
        

University of Bath

PHD

A Comparative study of the antiproliferative activity of iron chelators PIH, SIH and their
light-activated caged derivatives in skin cells

Aroun, Asma

Award date:
2010

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 22. May. 2019



Page | I  

 

A Comparative study of the antiproliferative activity of iron chelators PIH, 

SIH and their light-activated caged derivatives in skin cells  

 

 

Asma Aroun 

 

 

 

A thesis submitted for the degree of Doctor of Philosophy 

University of Bath 

Department of Pharmacy and Pharmacology 

November 2010 

 

 

 

 

COPYRIGHT 

Attention is drawn to the fact that the copyright of this thesis rests with its author. 

This copy of the thesis has been supplied on condition that anyone who consults it, is understood 

to recognise that its copyright rests with its author and that no quotation from the thesis and no 

information derived from it may be published without the prior written consent of the author. 

This thesis may be made available for consultation within the University Library and may be 

photocopied or lent to other libraries for the purpose of consultation. 

  



Page | II  

 

 

 

 

 

 

 

 

 

To my family...  



Page | III  

 

TABLE OF CONTENTS 

 

Acknowledgements          VIII 

Abstract           IX 

Abbreviation           XI 

 

Chapter one- Introduction 

1.1  Human Skin          1 

1.1.1 Epidermis          1 

1.1.2  Dermis           3 

1.1.3 Hypodermis          4 

1.2  Ultraviolet (UV) Radiation        6 

1.2.1  General information         6 

1.2.2  Biological effects of solar UV radiation      8 

1.2.3 Biological effects of solar UVA radiation      9 

1.3  Oxidative Stress and Reactive Oxygen Species (ROS)    14 

1.3.1  Oxidative Stress         14 

1.3.2  UVA and ROS         18 

1.4  Skin Antioxidant defence against UVA      20 

1.4.1  Non-enzymatic antioxidants        21 

1.4.1.1 Glutathione          21 

1.4.1.2 Vitamins          22 

1.4.2  Enzymatic antioxidants        23 

1.4.2.1 Glutathione peroxidase (GPx) / Glutathione reductase (GR)    23 

1.4.2.2 Superoxide dismutase (SOD)        24 

1.4.2.3 Catalase          25 

1.4.2.4 Thioredoxin (TRx)         25 

1.4.3  The inducible cellular defence       26 

1.4.3.1 The heme oxygenase (HO)        26 

1.4.3.2 Ferritin          28 

1.5  Iron           30 

1.5.1  General aspects         30 

1.5.2  Iron and oxidative stress        33 

1.5.3  Overview of Iron homeostasis       34 



Page | IV  

 

1.5.3.1 Systemic iron absorption, recycling and storage     34 

1.5.3.2 Cellular iron uptake and storage       37 

1.5.3.3 Iron homeostasis         39 

1.5.4 Cancer cell iron metabolism        47 

1.5.4.1 Transferrin and cancer        47 

1.5.4.2 Oestrogen-inducible transferrin-receptor-like protein    48 

1.5.4.3 Transferrin receptor 1 and cancer       48 

1.5.4.4 The Transferrin receptor 2 and cancer      49 

1.5.4.5 Iron uptake mechanisms from low molecular weight iron complexes  50 

1.5.4.6 Melanotransferrin and cancer        50 

1.5.4.7 Ferritin and cancer         51 

1.6  Cell Cycle          52 

1.6.1  General definitions         52 

1.6.2  Cell Cycle regulation         56 

1.6.2.1 Cyclins and Cyclin-dependent kinases (Cdks)     56 

1.6.2.2 Cdk inhibitors (CKIs)         60 

1.6.2.3 The p53 tumour suppressor protein       60 

1.6.3  Ribonucleotide reductase         63 

1.6.3.1 Ribonucleotide Reductase regulation       64 

1.6.3.2 Ribonucleotide Reductase and iron       64 

1.6.4  Cell Growth Regulation in cancer       67 

1.6.4.1 Disturbance of cell-cycle control in oncogenesis     67 

1.7 Role of iron in cell cycle and related molecules     73 

1.7.1 Cyclins and Cdks         73 

1.7.2  p53           74 

1.7.3 Cdk inhibitors          75 

1.7.4 The growth arrest and DNA-damage-inducible genes (GADD) family  75 

1.7.5  p38 MAPK          76 

1.7.6  Hypoxia inducible factor-1 (HIF-1)       77 

1.7.7 N-myc downstream regulated gene 1 (Ndrg-1)     78 

1.7.8 CDC14A          79 

1.7.9 Iron-depletion and Apoptosis        79 

1.8  Skin Hyper-proliferative Disease       80 

1.8.1  Skin cancer          80 



Page | V  

 

1.8.2  Psoriasis          82 

1.9 Iron Chelation Therapy for Hyperproliferative Diseases    86 

1.9.1 Iron Chelators and Cancer        86 

1.9.1.1 Desferrioxamine (DFO)        87 

1.9.1.2 Thiosemicarbazones         90 

1.9.1.3 Aroylhydrazones         93 

1.9.1.4 Di-2-pyridylketone isonicotinoyl hydrazone analogs     101 

1.9.1.5 Di-2-pyridylketone thiosemicarbazone (DpT) series     103 

1.9.1.6 Tachypyridine          107 

1.10 Caged Iron Chelators        110 

1.11 Aims and objectives of the study       111 

Chapter two – Materials and Methods       111 

2.1  Chemicals and Reagents        111 

2.2.  Cell culture          111 

2.2.1 FEK4           111 

2.2.2  HaCaT           112 

2.2.3  Swiss 3T3           112 

2.2.4  KCP7 and KCP8         113 

2.2.5  PM1 and Met 2         113 

2.2.6  MKPS           113 

2.3 Chemical treatments         114 

2.4  Iron saturation assay        115 

2.5. UVA irradiation         115 

2.5.1  Irradiation of cells in plates        115 

2.5.2 Irradiation of 2-NPE-PIH and 2-NPE-SIH      116 

2.6  HPLC analysis of UVA- induced decaging of 2NPE-PIH and 2NPE-SIH 116 

2.7  Cell Growth Curve         117 

2.8.  BrdU assay          117 

2.8.1  Principle of the assay         117 

2.8.2  BrdU Pulsing          118 

2.8.3 BrdU Staining          118 

2.9  MTT Assay          120 

2.9.1  Principle of the assay         120 

2.9.2  Procedure          120 



Page | VI  

 

2.10  Clonogenic Assay         120 

2.10.1  Principle of the assay         121 

2.10.2  Procedure          121 

2.11  Annexin V/Propidium dual staining Assay     121 

2.11. 1 Principle of the assay         121 

2.11.2  Procedure          122 

2.12  Organotypic 3D raft culture using de-epidermalised dermis (DED)  124 

2.13  LIP determination in 96 well-plates      124 

2.13.1 Principle of the assay         124 

2.13.2 Procedure          124 

2.14  Statistical analysis         124 

2.15  Synthesis of Caged –iron chelators and analogues    128 

2.15.1  Solvents, reagents, equipments       128 

2.15.2  General procedure for phenol alkylation (2NPE-SIH precursor a & 2-NPE-PIH 

precursor b)           128 

2.15.3  General procedure for hydrazide formation (to synthesise 2NPE-SIH and 2-NPE-PIH, 

BIH, SIH, PIH)          129 

Chapter Three- Results and Discussion       130 

3.1.  The Choice of Cell Lines        130 

3.1.1 Comparison of the Growth Rate of skin cells      131 

3.1.1.1 Cell Count Assay         131 

3.1.1.2 BrdU Assay          131 

3.1.1.3 Growth rate of primary keratinocytes       132 

3.1.2  Comparison of the Basal LIP Level in Skin Cells     132 

3.2.  The Antiproliferative Effect of Parental Iron Chelators    137 

3.2.1  Comparison of the Growth Inhibitory Effect of Equimolar Concentration of PIH, SIH, 

DFO and BIH in skin cells         137 

3.2.1.1 MTT Assay          137 

3.2.1.2 Cell Count Assay         140 

3.2.1.3 Light Microscopy         142 

3.2.2  Effect of PIH, SIH and DFO on Skin Cell Survival Using Colony Forming Ability 

Assay            145 

3.2.3 Effect of PIH, SIH and DFO on HaCaT Cell Proliferation as Measured by BrdU 

Incorporation Assay          148 



Page | VII  

 

3.2.4  Effect of PIH, SIH and DFO on HaCaT Cell Death as Measured by Annexin V/PI 

Dual Staining Assay          150 

3.2.5  Effect of PIH and DFO on HaCaT Epidermal Cells in 3D De-epidermalised Dermis 

Raft Organotypic Culture         152 

3.2.6  Determination of IC50 for PIH, SIH and DFO     155 

3.2.7  Effect of Fe Chelators-Fe3+ Complexes on Cellular Proliferation   157 

3.3  Antiproliferative Effect of Caged Iron Chelators     162 

3.3.1 In vitro Characterisation of 2NPE-PIH and 2NPE-SIH (+/- UVA) by Reverse Phase 

HPLC            162 

3.3.2 Comparative IC50 Values for Parental PIH, SIH and their UVA-irradiated Caged 

Derivatives           166 

3.3.3  Effect of PIH/SIH, 2-NPE-PIH/SIH and Subsequent UVA irradiation on the 

proliferation of Skin cells         170 

3.4 Concluding Remarks        172 

3.5 Future work           173 

 

References 



Page | VIII  

 

ACKNOWLEDGEMENTS 

 

I am extremely grateful to Dr Charareh Pourzand for giving me the opportunity to work 

under her supervision. I would like to thank her for the endless support, encouragement, and 

guidance. I am also very grateful to Dr Olivier Reelfs for his training, supervision and 

constant advice. 

