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Summary

The pharmaceutical industry is currently facing an industry wide problem of high

attrition rates for new compounds and rising development costs. As a result of this,

there is an emphasis on making the development process more efficient. By learning

more about new compounds in the early stages of development, the aim is to stop

ineffective compounds earlier and improve dose selection for compounds that progress

to phase III. One approach to this is to use adaptive designs. The focus of this thesis

is on response adaptive designs within phase IIb dose-finding studies. We explore

adapting the subject allocations based on accrued data, with the intention of focusing

the allocation on the interesting parts of the curve and/or the best dose for phase III.

In this thesis we have used simulation studies to assess the operational characteristics

of a number of response adaptive designs. We found that there were consistent gains

to be made by adapting when we were relatively cautious in our method of adaptation.

That is, the adaptive method has the opportunity to alter the subject allocation when

there is a clear signal in the data, but maintains roughly equal allocation when there

is a lot of variability in the data. When we used adaptive designs that were geared to

randomising subjects to a few doses, the results were more varied. In some cases the

adaptation led to gains in efficacy whilst in others it was detrimental.

One of the key aims of a phase IIb dose-finding study is to identify a dose to take

forward into phase III. In the final chapter, we show that the way in which we choose

the dose for phase III affects the expected gain, and so begin to consider how we can

optimise the decision making process.
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Chapter 1

Introduction

1.1 Background

In the pharmaceutical industry the process of getting a new drug to market is time-

consuming and expensive. In order to prove to regulators that a new drug should be

made available for the treatment of patients, evidence is collected on the properties

of the drug through clinical trials. The ideology is that the early phase clinical trials,

phases I and II, are used to learn about the effectiveness and toxicity of the drug, while

in phase III we aim to confirm the drug is both efficacious and safe (Hung et al., 2006).

A phase I trial is the first time a new compound is tested in humans, and usually

consists of a small number of healthy male volunteers. The aims of phase I trials are

to gain crude toxicology data and determine the maximum tolerated dose. The aim

of phase II is to construct hypotheses about the compound and learn about the dose

range in subjects. Often phase II is separated into two parts; phase IIa proof of concept

studies and phase IIb dose-finding studies. Phase IIa proof of concept studies are used

to verify that the new compound is efficacious for the disease area it is aimed at.

Phase IIb dose-finding studies are used to characterise the dose response relationship

and where possible identify a dose with a clinically meaningful effect and acceptable

safety profile. If an appropriate dose can be identified in the phase IIb study, then

development of the compound is continued into phase III, which generally consists of

two large confirmatory studies. The combination of efficacy and safety data collected

in phases I to III are then used to convince the regulators that the new drug should be

released onto the market.

The focus of this thesis is on phase IIb dose-finding studies. Phase IIb studies often
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include multiple doses of the new compound and a control arm, with the aim of

characterising the dose response relationship. The dose response relationship is then

used to identify the smallest dose with a clinically meaningful, statistically significant

difference from control, also known as the minimally effective dose (MED). Providing

there are no safety concerns, this would then be the dose that is taken into phase III.

However, ‘identifying the correct dose is one of the most important and difficult goals

in drug development’ (Pinheiro et al., 2006). If the dose chosen is too high it may not

be tolerable, and if the dose is too low it may not have required efficacy needed for

approval.

A review of studies carried out by ten of the biggest pharmaceutical companies from

the United States and Europe over a ten year period from 1991-2000, found that the

vast majority of attrition occurs in phases IIb and III, with approximately 45% of all

compounds that enter phase III failing to make it further in the development process

(Kola & Landis, 2004). Another review of phase III studies reported between 1990-

2002 (Gordian et al., 2006), found that approximately 42% of the 656 compounds being

tested in phase III failed. For 73 of these failed studies, sufficient data were available

to determine the cause of failure: 50% of the trials failed to show significant difference

from placebo, 31% failed due to safety concerns compared to placebo, and 19% failed

to show a differentiation from an active comparator either in terms of efficacy or safety.

This suggests that for these studies either the dose chosen for phase III was too low

or too high, or the new compounds were ineffective and so halting the development

process at an earlier stage would have been beneficial.

It is estimated that only 1 compound in 9 makes it through the full development

process (Kola & Landis, 2004) with an associated cost of between $800 million and $2

billion for each drug that makes it to market (DiMasi et al., 2003; Adams & Brantner,

2006; Orloff et al., 2009). One of the main factors attributing to the high development

costs has been identified as the ‘late-stage failure and the rising costs of phase II and III

trials’ (Orloff et al., 2009). In 2002 the average development time for a new compound,

from registration to market, was 12 years and 10 months (Kola & Landis, 2004). As

the standard patent on a new compound is 20 years, this gives a limited time for a

company to make a return on their investment. Improving the efficiency of the clinical

trial process can therefore reduce development times, allowing a company to maintain

exclusivity of a marketed drug for longer.

It is this high rate of attrition in phase III and rising development costs which are
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motivating the industry to look at how it can make the clinical trial process more

efficient; either by stopping ineffective compounds sooner, therefore saving time and

resources, or by increasing the precision with which the dose for phase III is identified.

One approach is to use adaptive designs, where an adaptive design is defined as ‘a multi-

stage study design that uses accumulating data to decide how to modify aspects of the

study without undermining the validity and integrity of the trial’ (Dragalin, 2006). The

validity and integrity of the trial are maintained through protecting the family-wise

type I error, pre-planning analyses where possible, and ensuring the interim analysis

results are blinded. By comparison, we consider traditional non-adaptive designs to

be a design where the randomisation schedule and analysis of the trial are specified in

advance without possibility for modification during the course of the trial.

1.2 Types of adaptive designs

There are a number of types of adaptive designs which have been explored in literature

and in practice. Dragalin (2006) identifies four areas of possible adaptation in a clinical

trial. We mention briefly each of these areas here:

• the allocation rule : The ratio with which subjects are allocated to doses is

modified during the trial, based on the observed data. This type of adaptive

design is generally applied to phase IIb studies, where there are multiple doses

of a compound being studied. The aim of the adaptation could be to focus the

subject allocation on the dose which has the highest probability of being taken

into phase III or alternatively, to drop doses which appear inefficient. This is

often referred to as response adaptive allocation and is the focus of this thesis.

• the sampling rule : After each interim analysis, the sample size of the next

cohort of subjects to enter the trial is modified to take into account estimates

of the accrued data. This type of adaptation is generally used in phase III,

to account for unexpected variability in the patient population or, potentially,

the estimate of the treatment effect itself. Using the treatment effect is more

controversial as the adaptation can be used to make inferences about the progress

of the trial, and so can introduce potential biases. Hence, when using the

treatment effect extra care needs to be taken to maintain the blind of the interim

analysis results. Modifying the sampling rule is often referred to as sample size

re-estimation (SSR). For a review of sample size re-estimation approaches see

Friede & Kieser (2001, 2006).
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• the stopping rule : Based on the observed data at an interim analysis, a decision

is taken as to whether the trial should be stopped for either efficacy or futility.

This type of adaptation is generally used in phase II or phase III. The decision as

to whether to stop a trial is often made using boundary crossing methodologies.

That is, a test statistic is calculated and, if this test statistic crosses the pre-

defined boundary then the trial is stopped. Group sequential methods are the

most commonly used of these methods, where the boundaries are constructed

to maintain the type I error. For more details on group sequential designs see

Jennison & Turnbull (2000). Other approaches to stopping early include using

frequentist conditional power (Lachin, 2005) or Bayesian posterior probabilities

(Snapinn et al., 2006).

• the decision rule : This is any form of adaptation applied at either an interim

analysis or final analysis, not covered by the previous three rules. This covers

a wide range of methods which we do not intend to cover here. Examples of

a decision rule adaptations are to change the primary endpoint at an interim

analysis or to alter the order in which hierarchical testing is carried out. One

method for combining p-values from two-stage designs was proposed by Bauer &

Kohne (1994) to give a global test of significance.

Although in theory adaptive designs can be used in all phases of the clinical trial

process, adapting the sampling size and stopping early are considered as ‘well

understood adaptations’ by the Food and Drug Administration (2010) and so are more

suitable for use in confirmatory trials than adapting the allocation and the decision rule,

which are considered as ‘less well understood adaptations’. Adapting the allocation and

the decision rule are more appropriate for phases I and II, where the aim is to learn

about potential endpoints and dose response relationships.

1.3 Response adaptive designs

Response adaptive designs are designs where the adaptation is dependent on the

accrued responses of the subjects in the trial. The flexibility in the randomisation

schedule allows the subject allocation to focus on those doses with the highest

probability of success (Dragalin, 2006). In 2005, the Pharmaceutical Research and

Manufacturers of America (PhRMA) set up a working group to ‘evaluate and develop’

types of response adaptive dose-finding designs (Bornkamp et al., 2007). One of the key

conclusions of this paper was that ‘adaptive dose-ranging designs and methods clearly
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lead to gains in power to detect dose response and in precision to select target dose(s)

and to estimate the dose response.’

We explore response adaptive designs within phase II dose-finding studies, using three

approaches:

Decision theory

Decision theory is focused on optimising the decision making process by quantifying the

cost or reward of each decision, based on our beliefs about the current state. Commonly

referenced materials on decision theory are Schlaifer & Raiffa (1961) and Berger (1985).

We use decision theory in a response adaptive design to identify the optimal dose

for the next subject entering the trial, based on the observed responses. We find the

optimal dose by setting up a utility function and choosing the dose that maximises the

expected utility. One innovative study which used Bayesian decision theory and paved

the way for a new wave of response-adaptive designs was the ASTIN study (Grieve &

Krams, 2005; Krams et al., 2003). Here, the optimal dose for the next subject to enter

the trial was the dose that minimised the posterior variance of the response at the dose

with 95% of the maximal response, commonly referred to as the ED95. More recently,

Bornkamp et al. (2007) explored a generalised version of the allocation method used in

the ASTIN study, referred to as General Adaptive Dose Allocation (GADA).

Using the posterior probabilities to drop doses

In Bayesian analysis we make inferences about the dose response using the posterior

probabilities. In a response adaptive design, we can use the posterior distributions at

an interim analysis to make decisions about which doses we should continue to study. If

at an interim analysis the posterior probability of a dose having a clinically meaningful

difference from placebo is low, then we can drop this dose for futility and focus the

subject allocation on the remaining non-futile doses. As we are interested in identifying

the minimally effective dose, we also considering dropping doses with high posterior

probabilities of having a clinically meaningful difference from placebo, so that we can

focus the dose allocation on lower effective doses.
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Optimal design theory

In optimal design theory we are concerned with optimising information about some

function of the dose response curve. We focus on D-optimality which allocates subjects

to maximise a measure of the combined information about all the model parameters.

When the dose response is non-linear, the optimal allocation depends on the value of the

unknown model parameters. In order to learn about the unknown model parameters, a

response adaptive approach is used. The first cohort of subjects are allocated in some

arbitrary manner, then at an interim analysis the model parameters are estimated. The

parameter estimates are then used to find the optimal allocation for the next cohort of

subjects to enter the trial.

1.4 Logistical and technical considerations

The potential drawbacks of response adaptive designs include the extra logistical and

technical considerations that need to be taken into account. A survey of adaptive

designs used in 13 large and medium sized pharmaceutical companies was carried out

by the PhRMA working group (Quinlan et al., 2010). They identified three main areas

which presented barriers to implementation of adaptive designs. These were:

• technical concerns: In general, longer planning time is needed before

running an adaptive design in order to assess the operational characteristics

of the adaptation through simulation studies. Quinlan et al. (2010) suggest

incorporating an additional three months into the project management time lines

to account for this. The company infrastructure also needs to be such that the

randomisation systems and drug supply can manage the changing randomisation

schedule of a response adaptive design. For response adaptive designs it is

important that data capture and cleaning can be done in a timely manner, so

that maximum number of subjects data are available when determining the next

subject allocations.

• regulatory risk: The Food and Drug Administration (2010) has released

guidelines on adaptive designs, categorising adaptations into ‘well understood’

and ‘less well understood’ adaptations. Response adaptive designs fall under the

category of less well understood and so require additional care to ensure that the

validity and rigour of the trial are not compromised.

• challenges with team buy-in: From the survey presented in Quinlan et al.

(2010), one of the main barriers preventing the use of adaptive designs was due to
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the study team having a greater comfort level with the traditional non-adaptive

designs. Therefore, better understanding of the potential benefits of adaptive

designs are needed alongside the ability to communicate the complexity of the

designs to all levels of the organisation.

When using adaptive designs it is therefore important not only to consider the purpose

of the adaptation, but also the implementation of such designs. The benefits of using an

adaptive design need to be weighed against the increased complexity in translating the

results and also the increased cost and preparation time. Gallo et al. (2009) provide a

detailed overview on good practices to be considered when planning an adaptive design.

1.5 Thesis organisation

The aim of this thesis is to look specifically at how to optimise subject allocations

in phase IIb dose-finding studies. We explore how adaptive designs can be used to

obtain more information about the interesting parts of the dose response curves and

so choose the most appropriate dose to take into phase III. We use simulation studies

to compare the operational characteristics of adaptation methods, and compare these

with non-adaptive designs. By comparing adaptive and non-adaptive designs, we are

able to better understand the potential benefits of the adaptation.

In Chapter 2 we set up our general notation as well as the simulation scenarios and

metrics which we use to compare the operational characteristics between methods. In

later chapters we are interested in making inferences about the non-linear model using

the posterior distribution and so, in Chapter 3 we develop a method which allows us to

directly generate samples from the posterior distribution more efficiently than standard

methods.

In Chapters 4 to 6, we explore different response adaptive allocation methods. In

Chapter 4 we apply Bayesian decision theory and generate results using the General

Adaptive Dose Allocation (GADA) approach as used by Bornkamp et al. (2007). In

Chapter 5, we simplify the allocation to using cohorts and drop doses based on the

posterior probability of a clinically meaningful difference. In Chapter 6 we investigate

the use of parametric methods, applying optimal design theory to non-linear models in

both frequentist and Bayesian settings.

In Chapter 7 we use the datasets generated from the different response adaptive
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approaches in Chapters 4 to 6, and examine how they perform in terms of the expected

monetary gain from successfully getting a drug to market when incorporating an

element for safety. We can then compare the methods, not just in terms of phase II

success but in terms of overall phase III success. Finally, we end with Chapter 8 which

is a discussion on response adaptive designs and thoughts on future work that could

be carried out on this topic.

8



Chapter 2

Notation and Simulation

scenarios

Across the chapters of this thesis we use the same notation and carry out multiple

simulations studies. To avoid repetition, the key notation and settings for the

simulation studies are outlined in this chapter. The metrics for measuring the

performance of the adaptive and non-adaptive methods are also covered.

2.1 Notation

In the following chapters we are interested in phase II dose response studies where there

is a placebo dose, z0, as well as J active doses, denoted z1, . . . , zJ . The column vector

of doses is denoted

z = (z0, . . . , zJ)T .

We denote the number of subjects allocated to dose zj at a given time point as nj . The

column vector for the number of subjects allocated to each dose is denoted

n = (n0, . . . , nJ)T .

The total number of subjects to be randomised during a simulated clinical trial is

denoted as N .

For both parametric and non-parametric models, we denote the expected response

of subjects on dose zj by η(zj , θ). For the parametric models, θ is the vector of

model parameters, and for the non-parametric models θ = (θ0, . . . , θJ)T , where θj
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is the expected response at dose zj . An example of a parametric model that is used

repeatedly throughout this thesis is the four parameter sigmoid emax model. For this

model θ = (θ1, θ2, θ3, θ4)T and

η(zj , θ) = θ1 + (θ2 − θ1)
zθ4j

θθ43 + zθ4j
. (2.1)

The parameters in this model represent aspects of a dose response curve. The response

at the placebo dose is given by θ1, the maximum response by θ2, the dose with half the

treatment effect (commonly known as the ED50) by θ3, and the slope parameter by θ4.

We can simplify this model by setting the slope parameter θ4 = 1. The dose response

model is then written as

η(zj , θ) = θ1 + (θ2 − θ1)
zj

θ3 + zj
.

This is known as a three parameter emax model.

In this thesis we consider both frequentist and Bayesian approaches. For the frequentist

approaches we denote the estimates of θ as θ̂. The fitted dose response model based

on these estimate is then written η(zj , θ̂).

Within the Bayesian framework we place a prior distribution on θ and use Bayes

theorem to make inferences based on the posterior distribution for θ|Y = y, where

Y is the observed data. For example; when modelling the data using a parametric

model in a Bayesian framework, we could make inferences based on the posterior mean

response

E[η(zj , θ)|Y = y].

The data

When modelling the data we assume normal errors, such that the response of the ith

subject (i = 1, . . . , nj) allocated to dose zj is

frequentist: Yij ∼ N(η(zj , θ), σ
2) (2.2)

Bayesian: Yij |θ ∼ N(η(zj , θ), σ
2), (2.3)

where σ2 is the between subject variation. In the frequentist setting, the responses

of subjects are assumed to be independent, and within the Bayesian setting they are
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assumed to be conditionally independent given θ. We denote the entire dataset of

responses from subjects allocated to doses z0, . . . , zJ as a column vector

Y = (Y10, . . . , Yn00, Y11, . . . , Yn11, . . . , Y1J , . . . , YnjJ)T .

We denote the average response on dose zj as

Ȳj =
1

nj

nj∑
i=1

Yij

thus from (2.2) the likelihood of Ȳj for a given θ can be expressed as

Ȳj ∼ N(η(zj , θ), σ
2/nj).

We denote the column vector of mean responses as

Ȳ = (Ȳ0, . . . , ȲJ)T .

The distribution for the mean responses can then be written as a multivariate normal

distribution

Ȳ ∼ N(η(z, θ),Σ),

where η(z, θ) = (η(z0, θ), . . . , η(zJ , θ))
T is the vector of expected responses and Σ is

the diagonal variance-covariance matrix with

Σjj = σ2/nj . (2.4)

As Ȳ is a sufficient statistic for Y , we note here that when σ2 is known, the probability

density p(y|θ) for Y is proportional to the probability density p(ȳ|θ) for Ȳ .

2.2 Simulation setting

The example we use as the background to our simulation studies is that used in the

PhRMA working group paper (Bornkamp et al., 2007) and is based around neuropathic

pain studies. Neuropathic pain may have been chosen as a suitable example as, these

studies are relatively short with a common endpoint being the change from baseline

after 6 weeks of treatment. This short treatment period allows subject data to be

available relatively quickly, and so adaptation can take place based on as much complete

data as possible.
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Neuropathic pain is typically collected using a visual analogue scale (VAS) ranging

from 0 to 10, where 0 reflects no pain and a score of 10 represents the worst pain

imaginable. Subjects are asked to mark where on the scale they feel their pain falls. In

order to keep the dose response positive we are interested in a change in the baseline

minus week 6 scores. A response is then a decrease in the pain scores from baseline.

The primary endpoint in our neuropathic pain example is the change from baseline

in the VAS (Gallagher et al., 2001), which is assumed to be normally distributed with

variance σ2 = 4.5. In practice, the clinically meaningful difference (CMD) would be pre-

determined during the design stage of the trial, and is based on what is considered to be

clinically relevant for that indication in the therapeutic area being studied. Within this

therapeutic area we consider a response of 1.3 over placebo to be a clinically relevant

difference.

All simulation studies carried out in this thesis follow this neuropathic pain example.

Although we would expect the same conclusions to hold for any parallel group dose-

finding study with normally distributed efficacy endpoints.

2.3 Simulation scenarios

For the simulation studies we use similar scenarios to those described in the PhRMA

working group paper. In this paper, Bornkamp et al. (2007) explored 36 scenarios (2

total samples sizes, 3 dosing schemes and 6 dose response profiles), while a follow up

paper (Dragalin et al., 2010) looked at only 14 scenarios (1 total sample size, 2 dosing

schemes and 7 dose response profiles). In order to ensure the simulation studies are as

comparable as possible with both papers, we use the following scenarios.

Dosing scheme: Nine equally spaced doses 0,. . . ,8mg. In terms of our notation, this

relates to z0=0mg,. . . ,z8=8mgs.

Total sample size: N=250

We generate response data from nine true dose response profiles. We denote the

expected response at dose zj for each of the true dose response profiles as νj and

the vector of responses as ν = (ν0, . . . , νJ)T .

Nine dose response profiles: The following profiles are each defined for j = 0, . . . , 8.
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• Flat: νj = 0

• Linear: νj = (1.65/8)zj

• Emax: νj = 1.81zj/(0.79 + zj)

• Emax Low: νj = 1.14zj/(0.79 + zj)

• Sigmoid Low: νj = 1.65z5
j /(2

5 + z5
j )

• Sigmoid Emax: νj = 1.70z5
j /(4

5 + z5
j )

• Sigmoid High: νj = 2.04z5
j /(6

5 + z5
j )

• Logistic: νj = 1.73/(1 + exp[1.2(4− zj)])− 0.015

• Umbrella: νj = (1.65/3)zj − (1.65/36)z2
j

• Explicit: {ν0, . . . , ν8} = {0, 1.29, 1.35, 1.42, 1.5, 1.6, 1.63, 1.65, 1.65}.

For each of the dose response profiles listed above we generate response data for the

ith (i = 1, . . . , nj) subject on dose zj using

Yij ∼ N(νj , σ
2).

The dose response profiles are presented in Figure 2-1. The Flat dose response profile

represents an inactive compound. For each of the active dose response profiles, except

the Emax Low and Logistic, the maximum response, maxj{νj}, is set to 1.65. For the

Emax Low and Logistic profiles the maximum responses are 1.14 and 1.7 respectively.

When the clinically meaningful difference is set to 1.3, all these dose response profiles

except the Flat and Emax Low, have at least one clinically relevant dose. The Emax

Low profile represents a dose response curve for a drug that has a dose response but does

not meet the clinically relevant criteria. Although it appears we have limited ourselves

to the case where there is no placebo response, as we are interested in the change from

placebo, any placebo effect would be cancelled out when making comparisons.

Throughout this thesis all the simulation studies have been carried out using R version

2.8.1 (Team, 2008). Examples of the functions used to generate and analyse the data

for the main simulation studies are included as additional material in the attached CD.
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Figure 2-1: Dose response profiles. Reference line at clinically meaningful difference of
1.3 from placebo.

2.3.1 Assumptions

When generating data as part of our simulation studies we make a number of

assumptions. The first is that there are no missing data, and that all subjects complete

their allocated treatment. Secondly, we assume that complete subject data are available

immediately, which can then be used as the basis for any adaptations. Assuming we

have complete subject data available at an interim analysis is advantageous to the

adaptation process, as it reduces the variability in the data at the interim analysis.

When the assumption of complete data is not possible, longitudinal modelling can be

employed to predict the final responses for subjects with partial data, as carried out

in the ASTIN study (Grieve & Krams, 2005). This allows for the inclusion of partial

data in the interim analysis and so maximises the amount of information available.

Finally, we assume that there are no serious safety concerns within the dose range we

are studying.
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2.3.2 Coupling of the simulations

Where possible, the datasets for the simulation studies have been coupled to reduce

the simulation error for comparison between different methods. Let us assume we have

two methods for allocating subjects that result in nj and mj subjects being allocated

to dose zj . For the kth dataset (k = 1, . . . ,K) for each i = 1, . . . ,min(nj ,mj), we

generate the data so that the response of subject i on dose zj is the same for both

datasets. To ensure the responses are coupled across different methods, we set the

random seed for the kth simulation and generate a dataset containing enough subject

responses for each dose to cope with all possible allocation methods. We then allocate

the subject responses to doses, in order, as required. When we are comparing two

methods with non-adaptive equal allocation designs, the datasets for both methods are

the same. When we are using an adaptive allocation, the datasets are coupled for the

subjects that are common to both methods. To demonstrate the coupling, we generate

two datasets with subjects randomly allocated to doses. These datasets are intended

to represent two possible subject allocations, from two adaptive methods, for the kth

simulation. Figure 2-2 illustrates the subject responses that are coupled for the two

adaptive methods. In this figure the grey columns represent those subjects whose data

are coupled. The white sections of the columns represent uncoupled subject responses.
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Figure 2-2: Example of coupling subject responses. Grey columns represent coupled
responses and white sections of columns represent uncoupled responses.

2.3.3 Target dose

One of the main objectives of a phase II dose-finding study is to identify a dose to

take forward into phase III. Often, the aim is to identify the lowest dose that has the
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required efficacy. This is referred to as the minimally effective dose (MED). We define

our target dose to be the minimum dose with an effect greater than or equal to the

clinically meaningful difference (CMD).

since the shape of our true dose response profiles are known, we can identify the target

dose for each of the profiles. For all the dose response profiles except the Flat and

Emax Low, a target dose can be identified. As the exact target dose based on the dose

response profiles is continuous, this is rounded to the nearest available dose. For some

of the profiles this results in a target dose with a response less than 1.3. An interval

is specified for the target dose, such that doses (rounded to the nearest appropriate

dose) that provide ±10% of efficacy of the clinically meaningful difference are deemed

acceptable. Exceptions to the rule of rounding to the nearest integer are made for the

Emax, Sigmoid Low and Sigmoid High profiles, as rounding down would result in a

response that is well below the tolerated boundary. Instead, for these dose response

profiles we round up to the nearest dose. The target dose and the corresponding ±10%

interval for each of the dose response profiles are given in Table 2.1.

Dose response Target dose Target dose interval Response at
profile Exact Rounded Exact Rounded target dose interval

Linear 6.30 6 (5.67, 6.93) {6,7} {1.24,1.44}
Emax 2.00 2 (1.44, 2.95) {2,3} {1.30,1.43}
Sigmoid Low 2.60 3 (2.40, 2.91) {3} {1.46}
Sigmoid Emax 5.06 5 (4.68, 5.58) {5,6} {1.28, 1.50}
Sigmoid High 6.69 7 (6.35, 7.09) {7} {1.39}
Logistic 4.96 5 (4.65, 5.35) {5} {1.30}
Umbrella 3.24 3 (2.76, 3.81) {3,4} {1.24, 1.47}
Explicit 1 1 NA {1,2,3} {1.29, 1.42}

Table 2.1: Target dose and target dose intervals for the active dose response profiles.

2.4 Measuring the performance of the methods

In order to assess the performance of the methods, we define metrics to measure the

operational characteristics. The operating characteristics for each of the methods can

then be compared and contrasted. These operating characteristics are intended to give

a fair description of a method’s performance in terms of detecting a dose response,

identifying a clinical relevant response, selecting a dose in the target interval and

estimating the dose response curve. The metrics assume the dose response is modelled

using the function η(zj , θ), and that we are interested in the difference from placebo,
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η(zj , θ)− η(z0, θ).

Dose response: After all subjects have completed the study, we conclude there is

evidence of a dose response if there is at least one dose that has a statistically significant

improvement over placebo. In order to allow fair comparison between methods, we

maintain the family wise one-sided type I error for the Flat dose response profile at

the 5% level for the frequentist and Bayesian approaches. In order to maintain a one-

sided type I error the confidence or credible intervals are calibrated under the Flat dose

response profile.

The dose response for the frequentist approach is established as

• For each zj , we claim a dose response if the lower bound of the (1 − γ) × 100%

one-sided confidence interval for η(zj , θ)− η(z0, θ) is > 0.

• We calibrated the value of γ so that the family wise type I error rate α=5% if

νj = 0 ∀j.

The Bayesian approach is similar, except we are interested in the credible intervals

rather than the confidence intervals. For the Bayesian methods, a dose response is

established if Pr(η(zj , θ) − η(z0, θ) > 0|Y = y) > γ. The type I error is calibrated for

each method separately, thus each method results in a different value of γ being used

to maintain the type I error. We measure the percentage of simulated datasets where

a dose response is detected.

Clinical response: A clinical response is concluded if, a dose which has established

a dose response also has a clinically meaningful difference (CMD) from placebo. For

frequentist methods a dose zj is considered to have a clinical response if it has a dose

response and

η(zj , θ̂)− η(z0, θ̂) ≥ CMD.

That is, if the difference from placebo in the expected response of the fitted dose

response curve at dose zj , is greater than or equal to the clinically meaningful difference.

For Bayesian methods we conclude there is a clinical response based on the posterior

distribution for θ|Y = y. A dose zj is considered to have a clinically relevant response

if

Pr(η(zj , θ)− η(z0, θ) ≥ CMD|Y = y) > 0.5.
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We use a probability of being greater than the clinically meaningful difference of 0.5, to

ensure the results are as comparable as possible with the frequentist methods, however

other decision rules could be applied. We measure the percentage of simulated datasets

where a clinical response is established.

Correct dose: If a clinical response can be established, we then select a dose in phase

II to be taken forward to phase III. We select the minimum dose with a clinically

meaningful difference from placebo. For frequentist methods, the dose we select is

min
j
{zj : η(zj , θ̂)− η(z0, θ̂) ≥ CMD},

and for Bayesian methods the dose we select is

min
j
{zj : Pr(η(zj , θ)− η(z0, θ) ≥ CMD|Y = y) > 0.5}.

Where no dose has a clinical response, we do not proceed into phase III therefore no

dose is selected. For graphical purposes, these datasets are represented as choosing

the placebo dose. We measure the ability to correctly identify the target dose by

calculating the percentage of simulated datasets where the selected dose is within the

target interval given in Table 2.1.

Estimating the Dose Response: To assess how accurate a method is at predicting the

whole of the dose response curve we calculate the prediction error where a clinical

response has been established. The prediction error is calculated as the expected

difference between the fitted and the true dose response curve across the simulated

datasets. For frequentist methods, let θ̂(y) be the estimate of θ for a dataset Y = y.

The prediction error at dose zj is

PEj(y) = η(zj , θ̂(y))− η(z0, θ̂(y))− (νj − ν0)

For Bayesian methods the prediction error for a dataset Y = y is

PEj(y) = E[η(zj , θ)− η(z0, θ)|Y = y]− (νj − ν0).

The average absolute prediction error at dose zj for the frequentist and Bayesian

methods is then

PEj = E[|PEj(y)|].
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The percent absolute prediction error relative to the clinically meaningful difference is

then calculated as

pAPE = 100× 1

8

∑8
j=1 |PEj |
CMD

.

When plotting the prediction error, we present the median, 5th, 25th, 75th and 95th

quantiles of PEj(Y ) at each dose.

2.5 Control for the results: ANOVA approach

When comparing between adaptive and non-adaptive methods we include the ‘ANOVA’

method as a common comparison. The ANOVA method is considered to be a traditional

design for analysing phase II data, and is the same procedure that was used by

Bornkamp et al. (2007) as the control method for their results. The ANOVA approach

uses pairwise comparisons between the active doses and placebo to test for the presence

of a dose response, whilst adjusting for multiple comparisons using an ‘allowance’ factor

as suggested by Dunnett (1955).

In terms of our earlier notation, this could be considered as a non-parametric model

where the expected response at each dose is

E[Yij ] = η(zj , θ) = θj ,

which we estimate by the observed mean,

θ̂j =

∑nj
i=1 yij
nj

.

Dose response is assessed using the Dunnett multiple comparison procedure, which

inflates the confidence interval for each dose using an allowance factor to ensure the

overall family wise type I error rate is maintained at a prespecified level. The lower

bound for the confidence interval is calculated for each j = 1, . . . , J as

LBj = θ̂j − θ̂0 − t
√
s2

√
1

nj
+

1

n0
,

where s2 is the pooled estimate of the variance across all the doses and t is the critical

value used to adjust for multiple testing. For one-sided 95% confidence intervals with

8 active doses and a placebo dose a value of t = 2.38 is used. Contrast tests are carried

out between each of the active doses and placebo, and a dose response is considered
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present if one or more of the lower bounds of the adjusted confidence intervals are

greater than 0, i.e. if any LBj > 0. Once a dose response has been established, the

other metrics listed in Section 2.4 are then applied.

As this method is less computationally intensive than some of the adaptive methods

explored, we generate 10,000 simulated datasets for each of the dose response profiles

outlined in Section 2.3.

2.6 Known distributions

Throughout this thesis we refer to a number of well known distributions. The densities,

p(x), for these distributions are stated below.

Univariate normal distribution (µ ∈ R, σ2 > 0)

X ∼ N(µ, σ2) ; p(x) =
1√

2πσ2
exp{−(x− µ)2

2σ2
}, x ∈ R.

Multivariate normal distribution with k-dimensions (µ ∈ Rk, Σ ∈ Rkk)

X ∼ N(µ,Σ) ; p(x) =
1

√
2π

k/2|Σ|1/2
exp{−1

2
(x− µ)TΣ−1(x− µ)}, x ∈ Rk.

Log normal distribution (µ ∈ R, σ2 > 0)

X ∼ `N(µ, σ2) ; p(x) =
1

x
√

2πσ2
exp{−(ln(x)− µ)2

2σ2
}, x > 0.

Gamma distribution (α > 0, β > 0)

X ∼ G(α, β) ; p(x) =
βα

Γ(α)
xα−1 exp{−βx}, x ≥ 0.

Uniform (continuous) distribution (−∞ < a < b <∞ <)

X ∼ U(a, b) ; p(x) =

{
1
b−a if a ≤ x ≤ b
0 otherwise
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Chapter 3

Bayesian Sampling for Non-linear

Dose Response Models

3.1 Introduction

In this chapter we are interested in generating samples from the posterior distribution

of a non-linear dose response model. An example of a non-linear dose response model

which is commonly used in the pharmaceutical industry, is the four parameter sigmoid

emax model which can be written as

η(zj , θ) = θ1 + (θ2 − θ1)
zθ4j

θθ43 + zθ4j
. (3.1)

We assume that the subject responses are normally distributed,

Yij ∼ N(η(zj , θ), σ
2),

with between subject variance σ2. We then place prior distributions on the model

parameters θ and make inferences based on some function of the posterior distribution,

g(θ). We focus on applying the sampling methods to the posterior distribution of the

four parameter sigmoid emax model (3.1), although there are wider applications for

the methods proposed.

For simple Bayesian models it is often possible to sample directly from the posterior

distribution (Gelman et al., 2004, p. 283). This is especially true when conjugate prior

distributions are used and so the posterior takes the form of a well known distribution.
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The distribution from which we wish to draw samples is referred to as the target

distribution, which has a density known as the target density.

For more complex models with multiple unknown parameters, the computation of

the target density becomes intractable and so direct sampling is rarely possible.

Popular methods for generating samples from a target distribution, without having to

directly calculate the target density are Markov Chain Monte Carlo (MCMC) methods.

MCMC methods use Markov chain techniques, where samples are drawn sequentially,

conditional on the previous sample. With each additional sample the approximation is

improved and so the samples converge to the target distribution (Gelman et al., 2004,

p. 286). This creates a sequence of samples where each sample is correlated to the

previous samples.

There are a number of ways to sample using MCMC methods. For a detailed description

of these methods see Gelman et al. (2004). Availability of software such as WinBUGS

(Lunn et al., 2000) and OpenBUGS (Thomas et al., 2006) which are designed to deal

with complex hierarchical Bayes models allows for MCMC sampling to be easily carried

out.

The advantage of using MCMC methods is that no matter the complexity of the target

density it is always possible to generate samples (Geyer, 1992). However there are two

disadvantages to using MCMC methods. Firstly, the generated samples are correlated

which can cause inefficiencies, as the ‘inference from correlated samples is generally

less precise than from the same number of independent samples’ (Gelman et al., 2004,

p. 294). Secondly, the methods rely on the convergence of the sample sequence to the

target distribution. If the sequence has not converged, then the samples will not be

representative of the target distribution.

When using MCMC sampling there are some commonly implemented techniques to

minimise the correlation between samples and ensure convergence. Firstly a ‘burn-in’

period is us used to generate initial samples which are later discarded. These samples

are discarded as they depend on the distribution of the starting point for the iterations,

rather than the target distribution. The aim of the burn-in period is also to achieve

convergence. Secondly, samples can be thinned so that only one in every so many

samples are kept, reducing the correlation between samples. The result of this is that,

in order to protect against non-convergence and high correlation, many more MCMC

samples need to be generated than are actually useful.

22



Chapter 3. Bayesian Sampling for Non-linear Dose Response Models

In this chapter we shall explore generating independent samples directly from the

posterior distribution for non-linear dose response models such as (3.1). To do this

we compartmentalise the non-linear model into linear and non-linear components. We

show that if we can sample from the target distribution for the non-linear parameters

then it is relatively simple to sample the linear parameters. We present a sampling

method which is a hybrid of acceptance-rejection and importance sampling, as a

practical solution when the target density is unknown. The method we develop is

related to proposals of Liu et al. (1998) and Liu (2001) for sampling data in dynamical

systems and a simpler scheme defined by Chen (2005). By combining the hybrid

acceptance-rejection importance sampling and reducing the dimensionality of the non-

linear model, we have a method which allows us to efficiently generate sample from

a posterior distribution. This method offers benefits in reducing the time needed to

generate samples, whilst also eliminating the need to check the convergence of the

sampler, as may need to be done when using MCMC methods.

We focus on using the four parameter sigmoid emax model (3.1) which is widely used

in the pharmaceutical industry, as it captures many essential aspects of dose response

curves (Dutta et al., 1996). We show that the time needed to generate independent

samples is less than when generating the same number of correlated samples using

MCMC methods, and therefore using this direct sampling method is a more efficient

than using MCMC sampling for these models.

We discuss in a motivating example why we feel making inferences about the posterior

distribution via sampling is more appropriate than using numerical integration for the

scenarios we are interested in.

3.1.1 Motivating example

We consider the four parameter sigmoid emax model in (3.1). We are interested in

making inferences about the posterior distribution, such as the probability a dose has a

clinically meaningful difference from placebo or using a utility function to optimise the

placement of the next subject allocated. Katz et al. (1982) separate a non-linear model

into linear and non-linear terms, and suggest numerical integration to approximate the

posterior density. If we are interested in making inferences about some function of the

parameters g(θ) and we know the posterior density π(θ|y) given a dataset Y = y, we
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can use numerical integration to estimate the expectation of g(θ) as

E[g(θ)|Y = y] =

∫
g(θ)π(θ|y) dθ.

Alternatively, if we can generate a random sample from the posterior density, we are

able to estimate the integrals using the sample average

E[g(θ)|Y = y] ≈ 1

T

T∑
t=1

g(θt),

where θt (t = 1, . . . , T ) are i.i.d. samples generated from the density π(θ|y). This is

known as Monte Carlo Integration.

The success of numerical methods depends on being able to show the results are reliable,

through bounding the error of the approximation and showing the error converges as the

number of distinct points tends to infinity. The error bounds for conventional numerical

methods depend upon the differentiability of the function within the integral domain.

If the function g(θ) has any singularities, the upper bound of the error function is not

well-defined, and so it is harder to maintain the accuracy of the method. In contrast,

due to asymptotic theory the error of the Monte Carlo integration decreases with order

O(1/
√
T ) regardless of the dimensionality (Ripley, 1987, p. 120). Therefore provided

the number of samples T is sufficiently large we can be confident about the accuracy

of the results.

