundary data,

φ
(k+1)
j (r) =

∫
S2
f(rb,Ω)

exp
(
−τ(r, rb)

)
4π

dΩ +

∫
V

(
σSφ

(k) +Q
)

(r̃)kσT (r, r̃) dr̃. (4.23)
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Having found this formula, most of the work for this proof has been completed and it

just remains to confirm that (4.23) implies Gauss-Seidel DDSI and full SI are equivalent

algorithms. To do this we first write down the formula for one iteration of full source

iteration, which follows by applying Corollary 2.3 to Algorithm 1 leaving

φ(k+1)(r) =

∫
S2
f(rb,Ω)

exp
(
−τ(r, rb)

)
4π

dΩ +

∫
V

(
σSφ

(k) +Q
)

(r̃)kσT (r, r̃) dr̃. (4.24)

Observing that (4.23) and (4.24) are equivalent if we combine the scalar flux as in

(4.16) concludes the proof.

This result is important because it tells us that we can apply source iteration to a

domain that has been decomposed into subdomains without any detriment to the rate

of convergence. Indeed we are essentially still using full source iteration, however now

we have the freedom to treat each subdomain differently. In Chapter 3 we saw how a

diffusion equation can be used to accelerate the convergence of source iteration, but also

how this acceleration was computationally expensive with respect to the cost of source

iteration. Using Gauss-Seidel DDSI we have the ability to build a diffusion-accelerated

source iteration algorithm where the acceleration is only applied in specific subdomains.

Ideally, these subdomains will be those which exhibit diffusive behaviour and would

otherwise display very poor convergence. The potential benefits of this approach will

be seen in Section 4.5 where we will look at a ‘real-world’ 2D model problem.

4.4 Convergence of Jacobi DDSI

In this section we will look at the convergence of the Jacobi DDSI algorithm. Specif-

ically in Theorem 4.8 we will provide a convergence result for Jacobi DDSI with 2

subdomains (Algorithm 5) assuming a convex domain with convex subdomains, and

assuming globally constant cross sections. We will prove this by showing that bounds

on the error in the iterates satisfy a recurrence relation, which in turn converges under

known conditions.

To do this we will need to introduce a new operator, Kji : L2(Vi) → L2(Vj), see

(4.25). This operator is similar to the operator KσT defined in Chapter 2 (indeed

they are equivalent when i = j) however it allows communication between disjoint

subdomains. This feature will be invaluable when we return to the convergence of

Jacobi DDSI in Section 4.4.2. Before that, we will prove a new bound on the norm

of this operator which will be required in the proof of our main convergence result for

Jacobi DDSI, Theorem 4.8.
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As mentioned, in this section we restrict ourselves to constant material data for

our theory. However we note up front that in practice we observe the Jacobi DDSI

algorithm converging over all tested ranges of material data and for any tested number

of subdomains. This convergence will be seen in our numerical results in Section 4.5,

and it indicates that our theory is overly restrictive. Further work and possibly new

approaches would hopefully result in a convergence theory that better reflects the

observed robustness of the Jacobi DDSI algorithm.

4.4.1 Bounding the Solution Operator Norm

In Chapter 2 we defined the the operator KσT : L2(V )→ L2(V ) where V ⊂ Rk for k =

1, 2 or 3. Since in this chapter we are splitting the domain into n disjoint subdomains

Vi, for i = 1, . . . , n, we can define the related operator Kji : L2(Vi)→ L2(Vj) as

(Kjigi) (r) ≡
∫
Vi

gi(r
′)kσT (r, r′) dr′, ∀r ∈ Vj , (4.25)

where gi ∈ L2(Vi), for all i, j ∈ {1, . . . , n}. The kernel kσT (r, r′) was defined in Chapter

2 for 3D, 2D and 1D domains and assuming piecewise smooth cross sections (see (2.32),

(2.34) and (2.36) respectively). Throughout this section we will be assuming the cross

sections are globally constant, and so we restate the kernel definitions here in the case

of constant cross sections for reference. Firstly for a 3D domain the kernel is defined

as

kσT (r, r′) ≡
exp (−σT ‖r− r′‖2)

4π ‖r− r′‖22
. (4.26)

Next, over a 2D domain it is defined as

kσT (r̃, r̃′) ≡
exp (−σT ‖r̃− r̃′‖2)

2π ‖r̃− r̃′‖2
. (4.27)

Lastly for a 1D domain it is defined to be

kσT (x, x′) ≡ 1

2
E1(σT

∣∣x− x′∣∣), (4.28)

where E1 denotes an exponential integral function, defined in [1, p.228, (5.1.4)].

In this section we focus our attention on bounding the norm of the operator Kji
for i 6= j. We will prove similar results to Theorems 2.23 and 2.25 (which focussed

on the case i = j), however by assuming convexity of the subdomains we can obtain

tighter bounds. We will see two differences between the bounds in Theorems 4.5 and

4.6 compared to those in Theorems 2.23 and 2.25 respectively. First of all we will
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gain a factor of one half in each bound as a result of using only convex subdomains.

Secondly, in the exponential power for the 2D and 3D bounds we will have the maximum

subdomain diameter (dmax) rather than the diameter of a specific subdomain (e.g.

diam (Vi)).

We first consider the 2D and 3D cases.

Theorem 4.5:

Let V ⊂ Rk, k = 2, 3, be an open connected set, and let V1, V2 be open, connected,

convex and disjoint subsets of V such that V1 ∪ V2 = V . Then the operator Kji :

L2(Vi)→ L2(Vj), defined in (4.25) as

(Kjiϕi) (r) ≡
∫
Vi

ϕi(r
′)kσT (r, r′) dr′, ∀r ∈ Vj ,

for i, j ∈ {1, 2}, i 6= j, with ϕi ∈ L2(Vi) satisfies

‖Kji‖L2(Vi)→L2(Vj)
≤ 1

2σT
(1− exp (−σTdmax)) , (4.29)

where dmax ≡ maxk=1,2{diam (Vk)}, and σT is constant.

Proof.

The argument in this proof is similar to that of Theorem 2.23. As in the earlier proof

we will work in the case V ⊂ R3, with the two dimensional argument being equivalent.

First let ϕi ∈ L2(Vi), then we know

(Kjiϕi) (r) ≡
∫
Vi

kσT (r, r′)ϕi(r
′) dr′, (4.30)

where r ∈ Vj , i 6= j, and the kernel kσT defined as in (4.26). We also know that the

kernel satisfies

kσT (r, r′) > 0,

kσT (r, r′) = kσT (r′, r),
(4.31)

for all r, r′ ∈ V . Taking the norm of Kjiϕi we find

‖Kjiϕi‖2L2(Vj)
=

∫
Vj

∣∣∣∣∫
Vi

kσT (r, r′)ϕi(r
′) dr′

∣∣∣∣2 dr

=

∫
Vj

(∫
Vi

kσT (r, r′)1/2
∣∣ϕi(r′)∣∣ kσT (r, r′)1/2 dr′

)2

dr,
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Figure 4-4: Illustrations of the lengths si, sj and of the set of angles Ur
i .

then using the Cauchy-Schwarz inequality

‖Kjiϕi‖2L2(Vj)
≤
∫
Vj

(∫
Vi

kσT (r, r′)
∣∣ϕi(r′)∣∣2 dr′

)(∫
Vi

kσT (r, r′) dr′
)

dr

≤
(

max
r∈Vj

∫
Vi

kσT (r, r′) dr′
)∫

Vj

∫
Vi

kσT (r, r′)
∣∣ϕ(r′)

∣∣2 dr′ dr

=

(
max
r∈Vj

∫
Vi

kσT (r, r′) dr′
)∫

Vi

∫
Vj

kσT (r, r′) dr
∣∣ϕ(r′)

∣∣2 dr′

≤
(

max
r∈Vj

∫
Vi

kσT (r, r′) dr′
)(

max
r′∈Vi

∫
Vj

kσT (r, r′) dr

)
‖ϕi‖2L2(Vi)

. (4.32)

Rearranging (4.32) we find

‖Kji‖L (L2(Vj))
= sup

ϕi∈L2(Vi)
ϕi 6=0

‖Kjiϕi‖L2(Vj)

‖ϕi‖L2(Vi)

≤
(

max
r∈Vj

∫
Vi

kσT (r, r′) dr′
)1/2

(
max
r′∈Vi

∫
Vj

kσT (r, r′) dr

)1/2

. (4.33)

To get an estimate for (4.33) we first consider∫
Vi

kσT (r, r′) dr′,

with r ∈ Vj . We rewrite this in polar coordinates centred at r, so r′ = r − sΩ, where
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Ω ∈ S2 and s ∈ R+. Since this gives ‖r− r′‖2 = ‖sΩ‖2 = s, recalling (4.26) we now

have that

kσT (r, r′) =
exp (−σT s)

4πs2
. (4.34)

We will need some new notation, namely the distance sj that satisfies,

sj(r,Ω) ≡ max{s ≥ 0 : r− sΩ ∈ V j}. (4.35)

We will also need a new set of angles, denoted Ur
i , which contains all the angles Ω ∈ S2

for which a ray, originating at r /∈ Vi and travelling in direction −Ω, will hit any point

in Vi. This set is defined, for r ∈ Vi, as

Ur
i ≡ {Ω ∈ S2 : ∃s > 0 for which r− sΩ ∈ Vi}. (4.36)

These two objects are represented graphically in Figure 4-4. Using them we can write,

for r ∈ Vj ,

∫
Vi

kσT (r, r′) dr′ =

∫
Ur
i

∫ si

sj

exp (−σT s)
4πs2

s2 ds dΩ

=
1

4π

∫
Ur
i

∫ si−sj

0
exp

(
−σT (s′ + sj)

)
ds′ dΩ.

Here we have used the change of variables s′ = s− sj , and can now just rearrange and

integrate

∫
Vi

kσT (r, r′) dr′ =
1

4π

∫
Ur
i

exp (−σT sj)
∫ si−sj

0
exp

(
−σT s′

)
ds′ dΩ

=
1

4π

∫
Ur
i

exp (−σT sj)
1

σT
[1− exp (−σT (si − sj))]︸ ︷︷ ︸

(∗)

dΩ.

We can bound this above by taking the minimum of the distance sj over angle in the

first exponential. We can also bound (∗) above by taking the maximum of the distance

si − sj , which can be taken as the diameter of Vi, i.e. si − sj ≤ diam (Vi) . This leaves

us with

∫
Vi

kσT (r, r′) dr′ ≤ 1

4π
exp

(
−σT min

Ω∈Ur
i

[sj(r,Ω)]

)∫
Ur
i

1

σT
[1− exp (−σTdiam (Vi))] dΩ.
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Next we use the fact that the subdomains are convex to note that Ur
i is at most a

hemisphere. Thus the angular integral is bounded above by 2π, and so

∫
Vi

kσT (r, r′) dr′ ≤ 1

4π
exp

(
−σT min

Ω∈Ur
i

[sj(r,Ω)]

)
2π

σT
[1− exp (−σTdiam (Vi))] .

Finally since sj can potentially be arbitrarily close to zero, we bound the first expo-

nential term above by one, leaving∫
Vi

kσT (r, r′) dr′ ≤ 1

2σT
[1− exp (−σTdiam (Vi))] .

Therefore we have found that

max
r∈Vj

∫
Vi

kσT (r, r′) dr′ ≤ 1

2σT
[1− exp (−σTdiam (Vi))] , (4.37)

for i 6= j. Returning to (4.33) we can now conclude

‖Kji‖L (L2(Vj))
≤
(

1

2σT
[1− exp (−σTdiam (Vi))]

)1/2( 1

2σT
[1− exp (−σTdiam (Vj))]

)1/2

≤ 1

2σT
[1− exp (−σTdmax)] ,

where

dmax ≡ max
k=1,2

{diam (Vk)}.

Next we give an equivalent result for the 1D case.