I am very thankful and appreciative to Professor Rex Tyrrell for giving me access to his 

laboratory facilities as well as his highly valued support and advice. I am particularly grateful 

to Dr Abdullah Al-Qenaei for his advice and training input.  

I am very grateful to Dr James Dowden from the department of Chemistry (University of 

Nottingham) and all his laboratory members especially Dr Sara Rossi for their help to prepare 

the chemical compounds. 

I would like to thank Dr Ian Egglestion and Dr Amit Nathubhai for their advice and practical 

help.  

I am also very thankful to Professor Irene Leigh (University of Dundee) for providing cancer 

and psoriatic cell lines and her advice on organo-typic cultures. 

I am also very thankful to Dr Nick Hall and Dr Michael Rowan for their highly valued 

support and advice during my PhD work. 

  I would like to thank Professor Susan Wannacott from the Department of Biology and 

Biochemistry (University of Bath) for giving me access to her laboratory facilities. 

I would also like to thank Dr. Adrian Rogers from the Bioimaging suite for his help and 

advice as well as Mr Kevin Smith for practical help. 

Many thanks to all members of laboratories 5W 2.20 and 5W 2.14, both past and present, 

particularly to Tina Radka for their support and friendly chats. I am also very thankful to 

Benjamin Young for his help during viva preparation. 

I am also very grateful and appreciative to my dear parents: Ghania and Taïb and my lovely 

sister Nassima, and brothers Redha, Hakim and Abderrahmane for their constant prayers, 

love and support.  I am also thankful to my dear friends Dr Nassima Abdelouahab-Ouitas and 

Nour Alhusein. 

I am extremely grateful to the Algerian Government for sponsoring me during my studies. 



Page | IX  

 

ABSTRACT 

 

 

 

In the present study, we investigated the long term antiproliferative potential of iron chelators 

Salicylaldehyde Isonicotinoyl Hydrazone (SIH), Pyridoxal Isonicotinoyl Hydrazone (PIH) 

and their caged-derivatives 2-Nitrophenyl Ethyl-SIH and –PIH (2NPE-SIH and 2NPE-PIH) 

using human primary fibroblast cell line FEK4 and the spontaneously immortalised human 

keratinocyte cell line, HaCaT as models.   

We then extended the study to additional hyperproliferative skin keratinocyte cell lines 

notably MKPS (immortalised psoriatic cell line) as well as  PM1 and MET2 that represent 

two cancerous skin cell lines isolated at different stages of malignant transformation of 

squameous cell carcinoma (SCC) from a single adult individual. Iron depletion with SIH and 

its UVA-activated caged-derivative (i.e. 2NPE-SIH) led to significant cell death in all cell 

models presumably as a result of inhibition of G1/S progression in cell cycle. PIH and 2NPE-

PIH on the other hand only caused transient growth retardation in cells due to delayed S 

Phase but with no apparent toxicity. The growth inhibitory/retardation effects of SIH/PIH or 

UVA-activated caged-SIH/PIH were related to their iron-chelating properties, as their 

saturation with iron could reverse their antiproliferative activity in the analysed skin cells. 

Taken together the results suggested that 2NPE-PIH which possesses very high iron chelating 

potential, but low antiproliferative activity (i.e. upon uncaging by UVA) is more suitable for 

skin photoprotection. In contrast, 2NPE-SIH which remains inactive inside the cells until its 

strong iron binding activity and high antiproliferative properties are activated by UVA, may 

offer a highly selective and dose-controlled alternative for treatment of hyperproliferative 

skin disorders such as skin cancer.  
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CHAPTER ONE 

 

INTRODUCTION 

 

1.1 Human Skin 

Skin is the largest organ in the body weighing approximately six pounds and 

providing around 10% of the body mass of an average person (Williams, 2003). 

Because it interfaces with the environment, skin plays a key role in protecting the body 

against pathogens (Proksch et al., 2008) and excessive water loss (Madison, 2003). Skin also 

provides other functions such as insulation, temperature regulation, sensation and synthesis of 

vitamin D. 

The skin is composed of multiple layers, epidermis, dermis and hypodermis (Fig. 1.1). 

 

1.1.1 Epidermis 

Epidermis is the outermost layer of the skin. It forms the waterproof, protective wrap 

over the body's surface and is made up of stratified squamous epithelium with an underlying 

basal lamina. In humans, epidermis is thinnest on the eyelids at 0.1 mm and thickest on the 

palms and soles at 1.5 mm (Madison, 2003).  

Keratinocytes are the major epidermal cell types, constituting 95% of the epidermis 

(McGrath et al., 2004). The epidermis is continuously renewed by the mitotic activity of the 

stem cells in the basal layer, which provides new keratinocytes. Upon withdrawal from the 

cell cycle, basal keratinocytes detach from the basement membrane and undergo a terminal 

differentiation program to become corneocytes in the outer layers of the epidermis. At the 

final stage of differentiation, the keratinocytes lose their nuclei, die, dehydrate and flatten out 

to form a cornified external layer i.e. Stratum corneum (SC) (Lippens et al., 2009). Dead cells 

are constantly being shed, while new cells are continuously being produced in the basal layer. 

Turnover of the epidermis allows the organ to maintain its barrier function, repair injured 

skin in wound healing, and receive the signals that stimulate or inhibit cell proliferation 

(Lippens et al., 2009). However hyperproliferation may represent a risk factor for skin cancer 

and occurs in some physiologic conditions such as wound healing and altered permeability 
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barrier function as well as pathologic conditions such as psoriasis (Lippens et al., 2009). 

Thus, cell cycle and keratinocyte turnover have significant roles in pathogenesis of skin 

diseases and response to therapy (Lippens et al., 2009). It has been estimated that a cell from 

the basal layer takes at least 14 days to reach the SC whereas in the rapidly proliferating 

epidermis of psoriasis, it only takes 2 days.  Similarly, the turnover time in the SC is some 13 

or 14 days in normal skin with the residence time in psoriatic SC shortening to 2 days (Barry, 

1983).  In addition to the keratinocytes, other specialized cells are present in the basal layer 

are melanocytes, Langerhans cells and Merkel cells. Melanocytes secrete melanosomes 

containing melanin (the black eumelanin or the reddish phaeomelanin) that protects the skin 

from ultraviolet radiations and free radicals (Benjamin et al., 2008). The melanogenesis 

activity of these cell lines defines the skin color (Biro et al., 2009). Langerhans cells are 

derived from bone-marrow and as part of the immune system function as antigen presenting 

cells (APC) of the skin (Benjamin et al., 2008). Merkel cells function as mechanoreceptors 

for the sensation of touch and pressure (Biro et al., 2009). Additionally, sensory nerve 

endings which are responsible for cutaneous sensation such as touch, pressure, temperature as 

well as pain and itch, might also reach the lower layers of the epidermis (Biro et al., 2009). 

The epidermis can be further subdivided into the following strata (beginning with the 

innermost layer): basale, spinosum, granulosum, corneum. 

Stratum basale (or basal layer) is often described as one cell thick, though it may in 

fact be two to three cells thick in glabrous (hairless) skin and hyperproliferative epidermis 

(from a skin disease) (McGrath et al., 2004). 

The basal cells of the stratum basale can be considered the stem cells of the epidermis and is 

the only layer that is capable of cell division (Benjamin et al., 2008). The keratinocytes in 

this layer are connected with the basement membrane (or dermo-epidermal membrane) by 

proteinaceous structures called hemidesmosomes and with cells of stratum spinosum layer by 

desmosomes (Benjamin et al., 2008). 