Let us assume we have a placebo dose, z0, and J active doses denoted zj (j = 1, . . . , J).

We model the dose response as η(zj , θ), where θ are the model parameters. We are

interested in observing a clinically meaningful difference (CMD) of δ from placebo for

a dataset Y = y. Some examples of when we are interested in functions of the dose

response curve which results in singularities are:

• Probability of being an effective dose: An effective dose is a dose with a difference

of δ from placebo. The probability of being an effective dose could be used to

decide which dose to take forward into phase III or whether a dose should be

dropped for futility at an interim analysis. In this case g(θ) = g(zj , θ) is an

indicator variable,

g(zj , θ) = Iδ(zj , θ) =

{
1 if η(zj , θ)− η(z0, θ) ≥ δ
0 if η(zj , θ)− η(z0, θ) < δ.
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Hence, the integral
∫
g(zj , θ)π(θ|y)dθ is discontinuous in θ and not differentiable

at all points.

• Utility function: In Bayesian decision theory we use a utility function u(θ) to

determine the trial design or to randomise subjects in an adaptive manner. The

expected Utility is

E[U ] =

∫
u(θ)π(θ|y)dθ.

An example of a discontinuous utility function is the response at the minimum

dose with a difference of δ from placebo,

u(θ) = {η(zj , θ) : zj = argmin
zk∈{z1,...,zJ}

(η(zk, θ)− η(z0, θ) ≥ δ)},

which is discontinuous in θ. The discontinuities arises between the doses, as each

dose becomes the smallest dose with a difference of δ from placebo. We look at

an adaptive design that uses this utility function as part of the randomisation

process in Chapter 4.

3.2 Sampling from a four parameter non-linear model

We wish to sample from the posterior distribution of the four parameter non-linear

sigmoid emax model given a dataset Y = y. The expected response at a dose zj

(j = 0, . . . , J) for the sigmoid emax model is

η(zj , θ) = θ1 + (θ2 − θ1)
zθ4j

θθ43 + zθ4j
,

where θ = (θ1, θ2, θ3, θ4)T are the model parameters and θ3, θ4 > 0.

By letting α = (α1, α2)T = (θ1, θ2)T and β = (β1, β2)T = (θ3, θ4)T we can re-

parametrise this model so that it is linear in terms of α

η(zj , α, β) = α1 + (α2 − α1)a(zj , β), (3.2)

where a(zj , β) =
z
β2
j

β
β2
1 +z

β2
j

. In this model, α describes the asymptotes of the model and

a is a function of the non-linear parameters β. This compartmentalisation of the non-

linear model has been suggested by Katz et al. (1982) for pharmacokinetic applications.

We generalise the approach here.
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We assume independent prior distributions for α and β. We assume that the asymptotes

α are normally distributed with mean µ = (µ1, µ2)T and variance-covariance matrix

∆, α ∼ N(µ,∆) which has density π(α). We place proper prior distributions on the β

parameters which reflect our prior beliefs about the non-linear parameters, we denote

the prior density π(β).

Let us assume the expected subject responses Ȳ are normally distributed,

Ȳ |α, β ∼ N(Xβα,Σ),

where Xβ is the design matrix for a given β. The variance matrix Σ is a diagonal

matrix with Σjj = σ2

nj
(j = 0, . . . , J) and nj is the number of subjects allocated to dose

zj . For now we assume that the between subject variation σ2 is fixed and known.

Using Bayes’ Theorem, the joint posterior distribution for α and β is,

π(α, β|y) ∝ p(y|α, β)π(α)π(β).

As the density p(y|α, β) for Y is proportional to the density p(ȳ|α, β) for Ȳ , the joint

posterior distribution can be written as

π(α, β|y) ∝ (2π)−
J+1
2 |Σ|−

1
2 e−

1
2

(ȳ−Xβα)TΣ−1(ȳ−Xβα)

×(2π)−1|∆|−
1
2 e−

1
2

(α−µ)T∆−1(α−µ)π(β)

∝ e−
1
2

(αT (XT
β Σ−1Xβ+∆−1)α−2αT (XT

β Σ−1ȳ+∆−1µ))

×e−
1
2

(ȳTΣ−1ȳ+µT∆−1µ)π(β).

Let ξβ = XT
β Σ−1ȳ + ∆−1µ and Λβ = (XT

β Σ−1Xβ + ∆−1)−1 , we can complete the

square to get a normal distribution for α in terms of β and y, which has density

π(α|y, β). Keeping only the terms depending on α and β, this can be simplified to

π(α, β|y) ∝ e−
1
2

(α−Λβξβ)TΛ−1
β (α−Λβξβ)e

1
2
ξTβ Λβξβπ(β)

∝ π(α|y, β)|Λβ|
1
2 e

1
2
ξTβ Λβξβπ(β), (3.3)

which is a product of a multivariate normal distribution and a function in terms of the

non-linear parameters β. Hence,

α|y, β ∼ N(Λβξβ,Λβ) (3.4)
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and the conditional density of β given y is proportional to

f(β|y) = |Λβ|
1
2 e

1
2
ξTβ Λβξβπ(β). (3.5)

We write the conditional density of β given Y = y as

π(β|y) = λ f(β|y),

where λ = 1∫
f(β|y)dβ

is the normalising constant. The joint posterior distribution can

now be written as

π(α, β|y) =
π(α|β, y)f(β|y)∫

f(β|y)dβ
. (3.6)

Suppose we wish to know the expectation of a function of the curve, g(θ) = g(α, β),

E[g(α, β)|Y = y] =

∫
g(α, β)π(α, β|y)d(α, β).

Substituting in (3.6) we have

E[g(α, β)|Y = y] =

∫
g(α, β)π(α|β, y)f(β|y)d(α, β)∫

f(β|y)dβ
. (3.7)

If we can sample βt (t = 1, . . . , T ) directly from the target distribution with density

f(β|y) given in (3.5), then we can easily generate a sample αt from the conditional

distribution of α given βt and y, which is the multivariate normal distribution given in

(3.4). The expectation (3.7) can then be approximated using the weighted average

E[g(α, β)|Y = y] =
1

T

T∑
t=1

g(αt, βt). (3.8)

3.3 Sampling methods

In the following sections we consider sampling from a one-dimensional distribution

with density f(x) which is proportional to π(x), i.e. π(x) = λ f(x), where λ is the

normalising constant. As we see later this can be extended to higher dimension.
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3.3.1 Acceptance-rejection sampling

In acceptance-rejection (AR) sampling we want to generate samples from the target

density f(x) but cannot do this directly and so we generate samples from a similar

density h(x), known as the enveloping density. We then either accept or reject each

sample, based on the ratio of the target density to the enveloping density. For a given

sample, if the enveloping density is a good approximation to the target density there

is a high probability of accepting the sample as being from the target distribution. In

this way the method is ‘self-monitoring’, in that if the choice of enveloping density is

poor, few samples will be accepted (Gelman et al., 2004, p. 285).

Let λ f(x) be the target density from which we want to draw samples. We follow

the key points of the proof for acceptance-rejection sampling from Morgan (1984, p.

98).

• We can simulate random variables X from any density λf(x) as long as we have a

method for uniformly and randomly sampling points under λf(x) or equivalently

under f(x).

• We identify an enveloping density, h(x) which is relatively easy to simulate from

and which has a similar shape to f(x).

• It is simple to obtain a uniform scatter of points under h(x), by taking the

coordinates (X, Y ) such that X has density h(x), while the conditional density

of Y |X = x ∼ U(0, h(x)).

• In order to completely envelop f(x) we choose a stretching factor c (c ≥ 1) so

that f(x) ≤ c h(x) for all x. It then follows, that Y |X = x ∼ U(0, c h(x)).

• Generate a uniform sample x with density h(x) and a sample y with distribution

U(0, c h(x)), then accept x if and only if y ≤ f(x).

Hence for a suitable h(x) and c, we have the following algorithm for accepting samples

from λ f(x):

1. Simulate an X = x from h(x).

2. Accept x as a realisation of a random variable with density λ f(x) with probability

Pr(accept) =
f(x)

c h(x)
.
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It is important for the efficiency of the method that c is as small as possible but still

large enough to bound the acceptance probability at 1. The probability of acceptance

is ∫
f(x)dx∫
ch(x)dx

=
1

c λ
.

Therefore, the expected number of samples needed for a single sample to be accepted

is (c λ)−1, and so the acceptance-rejection method is optimised (Chib & Greenberg,

1995) by setting

c = max

(
sup
x

f(x)

h(x)
, 1

)
.

3.3.2 Importance sampling

In importance sampling we wish to find the expectation of a function g(x),

E[g(X)] =

∫
g(x)λf(x)dx =

g(x)f(x)dx∫
f(x)dx

, (3.9)

where x has density λf(x) which cannot be sampled from directly. We use a proposal

density h(x) which is similar to a multiple of f(x) and relatively easy to sample from.

We then re-weight the samples based on the likelihood of observing the samples from

the target density λf(x). We use the explanation of importance sampling as discussed

by Gelman et al. (2004, p. 342). The expectation in (3.9) can be re-written as

E[g(X)] =

∫
g(x)f(x)

h(x)h(x)dx∫ f(x)
h(x)h(x)dx

.

We generate T samples from h(x) denoted xt (t = 1, . . . , T ) and estimate the integrals

using the sample average

E[g(X)] ≈
∑T

t=1 g(xt)
f(xt)
h(xt)∑T

t=1
f(xt)
h(xt)

=

∑T
t=1 g(xt)wt∑T

t=1w
t

,

where wt = f(xt)
h(xt) are known as the importance ratios or importance weights. We use

the same samples for the numerator and denominator as it reduces the sampling error

of the estimate.
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In importance sampling the variance of the estimator is minimised when h(x) ∝
|g(x) f(x)| (Ripley, 1987, p. 122). This is often not practical and so instead we aim

chose h(x) so that f(x) g(x)
h(x) are roughly constant. Poor estimates occur when we have

a few large weights and a large number of small weights, as the large weights influence

our estimator. To avoid this, the density h(x) should ‘cover all the important regions

of the target distribution’ (Gelman et al., 2004, p. 343). In the next section we look at

how the variance of the weights impacts the variance of the estimator.

3.3.3 Variance of the estimator

When generating samples, we want to be efficient in terms of the computer time needed

to generate samples and the variance of the estimator. For AR sampling the target

density f(x) must be completely enveloped by c h(x). If our enveloping density is too

large then this results in a high rejection rate and a need to generate large numbers of

samples in order to accept the required T samples. This method is then expensive in

terms of the computational time needed per accepted subject. In contrast, when using

importance sampling only T samples need to be generated, however as we show below,

the variability of the weights is reflected in the variance of the estimator. Therefore,

if the same number of samples are generated with importance weights as are accepted

using AR sampling, the variance of the estimator tends to be greater. To reduce the

variance of the estimator when using importance sampling, we would need to generate

more samples, increasing the computational cost. We show below how the variance of

the estimator is dependent on the variance in the weights.

We are interested in

ḡ = E[g(X)] =

∫
g(x)f(x)dx∫
f(x)dx

,

which we estimate using the sample approximation

ĝ =

T∑
t=1

g(xt)w(xt),

where x1, . . . , xT are T are i.i.d. samples. These samples represent accepted samples

using acceptance-rejection sampling or the equivalent number of samples generated for

importance sampling. For the acceptance-rejection and importance sampling schemes

these samples are generated from an enveloping and proposal density h(x) respectively.

We assume here that for acceptance-rejection sampling c h(x) completely envelops

f(x). For acceptance-rejection sampling all the samples have equal weights and so
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w(xt) = 1/T . For importance sampling we use w(xt) = f(xt)/h(xt)∑T
t=1 f(xt)/h(xt)

.

Let us assume that the densities g(x) and w(x) are independent. This is a strong

assumption that may not apply to many cases. Under this assumption, the variance of

the estimator is

Var(ĝ) =
T∑
t=1

Var(w(X)g(X))

= T{E[w(X)2]E[g(X)2]− E[w(X)]2E[g(X)]2}

= T{Var(w(X))Var(g(X)) + (E[w(X)])2Var(g(X))

+(E[g(X)])2Var(w(X))}

In the case of acceptance-rejection sampling E[w(X)] = 1/T and Var(w(X)) = 0, hence

the variance of the estimator for acceptance-rejection sampling is

VarAR(ĝ) =
1

T
Var(g(X)), (3.10)

which is the sample variance.

For importance sampling E[w(X)] = 1/T but Var(w(X)) > 0 and so the variance

of the estimator using importance sampling is

VarIS(ĝ) =
1

T
Var(g(X)) + T{Var(w(X))Var(g(X))

+(E[g(X)])2Var(w(X))}

= VarAR(g(X)) + T{Var(w(X))Var(g(X))

+(E[g(X)])2Var(w(X))}, (3.11)

which is greater than the variance of the estimator using acceptance-rejection sampling.

For an efficient method, we therefore want a compromise between using an acceptance-

rejection sampling method with a high rejection rate and using importance sampling

where the weights are highly variable. In the next section we explore a method that

aims to make this compromise.
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f(x)

ch(x)

x

Figure 3-1: Example of a target density f(x) which is not completely enveloped by
ch(x). The density q(x) is proportional to the green curve.

3.3.4 Hybrid acceptance-rejection importance sampling (HARIS)

Combining importance and acceptance-rejection sampling was first proposed by Liu

et al. (1998) and Liu (2001) for use in simulating dynamical systems. They show that

by rejecting streams of samples with low weights and re-sampling new streams, where

the streams are re-weighted accordingly, the trial distribution approaches the target

distribution more quickly. This method was then simplified by Chen (2005) to the case

with only one time point. The proposed method is a practical approach when the target

distribution is not known and we have an enveloping density that does not meet the

criteria that f(x) ≤ c h(x) ∀x. In reality the failure of the enveloping density may not

be discovered until the sampling process begins. The proposed method is pragmatic as

it allows us to use the generate samples, and so avoids the need to start the sampling

again with a new enveloping density.

Suppose we wish to sample from a distribution with density λ f(x) where λ is unknown.

Let h(x) be the density of a distribution that we can sample from and suppose c is

chosen so it is likely that c h(x) ≥ f(x) when x is a random sample from h(x). We

define the density q(x) by

q(x) =

{
k f(x) if f(x) ≤ c h(x)

k c h(x) if f(x) > ch(x)

= kmin(f(x), c h(x)).

Here k is the normalising constant for q(x). Figure 3-1 illustrates an example where

c h(x) does not completely envelop f(x); the density q(x) is proportional to the green

curve in this plot.
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Recall that q(x) = kmin(f(x), c h(x)), we can sample x from h(x) to obtain samples

from the density q(x) using acceptance-rejection sampling with a stretching factor k.

We accept x with probability

Pr(accept) =
q(x)

k c h(x)
=

kmin(f(x), c h(x))

k c h(x)

= min

(
f(x)

c h(x)
, 1

)
,

which is bounded by 1 as required. Although the normalising constant k is unknown,

we are able to use it in the stretching factor since it cancels in the expression for the

acceptance probability.

We now have a method for generating samples from q(x), but we wish to estimate

expected values under the density λ f(x). We achieve this by importance sampling. To

estimate the expectation of g(X) when X has density λ f(x), we write

E[g(X)] =

∫
g(x)λf(x)dx

=

∫
g(x)f(x)dx∫
f(x)dx

=

∫
g(x)f(x)

q(x) q(x)dx∫ f(x)
q(x) q(x)dx

≈
∑T

t=1 g(xt)k f(xt)
q(xt)∑T

t=1
k f(xt)
q(xt)

,

where x1, . . . , xt are values sampled from the density q(x). Let

wt =
k f(xt)

q(xt)
= max

(
1,
f(xt)

ch(xt)

)
,

then

E[g(X)] ≈
∑T

t=1 g(xt)wt∑T
t=1w

t
. (3.12)

The above derivation justifies (3.12) as an estimate of E[g(X)]. The density q(x) plays

an important role in this derivation but does not appear explicitly in the final formula.

We can summarise the implementation of this method as

1. Generate x from h(x).
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2. Accept the sample with probability

Pr(accept) = min

(
f(x)

ch(x)
, 1

)
.

3. If accepted, assign weight w = max
(
f(x)
ch(x) , 1

)
to the sample.

4. Repeat until T samples are obtained.

5. Estimate

E[g(X)] ≈
∑T

t=1 g(xt)wt∑T
t=1w

t
.

We refer to this method as the hybrid acceptance-rejection importance sampling

(HARIS) method. This method still relies on the density c h(x) enveloping the majority

of the curve f(x) in order to keep the importance weights equal to or close to 1, and

so we still need to identify a reasonable value for c. We describe in the Section 3.4 how

we construct the approximating density h(x) using a grid of points and then in Section

3.4.1 our choice of c.

3.3.5 Markov chain Monte Carlo (MCMC) methods

The final sampling method we consider, is Markov chain Monte Carlo (MCMC)

sampling. To generate the MCMC samples we use the OpenBUGS or WinBUGS

software. We use the R Team (2008) version 2.13.0 to call both OpenBUGS and

WinBUGS using the packages R2OpenBUGS and R2WinBUGS (Sturtz et al., 2005),

respectively. When using these packages we use the default sampler to generate

samples. Although we acknowledge that other samplers can be specified, we have

approached both these packages as many project statisticians may approach them,

with a basic understanding of the packages capabilities.

Although the BUGS in OpenBUGS and WinBUGS originally was an acronym for

Bayesian inference using Gibbs sampling, since its creation the software has been

extended so that the sampler now attempts to ‘utilise the most appropriate sampling

scheme for each stochastic node’ (Lunn et al., 2000). Both the WinBUGS and

OpenBUGs software use ‘three families of MCMC algorithms: Gibbs, Metropolis

Hasting and slice sampling’ (online OpenBUGS manual). The Gibbs sampler (Geman

& Geman, 1984) is the simplest of the Markov chain algorithms and generates samples

for each parameter in succession conditional on the previous samples. The Gibbs

sampler is the ‘first choice for conditionally conjugate models, where we can directly
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sample from each conditional posterior distribution’ (Gelman et al., 2004, p. 292). For

conditional densities where sampling is not straight forward, the Gibbs sampler may

not be feasible as custom algorithms are needed (Neal, 1997). For each iteration a new

parameter value is generated.

The Metropolis-Hastings (M-H) (Metropolis et al., 1953; Hastings, 1970) algorithm

uses a proposal density to generate conditional samples followed by an acceptance-

rejection rule. Due to the acceptance rejection rule, if the next step in the random

walk is rejected, the parameter value remains the same and so each iteration does not

necessarily result in a new value being generated. The speed of convergence of the

M-H algorithm depends on the choice of proposal density, if the choice is poor then the

rejection rate will be high resulting in slow convergence. In order to avoid problems

with the proposal density, adaptive M-H algorithms have been suggested, where the

proposal density is ‘tuned’ by monitoring the acceptance rate (Haario et al., 2001).

Slice sampling (Neal, 1997, 2003) constructs a Markov chain by ‘alternating uniform

sampling in the vertical direction with uniform sampling from the horizontal ‘slice’

defined by the current vertical position.’ For each iteration a new parameter value is

generated.

One way of assessing the amount of correlation between the samples is to calculate

the effective sample size (ESS). The ESS is the number of independent samples that

the correlated samples equate to, taking into account the correlation. If the Markov

chain has π as the equilibrium distribution and we are drawing samples from ζ(x), such

that ζ̄N = Eπ[ζ(x)] is the empirical average from N samples and σ̃2 is the asymptotic

variance under ζ, then

ESS =
σ̃2

var(ζ̄N )
. (3.13)

The var(ζ̄N ) is estimated using the spectral density at frequency 0, for more details see

Ripley (1987, p. 142-146).

3.4 Constructing an approximating density

In the previous section, we have examined methods for generating samples from a

distribution with density λf(x), where f(x) is known and λ is the unknown normalising

constant. For each of the direct sampling methods, we define an approximating density

h(x). So far we have discussed sampling in one-dimension, however as we intend to
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apply these methods to the conditional posterior density for the non-linear parameters

of the sigmoid emax model (3.5), we now consider constructing our approximate density

in two-dimensions. The application of these methods can be extended to higher

dimensions if computation power allows.

We construct our approximating density h(x) using a grid for x = (x1, x2). We define

our grid to have n×m cells and (n+1)×(m+1) grid points. We denote the coordinates of

each of the grid points as (x1(i), x2(j)) (i = 1, . . . , n+1; j = 1, . . . ,m+1). Let the grid

cell cij be the cell with corner points (x1(i), x2(j)), (x1(i+1), x2(j)), (x1(i), x2(j+1))

and (x1(i+ 1), x2(j + 1)).

Our approximating density is then constructed using the following steps.

1. We evaluate f(x1(i), x2(j)) at each of the grid points i = 1, . . . , n + 1; j =

1, . . . ,m+ 1.

2. We define our approximating density for the cell cij for x = (x1, x2) to be the

maximum of the four corner points,

hij(x) = max{f(x1(i), x2(j)), f(x1(i+ 1), x2(j)),

f(x1(i), x2(j + 1)), f(x1(i+ 1), x2(j + 1))},

for x1(i) ≤ x1 ≤ x1(i+ 1), x2(j) ≤ x2 ≤ x2(j + 1).

3. The probability of sampling cell cij is then

pij ∝ (x1(i+ 1)− x1(i))(x1(j + 1)− x1(j))hij(x) (3.14)

where
∑n

i=1

∑m
j=1 pij = 1.

The efficiency of the sampling methods depends on how similar our approximating

density is to the target density and therefore the placing of the grid. To ensure our

grid placement captures the shape of the target density we carry out the following

process.

1. Choose an initial grid placement based on where we believe the mass of the target

distribution lies. This could be based on the prior beliefs or biological reasoning.

2. Assume the marginal densities f(X1) and f(X2) are approximately normally
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distributed. Estimate

E[X1] ≈
n∑
i=1

m∑
j=1

pij
x1(i+ 1)− x1(i)

2
,

similarly for E[X2], E[X2
1 ] and E[X2

2 ].

3. Using the normal approximation for X1, we place grid points at our estimate for

the mean E[X1] and ±2, . . . ,±5 standard deviations from the mean, unless these

points are beyond the pre-specified bounds of the grid. The remaining grid points

are then evenly spread between the mean and ±2 standard deviation.

4. To ensure that our grid covers the mass of the target distribution, we calculate

the ratio of the density at the edge of the grid versus the maximum density. If

this is greater than 0.01 and we are within the pre-specified bounds of the grid,

then we update the marginal normal approximations and extend the grid further.

This is repeated until we are satisfied that the majority of the target distribution

is covered by our grid.
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Figure 3-2: Example grid placement for an unknown target density.

Figure 3-2 gives an example of the grid layout based on the contour plot for the target

density f(x). As we see, the initial grid was not large enough and so the grid was

extended. After the 1st normal approximation a portion of the distribution is still at

the edge of the grid and so a 2nd normal approximation was carried out and the grid

updated again.

In order to generate samples using the HARIS method (Section 3.3.4), as well as an

approximating density h(x) we also need to choose a stretching factor c, with the aim
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that c h(x) ≥ f(x) for all x. If we could chose c to be

c = sup
x

f(x)

h(x)
,

for x = (x1, x2) as proposed by Chib & Greenberg (1995), then we would ensure

the probability of accepting samples is bounded by 1 and so could use AR sampling.

However, the search over x for the supremum of the ratio of f(x)/h(x) is costly in

terms of computation time. Instead we assume the target distribution is approximately

normal. If this assumption is correct, then h(x) ≤ f(x) only at the peak of the target

density. We then choose our stretching factor c to be the ratio at the maximum of

the target density multiplied by some inflation factor (IF). We use an inflation factor

to increase the probability that we can generate samples using acceptance-rejection

sampling and to protect against observing large importance weights.

The value of c is found as follows.

1. Identify the cells where the maximum of h(x) lies. Due to the way h(x) is

constructed, we assume that the maximum of f(x) lies within these cells.

2. Iteratively maximise the conditional density within these cells. For example, for

an initial value of x1 the value of x2 which maximises f(x2|x1) is found. Using

this value for x2 the value of x1 that maximises f(x1|x2) is found. This process

is continued until the values for x1 and x2 converge.

3. The co-ordinates for x = (x1, x2)T which maximises f(x) are denoted xmax.

4. The stretching factor c is calculated as,

c =
f(xmax)

h(xmax)
× IF. (3.15)

Although for many cases the ratio at the maximum will be close to 1, the iterative

search is over a small area and so relatively cheap to do.

Despite our best intentions we still can not ensure c h(x) completely envelops f(x),

as there may be ridges in the target density with ratios of f(x)/c h(x) ≥ 1. If the

ridges are in the tails of the distribution the ratio of the target to the approximate

density could be large. In the next section we use this stretching factor c and the grid

for h(x) to sample directly from f(x) using the HARIS method described in Section
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3.3.4. This method is appropriate as within the grid cells there may be points which

we have not observed, where the density of f(x) is greater than ch(x).

3.4.1 Putting the sampling method into practice

We use the following steps to generate a sample x = (x1, x2) using the HARIS method

(Section 3.3.4).

1. Sample a grid cell cij with probability pij (3.14).

2. Generate a value of x from within the grid cell cij .

3. Accept x probability

Pr(accept) =
f(x)

c h(x)
. (3.16)

4. Assign an importance weight w = max
(

1, f(x)
c h(x)

)
.

This method is then repeated until we have the accepted the required T samples.

Let us denote the accepted samples as x1, . . . , xT which have corresponding weights

w1, . . . , wT . If all wt = 1 then this is equivalent to using acceptance-rejection sampling.

3.5 Assessing the method

We perform a simulation study to compare the direct sampling method with established

MCMC sampling methods. As part of the simulation study, we assess what effect

the initial and updated grids have on the performance of the direct sampling. The

efficiency of the method in terms of the number of samples and time needed to accept

1000 independent samples are presented. This is compared with the time needed to

generate 1000 correlated samples using the MCMC methods.

The simulation study is based on making inferences about the posterior distribution

for the four parameter sigmoid emax model,

η(zj , θ) = θ1 + (θ2 − θ1)
zθ4j

θθ43 + zθ4j
.

In order to use the direct sampling method, we let α = (α1, α2)T = (θ1, θ2)T and

β = (β1, β2)T = (θ3, θ4)T and re-write the sigmoid emax model as a linear model in
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terms of α,

η(zj , α, β) = α1 + (α2 − α1)a(zj , β)

where a(zj , β) =
z
β2
j

β
β2
1 +z

β2
j

.

For the simulation study we use 2 sets of prior distributions for α1, α2, β1 and β2,

which we name Prior 1 and Prior 2. As β1 and β2 parameters represent the dose with

50% of the maximum efficacy and the slope of the dose response curve respectively,

for biological reasons these are both set to be strictly positive. We define these sets of

prior distributions as follows.

Prior 1:

• α1 ∼ N(0, 2)

• α2 ∼ N(1, 2)

• β1 ∼ U(0.01, 16)

• β2 ∼ U(0.01, 16)

Prior 2:

• α1 ∼ N(0, 2)

• α2 ∼ N(1, 2)

• β1 ∼ `N(1.5, 0.75)

• β2 ∼ `N(0.75, 0.75)

The bounds for the initial and updated grids for Prior 1 are β1 ∈ [0.01, 16] and

β2 ∈ [0.01, 16] which coincide with the uniform prior distributions for β1 and β2. For

Prior 2, the prior distributions for β1 and β2 are not bounded above and so we use

bounds on our initial and update grids of β1 ∈ [0.01, 32] and β2 ∈ [0.01, 32]. The dose

range we use in our simulations has 8mgs as the maximum dose, and so the upper limit

for the β parameters in Prior 1 and Prior 2 are twice and four times the maximum

dose, respectively. For the purposes of the simulation study this was felt to be an

appropriate limit and is consistent with what is believed to be biologically plausible

for the sigmoid emax model. The bounds for the grids for Prior 2 ensure that at least

99.5% of the prior distribution is covered by the grid.

We generated K = 1000 datasets of subject responses for each of the prior distributions,

with each dataset consisting of 250 subjects randomised equally across 9 doses

(0, 1, . . . , 8mgs). The subject response data were generated using a sigmoid emax model

with model parameters α1, α2, β1 and β2 sampled from the prior distributions. The

sample of parameters values from the prior distributions are denoted (αk, βk)=(αk1 ,

αk2 , βk1 , βk2 ) (k = 1, . . . ,K). The mean response on dose zj (j = 0, . . . , J) for the kth
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dataset (k = 1, . . . ,K) is

Ȳ k
j = η(zj , α

k, βk) + εj

= αk1 + (αk2 − αk1)
z
βk2
j

βk1
βk2 + z

βk2
j

+ εj , (3.17)

where εj ∼ N
(

0, σ
2

nj

)
, σ2 = 4.5 and nj is the number of subjects allocated to dose

zj . Simulated parameter values are used to generate the data, so that posterior

distributions and therefore the target densities take a wide variety of forms. In doing

so, we test the robustness of the method.

For the direct sampling method the target distribution is the conditional posterior

distribution for β given a dataset Y = y, which has a density proportional to the target

density f(β|y) as given in (3.5). For each simulated dataset we use the HARIS method

(Section 3.3.4) to sample T=1000 parameter vectors from the posterior distribution

for (α,β)=(α1, α2, β1,β2). We denote each sample vector as (αt,βt)=(αt1, αt2, βt1,βt2)

(t = 1, . . . , T ). We can then estimate the fitted dose response curve to be

E[η(zj , α, β)|Y = y] ≈
∑T

t=1 η(zj , α
t, βt)wt∑T

t=1w
t

,

where wt are the important weights.

When choosing our stretching factor c (3.15) we use an inflation factor of 1.5. This

was chosen arbitrarily to maximise the probability that the sampling method could use

acceptance rejection sampling without the need to adjust using importance weights.

Larger inflation factors could be used, but this would reduce the efficiency of the

method as there would be a higher rejection rate of samples. We explore using the

HARIS sampling method with a range of grid sizes. We explore three sizes for the

initial grid: 4x4, 8x8 and 16x16, and three sizes for the updated grids: 10x10, 20x20

and 40x40.

For a fair comparison between the direct sampling and MCMC methods, we take the

same datasets and generate MCMC samples using the packages described in Section

3.3.5. For the MCMC sampling we use a burn-in of 1000 samples which are discarded

before generating the 1000 samples. It would be possible to use a longer burn-in

period and thin the samples to reduce the correlation in the samples, however this
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would increase the time needed to generate the samples. We calculate and present the

effective sample size (3.13) of the MCMC samples.

Figures 3-3 is an example of one of the simulated datasets, using uniform prior

distributions (Prior 1) for the β parameters. The top left plot is the contour plot

for the target density which we want to sample from. The top right plot is the fitted

posterior mean dose response curves from the direct sampling and MCMC methods.

The bottom row shows the scatter graphs of the β samples from the direct method and

the two MCMC sampling methods. From these figures we can see that direct method

and the two MCMC methods appear to be sampling from the target distribution. It

can also be seen that the fitted curves are very similar.

The scatter plot of the samples generated using OpenBUGS (Figure 3-3) is notably

more sparse than the plots when samples are generated using direct sampling and

WinBUGS. This is because the OpenBUGS sampler uses an adaptive M-H algorithm

for the β parameters, and so for some iterations the samples remain at the same value

as a move away from that point is rejected. In contrast WinBUGS uses a slice sampler

and so at each iteration new samples are generated. This results in each iteration

providing different samples, and so the scatter plot appears more populated.

Table 3.1 presents the number of samples generated in order to accept the 1000 required

samples, and the time in seconds needed to generate these samples. The size of the

updated grid has more of an impact on the mean number of samples generated than the

size of the initial grid. Although using an updated grid of 40x40, reduces the number

of samples generate, the average time needed to generate these samples increases. This

tells us that the cost of evaluating the necessary functions at the additional grid points

outweighs the cost of generating the additional samples. The purpose of the initial

grid is to estimate where the majority of the density lies. Increasing the size of the

initial grid, reduces the standard deviation in the number of samples generated. This

is because the more refined the initial grid, the better the estimate of the parameters

for the normal approximation, which improves the placement of the updated grid.

The best grid options for this example are an initial grid of 8x8 and an updated grid

of 20x20. These conclusions are also true for Prior 2 (Table 3.2). The time needed to

generate the samples when log normal prior distributions are used for the β parameters

is greater than when uniform prior distributions are used. This is because the average

number of grid placements is 1.72 instead of the 1.15 when uniform prior distributions
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Figure 3-3: Target density, posterior mean fitted dose response curves and samples
generated from the target distribution for the non-linear parameters of the four
parameter sigmoid emax model (Prior 1).

are used. As the bounds for the log normal prior distributions are larger than for the

uniform prior distributions, the grid has more room to roam before settling on a final

placement.

Table 3.3 is a summary of how the importance sampling aspect was incorporated when

uniform prior distributions were used for the β parameters. When the updated grid is

relatively coarse, approximately 25% of the datasets needed to re-weight some of the

accepted samples using importance weights. As the updated grid becomes more refined,

the frequency with which importance weights are used is reduced from approximately

25% when an updated grid of 10x10 is used, to 1 or 2 % when an updated grid of 40x40

is used.

Figure 3-4 is an example of a dataset when importance weights are used. The initial

grid for this example was 4x4 and the updated grid was 10x10. The maximum weight

observed for this dataset was 8.32 and 4.7% of samples had a weight greater than 1.

This plot shows the samples which had importance weights greater than 1. As we

can see, even when importance weights are used the majority of the samples have an

importance weight of less than 3. We observe that the samples have an importance
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Updated grid size
Initial grid size 10 x 10 20 x 20 40 x 40

4 x 4 Time in secs (sd) 1.14 (0.33) 1.06 (0.21) 1.33 (0.26)
Samples (sd) 2238 (681) 1876 (416) 1728 (375)

8 x 8 Time in secs (sd) 1.14 (0.25) 1.06 (0.12) 1.32 (0.16)
Samples (sd) 2203 (517) 1852 (202) 1709 (102)

16 x 16 Time in secs (sd) 1.17 (0.24) 1.10 (0.11) 1.35 (0.14)
Samples (sd) 2190 (491) 1848 (197) 1706 (96)

Table 3.1: Direct sampling method. Time in seconds and number of samples generated
in order to accept 1000 samples from the posterior distribution of the four parameter
sigmoid emax model (Prior 1).

Updated grid size
Initial grid size 10 x 10 20 x 20 40 x 40

4 x 4 Time in secs (sd) 1.40 (0.13) 1.14 (0.05) 1.56 (0.09)
Samples (sd) 2952 (277) 2067 (87) 1798 (50)

8 x 8 Time in secs (sd) 1.39 (0.12) 1.13 (0.06) 1.48 (0.17)
Samples (sd) 2917 (265) 2064 (80) 1795 (49)

16 x 16 Time in secs (sd) 1.42 (0.12) 1.16 (0.06) 1.47 (0.18)
Samples (sd) 2910 (263) 2058 (79) 1794 (48)

Table 3.2: Direct sampling method. Time in seconds and number of samples generated
in order to accept 1000 samples from the posterior distribution of the four parameter
sigmoid emax model (Prior 2).

Initial grid Updated grid % of simulations Mean % of samples with Max w
used IS w > 1 (where IS used)

4 x 4 10 x 10 26.5 5.70 16.29
20 x 20 6.4 1.87 6.59
40 x 40 2.7 0.85 6.62

8 x 8 10 x 10 25.9 6.00 10.96
20 x 20 4.8 1.38 2.67
40 x 40 1.3 0.27 2.38

16 x 16 10 x 10 23.3 5.29 14.89
20 x 20 4.2 1.29 4.19
40 x 40 0.4 0.30 2.38

Table 3.3: Summary of importance sampling (IS) weights. Based on 1000 datasets
with 1000 samples from the posterior distribution of the four parameter sigmoid emax
model (Prior 1).
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Figure 3-4: Scatter plot of observed means from an example dataset where importance
sampling was used when generating samples from the posterior distribution of a four
parameter sigmoid emax model. Target density for the non-linear parameters and
samples with weight greater than 1 (Prior 1).

weights > 1 when there is a ridge in the target density which occurs within a cell.

As the ridge extends into the tails of the target distribution, the ratio of f(x)/c h(x)

becomes greater and so we see larger importance weights. However, as these large

importance weights occur in the tails we sample from these cells relatively rarely. The

coarser the updated gird, the more likely we are to sample from the tails and so use

importance weights more often.

For the example mentioned above, we calculate the variance of the estimator g(α, β) =

η(zj , α, β) as if the samples had used AR sampling (3.10) and taking into account

the importance weights (3.11), under the assumption that g(α, β) and the weights are

independent. Across the doses zj (j=0,. . . , 8) the variance of the estimator accounting

for the importance weights was between 0.01% and 0.7% greater than if we had been

able to use AR sampling. This loss in efficiency is relatively small compared to having

to re-run the simulation study with an increased inflation factor.

When using log normal prior distributions for the β parameters, the summary of the

importance weights was similar, however the frequency with which importance sampling

was needed was reduced. When an updated grid of 40x40 was used, none of the datasets

used importance sampling as part of the sample generation.
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Priors 1 Priors 2

OpenBUGS Time in secs (sd) 2.32 (0.16) 2.41 (0.86)
Effective sample size (sd)

α1 304 (224) 229 (112)
α2 297 (246) 141 (151)
β1 67 (39) 39 (23)
β2 73 (29) 48 (20)

WinBUGS Time in secs (sd) 4.14 (0.32) 4.35 (0.22)
Effective sample size (sd)

α1 533 (274) 524 (200)
α2 490 (309) 302 (247)
β1 251 (153) 159 (76)
β2 422 (182) 254 (77)

Table 3.4: MCMC methods. Time in seconds to generate 1000 samples from the
posterior distribution of the four parameter sigmoid emax model and the mean effective
sample size for each of the parameters.

Table 3.4 presents a summary of the time needed to generate samples and the effective

sample sizes for the two MCMC methods, for Prior 1 and Prior 2. Investigation into the

samplers used by OpenBUGS and WinBUGs revealed that for the α parameters both

packages used a Gibbs sampler. For the β parameters OpenBUGS used an adaptive

M-H block algorithm whereas WinBUGS used a slice sampler. Although the adaptive

M-H algorithm is faster, as some moves in the random walk are rejected, the samples

of the model parameters remain the same over iterations and so there is a higher

auto-correlation resulting in a lower effective sample size. Using the slice sampler in

WinBUGS is slower, but results in each iteration generating new values for the model

parameters. The effective samples size of the parameters is lower for Prior 2 than Prior

1. This is because the log normal prior distribution and so the posterior distribution

is not bounded above, and so there is slower mixing of the MCMC.