Theorem 4.6:

Let V = (xL, xR) ⊂ R, and for some xM ∈ V define two subsets V1 ≡ (xL, xM ) and

V2 ≡ (xM , xR) so that V1 ∪ V2 = V . Then the operator Kji : L2(Vi)→ L2(Vj), defined

in (4.25) as

(Kjiϕi) (x) ≡
∫
Vi

kσT (x, y)ϕi(y) dy, ∀x ∈ Vj ,

for i, j ∈ {1, 2}, i 6= j, with kernel kσT defined in (4.28) and with ϕi ∈ L2(Vi), satisfies

‖Kji‖L2(Vi)→L2(Vj)
≤ 1

2σT
[1− E2(σTdmax)] , (4.38)
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where dmax ≡ max{xM − xL, xR − xM}, E2 is an exponential integral function defined

in Abramowitz and Stegun [1, p.228, (5.1.4)], and σT is constant.

Proof.

We begin in an equivalent manner as the proof of Theorem 4.5. First let ϕi ∈ L2(Vi),

then we have

(Kjiϕi) (x) ≡
∫
Vi

kσT (x, y)ϕi(y) dy, (4.39)

where x ∈ Vj and we are always assuming i, j ∈ {1, 2}, i 6= j, and with

kσT (x, y) ≡ 1

2

∫ 1

0

1

µ
exp

(
−σT
µ
|x− y|

)
dµ. (4.40)

As in higher dimensions, the kernel satisfies

kσT (x, y) > 0,

kσT (x, y) = kσT (y, x),
(4.41)

for all x, y ∈ V . Taking the norm of Kjiϕi we can use identical logic as was used to

find (4.33), and obtain

‖Kji‖L (L2(Vj))
≤
(

max
x∈Vj

∫
Vi

kσT (x, y) dy

)1/2
(

max
y∈Vi

∫
Vj

kσT (x, y) dx

)1/2

. (4.42)

We would now like to estimate the bound in (4.42), and focus to begin with on the

maximum

max
x∈V1

∫
V2

kσT (x, y) dy. (4.43)

We start with the definition of the 1D kernel, (4.40), and use the same change of

variables (x− y = −sµ) as was applied to obtain (2.64) to find

∫
V2

kσT (x, y) dy =
1

2

∫ xR

xM

∫ 1

0

1

µ
exp

(
−σT
µ
|x− y|

)
dµ dy,

=
1

2

∫ 1

0

∫ (xR−x)/µ

(xM−x)/µ
exp (−σT |s|) ds dµ.
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Applying the further change of variables s′ = s− (xM − x)/µ we continue

∫
V2

kσT (x, y) dy =
1

2

∫ 1

0

∫ (xR−xM )/µ

0
exp

(
−σT

(
s′ +

xM − x
µ

))
ds′ dµ

=
1

2

∫ 1

0
exp

(
−σT

(xM − x)

µ

)∫ (xR−xM )/µ

0
exp

(
−σT s′

)
ds′ dµ.

Now we can carry out the integral over s′, and also (remembering that x ∈ V1 ≡
(xL, xM )) extract the maximum value of exp

(
−σT (xM−x)

µ

)
over µ, leaving

∫
V2

kσT (x, y) dy ≤ 1

2
exp (−σT (xM − x))

∫ 1

0

1

σT

[
1− exp

(
−σT

(xR − xM )

µ

)]
dµ

=
1

2σT
exp (−σT (xM − x))

[
1−

∫ 1

0
exp

(
−σT

(xR − xM )

µ

)
dµ

]
.

Lastly we can apply the integral relation (2.59) to be left with∫
V2

kσT (x, y) dy ≤ exp (−σT (xM − x))

2σT

[
1− E2(σT (xR − xM ))

]
. (4.44)

Returning now to (4.43) we note that (4.44) is maximised (over x ∈ V1) at the point

x = xM , and so

max
x∈V1

∫
V2

kσT (x, y) dy ≤ 1

2σT

[
1− E2(σT (xR − xM ))

]
. (4.45)

An identical chain of reasoning yields the complementary bound

max
y∈V2

∫
V1

kσT (x, y) dx ≤ 1

2σT

[
1− E2(σT (xM − xL))

]
. (4.46)

Before returning to the operator norm bound (4.42) we make a final observation that

both (4.45) and (4.46) are bounded above by

1

2σT
[1− E2(σTdmax)] ,

where dmax ≡ max{xM−xL, xR−xM}. This follows from the property given in Remark

2.24 that E2(x) is decreasing for positive x. Combining this with (4.42) we can thus

find that

‖Kji‖L2(Vi)→L2(Vj)
≤ 1

2σT
[1− E2(σTdmax)] ,

as required.
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This bound is very similar to the bound proved in Theorem 2.25 (for the case i = j)

but differs by a factor of one half and has dmax where the earlier bound would have

diam (Vi) (previously denoted L). We discussed the earlier result immediately after

the proof and much of that discussion is also directly applicable to this new result so

will not be repeated. Instead we will simply note once more that E2(x) is a strictly

positive, decreasing function bounded below one for all x > 0 (see Remark 2.24).

4.4.2 Convergence of Jacobi DDSI

We will now use the bounds from Section 4.4.1 to prove convergence of Jacobi DDSI in

1D, 2D and 3D under certain assumptions (see Theorem 4.8). We will require knowledge

of the convergence of a recurrence relation, which is explained in the following remark.

Remark 4.7:

Consider the recurrence relation

xk = αxk−1 + βxk−2,

where α, β > 0, and suppose we want to find conditions such that

lim
k→∞

xk = 0. (4.47)

The series can be rewritten as[
xk

xk−1

]
=

(
α β

1 0

)[
xk−1

xk−2

]
,

and so the series will converge provided the spectral radius of
(
α β
1 0

)
is less than 1. By

solving for the eigenvalues of this matrix, we can see that under the conditions α, β > 0

the spectral radius is less than 1 provided we also have that

α+ β < 1.

Now we can state and prove our main convergence result of this section.

Theorem 4.8:

Let V ⊂ Rk, k = 1, 2, 3, be an open, convex domain with subdomains V1 and V2 that

are open, convex, connected and disjoint, satisfying V = V 1 ∪ V 2. Then Algorithm 5
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(Jacobi DDSI) will converge in 2D and 3D provided

σS
σT

(
1− exp

(
− σTdmax

))
<

2

3
, (4.48)

and will converge in 1D provided

σS
σT

[
1− E2

(
σTdmax

)]
<

2

3
, (4.49)

where dmax ≡ maxi=1,2{diam (Vi)}, E2 is an exponential integral function defined in

Abramowitz and Stegun [1, p.228, (5.1.4)], and the cross sections are constant.

Proof.

In this proof we will mostly work in 3D since the lower dimensional argument is a trivial

extension. Later in the proof when this is not the case we will make the distinction

clear and will present work in both lower and higher dimensions to account for this

difference.

In 3D we are using Algorithm 5 to solve the transport equation as given by

Ω · ∇ψ(r,Ω) + σTψ(r,Ω) = σSφ(r) +Q(r), (4.50)

with r ∈ V ⊂ R3 and Ω ∈ S2, subject to boundary conditions

ψ(r,Ω) = f(r,Ω), ∀r ∈ ∂V, such that n̂(r) · Ω < 0, (4.51)

where f ∈ L2(∂V, L1(S2)). In this proof (as in Section 4.3) subscript i denotes restric-

tion in space to subdomain Vi, e.g. φi is the true solution φ in domain Vi. Let us

denote errors in the neutron flux and scalar flux respectively by

e
(k)
i (r,Ω) ≡ ψi(r,Ω)− ψ(k)

i (r,Ω),

E
(k)
i (r) ≡ φi(r)− φ(k)

i (r),
(4.52)

for i = 1, 2. We first focus on the Jacobi DDSI iterate on subdomain V1, given by (4.8)

in Algorithm 5. Subtracting this from the true transport equation, we can obtain the

following equation for the error in subdomain V1,

Ω · ∇e(k+1)
1 (r,Ω) + σT e

(k+1)
1 (r,Ω) = σSE

(k)
1 (r), (4.53)

where, ∀r ∈ ∂V1 with n̂1(r) · Ω < 0, we impose

e
(k+1)
1 (r,Ω) =

{
e

(k)
2 (r,Ω) if r ∈ Γ12,

0 if r ∈ ∂V1 ∩ ∂V.
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Note that for the error equation the boundary conditions are zero, so Theorems 4.5

and 4.6 are applicable.

Let us define two points, rj(r,Ω) ≡ r − sjΩ, where sj is defined in (4.35). Then

using Corollary 2.3 along with the sets Ur
i defined in (4.36) we can find an equation

for the scalar flux error,

E
(k+1)
1 (r) =

∫
Ur
2

e
(k)
2 (r1,Ω)

exp (−τ(r, r1))

4π
dΩ+

∫
V1

(
σSE

(k)
1

)
(r′)kσT (r, r′) dr′, (4.54)

for r ∈ V1, where

kσT (r, r′) ≡
exp (−σT ‖r− r′‖2)

4π ‖r− r′‖22
, (4.55)

with the optical path length, τ , defined in Definition 2.1. Next we know that e
(k)
2

satisfies

Ω · ∇e(k)
2 (r,Ω) + σT e

(k)
2 (r,Ω) = σSE

(k−1)
2 (r),

where r ∈ V2, and such that, ∀r ∈ ∂V2 with n̂2(r) · Ω < 0,

e
(k)
2 (r,Ω) =

{
e

(k−1)
1 (r,Ω) if r ∈ Γ12,

0 if r ∈ ∂V2 ∩ ∂V.

Therefore, using Lemma 2.2 we know that for Ω ∈ Ur
2

e
(k)
2 (r1,Ω) =

∫
l(r1,r2)

(
σSE

(k−1)
2

)
(r′)exp (−σT ‖r1 − r′‖2) dr′. (4.56)

If we now substitute this back into (4.54), we can use a simpler version of the argument

used in Lemma 4.3 to give

E
(k+1)
1 (r) =

∫
V2

(
σSE

(k−1)
2

)
(r′)kσT (r, r′) dr′ +

∫
V1

(
σSE

(k)
1

)
(r′)kσT (r, r′) dr′, (4.57)

for r ∈ V1. An identical chain of reasoning in subdomain V2 leaves us with

E
(k+1)
2 (r) =

∫
V1

(
σSE

(k−1)
1

)
(r′)kσT (r, r′) dr′ +

∫
V2

(
σSE

(k)
2

)
(r′)kσT (r, r′) dr′, (4.58)

for r ∈ V2. We have previously defined the operator Kji : L2(Vi)→ L2(Vj) in (4.25) as
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(Kjigi) (r) ≡
∫
Vi

kσT (r, r′)gi(r
′) dr′, ∀r ∈ Vj . (4.59)

Using this we can write E
(k+1)
1 and E

(k+1)
2 in operator form as

E
(k+1)
1 (r) = K11

(
σSE

(k)
1

)
+K12

(
σSE

(k−1)
2

)
,

E
(k+1)
2 (r) = K22

(
σSE

(k)
2

)
+K21

(
σSE

(k−1)
1

)
.

Combining these we can obtain the following operator-matrix equation

[
E

(k+1)
1

E
(k+1)
2

]
=

[
σSK11 0

0 σSK22

][
E

(k)
1

E
(k)
2

]
+

[
0 σSK12

σSK21 0

][
E

(k−1)
1

E
(k−1)
2

]
. (4.60)

Going forward, for any x ∈ L2(V1) and y ∈ L2(V2), we will use the following norm

notation ∥∥∥∥∥ x

y

∥∥∥∥∥
2

≡

∥∥∥∥∥ x

y

∥∥∥∥∥
L2(V1)×L2(V2)

=
√
‖x‖2L2(V1) + ‖y‖2L2(V2).

Furthermore we will extend the operator norm notation introduced in Section 2.2.4 so

that for any operatorsAji : L2(Vi)→ L2(Vj) we write ‖Aji‖Lji
≡ ‖Aji‖L (L2(Vi)→L2(Vj))

.