Stratum spinosum (or spinous layer) is the next viable epidermal layer; it consists of 2 

– 6 layers of columnar keratinocytes that modify themselves into polygonal shapes. The 

keratin in this layer aggregates to form filaments called tonofi laments that on further 

condensation produce cell membrane-connecting structures called desmosomes (Benjamin et 

al., 2008). Keratinization begins in the stratum spinosum (Marks and Miller, 2006). 

Stratum granulosum (or granular layer) is 1–3 cell layers thick, and contains enzymes 

that have the potential to degrade vital cell organelles such as nuclei (Benjamin et al., 2008). 
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By synthesizing keratin and degrading cell organelles, the keratinocytes (which are known as 

granular cells) gradually differentiate into the corneocytes of SC. The granular cells also 

synthesize membrane coating granules that carry the precursors for intercellular lipid 

lamellae of the stratum corneum (Benjamin et al., 2008). 

Stratum corneum (SC., horny layer) is a nonviable epidermal layer of 10 – 15 cell 

layers thick, with anucleated keratinocytes (corneocytes) oriented like bricks in the 

surrounding lipid (that serve as a mortar) and forms the prime barrier to the transdermal 

delivery of drugs. The SC has a thickness of ~ 10 μm. Corneocytes which have migrated up 

from the stratum granulosum (Marks et al., 2006) slough off on the surface in the thin air-

filled stratum disjunctum, they are continuously replaced by new cells from the stratum 

basale. Corneocytes contain keratin, a protein that helps keep the skin hydrated by preventing 

waterevaporation. 

 

1.1.2 Dermis 

The dermis (or corium) is a connective tissue matrix that is between the epidermis and 

the hypodermis. The dermis is 3 – 5 mm thick and consists essentially of a matrix of 

connective tissue woven by fibrous proteins (collagen, 75%; elastin, 4%; and reticulin, 0.4%) 

(Barry, 1983). It is supplied with a reticulate network of blood vessels, lymphatic vessels, 

nerve endings and numerous appendages (Benjamin et al., 2008). 

Fibroblasts are the major cells in the dermis. They synthesise collagen, elastin and 

glycosaminoglycans (GAG). Collagen fibres provide strength and resilience while elastin 

fibres provide elasticity to the skin. GAG provides viscosity, hydration and allows the dermis 

limited movement. Other cells embedded in the reticular layer include fat cells and dermal 

dendrocytes, mast cells, macrophages and lymphocytes.  
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1.1.3 Hypodermis 

The hypodermis (or subcutaneous layer) spreads all over the body as a fibro-fatty 

layer, with the exception of the eyelids and the male genital region (Barry, 1983). It connects 

the dermis with the underlying organs. Hypodermis is made of adipocytes, fibroblasts and 

macrophages and is well supplied by vessels and nerve fibres (Biro et al., 2009). Hypodermis 

provides a thermal barrier and a mechanical cushion; it is a site of synthesis and a depot of 

readily available high-energy chemicals (Barry, 1983). 
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Figure 1.1: Representative section of skin epidermal and dermal layers  

(Source: 3 dimensional de-epidermalised dermis (DED)-raft culture performed in Pourzand's 

laboratory by Dr Reelfs, with permission) 
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1.2 Ultraviolet (UV) Radiation 

 

1.2.1 General information 

Ultraviolet (UV) is part of the non-ionising electromagnetic radiation and it spans 

between 100 nm and 400 nm. Exposure to UV occurs from both natural and artificial sources. 

The sun is the major source of natural radiation, and it emits radiation with wavelengths 

ranging from infrared (760-3000 nm) and visible (400-760 nm) to UV (190-400nm) (Fig. 

1.2) (Pastila, 2006). 

Ultraviolet radiation (UVR) is located in the electromagnetic spectrum between the ionizing 

x-rays and the non-ionizing visible light. The UV component of sunlight is subdivided to 

long-wave UVA (320-400 nm), mid-wave UVB (290-320 nm) and shortwave UVC (190-290 

nm) wavelengths. 

The quality (spectrum) and quantity (intensity) of sunlight are modified during its passage 

through the atmosphere where ozone, clouds, and pollutants scatter and absorb UV rays (Fig. 

1.3) (Diffey, 2002). 

Solar UV radiation at ground level represents about 5% of the total solar energy; the radiation 

spectrum is between 290 and 400 nm, and comprises approximately 95% UVA and 5% UVB; 

UVC is completely filtered out by the stratospheric ozone (Frederick and Alberts, 1992). The 

spectrum of solar UV radiation to which an individual may be exposed varies with latitude, 

altitude, ground reflectance, season, time of day, weather, stratospheric ozone and other 

atmospheric components such as air pollution (Secretan, 2009). For most individuals, solar 

radiation is the major source of exposure to UV radiation (Secretan, 2009). However, several 

UV lamps have been developed for use in tanning devices, for germicidal purposes and for 

the therapeutic use (phototherapy). Depending on the lamp type and filters used, UV sources 

can provide very different UV spectra from the broadband solar simulated radiation spectrum 

to specific narrow-band applications (Pastila, 2006). 

The effects of solar UV radiation on biological systems concern only UVA and UVB 

wavelengths, since UVC does not reach the earth‟s surface.  
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Figure 1.2: Diagrammatic representation of the ranges of UV and visible radiation on the 

surface of the earth (modified from Tyrrell, 1994). 

 
 

Figure 1.3: Representation of solar UV components and stratospheric ozone layer. 

UVC component of sunlight is completely absorbed by Oxygen and stratospheric Ozone, and can not reach the 

surface of the earth. UVB is partially absorbed by the ozone layer, whereas UVA is not absorbed by the ozone 

layer. The solar UV components reaching the earth‟s surface are composed of UVA and UVB only. 
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1.2.2 Biological effects of solar UV radiation 

The major targets for UV in humans are the skin and the eyes. The transmission of UV 

through these tissues and cells increases with increase in wavelength (see Fig. 1.4). Thus the 

longer wavelengths can penetrate deeper causing effects on targets that differ sharply from 

those of short wavelengths. While UVA readily reaches the dermis, including its deeper 

portions, most of the UVB is absorbed in the epidermis, and only a small proportion reaches 

the upper dermis. UVC, if it reached the earth‟s surface, would be absorbed or reflected 

predominantly in the SC and in upper layers of the epidermis (Secretan, 2009). It has been 

shown that 35-50% of the overall UVA component of sunlight can reach the dermis of 

Caucasian skin (Bruls et al., 1984). However only a small amount of UVA can reach below 

the surface of the skin and penetrate blood vessels (see Fig. 1.4). 

Therefore the amount of radiation received by the two major skin cells, the epidermal 

keratinocytes and dermal fibroblast are different. The epidermal keratinocytes are exposed to 

both UVA and UVB radiation while the dermal fibroblasts are protected from UV radiation 

to a considerable extent by the overlying epidermis and will mostly receive UVA radiation 

(see Fig. 1.4). 

Both acute and chronic exposures to sunlight are associated with various physiological and 

pathological states. The acute response involves immediate effects including erythema, heat, 

swelling, sunburn, pigmentation, hyperplasia, immune suppression and vitamin D synthesis 

(Gasparro et al., 1998). The chronic response involves delayed effects such as cataract and 

skin ageing (also called photo-ageing), which is the result of morphological changes such as 

wrinkling, elasticity loss, uneven pigmentation due to general alteration of all the epidermal 

and dermal components of skin. Chronic exposures of skin to UV radiation may lead to skin 

cancer (reviewed by Tyrrell, 1994; Reelfs et al., 2010). An individual‟s tendency to develop 

sunburn and tanning after sun exposure correlates with the individual‟s susceptibility to long-

term effects as well. Therefore, those individuals with higher acute sun sensitivity are 

generally also more at risk for developing skin cancers after chronic UV exposure (Rünger, 

2009). In the recent decades, there has been a substantial decrease in the ozone layer and as a 

consequence the earth is exposed to more UV radiation. This phenomenon has had an impact 

on human health in the form of increased incidence of sun-related skin disorders notably 

actinic keratoses (AK) and skin cancer. Nevertheless sunlight has several beneficial effects. 

The sun rays provide heat, light and the general feeling of wellbeing. The sunlight also 
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stimulates blood circulation and the production of Vitamin D that is required for maintaining 

blood calcium levels in individuals.  

At the cellular level, the interaction of UV with biological material changes as a 

function of wavelength and requires the absorption of the radiation by biomolecules. The 

UVB region overlaps with the DNA absorption spectrum and as a result the direct absorption 

of UVB by cellular DNA causes DNA photodamage and mutagenesis (Freeman, 1975; 

Tyrrell, 1994). In contrast, UVA is weakly absorbed by most biomolecules but is oxidative in 

nature, generating reactive oxygen species (ROS) such as singlet oxygen (
1
O2) via 

photochemical interactions with intracellular chromophores (Tyrrell, 1991; Tyrrell, 1996a, b). 

