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ABSTRACT 

 

The ESCRT machinery has a well established role within the endocytic 

pathway. Studies conducted in Drosophila have identified ESCRT proteins as 

important regulators of epithelial cell polarity and growth. Consequently 

ESCRTs have been classified as potential tumour suppressors. Alterations in 

the expression of various ESCRT components have been observed in human 

cancers. However, the possible link between ESCRT proteins, mammalian 

epithelial cell polarity and tumourigenesis has not been investigated.  

 

This thesis demonstrates for the first time that the ESCRT-I protein, Tsg101, is 

required for maintenance of mammalian epithelial cell organisation and polarity. 

siRNA knockdown of Tsg101 in the human Caco-2 cell line results in the 

formation of a multilayered epithelium with compromised apicobasal polarity. In 

addition, Tsg101 depletion impairs differentiation of the epithelial sheet and 

formation of polarised 3D Caco-2 cysts.  

 

Depletion of Tsg101 also results in intracellular accumulation of the tight 

junction protein, claudin-1. This is shown to be constitutively endocytosed and 

recycled in Caco-2 epithelial monolayers, suggesting that ESCRT-I is required 

for claudin-1 recycling to tight junctions. Tsg101 knockdown also impairs 

epithelial barrier formation and enhances Caco-2 migratory ability. This 

suggests that tight junction integrity is impaired and may contribute to the loss 

of Caco-2 cell organisation and polarity observed upon Tsg101 depletion. 

 

Finally, Tsg101 depleted Caco-2 cells appear to overproliferate, forming 

multilayered regions of the epithelial sheet. However, multilayered cells are 

eventually eliminated via apoptosis. Preliminary results suggest that inhibition of 

this apoptotic response enhances the aberrant epithelial phenotype, suggesting 

that the ability to evade apoptosis may be an important factor in determining the 

tumourigenic potential of ESCRT-I depletion. 

 

Therefore, results presented in this thesis suggest that the role of ESCRT-I as a 

tumour suppressor is conserved from Drosophila to mammals.   
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1. INTRODUCTION 

 

1.1. Epithelial Cell Polarity 

 

Epithelial or epithelial-derived cells account for approximately 60% of 

mammalian cell types. The regulated association of these cells into epithelial 

sheets serves multiple functions, such as control of tissue architecture and 

barrier formation (Gibson and Perrimon, 2003; Bryant and Mostov, 2008). 

Epithelial cells are polarised along their apicobasal axis, which is achieved and 

maintained by asymmetric distribution of membrane proteins, lipids, the 

cytoskeleton and various other macromolecules within the cell. This results in 

the formation of apical and basolateral membrane domains with specific protein 

and lipid compositions (Figure 1.1) (Bryant and Mostov, 2008). Functionally 

distinct, apical surfaces are important for processes such as absorption and 

secretion; lateral membranes form cell-cell contacts with adjacent cells and are 

important for adhesion and diffusion barriers; and the basal surface contacts the 

underlying basement membrane and extracellular matrix (ECM). There are 

three key processes which are important for epithelial cell polarisation. These 

are formation of cell-cell junctions; asymmetrical distribution of polarity 

complexes; and interaction of cells with the ECM. These combined cues allow 

individual epithelial cells to establish polarity and coordinate to form a polarised 

tissue (Bryant and Mostov, 2008). 

 

1.1.1. Epithelial Cell-Cell Junctions 

 

Development and function of polarised epithelial tissues depends in part, on the 

formation of specialised cell-cell junctions. These form between the lateral 

membranes of adjacent cells and are composed of various transmembrane and 

membrane-associated proteins. The epithelial junctional complex is composed 

of tight junctions, adherens junctions and desmosomes (Figure 1.2). In addition, 

epithelial cells can also form gap junctions. These intercellular junctions play 

important roles in epithelial polarisation, cell-cell adhesion, barrier formation and 

signal transduction (Knust and Bossinger, 2002; Miyoshi and Takai, 2005; 

Balda and Matter, 2008).  
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  Side View    Top View 

 

 

 

 

 

 

 

Figure 1.1 Morphology of polarised epithelial cells. Most epithelial cells are polarised along 

their apicobasal axis resulting in distinct apical (red) and basolateral (green) membrane 

domains. Specialised cell-cell junctions form along lateral membranes of adjacent cells (side 

view), surrounding the circumference of each cell (top view). These junctions are important to 

maintain apicobasal polarity, cell-cell adhesion and to control diffusion across the epithelial 

sheet.  

 

 

Tight Junctions 

Tight junctions (TJs) form at the most apical part of the epithelial lateral 

membrane and appear as a series of very close membrane contacts between 

adjacent cells by transmission electron microscopy (Farquhar and Palade, 

1963). By freeze-fracture electron microscopy, TJs appear as a continuous 

network of intramembrane strands that encircle the cells (Staehelin, 1973). TJs 

define the boundary between the apical and basolateral membrane domains of 

epithelial cells. Here they serve a fence function to restrict intramembrane 

diffusion of lipids in the outer leaflet of the plasma membrane (Shin et al., 2006; 

Matter and Balda, 2007). This is thought to be important to help maintain 

apicobasal cell polarity although one study has demonstrated that in epithelial 

cells which mostly lack expression of the cytoplasmic TJ proteins, ZO-1, -2 and 

-3, apicobasal cell polarity is unperturbed despite a complete lack of TJ 

formation (Umeda et al., 2006).  

 

TJs also form a barrier to regulate paracellular diffusion across the epithelial 

sheet, which is crucial for the function of epithelial tissues (Matter and Balda, 

2007). This epithelial barrier is semipermeable, allowing selective diffusion of 

ions and small hydrophilic molecules depending on their charge and size. 

Paracellular permeability is regulated by various distinct molecular mechanisms. 



15 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Composition of the epithelial junctional complex. Polarised epithelial cells form 

tight junctions (TJs), adherens junctions (AJs) and desmosomes, which collectively form the 

epithelial junctional complex. TJs are the most apical cell-cell junctions and mark the boundary 

between the apical (red) and basolateral (green) membrane domains. TJs are composed of 

three families of transmembrane proteins: claudins, TJ-associated MARVEL protein family 

(TAMP) occludin, marvelD3 and tricellulin, and JAMs. TJs interact with the actin cytoskeleton 

via various cytoplasmic adaptor proteins, such as the ZO-1. AJs are localised below TJs and 

are composed of transmembrane proteins, E-cadherin and nectin, which interact with 

cytoplasmic adaptor proteins, β-catenin and afadin, respectively. β-catenin binds to α-catenin 

which interacts with actin. p120-catenin also associates with the cadherin/catenin complex. 

Afadin binds to actin and can also interact with α-catenin. Lastly desmosomes are composed of 

transmembrane proteins, desmogleins and desmocollins, which bind to cytoplasmic proteins, 

plakoglobin and plakophilin. These interact with desmoplakin which associates with 

intermediate filaments. Epithelial cells also form cell-ECM contacts along the basal membrane 

(adapted from Miyoshi and Takai, 2005) 
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and can differ among epithelia (reviewed in Gonzalez-Mariscal et al., 2008). It is 

also becoming increasingly apparent that TJs play an important role in 

establishment of epithelial cell polarity, proliferation, differentiation and gene 

expression through multiple signalling mechanisms (reviewed in Kohler and 

Zahraoui, 2005; Shin et al., 2006; Matter and Balda, 2007). 

 

TJs are composed of three main families of transmembrane proteins. Claudins 

along with the tight junction associated MARVEL (MAL and related proteins for 

vesicle trafficking and membrane link) protein (TAMP) family, occludin, tricellulin 

and marvelD3, are all tetraspan transmembrane proteins whereas the junctional 

adhesion molecules (JAMs) are single-span transmembrane proteins (Shin et 

al., 2006; Chiba et al., 2008; Balda and Matter, 2008; Mariano et al., 2011).  

 

The claudins, a family of at least 27 proteins, are thought to be the main 

structural components of the TJ barrier (Mineta et al., 2011). These are 

expressed in a tissue-specific manner, with most cells expressing at least two 

claudin family members (Balda and Matter, 2008; Chiba et al., 2008). Various 

studies have indicated that claudins are important for the barrier function of TJs 

in epithelial tissues. Furthermore, TJ claudin composition determines the 

paracellular permeability of an epithelial tissue (reviewed in Van Itallie and 

Anderson, 2006; Krause et al., 2008). Some claudins are thought to tighten the 

paracellular barrier, for example a sealing function has been demonstrated for 

claudin-1 as knockout mice display defective epidermal barrier function and die 

soon after birth due to transepidermal water loss (Furuse et al., 2002). Similarly, 

in claudin-5 deficient mice leakage of small tracers across the brain 

endothelium is observed (Nitta et al., 2003) and claudin-14 knockout is thought 

to result in deafness due to perturbed barrier function of the inner ear epithelium 

(Ben-Yosef et al., 2003).  

 

In contrast, other claudins have been shown to increase permeability across the 

epithelium by forming charge-selective paracellular ion pores (Van Itallie and 

Anderson, 2006; Krause et al., 2008). For example, claudin-2 overexpression in 

MDCK cells results in the formation of paracellular cation pores increasing 

cation permeability across the epithelial sheet (Amasheh et al., 2002). 

Correlating with this, claudin-2 expression in vivo is found in leaky epithelia, 
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such as proximal renal tubules, where it is required for the cation paracellular 

permeability properties of the epithelium (Muto et al., 2010).  

  

The TAMP family of TJ transmembrane proteins includes occludin, the first 

transmembrane TJ protein to be identified (Furuse et al., 1993). However, the 

function of occludin remains to be fully determined. A role for occludin in the 

barrier and fence functions of TJs has been demonstrated, for example 

expression of mutant occludin in MDCK cells increases paracellular flux of small 

tracers and disrupts polarised distribution of the lipid sphingomyelin to the apical 

membrane (Balda et al., 1996). In contrast, occludin knockout mice appear to 

retain normal TJ morphology and barrier formation (Saitou et al., 2000). 

However, these knockout mice displayed growth retardation and histological 

abnormalities in various tissues, suggesting that the role of occludin is more 

complex than TJ barrier formation alone. Indeed occludin has been linked to 

regulation of various signalling pathways (reviewed in Chiba et al., 2008). 

Studies have demonstrated that occludin is important for regulation of the actin 

cytoskeleton in MDCK cells via RhoA signalling (Yu et al., 2005) and inhibition 

of apoptosis via mitogen-activated protein kinase (MAPK) signalling pathways 

(Murata et al., 2005). Therefore, further studies will no doubt continue to 

elucidate mechanisms underlying occludin function in epithelial tissues.   

 

More recently identified components of TJs, tricellulin and marvelD3, also 

belong to the TAMP family (Ikenouchi et al., 2005; Steed et al., 2009; Raleigh et 

al., 2010; Mariano et al., 2011). However, similarly to occludin, tricellulin and 

marvelD3 are unable to form tight junction strands in the absence of claudins 

(Ikenouchi et al., 2008; Raleigh et al., 2010). Tricellulin is enriched at contacts 

between three epithelial cells and is thought to play a role in TJ formation as 

RNAi knockdown impairs epithelial barrier formation (Ikenouchi et al., 2005). 

However, the only phenotype of mutations in the tricellulin gene in humans 

appears to be deafness (Riazuddin et al., 2006) and therefore, the precise 

function of tricellulin is still to be elucidated. MarvelD3 has also been shown to 

colocalise with occludin at TJs (Steed et al., 2009; Raleigh et al., 2010)  

Although marvelD3 is not required for TJ formation (Steed et al., 2009), studies 

suggest that this protein is important for permeability properties of epithelial 

monolayers. However, results from these studies seem to be somewhat 
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contrasting with one study demonstrating an increase in transepithelial 

resistance (TER) upon siRNA knockdown of marvelD3 in Caco-2 cells (Steed et 

al., 2009) whereas a delay in TER development was observed by another study 

(Raleigh et al., 2010). Therefore, the role of marvelD3 in TJ function remains to 

be clarified.  

 

Interactions between marvelD3 and both occludin and tricellulin have been 

observed whereas occludin and tricellulin do not appear to associate directly 

(Raleigh et al., 2010). It has been suggested that tricellulin and marvelD3 may 

be able to compensate for occludin loss as siRNA knockdown of occludin in 

MDCK cells induces redistribution of tricellulin from tricellular to bicellular TJs 

(Ikenouchi et al., 2008). In addition, increased tricellulin and marvelD3 

expression and localisation to TJs have been observed in vivo after tumour 

necrosis factor (TNF) treatment (Raleigh et al., 2010). TNF treatment of mice 

has previously been shown to disrupt the intestinal epithelial barrier and induce 

occludin internalisation (Clayburgh et al., 2005). Therefore, the observed 

increase in expression of tricellulin and marvelD3 may reflect an effort to 

stabilise the TJ and compensate for occludin loss, although this is not sufficient 

to restore barrier function (Raleigh et al., 2010). The possibility of overlapping 

functions of these three TJ proteins may provide an explanation as to why 

barrier function is not affected in occludin knockout mice (Saitou et al., 2000). 

 

The third transmembrane protein family found at TJs are JAMs. These are 

members of the immunoglobulin superfamily and are expressed in other cell 

types as well as epithelial cells, such as leukocytes and endothelial cells (Shin 

et al., 2006). This means that JAMs can regulate cell-cell adhesion between 

distinct as well as the same types of cells (Chiba et al., 2008). Four JAMs have 

been identified: JAM-A, -B, -C and -D and these proteins are thought to be 

involved in TJ formation and barrier function, although further work is required 

to understand the role of JAMs in more detail (Shin et al., 2006, Balda and 

Matter, 2008; Chiba et al., 2008). In addition to JAMs, other types of single-span 

transmembrane proteins associate with the TJ. These include Crumbs 3 

(CRB3), which is important for epithelial polarisation, and blood vessel 

epicardial substance (Bves), thought to contribute to the establishment and/or 

maintainence of TJs (Balda and Matter, 2008; Russ et al., 2011). 

Laura F
Sticky Note
Added a few sentences to mention that there are additional single-span transmembrane proteins at tight junctions,
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TJs composition also involves various cytoplasmic adaptor proteins which 

interact with the intracellular domains of the transmembrane TJ proteins. These 

cytoplasmic adaptor proteins have key roles in organisation of the 

transmembrane proteins, attachment to the actin cytoskeleton and initiation of 

cell signalling (reviewed in Shin et al., 2006). The most studied TJ adaptor 

protein is zonula occludens (ZO)-1, the first TJ protein to be identified 

(Stevenson et al., 1986). This is one of three ZO isoforms which belong to the 

membrane-associated guanylate kinase (MAGUK) family of proteins (Shin et 

al., 2006). ZO-1 contains several protein-protein interaction domains, allowing it 

to bind to claudins, ZO-2 or ZO-3, occludin, actin and α-catenin as well as 

several signalling proteins (Balda and Matter, 2008). ZO proteins play an 

important role in the assembly and function of TJs, for example simultaneous 

depletion of ZO-1, -2 and -3 in cultured epithelial cells inhibits claudin 

polymerisation during TJ formation (Umeda et al., 2006). 

 

Another important cytoplasmic protein which localises to TJs is cingulin (Citi et 

al., 1989). Cingulin interacts with other TJ proteins, ZO-1, ZO-2, ZO-3 and JAM-

A as well as actin and myosin, suggesting that cingulin is important for linking 

the TJ to the actin cytoskeletan (Cordenonsi et al., 1999; Bazzoni et al., 2000; 

D'Atri and Citi, 2001; D'Atri et al., 2002). Mutation of cingulin in mouse embryoid 

bodies does not disrupt TJ formation (Guillemot et al., 2004). This has also 

been demonstrated in MDCK cells, where depletion of cingulin has no effect on 

TJ organisation or barrier function (Guillemot and Citi, 2006). However, cingulin 

disruption results in increased protein and mRNA expression levels of various 

TJ proteins, including occludin, claudin-2 and ZO-3, suggesting that cingulin 

plays a role in transcriptional regulation of TJ proteins (Guillemot et al., 2004; 

Guillemot and Citi, 2006).  

 

Cingulin has also been shown to regulate RhoA signalling, which is important 

for epithelial proliferation (Aijaz et al., 2005; Guillemot and Citi, 2006). 

Interaction between cingulin and the RhoA guanine nucleotide exchange factor 

(GEF) protein, GEF-H1/Lfc, at TJs inactivates GEF-H1/Lfc and therefore, 

inhibits RhoA signalling (Aijaz et al., 2005). Consistent with this, depletion of 

cingulin results in increased RhoA activity causing increased cell proliferation 

and density (Guillemot and Citi, 2006). In addition, RhoA signalling is also 
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important for TJ assembly and a recent study has identified the RhoA GEF, 

p114RhoGEF, as an important regulator of RhoA activation specifically at cell-

cell junctions (Terry et al., 2011). Interestingly, this study also shows that 

recruitment of p114RhoGEF to TJs requires cingulin, therefore demonstrating 

additional roles for this protein in regulation of RhoA signalling and TJ 

formation.  

 

Epithelial cell proliferation is also regulated by the cytoplasmic TJ protein, ZO-1-

associated nucleic acid binding protein (ZONAB), a Y-box transcription factor 

which is regulated ZO-1 (Balda and Matter, 2000). Overexpression of ZONAB 

increases epithelial cell proliferation in vitro and in vivo (Balda et al., 2003; 

Georgiadis et al., 2010). Proliferation is promoted by nuclear accumulation of 

ZONAB, resulting in expression of target genes such as ErbB-2 (Balda and 

Matter, 2000). In addition, ZONAB has been shown to regulate nuclear 

localisation of cell division kinase (CDK) 4 which is important for G1/S transition 

(Balda et al., 2003).  

 

Adherens Junctions 

Localised just below the tight junctions are the adherens junctions (AJs), which 

form a continuous adhesion belt across the epithelial sheet (reviewed in 

Niessen and Gottardi, 2008). The key function of AJs is to mediate strong cell-

cell adhesion, however, these junctions also have additional important roles and 

are crucial for establishment of epithelial cell polarity (Nejsum and Nelson, 

2007).  

 

AJs are comprised of two basic adhesive units: the cadherin/catenin and 

nectin/afadin complexes (Niessen and Gottardi, 2008; Coradini et al., 2011). 

Classic cadherins are type I, single-pass transmembrane glycoproteins which 

mediate calcium-dependent intercellular adhesion via homophilic binding of 

their extracellular domains. The cytoplasmic domain of cadherins interact with 

cytoplasmic adaptor proteins, catenins (Ozawa et al., 1990). This interaction is 

important for mediating key structural and signalling activities required for 

adhesion (Miyoshi and Takai, 2005; Niessen and Gottardi, 2008). The primary 

cadherin expressed in epithelial cells is E-cadherin. This binds to β-catenin, 

which in turn binds α-catenin, mediating association with the actin cytoskeleton 
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(Kobielak and Fuchs, 2004). Cadherins also associate with p120 catenin, which 

seems to play an important role in regulation of cadherin levels and formation of 

strong, more “compacted” adhesions (Ireton et al., 2002). 

 

Cooperating with the cadherin/catenin complex, the nectin/afadin complex also 

mediates intercellular adhesion and actin association. Nectins (1-4) are 

members of the immunoglobulin superfamily of calcium-independent adhesion 

molecules (Miyoshi and Takai, 2005; Niessen and Gottardi, 2008). Nectins are 

single-pass transmembrane proteins which can engage in homophilic and 

heterophilic adhesion with nectins or nectin-like receptors on adjacent cells 

(Miyoshi and Takai, 2005; Niessen and Gottardi, 2008). Nectins interact with 

afadin which can bind to the actin cytoskeleton (Takahashi et al., 1999). Afadin 

can also bind to α-catenin, therefore providing a link between the two adhesive 

units of AJs (Tachibana et al., 2000). 

 

Desmosomes 

Desmosomes are the third component of the epithelial junctional complex, 

together with TJs and AJs (Balda and Matter, 2008). Desmosomes are found 

below the AJs and function to anchor intermediate filaments (IFs) to sites of 

strong adhesion, therefore playing a key role in maintenance of epithelial tissue 

integrity. In addition, desmosomes appear to function in other cellular 

processes, such as epithelial proliferation and differentiation and are important 

for epithelial tissue architecture and morphogenesis (reviewed in Yin and 

Green, 2004; Delva et al., 2009).  

 

Desmosomes consist of single-pass transmembrane glycoproteins of the 

desmosomal cadherin family, desmogleins (Dsg 1-4) and desmocollins (Dsc 1-

3), which mediate calcium-dependent adhesion between adjacent cells via their 

extracellular domains. The cytoplasmic domains of Dsgs and Dscs bind to the 

armadillo family proteins, plakoglobin and plakophilins (Witcher et al., 1996; 

Chen et al., 2002). These proteins associate with desmoplakin, the most 

abundant component of the desmosome, which anchors the junction to IFs 

(Kouklis et al., 1994; Yin and Green, 2004; Delva et al., 2009). However, this 

linear model may be insufficient to describe the complexity of the desmosomal 

architecture (Yin and Green. 2004). Additional protein-protein interactions have 
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been observed, for example plakophilin can also bind to plakoglobin and IF 

proteins, and Dsgs and Dscs can associate with desmoplakin independently of 

plakoglobin (Smith and Fuchs, 1998; Bonne et al., 2003). These multiple points 

of contact may result in greater tensile strength of the desmosome (Yin and 

Green, 2004). 

 

Gap Junctions 

Epithelial cells can also form a fourth type of intercellular junction called gap 

junctions. These junctions mediate intercellular signalling and may also 

contribute to cellular adhesion (reviewed in Nakagawa et al., 2010). Gap 

junctions are comprised of tens to thousands of intercellular gap junction 

channels. These allow passage of ions and small molecules up to 1 kDa in size 

and are gated by multiple mechanisms. Gap junction channels are formed by 

pairing of two hemichannels on adjacent cells. Each hemichannel is composed 

of six connexin (Cx) subunits surrounding a central pore and has distinct 

permeability and selectivity properties. 

 

1.1.2. Epithelial Cell-ECM Contacts 

 

In addition to cell-cell contacts, epithelial cells must also form contacts with the 

ECM to allow complete polarisation of epithelial tissues (Eaton and Simons, 

1995; Matlin et al., 2003). The main components of cellular adhesions to the 

ECM are the cell surface integrin receptors. Integrins are heterodimeric type I 

transmembrane glycoproteins comprised of α and β chains which, upon binding 

to ECM ligands such as fibronectin, laminin or collagen, regulate many aspects 

of cell behaviour (Matlin et al., 2003; Barczyk et al., 2010). In epithelial cells 

most integrins are β1-containing heterodimers which, together with various 

other proteins, are important for the formation of focal adhesions, cell-ECM 

contacts connected to the actin cytoskeleton (Stutzmann et al., 2000; Matlin et 

al., 2003). Epithelial cells also express the epithelial specific α6β4 integrin. This 

is found in hemidesmosomes, cell-ECM adhesion sites that associate with 

intermediate filaments and are important for maintenance of epithelial tissue 

integrity (Nievers et al., 1999; Stutzmann et al., 2000; Matlin et al., 2003). 
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Integrin-mediated cell-ECM contacts are important for polarisation of epithelial 

tissues (Eaton and Simons, 1995; Matlin et al., 2003). This was initially 

suggested by studies which demonstrated that α6β1 integrin was required for 

epithelial polarisation and differentiation in the kidney (Klein et al., 1988; 

Sorokin et al., 1990). Subsequent studies have also shown that orientation of 

the apicobasal axis in MDCK cells is dependent on β1 integrin (Ojakian and 

Schwimmer, 1994) and polarisation of mammary epithelial cells in vitro requires 

α6β4 integrin (Weaver et al., 2002). Therefore, this demonstrates that 

orientation of epithelial polarity depends on cell-ECM contacts. It has also been 

suggested that maintenance of a polarised epithelium may require continued 

interaction with the ECM to act as a polarising cue along with cell-cell contacts 

(Bryant and Mostov, 2008). 

 

1.1.3. Epithelial Polarity Complexes 

 

Establishment and maintenance of epithelial cell polarity is regulated via three 

conserved core polarity complexes (Figure 1.3) (Gibson and Perrimon, 2003; 

Suzuki and Ohno, 2006; Assemat et al., 2008; Bryant and Mostov, 2008). 

These are the Partitioning-Defective (PAR) complex, the Crumbs (CRB) 

complex and the Scribble (SCRIB) complex. Originally identified in 

Caenorhabditis elegans and Drosophila melanogaster, these complexes have 

since been identified in vertebrates and are essential for epithelial cell polarity 

(Assemat et al., 2008). 

 

The PAR Complex 

The PAR complex consists of two PDZ-domain-containing scaffold proteins, 

PAR-6 and PAR-3, and an atypical protein kinase C, aPKC. The complex is 

recruited to the apical membrane where it promotes establishment of 

apicobasal polarity and development of tight junctions (Suzuki et al., 2001; 

Suzuki and Ohno, 2006; Assemat et al., 2008; Horikoshi et al., 2009). PAR-6 

interacts with aPKC and acts as an adaptor molecule, allowing aPKC to interact 

with its downstream effectors, such as PAR-3 (Suzuki et al., 2001; Assemat et 

al., 2008). PAR-3 is thought to localise to sites of forming cell-cell junctions and 

recruit the aPKC-PAR6 complex. The function of PAR-3 seems to be dependent 

on its phosphorylation state. This is partially regulated by aPKC, whose kinase 
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activity is required for the formation of the mature junctional complex (Suzuki et 

al., 2002; Suzuki and Ohno, 2006; Assemat et al., 2008).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Polarity complexes important for establishment and maintenance of epithelial 

cell polarity. Epithelial cell apicobasal polarity is regulated by three core polarity complexes: 

the PAR complex (Par3/Par6/aPKC; yellow), CRB complex (CRB/PALS1/PATJ; red), and 

SCRIB complex (SCRIB/LGL/DLG; green). The PAR and CRB complexes localise in the apical 

region of the cell and promotes formation of the apical membrane (red) and maturation of cell-

cell junctions. The SCRIB complex is localised to and maintains the basolateral membrane 

domain (green). Mutual antagonism between the apical and basolateral polarity complexes 

ensures maintainance of apicobasal polarity (adapted from Suzuki and Ohno, 2006; Coradini et 

al., 2011).  

 

 

The CRB Complex 

The CRB complex also localises to the apical membrane and is composed of a 

transmembrane protein, CRB-3, and two cytoplasmic scaffolding proteins, 

PALS1 (Proteins Associated with Lin Seven 1) and PATJ (PALS1-Associated 

Tight Junction protein) (Assemat et al., 2008). CRB-3 and PALS1 directly 

interact and are important for tight junction formation and epithelial polarity (Roh 

et al., 2003). In addition, CRB-3 appears to be involved in differentiation of the 

apical membrane (Assemat et al., 2008). PALS1 also binds to PATJ and is 
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essential for PATJ expression (Straight et al., 2004). PATJ is important for tight 

junction formation and polarisation and is thought to stabilise the CRB complex 

(Shin et al., 2005; Assemat et al., 2008). 

 

The SCRIB Complex 

Finally, the SCRIB complex consisting of SCRIB, DLG (Discs Large) and LGL 

(Lethal Giant Larvae) is basolaterally localised and functions to establish 

apicobasal polarity by restricting apical membrane identity (Bilder and Perrimon, 

2000; Kallay et al., 2006). SCRIB is a large cytoplasmic multidomain protein 

which is thought to bind to LGL (Kallay et al., 2006). DLG is able to bind to a 

variety of additional proteins thought to be important for stability of DLG and its 

distribution to cellular junctions (Assemat et al., 2008).  

 

Functional Interactions between Polarity Complexes 

Activities of the three polarity complexes are coordinated in order to establish a 

polarised epithelium. In addition, further proteins are also implicated within the 

process of epithelial cell polarisation and interaction with various junctional 

proteins appears to be important for recruitment and activity of the polarity 

complexes (reviewed in Suzuki and Ohno, 2006; Assemat et al., 2008). Briefly, 

during establishment of epithelial cell polarity one of the initial events is the 

recruitment of PAR-3 to the early junctional complex, thought to be mediated by 

association with JAMs (Itoh et al., 2001; Rehder et al., 2006). PAR-3 then 

recruits aPKC-PAR-6. Concurrently, activation of aPKC via phosphorylation 

must occur. This is thought to be initiated by Cdc42 which is activated upon E-

cadherin mediated cell-cell adhesion (Kim, 2000). Active aPKC then 

phosphorylates PAR-3, resulting in formation of the active PAR complex at the 

apical junctions. Once phosphorylated, PAR-3 dissociates from aPKC leaving it 

free to phosphorylate further target proteins and resulting in accumulation of 

phosphorylated PAR-3 at tight junctions. The CRB complex is then recruited to 

the apical membrane and evidence suggests that interactions between the PAR 

and CRB complexes stabilises their localisation to the apical membrane and 

promotes maturation of cell-cell junctions (Lemmers et al., 2004; Assemat et al., 

2008; Krahn et al., 2010).  
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The SCRIB complex is recruited to the basolateral membrane slightly later and 

mutual antagonism between this complex and the apical PAR and CRB 

complexes ensures maintenance of apical and basolateral membrane domain 

identity (Suzuki and Ohno, 2006). LGL competes with PAR-3 for binding to 

aPKCPAR-6, sequestering aPKCPAR-6 away from PAR-3. Upon aPKC 

activation, aPKC phosphorylates LGL which then dissociates from aPKCPAR-

6 and can interact with SCRIB and DLG at the lateral membrane. Therefore, 

aPKC is essential for restricting the SCRIB complex to the basolateral 

membrane and LGL maintains apical localisation of the active PAR complex 

(Bilder et al., 2003; Chalmers et al., 2005; Yamanaka et al., 2006; Assemat et 

al., 2008). 

 

Therefore, establishment and maintenance of epithelial cell polarity is a 

complex, highly regulated process and ongoing work will continue to elucidate 

the dynamics of the cell polarity machinery. 

 

1.2. Epithelial Cell Polarity and Cancer 

 

Tumour formation and progression is a complex, multi-step process in which 

tumour cells acquire various physiological alterations including self-sufficiency 

in growth signalling, insensitivity to growth-inhibitory signals, evasion of 

apoptosis, and tissue invasion and metastasis (reviewed in Hanahan and 

Weinberg, 2011). These hallmarks of cancer collectively result in the growth of 

malignant tumours. Most human cancers originate from epithelial cells and one 

key step in the process of tumour formation and metastasis is loss of epithelial 

cell polarity, often termed epithelial-to-mesenchymal transition (EMT) (Yang and 

Weinberg, 2008). During EMT, epithelial cells lose cell-cell adhesion and 

progressively redistribute or downregulate apical and basolateral epithelial-

specific proteins, acquiring a more mesenchymal phenotype. Consequently 

cells lose their polarised morphology and are able to migrate from the epithelial 

sheet, invade the underlying ECM and metastasise to distant sites in the body 

where they will proliferate and form new tumour cell colonies (Yang and 

Weinberg, 2008; Coradini et al., 2011). Formation of these metastases 

accounts for the majority of cancer deaths (Hanahan and Weinberg, 2011; 

Kopfstein and Christofori, 2006).  
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Therefore, it is clear that regulation of epithelial cell polarity is crucial to maintain 

structure and function of epithelial tissues and prevent diseases such as cancer. 

Indeed, numerous studies have identified a role for many of the proteins 

involved in maintenance of epithelial cell-cell junctions and apicobasal polarity 

during tumourigenesis (reviewed in Coradini et al., 2011). Proteins from all three 

core polarity complexes have been implicated in cancer. Experiments in 

Drosophila have classified scrib, lgl and dlg as neoplastic tumour suppressor 

genes, mutations in which disrupt epithelial polarity and result in neoplastic 

overgrowth of epithelial tissues (Bilder, 2004). The importance of the SCRIB 

complex in tumour suppression has also been demonstrated in mammals. For 

example, depletion of SCRIB disrupts cell polarity and promotes transformation 

of mammary epithelial cells in vitro and in vivo (Zhan et al., 2008). Decrease in 

SCRIB expression has also been associated with invasive cervical cancers 

(Nakagawa et al., 2004). Reduced expression of LGL has been reported in 

gastric adenocarcinoma (Lisovsky et al., 2009), colorectal cancer (Schimanski 

et al., 2005) and malignant melanoma (Kuphal et al., 2006). Components of 

other polarity complexes are also important within the process of 

tumourigenesis, for example loss of CRB3 has been associated with 

tumourigenicity of mouse kidney epithelial cells (Karp et al., 2008). In addition, 

aPKC has been classed as a potential oncogene in ovarian and non-small cell 

lung cancers where overexpression is associated with poor survival (Eder et al., 

2005; Regala et al., 2005). 

 

In addition to the polarity complexes, components of cell-cell and cell-ECM 

contacts are also often associated with cancer. E-cadherin downregulation is 

frequently observed in various human cancers and has been shown to correlate 

with increased metastatic behaviour (Perl et al., 1998; Coradini et al., 2011). 

Alterations in tight junction structure and function are also often associated with 

enhanced invasiveness of human carcinomas (Miyoshi and Takai, 2005; 

Oliveira and Morgado-Diaz, 2007). For example, occludin levels have been 

found to be reduced in breast and prostate cancer (Busch et al., 2002; Martin et 

al., 2010) and changes in expression of claudins are frequently observed in 

human tumours (Morin, 2005). Claudin-1 has been found to be reduced in 

breast (Kramer et al., 2000; Tokes et al., 2005); lung (Chao et al., 2008); and 

colon (Resnick et al., 2005) cancers, and upregulation of claudins has also 
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been associated with carcinogenesis (Oliveira et al., 2005). Cell-ECM 

interactions are also important for the development of carcinomas and changes 

in expression of integrin receptors is often observed in neoplastic cells (Bosman 

et al., 1993). 

 

The incidence of defective epithelial cell polarity during tumour formation and 

progression highlights the need to fully understand the mechanisms governing 

polarisation within normal, healthy epithelial tissues. As already discussed, 

various mechanisms involving polarity complexes and formation of cellular 

contacts are required to establish epithelial polarity. However, in order to carry 

out their function these proteins must be delivered and maintained at the correct 

location. Polarised epithelial cells feature a complex, highly regulated protein 

trafficking network and it is becoming clear that this is important for the 

establishment and maintenance of a functional epithelium.  

 

1.3. Protein Trafficking and Epithelial Cell Polarity 

 

1.3.1. Endocytosis 

 

In general, endocytosis is the process by which cells transport extracellular 

material or membrane-bound cargo from the plasma membrane to specific 

intracellular compartments. This process is required for many important cellular 

functions, including regulation of cell-surface receptors, uptake of extracellular 

nutrients and maintenance of cell polarity (Mukherjee et al., 1997). Several 

mechanisms of endocytosis exist but generally, the endocytic pathway begins 

with internalisation of transmembrane proteins into endocytic vesicles which 

invaginate and pinch off from the plasma membrane. These are delivered to the 

early endosome and from here, material can either be recycled back to the cell 

surface via recycling endosomes, or can be degraded via trafficking to the 

lysosome (Mukherjee et al., 1997; Stuffers et al., 2009a). In order to sort cargo 

destined for degradation from that which must be recycled, the formation of 

multivesicular bodies (MVB) occurs (Mukherjee et al., 1997; Babst, 2005). 

MVBs are formed by invagination and budding of vesicles from the early 

endosomal membrane into the lumen. During this process, proteins to be 

degraded are sorted into these intralumenal vesicles (ILVs), whereas those to 
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be recycled are retained on the endosomal limiting membrane and sorted 

towards the recycling pathway. Eventually the MVB will fuse with the lysosome 

and its contents will be degraded (Figure 1.4) (Mukherjee et al., 1997; Babst, 

2005; Stuffers et al., 2009a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 The endocytic pathway. Generally the endocytic pathway begins with endocytosis 

of proteins into endocytic vesicles which invaginate and pinch off from the plasma membrane. 

Upon delivery to the early endosome, proteins can either be recycled back to the cell surface 

via recycling endosomes, or can be targeted for degradation. Proteins to be degraded are 

internalised from the endosomal membrane into intraluminal vesicles, forming the multivesicular 

body (MVB). The MVB will then fuse with the lysosome and its contents will be degraded 

(adapted from Babst, 2005). 

 

 

Endocytosis in polarised cells is a complex, highly dynamic process and various 

signalling and sorting mechanisms are important to regulate transport to and 

from the distinct apical and basolateral membrane domains in order to maintain 

apicobasal polarity (Hoekstra et al., 2004; Mellman and Nelson, 2008; Weisz 

and Rodriguez-Boulan, 2009). In comparison to unpolarised cells, polarised 
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epithelial cells contain additional populations of endosomal compartments and 

protein trafficking can occur along multiple endocytic routes (Figure 1.5) 

(Hoekstra et al., 2004; Golachowska et al., 2010).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Endocytic compartments and trafficking routes in polarised epithelial cells. 

