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Abstract
This dissertation presents a number of related works in real-time physical an-
imation, centered around the theme of constraint-based simulation. Methods
used for real-time simulation of deformable bodies tend to differ quite substan-
tially from those used in offline simulation; we discuss the reasons for this and
propose a new position-based finite element method that attempts to produce
more realistic simulations with these methods. We also consider and adapt other
methods to make them more suitable for game physics simulation. Finally, we
adapt some concepts from deformable body simulation to define a deformable
rod constraint between rigid bodies that allows us to represent the kinematics
of the human spine using fewer degrees of freedom than required with a strictly
joint-based model.
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Chapter 1

Introduction

This dissertation is about simulating physical phenomena in real-time for use

in videogames. This field is quite distinct from the higher-end work in visual

effects and academia, and the ways in which some phenomena, such as cloth,

are simulated can seem quite strange at first glance. It turns out that there

are good reasons why things are done the way they are, which one discovers as

soon as one attempts to do things differently. Nevertheless, there is scope for

exploring realistic physical simulation within the specific constraints dictated by

the videogame use-case. The first step is to understand these constraints.

1.1 On Videogame Physics

The term ‘real-time’ is often bandied about when talking about algorithms used in

games. This is an adequate shorthand for a more complex list of priorities, which

we will get to in a moment. However, it is important to note here that games

are not real-time systems in the strict sense of the word. What it actually means

for a software system to be real-time is that we can guarantee that the system

will respond before a given deadline. While game developers certainly favor

algorithms with predictable performance, the consequences of a missed deadline

are relatively mild; a missed frame in a game will annoy the user but not cause

any catastrophic failure. So we should make it clear here that when we - and

other practitioners of game physics simulation - refer to real-time methods we

are in fact talking about a set of priorities, some of which have little to do with

performance. In loose order of importance, they are:
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CHAPTER 1. INTRODUCTION

1.1.1 Robustness

The most important quality for a simulation to have is that it must be robust

to all possible user input. Unlike simulations performed for visual effects (VFX)

shots in films, or for structural analysis in engineering, game physics simulations

are expected to work under all possible situations created by player input, without

any supervision. Ensuring this condition is met is approached from two ends: we

must use a simulation technology that is fundamentally robust, and author our

simulations in such a way that they are not easily broken. From the other end,

we limit the player’s ability to affect the simulation. As an example, simulated

clothing on a game character may work perfectly well as long as the character only

performs a specific set of movements. However, any new motions we introduce

may be violent enough, or pathological enough in some other way, to cause our

simulation to break. Similarly, if we give the player more agency - say, the ability

to grab and pull the clothing of other characters - we will have to put much

more effort into the core simulation to guarantee its robustness in all cases. This

creates a tension between the fidelity of a simulation we can provide and our

ability to control that simulation. In extreme cases this can lead to physics being

hugely over-constrained in the name of guaranteeing robustness, but at the cost

of removing most of the expressiveness of the simulation. It is the job of the

game physicist to avoid this situation by providing simulations that are naturally

robust to input of all kinds.

1.1.2 Reliable Performance

As might be expected, performance is also high on our list of priorities. However,

what we mean exactly when talking about performance requirements in games is

very different to what is meant in other areas. In the field of high-performance

computing, and in non-real-time computer graphics, algorithms are often anal-

ysed primarily for their scaling properties; the best algorithms are considered to

be those that deal well with ever-increasing problem size. The ability to scale

to very large workloads executing in a massively parallel environment is highly

valued in these environments. Conversely, in videogame simulation we have a

fixed target architecture (the game console hardware du jour). Crucially, physics

10



1.1. ON VIDEOGAME PHYSICS

is not even close to being the primary function of a game; we can expect most

of the running time of the target hardware to be taken up with tasks relating

to graphics, world management, networking, audio, artificial intelligence, and so

on. Thus physics simulation and collision detection get only a small slice of the

already-minuscule amount of processing time available in a 30Hz frame. The

presence of other, higher-priority workloads on the target hardware is the most

important distinguishing feature of game physics.

1.1.3 Appropriate Realism

‘Realism’ in computer graphics, and games in particular, has a different mean-

ing than in more serious fields like engineering. In these fields, the predictive

power of an algorithm is the most important factor. We need to be able to rely

on the ability of simulations used in (for instance) crash testing to accurately

predict the behaviour of real world materials. In contrast, for computer graph-

ics we only need to generate the impression of reality in the user. What this

means in practice is that the degree of realism required for a given phenomenon

depends on how sensitive the audience is to a lack of correctness in that area.

For instance, humans are very good at detecting a lack of realism in depictions

of other humans (the ‘uncanny valley’ effect), and surprisingly good at noticing

unrealistic trajectories of rigid bodies, but poor at noticing deficiencies in the

simulation of rarely-encountered phenomena like collapsing buildings or crashing

cars. The fidelity required for a given simulation is therefore strongly coupled

to how common that phenomenon is. Another interesting observation is that

transient phenomena do not need to be modelled as carefully as steady states.

The animation of a collapsing building might last only a second but the ruin left

behind will persist forever; we can allow the former to be quite unrealistic as

long as the latter is convincing. Some phenomena do not need to be physically

simulated at all to be appropriately convincing; fire and explosions are common

cases found in games where a purely procedural approach is (currently) sufficient.

11



CHAPTER 1. INTRODUCTION

1.2 Constraint Based Methods

As briefly mentioned previously, humans are remarkably good at detecting un-

realistic trajectories of rigid objects. As a result, the realism requirements for

rigid body simulation in games are very high and this field was the first to be-

come genuinely well developed. Indeed, some of the software developed for game

physics simulation like Bullet [Coumans 2005] is considered the best in the world

of its type. Early physics engines that used simple explicit time integration and a

force- or acceleration-based contact model proved to be insufficiently robust and

realistic for the fairly demanding game use case. It eventually became clear that

hard inequality constraints had to be the mainstay of a realistic rigid body sim-

ulation, as opposed to the soft springs of force-based methods. Early work such

as that of Stewart and Trinkle [1996] was too slow for large-scale simulations,

requiring as it did the use of Lemke’s algorithm. Eventually the field settled

on a family of Projected Gauss Seidel (PGS) iterative processes (the most well

known of which is the ‘Sequential Impulses’ method), which allow cheap and pre-

dictable simulation of inequality-constrained rigid bodies. While these methods

converge slowly and have very obvious failure cases, it is easy to minimize the

player’s exposure to such situations by simply not allowing the game to create

them. PGS is thus in some sense a model game physics simulation algorithm; it

is predictably cheap, robust in the right circumstances, and its shortcomings can

be avoided without eroding the realism of the method. It is not surprising, then,

that practitioners of game physics have sought to adapt it to other fields. The

most successful technique in this vein is usually called Position Based Dynamics

(PBD).

1.2.1 Position Based Dynamics

PBD is the dominant tool for modelling deformable bodies in videogames. In

particular, most game cloth simulations use this technique. It grew out of a

method used by Jakobsen [2001] for modelling character ragdolls, but was quickly

adapted by Muller et al. [2007] for deformable body simulation. While presented

by both authors as an empirical method, PBD is actually easily recognisable

as an adaptation of the PGS method for rigid body simulation. Using Verlet

12



1.2. CONSTRAINT BASED METHODS

integration (hence the ‘position based’ name) and solving nonlinear constraints

with sequential quadratic programming, PBD inherits both the advantages and

disadvantages of PGS rigid body simulations. One might think the ability to use

hard inequality constraints would be fairly useless in a simulation of deformable

bodies, but in fact this ability is extremely useful when trying to satisfy our

primary demand of robustness.

As an example, take character clothing. High-end global clothing simulations

like Autodesk’s nCloth [Stam 2009] are quite unstable when the cloth is only held

in place on the wearer by frictional contact with the skin. Particularly heinous

actions, such as pinching cloth between two colliders, can result in the clothing

being pushed through the character and coming loose. One way of alleviating

this problem in a matrix-based simulation is to attach springs to each simulated

point that attract that point towards a known-good position, such as the vertex’s

initial point on the character. While this will work, the effect can be quite obvious

and distracting. Springs do not provide any sort of guarantee on the position of

each point at the end of the frame, so we can only make them very stiff and hope

for the best. This is thus a fairly bad way of controlling our simulation because

it is both ineffective and highly restrictive. With the freedom to use inequality

constraints, we can instead simply keep each point inside a sphere of a given

radius from our known-good point. This provides a cast-iron guarantee that our

simulation points will not stray too far, without introducing any ghost forces when

they are inside the allowed zone. Thus we can control the simulation without

impeding its expressiveness too much. The ability to incorporate inequalities can

be, and has been, abused further to create other effects that are not possible in

continuous models. For instance, we can model cloth that resists extension but

not compression [Müller and Chentanez 2010], or cloth that only resists folding

below a certain radius of curvature. Finally, the most obvious advantage is that

contact constraints can be modelled exactly, without recourse to troublesome

continuous approximations (i.e. the penalty method, in which hard contacts are

replaced by soft spring forces). What this adds up to is an attractive package

for game physicists. Adapting PBD for greater realism, and adapting force-based

methods to achieve some of the positive qualities of PBD, is the major theme of

13



CHAPTER 1. INTRODUCTION

this dissertation.

1.3 Contributions

The first part of this dissertation explores the modelling of volumetric soft bodies

in videogames. In Chapter 2 we cover some relevant continuum mechanics, which

forms the basis of our soft body model. We alight on the co-rotational strain as

a formidably robust deformation model. Computing this measure requires us

to track the rotations of deformable bodies, which we cover in Chapter 3. We

introduce a highly efficient, approximate method for tracking deformable body

rotations. Continuing onwards, we cover discretization and the finite element

method in Chapter 4. In Chapter 5 we bring the previous chapters together,

discussing various solution procedures that have been used for the simulation

of soft bodies in games. We introduce our new Position Based Finite Element

(PBFE) method, which fuses the advantages of PBD simulation with the realism

of the finite element method. We also make some modifications to the recently

proposed method of Projective Dynamics, designed to make the method more

suitable for game use. The spin-based rotation tracking of Chapter 3 and PBFE

method of Chapter 5 have been submitted for patenting.

The second part of the dissertation concerns adding some aspects of de-

formable body simulation to a rigid body solver. Despite humans being relatively

deformable, they are generally represented in games as collections of rigid bodies

connected with joints. After discussing the mechanics of rigid body simulators in

Chapter 6, we introduce in Chapter 7 a new type of constraint that models the

kinematics of the human spine. This allows us to express a similar range of mo-

tion compared with models that use multiple joints for the spine, while decreasing

the degrees of freedom required. This work was published at SCA 2013 [Lewin

et al. 2013]

1.4 Use in Games

It is worth spending some time motivating our work by discussing how it could be

used. The first part of this dissertation concerning soft body simulation is quite

14



1.4. USE IN GAMES

abstract, so it can be difficult to see how it might be applied in a real game.

Inanimate objects are usually modelled as being perfectly rigid in games,

which is often a good approximation. However, in many games the only mean-

ingful interaction the player can have with the game world is through violence of

some kind, and in this case the rigid indestructibility of the game world can break

the player’s immersion. To realistically simulate the destruction of inanimate ob-

jects, we must first simulate their deformation; the distribution of stress inside

an object tells us how that object will fracture. Many materials can undergo a

great deal of plastic deformation before failing (so-called ‘ductile fracture’). De-

formation is thus the key to allowing inanimate objects to react more realistically

to the heavy weaponry with which many game characters are equipped.

Characters, both human and nonhuman, can also benefit from simulation of

deformation. While there are many possible levels of detail at which one could

apply soft body simulation, a very coarse application can noticeably improve the

look of certain types of characters. Areas of a character that one might expect

to deform and jiggle in response to motion, such as a fat belly, are hard to ani-

mate using traditional linear blend skinning. By applying a simple finite element

simulation with only a few tens of degrees of freedom, we can add plausible sec-

ondary motion to these areas without any effort required from an animator. At a

higher quality level, areas such as the lips that require a high level of realism to

be convincing can be modelled entirely as soft bodies, with internal muscle fibers

that respond to the animation. At a very high level of quality, we can construct

an entire character from simulated flesh [McAdams et al. 2011].

Moving away from volumetric soft bodies, many other phenomena that one

might want to simulate in real-time also show soft characteristics; hair and cloth

are the two natural choices. Although in this dissertation we concentrate on

three-dimensional bodies, the techniques covered apply directly to these other

areas. The differences between simulations of cloth, hair and flesh are ultimately

quite minor when viewed from a distance.

To summarise: soft body simulations can improve the realism of both charac-

ters and the scenery that surrounds them. There are some types of effects which

are difficult to achieve unless physically simulated, and we need cheap, reliable
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CHAPTER 1. INTRODUCTION

techniques that can believably reproduce these effects. Finally, the core details

of soft body simulation can transfer to other important fields.
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Chapter 2

Continuum Mechanics

The first and most fundamental approximation made when modelling deformable

bodies is the continuum assumption: that we can represent a body made up of

discrete atoms interacting in highly complex ways using smooth differential equa-

tions. This is a useful technique for modelling both solids and fluids, although

here we will cover elastic solids exclusively. We will closely follow Sifakis’s excel-

lent SIGGRAPH course [Sifakis and Barbič 2012], which is a general introduction

to the field with a computer graphics slant.

Our main aim in this chapter is to identify quantities which we can constrain

to realistically simulate deformable bodies, in particular the shape and volume

of 3D elastic solids. This is mostly a matter of identifying appropriate strain

measures, which tell us in various ways the local deformation of a body from its

rest pose. For constraints this is far enough, but a more traditional discussion of

continuum mechanics would continue on to talk about stress and its differentials.

This is interesting to us only for a comparison with force-based methods, so we

refer the reader back to Sifakis for the details.

Serious continuum mechanics is often written down using indicial notations

such as the summation convention, that ease some of the pain associated with high

order tensors. In the fairly simple mechanics used in computer graphics, these

notations are less common and authors tend to bend quite far to avoid using

anything other than vectors and matrices. We will adopt the same approach for

conformity’s sake.

2.1 The Continuum Approximation

Consider an elastic deformable body in n dimensions. At any point inside the

body we are interested in two positions - the rest pose coordinates X ∈ Rn and the

17



CHAPTER 2. CONTINUUM MECHANICS

deformed pose coordinates x ∈ Rn. The mapping between these coordinates is a

vector field that we call the deformation function x = φ (X). We will cover a case

in which both the deformed and undeformed coordinate systems are curvilinear ;

that is, there are an additional set of coordinates ξ such that X = X(ξ) and

x = x(ξ). This allows us to treat theoretical problems with, for instance, polar

coordinate systems; and later on to implement finite elements.

For simulation purposes we are primarily interested in the Jacobian matrix of

the deformation function, which we call the deformation gradient :

F =
∂φ

∂X
=

dx

dξ

(
dX

dξ

)−1

= FxF
−1
X . (2.1)

We can see why this quantity is important when we consider the changes in length

implied by the deformation φ. First let’s consider a strongly related concept,

which is the change in length implied from the curvilinear coordinate system to

each of x and X. Let there be two points separated by the small vector dX. Then

we have dX = FXdξ. The squared length of dX is

dX2 = (FXdξ)T (FXdξ) = dξTCXdξ, (2.2)

where CX = FT
XFX is the metric tensor of the transformation between the curvi-

linear and rest coordinate systems. We can run the exact same derivation for the

deformed configuration, giving

dx2 = dξTCxdξ. (2.3)

We can then easily see that the squared difference in length between the two

configurations is

dl2 = dx2 − dX2 = dξT (Cx −CX) dξ. (2.4)

Note that this quantity is measured in the curvilinear coordinate system. De-

pending on the application, this may or may not be useful. For simulation we are

more interested in lengths in the deformed configuration, for which we need the

metric tensor of the deformation φ:

C = FTF. (2.5)

This tensor tells us about changes in the material when moving between the

undeformed and deformed configurations; the underlying curvilinear coordinate
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2.1. THE CONTINUUM APPROXIMATION

X x

Constant translation by t

φ(X) = X + t

F(X) = I

X

x

Transformation by constant matrix A

φ(X) = AX

F(X) = A

Figure 2.1: Sample deformation functions and their deformation gradients.

system is not referred to at all. The length change moving from X to x is:

dl2 = dXT (C− I)dX. (2.6)

We will return to this quantity when discussing strain measures below.

The qualities and behaviour of F are worth consideration because they form

the basis of all behaviour of elastic continua. In Figure 2.1 we can see that this

tensor behaves very much as a classical scalar derivative, but with an important

caveat. When F = I everywhere in the body, the object must be in its rest pose.

This is true if φ encodes only a constant translation, but a constant rotation will

produce the same rotation in the deformation gradient: F = R 6= I even though

there is clearly no deformation from the rest pose. F thus lacks the quality of

objectivity, which is invariance under a rigid transformation. This is problematic

when dynamically simulating soft bodies and we will return to it many times.

F transforms positions in the rest pose to positions in the deformed pose. This

is called the push forward operation. The inverse pull back operation transforms

from the deformed to rest pose and can predictably be achieved by multiplying by

F−1. If the body is compressed to degeneracy in one or more axes then F will be

singular and pulling-back will not be possible. The quantity J = det(F) is called

the Jacobian determinant of F; this gives the volume change of the deformation.
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CHAPTER 2. CONTINUUM MECHANICS

2.2 Strain Measures

F on its own is a representation of the kinematics of a deformable body. To

simulate soft behaviour we need a representation of the deformation, which in

continuum mechanics we call a strain measure. .Consider a simple spring, or dis-

tance constraint between two particles with positions xa and xb. The kinematics

are represented by the displacement d = xa − xb, but to measure the strain we

need to calculate the extension le = |d|− l0. Solving the constraint, or computing

the spring forces, requires us to work with this nonlinear strain measure1. For the

distance constraint this is trivial, but as we will see, the hunt for a well-behaved

strain measure is much more complicated when we consider shells and volumes

of deformable material.

We will see that like the distance constraint, the only well-behaved strain

measures are nonlinear in x. However, unlike that example there are some simple

choices of linear strain measures that although flawed, can nonetheless be used

to gain some insight.