 

1.2.3 Biological effects of solar UVA radiation 

UVA is about 10
3
-10

4
 fold less efficient than UVB to initiate the short and long term 

responses of UVR, as underlined by their action spectra (Parrish et al., 1982). These ratios of 

efficiency also apply to other responses like mutagenicity or lethality in cell cultures (Keyse 

et al., 1983; Tyrrell and Pidoux, 1987). Most of the biological effects of UVA are oxygen-

dependent, either in cultured cells (Danpure and Tyrrell, 1976) or in skin (Auletta et al., 

1986). The UVA component of sunlight contributes up to 80% of the cytotoxic action of 

sunlight at the basal layer of epidermis (Tyrrell and Pidoux, 1987). Indeed the greater 

histological effect of UVA is relatively observed on the dermis than on the epidermis. Human 

skin showed decreased permeability on the barrier of the SC when exposed to UVA 

(McAuliffe and Blank, 1991). UVA also depletes epidermal Langerhans cells, and recruits 

neutrophils into irradiated skin (Gilchrest et al., 1983). 

At the cellular level, at biologically relevant doses, UVA has been shown to cause 

lipid peroxidation in the membrane of human cultured fibroblasts (Vile and Tyrrell, 1995). 

UVA-induced lipid peroxidation was found to be dependent on the “chemical” composition 

of membranes, as polyunsaturated fatty acid enrichment of human keratinocytes increases the 

peroxidation process (Quiec et al., 1995). Keratinocytes‟ peroxidised membranes tend to lose 

their fluidity following UVA irradiation. This suggested that loss of membrane integrity and 

selective permeability might result in alteration of transport systems, as well as the leakage of 

essential components or influx of extracellular molecules such as calcium and toxins. This 

was confirmed by the findings that UVA radiation inhibited both receptor-mediated and non-

specific uptake of exogenous molecules in a dose-dependent manner (Djavaheri-Mergny et 

al., 1993). 
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Internal lipid membranes of eukaryotic cells (e.g. lysosomal, mitochondrial and nuclear) have 

also been shown to be damaged following UVA irradiation. UVA-induced damage to 

lysosomes is an early event that leads to temporary intracellular leakage of lysosomal 

proteases into the cytosol which in turn causes the degradation of cytosolic proteins notably 

the iron storage protein, ferritin (Ft) (Pourzand et al., 1999b). The UVA-induced proteolytic 

degradation of Ft leads to an immediate measurable increase in the level of the potentially 

harmful redox active free transit iron pool, known as labile iron pool (LIP). The UVA-

mediated increase in LIP has been shown to further exacerbate the peroxidative damage in 

cultured skin fibroblasts (Zhong et al., 2004) that may lead to the loss of cell membrane 

integrity. 

UVA also damages the mitochondrial membrane leading to immediate depletion of 

intracellular Adenosine triphosphate (ATP). The depletion of cellular ATP, along with loss of 

membrane integrity, leads to necrotic cell death in irradiated skin cells (Zhong et al., 2004). 

Furthermore it was found that the slow kinetics of the induction of the nuclear transcription 

factor kappa B (NF-kappaB) by UVA relative to other oxidants is due to a transient increase 

in the permeability of the nuclear membrane to proteins and occurs as a result of iron-

mediated damage to the nuclear membrane (Reelfs et al., 2004). The apparent slow response 

of NF-kappaB to UVA radiation is likely to have consequences on the kinetics of activation 

of NF-kappaB target genes in the nucleus notably pro-inflammatory cytokines and proto-

oncogenes (Tyrrell, 1996a; Soriani et al., 1998; Reelfs et al., 2010).  

Lipid peroxidation products may also induce damage to DNA (Vaca et al., 1988) as 

illustrated by the finding that lipid hydroperoxide decomposition products induced DNA 

adducts in vivo in liver and kidney (Wang and Liehr, 1995a, b). Therefore, mutations may 

arise and alter gene expression (Wang and Liehr, 1995a, b). 

Photodermatological studies have shown that the morphology of “sunburn” keratinocytes is 

associated with characteristic features such as pyknotic nucleus and eosinophilic cytoplasm. 

The “sunburn” cells were first discovered in the epidermis of mammalian cells exposed to 

UVB radiation and later on regarded as an example of programmed cell death pathway now 

referred to as “apoptosis” (Weedon et al., 1979; Ley and Applegate, 1985; Young, 1987; 

Vaca et al., 1988). This self-destructive programme can eliminate pre-cancerous cells 

(Ziegler et al., 1994), and it was necessary to understand the phenomenon in order to develop 

therapeutic strategies for control of the carcinogenesis process (Barber et al., 1998). Interest 

in the link between UV and apoptosis has increased since Godar et al. (1994) investigated 

cell death mechanisms in different waveband regions of UV (UVC, UVB and UVA) on 
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murine lymphoma cells (Godar et al., 1994). They found that UVA induced immediate (0-4h) 

and delayed apoptosis, whereas UVB or UVC induced delayed apoptosis (>20h). In contrast, 

studies from this laboratory have shown that unlike murine cultured cells, human skin 

fibroblasts and keratinocytes are quite resistant to UVA-induced apoptosis and upon severe 

UVA insult, they die mainly by necrotic cell death (Pourzand et al., 1997; Pourzand and 

Tyrrell, 1999; Zhong et al., 2004; Reelfs et al., 2010). 

DNA may be a target to UVA radiation, since it absorbs, although very weakly, in the 

UVA region up to 360 nm (Sutherland and Griffin, 1981). However, in contrast to UVB, 

UVA genotoxicity is most likely induced by indirect mechanisms involving absorption of 

photons by unidentified endogenous photosensitisers and generation of ROS. This is 

suggested by (i) the oxygen-dependence of induction of most DNA lesions by UVA (Peak et 

al., 1987) and (ii) the fact that the frequency of lesions induced by UVA does not follow the 

absorption spectrum of DNA, either in vivo (Freeman et al., 1989) or in vitro (Peak and Peak, 

1995). Lesions include mainly DNA strand breaks and protein cross-links (covalent links 

between a protein and DNA). However, the formation of 8-hydroxydeoxyguanosine (8-

OHdG), seems to be the most important type of lesion occurring in the UVA range, as has 

been shown in different mammalian cell types (Kielbassa et al., 1997; Zhang et al., 1997). 

Most importantly the damage has been shown to depend on 
1
O2 generation (Kvam and 

Tyrrell, 1997). This is the major interest since UVA radiation of sunlight produces 

biologically relevant levels of 
1
O2 and also other ROS (Tyrrell, 1991) and the effects of UVA, 

including cell inactivation, are completely dependent on the presence of molecular oxygen 

(Danpure and Tyrrell, 1976). Another type of damage, pyrimidine dimerisation, has been 

shown to occur in human skin following UVA irradiation (Burren et al., 1998). 

Direct damage to proteins can happen at much longer wavelengths than direct damage 

to DNA. Although proteins absorb most strongly in the UVC range, as the wavelength is 

increased through the environmentally relevant UVB and UVA regions, damage to proteins 

becomes increasingly important relative to DNA damage because of the absorption properties 

of the aromatic amino acids (Tyrosine, tryptophan) which exhibit absorption that tail into the 

UVA range (Vile and Tyrrell, 1995). Protein and amino acid hydroperoxides then produce 

various radicals via Fenton-like reactions catalysed by metal ions, particularly ferrous iron 

(Fe
2+

) (Dean et al., 1993; Neuzil et al., 1993). Heme-containing proteins, including 

cytochromes, the antioxidant enzymes catalase and peroxidases are potential targets for 

damage by UVA. 
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Repair enzymes have also been shown to be sensitive to UVA radiation and there is evidence 

that UV-induced repair disruption plays a role in cell death and mutagenesis (Webb, 1977; 

Menezes and Tyrrell, 1982). 

Oxidative modifications of, for example collagen and transcription factors, appear to mark 

them for degradation in some systems (Helm and Gunn, 1986; Vince and Dean, 1987; 

Pacifici and Davies, 1990), but in others inefficient catabolism of oxidised proteins 

contributes to their accumulation (Davies, 1986; Wolff and Dean, 1986; Grant et al., 1992; 

Jessup et al., 1992; Stadtman, 1992).  

Artificial sources of UV, including UVA radiation, has been used for treatment of a number 

of diseases notably rickets, psoriasis, eczema and jaundice. In view of the potentially harmful 

effects of UV radiation, the treatments take place only when their benefits outweigh the risks. 
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Figure 1.4: Penetration of solar UV radiation into the skin. 