Comparing the two sampling approaches, the direct sampling method is faster than

the MCMC approaches. For Prior 1, with an initial grid of 8x8 and an updated

grid of 20x20, the average time in seconds is 1.06 compared to 2.32 and 4.14 for

the OpenBUGS and WinBUGS MCMC approaches respectively. One of the main

advantages of the direct sampling method is that it generates independent samples,

rather than the correlated samples generated using the MCMC methods. Table 3.4

shows that the effective number of samples from the MCMC methods are substantially

lower than the 1000 independent samples generated using the direct sampling method.
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If we were wanted to generate enough MCMC samples so that the effective samples size

was 1000, then depending on which parameter we were interested in, using OpenBUGS

would be between approximately 8 and 50 times slower than direct sampling, and using

WinBUGS would be between approximately 8 and 24 times slower.

3.6 The three parameter non-linear case

The three parameter emax model is a special case of the four parameter sigmoid emax

model, where the slope parameter θ4=1. The emax model is written

η(zj , θ) = θ1 + (θ2 − θ1)
zj

θ3 + zj
,

where θ = (θ1, θ2, θ3)T are the model parameters.

By letting α = (α1, α2)T = (θ1, θ2)T and β = θ3, then as with the four parameter

case we can re-parametrise the model so that it is a linear model in terms of α with a

non-linear function in terms of β,

η(zj , α, β) = α1 + (α2 − α1)a(zj , β), (3.18)

where a(zj , β) =
zj

β+zj
. This is the same as the linearised model for the four parameter

case in Section 3.2 but with a simpler non-linear function.

We use the same prior distributions for α and β as used in Section 3.2. Following

through with the algebra, for a given dataset Y = y, we end up with the same

form for the joint posterior distribution for α and β given by (3.3). For the three

parameter case the β parameter only has one dimension and so the approximating

density h(β|y) is a one-dimensional grid. Setting up the initial grid and then using a

normal approximation to improve the grid placement is carried out in the same way

as before but in one dimension. Sampling using the HARIS method follows the same

principles as in Section 3.3.4.

3.6.1 Assessing the method

In Section 3.5, a simulation study was performed to compare the direct sampling

method against the established MCMC sampling used in OpenBUGS and WinBUGS.

We carry out a similar simulation study here for the three parameter case.
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For the simulation study we set prior distributions on α1, α2, and β. These prior

distributions are as follows:

• α1 ∼ N(0, 2)

• α2 ∼ N(1, 2)

• β ∼ U(0.01, 16)

We define the bounds of our grid to coincide with the prior distribution for β, i.e.

β ∈ [0.01, 16]. We found that for the four parameter case, using uniform prior

distributions for the β parameters produced more awkward target densities than when

log normal prior distributions were used. This resulted in importance sampling being

utilised more frequently as part of the HARIS method. We therefore use a uniform

prior distribution for β here as a worst case scenario, to test the robustness of the

method.

As in Section 3.5 we generate K=1000 datasets, with 250 subjects randomised

equally across 9 doses (0, 1, . . . , 8mgs). The subject response data are generated from

the sigmoid emax model in (3.17), with parameter values sampled from the prior

distribution. To reduce the model to the three parameter emax model we set βk2 = 1

(k = 1, . . . ,K).

For the direct sampling method, the target distribution is the conditional posterior

distribution for β given a dataset Y = y, which has a density proportional to the

target density f(β|y) as given in (3.5). In the one-dimensional case, the target density

is better behaved and so we reduce the inflation factor used to find the stretching

factor for the HARIS method to 1.05. For each dataset, we generate 1000 independent

samples from the posterior distribution using the HARIS method with a range of grid

sizes. The initial number of cells for the one-dimensional grid are; 2, 4 and 10. For the

updated grid we use; 10, 20 and 40 cells.

As a comparison, we also generate 1000 MCMC samples using packages described in

Section 3.3.5. For the MCMC sampling with use a burn-in of 1000 samples which are

discarded before generating the 1000 samples. We compare the time needed to generate

the samples for the direct and MCMC methods. We also calculate the effective sample

size (3.13) of the MCMC samples.
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Updated grid size
Initial grid size 10 20 40

4 Time in secs (sd) 0.53 (0.05) 0.51 (0.02) 0.50 (0.02)
Samples (sd) 1219 (120) 1154 (48) 1126 (30)

8 Time in secs (sd) 0.53 (0.05) 0.51 (0.02) 0.50 (0.02)
Samples (sd) 1216 (109) 1153 (43) 1124 (27)

16 Time in secs (sd) 0.53 (0.04) 0.51 (0.02) 0.50 (0.01)
Samples (sd) 1213 (102) 1152 (41) 1124 (26)

Table 3.5: Direct sampling method. Time in seconds and number of samples generated
in order to accept 1000 samples from the posterior distribution of the three parameter
emax model.

Initial grid Updated grid % of simulations Mean % of samples with Max w
used IS w > 1 (where IS used)

4 10 2.7 8.65 1.10
20 0.3 3.27 1.01
40 0.0 1.00

8 10 3.0 7.47 1.09
20 0.1 1.60 1.01
40 0.0 1.00

16 10 3.3 9.48 1.08
20 0.1 1.60 1.01
40 0.0 1.00

Table 3.6: Summary of importance sampling (IS) weights. Based on 1000 datasets with
1000 samples from the posterior distribution of the three parameter emax model.

With the three parameter model (Table 3.5), the size of the initial and updated

grids has little impact on the number of samples and time needed to generate the

independent samples. The inflation factor has been reduced to 1.05, compared to 1.5

used in the four parameter case, and so this reduces the average number of samples

generated to accept the 1000 required sample. The reduced inflation factor and the

fact that we are working in one-dimension, makes the sampling reasonably efficient.

Although we have reduced the inflation factor, the frequency with which importance

weights are needed (Table 3.6) is relatively low and the maximum importance weights

observed are small. This suggests that the approximating density h(β|y) is close to the

target density f(β|y). In this case, we have found using an updated grid with 40 cells

results in acceptance-rejection sampling being possible for all the simulated datasets.

Figure 3-5 is and example of a dataset where importance sampling was utilised.

The initial grid for this example was 4x4 and the updated grid was 10x10. Due to
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the poor placement of the grid, we do not observe the maximum of the target density

and so search for the stretching factor c in the tail of the distribution. Therefore, the

samples around the maximum of the target distribution have a weight greater than 1.

From the 1000 samples generated, 7.8% had a weight greater than 1 and the maximum

weight observed was 1.10. As all the importance weights are close to 1, this is of

little concern. The variance of the estimator from using importance sampling (3.11)

was <0.05% larger than if all the samples had weights of 1 (3.10). As the number of

grid points in the updated grid increases, we can identify where the maximum is with

more accuracy and so this reduces the frequency with which we need to incorporate

importance sampling.
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Figure 3-5: Scatter plot of observed means from an example dataset where importance
sampling was used when generating samples from the posterior distribution of a three
parameter max model. Target density for the non-linear parameter and samples with
weight greater than 1.

As the different grid options explored all take a similar time to generate the 1000

samples, this suggests there is a balance between the set up costs of constructing the

approximate density and the time needed to generate the samples. The coarser grid

options are faster at approximating the density, but need to generate more samples, as

there is a higher rejection rate. The finer grids are slow to set up, but have a higher

acceptance rate and so need to generate less samples. Therefore if we only wanted to

generate a few samples it might be worth using the coarser grid, but for if we wish to

generate large number of samples then using an initial grid of 16 and an updated grid
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OpenBUGS WinBUGS

Time in secs (sd) 1.32 (0.13) 2.03 (0.11)
Effective sample size (sd)

α1 73 (23) 757 (305)
α2 75 (23) 606 (352)
β 72 (20) 318 (162)

Table 3.7: MCMC methods. Time in seconds to generate 1000 samples from the
posterior distribution of the three parameter emax model and the mean effective sample
size for each of the parameters.

of 40 would be advisable.

Table 3.7 presents a summary of the performance for the two MCMC methods. The

effective sample size of the OpenBUGS method is a lot lower than the WinBUGS

method. The OpenBUGS program uses a adaptive M-H block algorithm to generate

the samples whereas WinBUGS using a Gibbs sampler for the α parameters and a

slice sampler for the β parameter. The adaptive M-H algorithm on average had a high

rejection rate, which resulted in the small effective sample size. One reason for this

could be the co-linearity of the α2 (maximum response) and β (dose with 50% of the

maximum response) parameters. It is known that MCMC methods can be slow to

converge ‘when parameters are highly correlated in the target distribution’ (Gelman

et al., 2004, p. 292).

We conclude that for the three parameter emax case, the direct sampling method is

faster than the MCMC method. Using an initial grid with 16 cells and an updated grid

with 40 cells, the direct sampling method takes 0.5 seconds compared with 1.32 seconds

using OpenBUGS and 2.03 seconds using WinBUGS. Taking into account the reduced

effective sample size of the MCMC methods, the direct sampling method is between

(approximately) 5 and 35 times more efficient than the MCMC methods, depending

on which parameter we are most interested in and which MCMC method we use. This

conclusion is consistent with the four parameter sigmoid emax case.

3.7 Including a prior on the between subject variance

So far we have assumed that the between subject variance, σ2 is fixed and known. In

this section we put a prior distribution on σ2 and examine the effect this has on the

form of the joint posterior distribution.
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The linearisation of the non-linear model remains the same as given in (3.2). As before,

we assume that the asymptotes α are normally distributed, α ∼ N(µ,∆) which has

density π(α). We place prior distributions on the β and σ2 parameters which reflect

our prior beliefs, and denote the densities of these prior distributions as π(β) and π(σ2)

respectively.

We assume that the expected subject responses Ȳ are normally distributed,

Ȳ |α, β, σ2 ∼ N(Xβα, σ
2Γ),

where Xβ is the design matrix for a given β, Γ is a diagonal matrix with Γjj = 1
nj

and

nj is the number of subjects allocated to dose zj .

Using Bayes’ Theorem, this joint posterior distribution can be written as

π(α, β, σ2|y) ∝ p(y|α, β, σ2)π(α)π(β)π(σ2) (3.19)

As σ2 is unknown, it no longer holds that the density p(y|α, β, σ2) for Y is proportional

to the density p(ȳ|α, β, σ2) for Ȳ . Instead, we note then when n =
∑J

j=0 nj the density

for Y can be written

p(y|α, β, σ2) =
J∏
j=0

nj∏
i=1

1√
2πσ2

e−
1

2σ2
(yij−η(zj ,α,β))2

=

(
1√

2πσ2

)n
e−

1
2σ2

∑J
j=0

∑nj
i=1(yij−η(zj ,α,β))2

∝ (σ2)−
n
2 e−

1
2σ2

∑J
j=0

∑nj
i=1(yij−ȳ)2e−

1
2σ2

∑J
j=0

∑nj
i=1(ȳ−η(zj ,α,β))2 .

In the equation above, the second exponential term is proportional to

(σ2)
J+1
2 p(ȳ|α, β, σ2). Hence when σ2 is unknown the density of Y is related to the

density of Ȳ as follows

p(y|α, β, σ2) ∝ (σ2)
J+1
2 (σ2)−

n
2 e−

1
2σ2

∑J
j=0

∑nj
i=1(yij−ȳ)2p(ȳ|α, β, σ2).
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The joint posterior distribution for α, β and σ2 given Y = y is then,

π(α, β, σ2|y) ∝ p(y|α, β, σ2)π(α)π(β)π(σ2)

∝ (σ2)
J+1
2 (σ2)−

n
2 e−

1
2σ2

∑J
j=0

∑nj
i=1(yij−ȳ)2p(ȳ|α, β, σ2)π(α)π(β)π(σ2)

∝ (σ2)
J+1
2 (σ2)−

n
2 e−

1
2σ2

∑J
j=0

∑nj
i=1(yij−ȳ)2

×(2π)−
J+1
2 |σ2Γ|−

1
2 e−

1
2

(ȳ−Xβα)T (σ2Γ)−1(ȳ−Xβα)

×(2π)−
1
2 |∆|−

1
2 e−

1
2

(α−µ)T∆−1(α−µ)π(β)π(σ2)

∝ e−
1
2

(αT (XT
β (σ2Γ)−1Xβ+∆−1)α−2αT (XT

β (σ2Γ)−1ȳ+∆−1µ))

×(σ2)−
n
2 e−

1
2σ2

∑J
j=0

∑nj
i=1(yij−ȳ)2e−

1
2

(ȳT (σ2Γ)−1ȳ+µT∆−1µ)π(β)π(σ2).

Letting Aβ,σ2 = (XT
β (σ2Γ)−1Xβ + ∆−1)−1 and Bβ,σ2 = XT

β (σ2Γ)−1ȳ + ∆−1µ, we

can complete the square to get a normal distribution N(Aβ,σ2Bβ,σ2 ,Aβ,σ2) which has

density as π(α|β, σ2, y). Keeping only the terms which depend on α, β and σ2, this

can be written

π(α, β, σ2|y) ∝ e
− 1

2
(α−Aβ,σ2Bβ,σ2 )TA−1

β,σ2
(α−Aβ,σ2Bβ,σ2 )

e
1
2
BT
β,σ2

Aβ,σ2Bβ,σ2

×(σ2)−
n
2 e−

1
2σ2

∑J
j=0

∑nj
i=1(yij−ȳ)2e−

1
2

(ȳT (σ2Γ)−1ȳ)π(β)π(σ2)

∝ π(α|β, σ2, y)|Aβ,σ2 |
1
2 e

1
2
BT
β,σ2

Aβ,σ2Bβ,σ2

×(σ2)−
n
2 e−

1
2σ2

∑J
j=0

∑nj
i=1(yij−ȳ)2e−

1
2

(ȳT (σ2Γ)−1ȳ)π(β)π(σ2).(3.20)

Hence, the joint posterior distribution in (3.19) is a product of a multivariate normal

distribution and a function in terms of only β and σ2. From (3.20)

α|β, σ2, y ∼ N(Aβ,σ2Bβ,σ2 ,Aβ,σ2),

which is the same as in (3.4), when σ2 was assumed to be fixed. The joint conditional

density for β, σ2 given Y = y is proportional to

f(β, σ2|y) = (σ2)−
n
2 e−

1
2σ2

∑J
j=0

∑nj
i=1(yij−ȳ)2 |Aβ,σ2 |1/2e

1
2
BT
β,σ2

Aβ,σ2Bβ,σ2

×e−
1
2

(ȳT (σ2Γ)−1ȳ)π(β)π(σ2).

We write the joint conditional density of β, σ2 given y as

π(β, σ2|y) = τ f(β, σ2|y),
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where τ = 1∫
f(β,σ2|y) d(β,σ2)

is the normalising constant. The joint posterior can now be

written

π(α, β, σ2|y) = π(α|β, σ2, y) τ f(β, σ2|y)

=
π(α|β, σ2, y)f(β, σ2|y)∫

f(β, σ2|y)d(β, σ2)
. (3.21)

The target density f(β, σ2|y) is a three dimensional density, and so we use a three

dimensional array to construct our approximating density. The method for construction

the grid follows the same principles as Section 3.4. The initial grid is updated using

the marginal normal approximations for the three parameters. We sample from the

joint posterior distribution using the HARIS method (Section 3.3.4).

3.7.1 Assessing the method

As in Sections 3.5 and 3.6.1, a simulation study is performed to compare the direct

sampling method with the established MCMC sampling methods.

For the simulation study we set prior distributions on α1, α2, β1, β2 and σ2. These

prior distributions are as follows:

• α1 ∼ N(0, 2)

• α2 ∼ N(1, 2)

• β1 ∼ U(0.01, 16)

• β2 ∼ U(0.01, 16)

• σ2 ∼ G(2.25, 0.5)

A gamma distribution is used for the prior of σ2 to restrict the parameter to positive

values. For the bounds of the 3D array we use β1 ∈ [0.01, 16], β2 ∈ [0.01, 16] and

σ2 ∈ [0.01, 10].

Like for the previous simulation studies, we generated K = 1000 datasets of subject

responses, consisting of 250 subjects randomised equally across 9 doses (0, 1, . . . , 8mgs).

The subject response data were generated using a sigmoid emax model with model

parameters α1, α2, β1, β2 and σ2 sampled from the prior distributions. The sample

of parameters values from the prior distributions are denoted (αk,βk)=(αk1 , αk2 , βk1 ,βk2 )
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Updated grid size
Initial grid size 10 x 10 x 10 15 x 15 x 15 20 x 20 x 20

4 x 4 x 2 Time in secs (sd) 3.35 (0.88) 4.39 (1.40) 7.22 (2.96)
Samples (sd) 5282 (1542) 3677 (806) 3236 (603)

8 x 8 x 5 Time in secs (sd) 3.37 (0.83) 4.21 (1.38) 6.75 (2.88)
Samples (sd) 5237 (1490) 3651 (816) 3211 (605)

16 x 16 x10 Time in secs (sd) 3.79 (0.88) 4.47 (1.16) 6.95 (2.40)
Samples (sd) 5246 (1644) 3613 (612) 3187 (428)

Table 3.8: Direct sampling method. Time in seconds and number of samples generated
in order to accept 1000 samples from the posterior distribution of the four parameter
sigmoid emax model with a prior distribution on σ2

and σ2(k) (k = 1, . . . ,K). The mean response on dose zj (j = 0, . . . , J) for the kth

dataset (k = 1, . . . ,K) is

Ȳ k
j = η(zj , α

k, βk) + εkj

= αk1 + (αk2 − αk1)
z
βk2
j

βk1
βk2 + z

βk2
j

+ εkj ,

where εkj ∼ N
(

0, σ
2(k)

nj

)
and nj is the number of subjects allocated to dose zj .

For each simulated dataset, we sample T=1000 parameter vectors from the posterior

distribution for (α, β, σ2)=(α1, α2, β1, β2, σ2), where each sample vector is denoted

(αt,βt, σ2(t))=(αt1, αt2, βt1, βt2, σ2(t)) (t = 1, . . . , T ). We can then estimate the fitted

dose response curve to be

E[η(zj , α, β)|Y = y] ≈
∑T

t=1 η(zj , α
t, βt)wt∑T

t=1w
t

,

where wt are the important weights from the HARIS method (Section 3.3.4).

When choosing our stretching factor c (3.15) we use an inflation factor of 1.5. For

each dataset, 1000 independent samples were generated from the posterior distribution

using the HARIS sampling method with a range of grid sizes. We explore three sizes

for the initial three dimensional grid: 4x4x2, 8x8x5 and 16x16x10, and three sizes for

the updated grids: 10x10x10, 15x15x15 and 20x20x20.

From Table 3.8 we can see that the size of the updated grids impacts the time needed

to generate the samples. As the grid is now in three dimensions, doubling the grid size
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Initial grid Updated grid % of simulations Mean % of samples with Max w
used IS w > 1 (where IS used)

4x4x2 10x10x10 29.1 4.69 76.3
15x15x15 8.4 1.20 3.93
20x20x20 5.3 0.98 6.5

8x8x5 10x10x10 30.3 4.79 21.7
15x15x15 8.2 1.17 3.2
20x20x20 3.4 1.13 2.0

16x16x10 10x10x10 27.4 3.9 67.6
15x15x15 8.3 1.25 5.9
20x20x20 3.3 0.88 5.4

Table 3.9: Summary of importance sampling (IS) weights. Based on 1000 datasets
with 1000 samples from the posterior distribution of the four parameter sigmoid emax
model with a prior distribution on σ2.

results in 8 times as many grid points being evaluated. It is therefore more efficient

to use and updated grid of 10x10x10 with a higher rejection rate than to increase the

grid to 20x20x20. Increasing the size of the initial grid reduces the standard deviation.

As the purpose of the initial grid is to locate where the majority of the density lies, we

want this process to be as cheap as possible whilst still providing a reliable estimate.

If the grid is too coarse, then the updated grid may be poorly placed which results in

either the grid needing to be re-positioned or a higher rejection rate. If the initial grid

is too refined, then this is costly in terms of computing time.

Table 3.9 is a summary of how often importance sampling was employed when

generating samples. We can see that for the coarsest grid with 4x4x2 cells in the

initial grid and 10x10x10 cells in the updated grid, that importance sampling is used

to generate samples for 29.1% of the simulated datasets. For this grid option, when

importance sampling is used on average 4.69% of the samples have an importance

weight greater than 1. This is a relatively small number of the 1000 samples, however

the maximum importance weight observed across the simulated datasets was 76.3.

This is a large importance weight, which will have undue influence on the estimator.

Increasing the updated grid to 15x15x15 is slightly slower than using a 10x10x10 grid,

but substantially reduces the maximum importance weight and so is a better option

for generating samples.

Compared to the scenarios when σ2 was assumed to be fixed, the average time (sd) in

seconds for the direct sampling has gone from 1.06 (0.12) to 4.21 (1.38). This reflects

the extra computational intensity from adding another unknown parameter. Although
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OpenBUGS WinBUGS

Time in secs (sd) 4.28 (0.39) 4.95 (0.54)
Effective sample size (sd)

α1 418 (225) 529 (273)
α2 420 (279) 463 (306)
β1 243 (161) 247 (162)
β2 394 (193) 393 (185)
σ2 953 (128) 940 (119)

Table 3.10: MCMC methods. Time in seconds to generate 1000 samples from
the posterior distribution of the four parameter sigmoid emax model with a prior
distribution on σ2 and the mean effective sample size for each of the parameters.

this method is still relatively efficient, increasing the number of dimensions further

would slow the process down, making it less practical.

Table 3.10 presents a summary of the two MCMC methods. Both the OpenBUGS

and WinBUGS methods give similar results in terms of the time needed to generate

the samples and the effective sample size. To generate the samples both packages used

a Gibbs sampler for the α parameters and a slice sampler for the β and σ2 parameters.

Using a initial grid of 8x8x5 and an updated grid of 15x15x15 the average time of

generating 1000 samples using direct sampling was 4.21 compared with 4.28 using

OpenBUGS and 4.95 using WinBUGS. On average the direct sampling method is

still competitive with the MCMC methods and has the advantage that there are

1000 independent samples being generated. The effective sample size for the α and

β parameters are markedly less than 1000 and so to increase the precision on the

estimator for the MCMC methods a larger sample would need to be generated which

would then slow down the MCMC methods.

It should be noted that it would be also possible to put a prior on σ2 in the three

parameter Emax case. This would then become a 2 parameter problem similar to that

of the four parameter sigmoid emax model without a prior on σ2.

3.8 Discussion

We have seen that sampling directly from the posterior density of the non-linear model

using the proposed HARIS method, offers savings in time over the MCMC methods.

Sampling directly also provides uncorrelated sample, whereas the MCMC samples
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have, in some cases, a high autocorrelation, reducing the effective size of the sample

substantially. Our results show that for the four parameter sigmoid emax model, direct

sampling can be between 8 and 50 times more efficient than using the MCMC methods.

Although direct sampling may not be possible or ideal in all situations, we have

shown that it does offer an alternative to the MCMC methods for the types of models

explored in this chapter. The direct sampling method may be especially beneficial

when large scale simulation studies are being carried out and the convergence and

autocorrelation of each individual simulation can not be checked. We acknowledge

that we are not experts in using either the WinBUGS or OpenBUGS packages, and

so we have approached these packages in a naive manner using the default settings for

the sampling algorithms. Therefore there may be ways of making the MCMC methods

more efficient which have not been explored here.

Reilly (1976), comments that a disadvantage of the grid method is the need to use

discrete parameter values. We have overcome this problem by sampling within each

of the grid cells, allowing continuous parameter values to be generated. One concern

that remains with using a grid method, is that the grid only covers a finite region

and so situations may arise where the mass of the target distribution is on the edge

of or outside the range of the grid. We have attempted to overcome this by allowing

the grid to re-position itself as necessary within the prespecified bounds. Provided the

bounds of the grid are set to be large enough to cover biologically reasonable values,

then situations where the mass of the target distribution are outside the grid should

be minimised.

Our sampling method uses a hybrid acceptance rejection and importance sampling

(HARIS) approach. This allows us to compromise between having a high rejection rate

and high variability in the importance weights. We have shown how this method, which

was originally proposed by Liu et al. (1998) for dynamical models, can be applied to

this problem. For the examples we have used, the more refined the grid we sample

from, the less often the importance sampling element needs to be employed. When

the importance sampling is used, provided the grid has enough points, the maximum

importance weights observed are relative small.

In this chapter we focus on the sigmoid emax model as it is a common model used

in the pharmaceutical industry, and is a model which we are interested in fitting in

later chapters. However, the method holds for other non-linear models which can be
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re-written as a linear model with a non-linear term, and where the linear parameters

are normally distributed. The limiting factor on the generalisability of the method is

the number of non-linear parameters. As the number of non-linear parameters increases

the computational intensity of the sampling method increases and so with more than

three non-linear parameters it may be more efficient to use the MCMC methods. For

some models there may be situations where the target density is bi-modal, and so

the normal approximation used to update the grid may not result in an effective grid

placement. A poor updated grid placement would then lead to a high rejection rate

and large importance weights.

The grid placements we have used in our sampling schemes have shown to be efficient

for the sigmoid emax model, but we recognise that further development could be carried

out to improve the efficiency further. For example, rather than discarding the initial

grid these points could be incorporated into the updated grid thereby increasing the

overall the number of points. The way in which the grid points are updated could

also be an area for improvement. We use a normal approximation to dictate where

the updated grid should be placed, but with some exploration this could no doubt be

improved upon.
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Chapter 4

General Adaptive Dose

Allocation Approach (GADA)

4.1 Introduction

One of the motivating papers for this thesis, is the white paper on adaptive designs

written by the PhRMA working group (Bornkamp et al., 2007). In the Bornkamp et al.

(2007) paper, two response adaptive designs were explored. These designs both adapted

the subject allocation based on the observed information. The designs explored are

the General Adaptive Dose Allocation (GADA) approach and an adaptive D-optimal

design. In this chapter we explore the GADA method and in Chapter 6 the D-optimal

approach.

The GADA method uses Bayesian decision theory (Berry et al., 2001) to randomise

each subject individually to either the optimal dose or placebo. The optimal dose is

defined as the dose that results in the maximum increase in information about some

specified aspect of the dose response curve. The methodology implemented in the

PhRMA working group paper was a generalisation of the design used in the ASTIN

study (Grieve & Krams, 2005; Krams et al., 2003). The ASTIN study was the first

study to successfully apply such an adaptive design to a dose-finding study. Although

the results of the ASTIN study were negative, the implementation of the adaptive

design resulted in the study being stopped early for futility. This saved subjects being

exposed to an ineffective treatment, as well as saving the company time and resources.

A review of the literature revealed only one other dose-finding study that had applied
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a response adaptive design to randomised subjects individually based on Bayesian

decision theory (Shen et al., 2011). Other studies have dropped or added doses based

on interim analyses (Berry et al., 2010; Smith et al., 2006). Padmanabhan et al. (2012)

present a simulation study where a normal dynamic linear model (NDLM) (West &

Harrison, 1997) is used to jointly model safety and efficacy data, with a response

adaptive design.

In this chapter we explore the mechanism of randomising subjects individually to

ensure that we can identify the optimal dose with a degree of accuracy. We investigate

the impact of putting prior distributions on the model parameters and then finally

replicate the scenarios used in the Bornkamp et al. (2007) paper. The methods used

in this chapter are similar to those used in the ASTIN study and the Bornkamp et al.

(2007) paper, however we aim to cover aspects of the design in more detail than has

previously been seen.

4.1.1 Background

Figure 4-1 illustrates the study design that was employed in the ASTIN study.

The ASTIN study was a response adaptive dose-finding study where subjects were

randomised sequentially based on the observed data. Here, a longitudinal model was

used to predict the final outcomes for subjects with only partial data available. In the

PhRMA working group paper this aspect was disabled and complete data were assumed

to be available immediately. The dose response was modelled using an NDLM and a

stopping rule was incorporated so the study could be stopped for either futility or

efficacy. Constraints were built into the ASTIN study design, such that the study

could be stopped at the decision of a Data Monitoring Committee (DMC), only after

a prespecified number of subjects had entered the trial, in order to ensure the decision

was based on sufficient evidence. The simulation studies carried out in this chapter do

not implement any form of stopping rules.

In the ASTIN trial, if the decision was to continue recruitment, then based on Bayesian

decision theory, the dose which optimised some specified aspect of the dose response

curve was found. The next subject was then randomised to either the placebo or the

optimal dose, maintaining a minimum allocation to placebo to protect against a drift

in the study population that could potentially bias the results (Grieve & Krams, 2005).

As the doses in ASTIN were given intravenously, there was flexibility in the doses used

in the study. Once the subject was randomised to a dose this was translated to the
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Figure 4-1: GADA method as implemented in the ASTIN study. (Source: Berry et al.
(2001))

appropriate vial specifications. This flexibility in doses could also be achieved for other

indications using different tablet combinations. For a full account of the methodology

used in the ASTIN study see Berry et al. (2001).

4.2 Methodology

4.2.1 The normal dynamic linear model (NDLM)

The GADA method models the dose response using a second order polynomial normal

dynamic linear model (NDLM) as outlined by West & Harrison (1997, p. 211). The

NDLM allows flexibility as it makes no assumptions about the shape of the dose

response curve or that the dose response curve is monotonic.

The system equations of the NDLM are used to construct the prior distribution for θ,

which has prior density π(θ). For the prior distribution we assumed that θ0 ∼ N(0,W0)

and δ0 ∼ N(0,W0). The prior distribution for θj (j = 1, . . . , J) is then constructed as

δj = δj−1 + εj where εj ∼ N(0,Wj),

θj = θj−1 + δj−1 + ωj where ωj ∼ N(0,Wj). (4.1)

Here, Wj is called the evolution variance at dose zj . The error sequences ωj and εj are

independent (West & Harrison, 1997, p. 32). In the NDLM the δj can generate a trend

between the doses. The E[θj ] = 0 for all j, and so the prior belief is that on average
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there no dose response.

Specifying a suitable evolution variance is not easy. For forecasting models, West &

Harrison (1997, p. 51) suggest Wj = Cj−1(1−r)/r where Cj−1 is the posterior variance

at time j−1 and r is a discount factor typically between 0.8 and 1. Translating this to

a dose response model is not straightforward, as we consider the dose response curve

as a whole. Instead we use Wj = Wσ2 as used in the ASTIN trial (Weir et al., 2007).

Although this may not be ideal for some of the underlying dose response curves, it

seems a fair assumption without prior knowledge about the shape of the dose response

curve. In the prior distribution, W acts like a scaling factor for the variation, where

larger values of W result in more uncertainty. For now we assume W is fixed and takes

values 0 < W ≤ 1.

From the system equations (4.1) we can write the prior distribution for θ as a

multivariate normal distribution,

θ ∼ N(µ,W∆), (4.2)

where µ is a zero vector and ∆ is the evolution variance matrix. The variance of the

jth dose can be written as,

Var(θj) = W∆jj = W (j + 1 +

j∑
k=0

k2)σ2

and the covariance of the ith and jth doses (i < j) is,

Cov(θi, θj) = W∆ij = W (i+ 1 +

i∑
k=0

k(k + j − i))σ2.

As the variance of θj depends on j, doses further away from placebo have more

uncertainty associated with them in the prior distribution for θj . The construction

of the variance covariance matrix assumes that the doses are equally spaced. If we do

not have equally spaced doses, we can reflect the additional variability in doses which

are further apart by constructing the variance matrix for a larger set of equally spaced

doses. We can then construct a new variance matrix using the rows and columns of the

original variance matrix for those doses we are interested in, and use this new variance

matrix in our NDLM.
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Using the notation laid out in Chapter 2, we assume the expected response of subject

i on dose zj is

E[Yij ] = θj

and so our dose response model

η(zj , θ) = θj .

We assumed the expected response at dose zj is normally distributed,

Ȳj |θ ∼ N(η(zj , θ), σ
2/nj) (4.3)

where nj is the number of subjects allocated to dose zj . The vector of expected

responses can be written as a multivariate normal distribution,

Ȳ |θ ∼ N(η(z, θ),Σ),

where Σ is the diagonal variance matrix (2.4). We assume that the variance σ2 is

known, and therefore with a fixed value for W in the prior distribution, Wσ2 is also

known. Later, we relax this assumption.

4.2.2 Finding the posterior distribution of θ

As data are accumulated into the trial the posterior distribution θ|y for a given

dataset Y = y is updated using Bayes theorem so that π(θ|y) ∝ π(θ)p(y|θ). For

the purposes of notation we note that as Ȳ is a sufficient statistic for Y , when σ2 is

known, p(y|θ) ∝ p(ȳ|θ) and so π(θ|y) ∝ π(θ|ȳ). As the prior distribution (4.2) and the

likelihood (4.3) are both multivariate normal, the posterior distribution for θ|y is also

multivariate normal and can be written

θ|y ∼ N(Λξ,Λ) (4.4)

where ξ = (W∆)−1µ + Σ−1ȳ and Λ = ((W∆)−1 + Σ−1)−1 (Evans, 1965). Within

the prior distribution, W acts as a scaling factor on the variation. In the posterior

distribution W acts a smoothing factor, with smaller values of W resulting in less

fluctuation in the fitted NDLM.

It should be noted that the variance matrix of Ȳ , Σ, is only non-singular if there

are subjects allocated to every dose. In the case where some doses have no subjects

allocated then in the formulas for ξ and Λ, the precision matrix should be used in place
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of Σ−1, where the precision matrix is written
n0
σ2 0 . . . 0

0 n1
σ2 . . . 0

...
. . .

...

0 . . . nJ
σ2

.

4.2.3 Finding the optimal dose for the next subject

The aim of the adaptive allocation is to learn about some function of the dose response

curve. In our case, we are interested in learning about the target dose, where the target

dose is defined as the minimum dose with a clinically meaningful difference (CMD) from

placebo. We define g(θ) to be the response at the target dose which is calculated as

• if there exists a θj such that θj − θ0 ≥ CMD then g(θ) = θj∗ where

zj∗ = min
j

(zj : θj − θ0 ≥ CMD),

• if ∀θ, θj − θ0 < CMD then g(θ) = max
j

(θj − θ0).

The latter definition, is the case where none of the doses reach the threshold for being

clinically meaningful. In this case we consider the most interesting dose, to be the dose

with the maximum change from placebo.

We learn about the function of interest, g(θ), through a utility function. The utility

function we use, aims to minimise the posterior variance of the response at the target

dose. We write this utility function as

u[Y ] = −Var(g(θ)|Y ).

For the purposes of notation, we define Y to be the available responses of the n subjects

currently enrolled in the trial. In a slight abuse of notation, where necessary we assume

this also includes information of the dose each subject was allocated to, and the order

of the allocation. If we let Ymax denote the responses of the subjects for a completed

trial, then we aim to maximise the expected utility

U [Ymax] = E[u[Ymax]] = E[−Var(g(θ)|Ymax)].
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Theoretically the maximum utility could be solved for all the subjects entering

the trial, for example by backwards induction; working from the end of the trial

backwards through all possible scenarios in a deterministic approach. However, in

this circumstance this would be computationally intractable and so a ‘myopic’ or ‘one-

step-ahead’ approach is adopted (Berry et al., 2001). Using a myopic approach, the

utility is only maximized for the next subject to be randomised. Once this subject

has completed the study, his/her response is then incorporated into the accumulated

dataset and the method repeated for the subsequent subject to enter the trial. To

ensure subject data are available to drive the decision about the optimal dose, we

begin the randomisation with a ‘run-in’ period where subjects are allocated equally

doses. After a suitable run-in period, the adaptive allocation is utilized and subjects

are sequentially allocated to the optimal dose.

For this one step ahead approach, we let Ỹj denote the unknown response of the next

subject to enter the trial on dose zj . The utility function including the response of the

next subject to be allocated to dose zj is written

uj [y, ỹj ] = −Var(g(θ)|Y = y, Ỹj = ỹj), (4.5)

which is the variance of the response at the target dose after observing a response ỹj on

dose zj . For a specific value of θ and dataset Y = y, the expected utility is computed

by averaging over the distribution of the unknown variable Ỹj

Uj [y] =

∫
uj [y, ỹj ] p(ỹj |y) dỹj . (4.6)

Key to evaluating (4.6), is being able to re-write the utility function in terms of the

posterior density π(θ|y) which we can sample from directly

Uj [y] =

∫ ∫
uj [y, ỹj ] p(ỹj |θ) π(θ|y) dỹj dθ. (4.7)

This allows us to estimate the expected utility by simulation. To do this we first

generate M i.i.d. samples for θ from the posterior distribution with density π(θ|y),

denoted θm (m = 1, . . . ,M). For each θm a response for the next subject entering the

trial on dose zj is generated from distribution with density p(ỹj |θmj ). This simulated

response is denoted ỹmj . The integral (4.7) is then estimated as

Ûj [y] =
1

M

M∑
m=1

uj [y, ỹ
m
j ]. (4.8)
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The optimal dose is the minimum dose which maximizes (4.8).

In the literature, there are then two different methods for estimating uj [y, ỹ
m
j ]. The

first uses direct simulation and is detailed in Berry et al. (2001). This was the method

employed in the ASTIN study (Grieve & Krams, 2005; Krams et al., 2003) and is

assumed to be the method employed by Bornkamp et al. (2007). The second method

for evaluation uj [y, ỹ
m
j ] employs importance sampling and is suggested by Weir et al.

(2007) to be a less computationally intensive method.

Direct Simulation

This method relies on using the unbiased estimator for −Var(g(θ)|Y = y, Ỹj = ỹmj ) to

estimate uj [y, ỹ
m
j ] for each ỹmj . The following steps are used to calculate the unbiased

estimator.

1. Calculate the parameter values of the multivariate normal posterior distribution

of θ given Y = y and Ỹj = ỹmj (4.4).

2. Generate T i.i.d. samples for θ from the posterior distribution with density

π(θ|y, ỹmj ). These samples are denoted θt (t = 1, . . . , T ).

3. Calculated g(θt) for each t = 1, . . . , T .

Hence, the unbiased estimator for −Var(g(θ)|Y = y, Ỹj = ỹmj ) is

ûj [y, ỹ
m
j ] = −V̂ar(g(θ)|Y = y, Ỹj = ỹmj ) = − 1

T − 1

T∑
t=1

(g(θt)− ḡ(θ))2

where ḡ(θ) = 1
T

∑T
t=1 g(θt). The expected utility Uj [y] at dose zj is then estimated using

the sample average of the estimates ûj [y, ỹ
m
j ] (4.8). This method is computationally

intensive as it relies on generating T samples for each ỹmj .

Importance Sampling

The strategy suggested by Weir et al. (2007) uses importance sampling to estimate the

posterior variance of g(θ).

Firstly, we find E[g(θ)|y, ỹmj ] and E[g(θ)2|y, ỹmj ] and then use these to calculate

−Var(g(θ)|Y = y, Ỹj = ỹmj ) = (E[g(θ)|y, ỹmj ])2 − E[g2(θ)|y, ỹmj ]. (4.9)
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The expectation of g(θ) is

E[g(θ)|y, ỹmj ] =

∫
g(θ)π(θ|y, ỹmj )dθ.

We re-write the posterior for θ in terms of the prior and likelihood to get

E[g(θ)|y, ỹmj ] =

∫
g(θ)p(ỹmj |θ)π(θ|y)dθ∫
p(ỹmj |θ)π(θ|y)dθ

.