Lastly, for 2x2 operator matrices we specify the norm

∥∥∥∥∥ A11 A12

A21 A22

∥∥∥∥∥
L

≡ sup
‖xy ‖2=1

∥∥∥∥∥ A11x+A12y

A21x+A22y

∥∥∥∥∥
2

.

Using these we see that
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∥∥∥∥∥ 0 A12

A21 0

∥∥∥∥∥
L

= sup
‖xy ‖2=1

∥∥∥∥∥ A12y

A21x

∥∥∥∥∥
2

,

= sup
‖xy ‖2=1

√
‖A12y‖2L2(V1) + ‖A21x‖2L2(V2)

≤ sup
‖xy ‖2=1

√
‖A12‖2L12

‖y‖2L2(V2) + ‖A21‖2L21
‖x‖2L2(V1)

≤ sup
‖xy ‖2=1

[
max

{
‖A12‖L12

, ‖A21‖L21

}√
‖y‖2L2(V2) + ‖x‖2L2(V1)

]
= max

{
‖A12‖L12

, ‖A21‖L21

}
. (4.61)

Using similar logic we also know that∥∥∥∥∥ A11 0

0 A22

∥∥∥∥∥
L

≤ max
{
‖A11‖L11

, ‖A22‖L22

}
. (4.62)

Continuing now with the proof, we take norms of (4.60) and use the triangle inequality

to get

∥∥∥∥∥ E
(k+1)
1

E
(k+1)
2

∥∥∥∥∥
2

≤

∥∥∥∥∥
[
σSK11 0

0 σSK22

][
E

(k)
1

E
(k)
2

]∥∥∥∥∥
2

+

∥∥∥∥∥
[

0 σSK12

σSK21 0

][
E

(k−1)
1

E
(k−1)
2

]∥∥∥∥∥
2

,

and so

∥∥∥∥∥ E
(k+1)
1

E
(k+1)
2

∥∥∥∥∥
2

≤

∥∥∥∥∥ σSK11 0

0 σSK22

∥∥∥∥∥
L

∥∥∥∥∥ E
(k)
1

E
(k)
2

∥∥∥∥∥
2

+

∥∥∥∥∥ 0 σSK12

σSK21 0

∥∥∥∥∥
L

∥∥∥∥∥ E
(k−1)
1

E
(k−1)
2

∥∥∥∥∥
2

.

(4.63)

At this point the result in 1D varies from that in 2D and 3D. We will focus on the 2D

and 3D cases together first, returning to the 1D case afterwards.

Applying (4.61) and using the bound from Theorem 4.5 we have that

∥∥∥∥∥ 0 σSK12

σSK21 0

∥∥∥∥∥
L

≤ max
i 6=j

{
σS ‖Kij‖Lij

}
,

≤ σS
2σT

(
1− exp

(
− σTdmax

))
,
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where we have used the notation dmax ≡ maxi=1,2{diam (Vi)}. In a similar way, apply-

ing (4.62) and using the norm bound in Theorem 2.23, we can say

∥∥∥∥∥ σSK11 0

0 σSK22

∥∥∥∥∥
L

≤ max
i

{
σS ‖Kii‖Lii

}
,

≤ σS
σT

max
i
{1− exp (−σTdiam (Vi))}

≤ σS
σT

(
1− exp

(
− σTdmax

))
.

We now note that (4.63) is simply a recurrence relation, and to simplify the expression

we define

α ≡ σS
σT

(
1− exp

(
− σTdmax

))
,

β ≡ σS
2σT

(
1− exp

(
− σTdmax

))
,

vk ≡

∥∥∥∥∥ E
(k)
1

E
(k)
2

∥∥∥∥∥
2

.

Then from (4.63) we have that

vk+1 ≤ αvk + βvk−1. (4.64)

We know from Remark 4.7 that the associated recurrence relation

xk+1 = αxk + βxk−1, (4.65)

satisfies

lim
k→∞

xk = 0, ∀α, β ∈ R+ such that α+ β < 1. (4.66)

Fixing x1 = v1, x2 = v2, we have that vk ≤ xk for all k ≥ 3. Thus we can say that

lim
k→∞

vk = 0, provided α+ β < 1.

Therefore our condition for convergence can be resolved to
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α+ β < 1

⇒ σS
σT

(
1− exp

(
− σTdmax

))
<

2

3
. (4.67)

This is the condition we were looking for in 2D and 3D, however in 1D the result is a

little different and we will tackle this case now.

Similarly to the 2D and 3D case, we can use the norm bounds in Theorem 2.25 and

Theorem 4.6 to say

∥∥∥∥∥ σSK11 0

0 σSK22

∥∥∥∥∥
L

≤ σS
σT

max
i

{
1− E2

(
σTdiam (Vi)

)}

≤ σS
σT

[
1− E2

(
σTdmax

)]
, (?)

∥∥∥∥∥ 0 σSK12

σSK21 0

∥∥∥∥∥
L

≤ σS
2σT

[
1− E2

(
σTdmax

)]
,

where in obtaining (?) we have referred to Remark 2.24, allowing us to note that

1 − E2(x) is increasing for positive x. Once again we can reformulate (4.63) as a

recurrence relation, vk+1 ≤ α̂vk + β̂vk−1, where this time

α̂ ≡ σS
σT

[
1− E2

(
σTdmax

)]
,

β̂ ≡ σS
2σT

[
1− E2

(
σTdmax

)]
.

Lastly using Remark 4.7 we find the 1D condition for convergence to be

α̂+ β̂ < 1

⇒ σS
σT

[
1− E2

(
σTdmax

)]
<

2

3
, (4.68)

as required.

An immediate consequence of this theorem is that Jacobi DDSI over two convex
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subdomains converges provided the scattering ratio in each subdomain is less than 2/3.

Taking slightly more care we can show that in 2D and 3D Jacobi DDSI over two convex

subdomains will converge provided

dmax <
1

σT
loge(3).

Whilst the conditions in Theorem 4.8 do guarantee convergence of the method, they

are overly strict and in practice the method converges for all tested ranges of scattering

ratio for problems with 2 or more subdomains. Indeed, in Section 4.5 we will explore

the convergence of 2D Jacobi DDSI numerically and will demonstrate convergence over

both a larger range of scattering ratios than predicted by our theory, and also for more

than two subdomains (see the tests in Section 4.5.2). A proof that reflects this observed

robustness of the method has not yet been found.

4.5 Numerical Tests

In this section we will present results from several different numerical experiments.

As in our last two numerical results sections, we consider the problem of numerically

solving the neutron transport equation, subject to zero incoming boundary conditions,

for a 2D spatial domain and a 1D angular domain. As explained in Section 3.5, to carry

out these tests we first discretised the neutron transport equation using discontinuous

Galerkin finite elements in space (see [61], [42]) and discrete ordinates in angle (see

[22], [32, Chapter 9]). A detailed account of this discretisation is given in Chapter 5,

and knowledge of that chapter will be assumed at times during this section. We also

discretised the diffusion equation using continuous finite elements, though we don’t

cover the continuous discretisation in detail. For information on this, see for example

Brenner and Scott [16].

In the first experiments we will numerically confirm our convergence results for

Gauss-Seidel DDSI and Jacobi DDSI: Theorem 4.4 and Theorem 4.8 respectively. We

will see that our results do hold numerically, and in particular that Jacobi DDSI con-

verges under far fewer assumptions than Theorem 4.8 requires. To conclude the chapter

we will show the effectiveness of applying DSA only in subdomains for which it will

have a big effect. To do this we will implement a physically motivated example of a

nuclear fuel storage pool. We will see that this ‘hybrid’ approach allows us to obtain

the benefits of DSA while limiting the added computational cost.
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4.5.1 Verifying Jacobi DDSI Convergence

In this first section we will focus just on numerically confirming the conclusion of

Theorem 4.8, concerning the convergence of Jacobi DDSI (Algorithm 6). This result

proved that 2D Jacobi DDSI applied over a convex domain decomposed into two convex,

connected and pairwise disjoint subdomains will converge provided

3

2

σS
σT

(
1− exp

(
− σTdmax

))
< 1, (4.69)

where dmax ≡ maxi=1,2{diam (Vi)}. Therefore, in our numerical tests when this in-

equality is satisfied we expect Jacobi DDSI to converge, and we should measure an

error ratio less than 1. While this bound will be seen to guarantee convergence, we will

also see that it is overly pessimistic. In Section 4.5.2 we will demonstrate that Jacobi

DDSI converges for a much wider range of problems than we test here.

To test Theorem 4.8 we will solve the transport equation over a square domain de-

composed into two subdomains, and will try varying two quantities separately. Firstly

we will repeat our numerical test in Section 2.7.1 by varying the scattering ratio σS/σT ,

and secondly we will vary the domain diameter but maintain the domain’s square shape.

So first of all we set our domain, V = [0, 1] × [0, 1], and decompose it into two

subdomains: V1 = [0, 0.5] × [0, 1] and V2 = [0.5, 1] × [0, 1]. We set the source, Q, and

total cross section, σT , to be 1. Similarly to our numerical test in Section 2.7.1, we will

vary σA from 0.9 down to -1.5, causing the scattering ratio, σS/σT , to range from 0.1

up to 2.5. Whilst this range of values is not physically realistic, as mentioned in Section

2.7 it can be interpreted as a very basic inclusion of fission and is also theoretically

interesting. For each value we run Jacobi DDSI until it converges to a tolerance of 10−4

or reaches 25 iterations (whichever occurs sooner). We use an initial guess of zero, with

spatial resolutions Mx = My = 16 and angular resolution N = 32.

In Table 4.1 for each value of the scattering ratio (column 1) we have given the

observed error ratio of Jacobi DDSI (column 2) and the value of the left hand side

of the convergence condition, (4.69), which implies convergence for continuous Jacobi

DDSI (column 3).

By comparing columns 2 and 3 it is clear that these results support the conclusion

of Theorem 4.8, since Jacobi DDSI converges for all tested values of the scattering

ratio. It is also clear that the criteria (4.69) is not strict since (in this test at least) for

values of the scattering ratio over roughly one it does not hold, yet Jacobi DDSI still

converges. This result is not unexpected since to derive the convergence criteria we

took several inequalities and imposed several strict assumptions, so there is definitely

scope for improvement.
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Observed Error Convergence
Scattering Ratio of criteria: left

ratio, σS/σT Jacobi DDSI side of (4.69)

0.1 0.075 0.101
0.3 0.204 0.303
0.5 0.297 0.505
0.7 0.373 0.707
0.9 0.440 0.909

1.1 0.505 1.111
1.3 0.568 1.313
1.5 0.629 1.514
1.7 0.689 1.716
1.9 0.748 1.918
2.1 0.807 2.120
2.3 0.865 2.322
2.5 0.922 2.524

Table 4.1: Table of the observed error ratio of Jacobi DDSI and the left hand side of
convergence criteria (4.69) for varying scattering ratio.

For the second test we set our domain, V = [0, D] × [0, D], where D ∈ R+ will

be specified, and decompose it into two subdomains: V1 = [0, D/2] × [0, D] and

V2 = [D/2, D] × [0, D]. We note that for values of the scattering ratio less than

2/3, the inequality (4.69) will always be satisfied regardless of the domain size (since

the exponential is always positive). For this test we will fix the scattering ratio to be

2/3, however we will discuss other choices afterwards. This means the left hand side

of (4.69) will approach 1 as D increases.

We set the source, Q, and total cross section, σT , to be 1, and set the absorption

cross section, σA to be 1/3 (resulting in σS/σT = 2/3). We then vary the parameter D

between 10−2 and 104, causing dmax to vary also since

dmax =
√
D2 + (D/2)2 = D

√
5/2.

For each value we run Jacobi DDSI until it converges to a tolerance of 10−8 or reaches

25 iterations (whichever occurs sooner). We use an initial guess of zero, with spatial

resolutions Mx = My = 16 and angular resolution N = 32. Due to the available

hardware it was not feasible to increase the resolution beyond this point and so the

mesh width for wider domains is very large. Consequently we have not included these

results in Table 4.2 since they are likely to be inaccurate, however we have included

them in Figure 4-5 for illustration.