2.2.1 Linear Strain Measures

A good strain tensor must accurately describe the deviation of the current pose

from the rest pose. The deformation gradient seems promising for this task, but

is not suitable on its own. Consider a generic shape constraint in which we force

the strain measure to be zero:

E(F(X)) = 0. (2.7)

We will slot various expressions for the strain tensor E into this expression and

study the results. First consider the trivial strain E = F. With this strain the

constraint is satisfied when φ(X) is constant, i.e when the object is compressed

into a single point. Clearly this quantity does not in fact measure the object’s

deviation from the rest pose. A better strain measure might be

E(F) = F− I. (2.8)

1A real engineer would probably prefer the Cauchy strain e = (|d| − l) /l, which has the ad-

vantage of being unitless and independent of the original length, but when taken as a constraint

equation has exactly the same meaning as our expression.
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2.2. STRAIN MEASURES

In this case the constraint is satisfied when the body is at a constant translation

from its rest pose. This can in fact be good enough for certain kinds of analysis

(a slightly different derivation will lead to the infinitesimal strain tensor ε =

1
2
(FT + F)− I), but due to the non-objectivity of F under rotation this measure

is not suitable for general use. In computer animation we expect our deformable

models to be able to undergo large rigid motions, as well as large deformations,

which invalidate this measure. The practical consequence of using a rotation-

sensitive strain measure for finite simulation is the generation of spurious ghost

forces that act to resist rotation. Unsurprisingly, we must give up linearity in x

if we wish to measure finite2 deformations.

2.2.2 Green Lagrange Strain

The simplest objective strain measure is the Green-Lagrange strain:

EGL = C− I, (2.9)

where C = FTF, called the right Cauchy-Green deformation tensor, is the metric

of the deformation φ discussed previously. Note that this tensor is quadratic in

x. We can easily show this measure is objective by introducing a pure rotation

R:

EGL(R) = RTR− I = 0. (2.10)

This measure is mathematically well-grounded in the sense that it measures the

difference in squared lengths of lines in the deformed and undeformed configura-

tions. However it has a different fault unrelated to objectivity: it is also invariant

under inversion. Consider a body whose deformed pose we have reflected in the

X axis. The associated deformation gradient is FR =
[
−1 0 0
0 1 0
0 0 1

]
. The strain under

such a transform will be FT
RFR − I = 0. Thus the body is perfectly happy to be

in this configuration despite it being fully inverted in the x axis! Although not as

egregious a fault as rotation sensitivity, this means that if the body is inverted,

it will work to further invert itself until it reaches a mirror image of its rest pose.

2In continuum mechanics ‘finite’ means large, as opposed to infinitesimal. The boundary

between these regimes is mostly determined by where the distortions introduced by using a

strain measure like Equation 2.8 become noticeable.
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CHAPTER 2. CONTINUUM MECHANICS

Models based on Green-Lagrange strain suffer quite severely from this fault in

practice, and the material is thus not much used for computer animation of solid

mechanics3.

2.2.3 Polynomial Strain

In engineering, Green-Lagrange strain is rarely used unmodified for a different

reason: it simply does not represent real material behaviour very well. To improve

this situation we can use the invariants of C. These are scalar functions of the

components of C that are themselves objective under rigid motion. For symmetric

3x3 tensors these are:

I1 = tr(C),

I2 =
1

2

(
tr (C)2 − tr

(
(C)2)) ,

I3 = det (C) .

(2.11)

So-called polynomial hyperelastic models define strain energies (or in our case,

constraints) for incompressible materials using combinations of these invariants.

To define these models we first notice that I3 is exactly the squared determinant

of F; thus it gives the squared volume change of the deformation. We can expoit

this fact to define a new set of isochoric invariants that are both objective and

insensitive to volume change:

Ī1 = J−2/3I1,

Ī2 = J−2/3I2.
(2.12)

Because these quantities are isochoric, enforcing them as constraints (for example

Ī1 = tr(I) = 3) will constrain only the shape of the material and not its volume.

This is useful when the volume is constrained by other means, for instance by

using a stiff penalty term as in the Neo-Hookean model used by [Irving, Teran,

and Fedkiw 2004]:

ψNH(F) = C1(Ī1 − 3) + D0 ln(J), (2.13)

where C1 and D0 are stiffness constants for shape and volume preservation re-

spectively. It should be noted that the term Neo-Hookean refers to a family of

3That is, in 3D. For 2D surfaces embedded in 3D (cloth and shells), inversion is a non-issue

because the surface can simply bend instead of compressing
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models that use I1 and not I2, and the exact method of volume preservation is

subject to change; for instance, we could enforce det(F) = 1 through a Lagrange

multiplier or through a different penalty term like D0(J − 1)2. Models that also

use I2 go by the name of Mooney-Rivlin:

ψMR(F) = C1(Ī1 − 3) + C2(Ī2 − 3) + D0 ln(J). (2.14)

Again, the exact choice of volume constraint is left to the implementor.

2.2.4 Co-Rotational Strain

Polynomial hyperelastic models are fairly popular in high-end computer graphics,

but they are fairly costly to simulate because the derivatives of the isochoric

invariants involve the inverse of the deformation gradient, as well as inconvenient

powers like J−2/3. A much more popular model is the Co-Rotational strain:

ECR(F) = F−R, (2.15)

where R is the rotational component of F, found via its Singular Value Decom-

position (SVD):

F = UΣV T , (2.16)

where U and V are rotations and Σ is a diagonal matrix that contains the

singular values of F. R can be found by simply setting Σ to identity to remove

the stretch, leaving only rotation:

R = UV T . (2.17)

Thus an equivalent way to state the co-rotational strain is simply using the sin-

gular values themselves:

ECR(F) = Σ− I. (2.18)

A great advantage of this approach is that the singular values can be negative:

if the body is reflected in the x axis as in our previous example the first singular

value will be −1. Thus if the body is compressed to degeneracy and then inverted,

we will maintain restoring forces that will push the body back to its original shape,

and not its mirror image. Furthermore unlike cubic-elastic models such as Green-

Lagrange strain, this measure does not vanish as we get closer to degeneracy. This
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CHAPTER 2. CONTINUUM MECHANICS

quality gives co-rotational elasticity a huge advantage in robustness over models

based on C.

Computing rotations of deformable bodies is not an exact science and the most

popular method of computing the SVD is relatively expensive. Some approaches

that have been taken, as well as our own method, are detailed in the next section.

2.3 Concluding Remarks

In this chapter, we covered some basic continuum mechanics up to a level required

to implement a simple finite element analysis. We discussed various different

strain measures, which tell us how far an object is locally deformed away from its

rest state. In particular we discussed the co-rotational strain, which has become

popular in the graphics field for its robustness. To use this strain measure, we

require a reliable method for extracting rotations of our deformable bodies, which

is addressed in the following chapter.
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Chapter 3

Rotation Estimation

The problem of tracking the rotation of a deformable body is a surprisingly com-

plex one. In this short chapter, we will cover various popular approaches and

introduce our novel spin-based method. There are a great deal of different ap-

proaches to this problem in the engineering and computer graphics literature; the

most important differentiator between them is how they deal with inversion. The

most important quality of the co-rotational strain model from our perspective as

game developers is the ability to recover from inversion, and methods that are

quite suitable for engineering analysis can fail to pass this test.

3.1 Edge-based methods

One approach to co-rotation is to attach a rotation frame to each node of the

finite element mesh. We can interpret this approach as calculating a ‘rotation

field’ with the same discretization as the finite element position field. A common

strategy for this is to choose some local directions and orthogonalize them in some

way. Michels et al. [2014] choose a set of three edges e1, e2 and e3 connected to

a vertex xi and construct the following set of orthogonal vectors:

n1 =
3∑

i=1

ei/|ei|,

n2 = n1 × e1/|n1 × e1|,

n3 = n1 × n2.

(3.1)

The rotation of each frame is then constructed from the orthogonal sets of the

current and previous frames:

Rt = [nt
1 nt

2 nt
3] ∙ [n

t−1
1 nt−1

2 nt−1
3 ]T . (3.2)

The authors point out that this gives the correct rotation in the presence of rigid

motion only. However, it is likely that this method will produce reflections rather
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CHAPTER 3. ROTATION ESTIMATION

than rotations if the local neighborhood is inverted - in other words, it is only

guaranteed to produce an orthogonal frame and not necessarily a true rotation.

The authors did not put their method through any particularly strenuous tests like

recovery from total inversion, which likely meant this weakness was not apparent.

3.2 Polar Decomposition

Most literature on finite element simulation in computer graphics associates rota-

tions with each element rather than each node. More precisely, each integration

point at which we calculate the deformation gradient, of which there may be many

per element, has an associated rotation. This is the matrix R that minimizes the

difference between the deformation and an isometry [Chao et al. 2010]:

ER = |F−R|2F . (3.3)

Notice that this is exactly the co-rotational strain energy discussed in the previous

chapter, except that we are notionally minimizing over R rather than F. Clearly

to minimize this energy we must find the rotation that most closely matches F

in the Frobenius sense. [Hauth and Etzmuss 2001] propose to use the polar

decomposition of F for this purpose:

F = US, (3.4)

where U is orthogonal and S is a pure deformation. We can perform this decom-

position in a slightly roundabout way by noting that S2 = FTF, and that we can

compute U = FS−1. The only difficulty is computing the matrix square root of

S2, which is straightforward since it will be positive-definite or singular. To do

this we compute the eigenvalues λi and eigenvectors vi of S2 by any method of

our choice, and then S is simply:

S =
m∑

i=1

√
λiviv

T
i . (3.5)

Computing the polar decomposition in this way is known as symmetric diagonal-

ization. One popular method due to Rivers and James [2007] for calculating the

eigenvalues uses Jacobi rotations warm-started with the previous frame’s solu-

tion. With this, the diagonalization process can be fairly cheap despite requiring

trigonometric calculations.
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The greatest drawback of the polar decomposition is that the matrix U is

not guaranteed to be an actual rotation; it is only guaranteed to be orthogonal.

If the diagonalization process is applied to a deformation gradient that includes

inversion, the result will be a reflection rather than a rotation. This method thus

shares the reflection-insensitivity drawback with the edge-based methods.

3.3 Singular Value Decomposition

With some modifications, we can ensure that we obtain a true rotation for any

input F. Instead of computing R = FS−1, we compute the full singular value

decomposition (SVD): F = UΣVT , where U and V are orthogonal and Σ is the

diagonal matrix of singular values. Unlike the entries of the stretch matrix S2

the singular values can be negative, indicating that F includes a reflection in the

relevant axis. Given the SVD, we can calculate the rotation simply by setting

Σ = I, or in other words R = UVT . Rotations calculated in this manner are

guaranteed to be true (det R = 1). Actually calculating the SVD is a complex

matter and most published methods are designed for use on large, rank deficient

matrices [Press et al. 2007]. McAdams et al. [2011] developed a SVD specif-

ically for the 3 × 3 matrices encountered in co-rotational simulation, which we

will refer to here as the Fast SVD. The idea is to perform eigen-decomposition

of S2 = FTF = VΣ2VT as before, this time taking the eigenvectors V instead

of computing the matrix square root. Then we can form the matrix UΣ = FV.

Finally a QR decomposition of UΣ will give us U and Σ separately. The authors

manage to construct a method that avoids all complex functions, relying on a se-

ries of small-angle approximations. Their method is also completely branch-free,

with no handling of special cases necessary. While warm-starting (as employed

for the polar decomposition) was not explored by the authors, it seems plausible

that we could decrease the number of iterations required in the same way.

3.4 Spin-Based Rotation Tracking

The element-based methods discussed so far rely on processing the deformation

gradient F to extract rotational information. We instead take a geometric ap-
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proach, operating on groups of particles rather than any kind of representative

matrix. We call this method spin-based because of its use of skew-symmetric

cross product matrices, rather than any connection to quantum mechanics. The

central idea is to minimize the following energy over the rotation R:

Erot =
1

2
|

n∑

i=1

Rp0
i × pi|

2, (3.6)

where there are n particles, each with a rest pose position p0
i and deformed

position pi relative to the barycenter pc. To make things easier, we will split the

rotation into a finite part RF which we take as constant, and a small axis-angle

vector perturbation r which we will optimise. This allows us to linearise the

problem using small-angle approximations. The problem to be solved is thus:

min
r

1

2
|

n∑

i=1

(
pR

i cos |r|+
(
r̂× pR

i

)
sin |r|+ r̂

(
r̂ ∙ pR

i

)
(1− cos |r|)

)
× pi|

2, (3.7)

where r̂ = r/|r|, pR
i = RFp0

i and we have used the Rodrigues rotation formula.

We can linearise this expression using the small angle approximation (i.e. cos |r| ≈

1 and sin |r| ≈ |r|):

min
r

1

2
|

n∑

i=1

(
pR

i + r× pR
i

)
× pi|

2. (3.8)

Clearly the expression is minimized when the quantity inside the norm is zero,

which we can rearrange to:

n∑

i=1

(
−p×

i pR
i

)
+

n∑

i=1

(
pR×

i p×
i

)
r = 0, (3.9)

where a× is the skew-symmetric cross product matrix of the vector a. The optimal

extra rotation is thus:

r =

(
n∑

i=1

pR×
i p×

i

)−1 n∑

i=1

p×
i pR

i ,

= J−1s.

(3.10)

Note that actually applying this small rotation to R will have a nonlinear effect,

and we will not find the exact answer in a single iteration. Our technique thus

resembles a quasi-Newton method for minimizing the nonlinear energy Erot. We

find, however, that when running at 30fps only a single iteration is required for

reasonable behaviour. Also note the similarities between this method and the
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3.4. SPIN-BASED ROTATION TRACKING

dynamics of rigid bodies; in particular the matrix J is exactly the inertia of the

body if the rotated and deformed configurations are the same, and every particle

has unit mass.

A significant difference between this method and the ones discussed previously

is that this method requires that we maintain a current rotation R for each group

we wish to track. While the method can converge from a poor initial estimate

of R (such as the identity matrix) in some cases, problems tend to arise when

the estimate is very far away from the optimum (for instance, a rotation by 180

degrees). We thus do not recommend using this method in situations where

there is no history of the deformation of the body in question. However, we find

that the quality of the rotations obtained by our method matches that of the

much more expensive methods discussed previously. Crucially this method will

only ever produce a true rotation, which means we avoid the problems associated

with symmetric diagonalization. While our method will not in general produce

the same rotation when applied to a finite element as SVDing the deformation

gradient, we have found behaviour to be indistinguishable in most cases. A

comparison of the rotations generated by our method and the alternatives when

applied to tetrahedra can be seen in Figure 3.1.

A further approximation for small deformations

If we expect the deformation to be small as well as the relative rotation, we can

further approximate the matrix J as the rotated pseudo-inertia of the rest state,

which means we can avoid calculating its inverse:

J−1 ≈ RJ−1
0 RT , (3.11)

where J0 is the pseudo-inertia of the rest state. Although using this approxi-

mation requires us to store this matrix, we avoid forming and inverting the full

expression which can substantially improve performance of the method. We have

found that this is actually a surprisingly good approximation, staying valid up

to quite high stretch ratios. While it is invalidated by very large elastic defor-

mations or the presence of plasticity, we are comfortable using it for simulation

of medium-strain elastic behaviour such as that seen in flesh simulation. The

most objectionable consequence of using this approximation inappropriately is
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Algorithm 1 Approximate rotation estimation for particle systems

function UpdateRotation(q)

R← ToMatrix(q)

s←
∑n

i=1 (Rp0
i × pi)

ω ← RJ−1
0 RT s

u←




1

ω/2



 // Quaternion form, assuming small angles

q← (qu/|qu|) // Using inexact rsqrt

end function

that the optimal rotation can be catastrophically over-estimated, an error which

will be compounded on subsequent time steps, leading to obvious oscillation and

jittering in the simulation.

Implementation and performance

Using our medium-deformation approximation and a quaternion form for the

rotation q, we can implement a version of our algorithm (Listing 1) that requires

minimal storage for the finite rotation and only a single inexact square root

for error control. We use the small-angle approximation for converting ω to a

quaternion, which avoids computing the costly exponential map.

Comparing this algorithm to the gold standard Fast SVD discussed in the

previous section, we found when applied to hexahedral finite elements our method

took around 200ns per decomposition, whereas the Fast SVD took around 860ns.

Our method is thus around four times faster than the alternative. While methods

like that of McAdams et al. [2011] that require the actual singular values would

not be able to use our rotation estimation, we have found that a standard co-

rotational model using our rotation tracking retains the ability to un-invert itself

without the aid of a strong volume constraint. This suggests that a stiffness model

based on singular values is not necessary to achieve this important property. We

also note that methods such as shape matching [Müller et al. 2005] whose most

costly computations involve composing a matrix to be polar-decomposed could

gain a substantial performance benefit from using our rotation tracking instead.
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Figure 3.1: Comparison of rotation estimation for tetrahedra. We manipulate the

top vertex of a tetrahedron, moving it clockwise around the base in each frame

from top to bottom. We estimate the tetrahedron’s rotation using, from left to

right, our method with a warm start, our method with a cold start from identity,

the fast SVD of McAdams et al. [2011], and symmetric diagonalization. Notice

that the rotation provided by our method differs significantly from the results of

the two matrix-decomposition based methods.
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3.5 Concluding Remarks

In this chapter we discussed a number of different methods for tracking the rota-

tion of a deformable body, before introducing our novel method. Our spin-based

rotation tracking is as robust as the gold-standard SVD method while being sev-

eral times cheaper, and is thus a good match for real-time simulation.

Recall that the reason we need rotation tracking is so that we can use it in

the popular co-rotational strain metric, which is more robust than other simple

metrics. In the next chapter, we will discuss how we can derive discrete finite

element equations from the continuous continuum mechanics discussed in Chap-

ter 2. We will then go on to link all this material together in Chapter 5, where

we will discuss methods for actually simulating the deformation of soft bodies.
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Chapter 4

Discretization

Traditional physics simulation for games revolves around rigid bodies, which can

be described succinctly by their position, orientation, mass and so on. The rigid

body approximation is thus in some sense already discrete - the approximation

gives us the degrees of freedom we will use in simulation. With continuum me-

chanics this is no longer true; instead we have a continuous problem in which every

point in space has a different strain function. To actually solve the problem on a

computer we must approximate the infinite space of solutions to the continuous

problem with a finite discretization. This is in itself a complex topic and the

exact discretization chosen can have as much effect on the resulting behaviour of

a continuum mechanics simulation as the material model1.