These integrals can be approximated by sampling directly from the posterior

distribution with density π(θ|y) and taking the sample average of g(θ)p(ỹmj |θ) for the

upper integral and of p(ỹmj |θ) for the lower integral. As the samples are generated from

the posterior distribution of θ given Y = y they do not depend on ỹmj , hence we can use

the same sample for both the denominator and the numerator, reducing the variance

of the estimator. Let θt denote i.i.d. samples from then density π(θ|y) (t = 1, . . . , T ),

then

E[g(θ)|y, ỹmj ] ≈
T∑
t=1

g(θt)

(
p(ỹmj |θtj)∑T
t=1 p(ỹ

m
j |θtj)

)
(4.10)

which is a weighted average of g(θt), where the weights are proportional to the likelihood

of observations ỹmj given θt. We use the same set of samples θt for each of the ỹmj
(m = 1, . . . ,M ; j = 0, . . . , J). This coupling of the samples has a beneficial impact on

the differences in the expected utilities between different doses.

The same approach can be used to show

E[g(θ)2|y, ỹmj ] =

T∑
t=1

g(θt)2

(
p(ỹmj |θtj)∑T
t=1 p(ỹ

m
j |θtj)

)
. (4.11)

Using (4.10) and (4.11) for the expectation of g(θ) and g(θ)2 respectively, the estimate

of the utility function for the simulated response ỹmj is

ûj [y, ỹ
m
j ] =

(
T∑
t=1

g(θt)

(
p(ỹmj |θtj)∑T
t=1 p(ỹ

m
j |θtj)

))2

−
T∑
t=1

g(θt)2

(
p(ỹmj |θtj)∑T
t=1 p(ỹ

m
j |θtj)

)
.
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M T Direct Sampling Importance Sampling

50 50 0.46 0.02
100 50 0.96 0.02
200 50 1.94 0.04
500 50 4.84 0.10
50 100 0.82 0.02
100 100 1.64 0.04
200 100 3.32 0.06
500 100 8.22 0.12
50 1000 7.10 0.10
100 1000 14.28 0.16
200 1000 28.48 0.30
500 1000 71.20 0.72

Table 4.1: Time in seconds to randomise one subject using the direct and importance
sampling methods.

4.2.4 Choosing a sampling scheme for finding the optimal dose

For the GADA method, the fundamental design element is the adaptation of the

randomisation. In order for this method to be effective the algorithm must be able

to randomise subjects in a reliable and reproducible manner. This means that the

method can identify the optimal dose for the next subject with a degree of certainty.

In order to fully explore and understand the operational characteristics of the design

it must also be computationally possible to generate a large number of simulated trials

within a reasonable time frame.

We implemented the GADA method using both the direct and importance sampling

methods, and recorded the time needed to randomise each individual subject using

different values of M simulated responses and T samples from the posterior distribution

(Table 4.1). We can see from Table 4.1 that the method suggested by Weir et al. (2007)

which incorporates importance sampling, is substantially faster than the method that

samples directly from the posterior density.

The reproducibility of a sampling scheme is measured against a benchmark sampling

scheme which has sufficient samples that we can reasonable sure we have identified

the optimal dose. The benchmark sampling scheme for the direct sampling method

is M=1000 and T=1000, and for the importance sampling method is M=1000 and

T=100000. We have used a larger T for the importance sampling method as this

method is faster to run.
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To assess how good each scheme is at identifying the same optimal dose as the gold

standard, we carried out a small simulation study. We generated 100 datasets, with

100 subjects allocated equally across all the doses. The responses of the subjects in

the datasets were generated using the Emax dose response profile (see Section 2.3).

For each dataset we find the optimal dose for the 101st subject to enter the trial. We

then repeat this 100 times and calculate the percentage of times the sampling scheme

identified the same optimal dose as the benchmark sampling scheme. For the simulation

study we assume a fixed W of 0.5.

The percentage of times the different sampling schemes identify the same optimal

dose as the benchmark across the 100 simulated datasets, when T=100 and M=50,

100, 200 and 500 are presented in Figure 4-2. The importance sampling method

identifies the optimal dose with more consistency than the direct sampling method.

This is most likely because the importance sampling reuses the samples from the

posterior distribution, coupling the utilities across the simulated responses and across

the different doses, making it easier to identify the optimal dose. From this we conclude,

that not only is the importance sampling method faster but for the number of samples

we can afford to generate, it is more reliable than the direct sampling method in terms

of identifying the optimal dose. The benchmark sampling schemes for the direct and

importance sampling, identified the same optimal dose for 98 out of the 100 datasets.
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Figure 4-2: Box plots of the percentage of times the same dose is chosen as the
benchmark, using direct sampling and importance sampling (T=100).

Having identified that the importance sampling method is more able to identify the
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Figure 4-3: Box plot of the percentage of times the same dose is chosen as the
benchmark, using importance sampling with varying values of M and T .

optimal dose with fewer samples, we must now decide on which sampling scheme to

use for our larger simulation studies. Figure 4-3 shows the percentage of times the

importance sampling method agrees with the benchmark for different values of M and

T . Increasing both M and T improves the ability of the method to identify the optimal

dose.

If we were just interested in randomising the next subject within a trial, then in practice

we could use the benchmark sampling scheme. However, for large scale simulation

studies this is not practical as it would take too long to explore a wide number of

scenarios. With M=500 and T=1000 randomising one subject takes 0.72 seconds

(Table 4.1), so to simulate one trial with 250 subjects would take over 2.5 minutes

and to simulate 5000 trials would take over 9 days. Therefore we need to make a

compromise between a sampling scheme that is cheap to run but also can identify the

optimal dose.

We note that the reliability of the sampling scheme to identify the optimal dose may

depend on n, and so to ensure the choice of sampling scheme does not have a large

impact on the final results, we run a simulation study with 1000 simulated datasets

and three dose response profiles from the set of dose response profiles listed in Section

2.3. The expected response νj at dose zj for each of these dose response profiles is as

follows (j=0,. . . ,8)

• Flat: νj = 0

• Linear: νj = (1.65/8)zj
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Figure 4-4: Box plot of subject dose allocations for the GADA method with M=100
and increasing values of T . Based on 1000 simulations with data generated from the
Linear profile. The target dose interval is given in red.
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Figure 4-5: Box plot of subject dose allocations for the GADA method with M=100
and increasing values of T . Based on 1000 simulations with data generated from the
Emax profile. The target dose interval is given in red.

• Emax: νj = 1.81zj/(0.79 + zj)

We find the optimal dose using importance sampling with six sampling schemes;

M=100 and 200, T=50, 100 and 1000. Each trial consists of 250 subjects and the

adaptive randomisation takes place after allocating 3 subjects to each dose. A fixed W

of 0.5 is used.

Figures 4-4 and 4-5 are box plots of the subject allocations across the simulated datasets

when M=100 and the dose response profiles follow the Linear and Emax profiles,

respectively. We can see from these figures that the general trends of the subject

allocations remain the same as T increases. As T increases, the variability in the

subject allocations increases, and more subjects are allocated to the placebo dose.
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Figure 4-6: Operational characteristics for the GADA method with different M and
T used to find the optimal dose: probability of detecting a dose response, a clinical
response and selecting a dose in the target interval.

This suggests that for some of the simulated datasets when a large number of samples

are used to find the optimal dose, the allocation method can get ‘stuck’ exploring only

a couple of the potential doses.

The aim of the GADA method is to learn about the target dose. In the case of the

Linear profile the target dose is z6 and so the subject allocation is focused around the

higher doses. The target dose for the Emax profile is z2 and so the allocation focuses

on the lower doses. As T increases, the allocation criterion is applied more strictly and

so there is a concentration of subjects around the target dose intervals. With a lower

T , the criterion is still applied, but with more variation in the expected utility and so

the choice of optimal doses, the subjects are allocated more equally across doses.

Figure 4-6 presents estimates of the performance metrics when different values of M

and T are used in implementing the GADA sampling scheme. For each of the different

M and T combinations, the one-sided type I error under the Flat dose response profile

was maintained at 5% (see Section 2.4). The different values for M and T have the

least impact on the probability of detecting a clinical response. Although the sampling

scheme is aimed at minimising the posterior variance at the target dose, it does not

appear from Figure 4-6 that increasing the number of samples used to identify the

optimal dose, improves the ability of the method to select a dose in the target dose

interval. The absolute prediction error increases as the number of samples used to

identify the optimal dose increases. This is because, as the allocation focuses on few

doses, less subjects are allocated elsewhere, meaning that the prediction error over the

whole of the dose range increases.
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Based on the results of this simulation study, all further simulations use a sampling

scheme of M=100 and T=100. This sampling scheme has been chosen as it balances

the computational cost of randomising each individual subject with the operational

characteristics from this small simulation study.

4.2.5 Choice of smoothing factor

Within the NDLM model, the choice of W governs the extent of the movements in θ.

If W is too small then the posterior variance, Λ, is dominated by the prior information

and the posterior means tend towards a linear or flat model. If the choice of W is too

large, then the posterior means will tend towards the empirical means and so there is

little benefit from the dependence structure built into the NDLM. The choice of W is

important as the extent of the smoothing impacts the subject allocation and the final

inferences.

To illustrate the impact of using different values of W , 1000 datasets were simulated

where the subject responses were generated from the Flat, Linear and Emax dose

response profiles (as listed in the previous section). The optimal dose for the next

subject was found using M=100 simulated responses and T=100 samples from the

posterior. The between subject variance was σ2 = 4.5 and 250 subjects were

randomised for each simulation, with a run-in period of 3 subjects on each dose before

the adaptive allocation was implemented. Three smoothing factors were explored;

W = 0.01, W = 0.1 and W = 0.5.

The subject allocations using different values of fixed W when the data were generated

using the Linear and Emax profiles are presented in Figures 4-7 and 4-8, respectively.

With W=0.01 the posterior variances at the low doses are already small so there is less

to be learnt from allocating subjects to these doses. Therefore the method allocates

subjects to the higher doses, where the potential to reduce the posterior variance is

greatest.

To fully understand the impact different values of W have on the fitted NDLM, the

datasets generated above were then analysed using each of the three values of W .

This was done to assess what the key contributing factor is that influences the final

results: the allocation or the analysis. The operational characteristics when the data

are generated from the Linear and Emax profiles are presented in Table 4.2. For each
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Figure 4-7: Box plot of subject dose allocations for the GADA method with different
values of fixed W in the prior distribution. Based on 1000 simulations with data
generated from the Linear profile. The target dose interval is given in red.
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Figure 4-8: Box plot of subject dose allocations for the GADA method with different
values of fixed W in the prior distribution. Based on 1000 simulations with data
generated from the Emax profile. The target dose interval is given in red.

combination of W used to allocate and analyses the data, the one-sided type I error is

maintained at 5% under the Flat dose response profile.

From Table 4.2 we can see that, while the value of W used to randomise subjects

and make the final inferences has an impact on the results, it is the choice of W used

for the final analysis that has the greatest impact. As predicted, using a small W

when the dose response is Linear gives the best operational characteristics, as there is

a lot of smoothing in the fitted NDLM and so it tends towards a linear fit. When the

data follows the Emax dose response, using a larger W results in better operational

characteristics, as the NDLM requires more flexibility to fit the Emax dose response

profile. Therefore we can conclude that the choice of W impacts both the randomisation
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Linear Model

W used to analyse final data
W Used to Clinical Correct Absolute
Randomise Response (%) Target Dose (%) Prediction Error (%)

0.01 0.1 0.5 0.01 0.1 0.5 0.01 0.1 0.5

0.01 93.5 87.0 85.4 61.8 41.6 34.0 12.2 19.8 25.5
0.1 85.7 81.8 80.3 55.9 40.2 33.8 12.8 19.9 25.1
0.5 82.9 80.6 80.2 55.4 41.5 36.5 12.7 19.7 24.5

Emax Model

W used to analyse final data
W Used to Clinical Correct Absolute
Randomise Response (%) Target Dose (%) Prediction Error (%)
randomise 0.01 0.1 0.5 0.01 0.1 0.5 0.01 0.1 0.5

0.01 94.1 91.5 93.2 15.6 52.3 48.3 19.0 19.9 24.4
0.1 92.6 94.6 96.0 23.3 55.1 49.5 19.2 21.1 25.1
0.5 91.8 94.5 95.3 26.1 53.4 52.1 18.6 21.1 25.1

Table 4.2: Operational characteristics using fixed values of W to randomise subjects
and analyse the final dataset: probability of a clinical response, selecting a dose in the
target interval and the percentage absolute prediction error.

and analysis, and that there is no one value of W that provides the best results for the

different dose response profiles. We therefore need to choose the best value of W based

on the shape of the underlying dose response profile. In the next section we consider

the use of a prior distribution for W .

4.2.6 Giving W a prior distribution

So far we have assumed that a fixed value for W is adequate regardless of the underlying

dose response profile. However, it has been shown in the previous section, that this

assumption is not valid and different values of W are needed depending on the shape of

the underlying model. Putting a prior distribution on W allows the data to influence

the amount of smoothing in the posterior.

When there is a prior distribution on W , the GADA method is implemented in the

same way, however the posterior distribution is hierarchical as θ now depends on W and

Y . The hierarchical nature of the posterior distribution also feeds into the calculation

of the utility function, which is used to find the optimal dose for the next subject to

enter the trial. In this section we revisit these aspects of the GADA method.
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As seen in Section 4.2.1, the prior distribution for the NDLM and the likelihood are

both multivariate normal distributions written, θ|w ∼ N(µ,w∆) and Ȳ ∼ N(θ,Σ),

respectively. Let the prior for W have density π(w). The joint posterior multivariate

density π(θ, w|y) is then a hierarchical Bayes model. Using the fact that as σ2 is known,

the density p(y|θ, w) for Y is proportional to the density p(ȳ|θ, w), for Ȳ , we can write

the joint posterior density as

π(θ, w|y) ∝ p(y|θ, w)π(θ, w)

∝ p(ȳ|θ, w)π(θ|w)π(w)

= (2π)−
(J+1)

2 |Σ|−
1
2 e−

1
2

(ȳ−θ)TΣ−1(ȳ−θ)

×(2π)−
(J+1)

2 w−
(J+1)

2 |∆|−
1
2 e−

1
2

(θ−µ)T (w∆)−1(θ−µ)π(w)

∝ w−
J+1
2 e−

1
2
θT ((w∆)−1+Σ−1)θ+2θT ((w∆)−1µ+Σ−1ȳ)e−

1
2

(µT (w∆)−1µ)π(w).

Letting ξ = (w∆)−1µ+Σ−1ȳ and Λ = ((w∆)−1 +Σ−1)−1, we can complete the square

for θ|w, y ∼ N(Λξ,Λ) to get,

π(θ, w|y) ∝ π(θ|w, y) |Λ|
1
2 w−

(J+1)
2 e−

1
2

(µT (w∆)−1µ) e
1
2
ξTΛξ π(w). (4.12)

As

π(θ, w|y) = π(θ|w, y) π(w|y),

the posterior density for W is

π(w|y) ∝ |Λ|
1
2 w−

(J+1)
2 e−

1
2

(µT (w∆)−1µ) e
1
2
ξTΛξ π(w) (4.13)

For the purposes of making inferences, the marginal distribution for θ is found by

integrating over W ,

π(θ|y) =

∫
π(θ|w, y) π(w|y) dw. (4.14)

The prior distribution for W has an impact on the process of allocating the next subject

to the optimal dose. The utility function and the method used to calculate the expected

utility are essentially the same as those used in Section 4.2.3, when W was assumed to

be fixed. However, placing a prior distribution on W means that the expected utility

is now averaged over the possible values of W .

Let Y = y denote the responses from the n subjects currently enrolled in the trial.

As before, with a slight abuse of notation we assume that Y also contains information

on which dose each subject was allocated to, and the order of the allocation. As before,

77



Chapter 4. General Adaptive Dose Allocation Approach (GADA)

the utility function is the posterior variance at the target dose,

uj [y] = −V ar(g(θ)|Y = y).

We denote the response for the next subject to enter the trial on dose zj as Ỹj . To find

the expected utility function we average over the posterior distribution for W and the

unknown response of the next subject Ỹj = ỹj ,

Uj [y] =

∫ ∫
uj [y, ỹj ] p(ỹj |w, y) π(w|y) dỹj dw. (4.15)

Re-writing this in terms of π(θ|w, y)

Uj [y] =

∫ ∫ ∫
uj [y, ỹj ] p(ỹj |θ) π(θ|w, y)

×π(w|y) dỹj dw dθ. (4.16)

Similarly to when using a fixed value for W , the integral is approximated using

the sample average. As the model is hierarchical, the sampling of the M simulated

responses is done in a hierarchical manner.

First we generate M i.i.d samples for W from the distribution W |y which has density

π(w|y). These samples are denoted wm (m = 1, . . . ,M).

↓
Next we generate θm from the distribution for θ|wm, y which has density π(θ|wm, y).

These samples are denoted θm.

↓
Finally we generate ỹmj from the distribution for Ỹj |θm, wm, y which has density

p(ỹj |θm, wm, y) and denote these samples ỹmj .

Equation 4.16 is then replaced by the sample average

Ûj [y] =
1

M

M∑
m=1

uj [y, ỹ
m
j ]. (4.17)

For each generated response ỹmj the utility function uj [y, ỹ
m
j ] is evaluated using the

method suggested by Weir et al. (2007). The utility function for each new response ỹmj
can be written,

uj [y, ỹ
m
j ] = −Var(g(θ)|Y = y, Ỹ m

j = ỹmj ) = (E[g(θ)|y, ỹmj ])2 − E[g(θ)2|y, ỹmj ].
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The expectation of g(θ) is

E[g(θ)|y, ỹmj ] =

∫
g(θ)π(θ|y, ỹmj )dθ.

This can be written

E[g(θ)|y, ỹmj ] =

∫ ∫
g(θ)π(θ|w, y, ỹmj )π(w|y, ỹmj )dw dθ.

Then as before, we re-write the posterior for θ in terms of the prior distribution for

θ|w, y and the likelihood for Ỹj ,

E[g(θ)|y, ỹmj ] =

∫ ∫
g(θ)p(ỹmj |θ) π(θ|w, y) π(w|y) dθ dw∫ ∫
p(ỹmj |θ) π(θ|w, y) π(w|y) dθ dw

This is also evaluated by simulation, where the samples are generated in a hierarchical

manner.

We generate T samples for W from the distribution W |y which has density π(w|y).

These samples are denoted wt (t = 1, . . . , T ).

↓
Next we generate a θ from the distribution θ|wt, y which has density π(θ|wt, y) and

denote these samples as θt.

We estimate the above integrals by

E[g(θ)|y, ỹmj ] ≈
∑T

t=1 g(θt)p(ỹmj |θtj)∑T
t=1 p(ỹ

m
j |θtj)

,

=

T∑
t=1

g(θt)

(
p(ỹmj |θtj)∑T
t=1 p(ỹ

m
j |θtj)

)
.

As before, we use the same samples of θ for the numerator and the denominator. Placing

a prior distribution on W has not substantially increased the work load in finding the

optimal dose, as we only generate M and T samples from the posterior distribution of

W |y once.

Using the above calculations for E[g(θ)|y, ỹmj ] and using a similar method to calculate

E[g2(θ)|y, ỹmj ], we can estimate the utility function for the simulated response ỹmj as

ûj [y, ỹ
m
j ] ≈ −Var(g(θ)|Y = y, Ỹj = ỹmj ) = (E[g(θ)|y, ỹmj ])2 − E[g2(θ)|y, ỹmj ].
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The expected utility can then be estimated by taking the sample average of the M

simulated responses, using equation (4.17). The optimal dose for the next subject is

then the dose which maximizes the expected utility.

So far in this section we have assumed that the prior distribution on W is continuous.

To simplify the computational intensity of the method, later we assume a discrete

uniform prior distribution for W . To find the posterior distribution of θ given Y = y

we replace the integral in (4.14) with the sum,

π(θ|y) =

I∑
i

π(θ, wi|y) π(wi|y).

In finding the optimal dose, the relevant integrals should also be changed to

summations. As we are evaluating the integrals using simulation, the use of a discrete

prior distribution does not impact the way in which the optimal dose is identified.

4.2.7 The appropriateness of the NDLM model

An NDLM has been used to model the data as it assumes no knowledge about the shape

of the underlying dose response profile, making it a flexible model that can adapt to the

information accrued. The NDLM builds in a dependence structure between the doses

through the evolution matrix which determines the smoothing across the doses. The

amount of smoothing between the doses is determined by the posterior distribution of

W |y which had density π(w|y). As W |y moves towards zero there is less variability

and so more smoothing between the doses .

From (4.13) for a continuous prior distribution on W the posterior density for W

given Y = y is

π(w|y) ∝ |Λ|
1
2 w−

(J+1)
2 e−

1
2

(µT (w∆)−1µ) e
1
2
ξTΛξ π(w), w ∈ (0, 1),

where ξ = (w∆)−1µ+Σ−1ȳ and Λ = ((w∆)−1 +Σ−1)−1. We assign a discrete uniform

prior distribution to W , with I points wi, and now let π(wi) = Pr(W = wi) and

π(wi|y) ∝ |Λi|
1
2 w

− (J+1)
2

i e−
1
2

(µT (wi∆i)
−1µ) e

1
2
ξTi Λiξi π(wi), wi ∈ {w1, . . . , wI},

where ξi = (wi∆)−1µ+Σ−1ȳ and Λi = ((wi∆)−1+Σ−1)−1. We used a discrete uniform

distribution with wi ∈ {0.001, 0.011, . . . , 0.991, 1}. In order to assess how appropriate
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Figure 4-9: Posterior probability of W |y.

the NDLM model is, we fit the NDLM to true dose response profiles. To do this,

we set the means of the data ȳ equal to the dose response for the Flat, Linear and

Emax profiles. We set the between subject variance, σ2 = 4.5 and use 250 subjects

allocated equally across the doses. The posterior density for W |y under the Flat,

Linear, and Emax dose response profiles are plotted in Figure 4-9. For all the dose

response profiles, the posterior distribution is skewed towards zero, which would result

in a lot of smoothing in the posterior distribution for the NDLM.

We then fit the NDLM using this same data with the same discrete uniform prior

distribution on W and subject responses equal to the true dose response profiles. The

posterior expected responses of θ|y versus the true dose response profiles are presented

in Figure 4-10. For the dose response profiles that are non-linear, the fitted NDLM over

smooths the curvature of the true dose response profile. For the Emax dose response

profile, for example, this has the effect of underestimating the responses at the early

doses. In practice, this would result in the NDLM wrongly selecting higher doses to

take forward into phase III. This suggests that the structure of the NDLM used may

be more suitable when the dose response profile is more gradually increasing, rather

than when there is a steep change in the dose response, especially in the early doses

which are anchored by the placebo dose.

4.3 Results

The following results are based on the neuropathic pain example, with scenarios and

performance measures as defined in Section 2.3. For each scenario considered, 5000

simulated datasets were generated. Within each dataset 3 subjects were initially
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Figure 4-10: Posterior mean of the NDLM versus true dose response profiles.

randomised to each dose as a run-in period before the adaptive allocation approach

began. A total sample size of 250 subjects were randomised per dataset. The optimal

dose for the next subject to enter the trial was the dose that minimised the posterior

variance at the target dose. The optimal dose for the next subjection was found using

M=100 simulated responses and T=100 samples from the posterior distribution. For

the allocation of subjects, σ2 was assumed to be known and set to 4.5 and a discrete

uniform prior distribution was used for W with wi ∈ {0.001, 0.011, . . . , 0.991, 1}.

The results of the GADA method are compared with the ANOVA method, described

in Section 2.5. For the ANOVA method subjects were randomised equally to all the

doses and inferences made using pairwise testing with a Dunnett (1955) adjustment

for multiple testing. The metrics for the operational characteristics are as described in
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Section 2.4.

Subject allocation

The subject allocations for the active dose response profiles are presented in Figure

4-11. The GADA approach focuses on allocating subjects to minimize the posterior

variance of the response at the target dose. It can be seen that for all the active dose

response profiles, there are more subjects allocated to the target dose and neighbouring

doses with the exception of the top dose, z8. In the calculation of the utility, when

no dose met the target dose criteria, the maximum response was treated as the best

dose to investigate. This could explain why dose z8 often received additional subjects,

especially in the case of the Emax Low model where none of the doses met the

clinically meaningful threshold. Dose z8 also has substantially more variance in the

prior distribution as it has only one neighbouring dose from which to borrow strength.

This means that there is more potential to learn about the utility function by allocating

to this dose.

Detecting dose response

For the ANOVA method, under the Flat dose response profile the one-sided type I

error rate was controlled at 5% using a Dunnett adjustment of 2.38. For the GADA

method, the one-sided type I error under the Flat dose response profile is maintained

at 5% (see Section 2.4).

For the active dose response models, a dose response is identified in nearly 100% of

the simulated datasets (Figure 4-12). The ANOVA method has a consistently lower

probability of a detecting dose response than the GADA method. For the ANOVA

method the probability of detecting a dose response is highest for the steeper curves

which reach a plateau early in the dose range (i.e the Emax and Sigmoid Low profiles).

This is because these profiles have more doses with a clinical response and so the

probability of the pairwise testing identifying a dose response is increased.

We have excluded the Emax Low profile from the plots as it tends to have a low

probability of detecting a dose response and clinical response and so requires its own

axis. The Emax Low model reaches a plateau early in the dose range, but its maximum

response is only 1.14 compared with 1.65 for the other active dose response profile,

and so the ANOVA method struggles to identify that there is a dose response. The
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Figure 4-11: Box plot of subject dose allocations for the GADA method. Target dose
intervals are given in red.

probability of detecting dose response for the Emax Low model is 0.6 for the ANOVA

method compared with 1 for the GADA method.

Detecting a clinical response

For all the active dose response profiles, using the ANOVA method the probability of

detecting a clinical response is approximately the same as the probability of detecting

a dose response (Figure 4-12). Due to the adjustment for multiple testing used in the

ANOVA method, the expected responses have large confidence intervals and so large
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Figure 4-12: Operational characteristics for the GADA versus ANOVA methods:
probability of detecting a dose response, a clinical response and selecting a dose in
the target interval.

differences from placebo need to be observed to conclude there is a dose response.

Therefore the majority of times a dose response is concluded a clinical response is also

identified. In comparison, the NDLM is constructed so doses borrow strength from

neighbouring doses, reducing the variability in the fitted model. This makes it easier

for the NDLM to detect a dose response but not necessarily a clinical response. The

Emax Low model, which has a dose response but no doses that meet the criteria for

a clinical response, is a good example of how the NDLM can differentiate between

dose response and clinical response. With the ANOVA method the probability of

detecting a dose response and a clinical response are both approximately 0.63, but

with the GADA method the probability of detecting a dose response is close to 1,

while the probability of detecting a clinically relevant response is only 0.2. This is not

necessarily a characteristic unique to the GADA method, but is one of the advantages

of modelling the data.

Correctly selecting a dose in the target dose interval

The target dose is defined as the minimum dose that achieves at least a 1.3 improvement

over placebo. The percentage of simulated datasets where the dose selected is within

the target dose interval are presented in Figure 4-12. Despite the GADA method being

tailored to identify the target dose, this method does not do consistently better than

the ANOVA method in terms of correctly identifying a dose in the target dose interval.

In fact, it is only for the Linear model that the GADA method does substantially

better than the ANOVA method. It should be noted that the percentage of times the

dose selected was in the target dose interval for the GADA method is notably less
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than that observed in the PhRMA working group paper (Bornkamp et al., 2007). This

paper did not give a full description of the construction of the prior distribution for

the NDLM, whether stopping rules were used or the decision rule used for selecting a

dose. Therefore, it is difficult to compare the results presented here with those from

the Bornkamp et al. (2007) paper.

Histograms of the dose identified as the target dose across the simulations for the

Linear, Emax and Sigmoid Emax dose response profiles are given in Figure 4-13 for the

GADA and ANOVA methods. Based on these histograms the GADA method tends to

identify higher doses compared to the ANOVA method. For the Linear profile this is

an advantage and results in a higher percentage of simulations selecting a dose in the

target dose interval, whilst for the Emax profile this is detrimental.
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Figure 4-13: Histograms of dose selected for phase III, for the GADA and ANOVA
methods. Target dose intervals given in red.

Prediction error

Figure 4-14 presents plots of the median prediction error for the GADA method

with the prediction error quantiles. Overall the NDLM best fits the data when the

underlying dose response profile is Linear, with the median prediction just slightly

underestimating the true model at the lower doses. Using the GADA method, the

NDLM substantially underestimates the response at the lower doses, where the target

doses for the Emax dose response profile lies. When the underlying dose response is
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Sigmoid Emax, the NDLM overestimates the response at the early convex part of the

curve, then underestimates the response at the later concave part of the curve. These

prediction errors are consistent with the NDLM model fitted in Figure 4-10. We have

only included plots of the prediction errors for the GADA method, as the ANOVA

approach models the means at each dose independently and so the 50th percentile for

the dose response profiles is approximately flat with wide percentiles.

The impact of the NDLM underestimating the dose response curves is reflected in

the ability of the method to correctly select a dose in the target dose interval. When

the target dose is at the part of the curve which is underestimated, for example, as

with the Emax model, then the GADA method will tend to select a higher dose. This

is reflected in Figure 4-13.
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Figure 4-14: Median prediction error and prediction error quantiles for the GADA
method.

Simulation error

Although we have generated large numbers of datasets for the GADA and ANOVA

methods, there is still simulation error in our results. Let p̂G and p̂A be the estimated

probabilities of detecting a clinical response in the GADA and ANOVA methods

respectively, based on the Nsim=5000 simulated datasets the two methods have in

common. If the datasets were generated independently we can calculate the standard

error of the difference p̂G − p̂A as

se(p̂G − p̂A) ≈

√
pG(1− pG)

Nsim
+
pA(1− pA)

Nsim
. (4.18)
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Dose response profiles p̂G p̂A p̂G − p̂A se(p̂G − p̂A) coupled se(p̂G − p̂A)

Linear 89.4 84.0 5.4 0.7 0.6
Emax 93.3 94.3 -1.0 0.5 0.5

Sigmoid Emax 92.6 89.2 3.4 0.6 0.5

Table 4.3: Simulation error for the difference in probability of detecting a clinical
response (%) between the GADA and ANOVA methods.

We estimate the standard error of the difference by substituting in p̂G and p̂A for

pG and pA respectively in (4.18). As subjects across datasets were coupled as far as

possible (Section 2.3.2) this reduces the simulation error. To estimate the standard

error of the difference when the datasets are coupled, we define a variable for each

dataset k = 1, . . . , Nsim,

Ik =


−1 if only the ANOVA method has a clinical response

0 if both the GADA and ANOVA methods have a clinical response

1 if only the GADA method has a clinical response

.

The standard error of the difference taking into account the coupling, is then estimated

as the standard error of the set of values I1, . . . , INsim . Table 4.3 presents the simulation

errors of the difference in for detecting a clinical response between the GADA and

ANOVA methods, for a selection of the true dose response profiles.

From Table 4.3 we can see that even without the coupling of the datasets, because

we have generated a large number of simulated datasets, the simulation error of the

difference is less than 0.7%. Using the coupling only reduces the standard error of

a difference a small amount. In this case the subject allocations of the GADA and

ANOVA methods have limited subjects in common. The impact of the coupling is also

reduced by the different final analysis of the GADA and ANOVA methods. In future

chapters, where methods use the same final analysis, the coupling has more impact in

reducing the standard error of the difference. The standard error of the difference in

the probability of selecting a dose in the target dose interval without taking account

of the coupling is closer to 1%, as the probability of selecting a dose in the target dose

interval is closer to 50% for each of the methods. Again, coupling the datasets reduces

the simulation error by approximately 0.1%. We have calculated the estimates of the

standard error based on the 5000 simulated datasets both methods have in common,

in order to assess the impact of the coupling. In reality, the standard error of the

differences are even smaller than presented here as we actually generate 10000 datasets
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for the ANOVA method.

When we interpret the results, we are interested in seeing differences of a couple of

percent or more to conclude that there is differences between methods. As we have

shown, with 5000 generated datasets the simulation error of the difference is at most 1%

and so we can interpret our results and conclusions as being accurate enough. We do

not re-visit the topic of simulation error when comparing methods in future chapters,

as these results hold.

Conclusion

The GADA method is a response adaptive method which allocates subjects to doses

with the aim of minimizing the posterior variance of the response at the target dose.

The results of the simulation study show that the method has been somewhat successful

in achieving this. The adaptive allocation tends to lead to more subjects being

randomised to the target dose and neighbouring doses than some of the less effective

doses. However, there is a large amount of variability in the allocation method and so

at times the randomisation can become focused on a few doses, which may not always

be the optimal doses.

The rules used to define the operational characteristics were chosen so that the results

are comparative across the GADA and ANOVA methods. The results show that the

GADA method consistently outperforms the ANOVA method in terms of detecting

a dose response and a clinical response. However, although the method is designed

to minimize the posterior variance of response at the target dose, the GADA method

does not consistently identify a dose within the correct target interval with more success

than the ANOVA method. One reason for this, is that the NDLM used to model the

data often underestimates the dose response curve at the target dose, leading to higher

doses being chosen.

Depending on the primary outcome of the trial and the belief about the underlying dose

response model, there may be some advantages to using the GADA approach. However,

the benefits are not consistent, especially if choosing the target dose or understanding

the whole of the dose response curve is the main aim of the study. One must also take

into account the extra complexity and operational intensity it takes to run such an

adaptive design when designing their trial.
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4.4 Discussion

One of the conclusion of the PhRMA working group paper (Bornkamp et al., 2007)

was that ‘adaptive dose-ranging designs clearly lead to gains in power to detect dose

response and in precision to select the target dose interval and to estimate the dose

response.’ The results shown here are not consistent with this conclusion, or the results

presented in the paper for the GADA method. Due to the large number of methods

covered in the paper, there are certain important details about how the GADA method

was implemented that are unfortunately lacking. For example; the exact construction

of the NDLM used, the parameter of interest, the decision rule used to identify a dose

for phase III, and whether a stopping rule was employed.

Although the exact methods used in the PhRMA working group paper cannot be

ascertained, there are certain aspects of the results which are similar to those presented

here. Their plots of the prediction error for the Logistic dose response profile with

N=150 subjects, shows similar overestimation of the responses at the low doses and

underestimation at the higher doses. However despite the NDLM having problems with

underestimating the dose response at the target dose, the Bornkamp et al. (2007) paper

reports higher probabilities of identifying a dose in the correct target interval. If the

differences cannot be attributed to the choice of NDLM used to model the data, then

potentially the difference could be due to the decision rules used to select the target

doses. As Grieve (2007) comments in reference to the Bornkamp et al. (2007) paper,

‘there are few clear statements of the decision criteria that are used by the different

approaches.’ The decision rules used here, were chosen so that the results would be

comparable with the results from the ANOVA method.

Using a prior distribution for the between subject variation σ2 was considered, but

was found to have little impact on the operational characteristics. Placing a prior

distribution on σ2 required the optimal dose to be found using MCMC methods in

either WinBUGS or OpenBUGS. Using either of these packages, substantially slowed

down running of the simulations, and so we decided to use a fixed σ2 in this simulation

study.

The GADA method explored here is very complex in nature, with a number of different

components that differentiates it from the traditional methods. It uses a Bayesian

framework with a non-parametric model for the prior distribution and an adaptive

allocation process with utility function to identify the optimal dose for the next subject
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entering the trial. Although the results here are not as conclusive as those presented

in the PhRMA working group paper, there is still some potential to the method. In

the next chapter we explore simplifying this method to randomise subjects in cohorts

rather than individually.
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The Cohort Method - a

Simplified Adaptive Approach

5.1 Introduction

In the previous chapter we explored using the General Adaptive Design Allocation

(GADA) approach. This approach uses a Bayesian framework and models the data

using a normal dynamic linear model (NDLM). Subjects are allocated to doses, based

on accrued responses, using a Bayesian utility function. We observed in the previous

chapter that allocating subjects using the GADA approach resulted in a large amount

of variability in the subject allocations, with the algorithm occasionally getting stuck

exploring a few doses. The operational characteristics for the GADA method showed

no clear and consistent improvement over the simpler ANOVA method in terms of

correctly selecting a dose in the target dose interval. In this chapter we investigate

simplifying the adaptation and randomising subjects in cohorts. Where the GADA

method allocates subjects to minimise the posterior variance of the response at the

target dose, the cohort method aims to drops doses at interim analyses and focus the

allocation on the range of doses where the minimally effective dose (MED) is believed

to lie.

The cohort method models the data using the same NDLM as the GADA method, and

applies a simplification of the adaptation rule. Within the cohort method we randomise

groups of subjects to doses based on the posterior probabilities of having a clinically

meaningful difference from placebo. At an interim analysis, subjects are randomised

to the placebo doses, and a range of doses from the lowest non-futile dose to the lowest
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effective dose. This allows us to focus the randomisation on the range of doses that

have the most potential to be the minimally effective dose. There are many examples

of trials that have explored dropping treatment arms based on futility, either utilising

frequentist group sequential methods or Bayesian posterior probabilities. There are

limited examples of studies where dropping doses based on posterior probabilities

from an NDLM are explored (Smith et al., 2006; Berry et al., 2010; Padmanabhan

et al., 2012). Smith et al. (2006) explored dropping up to two futile doses at interim

analyses while Berry et al. (2010) used a two stage design, where in the second stage

additional doses could be explored based on the posterior probabilities from the first

stage. Padmanabhan et al. (2012) altered the randomisation probabilities for the next

cohort to allocate subjects to doses that ‘decrease the variance of the difference between

the response at the optimal safe dose and the placebo response.’ All of these papers

included the possibility of stopping the trial due to futility.

The methodology in this chapter differs from the papers mentioned above, as we don’t

consider doses independently of the neighbouring doses, but aim to identify a range

of doses where the subject allocation should focus. We also include the ability to re-

utilise doses that may have been dropped at early interim analyses, if the posterior

probabilities at these doses has changed accordingly.

Previously the GADA method has been compared with the ANOVA method, a

frequentist approach which uses a Dunnett (1955) adjustment for multiple testing. The

GADA method differs from the ANOVA method in terms of the design and analysis,

and so it is hard to isolate whether it is the adaptation or the final inference which

most affects the operational characteristics. Comparing the GADA method with an

adaptive cohort approach and a non-adaptive equal allocation, both analysed using

the same NDLM, allows us to make a fairer comparison and assess what impact the

adaptivity has.

We compare the operational characteristics of the cohort method with those generated

in the previous chapter. We make the following comparisons between the analysis and

design elements:

1. Analysis: frequentist ANOVA versus Bayesian NDLM, both with a non-adaptive

equal allocation.