UVA (320-400nm) has a deeper penetration potential through the skin layers than UVB (290-

320 nm). (Source: 3 dimensional DED-raft culture performed in Pourzand's laboratory by Dr 

Reelfs, with permission. (%) of UV penetration obtained from Tyrrell, 1994). 
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1.3 Oxidative Stress and Reactive Oxygen Species (ROS) 

 

1.3.1 Oxidative Stress 

Oxygen is a diatomic molecule, O2, which is referred to as dioxygen. It exists in the 

atmosphere at the percentage of 21%, and except from certain anaerobic and aero-tolerant 

unicellular organisms, O2 plays a pivotal role in all animals, plants, and bacteria, since it is 

essential for the production of energy by the use of O2-dependent electron transport chains. 

However, when O2 is supplied at concentrations higher than normal, it can be toxic to all 

living organisms (Martinez-Cayuela, 1995). 

“Oxidative stress” is a term introduced to illustrate the imbalance within cells between the 

mechanisms triggering oxidative conditions (pro-oxidants) and the cellular antioxidant 

defences in favour of the former (Halliwell and Gutteridge, 1999; Morel and Barouki, 1999). 

 

Free Radicals 

A free radical is defined as “atom or molecule with one or more unpaired electron(s) 

in an orbital in the outermost electron shell” (Cadogan, 1973). Free radicals are capable of 

independent existence and are able to donate or take an electron from an unpaired electron to 

another molecule, generating another radical by a chain reaction, which enhances the initial 

damage. The primary target of free radicals is the lipid bilayer of the membrane. However, 

free radicals can also oxidize protein, lipid and carbohydrate.  

Free radicals can be formed by three independent methods: 

(a) Addition of a single electron: A + e
-
    A

• -
 

(b) Loss of a single electron:   A   A 
• +

 + e
 -
 

(c) Homolytic fission of a covalent bond where each component possesses one of the 

unpaired electron:     A: B   A 
•
 + B 

•
 

The primary source of the production of free radicals within the cells is the leakage of 

electrons, in the mitochondria and the endoplasmic reticulum (ER), from the electron 

transport chain. Free radicals are also produced by activated phagocytes (i.e. macrophages, 

monocytes, and lymphocytes) during inflammation (Cheeseman and Slater, 1993). In 

addition to these endogenous sources, there are also exogenous sources such as ultraviolet 

light, ionizing radiation, tobacco smoking, ozone and pollutants (Martinez-Cayuela, 1995).  
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Reactive oxygen species (ROS) 

Reactive oxygen species (ROS) is a term used to include not only the oxygen radicals 

(i.e. superoxide (O2
•-
) and hydroxyl (OH

•
)) but also some non-radical derivatives such as 

singlet oxygen (
1
O2), hydrogen peroxide (H2O2) and ozone (O3), which are capable of 

forming radicals.  

Molecular O2 has two unpaired electrons in a parallel spin and it can easily absorb 

electrons from surrounding molecules, therefore it can be a powerful oxidizing agent. 

Reduction of O2 to water (H2O) requires a series of four one-electron-uptake steps, which 

involves a series of ROS, as shown in equation below. This process makes O2 reaction with 

biomolecules poor, unless a transition metal such as iron is present as a catalyst. 

 

 

 

 

 

The first product of an electron reduction of O2 molecule yields the O2
•-
 via the NADPH 

oxidase enzymatic system. This reaction seems to occur in the ER within all aerobic cells 

during respiration (by electron transfer in the mitochondrial electron transfer chain).  

At physiological O2 levels, it has been suggested that about 1-3% of the O2 reduced in 

mitochondria may form O2
•-
, depending on intra-mitochondrial O2 concentrations. O2

•-
 has a 

very short life (milliseconds) and is relatively unreactive towards most biomolecules, 

including lipids and nucleic acids (Fridovich, 1978). However, it may react with certain 

proteins and inactivate those, especially proteins in the presence of transition metals 

prosthetic groups such as heme moieties or iron-sulphur (4Fe–4S) clusters (Gardner et al., 

1995). As a consequence, O2
•-
 toxicity is highly dependent on the availability of iron in the 

system. 

The most important reaction of O2
•-
 is the dismutation reaction which produces H2O2 which is 

an oxidant without an unpaired electron that has a longer life (minutes) than 
•
O2

-
. 

This reaction can occur either spontaneously or via the catalysis by a group of enzymes, the 

superoxide dismutases (SOD). H2O2 on its own is a weak oxidizing and reducing agent and is 

generally poorly reactive. Only in the presence of transition metals, is it capable of 

inactivating proteins via oxidation of essential thiol (-SH) groups or proteins containing 

(4Fe–4S) clusters, reduced heme moieties or copper prosthetic groups. Most of the damaging 

effects of H2O2 are thought to be the result of the formation of the highly toxic OH
•
. The 
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biological importance of H2O2 also arises from its ability to readily permeate across 

membranes and therefore migrate within the cell and extend cellular damage. H2O2 has also 

been found to be generated after UVA radiation (see section 1.3.2). 

OH
•
 is the most reactive of all oxygen radicals possessing a short half-life, and will readily 

oxidize lipids, proteins, carbohydrates and nucleic acids (Martinez-Cayuela, 1995). The 

importance of OH
• 
as oxidant in biological systems was first suggested during generation by 

X-ray irradiation. The OH
•
 is the product of Fenton reaction involving H2O2 and reduced iron 

(see also section 1.5.2).  

ROS form as natural by-products of the normal metabolism of oxygen and have 

important roles in the normal cellular signalling, including the delivery of electrons across 

membranes, heme oxidation and oxidative modification of proteins and DNA. ROS also play 

a role in the defence against infectious pathogens. However, under environmental stress or 

certain pathological conditions such as hypoxia, intracellular ROS levels can increase 

dramatically, leading to the formation of oxidative stress (Wang et al., 2008). Oxidative 

stress exerts significant harmful effects on cell structures by inducing structural changes in 

lipids, membranes, proteins or nucleic acids (Wang et al., 2008). Potentially dangerous 

oxygen-linked damaging processes are thought to form the basis of a number of physiological 

and patho-physiological events such as inflammation, ageing, carcinogenesis, drug action, 

drug toxicity and more recently programmed cell death.  

Nowadays, it is known that both beneficial and damaging effects of O2 are caused by 

the same types of ROS. OH
• 

generated via Fenton chemistry is able to initiate lipid 

peroxidation.  

The cell membrane and the membrane of cell organelles (e.g. mitochondria, lysosomes, and 

peroxisomes) are rich in polyunsaturated fatty acids (PUFAs). Polyunsaturated fatty acids 

contain two or more carbon-carbon double bonds. The oxidative damage of PUFAs will 

result in lipid peroxidation; a free radical chain reaction that will generate a fatty acid radical 

(L
•
) and consequently a fatty acid peroxyl radical (LOO•), and aldehydes (Cheeseman and 

Slater, 1993). In addition to rupturing the membrane and causing cell death, lipid 

peroxidation products can inhibit protein synthesis and block macrophage action (Winrow et 

al, 1993). This deleterious process of the peroxidation of lipids is apparent in cancer, 

inflammation and arteriosclerosis (Wang et al., 2008). Furthermore ROS can cause 

disturbances in proteins since they could react with amino acids such as histidine and 

cysteine. ROS can also cause a cellular ion imbalance by attacking the proteins responsible 

for the maintenance of such balance (Halliwell and Gutteridge, 1999).  
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Additionally, DNA strand breakage has been demonstrated in the nucleus and mitochondria 

when cells were exposed to ROS, since OH
• 

can damage sugars, purines, and pyrimidines. 

DNA damage may result in the arrest of transcription, replication errors and genomic 

instability, all of which are linked with carcinogenesis (Wang et al., 2008).  

Carbohydrate damage has also been noticed in view of the fact that OH
• 
in the presence of 

iron is responsible for the depolymerization of hyaluronic acid in in vitro studies (Wong et 

al., 1981).  

Moreover, oxidative stress plays an important role in the regulation of cell growth because 

the cell cycle is regulated by intracellular concentrations of GSH. ROS can activate cell 

growth transcription factors, including MAP-kinase/AP-1, NF-kappaB and p53 pathways, 

that have a direct effect on cell proliferation and apoptosis. ROS also regulate protein kinase 

or tyrosine kinase activities (Wang et al., 2008). 
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1.3.2 UVA and ROS 

The biological effects of UVA radiation on cells are dependent on the presence of 

oxygen (Danpure and Tyrrell, 1976; Tyrrell and Pidoux, 1989), implying the involvement of 

ROS in UVA-mediated cytotoxicity. UVA is the oxidizing component of sunlight as it 

triggers the generation of ROS in exposed cells/tissues via interactions with a variety of 

photosensitisers known as „chromophores‟. UVA must be absorbed in order to produce a 

chemical change. Absorption of UVA radiation by a biomolecule leads to an excited state in 

which one electron of the absorbing molecule is raised to a higher energy level. UVA 

absorption by the biomolecule may either lead to the generation of reactive species in a 

metastable excited state, or to free radical production. Both outcomes are formed extremely 

fast, since chemical reactions often occur within microseconds, but may last for hours. 