The mathematical basis for solving differential equations discretization is pro-

vided by the theory of weak formulations, and finite elements are an example of

Galerkin’s method. We will not go deeply into these fundamentals, however,

because most of the mathematical effort in these theories goes into proving con-

vergence results in which we are not terribly interested.

4.1 Interpolation

Discretization is essentially a process of designing and implementing an appro-

priate interpolation scheme. The complexity of this task depends on the nature

of the simulation domain; for instance on regular grids we can simply use linear

interpolation and obtain the well known Finite Difference methods. However, in

1Note that one of the goals of serious finite element analysis is to eliminate this effect;

different discretizations should agree in the limit of refinement and if they do not then there is

something seriously wrong! However at the comparatively low level of detail we operate at in

real-time, important differences can persist that would vanish if the mesh was refined.
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computer graphics we are usually interested in irregular problems with compli-

cated boundaries, and we thus require a more advanced interpolation scheme.

The most common solution to this problem is to turn to the Finite Element

method.

4.1.1 Finite Element Approximation

In this method we replace the symbolic position fields X and x with point samples

Xi and xi ∈ R3, commonly called the nodes or vertices of the simulation. For

notational convenience we can stack these vectors on top of each other to form

the discrete state vectors Xd and xd ∈ R3n where n is the number of nodes. We

then introduce an interpolation function that lets us approximate the continuous

variables:

X = Θ(Xd). (4.1)

The function Θ is in principle quite general; for instance every interpolated point

could depend on every node in some nonlinear fashion. Various choices of Θ

can give you a Finite Difference method, or even highly unstructured methods

like Smooth Particle Hydrodynamics. In the finite element method, however, we

construct X as a sum of basis functions Ni:

X =
n∑

i=1

Ni(ξ)Xi, (4.2)

where ξ is a vector of curvilinear coordinates inside each element. These may be

barycentric coordinates on tetrahedra, or trilinear coordinates on hexahedra, or

more exotic systems like cylindrical or prismatic coordinates. While any system

of coordinates can be used in principle, we usually stick with simple barycentric

coordinates in the computer graphics field for reasons of efficiency. An example

can be seen in Figure 4.1.

Given this interpolation scheme we can also write the Finite Element approx-

imation of x:

x =
n∑

i=1

Ni(ξ)xi. (4.3)

By taking a time derivative we can obtain the interpolated velocity:

v =
n∑

i=1

Ni(ξ)vi, (4.4)
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Figure 4.1: Reference, undeformed and deformed configurations for a linear hex-

ahedral mesh. One element is highlighted.

where vi is the velocity of node i.

4.1.2 Deformation Gradient

Recall from Chapter 2 that the deformation gradient F = ∂x
∂X

is an important

quantity. We can obtain this easily using Equation 2.1:

F =
∂x

∂X
,

=
∂x

∂ξ

∂ξ

∂X
,

=
∂x

∂ξ

(
∂X

∂ξ

)−1

,

=

(
n∑

i=1

∂Ni

∂ξ
⊗ xi

)(
n∑

i=1

∂Ni

∂ξ
⊗Xi

)−1

,

= DsD
−1
m ,

(4.5)

where a⊗ b = abT is the tensor product. The matrix Dm
2 transforms from the

reference shape to the undeformed shape. The matrix Ds transforms from the

reference shape to the deformed shape. By using the inverse undeformed shape

transform D−1
m we form F, which transforms from the undeformed shape to the

deformed shape.

2Dm is sometimes called the element Jacobian and denoted with J. We will avoid this

notation to prevent conflict with other uses of the term ‘Jacobian’, which can refer to this

specific finite element matrix, a more general matrix of partial derivatives or the determinant

of either of these quantities.
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Note the term ∂Ni

∂ξ
that appears in both shape transforms. We call the gradient

of each shape function bi = ∂Ni

∂ξ
. Stacking these vectors together we can form

the matrix B ∈ R3×n = [b1,b2, ..., bn]. Similarly we can stack the node vectors

together to form the element state vector xe ∈ R3×n = [xe1,xe2, ...xen], where xei

is the ith node of the eth element. Then we can express F more compactly as:

F =
(
BxT

e

) (
BXT

e

)−1
, (4.6)

where of course Ds = BxT
e and Dm = BXT

e .

4.1.3 Integration

So far we have shown how to interpolate continuous quantities from the discrete

degrees of freedom. However, if our simulation is to be of much use we must

be able to map these continuous quantities back to the nodes. In a force based

simulation, for instance, we would define a total discrete elastic energy E as a

sum of element energies Ee:

E(x) =
m∑

e=1

Ee(xe), (4.7)

where m is the number of elements. Each element energy is obtained by integrat-

ing over the local coordinates of each element:

Ee(xe) =

∫

Ω

ψ(x,X)dX, (4.8)

where ψ(x,X) is the elastic energy density defined in chapter 2. This integral

looks, and indeed is, complex to evaluate; in the material models we have covered

ψ is a linear or quadratic function of F, which itself depends on the inverse of

a matrix that may include ξ terms. For this reason we must often abandon

analytic evaluation of this term in favor of numerical quadrature, which we shall

cover later.

We can minimize this energy with, for example, Newton’s method. We could

also add a kinetic term Ek =
∑n

i=1 miv
2
i (where the mass has been lumped to

the nodes), which would turn the problem into one of implicit integration. As

has been labored, we are more interested in constraint-based methods. The exact

procedure varies depending on the method, but whatever our choice we will end
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up integrating quantities that look similar to energy terms and then finding their

derivatives in the discrete setting. We will defer the discussion of constraint-

based solution procedures, and instead talk about the specifics of different element

choices.

4.2 Simplicial Elements

Triangles and tetrahedra are the dominant choice for finite element simulation in

computer graphics. With the formulation discussed below, their implementation

is very straightforward and does not require any numerical integration. Further-

more they match well with standard practice in computer graphics where surfaces

are invariably represented as triangles for rendering purposes, and mesh creation

algorithms are generally most well developed for triangles and tetrahedra. There

are, however, disadvantages to simplicial elements that restricts them to mostly

pedagogical use in computational science and engineering. These include the

locking phenomenon, where these elements perform poorly under strong volume

preserving forces (see Figure 4.2), and their inefficiency when compared with,

for instance, one-point integrated linear hexahedra (Section 4.3). They are thus

lacking in both speed and accuracy. Nevertheless they are uncomplicated and

useful for learning.

4.2.1 Interpolation

Consider a tetrahedron whose four vertices have positions pi. We define the

barycentric coordinate interpolation as the simple linear sum

p = Θ(λ) =

∑4
i=1 λipi
∑4

i=1 λi

(4.9)

where p is the interpolated point. Note that without an additional constraint

these coordinates are not unique; the point with λ1 = 1, λ2,3,4 = 0 is the same

as the point λ1 = 2, λ2,3,4 = 0. To remove the non-uniqueness we can specify

that the λis must sum to 1. This allows us to remove one of the coordinates,

for instance by stating λ4 = 1 − λ1 − λ2 − λ3. There are thus three unique

barycentric coordinates, which we can simply map to our natural coordinates:
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ξi = λi, i ∈ 1, ..., 3. By equation 4.9, the interpolation is then

p = Θ(ξ) = ξ1p1 + ξ2p2 + ξ3p3 + (1− ξ1 − ξ2 − ξ3)p4. (4.10)

Comparing with equation 4.2, we can simply read off the basis functions:

N1 = ξ1,

N2 = ξ2,

N3 = ξ3,

N4 = 1− ξ1 − ξ2 − ξ3.

(4.11)

An alternative form for the interpolation can be useful:

p = Mξ, (4.12)

where

M = (p1 − p4, p2 − p4, p3 − p4)
T (4.13)

is the edge matrix of the tetrahedron; each column of M is the line from p4 to

each other vertex of the element.

Deformation Gradient

The alternative form for the barycentric interpolation discussed above is useful

when computing F. Recall we need to compute the shape transform matrices

between reference coordinates and both the undeformed and deformed configu-

rations:

F =
∂x

∂ξ

(
∂X

∂ξ

)−1

. (4.14)

Substituting in our interpolation, we have:

F =
∂

∂ξ
(Msξ)

(
∂

∂ξ
(Mmξ)

)−1

,

= MsM
−1
m ,

(4.15)

where

Ms = (x1 − x4, x2 − x4, x3 − x4)
T ,

and

Mm = (X1 −X4, X2 −X4, X3 −X4)
T .
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Figure 4.2: Demonstration of volumetric locking. Meshes of 855 and 3840 tetra-

hedra (left, center), and 171 one-point integrated hexahedra (right) are bent into

a C shape under a volume constraint. The sawtooth pattern seen in the tetrahe-

dral meshes is caused by volumetric locking, which is present whether the mesh

is coarse or refined. Even at low resolution, the deformation produced by the

hexahedral mesh remains smooth.

Looking back at the derivation of F in equation 4.5, we can see that for tetrahedra

we have the simple relationship Ds = Ms and Dm = Mm. Note that these shape

transform matrices have no dependency on ξ, or in other words that F is constant

over each tetrahedron. All derived quantities of F will thus also be constant,

which has led people to refer to this element as the constant strain tetrahedron.

Embedding

A problem peculiar to deformable body modelling in computer graphics is that of

embedding rest-pose points (such as the vertices of a high-resolution visual mesh)

inside the simulation mesh. This is simply the inverse interpolation operation:

given a point p we seek natural coordinates ξ in p’s enclosing element such that

the interpolation operation maps ξ back to p. For tetrahedra this is trivial:

ξ = M−1p. (4.16)

As long as the tetrahedron is not degenerate, M is invertible and we can find

local coordinates that map back to p. Note that this is true for any p, not just

points inside the tetrahedron. If we allow negative ξi weights then the barycentric

coordinate system can represent any point in space.
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4.2.2 Integration

Because F is constant, integration of energies over X is possible analytically:

Ee =

∫

Ω

ψ(F)dX,

= ψ(F)

∫

Ω

1 dX,

= V0ψ(F),

(4.17)

where V0 is the volume of the rest pose tetrahedron:

V0 =
1

6
| det(Dm)|. (4.18)

The volume of the reference tetrahedron is 1
6
, and det(Dm) encodes the volume

change between the reference and rest shapes.

4.3 Hexahedral Elements

A hexahedron is essentially a cube with the corner vertices arbitrarily perturbed.

Hexahedral elements are generally the representation of choice for modelling ma-

terials in engineering, but have only recently become more popular in the com-

puter graphics community. They represent a fair amount of additional complexity

over tetrahedra, but when properly implemented they can exhibit superior per-

formance in both the quality of their deformation and computational speed.

4.3.1 Interpolation

A natural choice for interpolation over the reference hexahedron is trilinear in-

terpolation. For the node labelling shown in Figure 4.1, this scheme is:

p = Θ(ξ) = (1− ξ1) (1− ξ2) (1− ξ3) p1

+ ξ1 (1− ξ2) (1− ξ3) p2

+ ξ1 ξ2 (1− ξ3) p3

+ (1− ξ1) ξ2 (1− ξ3) p4

+ (1− ξ1) (1− ξ2) ξ3 p5

+ ξ1 (1− ξ2) ξ3 p6

+ ξ1 ξ2 ξ3 p7

+ (1− ξ1) ξ2 ξ3 p8.

(4.19)
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The shape functions can simply be read off this equation: N1 = (1 − ξ1)(1 −

ξ2)(1− ξ3) and so on.

Deformation Gradient

For tetrahedral elements there was a convenient alternative form for the interpo-

lation function that made computing F particularly simple. Unfortunately this

is not the case for hexahedra and we must grind the crank of Equation 4.5 to

perform this calculation. This means finding the shape function gradient vectors

bi = ∇Ni =
[

∂Ni

∂ξ1
, ∂Ni

∂ξ2
, ∂Ni

∂ξ3

]
. Fortunately our shape functions are simple enough

that this is an easy proposition; for instance,

b1 = ∇N1 = [−(1− ξ2)(1− ξ3),−(1− ξ1)(1− ξ3),−(1− ξ1)(1− ξ2)] .

Stacking the bis together we obtain the shape derivative matrix B(ξ). Using

equation 4.6, we can construct the deformation gradient as

F(ξ) = B(ξ)xT
e

(
B(ξ)XT

e

)−1
. (4.20)

Embedding

Embedding points for tetrahedra was trivial, amounting to a matrix inverse.

It turns out that solving the embedding problem for linear hexahedra actually

involves solving a nonlinear system of equations. As before, given a set of coordi-

nates p in the undeformed pose we seek local coordinates ξ such that the trilinear

interpolation operation maps ξ back to p:

Θ(ξ) = p. (4.21)

This is a nonlinear equation, so we turn to our favorite technique of Newton

iteration to solve it. We introduce a guess at the solution ξk and a correction

variable Δξ so that

Θ(ξk + Δξ) = p. (4.22)

Then we perform a Taylor expansion to first order about ξk:

Θ(ξk) +
∂Θ

∂ξ
(ξk)Δξ = p, (4.23)
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and rearrange to obtain the correction:

Δξ =

(
∂Θ

∂ξ
(ξk)

)−1 (
p−Θ(ξk)

)
. (4.24)

Then we simply iterate (ξk+1 = ξk + Δξ) until Θ(ξk) − p is sufficiently small.

For hexahedra Θ(ξ) is given by Equation 4.19, and the Newton step is:

Δξ =
(
B(ξk)XT

e

)−1 (
p−Θ(ξk)

)
. (4.25)

With an initial guess of ξ0 = [0.5, 0.5, 0.5], this scheme converges within a few

iterations as long as the element geometry is well-formed.

4.3.2 Integration

Because F(ξ) and its derived quantities vary over each element, integration over

each element is no longer trivial as it was in the case of tetrahedra. In fact,

to make any headway at all we must use numerical integration, also known as

quadrature. The main idea behind quadrature is that we can approximate the

integral of a function over some interval by taking samples of that function. The

trapezium rule, Simpson’s rule and so on are all examples of quadrature rules.

A full discussion of quadrature is beyond the scope of this document (see [Be-

lytschko, Liu, and Moran 2000] ), but the main takeaway is that we can design

quadrature rules that are exact for any given class of polynomial function. This

is on the one hand good because it eliminates a potential source of error: as long

as we use a sufficiently accurate quadrature rule, we can evaluate the elemental

elastic energy exactly. On the other hand, exact quadrature can be extremely ex-

pensive. Much work in engineering, and more recently in the computer graphics

field, has been spent on finding the absolute minimum amount of computation

required to accurately simulate the deformation of linear hexahedra. It turns out

this is possible with only a single quadrature point as long as we carefully control

the resulting hourglass deformations. These are objectionable deformation modes

that can propagate unopposed if not controlled (See Figures 4.3 and 4.4). This

means that carefully implemented hexahedra are substantially more efficient than

tetrahedra.
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Eight Point Gauss Quadrature

First, let’s consider the ‘correct’ integration rule. Most literature dealing with

these elements [Belytschko, Liu, and Moran 2000]; [Belytschko and Bindeman

1993] specifies eight-point Gauss quadrature as a minimum. We can write this

integration rule as:

Ee =
1

8

8∑

i=1

ψ(F(ξi)), (4.26)

where the integration points ξi are given by the rows of the matrix

Ξ =
1

6























3−
√

3 3−
√

3 3−
√

3

3 +
√

3 3−
√

3 3−
√

3

3 +
√

3 3 +
√

3 3−
√

3

3−
√

3 3 +
√

3 3−
√

3

3−
√

3 3−
√

3 3 +
√

3

3 +
√

3 3−
√

3 3 +
√

3

3 +
√

3 3 +
√

3 3 +
√

3

3−
√

3 3 +
√

3 3 +
√

3























. (4.27)

Unsurprisingly, this scheme is computationally expensive; the single evaluation

of F and its derived quantities for tetrahedra must be performed eight times

for hexahedra! While some researchers have used this scheme in their work,

a casual observer might conclude that higher-order elements are guaranteed to

be computationally more expensive than constant-strain tetrahedra. However,

this is not the case because we can in fact achieve acceptable behaviour with

substantially fewer than eight integration points.

One Point Quadrature

A näıve one point quadrature simply treats F as if it were constant and uses

a single integration point at the element center ξc = [0.5, 0.5, 0.5]. We call the

deformation gradient evaluated at this point

F0 = F(ξc) = B0x
T
e

(
B0X

T
e

)−1
, (4.28)
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Figure 4.3: Deformations of a hexahedral FE mesh with and without hourglass

control (left and right respectively).

where

BT
0 = B(ξc)

T =
1

4








−1 1 1 −1 −1 1 1 −1

−1 −1 1 1 −1 −1 1 1

−1 −1 −1 −1 1 1 1 1








. (4.29)

This minimal quadrature scheme can actually be enough for certain types of

analysis in engineering, but is in general insufficient due to the presence of objec-

tionable artifacts often called ‘hourglass modes’. These are deformations of the

element that do not cause any change in F0; they are not ‘seen’ by the discrete

energy and can thus propagate unopposed. An example of severe hourglassing

can be seen in Figure 4.3.

Because one-point quadrature almost works, much effort has been invested

in finding the minimal amount of extra computation required to eliminate the

hourglass modes.

Hourglass Modes

What exactly are the hourglass modes? Simply put, they are deformations of

the element’s nodes that have no effect on the deformation gradient tensor. For

instance, consider a unit hexahedron subjected to a deformation xe = Xe + Q,

where

QT =








1 −1 1 −1 1 −1 1 −1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0








. (4.30)
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Figure 4.4: Hourglass modes in the x direction, reproduced from [Belytschko,

Liu, and Moran 2000].