Cargo internalised from the apical (red) or basolateral (green) membrane is delivered to apical 

early endosomes (AEE) or basolateral early endosomes (BEE), respectively. Cargo can then be 

recycled back to the plasma membrane domain of origin, directed to the degradative pathway 

(blue arrows) via trafficking to late endosomes (LE) and lysosomes (LYS), or transported to the 

common recycling endosome (CRE). From the CRE, cargo can be transported to the 

basolateral (green arrow) or apical (red arrows) membrane, or can be directed to lysosomes for 

degradation. Apically destined cargo can travel directly from the CRE or via apical recycling 

endosomes (ARE). Recycling endosomes are also important for the biosynthetic trafficking 

pathway. Newly synthesised proteins can be delivered from the TGN to their specific membrane 

domain directly, via the CRE or BEE (broken arrows) (adapted from Hoekstra et al., 2004; 

Golachowska et al., 2010). 
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1.3.2. Endocytic Trafficking in Polarised Cells 

 

In polarised epithelial cells, cargo endocytosed either from the apical or 

basolateral membrane is delivered to apical early endosomes (ARE) or 

basolateral early endosomes (BEE), respectively. From here, cargo can either 

be recycled back to the plasma membrane domain of origin, directed to the 

degradative late endosomal (LE)/lysosomal pathway (LYS), or transported to 

the common recycling endosome (CRE) (Hoekstra et al., 2004; Golachowska et 

al., 2010). The CRE, which appears to be a ubiquitous feature of epithelial cells, 

is characterised as a mildly acidic, tubulovesicular network which clusters in the 

apical region and extends to the cell periphery (Knight et al., 1995; Futter et al., 

1998; Wang et al., 2000; Hoekstra et al., 2004). Above the CRE is a population 

of cup-shaped vesicles termed the apical recycling endosomes (ARE). These 

localise just below the apical membrane and contain apically destined cargo but 

not basolaterally recycling cargo (Gibson et al., 1998; Brown et al., 2000). It is 

not clear whether ARE are separate compartments or sub-domains of the CRE 

and there is evidence to support both scenarios (reviewed in Hoekstra et al., 

2004; Golachowska et al., 2010).  

 

The CRE is, therefore, an important organelle within the polarised endocytic 

pathway. As endocytosed apical and basolateral cargo merge in this 

compartment it is suggested that the CRE acts as a sorting centre crucial for 

establishment and maintenance of membrane polarity (Hoekstra et al., 2004; 

Golachowska et al., 2010). Data suggests that sorting is carried out after 

endocytosed apical and basolateral cargo reaches the CRE rather than cargo 

being transported to distinct regions of entry (Golachowska et al., 2010). This is 

thought to be achieved through lateral membrane segregation of endocytosed 

apical and basolateral plasma membrane proteins in the CRE, a process which 

has been visualised directly in polarised MDCK cells (Thompson et al., 2007). 

From the CRE cargo can recycle back to the basolateral or apical surface. 

Transport to the apical surface can occur directly or via the ARE. In addition, 

cargo can also be directed from the CRE to lysosomes.  

 

Sorting and subsequent trafficking from the CRE is regulated by various 

mechanisms, the complexities of which are still to be unravelled. Examples of 
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proteins which appear to be important in this process include clathrin adaptor 

proteins and Rab proteins. In addition, it appears that cargo can be transported 

via multiple routes and these can change as cells polarise (Hoekstra et al., 

2004; Weisz and Rodriguez-Boulan, 2009; Golachowska et al., 2010). 

 

It should be noted that the CRE also plays an important role in the biosynthetic 

trafficking pathway (reviewed in Folsch et al., 2009). Newly synthesised proteins 

can be sorted in the trans-Golgi network (TGN) and delivered directly to the 

apical or basolateral plasma membrane. Alternatively, cargo can be transported 

from the TGN to the specific membrane domain via recycling endosomes, for 

which multiple routes exist (Cresawn et al., 2007; Cramm-Behrens, 2008; Farr 

et al., 2009). It seems that basolaterally destined cargo can travel via the CRE 

or may avoid this compartment and traffic through BEE instead. Apically 

destined cargo can travel from the TGN to the plasma membrane via the CRE, 

ARE or AEE and studies have suggested that multiple pathways exist 

depending on the cargo involved (Folsch et al., 2009). In addition, cargo can 

reach the apical surface by transcytosis from the basolateral membrane, a 

process which also involves trafficking through the CRE (Apodaca et al., 1994; 

Hoekstra et al., 2004). 

 

1.3.3. Endocytosis: Important Regulator of Polarity? 

 

Tightly regulated protein trafficking is key for the maintenance of plasma 

membrane polarity and it is becoming clear that it is also important for 

establishment of epithelial cell polarity (Hoekstra et al., 2004; Folsch et al., 

2009; Golachowska et al., 2010). For example, knockdown of proteins 

implicated in apical transport, such as Rab-11 and annexin-13, disrupted 

establishment of polarity in 3D cell culture cysts (Torkko et al., 2008; Gao and 

Kaestner, 2010).  

 

Studies to elucidate mechanisms underlying establishment and maintenance of 

epithelial cell polarity have mainly focused on protein trafficking along the 

biosynthetic pathway, including transcytosis (Folsch et al., 2009). However, it is 

becoming clear that endocytosis plays an essential role in establishment and 

maintenance of a polarised epithelium (Shivas et al., 2010). For example, 
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endocytosis has been implicated in biogenesis of the apical membrane in 

MDCK cells. Schluter and colleagues have demonstrated that during the first 

MDCK cell division, Crumbs is internalised and concentrates in Rab11-positive 

ARE which are delivered to the site of cytokinesis and thus form the first apical 

membrane (Schluter et al., 2009). This suggests that endocytosis is important 

for targeted delivery of proteins required for establishment of epithelial cell 

polarity. In support of this, during C.elegans embryonic development correct 

polarisation of PAR proteins requires dynamin and Rab-11, important for 

clathrin-mediated endocytosis and endocytic recycling, respectively (Zhang et 

al., 2008; Nakayama et al., 2009).  

 

Dynamics of Cell-Cell Junctions 

A key role of endocytosis within maintenance of epithelial polarity could be 

through the regulation of cell-cell junctions. Once formed, cell-cell junctions are 

dynamic structures that are continuously being remodelled, suggesting that the 

endocytic machinery is important for the regulation of cell-cell junction structure 

and function (Ivanov et al., 2005; Shen et al., 2008; Yu and Turner, 2008; Steed 

et al., 2010). Previous studies have demonstrated that occludin and E-cadherin 

are continuously endocytosed and recycled back to the plasma membrane in 

mammalian epithelial cells (Le et al., 1999; Morimoto et al., 2005). Constitutive 

endocytosis of claudin-1 has also been observed (Matsuda et al., 2004) and 

inhibition of recycling in MDCK cells altered the localisation of claudin-1 and 

specifically delayed recruitment of claudin-1 to tight junctions (Marzesco et al., 

2002). Internalisation of different junctional components appears to be highly 

specific and may be mediated by ubiquitylation by specific E3 ubiquitin ligases 

(Fujita et al., 2002; Traweger et al., 2002; Yu and Turner, 2008; Takahashi et 

al., 2009).  

 

Disruption of cell-cell junctions can often perturb epithelial cell polarity and 

therefore, endocytic trafficking of cell-cell junction proteins may be important for 

regulation of epithelial cell polarity (Brennan et al., 2010; Coradini et al., 2011; 

Turksen and Troy, 2011). For example, the balance of E-cadherin trafficking 

plays an important role in regulation of epithelial cell adhesion (Bryant and 

Stow, 2004) and loss of E-cadherin from adherens junctions is associated with 

loss of polarity and EMT (Perl et al., 1998; Yang and Weinberg, 2008). It is 
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possible that trafficking of other junctional proteins is also important for the 

maintenance of epithelial cell polarity. 

 

Evidence from Drosophila 

Various studies have provided evidence for links between endocytosis, 

regulation of epithelial junctions (Ivanov et al., 2005) and cell polarity (Shivas et 

al., 2010). Therefore, it is likely that protein trafficking plays a crucial role in 

maintaining a polarised epithelium although a direct role for endocytosis in this 

process is yet to be determined. Studies in Drosophila, however, have provided 

strong evidence for the importance of endocytosis in regulation of epithelial cell 

polarity. In these studies, mosaic genetic screens were conducted in order to 

uncover further novel regulators of epithelial cell polarity. Interestingly the 

majority of these newly isolated genes have been identified as regulators of the 

endocytic pathway (reviewed in Hariharan and Bilder, 2006, Vaccari and Bilder, 

2009; Herz and Bergmann, 2009; Lobert and Stenmark, 2011). Mutation of 

these genes disrupts epithelial cell polarity and induces overproliferation 

resulting in formation of neoplastic tumours. These genes have accordingly 

been classified as endocytic tumour suppressor genes (TSGs) (Vaccari and 

Bilder, 2009). 

 

The proteins encoded by these endocytic TSGs can be split into two groups: 

those that regulate cargo entry into the early endosome, and those that regulate 

cargo sorting within MVBs (Vaccari and Bilder, 2009). The first group include 

the Drosophila homologues of syntaxin 7/12 (Avalanche), required for vesicle 

fusion to form early endosomes, and the GTPase Rab5, required to regulate 

traffic to the early endosome. In addition, the syntaxin binding protein Vps45, 

and the Rab5 effector Rabenosyn-5 (Rbsn) have also been identified as tumour 

suppressors (Lu and Bilder, 2005; Morrison et al., 2008). The second group of 

endocytic TSGs encode components of the Endosomal Sorting Complex 

Required for Transport (ESCRT) machinery. This family of proteins act at a later 

stage of the endocytic pathway and are required for cargo sorting and MVB 

formation (Hariharan and Bilder, 2006). The ESCRT proteins are the focus of 

this thesis and will be discussed in detail below.   
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1.4. ESCRT Proteins 

 

The ESCRT machinery is comprised of four multi-subunit complexes termed 

ESCRT-0, -I, -II and -III, as well as several accessory components (Table 1.1). 

Originally identified in yeast as the class E vacuolar protein sorting (Vps) 

proteins, the ESCRT machinery has since been shown to be highly conserved 

in eukaryotic cells (Raymond et al., 1992; Babst, 2005; Hurley, 2008). ESCRT 

proteins have a well established role in the sorting of ubiquitylated proteins for 

degradation via the formation of MVBs and trafficking to the lysosome (Hurley 

and Emr, 2006; Hurley, 2008; Raiborg and Stenmark, 2009; Roxrud et al., 

2010). 

 

1.4.1. The ESCRT Complexes: Structure 

 

The composition of the ESCRT machinery has been studied over several years 

and detailed structural biology of the ESCRT proteins is described in recent 

reviews (Hurley and Emr, 2006; Williams and Urbe, 2007). Here I will briefly 

summarise the components of each ESCRT complex and provide details of the 

key interactions.  

 

ESCRT-0 

ESCRT-0 consists of Hrs (hepatocyte growth factor (HGF)-regulated Tyrosine-

kinase substrate) and STAM (signal transducing adaptor molecule) and is 

required for initial selection of ubiquitylated cargo at the endosomal membrane 

(Williams and Urbe, 2007). ESCRT-0 binds monoubiquitin via ubiquitin-

interacting motifs (UIMs) found on both Hrs and STAM. Ubiquitylation provides 

the signal for sorting into the MVB pathway (Clague and Urbe, 2006) and 

therefore, ESCRT-0 binding to ubiquitin is the initial step in the sorting process 

(Urbe et al., 2003). ESCRT-0 is recruited to the early endosomal membrane via 

the FYVE (Fab1, YOTB, Vac1 and early endosome antigen-1 (EEA1)) zinc 

finger domain of Hrs which binds to the endosomal lipid, phosphatidylinositol-3-

phosphate (PI(3)P) (Katzmann et al., 2003; Hurley and Emr, 2006). ESCRT-0 

proteins also bind to the coat protein clathrin and are thought to sequester 

ubiquitylated cargo into clathrin-coated microdomains which will eventually form 

ILVs (Sachse et al., 2002; Raiborg et al., 2006; Williams and Urbe, 2007; 
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Raiborg and Stenmark, 2009). Finally, ESCRT-0 is important for recruitment of 

downstream ESCRTs via direct interaction of Hrs with ESCRT-I (Bache et al., 

2003a; Katzmann et al., 2003).  

 

Complex Yeast Protein Mammalian Protein 

ESCRT-0 Vps27 HRS 

 Hse1 STAM1, 2 

ESCRT-I Vps23 Tsg101 

 Vps28 Vps28 

 Vps37 Vps37A, B, C, D 

 Mvb12 Mvb12A, B 

ESCRT-II Vps22 Vps22 (EAP30) 

 Vps25 Vps25 (EAP20) 

 Vps36 Vps36 (EAP45) 

ESCRT-III Vps20 CHMP6 

 Vps32 (Snf7) CHMP4A,B,C 

 Vps24 CHMP3 

 Vps2 CHMP2A,B 

 Vps46 (Did2) CHMP1A,B 

 Vps60 CHMP5 

      CHMP 7 

Vps4 Vps4 Vps4A,B 

 Vta1 LIP5 

Accessory  Bro1 Alix 

DUB Doa4 UBPY 

      AMSH 

 

Table 1.1 Endosomal Sorting Complex Required For Transport (ESCRT) protein subunits 

and ESCRT-related proteins. The ESCRT complexes are comprised of several proteins 

subunits. For each yeast class E Vps protein, one or more mammalian homologues have been 

identified. 

 

ESCRT-I 

ESCRT-I consists of four subunits: Tsg101 (tumour susceptibility gene 101), 

Vps28, Vps37 and Mvb12 (multivesicular body sorting factor of 12 kDa) 

(Raiborg and Stenmark, 2009). This ESCRT complex also binds to ubiquitin via 

the Tsg101 and Mvb12 proteins (Hurley and Emr, 2006; Roxrud et al., 2010). 
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ESCRT-I binds to ESCRT-0 via Tsg101 (Bache et al., 2003a; Katzmann et al., 

2003) and, in yeast, ESCRT-I binds to ESCRT-II via its Vps28 subunit although 

no direct link has been observed in mammalian cells (Teo et al., 2006; Williams 

and Urbe, 2007).  

 

ESCRT-II 

The ESCRT-II complex contains one Vps22 subunit, one Vps36 subunit and 

two Vps25 subunits (Hierro et al., 2004). The Vps36 subunit has a GLUE 

(GRAM-like ubiquitin-binding in EAP45) domain at its N-terminus which can 

bind to PI(3)P, ubiquitin and the ESCRT-I subunit Vps28 (Williams and Urbe, 

2007; Raiborg and Stenmark, 2009). ESCRT-II also recruits, and possibly 

activates, ESCRT-III via its Vps25 subunit (Im et al., 2009; Raiborg and 

Stenmark, 2009). Therefore, ESCRT-II is thought to provide a link between 

ubiquitylated cargo, the endosomal membrane, and ESCRT-I and -III (Hurley 

and Emr, 2006).  

 

ESCRT-III 

ESCRT-III consists of several small, highly charged subunits, termed CHMPs 

(charged multivesicular body proteins) in mammalian cells. Seven CHMPs have 

been identified (CHMP1-7) and each of these, with the exception of CHMP7, 

correspond to one of the six different ESCRT-III subunits present in yeast 

(Table 1.1) (Lata et al., 2009). In contrast to ESCRT-0, -I and -II, which exist as 

soluble complexes in the cytosol, ESCRT-III proteins are thought to assemble 

into a multimeric complex on endosomal membranes (Lata et al., 2009; Raiborg 

and Stenmark, 2009).  

 

All of the ESCRT-III proteins have a basic N-terminal and acidic C-terminal 

region (Williams and Urbe, 2007). Studies into the structure of CHMP3 have 

revealed that the C-terminal region is autoinhibitory and interacts with the N-

terminal core to form a closed, inactive conformation (Lata et al., 2008a). 

Activation of the ESCRT-III subunits is thought to be triggered by a 

conformational change which displaces the C-terminal region from the N-

terminal core, relieving the autoinhibition and allowing membrane targeting and 

assembly of the ESCRT-III complex (Lata et al., 2008; Lata et al., 2009; Raiborg 

and Stemark, 2009). This may occur in a directional manner in that one 
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ESCRT-III subunit activates the next and so on. Studies in yeast have 

demonstrated that the core ESCRT-III complex, consisting of Vps20, Vps32, 

Vps24 and Vps2 (CHMP6, CHMP4, CHMP3 and CHMP2, respectively), 

assembles sequentially on the endosomal membrane (Teis et al., 2008). Vps20 

is N-terminally myristoylated and can interact with the endosomal membrane. In 

addition, Vps20 also binds to the ESCRT-II subunit Vps25 which is thought to 

activate Vps20 and initiate assembly of the ESCRT-III complex (Yorikawa et al., 

2005; Im et al., 2009; Raiborg and Stenmark, 2009). Vps20 also interacts with 

Vps32 and triggers the assembly of Vps32 into oligomers which appear to be 

capped by Vps24. Vps2 then associates with Vps24 and recruits the AAA-

ATPase Vps4, which is important for disassembly of the ESCRT-III complex 

(Teis et al., 2008; Raiborg and Stenmark, 2009). CHMP1 and CHMP5 are 

thought to regulate the recruitment and activity of the AAA-ATPase Vps4, 

although the exact mechanism of this is unknown (Raiborg and Stenmark, 

2009). 

 

1.4.2. The ESCRT Complexes: Function 

 

ESCRTs have been classically characterised for their role in endosomal sorting 

and degradation of ubiquitylated proteins via MVB formation. It is also becoming 

increasingly clear that ESCRT proteins have additional functional roles within 

the endocytic pathway as well as other biological processes (Roxrud et al., 

2010).   

 

Targeting Proteins for Degradation via Formation of MVBs 

In the conventional model for ESCRT assembly it is thought that, during MVB 

formation, the ESCRT complexes are recruited sequentially to the early 

endosomal membrane (Figure 1.6) (Hurley, 2008). ESCRT-0 is proposed to be 

responsible for the initial recognition of ubiquitylated cargo. However, the 

presence of ubiquitin-binding domains in ESCRT-I and -II has led to a model 

whereby ubiquitylated cargo is handed over sequentially from one ESCRT 

complex to the other (Hurley, 2008; Raiborg and Stenmark, 2009). In support of 

this model, studies have demonstrated that the ubiquitin-binding domains of all 

three ESCRT complexes interact with the same hydrophobic region of ubiquitin 

at Ile44 (Hurley and Emr, 2006; Raiborg and Stenmark, 2009). However, the 
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binding sites for ubiquitylated cargo and the ubiquitin-interacting domain of 

ESCRT-II are at opposite ends of the 25 nm long ESCRT-I complex, therefore 

arguing against cargo exchange from ESCRT-I to ESCRT-II (Kostelansky et al., 

2007; Hurley, 2008; Raiborg and Stenmark, 2009). An alternative model 

proposes that simultaneous binding of ESCRT-0, -I and -II to multiple 

ubiquitylated proteins allows clustering of cargo for subsequent packaging into 

ILVs (Hurley and Emr, 2008).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 Cargo sorting and MVB formation is dependent on the ESCRT protein 

complexes. During MVB formation the ESCRT complexes are thought to be recruited 

sequentially to the endosomal membrane where they recognise ubiquitylated membrane 

proteins (cargo) and function to package these into intraluminal vesicles (ILV) which bud off into 

the lumen of the MVB. Both ESCRT-0 components, Hrs and STAM, bind to ubiquitin. Hrs also 

binds to the endosomal lipid, PI(3)P, and recruits ESCRT-I via interaction with Tsg101. ESCRT-I 

binds ubiquitin via Tsg101 and Mvb12, and Vps28 is thought to interact with the ESCRT-II 

subunit, Vps36. Vps36 also binds to ubiquitin and PI(3)P. In contrast to the other ESCRTs, 

which exist as soluble complexes in the cytosol, assembly of ESCRT-III is thought to occur on 

the endosomal membrane. CHMP6 binds to the ESCRT-II protein, Vps25, which initiates 

recruitment of CHMP4, CHMP3 and CHMP2. The ATPase Vps4 complex is then recruited 

which disassembles the ESCRT-III complex, allowing membrane scission to occur forming the 

ILV. Prior to ILV budding, ESCRT-III also recruits a deubiquitylating enzyme (DUB) which 

removes the ubiquitin from the cargo (adapted from Tanaka et al., 2008). 
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The mechanism responsible for endosomal membrane deformation and 

scission, which is required to form ILVs, is not fully understood. However, the 

prime candidate to elicit this process is ESCRT-III. Evidence to support this is 

provided by a study which demonstrates that overexpressed CHMP4 (Vps32) 

polymerises into spiral filaments which induce protrusion of buds and tubules 

from the plasma membrane in mammalian cells (Hanson et al., 2008). Budding 

of ILVs into the MVB also requires the AAA-ATPase Vps4. Vps4 is recruited by 

ESCRT-III where it appears to induce disassembly of the ESCRT-III complex in 

an ATP-dependent manner (Hurley et al., 2008; Raiborg and Stenmark, 2009: 

Saksena et al., 2009). Experiments which have reconstituted ESCRT-III 

assembly in vitro have shown that C-terminally truncated CHMP2A 

coassembles with CHMP3 into hollow helical tubules with a diameter of ~40nm. 

Membrane interaction sites were found on the inside of these tubules where 

binding of Vps4 also occurred, mediating disassembly of the tube upon ATP 

hydrolysis (Lata et al., 2008b). These studies suggest that assembly of the 

ESCRT-III complex deforms the endosomal membrane to form ILVs. Vps4 then 

enters these forming ILVs and depolymerises the ESCRT-III complex from the 

inside. The concerted action of these two complexes leads to membrane 

constriction and scission (Lata et al., 2009; Raiborg and Stenmark, 2009; 

Saksena et al., 2009; Wollert et al., 2009). It is currently not clear whether Vps4 

is directly required to contribute energy for the membrane scission event as well 

as disassembling the ESCRT-III complex (Lata et al., 2009). 

 

The final process important for the formation of MVBs is deubiquitylation of 

cargo. This is carried out by deubiquitylating enzymes (DUBs) which are 

recruited by the ESCRT-III complex and accessory protein Alix (Hurley, 2008; 

Lata et al., 2009; Raiborg and Stenmark, 2009). The key DUBs associated with 

the MVB pathway are Doa4 in yeast, and AMSH and UBPY in mammals 

(Hurley, 2008). Interestingly, in mammalian cells these DUBs are also recruited 

by the ESCRT-0 subunit STAM (McCullough et al., 2006; Row et al., 2007) and 

therefore appear to function at both early and late stages of MVB formation. 

This could allow deubiquitylation of cargo that is not destined for degradation, 

adding further complexity to the MVB sorting process (Raiborg and Stenmark, 

2009; Berlin et al., 2010).    
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Therefore, ESCRT proteins are required for efficient sorting of proteins along 

the degradative endosomal pathway. Disruption of the ESCRT machinery 

generally results in the inhibition of MVB formation and accumulation of 

endosomal cargo in aberrant endosomes, therefore perturbing endosomal 

trafficking and degradation (Raymond et al., 1992; Bishop et al., 2002; Bache et 

al., 2003b; Lu et al., 2003; Doyotte et al., 2005; Bache et al., 2006; Razi and 

Futter, 2006; Malerod et al., 2007; Williams and Urbe, 2007; Raiborg et al., 

2008, Stuffers et al., 2009b).  

 

Additional Role for ESCRTs in Endosomal Recycling 

Although ESCRT proteins have been classically characterised for their 

involvement in degradation of membrane proteins (Hurley and Emr, 2006; 

Raiborg and Stenmark, 2009), it is also reported that ESCRT function is 

important for recycling. Some studies have demonstrated that depletion of Hrs 

or Tsg101 increases recycling of epidermal growth factor (EGF) receptor 

(EGFR) upon stimulation with EGF ligand. However, knockdown of Vps22 and 

Vps24 has no effect on EGFR and EGF recycling (Razi and Futter, 2006; 

Raiborg et al., 2008). In contrast, other studies have suggested that knockdown 

of Tsg101 causes a decrease in recycling resulting in reduced levels of EGFR 

and transferrin receptor (TfR) at the cell surface (Doyotte et al., 2005). In 

addition, ESCRT-I and -III are required for recycling of EGFR upon stimulation 

with amphiregulin (AR) whereas ESCRT-0 and -II are dispensable for this 

process (Baldys and Raymond, 2009). Vps4 has also been shown to be 

required for recycling of TfR and low-density lipoprotein receptor (LDLR) back to 

the cell surface (Yoshimori et al., 2000; Fujita et al., 2003). Further evidence for 

the importance of ESCRTs in the endosomal recycling pathway is provided by 

the observation that the ESCRT-0 subunit, STAM can bind the DUB, UBPY 

(McCullough et al., 2006; Row et al., 2007). Deubiquitylation of EGFR by UBPY 

protects EGFR from degradation via an Hrs-dependent pathway demonstrating 

that UBPY and ESCRT-0 play in key role in determining the fate of endocytosed 

EGFR (Berlin et al., 2010). Therefore, it is becoming apparent that the ESCRT 

machinery is important for regulating sorting of cargo between degradative and 

recycling pathways and ESCRT function may be required for efficient trafficking 

along both these endosomal routes.   
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ESCRTs and Regulation of Signalling  

ESCRT proteins also play a crucial role in regulation of cell signalling (Rodahl et 

al., 2009a; Wegner et al., 2011). Sequestration of activated membrane 

receptors into ILVs during MVB formation and subsequent lysosomal 

degradation terminates ligand-induced signalling (Sorkin and Von Zastrow, 

2009). Therefore, this provides one mechanism whereby ESCRTs can 

negatively regulate receptor signalling (Wegner et al., 2011). This is highlighted 

through various studies which demonstrate that ESCRTs are required for 

degradation of activated receptor tyrosine kinases (RTK) (Wegner et al., 2011). 

For example, disruption of the ESCRT machinery causes reduced degradation 

of EGF-stimulated EGFR (Bishop et al., 2002; Lu et al., 2003; Bache et al., 

2006; Malerod et al., 2007; Raiborg et al., 2008). ESCRTs can also negatively 

regulate other signalling pathways such as Notch, Toll-like receptor (TLR) and 

G-protein coupled receptor (GPCR) signalling (Rodahl et al., 2009a; Wegner et 

al., 2011).  Therefore, perturbed ESCRT function can enhance activity of 

various signalling pathways.  

 

In addition to reduced degradation of activated receptors, there are also other 

possible mechanisms which could account for the increase in receptor 

signalling in ESCRT depleted cells. Firstly, receptors may remain active whilst 

on the limiting membrane of endosomes and therefore, disrupted sequestration 

into ILVs may prolong the time that the receptor is signal competent (Sorkin and 

Von Zastrow, 2009; Wegner et al., 2011). This is supported by studies which 

show that depletion of ESCRT-0 and -I, but not ESCRT-II and -III, results in 

sustained EGFR activity indicating a requirement for early acting ESCRT 

proteins in the attenuation of EGFR signalling (Bache et al., 2006; Malerod et 

al., 2007). In addition, some signalling complexes preferentially assemble on 

endosomal membranes and therefore, disruption of endosomal trafficking upon 

ESCRT disruption will enhance their activity (Sorkin and Von Zastrow, 2009). 

This is observed for the Notch signalling pathway in Drosophila whereby 

ESCRT mutation results in increased endosomal signalling due to accumulation 

of Notch within early endosomes (Thompson et al., 2005; Vaccari and Bilder, 

2005; Herz et al., 2006; Herz et al., 2009; Gilbert et al., 2009; Vaccari et al., 

2009).  
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Alternatively, blocking endosomal degradation by ESCRT depletion may 

enhance recycling of endocytosed receptors back to the plasma membrane 

resulting in sustained signalling (Wegner et al., 2011). This is supported by the 

observation that Hrs or Tsg101 depletion decreases degradation but increases 

recycling of epidermal growth factor (EGF) receptor (EGFR) upon stimulation 

with EGF ligand (Razi and Futter, 2006; Raiborg et al., 2008). However, other 

studies have demonstrated the opposite effect in that ESCRT disruption 

decreases recycling of other receptors, such as the transferrin receptor 

(Yoshimori et al., 2000; Fujita et al., 2003; Doyotte et al., 2005). Therefore, 

there may be a number of mechanisms by which ESCRTs regulate cellular 

signalling pathways and the importance of these could differ depending on 

various factors such as receptor type, ligand concentration and cell type 

(Wegner et al., 2011).  

 

It is also important to note that the ESCRT pathway may play a positive role in 

the regulation of other signalling pathways (Wegner et al., 2011). For example, 

ESCRT-dependent sequestration of the inhibitory glycogen synthase kinase 3 

(GSK3) within MVBs is required for activation of canonical Wnt signalling 

(Taelman et al., 2010). Therefore, whilst perturbed ESCRT function can 

enhance receptor signalling, it could also inhibit signalling through other 

pathways at the same time.  

 

ESCRTs and Autophagy 

Autophagy is a degradation pathway for cytoplasmic components, such as 

protein aggregates, cellular macromolecules, damaged organelles and invading 

pathogens (Fader and Colombo, 2009; Rusten and Stenmark, 2009). 

Autophagy is tightly regulated by cellular signalling mechanisms, in particular 

those activated by nutrient starvation and cellular stress (Mizushima et al., 

2008). The protein kinase Tor (target of rapamycin) is central to this regulation 

by inhibiting the autophagic process under nutrient rich conditions (Rusten and 

Stenmark, 2009). During the autophagic process a portion of cytoplasm is 

engulfed by a cup-shaped double membrane structure called the phagophore 

which will seal the sequestered cytoplasmic contents, forming an 

autophagosome. These autophagosomes then fuse with lysosomes to form an 

autolysosome and the contents are degraded. Autophagosomes can also fuse 
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with endosomes to form amphisomes prior to fusion with lysosomes (Fader and 

Colombo, 2009; Rusten and Stenmark, 2009).   

 

At least 30 evolutionary conserved Atg (autophagy related) proteins have been 

identified which make up two ubiquitin-like conjugation systems required for 

autophagosome formation (Fader and Colombo, 2009; Rusten and Stenmark, 

2009). Interestingly various studies have revealed a role for the ESCRT 

machinery within the process of autophagy and disruption of ESCRT function 

results in autophagosome accumulation (Nara et al., 2002; Filimonenko et al., 

2007; Rusten et al., 2007; Tamai et al., 2007). It is currently not clear why 

ESCRTs are important for autophagy. It has been suggested that a functional 

MVB is necessary to allow autophagic degradation and therefore, disruption of 

MVB formation due to perturbed ESCRT function may consequently inhibit 

autophagy (Fader and Colombo, 2009). Alternatively, ESCRTs may be required 

for autophagosome fusion with endosomes and lysosomes (Rusten and 

Stenmark, 2009). ESCRT disruption would inhibit this fusion resulting in an 

increase in the number of autophagosomes and a decrease in amphisomes and 

autolysosomes, an effect which has been reported previously (Rusten et al., 

2007; Tamai et al., 2007). There may also be other mechanisms to explain the 

importance of the ESCRT machinery within the process of autophagy and 

further work will continue to elucidate the possibility of interplay between 

autophagy and MVB biogenesis.  

 

Non Endosomal Functions of ESCRTs 

ESCRT proteins are also involved in other cellular processes in addition to their 

roles within endocytic trafficking (Roxrud et al., 2010). These include cytokinesis 

and viral budding, both processes involving membrane fission. Cytokinesis is 

the final step of cell division whereby the dividing cell is physically cleaved into 

two daughter cells (Barr and Gruneberg, 2007). Various studies have implicated 

the ESCRT machinery in this process (Raiborg and Stenmark, 2009; Roxrud et 

al., 2010). ESCRT-III is recruited to the midbody by ESCRT-I and/or Alix and, 

as in MVB formation, Vps4 appears to be required for ESCRT-III disassembly 

and subsequent membrane scission (Carlton and Martin-Serrano, 2007; Morita 

et al., 2007; Dukes et al., 2008). The role, if any, of ESCRT-II in this process 

remains to be elucidated.  
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Budding of enveloped viruses from the plasma membrane of infected cells also 

requires ESCRT function. During this process viruses hijack the ESCRT 

machinery by binding to the ESCRT-I subunit Tsg101 and/or Alix. ESCRT-III 

and Vps4 are then recruited to mediate membrane fission and the viral buds are 

released from the plasma membrane (Garrus et al., 2001; Martin-Serrano et al., 

2003; Fujii et al., 2007; Roxrud et al., 2010). The role of ESCRT-II in viral 

budding however is unclear. It appears that ESCRT-II is not essential for 

budding of HIV-1 (Langelier et al., 2006) whereas release of avian sarcoma 

virus requires the ESCRT-II subunit Vps25 (Pincetic et al., 2008). Therefore, it 

seems that different viruses can utilise different ESCRT-mediated budding 

pathways (Roxrud et al., 2010). In addition, ESCRT-independent viral budding 

has also been demonstrated (Chen and Lamb, 2008).   

 

1.5. ESCRTs as Tumour Suppressors 

 

1.5.1. Lessons from Drosophila 

 

Loss of Epithelial Cell Polarity and Organisation   

Genetic screens in Drosophila have discovered a role for the ESCRT machinery 

within regulation of epithelial cell polarity and tumourigenesis (Vaccari and 

Bilder, 2009; Herz and Bergmann, 2009; Lobert and Stenmark, 2011). Two of 

the first ESCRT proteins to be identified as potential neoplastic tumour 

suppressors in Drosophila were Tsg101, a component of ESCRT-I, and Vps25, 

a component of ESCRT-II (Moberg et al., 2005; Thompson et al., 2005; Vaccari 

and Bilder, 2005; Herz et al., 2006). Since these initial studies, other 

components of the ESCRT machinery have been identified as important 

regulators of epithelial cell polarity, although the precise roles for each ESCRT 

protein may differ (Table 1.2) (Rodahl et al., 2009b; Herz et al., 2009; Vaccari et 

al., 2009).  
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Table 1.2 Comparison of phenotypes resulting from mutation of ESCRTs in epithelial tissues of Drosophila. The main phenotypes resulting from ESCRT 

mutation are listed. Positive (+) and negative (-) results and corresponding references are indicated for each ESCRT component studied. For some ESCRT 

components the effect of mutation on certain phenotypes has not been reported in the literature, indicated by ‘n/a’. All results listed are from studies conducted in 

imaginal discs, the developing epithelial tissues of the Drosophila embryo. Phenotypes listed were observed in the ESCRT mutant cells, with the exception of 

‘Hyperplastic growth’ which represents non-cell autonomous overproliferation. 

Complex ESCRT-0 ESCRT-I ESCRT-II ESCRT-III ATPase 
References 

Component Hrs Tsg101 Vps28 Vps25 Vps22 Vps36 Vps20 Vps32 Vps2 Vps4 

E
ff

e
c
t 

o
f 

M
u

ta
ti

o
n

 

Enlarged 
Endosomes 

+ 
1 

n/a n/a + 
4,8 

+ 
8 

+ 

8 
n/a n/a n/a + 

9 (1) Jekely & 
Rorth, 2003 

(2) Moberg et 
al., 2005 

(3) Thompson et 
al., 2005 

(4) Vaccari & 
Bilder, 2005 

(5) Herz et al., 
2006 

(6) Vaccari et 
al., 2008 

(7) Gilbert et al., 
2009 

(8) Herz et al., 
2009 

(9) Rodahl et al., 
2009b 

(10) Vaccari et 
al, 2009 

Accumulation of 
Ubiquitin 

+ 
1 

+ 
2 

+ 
10 

+ 
3,5,8,10 

+ 
8,10 

+ 

8 

+ 

10 

+ 

10 

+ 

10 

+ 

9 

Accumulation of 
EGFR 

+ 
1 

n/a + 
10 

+ 
10 

+ 
10 

n/a + 

10 

+ 

10 

+ 

10 
n/a 

Sustained EGFR 
signalling 

n/a n/a + 
10 

+ 
10 

+ 
10 

n/a + 

10 

+ 

10 

+ 

10 
n/a 

Accumulation of 
Notch 

+ 
1,6 

+ 
2,6 

+ 
10 

+ 
4,5,6,8,10 

+ 
8,10 

+ 

8 

+ 

6,10 

+ 

10 

+ 

10 

+ 

9 

Increased Notch 
activity 

- 
6 

+ 
2,6 

+ 
10 

+ 
4,5,6,8,10 

+ 
8,10 

- 
8 

+ 

6,10 

+ 

10 

+ 

10 
n/a 

Disrupted epithelial 
organisation 

- 
1 

+ 
2,7 

+ 
10 

+ 
3,8,10 

+ 

8,10 

+ 

8 

+ 

10 

+ 

10 

+ 

10 

+ 

9 

Disrupted 
apicobasal polarity 

- 
1 

+ 
2,7 

n/a + 
4 

n/a n/a n/a n/a n/a + 

9 

Reduced 
differentiation 

n/a n/a n/a + 
3,4,5 

n/a n/a n/a n/a n/a n/a 

Increased 
apoptosis 

n/a n/a n/a + 
4,5,8 

+ 

8 

+ 

8 
n/a n/a n/a + 

9 

Neoplastic growth - 
1,6 

+ 
2,7 

n/a + 
4,8 

+ 

8 

+ 

8 
n/a n/a n/a + 

9 

Hyperplastic 
growth 

- 
1,6 

+ 
2,6 

+ 
10 

+ 
3,4,5,8,10 

+ 

8,10 

- 
8 

+ 

10 

+ 

10 

+ 

10 

+ 

9 
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The majority of analysis of ESCRT function has been carried out in Drosophila 

imaginal discs, polarised epithelial tissues found in the larva which will develop 

to form the eye, leg and wing of the adult fly (Muller, 2000). Mutation of 

ESCRTs disrupts the endocytic pathway resulting in aberrant endosomes and 

accumulation of ubiquitylated proteins (Moberg et al., 2005; Thompson et al., 

2005; Vaccari and Bilder, 2005; Vaccari et al., 2008). Interestingly, ESCRT 

mutation also results in a loss of epithelial cell polarity indicating that ESCRTs 

are important to maintain the polarised architecture of epithelial tissues (Figure 

1.7) (Moberg et al., 2005; Thompson et al., 2005; Vaccari and Bilder, 2005; 

Herz et al., 2006; Rodahl et al., 2009b; Herz et al., 2009; Vaccari et al., 2009). 