2. Design: GADA method versus adaptive cohort allocation versus non-adaptive

equal allocation, all modelled using the same NDLM.
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5.2 Methodology

The cohort approach we propose here, randomises groups of subjects at interim

analyses, based on the observed data. The aim of the method is to focus the subject

allocation on the target dose, where the target dose is the minimum dose with a

clinically meaningful difference from placebo. The target dose is also referred to as the

minimally effective dose (MED). We focus the subject allocation on the target dose by

dropping doses that are deemed futile and those above the target dose. We drop doses

above the target dose as we are looking for the lowest dose with a clinically meaningful

effect. There may also be potential safety concerns about allocating subjects to higher

doses.

The data are modelled using the NDLM described in Section 4.2.6. As in the previous

chapter, we assume that there is a placebo dose z0 and J active doses denoted zj

(j = 1, . . . , J). We assume that the expected response of the ith subject on dose zj is

normally distributed

Yij ∼ N(η(zj , θ), σ
2) = N(θj , σ

2),

and the mean response on dose zj is distributed

Ȳj ∼ N(η(zj , θ), σ
2/nj) = N(θj , σ

2/nj),

where nj is the number of subjects allocated to dose zj . The vector of mean response

Ȳ then has a multivariate normal distribution,

Ȳ ∼ N(θ,Σ),

where Σ is as defined in (2.4). The prior distribution for θ is constructed using equations

(4.1). The prior distribution for θ can be written as a multivariate normal distribution,

θ ∼ N(µ,W∆),

where W is a random variable. We place a prior distribution on W such that W

has prior density π(w). The posterior distribution for θ|w, y is then also multivariate

normal

θ|w, y ∼ N(Λξ,Λ)
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where ξ = (w∆)−1µ+ Σ−1ȳ and Λ = ((w∆)−1 + Σ−1)−1. If W is given a continuous

prior distribution, the posterior distribution for W |y has density

π(w|y) ∝ |Λ|
1
2 w−

(J+1)
2 e−

1
2

(µT (w∆)−1µ) e
1
2
ξTΛξ π(w), w ∈ (0, 1).

We assign a discrete uniform prior distribution to W , with I points wi, and now let

π(wi) = Pr(W = wi) and

π(wi|y) ∝ |Λi|
1
2 w

− (J+1)
2

i e−
1
2

(µT (wi∆i)
−1µ) e

1
2
ξTi Λiξi π(wi), wi ∈ {w1, . . . , wI},

where ξi = (wi∆)−1µ + Σ−1ȳ and Λi = ((wi∆)−1 + Σ−1)−1. The marginal posterior

density π(θ|y) is found by summing over the possible values for W

π(θ|y) =
I∑
i=1

π(θ|y, wi) π(wi|y).

Using the posterior distribution of θj at dose zj for a given dataset Y = y, we define

the target dose as the minimum dose with a clinically meaningful difference (CMD)

from placebo, written

min
j

(zj : Pr(θj − θ0 > CMD|Y = y) > 0.5).

The randomisation process is carried out as follows:

1. Subjects in the first cohort are randomised equally to all doses.

2. At the interim analysis, the posterior distribution for θ|y is calculated using the

NDLM. Based on the posterior distribution, the lowest non-futile dose (LND) is

defined as

LND = min
j
{zj : Pr(θj − θ0 > CMD|Y = y) > 0.2}, (5.1)

and the lowest effective dose (LED) as

LED = min
j
{zj : Pr(θj − θ0 > CMD|Y = y) > 0.6}. (5.2)

3. Subjects in the next cohort are allocated equally to the placebo dose and the

range of doses from the LND up to and including the LED.

4. At the next interim analysis, the posterior distribution is updated and the

allocation for the next cohort found.
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5. This process is repeated until all subjects have been randomised.

Doses that have been previously dropped can be re-utilised at a later interim analysis

if the accumulated data has changed the probabilities accordingly. As the intention

here is not to explore early stopping, if all doses are deemed futile the next cohort is

randomised equally across all doses. If there were no safety concerns and doses higher

than the target dose were of interest, then this approach could be modified to drop only

the futile doses. As the NDLM does not always take a monotonic shape, in order to

prevent dropping a non-futile dose between two effective doses, only those doses below

the lowest non-futile dose are dropped. This restricts the method to dropping doses at

the lower and upper ends of the dose range, and not in the middle of the dose range.

Figure 5-1 illustrates the probability of each dose having a clinically meaningful

difference from placebo, based on the fitted NDLM (red dashed line) when the data

follow the true dose response profiles (black solid line). Data were set to equal to the

true profiles, such that ȳj = νj . We use three values of n to represent the number of

subjects enrolled in the trial at the time of the first interim analysis, n=50, 125 and 200.

The variation in the likelihood and prior distribution were assumed to be σ2 = 4.5. We

use a discrete uniform distribution for W , such that wi ∈ {0.001, 0.011, . . . , 0.991, 1}.
Based on the criteria (5.1) and (5.2) for dropping doses (black dashed lines), in addition

to the placebo dose, the green columns represent doses we would randomised to if we

knew the shape of the true dose response curve, and the red columns are the doses we

would drop at the interim analyses. As we can see from Figure 5-1, that when there is

less data available, fewer doses are dropped at the interim analysis. When we know the

shape of the true underlying dose response profile, the criteria result in us randomising

subjects to at least one dose from the target dose interval (Table 2.1).

The criteria chosen to define a non-futile and the effective dose, were chosen such that as

n increases there is a reasonable probability of dropping both the futile and high doses,

therefore maximising the number of subjects that could be allocated to and around

the target dose. We also chose the criteria taking into account other published studies.

In Smith et al. (2006) doses were dropped for futility if their posterior probability of

being the MED was ≤ 0.2 and so this is consistent with what is used here. Smith

et al. (2006) did not allow doses to be dropped or the trial ended early due to efficacy.

Shen et al. (2011) allowed their study to stop for efficacy if the posterior probability

of a particular dose being the MED was ≥ 0.6, and the posterior probability of the

maximum dose being the greater than the MED was ≥ 0.8. We have used a threshold

of 0.6 for concluding a dose is effective, as we are not stopping the whole trial but
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Figure 5-1: Plot of the true dose response profile and the posterior mean of the NDLM
for different values of n. Bar plots of the probability of a dose having a clinically
meaningful difference (CMD) from placebo based on the posterior distribution of θ.
Green columns represent doses we would allocate the next cohort to in addition to the
placebo dose, and the red columns represent doses that we would drop at the interim
analysis. The criteria for dropping doses are given in (5.1) and (5.2)
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only dropping doses which can be resumed later if necessary. Therefore the amount of

information about a dose at an interim does not need be as conclusive.

5.3 Results: cohort allocation

The results we now present are based on the neuropathic pain example described

in Section 2.2. To evaluate the operation characteristics of the cohort allocation, a

simulation study was carried out with 10,000 datasets generated from each of the

true underlying dose response profiles specified in Section 2.3. Each simulated dataset

consists of a total of 250 subjects across 9 doses (0, 1, . . . 8mgs). We explore the effect

of using 0,1,2,3,4, and 9 equally spaced interim analyses (IAs) (i.e. 1,2,3,4,5 and

10 cohorts). When there is no interim analysis, this is equivalent to using a non-

adaptive equal allocation design. The simulation study is the same as that performed

in Chapter 4, where the data are modelled using an NDLM with a discrete uniform

prior distribution on W , wi ∈ {0.001, 0.011, . . . , 0.991, 1} and σ2=4.5. The metrics for

the operational characteristics are as described in Section 2.4.

Subject allocation

The criteria for dropping doses at each of the interim analyses are aimed at focusing

the subject allocation on the target dose. It can be seen from the box plots of the

subject allocations in Figure 5-2, that this has been achieved to a certain degree. As

the method identifies a range of suitable doses to allocate to, a reasonable proportion

of subjects are randomised to the target dose interval and the doses around the target

dose interval. The target dose intervals for each model are outlined in red in the plots.

We can see from Figure 5-2, that the method is effective in dropping the low, futile

doses for the Linear and Sigmoid Emax profiles. There is a decrease in the number

of subjects allocated to the top doses, but in general the method finds it harder to

identify doses that should be dropped above the target dose. There is some change

in the subject allocations as the number of interim analyses increases, however after 2

interim analyses the overall shape of the subjects allocations changes very little. The

doses the subject allocations focus on are consistent with the doses we highlighted in

green in Figure 5-1.
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Figure 5-2: Box plot of subject dose allocations for the cohort method with increase
numbers of interim analyses. Target dose intervals are given in red.
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Detecting a dose response

For each of the number of interim analysis, we maintain one-sided type I error under

the Flat dose response profile of 5%. The probability of detecting a dose response for

the active profiles is around 100% for all the true underlying curves irrespective of the

number of cohorts used in the allocation process.

Detecting a clinical response

The probability of detecting a clinical response based on the number of interim analyses,

is presented in the left hand plot of Figure 5-3. In this plot the number indicates the

number of interim analyses used in the trial design. In terms of detecting a clinical

response, for all the active dose response profiles except the Emax Low, there is some

improvement from adapting at the interim analyses compared to the non-adaptive

design with 0 interim analyses. Adapting at the interim analyses results in the largest

improvement in detecting a clinical response for the Linear and Sigmoid Emax profiles.

For some of the profiles, the probability of detecting a clinical response increases with

the number of interim analyses, whereas for other profiles there is little to be gained

from using more that one interim analysis. In practice, it would be up to the project

team to consider if the benefit from additional interim analyses outweighs the extra

operational burden.

For the Emax Low dose response profile, we want to be able to identify that there isn’t

a clinical response. There is no benefit from using the adaptive allocation in achieving

this goal, with the probability of detecting a clinical response being approximately

29% regardless of the number of interim analyses. When all the doses are futile we

randomise the next cohort of subjects using equal allocation. Therefore for many of

the datasets the subject allocation is very similar or the same as using equal allocation

from the start. Hence, it is unsurprising that the methods with the opportunity to

adapt at the interim analyses give similar results to the non-adaptive design. If we

were interested in stopping the trial for futility when no doses show a clinical response,

then using interim analyses have shown to be of benefit in terms of saving subjects

numbers (Smith et al., 2006).

Correctly selecting a dose in the target dose interval

For all the dose response profiles, there is an increase in the probability of correctly

selecting a dose in the target dose interval when 1 interim analysis is used compared to
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Figure 5-3: Operational characteristics for the cohort method with increasing numbers
of interim analyses: probability of detecting a clinical response, selecting a dose in the
target interval and the percentage absolute prediction error.

0 interim analyses. The benefit of more than 1 interim analysis is less clear. For some

dose response profiles there is a slight benefit from using more interim analyses (e.g.

the Linear and Sigmoid High), but for other profiles using more interim analyses results

in similar results to using 0 interim analyses (e.g. the Emax and Explicit profiles).

Prediction Error

As the number of interim analyses increases, the subject allocation focuses on fewer

doses, and so the absolute prediction error increases (Figure 5-3). This is to be expected

as, when we focus the subject allocation on a few doses, the prediction error at the

other doses increases, increasing the overall absolute prediction error.

5.4 Results: cohort vs GADA allocation

For all the dose response profiles there is an improvement in the ability to detect a

clinical response and identify the target dose when 1 interim analysis is used compared

to 0 interim analyses. The advantage of using more than 1 interim analysis is less

apparent. Increasing the number of interim analyses could also result in increased

operational costs, and so we use 1 interim analysis for our comparison with the GADA

method examined in Chapter 4. For continuity we also include the ANOVA method

(Section 2.5) which randomises subjects using a non-adaptive equal allocation. As

the ANOVA method differs from the GADA and cohort methods in terms of design

and analysis, for completeness we include the results from using 0 interim analyses.

The case with 0 interim analyses is equivalent to using a non-adaptive equal allocation
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design where the data are modelled using the same NDLM as the adaptive cohort and

GADA methods.

Comparing the operational characteristics of these four methods allows us to make

the following comparisons between the analysis and design elements:

1. Analysis: frequentist ANOVA versus Bayesian NDLM, both with a non-adaptive

equal allocation.

2. Design: GADA method versus adaptive cohort allocation versus non-adaptive

equal allocation, all modelled using the same NDLM.

Subject Allocation

Box plots of the subject allocations for the GADA and cohort method with 1 interim

analysis are presented in Figure 5-4. We see that the GADA method has much more

variability in the subject allocation than the cohort method. This is due to the method

randomising subjects individually rather than in cohorts. The cohort method is better

able to identify and allocate more subjects to the target doses than the GADA method.

The median percentage of subjects allocated on the target doses for the cohort method

is approximately twice as many as the GADA method. The cohort method also has

the ability to drop the higher doses, minimising the number of subjects allocated to

theses doses. In comparison, the GADA method tends to randomise more subjects to

the top dose. If there were potential safety concerns, then dropping the higher doses

would be beneficial.

Detecting a dose response

The type I error under the Flat dose response profile for the GADA, cohort method

with 1 interim analysis and equal allocation design are maintained at the 5% level. For

the ANOVA method a Dunnett adjustment of 2.38 was used to maintain the type I error

at 5%. The left plot in Figure 5-5 displays the probability of detecting a dose response

for each of the active dose response curves. We can see that the cohort methods with

1 interim analysis and the equal allocation using an NDLM, give similar results to the

GADA method. The ANOVA method struggles to detect a dose response as often as

the methods modelled using the NDLM.

For the Emax Low dose response profile, which has a dose response but not a clinical
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Figure 5-4: Box plot of subject dose allocations for the GADA versus the cohort method
with 1 interim analysis. Target dose intervals are given in red.

response, the probability of detecting a dose response is approximately 100% for the

allocation methods which model the data using an NDLM, but only around 64% for

the ANOVA method.

Detecting a clinical response

All the allocation methods that use a Bayesian framework and model the data using

an NDLM, have a higher probability of detecting a clinical response than the ANOVA

method for all the active dose response models except the Emax Low model. For the

Emax Low profile, the Bayesian methods are better at detecting that there is not a

clinical response. The probability of incorrectly claiming a clinical response for the

Emax Low profile using the ANOVA method is approximately 64% compared with

30% for the cohort and equal allocation approaches, and 20% for the GADA method.

Comparing the different allocation methods which model the data using an NDLM,

using 1 interim analyses tends to have a highest probability of detecting a clinical

response with the exception of the Sigmoid High profile, for which the GADA method

gives the best results. When the target dose interval is at the upper end of the dose

range (e.g. the Linear and Sigmoid High profile), there are more low doses which can

be dropped for futility, hence there is more of a benefit from using an adaptive design

over equal allocation compared to the profiles where the target dose is at the lower end
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Figure 5-5: Operational characteristics for GADA, cohort and equal allocation modelled
using an NDLM, and ANOVA methods: probability of detecting a dose response and
a clinical response.

of the dose range (e.g. the Sigmoid Low profile).

Correctly selecting a dose in the target dose interval

No method of analysis consistently outperforms the others in terms of correctly

identifying a dose in the target dose interval across all the dose response curves. The

ANOVA method does better, when there is a steep incline in the dose response curve at

the low doses which the NDLM model is not flexible enough to cope with (see Section

4.2.7).

Comparing the Bayesian methods which model the data using the NDLM, the cohort

method does consistently better than the equal allocation and GADA methods. Using

the GADA method is detrimental to the probability of selecting a dose in the target

dose interval compared with the equal allocation method. Figure 5-7 presents the

histograms of the selected dose for each of the methods, for the Linear, Emax and

Sigmoid Emax profiles. As we can see, the methods which model the data using an

NDLM tend to choose higher doses than the ANOVA method. Within the different

allocation methods which model the data using an NDLM, the cohort method tends

to select slightly lower doses than the GADA method, which increases the probability

of detecting a dose in the target dose interval.

Figure 5-8 is an example of a coupled dataset for the three Bayesian methods when the
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Figure 5-8: Example of coupled datasets for the GADA, cohort and equal allocation
methods. Top row is the subject allocations for the three methods and the bottom row
is the observed data and the posterior mean of the NDLM with 95% credible intervals.

data are generated from the sigmoid emax model. In this figure, we can see the final

subject allocations of each of the methods, the observed means, the posterior means

of the NDLM and the 95% credible intervals. The first thing we note is that of the

two adaptive allocations, the cohort method tends to allocate to lower doses. This is

because it allocates to a range of doses, from the lowest non-futile dose rather than

trying to identify the dose which minimises the posterior variance at the target dose.

When we allocate more subjects to doses z6 and z7 in the cohort methods, we see

that the responses are higher than estimated using the GADA method, and so this

brings the whole NDLM model up. The result of this is that based on the change from

placebo, the cohort method selects dose z6 which is in the target dose interval, whereas

the GADA and equal allocation methods selected dose z7 which is outside the target

dose interval.

Prediction error

The percentage absolute prediction error is lowest when subjects are randomised using

equal allocation, followed by the GADA method with the cohort method having the

largest absolute prediction error (Figure 5-6). The GADA and cohort methods have
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Figure 5-9: Median prediction error and prediction error quantiles for the GADA,
cohort and equal allocation modelled using an NDLM.

higher absolute prediction errors than the equal allocation, as they tend to focus the

subject allocation on a few doses, increasing the overall prediction error. The GADA

method has a smaller absolute prediction error than the cohort method as the prediction

error is based on the change from placebo and the GADA method tends to allocate

more subjects to placebo,

The prediction error quantiles for the Linear, Emax and Sigmoid Emax profiles are

presented in Figure 5-9. The GADA method has a better prediction at the top dose,

as it tends to allocate subjects there. The median prediction errors for the doses in

the target dose interval are smallest for the cohort method with 1 interim analysis, as

this is where the method focuses the subject allocation. The ANOVA method treats

each dose independently and so the median absolute prediction error is approximately

zero for all the dose response profiles, but with larger prediction error quantiles than

the NDLM.

Conclusion

We have found an improvement in the operational characteristics from applying the

cohort method with 1 interim analysis over using non-adaptive equal allocation with the
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same form analysis. However, we found that there was little to be gained from adapting

at more than 1 interim analysis. For a complete comparison we have also compared

cohort method with the GADA method and the non-adaptive equal allocation using the

same Bayesian analysis, where the data are modelled using an NDLM. This has allowed

us to separate out the design and analysis elements of each method when making our

conclusions.

Analysis: To examine if it is the method of analysis which impacts the operational

characteristics we compare the frequentist ANOVA approach with the Bayesian equal

allocation approach, where the data were modelled using an NDLM.

Modelling the data using the NDLM reduces the posterior variance at the doses by

borrowing strength from the other doses. This makes it easier to detect a significant

difference from placebo than the ANOVA method which treats each dose as independent

and then adjusts for multiple testing. Therefore there is a higher probability of

detecting a dose response and a clinical response when we model the data. In terms of

correctly identifying a dose in the target dose interval, neither the ANOVA or NDLM

approach consistently outperforms the other.

The ANOVA method is better at selecting a dose in the target dose interval when the

dose response curve is very steep in the early part of the dose range. This is because

the NDLM finds it hard to fit a model to the data when the rate of change between the

placebo and the first dose is high, and so tends to underestimate the response at the

early doses. This results in the NDLM method choosing higher doses for phase III. For

the other active dose response profiles, the Bayesian NDLM analysis results are similar

or better than those of the ANOVA method in terms correctly identifying a dose in the

target dose interval.

Design: To examine if it is the method of adaptation which impacts the operational

characteristics we compare the non-adaptive equal allocation with the adaptive cohort

and GADA methods, all modelled using the same Bayesian NDLM.

Comparing the equal, cohort and GADA methods, we found that the cohort allocation

offer consistent gains over the equal allocation in terms of detecting a clinical response

and selecting a dose in the target dose interval. The GADA method led to some

gains over the equal allocation in detecting a clinical response, but was detrimental in

terms of selecting a dose for phase III. The difference in the operational characteristics
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between the cohort and GADA methods can be attributed to the allocation of subjects.

Although the GADA method is designed to optimise the subject allocation, there is a

large amount of variability in the allocations, and for some realisations the allocation

tended to only explore a few non-consecutive doses. As the cohort method identifies

a range of doses from the lowest non-futile dose, it tends to allocate subjects to lower

doses and so select slightly lower doses for phase III. As the cohort method allocates to

a range of doses, there also tends to be more information at and around the estimated

target dose, leading to better dose response estimates at these doses.

5.5 Decision rule

So far for the Bayesian methods, once a dose response has been established, we have

used the following definitions for determining if there is a clinical response and to

identify the target dose;

• clinical response if Pr(θj − θ0 ≥ CMD|Y = y) ≥ 0.5

• target dose minj{zj : Pr(θj − θ0 ≥ CMD|Y = y) ≥ 0.5}.

These decision criteria were chosen, so the results were as comparable as possible with

the frequentist results, which rely on the estimated mean difference from placebo being

greater than the clinically meaningful difference (CMD). However, when using Bayesian

methods we can be more flexible, and specify thresholds that optimise our operational

characteristics. Let us instead define these metrics as

• clinical response if Pr(θj − θ0 ≥ CMD|Y = y) ≥ γ

• target dose minj{zj : Pr(θj − θ0 ≥ CMD|Y = y) ≥ γ},

where 0 < γ ≤ 1. All the other metrics are as previously defined. As we rely on

establishing a dose response before assessing if there is a clinical response, the type I

error for the Flat dose response profile is maintained at a one-sided 5% level. Therefore,

as our thresholds for γ changes we still adhere to the frequentist ideal of maintaining

the type I error.

Ideally we would choose a value of γ that maximises the probability of detecting a

clinical response when there is a clinical response whilst minimising the probability of

incorrectly identifying a clinical response for those dose response curves that don’t meet
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Figure 5-10: Probability of detecting a clinical response for increasing values of γ.

the clinically meaningful threshold. The probability of detecting a clinical response

for the Linear, Emax and Sigmoid Emax profiles, and the probability of incorrectly

claiming a clinical response for the Emax Low profile for different values of γ are

presented in Figure 5-10. When γ is less than 0.8, the rate with which we incorrectly

claim a clinical response for the Emax Low profile increases faster than the rate with

which we correctly identifying a clinically meaningful difference increases. Therefore

for lower values of γ, we lose more in terms of incorrectly continuing to phase III than

we gain in power.

Let mk (k = 1, . . . ,K) denote the underlying dose response profile which have a dose

response and a clinical response and m̃l (l = 1, . . . , L) denote the underlying dose

response profiles which have a dose response but no clinical response. For a given

value of γ, we let fγ(mk) be the probability of detecting a clinical response in the kth

underlying dose response profile with a clinical response, and fγ(m̃l) the probability

of detecting a clinical response in the lth underlying dose response profile without a

clinical response. Then we could aim to maximise

1

K

K∑
k=1

fγ(mk)−
1

L

L∑
l=1

fγ(m̃l). (5.3)

If we did this for our set of dose response profiles in Section 2.3 (excluding the Flat

dose response), the difference between correctly and incorrectly identifying a clinical

response for different values of γ are as shown in Figure 5-11. The difference is

maximised when γ = 0.6 for the GADA method and γ = 0.65 for the cohort and

equal allocations.
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Figure 5-11: Difference between the average probability of correctly and incorrectly
detecting a clinical response, and the average probability of correctly identifying a dose
in the target dose interval for increasing values of γ.

Based on maximising (5.3), increasing the value of γ we use to determine whether there

is a clinical response from 0.5 improves our overall decision making ability, as although

we are less likely to observe a clinical response for some of the underlying dose response

models, we are also less likely to incorrectly claim a clinical response. Increasing γ also

has an impact on identifying a dose in the target dose interval. For higher values of

γ more evidence is needed of a clinically meaningful difference, and so higher doses

are identified. The right hand plot of Figure 5-11 shows the average probability of

correctly identifying a dose in the target dose interval over the active dose response

profiles where a clinically meaningful difference exists. Increasing the γ from 0.5 to 0.6

for the GADA method and to 0.65 for the cohort and equal allocations, results in an

average reduction in the ability to correctly identify the target dose of between 10 and

15%.

Finding the value of γ which maximises (5.3) assumes that we believe all the dose

response profiles are equally likely to occur. This may not be a realistic assumption,

and so to reflect our beliefs about which dose response profiles are more likely we

could use prior weights. Let, αk (k = 1, . . . ,K) be the prior weights placed on the

profiles with a clinically meaningful difference and α̃l (l = 1, . . . , L) be the prior weights

assigned to the profiles that do not meet the clinically meaningful threshold, such that
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Figure 5-12: Value of γ which maximises decision for increasing values of α.

∑K
k=1 αk +

∑L
l=1 α̃l = 1. We can now aim to maximise

K∑
K=1

αif(mk)−
L∑
l=1

α̃lf(m̃l). (5.4)

For ease of computation, let us assume that we believe all the dose response profiles

with a clinical response are equally likely to occur and all those dose response profiles

without a clinical response are also equally likely to occur. Then (5.4) can be re-written

as

α

K

K∑
i=1

f(mk)−
(1− α)

L

L∑
l=1

f(m̃l). (5.5)

Figure 5-11 shows the value of γ that maximises the probability of detecting a clinical

response for different values of α. As α increases we put less weight on the Emax Low

profile occurring and so decrease the probability of incorrectly identifying a clinical

response. This results in a lower value of γ maximising (5.5). As α decreases, we are

less sure we are going to observe a clinical response and so we need to use a larger value

of γ to protect against the probability of incorrectly identifying a clinical response.

In this section, we have begun to think about how we can optimise the decision making

process when we believe the true underlying dose response profile can take a range

of curves. Although we have allowed γ to decrease to 0 realistically there may be

regulatory concerns from lowering the bar for concluding a clinical response and so for

this reason there may be a minimum value of γ that a company feels is acceptable.

Increasing the value of γ can be beneficial in terms of our overall decision making

process, if we believe there is a reasonable chance the underlying dose response curve

will not meet the clinically meaningful threshold.
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In Chapter 7 we formalise the concept of optimising the operational characteristics

using Bayesian decision theory. Bayesian decision theory uses a utility function to

attributes costs and rewards to the decision making process. Decision theory also allows

us to take into account the uncertainty in the parameter estimates, by optimising the

utility function over the posterior distribution,

5.6 Discussion

In this chapter we have examined adapting subject allocations at interim analyses

based on the posterior probabilities from an NDLM. This method has been compared

with the frequentist ANOVA method, a Bayesian equal allocation approach and the

GADA method. Comparing the adaptive and non-adaptive allocations modelled using

the NDLM, we observed some gains from adaptation in detecting a clinical response.

The cohort method performed consistently better than the equal and GADA methods

in terms of selecting a dose for phase III. The GADA method was less able to correctly

select a dose in the target dose interval when compared to the equal allocation. Previous

results by Bornkamp et al. (2007) compared the GADA method and other adaptive

methods with the frequentist ANOVA method, but did not compare the results of the

adaptive designs with an equal allocation design using the same final analysis. With the

opportunity to vary many aspects of a clinical trial design, such as the randomisation,

stopping rules and analysis, it is important to determine through simulations studies

which elements have the greatest impacts on the results. This could be done by planning

a simulation study that uses a factorial design to assess the impact of each design option.

Finally, we consider the decision rule used to conclude a clinical response, and to identify

the target dose. Up until now we have used an arbitrary value in order to make the

results of the Bayesian analysis as comparable as possible with the frequentist results.

By increasing the amount of evidence needed to conclude efficacy we can reduce the

probability of incorrectly detecting a clinical response and so overall we improve our

decision making process. However, this comes at the cost of the power of detecting a

clinical response for some of the dose response profiles and identifying a dose in the

target dose interval. With increased evidence of efficacy needed, we also tend to chose

higher doses as the target dose, which could result in potential safety concerns. We

formalise optimising the decision making process in Chapter 7 using decision theory.
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Chapter 6

Optimal Design Theory

6.1 Introduction

In a clinical trial context, optimal design theory is concerned with placing subjects in

a way that minimises some pre-defined criterion so ‘that the statistical inference about

the quantities of interest can be improved’ (Chaloner & Verdinelli, 1995). Optimal

designs were first explored by Smith (1918) and then became the topic of many papers.

Key authors of early work in this area are Kiefer & Wolfowitz (1960) and Kiefer (1974),

who focused on the general mathematical theory of optimal designs, while Box & Lucas

(1959) were concerned with the application of such designs. Parallel to this in the USSR,

Fedorov (1972) also developed methods for optimal designs. For more information on

the development of optimal designs see survey papers by Atkinson (1982, 1988) and

Ford et al. (1989). There are many different types of optimal designs each focused on

optimising some aspect of the experiment. The most researched area of optimal design

is D-optimality, and this is also the type of optimal design most often used in clinical

trial literature.

The aim of a D-optimal design is to allocate subjects to doses in such a way as

to increase the information about the unknown parameters θ in the dose response

curve. Specifically this is done estimating the parameters using the maximum likelihood

estimator, θ̂, and then maximising the determinant of the information matrix of these

parameters. Another commonly used criterion is c-optimality, where the aim is to

maximise the information about a linear combination of the parameters. Han &

Chaloner (2003) and Dette et al. (2008, 2010) give examples of how to construct optimal

designs for non-linear models often used in the pharmaceutical industry.
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For linear models, the D-optimal design does not depend on the unknown model

parameters, and so can always be found in advance of carrying out the experiment.

This is not true with non-linear models, as the optimal design relies on knowledge

about the model parameters. A design is known as a ‘locally’ optimal design (Chernoff,

1953) if it is optimal for a specific θ̂. The limitation of using locally optimal designs

for non-linear models, is that they rely on a good estimate of the parameter values.

Mis-specification of these parameter estimates can lead to designs that are far from

optimal. Meeker (1984) found that non-optimal designs can often be more robust

to departures from the assumption about parameter estimates than optimal designs.

Dette et al. (2008) showed that c-optimal designs are sensitive to the assumptions about

the parameter estimates and the choice of model fitted. The dependence of the design

on the assumptions about unknown parameter estimates is one of the main reasons

these designs are rarely applied in practice (Ogungbenro et al., 2009).

Adaptation provides a way of overcoming the dependence of locally optimal designs

on the initial parameter estimates. By adapting at interim analyses throughout the

course of the trial, we are able to learn about the parameter values and so randomise

the next cohort of subjects in a near optimal manner. As the number of subjects

increases, the parameter estimates tend towards the true values of the parameters, and

so the design tends towards the optimal design. Sequential adaptive simulation studies

have been carried out by Abdelbasit & Plackett (1983) and Dragalin et al. (2007, 2010).

Abdelbasit & Plackett (1983) found that, for binary data, using sequential stages is

only beneficial when the initial estimates are poor. Dragalin et al. (2010) showed little

or no improvement in the operational characteristics as the number of interim analyses

increased.

An alternative method to using a point estimate, is to place a prior distribution on

the model parameters, and maximise the expected value of the locally optimality

criterion over the prior distribution. This Bayesian approach takes into account the

prior uncertainty in the parameter estimates, producing a design which should perform

well on average whilst being more robust to parameter mis-specification (Ogungbenro

et al., 2009). It is possible to then use adaptive designs with Bayesian D-optimality,

such that at later interim analyses the prior distributions have less impact on the

Bayesian D-optimal design for the next cohort of subjects. For a detailed review of

Bayesian experimental design see Chaloner & Verdinelli (1995).
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This chapter is organised as follows. In Section 6.2 we define the notation used

throughout this chapter. In Section 6.3 we outline methods for finding the locally

optimal design and the general equivalence theorem used for confirming the optimality

of a design. In Section 6.3 we describe how our adaptive D-optimal design is constructed

and propose a quasi-adaptive method, which only adapts using the locally D-optimal

design if the design is relatively robust to parameter mis-specifications. In Section 6.3

we also define how the Bayesian D-optimal design is constructed.

As locally D-optimal designs are known to be sensitive to model mis-specification,

in Section 6.4 we explore how sensitive the locally D-optimal designs are to a choice of

candidate models. We also explore the sensitivity of the Bayesian D-optimal design to

the prior distribution placed on the model parameters. In Section 6.5 we investigate

different methods for dealing with non-convergence of the algorithm used to find the

parameter estimates. Finally, in Sections 6.6, 6.7 and 6.8 we present the results

from using the adaptive D-optimal, quasi-adaptive D-optimal and Bayesian D-optimal

designs, respectively.

6.2 Notation

The notation that follows is that of Atkinson & Donev (1992). In order to make the

notation relevant to the topic of this thesis, we describe the experimental designs in

terms of the numbers of subjects allocated to the available doses. We consider the

situation where the expected response of the data at dose zj is modelled as a function

η(zj , θ), where θ are the model parameters. The response of the ith subject on the jth

dose is distributed as

Yij ∼ N(η(zj , θ), σ
2),

where σ2 is the between subject variation. For the models we are concerned with,

η(zj , θ) is typically non-linear in θ. An example of a non-linear model which is

commonly used in the pharmaceutical industry and throughout this chapter, is the

four parameter sigmoid emax model introduced in Chapter 2,

η(zj , θ) = θ1 + (θ2 − θ1)
zθ4j

θθ43 + zθ4j
.

Suppose we have a placebo dose z0 and J active doses of a drug, z1, . . . , zJ . We denote

the set of doses as Z = {zj : j = 0, . . . , J}. A design is defined as a measure, or

probability distribution, on Z . We shall discuss the set of continuous designs, in which
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there are exact designs. We denote the set of continuous designs as H . In a continuous

design we assign weights wj to each of the doses such that the design is written as

ξ =

{
z0 z1 . . . zJ

w0 w1 . . . wJ

}
,

where wj ≥ 0 for j = 0, . . . , J and
∑J

j=0wj = 1. The weight wj represents the

proportion of subjects that are allocated to dose zj . Within the design ξ, the doses zj

are fixed and the weights are chosen to give a specific design. These weights are chosen

to optimise the stated criterion, where the criterion is some function of the variance

of the model parameters, Var(θ̂), for the design ξ. The design which optimises the

criterion is denoted ξ∗.

For some realisations of wj , the total number of subjects, N , multiplied by wj is

not an integer, hence it is not possible to allocate Nwj of subjects to dose zj . We refer

to designs where the weights are constrained to take values which relate to subject

allocations as exact designs. If N is the number of subjects to be allocated then this

is known as an N-design and can be written

ξN =

{
z0 z1 . . . zJ

n0/N n1/N . . . nJ/N

}
, (6.1)

where nj is the number of subjects allocated to dose zj and
∑J

j=0 nj = N .

We estimate the variance of the parameter estimates using Fisher’s information

matrix (Kiefer, 1974; Whittle, 1973; Atkinson & Donev, 1992). Let η(z, θ) =

(η(z0, θ), . . . , η(zJ , θ))
T denote the vector of expected responses for a model with p

parameters, θ = (θ1, . . . , θp)
T . Let θ denote the true parameter value and g(zj , θ) =(

∂η(zj ,θ)
∂θ1

, . . . ,
∂η(zj ,θ)
∂θp

)T
(j = 0, . . . , J). The Fisher’s information matrix for a single

observation on dose zj is
1

σ2
g(zj , θ)g(zj , θ)

T .

For an N-design ξN with nj subjects allocated to dose zj , the normalised Fisher

information per subject is

M(ξN , θ) =
J∑
j=0

1

σ2

nj
N
g(zj , θ)g(zj , θ)

T . (6.2)
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Generalising this to the continuous design ξ with weights w = (w0, . . . , wj)
T , the Fisher

information is

M(ξ, θ) =

J∑
j=0

wj
σ2
g(zj , θ)g(zj , θ)

T . (6.3)

For large sample sizes, N−1M−1(ξN , θ) is a good approximation to the variance-

covariance matrix of the maximum likelihood estimator (MLE) of the unknown

parameters θ (Rao, 1965). Since the matrix M(ξN , θ) is determined by the design ξN

and the model parameters θ, for a given θ, it is possible to determine the best placement

of subjects to maximise a specified function of the information matrix M(ξN , θ) or to

minimise a function of the variance N−1M−1(ξN , θ). For ease of notation we shall

sometimes refer to M(ξN , θ) as M and to M−1(ξN , θ) as M−1.

We shall denote the design criterion we wish to maximise by as Ψ{M(ξ, θ)}. There are

a number of different design criteria which can be used to maximise the information

about a specific aspects of a dose response model. Some examples of these design

criteria are given in Table 6.1.

Criterion Aim of Criterion Ψ

A-optimality Maximise the average information of the trM(ξ, θ)
parameter estimates

D-optimality Maximise the generalised information using the log |M(ξ, θ)|
determinant of the information matrix

c-optimality Maximise the information for a linear combination cTM(ξ, θ)c
of the parameters cT θ

Table 6.1: Examples of optimality criterion.

6.3 Finding the optimal design

6.3.1 Construction of continuous optimal designs and the general

equivalence theorem

In the scenarios we wish to explore, a continuous design allocates weights wj to each

dose zj (j = 0, . . . , J) which is a finite set of doses. The optimal design is the design

with weights allocated in such a way to maximise the criterion of interest. In this section

we explore the general equivalence theorem which is used to confirm the optimality of a

design. We are interested in maximising concave criteria, such as those given in Table

6.1. For any two designs ξ′, ξ̃ and for α ∈ [0, 1], we use the following definition of
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concavity,

Ψ{M((1− α)ξ′ + αξ̃, θ)} ≥ (1− α)Ψ{M(ξ′, θ)}+ αΨ{M(ξ̃, θ)}.

In order to find the optimal design we first define the directional derivative for a given

θ as

φθ(ξ
′, ξ̃) = lim

α→0

1

α
[Ψ{(1− α)M(ξ′, θ) + αM(ξ̃, θ)} −Ψ{M(ξ′, θ)}]. (6.4)

This is the directional derivative of Ψ at ξ′ in the direction of ξ̃. Suppose ξ′ is a non-

optimal design and the optimal design for a given θ is denoted ξ∗. Then because of

concavity we note that φθ(ξ
′, ξ∗) ≥ 0, as the derivative in the direction of the optimal

design is positive and φθ(ξ
∗, ξ′) ≤ 0, as the derivative in the direction away from the

optimal design is negative.

Let us now define the design ξj to be a design measure with unit mass at dose zj .

If the design ξ̃ assigns weights wj to dose zj (j = 0, . . . , J) then it is possible to write

ξ̃ as a linear combination of ξj , i.e. ξ̃ = w0ξ0 + . . .+ wjξJ . In our application φθ(ξ
′, ξ̃)

is linear in ξ̃, and so following the general notation of Whittle (1973) we can refer to

Ψ as differentiable at ξ′ and represent this as

φθ(ξ
′, ξ̃) =

∫
Dθ(zj , ξ

′)ξ̃dzj , (6.5)

where Dθ(zj , ξ
′) is a perturbation at ξ′ in the direction zj ,

Dθ(zj , ξ
′) = φθ(ξ

′, ξj).

As we are using a finite set of doses we can re-write (6.5) as a summation,

φθ(ξ
′, ξ̃) =

J∑
j=0

Dθ(zj , ξ
′).