The resulting deformation gradient at the element center is:

F0 = I+ B0Q
T . (4.31)

Note we have used the fact that B0X
T
e = I when Xe is the same as the reference

configuration. It is tedious but simple to verify that B0Q
T = 0, and thus no

deformation in this mode will have any effect on the strain energy. We could

excite this mode in the y or z axes and get the same result. All 12 hourglass

modes for one-point integrated hexahedra are given by applying the rows of the

matrix H to the x, y or z coordinates of the nodes:

H =











1 1 −1 −1 −1 −1 1 −1

1 −1 −1 1 −1 1 1 −1

1 −1 1 −1 1 −1 1 −1

−1 1 −1 1 1 −1 1 −1











. (4.32)

Figure 4.4 shows the x direction modes for a cubic hexahedron.

4.3.3 Hourglass Control

Staggered Grid Method

McAdams et al [2011] introduced the computer graphics field to the concept

of hourglass control. They developed a method based on the successful use of

staggered grids in Eulerian fluid simulation, expressing the ξ1 derivatives at the

centers of the ξ1 faces of the element, and so on. This in effect introduces eight

extra quadrature points, but only on the Laplacian term ‖F‖2F , which as the

authors note has a constant stiffness matrix. This scheme is an example of what
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an engineer would call selective reduced integration (SRI): the pressure terms

of the co-rotational strain are separated out and integrated using the one-point

approximation while the Laplacian term is given the full-quadrature treatment.

The choice of face-centered integration points is non-standard - a more normal

SRI scheme would simply use the Gauss quadrature nodes (Equation 4.27).

Because McAdams et al. only consider cubic elements3 with no plasticity,

they do not discuss the application of their control method to arbitrarily shaped

hexahedral elements. They also do not compare to any of the standard hourglass

control strategies used in engineering. A question that we might ask, then, is: is

this method fundamentally different to the assumed strain stabilization methods

presented in the next section, and if so is it superior? We will attempt to answer

this question after briefly covering the field of hourglass control in engineering

finite element analysis.

Perturbation Method

Belytschko [1993]; [2000] presented several methods for stabilizing one-point

integrated hexahedra. These methods all rely on calculating the hourglass basis

vectors γi for each element, which we can compute as follows:

γi =
1

8

[

Hi −
3∑

j=1

(Hi ∙Xj)bj

]

, (4.33)

where Hi is the ith row of H, Xj is the jth row of X (i.e X1 is the vector of x

coordinates of the element nodes) and bj is the jth row of J−1
0 B0. There are a

number of ways we can utilise these basis vectors to control hourglass deformation,

but the simplest is to directly compose an hourglass strain energy EHG which we

can include in our material model:

EHG = CHGV0

4∑

i=1

‖γix
T
i ‖

2
2, (4.34)

where CHG is a material parameter that represents the stiffness of the hourglass

modes. This energy is quadratic in xi, and thus the associated forces are linear

and the stiffness matrix constant. Unfortunately, the standard problem with

3Indeed their method as stated has much in common with a finite difference scheme, and

was actually presented as one in an earlier incarnation: see [Zhu et al. 2010].
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linear materials is still present, which is that this energy is non-objective. Thus

it really needs to be applied in a co-rotated coordinate system (as described in

the next chapter) to not introduce distortions in the context of finite deformation.

Another problem with this method is the parameter CHG is quite arbitrary; it is

separate from the definition of our material model and not particularly physical.

Ideally the hourglass modes should participate in the deformation in the exact

same manner as the volumetric modes. However, this method is sufficient for

simple use in computer graphics where we are not overly concerned with accuracy.

4.3.4 Other Elements

So far in this section we have only covered linear polyhedral elements, but we

can in fact use almost any interpolation or approximation scheme as an ele-

ment. Higher-order polynomial elements - quadratic tetrahedra or hexahedra, for

instance - are popular in engineering for use in simulations of incompressible ma-

terials. These elements have been tried in the computer graphics field [Bargteil

and Cohen 2014], but because we are generally not interested in strict volume

preservation the advantages have so far been outweighed by the increased cost of

simulating with these element types.

Another element type that has recently become popular for simulating shells is

based on subdivision surfaces. This method of surface definition, developed in the

early days of the computer graphics field [Catmull and Clark 1978], turns out to

be an ideal basis for finite element analysis of thin shells since it provides excellent

guarantees of continuity without requiring extra nodal degrees of freedom [Cirak,

Ortiz, and Schröder 2000]. Despite its origin, this method has not yet become

popular for computer animation.

4.4 Concluding Remarks

In this chapter, we discussed how to go from continuum mechanics principles to

discrete equations corresponding to particular interpolation schemes. We also

discussed how to invert these interpolation schemes, which is useful when embed-

ding high-detail render geometry into low-resolution simulation meshes. In the

next chapter, we will pull all the preceding material together and discuss how to
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actually simulate soft body dynamics.
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Chapter 5

Solution Procedures

In this chapter, we discuss a number of methods for simulating soft body dynam-

ics, including our novel Position Based Finite Element method (Section 5.3). We

also discuss a significant extension to a recently introduced method (Section 5.5)

that makes it significantly more useful for real-time simulation.

5.1 Newton’s Method

The most straightforward, principled and popular method for simulating soft

body physics is to express the behaviour of our system as a discrete energy, and

then minimize that energy using Newton’s method.

5.1.1 Static Case

Let’s first cover the static case, and generalise to dynamics later. Recall that in

the discrete settings, x is the stacked vector of node positions. Given a discrete

energy E(x), we want to solve the problem

x = min
x

(E(x)) . (5.1)

This minimum is reached when the energy gradient (i.e the sum of internal forces)

is equal to zero:
∂E(x)

∂x
= f(x) = 0. (5.2)

To get useful results from this analysis we also introduce an external force vector,

which can represent gravity or an applied load:

f(x)− fext = 0 (5.3)

If E(x) is quadratic, f will be linear and we can solve this equation directly.

In most interesting cases, however, f(x) will be nonlinear. There are a number
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of methods to solve (5.2), some of which we will cover later. To use Newton’s

method, we introduce a candidate solution xk and correction Δx such that the

solution is approximated by xk + Δx:

f(xk + Δx)− fext = 0. (5.4)

Then we perform a first order Taylor expansion around xk and rearrange:

K(x)Δx = fext − f(xk), (5.5)

where K(x) = ∂f(x)
∂x

is the stiffness matrix 1. Finding the Newton update Δx

requires us to solve this equation. However without modification, K will be

singular and non-invertible: it contains rigid body modes that mean there is no

unique solution. To obtain a static solution we must set a boundary condition on

at least one node. This means, in short, setting the bound node’s rows in K to

identity, and overwriting the node’s entries in the force vector with the desired

position. Appendix A covers some basic linear algebra that can be used to solve

systems of this type.

5.1.2 Dynamic Case

When simulating the time evolution of - or integrating - a system, one does not

necessarily have to form and solve any particular system of equations. So-called

explicit integrators simply calculate the forces applied to each body at each time

step and step the system forward based on these forces. Such methods have

difficulty with robustness, since the time step must generally be lower than the

highest frequency in the simulation to avoid numerical explosions. While explicit

methods can be the right choice for some kinds of highly nonlinear problems,

the problems we deal with in real-time soft body simulations are only mildly

nonlinear but often extremely stiff (i.e. the natural frequencies of the simulation

are very high). We therefore prefer implicit methods, which are unconditionally

stable.

1Also called the tangent stiffness matrix and energy Hessian ; in the first case because it

represents a tangent plane to the strain energy field at the point x, and in the second because

it is the second derivative of the strain energy.
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The most straightforward implicit integration scheme is the implicit Euler

method. In the static case it was easiest to start with a minimum energy principle,

but in the dynamic case it is more convenient to start at the force level:

xt+Δt = xt + Δtvt+Δt, (5.6)

vt+Δt = vt + ΔtM−1
(
f(xt+Δt) + fext

)
, (5.7)

where xt is the stacked position vector of the system at time t, vt is the stacked

velocity vector, Δt is the (fixed) time step and M is the mass matrix. We can

rearrange the equations to emphasize the position level:

M
(
xt+Δt − xt −Δtvt

)
= Δt2

(
f(xt+Δt) + fext

)
, (5.8)

vt+Δt = Δt−1
(
xt+Δt − xt

)
. (5.9)

It is easy to show that the position equation (5.8) is the first order optimality

condition of the minimization problem:

xt+Δt = min
xt+Δt

(
1

2
Δt−2‖M

1
2

(
xt+Δt − x∗

)
‖22 + E(xt+Δt)

)

, (5.10)

where x∗ is the unconstrained solution, i.e the positions of each particle at the

end of the time step in the absence of any internal forces:

x∗ = xt + Δtvt + Δt2M−1fext. (5.11)

The first term in (5.10) represents the total work done on all bodies during the

time step. Intuitively, the minimization represents a balance between the elastic

and kinetic energies. As in the static case, to solve this system we introduce a

series of candidate solutions xt+Δt
k+1 = xt+Δt

k +Δx, and linearise around the target.

After some rearranging, we end up with:

(
1

Δt2
M + K(xt+Δt

k )

)

Δx =
1

Δt2
M
(
Δtvt + (xt+Δt

k − xt)
)

+ f(xt+Δt
k ) + fext,

(5.12)

whose terms we will call

AkΔx = bk. (5.13)

The matrix A will be full-rank due to the inclusion of M, so there is no need

to set boundary conditions in a dynamic analysis. However, we can still use the
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same procedure as in the static case if we wish to constrain nodes for other rea-

sons. When we are happy with our solution, we can obtain the velocity vt+Δt by

(5.9). The number of Newton iterations required is generally very low in dynamic

analysis, since we can use the ballistic solution as an initial guess: xt+Δt
0 = x∗.

In fact, a notable variant of implicit Euler integration [Baraff and Witkin 1998]

uses only one Newton step at each time step. This approach, called semi-implicit

integration, makes no attempt to genuinely solve (5.10), instead simply replacing

(5.8) with its linearisation every frame. In effect, we solve a linear model of the

problem rather than the problem itself. This works in many cases because the

consequences of not solving the nonlinear problem (5.10) exactly are not partic-

ularly dire. Generally, the most noticeable artifact is substantial extra damping,

proportional to the nonlinearity of the method. For some applications this can

be quite objectionable, but for others it is easy to ignore.

5.1.3 Constraints and Contacts

Before talking about problems in the implementation of Newton’s method, we

should briefly discuss a fundamental limitation of this approach. In short, our

ability to express constraints purely as energy terms is very limited. We will

discuss the contact problem in more detail later, but the long and short of it is

that rigid contact between two objects can only be adequately described using

inequality constraint conditions. If we wish to include such a condition in the

minimization problem (5.10), we must express it as a twice-differentiable function

and add it to the stiffness matrix. This is called the implicit penalty method. An

example of such an energy for a one-sided contact might be:

Ec(xi) = kc(xi ∙ n̂− d)2, (5.14)

which models an attraction of the particle xi towards the contact distance d in

the contact normal direction n̂. kc is a stiffness parameter for the contact. Note

that this contact model is sticky : points that do not penetrate will be attracted

towards the contact manifold as well as points that do. Stickiness is the most

obvious and egregious consequence of using the penalty method for inequalities,

but there are other more subtle problems with this choice. To obtain reasonable
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behaviour, kc must be quite large: it has to override the internal forces to pre-

vent the contacting particles being driven through the contact manifold. Even

with extremely high values of kc, there will always be some interpenetration.

Furthermore, increasing kc to minimize this violation will negatively effect the

condition number of A, which will increase the number of conjugate gradient it-

erations required to solve (5.12). Interpenetration artifacts are thus an inevitable

consequence of implicit contact modelling.

5.1.4 Problems with Newton’s Method

Quite separate to the contact problem, the implementation of Newton’s method

is littered with pitfalls that can trap the unwary. We will discuss two important

ones here.

Computing K

We have glossed over the specifics of K in this chapter, but it bears mentioning

that the computation of K itself can be both intellectually and computationally

demanding. For an example of the first criticism, note the contortions required

to differentiate the SVD in [McAdams et al. 2011]. For the second, note the

recent interest in quasi-Newton methods for FEM simulation in computer graph-

ics [Hecht et al. 2012]. Dealing with stiffness matrices is, in short, a painful

experience.

Positive Definiteness of K

We rely on K being positive definite to be able to use our favorite tools of

Cholesky decomposition and Preconditioned Conjugate Gradients (discussed in

Chapter A). However this is only guaranteed to be true at the solution; the fur-

ther away our guesses are the more likely one of the K matrices encountered in the

Newton solution process is to be indefinite, with one or more negative eigenval-

ues. To counter this we must ensure every element’s contribution to K is strictly

positive definite. Rivers and James [2007] achieved this by explicit eigen-analysis

of each element’s contribution, while McAdams et al. [2011] proposed an alter-

native perturbation that avoids the need to construct these matrices explicitly.
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Methods such as those below that do not perform any indefiniteness correction

suffer from noticeable artifacts when the material is stretched.

5.2 Fast Finite Elements

The previous section derived a principled time integration method for elastic

problems. As one might expect, the method we developed is not optimally ef-

ficient. Much effort in the computer graphics field has been invested in finding

the most efficient formulation of implicit FEM, resulting in a cloud of literature

that we will refer to as fast finite elements. The only deformation system with

an academic record of use in games [Parker and O’Brien 2009] falls squarely into

this category, so it makes sense to describe the simplifications and hacks that

have been found to be useful.

Stiffness Warping

We previously discussed the co-rotational material model (Section 2.2.4). Al-

though we presented it as a fully nonlinear energy, the co-rotational method was

in fact developed in the engineering literature as a post-fix for linear materials.

This was rediscovered in the computer graphics field [Müller and Gross 2004],

where it was given the name stiffness warping. We will use this name to refer to

the method of using linear elasticity in a rotated reference frame, reserving the

term ‘co-rotational’ to refer to the nonlinear model discussed previously. Note

that this is contrary to the use in engineering literature, where co-rotational meth-

ods are purely used as corrections for linear elasticity and the nonlinear energy

is not, to our knowledge, used at all.

To understand the method of stiffness warping, let’s return to the St. Venant-

Kirchoff material model discussed previously, which uses the Green Lagrange

strain tensor:

EGL =
1

2
(FTF− I). (5.15)

Recall that

F =
∂x

∂X
=

∂u

∂X
+ I, (5.16)
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where u = x−X. This lets us write EGL as:

EGL =
1

2

(
∂u

∂X

T ∂u

∂X
+

∂u

∂X

T

+
∂u

∂X

)

. (5.17)

Note that the nonlinearity in this tensor comes from the first term. If the de-

formation is small, we can neglect this term as second-order. This gives us the

infinitesimal strain tensor, which we call ε:

ε =
1

2

(
∂u

∂X

T

+
∂u

∂X

)

. (5.18)

We can rewrite using the familiar F:

ε =
1

2

(
FT + F

)
− I,

= Fs − I,
(5.19)

where Fs is the symmetric part of the deformation gradient. We can go on to

define materials based on this strain in the usual manner. Energies based on

the square of this measure will be quadratic, and thus the forces will be linear

and the associated K will be constant. Unfortunately, for reasons discussed ad

nauseam above, using infinitesimal strain for general dynamic analysis is a poor

idea due to its lack of objectivity. In stiffness warping, we overcome this by using

the co-rotated deformation gradient F̃ = RTF :

ε̃ =
1

2

(
F̃ + F̃T

)
− I, (5.20)

where R is calculated using any of the methods discussed in chapter 3. Then

when calculating the nodal forces, we rotate back into the global reference frame:

f̃ = Rf(x) (5.21)

Following the discretization process, we arrive at expressions for the elemental

blocks in K(x) that are simply rotated versions of the same blocks in the linear

elastic matrix. This is convenient because it removes the need to compute these

blocks every frame, which can be the most expensive part of the simulation in a

truly nonlinear solver. The set of linear equations we have to solve still changes

each frame, but the cost of forming the stiffness matrix is minimized.

A reasonable question to ask is: What is the difference between this method

and the nonlinear co-rotational method we discussed earlier? The primary differ-

ence is that we neglect the dependence of R on x, which means stiffness warping
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is only suitable for the small-strain, large displacement regime. A second impor-

tant difference is that the strain F−R lives in the global reference frame, whereas

the strain RT (F−R) = RTF− I lives in a notional un-rotated frame. This can

make plastic deformation tricky when using the global form.

Choice of Solver

Obviously, when the core of our simulation is a large positive definite linear sys-

tem, the speed and efficiency of our method as a whole is strongly dependent on

the linear solver we use. We will quickly survey the methods available to us, de-

ferring a discussion of the specifics of the solvers we use to the next chapter. The

most popular method by far for problems of this type is that of Preconditioned

Conjugate Gradients (PCG), an iterative process that exploits the positive def-

initeness of A. Most papers that aim for good performance use some variant of

PCG [Parker and O’Brien 2009]; [Müller and Gross 2004]; [McAdams et al. 2011].

Generally a diagonal preconditioner is used; despite reports that more complex

partial Cholesky preconditioners can be beneficial there is not very much discus-

sion of preconditioning strategies in the literature.

A competing approach that comes with strong recommendations in the com-

putational science community is the sparse Cholesky factorisation; though com-

plicated to parallelise this direct approach has the advantage of a constant run-

time with no dependency on the condition number of A. Hecht et al. [2012]

used rank-updates of a Cholesky factorisation to only update the stiffness matrix

when the element rotations change substantially, making their method a kind of

quasi-Newton approach.

Yet another approach applies the multigrid method to elasticity simulation.

McAdams et al. [2011] constructed a hierarchy of voxel grids and used a damped

Jacobi smoother at each level. While the performance of this method per DoF

was reportedly very good, [Parker and O’Brien 2009] and our own experiments

suggest multigrid is not particularly useful when the simulation mesh is coarse.