In these mutant cells, aPKC is localised throughout the entire plasma 

membrane instead of being restricted to the apical membrane domain (Vaccari 

and Bilder, 2005). The mechanism responsible for this loss of apicobasal 

polarity is unclear, however, studies have demonstrated that the polarity protein 

Crumbs may be important. In Tsg101 mutant cells, Crumbs is mislocalised from 

the apical membrane to aberrant endosomes (Moberg et al., 2005; Gilbert et al., 

2009). Overexpression of Crumbs has been shown to disrupt apicobasal 

polarity and drive neoplastic transformation (Lu and Bilder, 2005) and therefore, 

it is suggested that the intracellular accumulation of Crumbs may contribute to 

the polarity defects observed in ESCRT mutant cells (Vaccari and Bilder, 2009). 

 

Mutation of ESCRTs in Drosophila also results in overproliferation, although the 

mechanisms responsible for this appear to differ depending on the context of 

the mutant tissue. The majority of studies have analysed the mechanism 

underlying this overproliferation in mosaic imaginal discs whereby ESCRT 

mutant cells are surrounded by wild type cells. In these tissues the ESCRT 

mutant cells do not overproliferate. Instead ESCRT mutation results in the 

overproliferation of surrounding wild type cells, despite these cells displaying a 

normal epithelial morphology (Figure 1.7B). Consequently, the resulting adult 

tissue is enlarged but is mainly comprised of wild type cells (Moberg et al., 

2005; Thompson et al., 2005; Vaccari and Bilder, 2005; Herz et al., 2006; Herz 

et al., 2009; Rodahl et al., 2009b; Vaccari et al., 2009).  
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Figure 1.7 ESCRT proteins act as tumour suppressors in Drosophila. (A) Drosophila 

imaginal discs composed almost entirely of ESCRT mutant cells lose polarity and form large 

masses lacking normal epithelial morphology. Mutants die as enlarged larvae. (B) In Drosophila 

mosaic imaginal discs, whereby mutant cells are surrounded by wild type cells, ESCRT mutant 

cells lose epithelial polarity and organisation. Despite retaining polarity, surrounding wild type 

cells overproliferate due to increased Notch activation in mutant cells resulting in ectopic 

production of the secreted growth factor Unpaired (Upd). Eventually mutant cells are eliminated 

via apoptosis and therefore, the resulting enlarged adult tissue is composed mainly of wild type 

cells. However, if apoptosis is inhibited mutant cells overproliferate and form tumour-like 

growths capable of metastasis (Moberg et al., 2005; Thompson et al., 2005; Vaccari and Bilder, 

2005; Herz et al., 2006). 

 

 

This non-cell autonomous proliferation is attributed to endosomal accumulation 

of Notch in ESCRT mutant cells resulting in increased Notch signalling 

(Thompson et al., 2005; Vaccari and Bilder, 2005; Herz et al., 2006; Herz et al., 

2009; Vaccari et al., 2009). Interestingly Notch can be activated in a ligand-

independent manner although the mechanism of this is presently unclear 

(Thompson et al., 2005; Vaccari et al., 2008; Vaccari and Bilder, 2009). Steady 

state levels of Notch are maintained by continuous turnover of unliganded 
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Notch via endocytic trafficking (Sakata et al., 2004). In ESCRT mutant cells it 

appears that Notch trafficking is blocked and consequently the unliganded 

receptor accumulates within enlarged endosomes. Notch is activated upon 

cleavage by γ-secretase, the activity of which is optimal at endosomal pH 

(Pasternak et al., 2003). Therefore, it is possible that Notch activation is due to 

γ-secretase-mediated cleavage of unliganded Notch which has accumulated 

within ESCRT mutant cells (Thompson et al., 2005; Vaccari et al., 2008; Vaccari 

and Bilder, 2009). The consequence of increased Notch activity in ESCRT 

mutant cells is ectopic production of the secreted growth factor, Unpaired (Upd). 

This then induces proliferation of surrounding wild type cells via paracrine 

activation of the Jak-STAT signalling pathway (Thompson et al., 2005; Vaccari 

and Bilder, 2005; Herz et al., 2006; Herz et al., 2009; Gilbert et al., 2009; 

Vaccari et al., 2009). 

 

In contrast, in imaginal discs composed almost entirely of ESCRT mutant cells, 

mutant cells overproliferate to form large masses lacking normal epithelial 

morphology which are characteristic of neoplastic tumours (Figure 1.7A). The 

resulting mutant larvae are enlarged and will eventually die. This neoplastic 

growth is thought to be due to an extended period of proliferation rather than an 

increased growth rate and therefore suggests that ESCRT mutant cells are 

unable to respond to signals which usually sense and restrict organ size 

(Moberg et al., 2005; Vaccari and Bilder, 2005; Herz et al., 2009; Vaccari et al., 

2009). The mechanism responsible for this overproliferation is currently 

unknown although it has been suggested that increased mitogenic signalling 

may play a role (Vaccari and Bilder, 2009). For example, EGFR accumulates in 

ESCRT mutant cells and consequently signalling is sustained (Jekely and 

Rorth, 2003; Lloyd et al., 2006; Vaccari et al., 2009). EGFR signalling is 

important for regulation of proliferation and increased signalling can induce 

overproliferation and is often linked to tumourigenesis (Kim and Choi, 2010). 

Therefore, sustained EGFR activation may contribute to the overgrowth 

associated with ESCRT disruption in Drosophila.  

 

Another mechanism which may account for the overproliferation of ESCRT 

mutant cells is increased Notch activity. As in mosaic ESCRT mutant discs, 

endosomal accumulation and increased activation of Notch is observed when 
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the disc is almost entirely mutant for ESCRTs (Vaccari et al., 2008). Whether 

this increase in Notch activity can induce cell-autonomous overproliferation 

remains to be established. Therefore, ESCRT mutation appears to affect 

multiple mitogenic signalling pathways and further research will be important to 

determine the contribution of these pathways and potentially others to the 

phenotype induced by ESCRT disruption.  

 

The Importance of Apoptosis 

In mosaic ESCRT mutant imaginal discs studies found that ESCRT mutant cells 

are eventually eliminated via apoptosis (Thompson et al., 2005; Herz et al., 

2006; Rodahl et al., 2009b). Therefore, the mutant cells only seem to contribute 

to a small proportion of the resulting overgrown tissue. Strikingly, if apoptosis is 

blocked ESCRT mutant cells undergo extensive overproliferation and form 

neoplastic tumours capable of metastasis (Thompson et al., 2005; Herz et al., 

2006; Rodahl et al., 2009b). This suggests that when ESCRT mutant cells are 

surrounded by wild type cells, activation of apoptotic pathways overrides any 

potential increase in mitogenic signalling, therefore, hindering the proliferative 

capacity of ESCRT mutant cells.  

 

Studies have demonstrated that apoptosis of ESCRT mutant cells is induced by 

at least two pathways, one mediated by c-Jun N-terminal kinase (JNK) 

signalling and another mediated by Hid/Diap1/Dronc/Ark (Herz et al., 2006; 

Rodahl et al., 2009b; Vaccari and Bilder, 2009). Hippo signalling has been 

suggested to function as an upstream regulator of these two apoptotic pathways 

as inactivation of Hippo signalling in ESCRT mutant cells completely blocks cell 

death (Herz et al., 2006). Interestingly, Hippo signalling is important for a wide 

range of cellular processes including cell proliferation and polarity (Genevet and 

Tapon, 2011; Halder and Johnson, 2011). JNK, a member of the mitogen-

activated protein (MAP) kinase family, is also thought to have roles in cell 

survival and proliferation in addition to inducing apoptosis (Weston and Davis, 

2002; Bode and Dong, 2007). Therefore, these signalling pathways represent 

potential mechanisms to link the apoptotic, proliferative and polarity defects 

observed upon disruption of the ESCRT machinery in Drosophila (Vaccari and 

Bilder, 2009).   
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It is interesting that when the entire imaginal disc is mutant for ESCRTs, mutant 

cells are not apoptotic. The mechanism which results in this contrasting 

behaviour of ESCRT mutant cells is unknown, however, it is possible that at the 

boundaries of wild type and mutant cells signalling discontinuities occur which 

may influence cell behaviour. For example, activation of JNK-mediated 

apoptosis has been observed when morphogenic gradients between adjacent 

cells are disrupted in developing Drosophila imaginal discs (Adachi-Yamada 

and O’Connor, 2002). It is also important to note that Vps25 mutation has been 

shown to increase levels of Diap1, an inhibitor of apoptosis, in wild type cells 

surrounding ESCRT mutant clones (Herz et al., 2006). Therefore, loss of 

ESCRT function may confer apoptotic resistance and enhance the survival of 

surrounding wild type tissue whilst at the same time, apoptotic pathways are 

activated in the mutant cells.  

 

Therefore, these studies have demonstrated that disruption of the ESCRT 

machinery can lead to loss of cell polarity and self-sufficiency in growth 

signalling, two important hallmarks of cancer (Hanahan and Weinberg, 2011). 

Data suggests that ESCRT function is required for trafficking of important 

regulators of epithelial cell polarity and proliferation in Drosophila and as a 

result, ESCRT proteins have been classified as potential tumour suppressors 

(Vaccari and Bilder, 2009). 

 

1.5.2. ESCRTs and Cancer in Vertebrates 

 

Although recent studies have elucidated important roles for the ESCRT proteins 

within regulation of cell polarity and tumourigenesis in Drosophila, the situation 

in mammalian cells is still unclear. However, there is emerging evidence that 

genes identified as tumour suppressors in Drosophila have similar roles in 

mammals (Stuffers et al., 2009a).   

 

Tumour Susceptibility Gene 101: True or False? 

The ESCRT-I protein, Tsg101 was originally identified in mice, whereby 

knockout of the gene resulted in cellular transformation of mouse fibroblasts 

and formation of metastatic tumours in nude mice (Li and Cohen, 1996). 

However, subsequent mice knockout studies have failed to support a tumour 
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suppressor function of Tsg101. Null mutation of the Tsg101 gene in mice results 

in early embryonic lethality whereas heterozygous mutation does not affect 

development (Ruland et al., 2001; Wagner et al., 2003). In conditional knockout 

mice, whereby Tsg101 was deleted in mammary epithelial cells, reduced 

proliferation and increased cell death was observed resulting in impaired 

mammary development during lactation (Wagner et al., 2003). Despite these 

effects, tumour formation was not observed in either heterozygous complete or 

tissue-specific Tsg101 knockout mice monitored over two years (Wagner et al., 

2003). Therefore, these results suggest that Tsg101 is not acting as a tumour 

suppressor in mice, although it is possible that the full tumourigenic potential of 

Tsg101 is masked by the high level of cell death, similar to the situation 

observed in Drosophila mosaic ESCRT mutant tissues (Thompson et al., 2005; 

Herz et al., 2006).  

 

Subsequent to its identification in mice, the human homologue of Tsg101 was 

identified and mapped to chromosome 11, subbands p15.1-15.2, a region that 

often shows loss of heterozygosity in a variety of human cancers (Li et al., 

1997). Aberrant Tsg101 transcripts have been observed in various tumours 

including breast (Lee and Feinberg, 1997), cervical (O’Boyle et al., 1999) and 

small cell lung cancer (Oh et al., 1998), although no genomic deletions or 

mutations have been observed. In addition, reduced expression of Tsg101 

protein has been observed in ovarian and endometrial tumours (Bennett et al., 

2001). Conversely, overexpression of Tsg101 has been associated with breast 

(Oh et al., 2007), thyroid (Liu et al., 2002) and ovarian cancers (Young et al., 

2007). Furthermore, one study found that reduction of Tsg101 inhibited tumour 

cell growth in prostate and breast cancer cell lines (Zhu et al., 2004), suggesting 

that Tsg101 could also exhibit oncogenic properties. Therefore, the role of 

Tsg101 in human cancers is somewhat controversial and a clear role for this 

ESCRT protein within the process of tumourigenesis in vertebrates is still to be 

confirmed. 

 

Expression of Other ESCRT Proteins in Human Tumours 

There is evidence to suggest that other components of the ESCRT machinery 

act as tumour suppressors within human cancer models. Reduced expression 

of the ESCRT-I component, Vps37A is found in hepatocellular and ovarian 
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carcinomas. Knockdown of this protein increased cell growth and invasive 

abilities of both heptatocellular and ovarian cancer cell lines in vitro (Xu et al., 

2003; Bache et al., 2004; Wittinger et al., 2011). In addition, Vps37A knockdown 

in an ovarian cancer cell line resulted in increased tumour growth in a mouse 

xenograft model (Wittinger et al., 2011). Furthermore, a study by Li and 

colleagues demonstrated that silencing of the ESCRT-III component, CHMP1A, 

resulted in cellular transformation and tumour formation in vivo, as well as 

increased growth of human pancreatic tumour cells in vitro  (Li et al., 2008). In 

contrast with these studies, overexpression of Hrs, an ESCRT-0 component, 

has been observed in stomach, colon, liver, cervix and melanoma tumour 

samples. In addition, Hrs was required to maintain tumourigenic properties of 

HeLa cells, suggesting that Hrs is an oncogenic factor which may play a role in 

determining the malignancy of cancer cells (Toyoshima et al., 2007). 

 

In summary the role of ESCRTs in human cancer remains unclear. Although 

various studies have associated reduced ESCRT function with tumourigenesis, 

increased expression of ESCRT proteins also seems to enhance 

tumourigenicity. It has been suggested that overexpression of ESCRTs may 

have a dominant negative effect (Vaccari and Bilder, 2009), however, this is yet 

to be confirmed.  

 

Potential Roles of ESCRTs in Tumourigenesis 

In Drosophila, studies suggest that ESCRTs act as tumour suppressors by 

regulating epithelial cell polarity and growth signalling. It is tempting to 

speculate that this could also be true in mammalian tissues. Indeed, signalling 

pathways affected by ESCRT mutation in Drosophila have been linked to 

tumour formation in humans. Firstly, EGFR has been shown to play an 

important role in tumourigenesis with expression observed in the majority of 

human carcinomas (Normanno et al., 2006; De Luca et al., 2008). Furthermore, 

mutations in EGFR occur frequently in lung and colorectal cancers and 

inhibitors of EGFR, such as gefitinib, are used therapeutically for the treatment 

of non-small cell lung cancer (Paez et al., 2004; Grandal and Madshus, 2008; 

Kim and Choi, 2010). The Notch signalling pathway has also been implicated in 

a variety of human cancers (Roy et al., 2007). The best studied example of 

oncogenic Notch signalling is in T-acute lymphoblastic leukemia/lymphoma (T-
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ALL), but Notch upregulation has also been associated with colon and breast 

cancers (Reedijk et al., 2005; Grabher et al., 2006; Meng et al., 2009).  

 

In addition to its role in apoptosis, JNK signalling has also been implicated in 

promoting cell survival and proliferation (Davis, 2000; Bode and Dong, 2007). 

Evidence suggests that JNK plays an important role in tumourigenesis, for 

example, JNK activity has been reported to be elevated in glioblastomas (Tsuiki 

et al., 2003; Bode and Dong, 2007). Interestingly, Hrs and Tsg101 have been 

shown to be required for lysosomal localisation and degradation of the 

transcription factor Jun (Ikeda and Kerppola, 2008). Jun is a major substrate for 

JNK and has also been implicated in carcinogenesis (Bode and Dong, 2007), 

for example the v-jun oncogene has a longer half-life that is thought to 

contribute to cell transformation (Treier et al., 1994). Finally, the possibility of 

aberrant Hippo signalling in Drosophila ESCRT mutants may be relevant to 

human carcinogenesis as deregulation of various components of the Hippo 

pathway is expected to cause defects in cell growth, often resulting in tumour 

formation (reviewed in Zeng and Hong, 2008; Chan et al., 2011).  

 

The other major phenotype routinely observed upon ESCRT disruption in 

Drosophila was a loss of epithelial cell polarity. As discussed previously, 

endocytosis is thought to be important for regulation of epithelial polarity in 

mammalian tissues, however, the role of ESCRTs in this process has not been 

studied.  Therefore, it is possible that ESCRT proteins function as tumour 

suppressors in vertebrates and similar mechanisms of tumourigenesis identified 

in Drosophila may also be important within mammalian tumour formation and 

progression.  
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1.6. Thesis Aims  

 

The overall aim of this thesis is to determine whether ESCRT proteins function 

as tumour suppressors in mammalian epithelial tissues. Specifically, the 

importance of ESCRT proteins in the regulation of mammalian epithelial cell 

polarity and growth will be investigated. The mechanisms underlying any 

regulatory functions will also be explored. This study will provide important 

insight into the role of endocytic trafficking within the maintenance of 

mammalian epithelial tissues and may implicate impaired endocytosis as a 

contributing factor to the process of tumour formation, maintenance and 

progression.  
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2. MATERIALS AND METHODS 

 

2.1. Materials 

 

2.1.1. Reagents 

Unless otherwise specified, all chemicals and general laboratory reagents were 

of molecular biology grade and were purchased from Sigma-Aldrich or 

ThermoFisher Scientific. 

 

Cell Culture Buffers: 

Caco-2 Growth Media 

Dulbecco’s Modified Eagle Medium (DMEM) (4.5g/L glucose, without L-

glutamine; BE12-614F) supplemented with 20% (v/v) fetal bovine serum (FBS) 

(heat inactivated; DE14-801FH), 2mM L-glutamine (BE17-605E), 1X non-

essential amino acid solution (NEAA) (BE13-114E), 100U/ml penicillin, 

100µg/ml streptomycin (DE17-602F) (all Lonza) and 10mM Hepes, pH 7.4 (in 

dH2O, sterile filtered; Sigma). 

 

Caco-2 Antibiotic-Free Media 

As Caco-2 growth media but lacking penicillin/streptomycin. 

 

Caco-2 Serum-Free Media  

As Caco-2 growth media but lacking FBS and penicillin/streptomycin. 

 

Dulbecco’s Phosphate Buffered Saline (DPBS) 

1X DPBS without calcium and magnesium purchased from Lonza (17-512F). 

 

Cell Biology Buffers: 

Phosphate Buffered Saline (PBS) 

12.5 mM Na2HPO4.12H2O, 154 mM NaCl, pH 7.2. 

 

Cell Lysis Buffer 

50mM Tris-HCl pH 8, 150mM NaCl, 1% NP40, 0.5% sodium deoxycholate and 

10M protease inhibitor cocktail for mammalian cell extracts (Sigma, P8340). 
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4% Paraformaldehyde (PFA) 

4% PFA (w/v) was dissolved in PBS by heating at 65°C, with stirring. When 

dissolved and cooled, it was adjusted to pH 7.4 and stored at -20°C until 

required. 

 

Immunoprecipitation (IP) Buffer 

50mM Tris-HCl pH 7.4, 200mM NaCl, 0.5% (w/v) sodium deoxycholic acid, 1% 

(v/v) Triton X-100, 0.1% (w/v) SDS, 1mM EDTA. 

 

10X Wash Buffer (Caco-2 Cysts) 

1.3M NaCl, 70mM dibasic heptahydrate sodium phosphate, 30mM monobasic 

monohydrate sodium phosphate, 77mM sodium azide, 1% (w/v) BSA, 2% (v/v) 

Triton-X 100, 0.4% (v/v) Tween-20, pH 7.4. 

 

Mowiol Mounting Medium 

2.4g Mowiol 4-88 (Calbiochem, 475904) was mixed with 6g glycerol and 6ml 

dH2O and incubated for 2 h at RT, stirring. 12ml 0.2M Tris, pH 8.5 was added 

and the solution was heated to 53°C until Mowiol 4-88 had dissolved. Solution 

was centrifuged at 5000g for 20 min to remove any undissolved solid and stored 

in 1ml aliquots at -20°C until required. 

 

Western Blotting Buffers: 

Resolving Gel Buffer 

1.5M Tris-HCl pH 8.8, 0.4% (w/v) SDS. 

 

Stacking gel buffer 

0.5 M Tris-HCl pH 6.8, 0.4% (w/v) SDS. 

 

3X Sample Buffer  

187.5mM Tris-HCl pH 6.8, 6% (w/v) SDS, 30% (w/v) glycerol, 0.03% (w/v) 

bromophenol blue. Prior to use, Dithiothreitol (DTT) was added to a final 

concentration of 100mM. 

 

SDS Electrophoresis Buffer 

25mM Tris-HCl pH 8.3, 0.2M glycine, 0.1% (w/v) SDS. 
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Transfer Buffer 

48mM Tris-HCl pH 8.8, 39mM glycine, 0.0375% (w/v) SDS, 20% (v/v) methanol.  

 

Ponceau S Stain 

0.1% (w/v) Ponceau S, 3% (w/v) trichloroacetic acid. 

 

Tris-Buffered Saline containing Tween-20 (TBST) 

10mM Tris-HCl pH 7.4, 154mM NaCl, 0.1% (v/v) Tween-20. 

 

Blocking Buffer 

5% (w/v) Marvel milk powder in TBST. 

 

Enhanced Chemiluminescence (ECL) Reagent 

Solution A: 100mM glycine (pH 10), 0.4mM luminol, 8mM 4-iodophenol. 

Solution B: 0.12% (w/v) hydrogen peroxide in water. 

 

Biotinylation Assay Buffers: 

Phosphate Buffered Saline with Calcium and Magnesium (PBS/CM) 

PBS supplemented with 0.9mM calcium chloride and 0.33mM magnesium 

chloride purchased from Lonza (BE17-513Q). 

 

Tris-Buffered Saline with Calcium (TBS/C) 

50mM Tris-HCl pH 8.6, 100mM NaCl, 2.5mM CaCl2. 

 

Wash Buffer 

50mM Tris-HCl pH 8.0, 150mM NaCl, 0.5% (v/v) Triton X-100, 0.1% (w/v) SDS, 

5mM EDTA. 

 

 

 

 

 

 

 

 



61 
 

2.1.2. Antibodies 

A list of antibodies used, supplier and dilutions for different applications is 

detailed in Table 2.1. 

 

 Antibody Species Source Application/Dilution 

P
R

IM
A

R
Y

 

α-Tsg101 
mouse, 

monoconal 
Abcam 
ab83 

WB - 1:1000  
(in 5% milk) 

α-Vps25 
(serum #6973) 

rabbit, 
polyclonal 

Gift 
(Dr Kate Bowers) 

WB - 1:1000  
(in 5% milk) 

α-β tubulin 
(clone TUB 2.1) 

mouse, 
monoclonal 

Sigma 
T4026 

WB - 1:5000 

α-claudin-1* 
rabbit, 

polyclonal 
Zymed 

59-9000 
WB - 1:2000 

IF - 1:25 

α-claudin-1 
mouse, 

monoclonal 
Zymed 

37-4900 
WB - 1:1000 

α-claudin-4* 
mouse, 

monoclonal 
Zymed 

32-9400 
WB - 1:1000 

IF - 1:25 

α-occludin* 
mouse, 

monoclonal 
Zymed 

33-1500 
WB - 1:1000 

IF - 1:25 

α-ZO-1 
mouse, 

monoclonal 
Zymed 

33-9100 
IF - 1:25 

α-ZO-1 
rabbit, 

polyclonal 
Zymed 

61-7300 
IF - 1:25 

α-E-cadherin 
mouse, 

monoclonal 
Zymed 

33-4000 
WB - 1:1000 

IF - 1:25 

α-desmoglein-2 
mouse, 

monoclonal 
Abcam 

ab14415 
IF - 1:25 

α-JAM-A 
mouse, 

monoclonal 
Zymed 

36-1700 
IF - 1:50 

α-PKC-ζ (C-20) 
rabbit, 

polyclonal 
Santa Cruz 

sc-216 
IF - 1:200 

α-DppIV 
(CD26) 

mouse, 
monoclonal 

Abcam 
ab3154 

IF - 1:50 

α-ubiquitin (mono- & 
polyubiquitinated 
conjugates, clone 

FK2) 

mouse, 
monoclonal 

Enzo Life Sciences 
BML-PW8810 

WB - 1:1000 
IF - 1:500 

α-EEA1 
mouse, 

monoclonal 
BD Biosciences 

610457 
IF - 1:500 

α-EEA1 
rabbit, 

polyclonal 
Abcam 
ab2900 

IF - 1:500 
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 Antibody Species Source Application/Dilution 

P
R

IM
A

R
Y

 

α-CD63 
mouse, 

monoclonal 
Santa Cruz 

sc5275 
IF - 1:1000 

α-M6PR 
mouse, 

monoclonal 
Abcam 
ab2733 

IF - 1:200 

α-TfR 
mouse, 

monoclonal 
Zymed 

13-6800 
IF - 1:50 

α-Lamp 1 
mouse, 

monoclonal 
Gift 

(Dr Scott Lawrence) 
IF - 1:8000 

α-active caspase 3 
rabbit, 

polyclonal 
Abcam 

ab13847 
IF - 1:100 

α-phospho-histone 
H3 

mouse, 
monoclonal 

Abcam 
ab14955 

IF - 1:500 

α-p44/42 MAPK 
(Erk1/2) 

rabbit, 
monoclonal 

Cell Signalling 
4695 

WB - 1:1000 

α-phospho-p44/42 
MAPK (p-Erk1/2) 

mouse, 
monoclonal 

Cell Signalling 
9106S 

WB - 1:2000 
IF - 1:200 

α-SAPK/JNK 
rabbit, 

polyclonal 
Cell Signalling 

9252 
WB - 1:1000 

α-phospho-
SAPK/JNK 

mouse, 
monoclonal 

Cell Signalling 
9255S 

WB - 1:2000 

α-BrdU 
(part of labelling kit) 

mouse, 
monoclonal 

Roche 
11 296 736 001 

IF - 1:10 

S
E

C
O

N
D

A
R

Y
 

α-mouse IgG (H+L) 

Alexa Fluor 488 

goat, 
polyclonal 

Molecular Probes 
A11001 

IF - 1:100 

α-mouse IgG (H+L) 

Alexa Fluor 546 

goat, 
polyclonal 

Molecular Probes 
A11003 

IF - 1:100 

α-rabbit IgG (H+L) 

Alexa Fluor 488 

goat, 
polyclonal 

Molecular Probes 
A11008 

IF - 1:100 

α-rabbit IgG(H+L) 

Alexa Fluor 546 

goat, 
polyclonal 

Molecular Probes 
A11010 

IF - 1:100 

α-rabbit IgG (H+L)-
HRP 

goat, 
polyclonal 

Pierce 
31460 

WB - 1:5000 

α-mouse IgG (Fc 
specific)-HRP 

goat, 
polyclonal 

Sigma 
A2554 

WB - 1:5000 

 

Table 2.1 List of antibodies used. Supplier and catalogue number of antibodies are detailed, 

dilutions are of original supplied stocks. For the conditions of antibody utilisation, refer to main 

text. For IF, antibodies which required fixation in methanol are indicated by ‘*’, 4% PFA fixation 

was used for all other antibodies (see section 2.2.8 for details). Abbreviations: WB = Western 

Blotting, IF = Immunofluorescence.  
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2.1.3. RNA Interference 

Tsg101 and Vps25 proteins were depleted using the small interfering RNA 

(siRNA) oligonucleotides detailed in Table 2.2 and 2.3. All siRNA was 

purchased from Dharmacon.  

 

Target Protein Catalogue Number Target sequence (5’3’) 

Tsg101 L-003549-00 

I1: CCGUUUAGAUCAAGAAGUA 

I2: CUCCAUACCCAUCCGGAUA 

I3: CCACAACAAGUUCUCAGUA 

I4: CCAAAUACUUCCUACAUGC 

Vps25 L-004699-01 

I1: GAUCAUCACUGUCAGCGAU 

I2: ACGUCAAGCUACAGCGAAA 

I3: CAGUCCAGCAUGACGGUGA 

I4: ACCUCGAGUGGUUGGAUAA 

Non Targeting Control D-001810-10 N/A 

 

Table 2.2 ON-TARGETplus SMARTpool siRNA used for transient knockdown of Tsg101 

and Vps25. Tsg101 and Vps25 were depleted via transfection with ON-TARGETplus 

SMARTpool siRNA, composed of four separate siRNA target sequences. ON-TARGETplus 

Non-Targeting Pool was used as a control.  

 

 

 

Name Catalogue Number Target sequence (5’3’) 

Tsg101 J-003549-06 (I1) CCGUUUAGAUCAAGAAGUA 

Tsg101 A1 J-003549-07 (I2) CUCCAUACCCAUCCGGAUA 

Tsg101 A2 
J-003549-07 

J-003549-08 

(I2) CUCCAUACCCAUCCGGAUA 

(I3) CCACAACAAGUUCUCAGUA 

 

Table 2.3 ON-TARGETplus siRNA sequences used for Tsg101 knockdown. Tsg101 

knockdown was carried out using a single siRNA oligonucleotide sequence for the majority of 

experiments. Verification of knockdown phenotype was carried out using an alternate single 

Tsg101 siRNA oligonucleotide (A1) and a mixture of two Tsg101 siRNA oligonucleotides (A2). 

All Tsg101 siRNA sequences were part of the original SMARTpool, denoted I1 - I4 in Table 2.2. 
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2.2. Methods 

 

2.2.1. Cell Culture 

Caco-2 (human colorectal adenocarcinoma; HPA, 86010202) cells were 

cultured in Caco-2 complete growth media at 37°C in 5% CO2. Cells were 

maintained in T75 flasks and passaged every 3-4 days, after reaching 

approximately 80% confluence. Cells were used between passages 40 to 60. 

Cells were routinely tested for mycoplasma contamination using MycoAlert® 

Mycoplasma Detection Kit (Lonza, LT07-218). All tissue cultured treated 

plasticware was purchased from Greiner Bio-One unless otherwise stated. 

 

To plate cells for experimental conditions, cells were washed in DPBS and 

incubated with 1X trypsin (in DPBS; Lonza, BE02-007E) for approximately 10 

min at 37°C, 5% CO2, until detached. Trypsin was neutralised with Caco-2 

antibiotic-free media and cell suspension was centrifuged at 200g for 3 min. 

Cells were resuspended in antibiotic-free media and counted using a 

haemocytometer (Fisher Scientific). Cells were diluted to the desired 

concentration in antibiotic-free media, plated to either 35mm dishes or 13mm 

glass coverslips (Fisher Scientific, MNJ-500-010G) in 24-well plates and 

incubated at 37°C, 5% CO2.  

 

2.2.2. Phase Contrast Microscopy 

Caco-2 cell morphology was monitored using a Nikon Eclipse TS100-F Inverted 

Microscope (10X or 20X objective). Images were obtained using a Nikon 

CoolPix 5000 digital camera and were processed using Adobe Photoshop.  

 

2.2.3. Transfection with small interfering RNA (siRNA) 

Caco-2 cells were plated at 7.5 x 104 cells/ml (unless otherwise indicated) onto 

either 35mm dishes (2ml per well), or 13mm glass coverslips (for 

immunofluorescence, 1ml per coverslip) and incubated in antibiotic-free media 

at 37°C, 5% CO2 for approximately 4 h to adhere. 2µM siRNA (in DPBS) and 

DharmaFECT 1 (Dharmacon, T-2001) were diluted in serum-free media (SFM) 

as detailed below (Table 2.4) and incubated for 5 min at RT. The two solutions 

were mixed and incubated for 20 min at RT. The required volume of antibiotic-

free media was added and the transfection mixture was added to cells. Cells 
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were incubated at 37°C, 5% CO2 for the desired time period, changing media to 

complete growth media after 3 d. 

 

 

Tube 1 (µl) Tube 2 (µl) Antibiotic-
free media 

(µl) 

Final 
volume 

(µl) 
20µM 
siRNA 

DPBS SFM 
Dharma 
FECT-1 

SFM 

35mm dish 10 90 100 4 (5) 196 (195) 1600 2000 

Coverslip 2.5 22.5 25 1 (1.25) 49 (48.75) 400 500 

 

Table 2.4 Volumes of reagents required for transfection with siRNA oligonucleotides. 

Solutions were prepared as detailed in methods using the volumes indicated. Transfection with 

Vps25 siRNA required an increased volume of DharmaFECT-1, as indicated in brackets.  

 

2.2.4. Cell Lysis and Protein Quantification 

Cells were washed once in ice-cold PBS and scraped into an appropriate 

volume of ice-cold cell lysis buffer containing mammalian protease inhibitors. 

Cell lysates were pulse sonicated on ice, five times for 3 s and incubated for 30 

min at 4°C, with rotation. Lysates were centrifuged at 15000g for 15 min at 4°C 

to remove nuclear debris and stored at -20°C until required for further analysis.  

 

Protein quantification of cell lysates was carried out with the colorimetric BCA 

(bicinchoninic acid) Protein Assay Kit (Pierce, 23227) using a bovine serum 

albumin (BSA) standard curve (0, 1, 2, 4, 6, 8, 10µg BSA). BCA solution 

(reagent A + 1:50 dilution reagent B) was freshly prepared and 200l was 

added to each well of a 96-well flat bottom plate (Iwaki) containing standard or 

test samples (2l). All samples were carried out in triplicate. The plate was 

incubated for 30 min at 37°C and absorbance was measured at 565nm using a 

Spectra Rainbow Thermo microplate spectrophotometer (Tecan). Results were 

analysed using Microsoft Excel and unknown protein concentrations were 

calculated.  

 

2.2.5. SDS-PAGE and Immunoblotting 

Proteins were separated according to size using sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE). Equal amounts of lysate (10-

25µg protein) was added to 1X sample buffer (final concentration) containing 

100mM DTT and incubated for 5 min at 95°C. Polyacrylamide gels of 1mm 

thickness were prepared using acrylamide/bis-acrylamide (30% (w/v) 
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acrylamide: 0.8% (w/v) bis-acrylamide) (ProtoGel; National Diagnostics, EC-

890) and gel buffers previously described. Polymerisation of the gels was 

induced by the addition of 10% (w/v) ammonium persulphate (APS; Sigma) and 

N,N,N,N’-tetramethylethylenediamine (TEMED; Sigma). The gels were 

composed of a 12% resolving gel (pH 8.8) and a lower percentage stacking gel 

(pH 6.8). The composition of the resolving and stacking gels is given in Table 

2.5. Gels were assembled into the mini PAGE chamber (ATTO Corporation, 

model AE-6450) and samples (25µl) were loaded alongside 8µl Broad Range 

Prestained Protein Marker (New England Biolabs, P77085). Gels were run at 40 

mA/gel for approximately 50 min.  

 

Solution Resolving Gel (12%) Stacking Gel 

Protogel 3 ml 850 µl 

Resolving gel buffer 2.5 ml - 

Stacking gel buffer - 1.25 ml 

dH20 2 ml 1.875 ml 

10% APS 50 µl 20 µl 

TEMED 4 µl 5 µl 

 

Table 2.5. Composition of SDS-PAGE gels. Volumes are for one 90 x 80 x 1mm gel. 

 

Separated proteins were then transferred to Biotrace™ Pure Nitrocellulose 

Blotting Membrane (Pall Life Sciences, 66485). Filter papers (Extra thick, 

7.5x10cm; Bio-Rad, 1703965) and the nitrocellulose membrane were pre-

soaked in transfer buffer and assembled onto the HorizBlot semi-dry transfer 

apparatus (ATTO Corporation, model AE-6675L) in the following order: filter 

paper, nitrocellulose membrane, gel, filter paper. Air bubbles were carefully 

removed and transfer of proteins was carried out at 54 mA/gel for 110 min. 

Following the transfer, nitrocellulose membranes were briefly incubated with 

Ponceau S stain to confirm the presence of transferred proteins. 