As defined by Whittle (1973), the maximum rate of change of Ψ from ξ′ to ξ̃ is given

by,

D̄θ(ξ
′) = sup

ξ̃∈H

φθ(ξ
′, ξ̃). (6.6)

For the differentiable case this is

D̄θ(ξ
′) = max

zj
Dθ(zj , ξ

′). (6.7)
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The general equivalence theorem forms the criteria for confirming that a design is

optimum. This equivalence theorem was originally proved to be true for linear models

by Kiefer & Wolfowitz (1960) and then extended by White (1973) to cover non-linear

models. Whittle (1973) has proved this for general concave functions in the context of

the information matrix. We refer to theorem given by Whittle (1973), and rewrite this

in our notation.

Theorem 6.3.1. General equivalence theorem (Whittle, 1973)

a) If Ψ is concave, then an optimal design, ξ∗, can be equivalently characterized by any

of the three conditions:

1. The design ξ∗ maximises Ψ{M(ξ, θ)}

2. The design ξ∗ minimises D̄θ(ξ)

3. D̄θ(ξ
∗)=0.

b) The point (ξ∗, ξ∗) is a saddle point of φθ in that

φθ(ξ
∗, ξ′) ≤ 0 = φθ(ξ

∗, ξ∗) ≤ φθ(ζ, ξ∗) for ξ′, ζ ∈H .

c) If Ψ is also differentiable, then the support of ξ∗ is contained in the set of z for which

D(zj , ξ
∗) = 0.

We will not re-prove the theorem here, but note that while parts a) and b) are intuitive,

the proof for part c) follows from

Dθ(zj , ξ
∗) = φθ(ξ

∗, ξj) ≤ 0,

J∑
j=0

Dθ(zj , ξ
∗) = φθ(ξ

∗, ξ∗) = 0.

A support point is a dose zj that has weight wj > 0. The proof follows that either zj

is a support point in ξ∗ and so Dθ(zj , ξ
∗) = 0 or zj is not a support point in ξ∗ and so

the directional derivative at ξ∗ in the direction of zj is negative.

Using Whittle’s theorem, we can find the optimal design iteratively assigning weight to

the dose zj which maximises the rate of change φθ(ξ
′, ξj). We denote ξα to be a linear

combination of ξ′ and ξj ,

ξα = (1− α)ξ′ + αξj . (6.8)
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Hence, when α is chosen correctly in the direction zj that maximises the change in Ψ,

Ψ({M(ξα, θ)} ≥ Ψ{M(ξ′, θ)}. We can then use Theorem 6.3.1 to confirm when the

optimal design has been found.

Let the Fisher information matrix M(ξ′, θ) given in (6.3) be a p × p matrix where

p is the length of the vector of unknown model parameters θ. We find the directional

derivative (6.4) at ξ′ in the direction ξj by differentiating Ψ{M(ξα, θ)} with respect to

α using the chain rule,

dΨ{M(ξα, θ)}
dα

∣∣∣∣
α=0+

=

p∑
i=1

p∑
k=1

(
dΨ{M(ξα, θ)}
dM(ξα, θ)

)
ik

dM(ξα, θ)ik
dα

∣∣∣∣
α=0+

=

p∑
i=1

p∑
k=1

(
dΨ{M(ξ′, θ)}
dM(ξ′, θ)

)
ik

(M(ξj , θ)−M(ξ′, θ))ik

=

p∑
i=1

p∑
k=1

(M(ξj , θ)−M(ξ′, θ))ki

(
dΨ{M(ξ′, θ)}
dM(ξ′, θ)

)
ik

=

p∑
k=1

(
M(ξj , θ)

dΨ{M(ξ′, θ)}
dM(ξ′, θ)

)
kk

−(
M(ξ′, θ)

dΨ{M(ξ′, θ)}
dM(ξ′, θ)

)
kk

= tr

(
M(ξj , θ)

dΨ{M(ξ′, θ)}
dM(ξ′, θ)

)
− tr

(
M(ξ′, θ)

dΨ{M(ξ′, θ)}
dM(ξ′, θ)

)
= tr

(
1

σ2
g(zj , θ)

T dΨ{M(ξ′, θ)}
dM(ξ′, θ)

g(zj , θ)

)
−tr

(
M(ξ′, θ)

dΨ{M(ξ′, θ)}
dM(ξ′, θ)

)
.

For ease of notation the derivative is written

φθ(ξ
′, ξj) =

1

σ2
g(zj , θ)

T dΨ

dM
g(zj , θ)− trM

dΨ

dM
. (6.9)

For certain types of optimality the second term of this equation is a constant and so

we can maximise the directional derivative by maximising the first term. In optimal

design theory the first term of (6.9) is known as the sensitivity function

d(zj , ξ, θ) =
1

σ2
g(zj , θ)

T dΨ

dM
(ξ, θ)g(zj , θ). (6.10)

Some optimum designs can be found analytically, although this is ‘possible only in the

simplest case and requires a special approach in each distinct case ’ (Fedorov, 1972,
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p. 97). Therefore most designs are found numerically using iterative methods until

convergence of Ψ{M(ξ, θ)} to its maximum. To construct an optimal design we use

the algorithm suggested by Fedorov (1972, p. 102).

Let ξ0 be an arbitrary initial design,

ξ0 =

{
z0 z1 . . . zJ

w0
0 w0

1 . . . w0
J

}
,

such that
∑J

j=0w
0
j = 1. The first step in the iteration process is to place additional

weight to the dose which results in the maximal rate of change of Ψ. Let

z∗ = arg max
z∈{z0,...,zJ}

{Dθ(z, ξ
0)}

be the dose with the maximal rate of change of Ψ and ξz be the design with unit mass

at dose z∗. Then

δ = φθ(ξ
0, ξz)

is the size of the change, and

α0 =
δ

(δ + (p− 1))p

is the additional weight that is placed on dose z∗ to improve the design ξ0. The design

for the next step in the iteration is then

ξ1 = (1− α0)ξ0 + α0ξz.

This iterative process is continued such that the design after the kth iteration is

ξk = (1− αk−1)ξk−1 + αk−1ξz.

As Ψ{M(ξ0, θ)} ≤ Ψ{M(ξ1, θ)} the iterative process is repeated until the

limk→+∞Ψ{M(ξk, θ)} corresponds to the optimal design. The optimality of the design

ξk can be confirmed using the general equivalence theorem (Theorem 6.3.1).

For the D-optimal design with p parameters, Ψ(M) = log |M | which is a concave

function. For the information matrix M which is a p× p matrix, we denote M∗ik to be

the information matrix with row i and column k removed and use Laplace’s formula for

the determinant of the M, |M | =
∑p

i=1(−1)i+kMik|M∗ik|. We calculate the derivative
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of Ψ with respect to M using the chain rule

∂Ψ

∂M
=

∂Ψ

∂|M |
∂|M |
∂Mik

= |M |−1 ∂|M |
∂Mik

= |M |−1
p∑
i=1

(−1)i+k|M∗ik|

= |M |−1M−1|M |

= M−1

and so the directional derivative in (6.9) for the D-optimal criterion is

φθ(ξ
′, ξj) =

1

σ2
g(z, θ)TM−1(ξ′, θ)g(z, θ)− p.

As p is fixed we maximise φθ(ξ
′, ξj) by maximising the first part of the directional

derivative equation known as the sensitivity function

d(zj , ξ, θ) =
1

σ2
g(zj , θ)

TM−1(ξ, θ)g(zj , θ). (6.11)

For the D-optimal design the sensitivity function d(zj , ξ, θ) is the variance of the

predicted response at dose zj . Maximising the sensitivity function is therefore

equivalent to placing weight at the dose where the variance of the predicted response

is greatest, or alternatively, the dose where there is the least information.

6.3.2 Constructing exact designs

Unlike a continuous design where the weights can take any values, an exact design is

constrained so the weights relate to the number of subjects allocated to a dose. Let

N be the total number of subjects to be allocated, we denote the exact design by ξN .

The optimal exact design is the design out of all the designs with form (6.1) which for

a given θ maximises Ψ{M(ξN , θ)} and is denoted ξ∗N . The optimal exact design can be

constructed using a number of methods, but we focus on the following two approaches.

1. Use the optimal continuous design ξ∗, where wj denotes the weight that ξ∗ assigns

to dose zj . We then round each wj N to an integer nj in such a way that∑J
j=0 nj = N and assign nj subjects to dose zj .

2. Use a sequential algorithm to produce an exact design at or near the optimum

design. Several algorithms have been proposed by Atkinson & Donev (1992, p.

171): forward selection, backwards elimination or the exchange algorithm.
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Using the first approach there are cases where the optimal continuous design coincides

with the optimal exact design of size N . In other cases, wjN does not result in an

integer and so then we round wjN in such a way to ensure all the subjects are allocated

to doses.

Take for example, an emax model

η(zj , θ) = θ1 + (θ2 − θ1)
zj

θ3 + zj

which is non-linear in the unknown model parameters θ = (θ1, θ2, θ3)T . For the case

with 9 doses z0, . . . , z8 = (0mgs,. . . , 8mgs) and θ = (0, 1.81, 0.79) the continuous D-

optimal design ξ∗ is

ξ∗ =

{
z0 z1 z2 z3 z4 z5 z6 z7 z8

1/3 1/3 0 0 0 0 0 0 1/3

}
. (6.12)

The second row of the matrix represents the proportion of subjects to be assigned to

each of the doses. If N is not a multiple of 3 then after rounding wjN we will still

have subjects that need to be allocated to doses. The optimal exact design can then

be found by searching over the designs where the remaining subjects are allocated to

doses.

The second approach is to use a sequential algorithm to find the optimal exact design

based on an iterative, one subject at a time approach. We consider three sequential

algorithms: forward selection, backwards elimination and an exchange algorithm. We

use these sequential methods to allocate ‘theoretical’ subjects and find the optimal

subject allocation before the randomisation process begins. We can then randomise

groups of subjects based on the optimal design. Once a subject has been randomised

to a dose, they cannot be removed from this dose, and so when we use a sequential

algorithm at an interim analysis, the algorithms are constrained to take into account

the subjects already randomised.

We are going to focus on the D-optimal design, where the aim is to maximise the log

determinant of the information matrix Ψ{M(ξ, θ)} = log |M(ξ, θ)|. In D-optimality, we

maximise the change in Ψ at ξ by increasing the weight at the dose zj which maximises

the sensitivity function,

d(zj , ξ, θ) =
1

σ2
g(zj , θ)

TM−1(ξ, θ)g(zj , θ),
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alternatively we can remove weight from the dose zj which minimises the sensitivity

function.

Forward selection

In forward selection an initial design n∗ is chosen with n∗ < N . Subjects are allocated

to doses sequentially in a forward manner in order to maximise the optimality criteria.

If there are currently n subject randomised, then for a D-optimal design the next

subject is assigned to the dose where the predicted variance is greatest. A subject is

added to dose zj if

zj = argmax
z∈{z0,...,zJ}

{d(z, ξn, θ)}.

This forward selection is continued until all N subjects have been assigned to doses.

The final design is dependent on the initial design n0.

Backwards elimination

In backward elimination an initial design n∗ is chosen with n∗ > N and subjects are

removed from doses sequentially in such a way to maximises the criteria. As we are

decreasing the weight at a dose (i.e. α < 0 in (6.8)), we remove the subject from the

dose which results in the smallest change in Ψ. A subject is removed from dose zj if

zj = argmin
z∈{z0,...,zJ}

{d(z, ξn, θ)}.

Again, the optimal design is dependent on the initial design n∗, and so n∗ needs to be

sufficiently large.

Exchange algorithm

In the exchange algorithm, the design begins with N subjects. At each iteration a

subject is added to a dose and a subject removed from a dose in such a way to maximise

the optimality criterion. We add the subject to the dose zj which has the largest change

in the optimality criterion

zj = argmax
z∈{z0,...,zJ}

{d(z, ξN , θ)},
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and removed a subject from the dose with the smallest change in the optimality criterion

zj = argmin
z∈{z0,...,zJ}

{d(z, ξN , θ)}.

Relative efficiency

For a model η(zj , θ) with p model parameters θ = (θ1, . . . , θp)
T , it is possible to compare

two designs in terms of the optimality criterion and so find the relative efficiency of

one design compared to another. The efficiency of a design ξ compared to the optimal

design ξ∗ is calculated as

Eff =

(
Ψ{M(ξ∗, θ)}
Ψ{M(ξ, θ)}

)1/p

where p is the number of parameters in the model. The efficiency is calculated using

1/p so that it is proportional to the sample size, regardless of the number of parameters

in the model (Atkinson & Donev, 1992, p. 116). We write our efficiency this way so

that we can discuss the increase in sample size needed in order for ξ to have the same

degree of accuracy as ξ∗. For example, if Eff=1.5 then the design ξ needs 50% more

subjects than the ξ∗ to achieve the same level of precision. As the efficiency refers to

sample size, this allows comparison of efficiencies across different models with differing

numbers of parameters.

6.3.3 Adaptive D-optimal designs

For non-linear models, the D-optimal design relies on the unknown model parameters,

θ. It is known that designs constructed using the ‘best guess’ of θ are sensitive to

mis-specifications in the initial estimates (Pronzato & Walter, 1985). One way of

dealing with the dependence on the parameter estimates is to use adaptive designs.

The adaptive D-optimal design uses available information from subjects who have

completed the trial to estimate the unknown parameters and then optimises the next

randomisation scheme based on the parameter estimates.

The adaptive D-optimal design is constructed using the following steps:

1. An initial cohort of subjects is randomised equally across all the doses. Let the

size of this initial cohort be denoted n1.

2. The data from the n1 subjects are used to fit the model η(zj , θ) and estimate the

model parameters θ using the MLE θ̂.
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3. Under the constraint that n1 subjects have already been allocated, the exact D-

optimal design given θ̂ for the next cohort of n2 subjects is found using forward

selection and denoted ξ(n1+n2). This is equivalent to using ξn1 as the initial design

for the forward selection algorithm.

4. The next cohort of n2 subjects are then randomised using the exact D-optimal

design and their data collected. Using the cumulative data the model parameters

are re-estimated and the optimum exact D-optimal design for the next cohort of

subjects is found.

5. This process is repeated until all N subjects have been randomised.

Informally, according to asymptotic theory as N increases, θ̂ will be close to θ, and

so we would expect the optimal allocation from the adaptive design to tend towards

the optimal design. Pronzato & Walter (1985) cite results by other authors where for

some cases the model parameters ‘have been shown to converge to their mean among

the population’.

6.3.4 Quasi-adaptive D-optimal designs

The adaptive D-optimal design aims to optimise subject allocation at each interim

analysis based on the parameter estimates θ̂. For a non-linear model, if the parameter

estimates are reasonably close to θ, then this leads to a near optimal allocation for the

next cohort of subjects. If however, the parameter estimates are far from the true θ,

then the resulting locally optimal allocation for θ̂ may be far from optimal for the true

θ. We propose a quasi-adaptive method, that only applies the optimal allocation for the

next cohort of subjects if the proposed optimal design is robust to the variance in the

parameter estimates. If the variance in the parameter estimates suggests adaptation

may lead to suboptimal designs, then we continue with equal allocation. In this way

we do not adapt automatically, but only when there is evidence to suggest that the

adaptation is beneficial to the design.

To assess the variability in the model parameters at an interim analysis we use

bootstrapping. The premise of bootstrapping is that the bootstrap samples θ̂∗ are

displaced from θ̂ with the same distribution that θ̂ is displaced from θ, and so the

bootstrap samples θ̂∗ are contenders for the true θ. For a detailed description on the

bootstrap methodology see Efron & Tibshirani (1993).

To bootstrap the model parameters, let us suppose we have a dataset consisting of n
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subjects, with nj (j = 0, . . . , J) subjects allocated to dose zj such that
∑
nj = n. Let

the response of the ith subject on dose zj be denoted yij , hence yj = (y1j , . . . , ynjj)
T is

the vector of responses on dose zj and y = (y0, . . . , yJ)T is the vector of responses in the

current dataset. For each zj we generate B bootstrap samples y∗bj (b = 1, . . . , B), each

consisting of nj samples drawn with replacement from yj . Then θ̂∗b is the bootstrapped

MLE of the unknown model parameters from fitting the dose response model to the

data y∗b = (y∗b0 , . . . , y
∗b
J )T . Efron & Tibshirani (1993, p. 14) suggests that bootstrap

samples of between 50 and 200 usually result in a good standard error estimator.

At the interim analysis we want to assess how robust the optimal design for the

next cohort of subjects is to parameter mis-specification. To do this we compare the

efficiency of the optimal design ξ∗ found using θ̂ versus the equal allocation design ξeq,

for each of the bootstrap samples θ̂∗b. For each θ̂∗b (b = 1, . . . , B) the relative efficiency

of a design with p unknown model parameters is calculated as

Eff∗b =

(
|M(ξ∗, θ̂∗b)|
|M(ξeq, θ̂∗b)|

) 1
p

. (6.13)

Efficiencies greater than 1 suggest that for a given θ̂∗b the optimal design is more

efficient than the equal design. If some pre-specified proportion (e.g. 80%) of the

bootstrapped efficiencies are greater than 1, then there is evidence that the optimal

design is robust to parameter mis-specification and should be used to allocate the

next cohort of subjects. The higher the proportion of bootstrap samples that have

an efficiency greater than 1, then the stronger the evidence of robustness. The quasi-

adaptive designs are constructed in the same way as the fully adaptive designs, except

at each interim analysis the optimal design is tested for robustness. If the design is

found not be robust to parameter mis-specifications then the next cohort is randomised

equally across all doses.

Figure 6-1 is an example of a dataset where, at the interim analysis there are data

available from 125 subjects allocated equally across the placebo dose and 8 active

doses (z = z0, . . . , z8) and 125 subjects still to randomise. A four parameter sigmoid

emax model,

η(zj , θ) = θ1 + (θ2 − θ1)
zθ4j

θθ43 + zθ4j
,

has been used to model the data and 100 bootstrap samples θ̂∗b (b = 1, . . . , 100)

generated. The top left plot shows the observed means and the fitted model using
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Figure 6-1: Fitted curve using θ̂, locally D-optimal subject allocation, fitted curves from
20 bootstrapped estimators and relative efficiencies of equal allocation versus locally
D-optimal design.

the MLE θ̂. The top right plot is the D-optimal design for the 250 subjects, where the

first 125 subjects were equally allocated across the doses. The bottom left plot shows

20 dose response curves fitted using the bootstrap estimates and the bottom right plot

is a box plot of the efficiencies arising from the bootstrap estimates.

For the example dataset in Figure 6-1, the decision on whether to adapt or not depends

on the level of confidence required in the adaptation. We can see the fitted models from

bootstrap estimates take a range of shapes, suggesting that there is a fair amount of

variability in the parameter estimates. Out of the 100 bootstrap estimates, the design

has an efficiency greater than 1 in 52 cases. The mean efficiency was 0.99, suggesting

that there is little or nothing to be gained from adapting in this case. We explore later

how different criteria for adapting affect the results.

6.3.5 Bayesian D-optimal designs

A limitation of locally optimal designs for non-linear models is that they rely on

estimates of the unknown model parameters. An alternative approach to this is to

use Bayesian optimal design, where priors are placed on the model parameters. The
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Bayesian optimal design takes into account the variability in the prior and so is optimal

for the prior distribution rather than a single point estimate.

In Bayesian optimality we aim to maximise the criterion Φ{M(ξ)} which is the

expectation of the criterion Ψ{M(ξ, θ)}, averaged over the prior distribution for θ

which has density π(θ) (Dette & Neugebauer, 1996),

Φ{M(ξ)} = E[Ψ{M(ξ, θ)}|Y = y] =

∫
θ

Ψ{M(ξ, θ)}π(θ)dθ.

The Bayesian optimality criterion Φ is a concave function. Take two designs ξ′ and

ξ̃ from the set of possible designs H and α ∈ [0, 1], then the definition of concavity

holds, as

Φ{M((1− α)ξ′ + αξ̃)} = Eθ[Ψ{M((1− α)ξ′ + αξ̃, θ)}]

≥ (1− α)Eθ[Ψ{M(ξ′, θ)}] + αEθ[Ψ{M(ξ̃, θ)}]

= (1− α)Φ{M(ξ′)}+ αΦ{M(ξ̃)}.

Following on from the notation used in Section 6.3.1, the directional derivative of Φ at

ξ′ in the direction ξ̃ is

φ(ξ′, ξ̃) = lim
α→0

1

α
[Φ{(1− α)M(ξ′) + αM(ξ̃)} − Φ{M(ξ′)}]

= lim
α→0

1

α

[∫
Ψ{(1− α)M(ξ′, θ) + αM(ξ̃, θ)} −Ψ{M(ξ′, θ)}π(θ)dθ

]
=

∫
φθ(ξ

′, ξ̃)π(θ)dθ.

From (6.9) the directional derivative at ξ′ in the direction ξj , where ξj places unit mass

at dose zj , for a given θ is

φθ(ξ
′, ξj) =

1

σ2
g(zj , θ)

T dΨ

dM
g(zj , θ)− trM

dΨ

dM

and

φ(ξ′, ξj) = E[φθ(ξ
′, ξj)].

Following the same approach as local optimality, we maximise the change in Φ at ξ′ by

increasing the weight at the dose zj which maximises φ(ξ′, ξj).

Chaloner & Larntz (1989) extended the general equivalence theorem (Theorem 6.3.1)

to show that the results of the theorem hold for the criterion Φ using the directional
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derivative φ. There are a number of definitions of Bayesian D-optimality. We examine

two criteria listed by Atkinson & Donev (1992, p. 214) which can be used to construct

Bayesian D-optimal designs, these are criterion I and IV.

1. Criterion I: Φ{M(θ)} = E[log |M(ξ′, θ)|]
For this criterion the directional derivative is written

φ(ξ′, ξj) = E[
1

σ2
g(zj , θ)

TM−1(ξ′, θ)g(zj , θ)− p]

= E[
1

σ2
g(zj , θ)

TM−1(ξ′, θ)g(zj , θ)]− p

= E[d(zj , ξ
′, θ)]− p.

We can maximise the directional derivative by maximising the expectation of the

sensitivity function.

2. Criterion IV: Φ{M(θ)} = logE[|M(ξ′, θ)|]
For this criterion the directional derivative is written

φ(ξ′, ξj) =
E[|M(ξ′, θ)|{ 1

σ2 g(zj , θ)
TM−1(ξ′, θ)g(zj , θ)− p}]

E[|M(ξ′, θ)|]

=
E[|M(ξ′, θ)| 1

σ2 g(zj , θ)
TM−1(ξ, θ)g(zj , θ)]

E[|M(ξ′, θ)|]
− p

=
E[|M(ξ′, θ)| d(zj , ξ, θ)]

E[|M(ξ′, θ)|]
− p.

We can maximise the directional derivative by maximising the weighted

expectation of the sensitivity function.

Bayesian optimal designs can be constructed using the same iterative algorithms as the

locally optimal designs. The expectation of the sensitivity function and the weighted

expectation of the sensitivity function cannot be found analytically and so we calculate

them using a sample average. Let us generate T samples from the prior distribution

with density π(θ), we denote these samples θt (t = 1, . . . , T ). We estimate the expected

sensitivity function as

d(zj , ξ
′) = E[d(zj , ξ

′, θ)] ≈ 1

T

T∑
t=1

d(zj , ξ
′, θt)

and the expected weighted sensitivity function as

w(zj , ξ
′) =

E[|M(ξ′, θ)| d(zj , ξ
′, θ)]

E[|M(ξ′, θ)|]
≈
∑T

t=1 |M(ξ′, θt)|d(zj , ξ
′, θt)∑T

t=1 |M(ξ′, θt)|
.
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For the continuous design we use the Federov algorithm described in Section 6.3.1. For

the two criteria the optimal dose where the algorithm places weight at the kth iteration

is

for Criterion I: zk−1 = argmax
z∈{z0,...,zJ}

d(z, ξ′)

for Criterion IV: zk−1 = argmax
z∈{z0,...,zJ}

w(z, ξ′).

For the exact optimal design with N subjects the optimal dose for the next subject

using the forward selection algorithm is

for Criterion I: zj = argmax
z∈{z0,...,zJ}

d(z, ξ′)

for Criterion IV: zj = argmax
z∈{z0,...,zJ}

w(z, ξ′).

As with the locally optimal designs, it is also possible to use the Bayesian optimal

designs in an adaptive manner. Rather than using the MLEs to find the optimal

design at the interim analysis, the adaptive Bayesian optimal designs use the posterior

distribution for θ|y to find the design that maximises the criterion,

Φ{M(ξ)} = E[Ψ{M(ξ, θ)}|Y = y] =

∫
Ψ{M(ξ, θ)}π(θ|y)dθ.

6.4 Model specification

In this section we explore how robust the locally D-optimal designs are to model mis-

specifications, and how robust the Bayesian D-optimal designs are to mis-specifications

of the prior distribution placed on the model parameters θ.

6.4.1 Locally D-optimal designs

In local optimal design theory, the choice of model and the number of unknown

parameters dictates the number of doses allocated to and the number of subjects on

each dose. Figure 6-2 presents the continuous locally D-optimal designs for the dose

response profiles listed in Section 2.3, using the true values of θ. The continuous D-

optimal designs were constructed using the algorithm suggested by Fedorov (1972),

as detailed in Section 6.3.1. For linear models the locally D-optimal design generally

allocates to the same number of doses as there are model parameters. There is no such

bound for non-linear models.
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Figure 6-2: Continuous locally D-optimal designs for the true dose response profiles.

In practice, when designing a clinical trial we do not know the true shape of the dose

response profile and so we are interested in fitting a model that is relatively robust

to model mis-specification. That is, even if we choose the wrong model, it is flexible

enough to perform adequately for all the dose response profiles we are interested in.

Ideally, we want our chosen model to perform well in terms of model estimation and

also to produce a D-optimal design which is relatively efficient in comparison to the

continuous D-optimal design, when the correct model and model parameters are known.

We identify three candidate models which we use to model the data and find the

D-optimal design;

• a quadratic model:

η(zj , θ) = θ1 + θ2zj + θ3z
2
j

• a three parameter emax model:

η(zj , θ) = θ1 + (θ2 − θ1)
zj

θ3 + zj
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• a four parameter sigmoid emax model:

η(zj , θ) = θ1 + (θ2 − θ1)
zθ4j

θθ43 + zθ4j
.

When fitting the candidate models to the dose response profiles, we find θ̂ which

minimises the sums of squares, and use θ̂ to find the D-optimal designs. The D-optimal

designs found using the quadratic, emax and sigmoid emax models are denoted ξm

(m = 1, 2, 3) respectively. The continuous optimum D-optimal design for the true dose

response profile with θ known is denoted ξ∗. Let ξeq denote the equal allocation design,

where subjects are allocated equally across all of the doses.

To explore which of the candidate models is the most robust under a variety of dose

response curves, we compare the relative efficiency of ξm versus the optimal continuous

design for each of the dose response profiles specified in Section 2.3. The Flat and

Explicit profiles are not included, as neither relate to a parametric model. The relative

efficiency is the inflation in sample size needed to have the same information as the

optimal continuous design. The relative efficiency of the D-optimal design found using

candidate model m when the true dose response model has p parameters, is

Effm =

(
|M(ξ∗, θ)|
|M(ξm, θ)|

) 1
p

, (6.14)

where θ are the true parameter values from the dose response profile. The efficiency

of the equal allocation design, ξeq, relative to the optimal continuous design, ξ∗, is

calculated as

Effeq =

(
|M(ξ∗, θ)|
|M(ξeq, θ)|

) 1
p

. (6.15)

Figure 6-3 shows the optimal designs derived from the candidate models for a selection

of the true dose response profiles, along with the model fitted by each of the candidate

models. As the quadratic model is linear in θ, it constructs the same optimal design

regardless of the dose response profile.

The relative efficiencies of the D-optimal designs for the candidate models compared

with the optimal designs, ξ∗, for the different dose response profiles are presented in

Table 6.2. When the dose response profile and the candidate model take the same form,

then ξm = ξ∗ and Effm = 1. If the candidate model is not from the same family of

models as the dose response profile, then the optimal design derived from the candidate
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Figure 6-3: Continuous locally D-optimal designs for the true dose response profiles
and for the fitted dose response curves from the candidate models.

model is unlikely to be as efficient as if we had known the true dose response profile.

When fitting the quadratic and emax candidate models, some cells in the table have

been left blank as the information matrix for the four parameter model cannot be

calculated with only three support points.

As expected, the optimal design is always more efficient that using a equal allocation

design. When there are fewer parameters in the dose response profile, the D-optimal

design allocates to fewer doses and so there is more to gained over the equal allocation

design. From Table 6.2 we conclude that for the dose response profiles we are interested

in, the sigmoid emax model is flexible enough to produce reasonable fit. The D-optimal

designs from this model are also relatively efficient compared to the optimal designs

from the true dose response profiles.

In Sections 6.6, 6.7 and 6.8 we explore the impact of using adaptive, quasi-adaptive

D-optimal and Bayesian D-optimal designs on the operational characteristics for each
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Dose Response Profile Eff1 Eff2 Eff3 Effeq

Linear 1.23 1.23 1.27 1.55
Emax 2.14 1.00 1.14 1.56

Emax Low 2.14 1.00 1.14 1.56
Sigmoid Emax Low 1.00 1.28

Sigmoid Emax 1.29 1.00 1.16
Sigmoid Emax High 1.00 1.18

Logistic 1.34 1.00 1.17
Umbrella 1.00 1.28 1.23 1.38

Table 6.2: Relative efficiencies of the D-optimal designs for different candidate models
compared with the D-optimal design for the true dose response model, ξ∗.

of the dose response profiles. For the reasons above, we model the data in these sections

using the four parameter sigmoid emax model.

6.4.2 Bayesian D-optimal designs

For Bayesian D-optimal designs we average the optimality criterion for the locally

optimal design over the prior distribution for the model parameters θ. We assume that

the dose response curve is a four parameter sigmoid emax model,

η(zj , θ) = θ1 + (θ2 − θ1)
zθ4j

θθ43 + zθ4j
,

and define 3 sets of prior distributions for the four unknown parameters. In Section 2

we list the densities of the distributions placed on the model parameters.

θ1 θ2 θ3 θ4

Prior 1 N(0, 1) N(2, 1) G(4, 4) G(4, 4)

Prior 2 N(0, 4) N(2, 9) G(1, 0.25) G(1, 0.5)

Prior 3 N(0, 25) N(2, 25) G(2, 0.25) G(1, 0.25)

In Section 6.3.5 we mention that we use two criteria for constructing the Bayesian D-

optimal designs, these criteria are as listed in (Atkinson & Donev, 1992, p. 214) , and

are

• Criterion I: Φ{M(θ)} = E[log |M(ξ, θ)|]

• Criterion IV: Φ{M(θ)} = logE[|M(ξ, θ)|].
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Figure 6-4: Convergence of Bayesian optimality criteria.

The Bayesian D-optimal continuous designs are constructed using the algorithm

proposed by Fedorov (1972) described in Section 6.3.1 and the exact designs using

the sequential algorithms described in Section 6.3.2. To find the Bayesian optimal

continuous designs, 1000 samples are generated from the prior distributions for θ, these

samples are denoted θt (t = 1, . . . , T ). The optimal design is then found by maximising

Φ. For the exact design found using the sequential algorithms we find the ξ∗N design

where N=250. For the forward algorithm the initial design has one subject on the

placebo dose and the maximum dose, for the backwards algorithm we begin with 75

subjects on each of the 9 doses.

For criterion I, it was found that as the prior distributions became more vague the

process failed to converge to the maximum of Φ. Figure 6-4 shows value of the criterion

we are aiming to maximise for the continuous iterative and the sequential algorithms.

Investigation into the cause of the non-convergence revealed that for some θt, M(ξ, θt)

was computationally singular. Criterion IV still manages convergence as it weights

the sensitivity function by |M(ξ, θt)| and so the samples where M(ξ, θt) is singular are

given a weight of 0 in the computation.

As we can not ensure the convergence of criterion I, from now on we only consider

Bayesian D-optimal designs constructed using criterion IV. The optimal designs for

criterion IV for the three sets of prior distributions are given in Figure 6-5. The designs

constructed using criterion IV for the set of prior distributions 1, 2, and 3 are denoted

ξp1, ξp2 and ξp3 respectively. From Figure 6-5 we can see that as the prior distributions

become more vague, the number of support points increases. This is in agreement with
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Figure 6-5: Subject allocations for Bayesian D-optimal designs using criterion IV.

results reported by Chaloner & Larntz (1989). Although, even with relatively vague

prior distributions placed on the model parameters, the subject allocation is focused

on the lower doses.

The prior distributions placed on the parameters in Priors 1 have small variances and

are centred around the true parameter values for the Emax profile. This results in a

Bayesian optimal design which is similar to the locally optimal design when a sigmoid

emax model is fitted to the data. In contrast when the true dose response profile is

Sigmoid Emax then the support points from ξp1 do not cover the same doses as the

locally optimal design. Therefore we would not expect the design ξp1 to be particularly

efficient for all dose response profiles.

We compare the efficiencies of the Bayesian D-optimal designs with the locally optimal

designs ξ∗, when we know the true dose response profile and model parameters. The

efficiency of the Bayesian designs relative to the locally optimal design is calculated for

s ∈ {p1, p2, p3} as

Effs =

(
|M(ξ∗, θ)|
|M(ξs, θ)|

) 1
p

.

Table 6.3 shows the efficiencies of the Bayesian designs for the different prior

distributions. For completeness, we have also included in the table the efficiency of

the fitted locally optimal design when a sigmoid emax model is used to model the data

Eff3 (6.14) and the equal allocation design Effeq (6.15).

Given we are assuming we know the best estimates of θ̂ for the fitted locally optimal

designs, it is not surprising that these have the smallest relative efficiencies (i.e. the
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Dose Response Model Eff3 Effp1 Effp2 Effp3 Effeq
Linear 1.27 1.29 1.29 1.40 1.55
Emax 1.14 1.13 1.13 1.29 1.56

Emax Low 1.14 1.13 1.13 1.29 1.56
Sigmoid Emax Low 1.00 1.41 1.35 1.09 1.28

Sigmoid Emax 1.00 4.44 3.45 1.29 1.16
Sigmoid Emax High 1.00 7.03 5.18 2.36 1.18

Logistic 1.00 3.70 3.01 1.36 1.17
Umbrella 1.23 1.39 1.38 1.20 1.38

Table 6.3: Efficiencies of the Bayesian D-optimal designs versus the locally optimal
designs for different prior distributions.

Data Generated From Effp1 Effp2 Effp3 Effeq

Priors 1 1.00 1.01 1.11 1.36
Priors 2 1.01 1.00 1.10 1.31
Priors 3 1.16 1.14 1.00 1.13

Table 6.4: Efficiencies of the Bayesian D-optimal designs for different prior
distributions.

smallest inflation of sample size is needed to have the same information as the optimal

design). We can see from Table 6.3 that using Priors 1 and 2 results in efficient

designs for some models, whilst producing an inefficient design for others. As the

prior distributions become more vague the Bayesian D-optimal design becomes more

dispersed and the relative efficiency tends towards that of using the equal allocation

design. Using Priors 3 produces a design which is a compromise between using the

locally optimal design and the equal allocation.

Finally we look at the efficiencies of the Bayesian D-optimal designs taking into account

the variance of the parameters. Let the densities for Priors 1, 2 and 3 be denoted

πp1(θ), πp2(θ) and πp3(θ) respectively. Let s′ ∈ {p1, p2, p3} and s ∈ {p1, p2, p3, eq}.
We generate T samples of θ from the prior distributions with density πs′(θ), denoted

θt (t = 1, . . . , T ). The expected efficiencies are calculated as follows,

Effs =

(∫
|M(ξs

′
, θ)|πs′(θ)dθ∫

|M(ξs, θ)|πs′(θ)dθ

) 1
p

≈

(∑T
t=1 |M(ξs

′
, θt)|∑T

t=1 |M(ξs, θt)|

) 1
p

.

As we can see in Figure 6-5 the subject allocations from ξp1 and ξp2 are very similar,

and so these two models have similar efficiencies (Table 6.4). When data are generated

from the distributions for Priors 1 or 2, ξp3 offers a compromise between the designs

generated from the correct prior distributions and using an equal allocation design.
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When Prior 3 is used generate the data, then the equal allocation is slightly more

efficient than ξp1 and πp2, suggesting that when our prior beliefs are vague there is not

so much to be lost from using a conservative design.

In Section 6.8 we see what impact the choice of prior distributions has on the operational

characteristics for each of the dose response profiles.

6.5 Convergence problems in maximum likelihood

estimation

The ultimate aim of using an optimal design is to be able to fit a chosen model to the

data and make inferences about the dose response curve. In order to fit the model to

the data, we must be able to estimate the unknown model parameters. Generally for

non-linear models within a frequentist framework, we estimate the model parameters

using the maximum likelihood estimators (MLEs) denoted θ̂. The MLE can rarely

be found analytically and so we use an iterative process to find θ̂ (Seber & Wild,

2003, p. 91). Problems with the model fitting arise when the iterative process fails to

converge. Non-convergence can occur when there are multiple parameters that need

to be estimated and a lack of information in the data to estimate all the parameters

(Kirby et al., 2011). In the clinical setting this is true when the doses are not high

enough to provide data on the maximum response, and so within the observed range

of doses there is insufficient information on the location of the asymptote.

Although there are ad-hoc methods for dealing with non-convergence, we focus on

two methods that offer a practical solution to non-convergence. These methods can

be specified in advance, eliminating any potential biases that can come from ad-hoc

analyses. These methods are:

• Step down: If the parameters for the chosen model do not converge, a simplified

model with fewer parameters is fitted. The number of parameters in the model

is reduced until convergence is reached. Different approaches to model selection

for the step down procedures has been explored by Kirby et al. (2011).

• Constrained convergence: A box is placed around the parameter values such

that the parameters are constrained to converge within the bounds of the box.

Dragalin et al. (2007) uses such a box to constrain the parameters to be ±80% of

the true values used to generate the dose response curves in simulation studies.
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These solutions to non-convergence come with their own limitations. The step down

method seems the most applicable from a frequentist point of view as it always produces

a model for which the MLEs converge. However the biological plausibility of fitting

a linear model when the belief is that the dose response curve is sigmoid emax could

bring the fitted model into question. By restricting the parameter estimates using

constrained convergence, we may bias the MLEs. This is a problem if the constrained

MLEs influence the dose response curve and so the inferences made.

We explore through simulation, the impact of these different approaches on the

properties of the fitted dose response curves. In the simulation study, we aim to fit the

four parameter sigmoid emax model to the data. The four parameter sigmoid emax

model is written

η(zj , θ) = θ1 + (θ2 − θ1)
zθ4j

θθ43 + zθ4j
. (6.16)

For this model, non-convergence arises when there is little information about the upper

asymptote, making θ2 and θ3 hard to estimate. We use the following methods to deal

with non-convergence of the model parameters.

1. Step down

• If the algorithm used to find the parameter estimates for the sigmoid emax

model given in (6.16) fail to converge, we set θ4 = 1 and reduce the model

to a three parameter emax model,

η(zj , θ) = θ1 + (θ2 − θ1)
zj

θ3 + zj
.