In Table 4.2 for each value of the domain size parameter, D, (column 1) we have
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Max. subdomain
Domain width diameter, Jacobi DDSI Convergence

and height, D dmax = D
√

5/2 Error Ratio criteria, (4.69)

10−1.0 0.11 0.151 0.115
10−0.5 0.35 0.199 0.321
100.0 1.12 0.360 0.706
100.5 3.54 0.551 0.979
101.0 11.18 0.661 1.000
101.5 35.36 0.681 1.000
102.0 111.80 0.673 1.000

Table 4.2: Table giving the observed error ratio of Jacobi DDSI when applied over
two subdomains, as well as the left hand side of convergence criteria (4.69) for varying
domain width.

given the resulting value of the maximum subdomain diameter, dmax, (column 2) along

with the observed error ratio of Jacobi DDSI (column 3) and the value of the left hand

side of the convergence condition, (4.69), which implies convergence for continuous

Jacobi DDSI when below one (column 4).

Looking at columns 3 and 4 in Table 4.2 it is immediately clear that our theory

is supported since Jacobi DDSI converges over the whole tested range of diameters.

Interestingly we see that actual observed error ratio peaks at about 0.681 before settling

down to 2/3 (the scattering ratio). This is also clear visually in Figure 4-5, which plots

the data from column 3 versus dmax. The peak suggests that taking the scattering ratio

close enough to 1 might induce divergence of the method, however in practice this does

not occur and instead the peak reduces in size enough to not cause divergence.

By fixing the scattering ratio above 2/3 we can cause the criteria (4.69) to be

violated for large enough dmax. However for values of the scattering ratio less than

1 we have always found Jacobi DDSI converges. Consequently we note (as we did

in the first test) that our convergence criteria appears to be overly strict and that

improvements in the theory are likely to exist.

4.5.2 Verifying Gauss-Seidel DDSI Convergence

Our main focus in this section is to numerically support Theorem 4.4: our convergence

result concerning Gauss-Seidel DDSI (Algorithm 8). However, each test will also be

carried out on Jacobi DDSI in order to further demonstrate that it converges for a

wide range of domain decompositions and material data. We will see both methods

converge in all situations that we test.

We will repeat our earlier experiment on full SI from Section 2.7.1 in which we
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Figure 4-5: Figure showing the observed error ratio of Jacobi DDSI for varying subdo-
main diameter, dmax.

solved the transport equation over a square domain, V = [0, 1] × [0, 1], whilst varying

the scattering ratio over the whole domain. However, as an extension to this we will

also vary the number of subdomains that V is decomposed into.

We set the source, Q, and total cross section, σT , to be 1, then we vary σA from

0.9 down to -1.5, causing the scattering ratio, σS/σT , to vary from 0.1 up to 2.5. For

each value we run full source iteration as well as both DDSI algorithms until they

converge to a tolerance of 10−4. We use an initial guess of zero, with spatial resolutions

Mx = My = 8 and angular resolution N = 23.

As mentioned, we will also vary the number of subdomains that the DDSI algorithms

are using, starting with just the square domain, V . We will then divide V into a 2x2

grid of 4 square subdomains, before next subdividing each of these subdomains to yield

a 4x4 square grid (16 subdomains) and then lastly an 8x8 grid (64 subdomains). The

first two refinements are illustrated in Figure 4-6, with the 2x2 grid depicted with solid

lines, and the 4x4 grid with the extra dotted lines. For each level of refinement we will

run the full test varying the scattering ratio for each of our DDSI algorithms, and will

then look at how higher numbers of subdomains impacts the convergence of each of

our DDSI algorithms.

Before presenting the results we will consider what we should expect to see. In

Theorem 4.4 we proved that applying Gauss-Seidel DDSI (Algorithm 8) over a convex

domain decomposed into a finite number of convex, connected and pairwise disjoint

subdomains is equivalent to applying full source iteration (Algorithm 1) over the whole
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Figure 4-6: Illustration of two successive refinements of subdomains: 1x1 (Bold, outer
lines), 2x2 (solid, internal lines) and 4x4 (dotted internal lines).

domain. We would like to observe this equivalence numerically, and so expect to see

identical convergence rates from full SI and Gauss-Seidel DDSI.

In Table 4.3 for each value of the scattering ratio (column 1) we have given the

error ratios for full SI (column 2), Gauss-Seidel DDSI (column 3), and Jacobi DDSI

(column 4). These data are for solves over domain V decomposed into a 4x4 grid of 16

subdomains.

Looking first just at columns 2 and 3 we can see that full source iteration and Gauss-

Seidel DDSI do appear to converge identically, supporting the conclusion of Theorem

4.4. The differences between columns 2 and 3 are in fact of O(10−13), and they remain

of this order for any tested number of subdomains greater than 1. The small difference

is most likely due to rounding error within the computation. When only 1 subdomain

is used, both of our DDSI algorithms are indistinguishable from full source iteration to

machine precision, as we would expect.

Next considering the data in column 4 we can see that Jacobi DDSI (applied over the

square grid of 16 subdomains) also converges over the whole range of tested scattering

ratios, albeit slightly more slowly than the other algorithms. This further demonstrates

the robustness we have observed in this method.

Figure 4-7 contains a plot of the data in Table 4.3 and shows this slower convergence

rate. However it also shows that the error ratios of the three methods get closer together

as the scattering ratio increases. In fact, by trial and error we found that for a scattering

ratio of c.2.775 the three methods all have the same error ratio and begin to diverge.

The slower convergence of Jacobi DDSI stems from how the method handles data

crossing subdomain boundaries. Gauss-Seidel DDSI carefully solves in such a way
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Observed Error Ratio for
Scattering Gauss-Seidel Jacobi

ratio, σS/σT full SI DDSI DDSI

0.1 0.036 0.036 0.390
0.3 0.108 0.108 0.476
0.5 0.180 0.180 0.549
0.7 0.252 0.252 0.605
0.9 0.324 0.324 0.655
1.1 0.396 0.396 0.700
1.3 0.468 0.468 0.742
1.5 0.541 0.541 0.781
1.7 0.613 0.613 0.819
1.9 0.685 0.685 0.855
2.1 0.757 0.757 0.890
2.3 0.829 0.829 0.923
2.5 0.901 0.901 0.956

Table 4.3: Table giving the observed error ratio for full SI, Gauss-Seidel DDSI and
Jacobi DDSI for varying scattering ratios, when used to solve over a domain V decom-
posed into a 4x4 grid of 16 subdomains.

Figure 4-7: Plot of the observed error ratio versus scattering ratio for Jacobi DDSI
(blue, dashed line), Gauss-Seidel DDSI (red boxes, no line) and full SI (black solid
line).
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Figure 4-8: Plot of the observed error ratio for Jacobi DDSI (dashed, blue line), Gauss-
Seidel DDSI (red boxes, no line) and full SI (black solid line) as the number of subdo-
mains is increased.

that data crossing subdomain boundaries always contains information from the current

iteration. In contrast Jacobi DDSI chooses to look at data from the previous iteration,

preventing it from converging at the same rate but allowing it to iterate over the

subdomains in any order it likes. This means however that Jacobi DDSI requires two

full iterations to be stored at all times, a cost that is not incurred by Gauss-Seidel

DDSI. Despite the consistently slower rate of convergence of Jacobi DDSI, its higher

propensity for parallelisation means that by spreading its computational load over many

processors it could ultimately be the fastest method in a practical sense.

As well as varying the scattering ratio, we also varied the number of subdomains

that V was decomposed into. Figure 4-8 plots, for a fixed scattering ratio of 0.5, the

observed error ratios of each method as the number of subdomains is increased. Clearly

full source iteration was not affected by this, and the plot shows that neither was the

convergence rate of Gauss-Seidel DDSI, again supporting the conclusion of Theorem

4.4. On the other hand the convergence of Jacobi DDSI was affected, and we see that

for higher numbers of subdomains it displays a slower rate of convergence. This makes

sense intuitively since Jacobi DDSI’s main weakness is the transfer of data between

subdomains, and for a higher number of subdomains such data transfer is required

more and more. As a final remark we mention that despite exploiting this weakness

to its fullest, we were unable to cause Jacobi DDSI to diverge in a situation where

full SI (or Gauss-Seidel DDSI) converged. Again, this suggests that the criteria of
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Figure 4-9: Dimensions (in metres) for spent fuel pool physical example.

Theorem 4.8 (that guarantees convergence of Jacobi DDSI) are overly restrictive, and

that improvements to this work are very likely to be possible.

4.5.3 Physically Motivated Example: Spent Fuel Pool

To conclude this numerical results section we will consider an example motivated by

real-world spent fuel pools. Over time the uranium fuel that powers nuclear reactors

gets used up and must be replaced. During this replacement, the fuel assembly that

contains the spent fuel is removed and stored for a period of time in a spent fuel

pool. These pools are lined with a material that has a high absorption cross section,

typically steel, and filled with water. The high scattering cross section of water means

that neutrons given off by the spent uranium are very unlikely to reach the surface of

the pool since they undergo so many scattering interactions, and consequently lose all

their energy before being absorbed.

We will model a 2D cross-sectional representation of a real world pool, with di-

mensions of 24m by 16m. This pool will have a 2m thick shield along the base and

sides, and will contain a 12m by 6m neutron source. A diagram visualising the spatial

domain is given in Figure 4-9 and includes dimensions (in metres). We will assume for

simplicity that the shield is made entirely of stainless steel, and the cross sectional data

we will use is given in Table 4.4. This data was provided by AMEC Foster Wheeler,

and is for neutrons at a specific thermal (low) energy. We will assume the cross sections

in the source region are the same as those in the shield, as is done in [47], and we will

set the source to one so that it is of the same order as the cross sections.

From our theory in Chapter 2 we expect the high scattering ratio of water to

cause source iteration to converge very slowly when modelling such a system. Our

work in Chapter 3 tells us that using DSA is one method of mitigating against this

slow convergence, however it is also a more computationally expensive method per
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Cross section (cm/s)
Material Absorption Scatter

Water 0.02222 3.75922
Stainless Steel 0.24216 0.88442

Table 4.4: Material data for the spent fuel pool physical example. Data provided by
AMEC Foster Wheeler for a specific thermal (low) energy.

iteration. If the poor performance of SI is caused by only certain parts of the domain,

it would be economical to apply DSA only in those parts of the domain and continue

to use SI elsewhere.

To model this problem we will decompose the spatial domain into 15 subdomains,

indicated by the grid lines in Figure 4-9. We will solve using a hybrid version of our

Gauss-Seidel domain decomposition method in which we are able to ‘switch on’ DSA

in any subdomain we like whilst still applying source iteration in the other subdomains

(we will refer to this as the Gauss-Seidel SI-DSA algorithm). We will test five different

arrangements of these DSA subdomains:

(i) DSA applied in no subdomains, which is equivalent to Gauss-Seidel DDSI (Algo-

rithm 8);

(ii) DSA applied only in subdomains that contain water (region 2);

(iii) DSA applied only in the subdomain containing the source (region 1);

(iv) DSA applied in both the water and source subdomains (regions 1 and 2);

(v) DSA applied in every subdomain.

These numeral identifiers will be referred to in Table 4.5 and Figure 4-10, as well as in

the text for the remainder of this section.

Before moving on we will discuss briefly the motivation behind the choices (i)-

(v). Firstly, methods (i) and (v) are the two extreme cases and have been included

not only so that we can examine their characteristics, but also to act as benchmarks

against which the other methods can be compared. Method (ii) applies DSA in only

the subdomains where water is present, and will allow us to see that the high scattering

ratio of water is not the sole cause of source iterations poor performance in this exam-

ple. Method (iv) builds upon method (ii) by further applying DSA in the subdomain

containing the source. We will see that it is the method that captures most of the

convergence behaviour of method (v) where DSA is applied everywhere, but manages

to do so at a lower computational cost. Lastly method (iii) sits between methods (ii)
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and (iv), and applies DSA only in the region containing the source. This will help us

account for the different behaviours we will observe between methods (ii) and (iv).