 

Detection of specific proteins transferred to nitrocellulose membrane was 

performed via immunoblotting. Membranes were rinsed with TBST to remove 

Ponceau S stain and incubated in blocking buffer for 1 h at RT. Membranes 

were then incubated with primary antibodies diluted in 1% (w/v) BSA (in TBST) 

(unless otherwise stated) for either 2 h at RT or overnight at 4°C. The 
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appropriate species-specific horseradish-peroxide (HRP)-conjugated secondary 

antibody was diluted in blocking buffer and added to membranes for 1 h at RT. 

Following all antibody incubations, membranes were washed 6 times in TBST, 5 

min per wash. To visualise proteins, membranes were incubated for 5 min at RT 

with either equal volumes of Solution A and B of the ECL Reagent (homemade), 

or Luminata™ Forte HRP Substrate (Millipore, WBLUF0500). Proteins were 

visualised and quantified using an Optichem detector with associated software 

(Ultra Violet Products).  

 

2.2.6. Immunoprecipitation 

Caco-2 cells were plated onto 35mm dishes, transfected with siRNA as detailed 

previously (section 2.2.3) and incubated for 7 d at 37°C, 5% CO2. Cells were 

lysed in 100µl cell lysis buffer as previously described (section 2.2.4) and 10µl 

of total lysate was taken from each sample for use as a loading control. The 

remaining lysate was used for immunoprecipitation of claudin-1. Protein A-

coupled Sepharose Beads (Amersham Biosciences, 17-0780-01) were 

prepared as follows. 0.1g sepharose beads were suspended in 20ml dH2O and 

allowed to swell for 30 min. Beads were centrifuged at 1000g for 5 min at RT. 

Beads were washed three times by resuspension and centrifugation using IP 

Buffer. A slurry was prepared containing 75% beads and 25% IP Buffer. Prior to 

immunoprecipitation, a pre-clearing step was performed to reduce non-specific 

binding. 80µl cell lysate was added to 80µl IP Buffer, 1µg rabbit IgG (Sigma, 

I5006) and 50µl 75% slurry and the sample was incubated for 2 h at 4°C, with 

rotation. Concurrently, a coupling reaction was prepared to allow binding of the 

antibody to the sepharose beads. 1µg rabbit anti-claudin-1 was added to 500µl 

IP Buffer and 50µl 75% slurry and the sample was incubated for 2 h at 4°C, with 

rotation. Both samples were then centrifuged at 1000g for 3 min. The 

supernatant from the pre-clearing sample was added to the sepharose beads 

from the coupling reaction and the sample was incubated overnight at 4°C, with 

rotation in order to isolate claudin-1 protein from the cell lysate. Beads were 

washed 5 times by centrifuging at 1000g for 3 min and resuspending in 1ml cold 

IP Buffer. Finally, beads were resuspended in 1X sample buffer (final 

concentration) containing 100mM DTT and incubated for 15 min at 95°C to 

release isolated proteins from the beads. Samples were centrifuged at 1000g 

for 3 min and supernatant was collected. Samples were then analysed using 
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SDS-PAGE and immunoblotting (see section 2.2.5). Antibodies used were 

mouse anti-claudin-1, to verify that the immunoprecipitation was successful, and 

mouse anti-ubiquitin, to analyse the amount of ubiquitinated claudin-1 present. 

Total cell lysates were included alongside immunoprecipitation samples to 

serve as loading controls. 

 

To ensure the immunoprecipitation was specific for claudin-1, the following 

controls were also included: a no antibody control and an IgG control, in which 

the rabbit anti-claudin-1 was replaced with dH2O or 1µg rabbit IgG, respectively. 

 

2.2.7. Biotinylation Trafficking Assays 

The biotinylation assay to study endocytosis and recycling of tight junction 

proteins was modified from a method described previously (Nishimura and 

Sasaki, 2008). See Figure 2.1 for a schematic of the process. 

 

Endocytosis Assay 

Prior to carrying out the biotinylation assay, Caco-2 cells were plated at 7.5 x 

104 cells/ml onto 35 mm dishes and cultured for 7 d at 37°C, 5% CO2. Cells 

were transferred to ice and washed with PBS supplemented with calcium and 

magnesium (PBS/CM).  Cells were then incubated with 1ml of the cleavable 

non-membrane permeable sulfo-NHS-SS-biotin (Pierce; in PBS/CM) at a 

concentration of 0.5mg/ml for 30 min on ice to label all cell surface proteins.  

Free biotin was quenched with 50mM NH4Cl (Sigma) (in PBS/CM) for 3 x 5 min 

washes on ice. For the endocytosis assay, 2ml pre-warmed complete growth 

medium was added and cells returned to 37°C, 5% CO2 for indicated times.  

Cells were then transferred to ice to stop endocytosis, and surface (non-

endocytosed) biotin was stripped by reduction with 100mM 2-

mercaptoethanesulfonate (MESNA; Sigma) (in tris-buffered saline 

supplemented with calcium; TBS/C) for 3 x 10 min washes on ice.  Internalised 

biotinylated cargo was protected from biotin stripping with MESNA by an intact 

plasma membrane.  Free –SH groups were then quenched by incubating cells 

with 5 mg/ml iodoacetamide (Sigma) (in PBS/CM) for 3 x 5 min washes on ice. 

Following the endocytosis assay, cells were either lysed to determine amount of 

protein endocytosed (‘endocytosis’ sample) or used for the subsequent 

recycling assay.  
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Alongside the ‘endocytosis’ sample, a number of controls were also carried out. 

Firstly, a ‘no biotin’ condition was included to which no sulfo-NHS-SS-biotin was 

added. This ensured the neutravidin pull down was specific for biotinylated 

proteins. To ensure the stripping procedure was efficient, a ‘surface strip’ 

condition was included whereby biotin was stripped from the cell surface 

immediately after incubation. Lastly, the total amount of biotinylated protein at 

the cell surface (‘surface label’) was determined by lysing cells after incubation 

with biotin.  

 

Recycling Assay 

For the recycling assay, 2ml pre-warmed complete growth medium was added 

and cells were returned to 37°C, 5% CO2 for 20 min. This allows for potential 

recycling of internalised biotinylated proteins back to the cell surface. Cells were 

then transferred to ice, and surface biotin was stripped by reduction with 

100mM MESNA (in TBS/C) for 3 x 10 min washes on ice.  Free –SH groups 

were quenched by incubating cells with 5 mg/ml iodoacetamide (in PBS/CM) for 

3 x 5 min washes on ice. Therefore, the remaining biotinylated protein is that 

which has endocytosed and not recycled back to the cell surface (‘recycling’ 

sample). To control for potential loss of biotinylated cargo via degradation rather 

than recycling, a ‘degradation control’ was included which lacked the second 

MESNA treatment.  Thus any loss in biotinylated cargo at this step, relative to 

the ‘endocytosis’ step, would indicate a loss in signal due to degradation of 

cargo instead of recycling. The amount of recycled cargo is indicated by the 

difference in signal between the ‘degradation control’ and ‘recycling’ samples.  

 

Cell Lysis and Isolation of Biotinylated Proteins  

Cells were lysed in 100µl cell lysis buffer and protein concentration determined 

as previously described (see section 2.2.4). An equal amount of total lysate 

(10µg protein) was taken from each sample for use as a loading control. 

Remaining samples were diluted to equal protein concentrations (in 100µl cell 

lysis buffer) and biotinylated proteins were collected by incubation with 50µl 

Neutravidin beads (Pierce), rotating overnight at 4oC.  Beads were washed by 

centrifuging at 1000g for 2 min, 5 times with 1ml wash buffer and 3 times with 

1ml PBS/CM.  Sample buffer containing 100mM DTT was then added to beads 

and samples were incubated for 15 min at 95°C to release biotinylated proteins 
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from the beads. Samples were centrifuged at 1000g for 3 min and supernatant 

was collected. The amount of biotinylated proteins present in each sample was 

analysed using SDS-PAGE and immunoblotting for the protein of interest (see 

section 2.2.5). Total cell lysates were included alongside Neutravidin pull-downs 

to serve as a loading control. For quantification of the biotinylated proteins, the 

amount of protein was normalized to the respective total protein bands 

determined from total cell lysate samples.   

 

 

 

 

Figure 2.1 Biotinylation Endocytosis and Recycling Assay. Schematic to illustrate the steps 

involved. Cells were lysed at each step and levels of biotinylated protein was compared.   

 

 

2.2.8. Cycloheximide Treatment 

Caco-2 cells were plated at 7.5 x 104 cells/ml onto 35 mm dishes and cultured 

for 7 d at 37°C, 5% CO2. Cells were incubated with 2µg/ml cycloheximide 

(Sigma, C4859) diluted in antibiotic-free media for 20 min, 1 h, 6 h, 16 h or 24 h 

at 37°C, 5% CO2. DMSO controls were carried out alongside. At each timepoint 

cells were lysed and processed for SDS-PAGE and immunoblotting to analyse 

levels of occludin, claudin-1 and connexion-43, which was used as a positive 

control (sections 2.2.4, 2.2.5). 

 

2.2.9. Immunofluorescence  

Cells were cultured on 13mm glass coverslips for the desired time. Prior to 

processing for immunofluorescence, media was removed and cells were 

washed twice in PBS. Depending on the antibodies used (see Table 2.1 for list 

of antibodies and conditions required), cells were fixed according to the 

following protocols. Following fixation, cells were either immediately processed 

for antibody staining or stored in PBS at 4°C until required. 
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Fixation in 4% PFA 

Cells were fixed in 4% (w/v) paraformaldehyde (PFA) for 20 min at RT. Cells 

were washed twice in PBS and then permeabilised in ice-cold 100% Methanol 

for 5 min at -20°C, followed by two further PBS washes. 

 

Fixation in Methanol 

Cells were fixed and permeabilised in ice-cold 100% Methanol for 10 min at -

20°C followed by two PBS washes.  

 

Antibody Staining 

Following fixation, cells were incubated in 10% FBS (v/v in PBS) for 30 min at 

RT to block non-specific binding sites. Cells were then washed twice in 2% FBS 

(v/v in PBS) and once in PBS, 3 min per wash. Primary antibodies diluted in 2% 

FBS were added and cells were either incubated for 2 h at RT or overnight at 

4°C. Cells were incubated with species specific fluorophore-conjugated 

secondary antibodies for 1 h at RT, in the dark. After all antibody incubations 

cells were washed 3 x 5 min in 2% FBS and 3 x 5 min in PBS. Nuclei were 

stained using 1µg/ml DAPI (4’,6-diamidino-2-phenylindole) (Sigma, D9564) for 

10 min at RT, in the dark. Following a quick wash in PBS, cells were mounted 

onto glass slides using Mowiol Mounting Medium and allowed to dry at RT 

overnight, protected from light. Stained cells were examined on a Zeiss 

LSM510META laser-scanning confocal microscope (Plan-ApoChromat 63x/1.4 

Oil DIC objective). Images were taken and processed using the LSM Image 

Browser Software (Zeiss) and Adobe Photoshop.  

 

2.2.10. EGF Stimulation 

Cells were serum starved overnight prior to EGF treatment. For 

immunofluorescence studies, cells were incubated in 500ng/ml EGF 

(Calbiochem, 324831) or EGF-Alexa Fluor® 555 diluted in SFM for 4 h at 37°C, 

5% CO2. Cells were washed in PBS and then processed as detailed previously 

(section 2.2.9). For pulse-chase experiments, cells were incubated in 500ng/ml 

EGF in SFM for 10 min on ice. Media was replaced with SFM and cells were 

incubated in SFM for 15 min, 1 h or 4 h at 37°C, 5% CO2. Cells were then lysed 

and processed for SDS-PAGE and immunoblotting to analyse levels of p-Erk1/2 

and total Erk1/2 (sections 2.2.4, 2.2.5).  
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2.2.11. Cysts 

Caco-2 cells were plated at 1 x 105 cells/ml into 35mm dishes, transfected with 

siRNA as detailed previously (section 2.2.3), incubated at 37°C, 5% CO2 for 3 d. 

Cells were washed in DPBS, trypsinised and centrifuged at 200g for 3 min. 

Cells were resuspended in 300µl complete growth media and counted using a 

haemocytometer, including 0.2% (v/v) Trypan Blue (Sigma, T8154) to exclude 

dead cells. Cells were diluted to 3.5 x 105 cells/ml in complete growth media. A 

cell:matrix mix was prepared on ice containing 5.8 x 104 cells/ml, 0.02 M 

HEPES, pH 7.4, 1 mg/ml Collagen I (Inamed Biomaterials, 5409) and 40% 

Growth Factor Reduced BD Matrigel™ Matrix (BD Biosciences, 356230) (see 

Table 2.6). All solutions were kept on ice and tubes and pipette tips were pre-

cooled to prevent the matrigel from solidifying. The cell:matrix mix was plated 

into an 8 chamber slide (BD Biosciences, 354108), 100µl per chamber, 

incubated at 37°C, 5% CO2 for 1 h to solidify and overlaid with 300µl complete 

growth media. Cysts were allowed to develop for 7 d at 37°C, 5% CO2, 

changing media every 3-4 d.   

 

Component Volume (µl) Final Concentration 

3.5 x 10
5 
cells/ml Caco-2 cell suspension 41.4 5.8 x 10

4 
cells/ml 

Caco-2 complete growth media 20.3 N/A 

1M HEPES, pH 7.4 5 0.02 M 

Collagen I, 3 mg/ml 83.3 1 mg/ml 

Growth Factor Reduced BD Matrigel™ Matrix 100 40 % 

 

Table 2.6. Composition of cell:matrix mix for culture of Caco-2 cell cysts. Volumes given 

are sufficient for 2 wells of an 8 chamber slide, plating 100µl per well.   

 

After 7 d culture, cysts were washed 3 x 5 min in PBS and treated with 5U/ml 

Collagenase VII (in PBS) (Sigma, C0773) for 15 min at RT. Cysts were washed 

in PBS then fixed in 4% (w/v) PFA for 30 min at RT. Cysts were washed 3 x 10 

min with 1X wash buffer (in dH2O) and incubated with blocking buffer (10% (v/v) 

FBS in 1X wash buffer) for 1 h at RT. Cysts were then incubated with primary 

antibodies diluted in blocking buffer overnight at 4°C, followed by incubation 

with species specific fluorophore-conjugated secondary antibodies diluted in 

blocking buffer for 1 h at RT, in the dark. Following all antibody incubations 

cysts were washed 3 x 20 min in 1X wash buffer. Cysts were rinsed 2 x 5 min in 
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PBS and post-fixed in 4% (w/v) PFA for 30 min at RT. Following a further 3 x 5 

min washes with PBS, nuclei were stained with 1μg/ml DAPI for 30 min at RT. 

After a final rinse in PBS, cysts were mounted in Mowiol Mounting Medium and 

examined on a Zeiss LSM510 META laser-scanning confocal microscope (Plan-

ApoChromat 63x/1.4 Oil DIC objective). Images were taken and processed 

using the LSM Image Browser Software (Zeiss) and Adobe Photoshop.  

 

2.2.12. Transepithelial Resistance (TER) Measurements 

Caco-2 cells were plated at 1 x 105 cells/ml into 35mm dishes, transfected with 

siRNA as detailed previously (section 2.2.3) and incubated at 37°C, 5% CO2 for 

3 d. To plate onto filters, cells were washed in DPBS, trypsinised and 

centrifuged at 200g for 3 min. Cells were resuspended in 300µl complete growth 

media and counted using a haemocytometer, including 0.2% (v/v) Trypan Blue 

to exclude dead cells. Cells were diluted to 1.25 x 106 cells/ml in complete 

growth media. Cells were plated in triplicate on Transwell® (Corning; 3470) 

permeable polyester filters (0.4µm pore size, 0.33cm2 surface area), 200µl per 

filter (2.5 x 105 cells/filter final density). Filter inserts were placed in a 24-well 

plate and 1ml complete growth media was added to each basal compartment. 

Cells were incubated at 37°C, 5% CO2. TER was measured every 24 h for 4 d 

using a EVOM TER machine with an Endohm-6TM chamber (World Precision 

Instruments), changing media after every reading. 

 

Calcium Switch 

To induce disassembly followed by reassembly of cell-cell junctions, a calcium 

switch method was carried out. Following culture of Caco-2 cells on filters for 4 

d, cells were washed in DPBS and incubated in calcium-free media (EMEM with 

Earle’s BSS, with NEAA and L-glutamine, without calcium; Lonza, 06-174G) for 

90 min at 37°C, 5% CO2 to induce internalisation of cell-cell junction proteins. 

Following measurement of TER, media was replaced with complete growth 

media and cells were incubated at 37°C, 5% CO2 to allow cell-cell junctions to 

reform. Recovery of TER was measured every hour for 5 h.  

 

2.2.13. MTT Assay 

Caco-2 cells were plated at 7.5 x 104 cells/ml into 35mm dishes, transfected 

with siRNA as detailed previously (section 2.2.3) and incubated at 37°C, 5% 

CO2 for the desired time period. To carry out the MTT assay, cells were washed 



74 
 

briefly in DPBS and incubated with 2ml 2.5mg/ml MTT (3-(4,5-Dimethyl-2-

thiazolyl)-2,5-diphenyltetrazolium bromide) (Alfa Aesar, L11939) in phenol red-

free media (DMEM with 4.5 g/L glucose, without L-glutamine or phenol red; 

Lonza, BE12-917F) for 1 h at 37°C, 5% CO2. A control was included containing 

no cells. MTT solution was removed and cells were incubated with 1ml of 

isopropanol for 20 min at RT in the dark. The isopropanol solution was 

transferred to a 96-well flat bottomed clear plate, 100µl per well and absorbance 

was measured at 570nm using a Spectra Rainbow Thermo microplate 

spectrophotometer (Tecan). Results were analysed using Microsoft Excel, 

calculating mean absorbance for each condition and subtracting background 

absorbance obtained from no cell control. 

 

2.2.14. Quantification of Cell Number 

Caco-2 cells were stained with appropriate antibodies and nuclei stained with 

DAPI as detailed previously (section 2.2.8). Stained cells were examined on a 

Zeiss LSM510META laser-scanning confocal microscope (Plan-ApoChromat 

63x/1.4 Oil DIC objective). Z-stack images were taken at random and cell 

number was quantified using Image J software. Six images were taken per 

condition and, for Tsg101 knockdown cells, regions were distinguished as either 

monolayerd or multilayered.  

 

2.2.15. BrdU Incorporation 

Caco-2 cells were plated onto 13mm glass coverslips, transfected with siRNA 

as detailed previously (section 2.2.3) and incubated at 37°C, 5% CO2 for 6 d. 

BrdU (5-Bromo-2’-deoxy-uridine) labelling reagent (BrdU Labelling and 

Detection Kit; Roche, 11 296 736 001) was added at 1:1000 dilution directly to 

media in each well and cells were incubated for 24 h at 37°C, 5% CO2. Cells 

were washed twice in PBS and fixed in cold 100% Ethanol for 20 min at -20°C. 

After 2 x 5 min washes in PBS, cells were incubated in 10% (v/v) FBS (in PBS) 

for 30 min at RT, followed by three further PBS washes. Anti-BrdU (included in 

the labelling kit) was diluted 1:10 in Incubation Buffer and added to cells for 30 

min at 37°C. Cells were then incubated with anti-mouse Alexa Fluor® 488 

secondary antibody (in PBS) for 1 h at RT, in the dark. Following both antibody 

incubations, cells were washed 6 x 5 min in PBS. Nuclei were stained using 

1µg/ml DAPI for 10 min at RT, in the dark. Following a quick wash in PBS, cells 

http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Thiazole
http://en.wikipedia.org/wiki/Phenyl


75 
 

were mounted onto glass slides using Mowiol Mounting Medium and allowed to 

dry at RT overnight, protected from light. Stained cells were examined on a 

Zeiss LSM510META laser-scanning confocal microscope (Plan-ApoChromat 

63x/1.4 Oil DIC objective). Z-stack images were taken at random and BrdU 

incorporation was quantified using Image J software. Six images were taken per 

condition and, for Tsg101 knockdown cells, regions were distinguished as either 

monolayerd or multilayered.  

 

2.2.16. Caspase Inhibition 

Caco-2 cells were plated onto 13mm glass coverslips, transfected with siRNA 

as detailed previously (section 2.2.3) and incubated at 37°C, 5% CO2 for a total 

of 7 or 10 d. The General Caspase Inhibitor (Q-VD-OPh; R&D Systems, 

OPH001) was added to cells on day 4 and day 7 (for 10 d knockdowns) at 

25µM in Caco-2 growth media and cells were incubated at 37°C, 5% CO2 for 

the remainder of the incubation period. DMSO controls were carried out 

alongside. After 7 d and 10 d knockdown, cells were fixed in 4% (w/v) PFA and 

processed for immunofluorescence (see section 2.2.8) to stain for active 

Caspase-3. Stained cells were examined on a Zeiss LSM510META laser-

scanning confocal microscope (Plan-ApoChromat 63x/1.4 Oil DIC objective). 

Six z-stack images per condition were taken at random and caspase-positive 

and -negative cell numbers were quantified using Image J software. 

 

2.2.17. Migration Assay 

Caco-2 cells were plated at 1 x 105 cells/ml into 35mm dishes, transfected with 

siRNA as detailed previously (section 2.2.3) and incubated at 37°C, 5% CO2 for 

3 d. To perform the migration assay, Caco-2 cells were replated into both wells 

of Culture-Inserts (Ibidi, 80209) placed into 35mm dishes. Cells were washed in 

DPBS, trypsinised and centrifuged at 200g for 3 min. Cells were resuspended in 

200µl complete growth media and counted using a haemocytometer, including 

0.2% (v/v) Trypan Blue to exclude dead cells. Cells were diluted to 6.5 x 105 

cells/ml in complete growth media and 70µl cell suspension was added to each 

well of the Culture-Insert. Cells were incubated for 3 d at 37°C, 5% CO2. To 

initiate migration, Culture-Inserts were removed using sterile forceps, leaving a 

500µm cell-free gap. Cells were washed carefully in DPBS and incubated in 

SFM for 24 h at 37°C, 5% CO2. Migration was monitored at 0, 12 and 24 h 
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using phase contrast microscopy and images were obtained (section 2.2.2). 

Quantification of the cell-free area was conducted using Image J Software. 

 

2.2.18. Statistical Analysis 

Mean and standard error were calculated using Microsoft Excel and results 

were plotted graphically using GraphPad (Prism). Each experiment was 

repeated in triplicate unless otherwise stated. Statistical analysis was carried 

out using either a one-way ANOVA with a Dunnett’s post test or a two-way 

ANOVA with a Bonferroni post test for comparison of data sets over time. 

Significance level was graded as * p < 0.05, ** p < 0.01, *** p < 0.001.  
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3.  ESCRT proteins are required for mammalian 

epithelial cell organisation and polarity 

 

3.1. Introduction 

 

3.1.1. ESCRTs and Mammalian Epithelial Cell Polarity 

 

Previous work conducted in Drosophila has revealed a close link between 

ESCRT proteins, epithelial cell polarity and tumour formation (reviewed in 

Vaccari and Bilder, 2009; Herz and Bergmann, 2009; Lobert and Stenmark, 

2011). Mutation of ESCRT proteins in Drosophila results in loss of epithelial cell 

polarity and overproliferation. Upon inhibition of apoptosis, this effect is 

exacerbated and tumour-like growths capable of metastasis are formed. As a 

result ESCRT proteins have been classified as potential tumour suppressors 

(Moberg et al., 2005; Thompson et al., 2005; Vaccari and Bilder, 2005; Herz et 

al., 2006; Herz et al., 2009; Rodahl et al., 2009b; Vaccari et al., 2009).  

 

In mammalian cells, the potential relationship between ESCRTs and epithelial 

cell polarity has not been investigated. Both reduced expression (Xu et al., 

2003; Li et al., 2008) and overexpression (Liu et al., 2002; Oh et al., 2007; 

Toyoshima et al., 2007; Young et al., 2007) of ESCRT proteins have been 

associated with various human cancers, however, evidence for a direct role of 

ESCRTs in mammalian tumourigenesis is inconclusive. The ESCRT-I protein, 

Tsg101 was originally identified in mice, whereby knockout of the gene resulted 

in cellular transformation of mouse fibroblasts and acquired ability to form 

metastatic tumours when injected into nude mice (Li and Cohen, 1996). 

However, subsequent mice knockout studies have failed to support a tumour 

suppressor function of Tsg101. Null mutation of the Tsg101 gene in mice results 

in early embryonic lethality (Ruland et al., 2001; Wagner et al., 2003). Tsg101-

deficient embryos are reduced in size, displaying a decrease in cellular 

proliferation but no increase in apoptosis, and fail to develop past day 6.5 of 

embryogenesis. This was attributed to an accumulation of p53 via a 

posttranscriptional mechanism, causing cell cycle arrest and embryonic death 

(Ruland et al., 2001). Conditional knockout mice, whereby Tsg101 was deleted 
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in mammary epithelial cells, showed impaired mammary development during 

lactation due to an increase in apoptosis of Tsg101-deficient cells. In addition, 

Tsg101 knockout resulted in reduced proliferation and increased cell death of 

mammary epithelial cells in vitro. Despite these effects, tumour formation was 

not observed in either heterozygous complete or tissue-specific Tsg101 

knockout mice monitored over two years (Wagner et al., 2003). Therefore, 

these results suggest that Tsg101 is not a tumour suppressor gene for initiation 

of sporadic forms of breast cancer, contradicting previous studies (Li and 

Cohen, 1996; Li et al., 1997). This discrepancy may be explained by the high 

level of cell death observed in these Tsg101 deficient mice as it is possible that 

this masks the full tumourigenic potential of Tsg101. Indeed, in Drosophila 

ESCRT mutants, tumourous masses are only formed when apoptosis is 

inhibited (Thompson et al., 2005; Herz et al., 2006). Therefore, an alternative 

model may be required to fully investigate the importance of ESCRT function in 

maintenance of epithelial cell polarity and tumour suppression.  

 

3.1.2. Caco-2 Cells as a Model System for Studying Mammalian Epithelial 

Cell Polarity 

 

The human Caco-2 colon adenocarcinoma cell line provides a good in vitro 

model to study the potential relationship between ESCRT proteins and 

mammalian epithelial cell polarity. Caco-2 cells are a well characterised 

epithelial cell line. In culture they form cell-cell junctions with neighbouring cells 

and polarise to establish distinct apical and basolateral membrane domains 

(Grasset et al., 1984; Sambuy et al., 2005; Volpe, 2008). Caco-2 cells are a 

heterogeneous population and, upon reaching confluency, spontaneously 

differentiate to resemble mature enterocytes (Chantret et al., 1988; Engle et al., 

1998). During differentiation cell-cell junctions mature, lateral height increases 

and a brush border of microvilli forms with expression of small intestine 

hydrolase enzymes, including sucrose-isomerase and dipetidylpeptidase IV 

(DppIV), at the apical membrane (Chantret et al., 1988; Sambuy et al., 2005; 

Volpe, 2008). 

 

In addition, when cultured in a matrigel suspension, Caco-2 cells form 3D 

polarised cysts whereby a single layer of cells surrounds a central lumen. These 
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cells polarise so that their apical membranes are orientated to the luminal side 

and the basal membranes are in contact with the matrigel. These 3D cultures 

are an additional method of  investigating cell polarity in vitro and are often 

considered more physiologically relevant than conventional 2D cell culture 

methods (Martin-Belmonte and Mostov, 2008). 

 

3.1.3. Depletion of ESCRTs via siRNA knockdown 

 

RNA interference (RNAi) is a powerful tool for functional analysis of mammalian 

genes. It offers a simple, cost-effective approach for sequence-specific gene 

silencing at the posttranscriptional level (Sandy et al., 2005). Two RNAi 

approaches can be used for knockdown of mammalian genes, the first of which 

utilises synthetic small interfering RNAs (siRNAs). These are ~21-nucleotide-

long double-stranded RNA (dsRNA) molecules composed of a 19-bp core 

sequence specific for the mRNA of interest along with two unpaired nucleotides 

at each 3’ end (Sandy et al., 2005; Shan, 2010). Once introduced into the cell 

via transfection, one strand of the siRNA duplex is integrated into RNA-induced 

silencing complex (RISC), with Ago2 as its core component, whereas the other 

‘passenger’ strand is degraded (Shan, 2010). Inside the RISC, the siRNA guide 

strand associates with its complementary mRNA sequence and induces mRNA 

degradation. Consequently, translation of the targeted mRNA is inhibited and 

levels of the encoded protein are reduced (Sandy et al., 2005; Shan, 2010). An 

alternative RNAi approach is to use short hairpin RNAs (shRNAs) expressed 

from plasmids or viral-based vectors. These are useful when longer lasting 

gene silencing is required or when cells are particularly hard to transfect (Sandy 

et al., 2005). However, over time cells may adapt to the knockdown and 

therefore this may result in a different phenotype compared with a transient 

siRNA knockdown. 

 

Efficient siRNA knockdown of ESCRT proteins has been demonstrated 

previously in mammalian cell culture (Bishop et al., 2002; Lu et al., 2003; 

Doyotte et al., 2005; Bache et al., 2006; Raiborg et al., 2008) and, therefore, 

offers an attractive method to study the function of ESCRT proteins in vitro. In 

addition, due to their relatively simple design and synthesis, siRNAs are often 

commercially available in a ready-to-transfect format. Another important 
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consideration when performing siRNA knockdown experiments is the 

incorporation of appropriate controls. Firstly, a negative control should be 

employed, typically an RNA duplex with a sequence that has no perfect match 

within the genome (Shan, 2010). Secondly, any phenotypic effect elicited by 

knockdown of a particular gene should be confirmed using alternative siRNA 

duplexes against the same gene in order to exclude off-target effects (Sandy et 

al., 2005). 

 

3.1.4. Domain Structure of Tsg101 and Vps25 Proteins 

 

As studies in Drosophila identified a role for Tsg101 (ESCRT-I) and Vps25 

(ESCRT-II) within the maintenance of epithelial cell polarity, it is of interest to 

determine the effect of disrupting the mammalian homologues of these proteins. 

Tsg101 is approximately 44 KDa with a catalytically inactive N-terminal ubiquitin 

E2 variant (UEV) domain which binds directly to ubiquitin and mediates 

interaction of the ESCRT-I complex with ubiquitylated cargo (Figure 3.1A). This 

UEV domain also mediates binding of ESCRT-I to the Hrs subunit of ESCRT-0 

(Hurley and Emr, 2006; Williams and Urbe, 2007). In addition, Tsg101 contains 

a proline-rich domain (PRD), a coiled-coil (CC) domain and a C-terminal 

steadiness box (SB) domain, which is thought to be important for autoregulation 

of protein expression (Pornillos et al., 2002; Hurley and Emr, 2006; Williams 

and Urbe, 2007; McDonald and Martin-Serrano, 2008). 

 

The ESCRT-II complex contains two Vps25 protein subunits of approximately 

21 KDa (Figure 3.1B). Vps25 contains two repeats of the PPXY sequence at its 

N-terminus which interact with the other two subunits of the ESCRT-II complex, 

Vps22 and Vps36 (Hurley and Emr, 2006). At the C-terminus of Vps25, two 

tandem repeats of a winged helix (WH) domain are found. This is a common 

type of protein-protein and protein-DNA interaction domain and provides a 

direct link to the ESCRT-III subunit, CHMP6 (Williams and Urbe, 2007). 

 

 

 

 

 

Laura F
Sticky Note
Added section to describe the domain structure of Tsg101 & Vps25, including Figure 3.1 (next page)
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Figure 3.1 Domain structures of Tsg101 and Vps25. (A) Tsg101 is a 390 amino acid protein 

containing a ubiquitin E2 variant (UEV) domain, a proline rich (PRD) domain, a coiled-coil (CC) 

domain and a steadiness box (SB) domain. (B) Vps25 is a 176 amino acid protein containing 

two repeats of the PPXY sequence at the N-terminus and two tandem repeats of a winged helix 

(WH) domain at the C-terminus (adapted from Pornillos et al., 2002; Hurley and Emr, 2006). 

 

 

3.1.5. Aims 

 

The primary aim of this study is to evaluate whether depletion of Tsg101 and 

Vps25 results in an alteration in mammalian epithelial cell polarity. Tsg101 and 

Vps25 will be depleted in Caco-2 cells using siRNA knockdown and the 

resulting endocytic phenotype will be analysed. The effect of ESCRT depletion 

on Caco-2 cell morphology will then be investigated. Lastly, characterisation of 

epithelial organisation and polarity will be conducted upon ESCRT knockdown 

in both 2D and 3D cell culture systems. 
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3.2. Results 

 

3.2.1. Depletion of ESCRTs via siRNA knockdown 

 

In order to assess whether ESCRT proteins are important for the establishment 

and maintenance of epithelial cell polarity, siRNA was used to knockdown 

Tsg101, a component of ESCRT-I, and Vps25, a component of ESCRT-II, in 

Caco-2 cells, a human epithelial colorectal adenocarcinoma cell line. These 

proteins were chosen as the first studies conducted in Drosophila reported that 

mutations in either Tsg101 or Vps25 resulted in a loss of cell polarity (Moberg et 

al., 2005, Thompson et al., 2005, Vaccari and Bilder, 2005).  

 

Tsg101 siRNA knockdown was optimised initially using a SMARTpool of four 

oligonucleotide sequences. After 3 days, Tsg101 protein was reduced by 

approximately 75% (Figure 3.2A). These siRNA sequences were then tested 

individually and the oligonucleotide which resulted in the most efficient 

knockdown (I1) was chosen for all further experiments throughout this thesis 

(Figure 3.2B + C). Vps25 siRNA knockdown was optimised using a SMARTpool 

only and after 3 days, protein level was reduced by approximately 50% (Figure 

3.2D). To achieve this level of Vps25 knockdown, an increased volume of 

transfection reagent was required compared with Tsg101 siRNA. Optimal 

knockdown of approximately 80% depletion in the amount of Tsg101 or Vps25 

protein was obtained 7 days after transfection, with the knockdown persisting 

for at least 10 days (Figure 3.3). Therefore, for the majority of further 

experiments a 7 day knockdown was used. 

 

3.2.2. Depletion of ESCRTs affects endosomal morphology  

 

The ESCRT machinery has a well established role within the process of 

endosomal cargo sorting and MVB formation (Raiborg and Stenmark, 2009). 

Disruption of the ESCRT machinery in mammalian cells has been shown to 

affect endocytic compartments, resulting in accumulation and enlargement of 

both early and late endosomes (Doyotte et al., 2005; Razi and Futter, 2006; 

Stuffers et al., 2009b). Therefore, the effects of Tsg101 and Vps25 depletion on  
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Figure 3.2 Optimisation of Tsg101 and Vps25 knockdown in Caco-2 cells. (A) Caco-2 cells 

were either untreated (U), mock transfected (M), transfected with Non-Targeting Control siRNA 

(C) or Tsg101 SMARTpool siRNA (P) and incubated for 3 d. Lysates were immunoblotted for 

Tsg101 and β-tubulin as a loading control.  (B) Tsg101 SMARTpool siRNA was split into four 

individual Tsg101 siRNA oligonucleotides (I1-I4). Cells were transfected with Non-Targeting 

Control siRNA (C), Tsg101 SMARTpool siRNA (P) or individual Tsg101 siRNA  oligonucleotides 

(I1-I4) and incubated for 3 d. Lysates were immunoblotted for Tsg101 and β-tubulin as a loading 

control. (C) Quantification of Tsg101 protein levels, normalised to β-tubulin and expressed as a 

percentage of the Non-Targeting Control. Data shown are the means ± standard error from 

three independent experiments.  (D) Caco-2 cells were either untreated (U), mock transfected 

(M), transfected with Non-Targeting Control siRNA (C) or Vps25 SMARTpool siRNA (V) and 

incubated for 3 d. Lysates were immunoblotted for Vps25 and β-tubulin, used as a loading 

control. Transfection was carried out with an increased volume of transfection reagent 

compared to Tsg101 siRNA.  



85 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



86 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Tsg101 and Vps25 knockdown in Caco-2 cells persists over time. (A) Caco-2 

cells were transfected with either Non-Targeting Control siRNA (C), Tsg101 siRNA (T) or Vps25 

siRNA (V) and incubated for 3, 7 or 10 d. Lysates were immunoblotted for Tsg101, Vps25 and 

β-tubulin as a loading control. (B) Protein levels were quantified, normalised to β-tubulin levels, 

and expressed as a percentage of the Non-Targeting Control for each timepoint. Data shown is 

the mean ± standard error from three independent experiments. Results were analysed using a 

one-way ANOVA and Dunnett’s post test, **p<0.01, ***p<0.001. 
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Caco-2 cell endosomal morphology were investigated in order to confirm that 

the siRNA knockdown was having the expected effect. Knockdown of Tsg101 or 

Vps25 resulted in enlargement and accumulation of both early and late 

endosomes after incubation with EGF, indicated by EEA1 and CD63 staining 

respectively (Figure 3.4). Despite this enlargement, the two endosomal 

compartments seemed to remain morphologically distinct, indicated by the lack 

of colocalisation of EEA1 and CD63. In the absence of EGF the endosomal 

effects were less pronounced (data not shown).  