Because we emphasize solving small systems extremely fast, multigrid is compar-

atively unattractive for our purposes.
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5.3 Position Based Finite Elements

The ubiquity of Position Based Dynamics (Section 1.2.1) in real-time cloth sim-

ulation raises the question of whether soft body simulation can benefit from the

same technique. It turns out the application of PBD to Finite Element simula-

tion is fairly straightforward and has some useful properties compared to implicit

simulation. The basic approach is to take discretized finite element strain ex-

pressions and solve them sequentially as constraints in a Projected Gauss-Seidel

fashion, exactly as edge constraints are solved in cloth simulation. The problem

in force-based simulation of minimizing a large nonlinear system is replaced with

the problem of solving a small nonlinear system. We can solve a given constraint

equation Ci(x) by linearising about an iterate xk:

Δx = −M−1 ∂C

∂x
(xk)

C(xk)

‖M−1/2 ∂C
∂x

(xk)‖2
. (5.22)

The original PBD paper presented this as an empirical method, but it was shown

in [Bouaziz et al. 2014] that this is equivalent to applying a step of Sequential

Quadratic Programming (SQP). To solve FEM energies in this framework, we

can simply reinterpret our discrete energies as constraint equations. Then the

constraint gradient ∂C
∂x

is just the local force vector for the particles involved in

the constraint. In this way we can construct a system with the familiar qualities

of PBD as well as the advantages of our favorite FEM energies, such as the robust

co-rotational strain. See Algorithm 2 for a sketch of how this method is used in

practice.

A unique advantage compared to force-based methods is that our constraints

do not have to be valid energies; for instance the exact volume constraint term

det(F) = 1 (5.23)

has the same desirable properties as the co-rotational model when solved as a

constraint; namely that it works to un-invert the element even when inverted.

This is a clear advantage over volume penalty terms like ln(F)− 1 or det2(F)−

1 which are either invalid or incorrect under inversion. While this term can

be included in a force-based solver using a Lagrange multiplier approach, the

constraint-based nature of PBFE means we can treat it the same way as more

57



CHAPTER 5. SOLUTION PROCEDURES

Algorithm 2 Position Based Finite Elements update loop

for all particles i do

pi ← pi + Δtvi

vi ← vi + Δtf i
ext

end for

DetectCollisions(pi)

for all elements i do

UpdateRotation(Ri)

end for

for i = 1 to max iterations do

for all elements j do

SolveCollisions()

Fe ← 1
8
Je−1∑8

k=1 xk ⊗ ξk

Compute CCR, CHG, CV, fCR, fHG, fV

SolveConstraint(CCR, fCR, ks)

SolveConstraint(CHG, fHG, khg)

SolveConstraint(CV, fV, kv)

end for

end for

for all elements i do

DampVelocities()

end for

standard energies. In Figure 5.1, we compare our exact volume constraint with the

standard trace-based co-rotational pressure term, showing the accuracy benefit

of our approach.

5.3.1 Discussion

On paper, PBD is a fairly poor method; in particular it scales extremely badly

when mesh resolutions are increased. The most obvious consequence of this poor

scaling is that running the same number of solver iterations on a more fine mesh

will cause the observed behaviour to be much less stiff. This means PBD requires

hacks like Long Range Attachments [Kim, Chentanez, and Müller-Fischer 2012]
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Figure 5.1: Comparison of volume constraints. Meshes using our volume con-

straint (foreground) and the co-rotational pressure term tr2(RTF − I) (back-

ground) are stretched to 2.5x their original length. The standard term causes the

mesh to lose 90% of its volume; the mesh using our constraint gains 1.2%. Such

strains are not uncommon in simulation of flesh deformation, so the benefits of

an accurate volume constraint are clear in that case.

to work acceptably even with fairly coarse meshes. The local nature of the non-

linear Gauss-Seidel process means that wave propagation inside the simulation

mesh is bound by the frame rate and number of iterations. Strong dependence

of observed behaviour on these two factors is also a black mark against PBD. It

is impossible to dial in the properties of a particular material and get realistic

behaviour, as one might expect when using an accurate simulation method. How-

ever, the local nature of PBD is also its greatest strength because it allows us to

constrain particles in ways that are not possible in global, matrix-based methods

without a great deal of sacrifice. In fact, one can easily recognise the similarity

between PBD and the projected Gauss-Seidel (PGS) method used for rigid body

simulation, discussed in the next chapter. PGS has become popular in rigid body

simulation because of its stability (which PBD shares, see Figure 5.2) and ability

to handle equalities and inequalities alike. One tends not to notice this sort of

robustness until one tries another method, whereupon its absence becomes very

painful. PBD is thus the best method that we have right now for general sim-

ulation of soft bodies in videogames; other methods can be very competitive in

certain arenas but the robustness requirements imposed by user interaction mean

that we are limited in how we can deploy them.

In terms of performance, it is hard to compare PBD with global methods

because in PBD the number of solver iterations is part of the behaviour of the

material we are simulating, whereas global methods must generally converge com-

pletely to not have objectionable errors. The fully-converged state of PBD is total
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rigidity, so we cannot directly compare these methods. Thus in our performance

comparison (Figure 5.3) we compare PBFE only against itself. We can, how-

ever offer the following qualitative comparison: For hexahedral element counts

around or below 1000, PBFE converges with adequate speed in our tests to sim-

ulate convincing flesh. At this detail level, the robustness advantages discussed

above mean that our method is a good choice for realtime simulation. At higher

resolutions, the poor convergence of PBD begins to make it difficult to obtain

realistic behaviour and global methods are a superior choice.

5.3.2 Use in Games

We have implemented the PBFE system as the back-end for a real-time soft body

deformation system. We take a lattice deformation approach, where visual objects

are coarsely voxelised and the generated voxels used as hexahedral elements in

the simulation mesh. We transfer the deformation of the simulation mesh to

the visual mesh by linear blend skinning; we use the deformation gradient at the

center of each element as a ‘bone’ and blend these transforms for each visual mesh

vertex, weighted according to a Gaussian distribution. This allows us to have

smooth deformations of the render mesh without simulating high-order elements.

Artists using this system have found it to be useful for simulating simple dynamic

deformations of inanimate objects - for instance, a crashing vehicle, or a metal

cabinet reacting to an explosion. While the slow convergence of the method

limits the detail that can be achieved using PBFE, users have found our system

to offfer robust behaviour with predictable performance; as long as the constraints

imposed on the system are compatible the simulation will not explode and the

run-time cost of the simulation will not change substantially.

Algorithm 3 PBD constraint solving for hexahedra

function SolveConstraint(C, f , k)

s← −kC/
∑8

i=1 wi|f i|2

pi ← pi + swif i

vi ← vi + swif i/Δt

end function
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Figure 5.2: A 32x32x32 cube of hexahedral elements has its vertices randomly

placed inside a unit cube in order to test recovery from an extreme state. Many

of the elements are severely deformed and inverted. From top to bottom are

snapshots of the resulting motion taken every 0.5s. From left to right, we use our

PBFE method with our spin-based rotation warm started, the same method cold

started, the fast SVD of McAdams et al. [2011], and symmetric diagonalization.
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Figure 5.3: Comparison of solver performance (omitting collision detection) on

CPU and GPU. Each solver performs 10 iterations. Unsurprisingly the perfor-

mance scales linearly on both processor types. The GPU only operates efficiently

once the problem size becomes large enough.
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5.4 Projective Dynamics

Stiffness warping allowed us to minimize the work required to produce the stiffness

matrix, but this matrix still changed from frame to frame. However, by changing

the problem somewhat we can formulate a method that exhibits the appropriate

nonlinear material behaviour but has a constant stiffness matrix. This method

was developed by Bouaziz et al. [2014], but we will re-state it here for convenience.

The central idea is that instead of minimizing a strain energy directly, we cast

each element as a constraint, and then minimize the distance between the solution

of each constraint. For instance, consider the co-rotational strain constraint:

F = R (5.24)

This condition essentially says that the element should be in its rotated reference

configuration. Both F and R depend on x, but if we take R to be fixed then the

solution to the constraint is trivial. Similarly, if we take F to be fixed then we

can compute R by any of the methods discussed previously. Projective Dynamics

works by alternating between solving the nonlinear part of each constraint locally,

then solving the linear parts globally. By pushing all nonlinearity into the local

solves, we can ensure the global stiffness matrix is constant. The original paper

enforces this by writing the problem in a specific way, which we will state slightly

differently for clarity:

xt+Δt = min
xt+Δt

(
1

2
Δt−2‖M1/2

(
xt+Δt − x∗

)
‖22 +

n∑

i=1

ki

2
‖DiSix

t+Δt −Pi‖
2
F + δCi

(Pi)

)

,

(5.25)

This equation demands some explanation. Note the three terms inside the mini-

mization. The first term is the familiar work potential from (5.10). The second

and third terms represent the energy of each constraint. The global optimization

is represented by:
n∑

i=1

si

2
‖DiSix

t+Δt −Pi‖
2
F , (5.26)

where si is the stiffness of each constraint Ci, Di and Si are matrices associated

with the constraint that we will elaborate on later, and Pi is the auxiliary variable

for the constraint. This is the solution of the local step, which is represented by
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δCi
(Pi). This rather uncouth notation evaluates to +∞ when Pi is not the

solution to the local step, and 0 when it is.

Global Step

The optimality condition for this minimization problem taking Pi to be constant

defines the global step. Although the global system is linear, we still introduce

the iteration number k because the nonlinearity is present in the local step. The

global linear system is:
(

MΔt−2 +
n∑

i=1

siD
T
i DiSi

)

xt+Δt
k+1 = MΔt−2x∗ +

n∑

i=1

siS
T
i DT

i Pi. (5.27)

The method of projective dynamics alternates between solving independent local

steps to find Pi for each constraint, and solving the above global system to obtain

a new candidate xt+Δt. Note that changing Pi only changes the right hand side

vector; if the particle mass, constraint topology and constraint stiffnesses are

unchanged then the matrix on the left hand side is constant and can be pre-

factorised. We need only perform a double back-substitution of the Cholesky

factorisation at every global step.

Local Step

We solve the right hand side of each constraint locally. Taking the positions to

be fixed, we attempt to find auxiliary variables Pi that best match the current

configuration of the constraint. Because we have concentrated all nonlinearity

into the right hand side, this is at worst a small nonlinear root finding problem.

Many constraints, such as the corotational constraint F = R, have closed-form

solutions. Those that do not can be linearised and solved as a small Newton

system.

5.4.1 Examples

So what are the mystery matrices Si and Di? Essentially, these matrices make

sure we compose our constraint in a linear way. Si is the constraint selection

matrix, which reduces the global vector xk to only the nodes involved in the

constraint. Di we call the mangling matrix, which reconfigures the constraint

node vector to the geometric quantity involved in the constraint.
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Finite Elements

For instance, consider the familiar co-rotational constraint F = R discretized on

linear tetrahedra. We can write it as:

DsD
−1
m = R, (5.28)

where Ds = [x1 − x4,x2 − x4,x3 − x4] and so on as before. Let’s isolate only the

geometric information on the left hand side:

Ds = RDm. (5.29)

Computing the right hand side can be done through SVD or our spin-based

method, as described below. Our task is to find the selection and mangling

matrices that bring xk to Ds. First of all we should note that directly representing

Ds as a matrix with this process requires a packed system vector; using the

stack convention we have to unwrap Ds to a vector in a similar manner to Voigt

notation. We’ll use the pack convention here for simplicity. The first task is

to reduce xk to only the nodes involved in the tetrahedron using the element

selection matrix. This can be done with the rectangular matrix Sikl
∈ M4×n,

whose entries are 1 if the lth node in the global numbering is the kth node in the

ith tetrahedron, and 0 otherwise. Now that the nodes are in a canonical form,

the mangling matrix is:

DCR =








1 0 0 −1

0 1 0 −1

0 0 1 −1








. (5.30)

It’s easy to verify that Dsi = DCRSixk.

Mass-Spring

Mass-Spring systems have persisted through the history of computer graphics and

are the basis of many successful simulations. It’s easy to fit mass-spring simulation

into the projective dynamics framework; the constraint is x1−x2 = R(X1−X2).

The local step is trivial: we simply normalize x1−x2. As for the global step, the

selection matrix Sikl
∈ M2×n has 1s where the lth node in the global ordering is

the kth node in the ith spring, and the mangling matrix is:

DMS = [1,−1] . (5.31)
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It’s interesting to note that the global matrix arising from a spring network is

simply a graph Laplacian of the network weighted by stiffness and length.

Shape Matching

We can also include shape matching in the projective dynamics framework. This

is useful because the shape matching energy is extremely simple to work with and

is not susceptible to, for instance, hourglass anomalies. Our strategy for adding

shape matching to this framework is to use the selection and mangling matrices

to compute the offsets from the center of mass of the shape matching group. The

constraint equation for a group of m nodes is:











x1 − xc

x2 − xc

...

xm − xc











= R











X1 −Xc

X2 −Xc

...

Xm −Xc











, (5.32)

where xc and Xc are the barycenters of the current and initial shape matching

group, i.e xc = 1
m

∑m
i=1 xi. The local step as usual requires solving the nearest-

rotation problem, which can be done by any of the methods discussed. The

global step requires forming the left hand side of (5.32) from xk. The selection

matrix for the group is straightforward, and the mangling matrix DSM ∈ Mm×m

is DSM = I− 1
m
1 where 1 is the m×m matrix of 1s. It turns out that computing

the barycenter in this way is enough to obtain the benefits of projective dynamics,

making this a viable alternative to regular shape matching using PBD.

5.4.2 Advantages

So what are the advantages of projective dynamics? Comparing to Newton’s

method the answer is straightforward: We obtain the benefits of nonlinear sim-

ulation with a constant stiffness matrix, which gives a substantial per iteration

performance improvement. However, the method is only first-order; at no point

do we use the derivatives of our constraint functions. Projective dynamics thus

only exhibits linear convergence to the solution of the minimization problem, in-

ferior to the quadratic convergence of Newton’s method. If we were interested

in the fully converged solution, then, this method could not be recommended.
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Fortunately, as game developers we have no appetite for actual convergence, and

care more about the artifacts caused by operating far from the converged state.

Here projective dynamics shows remarkable improvement: solving the global sys-

tem completely removes the stretching artifacts associated with PBD with only

a single iteration. The artifacts induced by using too few iterations in projective

dynamics are much more subtle, with their severity being determined by what

we choose to solve in the local iterations. Thus far this has mostly been rota-

tion extraction of one kind or another, and this predictably results in inaccurate

treatment of rotational motion when only a small number of iterations are used.

However, the fact that the static equilibrium is so much closer to correct is a huge

advantage over PBD.

5.4.3 Limitations

We mentioned previously that the matrix associated with the global problem does

not change as long as constraints are not added to or removed from the system.

Unfortunately, in a general dynamic simulation we are likely to want to change

the constraint set; we will at least want to add and remove contact constraints

to prevent objects from interpenetrating. A simple contact constraint in the PD

framework is xi = pi, which binds the node xi to the target position pi, which we

can manipulate in the local step. This single-particle constraint only results in

a single extra diagonal entry in the global matrix. However, in the general case

this will change every entry in the Cholesky factorisation of that matrix. Dealing

with this problem is the most important consideration in an implementation of

PD, and we will discuss two approaches to it below.

Another significant weakness of this method, unaddressed in the original pa-

per, is that it causes a great deal of damping of rotational motion. While a single

iteration of PD is enough to solve the linear parts of the strain energy, rota-

tions are essentially seen as fixed at every iteration. When using a low number

of iterations, this can manifest as obvious ‘rotation locking’ that is particularly

objectionable when simulating cloth. Although we can alleviate this locking by

doing more iterations, this seriously erodes the attraction of the method. PD

also converges very slowly in this sense; we need to do a great deal of iterations
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to reduce the rotation locking effect to an acceptable level. The same problem

manifests when using some of the techniques for inequality constraints suggested

in the paper; while we can, for instance, modify the contact constraint targets

every iteration to enforce something akin to inequality, this suffers from exactly

the same problem of damping and slow convergence as the rotations. PD thus

does not work quite as well as advertised in this sense.

5.4.4 Implementation

The basic implementation of PD is straightforward and uncontroversial; we will

describe it briefly and move on to the more interesting question of dynamic con-

straints. The local step essentially the same as what we have already described

for the various PBD methods.

Global Solve

The global solve requires us to compute the Cholesky factorisation of the asso-

ciated matrix A = LDLT . This does not need to be particularly efficient, since

it can be done as a pre-process. The meat of the algorithm involves solving

right hand side vectors b using this decomposition, or in other words computing

xk+1 = L−TD−1L−1b. Because we have to do this at least once per iteration, it

needs to be as fast as possible. Unfortunately the two sparse triangular solves

involved in this operation are fundamentally serial, which gives us limited op-

tions for parallelisation. An alternative is to simply calculate the full inverse of

A, which although symmetric is likely to be much more dense than the Cholesky

factor of A. What we lose in memory size we can potentially gain in speed, how-

ever, since it is much easier to parallelise multiplication by A−1 than triangular

solves. This suggests that for GPU simulation, at least, dense linear algebra may

be preferable. We have not yet tested that possibility, however.

Dynamic Constraints with Rank-One Updates

The question of handling dynamic constraints is critically important to the speed

of a PD implementation. The original paper [Bouaziz et al. 2014] suggested rank-

one updates to the Cholesky factor of A; in short, we can efficiently calculate the

Cholesky factor of a perturbation A + uvT where u and v are vectors. The
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perturbation uvT is an outer-product matrix with a rank of one; hence the name

rank-one update. Because we are mostly interested in adding and removing single

entries from the diagonal of A, we can say u = v. Rank-one updates can also

be applied to the full inverse matrix, using the Sherman-Morrison formula. In

general, every entry of the Cholesky factor or inverse will change when we change

one diagonal entry, so the cost of adding or removing one contact is proportional

to the size of the updated matrix. Adding entries to the diagonal is at least

guaranteed to not change the sparsity pattern of the resulting Cholesky factor,

which means the memory size of the simulation will not change when we make

updates of this type. However, one can imagine situations in game simulation

where very large numbers of contacts might be added or removed in a single

frame. This makes the strategy of using rank-updates problematic, because the

huge spikes in runtime cost in frames which include heavy collision are highly

disagreeable from an optimisation point of view. It is desirable, therefore, to find

a method which does not cause cost spikes of this kind.

5.5 Dynamic Constraints with PCG

An alternative to modifying the decomposition of A is to treat A as a precon-

ditioner for the perturbed system. This relies on the the idea that the inverse

of A is similar to the inverse of the perturbed matrix Ã; perhaps close enough

that it could be an effective preconditioner for the perturbed system Ãxk+1 = b.