These relatively fast processes are eventually translated into photobiological responses which 

could occur in seconds but can take years to become apparent (e.g. cancer). In vitro, UVA 

irradiation of macromolecules has been shown to generate H2O2, O2
•-
 and OH

•
 (see Tyrrell, 

1991). The highly reactive OH
•
 can be generated via iron-catalyzed reduction of H2O2 by O2

•-
 

(Beauchamp and Fridovich, 1970). In vivo, UVA irradiation may also generate ROS (Tyrrell, 

1991; Beauchamp and Fridovich, 1970) via interaction with intracellular chromophores 

notably quinones, flavins, steroids and porphyrins, although the exact species remain to be 

defined (Tyrrell, 1994). UVA effects also involve H2O2 formation and iron-catalysed 

generation of OH
•
 (Tyrrell, 1991; Pourzand et al., 1999b; Zhong et al., 2004; Reelfs et al., 

2010). Based on these findings the UVA irradiation is now considered as a generator of 

intracellular oxidative stress.Anderson and Parrish in 1981 confirmed that melanin (a 

complex polymeric protein produced by melanocytes and confined to the epidermis and the 

SC) is another important UVA absorbing chromophore in human skin (Anderson and Parrish, 

1981). Melanocytes are stimulated upon UVA irradiation and divide and synthesize melanin. 

Both forms of melanin, phaeomelanin and eumelanin, take part in the screening effect of the 

whole epidermis. Human melanoma cells with high melanin content have been shown to 

accumulate twice as much oxidative damage upon UVA radiation than cells with low 

melanin content (Kvam and Tyrrell, 1997). Additionally, in vitro studies have suggested that 

the epidermal urocanic acid (a deamination product of histidine), is another important 

chromophore that may initiate chemical processes that could lead to the photoaging of the 

skin (Hanson and Simon, 1998). Furthermore, the amino acids tyrosine and tryptophan as 

well as NADH and NADPH, also exhibit absorption within the UVA range (Tyrrell, 1991). 
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1
O2 and H2O2 are thought to be the most important ROS generated intracellularly by UVA, 

promoting biological damage in exposed tissues via iron-catalysed oxidative reactions (Vile 

and Tyrrell, 1995). It has been shown that physiologically relevant doses of UVA induce lipid 

peroxidation leading to production of alkoxyl radical (LO
•
), peroxyl radical (LOO

•
) and lipid 

peroxide (LOOH) in membranes of human primary fibroblasts and keratinocytes, via 

pathways involving iron and 
1
O2 (Morliere et al., 1991; Punnonen et al., 1991; Vile and 

Tyrrell, 1995). Indeed, iron „at‟ or „near‟ strategic targets such as cell membranes, can 

undergo redox cycling by reacting sequentially with one electron reductants and oxidants, 

thereby generating toxic oxidants such as OH
• 
and lipid-derived alkoxyl and peroxyl radicals 

and can elicit biological damage (Aust et al., 1985; Halliwell and Gutteridge, 1999). 

However, in relation to UVA, current data from the literature suggest that O2
•-
 is not involved 

in any of the cellular effects mediated by UVA observed so far, including lipid peroxidation 

and protein oxidation (Vile and Tyrrell, 1995; Giordani et al., 1997). It is now well known 

that UVA is a strong membrane-damaging agent. UVA-induced lipid peroxidation was also 

found to be dependent on the chemical composition of membranes, as polyunsaturated fatty 

acid enrichment of human keratinocytes increased the peroxidation process (Quiec et al., 

1995). UVA-induced membrane damage has also been directly correlated with cell death in 

human skin fibroblasts (Applegate et al., 1994). Internal lipid membranes in eukaryotic cells, 

such as those of lysosomes, mitochondria and the nucleus, have also been shown to be 

damaged following UVA radiation.  

Immediate cellular effects of physiologically relevant doses of UVA include depletion of 

cellular glutathione (GSH) content, membrane lipid peroxidation and alteration in nuclear 

transcription factor activity and gene expression (Vile and Tyrrell, 1995; Djavaheri-Mergny 

et al., 1996; Tyrrell, 1996a; Klotz et al., 1997; Wlaschek et al., 1997). The potentiation of 

UVA photokilling by GSH depletion provides further evidence for ROS involvement in UVA 

effects (Tyrrell and Pidoux, 1988). 

The UVA-induced generation of 
1
O2 has been shown to play a crucial role in UVA-induced 

peroxidation of membrane lipids of cultured human skin fibroblasts as well as activation of 

nuclear transcription factors such as NF-kappaB (Gaboriau et al., 1995; Reelfs et al., 2004). 

Studies with iron chelators have demonstrated that iron-catalyzed ROS are also certainly 

involved in UVA-induced NF-kappaB activation, membrane damage and cell death (Reelfs et 

al., 2004; Zhong et al., 2004; Yiakouvaki et al., 2006; Reelfs et al., 2010). 



Page | 20  

 

The gene whose expression is most enhanced by UVA, encodes the mammalian stress protein 

and heme degrading enzyme, heme-oxygenase-1 (HO-1) (Keyse and Tyrrell, 1989). The 

transcriptional activation of HO-1 is now used as a marker of oxidative stress in mammalian 

cells (Keyse and Tyrrell, 1989; Tyrrell, 1994). Studies with deuterium oxide (D2O, that 

enhances the lifetime of 
1
O2) and sodium azide and L-histidine (two quenchers of 

1
O2) have 

shown that 
1
O2 may be the primary effector in the transcriptional activation of HO-1 by UVA 

in cultured skin fibroblasts (Basu-Modak and Tyrrell, 1993). 

A major consequence of UVA irradiation of human skin cells is the immediate release of 

chelatable „labile‟ iron (LI) in the cytosol that appears to exacerbate the oxidative damage 

exerted by ROS generated by UVA. The UVA-mediated increase in LI in human skin 

fibroblasts plays a key role in activation of NF-kappa B and UVA-induced necrotic cell death 

(Pourzand and Tyrrell, 1999; Pourzand et al., 1999b; Reelfs et al., 2004; Zhong et al., 2004; 

Reelfs et al., 2010). 

 

1.4 Skin Antioxidant Defence against UVA 

As mentioned above, skin is the first interface with the external environment. As such it 

is extremely exposed to oxidative stress which generates ROS directly or indirectly derived 

from the presence of oxygen. Due to the susceptibility of cellular components to potentially 

harmful oxidation, cell survival could only happen by the existence of a large range of 

antioxidants defences, which are composed of free radical scavengers, either enzymatic or 

non-enzymatic, which sometimes act in synergy. In vivo measurements in mouse and human 

skin have demonstrated that both enzymatic (catalase, glutathione peroxidase, glutathione 

reductase, and hemeoxygenase-2) and non-enzymatic (GSH, urate, ascorbate) antioxidant 

capacities of the epidermis is higher than that of the dermis (Shindo et al., 1993; Applegate et 

al., 1995; Applegate et al., 1996). However, UV radiation (UVB and UVA) reduces both 

enzymatic and non-enzymatic antioxidant defences in cultured skin cells. Possible 

mechanisms involved in defence against UVA-mediated oxidative stress in the skin are 

presented in this section. 
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1.4.1 Non-enzymatic antioxidants 

 

1.4.1.1 Glutathione 

Glutathione (L-gamma-glutamyl-L-cysteinyl glycine, GSH) is a tripeptide antioxidant 

that is present in most mammalian cells in high concentrations (i.e. 3-5 mM) and it is the 

major cellular antioxidant (Meister and Anderson, 1983). It is synthesised by two steps 

(Halliwell and Gutteridge, 1999) as detailed below: 

First, the dipeptide formation is catalysed by γ- glutamylcysteine synthetase: 

 

Then GSH is produced by glutathione synthetase: 

 

Glutathione is present in two forms, the reduced form (GSH) and the oxidized form (GSSG) 

where it redox-cycles between them, but the vast majority (95-99%) is in the reduced form 

(Dethmers and Meister, 1981; Meister and Anderson, 1983) 

In human skin cells in culture, there is a direct correlation between the levels of endogenous 

GSH and sensitivity for cell killing by UVA (Tyrrell and Pidoux, 1986, 1988) 

GSH levels modulate the levels of pre-mutagenic damage arising as a result of normal 

metabolism in cultured human cells and following UVA radiation (Applegate et al., 1992). It 

has been shown that in murine skin, GSH in both dermis and epidermis is depleted by UVA 

treatment (Connor and Wheeler, 1987). 