 

Trafficking of EGF was also investigated after Tsg101 and Vps25 knockdown 

(Figure 3.5). Binding of EGF to the EGF receptor (EGFR) at the plasma 

membrane induces internalisation and delivery of the EGF-EGFR complex to 

early endosomes. The EGF-EGFR complex is then usually targeted for 

degradation via internalisation into MVBs and trafficking to the lysosome (Wiley 

and Burke, 2001). EGFR degradation is often reduced in ESCRT depleted cells 

(Bishop et al., 2002; Lu et al., 2003; Bache et al., 2006; Malerod et al., 2007; 

Raiborg et al., 2008) and consequently, EGF-induced signalling may be 

sustained (Bache et al., 2006; Malerod et al., 2007). However, in Tsg101 or 

Vsp25 depleted Caco-2 cells, EGF trafficking did not appear to be significantly 

altered, although a slightly increased amount of EGF remained in some Tsg101 

knockdown cells after a 4 hour incubation compared with control (Figure 3.5A). 

In line with this observation, sustained phosphorylation of ERK1/2, a 

downstream component of the EGF signalling pathway, was not observed in 

either Tsg101 or Vps25 knockdown cells (Figure 3.5B). Levels of 

phosphorylated ERK1/2 varied between experiments and no significant 

increase could be concluded after Tsg101 and Vps25 knockdown. Therefore, 

despite the effects on early endosomal morphology, these results suggest that 

EGF trafficking is not significantly altered upon Tsg101 or Vps25 depletion. 

 

3.2.3. Caco-2 cell morphology is altered upon ESCRT knockdown, with 

Tsg101 knockdown cells forming multilayered epithelial sheets  

 

To begin to characterise the effects of Tsg101 and Vps25 knockdown, Caco-2 

cell morphology was monitored over time (Figure 3.6). After 3 days culture, 

knockdown cells appeared similar to control. However, after 7 day Tsg101 

Laura F
Sticky Note
Mentioned that ERK1/2 levels varied between experiments so no significant alteration in phosphorylation could be concluded.
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Figure 3.4 Depletion of Tsg101 and Vps25 causes enlargement of both early and late 

endosomes in EGF treated Caco-2 cells. Caco-2 cells were transfected with either Non-

Targeting Control siRNA, Tsg101 siRNA, or Vps25 siRNA and incubated for 7 d. Cells were 

allowed to internalise EGF for 4 h, fixed and examined by confocal fluorescence microscopy for 

CD63 (green) and EEA1 (red). Nuclei were stained with DAPI (blue), shown in merged images. 

Bar, 10μm. 
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Figure 3.5 Tsg101 or Vps25 knockdown in Caco-2 cells does not impair degradation of 

EGF and MAPK phosphorylation is not sustained. Caco-2 cells were transfected with Non-

Targeting Control siRNA, Tsg101 siRNA, or Vps25 siRNA and incubated for 7 d. Cells were 

serum starved overnight prior to EGF treatment. (A) Caco-2 cells were allowed to internalise 

Alexa Fluor® 555-conjugated EGF for 4 h, fixed and examined by confocal fluorescence 

microscopy for EEA1 (green) and EGF (red). Nuclei were stained with DAPI (blue), shown in 

merged images. Note that although EEA1 staining is increased in Tsg101 and Vps25 

knockdown cells, residual EGF levels are similar to control. Bar, 10μm. (B) Caco-2 cells were 

pulse-labelled with EGF for 10 min, followed by a chase in SFM for indicated times. Lysates 

were immunoblotted for phosphorylated Erk1/2 (p-Erk1/2) and total Erk1/2. Immunoblotting for 

Tsg101 and Vps25 was carried out to confirm knockdown levels. Levels of p-Erk1/2 increase 

directly after EGF treatment and decrease over time at a similar rate in both control and 

knockdown cells. 
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knockdown, large areas of the epithelial sheet appeared disrupted and cells 

seemed to be growing in clumps (Figure 3.6, arrows). This aberrant morphology 

was also observed on day 10, although to a slightly lesser extent. In other 

areas, the organisation of the epithelial sheet appeared to be retained (Figure 

3.6, arrowheads) however, morphology of these cells did not resemble the 

typical cobblestone effect observed in control cells at day 10 (Figure 3.6, 

asterisk). Instead cells appeared flatter and less differentiated (Figure 3.6, 

hash). Vps25 knockdown did not disrupt the organisation of the epithelial sheet 

although, after 10 days culture, there was a reduction in the areas of cells 

showing the typical cobblestone morphology (Figure 3.6, asterisk) with cells 

appearing less differentiated than control (Figure 3.6, hash).  

 

Further analysis of the disrupted areas of the epithelial sheet formed upon 

Tsg101 knockdown indicated that the cells were stacking on top of one another 

to form multilayers (Figure 3.7). In addition, nuclear morphology of Tsg101 

knockdown cells was more irregular and nuclei often appeared flatter compared 

to control. In order to confirm that this phenotype was due to depletion of 

Tsg101 and not off-target effects, siRNA knockdown was performed using two 

alternative oligonucleotides. Tsg101 protein levels were significantly reduced to 

approximately 20-30% compared with control after 3 days (Figure 3.8A). 

However, persistence of the knockdown was not as efficient and after 7 days 

Tsg101 protein was approximately 30-50% of control levels. In addition, Tsg101 

siRNA 2 resulted in a higher level of knockdown compared with siRNA 1 at both 

timepoints. Morphology of the Tsg101 knockdown cells was similar to that seen 

previously. Organisation of the epithelial sheet was disrupted (Figure 3.8B) and 

cells formed multilayered regions (Figure 3.9). Interestingly, the level of 

knockdown appeared to correspond to the severity of the phenotype. The 

original Tsg101 siRNA resulted in the most pronounced effect whereas siRNA 

1, which gave the least efficient knockdown approach, resulted in a lesser 

effect. However, overall the multilayered phenotype was observed with all three 

Tsg101 siRNA oligonucleotides, confirming that the observed effects were 

caused by Tsg101 depletion. Therefore, Tsg101 is required in order to retain 

correct organisation of the Caco-2 epithelial monolayer. 
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Figure 3.6 Caco-2 cell morphology is altered after Tsg101 and Vps25 depletion, with 

Tsg101 knockdown disrupting organisation of the whole epithelial sheet. Caco-2 cells 

were transfected with either Non-Targeting Control siRNA, Tsg101 siRNA or Vps25 siRNA and 

analysed via phase-contrast microscopy after 3, 7 and 10 d. Tsg101 knockdown cells form 

monolayers in some areas (arrowheads) but many regions are observed where organisation of 

the epithelial sheet appears disrupted (arrows). Epithelial organisation is not disrupted after 

Vps25 knockdown. In addition, after 10 d culture there is a decrease in areas showing the 

characteristic cobblestone morphology (*) in monolayered regions of Tsg101 knockdown cells 

and Vps25 knockdown cells. Instead cell morphology appears similar to that observed at 7 d 

(#).  
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Figure 3.7 Caco-2 cells form multilayers upon Tsg101 knockdown. Caco-2 cells were 

transfected with either Non-Targeting Control siRNA or Tsg101 siRNA and incubated for 7 d. 

Nuclei were stained with DAPI and cells were examined via confocal fluorescence microscopy. 

Tsg101 knockdown disrupts nuclear morphology and regions of cells show a multilayered 

organisation. Confocal projections and corresponding z-sections (indicated by dotted line) are 

displayed. Bar, 10µm. 
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Figure 3.8 Knockdown of Tsg101 using alternative siRNA oligonucleotides results in a 

similar disruption to Caco-2 epithelial organisation. Caco-2 cells were transfected with 

either Non-Targeting Control siRNA (C) or Tsg101 siRNA (T). Tsg101 knockdown was also 

achieved using a different single siRNA oligonucleotide (1) or a combination of two different 

siRNA oligonucleotides (2). (A) Cells were incubated for 3 d and 7 d and lysates were 

immunoblotted for Tsg101 and β-tubulin as a loading control (i). Protein levels were quantified, 

normalised to β-tubulin and expressed as a percentage of the Non-Targeting Control for each 

timepoint (ii). Data shown is the mean ± standard error from three independent experiments. 

Results were analysed using a one-way ANOVA and Dunnett’s post test, *p<0.05, **p<0.01, 

***p<0.001. (B) Cells were analysed via phase-contrast microscopy after 7 d knockdown. A 

similar disruption to the epithelial sheet is observed after knockdown of Tsg101 using alternative 

siRNA oligonucleotides (1 and 2) (arrows).  
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Figure 3.9 A similar multilayered phenotype is observed upon knockdown of Tsg101 

using different siRNA oligonucleotides. Caco-2 cells were transfected with either Non-

Targeting Control siRNA (C), or two alternative Tsg101 siRNA combinations (1 and 2) and 

incubated for 7 d. Nuclei were stained with DAPI and cells were examined via confocal 

fluorescence microscopy. Tsg101 knockdown cells display a similar phenotype as observed 

previously (compare with Figure 3.6). Nuclear morphology is disrupted and multilayered regions 

of cells are formed. Confocal projections and corresponding z-sections (indicated by dotted line) 

are displayed. Bar, 10µm. 
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3.2.4. ESCRT depletion prevents differentiation of Caco-2 cells 

 

Caco-2 cells are a well characterised polarised human epithelial cell line. In 

culture they form cell-cell junctions with neighbouring cells and will polarise to 

establish distinct apical and basolateral membrane domains (Sambuy et al., 

2005). Upon reaching confluency, cells will begin to spontaneously differentiate 

to resemble mature enterocytes. During this process cell-cell junctions mature, 

lateral height increases and cells develop a brush border of microvilli at the 

apical membrane (Chantret et al., 1988; Sambuy et al., 2005; Volpe, 2008). 

This can be observed by comparing Caco-2 cell morphology over time (Figures 

3.10 and 3.11). Cell-cell junctions, including tight junctions indicated by occludin 

localisation (Figure 3.11, arrowheads) and adherens junctions indicated by E-

cadherin localisation (Figure 3.10), form between adjacent cells and mature 

over time. When confluent, Caco-2 cells establish apicobasal polarity 

demonstrated by localisation of aPKC and E-cadherin to apical and basolateral 

membranes, respectively (Figure 3.10). Four days after reaching confluency, 

cells display a more differentiated phenotype whereby intensity of apical 

staining and lateral height has increased. Localisation of the brush border 

protein, Dipeptidyl peptidase-IV (DppIV) to the apical membrane increases as 

cells reach confluency and begin to differentiate (Figure 3.11). The classic 

‘cauliflower’ pattern is displayed four days post-confluence, indicative of a 

mature brush border (Baricault et al., 1995).  

 

Upon depletion of Tsg101, some areas of the Caco-2 epithelial sheet retained a 

normal monolayered organisation whereas other areas displayed a more 

striking multilayered phenotype. Therefore, the morphology of these two 

different populations of Tsg101 knockdown cells were characterised 

independently. Firstly, the phenotype of the monolayered regions will be 

discussed (below) followed by the multilayered regions (Section 3.2.5). 

 

In the monolayered regions of Tsg101 knockdown cells, apicobasal polarity was 

retained demonstrated by correct localisation of aPKC and E-cadherin to the 

apical and basolateral membrane domains, respectively (Figure 3.12A). This 

was also observed after Vps25 knockdown. However, lateral height of the 

knockdown cells was reduced to approximately 7µm compared to 10µm for  
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Figure 3.10 Caco-2 cells polarise and differentiate over time. As Caco-2 cells proliferate 

cell-cell junctions are formed and apical and basolateral membrane domains are defined. After 

reaching confluency, lateral height increases and junctions mature as cells differentiate. Caco-2 

cells were fixed either prior to reaching confluency, when confluent, or 4 d post-confluency. 

Cells were then examined by confocal fluorescence microscopy for E-cadherin (green) and 

aPKC (red) to indicate basolateral and apical membranes, respectively. Nuclei were stained 

with DAPI (blue), shown in merged images. Apical confocal slices and corresponding z-sections 

(indicated by dotted line) are displayed. Bar, 10µm. 
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Figure 3.11 Caco-2 cells form a brush border at the apical membrane. Upon reaching 

confluency, Caco-2 cells begin to develop a brush border at the apical membrane. Caco-2 cells 

were fixed either prior to reaching confluency, when confluent, or 4 d post-confluency and non-

permeabilised cells were immunostained for DppIV (brush border marker; green). Cells were 

then permeabilised and immunostained for occludin (tight junctions; red). Nuclei were stained 

with DAPI (blue) and cells were examined by confocal fluorescence microscopy. Confocal slices 

and corresponding z-sections (indicated by dotted line) are displayed. Arrowheads indicate tight 

junctions. Bar, 10µm. 
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control cells (Figure 3.12B). In addition, a reduction in DppIV localisation to the 

apical membrane was observed suggesting that brush border development is 

impaired upon Tsg101 and Vps25 knockdown (Figure 3.13). Therefore, 

although ESCRT proteins are not required for the initial establishment of distinct 

apical and basolateral membrane domains, Tsg101 and Vps25 knockdown 

appears to impede differentiation of Caco-2 cells.  

 

3.2.5. Tsg101 depletion disrupts epithelial cell organisation and polarity 

 

Upon Tsg101 knockdown, regions of the Caco-2 epithelial sheet were disrupted 

and cells displayed a multilayered phenotype. In these areas apicobasal polarity 

was compromised (Figure 3.14). Some cells appeared to lack a defined apical 

membrane indicated by absence of aPKC staining (Figure 3.14, asterisk) 

whereas, in other cells expansion of apical membrane is observed (Figure 3.14, 

hash). It is also important to note that some cells appeared to retain distinct 

apical and basolateral membrane domains, indicated by aPKC and E-cadherin 

staining, respectively however, due to these cells being stacked on top of each 

other apical staining appeared along what should be the basal surface of the 

epithelial sheet (Figure 3.14, arrowheads). This suggests that these cells are 

incorrectly orientated within the multilayered epithelial sheet.  

 

Multilayered regions of Tsg101 knockdown cells also displayed brush border 

defects (Figure 3.15, asterisks). Often multilayered areas lacked DppIV staining 

(Figure 3.15, arrowheads) however, in some cases cells displayed DppIV 

staining localised to the apical membrane (Figure 3.15, arrows). This suggests 

that the ability of Tg101 knockdown cells to form a brush border is compromised 

but not lost entirely. This effect also appears different to that seen in Tsg101 

knockdown cells which retained their monolayered organisation (Figure 3.13). 

Instead of a general reduction in DppIV localisation to the apical membrane 

observed in Tsg101 monolayered regions, multilayered cells seem to either 

display strong DppIV staining or very little/no staining at all, although this effect 

is difficult to quantify.  

 



108 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 Tsg101 and Vps25 depleted Caco-2 cells establish distinct apical and 

basolateral membrane domains but lateral height is reduced. (A) Caco-2 cells were 

transfected with either Non-Targeting Control siRNA, Tsg101 siRNA or Vps25 siRNA, incubated 

for 7 d and stained for E-cadherin (green) and aPKC (red) to visualise basolateral and apical 

surfaces, respectively. Nuclei were stained with DAPI (blue). Apical confocal slices and 

corresponding z-sections (indicated by dotted line) are displayed.  Bar 10µm. (B) Lateral height 

was quantified using ImageJ. For each condition, lateral height was quantified for at least two 

images per experiment. Ten z-sections were analysed per image, taking three measurements 

per z-section, and average lateral height was calculated. Data shown are means ± standard 

error from three independent experiments. Results were analysed using a One-Way ANOVA 

and Dunnett’s post-test, *p<0.05. Note that for Tsg101 knockdown cells, analysis was carried 

out on areas where monolayered organisation was maintained, a more striking polarity 

phenotype is seen in the multilayered regions (Figure 3.14). 
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Figure 3.13 Knockdown of Tsg101 and Vps25 impairs brush border formation. (A) 

Localisation of the brush border protein DppIV to the apical membrane is reduced in Tsg101 

and Vps25 depleted cells. Caco-2 cells were transfected with either Non-Targeting Control 

siRNA, Tsg101 siRNA or Vps25 siRNA and incubated for 7 d.  Non-permeabilised cells were 

immunostained for DppIV (green), followed by permeabilisation and staining for the tight 

junction protein, occludin (red). Nuclei were stained with DAPI (blue). Confocal projections and 

corresponding z-sections (indicated by dotted line) are displayed.  Bar 10µm. (B) Quantification 

of DppIV fluorescence was carried out using ImageJ. For each condition, DppIV fluorescence 

was quantified for at least three images per experiment. Random projections were obtained and 

average fluorescence intensity in the green channel was quantified for each field of view and 

expressed as a ratio over corresponding cell number. Data shown are means ± standard error 

from four independent experiments. Results were analysed using a One-Way ANOVA and 

Dunnett’s post-test, *p<0.05. Note that for Tsg101 knockdown cells, analysis was carried out on 

areas where monolayered organisation was maintained. 
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Figure 3.14 Tsg101 is required to maintain a polarised epithelial monolayer in Caco-2 

cells. Tsg101 knockdown cells form multilayered regions with compromised apicobasal polarity. 

Caco-2 cells were transfected with either Non-Targeting Control siRNA or Tsg101 siRNA, 

incubated for 7 d and stained for E-cadherin (green) and aPKC (red) to visualise basolateral 

and apical surfaces, respectively. Nuclei were stained with DAPI (blue). Note that some Tsg101 

knockdown cells lack aPKC staining (*), whereas other cells show an expanded apical 

membrane (#). In addition, some cells retain distinct aPKC and E-cadherin staining, however, 

aPKC staining appears along the basal surface of the epithelial sheet (arrowheads). Apical 

confocal slices and corresponding z-sections (indicated by dotted line) are displayed.  Bar 

10µm.  
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Figure 3.15 Brush border formation is compromised in multilayered regions of Tsg101 

depleted Caco-2 cells. Caco-2 cells were transfected with either Non-Targeting Control siRNA 

or Tsg101 siRNA, incubated for 7 d and stained for the brush border protein, DppIV (green). 

Nuclei were stained with DAPI (blue). Multilayered regions are indicated by an asterisk. Note 

that some multilayered Tsg101 knockdown cells show an absence of DppIV staining (i, 

arrowheads) whereas, for other cells, DppIV staining is apparent (ii, arrows). Confocal 

projections and corresponding z-sections (indicated by dotted line) are displayed.  Bar 10µm. 

 



115 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



116 
 

3.2.6. Formation of Caco-2 cysts is compromised upon ESCRT 

knockdown 

 

Finally, in order to further investigate the role of ESCRT proteins in regulation of 

epithelial cell polarity, a three-dimensional (3D) epithelial cyst formation assay 

was performed. When cultured in a matrigel suspension, Caco-2 cells form 3D 

cysts whereby a single layer of cells surrounds a central lumen. These cells 

polarise so that their apical membranes are orientated to the luminal side and 

the basal membranes are in contact with the matrigel. Therefore, these 3D 

cultures are an additional method of  investigating cell polarity in vitro and are 

considered more physiologically relevant (Martin-Belmonte and Mostov, 2008). 

When transfected with non-targeting control siRNA, 64% of Caco-2 cysts 

displayed a single central lumen (Figure 3.16). The remainder of cysts either 

failed to form an extended lumen or displayed multiple small cavities. 

Knockdown of Tsg101 or Vps25 resulted in a significant reduction in the number 

of cysts formed with a central lumen, instead the proportion of multi-lumen cysts 

approximately doubled from 20% in control to 40% upon ESCRT knockdown. 

This observation is indicative of a defect in epithelial cell polarity and therefore 

suggests that Tsg101 is required for establishment and/or maintenance of 

Caco-2 cell polarity in both 2D and 3D cultures. Although Vps25 knockdown did 

not appear to affect cell polarity in 2D cultures, this 3D cyst formation assay 

suggests that Vps25 is required for correct polarisation of Caco-2 cells. 
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Figure 3.16 Tsg101 and Vps25 knockdown impairs formation of Caco-2 3D cysts. (A) 

Caco-2 cells were transfected with either Non-Targeting Control siRNA, Tsg101 siRNA or 

Vps25 siRNA, incubated for 3 d and then replated into a Matrigel suspension. Following 

incubation for 7 d, cysts were stained for aPKC (red) and E-cadherin (green) to mark the apical 

and basolateral membranes respectively. Nuclei were stained with DAPI (blue). Cysts displayed 

either a single lumen, multiple lumen or no lumen. Representative images are shown for each 

phenotype. Z-sections are displayed for each cyst along with a confocal plane through the 

centre.  Bar, 10µm. (B) The number of cysts showing either single, multiple or no lumen was 

quantified. Data shown are the means ± standard error from three independent experiments, 

>100 cysts were analysed per condition for each experiment. Results were analysed using a 

One-Way ANOVA and Dunnett’s post-test, ** p=< 0.01 * p=< 0.05. 
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3.3. Discussion 

 

This study sought to establish whether ESCRT proteins are required for 

maintenance of mammalian epithelial cell polarity. Although studies in 

Drosophila have demonstrated an important link between ESCRT proteins and 

epithelial cell polarity (Moberg et al., 2005; Thompson et al., 2005; Vaccari and 

Bilder, 2005; Rodahl et al., 2009b; Vaccari and Bilder, 2009), no similar 

definitive link has been identified in mammalian cells. My results demonstrate 

that depletion of Tsg101 and Vps25 can be achieved in the polarised human 

epithelial Caco-2 cell line via siRNA knockdown, and that this induces an 

enlarged endosomal phenotype characteristic of ESCRT disruption. 

Differentiation of Caco-2 cells is impaired upon knockdown of both Tsg101 and 

Vps25. In addition, Tsg101 depletion compromises organisation and polarity of 

the Caco-2 epithelial sheet. Finally ESCRT-I and -II are required for the 

formation of 3D Caco-2 polarised cysts. Therefore, these results begin to 

elucidate a role for ESCRT proteins within the maintenance of mammalian 

epithelial cell organisation and polarity. 

 

3.3.1. ESCRT depletion in Caco-2 cells via siRNA knockdown 

 

Disruption of ESCRT-I or -II was achieved in the human epithelial Caco-2 cell 

line via efficient siRNA knockdown of Tsg101 or Vps25, respectively. Tsg101 

depletion was achieved using an individual siRNA duplex. This was identified as 

providing the most efficient knockdown from a SMARTpool of four siRNA 

oligonucleotides designed to target Tsg101 mRNA. However, Vps25 

knockdown was performed using a siRNA SMARTpool only. Due to the lack of 

an effective commercial Vps25 antibody, the Vps25 siRNA oligonucleotides 

contained within the SMARTpool were not tested individually and therefore, 

further studies may require additional optimisation and verification of the Vps25 

knockdown phenotype. 

 

3.3.2. Endosomal effects upon ESCRT depletion 

 

Depletion of ESCRT-I and -II resulted in an accumulation and enlargement of 

both early and late endosomes after EGF internalisation. However, despite the 
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similar effects on morphology, these compartments remained clearly 

differentiated.  Previous studies have shown a similar endocytic phenotype 

upon ESCRT depletion in a variety of cell lines (Bishop et al., 2002; Doyotte et 

al., 2005; Razi and Futter, 2006; Stuffers et al., 2009b), therefore, 

demonstrating that ESCRT knockdown in Caco-2 cells results in the 

characteristic changes to endosomal morphology. In the absence of EGF, 

however, endosomal morphology was not significantly altered. This has been 

observed previously (Razi and Futter, 2006) and indeed, most studies into 

alterations in endosomal morphology after ESCRT disruption are carried out 

after EGF stimulation (Doyotte et al., 2005; Stuffers et al., 2009b). It is possible 

that the burst of endocytosis induced by EGF stimulation results in the 

endosomal effects induced by ESCRT disruption becoming more pronounced.  

 

Previous studies have also demonstrated a requirement for the ESCRT 

machinery in the degradation of both EGF and EGFR (Bishop et al., 2002; Lu et 

al., 2003; Bache et al., 2006; Malerod et al., 2007; Raiborg et al., 2008). In 

addition, depletion of ESCRTs has been reported to affect EGF signalling. 

Sustained phosphorylation and activation of extracellular-signal-regulated 

kinase 1/2 (ERK1/2) which, upon EGF stimulation, becomes phosphorylated, 

translocates to the nucleus and is involved in regulation of various transcription 

factors (Murphy and Blenis, 2006), has been observed upon disruption of 

ESCRT-0 and -I, but not ESCRT-II and -III (Bache et al., 2006; Malerod et al., 

2007).  This suggests that the early ESCRT complexes are required for 

silencing of EGF signalling whereas ESCRT-II and -III are not. However, no 

significant accumulation of EGF or sustained phosphorylation of ERK1/2 was 

observed in Caco-2 cells after Tsg101 or Vps25 knockdown, despite the 

characteristic endosomal enlargement. This suggests that EGF degradation is 

not perturbed in ESCRT depleted Caco-2 cells.  

 

It could be speculated that alternative ESCRT-independent mechanisms of EGF 

trafficking and degradation exist and that, upon ESCRT depletion, these 

pathways may be upregulated or preferentially selected. A recent study which 

depleted subunits of all four ESCRT complexes demonstrated that, upon 

disruption of the entire ESCRT machinery, MVBs can still form, although the 

resulting compartment was considerably enlarged (Stuffers et al., 2009b).  This 
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suggests that ESCRT-independent mechanisms of MVB formation exist and is 

supported by additional studies which demonstrate ESCRT-independent cargo 

sorting into intraluminel vesicles of MVBs (Theos et al., 2006; Trajkovic et al., 

2008).  

 

The relevance of these possible alternative mechanisms may also be 

dependent on cell type. This could explain the discrepancies between my 

results and those published by other groups as the effect of ESCRT disruption 

has not previously been studied in polarised epithelial cells, with the majority of 

studies undertaken in the HeLa cell line (Bishop et al., 2002; Lu et al., 2003; 

Doyotte et al., 2005; Bache et al., 2006; Raiborg et al., 2008). Polarised 

epithelial cells have a more complex endosomal system with a number of 

additional endocytic compartments (Hoekstra et al., 2004; Mellman and Nelson, 

2008; Folsch et al., 2009; Weisz and Rodriguez-Boulan, 2009) therefore, it is 

likely that additional and/or different trafficking routes exist compared with 

unpolarised cells. The kinetics of EGF-EGFR trafficking upon ESCRT disruption 

could be studied in more detail, for example using radiolabelled 125I-EGF to 

study its’ degradation and recycling. 

 

3.3.3. ESCRT depletion alters Caco-2 cell morphology  

 

Caco-2 cells are a well characterised polarised human epithelial cell line. In 

culture they form a functional polarised monolayer with established cell-cell 

junctions and distinct apical and basolateral membrane domains. Upon 

reaching confluency, cells spontaneously differentiate during which cell-cell 

junctions mature, lateral height increases and a brush border of microvilli forms 

at the apical membrane (Grasset et al., 1984; Chantret et al., 1988; Sambuy et 

al., 2005; Volpe, 2008). At this stage, Caco-2 cells exhibit the characteristic 

cobblestone morphology via phase contrast microscopy, which is typical of a 

differentiated epithelial monolayer. However, upon knockdown of Tsg101 and 

Vps25, Caco-2 cell differentiation was inhibited. Although ESCRT depleted cells 

were still able to establish apicobasal polarity if monolayered epithelial 

organisation was retained, lateral height and brush border formation were 

reduced. This suggests that establishment of distinct apical and basolateral 

membrane domains does not require a functional ESCRT machinery, however, 
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differentiation to a fully polarised epithelial monolayer is directly or indirectly 

ESCRT-dependent.  

 

In support of this observation, ESCRT mutant cells also fail to differentiate in 

Drosophila (Vaccari and Bilder, 2005; Herz et al., 2006). In mammalian 

epithelial cells, several studies have demonstrated a requirement for 

phosphatidylinositol 3-kinase (PI3K) signalling for differentiation (Laprise et al., 

2002; Gassama-Diagne et al., 2006; Jeanes et al., 2009). Inhibition of PI3K 

impaired differentiation of epithelial cells, shown by a reduction in cell height 

and brush border formation. This was accompanied by a reduction in 

phosphatidylinositol-3,4,5-triphosphate (PIP3), a key regulator of basolateral 

membrane formation in epithelial cells (Gassama-Diagne et al., 2006). 

Interestingly, although PI3K has been shown to be important for adherens 

junction assembly (Laprise et al., 2002), surface expression of E-cadherin and 

apicobasal polarity of established epithelial monolayers was not affected by 

PI3K inhibition (Laprise et al., 2002; Jeanes et al., 2009). Therefore, this 

phenotype is similar to that observed upon ESCRT depletion in Caco-2 cells. 

The ESCRT machinery is important for regulation of various receptor signalling 

pathways (Wegner et al., 2011) although a role within the PI3K pathway has not 

been documented. As PI3K activity is important for epithelial cell differentiation, 

it would be of interest to establish whether the effects seen on Caco-2 cell 

height and brush border formation are accompanied by alterations in PI3K 

signalling.  

 

3.3.4. ESCRT-I is required for maintenance of a polarised Caco-2 

epithelial monolayer 

 

In addition to defects in differentiation of Caco-2 cells upon Tsg101 knockdown, 

large areas of the epithelial sheet lost the normal monolayered organisation and 

multilayered stacks of cells were formed. These multilayers displayed 

compromised apicobasal polarity and brush border formation. This phenotype 

was confirmed using two different Tsg101 siRNA oligonucleotides and therefore 

is specific for Tsg101 depletion. The loss of epithelial polarity and organisation 

is similar to that observed in Drosophila upon mutation of Tsg101 (Moberg et 

al., 2005) and suggests that the requirement for a functional ESCRT machinery 
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is conserved in mammalian cells. Studies in Drosophila also demonstrated a 

similar disruption in epithelial cell polarity upon Vps25 mutation as well as other 

components of the ESCRT machinery (Thompson et al., 2005; Vaccari and 

Bilder, 2005; Herz et al., 2006; Rodahl et al., 2009b; Vaccari et al., 2009). This 

is in contrast to my data in which Vps25 knockdown does not cause a disruption 

in apicobasal polarity or organisation of the epithelial sheet. The role of ESCRT-

II in mammalian cells is unclear as it has been demonstrated that Vps25 is 

dispensable for MVB protein sorting (Bowers et al., 2006). It is possible that the 

requirement for ESCRT-II varies from Drosophila to mammals and therefore, 

this may explain why Vps25 knockdown does not affect apicobasal polarity in 

Caco-2 cells.  

 

Alternatively, this difference in phenotype between Tsg101 and Vps25 depletion 

may be due to the level of knockdown achieved over time. After 3 days 

approximately 80% Tsg101 knockdown was achieved whereas only 60% of 

Vps25 protein was depleted. After 7 days, Vps25 knockdown reached a similar 

level to Tsg101, however, by this timepoint cells will have been subjected to an 

extended period of Tsg101 depletion compared with Vps25. Therefore, this may 

result in a stronger phenotype for Tsg101 knockdown cells. It would be of 

interest to optimise Vps25 knockdown to the same level as Tsg101 knockdown 

in order to investigate whether a defect in epithelial cell polarity and 

organisation is observed. One approach to accomplish this would be to split the 

Vps25 siRNA SMARTpool into the four individual oligonucleotides and 

determine whether a more efficient knockdown could be achieved at an earlier 

timepoint. In addition, other ESCRT-II components could be depleted, either 

individually or in combination. 

 

The disruption in apicobasal polarity and formation of multilayers after Tsg101 

knockdown in Caco-2 cells could be due to a number of possible mechanisms. 

Firstly, disruption of ESCRT-I may affect the trafficking of various proteins 

important for the maintenance of epithelial cell polarity. For example, in 

Drosophila ESCRT mutants, loss of cell polarity was attributed to mislocalisation 

of Crumbs from the apical membrane to a subapical compartment (Moberg et 

al., 2005). It is clear that localisation of polarity complexes to specific membrane 

domains is also crucial for establishment and maintenance of mammalian 
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epithelial cell polarity. The PAR and CRB complexes are important for apical 

membrane identity and the SCRIB complex for basolateral membrane identity 

(Roh et al., 2003; Kallay et al., 2006; Suzuki and Ohno, 2006; Yamanaka et al., 

2006; Horikoshi et al., 2009). In addition, maintenance of cell-cell junctions is 

also important to retain a polarised phenotype. Tight junctions provide a fence 

function to prevent diffusion of lipids between the apical and basolateral 

membrane domains (Matter and Balda, 2003; Shin et al., 2006) and loss of E-

cadherin from the adherens junctions is often associated with epithelial to 

mesenchymal transition (Perl et al., 1998; Yang and Weinberg, 2008). In fact, it 

is becoming increasingly apparent that cell-cell junctions function as a platform 

for many regulatory and signalling proteins important for establishing the 

epithelial phenotype (Ivanov et al., 2005). Cell-cell junctions are dynamic 

structures that are constantly being remodelled (Shen et al., 2008; Steed et al., 

2010) and there is growing evidence of links between endocytosis, regulation of 

epithelial junctions (Ivanov et al., 2005) and cell polarity (Shivas et al., 2010). 

Thus, it is likely that protein trafficking plays a crucial role in maintaining 

epithelial cell polarity. ESCRT-I depletion has been shown to disrupt the 

endocytic pathway (Bishop et al., 2002; Doyotte et al., 2005; Razi and Futter, 

2006; Stuffers et al., 2009b) and therefore, compromised Caco-2 cell polarity 

observed upon Tsg101 knockdown may be due to perturbed trafficking of 

proteins important for maintenance of apicobasal polarity and cell-cell junctions. 

As a result of this defect in polarity cells may be unable to retain the correct 

organisation within the epithelial sheet and begin to form multilayers. The 

effects of ESCRT depletion on cell-cell junctions will be analysed in more detail 

in Chapter Four. 

 

Conversely, Tsg101 knockdown cells may lose correct epithelial organisation, 

form multilayers and, as a consequence, apicobasal polarity of the epithelial 

sheet cannot be retained. Some cells within the multilayered regions do seem to 

retain distinct apical and basolateral membrane domains suggesting that 

individually apicobasal polarity may be maintained however, due to loss of the 

monolayered organisation, cells are incorrectly orientated within the 

multilayered epithelial sheet. Multilayering of cells may be due to an increased 

rate of proliferation whereby cells divide too rapidly to maintain epithelial 

organisation. Alternatively, Tsg101 knockdown may result in a defect in contact 
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inhibition. Upon reaching confluency, Caco-2 cells will reduce rate of cell 

division as a result of contact inhibition (Nelson and Daniel, 2002) and begin to 

differentiate (Volpe, 2008). If Tsg101 knockdown somehow interferes with this 

process, cells may continue to proliferate and as a result begin to pile on top of 

one another, disrupting the normal epithelial monolayer. Studies in Drosophila 

support this hypothesis as the overgrowth observed in epithelial tissues 

composed almost entirely of ESCRT mutant cells was attributed to a failure of 

cells to exit the cell cycle rather than an increased rate of proliferation (Moberg 

et al., 2005; Vaccari and Bilder, 2005). Chapter Five will begin to investigate the 

effects of ESCRT knockdown on Caco-2 cell proliferation. 

 

Finally, Tsg101 knockdown may destabilise cellular contacts with the ECM 

resulting in a loss of basal adhesion. Cells may then detach and migrate out of 

the epithelial monolayer, leading to the formation of multilayers. The main 

components of cellular adhesions to the ECM are the cell surface integrin 

receptors (Bosman et al., 1993; Matlin et al., 2003; Lobert et al., 2010). 

Integrins are heterodimeric type I transmembrane glycoproteins comprised of α 

and β chains which, upon binding to ECM ligands such as fibronectin, laminin or 

collagen, regulate many aspects of cell behaviour (Matlin et al., 2003; Lobert et 

al., 2010). In epithelial cells, integrins are important for the maintenance of 

apicobasal polarity (Eaton and Simons, 1995; Matlin et al., 2003). Orientation of 

the apicobasal axis in MDCK cells is dependent on β1 integrin (Ojakian and 

Schwimmer, 1994) and loss of apical polarity and formation of multilayers in 

MDCK cells transformed with viral K-ras (Schoenenberger et al., 1991) has 

been attributed to a reduction in β1 integrin (Schoenenberger et al., 1994). A 

role for ESCRT proteins in the regulation of integrins has been suggested by a 

recent study which demonstrated that in fibroblasts, ESCRT-I binds to α5β1 

integrin after fibronectin-induced activation and subsequent ubiquitination. 