In this experiment we will run each method for 50 iterations and will measure the

error at each iteration with respect to a reference solution as well as the time taken

to complete the iterations. This reference solution was obtained by running method

(ii) for over 3000 iterations until the residual norm was varying by no more than 10−10

between successive iterations. We will solve over a regular triangular mesh of the form

in Figure 5-1, with spatial resolutions Mx = 12 and My = 8, and angular resolution

N = 28. This mesh size causes the element edges to line up exactly with the internal

material interfaces of the domain.

We expect that applying DSA in a subdomain will only ever improve upon or

maintain the rate of convergence of Gauss-Seidel SI-DSA. However, by measuring the

time taken for each version of Gauss-Seidel SI-DSA we should see that applying DSA

in more subdomains means the algorithm takes more time per iteration. Our aim is

to find that by applying DSA only in those subdomains where it is necessary, we can

suffer a minimal loss of convergence rate and yet take a significantly shorter amount of

time to converge than if we had applied DSA in every subdomain. This would allow us

to draw a balance between the simplicity of source iteration and the power of diffusion

synthetic acceleration.

Table 4.5 lists the observed error of each implemented version of Gauss-Seidel SI-

DSA, (i)-(v), at all even-numbered iterations. This data is also given graphically in

Figure 4-10. Immediately it is clear that all methods perform better than case (i) in

which only source iteration is used. This supports the expectation that applying DSA

in a subdomain only ever improves the method, however we also see from the remaining

four methods that the story is not as simple as more DSA implies faster convergence.

We start by comparing methods (i), no DSA, and (ii), DSA only in region 2; these

are the solid (black) line and dotted (blue) line respectively in Figure 4-10. We observe

that for the first 20 iterations they perform almost identically, but that the convergence

rate of method (i) slows down before that of method (ii). Ultimately both methods

suffer this slow-down, however they do so at different values of the error. In fact by

about iteration 35, method (ii) has roughly the same error and rate of convergence

as method (v) in which DSA was applied in all subdomains. A possible cause of the

behaviour exhibited by method (i) is that initially it is resolving errors that exist in

non-diffusive regions of the domain, over which it performs reasonably well. However

after iteration 20-25 the errors resulting from the diffusive regions dominate and so the

pure source iteration method is unable to resolve them quickly, leading to the observed

slow down of the convergence ratio. Conversely method (ii) is equipped to handle this
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Error at each iteration for GS SI-DSA
Iteration (i) (ii) (iii) (iv) (v)

2 589.654 591.955 18.363 211.234 212.062
4 362.445 364.048 6.004 7.380 6.641
6 222.817 223.870 4.164 3.299 2.665
8 137.005 137.678 3.253 2.239 1.914
10 84.268 84.679 2.833 1.713 1.566

12 51.863 52.091 2.638 1.465 1.404
14 31.963 32.054 2.534 1.347 1.323
16 19.762 19.741 2.465 1.284 1.275
18 12.313 12.181 2.409 1.242 1.239
20 7.813 7.553 2.359 1.210 1.208

22 5.157 4.739 2.311 1.180 1.180
24 3.660 3.056 2.265 1.153 1.153
26 2.874 2.084 2.221 1.127 1.127
28 2.486 1.556 2.177 1.101 1.101
30 2.295 1.288 2.134 1.077 1.077

32 2.193 1.158 2.092 1.053 1.053
34 2.126 1.090 2.051 1.029 1.029
36 2.075 1.049 2.011 1.006 1.006
38 2.031 1.020 1.972 0.984 0.984
40 1.990 0.995 1.934 0.962 0.962

42 1.951 0.972 1.897 0.941 0.941
44 1.913 0.950 1.860 0.920 0.920
46 1.876 0.929 1.824 0.900 0.900
48 1.840 0.908 1.790 0.880 0.880
50 1.804 0.888 1.755 0.861 0.861

Table 4.5: Table giving the observer error at each iteration when using five different
versions of the Gauss-Seidel SI-DSA algorithm (methods (i)-(v)) to solve the spent fuel
pool example.
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Figure 4-10: Plot of the observed error when running five different versions of the
Gauss-Seidel SI-DSA algorithm to solve the spent fuel pool example. Using the numeral
identifiers defined in this section, the data presented are (i) black solid line, (ii) blue
dotted line, (iii) magenta crosses (no line), (iv) green circles (no line), and (v) red
dashed line.

diffusive behaviour and so is able to maintain the higher rate of convergence until it

‘catches up’ with method (v).

Next we notice that methods (iii), (iv) and (v) exhibit a much faster initial rate of

convergence, and a common link between these methods is that they all apply DSA

in the subdomain containing the source. In fact method (iii) manages the faster rate

of convergence by only applying DSA in this subdomain. To explain this we need

to know that the subdomain containing the source also has the highest levels of the

neutron flux, which makes sense physically. These high flux values lead to a high value

of the error which the faster DSA algorithm is able to resolve more quickly than basic

source iteration. Consequently, despite it not being the most diffusive, the source region

accounted for much of the error in the domain and so applying a faster method there

had the greatest impact on overall convergence rate.

By iteration 10 we start to see method (iii) suffer the same slowing of its rate of

convergence as method (i) does by iteration 30. This fits in with our above explana-

tion for method (i) since method (iii) is similarly ill-equipped to handle the diffusive

behaviour presented by the water in region 2. By iteration 35 we see that methods (i)

and (iii) have roughly the same error and rate of convergence.

Lastly we can compare methods (iv) and (v) and notice that they behave almost
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Version of GS SI-DSA
Time in seconds (i) (ii) (iii) (iv) (v)

per iteration (average) 5.3 10.4 6.5 13.8 16.0

to converge to error = 101 100.2 197.8 19.4 55.0 64.0

Table 4.6: Table giving the time (in seconds) taken by the five different versions of
the Gauss-Seidel SI-DSA algorithm, (i) - (v), to complete one iteration, and also to
converge to an error of 101.

identically. This implies that method (iv) has not suffered a reduced rate of convergence

by applying DSA only in the water and source regions.

We turn now to Table 4.6 in which we list the average time each method took to

complete one iteration, along with the time each method took to resolve the solution

to an error less than 101. Focussing first on just the ‘per iteration’ measure we see

that as expected method (i) took the shortest time to complete each iteration, however

method (iii) was similarly very quick taking only a second longer. The remaining three

methods took 2-3 times longer, with method (v) taking the longest.

Next looking at the last row of Table 4.6 we see that despite being quickest per

iteration, method (i) was the second slowest to achieve an error below 101. The slowest

method was (ii), where the inability to quickly resolve the error occuring in the source

region meant many more iterations were needed. The three methods which applied

DSA in the source region (methods (iii), (iv) and (v)) were the fastest to achieve an

error below 101. Of these three, method (iii) was the fastest taking only 19 seconds

with method (iv) the next fastest taking 36 seconds longer. These three methods were

the ones which applied DSA in the source region. This suggests that a good strategy to

choose where in the domain to apply DSA might be to focus first on regions which will

contribute the most to the error. Once the error in these areas is judged to have reduced

far enough, DSA could then be extended to diffusive areas. We did not implement such

a method, however it would be an interesting next step.

Conclusions

The observed gain in efficiency was achieved simply by applying the appropriate method

to each area of the domain. This is a very general idea, and the domain decomposed

algorithms presented in this chapter could also be extended to apply other iterative

methods in select subdomains, not just DSA. For example, in [75] Warsa et. al. con-

sider how the effectiveness of multidimensional DSA is degraded by the presence of

discontinuous material properties. They note that applying DSA as a preconditioner

to a Krylov method overcomes this degradation. It is possible that the additional
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cost of this preconditioned Krylov method could be limited, without losing out on its

benefits, by applying it only within subdomains that contain discontinuous material

properties.

It was also the case that applying a faster method to areas with higher flux greatly

improved the rate of convergence. In many cases it is straightforward to predict where

‘hotspots’ like this might (or will) occur. In these cases, pre-emptively applying a

faster method, such as DSA, to subdomains containing those areas could be a simple

and economical way of reducing the computational time required for the calculation.
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Chapter 5

Finite Element Method for the

Steady Neutron Transport

Equation

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.2 Discontinuous Galerkin Finite Element Method . . . . . . . 161

5.2.1 The Steady Neutron Transport Equation with Constant Angle 161

5.2.2 The Steady Neutron Transport Equation . . . . . . . . . . . 164

5.2.3 Error Calculation . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.1 Introduction

In this chapter we will describe how we discretised the steady 2D transport equation,

which comprises of two spatial dimensions and one angular dimension. This will be

done using discontinuous Galerkin finite elements in space and discrete ordinates in

angle.

A discontinuous finite element scheme is required since using a continuous scheme

leads to unphysical oscillations arising in the solution, see for example T. Bennison

[13, Section 1.4.2], Buchan et. al. [18], and for a 1D demonstration of these oscilla-

tions see [36, Section 1.1]. These oscillations occur for problems containing interior

or boundary layers when continuous methods are used with mesh widths too coarse

to resolve the layer. One way of overcoming this issue is the so-called Streamlined

Upwind Petrov-Galerkin method, in which artificial diffusion is encorporated into the
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equation to damp out the oscillations [13]. However the approach taken in this thesis is

to use a discontinuous Galerkin finite element method to discretise in space, since this

method does not require any additional stabilisation, and oscillations are localised only

around the boundary layer itself. The main disadvantage to a discontinuous method

is the increased number of degrees of freedom which can lead to very large systems of

equations.

Discontinuous Galerkin finite element methods (DG FEM) were first developed by

Reed and Hill [61] in 1973 for use in solving the steady-state neutron transport equation.

The convergence of the method was subsequently analysed in 1974 by LaSaint and

Raviart [56], before being improved upon by Johnson and Pitkäranta in 1986 [43].

They showed that for hyperbolic problems with nth degree polynomial basis elements,

the DG FEM method has an error of order O(hn+1/2), where h is the mesh width.

In practice the better rate of O(hn+1) is often observed [63], though examples can be

constructed showing that O(hn+1/2) is sharp (see [58]).

We start in Section 5.2.1 by discretising the transport equation in space, treating

angle as a constant. Once this is accomplished, in Section 5.2.2 we allow angle to vary

once more and obtain a fully discrete version of the transport equation. Finally in

Section 5.2.3 we explain how errors in the approximate scalar flux are calculated in our

numerical results sections at the end of Chapters 2, 3 and 4.

To complete this discretisation we referred to the papers mentioned above, as well

as Johnson and Pitkäranta, 1983, [42] who give a very clear application of the method

to a model problem. We will focus on using linear basis elements (n = 1) over a

triangular mesh on a rectangular domain.

5.2 Discontinuous Galerkin Finite Element Method

5.2.1 The Steady Neutron Transport Equation with Constant Angle

In this section our aim is to discretise the steady 2D transport equation, as given in

(2.8) with zero incoming boundary conditions ((2.9) where f = 0). However to begin

with we will take angle, Ω, to be constant, and consider how to discretise the equation

Ω · ∇ψ(r) + σT (r)ψ(r) = g(r), (5.1)

with r ∈ V ⊂ R2, g ∈ L2(V ), and Ω ∈ S1 constant. The neutron flux, ψ, is subject to

the incoming boundary condition

ψ(r) = 0 if Ω · n̂(r) < 0,∀r ∈ ∂V, (5.2)
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where n̂(r) is the outward unit normal to ∂V at r.

To solve this we use discontinuous Galerkin finite elements, following the method

described in [42] and references therein. We start by dividing the spatial domain into

a mesh of triangular elements, as shown in Figure 5-1.

Figure 5-1: Diagram of the spatial mesh that we will apply.