In the language of iterative methods, a preconditioner is any method that ap-

proximately solves the system and allows the iterative method to converge much

faster. This idea leads directly on to a potential algorithm: every frame instead

of simply solving the global step with our pre-computed decomposition of A, we

do conjugate gradient (CG) iterations with the factor of A as a preconditioner. If

Ã = A then no iterations will be required. If we change Ã then we can hope that

we will only have to use a small number of CG iterations, since the nearly-exact

preconditioner will do most of the work for us. So is this a viable alternative to

rank-updates? The answer depends on how many CG iterations are required. A

CG iteration preconditioned by the Cholesky factor of A requires two triangu-

lar solves, a multiplication by Ã and a vector norm calculation. Thus a single
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Figure 5.4: Maximum penetration and required iterations for various methods

against contact strength for a 1m3 block of metal hitting the ground at 10m/s.

iteration is substantially more expensive than the simple substitutions required

when Ã = A. While a larger fixed cost is preferable to a small cost with large

intermittent spikes, the viability of this technique depends on exactly how much

larger this fixed cost is. To get an idea of how this method performs, we did some

experiments in MATLAB. While raw performance numbers from such an envi-

ronment are meaningless, the number of iterations required will be the same no

matter the implementation environment and give good insight into the viability

of this method.

Comparisons

In our experiment we emulated a ‘worst-case’ game scenario guaranteed to stress

the contact model. A 1m3 block of hexahedral elements using a shape-matching

material model with density and stiffness of steel (ρ = 8050 kg m−3, E = 200GPa)

impacts the ground at 10ms−1. A contact constraint of the type discussed previ-

ously is generated between all nodes at the bottom of the cube and the ground.

Using various values for the contact stiffness kc, we record the maximum pen-

etration of any node in the block into the ground. We solve the system using

unpreconditioned conjugate gradients (line NCG), our full Cholesky precondi-

70



5.5. DYNAMIC CONSTRAINTS WITH PCG

Frame number

S
im

u
la

ti
on

ti
m

e
(m

s) PCG

CHOLMOD

PBFE (1 iteration)

Figure 5.5: Total simulation time per frame for different methods of solving the

contact-perturbed system Ã.

tioned method (line NPCG-A), and an incomplete Cholesky preconditioner (line

NPCG-I). The aim was to find how many CG iterations are necessary to solve

the system when the contact stiffness is large enough to reduce penetration to

an acceptable level, and whether our full Cholesky preconditioner was particu-

larly effective. The results are presented in Figure 5.4. This graph shows that

increasing the relative strength of the dynamic contacts kc will, as one would

expect, decrease the maximum penetration experienced by the dropped block

(Note the penetration is not eliminated completely, as a result of regularizing the

contact constraint). Increasing the strength of the dynamic components of the

system increases the difference between the static and dynamic systems, which

one would imagine might degrade the effectiveness of our preconditioner. How-

ever, the graph shows that even for very large diagonal terms our preconditioner

is still vastly better than other common preconditioning approaches2.

We also ran a full simulation (in C++, with reasonable efforts taken towards

optimization) comparing the rank-update approach using CHOLMOD with our

2Note that the Incomplete Cholesky and diagonal preconditioners become more effective as

kc increases. This makes sense because the matrix becomes more diagonally dominant as a

result, which naturally makes these preconditioners more effective.
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PCG-based approach. A 1m×1m×1m block of material with 2197 DoFs and

8640 tetrahedral elements is dropped from a height of 5m, impacting the ground

on frame 61. We recorded the total simulation time for each frame. From the

results in Figure 5.5 we can see that the CHOLMOD-based approach suffers from

a severe 16ms spike when the contacts are added on the ground impact frame.

Although our PCG-based approach costs more in the steady state (thanks mostly

to inefficiencies in the Eigen library), the large spike is completely removed. In-

stead the solver takes only two extra iterations while the collision is taking place,

and one extra when the object is resting on the ground. This suggests that for

simulations including a heavy load of temporary contact constraints, our PCG

approach is strongly preferable to CHOLMOD. We expect these situations to

arise very commonly in game simulation, so it is fair to say that our approach is

much more well-suited to this use case.

5.6 Concluding Remarks

In this chapter, we discussed various methods for simulating soft bodies. We

introduced a new position-based finite element method that is more suitable for

use in games, as well as making some modifications to the fast global Projective

Dynamics method for the same purpose. Both of these methods have their own

set of advantages and disadvantages, and it remains to be seen if it is possible to

combine the global convergence properties of the matrix-based methods with the

remarkable convenience of PBD. In the meantime, there are situations in games

in which one might want to use either of the methods we have introduced.
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Chapter 6

Position Based Rigid Body
Dynamics

The next chapters are about simulating constrained rigid body dynamics. This

is in many ways a more difficult problem than soft body simulation. First of all,

the inclusion of rotations makes the calculus more complicated. Second, because

rigid body simulations generally affect gameplay we require a much higher level

of correctness. The final and most vexing reason is that we are just not very

good at solving problems of this type. In the world of soft body simulation

we were always able to reduce the problem to a linear system of some kind,

even if it meant making compromises like penalty-method contacts. In rigid

body simulation this is just not good enough. Human beings are quite good at

noticing inaccurate simulation of rigid bodies, and to reliably simulate colliding

rigid bodies we must model contact constraints as inequalities. This means we

must solve not a system of equations but a complementarity problem. While there

are extremely efficient methods available to systems of (linear and nonlinear)

equations, equivalent methods do not exist for complementarity problems. As a

result we are forced to turn to Projected Gauss-Seidel (PGS) iteration, which is

more or less the only reliable tool for solving problems of this kind.

Compounding the above is the nature of the academic literature on the sub-

ject, which more or less terminates in the late 1990s with the independent formu-

lation of the Stewart and Trinkle [1996] and Anitescu and Potra [2001] models.

While these models are so far the only principled and provable model of con-

tact dynamics, they cannot yield real-time performance (due to their reliance on

Lemke’s algorithm) and bear little relationship to how rigid body dynamics is ac-

tually implemented in practice. Most material on this topic is in un-peer-reviewed

formats - industry conference presentations, internet forum discussions and source
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code. The few recent papers on real time rigid body dynamics generally avoid

top-down formalism and concentrate on implementation [Tonge, Benevolenski,

and Voroshilov 2012], and the recent survey paper [Bender et al. 2012] presents

a confused picture of the field; systems are presented in isolation without a tax-

onomy to link them together. While I would like to present an understandable

and approachable summary of rigid body simulation as it is actually practiced,

reconciling all the various methods and codes available could probably form the

basis of a PhD on its own. Instead, this chapter will focus on the ways that EA’s

internal physics engine differs from other methods that have been presented. We

discuss some interesting additions that we believe are novel; specifically, the use of

a fully position-based solver, robust predictive contacts, and cheap but accurate

high-fidelity joints.

6.1 EAPhysics

The EAPhysics engine works somewhat differently to other physics engines that

have been described in the literature, and its workings are harder to justify. The

main difference is that EAPhysics works at the position level of the constrained

dynamics problem, as opposed to the much more standard velocity level. Simu-

lations that take the latter approach seek to satisfy the time derivatives of the

relevant constraint equations rather than the equations themselves. This is par-

ticularly useful for simulations involving rotations, since solving at the velocity

level allows our angular constraints to be linear. However, the great disadvantage

of a velocity-level solver is that positional errors in our constraints can accumu-

late due to floating-point error or a lack of convergence. Velocity-level methods

require stabilization to prevent these errors from building up. Stabilization mea-

sures like Baumgarte’s method require a certain amount of tuning and do not

work well in all circumstances. In particular, tightly coupled systems like rag-

dolls tend to develop a great deal of error that leads to unrealistic behaviour in

more violent situations. Our position-level method does not require any stabi-

lization, and (anecdotally) deals with tightly coupled systems more effectively

than other physics engines we have compared it to. While the method is, as

mentioned, hard to justify formally, it is effective and worth covering as we move
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towards discussing our work on curve constraints.

6.2 Rigid Body Representation

From a mathematical perspective, the only difference between a discretized finite

element node and a rigid body i is that the latter has an orientation qi ∈ SO(3)

and inertia Ii ∈ R3×3 as well as a position pi and mass mi. SO(3) is the 3D

rotation group which we can represent in a wide variety of ways; to avoid any

discussion of group theory we will simply state that the dominant representation

of orientation in computer graphics is the unit quaternion, hence the label q.

Note that the unit part is usually left off, and whenever we refer to quaternions

it can safely be assumed they are normalised.

Conversely, we represent small rotations using Euler vectors ωi ∈ R3. Not to

be confused with a vector of Euler angles, which are sequenced rotations about

pre-agreed axes, an Euler vector is simply the rotation axis multiplied by the

rotation angle. While this representation is usually introduced as the angular

velocity vector, we eschew velocities in favor of a position-only representation.

The next section will explain this choice in more detail.

We stack pi and qi together to obtain the state vector xi ∈ R7 for each rigid

body, and stack the n xis together to form the system state vector x ∈ R7n. This

notation is useful for reducing mathematical complexity later on, and does not

imply that we actually store the data in this way.

6.3 Time Discretization

The rigid body problem is already discrete in space, but is continuous in time.

To actually simulate anything we have to choose an integration scheme. This is

equivalent to discretizing time. We assume a fixed timestep h and a sequence

of frames t = 0, 1, ...,m. Then we define our integration scheme using central

differences. The displacement vector is the amount of state change over one

frame:

dt+1 = xt+1 − xt, (6.1)
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where di ∈ R6 is the velocity displacement of each body. This equation makes

little sense on first glance since di and xi are not even the same length. To restore

some order we have to treat the minus sign in the above equation as a generalised

difference operator, or in other words:

lv
t+1
i = pt+1

i − pt
i,

[0, av
t+1
i ] = log((qt+1

i )−1qt
i),

(6.2)

where lvi is the linear1- and avi the angular- velocity displacement of the ith body.

We can safely drop the zero, leaving us with a state vector of the right length.

We can also use the central difference approximation for acceleration, giving us

the acceleration displacement :

st+1 = dt+1 − dt, (6.3)

We can safely assume that angular displacements will change slowly enough that

the approximation implied by subtracting Euler vectors remains valid, and thus:

la
t+1
i = lv

t+1
i − lv

t
i,

aa
t+1
i = av

t+1
i − av

t
i,

(6.4)

where la and aa are the linear and angular acceleration displacements respectively.

Given this time discretization we can easily obtain our integration scheme by

substituting the previous equations into one another and re-arranging:

xt+1 = xt + dt + st+1. (6.5)

Here we must treat the + sign as a generalised addition operator, i.e.

pt+1
i = pt

i + lv
t
i + la

t+1
i ,

qt+1
i = qt

i exp([0, av
t
i + aa

t+1
i ]).

(6.6)

Without any external forces or constraints in the system we are more or less done.

However, these restrictions would result in a very boring simulation.

6.4 Constraint Models

For believable rigid-body physics worlds we must be able to model hard equality

and inequality constraints. We specify both types using constraint equations and

1It is difficult to avoid this confusing use of the word ‘linear’ to describe the parts of the

rigid body state that are not angular. In all other contexts we use it to describe equations that

are not nonlinear.
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f(xa,xb) = ca − cb
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Figure 6.1: A ball-and-socket joint constraint. The constraint states that two

points in the local space of bodies a and b should be coincident in world space -

ca should be equal to cb.

inequalities. Generally these are simple conditions applied to points in the local

spaces of the two bodies involved in the constraint. For instance, a simple ball

and socket joint constraint (Figure 6.1) can be modelled by the vector equation

(or three scalar equations if you prefer):

fi(xa,xb) = ca − cb = 0, (6.7)

where fi is the ith constraint equation, a and b are the indices of the two bodies

involved in the constraint and cj is an arbitrary point in the local space of body j:

cj = pj + Rjoi, (6.8)

where pj is the center of mass position of body j as before, Rj is the matrix rep-

resentation of its orientation, and oi is the constraint offset : the constrained posi-

tion in the body’s local space. Using local-space positions to construct constraint

equations in this manner is sometimes called the method of connectors [Bender

et al. 2012]; [Witkin, Gleicher, and Welch 1990], hence the notation cj .

Equality constraints are fairly simple to work with, but the real complexity of

rigid body simulation comes from inequality constraints. As we will see later, this

is because we can no longer boil down the problem to a system of linear equations

and instead must solve a linear complementarity problem. The most important

inequality constraint is the contact, which models prevention of interpenetration,

restitution and friction. Contact modelling is so central to rigid body simulation

that many papers do not even consider other types of constraints.

A simple contact model without friction or restitution can also be defined

using connectors:

gi(xa,xb) = n̂ ∙ (ca − cb) ≥ 0, (6.9)
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where the cjs are the closest points of approach (or deepest penetration, if the

bodies are already penetrating) on each body and n̂ is the contact normal: the

direction along which we aim to separate the bodies. Restitution can be added

fairly easily to this model with some caveats, and friction can be added with

more effort and hand waving. However, we will defer the discussion of specific

constraints and instead talk about how to form and solve the constrained rigid

body dynamics problem.

6.5 Problem Definition

We would like to state the problem in the generic form of a constrained minimiza-

tion2, allowing us to use standard mathematical machinery to analyse and solve

it. The standard way of defining the rigid body problem is to start from an inte-

gration rule and directly add constraint and complementarity terms. Here we will

instead obtain these terms naturally as a result of applying the Karush-Kuhn-

Tucker conditions to our constrained minimization problem. Without further

ado, the problem we solve is:

xt+1 = min
x

(
1

2
(x− x∗)TMt(x− x∗)

)

,

subject to f(x) = 0, g(x) ≥ 0.

(6.10)

Here x∗ is the unconstrained solution:

x∗ = xt + dt + st+1, (6.11)

and f(x) and g(x) are vectors of equality and inequality constraint functions

respectively. The energy we minimize is exactly the work done by the solver

in maintaining the constraint conditions. In the absence of any constraints the

minimum of this energy is the unconstrained solution x∗, as one would expect.

Note that Mt fixes the mass matrix at the beginning of the time step, even though

it varies with orientation. This approximation works as long as angular velocities

in the simulation are not too high with respect to the time step. Note that the

difference operator between x and x∗ is still general; a more concise way of writing

2Also known as a nonlinear program in the optimisation field.
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down the minimization part would be

min
x

(
1

2
vTMtv

)

, (6.12)

where v = x− x∗ is the solver displacement, a vector of length 6n. A wordy way

to state the problem is that we must minimize the kinetic energy of the solver

displacements used to maintain the constraints.

An issue that immediately presents itself is that many quantities in the prob-

lem are nonlinear. The way we deal with this is by replacing the constraints with

their linearisations each frame in a manner similar to, but not the same as, the

standard optimization technique of sequential quadratic programming [Nocedal

and Wright 2006]. In this technique we solve the full nonlinear program by con-

structing a sequence of Taylor expansions, each of which is a quadratic program.

Our method differs in two ways: First we continue to use our current objective

function, rather than the second derivative of the associated Lagrangian. This

choice in effect neglects the curvature of the constraint functions [Boggs and Tolle

1995]. The second difference is that while SQP is an iterative process that at-

tempts to find a solution to the global nonlinear problem, we only do a single

iteration. In other words, at each frame we solve a linearised model of the true

problem, accepting that the results will only be correct to first order. If this tech-

nique sounds familiar, that’s because we used it back in Chapter 4 to define fast

finite element methods: This is simply semi-implicit integration applied to (6.10)!

In the absence of constraints, the two approaches are completely equivalent.

Linearising the constraints, we obtain the following quadratic program (QP):

xt+1 = min
x

(
1

2
vTMtv),

subject to Jfv + f t = 0

and Jgv + gt ≥ 0,

(6.13)

where Jf = (∇f(x))xt is the Jacobian of the equality constraints at the begin-

ning of the time step and f t is the equality constraint equation vector evaluated

at the beginning of the time step. Jg and gt represent equivalent quantities for

the inequality constraints. To solve this QP we turn to the Karush-Kuhn-Tucker

(KKT) conditions, which are the first-order optimality conditions of this prob-

lem. To continue the analogy: in Newton’s method, the first-order optimality
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conditions are that the derivative of the objective function should be zero at

the minimum. The KKT conditions generalize this to constrained minimization.

Applied to our problem, these are:

Mtv − JT
f λ− JT

g μ = 0,

Jfv + f t = 0,

Jgv + gt ≥ 0,

μ ≥ 0,

μT (Jgv + gt) = 0.

(6.14)

This is a Mixed Linear Complementarity Problem (MLCP). It can be solved

in a variety of ways, including directly with Lemke’s algorithm, a nonsmooth

Newton method [Erleben and Ortiz 2008]; [Silcowitz-Hansen, Niebe, and Erleben

2009] or most commonly with a gradient projection technique such as Projected

Gauss Seidel (PGS) [Coumans 2014]; [Tonge, Benevolenski, and Voroshilov 2012].

A particularly easily understood version of the latter that is very popular in

the games industry is Sequential Impulses [Catto 2014]. EAPhysics uses a PGS

method with modifications that are discussed below. We will not discuss these

methods in depth; for our purpose as designers of constraints the main takeaway

is that we only require a constraint equation and its Jacobian to implement a

new type of joint.

6.6 EAPhysics Oddities

The preceding method is fairly well principled but is missing some important

components. In particular, it only considers inelastic collisions without friction

or restitution. In implementing these features our solver departs either from the

method presented above or from standard practice, demanding a brief explanation

here. We also use some techniques for joint constraints that are difficult to justify

formally, which we will also describe.

Predictive Contacts and Restitution

Standard contact models fall into two broad camps - discrete contacts, which

detect if two bodies are interpenetrating and try to push them apart, and con-
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tinuous collision systems in which the simulation is advanced in such a way that

collisions are caught exactly. This latter choice is expensive and difficult, but

avoids situations like tunneling where objects can pass through one another (this

is often called the ‘bullet-through-paper effect’). We do not have the time budget

for full continuous collision, and instead use a mixture of these two strategies

called the predictive contact. The central idea is that the problems with discrete

contacts occur when objects are moving quickly relative to their size. Therefore,

we simply expand their collision shape as their velocity increases such that con-

tact constraints are generated with any objects they could possibly hit during the

simulation time step. This completely eliminates tunneling, although the costs

for very fast moving objects can be substantial because of how many contacts we

must generate. There is another problem, which is the interaction of this scheme

with restitution. Consider an elastic ball approaching a wall at a high speed.