Furthermore, ESCRT-I was required for degradation of α5β1 integrin via sorting 

into MVBs and this in turn, was required for efficient cell migration (Lobert et al., 

2010). Therefore, it is possible that ESCRT proteins may function to regulate 

integrin levels in epithelial cells. It would be interesting to investigate whether 

the multilayering of Caco-2 cells induced by Tsg101 knockdown was 

accompanied by alterations in integrin protein levels and localisation.  
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3.3.5. ESCRTs are required for epithelial cell polarity in 3D cultures  

 

ESCRT depletion resulted in an increase in the proportion of Caco-2 cysts 

displaying multiple small lumen. This phenotype is indicative of a defect in 

epithelial cell polarity (Schluter and Margolis, 2009) and provides additional 

evidence for a role of ESCRT proteins in the establishment and maintenance of 

cell polarity. Interestingly, whilst Vps25 knockdown did not appear to disrupt 

formation of a polarised Caco-2 cell monolayer in 2D cultures, formation of 3D 

cysts was perturbed by Vps25 depletion. 3D cell cultures may provide a more 

sensitive assay for detecting defects in epithelial cell polarity, providing a 

possible explanation for this disparity. This has been observed in previous 

studies whereby defects in epithelial cell polarity were only apparent upon 

growth of cells in 3D cultures (Roh et al., 2003; Martin-Belmonte et al., 2007; 

Torkko et al., 2008). It has been suggested that polarisation and formation of 

the apical membrane is extremely robust and can be executed despite defects 

in epithelial architecture and therefore, polarity defects are not observed upon 

formation of a simple 2D epithelial monolayer (Torkko et al., 2008). Epithelial 

cyst formation is also considered to be a more physiologically relevant method 

of investigating epithelial cell polarity in vitro (Martin-Belmonte and Mostov, 

2008). This, therefore, highlights the necessity to utilise a variety of methods to 

fully characterise a knockdown phenotype in polarised epithelial cells.   

 

Formation of 3D polarised epithelial cysts requires individual cells to generate 

apical, lateral and basal membrane surfaces in a coordinated manner in order 

to establish a polarised multicellular structure (O’Brien et al., 2002). Formation 

of a central lumen is thought to occur via two mechanisms: hollowing and 

cavitation (Martin-Belmonte and Mostov, 2008). During hollowing, separation of 

opposing membranes results in the formation of an intercellular lumen, whereas 

cavitation involves apoptosis of cells in the centre of the structure to create 

luminal space (O’Brien et al., 2002; Martin-Belmonte and Mostov, 2008; 

Schluter and Margolis, 2009). Separation of membranes is thought to be 

induced by the delivery of lumen formation factors, such as anti-adhesive large 

transmembrane glycoproteins, to the nascent luminal surface. In addition, 

exocytosis of a specialised fluid-filled organelle, the vacuolar apical 

compartment (VAC) to the centre of the forming cyst aids in lumen formation 
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(O’Brien et al., 2002; Martin-Belmonte and Mostov, 2008; Schluter and 

Margolis, 2009).  

 

The mechanism of lumen formation can shift between hollowing and cavitation 

and this has been shown to be dependent on efficiency of apicobasal 

polarisation (Martin-Belmonte et al., 2008). In the absence of apicobasal 

polarity, lumen formation does not occur (Martin-Belmonte and Mostov, 2008; 

Schluter and Margolis, 2009). For example, interference with the key polarity 

proteins, such as CRB3, during cyst formation results in an abnormal lumen 

phenotype (Roh et al., 2003; Straight et al., 2004; Shin et al., 2005; Martin-

Belomonte et al., 2007; Schluter et al., 2009). In addition, formation of tight 

junctions and correct localisation of apical and basolateral proteins is also 

important for formation of polarised epithelial cysts (Schluter and Margolis, 

2009). Depletion of JAM-A, a tight junction component, (Rehder et al., 2006) 

and abnormal segregation of membrane phosphoinositides (Martin-Belmonte et 

al., 2007) resulted in defective cyst formation.  

 

It has been proposed that defective trafficking of proteins involved in epithelial 

cyst formation could result in abnormal lumen phenotypes (Schluter and 

Margolis, 2009). In support of this, depletion of various proteins implicated in 

apical transport perturbed polarised epithelial cyst formation (Torkko et al., 

2008). Therefore, the increase in Caco-2 cysts displaying multiple lumen after 

ESCRT depletion may reflect a defect in trafficking of proteins important for 

maintenance of apicobasal polarity and/or cell-cell junctions. Interestingly, 

abnormal lumen formation is also observed in epithelial glandular cancers such 

as breast cancer, and thus proteins important for epithelial cyst formation may 

be implicated in the process of tumourigenesis (Debnath and Brugge, 2005). 

Therefore, this provides further evidence for a potential role of the ESCRT 

proteins as tumour suppressors in vertebrates.  
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3.4. Conclusion 

 

This study demonstrates for the first time that ESCRT proteins have an 

important role within the maintenance of mammalian epithelial cell polarity. 

Depletion of Tsg101 in the human Caco-2 cell line results in loss of epithelial 

organisation and the formation of a multilayered epithelium with compromised 

apicobasal polarity. In addition both ESCRT-I and -II are required for 

differentiation of a mature Caco-2 epithelial sheet and formation of polarised 3D 

Caco-2 cysts. These results are very similar to findings in Drosophila whereby 

disruption of the ESCRT machinery resulted in a loss of epithelial cell polarity, 

reduced differentiation and the formation of tumour-like tissue overgrowths 

(Moberg et al., 2005; Thompson et al., 2005; Vaccari and Bilder, 2005; Herz et 

al., 2006; ; Herz et al., 2009; Rodahl et al., 2009b; Vaccari et al.,, 2009). 

Therefore, these results demonstrate that ESCRT proteins are required for the 

maintenance of mammalian epithelial cell organisation and polarity, suggesting 

that the role of ESCRTs as tumour suppressors may be conserved from 

Drosophila to mammals.   
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4. Claudin localisation to tight junctions and 

epithelial barrier formation is dependent on 

ESCRT-I 

 

4.1. Introduction 

 

4.1.1. Cell-Cell Junctions and Epithelial Cell Polarity 

 

Establishment and maintenance of epithelial cell polarity is regulated, in part, 

through the formation of specialised cell-cell junctions. These form between the 

lateral membranes of adjacent cells and are composed of various 

transmembrane and membrane-associated proteins (Bryant and Mostov, 2008; 

Coradini et al., 2011). At the most apical part of the lateral membrane, tight 

junctions define the boundary between the apical and basolateral membrane 

domains where they provide a fence function to restrict intramembrane diffusion 

of lipids (Matter and Balda, 2003). Tight junctions also form a barrier to control 

paracellular diffusion across the epithelial sheet (Matter and Balda, 2003; Shin 

et al., 2006). Localised below tight junctions are adherens junctions, 

desmosomes and gap junctions, important for cell-cell adhesion, anchoring the 

cytoskeleton to the plasma membrane and intercellular signalling (Yin and 

Green, 2004; Niessen and Gottardi, 2008; Nakagawa et al., 2010).  

 

Disruption of cell-cell junctions can often perturb epithelial cell polarity (Brennan 

et al., 2010; Coradini et al., 2011; Turksen and Troy, 2011). For example, loss 

of E-cadherin from adherens junctions is associated with epithelial to 

mesenchymal transition (Perl et al., 1998; Yang and Weinberg, 2008) and 

alterations in tight junction structure and function are often associated with 

enhanced invasiveness of human carcinomas (Miyoshi and Takai, 2005; 

Oliveira and Morgado-Diaz, 2007). In addition, cell-cell junctions are thought to 

function as a platform for many regulatory and signalling proteins important for 

establishing the epithelial phenotype (Ivanov et al., 2005). 
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4.1.2. ESCRT Proteins and Cell-Cell Junctions 

 

Once formed, cell-cell junctions are dynamic structures that are continuously 

being remodelled (Shen et al., 2008; Steed et al., 2010). Previous studies have 

demonstrated that the tight junction proteins, claudin and occludin, and 

adherens junction protein, E-cadherin, are endocytosed in epithelial cells (Le et 

al., 1999; Marzesco et al., 2002; Matsuda et al., 2004; Morimoto et al., 2005). 

Internalisation of different junctional components appears to be highly specific 

and may be mediated by ubiquitylation by specific E3 ubiquitin ligases (Fujita et 

al., 2002; Traweger et al., 2002; Yu and Turner, 2008; Takahashi et al., 2009).  

 

Due to growing evidence of links between endocytosis, regulation of epithelial 

junctions (Ivanov et al., 2005) and cell polarity (Shivas et al., 2010), it is likely 

that protein trafficking plays a crucial role in maintaining a polarised epithelium. 

Previously I have demonstrated that ESCRT-I depletion compromises epithelial 

organisation and polarity of Caco-2 cells in both 2D and 3D cultures. As 

ESCRT-I depletion has been shown to disrupt the endocytic pathway (Bishop et 

al., 2002; Doyotte et al., 2005; Razi and Futter, 2006; Stuffers et al., 2009b), it is 

possible that the compromised Caco-2 cell polarity observed upon Tsg101 

knockdown is due to perturbed trafficking of junctional proteins. As a result, cell-

cell junctions may be destabilised and this could in turn disrupt epithelial cell 

polarity. 

 

4.1.3. Aims 

 

The work described in this chapter aims to establish whether depletion of 

Tsg101 or Vps25 affects cell-cell junctions in Caco-2 epithelial cells. 

Localisation of various junctional proteins will be investigated followed by 

analysis of the functional consequences of knockdown on epithelial barrier 

formation and migratory ability. In addition, the dynamics of cell-cell junction 

proteins in Caco-2 cells will be characterised.  
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4.2. Results 

 

4.2.1. Tsg101 depletion affects localisation of claudin-1 and -4 to tight 

junctions 

 

In order to investigate whether ESCRT depletion affected cell-cell junctions, the 

localisation of various junction proteins was analysed following Tsg101 and 

Vps25 knockdown in Caco-2 cells. Note that characterisation of Tsg101 

knockdown cells was carried out in areas where the epithelial monolayered 

organisation was retained. Multilayered areas of Tsg101 knockdown cells 

display compromised epithelial cell polarity which may have indirect effects on 

cell-cell junctions. In addition, these multilayered regions were difficult to image 

in detail using confocal fluorescence microscopy. Upon knockdown of Tsg101 

or Vps25, the tight junction proteins, occludin and ZO-1, desmosomal protein, 

desmoglein-2, and adherens junction protein, E-cadherin, all localised to cell-

cell junctions as in control cells (Figure 4.1A+B). However, localisation of 

claudin-1 and claudin-4 was disrupted in Tsg101 knockdown cells compared 

with control (Figure 4.2A). Claudin-1 and -4 appeared to accumulate within the 

same intracellular compartment (Figure 4.2A, arrowheads). In addition, 

localisation of these proteins to tight junctions was reduced but not completely 

lost. This intracellular claudin accumulation was not accompanied by significant 

changes in total claudin levels (Figure 4.2B). In contrast, Vps25 knockdown did 

not appear to significantly affect claudin-1 or -4 localisation or protein levels and 

these cells appeared similar to control (Figure 4.2A+B).  

 

The effect of Tsg101 knockdown on claudin-1 localisation was confirmed using 

two alternative siRNA oligonucleotides which were optimised previously 

(Chapter 3, section 3.2.3). Intracellular accumulation of claudin-1 was observed 

after Tsg101 knockdown using these alternative siRNA oligonucleotides 

indicating that the effect is specific to Tsg101 depletion rather than any off-

target effects (Figure 4.3). Therefore, this demonstrates that ESCRT-I is 

required for the correct localisation of claudin-1 and -4 to tight junctions in Caco-

2 cells. Interestingly, other cell-cell junction proteins analysed were not affected. 

 

 



133 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Depletion of Tsg101 and Vps25 does not alter the localisation of a number of 

cell-cell junction proteins in Caco-2 cells. Caco-2 cells were transfected with either Non-

Targeting Control siRNA, Tsg101 siRNA or Vps25 siRNA and incubated for 7 d. Cells were fixed 

and examined by confocal fluorescence microscopy for (A) occludin (red) and desmoglein-2 

(green) or (B) ZO-1 (red) and E-cadherin (green). Nuclei were stained with DAPI (blue). Bar, 

10μm. 
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Figure 4.2 Tsg101 knockdown results in intracellular accumulation of claudins in Caco-2 

cells. (A) Caco-2 cells were transfected with either Non-Targeting Control siRNA, Tsg101 

siRNA or Vps25 siRNA and incubated for 7 d. Cells were fixed and examined by confocal 

fluorescence microscopy for claudin-1 (green) and claudin-4 (red). Nuclei were stained with 

DAPI (blue) shown in merged images. Claudin-1 and -4 accumulate in a similar intracellular 

compartment after Tsg101 knockdown (arrowheads) whereas Vps25 knockdown cells appear 

similar to control. Bar, 10μm. (B) Caco-2 cells were transfected with either Non-Targeting 

Control siRNA (C), Tsg101 siRNA (T) or Vps25 siRNA (V) and incubated for 7 d. Lysates were 

immunoblotted for claudin-1 and claudin-4. β-tubulin is shown as a loading control. Total 

claudin-1 and claudin-4 protein levels do not appear to be altered in Tsg101 or Vps25 

knockdown cells compared to control. 
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Figure 4.3 Knockdown of Tsg101 using alternative siRNA oligonucleotides results in a 

similar intracellular accumulation of claudin-1 in Caco-2 cells. Caco-2 cells were 

transfected with either Non-Targeting Control siRNA or Tsg101 siRNA. Tsg101 knockdown was 

also achieved using a different single siRNA oligonucleotide (1) or a combination of two different 

siRNA oligonucleotides (2). After 7 d incubation, cells were fixed and examined by confocal 

fluorescence microscopy for claudin-1 (green). Nuclei were stained with DAPI (blue) shown in 

merged images. A similar intracellular accumulation of claudin-1 is observed after knockdown of 

Tsg101 using alternative siRNA oligonucleotides (1 and 2). Bar, 10µm. 
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4.2.2. Tsg101 depleted Caco-2 cells accumulate ubiquitylated cargo  

 

In addition to intracellular accumulation of claudin-1, Tsg101 knockdown cells 

show a dramatic increase in ubiquitin staining, compared to low levels in control 

cells (Figure 4.4A). This demonstrates that ubiquitylated proteins are 

accumulating in Tsg101 depleted cells. This has been reported in other studies 

analysing the effects of ESCRT disruption (Bishop et al., 2002; Dukes et al., 

2008; Stuffers et al., 2009b) and suggests that Tsg101 knockdown alters the 

flux of ubiquitylated proteins along the endocytic pathway. The internal pool of 

claudin-1 observed upon Tsg101 knockdown partially colocalises with this 

ubiquitin, indicating that at least some of the mislocalised claudin-1 is 

accumulating within a similar intracellular compartment (Figure 4.4A, 

arrowheads). In contrast, Vps25 knockdown had no effect on ubiquitin staining 

(data not shown). 

 

Ubiquitylation of claudin-1 by the ubiquitin ligase, LNXp180, has previously 

been shown to induce internalisation (Takahashi et al., 2009). To analyse 

whether ubiquitylation of claudin-1 was increased in Tsg101 knockdown cells, 

claudin-1 was immunoprecipitated following Tsg101 knockdown and in control 

cells. Analysis was carried out for any associated ubiquitin using an antibody 

which recognises mono- and poly-ubiquitylated proteins but not free ubiquitin 

(Figure 4.4B). Although ubiquitin was observed in the whole cell lysate, shown 

by the characteristic smear after immunoblotting (Figure 4.4B, Total Lysate), 

ubiquitin was not detected in claudin-1 pull downs (Figure 4.4B, IP: CL-1; IB: 

Ub). Bands showing on the blot are likely to be antibody heavy chain as these 

are absent from the no IgG control sample (Figure 4.4B, arrowhead). Results 

demonstrate that claudin-1 immunoprecipitation was successful and specific as 

claudin-1 was detected in all samples except those which did not include a 

claudin-1 antibody (Figure 4.4B, no IgG and Rb IgG). Therefore, this 

demonstrates that claudin-1 ubiquitylation is not observably increased after 

Tsg101 or Vps25 knockdown. Although the internal pool of claudin-1 often 

colocalised with ubiquitin in Tsg101 depleted cells, these results suggest that 

claudin-1 accumulates in a similar compartment to ubiquitylated cargo rather 

than being directly modified with ubiquitin.   
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Figure 4.4 Ubiquitin accumulates in Caco-2 cells upon Tsg101 knockdown in a similar 

intracellular compartment to claudin-1. (A) Caco-2 cells were transfected with either Non-

Targeting Control siRNA or Tsg101 siRNA and incubated for 7 d. Cells were fixed and 

examined by confocal fluorescence microscopy for claudin-1 (green) and ubiquitin (red). Nuclei 

were stained with DAPI (blue) shown in merged images. Right panels are zoomed images of 

areas indicated by dotted lines. Ubiquitin also accumulates in Tsg101 knockdown cells and 

often localises to a similar intracellular compartment as claudin-1 (arrowhead). However, some 

claudin-1 and ubiquitin localise to separate compartments (arrows). Bar, 10µm. (B) Caco-2 cells 

were transfected with either Non-Targeting Control siRNA (C), Tsg101 siRNA (T) or Vps25 

siRNA (V) and incubated for 3, 7 or 10 d. Claudin-1 was immunoprecipitated from cell lysates at 

each timepoint and samples were immunoblotted for ubiquitin, arrowhead indicates non-specific 

(ns) bands. Claudin-1 is shown to confirm efficiency of immunoprecipitation. Controls were 

performed on untransfected cells and show specific pull down of claudin-1 (compare No IgG/Rb 

IgG with CL-1 IgG). Total lysates are shown as loading controls. Claudin-1 ubiquitylation does 

not appear to increase after Tsg101 or Vps25 knockdown.  
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4.2.3. Characterisation of the internal claudin-1 positive compartment in 

Tsg101 depleted Caco-2 cells 

 

To further characterise the claudin-1 positive internal compartment observed in 

Tsg101 knockdown cells, co-staining with various endosomal markers was 

performed (Figure 4.5 and 4.6). Claudin-1 does not colocalise completely with 

any of the markers analysed (Figure 4.5 and 4.6, arrows), however, partial 

colocalisation was demonstrated with the early endosome marker, EEA1, and 

with transferrin receptor (TfR) as a marker of recycling endosomes (Figure 4.5, 

arrowheads). Partial colocalisation was also observed with the late endosome 

markers, mannose-6-phosphate receptor (M6PR) and CD63, and with the 

lysosome marker, Lamp-1, although this was to a slightly lesser extent (Figure 

4.6, arrowheads). These results show that the intracellular pool of claudin-1 

observed upon Tsg101 knockdown localises to multiple endosomal 

compartments, suggesting that claudin-1 trafficking through the endocytic 

system is perturbed.  

 

4.2.4. ESCRT-I depletion impairs Caco-2 epithelial barrier formation 

 

Claudins are important for producing a tight junction permeability barrier (Van 

Itallie and Anderson, 2006) and therefore, reduced localisation of claudin-1 and 

-4 to tight junctions may affect their barrier function. To establish whether 

ESCRT depletion had an impact on epithelial barrier formation, transepithelial 

resistance (TER) was monitored after Tsg101 and Vps25 knockdown. TER is a 

measure of resistance to an electrical current passed from the apical to the 

basal surface of an epithelial sheet and can be used to indicate the integrity of 

cell-cell junctions. As junctions mature TER will increase and, conversely, 

disruption of junctions is often accompanied with a reduction in TER (Cereijido 

et al., 1978). Establishment of TER was monitored over 4 days after plating 

siRNA transfected Caco-2 cells onto Transwell filters. Tsg101 knockdown 

significantly reduced TER compared to control at all timepoints measured 

whereas Vps25 knockdown had no effect (Figure 4.7A).  

 

In addition, TER recovery after calcium switch was measured (Figure 4.7B). 

Removal of calcium from the cell culture growth media induces internalisation of  
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Figure 4.5 The internal pool of claudin-1 in Tsg101 knockdown localises to both early and 

recycling endosomes. Caco-2 cells were transfected with either Non-Targeting Control siRNA 

or Tsg101 siRNA and incubated for 7 d. Cells were fixed and examined by confocal 

fluorescence microscopy for claudin-1 (green) and either EEA1 or TfR (red). Nuclei were 

stained with DAPI (blue) shown in merged images. Right panels are zoomed images of areas 

indicated by dotted lines. Intracellular claudin-1 partially colocalises with the early endosome 

marker, EEA1 (top panels) and the recycling endosome marker, TfR (bottom panels). 

Colocalisation is shown as yellow in zoomed images (arrowheads). Note that for each marker, 

some claudin-1 localises to an unlabelled compartment (arrows). Bar, 10µm. 
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Figure 4.6 Intracellular claudin-1 partially colocalises with late endosomal markers in 

Tsg101 depleted Caco-2 cells. Caco-2 cells were transfected with either Non-Targeting 

Control siRNA or Tsg101 siRNA and incubated for 7 d. Cells were fixed and examined by 

confocal fluorescence microscopy for claudin-1 (green) and either M6PR, CD63 or Lamp-1 

(red). Nuclei were stained with DAPI (blue) shown in merged images. Right panels are zoomed 

images of areas indicated by dotted lines. The internal pool of claudin-1 partially colocalises 

with late endosomal markers, M6PR (top panels) and CD63 (middle panels) and less so with 

the lysosome marker, Lamp-1 (bottom panels). Colocalisation is shown as yellow in zoomed 

images (arrowheads). Note that for each marker, some claudin-1 localises to an unlabelled 

compartment (arrows). Bar, 10µm. 
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Figure 4.7 Transepithelial resistance (TER) is reduced following Tsg101 siRNA 

knockdown  in  Caco-2 cells. Caco-2 cells were transfected with either Non-Targeting Control 

siRNA, Tsg101 siRNA or Vps25 siRNA, replated on day 3 to transwell filters and incubated for a 

further 4 days (A) TER was measured between day 4 and day 7. Tsg101 depletion reduces 

TER at all time points compared to control whereas Vps25 knockdown has no effect. (B) On 

day 7 cells were incubated in calcium-free media for 2 h to destabilise cell-cell junctions. 

Incubation in calcium-containing media then allowed junctions to reform and TER was 

measured at the indicated timepoints. TER recovers after calcium switch in ESCRT depleted 

cells however Tsg101 knockdown cells consistently display a reduced TER compared to 

control. Data shown are the means ± standard error of three independent experiments. Results 

were analysed using a two-way ANOVA and Bonferroni post test, *** p<0.001 * p<0.05. 
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cell-cell junction proteins and as a result TER dropped to almost zero (Figure 

4.7B, 0 h timepoint). Calcium was then added back into the media, allowing cell-

cell junctions to reform. In control cells, a gradual increase of TER was 

observed over a 5 hour period. A similar increase was seen after Vps25 

knockdown, however TER was consistently lower in Tsg101 depleted cells 

(Figure 4.7B). Therefore, establishment of TER as well as recovery after a 

calcium switch requires Tsg101 indicating that depletion of ESCRT-I results in 

impaired barrier formation of the Caco-2 epithelial sheet. In contrast, Vps25 

knockdown does not appear to have a significant effect on TER.  

 

4.2.5. Tsg101 knockdown enhances Caco-2 cell migratory ability 

 

Loss of apicobasal polarity and cell-cell adhesion can promote migration of 

epithelial cells and is often observed during metastasis of cancer cells 

(Hanahan and Weinberg, 2011). As tight junctions play an important role in 

maintenance of the polarised epithelial phenotype, alterations in tight junction 

structure and function are often associated with enhanced invasiveness of 

human carcinomas (Miyoshi and Takai, 2005; Oliveira and Morgado-Diaz, 

2007). In addition, changes in expression of claudins are frequently observed in 

various human tumours (reviewed in Morin, 2005; Oliveira and Morgado-Diaz, 

2007; Turksen and Troy, 2011). For example claudin-1 has been found to be 

reduced in breast (Kramer et al., 2000; Tokes et al., 2005), lung (Chao et al., 

2008) and colon (Resnick et al., 2005) cancer. Conversely, upregulation of 

claudins has also been associated with carcinogenesis (Oliveira et al., 2005). 

As Tsg101 depletion compromised apicobasal polarity and altered claudin-1 

and -4 localisation, the effect of knockdown on the migratory ability of Caco-2 

cells was investigated.  

 

After siRNA knockdown, a scratch assay was performed on confluent Caco-2 

cells and migration of cells into the wound area was monitored over time (Figure 

4.8). After 24 h, approximately 35% of the original scratch area was covered by 

Tsg101 knockdown cells compared to 12% in control (Figure 4.8B). Therefore, 

ESCRT-I depletion significantly enhances migration of Caco-2 cells. 

 

 



150 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Tsg101 depleted Caco-2 cells display enhanced migratory ability. Caco-2 cells 

were transfected with Non-Targeting Control siRNA or Tsg101 siRNA and replated on day 3 to 

cell culture inserts used to assess cell migration. Migration was initiated on day 6 by removal of 

the cell culture insert to reveal a cell-free area of approximately 500µm. Images were obtained 

using phase contrast microscopy 0, 12 and 24 h after initiation of migration. (A) Representative 

images for 0 and 24 h migration are shown. The migratory front of the epithelial sheet was 

detected using ImageJ at each timepoint and can be overlaid to show cell migration after 24 h 

(overlay, black lines) compared to 0 h (overlay, red lines). (B) Scratch area was quantified using 

ImageJ and expressed as an inverse percentage of 0 h. After 24 h, migration of Tsg101 

depleted cells is increased compared to control. Data shown are the means ± standard error of 

three independent experiments. Results were analysed using a two-way ANOVA and Bonferroni 

post test, * p<0.05.  
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4.2.6. Caco-2 cell tight junctions are dynamic structures 

 

Tsg101 depletion results in intracellular accumulation of claudin-1 which 

localises to multiple endosomal compartments, suggesting that claudin-1 

trafficking is perturbed. A functional ESCRT machinery is required for the 

degradation of various membrane proteins (Raiborg and Stenmark, 2009) and 

so disruption of claudin-1 trafficking to lysosomes for degradation may explain 

its intracellular accumulation. However, ESCRT proteins have also been shown 

to be important for protein recycling (Yoshimori et al., 2000; Fujita et al., 2003; 

Doyotte et al., 2005; Baldys and Raymond, 2009). Therefore, the internal pool 

of claudin-1 could also arise due to inhibition of endocytic recycling. Although 

previous studies have begun to analyse the dynamic behaviour of cell-cell 

junction proteins (Le et al., 1999; Marzesco et al., 2002; Matsuda et al., 2004; 

Morimoto et al., 2005), trafficking of tight junction components has not been 

studied in Caco-2 cells. 

 

In order to investigate whether tight junction proteins constitutively traffic 

through the endosomal system in Caco-2 cells, a surface biotinylation assay 

was used. This assay employs a membrane-impermeant biotin molecule to 

label cell surface proteins. Trafficking of biotinylated proteins can then be 

followed over time, using various incubation and stripping procedures, followed 

by neutravidin pull down and immunoblotting for the protein of interest (for 

schematic, see Chapter 2: Materials and Methods, Figure 2.1). Surface claudin-

1 and occludin could be labelled with biotin and were successfully detected after 

neutravidin pull down (Figure 4.9A, ‘Surface Biotinylated’). No detection was 

observed in mock treated cells, indicating that the pull down was specific to 

biotinylated proteins (Figure 4.9A, ‘Non Specific’).  In addition, the biotin could 

be efficiently removed from labelled proteins by a surface stripping procedure 

(Figure 4.9A, ‘Strip Control’). Endocytosis of claudin-1 and occludin was then 

analysed over time (Figure 4.9B). After labelling surface proteins with biotin at 

4°C, Caco-2 cells were incubated at 37°C for the indicated timepoints to allow 

trafficking. Following this, biotin was stripped from surface proteins and analysis 

of the remaining biotinylated claudin-1 and occludin was performed. This 

therefore indicated the amount of biotinylated claudin-1 and occludin 

endocytosed within each time period. Following a 60 min incubation, 
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Figure 4.9 Claudin-1 and occludin are endocytosed in Caco-2 cells. Surface biotinylation 

and endocytosis assays were performed on Caco-2 cells. (A) Caco-2 cells were incubated at 

4°C with non-membrane permeable biotin to label surface proteins. Biotinylated proteins were 

isolated using neutravidin pull down and samples were immunoblotted for claudin-1 and 

occludin. Surface claudin-1 and occludin was successfully labelled with biotin (‘Surface 

Biotinylated’). No signal was observed after mock treatment (‘Non-specific’) or after stripping 

with MESNA (‘Strip Control). Total cell lysate is shown as a loading control. (B) After surface 

biotinylation, Caco-2 cells were incubated at 37°C for indicated timepoints to allow endocytosis. 

Remaining biotin at the cell surface was stripped with MESNA and biotinylated proteins were 

isolated using neutravidin pull down. Samples were immunoblotted for claudin-1 and occludin to 

indicate the amount of protein endocytosed within each time period. Total cell lysate 

immunoblotted for claudin-1 is shown as a representative loading control. (C) Protein levels 

were quantified, normalised to total protein and expressed as a percentage of the 

corresponding amount of surface biotinylated protein. Claudin-1 and occludin are endocytosed 

in Caco-2 cells. This endocytosis is rapid and a steady state is reached after approximately 30 

min. Data shown are the means ± standard error of three independent experiments. 
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approximately 50% of biotinylated occludin and 20% of biotinylated claudin-1 

was endocytosed (Figure 4.9B + C). The amount of internal biotinylated claudin-

1 and occludin only increased slightly between 30 min and 2 h suggesting that 

the level of endocytosis reaches an approximate plateau after 30 min.   

 

The fate of the endocytosed claudin-1 and occludin was then investigated. 

Caco-2 cells were labelled with biotin and incubated at 37°C for 1 h to allow 

endocytosis (Figure 4.10A+B, ‘Endocytosis 60 min’). Surface biotin was 

stripped and cells were incubated for a further 20 min at 37°C. Following this, 

cells were surface stripped for a second time or mock treated. This second 

stripping procedure removes biotin from endocytosed proteins which have 

returned to the cell surface and therefore allows the fate of the endocytosed 

proteins to be studied. A reduction in the amount of biotinylated protein detected 

after mock treatment compared to the endocytosis condition indicates that some 

of the endocytosed protein has been targeted for degradation (Figure 4.10A+B, 

‘Degradation Control’). Levels of recycled proteins are indicated by a reduction 

in the amount of biotinylated protein pulled down after a second surface strip 

compared with the degradation control (Figure 4.10A+B, ‘Recycling 20 min). 

This procedure revealed that approximately 40% of endocytosed claudin-1 is 

recycled with very little being targeted for degradation (Figure 4.10A+B). In 

contrast, the fate of endocytosed occludin was split between degradation and 

recycling with approximately 40% degraded and 30% of the remaining internal 

occludin recycled (Figure 4.10A+B). Therefore, in Caco-2 cells claudin-1 is 

constitutively endocytosed and recycled and occludin is endocytosed then 

either degraded or recycled.  

 

4.2.7. Turnover of tight junction proteins occurs over time 

 

The biotinylation assay studied the degradation and recycling of endocytosed 

claudin-1 and occludin over a short time period of 20 min. Analysis of claudin-1 

and occludin turnover over a longer time period was performed by monitoring 

protein levels after varying lengths of cycloheximide treatment (Figure 4.11). 

Effective inhibition of protein synthesis via cycloheximide treatment was 

demonstrated after 6 h by a reduction in the levels of connexin-43, a gap 

junction protein known to undergo rapid turnover (Fallon and Goodenough, 
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Figure 4.10 Claudin-1 and occludin are constitutively endocytosed and recycled in Caco-

2 cells. The surface biotinylation, endocytosis and recycling assay was performed on Caco-2 

cells. (A) After surface biotinylation, Caco-2 cells were incubated at 37°C for 60 min to allow 

endocytosis. Remaining biotin at the cell surface was stripped with MESNA and cells were 

incubated at 4°C for 20 min to allow recycling. Cells were surface stripped to indicate recycling 

or mock treated to control for degradation. After each step cells were lysed, biotinylated proteins 

were isolated using neutravidin pull down and samples were immunoblotted for claudin-1 and 

occludin. Total cell lysate is shown as a loading control. Lanes marked ‘Surface biotinylated’ 

represent the initial biotinylated protein at the cell surface and ‘Endocytosis 60 min’ is the 

internal biotinylated protein that is resistant to surface stripping. Degradation is shown by a 

reduction of signal in the ‘Degradation control’ lane in comparison to the ‘Endocytosis 60 min’ 

lane. Recycling is the reduction of signal in the ‘Recycling 20 min’ lane relative to the 

‘Degradation control’ lane. (B) Protein levels were quantified, normalised to total protein and 

expressed as a percentage of the corresponding amount of surface biotinylated protein. 

Claudin-1 is endocytosed and recycled in Caco-2 cells whereas occludin is endocytosed and 

then either recycled or degraded. Data shown are the means ± standard error of three 

independent experiments. 
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1981). Importantly, up to 24 h treatment with cycloheximide had no effect on 

Caco-2 cell viability (data not shown). After 6 h cycloheximide treatment, total 

occludin and claudin-1 levels remained stable. However, 16 h and 24 h 

treatment reduced total protein levels (Figure 4.11), suggesting that over time 

tight junction proteins are turned over in Caco-2 cells. 
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Figure 4.11 Claudin-1 and occludin are turned over in Caco-2 cells. Caco-2 cells were 

incubated at 37°C with 2µg/ml cycloheximide (CHX) for the indicated time periods and lysates 

were immunoblotted for occludin and claudin-1. Connexin-43 is shown as a positive control for 

CHX treatment and β-tubulin is shown as a loading control. Turnover of claudin-1 and occludin 

is demonstrated after 24 h CHX treatment.  
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4.3. Discussion 

 

This work aimed to investigate whether ESCRT proteins are required for the 

formation and/or maintenance of epithelial cell-cell junctions in Caco-2 cells. 

Functional cell-cell junctions are important to maintain a polarised epithelium 

and therefore defective epithelial junctions could provide a mechanism for the 

compromised Caco-2 cell polarity and organisation observed upon ESCRT-I 

depletion (discussed in Chapter 3). My results demonstrate that Tsg101 

knockdown causes an internal accumulation of claudins whereas the 

localisation of various other cell-cell junction proteins is unaffected. In addition, 

Tsg101 depletion impairs Caco-2 epithelial barrier formation and enhances 

migratory ability, providing further support for a tumour suppressor role of 

ESCRT-I in mammalian epithelial cells. I have shown that claudin-1 and 

occludin are continuously trafficked through the endosomal system in Caco-2 

epithelial cells. Therefore, the intracellular accumulation of claudin-1 in ESCRT 

deficient cells is likely to be due to defective claudin-1 endosomal trafficking.  

 

4.3.1. Claudin localisation to tight junctions and Caco-2 epithelial barrier 

formation is dependent on ESCRT-I 

 

Depletion of Tsg101 in Caco-2 cells caused an intracellular accumulation of 

claudin-1 and -4 whereas localisation of various other cell-cell junction proteins 

was unaffected. Knockdown of Vps25 however had no significant effect on 

localisation of claudin-1 and -4 or any of the other junctional proteins studied. 

Additional data from our laboratory has demonstrated a similar internal 

accumulation of claudin-1 in MDCK cells, a canine kidney cell line, after 

disruption of ESCRT-III and inactivation of the AAA-ATPase Vps4 using 

dominant negative constructs (Dukes et al., 2011). This suggests that ESCRT 

function is required for junctional localisation of claudin-1 in at least two different 

epithelial cell types. Analysis of other cell lines would indicate whether this 

requirement is a common feature of vertebrate epithelial cells. 

 

Ubiquitylated proteins also accumulated within Tsg101 depleted Caco-2 cells, a 

phenotype which has been observed in other cell lines after ESCRT disruption 

and is indicative of a defect in trafficking through the endocytic pathway (Bishop 
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et al., 2002; Dukes et al., 2008; Stuffers et al., 2009b). Claudin-1 often localised 

to the same internal compartment as these ubiquitylated proteins although 

modification of claudin-1 with ubiquitin was not observed. Further 

characterisation of the claudin-1 positive compartment revealed that the internal 

pool of claudin-1 partially colocalised with markers for both early and recycling 

endosomes, and to a lesser extent with markers for late endosomes and 

lysosomes. This suggests that endosomal trafficking of claudin-1 is perturbed in 

ESCRT-I depleted Caco-2 cells and, as a result, claudin-1 accumulates within 

numerous endocytic compartments. In addition, identity of individual endosomal 

domains may be disrupted upon ESCRT depletion (Woodman, 2009). 

Therefore, claudin-1 may accumulate within a hybrid compartment which is 

positive for multiple endosomal markers. Previous results demonstrated that 

although early and late endosomes are enlarged in EGF treated Caco-2 Tsg101 

knockdown cells, these two compartments remained morphologically distinct 

(Chapter 3, section 3.2.2). However, co-staining with multiple endosomal 

markers has not been carried out and therefore, this could be investigated 

further by studying the localisation of various markers for recycling, early and 

late endosomes after Tsg101 knockdown.  