The set of all elements is denoted by Ch, where h specifies the mesh width: the

maximum side length of any element. For each element, τ ∈ Ch, we define their inflow

and outflow boundaries respectively as

∂τ− ≡ {r ∈ ∂τ : n̂τ (r) · Ω < 0} ,
∂τ+ ≡ {r ∈ ∂τ : n̂τ (r) · Ω > 0} ,

(5.3)

where n̂τ (r) denotes the outward unit normal to τ at r.

We will use the following finite element space

Vh ≡ {vh ∈ L2(V ) : vh|τ is linear ∀τ ∈ Ch} , (5.4)

containing possibly discontinuous piecewise linear functions on V . Before we specify

the discrete problem to be solved, we need one final bit of notation. For r ∈ ∂τ we

define

ψ±h (r) = lim
ε→0±

ψh(r + εΩ), (5.5)

and

ψ−h (r) = 0 if r ∈ ∂V with n̂(r) · Ω < 0. (5.6)

With this notation we specify our problem by saying that we seek a ψh ∈ Vh such that
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∫
τ
(Ω · ∇ψh + σTψh)vh dr−

∫
∂τ−

(Ω · n̂τ (r))
(
ψ+
h − ψ

−
h

)
vh dr =

∫
τ
gvh dr, (5.7)

for all vh ∈ Vh and for all τ ∈ Ch.

Next, to form the stiffness matrix and load vector we need to define basis functions

on each element. First let us number the corners of each element τ from 1 to 3, starting

in the lower left-most corner and moving anticlockwise. We can therefore use the double

index τi to refer to the node belonging to element τ and lying in its ith corner, and

say that rτi ∈ V is the coordinate of that node. In a similar way, we say that the basis

function ϕτi ∈ Vh is the ith basis function of τ , and is such that

ϕτi (rτi) = 1,

ϕτi (rτj) = 0 j 6= i,

ϕτi (r) = 0 ∀r ∈ τ̂ ∈ Ch, where τ̂ 6= τ.

(5.8)

Substituting these basis functions into the integrals in (5.7) we can define the following

matrices

T int
τi,τj ≡

∫
τ
(Ω · ∇ϕτj )ϕτi dr +

∫
τ
σTϕ

τ
jϕ

τ
i dr, (5.9)

T face
τi,τj ≡ −

∫
∂τ−

(Ω · n̂τ (r))ϕτjϕ
τ
i dr, (5.10)

T face
τi,τ̂ j ≡

∫
∂τ−

(Ω · n̂τ (r))ϕτ̂jϕ
τ
i dr, (5.11)

where τ̂ 6= τ , as well as the vector

Lτi ≡
∫
τ
gϕτi dr, (5.12)

for all τ, τ̂ ∈ Ch. Next we say that

T =
∑
τ∈Ch

3∑
i,j=1

[
T int
τi,τj + T face

τi,τj

]
+
∑

τ,τ̂∈Ch
τ 6=τ̂

3∑
i,j=1

T face
τi,τ̂ j (5.13)

and

L =
∑
τ∈Ch

3∑
i=1

Lτi. (5.14)

If we define M ≡ 3 |Ch|, where |Ch| denotes the number of elements in Ch, then we
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have that T ∈ RM×M and L ∈ RM×1. This leaves us with the matrix-vector system to

be solved

TΨ = L, (5.15)

where Ψ ∈ RM×1 is a vector of unknowns whose τith entry approximates ψ(rτi).

5.2.2 The Steady Neutron Transport Equation

Up until this point we have treated angle as a constant, whereas in the 2D transport

equation it is a variable lying in the 1-sphere: Ω ∈ S1. To discretise in angle we will

use discrete ordinates, and divide the angular domain into N discrete points

Ω1, . . . ,ΩN ∈ S1,

with associated weights

ω1, . . . , ωN .

These are chosen via an appropriate quadrature rule, and a simple example would be

using the trapezoidal rule to approximate a 1D integral. By dividing the domain, say

[a, b] ⊂ R, into N equally spaced points via a = x1, . . . , xN = b, we can approximate

the integral of a function f over [a, b] using the trapezoidal rule via

∫ b

a
f(x) dx ≈ h

2
f(x1) + h

N−1∑
k=2

f(xk) +
h

2
f(xN ),

where h = (b − a)/(N − 1) is the mesh width. Here the quadrature points are xi and

the quadrature weights are either h or h/2.

Different types of quadrature are appropriate for different functions and domains,

and a good discussion of appropriate choices of quadrature for the neutron transport

problem is given by Johnson and Pitkäranta in [42, Section 4]. For notational com-

pleteness, we will denote by U the set of all discrete angles, and by W the set of all

associated weights, i.e.

U = {Ω1, . . . ,ΩN}
W = {ω1, . . . , ωN} .

(5.16)

Remark 5.1:

Johnson and Pitkäranta note [42, Example 4.1] that a natural choice of quadrature over

the 1-sphere is
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U =

{
cos

(
2πj

N

)
, sin

(
2πj

N

)}N
j=1

,

with weights ωi = 2π/N for all i ∈ {1, . . . , N}. It is this set of points and weights that

we use for quadrature during our numerical experiments throughout this thesis.

Furthermore, Johnson and Pitkäranta prove convergence of discontinuous Galerkin

finite elements applied to the 2D neutron transport equation provided the spatial and

angular resolutions are properly related. For the quadrature choice stated above, it is

sufficient to impose the condition

N =

⌈
8
√

max {Mx,My}
⌉
,

as we do for the numerical results throughout this thesis. The factor of 8 is included to

ensure a reasonable angular resolution even for coarse spatial grids.

We know that for each angle (i.e. k = 1, . . . , N) we have to solve a system of the

form

Ωk · ∇ψ(r,Ωk) + σT (r)ψ(r,Ωk) = g(r), (5.17)

and in our discrete form, we will write this as the matrix-vector equation

T kΨk = L. (5.18)

For a known right hand side we can solve this system for each angle Ωk, k = 1, . . . , N ,

and obtain the associated approximations Ψk to the neutron flux ψ(r,Ωk). However

the transport equation we are trying to solve is given by (2.8), and so the right hand

side function, g(r), is in fact

g(r) ≡ σS(r)φ(r) +Q(r), (5.19)

where the scalar flux is unknown, but is coupled to the neutron flux by averaging over

angle. Note that we are taking the source term to be independent of angle. To include

this into our system we start by defining the new matrix

Sint
τi,τj ≡

∫
τ
σSϕ

τ
jϕ

τ
i dr. (5.20)

as well as the vector

Qτi ≡
∫
τ
Qϕτi dr, (5.21)

for all τ ∈ Ch. In a similar way to above, we then say that
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S =
∑
τ∈Ch

3∑
i,j=1

Sint
τi,τj , (5.22)

and

Q =
∑
τ∈Ch

3∑
i=1

Qτi, (5.23)

with S ∈ RM×M and Q ∈ RM×1. With these we can say that for any angle, Ωk, we are

solving the matrix-vector equation

T kΨk − SΦ = Q, (5.24)

where Φ denotes the discrete scalar flux, such that the τith element of Φ approximates

φ(rτi) for all τ ∈ Ch, i = 1, 2, 3.

To incorporate all angles, we can instead write that we aim to solve the block

diagonal system 
T 1

. . .

TN




Ψ1

...

ΨN

−

SΦ
...

SΦ

 =


Q
...

Q

 . (5.25)

Lastly, we want to relate the discrete neutron flux and scalar flux via their integral

relationship, which in the continuous case is

φ(r) =
1

2π

∫
S1
ψ(r,Ω) dΩ.

We can approximate this integral with a weighted quadrature summation using the

weights, ωk, associated with each angle, Ωk. Hence we obtain

Φ =
1

2π

N∑
k=1

ωkΨ
k.

To incorporate this into our block diagonal matrix form of the transport equation, we

define the diagonal matrices W k ∈ RM×M to be

W k ≡ 1

2π


ωk

. . .

ωk

 , (5.26)

for k = 1, . . . , N . Then
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Φ =
[
W 1 . . . WN

] 
Ψ1

...

ΨN

 ,
and so we can rewrite our block diagonal matrix equation, (5.25), to utilise this as

follows 
T 1 −S

. . .
...

TN −S
−W 1 . . . −WN I




Ψ1

...

ΨN

Φ

 =


Q
...

Q

0

 . (5.27)

This is a discrete version of the 2D transport equation, and has a similar form to the

block operator transport equation seen in Chapter 3, equation (3.112). We note that

in practice this matrix is rarely constructed, and instead so-called matrix free methods

are usually implemented as they are more efficient.

5.2.3 Error Calculation

We conclude this chapter with an explanation of how we calculate the errors in our

numerical tests at the end of Chapters 2, 3 and 4. When we refer to the error in an

approximate solution we mean the L2-norm of the difference between the approximate

and true solutions. We calculate this using a quadrature rule as follows.

We denote by τk the kth element of the mesh, and define |τk| to be the area of

the kth element. Also, let mk
1,m

k
2 and mk

3 be the three midpoints of the edges of τk

(see Figure 5-2), and use ΦA and ΦT to denote the approximate and true solutions

Figure 5-2: Midpoints, mk
1,m

k
2 and mk

3 for a standard mesh element, τk.
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respectively. Then we calculate the error, ‖ΦT − ΦA‖2, as follows

‖ΦT − ΦA‖22 =

|Ch|∑
k=1

|τk|
3

3∑
j=1

(
ΦT (mk

j )− ΦA(mk
j )
)2
.

In practice the values of ΦA and ΦT at the midpoints are found by assuming they are

piecewise-linear on each element, τ , and then extrapolating.
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Chapter 6

Summary and Directions for

Future Research

In this thesis we have studied the monoenergetic, steady-state neutron transport equa-

tion without fission and with isotropic cross sections and isotropic source. Our work

was split into three parts:

• Chapter 2: the convergence of source iteration applied to the transport equation,

• Chapter 3: the derivation and application of a diffusion approximation to the

scalar flux,

• Chapter 4: the development and convergence of two different domain decompo-

sition source iteration algorithms.

In this concluding chapter we will summarise and review the outcomes of each of these

three points of focus.

Firstly in Chapter 2 we derived the solution operator, KσT , assuming piecewise

smooth cross sections in space. We proved that this was compact and positive-definite,

before proving a bound on the norm of a scaling of this operator in Theorem 2.14. This

result was instrumental in allowing us to prove a new result, Theorem 2.21, confirm-

ing the convergence of source iteration when applied to the transport equation with

piecewise smooth material data. Theorem 2.21 suggests that the rate of convergence

of source iteration is bounded in terms of the maximum norm of the scattering ratio,

‖σS/σT ‖∞.

Next we proved new bounds on the norm of KσT under the assumption of constant

cross sections, namely Theorem 2.23 in 2D and 3D, and Theorem 2.25 in 1D. These

bounds are tighter than the previous bound in Scheben [67], and they enabled us to
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provide a new bound on the rate of convergence of source iteration with constant cross

sections in Corollary 2.26. The chapter concluded by numerically verifying our new

theory in a 2D setting.

In Chapter 3 we focussed on a specific diffusion equation that can be used to obtain

an approximation to the scalar flux. This approximation is well known in the litera-

ture, and in 1975 Habetler and Matkowsky [34] used a matched asymptotic expansion

method to derive the diffusion approximation and suitable boundary conditions in 1D.

Whilst this paper is classical and comprehensive, it carries out a complicated analy-

sis in a relatively short text. Due to this we begin in Section 3.2 by carrying out a

thorough matched asymptotic derivation of the diffusion approximation and appropri-

ate boundary conditions, which we think constitutes a useful addition to the existing

literature.

In Section 3.3 we outlined general synthetic acceleration algorithms, and stated the

well known diffusion synthetic acceleration (DSA) algorithm. We also touched upon

how DSA has been formulated as a preconditioner to source iteration, and how this

opened the door to applying the same preconditioner to other iterative methods.