The protection mechanism of GSH is unknown. However, as the most important intracellular 

thiol, it may act directly by scavenging radicals by hydrogen donation, competing with 

protein thiols for oxidising species, or indirectly as a cofactor for a number of protective 

enzymes including glutathione peroxidases (GPxs involved in detoxification of H2O2 or 

organic peroxides) (Ursini et al., 1982; Tyrrell and Pidoux, 1988; Lautier et al., 1992; Jornot 

and Junod, 1993). Many of the radical or non-radical reactions in cells involving GSH may 

lead to thiol oxidation to the disulphide, i.e., the oxidation of GSH to form GSSG. Therefore 

the regeneration of GSH (catalysed by GSSG reductase), as well as the provision of essential 

reducing equivalents (NADPH) to this enzyme, are important in antioxidant defense. 
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1.4.1.2 Vitamins 

Antioxidant protection can also be achieved by vitamins that are available in our diet.  

Vitamin E, that is found mainly in green vegetables and cereal grains, is a major lipophilic 

antioxidant, that comprises at least eight isomers of tocopherol, from which α- tocopherol is 

the best characterized.  As well as inhibiting lipid peroxidation, α-tocopherol also acts as a 

scavenger of lipid peroxyl radicals (Cheeseman and Slater, 1993). It has also been 

demonstrated that α-tocopherol can inhibit the UVA-mediated lipid membrane damage 

(Morliere et al., 1991; Vile and Tyrrell, 1995). In vitro studies have demonstrated that α-

tocopherol is capable of reacting and quenching 
1
O2 (Grams and Eskins, 1972; Foote et al., 

1974), however the importance of this phenomenon in biological membranes remains to be 

established. In addition to the role of α-tocopherol in preventing lipid peroxidation in vivo, 

there is also weak evidence for the photoprotective effects of vitamin E in animal cells and 

tissues (Bissett et al., 1990; Record et al., 1991; Fryer, 1993). Some protective effects have 

been reported in rodent cells in culture against UVB-induced cytotoxicity (Sugiyama et al., 

1992), but not against DNA damage. Topical application of α-tocopherol acetate on the skin 

of mice prevented UVB-induced erythema and sunburn (Trevithick et al., 1992). UVA-

induced cytotoxicity could be inhibited only in the case of a photosensitivity disease i.e solar 

dermatitis (sun burn) by a water soluble vitamin E analog, Trolox C (Kralli and Moss, 1987). 

Nevertheless, in Pourzand‟s laboratory, it has been demonstrated that pre-treatment of 

cultured human primary fibroblasts with α-tocopherol-acetate could partially protect the cells 

against UVA-induced lysosomal damage and necrotic cell death (Zhong et al., 2004). 

Additionally, there is evidence that vitamin E, at least when applied topically to the skin, is 

able to protect partially against ozone-mediated lipid peroxidation (Thiele et al., 1997). α-

tocopherol is closely coupled to both vitamin C and thiol cycle for the generation and 

maintenance of sufficient levels of cellular reducing power.  

 

Vitamin C (ascorbic acid) is a hydrophilic antioxidant that exerts its effect by scavenging 

ROS i.e. O2
•-
 and OH

•
. Furthermore, vitamin C may have a role in preventing oxidative 

damage by acting synergistically with vitamin E. The GSH-dependent free radical reductase 

may also generate oxidised vitamin E. A dietary antioxidant mixture (vitamin E, vitamin C 

and GSH) clearly reduced the UVB-induced tumour multiplicity and increased the tumour 

latent period in mouse studies (Black et al., 1985), demonstrating the importance of the 

concept of interaction between different antioxidants. Ascorbate is able to react with a variety 
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of active oxygen species (Halliwell and Gutteridge, 1999). It is for example able to quench 

1
O2 (Chou and Khan, 1983), which is potentially an important way of protection in biological 

systems where 
1
O2 is produced in aqueous phase. However, in vitro studies have shown that 

ascorbate has prooxidant properties as it acts as an iron reductant to produce OH
•
. For 

example, ascorbate stimulates iron-dependent peroxidation of membrane lipids in certain 

circumstances (Muakkassah-Kelly et al., 1982; Basu-Modak et al., 1996). However, this has 

no major physiological relevance as any excess is excreted from the body (Halliwell and 

Gutteridge, 1999). The levels of vitamin C in human plasma were found to be around 10-100 

μM (Halliwell and Gutteridge, 1999). Good sources of vitamin C in our diet are vegetables 

and fresh fruits, especially tomatoes. 

 

Carotenoid pigments such as vitamin A (β-carotene) are lipid-soluble compounds 

which can protect cells against photosensitised reactions in different ways (Krinsky and 

Deneke, 1982), including quenching of triplet sensitisers, quenching of 
1
O2. This property is 

particularly important in the skin, since 
1
O2 is probably the primary species generated by the 

interaction of UV/visible radiation with the photosensitizer PPIX present close to the skin 

surface. Studies have also shown that β-carotene inhibits UV-induced epidermal damage and 

tumour formation in mouse models (Epstein, 1977; Mathews-Roth and Krinsky, 1987). The 

role of the antioxidant in protecting cells against UV-induced oxidative stress requires further 

clarification.  

 

1.4.2 Enzymatic antioxidants 

The enzymatic system of the skin acts by catalysing the decomposition of oxidants 

and free radicals into less reactive species. Mammalian detoxifying enzymes include 

glutathione peroxidases/reductases, superoxide dismutase, catalase and thioredoxin reductase.  

 

1.4.2.1 Glutathione peroxidase (GPx) / Glutathione reductase (GR) 

Glutathione peroxidases (GPxs) and associated enzymes form a family of selenium-

dependent hemoproteins which not only detoxify H2O2, but also reduce harmful 

hydroperoxides such as those resulting from lipid peroxidation (Ursini et al., 1995). 

Glutathione peroxidase (GPx) and Glutathione reductase (GR) are present at high 

concentrations in some parts of the human body i.e. liver, kidney, and whole blood. GPx, first 
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discovered in 1957, can be found in the cytoplasm and the mitochondria. It has four selenium 

atoms (Se), on its four protein subunits, which are responsible for its activity.  

GPx catalyses the reduction of H2O2 yielding oxidised glutathione (GSSG): 

 

It also catalyses the reduction of lipid hydroperoxides (Martinez-Cayuela, 1995): 

 

On the other hand GR, which is a cytosolic protein, contains flavin adenine dinucleotide 

(FAD), as its active site, on its two protein subunits. Whilst the conversion of GSH to GSSG 

is high in normal cells (Halliwell and Gutteridge, 1999), GR acts by reducing oxidised 

glutathione to GSH. 

 

GPx, according to studies by Leccia et al. (1993), can also significantly decrease the level of 

UVA-induced oxidative membrane damage (Leccia et al., 1993). Recently it has been shown 

that low doses of UVA radiation lead to an up-regulation of GPx activity, protecting cells 

against a subsequent challenge of higher doses of UVA (Meewes et al., 2001). In cultured 

human cells, GPx and SOD are not affected by UVA radiation; however catalase is very 

sensitive to UVA and could be inactivated as a result of the radiation insult (Tyrrell and 

Pidoux, 1989; Moysan et al., 1993). Enhancing GPx activity of cultured human cells by 

supplementing them with selenium provided protection against UVA-mediated damage 

(Leccia et al., 1993). Conversely, selenium deprivation of cells sensitized them to UVA- and 

H2O2 -mediated cytotoxicity and lipid peroxidation (Bertling et al., 1996).  

 

1.4.2.2 Superoxide dismutase (SOD) 

SOD exerts its activity by catalysing the reduction of O2
•-

 to less reactive H2O2 

(Martinez-Cayuela, 1995). 

 

In mammalian cells three SODs are present: SOD1, SOD2 and SOD3 (Raha and Robinson, 

2000). SOD1 is the cytosolic copper-zinc (CuZn)-containing superoxide dismutase 

(CuZnSOD), SOD2 is the intramitochondrial manganese (Mn) superoxide dismutase 

(MnSOD), and SOD3 is the extracellular CuZn superoxide dismutase (Halliwell and 

Gutteridge, 1999). The activity of SOD varies among the tissues and its activity is regulated 

through biosynthesis, which is sensitive to tissue oxygenation (Yu, 1994). Since SOD reduces 
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O2
•-
 to H2O2, the increase in SOD activity has been shown to be accompanied by an increase 

in catalase and/or GPx to prevent H2O2 formation (Amstad et al., 1991; Yohn et al., 1991).  

 

1.4.2.3 Catalase 

Catalase is composed of four protein subunits, each of which has a ferric (Fe
3+

) heme 

group bound to its active site (Halliwell and Gutteridge, 1999). It is present in all major body 

organs and at high concentrations in the liver. Catalase is mainly located in the peroxisome, a 

cellular organelle found in the cytoplasm bound by a single membrane. 