We expect the ball to bounce off the wall with some fraction of its initial speed,

but we cannot both give the ball the correct velocity at the end of the frame

and make sure the collision appears to happen at the right time. We choose to

prioritise getting the velocity correct, which results in what we call the bounce

too soon problem - fast-moving objects will appear to bounce a frame too early.

This problem is not noticeable at low velocities, and thus we make no effort to

mitigate it. Fast moving objects such as foot- or golf balls can be dealt with in

their own physics world using a continuous collision model, while slow-moving

objects like players work well enough with predictive contacts.

Friction

Friction is probably the second most vexing complication in rigid body simula-

tion, after the need to deal with rotations. In the Coulomb friction model, the

tangential force at a contact can only have a magnitude that is some fraction of

the normal force, determined by the coefficient of friction. One way that this is

often stated is that the force at a contact point must lie inside a cone pointing in

the direction of the contact normal; if the contact force is outside this cone then

the tangential friction is stronger than the normal force which is not physical.

Early work [Stewart and Trinkle 1996] in the field used a polygonal approxima-
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tion to the friction cone, which allowed friction to be neatly incorporated into

the LCP formulation. However, it turns out this approximation prevents us from

using certain methods (such as PGS) to solve the resulting problem. Early work

on rigid body simulation generally used Lemke’s algorithm for solving the LCP,

which although robust in this case is nowadays considered too slow for general

use in real-time.

Instead of a friction-cone approximation, it is more usual in modern real-time

simulation to decouple the normal and tangential directions at a contact and

treat friction as a secondary effect. We can solve for the normal component of

the collision impulse, and simply work out the frictional force using the coeffi-

cient of friction, applying it after the normal component in the solver loop. This

technique has the advantage of computing the exact friction: the locus of contact

forces is the interior of the Coulomb friction cone and not a polygonal approxi-

mation. However, this method is hard to justify at the LCP level and has to be

added to the PGS method directly. It introduces a coupling between the normal

and tangential parts of the contact that effectively make the PGS fixed-point it-

eration process nonlinear. Consequently there is no proof of convergence for this

technique, unlike the polygonal cone approximation for which Lemke’s algorithm

is guaranteed to find an answer. Nevertheless, this technique is widespread and

tends to work extremely well despite being difficult to justify from first principles.

High Fidelity Joints

Our application of semi-implicit integration to our constraint equations means

that without further measures, any nonlinear constraints will remain violated at

the end of the time step even if we accurately solve our LCP. The most visible

constraints of this type are angular joints. By representing our angular con-

straint equations as their first-order Taylor expansions, we are effectively solving

the small-angle approximations of our constraints rather than the constraints

themselves. This can result in a noticeable springiness in angular joints even

when the underlying LCP is solved exactly. One way we have found to deal with

this problem is to simply evaluate the angular constraint error exactly. This way

the correct error term is always used and if the PCG iteration process converges
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the constraints will have been solved exactly. Crucially, we have found we can

get away with not updating the associated Jacobian at all, at least for simple

angular joints. This of course makes the PCG iteration process nonlinear. If

our original method of a single iteration of SQP was akin to applying Newton’s

method to the position-level problem, then this alteration to the method is akin

to a quasi-Newton method - we attempt to solve a nonlinear problem using a

tangent matrix that we update as little as possible; in our case not at all. We

call this technique the High Fidelity Joint.

6.7 Concluding Remarks

In this chapter we discussed EA’s rigid body simulation framework, concentrating

on differences from other more standard methods. We covered three specific

differences when compared to published systems: Solving constraints purely at

the position level, using a predictive contact model, and trading accuracy for

convergence speed with the high fidelity joint method. However, the main features

of our algorithm are similar to other real-time methods. In the next chapter, we

describe a specific type of rigid body constraint that we can use to enable efficient

simulation of ragdolls in games.
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Chapter 7

Rod Constraints

Ragdoll simulation is a common use case for rigid body physics engines. A ragdoll

is a piecewise-rigid representation of a character’s body connected with joints

that mimic the kinematics of the human skeleton, allowing for a more realistic

representation of a character in the game physics world. A common use for a basic

ragdoll is for a character to collapse realistically after being (for example) shot.

Adding a representation of the character’s intent in the form of muscle constraints

can allow for richer simulation, such as characters pushing against each other to

achieve a desired pose. Whatever the use they are put to, ragdolls can be one

of the more performance-intensive parts of a physics simulation. Beyond the

simple cost of simulating more rigid bodies, the tightly coupled nature of ragdolls

greatly increases the number of solver iterations required for reasonably accurate

simulation. It is thus of great importance to make ragdolls as simple as possible.

One region of a ragdoll where this is problematic is the spine; simply decreasing

the number of bodies and joints along the spine leads to a kinematics that poorly

represents the motion of the human skeleton. In this chapter, we propose a

specialised constraint that allows us to have reasonable kinematics with fewer

bodies along the spine. We do this by modelling the spine as a simple plane

circular curve.

7.1 Related Work

Simulation of elastic rods is a popular field, so we will only cover the most closely

related work here. The reader is referred to the recent survey paper [Ward et

al. 2007] for a more comprehensive view of the field as it pertains to computer

graphics. Maximal coordinate methods based on mass-spring networks [Selle,

Lentine, and Fedkiw 2008] and shape matching [Rungjiratananon et al. 2012]
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can be very fast and can capture bending and twisting dynamics effectively, but

have difficulty preserving length.

Other researchers adopt reduced coordinate approaches. Bergou et al. [2008]

perform a comprehensive discretisation of Langer and Singers’ work [1996] on

Kirchhoff rods, allowing them to accurately simulate instability phenomena such

as the buckling of elastic rings. Bertails et al. [2006] use helical elements of

constant curvature and torsion to model curled hair wisps. Chains of rigid bod-

ies [Hadap and Magnenat-Thalmann 2001] have also been used effectively. Meth-

ods that use the control points of spline curves as reduced coordinates [Remion,

Nourrit, and Gillard 1999]; [Nocent and Remion 2001] have been used to accu-

rately model rod-like mechanical parts [Theetten et al. 2008] as well as knitted

cloth [Kaldor, James, and Marschner 2008]. Discounting collision detection, these

methods are not overly expensive. However, for reasons discussed previously we

prefer not to use reduced coordinate methods.

There is little academic work on ragdoll construction. Techniques which syn-

thesize motion at runtime such as [Yin, Loken, and Panne 2007] have no need

to interpolate from (and extrapolate back to) an authored animation skeleton,

and thus can use ragdolls that are as simple as possible. However, much work

has been done on alternative joint representations for inverse kinematics. Lee

and Terzopolous [2008] developed a joint model based on spline surfaces, with

the spline parameters as the reduced coordinates of the simulation. This method

allowed them to model complex joints, although it would be prohibitively ex-

pensive to use in a maximal coordinate setting. Engell et al. [2012] proposed a

data-driven approach based on distance fields in angle-space, allowing them to

model the complex constraint manifold of the shoulder joint with constant-time

constraint projections, at the cost of a large memory footprint.

7.2 Contributions

We show how to model inextensible elastic rods as constraints between rigid body

pairs. We define the rod’s shape implicitly by the position and orientation of the

two bodies, imposing an additional constraint to ensure the resulting shape is

convenient - that of a circular arc. We emulate the bending and twisting forces
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using soft constraints, allowing stiff rods to be stable even when using long time

steps.

We improve the convergence behaviour of character ragdolls by replacing the

many joints in the spine region with our rod constraint. This leads to signifi-

cantly reduced joint violation when using a fixed number of iterations, as well as

improved controllability.

7.3 Background

We adopt the uniform variation of the Kirchhoff elastic rod model [Langer and

Singer 1996], which describes a rod Γ as a centerline curve γ(s) and an orthonor-

mal material frame F (s) = {t(s),m1(s),m2(s)}, representing the rotation of the

rod’s cross-section about the centerline. The material frame is called adapted

because t is tangent to the centerline: t(s) = γ(s)′ = d
ds

γ(s). Because we assume

inextensibility s ∈ [0, 1] must be an arc length parameterisation, and |t(s)| ≡ 1.

The elastic energy of the rod is related to the bending and twisting strains:

E(Γ) =
1

2

∫
kbκ

2 ds +
1

2

∫
ktτ

2 ds, (7.1)

where κ = |t′| is the bending strain or curvature of the centerline and τ is the

twisting strain, which is the angle between the material frame and the natural

frame of the centerline. The natural frame is one of many possible framings of a

space curve, with the distinguishing factor that it has no inherent twist. Because

we assume the rod is inextensible, there is no stretching component to the energy.

While a full discussion of rigid body physics is beyond the scope of this dis-

sertation (see [Bender et al. 2012] for a recent survey), we should still make

some notation clear. We consider a rigid body i to be an oriented particle with

coordinates xi = {pi,qi}, where pi is the position of its center of mass and qi

is a quaternion representing its orientation. Each body is equipped with a mass

mi and inertia Ii. We use an impulse-based method [Bender and Schmitt 2006],

solving the system from a set of preview coordinates x∗. We deal with collision

detection and contact resolution in standard ways, and as they are orthogonal to

the purpose of this paper we will not discuss them here.
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{γ(0),F(0)} {γ(1),F(1)}
γ(s)

F (s)

Figure 7.1: Adapted framed curve between rigid bodies.

7.4 Our Method

To build a rod constraint between the rigid bodies xa and xb, we need the ingre-

dients of a rod in the Kirchhoff model: a vector-valued curve function γ(s,xa,xb)

and a quaternion-valued material frame function F(s,xa,xb). We specify that

each end of the rod is attached to a rigid body at its center of mass (Figure 7.1):

γ(0) = pa, γ(1) = pb,

F(0) = qaF
bod
a ,F(1) = qbF

bod
b ,

(7.2)

where Fbod
i is the orientation of the rod in body i’s local space. The body tangents

ti and body normals ni are then defined as directions in Fbod
i .

Given a specific form for the curve γ(s), we can constrain its length and find

soft constraint equivalents of the bending and twisting forces. Our constraint

equations are scalar or vector functions of the coordinates of rigid body pairs

C(xa,xb) that are equal to zero when the constraint is satisfied.

7.4.1 Length constraint

To constrain the length of the curve γ(s), we need to compare its arc length to

the length of the undeformed rod l0:

Clen(xa,xb) =

∫ 1

0

|γ ′(s,xa,xb)| ds− l0. (7.3)

To enforce this constraint we need to be able to calculate the arc length of

γ, which in general is a hard problem. While we can numerically obtain an arc

length parameterisation for any curve, the amount of computation required would

render the constraint unsuitable for real-time use. This problem must inform our

choice of γ.
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7.4.2 Elastic constraints

Instead of using forces to simulate the bending and twisting behaviour of the rod,

we will use soft constraints. This is a technique used to great effect in the field

of position-based dynamics [Müller et al. 2007]. The major advantage over force-

based methods is guaranteed stability: increasing the strength of the constraint

will not create numerical stiffness. To use this technique we take the energy terms

as constraint equations:

Cbend(xa,xb) =
1

2
αb

∫ 1

0

κ2 ds, (7.4)

Ctwist(xa,xb) =
1

2
αt

∫ 1

0

τ 2 ds. (7.5)

Note that instead of bending and twisting stiffnesses kb and kt we use equivalent

relaxation factors αb and αt. In position-based dynamics we make this substitu-

tion because our constraints will be solved as velocity updates rather than forces.

True stiffness constants have a range of 0 (completely soft) to infinity (completely

rigid). Using specific relaxation factors re-scales this range from 0 to 1.

The major disadvantage of this approach is a loss of physical realism. In

particular, using soft constraints will cause damping of the resulting oscillations.

For games this is not a big problem, as stability is valued over physical realism.

Another issue encountered by Müller et al. [2007] is that it is difficult to estimate

the effect of a given specific relaxation when compounded over many sequential

iterations. In their case they were able to find a suitable re-scaling, but for more

complex constraints this may not be possible.

7.4.3 Choice of curve

Note that we have left the curve function γ(s,xa,xb) undefined. The expressive-

ness and efficiency of this constraint hinge strongly on our choice of curve type.

We require a curve that is fully determined by the body positions and frames, and

which has an easily-calculated arc length. One might consider following Theetten

et al. [2008] and using a cubic spline curve to form γ. This passes the first test

but fails the second, as expressions for the arc length of cubic splines are complex.

We thus instead follow Bertails et al. [2006] and choose to restrict our curves

to those with easily-obtainable expressions for arc length, curvature and torsion.
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θ

θ

φa

φb

ta

tb

t̃a

t̃b

Figure 7.2: Visualisation of the arc constraint. The angle θ between the tangents’

rejections onto ô (t̃a and t̃b) must be equal to π, and the angles φa and φb must

be equal and opposite.

While they chose helical segments, which have constant curvature and constant

Frenet torsion, we choose circular arcs, which have constant curvature and zero

torsion. This choice satisfies the second condition, but poses some problems for

the first. While a unique cubic Hermite spline exists for any set of coordinates

xa and xb, this is not true for circular arcs. We need to include an additional

constraint on the two bodies that will force them into an admissible configuration

- one in which we can draw a valid circular arc between them.

7.4.4 Curve constraint

To constrain a rigid body pair such that they have an adjoining circular arc, we

need to find sufficient conditions on the positions and orientations of the bodies

at each end of the curve. We do this by inspecting a valid arc (Figure 7.2). We

note that ta, tb and ô must all lie in the same plane, which means that the angle

θ must be equal to π. We also note that the angles φa and φb must be equal

and opposite. Effectively, these conditions require that tb be the reflection of ta

about ô, and we can encode this using a similar equation to specular reflection

about a surface normal:

Ccurve(xa,xb) = ta + tb − 2(ta ∙ ô)ô. (7.6)
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ψ

ψ/2 ψ/2

rk = l0
ψ

ck

l0

l(ψ) = 2l0
sin(ψ/2)

ψ

Figure 7.3: Circular arc in the plane of curvature. Assuming the rod is the correct

length l0, the length of the offset l can be determined as a function of ψ.

7.4.5 Specific form of length and elastic constraints

When this constraint is satisfied we can look at the bodies’ configuration in the

plane of curvature (Figure 7.3) to find simple expressions for the length preser-

vation and elastic constraints. We can define γ(s) as a sweep about the center of

curvature ck from pa to pb:

γ(s,xa,xb) = ck + r̃(s)(pa − ck), (7.7)

where r̃(s) is the matrix form of an axis-angle rotation about the plane normal:

r(s,xa,xb) = ψsn̂, (7.8)

where ψ(xa,xb) = arccos(ta ∙tb) is the curve bending angle. We take the approach

of correcting the length purely through linear motion along the offset axis; thus

assuming a fixed bend angle ψ we can derive the correct length of the offset for

a given rest length l0:

Clen(xa,xb) = |pb − pa| − 2l0
sin(ψ/2)

ψ
. (7.9)

With this constraint satisfied, we notice the radius of curvature rk = |ck − pa| =

l0/ψ. Thus the curvature is constant over the rod:

κ =
1

rk

=
ψ

l0
, (7.10)

and the bending constraint is

Cbend(xa,xb) =
αbψ

2

2l20
. (7.11)
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r
a

b

l

Figure 7.4: Comparison of the kinematics of chains of ball and socket joints and

a single rod constraint. If each joint in a chain makes the same angle (chain a),

then the locus of points the end of the chain can achieve (curve l, a cardioid) is

similar to that of the rod constraint (curve r). If this is not true (chain b) then

the assumption breaks down.

We recall that the twist τ is the angle between the natural and material frames.

We know the material frames at the beginning and end of the circular arc: F(0) =

qaF
bod
a , F(1) = qbF

bod
b . Thus we can find the total angle between the two frames

and subtract the bending angle, leaving us with the twisting angle:

τ = ξ − ψ, (7.12)

where ξ is the total angle between the quaternions F(0) and F(1). The twisting

constraint is thus:

Ctwist(xa,xb) =
αtτ

2

2
. (7.13)

7.5 Ragdoll Considerations

Although our rod constraint has a range of motion similar to a group of ball

and socket joints, the two are not interchangeable. Specifically, if the internal

angles of the ball and socket chain are very different to one another then the end

of the chain can take very different positions to the end of the rod constraint

(Figure 7.4). The rod approximation is thus closest to being valid when there are
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a large number of joints in the chain, and the internal angles are all the same.

Fortunately, this is usually close to the truth in animations authored for games.

However, most animations do deviate by some amount from this ideal state.

A very important case to consider for ragdolls is that a character is initially

animated kinematically, and some action from the player causes it to transition

to a ragdoll. This means we need to allow any configuration of the ragdoll given

to us by a source animation. We can deal with this by instantiating the rod only

when the transition occurs, setting its rest length and body frames such that the

new constraint is valid.

Finally, we need to interpolate the results of the simplified simulation back to

intermediate animation bones that do not have associated physics bodies. We can

do this by linearly interpolating the position or orientation changes of the rigid

body at the top of the spine, sharing them out between the animation bones. If

we use the orientation changes only, the bone lengths will be conserved but the

end of the chain of animation bones will end up in a different position to the rigid

body (this effect gets worse if the spine is severely kinked). If we also interpolate

the position changes, the bone lengths will not be conserved but the positions will

match. We have found using orientations only tends to produce fewer artifacts

in practice.

7.6 Implementation

Although our rod model consists of several constraint equations, none of these

are particularly useful individually. By solving all the constraints together in one

function, we can share some calculations common to each and end up doing less

work overall.