 

ESCRT-I depletion also resulted in a reduction in Caco-2 transepithelial 

resistance (TER) whereas ESCRT-II depletion had no effect. This is consistent 

with results demonstrating that Tsg101 knockdown, but not Vps25 knockdown, 

causes an intracellular accumulation of claudin-1 and -4. Despite this internal 

accumulation, claudin-1 and -4 are not completely lost from tight junctions in 

Tsg101 knockdown cells. However, as claudins are crucial for producing a tight 

junction permeability barrier (Van Itallie and Anderson, 2006), reduced 

localisation of claudin-1 and -4 to tight junctions may affect their barrier function. 

The sensitivity of tight junction structure and function to claudin composition has 

been demonstrated previously (reviewed in Krause et al., 2007; Lal-Nag and 

Morin, 2009). Therefore, this suggests that mislocalisation of claudin-1 and -4 

disrupts tight junction integrity and has a functional impact on Caco-2 epithelial 

barrier formation. The claudin family consists of least 27 different proteins 

(Mineta et al., 2011) and therefore, it is possible that ESCRT depletion affects 

the localisation of other claudins. This may contribute to the defective barrier 

formation and it would be interesting to analyse the localisation of other claudin 
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proteins after Tsg101 depletion. In addition, it would be of interest to investigate 

the impact of ESCRT depletion on tight junction structure further, for example 

using electron microscopy to analyse the integrity of the tight junction strands in 

detail.  

 

Alternatively, the reduction in TER following Tsg101 knockdown could be due to 

loss of a polarised Caco-2 epithelial monolayer. Previous results demonstrated 

that ESCRT-I depleted cells formed multilayered regions lacking normal 

epithelial organisation and apicobasal polarity (discussed in Chapter 3). Barrier 

function may also be perturbed in these areas and therefore this could account 

for the reduction in TER rather than mislocalisation of claudins. This could be 

investigated in more detail using dominant negative ESCRT-III constructs which 

cause a similar internal accumulation of claudins but do not disrupt epithelial 

cell polarity (Dukes et al., 2011). 

 

Therefore, these results demonstrate that ESCRT-I is required to maintain 

localisation of claudin-1 and -4 to tight junctions in Caco-2 cells. In addition, 

epithelial barrier formation is also dependent on ESCRT-I function. This could 

be a consequence of claudin-1 and -4 mislocalisation but there may also be 

additional effects of ESCRT-I depletion on other junctional proteins which were 

not analysed in this study. It can be speculated that mislocalisation of claudins, 

and possibly other junction proteins, destabilises Caco-2 tight junctions and, as 

a result, epithelial cell polarity is disrupted. Cells may then lose correct epithelial 

organisation and this may lead to the multilayered sheets observed upon 

Tsg101 knockdown.  

 

4.3.2. ESCRT-I depletion enhances Caco-2 migratory ability 

 

ESCRT-I depletion was also shown to increase Caco-2 cell migration. This 

could be due to the mislocalisation of claudin-1 and -4 from tight junctions as 

alterations in tight junction structure and function are often associated with 

enhanced invasiveness of human carcinomas (Miyoshi and Takai, 2005; 

Oliveira and Morgado-Diaz, 2007; Turksen and Troy, 2011). Furthermore, 

changes in expression of claudins are frequently observed in various human 

tumours (reviewed in Morin, 2005; Oliveira and Morgado-Diaz, 2007). Claudin-1 
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has been found to be reduced in breast (Kramer et al., 2000; Tokes et al., 

2005); lung (Chao et al., 2008); and colon (Resnick et al., 2005) cancer, and 

upregulation of claudins has also been associated with carcinogenesis (Oliveira 

et al., 2005). In addition, tight junctions play an important role in maintenance of 

the polarised epithelial phenotype (Miyoshi and Takai, 2005) and loss of 

apicobasal polarity is often observed during metastasis of cancer cells 

(Hanahan and Weinberg, 2011). Therefore, the disruption of claudin localisation 

to tight junctions caused by ESCRT-I depletion may perturb apicobasal polarity 

which, in turn, promotes migration of epithelial cells.  

 

Deregulated matrix metalloproteinases (MMP) activity may provide one 

potential mechanism for the enhanced migratory ability of Caco-2 cells upon 

Tsg101 knockdown. MMPs are a family of zinc-dependent endopeptidases 

which function in various different physiological processes such as tissue 

remodelling, development and inflammation (Kessenbrock et al., 2010). They 

are also important in pathological processes such as cancer and MMPs are 

upregulated in almost every type of human cancer (Egeblad and Werb, 2002; 

Kessenbrock et al., 2010). The role of MMPs in cancer cell invasion and 

metastasis has been well documented and is due to their ability to degrade a 

diverse group of substrates. These include structural components of the 

extracellular matrix (ECM), growth factor receptors and cell adhesion molecules 

which results in an alteration in cellular adhesion and signalling, therefore 

promoting cell migration and invasion (Egeblad and Werb, 2002).  

 

Several studies have identified a role for claudins in the regulation of MMP 

activity (Miyamori et al., 2001). Claudin-4 overexpression increases activity of 

MMP-2 and -9 which is accompanied by an increase in migration of Caco-2 

cells (Takehara et al., 2009). Overexpression of claudin-1 has also been shown 

to increase MMP activity and metastasis (Dhawan et al., 2005). In addition, 

decreased expression of claudins has been shown to promote cell migration 

and invasion via an increase in MMP activity (Osanai et al., 2007; Ikari et al., 

2011). Interestingly, in Drosophila ESCRT mutants, increased expression of 

MMP-1 was observed (Rodahl et al., 2009b; Vaccari et al., 2009; Lobert and 

Stenmark, 2011). Therefore, ESCRT depletion may increase MMP activity, 

possibly via disruption of claudin localisation, and this could then enhance the 
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migratory ability of Caco-2 cells. To investigate this further, it would be 

interesting to analyse MMP expression and activity in Caco-2 cells after ESCRT 

knockdown. 

 

It is also important to note that the increased rate of scratch closure observed 

for Tsg101 knockdown Caco-2 cells may be due to increased proliferation 

rather than enhanced migration. The assay was carried out in serum-free media 

in order to reduce cell proliferation, however, the migration assay could also be 

carried out in the presence of mitomycin c. This inhibits cell proliferation (Lee 

and Kay, 2006) and therefore, would confirm whether ESCRT-I depletion is 

enhancing migratory ability of Caco-2 cells independently of cell proliferation. 

 

4.3.3. Constitutive trafficking of tight junction proteins is a feature of 

Caco-2 cells 

 

The structure and function of tight junctions may contribute to the maintenance 

of a polarised epithelium (Brennan et al., 2010; Coradini et al., 2011). 

Therefore, it is crucial to understand the processes that regulate the 

maintenance of tight junctions in epithelial cells.  Cell-cell junctions are thought 

to be dynamic structures that are constantly being remodelled (Shen et al., 

2008; Steed et al., 2010). My data demonstrates that claudin-1 and occludin are 

constitutively endocytosed in unstimulated Caco-2 epithelial monolayers. 

Internalised claudin-1 is rapidly recycled back to the plasma membrane 

whereas the fate of occludin is split between recycling and degradation. This 

was also observed in 16-HBE cells, a human lung epithelial cell line (data 

shown in Dukes et al., 2011).  

 

Endocytosis of claudins and occludin has been demonstrated previously in 

vertebrate epithelial cells (Marzesco et al., 2002; Matsuda et al., 2004; 

Morimoto et al., 2005; Takahashi et al., 2009). Trafficking of tight junction 

proteins appears to be highly specific for each individual junctional component. 

For example, claudin-3 is selectively segregated and internalised independently 

from other tight junction proteins (Matsuda et al., 2004). Ubiquitylation of 

claudin-1 and occludin has been shown to be promoted by the specific E3 

ubiquitin ligases, LNX1p80 (Takahashi et al., 2009) and Itch (Traweger et al., 
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2002), respectively and, therefore, this may provide a mechanism for selective 

internalisation. In addition, the dynamics of tight junctions appear dependent on 

cell type. Inhibition of recycling altered the localisation of occludin in MTD-1A 

epithelial cells (Morimoto et al., 2005) whereas in MDCK cells, claudin-1 

localisation was affected (Marzesco et al., 2002).  

 

Therefore, my data provides further insight into our understanding of tight 

junction biology, supporting a model whereby stability of cell-cell junctions in 

epithelial monolayers is maintained by a balance between assembly and 

disassembly of junctions (Shen and Turner, 2008). This analysis could be 

widened to include other tight junction transmembrane proteins, such as 

different claudin family members, JAMs and marvelD3, as well as proteins 

present in adherens junctions and desmosomes. Regulation of cell-cell junction 

assembly and disassembly could also be studied in detail. EGF stimulation has 

been shown to regulate expression and localisation of specific junction proteins 

(Singh and Harris, 2004; Ikari et al., 2010) and ERK1/2 signalling has been 

shown to influence tight junction integrity and assembly (Aggarwal et al., 2011). 

In addition, phosphorylation of junctional proteins such as occludin appears to 

be important for tight junction assembly (Sakakibara et al., 1997). Therefore, it 

would be interesting to establish the mechanisms that regulate trafficking of 

junctional proteins and the importance of these pathways for assembly and 

disassembly of cell-cell junctions in vertebrate epithelial cells.  

 

4.3.4. ESCRT-I is required for continuous claudin-1 trafficking in Caco-2 

cells 

 

This study has identified a role for ESCRT-I in maintaining localisation of 

claudins to tight junctions in Caco-2 epithelial cells. However, the question still 

remains as to why this internal pool of claudin-1 and -4 accumulates in Tsg101 

depleted cells. It can be hypothesised that ESCRT-I is required for constitutive 

claudin-1 trafficking in Caco-2 cells. Depletion of ESCRT-I may specifically 

perturb claudin-1 trafficking to tight junctions and as a result an internal pool of 

claudin-1 accumulates. This intracellular accumulation could be due to an 

inhibition of claudin-1 recycling and/or degradation. Although ESCRT proteins 

have been classically characterised for their involvement in degradation of 
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membrane proteins (Hurley and Emr, 2006; Raiborg and Stenmark, 2009), it is 

also reported that ESCRT function is important for recycling (Yoshimori et al., 

2000; Fujita et al., 2003; Doyotte et al., 2005; Baldys and Raymond, 2009). 

Therefore, disruption of either of these pathways could explain the accumulation 

of claudin-1 observed upon Tsg101 knockdown. 

 

The majority of endocytosed claudin-1 was shown to be continuously recycled 

in Caco-2 epithelial monolayers, therefore, it is possible that depletion of 

ESCRT-I inhibits claudin-1 recycling. Endocytosis continues and so internalised 

claudin-1 accumulates over time. This has been demonstrated by additional 

data from our laboratory whereby disruption of ESCRT-III was shown to inhibit 

claudin-1 recycling in MDCK cells (Dukes et al., 2011). A similar inhibition of 

claudin-1 recycling in Caco-2 cells upon ESCRT-I depletion is difficult to show 

directly due to the experimental approach employed. ESCRT-III disruption in 

MDCK cells was achieved using adenoviral expression of a dominant negative 

ESCRT-III protein, CHMP31-179. This system resulted in expression in virtually 

all cells and caused disruption to the ESCRT machinery within a short time 

period of approximately 16 hours. In contrast, ESCRT-I depletion via siRNA 

knockdown of Tsg101 was achieved after 7 days. Claudin-1 accumulation 

presumably occurs steadily during this time and, therefore, a reduction in 

recycling over a 20 min period will be difficult to detect using the biotinylation 

assay. In addition, cells may adapt their trafficking pathways to compensate for 

the effects of ESCRT-I depletion. Therefore, an alternative approach to disrupt 

ESCRT-I in Caco-2 cells would be required in order to demonstrate a direct 

involvement of ESCRT-I in claudin-1 recycling.  

 

Conversely, the internal pool of claudin-1 observed upon ESCRT-I depletion in 

Caco-2 cells may be due to a block in lysosomal degradation. Using the 

biotinylation assay, significant degradation of endocytosed biotinylated claudin-

1 was not detected within 20 minutes. However, over a longer time period of 16 

- 24 hours, claudin-1 turnover was demonstrated. This has also been shown 

previously (Takahashi et al., 2009) and therefore it is possible that, while the 

majority of endocytosed claudin-1 is recycled, a small percentage is directed for 

degradation resulting in a gradual turnover of claudin-1 in Caco-2 cells. 

Perturbation of the degradative pathway via ESCRT disruption is well 
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documented (Doyotte et al., 2005; Razi and Futter, 2006; Raiborg and 

Stenmark, 2009; Stuffers et al., 2009b; Woodman, 2009), thus it is possible that 

Tsg101 knockdown inhibits degradation of claudin-1 and leads to intracellular 

accumulation over time. However, my results suggest that a block in claudin 

degradation is not the major cause of intracellular accumulation as total claudin-

1 levels were not increased following Tsg101 knockdown. Furthermore, claudin-

1 ubiquitylation, which targets proteins for degradation, was not observed. 

Therefore, this suggests that a block in claudin-1 degradation is not responsible 

for the majority of intracellular claudin-1 accumulation. 

 

To analyse this further, treatment with a lysosomal inhibitor, such as 

chloroquine, could be carried out to establish whether a similar effect on 

claudin-1 localisation is observed when lysosomal degradation is blocked. This 

may provide further insight into whether claudin-1 accumulation is likely to arise 

due to a block in its degradation. However, the time frame may not be 

comparable with that used to efficiently knockdown Tsg101 as prolonged 

lysosomal inhibition is likely to be cytotoxic. In addition, cycloheximide treatment 

could be carried out on ESCRT-I depleted cells to block protein synthesis. 

Comparison of claudin-1 levels between control and Tsg101 knockdown cells 

would then indicate whether claudin-1 turnover can occur after ESCRT-I 

depletion.   

 

In summary, it is likely that the intracellular accumulation of claudin-1 observed 

upon ESCRT-I depletion is due to inhibition of both claudin-1 recycling and 

degradation. In support of this, the intracellular pool of claudin-1 in Tsg101 

knockdown cells localises to a compartment/s positive for markers of recycling, 

early and late endosomes as well as lysosomes. My results, along with 

additional data generated in our laboratory, strongly suggest that ESCRT-I 

function is required for the constitutive recycling of claudin-1 in Caco-2 cells. 

Therefore, it is hypothesised that the majority of claudin-1 accumulation in 

ESCRT-I depleted cells is due to a block in claudin-1 recycling. However, long 

term turnover of claudin-1 may also be dependent on a functional ESCRT 

machinery.   

 

 



169 
 

4.3.5. Variation between claudin-1 and occludin trafficking in Caco-2 

cells 

 

The intracellular accumulation of claudin-1 caused by ESCRT-I depletion can 

be explained by an inhibition of claudin-1 trafficking through the endocytic 

system. However, occludin is also continuously endocytosed in Caco-2 cells but 

does not accumulate after Tsg101 knockdown. This may indicate that occludin 

and claudin-1 are following independent endocytic trafficking routes. In support 

of this, the dynamics of claudin-1 and occludin trafficking in Caco-2 cells are 

different. The majority of endocytosed claudin-1 is recycled, whereas the fate of 

endocytosed occludin is split between recycling and degradation, suggesting 

that these two proteins are following distinct endosomal pathways. Trafficking of 

claudin-1 requires ESCRT function whereas occludin may follow an ESCRT-

independent trafficking pathway. There are a number of independent recycling 

pathways (Grant and Donaldson, 2009; Golachowska et al., 2010) and 

polarised epithelial cells contain a number of distinct recycling compartments 

(Hoekstra et al., 2004; Weisz and Rodriguez-Boulan, 2009). Therefore, it is 

possible that claudin-1 is returned to the plasma membrane by a pathway 

requiring ESCRT function and this is distinct from that used to recycle occludin.  

 

It is interesting that occludin accumulation is not observed upon ESCRT-I 

depletion despite the fact that some of the endocytosed occludin is directed for 

degradation. ESCRT proteins have an established role within the endosomal 

degradative pathway (Doyotte et al., 2005; Razi and Futter, 2006; Raiborg and 

Stenmark, 2009; Stuffers et al., 2009b; Woodman, 2009), however, the majority 

of studies into ESCRT function are conducted in non-polarised cells. Polarised 

epithelial cells contain additional endosomal compartments and endocytic 

trafficking is thought to be more complex (Hoekstra et al., 2004; Mellman and 

Nelson, 2008; Farr et al., 2009; Folsch et al., 2009; Weisz and Rodriguez-

Boulan, 2009). Therefore, there may be additional degradative routes in Caco-2 

cells which are independent of ESCRT function. This is supported by my 

previous results demonstrating that EGF degradation is not significantly 

inhibited in ESCRT depleted Caco-2 cells (Chapter 3, section 3.2.2), suggesting 

that trafficking to lysosomes can occur independently of ESCRTs.   
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4.4. Conclusion 

 

Altered epithelial junctions are associated with a wide range of pathological 

conditions, such as cancer and inflammatory bowel diseases (Yang and 

Weinberg, 2008; Yu and Turner, 2008; Capaldo and Nusrat, 2009; Brennan et 

al., 2010). Therefore, a thorough understanding of cell-cell junction formation, 

maintenance and remodelling is crucial. My data begins to elucidate some of 

the mechanisms important for regulation of epithelial junctions and suggests a 

role for ESCRT-I in this process. The tight junction proteins, claudin-1 and 

occludin, are constitutively endocytosed and recycled in Caco-2 epithelial 

monolayers. Depletion of ESCRT-I in Caco-2 cells results in mislocalisation of 

claudins from tight junctions to an intracellular endocytic compartment/s. 

Therefore, I propose that claudin-1 recycling is dependent on ESCRT-I function 

and that this provides a mechanism for the intracellular accumulation of claudin-

1 observed upon ESCRT-I depletion in Caco-2 cells.  

 

In addition, ESCRT-I is required for Caco-2 epithelial barrier formation. This 

may be an effect of claudin mislocalisation and suggests that tight junction 

integrity is impaired. Tight junctions are thought to be important for maintenance 

of a polarised epithelium (Brennan et al., 2010; Coradini et al., 2011) and 

therefore destabilisation may contribute to the loss of Caco-2 cell organisation 

and polarity observed upon ESCRT-I depletion. Finally, ESCRT-I depletion 

enhances Caco-2 cell migratory ability. This data, together with previous results 

demonstrating a requirement of ESCRTs in maintenance of epithelial cell 

polarity, provides further support for a role of ESCRT proteins as tumour 

suppressors in vertebrates.  
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5. Multilayered Tsg101 depleted Caco-2 cells are 

eliminated by apoptosis 

 

5.1. Introduction 

 

5.1.1. ESCRTs and Epithelial Cell Proliferation 

 

Cell proliferation is a tightly regulated process (King and Cidlowski, 1998). 

Disruption to any number of important regulatory pathways can trigger 

uncontrolled cell growth, a hallmark of tumourigenesis (Hanahan and Weinberg, 

2011). A role for ESCRT proteins in epithelial cell proliferation has been 

demonstrated previously in Drosophila. Mutation of various components of the 

ESCRT machinery in epithelial tissues results in increased proliferation (Moberg 

et al., 2005; Thompson et al., 2005; Vaccari and Bilder, 2005; Herz et al., 2006; 

Herz et al., 2009; Rodahl et al., 2009b; Vaccari and Bilder, 2009; Vaccari et al., 

2009). When epithelial tissues are predominantly mutant for ESCRT 

components, mutant cells lose polarity and overgrow to form large masses 

lacking normal epithelial morphology. The resulting mutant larvae are enlarged 

and eventually die. This neoplastic growth is thought to be due to an extended 

period of proliferation rather than an increased growth rate and suggests that 

ESCRT mutant cells are unable to respond to signals which usually sense and 

restrict organ size (Moberg et al., 2005; Vaccari and Bilder, 2005; Herz et al., 

2009; Vaccari et al., 2009).  

 

However, in mosaic epithelial tissues where mutant cells are surrounded by wild 

type cells, the situation is somewhat different. ESCRT mutant cells still lose 

epithelial polarity and organisation but do not overproliferate. Instead increased 

proliferation of surrounding wild type cells is observed, despite these cells 

displaying a normal epithelial morphology (Moberg et al., 2005; Thompson et 

al., 2005; Vaccari and Bilder, 2005; Herz et al., 2006; Herz et al., 2009; Rodahl 

et al., 2009b; Vaccari and Bilder, 2009; Vaccari et al., 2009). This hyperplastic 

growth is attributed to a block in Notch trafficking within ESCRT mutant cells. 

Consequently Notch accumulates within large aberrant endosomes, is activated 

and results in ectopic production of the secreted growth factor, Unpaired (Upd). 
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This then induces proliferation of surrounding wild type cells via activation of the 

Jak-STAT signalling pathway (Thompson et al., 2005; Vaccari and Bilder, 2005; 

Herz et al., 2006; Herz et al., 2009; Gilbert et al., 2009; Vaccari et al., 2009).  

 

Another mechanism by which ESCRT disruption could influence cell growth is 

through aberrant receptor tyrosine kinase (RTK) signalling. For example, 

ESCRTs have been identified as important regulators of epidermal growth 

factor receptor (EGFR) signalling (Vaccari and Bilder, 2009; Woodman, 2009). 

In both Drosophila and vertebrates, ESCRT proteins are required for the 

degradation of EGFR and attenuation of EGF-induced signalling (Jekely and 

Rorth, 2003; Bache et al., 2006; Lloyd et al., 2006; Malerod et al., 2007; 

Raiborg et al., 2008; Vaccari et al., 2009). Increased RTK signalling can induce 

overproliferation and is often linked to tumourigenesis (Kim and Choi, 2010) and 

therefore this may contribute to the overgrowth associated with ESCRT 

disruption in Drosophila. 

 

In contrast to the studies conducted in Drosophila, mouse models have 

demonstrated a reduction in proliferation upon ESCRT disruption (Ruland et al., 

2001; Wagner et al., 2003). However, the role of ESCRT proteins in growth of 

vertebrate epithelial tissues has not been analysed in detail. Therefore, it is of 

interest to determine if ESCRTs are important for the regulation of epithelial cell 

proliferation in mammalian cells and whether this could contribute to their role 

as tumour suppressors. 

 

5.1.2. ESCRTs and Cell Death 

 

In addition to the role of ESCRTs proteins in cell proliferation, ESCRTs have 

also been implicated in the process of apoptosis. Apoptosis is a highly regulated 

mechanism of programmed cell death, important for many physiological 

processes and often deregulated in cancer (Pettigrew and Cotter, 2009; Ola et 

al., 2011).  In Drosophila, Vps25 mutation has been shown to increase levels of 

Diap1, an inhibitor of apoptosis, in wild type cells surrounding ESCRT mutant 

clones (Herz et al., 2006). Therefore, loss of ESCRT function may confer 

apoptotic resistance and enhance the survival of surrounding wild type tissue.  
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However, a more commonly reported consequence of ESCRT mutation is the 

proapoptotic response. Loss of ESCRT-I function has been shown to induce cell 

death of mouse mammary epithelial cells, both in vivo and in vitro (Wagner et 

al., 2003). Consistent with this, in Drosophila, if ESCRT mutant cells are 

surrounded by wild type cells, the mutant cells are eventually eliminated from 

the epithelium via an increase in apoptosis (Thompson et al., 2005; Herz et al., 

2006; Rodahl et al., 2009b). This means that the resulting enlarged tissue is 

mainly comprised of wild type cells. Studies have demonstrated that this 

apoptosis is induced by at least two pathways, one mediated by JNK signalling 

and another mediated by Hid/Diap1/Dronc/Ark (Herz et al., 2006; Rodahl et al., 

2009b; Vaccari and Bilder, 2009). In addition, Hippo signalling has been 

suggested to function as an upstream regulator of the overall proapoptotic 

response observed in ESCRT mutant cells (Herz et al., 2006). Interestingly, if 

apoptosis of ESCRT mutant cells is inhibited a dramatic overproliferation of 

mutant tissue is observed resulting in the formation of neoplastic tumours 

capable of metastasis (Thompson et al., 2005; Herz et al., 2006; Rodahl et al., 

2009b). 

 

5.1.3. A Role for ESCRT Proteins as Tumour Suppressors 

 

Previous studies suggest that the ESCRT machinery is required for trafficking of 

important regulators of epithelial cell polarity and proliferation in Drosophila 

(Vaccari and Bilder, 2009). In this model system, disruption of the ESCRT 

machinery can lead to loss of cell polarity and self-sufficiency in growth 

signalling, two important hallmarks of cancer (Hanahan and Weinberg, 2011). 

Therefore, ESCRT proteins have been classified as potential tumour 

suppressors. Consistent with these studies, I have shown that ESCRT-I is 

required for maintenance of mammalian epithelial cell polarity and organisation. 

I have demonstrated that this phenotype may be due to disruption in trafficking 

of cell-cell junction proteins which may be important for maintaining a polarised 

epithelium. Therefore, the tumour suppressor role of ESCRTs may be 

conserved from Drosophila to vertebrates. However, it is likely that further 

alterations in cell physiology, such as evasion of apoptosis, are required in 

order to exert the full tumourigenic potential of the ESCRT machinery. 
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5.1.4. Aims 

 

In addition to the defects in epithelial cell-cell junctions, it is also possible that 

alterations in proliferation and/or cell death contribute to the aberrant epithelial 

morphology observed upon ESCRT-I depletion. Therefore, the aims of this 

chapter are to determine whether Tsg101 and Vps25 siRNA knockdown affects 

Caco-2 cell proliferation and apoptosis. In addition, the effect of inhibiting 

apoptosis in Tsg101 depleted Caco-2 cells will be investigated. 
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5.2. Results 

 

5.2.1. ESCRT-I depletion results in overproliferation of Caco-2 cells 

 

The effect of ESCRT depletion on Caco-2 cell number was assessed using a 

MTT assay. This assay measures the metabolic conversion of MTT to 

formazan. Absorbance of the resulting formazan solution has a linear 

relationship to cell number and therefore can be used to indicate changes in cell 

number over time (data not shown). Results demonstrated that absorbance 

increased over time in control and ESCRT knockdown cell cultures, suggesting 

that Caco-2 cell number increased over time in culture. However, the 

absorbance measurements for Tsg101 knockdown cells appeared to increase 

at a faster rate and, after 7 days, absorbance was significantly increased 

compared to control (Figure 5.1A).  This suggests that Tsg101 depletion results 

in an increase in Caco-2 cell number. Caco-2 cell number was also analysed by 

counting cells using confocal fluorescence microscopy (Figure 5.1B). This 

demonstrated that increased cell number was only found in multilayered regions 

of Tsg101 knockdown cells. In monolayered regions of Tsg101 depleted cells, 

there seemed to be a slight decrease in cell number although this difference 

was not statistically significant. This may correspond to the reduced 

differentiation of Tsg101 knockdown cells shown previously (Chapter 3, section 

3.2.4) as cells may not be as tightly packed as in control. In contrast, Vps25 

knockdown had no effect on cell number, demonstrated by both the MTT assay 

and fluorescence microscopy cell counting (Figure 5.1A+B).   

 

Despite this significant increase in cell number after Tsg101 knockdown, there 

was no significant increase in the proportion of phosphorylated Histone H3-

positive Tsg101 knockdown cells (Figure 5.2A). Histone H3 is phosphorylated 

during mitosis and therefore this suggests that after 7 days culture, proliferation 

of Tsg101 knockdown cells was similar to control. This was also demonstrated 

by quantifying BrdU (Bromodeoxyuridine) incorporation in Tsg101 depleted cells 

(Figure 5.2B). BrdU is a synthetic analogue of thymidine which can be 

incorporated into newly synthesised DNA during S phase of the cell cycle. It is 

therefore used to indicate the proportion of cells which have divided during a set 

time period. Results indicated that after Tsg101 knockdown, BrdU incorporation 
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Figure 5.1 Caco-2 cell number increases upon Tsg101 knockdown. (A) Caco-2 cells were 

transfected with either Non-Targeting Control siRNA, Tsg101 siRNA, or Vps25 siRNA and 

incubated for 1, 3, 7 and 10 d. At each timepoint the MTT assay was carried out, used as a 

measure of cell number. Cells were incubated with MTT and metabolic conversion of MTT to 

formazan was measured by reading absorbance at 570nm. After 7 d Tsg101 knockdown Caco-

2 absorbance is significantly increased compared with control. Vps25 knockdown has no effect. 

(B) Caco-2 cells were transfected with either Non-Targeting Control siRNA, Tsg101 siRNA, or 

Vps25 siRNA and incubated for 7 d. Cells were fixed and nuclei were stained using DAPI. Cells 

were examined by confocal fluorescence microscopy and z-stack images were taken at 

random. Cell number was quantified by counting individual nuclei in each image using ImageJ. 

Six images were taken per condition and, for Tsg101 knockdown cells regions were 

distinguished as either monolayerd or multilayered. Tsg101 knockdown increases Caco-2 cell 

number due to regions of multilayered cells. Vps25 knockdown has no effect. Data shown are 

the means ± standard error of at least three independent experiments. Results were analysed 

using a one-way ANOVA and Dunnett’s post test, *** p<0.001. 
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Figure 5.2 Rate of Caco-2 cell proliferation is not increased after 7 day Tsg101 

knockdown. (A) Caco-2 cells were transfected with Non-Targeting Control siRNA or Tsg101 

siRNA and incubated for 7 d. Cells were fixed and examined by confocal fluorescence 

microscopy for phosphorylated Histone H3 (red). Nuclei were stained using DAPI. Number of p-

Histone H3-positive cells was quantified using ImageJ and represented as a percentage of total 

cell number. The proportion of dividing Caco-2 cells is not affected by Tsg101 knockdown. (B)  

Caco-2 cells were transfected with Non-Targeting Control siRNA or Tsg101 siRNA and 

incubated for 7 d. BrdU was added to the media on day 6 for 24 h. Cells were fixed and 

examined by confocal fluorescence microscopy for BrdU (green). Nuclei were stained using 

DAPI. Number of BrdU-positive cells was quantified using ImageJ and represented as a 

percentage of total cell number. BrdU incorporation is not significantly altered in monolayered 

regions of Tsg101 knockdown cells whereas multilayered regions show a reduction in BrdU 

labelling. For each experiment, six images were taken at random per condition and, for Tsg101 

knockdown cells regions were distinguished as either monolayerd or multilayered. An example 

image is shown with the graphical representation of the data. Bar, 10µm. Data shown are the 

means ± standard error of at least three independent experiments. Results were analysed using 

a one-way ANOVA and Dunnett’s post test, * p<0.05. 
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was not significantly increased between 6 and 7 days cell culture (Figure 5.2B). 

However, the proportion of BrdU-positive cells did show a slight increase in 

monolayered regions of Tsg101 knockdown cells suggesting that a slightly 

higher proportion of these cells divided over 24 h compared with control.  

  

In contrast, multilayered regions of Tsg101 knockdown cells displayed a 

significant reduction in BrdU incorporation (Figure 5.2B). In addition, Histone H3 

phosphorylation appeared slightly reduced, although this was not statistically 

significant (Figure 5.2A). This demonstrates that after 7 days culture, 

proliferation is reduced in multilayered areas of Tsg101 depleted cells. It is also 

important to note that between 7 and 10 days of Tsg101 knockdown cell culture, 

there was a reduction in cell number (Figure 5.1A). As a result, after 10 days 

the number of Tsg101 knockdown cells was similar to control. This may be due 

to an increase in cell death and will be analysed later.  

 

5.2.2. ERK1/2 signalling is not increased after ESCRT-I depletion 

 

Cell proliferation can be regulated by various mitogenic signalling pathways, 

such as the extracellular signal-regulated kinase (ERK) pathway. The ERK 

signal transduction pathway is a mitogen-activated protein kinase (MAPK) 

pathway which functions in proliferation, differentiation and survival and is often 

deregulated during tumourigenesis (Kim and Choi, 2010). ERK signalling can 

be mediated by EGFR activation and ESCRTs have been identified as 

important regulators of this signalling pathway (Jekely and Rorth, 2003; Bache 

et al., 2006; Lloyd et al., 2006; Malerod et al., 2007; Raiborg et al., 2008; 

Vaccari et al., 2009). Therefore, it is possible that the increased numbers of 

Tsg101 knockdown cells is due to altered ERK signalling. The ERK pathway 

can be stimulated by EGF which results in the phosphorylation of ERK1/2. This 

was detected via immunofluorescence confocal microscopy using an antibody 

specific to the phosphorylated form of ERK1/2 (p-ERK1/2) (Figure 5.3A). 

However, levels of p-ERK1/2 were similar in control and Tsg101 knockdown 

Caco-2 cells (Figure 5.3B). This suggests that the ERK pathway was not 

perturbed in Tsg101 knockdown cells after 7 days culture and argues that the 

overproliferation is not due to altered ERK signalling.   
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Figure 5.3 Tsg101 knockdown does not appear to alter ERK1/2 activation in Caco-2 cells. 

(A) To test the efficiency of the phosphorylated Erk1/2 (p-Erk1/2) antibody, Caco-2 cells were 

incubated with 500ng/ml EGF for 10 min or mock treated. Cells were fixed and examined by 

confocal fluorescence microscopy for p-Erk1/2 (green). Nuclei were stained using DAPI. p-

Erk1/2 levels increase after EGF treatment. (B) Caco-2 cells were transfected with Non-

Targeting Control siRNA or Tsg101 siRNA and incubated for 7 d. Cells were fixed and 

examined by confocal fluorescence microscopy for p-Erk1/2 (green). Nuclei were stained using 

DAPI. Tsg101 knockdown has no discernible effect on activation of Erk1/2. Bar, 10µm. 
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5.2.3. Tsg101 depleted Caco-2 cells are eliminated by apoptosis  

 

As cell number appeared to decrease when Tsg101 depleted cells were 

cultured for longer than 7 days (Figure 5.1A), the level of cell death after 

ESCRT knockdown was investigated. Active caspase-3 was used as a marker 

of apoptotic cells and cells were analysed via immunofluorescence confocal 

microscopy. The proportion of apoptotic cells was significantly increased in 

multilayered regions of Tsg101 knockdown Caco-2 cells (Figure 5.4A). Tsg101 

knockdown cells which retained their monolayered organisation and Vps25 

knockdown cells displayed a similar level of active caspase-3 staining to control. 

Further analysis of Tsg101 knockdown cells demonstrated that the apoptotic 

cells were mostly located at the apical side of the multilayered epithelial sheet 

(Figure 5.4B).  

 

An increase in cell death was also observed in Drosophila ESCRT mutants and 

this was attributed to an increase in JNK signalling (Herz et al., 2006; Rodahl et 

al., 2009b). However, JNK activation was not observed 3, 7 or 10 days after 

Tsg101 knockdown in Caco-2 cells (Figure 5.4C).  

 

5.2.4. Inhibition of apoptosis may enhance the multilayered phenotype of 

Tsg101 depleted Caco-2 cells 

 

In Drosophila ESCRT mutants, inhibition of apoptosis resulted in a dramatic 

overproliferation of ESCRT mutant cells to form neoplastic tumours (Thompson 

et al., 2005; Herz et al., 2006; Rodahl et al., 2009b). As a similar increase in 

apoptosis was observed in Caco-2 cells after Tsg101 depletion, the effect of 

inhibiting cell death was investigated. A general caspase inhibitor was used 

which effectively reduced the number of caspase-3 positive cells after 7 and 10 

days culture (Figure 5.5A). Initial results demonstrated that caspase inhibition 

had no effect on the number of Tsg101 knockdown cells after 7 days culture 

(Figure 5.5B, ‘7d Knockdown’). However, after 10 days culture the number of 

Tsg101 knockdown cells dramatically increased after caspase inhibition (Figure 

5.5B, ‘10d Knockdown’). In addition, caspase inhibition appeared to enhance 

the degree of multilayering observed upon Tsg101 knockdown after 10 days 

culture (Figure 5.5C).  
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Figure 5.4 Cell death is increased in multilayered regions of Tsg101 knockdown Caco-2 

cells. (A) Caco-2 cells were transfected with either Non-Targeting Control siRNA, Tsg101 

siRNA or Vps25 siRNA and incubated for 7 d. Cells were fixed and examined by confocal 

fluorescence microscopy for active caspase-3. Nuclei were stained using DAPI. Number of 

caspase-3 positive cells was quantified using ImageJ and represented as a percentage of total 

cell number. Six images were taken at random per condition and, for Tsg101 knockdown cells 

regions were distinguished as either monolayerd or multilayered. Cell death is increased in 

multilayered regions of Tsg101 knockdown cells whereas in monolayered regions and Vps25 

knockdown cells, the level of cell death is similar to control. Data shown are the means ± 

standard error of at least three independent experiments. Results were analysed using a one-

way ANOVA and Dunnett’s post test, * p<0.05. (B) A representative image of active caspase-3 

(green) staining in a multilayered region of Tsg101 knockdown Caco-2 cells. Nuclei were 

stained with DAPI (blue). A confocal projection is displayed in the xy plane (top) and z plane 

(bottom). Active caspase-3 positive cells are found apically in the multilayered Caco-2 epithelial 

sheet. Bar, 10µm. (C) Caco-2 cells were transfected with either Non-Targeting Control siRNA 

(C), Tsg101 siRNA (T), or Vps25 siRNA (V) and incubated for 3, 7 or 10 d. Lysates were 

immunoblotted for phosphorylated JNK (p-JNK) and total JNK as a loading control. A lysate 

from UV treated Caco-2 cells was used as a positive control for JNK activation. Tsg101 and 

Vps25 knockdown does not result in an increase in p-JNK in Caco-2 cells.  
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In the absence of caspase inhibition, after 10 days Tsg101 knockdown total cell 

number was similar to control (Figure 5.5B, ‘10d Knockdown’) and the extent of 

multilayering was reduced (Figure 5.5C, top panels) compared with the 

phenotype observed after 7 days (see previous results, Chapter 3, Figure 3.7). 