Next in Section 3.4 we proved two main results which allowed us to use a novel block

operator argument to show the link between the transport equation and the diffusion

approximation. Firstly we proved in Theorem 3.5 that the diffusion approximation is a

scaling of a Schur complement operator that arises from manipulating a block operator

form of the transport equation. Then in Theorem 3.9 we showed that in a certain limit,

a scaling of the solution operator KσT tends to the identity operator. Together these

two results allowed us to conclude the section by deriving (in block operator form) the

DSA algorithm from the source iteration algorithm. Theorems 3.5 and 3.9 relied both

upon the asymptotic work from Section 3.2 and on several restrictive assumptions.

Nonetheless future efforts to make this theory more independent could be very useful

in developing our understanding of the diffusion equation and of DSA. We concluded

Chapter 3 by exploring the DSA algorithm numerically and comparing its convergence

to that of source iteration.

In Chapter 4 we turned our attention to domain decomposition methods. We

began in Section 4.2 by specifying two different domain decomposed source iteration

(DDSI) algorithms: Jacobi DDSI in Algorithm 6 and Gauss-Seidel DDSI in Algorithm

8. Firstly, in Jacobi DDSI we ensured that when solving over any subdomain, only

information from previous iterations on neighbouring subdomains was needed. This

method maintains a high potential for parallelisation and allows for the domain to be

decomposed into subdomains of any shape. However it also requires data from two

iterations to be stored at all times, and results in a slower rate of convergence than
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full source iteration. We examined this rate of convergence in Section 4.4 where we

derived a convergence criterion for Jacobi DDSI applied over a domain decomposed

into two convex subdomains (Theorem 4.8). This criterion was very restrictive, but

in Section 4.5 we saw that in practice Jacobi DDSI converged for all tested arrays of

many subdomains and for the same range of material data for which Gauss-Seidel DDSI

converged.

Conversely, Gauss-Seidel DDSI was focussed towards carrying information through

the subdomains during each iteration. It achieved this by solving the subdomains in

what we referred to as an appropriate order for each angle. Taking care of the flow of

information in this way means that Gauss-Seidel DDSI is less suited to parallelisation

than Jacobi DDSI. However it only requires the current iteration to be stored at any

time, and it maintains all of the convergence behaviour of full source iteration. In fact

in Section 4.3, Theorem 4.4, we proved that Gauss-Seidel DDSI applied over a convex

domain decomposed into a finite number of convex subdomains was equivalent to the

full source iteration algorithm applied over the same domain. This result is important

because it tells us that by applying Gauss-Seidel DDSI we are essentially still using full

source iteration, however now we have the freedom to treat each subdomain differently.

In Section 4.5 we explored this option through the physically motivated example of

a spent fuel pool. We saw that using the Gauss-Seidel DDSI algorithm but applying

DSA in certain subdomains we were able to greatly reduce the time taken to converge

to the same error as either full DSA or full source iteration.

To summarize, in this thesis we have improved the existing convergence theory

for the fundamental source iteration algorithm, have extended the range of problems

over which it can be proved to converge and tightened the bounds on its rate of con-

vergence. We have given a thorough derivation of the diffusion approximation and

associated boundary conditions, and explored a potential new approach to seeing the

link between the transport equation and the diffusion approximation. We have also

provided two domain decomposition source iteration algorithms with fundamentally

different approaches and associated advantages. For these, we have also carried out

convergence analysis which can provide a foundation from which the analysis of other

domain decomposition algorithms may develop.

We end by providing some potential future research directions that have become

clear whilst carrying out this work:

• The convergence analysis in Chapter 2 could be extended to include the effects

of fission. Also, more degrees of freedom could be incorporated by allowing for

more than one energy group.
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• The block operator approach for deriving DSA given in Section 3.4 could be

developed by relaxing the smoothness assumptions of Theorem 3.5, allowing it to

apply to more physically realistic problems. It could also be made self-contained

with less reliance upon the asymptotic work of Habetler and Matkowsky [34]

(see Section 3.2). This would allow the approach to be applied outside of the

assumptions for diffusivity.

• The convergence theory for Jacobi DDSI could be developed to allow for higher

numbers of possibly concave subdomains. Also, the approximations required by

this theory could be reduced (or improved upon) so that the resulting criteria

for convergence more closely reflect the observed robustness of the Jacobi DDSI

method in practice.

• A domain decomposition algorithm that results from combining the approaches of

the two domain decomposition algorithms presented here could be investigated.

Specifically one could allow the subdomains to be solved in any order, but always

use the most up to date information to impose the internal boundary conditions.

Such an approach has been implemented in a simple manner before (see [77]) but

never thoroughly analysed. It has the potential to maintain the parallelisation

options of Jacobi DDSI whilst minimising its loss of convergence rate and reducing

the required storage of iterates.

• The preconditioned Krylov DSA method of Warsa et. al. [75] could be combined

with the domain decomposition approach outlined in Chapter 4. This might allow

subdomains to contain highly discontinuous cross sections without suffering the

degraded effectiveness of DSA known to occur in such situations. It could also

limit the cost of applying a preconditioned Krylov method over the whole domain.
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Appendix A

Appendices

Contents

A.1 Solving a Homogeneous Integro-Differential Equation via

Separation of Variables . . . . . . . . . . . . . . . . . . . . . . 173

A.2 Fourier Integral Theorem and other results . . . . . . . . . . 177

A.1 Solving a Homogeneous Integro-Differential Equation

via Separation of Variables

In this section we will consider a homogeneous integro-differential equation given by

µ

σ̂T

∂

∂x
f(µ, x) + f(µ, x) =

c

2

∫
[−1,1]

f(µ, x) dµ, (A.1)

where c > 0 is some scalar. We will see that different behaviour is observed for c < 1,

c = 1 and c > 1, and will derive general solutions to this equation for the cases c = 1

and c 6= 1. It is the case when c = 1 that is of interest in Section 3.2.3. We proceed

via separation of variables, and define

f ≡ χ(x)M(µ). (A.2)

Substituting this into (A.1) we can obtain

d
dxχ(x)

χ(x)
=

σ̂T c

2µM(µ)

∫
[−1,1]

M(µ) dµ. (A.3)

Setting both sides equal to some separation constant, say −1/ν, we find that
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χ(x) = αe
−x
ν , (A.4)

so we are searching for solutions of the form

f = αMν(µ)e
−x
ν . (A.5)

Here ν is often referred to as an eigenvalue with corresponding eigenfunction, Mν(µ).

Using (A.5) in (A.1) we find that[
1− µ

νσ̂T

]
Mν(µ) =

c

2

∫
[−1,1]

Mν(µ) dµ. (A.6)

Since Mν(µ) is an eigenfunction, we can normalise it so that∫
[−1,1]

Mν(µ) dµ = 1, (A.7)

and so (A.6) becomes

Mν(µ) =
c

2

νσ̂T
νσ̂T − µ

for

{
ν 6= 0,

νσ̂T /∈ [−1, 1].
(A.8)

We will return to the case when νσ̂T ∈ [−1, 1] later. Using (A.7) once more we are left

with

1 =
cνσ̂T

2
ln

[
νσ̂T + 1

νσ̂T − 1

]
. (A.9)

Setting u = νσ̂T , solving (A.9) is equivalent to finding the zeros of

V(u) ≡ 1− c

2
u ln

[
u+ 1

u− 1

]
. (A.10)

Using subscript 0 to denote roots of V(u), Case and Zweifel [20, Chapter 4, p.63] show

that the zeros of V(u) vary with c in the following manner:

1. c < 1: V(u) has two zeros, ±u0, on the real axis;

2. c > 1: V(u) has two zeros, ±u0, on the imaginary axis;

3. c = 1: the two roots of V(u) “coalesce” at ∞.

If c > 1 or c < 1 for u ∈ [−1, 1], then by (A.8) we know that the eigenfunctions M±u0(µ)

are given by

M±u0(µ) =
c

2

u0

u0 ∓ µ
. (A.11)
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Back in our original notation, noting σ̂T is constant and with ν0(= u0/σ̂T ) denoting

roots of (A.9), the eigenfunctions are

M±ν0(µ) =
c

2

σ̂T ν0

σ̂T ν0 ∓ µ
. (A.12)

Combining this with (A.5) we find the two discrete solutions are given by

f±(x, µ) =
c

2
e
∓x
ν0

σ̂T ν0

σ̂T ν0 ∓ µ
. (A.13)

Cases 1 and 2 are more fully explored in [12, Chapter 2] as well as [20, Section 4.3],

where the values that the discrete eigenvalues take are specified.

It is the third case with c = 1 that we use in Section 3.2.3, and we will now look at

this. Case and Zweifel [20] consider c = 1 in Appendix F, where they note that due to

having a repeated root we instead must search for solutions to (A.1) of the form

f(x, µ) = m1(µ) +m2(µ)x, (A.14)

where we have noted that

lim
ν→±∞

e
−x
ν = e∓0 = 1∓ 0. (A.15)

The form of (A.14) can be confirmed by Taylor expanding (A.13) to get

f±(x, µ) =
c

2

σ̂T ν0

σ̂T ν0 ∓ µ

[
1∓ x

ν0
+

x2

2ν2
0

∓ . . .
]
,

then retaining only the first two terms. Substituting (A.14) into the integro-differential

equation (A.1) yields

µ

σ̂T
m2(µ) +m1(µ) + xm2(µ) =

1

2

∫
[−1,1]

m1(µ) dµ+
x

2

∫
[−1,1]

m2(µ) dµ, (A.16)

and looking at the coefficients of powers of x0 and x1 we find

x0 :
µ

σ̂T
m2(µ) +m1(µ) =

1

2

∫
[−1,1]

m1(µ) dµ, (A.17)

x1 : m2(µ) =
1

2

∫
[−1,1]

m2(µ) dµ (A.18)
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From (A.18) we find that m2 is a constant (independent of µ). If we choose m2 = 0

then (A.17) tells us that m1 is also a constant, and one simple choice is thus m1 = 1.

So we have one solution to (A.1), namely

fa(x, µ) = 1. (A.19)

Alternatively, if we take m2 nonzero, say m2 = σ̂T , then (A.17) tells us

m1(µ) = C − µ, (A.20)

where

C =
1

2

∫
[−1,1]

m1(µ) dµ. (A.21)

Since we can form a solution to (A.1) for any C, and taking C 6= 0 is equivalent to

adding a scaling of the solution (A.19), we take C = 0. This leads to

fb(x, µ) = σ̂Tx− µ. (A.22)

The discrete solutions (A.19) and (A.22) are valid when c = 1 with νσ̂T ∈ [−1, 1].

We return now to consider the case where νσ̂T ∈ [−1, 1]. This allows νσ̂T = µ,

in which case (A.8) is divergent and will not satisfy (A.7). To resolve this we add an

extra term to the right hand side of (A.8) so that it becomes

Mν(µ) =
c

2

νσ̂T
νσ̂T − µ

+ λ(ν)δ(νσ̂T − µ), (A.23)

where λ is an arbitrary function of ν. This still satisfies (A.8) as can be easily verified

by substituting it in while recalling that yδ(y) ≡ 0 by definition. If we use the Cauchy

principal value method, i.e. if we require

∫ 1

−1

1

νσ̂T − µ
dµ = lim

τ→0

[∫ νσ̂T−τ

−1

1

νσ̂T − µ
dµ+

∫ 1

νσ̂T+τ

1

νσ̂T − µ
dµ

]
, (A.24)

to be met whenever Mν(µ) is integrated and νσ̂T ∈ [−1, 1], then we are left with the

following general form of (A.8)

Mν(µ) =
c

2
Pr

νσ̂T
νσ̂T − µ

+ λ(ν)δ(νσ̂T − µ), (A.25)

where Pr denotes the Cauchy principal value. We want to choose the function λ such

that (A.25) satisfies (A.7). To do this, we apply the normalisation condition (A.7) to
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(A.25) to obtain

λ(ν) = 1− cνσ̂T
2

Pr

∫ 1

−1

1

νσ̂T − µ
dµ. (A.26)

This principal value integration can be carried out (see [20, Section 4.4]) and it is found

that

λ(ν) = 1− cνσ̂T tanh−1 (νσ̂T ) (A.27)

Finally substituting (A.25) into (A.5) we get

fν(x, µ) = αe
−x
ν

[
c

2
Pr

νσ̂T
νσ̂T − µ

+ λ(ν)δ(νσ̂T − µ)

]
(A.28)

which is in fact a continuum of solutions for all −1 ≤ νσ̂T ≤ 1.