Our solver and constraint functions are implemented in our physics engine as

branch-free SIMD code, solving four constraints at once. It takes on average 60

ns to solve one rod joint on a 2.4GHz Intel Xeon CPU, while the equivalent ball

and socket joint takes 20ns on average. Because the number of solver iterations

we need to run is usually determined by the complexity of our ragdoll, removing

these joints will enable us to use fewer total iterations. In a sports-game situation

this can mean savings of 50%, possibly making multiple-ragdoll simulation viable
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εang

εlin

Passive bending (Figure 7.7) Ragdoll drop (Figure 7.8)

Figure 7.5: Residual error per frame after 20 iterations in ragdolls using spines

with three joints (blue) and our rod constraint (red). The top graphs show the

total dislocation of the joints in each ragdoll in cm, and the bottom graphs show

the total angular violation in radians. The specific test cases can be seen in

Figures 7.7 and 7.8.

in situations it was not before our simplification.

7.7 Results

Because game physics engines typically use a fixed number of iterations, slow

convergence of the constraint solver manifests as residual error at the end of

each frame. It thus makes sense to look at this metric when comparing methods.

Figure 7.5 shows that there is a dramatic improvement in residual error between a

standard and simplified ragdoll in a passive bending scene, and a smaller but still

consistently positive difference in a more natural scene that includes collisions.

This improvement in convergence speed is particularly important when we

try to control the ragdoll. In methods such as PD control, the kinematic depth

of the ragdoll has a major effect on the ability of a character to follow a target

animation. As a crude metric for controllability, we can look at each ragdoll’s

ability to maintain a target pose using internal torque constraints in the face

of external forces. Figure 7.6 shows each type of ragdoll’s response to such a
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2000N 2000N

Figure 7.6: Comparison of controllability between a ragdoll with three joints in

the spine (left) and a single rod constraint (right). With the hips fixed, the

characters try to maintain their initial pose in the face of an external force.

force. Even though the constraints driving the ragdoll to the target pose have

infinite strength, the larger number of joints in the spine causes the left ragdoll

to converge to the target pose very slowly, resulting in a noticeable deviation

after 20 solver iterations. Replacing this chain of joints with our rod constraint

allows forces to propagate through the right ragdoll in fewer iterations, leading

to a greater ability to maintain the target pose.

It should be noted that our ball and socket joints are solved using simplified

methods that are cheap but converge slowly, and thus the error behaviour is not

directly comparable to other published methods that are more accurate. However,

our implementation of the rod constraint also uses cheap approximations. It

should always be possible to get significant benefits from reducing the number of

joints in the spine if one replaces a group of ball and socket constraints with a

single similarly accurate rod constraint.

It should also be mentioned that one could achieve the same improvements in

convergence behaviour by simply reducing the number of ball and socket joints in

the spine to one. However a single joint of this type has very different kinematics

to a chain of joints, and the resulting motion looks unnatural1. Using our rod

constraint allows the ragdoll to both converge quickly and look plausible.

1See Figure 7.4; the kinematics of a single joint are quite far from the cardioid we expect.
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Figure 7.7: Comparison between a standard ragdoll with three joints in the spine

(left) and a simplified ragdoll with a single rod constraint (right), both slumping

forward under gravity.

7.8 Limitations and Future Work

The restriction of the constraint curve to a circular arc is useful for keeping control

of our ragdolls, but it does not lend itself to a truly expressive model of Kirchhoff

elastic rods. An interesting extension would be to follow [Bertails et al. 2006]

more closely and use helical constraint curves. This would mean finding a set of

constraint equations that could project the configuration of two arbitrary rigid

bodies to the nearest configuration with a valid adjoining helix.

The other major candidate for simplification in ragdolls is the shoulder region.

Unlike the spine, the shoulder does not have a simple kinematic approximation.

We believe the problem of finding an expressive shoulder constraint could be best

approached in a data-driven way, similar to that taken by Engell et al. [2012].

7.9 Concluding Remarks

In this chapter, we introduced a new type of constraint between two rigid bodies

that connects them with a curved rod. We used a specific type of curve constraint

to replace the spines of character ragdolls, allowing us to make significant perfor-

mance savings. While this constraint does not perfectly follow the kinematics of

the real spine (two rigid bodies clearly lack the degrees of freedom for this), we

have found it to be a useful approximation. The circular arc curves we used for
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Figure 7.8: 30 simplified ragdolls fall together into a complex, compact physics

world.

our spines are too constrained for general rod simulation in three dimensions; a

sensible extension would be to use helical rather than circular segments for this

purpose. While our current method is quite specific to the spine use case, this

modification could make for a much more general Kirchhoff rod simulation using

rigid bodies. This could be useful if game designers required inextensible rod-like

structures, such as a car antenna or a coiled spring. The natural rod kinematics of

our approach would still provide the significant advantage of requiring fewer de-

grees of freedom than a similar assembly of standard joints to model the required

behaviour.
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Chapter 8

Conclusion

This dissertation has presented some steps towards improving the realism of game

physics simulation. We introduced a new approach for simulating soft bodies in

real-time, which solved finite element strain energy equations using the Posi-

tion Based Dynamics framework (Section 5.3). This led to a robust and reliable

method in which we could incorporate hard contacts and other inequality con-

straints.

While we have found this method to be a useful workhorse, it lacks the global

convergence of matrix-based methods like Projective Dynamics (PD). To try to

capture this advantage without the expensive drawback of having to recalculate

the system matrix in the presence of contacts, we modified the PD method into

an iterative process that uses a constant system matrix as a highly effective pre-

conditioner (Section 5.5). This allowed us to add and remove arbitrary numbers

of constraints per time step without causing large spikes in processing cost, which

is an important quality in a game simulation. While this method works well, the

problems of rotation locking and the use of the penalty method mean we cannot

use it in all situations. Complex collision environments and high stiffness values

tend to exacerbate these problems, and PBD is superior when these qualities are

unavoidable. Simulation of cloth and soft bodies on characters fits squarely into

this category, and so we cannot currently rely on the fast global convergence of

PD in this important case. Alleviating the rotation locking effect while keeping

the advantage of a constant stiffness matrix is an interesting, untackled problem

that might be approached using some kind of energy budgeting [Su, Sheth, and

Fedkiw 2013]. Adding true inequality contacts while maintaining efficiency is also

interesting; we must ask the question of whether we can gain any advantage from

a large constant equality block when solving a quadratic program. Possibly a
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nonsmooth Newton style solver [Erleben and Ortiz 2008] might be the answer.

While on the one hand we want to make characters more believable, there

is also constant pressure to improve the efficiency of the technology we already

have. Our rod constraint presented in Chapter 8 is a result of this pressure, de-

signed specifically as a convenient simplification for one part of a character. This

constraint enabled us to significantly decrease the number of rigid body solver

iterations required to stably simulate ragdolls, making multiple-ragdoll simula-

tion possible on console hardware. The idea of curved geometry constraints has

much room left for exploration, however. Although we discounted the idea of

using cubic splines for our curve representation for reasons of efficiency, it seems

possible that such a representation could be viable if the right approximations

were used. Our current rod constraint is highly specialised to the task of simu-

lating the spine, and it does not allow one to represent other rod-like structures,

like loose cables or strands of hair. It would be interesting to see if a polynomial

model would prove superior in this case.
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Sparse Linear Algebra

Much of numerical analysis is concerned with matrices: their formation and de-

composition. In computer graphics we are mostly concerned with a particular

flavour of matrix: the square, symmetric, sparse, positive definite kind. What

exactly this means, and what are the best methods for dealing with these matri-

ces, will be discussed in this chapter. This material is very well known but of such

monumental importance in computer graphics that having a compact account of

the relevant parts of the field is particularly useful.

A.1 On Matrices

Matrices are a compact notation for representing linear relationships between

vectors. Note here the word notation. It should be emphasized from the outset

that matrices are a notational convenience only, albeit an exceptionally useful

one. For instance, the system of equations

Ax = b, (A.1)

can be written just as well with no linear algebra at all using indices:

xi =
n∑

j=1

Aijbj . (A.2)

For systems that involve only relationships between vectors, matrices are the

dominant notation. In fields where higher-order relationships between tensors

are a reality, such as theoretical physics, indicial representations such as the

summation convention are more prevalent. In many fields, computer graphics

being one of them, people generally bend quite far to continue using matrices

even when other representations might be more appropriate1.

1The use of Voigt notation in some treatments of continuum mechanics is a prominent

example.
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Positive Definiteness

The concept of positive definiteness comes up with regularity in computer graph-

ics. The easiest way to describe what this means is by using the quadratic form

of the matrix. The quadratic form for a linear system Ax = b is simply the

function

Fq(x) =
1

2
xTAx− bTx. (A.3)

This function is a quadratic scalar field; the critical point xc of this field is the

solution to the original equation (i.e. xc = A−1b). We can easily see this by

writing down the optimality conditions of this problem as previously discussed.

If A is positive definite then the critical point is also the global minimum of f

and we can find it purely by following f ’s gradient. It turns out that for this

to be true we need the condition xTAx ≥ 0 to be true for all x. It’s helpful to

illustrate this with some figures:

− 5

0

5
− 6 − 4 − 2 0 2 4 6

− 100

− 50

0

50

100

150

200

250

yx

− 5

0

5
− 5

0

5

0

20

40

60

80

100

120

140

160

180

Figure A.1: Quadratic forms for 2 × 2 matrices. Left: positive definite. Middle:

indefinite. Right: singular.

The positive definite matrix has one critical point, which is also the global

minimum. The indefinite matrix has one critical point which is a saddle point

(there is no global minimum). The singular matrix has an infinite number of

critical points in a line. The practical importance of this is that we can find the

minimum of a positive definite f (and thus the solution to the original linear

system) purely by sliding down its gradient. Trying to do this for the indefinite

case would cause us to slide off to infinity, and the singular matrix does not have

a unique solution anyway. This idea of gradient descent is central to the more

advanced Conjugate Gradient method, which we will discuss later.

So an interesting question to ask is: Why are the matrices generated by
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Newton’s method positive definite? Newton’s method is used for minimization

of nonlinear functions, by approximating that function at each step with a linear

model. If the minimization is feasible using Newton’s method (the function is

sufficiently continuous and does not have inconvenient local minima) then near

the solution the function must look like the positive definite quadratic form, i.e.

have a single critical point that is also the global minimum. Thus the matrix

associated with the linear model must also be positive definite. When we are

further away from the global minimum, this assumption can break down and

we may find that some matrices generated by Newton’s method are not positive

definite for large systems and large time steps.

Sparsity

Matrices encountered in regular 3D mathematics are generally dense and asym-

metric. The large matrices resulting from the Finite Element method, however,

are usually symmetric and sparse. Symmetry is fairly easy to understand - the

bottom triangle of the matrix is the same as the top triangle. This symmetry in

the matrix comes from symmetry in the underlying equations (i.e from conser-

vation of energy and momentum). Clearly, knowledge of symmetry in a matrix

allows us to roughly halve the amount of work involved in any algorithm. Sparsity

is a little more complex. Consider a regular hexahedral finite element mesh where

every node is involved in at most 8 hexahedral elements. Each node is connected

to at most 26 other nodes, which means there will be at most 27 entries in its

corresponding row in the FEM matrix. For a mesh of 1000 nodes, the number

of nonzero entries nnz in the matrix is at most 26000, which is only 2.6% of the

total number of entries including zeros. This difference gets more pronounced

as the number of nodes increases. This means that using dense linear algebra

to store finite element matrices is incredibly inefficient, since almost all of the

entries stored will be zeros.

A.1.1 Data Structures

Symmetry and sparsity can be useful qualities when constructing efficient algo-

rithms. Symmetry is easy to exploit: we simply store only the lower triangle of
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the matrix and infer the rest when implementing our algorithms. We can roughly

halve the amount of data required to store a symmetric matrix in this way. Spar-

sity is harder to exploit; we must store the matrix in a completely different way.

The two most useful data structures for sparse matrices are the triplet array and

compressed column structures.

Triplets: A triplet is simply a trio specifying a single entry in a matrix: a

row index i, column index j and value at that location x. A sample definition in

C++ might be:

struct Triplet

{

int i, j;

float x;

};

typedef std::vector<Triplet> TripletArray;

Entries can simply be appended as the contributions of different elements are

added to the matrix. Duplicate entries that reference the same row and column

are simply added together when the list is traversed. Triplet storage is very useful

for constructing matrices but not great for processing their contents. For that it

is better to use compressed storage.

Compressed Column Storage (CCS): This is the data structure of choice

for working with matrices which we have already defined. For a general sparse

matrix without special structure, CCS is the most optimal storage solution. In

this scheme, we order the entries in such a way that we do not have to store as

many indices as the triplet array. Each entry still has an individual row index,

but the column indices are made implicit using another array. A definition for a

matrix with size n and nnz nonzero entries might be:

struct SparseMatrix

{

int* colBeginIndices; // size n

int* is; // size nnz

float* xs; // size nnz
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};

The colBeginIndices array contains the index of the first entry in the is array

and the first entry in the xs array corresponding to each column. While we can

very efficiently iterate over the entries of a matrix stored in this way, adding or re-

moving entries essentially requires us to reallocate the entire structure. Searching

for an arbitrary entry is also inefficient. Fortunately, it turns out that common

matrix operations such as multiplication only require us to iterate over the entries

in order:

// Multiplication of vector b by sparse symmetric matrix A

// giving result r (r is initialized to zeroes).

// First iterate over columns:

for(int j = 0; j < n; ++j) {

// Iterate over the entries in this column:

int rowBeginEntry = A.colbeginIndices[j];

int rowEndEntry = j == n-1 ? nnz : A.colBeginIndices[j+1];

for(int entry = rowBeginEntry; entry < rowEndEntry; ++entry) {

int i = A.is[entry];

float x = A.xs[entry];

if(j == i) {

// Diagonal entries are only considered once.

r[i] += x*b[j];

} else {

// Off-diagonals have a symmetric pair.

r[i] += x*b[j];

r[i] += x*b[i];

}

}

}

As we will see shortly, solving triangular systems of the form Lx = b is an

important building block. This is very similar to the multiplication operation:

// Multiplication of vector b by sparse symmetric matrix A
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// giving result r (r is initialized to zeroes).

// First iterate over columns:

for(int j = 0; j < n; ++j) {

// Iterate over the entries in this column:

int rowBeginEntry = A.colbeginIndices[j];

int rowEndEntry = j == n-1 ? nnz : A.colBeginIndices[j+1];

for(int entry = rowBeginEntry; entry < rowEndEntry; ++entry) {

int i = A.is[entry];

float x = A.xs[entry];

if(j == i) {

// Diagonal entries are only considered once.

r[i] += x*b[j];

} else {

// Off-diagonals have a symmetric pair.

r[i] += x*b[j];

r[i] += x*b[i];

}

}

}

A.2 Cholesky Decomposition

The most common task involving matrices is solving linear systems Ax = b.

When the matrices we are using are only 3 × 3 or 4 × 4, we can get away with

computing the inverse A−1 by Cramer’s rule and simply finding x = A−1b.

However, this approach becomes completely untenable as the size of the system

increases. A wiser approach is either to use an iterative technique to solve the

problem, such as the conjugate gradient method discussed later, or to compute

one of the many matrix decompositions available. For positive definite matrices

the appropriate tool is the Cholesky decomposition, which allows us to compute

a lower triangular matrix L whose square is the original matrix A:

LLT = A. (A.4)
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It is very easy to solve triangular linear systems, so using this equivalence we can

compute the solution x = L−T (L−1b) efficiently. The Cholesky decomposition

only exists for positive definite matrices, and is in some sense the ‘square root’ of

the matrix, since multiplying it with itself will yield the original.

A.2.1 Computing the decomposition

Equation A.4 actually gives us enough information on its own to compute the

matrix L for a given A. The best explanation I have found is given by [Davis

2006]: Consider the block decomposition of LLT = A:




L00 0

lT01 l11








LT

00 l01

0 l11



 =




A00 a01

aT
01 a11



 , (A.5)

where L00 is an n− 1×n− 1 matrix, l01 an n× 1 vector and l11 a scalar. We can

expand this out to three equations:

L00L
T
00 = A00,

L00l01 = a01,

lT01l01 + l211 = a11.

(A.6)

Notice that the first equation is simply an (n− 1)-sized Cholesky decomposition!

We can apply the same technique again recursively to calculate L00, then perform

a triangular solve to calculate l01, then finally do a dot product and square root2

to calculate l11. In the dense case, this is all we really require to construct an

efficient algorithm. However, we are interested in exploiting the sparsity of A.

The practical consequence of this is that in the second equation L00l01 = a01, all

three terms are sparse. Solving this sparse triangular system (with sparse right

hand side) is the major difficulty in the sparse Cholesky factorisation.

Sparse Triangular Solve

To efficiently solve triangular systems Lx = b where L, x and b are all sparse,

we need to know the sparsity pattern of x. We can represent this pattern with

2Note that a11 − lT01l01 is guaranteed to be positive (and the square root guaranteed to

exist) as long as the matrix is positive definite. In fact, attempting to compute the Cholesky

factorisation is one of the most efficient ways to test if a matrix is indeed positive definite.
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the set χ, which contains the indices of the nonzero entries of x. As long as χ’s

entries are sorted in ascending order, we can compute x with Algorithm 4. For

Algorithm 4 Sparse Triangular Solve [Davis 2006]

x← b

for all j ∈ χ do

for all i > j for which Lij 6= 0 do

xi ← xi − Lijxj

end for

end for

the systems obtained when doing sparse Cholesky factorisation we can compute

the χ of each l01 from a structure called the elimination tree of A. Computing

this tree requires some graph theory, discussed compactly in [Davis 2006].

A.2.2 Fill Reducing Ordering

We expect that the Cholesky factor L of a matrix A will have some fill-in, which

are entries introduced by the factorisation that were not present in A. Naturally,

we would like to minimize the amount of fill-in to make computing and working

with the Cholesky factor more efficient. It turns out that the amount of fill-in is

determined by the ordering of the system. We are free to order the vector and

matrix representing our system any way we wish without changing the answer, but

the choice of ordering changes the elimination tree and can introduce more or less

fill-in. Thus an important step of sparse Cholesky decomposition is computing a

fill reducing ordering. This is a hard combinatorial optimization problem which

we will not delve into here. Fortunately, there is favourably licensed software

such as METIS [Karypis and Kumar 1998] available to compute approximately-

optimal orderings.
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