This indicates that after extended culture, cells in multilayered regions are 

eliminated via apoptosis and may explain results from the MTT assay shown 

previously (Figure 5.1A). If apoptosis is inhibited it seems that Caco-2 cells 

continue to proliferate and multilayering is enhanced. It is important to note that 

these results were generated from one initial experiment and therefore, will 

need to be confirmed with further work. 
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Figure 5.5 Caspase inhibition enhances the multilayering of Tsg101 knockdown Caco-2 

cells. Caco-2 cells were transfected with Non-Targeting Control siRNA or Tsg101 siRNA and 

incubated for total of 7 or 10 d. The pan-caspase inhibitor (Q-VD-OPh) was added to cells on 

day 4 and day 7. DMSO controls were carried out alongside. Cells were fixed and examined by 

confocal fluorescence microscopy for active caspase-3. Nuclei were stained using DAPI. (A) 

The number of caspase-3 positive cells was quantified using ImageJ and represented as a 

percentage of total cell number. Caspase-3 activation is reduced upon addition of the general 

caspase inhibitor. (B) Total cell number was quantified using ImageJ. Caspase inhibition 

dramatically increases the number of Tsg101 knockdown Caco-2 cells after 10 d culture. For 

quantification, six images were taken at random per condition. Note that separation of Tsg101 

knockdown cells into monolayered and multilayered regions was not carried out. Data shown 

are the means from one preliminary experiment. (C) Representative images of Caco-2 cells with 

and without caspase inhibition 10 d after knockdown with Non-Targeting Control or Tsg101 

siRNA. The multilayered phenotype of Tsg101 knockdown Caco-2 cells is enhanced upon 

caspase inhibition. Confocal projections and corresponding z-sections (indicated by dotted line) 

are displayed. Bar, 10µm. 
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5.3. Discussion 

 

This study sought to investigate the effect of ESCRT depletion on Caco-2 cell 

growth. I have previously demonstrated that ESCRT-I depleted Caco-2 cells 

form multilayered epithelial sheets (discussed in Chapter 3). Disruption of 

ESCRT function has been shown to cause overproliferation in Drosophila 

(Moberg et al., 2005; Thompson et al., 2005; Vaccari and Bilder, 2005; Herz et 

al., 2006; Herz et al., 2009; Rodahl et al., 2009b; Vaccari et al., 2009). 

Therefore, it is possible that formation of Caco-2 cell multilayers is due to an 

increase in proliferation. In addition, studies in Drosophila found that in mosaic 

epithelial tissues, ESCRT mutant cells were eventually eliminated via apoptosis 

and if this was inhibited neoplastic tumours formed (Thompson et al., 2005; 

Herz et al., 2006; Rodahl et al., 2009b). Thus, the effect of ESCRT depletion on 

apoptosis was also analysed in Caco-2 cells. My results demonstrate that Caco-

2 cell number increases after Tsg101 depletion. There is also an increase in 

apoptosis of Tsg10 depleted Caco-2 cells, however this is observed within 

multilayered regions only. Finally, inhibition of apoptosis appears to enhance 

the multilayered phenotype of Tsg101 depleted Caco-2 cells suggesting that 

inhibition of cell death is required in order to demonstrate the full tumourigenic 

potential of ESCRT-I depletion. 

 

5.3.1. Caco-2 cells overproliferate upon ESCRT-I depletion 

 

ESCRT-I depletion appeared to result in overproliferation of Caco-2 cells. After 

7 days culture of Tsg101 knockdown cells, there was a significant increase in 

the metabolic conversion of MTT suggesting that cell number was increased. 

Counting cells manually using immunofluorescence confocal microscopy 

indicated that an increase cell number was observed in the multilayered regions 

of Tsg101 knockdown cells only. In contrast, a reduction in BrdU incorporation 

was observed in these multilayered regions of Tsg101 knockdown cells 

suggesting that cell division in these areas is reduced. However, at this 

timepoint apoptosis of multilayered cells is increased and therefore, this may 

inhibit any further proliferation. Therefore, analysis of Tsg101 knockdown cells 

at earlier timepoints is required in order to investigate whether proliferation is 

enhanced in certain areas of the epithelial sheet. This may then suggest that 
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increased proliferation of ESCRT-I depleted cells results in the formation of 

multilayered regions of the Caco-2 epithelial sheet.  

 

Interestingly, in Tsg101 knockdown cells which retained their monolayered 

organisation there was also no significant increase in the proportion of dividing 

cells 7 days after knockdown. However, the largest increase in cell number 

appears to occur between 3 and 7 days after Tsg101 knockdown and therefore, 

it is possible that the most substantial increase in cell division occurs at an 

earlier timepoint. It is also possible that the MTT assay is misleading as the 

metabolic activity of Caco-2 cells may be affected by the differentiation status of 

the cell culture. I have previously shown that Tsg101 knockdown results in 

reduced Caco-2 cell differentiation. Undifferentiated cells may have higher 

metabolic activity and therefore, the large increase in metabolic conversion of 

MTT may not accurately represent a proportional increase in cell number. 

Therefore, a thorough analysis of Caco-2 cell division is required in order to 

establish whether Tsg101 knockdown causes a significant increase in Caco-2 

cell proliferation. Fluorescence-activated cell sorting (FACS) analysis could be 

conducted at various timepoints after Tsg101 knockdown in order to quantify 

the proportion of cells undergoing cell division.  

 

Studies in Drosophila have demonstrated that ESCRT mutation results in 

overproliferation of epithelial cells. However, the mechanism behind this 

overproliferation varies depending on the tissue context surrounding the ESCRT 

mutant cells. When epithelial tissues are predominantly mutant for ESCRT 

components, mutant cells lose polarity and overgrow to form large masses 

lacking normal epithelial morphology. This neoplastic growth is thought to be 

due to an extended period of proliferation rather than an increased growth rate 

(Moberg et al., 2005; Vaccari and Bilder, 2005; Herz et al., 2009; Vaccari et al., 

2009). Caco-2 cells are known to undergo contact inhibition whereby when cells 

reach confluency they reduce proliferation rate and begin to differentiate 

(Nelson and Daniel, 2002; Volpe, 2008). It is possible that ESCRT-I depletion 

inhibits contact inhibition and, as a result, cells continue proliferating for an 

extended period of time. In support of this, I have previously demonstrated that 

differentiation of Caco-2 cells is reduced upon Tsg101 knockdown. This may 

suggest that cells cannot sense their environment correctly and continue to 
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divide instead of initiating the differentiation process. One mechanism which is 

important for the regulation of cell contact inhibition and organ size control is the 

Hippo signalling pathway (Zeng and Hong, 2008). Hippo signalling is 

deregulated in Drosophila Vps25 mutants (Herz et al., 2006) suggesting that 

ESCRTs are important for regulation of this pathway. The core components of 

the Hippo pathway are conserved in mammals (Dong et al., 2007; Zeng and 

Hong, 2008), and therefore aberrant Hippo signalling may provide a mechanism 

for the overproliferation of Tsg101 depleted Caco-2 cells and warrants further 

investigation. 

 

On the other hand, if Drosophila ESCRT mutant cells are surrounded by wild 

type cells, mutant cells still lose epithelial polarity and organisation but do not 

overproliferate. Instead increased proliferation of surrounding wild type cells is 

observed which has been attributed to an increase in Notch induced signalling 

(Thompson et al., 2005; Vaccari and Bilder, 2005; Herz et al., 2006; Herz et al., 

2009; Gilbert et al., 2009; Vaccari et al., 2009). Using a siRNA knockdown 

approach, Tsg101 depletion should be induced in almost all Caco-2 cells. 

However, it is impossible to know whether the extent of knockdown is uniform 

across all transfected cells or whether some cells show a higher level of 

knockdown compared to others. Therefore, overproliferation of ESCRT-I 

depleted Caco-2 cells may be induced via multiple mechanisms and the effect 

on the regulation of cell proliferation may depend on the extent of Tsg101 

knockdown. Further work could be carried out to establish whether the Notch 

signalling pathway is affected by ESCRT-I depletion. Notch protein levels and 

localisation could be analysed using immunoblotting and immunofluorescence 

microscopy, respectively. Notch activity could be investigated by analysing 

downstream effectors of the Notch signalling pathway, such as activation of 

Jak-STAT signalling. In addition, a Notch inhibitor could be applied to ESCRT 

depleted cells in order to investigate whether this prevents the formation of 

multilayered regions.  

 

Finally, aberrant receptor tyrosine kinase (RTK) signalling could result in 

overproliferation of Tsg101 depleted Caco-2 cells. ESCRTs have been 

identified as important regulators of epidermal growth factor receptor (EGFR) 

signalling in both Drosophila and vertebrates (Jekely and Rorth, 2003; Bache et 
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al., 2006; Lloyd et al., 2006; Malerod et al., 2007; Raiborg et al., 2008; Vaccari 

et al., 2009).  Activation of EGFR can induce signalling via various MAPK 

pathways, including the ERK signalling pathway. No increase in ERK1/2 

activation was detected 7 days after Tsg101 knockdown suggesting that the 

ERK1/2 signalling pathway is not upregulated in ESCRT-I depleted cells. This 

could be confirmed by immunoblotting, using additional timepoints. Analysis of 

other signalling pathways important for cell proliferation could also be 

conducted using additional timepoints after Tsg101 knockdown in order to 

establish the mechanism of overproliferation. 

 

5.3.2. ESCRT-I depleted Caco-2 cells are eventually eliminated via 

apoptosis 

 

Apoptosis of ESCRT-I depleted Caco-2 cells is increased 7 days after siRNA 

knockdown. This supports previous studies in both Drosophila and mice models 

which demonstrate an increase in cell death upon disruption of the ESCRT 

machinery (Wagner et al., 2003; Thompson et al., 2005; Herz et al., 2006; 

Rodahl et al., 2009b). In Drosophila, this was attributed in part to an increase in 

JNK signalling (Herz et al., 2006; Rodahl et al., 2009b), however in this study 

apoptosis of Tsg101 depleted Caco-2 cells appears to be JNK-independent. 

This could be confirmed by analysing active JNK levels via immunofluorescence 

as a small increase in activity in multilayered cells may not be detected using 

immunoblotting. It is possible that in Caco-2 cells ESCRT-I depletion triggers 

apoptosis via another mechanism. Activation of the Hid/Diap1/Dronc/Ark 

proapoptotic pathway has also been demonstrated in Drosophila ESCRT 

mutants (Herz et al., 2006). This pathway is similar to the intrinsic (or 

mitochondrial) pathway of apoptosis in vertebrates and Diap1, Dronc and Ark 

are homologues of vertebrate inhibitor of apoptosis proteins (IAPs), initiator 

caspase-9 and APAF-1, respectively (Oberst et al., 2008; Steller, 2008). The 

intrinsic pathway is extremely important for regulation of cell death in 

mammalian cells (Kroemer et al., 2007; Martinou and Youle, 2001) and 

therefore it would be of interest to determine whether this pathway plays a role 

in the apoptosis of ESCRT-I depleted Caco-2 cells. Mitochondrial outer 

membrane permeabilisation (MOMP) could be investigated as this is often 
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considered to be the point-of-no-return for the intrinsic pathway of apoptosis as 

well as other models of programmed cell death (Galluzzi et al., 2007).  

 

In addition, Hippo signalling has been suggested to control the overall apoptotic 

response in Drosophila ESCRT mutants (Herz et al., 2006; Vaccari and Bilder, 

2009). Therefore, this pathway may also be activated in ESCRT depleted Caco-

2 cells and it would be interesting to investigate this further in future studies. In 

addition to cell death, Hippo signalling is important for a wide range of cellular 

processes including cell proliferation and polarity (Genevet and Tapon, 2011; 

Halder and Johnson, 2011). Therefore, this represents a potential mechanism 

to link the apoptotic, proliferative and polarity defects observed upon disruption 

of the ESCRT machinery in epithelial cells (Vaccari and Bilder, 2009). 

 

Alternatively, apoptosis of Caco-2 cells may be induced by loss of cellular 

contacts. Caspase-3 activation was only detected in multilayered areas of 

Tsg101 knockdown cells where cell-cell adhesion and cellular contact with the 

extracellular matrix (ECM) may be perturbed. Loss of or inappropriate cell 

adhesion can induce a specific type of apoptosis termed anoikis (Gilmore, 2005; 

Chiarugi and Giannoni, 2008). ECM receptors of the integrin family play an 

important role in the process of anoikis. Not only do they provide a physical 

attachment to the ECM but they also activate several pro-survival signalling 

pathways (Gilmore, 2005; Chiarugi and Giannoni, 2008). In addition, growth 

factor receptors and cadherin-mediated cell-cell contacts also promote cell 

survival (Chiarugi and Giannoni, 2008). Lack of ECM or cell-cell contacts 

removes pro-survival signalling activation thereby inducing anoikis. Anoikis can 

be triggered by both the intrinsic apoptotic pathway and the extrinsic apoptotic 

pathway, involving activation of cell surface death receptors, such as the Fas 

receptor. Both pathways eventually converge with the activation of caspase-3, 

initiating a proteolytic cascade key to the apoptotic process (Gilmore, 2005; 

Chiarugi and Giannoni, 2008). Inhibition of anoikis is often observed in 

malignant cancers. Epithelial cells which acquire resistance to anoikis are able 

to survive after detachment from their primary site and metastasise to a 

secondary location (Simpson et al., 2008; Coates et al., 2010). 
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Therefore, it would be interesting to investigate whether cell death observed 

after ESCRT-I depletion in Caco-2 cells represents activation of the anoikis 

pathway. ESCRT proteins have been implicated in the regulation of integrins 

(Lobert et al., 2010) and therefore Tsg101 depletion may affect integrin levels in 

Caco-2 cells resulting in destabilisation of cell-ECM contacts. Initially, this may 

allow cells to detach from the ECM and migrate out of the epithelial monolayer, 

resulting in the formation of a multilayered epithelial sheet. However, 

detachment of cells may also induce cell death via anoikis which may account 

for the increase in caspase-3 activation observed in multilayered regions of 

Tsg101 knockdown cells. Alternatively, ESCRT depletion may cause 

multilayering of Caco-2 cells via a separate mechanism and in turn, these 

multilayered cells could then activate anoikis. Therefore, it is also possible that 

cell death is an indirect effect of ESCRT-I depletion.  

 

5.3.3. Inhibition of apoptosis may enhance the tumourigenic potential of 

ESCRT-I 

 

After extended culture of Tsg101 depleted Caco-2 cells, an increase in 

apoptosis results in cell number returning to a similar level as control. In 

addition, multilayering is reduced as the majority of cell death occurs in the 

multilayered areas of the epithelial sheet. However, initial results demonstrate 

that inhibition of caspases increases the number of ESCRT-I depleted Caco-2 

cells after 10 days culture. Furthermore, organisation of the epithelial sheet was 

extensively disrupted and multilayering of cells was enhanced. This supports 

previous work in Drosophila which demonstrates that inhibition of apoptosis 

causes dramatic overgrowth of ESCRT mutant cells to form tumourous growths 

capable of metastasis (Thompson et al., 2005; Herz et al., 2006; Rodahl et al., 

2009b). Although these experiments must be repeated to ensure the results are 

reproducible, it can be speculated that inhibition of apoptosis enhances the 

tumourigenic potential of ESCRT-I depletion in mammalian epithelial cells. 

Activation of caspases is a critical step in the apoptotic pathway, however, there 

are upstream events which may still occur, such as MOMP, and could result in 

caspase-independent apoptosis or other types of cell death such as necrosis 

(Dussmann et al., 2003). Therefore, it is possible that ESCRT depleted cells will 

eventually still die by another mechanism. This could be analysed further using 
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a general marker of cell viability such as propidium iodide. It would also be 

interesting to investigate whether Tsg101 knockdown increases the 

invasiveness of Caco-2 cells and if caspase inhibition enhanced this behaviour. 

This would provide further support for a tumour suppressor role of ESCRT-I. 
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5.4. Conclusion 

 

This study demonstrates that ESCRT-I depletion results in overproliferation of 

Caco-2 epithelial cells. Together with my previous data this highlights a role for 

ESCRT-I in regulation of epithelial cell proliferation and polarity, supporting 

previous observations in Drosophila (Vaccari and Bilder, 2009). Loss of cell 

polarity and self-sufficiency in growth signalling are two important hallmarks of 

cancer (Hanahan and Weinberg, 2011) and, therefore, ESCRT-I may function 

as a tumour suppressor in mammalian epithelial tissues. However, ESCRT-I 

depleted Caco-2 cells are eventually eliminated via apoptosis, although it is 

currently unclear whether this is a direct effect of Tsg101 knockdown. This 

suggests that the full tumourigenic potential of ESCRT proteins may not be 

exerted unless further alterations occur to allow epithelial cells to evade 

apoptosis. Considering the multi-step process of tumourigenesis this is a 

substantial possibility, especially as apoptosis is often inhibited in many human 

cancers (Lowe et al., 2004; Cotter, 2009; Hanahan and Weinberg, 2011). 
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CHAPTER SIX 
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6. FINAL DISCUSSION 

 

6.1. ESCRTs and Maintenance of Epithelial Cell Polarity 

 

6.1.1. ESCRT-I is required for epithelial organisation and polarity 

 

Since ESCRT proteins were classified as tumour suppressors in Drosophila, 

much effort has been made to elucidate the crucial role of the ESCRT 

machinery within the maintenance of epithelial tissue architecture in this 

species.  Disruption of the ESCRT machinery in Drosophila results in loss of 

epithelial cell polarity and overproliferation, two hallmarks of cancer (Vaccari 

and Bilder, 2009; Hanahan and Weinberg, 2011). This phenotype is attributed 

to a disruption in the trafficking of various proteins important for the regulation of 

polarity and growth in epithelial tissues.  

 

In vertebrates, ESCRTs are well characterised for their role within the endocytic 

pathway (Raiborg and Stenmark, 2009). Their importance within the regulation 

of receptor signalling pathways has been demonstrated and alterations in the 

expression of various ESCRT components have been observed in human 

cancers (Stuffers et al., 2009a; Wegner et al., 2011). However, a definitive link 

between the ESCRT proteins, mammalian epithelial cell polarity and 

tumourigenesis has not been investigated.  

 

This thesis demonstrates for the first time that the ESCRT-I component, Tsg101 

is required for the maintenance of mammalian epithelial cell polarity and 

organisation (Figure 6.1). Depletion of Tsg101 results in an aberrant epithelial 

phenotype with cells displaying impaired cell-cell junctions, reduced 

differentiation and enhanced migratory ability. In addition, in some regions of 

the epithelial sheet organisation and polarity are lost and cell proliferation is 

increased. Overall, these results suggest that the function of ESCRT-I as a 

tumour suppressor is conserved from Drosophila to vertebrates.  
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Figure 6.1 Tsg101 is required for maintenance of mammalian epithelial cell polarity and 

organisation. Caco-2 cells form a polarised epithelial monolayer with cell-cell junctions (blue) 

and distinct apical (red) and basolateral (green) membrane domains. When cells reach 

confluency differentiation occurs whereby junctions mature, lateral height increases and a brush 

border forms at the apical membrane. When Tsg101 is depleted via siRNA knockdown, Caco-2 

cells initially maintain apicobasal polarity however cell-cell junctions are disrupted and migratory 

ability is enhanced. In addition, Tsg101 depletion inhibits differentiation so lateral height and 

brush border formation are reduced. In some areas, Tsg101 depleted cells overproliferate and 

lose epithelial polarity and organisation forming a multilayered epithelial sheet with 

compromised apicobasal polarity.  

 

 

Loss of epithelial cell polarity and organisation following Tsg101 depletion 

demonstrated in chapter three of this thesis can be attributed to at least three 

possible mechanisms, discussed in detail below (Figure 6.2). Tsg101 depletion 

may perturb trafficking of proteins important for the maintenance of cell polarity, 

resulting in loss of polarised epithelial morphology and organisation. 

Alternatively, cellular overproliferation or destabilisation of cell-ECM contacts 

could disrupt organisation of the epithelial sheet and consequently polarised 

morphology is lost. It is currently unclear whether loss of epithelial cell polarity 

precedes loss of epithelial organisation or vice versa. It is also possible that 

these events occur simultaneously and therefore, a combination of the 

mechanisms detailed below may account for the effects of ESCRT depletion on 

epithelial morphology. 
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Figure 6.2 Three possible mechanisms for loss for epithelial cell polarity and 

organisation following ESCRT-I depletion in Caco-2 cells. (A) Maintenance of a polarised 

epithelium is a tightly regulated process. Localisation of various polarity complexes and 

formation of cell-cell junctions is crucial for establishment and maintenance of epithelial cell 

polarity. Protein trafficking appears to play an important role in this process and at least two 

tight junction components, claudin-1 and occludin, are constitutively endocytosed and recycled 

back to the plasma membrane in Caco-2 cells. In addition, lysosomal degradation may be 

important for maintenance of polarity. Epithelial cell proliferation is controlled through regulation 

of mitogenic signalling and contact inhibition. Lastly, cellular contacts with the ECM are required 

to retain a polarised epithelial monolayer. (B) ESCRT-I depletion results in the loss of epithelial 

polarity and organisation in Caco-2 cells. This may be attributed to at least three mechanisms. 

(i) Disrupted trafficking of proteins important for maintenance of polarity. ESCRT-I is required for 

localisation of claudin-1 and -4 to tight junctions. Trafficking of other junctional components and 

polarity complexes may also be affected by ESCRT-I depletion. (ii) Increased cell proliferation. 

ESCRT depletion may increase mitogenic signalling and inhibit contact inhibition. (iii) Loss of 

cell-ECM adhesion. ESCRT depletion may destabilise cellular contacts with the ECM. One or a 

combination of all three of these mechanisms could disrupt cell-cell adhesion, apicobasal 

polarity and signalling resulting in the aberrant epithelial phenotype associated with ESCRT-I 

depletion. 
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(i) ESCRT-I depletion affects trafficking of proteins important for 

maintenance of epithelial cell polarity  

Cell-cell junctions are important to retain a polarised epithelium, functioning to 

maintain apicobasal polarity and cell-cell adhesion (Shin et al., 2006; Bryant 

and Mostov, 2008; Coradini et al., 2011). In addition, it is becoming increasingly 

apparent that cell-cell junctions function as a platform for many regulatory and 

signalling proteins important for establishing the epithelial phenotype (Ivanov et 

al., 2005). Chapter four of this thesis demonstrates that the localisation of 

claudin-1 and -4 to tight junctions is dependent on ESCRT-I. Depletion of 

Tsg101 results in an intracellular accumulation of claudin-1 and -4 and is 

thought to be due to a block in the recycling of these junctional components 

back to the plasma membrane.  

 

Mislocalisation of claudin-1 and -4 alone is unlikely to explain the loss of polarity 

phenotype as claudin-1 knockout mice have an epidermal defect but do not 

appear to display a large scale loss of epithelial polarity (Furuse et al., 2002). 

However, epithelial cells contain many junctional proteins and it is possible that 

ESCRT function is required for their recycling. In addition, as ESCRTs are 

known to be important for endo-lysosomal trafficking, perturbations in the 

degradation of junction proteins may also affect cell-cell junction integrity. 

Destabilisation of cell-cell junctions could affect apicobasal polarity, cell-cell 

adhesion and signalling, all of which may contribute to the loss of epithelial cell 

polarity following Tsg101 depletion. Therefore, thorough analysis of the 

endosomal trafficking of additional junctional components should be conducted 

in the future using the biotinylation endocytosis and recycling assay. The effect 

of Tsg101 knockdown on these cell-cell junction proteins could then also be 

investigated.  

 

Localisation of various polarity complexes is also crucial for establishment and 

maintenance of epithelial cell polarity (Gibson and Perrimon, 2003; Suzuki and 

Ohno, 2006; Bryant and Mostov, 2008). In Drosophila, ESCRT function is 

required for the correct localisation of Crb, which is important for apical 

membrane identity (Moberg et al., 2005; Gilbert et al., 2009). Therefore, 

ESCRTs may also be required for the trafficking of polarity complexes in 

mammalian epithelial cells and disruption in these trafficking pathways may 
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contribute to the loss of polarity phenotype in Tsg101 depleted cells. It would be 

of interest to investigate the effect of Tsg101 knockdown on the localisation of 

CRB3, the mammalian homologue of Crb, in Caco-2 cells. This could be 

analysed in the first instance using confocal fluorescence microscopy. However, 

in Drosophila ESCRT mutant cells, Crb is mislocalised from the apical 

membrane to a sub-apical compartment (Moberg et al., 2005; Gilbert et al., 

2009). This may be difficult to determine using fluorescence microscopy, 

especially within multilayered regions of Tsg101 depleted cells, and therefore 

immuno-electron microscopy could also be used to identify any small changes 

in CRB3 localisation.  

 

(ii) ESCRT-I depletion causes overproliferation of epithelial cells 

Overproliferation may cause cells to stack up on top of one another, disrupting 

organisation of the epithelial monolayer and consequently perturbing apicobasal 

polarity. Chapter five of this thesis begins to investigate this, demonstrating that 

Tsg101 depleted cells overproliferate to form multilayered regions of the 

epithelial sheet which display compromised apicobasal polarity.  

 

There are at least two possible mechanisms to explain this overproliferation. 

Firstly, it may be due to an increase in mitogenic signalling. The ESCRT 

machinery has been identified as important for attenuation of receptor-mediated 

signalling and so ESCRT depletion may result in sustained mitogenic signalling 

and consequently cell proliferation may increase (Wegner et al., 2011). One 

signalling pathway which is enhanced in Drosophila ESCRT mutants is the 

EGFR pathway (Jekely and Rorth, 2003; Lloyd et al., 2006; Vaccari et al., 

2009). Reduced EGFR degradation and sustained signalling in response to 

EGF has also been demonstrated in cultured mammalian cells deficient in 

ESCRT function (Bache et al., 2006; Malerod et al., 2007; Raiborg et al., 2008). 

However, my results indicate that Tsg101 is not required for EGF degradation 

or attenuation of ERK signalling upon EGF treatment in polarised Caco-2 cells 

(Chapter 3). In addition, no alterations in constitutive ERK1/2 activation were 

observed 7 days after Tsg101 knockdown (Chapter 5). This suggests that 

overproliferation of Tsg101 depleted Caco-2 cells may not be due to a 

significant increase in the EGFR signalling pathway. To confirm this ERK1/2 

activation should be analysed at additional timepoints, using both 
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immunofluorescence microscopy and immunoblotting. In addition, protein levels 

and localisation of EGFR could also be investigated in order to establish 

whether Tsg101 knockdown affects trafficking of this receptor in Caco-2 cells.  

 

Another mitogenic signalling pathway which is deregulated in Drosophila 

ESCRT mutants is Notch signalling. Endosomal accumulation of Notch in 

ESCRT mutant cells results in increased Notch activation (Thompson et al., 

2005; Vaccari and Bilder, 2005; Herz et al., 2006; Vaccari et al., 2008; Herz et 

al., 2009; Vaccari et al., 2009). This has been shown to induce overproliferation 

in a non-cell autonomous manner via ectopic production of the secreted growth 

factor Upd and paracrine activation of the Jak-STAT signalling pathway 

(Thompson et al., 2005; Vaccari and Bilder, 2005; Herz et al., 2006; Herz et al., 

2009; Gilbert et al., 2009; Vaccari et al., 2009). Whether Notch accumulation is 

also responsible for the cell-autonomous overproliferation observed in 

Drosophila ESCRT mutants remains to be established. Therefore, it would be of 

interest to establish whether the Notch signalling pathway is affected by Tsg101 

depletion in Caco-2 cells. Notch protein levels and localisation could be 

analysed using immunoblotting and immunofluorescence microscopy, 

respectively. Notch activity could be investigated by analysing downstream 

effectors of the Notch signalling pathway, such as activation of Jak-STAT 

signalling. In addition, a Notch inhibitor could be applied to ESCRT depleted 

cells in order to investigate whether this stops the formation of multilayered 

regions. 

 

Alternatively, overproliferation of ESCRT-I depleted Caco-2 cells may be due to 

a loss of contact inhibition. Usually upon reaching confluency, Caco-2 cell 

proliferation will reduce as a result of contact inhibition and cells will begin to 

differentiate (Nelson and Daniel, 2002; Volpe, 2008). It is possible that ESCRT-I 

depletion inhibits contact inhibition and, as a result, cells continue proliferating 

for an extended period of time. This is supported by studies in Drosophila 

demonstrating that when epithelial tissues are predominantly mutant for ESCRT 

components, cells lose polarity, fail to differentiate and overgrow to form large 

masses lacking normal epithelial morphology. Interestingly, this overgrowth is 

thought to be due to an extended period of proliferation rather than an 

increased growth rate although the mechanism responsible for this is currently 
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unknown (Moberg et al., 2005; Vaccari and Bilder, 2005; Herz et al., 2009; 

Vaccari et al., 2009). 

 

In line with this, my results demonstrate that differentiation of Caco-2 cells is 

reduced upon Tsg101 depletion (Chapter 3). Therefore, this may suggest that 

Tsg101 depleted cells cannot sense their environment correctly and continue to 

divide instead of initiating the differentiation process. It is possible that ESCRT-I 

may be required for trafficking of proteins important for regulation of the contact 

inhibition process, such as components of the Hippo signalling pathway (Zeng 

and Hong, 2008). Indeed, Hippo signalling is deregulated in Drosophila Vps25 

mutants (Herz et al., 2006) suggesting that ESCRTs are important for regulation 

of this pathway.  Therefore if, and how, ESCRT proteins regulate contact 

inhibition are questions worth considering for the future.  

 

(iii) ESCRT-I depletion destabilises cellular contacts with the ECM 

Destabilisation of cellular contacts with the ECM can result in loss of basal 

adhesion. Consequently, cells may detach and lose epithelial organisation and 

polarity. The main components of cellular adhesions to the ECM are the cell 

surface transmembrane integrin receptors (Bosman et al., 1993; Matlin et al., 

2003; Lobert et al., 2010). Integrins regulate many aspects of cell behaviour 

and, in epithelial cells, are important for the maintenance of apicobasal polarity 

(Eaton and Simons, 1995; Matlin et al., 2003). A role for ESCRT proteins in the 

regulation of integrins has been recently suggested in fibroblasts (Lobert et al., 

2010). It is possible that ESCRT proteins function to regulate integrins in 

epithelial cells and therefore, the effect of Tsg101 depletion on integrin 

expression and localisation warrants further investigation.   

 

6.1.2. Importance of other ESCRT proteins 

 

This thesis reveals a requirement for Tsg101, an ESCRT-I component, within 

the maintenance of mammalian epithelial organisation and polarity. This study 

also investigated the role of the ESCRT-II component, Vps25, and results 

demonstrate that epithelial organisation and polarity are not perturbed in 2D 

cultures. However, depletion of Vps25 significantly reduced formation of 

polarised 3D epithelial cysts suggesting that Vps25 may also be important for 
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epithelial polarisation. Incidences whereby defects in epithelial cell polarity were 

only apparent upon growth of cells in 3D cultures have also been observed in 

other studies (Roh et al., 2003; Martin-Belmonte et al., 2007; Torkko et al., 

2008), suggesting that 3D cell cultures may provide a more sensitive assay for 

detecting defects in epithelial cell polarity. Epithelial cyst formation is often 

considered to be a more physiologically relevant method of investigating 

epithelial cell polarity in vitro (Martin-Belmonte and Mostov, 2008) and therefore 

this highlights the necessity to utilise a variety of methods to fully characterise a 

knockdown phenotype in polarised epithelial cells. The level of Vps25 

knockdown may also affect the severity of the phenotype observed in 2D cell 

cultures. Therefore, it would be of interest to try and increase efficiency of 

Vps25 knockdown and determine whether this results in a stronger loss of 

polarity phenotype. 

 

In the future it would also be important to extend this investigation in order to 

analyse the role of other components of the ESCRT machinery. The effect of 

siRNA knockdown of ESCRT-0, -I, -II and -III proteins on mammalian epithelial 

cell polarity could be investigated, using both 2D and 3D cell culture systems. 

Reduced expression of the ESCRT-I component, Vps37A, and ESCRT-III 

component, CHMP1A, have been associated with human tumours (Xu et al., 

2003; Bache et al., 2004; Li et al., 2008). Therefore, it would be interesting to 

begin by investigating how siRNA knockdown of these proteins affects Caco-2 

epithelial cell polarity. In addition, the ESCRT-I protein, Vps28, ESCRT-II 

proteins, Vps22 and Vps36, and ESCRT-III proteins, Vps20 (CHMP6), Vps32 

(CHMP4), Vps2 (CHMP2), have been identified as important for regulation of 

epithelial cell polarity in Drosophila (Herz et al., 2009; Vaccari et al., 2009). 

Therefore, thorough analysis of other ESCRT components would expand our 

knowledge on the importance of the ESCRT machinery within the maintenance 

of mammalian epithelial cell polarity.  

 

6.2. ESCRTs: Tumour Suppressors in Vertebrates? 

 

Results presented in this thesis demonstrate that ESCRT-I is required for the 

maintenance of epithelial cell polarity and organisation in both 2D and 3D 

mammalian cell culture models. In addition, regulation of epithelial cell 
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proliferation is dependent on ESCRT-I function. This phenotype is extremely 

similar to that observed in Drosophila (reviewed in Vaccari and Bilder, 2009) 

and suggests that ESCRT-I acts as a tumour suppressor in mammalian 

epithelial tissues. Loss of epithelial polarity and self-sufficiency in growth 

signalling are two important hallmarks of human cancers. In addition to this, my 

results also demonstrate that loss of ESCRT-I function results in reduced 

cellular differentiation and enhanced migratory ability, characteristics often 

attributed to tumourigenic cells (Hanahan and Weinberg, 2011).   

 

Links between ESCRT proteins and human cancers have been documented 

previously with aberrant Tsg101 transcripts observed in various tumours 

including breast (Lee and Feinberg, 1997), cervical (O’Boyle et al., 1999) and 

small cell lung cancer (Oh et al., 1998). In addition, reduced expression of 

Tsg101 (Bennett et al., 2001), Vps37A (Xu et al., 2003; Bache et al., 2004) and 

CHMP1A (Li et al., 2008) has been associated with various human tumours. In 

the future it would be interesting to investigate expression levels of ESCRT 

proteins in different human tumour samples. This would provide more clinical 

relevance for the involvement of ESCRTs in carcinogenesis. It is also important 

to note that overexpression of ESCRTs has been associated with various 

human cancers (Liu et al., 2002; Oh et al., 2007; Toyoshima et al., 2007; Young 

et al., 2007). This implies that ESCRT proteins can also exhibit oncogenic 

properties, although it has also been suggested that overexpressed protein may 

be acting as a dominant negative (Vaccari et al., 2009). The effect of ESCRT 

protein overexpression on epithelial cell organisation and polarity may therefore 

be worth considering in the future. 

 

Importantly, this study also demonstrates that ESCRT depleted cells are more 

susceptible to cell death via apoptosis. Inhibition of this apoptotic response 

enhances the aberrant epithelial phenotype, as demonstrated by my preliminary 

results (Chapter 5) and those conducted in Drosophila (Thompson et al., 2005; 

Herz et al., 2006; Rodahl et al., 2009b). Therefore, it seems that the ability to 

evade apoptosis is an important factor in determining the tumourigenic potential 

of ESCRT protein depletion. It is possible that disruption of the ESCRT 

machinery will only result in tumour formation when cell death is inhibited. 

Tumourigenesis is a multi-step process and there is mounting evidence that 
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apoptosis is blocked in most human cancers (Hanahan and Weinberg, 2000; 

Lowe et al., 2004; Cotter, 2009; Hanahan and Weinberg, 2011). Therefore, the 

possibility of epithelial cells acquiring the ability to evade cell death in addition to 

loss of ESCRT function is feasible.  

 

In conclusion, this thesis along with previous data generated in the field, 

suggests that ESCRT proteins are important tumour suppressors, a role which 

is conserved from Drosophila to vertebrates. 
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