We now have a set of solutions for c = 1 formed by (A.19), (A.22) and (A.28). Case

and Zweifel [20] prove that this set is complete (Section 4.6) for assumptions given in

their Appendix G. From this set, a general solution can be formed as

f(x, µ) = a+ b(σ̂Tx− µ) +

∫ 1/σ̂T

−1/σ̂T

A(ν)Mν(µ)e
−x
ν dν, (A.29)

with Mν(µ) defined by (A.25). To determine the constants a, b and A(ν) we would

require (A.29) to satisfy appropriate boundary conditions also.

Similarly, for c 6= 0, the complete set solutions is given by (A.13) and (A.28), and

an equivalent general solution can be formed.

A.2 Fourier Integral Theorem and other results

In this section we prove two results given in Section 3.4. Firstly we prove Lemma 3.7,

which says the following.

Lemma A.1:

If

K(z) ≡ 1

2

∫ b

a

1

µ
exp

(
− |z|
µ

)
dµ

then ∫
R
K(z) dz = b− a.

Proof.
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Denoting the Fourier transform of K by K̂ we have

K̂(ξ) =

∫ ∞
−∞

exp (−2πiξz)K(z) dz. (A.30)

With the definition of K this is

K̂(ξ) =

∫ b

a

∫ ∞
−∞

1

2µ
exp (−2πiξz) exp

(
− |z|
µ

)
dz dµ.

Now evaluating this integral we get

K̂(ξ) =

∫ b

a

1

2µ

[∫ 0

−∞
exp

(
z

µ
− 2πiξz

)
dz +

∫ ∞
0

exp

(
−z
µ
− 2πiξz

)
dz

]
dµ

=

∫ b

a

1

2µ

exp
(
z
µ − 2πiξz

)
1
µ − 2πiξ

0

−∞

+
1

2µ

− exp
(
−z
µ − 2πiξz

)
1
µ + 2πiξ

∞
0

dµ

=

∫ b

a

1

2µ

[
µ

1− 2πiξµ

]
+

1

2µ

[
µ

1 + 2πiξµ

]
dµ

=

∫ b

a

1

1 + (2πξµ)2
dµ

=
1

2πξ

[
tan−1 (2πξb)− tan−1 (2πξa)

]
.

Taking a taylor expansion results in

K̂(ξ) =
1

2πξ

(
2πξb− 2πξa− (2πξb)3

3
+

(2πξa)3

3
+ . . .

)
= (b− a) +O(ξ2).

and so we have that K̂(0) = (b− a). Using this with (A.30) yields the result.

Next we will prove Lemma 3.8, which says the following.

Lemma A.2:

Let f : R → R, and suppose that f is Lipschitz continuous and also globally bounded

so that maxξ |f(ξ)| = C, where C is constant. Suppose also we have some function

K : R→ R+ such that ∫
R
K(z) dz = α,

where α ∈ R is some constant. Then it holds that
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lim
σT→∞

σT

∫
R
K (σT (x− y)) f(y) dy = αf(x), (A.31)

for all x ∈ R.

Proof.

First of all we set δ ≡ σT
−1 (so we are considering the limit as δ → 0) and separate

the integral in (A.31) into two parts, leaving

1

δ

∫
R
K
(
δ−1(x− y)

)
f(y) dy =

≡I1︷ ︸︸ ︷
1

δ

∫
R
K
(
δ−1(x− y)

)
f(x) dy +

1

δ

∫
R
K
(
δ−1(x− y)

)
[f(y)− f(x)] dy︸ ︷︷ ︸

≡I2

.

We will tackle these independently. First of all we consider I1, and apply a change of

variables, z ≡ δ−1(x− y).

I1 =
f(x)

δ

∫ ∞
−∞

K
(
δ−1(x− y)

)
dy

=
f(x)

δ
(−δ)

∫ −∞
∞

K (z) dz

= αf(x),

since
∫
RK(z) dz = α. It therefore remains to prove that I2 → 0 as δ → 0. To do this

we further separate the remaining integral as follows

I2 =

≡I21︷ ︸︸ ︷
1

δ

∫
[x−δ

1
2 ,x+δ

1
2 ]
K
(
δ−1(x− y)

)
[f(y)− f(x)] dy +

1

δ

∫
R\[x−δ

1
2 ,x+δ

1
2 ]
K
(
δ−1(x− y)

)
[f(y)− f(x)] dy︸ ︷︷ ︸

≡I22

,

and show that each of I21 and I22 tends to zero with δ. Considering I21 first, we can

use the Lipschitz continuity of f (with constant L) to obtain
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|I21| =
1

δ

∫ x+δ
1
2

x−δ
1
2

∣∣K (δ−1(x− y)
)∣∣ |f(y)− f(x)| dy

≤ L

δ

∫ x+δ
1
2

x−δ
1
2

K
(
δ−1(x− y)

)
|y − x| dy.

Noting that |y − x| ≤ δ
1
2 and applying the same change of variables as before we get

|I21| ≤
Lδ

1
2

δ
(−δ)

∫ −δ− 1
2

δ−
1
2

K(z) dz

= Lδ
1
2

∫ δ−
1
2

−δ−
1
2

K(z) dz.

Since δ
1
2 → 0 as δ → 0, we have that I21 → 0 also.

Now to show that I22 → 0 with δ we split our integral one last time as

I22 =

≡I+22︷ ︸︸ ︷
1

δ

∫ ∞
x+δ

1
2

K
(
δ−1(x− y)

)
[f(y)− f(x)] dy +

1

δ

∫ x−δ
1
2

−∞
K
(
δ−1(x− y)

)
[f(y)− f(x)] dy︸ ︷︷ ︸

≡I−22

.

Using the global maximum of f and applying the same change of variables, we proceed

as follows

∣∣I+
22

∣∣ ≤ 2C

δ

∫ ∞
x+δ

1
2

K
(
δ−1(x− y)

)
dy

=
2C

δ
(−δ)

∫ −∞
−δ−

1
2

K (z) dz

= 2C

∫ −δ− 1
2

−∞
K(z) dz.

Since −δ−
1
2 → −∞ as δ → 0, this tells us that I+

22 → 0 with δ too.

Similarly for I−22 we find that

∣∣I−22

∣∣ ≤ 2C

∫ ∞
δ−

1
2

K(z) dz,

which also goes to zero with δ. Thus the result holds.

180



Bibliography

[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover,

1972.

[2] M. L. Adams and E. W. Larsen. Fast iterative methods for discrete-ordinates

particle transport calculations. Progress in Nuclear Energy, 40(1):3 – 159, 2002.

[3] M. L. Adams and W. R. Martin. Diffusion synthetic acceleration of discontinuous

finite element transport iterations. Nuclear Science and Engineering, 111(2):145–

167, 1992.

[4] R. E. Alcouffe. A stable diffusion synthetic acceleration method for neutron trans-

port iterations. Trans. Am. Nucl. Soc., 23:203, 1976.

[5] R. E. Alcouffe. Diffusion synthetic acceleration methods for the diamond-

differenced discrete-ordinates equations. Nucl. Sci. Eng.;(United States),

64(2):344, 1977.

[6] S. F. Ashby, P. N. Brown, M. R. Dorr, and A. C. Hindmarsh. Preconditioned

iterative methods for discretized transport equations. Proc. International Topical

Meeting on Advances in Mathematics, Computations, Reactor Physics, 2:6.1 2–1,

1991.

[7] S. F. Ashby, P. N. Brown, M. R. Dorr, and A. C. Hindmarsh. A linear algebraic

analysis of diffusion synthetic acceleration for the Boltzmann transport equation.

SIAM J. Numer. Anal., 32:128–178, 1995.

[8] Y. Azmy. On the adequacy of message-passing parallel supercomputers for solving

neutron transport problems. Proc. Supercomputing ‘90, page 693, 1990.

[9] Y. Azmy. Impossibility of unconditional stability and robustness of diffusive ac-

celeration schemes. Proc. Topl.Mtg. 1998 American Nuclear Society, Radiation

Protection and Shielding Division, Nashville, Tennesse, April 19-23, 1:480, 1998.

181



[10] Y. Azmy, T. Wareing, and J. Morel. Effect of material heterogeneity on the

performance of DSA for even-parity SN methods. International Conference on

Mathematics and Computation, Reactor Physics, and Environmental Analysis in

Nuclear Applications, 1:55–63, 1999.

[11] Yousry Azmy and Enrico Sartori. Nuclear Computational Science: A Century in

Review. Springer, 2010.

[12] G. I. Bell and S. Glasstone. Nuclear Reactor Theory. Van Nostrand Reinhold

Company, 1970.

[13] T. A. J. Bennison. Adaptive Discontinuous Galerkin Methods for the Neutron

Transport Equation. PhD thesis, University of Nottingham, 2014.

[14] M. Benzi. Preconditioning techniques for large linear systems: a survey. Journal

of Computational Physics, 182(2):418–477, 2002.

[15] B. L. Bihari and P. N. Brown. A linear algebraic analysis of diffusion synthetic

acceleration for the Boltzmann transport equation II: The simple corner balance

method. SIAM J. Numer. Anal., 47:1782–1826, 2009.

[16] S. Brenner and R. Scott. The Mathematical Theory of Finite Element Methods

(Texts in Applied Mathematics). Springer, 2008.

[17] P. N. Brown. A linear algebraic development of diffusion synthetic acceleration for

three-dimensional transport equations. SIAM J. Numer. Anal., 32:179–214, 1995.

[18] A. G. Buchan, A. S. Candy, S. R. Merton, C. C. Pain, J. I. Hadi, M. D. Eaton,

A. J. H. Goddard, R. P. Smedley-Stevenson, and G. J. Pearce. The inner-element

subgrid scale finite element method for the Boltzmann transport equation. Nuclear

Science and Engineering, 164(2):105–121, 2010.

[19] D. G. Cacuci, editor. Handbook of Nuclear Engineering, (5 Volume set). Springer,

2010.

[20] K. M. Case and P. F. Zweifel. Linear transport theory. Addison-Wesley series in

nuclear engineering. Addison-Wesley Pub. Co., 1967.

[21] Tony F. Chan and Tarek P. Mathew. Domain decomposition algorithms. In Acta

Numerica 1994, pages 61–143. Cambridge University Press, 1994.

[22] S. Chandrasekhar. Radiative Transfer. Dover Publications, 1960.

182



[23] C. Clapham and J. Nicholson. The Concise Oxford Dictionary of Mathematics

(Oxford Paperback Reference). Oxford University Press, 2009.

[24] J. J. Duderstadt and W. R. Martin. Transport Theory. John Wiley and Sons, New

York, 1979.

[25] J. D. Evans. Private Communication. University of Bath.

[26] T. M. Evans, S. W. Mosher, S. R. Slattery, and S. P. Hamilton. A monte carlo

synthetic-acceleration method for solving the thermal radiation diffusion equation.

Journal of Computational Physics, 258(0):338 – 358, 2014.

[27] V. Faber and T. A. Manteuffel. A look at transport theory from the point of view

of linear algebra. Conference: Transport theory, invariant imbedding and integral

equations, 1988.

[28] E. M. Gelbard. Application of spherical harmonics methods to reactor problems.

Bettis Atomic Power Laboratory, 1960.

[29] F. Golse, S. Jin, and C. D. Levermore. The convergence of numerical transfer

schemes in diffusive regimes I: Discrete-ordinate method. SIAM Journal on Nu-

merical Analysis, 36(5):1333–1369, 1999.
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