• If the algorithm used to find the parameter estimates for the emax model

fail to converge we reduce the model to a linear model with two parameters,

η(zj , θ) = θ1 + (θ2 − θ1)zj .

2. Constrained convergence

We fit the sigmoid emax model (6.16) and define three boxes within which the

model parameters, θ = (θ1, . . . , θ4)T are forced to converge.

Lower bounds Upper bounds

Box 1 (−1,0,0.01,0.01) (1,2,2,2)

Box 2 (−2,−1,0.01,0.01) (2,5,16,8)

Box 3 (−10,−10,0.01,0.01) (10,10,32,16)
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These boxes represent over constraining (Box 1), such that for some of the

dose response profiles the true θ lies outside the range of the box; informative

constraining (Box 2), based on biological plausibility about range of the parameter

values; and vague constraining (Box 3), where the bounds of the box are large

compared to the assumptions about the parameter values. It should be noted,

that if the box is too large, situations may arise where the model fails to converge

within the box.

According to large sample asymptotic theory, when the true dose response is from the

same family as the fitted model, the probability of convergence increases as the sample

size increases, and so in our simulation study we explore three sample sizes: N=100,

250 and 500. We use a placebo dose (0mgs) and 8 active doses (1mg, . . . , 8mgs), with

subjects randomised equally across these doses. Data are generated from three of the

dose response profiles introduced in Section 2.3:

1. Linear: νj = 1.65
8 zj

2. Emax: νj = 1.81 z
0.79+zj

3. Sigmoid Emax: νj = 1.70
z5j

45+z5j
.

The response distribution of the ith subject on dose zj is

Yij ∼ N(vj , σ
2)

and σ2 = 4.5. For the simulation study 1000 datasets were generated using the three

sample sizes, for each of the dose response profiles. For each dataset we attempted to fit

a model to the data using the two methods described for dealing with non-convergence.

To find the MLE the package nlminb was used in R (Team, 2008), with the initial

values for the optimisation set at (0,1,1,1). The maximum number of iterations and

evaluations allowed was set to 1000, in order to increase our chances of convergence.

We compare the fitted dose response curves of the three approaches in terms of:

• The mean coverage of the 95% confidence intervals. The 95% confidence interval

at a dose zj for the fitted curve with MLE estimates θ̂ is constructed as

η(zj , θ̂)± 1.96

√
var(η(zj , θ̂)),
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Dose response profile N=100 N=250 N=500

Linear 28.2 32.4 37.0
Emax 23.5 30.5 29.8
Sigmoid Emax 18.31 10.2 3.5

Table 6.5: Percentage of simulations where the iterative algorithm failed to converge
to the MLE when attempting to fit a sigmoid emax model.

where var(η(zj , θ̂)) is calculated using the delta method. The coverage at a single

dose is defined as the percentage of times the 95% confidence intervals for the

fitted models contain the true dose response, νj . We then average the coverage

across the range of available doses to get the mean coverage. The minimum

coverage at a single dose is also presented.

• The mean absolute bias in the fitted model. The mean absolute bias is calculated

as

1

J + 1

J∑
j=0

|EY [η(zj , θ̂)− νj ]|,

where η(zj , θ̂) is the fitted model and νj is the true dose response profiles. The

maximum absolute bias at a single dose is also presented.

• The bias in the parameter estimates. As the step down method fits different

models with differing numbers of parameters, exploring the bias in the parameter

estimates is not easily done. Therefore, we only calculate the bias in the

parameter estimates for the constrained convergence, when the dose response

profile is Emax (with θ4 = 1) and Sigmoid Emax, as for these models the number

of parameters is the same as for the fitted model. We calculate the bias in the

model parameters as

EY [θ̂]− θ.

Table 6.5 gives the percentage of simulated datasets where the iterative algorithm

failed to converge when we fit a sigmoid emax model. As expected, increasing N when

the dose response profile is Sigmoid Emax and we are fitting a sigmoid emax model

increases the frequency of convergence. When the dose response profile is Linear, as N

increases we have more information that the correct model is not sigmoid emax and so

the MLEs converge less often.

Applying the step down method, Table 6.6 gives the percentage of simulated datasets

when each of the different models were fitted when N=250. As we attempt to fit
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Fitted model
Dose response profile linear emax sigmoid emax

Linear 17.0 15.4 67.6
Emax 1.0 29.5 69.5
Sigmoid Emax 5.1 5.1 89.8

Table 6.6: Percentage of simulations where each candidate model was fitted to the data
for the step down method, N=250.

Method Dose response profile
Linear Emax Sigmoid Emax

Stepdown 91.0 (87.4) 95.2 (92.1) 93.0 (87.2)

Constrained convergence Box 1 92.6 (80.1) 98.5 (95.8) 78.0 (30.3)
Box 2 93.1 (88.2) 96.1 (92.8) 95.2 (92.1)
Box 3 92.2 (86.8) 95.9 (92.4) 94.2 (90.3)

Table 6.7: Mean (minimum) percentage coverage of 95% confidence intervals for
the fitted dose response when applying the step down and contrained convergence
approaches, N=250.

the sigmoid emax model first, this model is fitted most often. As N increases, the

percentage of simulations fitting the model with the same form as the dose response

profile increases.

The mean and minimum percentage coverage of the 95% confidence intervals for

the different methods, when N=250 are presented in Table 6.7. The coverage of the

constrained convergence when using Boxes 2 and 3, are generally closer to the target

95% across the different models than when using the step down approach. When using

Box 1, the coverage for the Sigmoid Emax profile is very poor. This is because the true

parameter values for the Sigmoid Emax profile are not contained within Box 1, hence

the model is forced to fit curves that often do not agree with the data. The mean model

fits for the different methods are illustrated in Figure 6-6. Increasing N the results are

similar to those in Table 6.7. When N=500, the variance in the model fit is lower and

so when we use Box 1 to force convergence of the model parameters and the true dose

response profile is Sigmoid Emax, the minimum coverage decreases to 2.4%.

The mean absolute biases when N=250 are presented in Table 6.8. Again Boxes 2 and

3 perform well in terms of the bias compared to the step down approach. As with the

coverage, applying Box 1 results in a poor model fits for the Linear and Sigmoid Emax

profiles, and so there is large biases in the fitted model. As N increases, the parameter
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Figure 6-6: Mean fitted dose response curve for the step down and constrained
approaches, N=250.

estimates tend towards their true values and so the bias decreases.

The bias in the parameter estimates from using constrained convergence, when the

data are generated from the Emax and Sigmoid Emax profiles are presented in Table

6.9. As the bounds for Box 1 are relatively tight around the true parameter values for

the Emax profile, the bias in the parameters is small. Increasing the bounds of the

box used to constrain the convergence of the parameters, results in an increased bias

provided the true parameter values are contained within the box. This is because if

the iterative process fails to converge within the box, it is forced to converge at the

edge of the box, and so results in a θ̂ which is far from θ. As the bounds of the box

Method Dose response profile
Linear Emax Sigmoid Emax

Stepdown 0.03 (0.09) 0.02 (0.10) 0.03 (0.08)

Constrained convergence Box 1 0.19 (0.37) 0.01 (0.03) 0.29 (0.56)
Box 2 0.02 (0.05) 0.02 (0.09) 0.04 (0.08)
Box 3 0.02 (0.05) 0.02 (0.09) 0.03 (0.08)

Table 6.8: Mean (maximum) absolute bias in the fitted dose response when applying
the step down and constrained convergence approaches, N=250.
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Dose response Model parameters
profile θ1 θ2 θ3 θ4

Emax Box 1 −0.02 −0.02 0.18 0.44
Box 2 0.00 0.69 5.03 2.04
Box 3 0.01 0.97 10.18 3.80

Sigmoid Emax Box 1 −0.42 −0.19 −2.01 −3.18
Box 2 −0.08 0.62 1.21 0.37
Box 3 −0.08 1.17 2.89 2.84

Table 6.9: Mean bias in the model parameters for the constrained convergence
approach, N=250.

become larger the iterative process can converge at larger values of θ̂ (Figures 6-7 and

6-8). If the box is not large enough and does not contain the true parameter values, as

in the case of Box 1 and the Sigmoid Emax profile, then this also results in a bias in

the model parameters.

Based on the results of the coverage and bias, when fitting the four parameter sigmoid

emax model within a frequentist setting we apply Box 2 to ensure convergence of the

MLEs. Although we acknowledge that using a box does bias the parameter estimates,

the results show that provided the box used is large enough to contain the true θ, it does

not overly bias the fitted dose response curve within the dose range of interest. This is

consistent with the results observed by Dutta et al. (1996), who did not use a box to

force convergence but found that even when the parameters are poorly estimated, the

model fit was good within the range of the data. We note for all the scenarios we are

interested in Box 2 contains the true parameter values. In reality the best we can do

is to chose the bounds of the box based on prior reasoning and biological plausibility.

The step down approach performs well in terms of good coverage and small bias,

however it may result in fitting models that are not biologically plausible. As we are

interested in model fitting in the context of adaptive optimal designs, using the step

down approach could result in fitting an over simplified model at an interim analysis

which would result in a design which are far from optimal for the true dose response

profile. We would also face the decision as to whether we would allow different models

to be fitted at the interim and final analysis.

For completeness we note that when the cause of the non-convergence is limited

available data, an alternative approach is to incorporate prior information about the

model parameters and use a Bayesian analysis (Thomas, 2006).
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Figure 6-7: Histograms of θ̂ using constrained convergence when data are generated
from the Emax profile. True parameter values indicated by the red line.
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Figure 6-8: Histograms of θ̂ using constrained convergence when data are generated
from the Sigmoid Emax profile. True parameter values indicated by the red line.
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6.6 Results - adaptive D-optimal designs

To assess how well the adaptive D-optimal design performs, we carry out a simulation

study. We use the scenario described in Chapter 2 and generate data from the dose

response profiles in Section 2.3. For each of the dose response profiles we generate 10,000

datasets. Each simulated dataset consists of a total of N=250 subjects allocated across

the placebo dose and 8 active doses (1mg,. . .,8mgs). The between subject variance

σ2 = 4.5 is assumed to be fixed and known. We fit the data using a four parameter

sigmoid emax model,

η(zj , θ) = θ1 + (θ2 − θ1)
zθ4j

θθ43 + zθ4j
.

As we have shown in Section 6.4, this model is flexible enough to fit all the dose response

profile reasonably well. The ANOVA method (Section 2.5) which randomises subjects

equally to all doses and uses pairwise testing with placebo, has been included in the

results as a control method.

Before the adaptive allocation described in Section 6.3.3 is utilised, we allocate the

first cohort of subjects equally across all the doses. At the interim analysis, data from

the first cohort are used to estimate θ̂ and the next cohort is allocated in such a way

to maximise Ψ{M(ξ, θ̂)}=log|M(ξ, θ̂)|. The exact locally D-optimal design at θ̂ for

the next cohort is found using the sequential forward selection algorithm. At each

subsequent interim analysis all the available data are incorporated into the updated

estimate of θ̂ and the D-optimal design at the updated θ̂ is found. This is continued

until all the subjects have been randomised. We use 0 (equal allocation), 1, 2, 3, 4

and 9 interim analyses (IA) where the interim analyses are equally spaced throughout

the course of the simulated study. For example, in the case of 2 interim analyses these

would occur after 33% and 66% of subjects have completed the trial.

We constrain the parameter estimates to lie within a box. We constrain the upper

and lower bounds of the θ = (θ1, θ2, θ3, θ4)T parameters to be (2, 5, 16, 8)T and

(−2,−1, 0.01, 0.01)T respectively. The impact of using a box to force convergence was

explored in Section 6.5, and the bounds we use here correspond to Box 2 from this

section. Constraining the parameter estimates is especially relevant for the adaptive

D-optimal designs, as with up to 9 interim analyses we have responses from as few as

25 subjects at the first interim analysis. With such sparse data available to estimate

the four parameters of the sigmoid emax model, it is likely that without using a box

we would encounter non-convergence.
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We use the metrics laid out in Section 2.3 to compare the methods.

Subject allocation

The percentage subject allocations for the adaptive D-optimal allocation are presented

in Figure 6-9. From this figure, we can see that there is a fair amount of variability in

the subject allocations. There is a substantial change in the subject allocations from

using 1 to 2 interim analyses. With more than 2 interim analyses there is little change

in the general trend of the subject allocations.

The aim of a D-optimal design is to allocate subjects to doses in such a way as to

reduce the variance in the model parameters and not necessarily to allocate subjects

to the dose that would be taken through to phase III. The result of this is that for

some of the dose response profiles (e.g. the Linear and Sigmoid Emax), only a small

proportion of the subjects are allocated to the target doses which are indicated in red

Figure 6-9. This could be a potential concern for project teams looking to choose a

dose to take forward into phase III.

Detecting dose response

The one-sided type I error rate under the Flat dose response profile is maintained at 5%

for the number of interim analyses used in the adaptive D-optimal allocation. For the

ANOVA method the one-sided type I error rate was controlled at 5% using a Dunnett

adjustment of 2.38.

The left hand plot of Figure 6-10 shows the probability of detecting a dose response

for the active dose response curves. For the Emax and Explicit dose response profiles

there is an increase in the probability of detecting a dose response when an adaptive D-

optimal design is used at the interim, compared with the non-adaptive equal allocation

design with 0 interim analyses. For the other dose response profiles there is no room for

improvement from using an adaptive design. For all of the dose response profiles, there

is a benefit in modelling the data using the sigmoid emax model rather than using the

adjusted pairwise testing of the ANOVA method.

The probability of detecting a dose response for the Emax Low profile is 64% for

the ANOVA method, 69% when 0 interim analyses are used and approximately 81%
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Figure 6-9: Box plots of subject dose allocations for the adaptive D-optimal allocation
with increasing numbers of interim analyses (IA). Target dose intervals are given in
red.
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Figure 6-10: Operational characteristics for the adaptive D-optimal allocation and
ANOVA methods: probability of detecting a dose response and a clinical response.
The number indicates the number of interim analyses, and A represents the results
from the ANOVA method.

for the adaptive D-optimal methods regardless of the number of interim analyses.

Detecting a clinical response

The right hand plot of Figure 6-10 shows the probability of detecting a clinical response.

There is no clear and consistent improvement from using the adaptive D-optimal

allocation over the equal allocation with 0 interim analyses. The ANOVA method

tends to detect a clinical response more often than when a sigmoid emax model is

used to model the data, with the exceptions of when the data comes from the Sigmoid

High profiles. The ANOVA method has the greatest improvement over the D-optimal

method when there is a plateau in the dose response curve (e.g. the Emax and Explicit

profiles). When there is a plateau in the dose response profile there are multiple doses

which have a clinical response and so this increases the probability of the ANOVA

detecting a clinical response.

Although the ANOVA method tends to be better at detecting a clinical response

for the active dose response profiles, it also has a larger probability of incorrectlyf

detecting a clinical response for the Emax Low profile, which does not reach the

threshold for clinical relevance. The probability of identifying a clinical response for

the Emax Low profile was 64% for the ANOVA method, 29% with 0 interim analyses

and approximately 24% when the adaptive D-optimal allocation was used.
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Figure 6-11: Operational characteristics for the adaptive D-optimal allocation and
ANOVA methods: probability of selecting a dose in the target interval and the
percentage absolute prediction error. The number indicates the number of interim
analyses, and A represents the results from the ANOVA method.

Correctly selecting a dose in the target dose interval

Figure 6-11 gives the probability of correctly selecting a dose within the target dose

interval. When the data come from an Emax, Sigmoid Low, Umbrella and Explicit

profile, using an adaptive D-optimal design improves the probability of correctly

identifying the target dose over the equal allocation with 0 interims. When one or

more interim analyses are used there is little to distinguish between the probability

of correctly identifying the target dose. For the remaining models, there is little

impact from using an adaptive D-optimal design, and for the Sigmoid High profile

the adaptation has had a detrimental effect on the results.

Although the ANOVA method detects a clinical response in a higher proportion of

the simulations, modelling the data using the sigmoid emax model generally results in

a higher probability of correctly identifying a dose in the target interval. The exceptions

to this are the Umbrella and Explicit models, which are both models that the sigmoid

emax model struggles to fit.

Prediction error

The D-optimal design is aimed at reducing the variance in the model parameters.

Figure 6-11 illustrates that using an adaptive D-optimal design does decrease the

prediction error as intended. There is a small decrease in the prediction error from
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Figure 6-12: Median prediction error and prediction error quantiles for the adaptive
D-optimal allocation with increasing numbers of interim analyses.

using 0 to 1 interim analysis, but then there is virtually no change from using more

interim analyses.

The prediction error quantiles for the Linear, Emax and Sigmoid Emax dose response

profiles for are given in Figure 6-12. The prediction error for the Linear profile reflects

the fact that the sigmoid emax model is not the best choice of model for this data.

We can see from the prediction error that, as expected, the sigmoid emax model fits

the data for the Emax and Sigmoid Emax scenarios well. There is little to distinguish

between the plots when one or more interim analyses are used.

Conclusion

Dragalin et al. (2010) carried out a simulation study using an adaptive D then c-optimal

design where they also fitted a sigmoid emax model and generated data from a subset

of the dose response profiles presented here. The results presented in Dragalin et al.

(2010), showed little to no benefit from using an adaptive optimal design, and for some

of the dose response profiles studied, the adaptive optimal design was detrimental to

the operational characteristics. The results we present here show that for the Emax,

Sigmoid Low, Umbrella and Explicit dose response profiles there is a benefit from using
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an adaptive D-optimal allocation in terms of correctly selecting a dose in the target dose

interval, compared to the equal allocation with 0 interim analyses. Where we observed

a benefit from using adaptive D-optimal allocation over the equal allocation, there was

little improvement in the operational characteristics from using more than one interim

analysis. For the Sigmoid High profile the adaptive D-optimal design resulted in a slight

reduction in the ability to correctly identify a dose in the target dose interval. For the

remaining dose response profiles, the adaptive D-optimal allocation resulted in similar

operational characteristics to the equal allocation. These results are fairly consistent

with the relative efficiencies of the equal allocation compared with the locally optimal

designs presented in Table 6.2.

In the analysis carried out in the Dragalin et al. (2010) paper, if a dose response

was observed, then the model was used to estimate if there was a clinical response

and to select a dose for phase III. If a clinically meaningful difference was not detected

then a Bonferonni adjusted t-test was used to test if there was a dose with a clinically

meaningful difference over placebo. This additional testing increased their chances of

detecting a clinical response and so correctly selecting a dose in the target dose interval.

When we applied this additional test to our datasets it did not change our conclusions

above.

There are two differences between the design by Dragalin et al. (2010) and the design

used here. This first is that in the design used by Dragalin et al. (2010), they switched

from using a D to a c-optimal design half way through the trial, whereas we use an

adaptive D-optimal design. The second difference is that the initial cohort in the

Dragalin et al. (2010) paper were randomised to only the placebo dose and the 2,

4, 6, and 8 mg doses, whereas here the initial cohort was randomised equally to all

doses. When we applied the additional testing mentioned in the previous paragraph,

our results for 1 or more interim analyses were very similar to those presented in

Dragalin et al. (2010). However, our results differ from those presented in Dragalin

et al. (2010) for the equal allocation case, as we have used a different initial allocations.

This difference in initial randomisation has lead to our results showing gains from

using D-optimal allocation, whilst Dragalin et al. (2010) saw little improvement from

the adaptation. This suggests starting off with a good design can negate the need to

adapt. It also shows that if we start with a sub-optimal design then adaptation can be

of benefit.
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6.7 Results - quasi-adaptive D-optimal designs

In Section 6.6 we observed that there were scenarios where the adaptive D-optimal

design improved the operational characteristics and some scenarios where adapting

was detrimental. Without knowing the true dose response profile when designing a

study, we do not know whether we should adapt or not. The quasi-adaptive method

uses the variability in the estimates of model parameters at an interim analyses to

evaluate whether adapting is efficient to parameter estimate mis-specifications. See

Section 6.3.4 for more details.

We compare the cases when we never adapt (equal allocation) and when we always

adapt using a D-optimal design with two versions of the quasi-adaptive method. For

the two quasi-adaptive approaches, the second cohort of subjects are randomised using

the D-optimal design for θ̂ based on the following criteria

• criterion 1: the 50th percentile of the bootstrapped efficiencies (given in (6.13))

is greater than 1,

• criterion 2: the 80th percentile of the bootstrapped efficiencies is greater than 1.

To test the robustness of the adaptation we generate 100 bootstrap samples. If the

relevant criterion is not met, then the second cohort of subjects are allocated equally

across all the doses.

As before, we aim to fit a sigmoid emax model (6.16) to the data. For simplicity

we assume that there is only one interim analysis. We explore three timings for this

interim analysis: after 25%, 50% and 75% subjects have completed the trial. We use the

same scenarios as in Section 6.6, but only generate 1000 datasets for the quasi-adaptive

approaches, due to the extra computational intensity of assessing the robustness of the

adaptation at the interim. For the equal allocation and adaptive D-optimal approach

we generate 10000 simulated datasets. The total sample size of each generated dataset

is N=250 subjects and a between subject variance of σ2 = 4.5.

The metrics used to assess the performance of the methods are those described in

Chapter 2.
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Figure 6-13: Percentage of simulated datasets where adaptation occurred at the interim
analysis using the quasi-adaptive D-optimal approach.

Frequency of adaptation

The percentage of simulated datasets where the quasi-adaptive methods chose to adapt

are presented in Figure 6-13. As expected, when we have the interim analysis after

only 25% of subjects have completed the study, there is more variation in the model

parameters and so the quasi-adaptive methods adapts less often than when the interim

takes place after 75% of subjects have completed. The method adapts more often

for those dose response profiles where we have previously seen benefits from using an

adaptive D-optimal design (the Emax, Sigmoid Low, Umbrella and Explicit), as for

these profiles there is more to gain from using an adaptive D-optimal design than

continuing with the equal allocation.

Subject allocation

As the quasi-adaptive method only adapts when there is evidence the D-optimal design

is efficient, the remainder of the simulated datasets receive equal allocation. From

Figure 6-13 we can see with the interim analysis after 50% of subjects have completed,

using criterion 2 for the Linear profile, adaptation only occurs approximately 25% of the

time. The result is that the majority of the simulated datasets receive equal allocation.

When we use criterion 1 to adapt, more adaptation takes place and so the subject

allocations tend more towards the allocations when we always adapt, this is reflected

in in the box plots of the subject allocations in Figure 6-14.

For the Linear and Sigmoid Emax profiles (Figure 6-14), where the target doses are

not in the range of doses that the locally D-optimal design would generally allocate
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Figure 6-14: Box plot of subject dose allocations for the equal allocation, quasi-adaptive
and adaptive D-optimal methods with one interim analysis performed after 50% of the
subjects have completed the study. Target dose intervals are given in red.
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Figure 6-15: Operational characteristics for the Emax Low profile using equal
allocation, quasi-adaptive and adaptive D-optimal methods by timing of interim
analysis.

to, using the quasi-adaptive approach results in more subjects being allocated to the

target doses than when adaptation always takes place. The potential benefit of this

is that after the phase II trial, when the data are being examined as part of a bigger

development process, there will be more information about the target doses and in

particular more safety data.

Detecting dose response

As before, we maintain a one-sided type I error under the Flat dose response profile

of 5% for each of the methods applied. For all the active dose response profiles except

the Emax Low, the probability of detecting a dose response is near 1, and so there is

little to distinguish between the allocation methods and timing of the interim analysis.

For the Emax Low model the probability of detecting a dose response (Figure 6-15) is

increased when adaptive allocation is used. When the interim analysis is early, there

is more benefit from using the adaptive D-optimal allocation.

Detecting a clinical response

Adapting after only 25% of subjects have completed the study, means that although

there is more variability in the model parameters, there are also more subjects to

allocate. This results in adapting early being more beneficial for some scenarios (e.g.

the Explicit profile), but more damaging for other scenarios (e.g. the Umbrella profile).

The quasi-adaptive methods adapt less often when the interim analysis is after 25%
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Figure 6-16: Probability of detecting a clinical response using equal allocation, quasi-
adaptive and adaptive D-optimal methods by timing of the interim analysis.
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Figure 6-17: Probability of selecting a dose in the target dose interval using equal
allocation, quasi-adaptive and adaptive D-optimal methods by timing of the interim
analysis.

of subjects have completed, hence the probability of detecting a clinical response for

the quasi-adaptive methods are closer to that of the equal allocation than the adaptive

allocation. As the interim analysis is carried out later in the study, the quasi-adaptive

methods adapt more often and so tend more towards the operational characteristics of

the adaptive D-optimal allocation.

Correctly selecting a dose in the target dose interval

As it is linked with detecting a clinical response, the timing of the interim analysis also

impacts the probability of correctly identifying a dose in the target interval (Figure

6-17), with the early adaptation benefiting some dose response profiles but not others.
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Figure 6-18: Absolute prediction error using equal allocation, quasi-adaptive and
adaptive D-optimal methods by timing of the interim analysis.

The quasi-adaptive methods offer a compromise between using an adaptive design

and equal allocation. When the interim analysis takes place after 50% of the subjects

have completed the trial, using the quasi-adaptive method based on the 80th percentile

results in most of the gains from adapting. This can be seen for the Emax, Sigmoid

Low and Umbrella profiles where the quasi-adaptive method gives similar results to the

adaptive D-optimal design and has clear gains over equal allocation. When adaptation

is detrimental to the operational characteristics, the quasi-method gives results close

to if we had used equal allocation (e.g. the Sigmoid Emax and Sigmoid High profiles).

The quasi-adaptive method based on the 50th percentile adapts more often than when

the 80th percentile is used and so although it is still a compromise between always

adapting and equal allocation, it gives operational characteristics which are more

comparable to the adaptive D-optimal design.

Prediction Error

In terms of the prediction error (Figure 6-18), the adaptive methods have a smaller

prediction error than the equal allocation design. When the interim analysis takes place

after 25% of the subjects have completed the study, the adaptive D-optimal methods

generally have the smallest prediction error followed by the quasi-adaptive methods

and then the equal allocation. The later the interim analysis is performed, the closer

the prediction errors between the quasi-adaptive and adaptive method become.
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Conclusion

In this section we have examined two aspects of the adaptive D-optimal design. We

have considered the timing of the interim analysis and the operational characteristics

from using a quasi-adaptive method.

The timing of the interim analysis is an important consideration when planning an

adaptive design. If the interim analysis is carried out too early then there will be a lot

of variability in the data and so the adaptation based on the parameter estimate may

be far from optimal. If the interim analysis is carried out too late, then the number of

subjects to be allocated adaptively is reduced and so any adaptation may have limited

impact.

We have observed that the timing of the interim analysis does have an impact on

the operational characteristics. When the interim analysis is carried out after 25% of

subjects have completed the study, the potential gains and losses of using the adaptive

or quasi-adaptive methods are greater than when the interim analysis is carried out

later on. Therefore an early interim analysis should only be used if we are confident

about the shape of the dose response profile, and that an adaptation is beneficial.

Using the quasi-adaptive method results in a compromise between the adaptive and

non-adaptive allocations. When the interim analysis is carried out after 50% of subjects

have completed the study, using the 80th percentile to dictate adaptation results in most

of the gains of the adaptive method without the losses when adaptation is detrimental.

When the criterion suggest we should not adapt the quasi-adaptive method allocates

subjects equally to all the doses. This could be an advantage over wrongly adapting to

a few doses as it would provide a study team with efficacy and safety data for all the

doses, allowing for more informed decision making about all the doses.

6.8 Results - Bayesian adaptive D-optimal designs

In the previous section we used the quasi-adaptive method to assess the variability

in the model parameters at the interim analysis and so determine if the proposed D-

optimal design was robust to parameter mis-specification. The Bayesian D-optimal

adaptive design is a more formal methodology for dealing with variability in the model

parameters, as the Bayesian D-optimal design proposed at the interim analysis is D-

optimal for the posterior distribution.
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In order to assess the performance of the Bayesian D-optimal designs we carry out

a simulation study. For the simulation study we use the neuropathic pain scenario

described in Chapter 2 and generate data from the true dose response profiles described

in Section 2.3. As for the previous simulations studies, we assume the total sample

size is N=250 and there are 9 available doses (0mgs, . . . ,8mgs). The between subject

variance is σ2 = 4.5. Due to the additional computation needed at each interim analysis

to generate the Bayesian D-optimal design for the next cohort of subjects, we limit our

simulation study to 1000 replicated datasets for each scenario and use one interim

analysis carried out after 50% of subjects have completed the study.

As before we aim to fit the sigmoid emax model (6.16) which has four model parameters.

To construct the Bayesian D-optimal design, we allocate the first cohort of subjects

equally across all the available doses. At the interim analysis the Bayesian D-optimal

design for the next cohort of subjects is found by maximising the criterion

Φ{M(ξ)} = logE[|M(ξ, θ)|].

As the posterior distribution and so the Bayesian D-optimal design depends on the prior

distributions placed on the model parameters, we use three prior joint distributions

which assume independence between the model parameters.

θ1 θ2 θ3 θ4

Prior 1 N(0, 1) N(2, 1) G(4, 4) G(4, 4)

Prior 2 N(0, 4) N(2, 9) G(1, 0.25) G(1, 0.5)

Prior 3 N(0,25) N(2, 25) G(2, 0.25) G(1, 0.25)

To assess whether it is the Bayesian adaptivity at the interim analysis or the final

inferences that have an impact on the results, we carry out the following analyses:

1. Use a Bayesian D-optimal design at the interim, but make the final inferences

using a frequentist approach via the MLE θ̂.

2. Use a Bayesian D-optimal design at the interim and make the final inference

based on the posterior distribution.

We compare the results from these two analyses with an equal allocation design and an

adaptive locally D-optimal design with one interim analysis. For the frequentist analysis

we use a box to constrain the convergence of the MLE. The upper and lower limits
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Figure 6-19: Box plot of subject dose allocations for the Bayesian adaptive D-optimal
design with one interim analysis performed after 50% of the subjects have completed
the study. Target dose intervals are given in red.

of the box for θ = (θ1, θ2, θ3, θ4) are (−2,−1,0.01,0.01) and (2,5,16,8) respectively. For

more details on the use of a box to constrain the convergence of the parameter estimates

see Section 6.5.

Subject allocation

The subject allocations when the dose response profiles are the Linear, Emax and

Sigmoid Emax, are very similar for Prior 1 (Figure 6-19) as the prior distribution

dominates the data. As the prior distribution becomes more vague, the subject

allocations depend more on the data and so there are differences between the subject

allocations for the different dose response profiles. Although the data play more of a

role in the subject allocation as the prior distribution becomes more vague, even with

Prior 3 a large proportion of subjects are allocated to the early doses. This is most like

the locally D-optimal design for the Emax model (Figure 6-2) and least like the locally

D-optimal design for the Sigmoid High and Umbrella models.
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Figure 6-20: Operational characteristics using a Bayesian adaptive D-optimal design
at the interim analysis and a frequentist final analysis.

Frequentist analysis

When the final analysis is frequentist, the one-sided type I error under the Flat dose

response profile is maintained at 5% for each of the prior distributions. Using a Bayesian

D-optimal adaptation at the interim analysis and a frequentist final analysis, generally

improves the probability of detecting a dose response and a clinical response (Figure 6-

20). However, this increase in the ability to detect a clinical response does not translate

to an ability to correctly identify a dose in the target dose interval. Regardless of

the prior distribution placed on the model parameters, the probability of correctly

identifying a dose in the target dose interval is very close to that of the locally adaptive

D-optimal design. Despite the different prior distributions resulting in different subject

allocations, there is little to distinguish between them in terms of the overall operational

characteristics.

Bayesian analysis

Although we are working within a Bayesian framework, we still maintain the frequentist

one-sided type I error at 5% under the Flat profile to allow for a fair comparison

across methods. When a Bayesian analysis was used as the method of inference, after

using an adaptive Bayesian D-optimal design at the interim analysis, the operational

characteristics are highly dependent on the choice of prior distribution placed on the

parameters. As this sensitivity to the prior distributions was not observed when the

analysis was frequentist, we can conclude it is not the adaptation at the interim analysis
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Figure 6-21: Operational characteristic of using a Bayesian adaptive D-optimal design
at the interim analysis and a Bayesian final analysis.

which is impacting the operational characteristics but the final analysis. Comparing the

operational characteristics of an equal allocation design with a Bayesian final inference

(not presented here), we found that although the Bayesian adaptive D-optimal design

led to an increase in the ability to select a dose in the target dose interval for some

dose response profiles, the adaptation was detrimental to other dose response profiles.

This result is consistent with the locally adaptive D-optimal designs, which also failed

to show gains over the equal allocation design for all the dose response profiles.

For the Emax profile, Prior 1 outperforms the other prior distributions. This is because

the prior distributions used for Prior 1 are informative about the model parameters of

the Emax profile. However for some of the other dose response profiles, using Prior 1

results in poor operational characteristics as the prior distributions disagree with the

true parameter values in the underlying dose response profiles. It can be seen in the

prediction error that Priors 1 produces a poor fit for many of the dose response profiles.

Although Priors 2 and 3 are more vague, they still perform poorly in terms of correctly

identifying a dose in the target dose interval, compared to the equal allocation and

locally D-optimal designs for many of the dose response profiles.

Conclusion

In this section we have shown that it is possible to apply an adaptive Bayesian D-

optimal design as a formal approach for dealing with the variability in the parameter
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estimates at an interim analysis. Using a Bayesian D-optimal design at the interim

analysis with a frequentist inference, lead to gains in terms of detecting a dose response

and a clinical relevant response when compared to the equal allocation. In terms of

correctly identifying a dose in the target dose interval, using a Bayesian adaptation

at the interim analysis gave very similar results to using a locally D-optimal design.

These conclusions do not depend on the choice of prior distribution placed on the model

parameters.

The performance of the Bayesian D-optimal design when the final analysis is Bayesian,

depends on the choice of prior distribution placed on the model parameters. As we

observed from Figure 6-21, there is no one choice of prior distributions which are

robustly efficient. If we have strong prior information about the model parameters

which is correct, then as we observed with the Emax profile, there are gains that can

be made in terms of correctly identifying the target dose. The converse is also true, if

the prior distribution is strong but is incorrect for the true dose response profile, then

incorporating this information proves to be detrimental. Using a the less informative

prior distributions, offered gains over the equal allocation in terms of detecting a dose

response, but added little in terms of correctly identifying a dose in the target dose

interval.

6.9 Discussion

In this chapter we have explored a number of aspects of implementing adaptive D-

optimal designs. We have found that for some of the scenarios explored, there are gains

to be made from using an adaptive D-optimal design at an interim analysis compared

with using an equal allocation design. These gains were not present for all the dose

response profiles, and for the Sigmoid High profile the adaptation was detrimental to

the probability of identifying a dose in the target dose interval compared with the equal

allocation. Therefore, the benefit of the adaptation is dependent on the shape of the

underlying dose response profile, which is often unknown when designing a clinical trial.

We propose the use of a quasi-adaptive method which only adapts if the D-optimal

design at the interim analysis is robust to the variability in the parameter estimates.

The operational characteristics for the quasi-adaptive method showed that it produced

most of the gain that could be achieved from adaptation over equal allocation, whilst

minimising the losses when adaptation was detrimental. When designing a clinical trial

we do not know the shape of the true dose response profile, and so this method provides
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a safeguard against using adaptation when it is not appropriate.

Finally we explored the use of Bayesian D-optimal design as a formal way of

incorporating the uncertainty in the model parameters at the interim analysis. We

found that the performance of the Bayesian D-optimal design depends on the prior

distributions placed on the model parameters, with no one set of prior distributions

performing well for all the scenarios.

In the next chapter, we bring together all the adaptive methods we have explored

so far to allow for a direct comparison. We also compare the methods in terms of the

probability of success in phase III.
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Chapter 7

Designing Phase II Based on

Expected Gain of Programme

7.1 Introduction

So far in this thesis we have considered the phase II study as a single, stand alone

trial. In reality a phase II dose-finding study is one part of a much larger development

process. In this chapter we consider making decisions in phase II based on the likelihood

of success in phase III using a decision theoretic approach. Decision theory is concerned

with quantifying the decision making process, based on our preferences concerning

consequences and our beliefs about the ‘state of the world’ (Schlaifer & Raiffa, 1961,

p. 3). Once we have quantified the value of each decision, it is possible to order the

decisions in terms of their expected returns and so optimise the decision making process.

An early example of a Bayesian decision theoretic approach was carried out by Schlaifer

& Raiffa (1961). Standard texts on this topic also include Berger (1985) and Lindley

(1985).

Decision theoretical approaches are appealing as they take into account uncertainty

in the data and the preferences of the decision maker (Sylvester, 1988). In a

pharmaceutical setting, this is important as there are limited resources available and so

portfolio prioritisation needs to take place (Senn, 1996). That is, the development of

compounds with more potential may be expedited whilst the development of other

compounds delayed or abandoned. By assigning a utility to the decision process

in terms of monetary gains, it also allows for companies to distinguish between two

compounds. Decision theory can also be used to compare trial designs, for example,
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Julious & Swank (2005) use decision theory to compare three development plans. In

their paper they find the development plan which maximises the expected ‘net present

value’, taking into account time to product launch.

In the pharmaceutical industry decision theory can also be used to optimise a number

of aspects of the clinical trial process. For example, the sample size of clinical trials has

been studied by a number of authors (Brunier & Whitehead, 1994; Gittins & Pezeshk,

2000a,b, 2002; Lindley, 1997; Pezeshk & Gittins, 2002; Stallard, 1998; Sylvester, 1988).

Pezeshk (2003) provides a review of Bayesian methods used for determining sample size.

Another area which has been studied is the number of treatment arms that should be

included in phase II, based on a fixed sample size (Whitehead, 1985) and when there is

a trade off between phase II and phase III resources (Whitehead, 1986). Stallard et al.

(2009) investigated the optimal choice of treatments to take into phase III to minimise

the total sample size.

The decision theory set up gives us a framework for making an optimal decision as

to whether to continue into phase III, and if we do choose to continue, which dose to

take forward. In this chapter we use decision theory to compare the methods previously

explored in terms of their potential monetary gain from a phase III success. We set up

three decision rules for selecting a dose in phase II to be taken forward into phase III.

These decision rules are

• decision rule 1: we select the minimum dose estimated to have a 1.3 change from

placebo

• decision rule 2: we select the dose that maximises the probability of success in

phase III based on a point estimate of the dose response curve

• decision rule 3: is a Bayesian decision rule, where we select the dose that

maximises the posterior probability of success in phase III.

For each of these decision rules, there is also the option to stop the development process

after phase II if none of the doses are deemed suitable for phase III.

7.2 Recap on methods explored in previous chapters

In the previous chapters we have explored a number of response adaptive designs for

phase II dose-finding studies. For these methods we have assumed that there is a
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placebo dose, z0, and J active doses denoted z1, . . . , zJ and we denote the number of

subjects allocated to dose zj by the end of phase II as nj . We model the response at

dose zj using η(zj , θ), where θ is the vector of unknown model parameters. We assume

the response of the ith subject (i = 1, . . . , nj) on dose zj is

Yij ∼ N(η(zj , θ), σ
2),

where σ2 is the between subject variation. In Table 7.1 we present a summary of some

of the main methods considered in this chapter.

In the previous chapters we have modelled the subject response data in three ways:

1. ANOVA: we include the ANOVA method (Section 2.5) as a control comparison

with the other methods. This is a frequentist approach which uses pairwise testing

with placebo and a Dunnett (1955) adjustment for multiplicity. For this analysis

θ = (θ0, . . . , θJ)T and

η(zj , θ) = θj .

We estimate θj using

θ̂j =

∑nj
i=1 yij
nj

.

That is, the fitted model assumes independence between doses and follows the

empirical means at each dose.

2. Normal dynamic linear model (NDLM): in Chapters 4 and 5 we use a Bayesian

framework where the data are modelled using an NDLM. For this model θ =

(θ0, . . . , θJ)T and

η(zj , θ) = θj ,

where θj is the mean of the response distribution at dose zj . In the NDLM the

dependence between the response at the doses is built into the prior distribution

for θ,

θ ∼ N(µ,w∆),

where µ and ∆ are the prior mean and variance covariance matrix respectively,

as defined by the system equations (4.1). We assume a discrete uniform prior

distribution for W .

3. Parametric methods: in Chapters 3 and 6 we explore modelling the data using a

parametric model within both frequentist and Bayesian frameworks. We model
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the data using a four parameter sigmoid emax model with θ = (θ1, . . . , θ4)T

written

η(zj , θ) = θ1 + (θ2 − θ1)
zθ4j

θθ43 + zθ4j
.

For the frequentist methods we find the maximum likelihood estimates (MLEs)

denoted θ̂ for the model parameters θ. When we use a Bayesian framework,

we place prior distributions on the model parameters θ and then, for a given

dataset Y = y, sample from the posterior distribution with density π(θ|y) to

make inferences about the dose response curve.

7.3 Decision theory notation

We follow the general notation used by Berger (1985) to construct a utility function,

however we have adapted the notation to fit within the clinical trial setting. In decision

theory we are concerned with making decisions based on the true state of nature, which

in our case is one of the dose response profiles listed in Chapter 2. We denote the true

mean response at dose zj as νj and write ν = (ν0, . . . , νJ)T as the vector or responses.

The observed data are denoted by the random variable Y , which has density p(y|ν).

Particular realisations of data are denoted by y.

For each decision an action is taken, denoted a, where A is the set of all possible

actions. As we are interested in choosing a dose to take forward into phase III we

define our set of actions to be

a =

0 stop after phase II

j take dose zj into phase III (j = 1, . . . , J).
(7.1)

For each ν ∈ N and action a ∈ A there is an associated reward, known as the utility

function. We denote this utility function as u(ν, a). The decision rule δ is a function

δ : Y 7→ A . Hence if Y = y is the observed data from phase II, then δ(y) is the action

that is taken, and so the utility in this case is u(ν, δ(y)).

We take the expectation of the utility function over the possible values for Y to get the

expected gain for a decision rule δ. For a given ν, the expected gain is,

G(ν, δ) = E[u(ν, δ(Y ))] =

∫
u(ν, δ(y))p(y|ν)dy. (7.2)
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We can also consider ν within a Bayesian framework where we place a prior distribution

on ν with prior density π(ν). The Bayes gain of a decision rule δ is then

g(δ) =

∫ ∫
u(ν, δ(y))p(y|ν)π(ν) dy dν. (7.3)

This can be re-written in terms of the posterior distribution π(ν|y) as

g(δ) =

∫ ∫
u(ν, δ(y))π(ν|y) dν dy.

The inner integral is known as the expected posterior gain and is written

ρ(π(ν|y), δ(y)) = E[u(ν, δ(y))|Y = y] =

∫
u(ν, δ(y))π(ν|y)dν. (7.4)

7.4 Determining the utility

In order to construct a utility function, we must first define what we mean by phase III

success. To claim success in phase III we need to observe two things:

1. Two phase III trials with a statistically significant difference from placebo

2. A reasonable safety profile.

We use a two arm parallel group design for each of the two phase III trials, with an

active dose identified during phase II versus the placebo dose. Each arm consists of

n3 subjects, chosen to given appropriate power of detecting a clinically meaningful

difference from placebo. The final inference in phase III is frequentist, and consists of

a pairwise comparison between the active dose zj and the placebo dose z0. We assume

that the expected responses in phase III are normally distributed with between subject

variance σ̃2. Let Ỹj denote the response at dose zj in a phase III trial, which is normally

distributed as

Ỹj ∼ N
(
νj ,

σ̃2

n3

)
,

and Ỹ0 the placebo response,

Ỹ0 ∼ N
(
ν0,

σ̃2

n3

)
.

We control the type I error in each phase III trial at the two sided 5% level. We

conclude that there is a statistically significant difference from placebo and hence a

dose response, if the lower bound of the two-sided 95% confidence interval for the
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difference from placebo is greater than 0. The probability of detecting a treatment

effect in one phase III trial is

PDR(νj , ν0) = 1− Φ

(
−1.96 +

νj − ν0√
2σ̃2/n3

)
. (7.5)

As it is possible for a drug to be efficacious but fail to make it to market because of

safety concerns, we include a term for safety in our criteria for overall success. We use

a quadratic function for the probability of the drug failing due to safety

PSF(j) = 0.2

(
zj
zJ

)2

, (7.6)

which does not depend on νj . This function for safety assumes that the maximum

probability of phase III failing due to safety is 0.2. A quadratic function is used so

that at higher doses the increase in safety from one dose to the next is greater than at

lower doses. When fed into the utility function, incorporating a term for safety aims

to balance the gain in efficacy from increasing a dose level with the increased risk in

the safety profile. Without a term for safety, the highest utility would always occur for

the dose with the largest difference in mean efficacy response from placebo, which for

the monotonic dose response profiles is the top dose.

As we need success in both of the two phase III trials and an acceptable safety profile

in order to get to market, the probability of success in phase III for dose zj is

f(νj , ν0) = PDR(νj , ν0)2(1− PSF(j)). (7.7)

The utility function is in terms of monetary gain and takes into account the cost of

running the phase II and phase III trials, as well as the probability of success in phase

III. The total sample size of the phase II dose-finding trial is denoted N2. In order for

a drug to get to market we need two successful phase III trials. As each phase III trial

has two arms, with n3 subjects on each arm, the total sample size of each of the phase

III trials is denoted N3=2n3. Let c2 and c3 denote the cost per subject in the phase

II and phase III trials respectively, and R denote the potential profit or reward for the

company if the drug makes it to market. If the development process is stopped after

phase II because the probability of success in phase III is low, then the utility for this
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dose is the cost of the failed phase II trial. The utility function we use is written

u(ν, a) =

−c2N2 if a=0

f(νj , ν0)R− c2N2 − 2c3N3 if a = j (j = 1, . . . , J).
(7.8)

7.5 Decision rules

We are interested in making decisions in phase II which maximise the potential gain

over the whole of the phase II and phase III process. In practice we do not know the

true state of nature ν, therefore we make our decisions based on the observed data

Y = y.

7.5.1 Decision rule 1

For our first decision rule, we select the minimum dose with a clinically meaningful

difference (CMD) from placebo to be taken into phase III. This rule for selecting a

dose in phase II is the same as described in Chapter 2, and has been used throughout

Chapters 4 to 6 as the method for selecting a dose. For the frequentist methods we

obtain the MLE θ̂ of θ and choose za, where

za = min
j
{zj : η(zj , θ̂)− η(z0, θ̂) ≥ CMD}.

For the Bayesian methods we consider the posterior distribution of θ given the phase

II data Y and choose dose

za = min
j
{zj : Pr(η(zj , θ)− η(z0, θ) ≥ CMD|Y = y) > 0.5}.

In both these cases, the decision rule is then written,

δ1(y) =

0 if no dose has a CMD from placebo

j if zj = za (j = 1, . . . , J).
(7.9)

7.5.2 Decision rule 2

For our second decision rule, we select the dose that maximises the probability of

success in phase III based on the fitted dose response curve. We impose an additional

condition that, in order to continue to phase III, the probability of success in phase III

must be greater than a prespecified threshold x. The value of x is chosen, so that we
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only continue to phase III if we have a reasonable chance of success. For the frequentist

methods, for a dataset Y = y, we estimate νj at dose zj as

ν̂j(y) = η(zj , θ̂),

where θ̂ is the estimate of the model parameter θ. For the Bayesian methods we shall

estimate νj as

ν̂j(y) = E[η(zj , θ)|Y = y].

The decision rule is written

δ2(y) =


0 if max

j
(f(ν̂j(y), ν̂0(y))) < x

j where j = argmax
k∈{1,...,J}

(f(ν̂k(y), ν̂0(y))) if max
j

(f(ν̂j(y), ν̂0(y))) ≥ x.

(7.10)

7.5.3 Decision rule 3

Our third and final decision rule is a Bayesian decision rule, where we choose the dose

that maximises the posterior probability of success. Again, we impose an additional

condition that, in order to continue to phase III, the posterior probability of success in

phase III is greater than a prespecified threshold x. Within the Bayes framework we

place a prior distribution on the model parameters and then make the decisions based

on the posterior distribution for each νj , given the phase II data Y = y. We denote

the posterior probability as

PPSj = E[f(νj , ν0)|Y = y] =

∫
f(νj , ν0)π(ν|y)dν. (7.11)

In this Bayes framework we have νj = η(zj , θ) and so rather than specify a prior

distribution for ν we specify a prior distribution for the parameter vector θ. We can

then express (7.11) as

PPSj = E[f(η(zj , θ), η(z0, θ))|Y = y] =

∫
f(η(zj , θ), η(z0, θ))π(θ|y)dθ.

The decision rule is then written

δ3(y) =


0 if max

j
(PPSj) < x

j where j = argmax
k∈{1,...,J}

(PPSk) if max
j

(PPSj) ≥ x.
(7.12)
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We estimate the integral for the posterior probability of success by simulation, using

T samples generated from the posterior distribution π(θ|y) which are denoted θt

(t = 1, . . . , T ),

PPSj ≈
1

T

T∑
t=1

f(η(zj , θ
t), η(z0, θ

t)).

7.6 Phase III set up

For the phase III trial design, we use a two arm parallel study design to compare the

placebo dose with the dose identified in phase II. For each phase III trial, we use a

sample size of n3 = 86 subjects on each dose, which gives us 90% power to detect

a difference of 1.3 with a between subject variance σ̃2 = 6.75. The between subject

variance for the phase III design is 50% bigger than that used in the phase II design to

account for the potential additional variability that may be in the phase III population.

We assume the cost of a subject in phase II is the same as a subject in phase III

and assign c2 = c3 = 1, where this represents 1 unit of some larger monetary value.

We assign a reward for successfully getting the drug to market of R=12000. Hence

the return for getting a compound to market is 12000 times the cost of a phase II or

phase III subject. For decision rules 2 and 3 we use a threshold of 0.25 to determine if

we continue to phase III. This was chosen as it is equivalent to having at least a 50%

chance of success in each of the two phase III trials, including the possibility of failure

due to safety reasons.

7.7 Target dose

Previously we have defined the target dose to be the minimum dose with a 1.3 change

from placebo, and the target dose interval to include the doses with ±10% of the

1.3 clinically meaningful difference from placebo, with some rounding of the doses as

discussed in Section 2.3.3. Table 7.2 presents the target dose and target dose intervals

based on this previous definition, for each of the dose response profiles. We also include

the probability of success at the target dose as defined by (7.7), with j equal to the

index of the target dose, using the phase III trial design described in Section 7.6.

We now define our target dose to be the dose that maximises the probability of

success in phase III, f(νj , ν0). We include doses in the target dose interval that have a
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Dose Response Profile Target Dose Target Dose interval
Dose Response Pr(success) Doses Response

min max

Linear 6 1.23 0.68 {6,7} 1.23 1.44
Emax 2 1.30 0.81 {2,3} 1.30 1.43
Sigmoid Low 3 1.46 0.89 {3} 1.46 1.46
Sigmoid Emax 5 1.29 0.75 {5,6} 1.29 1.51
Sigmoid High 7 1.39 0.75 {7} 1.39 1.39
Logistic 5 1.31 0.77 {5} 1.31 1.31
Umbrella 3 1.24 0.75 {3,4} 1.24 1.47
Explicit 1 1.29 0.81 {1,2,3} 1.29 1.42

Table 7.2: Target dose and target dose intervals based on the minimum dose with a
1.3 clinically meaningful difference from placebo.

probability of success in phase III of greater than or equal to

0.975×max
j
f(νj , ν0).

Table 7.3 presents the new target dose and target dose intervals for each of the dose

response profiles under this new definition. We note that the Emax Low profile is

now considered to have a target dose, but that the mean response and probability

of success in phase III is relatively low compared to the other dose response profiles.

Under the previous definition, the Emax Low profile does not have a target dose, as no

dose meets the 1.3 clinically meaningful difference from placebo. Figure 7-1 illustrates

how the overall probability of success depends on the probability of detecting a dose

response and the probability of a safety concern for the Linear, Emax and Sigmoid

Emax profiles.

The doses identified as the target doses using the probability of success (Table 7.3)

are higher than when the target dose was defined as the minimum dose with a CMD

of 1.3 from placebo (Table 7.2). This is because the probability of detecting a dose

response is still increasing at the CMD, and so although we penalise choosing a higher

dose due to safety concerns, the penalty for safety does not outweigh the gains in terms

of efficacy, hence higher doses are chosen.
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Dose Response Profile Target Dose Target Dose interval
Dose Response Pr(success) Doses Response

min max

Linear 8 1.65 0.78 {7,8} 1.44 1.65
Emax 4 1.51 0.89 {3,4,5} 1.43 1.56
Emax Low 6 1.01 0.46 {5,6,7} 0.98 1.01
Sigmoid Low 4 1.60 0.91 {4,5} 1.60 1.63
Sigmoid Emax 6 1.51 0.83 {6,7} 1.51 1.61
Sigmoid High 8 1.65 0.77 {8} 1.65 1.65
Logistic 6 1.57 0.85 {6} 1.57 1.57
Umbrella 5 1.60 0.89 {4,5} 1.47 1.60
Explicit 5 1.60 0.89 {3,4,5} 1.42 1.60

Table 7.3: Target doses and target dose intervals based on probability of success in
phase III.
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Figure 7-1: Probabilities of detecting a dose response, observing a safety concern
and success in phase III based on true dose response profiles. Dashed line represents
clinically meaningful difference from placebo.

7.8 Metrics

In the previous chapters we have compared the methods in terms of the metrics

described in Chapter 2. As our aim is now to maximise the probability of success

in phase III, we define new metrics to measure how well each method does in meeting

this new objective. Where expectations are estimated using the sample average, we

use M simulated datasets ym (m = 1, . . . ,M) which have density p(ym|ν).

Correct dose For each dataset we select a dose to be taken through to phase III using the

decision rules described in Section 7.5. We measure the performance of the methods,

by calculating the percentage of datasets where the selected dose is contained in the

target dose intervals given in Table 7.3.
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Expected gain The expected gain is as defined in (7.2). We estimate the expected

gain via simulation as

G(ν, δ) ≈ 1

M

M∑
m=1

u(ν, δ(ym)). (7.13)

Expected gain bias The expected gain bias, is the bias in the predicted gain based on

the observed data compared to the true gain.

For decision rules 1 and 2, we estimate the true state of nature using the observed

data Y = y. For the frequentist methods we estimate νj at dose zj as

ν̂j(y) = η(zj , θ̂),

where θ̂ is the estimate of the model parameter θ. For the Bayesian methods we shall

estimate νj as

ν̂j(y) = E[η(zj , θ)|Y = y].

The utility of a decision rule δ based on the observed data y is then u(ν̂(y), δ(y)). This

is the utility that may then be reported by study team prior to embarking on a phase

III trial. The expected value of the ‘predicted gain’ is

E[u(ν̂(Y ), δ(Y )]

and the value of the true expected gain is G(ν, δ), which is estimated by (7.13). We

calculate the percentage bias as

100× E[u(ν̂(Y ), δ(Y )]−G(ν, δ)

G(ν, δ)
. (7.14)

For decision rule 3 we use a Bayesian framework. We model νj using η(zj , θ) and denote

the true state of nature for a given θ as ν(θ), we then place prior distributions on the

model parameters θ. The ‘predicted gain’ from continuing to phase III after observing

data Y = y is the expected posterior gain,

ρ(π(θ|y), δ(y)) =

∫
u(ν(θ), δ(y))π(θ|y)dθ,

which is estimated by generating T samples from the posterior distribution with density

π(θ|y). We denote these samples as θt (t = 1, . . . , T ) and so ν(θt) = η(zj , θ
t). Taking
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the sample average, the expected posterior gain is

ρ(π(θ|y), δ(y)) ≈ 1

T

∑
u(ν(θt), δ(y)).

On average the predicted gain is

E[ρ(π(θ|Y ), δ(Y ))] ≈ 1

M
ρ(π(θ|ym), δ(ym)).

The expected gain bias is the bias in the predicted gain compared to the true gain, and

is calculated as

100× E[ρ(π(θ|Y ), δ(Y ))]−G(ν, δ)

G(ν, δ)
. (7.15)

7.9 Results

7.9.1 Decision rule 1

Figure 7-2 illustrates the doses selected by each method using decision rule 1, when

the true dose response profile are Linear, Emax and Sigmoid Emax. These are the

doses that were selected in previous chapters, but for the first time we can see all the

methods compared directly. The target dose interval indicated in red are based on the

new definition where we aim to maximise the probability of success in phase III (Table

7.3). Datasets where the action was to stop after the phase II trial are represented as

having selected the placebo dose.

It can be seen that the Bayesian methods which model the data using a NDLM tend to

choose higher doses than the other methods. As seen in Chapters 4 and 5, modelling

the data with an NDLM resulted in a tendency to underestimate the response at

the early doses, resulting in higher doses being selected for phase III. The frequentist

methods have a larger proportion of studies where a clinically relevant difference was

not detected. These methods also tend to choose lower doses than the methods that

use the Bayesian NDLM to model the data. For both the frequentist parametric and

Bayesian NDLM methods, there is little difference between the doses chosen for the

adaptive and non-adaptive subject allocations.

Figure 7-3 displays the operational characteristics based on the metrics in Section 2.3,

for the different methods listed in Table 7.1. The one-sided type I error rate under the

Flat dose response profile has been maintained at the one-sided 5% level for each of the

methods. For the active dose response profiles, the methods which use a parametric
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Figure 7-2: Histogram of doses selected in phase II for all methods, based on the
clinically meaningful difference from placebo (decision rule 1). Target dose intervals
are indicated in red.
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Figure 7-3: Operational characteristics for all methods listed in Table 7.1, based on the
metrics in Chapter 2.

sigmoid emax model or the NDLM detect a dose response approximately 100% of the

time. The ANOVA method detects a dose response with a similar frequency with which

it detects a clinical response. As we can see from Figure 7-3, the methods which use the

Bayesian NDLM tend to have the highest probability of detecting a clinical response.

From Figure 7-3 the absolute prediction error for all the methods are similar, with the

exception of the Linear, Emax, Umbrella and Explicit profiles. For the Linear and

Umbrella profiles, the methods which use a Bayesian NDLM have a smaller prediction

error than the parametric methods which modelled the data using the four parameter

sigmoid emax model. This is because the NDLM, unlike the sigmoid emax model,

makes no assumptions about the underlying shape of the dose response curve and so

is better able to fit the Linear and Umbrella dose response profiles. On the other hand

the parametric sigmoid emax model is more capable of fitting the Emax and Explicit

profiles than the NDLM, as the change in efficacy at the early doses is too steep for

the NDLM to fit well.

Figure 7-4 illustrates the probability of correctly selecting a dose in the target dose

interval, based on the old and new definitions of the target dose interval (Tables

7.2 and 7.3 respectively). We can see that when using the old definition of the

target dose interval, the performance of the different allocations and analysis methods

depends on the shape of the true dose response profile. Using the new definition, the

performance of the methods which model the data using an NDLM have improved

while the performance of the parametric methods has deteriorated. As the new target

dose interval tends to favour higher doses, the methods which model the data using

an NDLM now perform consistently better than the other methods. The adaptive
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Figure 7-4: Probability of choosing a dose in the target dose interval using decision
rule 1, based on old and new definitions of the target dose interval.

methods tend to perform better than the non-adaptive methods under this new metric.

The expected gains of different methods are presented in Figure 7-5. From Figure

7-5 we see that the methods which model the data using a Bayesian NDLM have a

consistently larger gain than the other methods. This is consistent with the results

presented in Antonijevic et al. (2010), who attributes this success to the adaptive

nature of the GADA method. However, we observe that using an equal allocation

design with an NDLM analysis also does equally well. Our explanation of the success

of the NDLM methods is that they tend to choose higher doses. For the majority of the

dose response profiles, choosing a higher dose increases the power in phase III. Although

this also increases probability of failing due to safety concerns, in our formulation the

increase in power often outweighs the additional safety risk. This results in higher

doses having a larger probability of success in phase III and therefore a larger utility.

The expected gain bias in Figure 7-5 suggests that the ANOVA and frequentist

parametric methods tend to overestimate the response at the target dose identified

in phase II. The methods which model the data using an NDLM have a consistently

smaller gain bias. The box plots in Figure 7-6 illustrates the difference between the

fitted curve and the true dose response profile at the selected dose, excluding the cases

where there was no clinical meaningful difference from placebo. We can see that for the

methods which model the dose response using an NDLM, the response at the selected

dose is close to that of the true response. Despite the aim of the GADA and cohort

methods to focus the subject allocations on the target dose, there is little to distinguish
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Figure 7-5: Expected gain and the expected gain bias. Dose selected using the clinically
meaningful difference from placebo (decision rule 1).

between the adaptive and non-adaptive subject allocations. As predicted from the gain

bias, the ANOVA and parametric methods overestimate the response at the selected

dose.

7.9.2 Decision rule 2

Using decision rule 2, we first decide if there is a dose response and then proceed

directly to selecting the dose to take forward into phase III. We no longer check if there

is a clinically meaningful difference from placebo, as this does not drive our choice of

dose. Figure 7-7 shows the histogram of doses chosen for some of the true dose response

curves, with the correct target dose interval based on our new definition highlighted in

red. As before, the methods which model the data using an NDLM tend to chose higher

doses than the other methods. Due to the monotonicity of the parametric methods, if

an asymptote is observed, then at the asymptote there is little to gain in power from

choosing a higher dose and more to lose in terms of a higher safety risk. Therefore

these methods tend to choose lower doses. As the NDLM methods underestimate the

dose response at the early doses, if there is an asymptote in the data, it is reached later

in the dose range and so these methods tend to choose higher doses. As the target
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Figure 7-6: Box plots of the difference between the estimated response and the true
response at the dose selected using the clinically meaningful difference from placebo
(decision rule 1). Cases where there was no clinically meaningful difference from placebo
are omitted.

dose intervals now include higher doses, this results in the NDLM methods correctly

identify a dose in the target dose interval more often than the other methods (Figure

7-8).

The probabilities of correctly selecting a dose in the target dose interval, using decision

rules 1 and 2 are presented in Figure 7-8, for each of the dose response profiles. For

all the methods the probability of correctly identifying the target dose either remains

unchanged or is improved by using decision rule 2 over decision rule 1. This is to be

expected, as decision rule 2 chooses the dose that maximises the expected gain and

so is in line with the new metric. The decrease in the ability of the all methods to

correctly identify that the Emax Low model should be stopped after phase II is due to

removing the step where a clinically relevant response is established before the target

dose is found. For simulations where a difference less than the CMD are observed,

using decision rule 2 a dose for phase III is still selected. If this was of concern to

the project team, then the frequency with which we continued to phase III when the

data were generated from the Emax Low profile could be reduced by increasing the

threshold x in decision rule 2.

When we select the dose that maximises the probability of success in phase III, we can

see that the expected gain in Figure 7-9 is larger than when we chose the minimum

dose with a clinically meaningful difference (Figure 7-5). This increase in the expected

gain is partly due to choosing higher doses, and partly because we stop less often at

the end of phase II. The expected gain bias is lower than when decision 1 was used,
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Figure 7-7: Histogram of doses selected in phase II for all methods, based on the
probability of success in phase III (decision rule 2). Target dose intervals are indicated
in red.
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Figure 7-9: Expected gain and the expected gain bias. Dose selected using the
probability of success in phase III (decision rule 2).

although the general trends are similar. The ANOVA method has the largest bias due

to overestimating the response at the target dose (Figure 7-10). As we can see from

Figure 7-10, the difference between the estimated response and the true response at the

dose selected is smaller for the parametric methods than when decision rule 1 was used

(Figure 7-6), and hence this leads to a smaller expected gain bias. The methods which

model the data using an NDLM, have the smallest expected gain bias as the observed

responses are close to the true responses at the dose selected using decision rule 2.

7.9.3 Decision rule 3

For decision rule 3, we identify the target dose for phase III as the dose that maximises

the posterior probability of success. We therefore only consider Bayesian methods. We

consider the three allocation methods that were modelled using an NDLM; the equal,

cohort and GADA allocation methods. We also include the scenario where subjects

were allocated using a Bayesian D-optimal design at the interim analysis after 50% of

subjects had completed the study, and the data modelled using a sigmoid emax model

η(zj , θ) = θ1 + (θ2 − θ1)
zθ4j

θθ43 + zθ4j
,
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Figure 7-10: Box plots of the difference between the estimated response and the true
response at the dose selected using the probability of success in phase III (decision rule
2). Cases where there the probability of success in phase III was less than 0.25 are
omitted.

with three sets of prior distributions placed on the model parameters.

θ1 θ2 θ3 θ4

Prior 1 N(0, 1) N(2, 1) G(4, 4) G(4, 4)

Prior 2 N(0, 4) N(2, 9) G(1, 0.25) G(1, 0.5)

Prior 3 N(0, 25) N(2, 25) G(2, 0.25) G(1, 0.25)

To keep our results consistent with those presented in Section 6.8, we use a Bayesian

adaptive D-optimal with one interim analysis after 50% of subjects had completed the

trial. The Bayesian adaptive D-optimal designs were based on the same sets of prior

distributions listed above. We generate samples from the posterior distribution for the

sigmoid emax model using the HARIS method detailed in Chapter 3.

Figure 7-11 is a histogram of the doses selected after phase II based on decision rule

3, for a selection of the dose response profiles. For the three methods which model

the data using an NDLM, similar doses are chosen to when the decision rule 2 was

used process was (Figure 7-7). The dose chosen by the Bayesian parametric methods

depends on the choice of prior used. Prior 1 is strongly informative and so the prior

distribution dominates the data causing the same range of doses to be chosen regardless

of the dose response profile. Priors 2 and 3 are less informative and so the choice of

dose depends more on the data, hence they are more able to correctly identify a dose

in the target dose interval, with the histograms for Prior 3 taking a similar shape as to

when an NDLM is used to fit the data.
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Figure 7-11: Histogram of doses selected in phase II for all Bayesian methods, based on
the posterior probability of success in phase III (decision rule 3). Target dose intervals
are indicated in red.
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Figure 7-12: Probability of identifying a target dose within the target dose interval
using the decision rule 3.

The sensitivity of the results to the prior distribution placed on the parameters of the

sigmoid emax model can be seen in Figure 7-12, which is a plot of the probability of

selecting a dose in the target interval. Prior 1 has a high probability of selecting a dose

in the target dose interval for some of the dose response profiles, but performs poorly

for other dose response profiles. Prior 2 does reasonably well in identifying a dose in

the target interval for all the dose response profiles, whilst Prior 3 tends to flatten the

dose response curve and so choose higher doses. This does well for the Linear and

Sigmoid Emax profiles, but not so well for the other dose response profiles.

The probabilities of choosing a dose in the target interval for the methods which used

an NDLM to model the data, are very similar to when decision rule 2 is used. Using

the posterior probability of success to identify the target dose, has resulted in the

GADA allocation being better at identifying the target dose than the cohort and equal

allocations methods when the dose response is Linear, Emax Low or Sigmoid High.

However, for the other dose response profiles, the cohort and equal allocation have

better operational characteristics than the GADA approach.

As the doses chosen using the posterior probability of success in phase III for the NDLM

methods are similar to those chosen using the probability of success, this results in a

similar expected gain (Figure 7-12). For the parametric methods, the doses chosen and

so the expected gain are sensitive to the choice of prior distribution. The bias in the

expected gain are generally negative. This is because the probability of success is not

linear in θ, and so samples of θ which result in a efficacious responses have less to gain
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Figure 7-13: Expected gain and the expected gain bias. Dose selected using the
posterior probability of success in phase III (decision rule 3).

in terms of probability of success than samples with ineffective responses have to lose.

Hence, when we average over the posterior distribution we tend to underestimate the

utility. The expected gain bias for the methods which use the NDLM tend to be closer

to 0, this suggests that there is less variability in the dose response curve at the selected

dose, than the Bayesian parametric methods.

7.10 Discussion

It is widely accepted that selecting the correct dose for phase III is a considerably

harder task than detecting a dose response or a clinical response (Bornkamp et al.,

2007). In this chapter we have explored different decision rules for selecting the dose

in phase II to take into phase III.

We redefined the target dose interval to be the set of doses with at least 97.5% of

the maximum probability of success in phase III. Under this new definition, higher

doses were in the target dose interval which favours the NDLM methods when using

decision rule 1, as the NDLM methods tend to choose higher doses than the parametric

methods. The probability of correctly selecting a dose in the target interval was the
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same or higher when using decision rule 2 over decision rule 1, with the NDLM methods

consistently outperforming the parametric methods. Using decision rule 2 also improves

the expected gain and reduces the gain bias compared with decision rule 1. For decision

rule 3, we incorporated the variability in the dose response model by maximising the

posterior probability of success in phase III. For the NDLM methods, there was little

improvement in the expected gain over decision rule 2, but when using decision 3 there

was a negative gain bias suggesting we are more conservative about the predicted gain

when we take the variability in the dose response curve into account. Using decision

3, the expected gain of the parametric methods were sensitive to the choice of prior

distribution placed on the parameters.

Decision rules 2 and 3 have the advantage that they attempt to take into account

possible safety problems that may arise in phase III. If the risk of safety problems

were increased, then the expected gains for all the decision rules would be reduced, but

where decision rules 2 and 3 would tend to identify lower doses, decision rule 1 would

not be impacted. We have shown that based on our knowledge of the dose response

curve in phase II and our beliefs about the possible safety concerns in phase III, it is

possible to optimise the decision making process.

We have found that regardless of the decision rule used, the methods which model

the data using an NDLM tend to have a higher expected gain and a lower gain bias.

This was because the NDLM methods tend to estimate the dose response better at

the selected dose, whereas the parametric methods and the ANOVA method tend to

overestimate the response. We observed that for all three decision rules, there were

some gains to be made in terms of correctly selecting a dose in the target interval, when

adaptive designs were used compared to the non-adaptive design.

We acknowledge that choosing a dose to take into phase III is a complicated procedure,

taking account of a number of sources of information such as pharmacokinetic and

pharmcodynamic data and not made solely using phase II. However, the way in which

we use the phase II data should still, where possible, be optimised. Choosing a dose to

be taken into phase III is one of the main aims of a phase II trial, and so the rule for

identifying this should be ascertained in the design stage. Like any design option, the

characteristics of such a rule can then be evaluated through simulation studies.

A limitation of using decision theory methods is the problem of specifying a realistic

utility function (Stallard et al., 2009; Chen & Smith, 2009). Realistic costings
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and projection of profits also need to be provided, which involves multidisciplinary

involvement (Julious & Swank, 2005). However the advantages are that they allow

project teams to consider clinical trials in the context of a larger development program,

and make decisions between competing trial designs or compounds. Burman et al.

(2006) suggests that Bayesian decision theoretic approaches could be used for making

in-house company decisions, whilst frequentist results are communicated to regulators.
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Discussion

In this thesis we have explored how the use of adaptive designs can impact the opera-

tional characteristics of phase II dose-finding studies, with the aim of identifying when

adaptive designs are beneficial. This thesis was motivated by the work of Bornkamp

et al. (2007) which explored a number of adaptive and non-adaptive allocation meth-

ods. One of the conclusions of this paper was that ‘adaptive dose-ranging designs and

methods clearly lead to gains in power to detect dose response and in precision to select

target dose(s) and to estimate the dose response.’ This paper was then followed up by

Dragalin et al. (2010) who explored further adaptive methods and came to the same

conclusions. We have followed in the general footsteps of these two papers however,

we have taken the methodology further with the aim of explaining whether it is the

adaptation or the analysis which affects the operational characteristics.

The conclusions of this thesis are not as straightforward as those made by Bornkamp

et al. (2007). We have observed improvements in the probability of detecting a clinical

response and selecting a dose in the target interval from some of the adaptive designs,

but these gains were dependent on the choice of adaptation and the underlying dose

response profile. Our results suggest that there are gains to be made when we are

cautious in our adaptation, either using the cohort method (Chapter 5) to allocate

to a range of doses around the minimally effective dose, or using the quasi-adaptive

D-optimal design (Chapter 6), which tests the proposed adaptive designs is efficient for

parameter mis-specifications before adapting. Both these methods have the capability

to adapt when there is a clear signal in the data, but if there is a lot of variability in

the data, then the methods are conservative and tend towards using equal allocation.

In this way, the methods are more robust against being mis-led by interim data.
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When the adaptation methods are more focussed on allocating to a few doses, the

conclusions are less clear. For the GADA method (Chapter 4), we found some gains in

the probability of detecting a clinical response but the adaptation was detrimental to

the ability of the method to select a dose in the target dose interval when compared to

using equal allocation with the same final analysis. For the adaptive D-optimal design

(Chapter 6) the results were varied. For some of the dose response profiles, the adaptive

D-optimal design leads to gains in the probability of identifying a dose in the target

dose interval over the equal allocation design, whilst for other dose response profiles

the adaptation was detrimental.

Adaptation is often proposed to compensate for the lack of knowledge about the ex-

pected dose response profile. If this is the case, then it seems sensible to be more

cautious in our adaptation. If there is reasonable experience with a compound, then

it is generally possible to propose a good design at the outset and so adaptation has

little to offer.

Another conclusion of the Bornkamp et al. (2007) paper was that ‘detecting dose re-

sponse is considerably easier than estimating it, or identifying the target dose to bring

into the confirmatory phase.’ Our results agree with this conclusion. In Chapter 7

we look at optimising the selection of the target dose for phase III. Our results show,

with suitable model assumptions, that selecting the dose that maximises the proba-

bility of success in phase III we can increase our expected gain compared with using

the estimated minimally effective dose. When the expected gain was used to compare

methods, there was a clear distinction between the Bayesian methods which model the

data using the normal dynamic linear model (NDLM) and the frequentist methods,

with the Bayesian methods having a consistently higher gain and lower gain bias. The

expected gain bias was high for the frequentist methods as they tend to overestimate

the response at the dose selected for phase III.

In order to assess the validity of a design, suitable simulations studies need to be

carried out to identify which aspect of the design or analysis impacts the operational

characteristics. The control in the Bornkamp et al. (2007) paper was a non-adaptive

equal allocation design with frequentist analysis using pairwise testing with a Dunnett

(1955) adjustment for multiplicity. This differs from the adaptive method explored in

this thesis in terms of the adaptation and the final analysis, therefore it is unsurprising

there are differences between the operational characteristics. In order to claim the ben-

efit of an adaptive method we first need to understand how the same analysis performs
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when a non-adaptive allocation is used. This is consistent with the comments of Cheng

& Chow (2010) who emphasise the importance of investigators comparing adaptive and

non-adaptive designs when choosing the best design for the study objectives.

An element of adaptation which is often explored but has been excluded from this

thesis, is the possibility to stop a trial at an interim analysis for either efficacy or fu-

tility, and in doing so, reduce the average sample size, saving both time and resources.

The option to stop at an interim analysis was not considered here as it would add an

extra dimension to differentiate between the methods. In addition to this, as all but

one of the active dose response profiles that are considered here have a clinically mean-

ingful difference, stopping for futility was not particularly relevant for these examples.

Throughout this thesis we have used simulation studies to evaluate the performance

of the methods. These simulations studies have made a number of assumptions that

would not hold true in real clinical trials. For example, we assume that subject re-

sponses are available immediately and so when adapting we can use these data to find

the randomisation scheme for the next cohort of subjects. In reality there would be

a delay in obtaining the subject responses, hence at an interim analysis only partial

data would be available for some subjects. A method for dealing with partial data

at interim analyses would need to be incorporated into the design and so should also

be incorporated into any simulation studies carried out. This could take the form of

excluding subjects with partial data from the interim analysis or using a longitudinal

model to predict final responses. In either case, having partial rather than complete

responses available at an interim analysis would increase the variability in the data.

It is our conjecture that the extra variability would have a detrimental effect on the

results for the GADA and adaptive D-optimal methods, as both methods are sensi-

tive to the variability in the interim data. We would expect the additional variability

to result in the cohort method dropping fewer doses at the interim analysis, and the

quasi-adaptive D-optimal approach opting more often for equal allocation. Therefore,

we anticipate that the results of the cohort and quasi-adaptive methods would tend

towards the results for using an equal allocation design.

The scenarios we have explored in this thesis have been chosen to make the results

as comparable as possible with the Bornkamp et al. (2007) and Dragalin et al. (2010)

papers. In these papers two dose schemes were explored; 5 even doses, and all 9 avail-

able doses. We chose to run our simulation studies with only one dosing scheme for

equal allocation, using all 9 available doses. We acknowledge that this is a large num-
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ber of doses to be included in a dose response study, but as Antonijevic et al. (2010)

observes for the adaptive GADA design; ‘the performance of designs with 9 doses is

frequently better than that of the design with 5 doses.’ If we had chosen to use 5 doses,

then the placement of the 5 doses may have had an impact on the results.

We began this thesis by proposing an efficient method for sampling from the pos-

terior distribution for a non-linear dose response model. One area for further work

would be to improve the efficiency of this method by re-using rather than discarding

the initial grid points. There is also the potential to generalise this method to other

non-linear models which can be re-written as a linear model with a non-linear term.

In Chapter 7 we explored different decision rules to select the target dose for phase III.

Another avenue of further work would be to incorporate these decision rules into the

adaptation process. For example, rather than dropping doses based on the probabil-

ity of a clinically meaningful difference from placebo, we could explore dropping doses

based on the probability of success in phase III with the option of incorporating up to

date safety data.

Finally, an opportunity to further explore the gains of response adaptive designs would

be to consider dose-extension trials. In a dose-extension trial we begin with a few low

doses, but then can extend the dose range at an interim analysis as the data deems

necessary. An example of such a trial design is Berry et al. (2010).
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