As mentioned in the previous section, H2O2 is the product of the dismutation of O2
•-
. Catalase 

acts by catalysing the direct decomposition of H2O2 to ground state oxygen and water 

reaction (Martinez-Cayuela, 1995): 

 

Also, there is evidence showing that catalase activity is strongly inhibited after UVA 

exposure, in cultured human fibroblasts and keratinocytes (Punnonen et al., 1991; Moysan et 

al., 1993; Shindo and Hashimoto, 1997). However, compared to GSH, catalase is less 

important for the protection of cells to oxidative damage, since it has been shown that when 

cells are deficient in catalase there is no decrease in cell survival after UVA radiation (Tyrrell 

and Pidoux, 1989; Peak and Peak, 1990). 

 

1.4.2.4 Thioredoxin (TRx) 

Thioredoxin is a small protein which, in its reduced form, has a general protein 

disulphide reductase activity via its two reactive thiol groups (Holmgren, 1985). It is 

generally concentrated in the ER and also can be found on the cell surface. TRx is also a 

major carrier of redox potential within cells (Kontou et al., 2004). Together with glutathione, 

they both maintain signaling components in a reduced state and are counter-balanced in 

signaling by oxidative stress, typically ROS (Jones et al., 2004). 

TRx has two reduced –SH groups, and is converted to an oxidised TRx with a disulphide (-S-

S-) in the presence of proteins (Halliwell and Gutteridge, 1999): 

 

Thioredoxin exerts its antioxidant activity by different pathways; it has been shown to 

possess a radical-scavenging activity (Schenk et al., 1994). It has been also involved in DNA 

repair, since it acts as a hydrogen donor for ribonucleotide reductase. It is also implicated in 
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protein repair since it provides electrons to methionine sulphoxide reductase, which repairs 

oxidative damage to methionine residues (Halliwell and Gutteridge, 1999). The 

thioredoxin/thioredoxin reductase (Trx/TR) system may also have a role in the cellular 

defence of skin against oxidative stress including UV radiation.  Thioredoxin reduces free 

radicals in human keratinocytes in vivo (Schallreuter et al., 1986). Thioredoxin expression is 

induced by oxidative stress, including H2O2 and UV (Spector et al., 1988; Nakamura et al., 

1994) in a variety of cell types in culture including keratinocytes. Also, a prognostic value for 

Trx has been described in malignant melanoma (Schallreuter et al., 1991). 

 

Owing to its metal-binding capacity, metallothionein (MT) could contribute to skin protection 

against phototoxicity injury. In fact, MT has been shown to be induced in vitro by UVC and 

UVB radiation (Stein et al., 1989; Hansen et al., 1997). Rodent cells with elevated levels of 

MT have been shown to have increased resistance to UVA radiation (Dudek et al., 1993). 

The induction of expression of this gene also seems to correlate with a resistance to killing by 

several mutagenic agents. However, basal MT levels may also function to regulate 

intracellular redox status in mammalian cells, since rodent MT-null cells showed enhanced 

sensitivity to oxidative stress (i.e. tert-butylhydroperoxide) as compared to normal cells (Lazo 

et al., 1995). 

 

Finally the copper-containing protein caeruloplasmin may represent an additional and distinct 

type of antioxidant behaviour, by oxidizing Fe
2+

 to Fe
3+

 (ferroxidase activity), thus 

preventing the iron from entering into a reversible redox system (Omoto and Tavassoli, 

1990). This may facilitate iron incorporation by iron-binding proteins (Boyer and Schori, 

1983; Samokyszyn et al., 1989). 

 

1.4.3 The inducible cellular defence  

 

1.4.3.1 Heme oxygenase (HO) 

Different forms of oxidative stress, including UVA radiation and H2O2, are capable of 

inducing gene expression in mammalian cells. Among these genes, heme-oxygenase (HO) 

has been shown to become highly activated under conditions of oxidative stress (Keyse and 

Tyrrell, 1990).   
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      Heme oxygenase (HO) is a microsomal isozyme that is the rate-limiting enzyme that 

catalyzes the degradation of heme (prooxidant) to biliverdin and carbon monoxide (CO), and 

the release of ferrous iron ions (Halliwell and Gutteridge, 1999): 

 

Biliverdin is then reduced, by biliverdin reductase, to bilirubin (an antioxidant) in the cytosol. 

Bilirubin has been discovered to account for the majority of the antioxidant activity of human 

serum (Gopinathan et al., 1994). With a decrease in the pH, the potency of bilirubin as a free 

radical scavenger is increased (Winrow et al., 1993). 

 The active site of HO is located on the cytoplasmic site of the ER (Hino et al., 1979). 

To date three isoforms of mammalian HO have been identified: HO-1, an inducible enzyme 

that is most highly concentrated in tissues that are heavily involved in the catabolism of heme 

proteins; HO-2, a non-inducible (in general; the constitutive) isoform that is thought to be 

particularly involved in signalling pathways; and HO-3 which has low catalytic activity and 

uncertain physiological role (Maines et al., 1986; McCoubrey et al., 1997). While HO-2 is 

believed to be the constitutive form of HO, HO-1 is a stress-induced enzyme (Keyse and 

Tyrrell, 1989).  

In 1989, Tyrrel and collegues identified HO-1 as the 32kD protein which is highly expressed 

following UVA and H2O2 treatments in human skin fibroblasts (Keyse and Tyrrell, 1989, 

1990). Both UVA and H2O2 release heme, the substrate of the HO-1 reaction, from 

microsomal heme-containing proteins and this correlates with UVA-mediated HO-1 

activation (Kvam et al., 1999). Further to this, Basu-Modak and Tyrrell (1993) have shown 

that UVA-mediated generation of 
1
O2 species plays a central role in activation of the heme 

oxygenase „decycling‟ 1 hmox-1, the gene that encodes HO-1. Furthermore, UVA irradiation 

in presence of D2O (an 
1
O2 enhancer), further increases accumulation of HO-1 mRNA, while 

UVA irradiation in the presence of sodium azide or histidine (
1
O2 quenchers) decreases HO-1 

expression (Basu-Modak and Tyrrell, 1993). Additionally, UVA treatment with beta 

carotene, the natural 
1
O2 quencher, suppresses UVA mediated HO-1 activation in human skin 

fibroblasts (Trekli et al., 2003). Taken together, these observations are consistent with the 

concept that both the substrate heme and UVA-mediated release of 
1
O2 play a major role in 

UVA mediated HO-1 activation (Raval, 2008). Moreover, studies by Ferris et al. (1999) 

showed that HO-1 absence leads to iron accumulation, whereas HO-1 overexpression 

decreases cellular iron levels (Ferris et al., 1999). Thus the protective effect of HO-1 

following oxidative stress can be mimicked by iron chelation. Interestingly, the enhanced 
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protective role of HO-1 is central to the development of an adaptive response that involves Ft. 

The overall effect of HO is to remove the pro-oxidant heme while generating the anti-

oxidant, bilirubin, and another pro-oxidant, iron that will be taken up by Ft. Vile et al. in 

1994 clearly demonstrated that when human skin fibroblasts were treated with HO-1 anti-

sense oligonunleotides, the UVA-induced increase in Ft levels was prevented as well as the 

adaptive response that leads to protection against oxidative damage (Vile et al., 1994). An 

additional study by Rothfuss et al. (2001) in human lymphocytes also demonstrated the 

functional involvement of HO-1 against the induction of oxidative DNA damage, but the 

exact mechanism remains to be elucidated (Rothfuss et al., 2001).  

In addition to HO-1, the other two constitutive isoforms, HO-2 (36 kDa) and HO-3 

(33 kDa) have also been extensively studied although their exact function has yet to be 

elucidated. So far, studies by Rotenberg and Maines (1991) and McCourbey et al. (1992, 

1993) have revealed that the amino acid sequences of HO-1 and HO-2 are around 40% 

similar and both isoforms display the same enzymatic activity and hence the molecular 

mechanism of the enzyme action should be analogous (Rotenberg and Maines, 1991; 

McCoubrey et al., 1997). Ishikawa et al. (1995), who expressed the human HO-2 protein in a 

bacterial expression system, suggested that the HO-2 catalytic mechanism of heme 

degradation is very similar to HO-1 (Ishikawa et al., 1995). Finally, in an HO-2 gene-deletion 

mouse model, HO-1 induction increased oxidative damage during hyperoxia by mechanisms 

that appeared to involve a two-fold increase in lung GSH and accumulation of redox active 

iron (Dennery et al., 1998), suggesting an indirect role for HO-2 in induction of oxidative 

damage. The function of the third isoform of heme oxygenase (HO-3) still remains unknown. 

The only proposed mechanism regarding its function is that since it contains a heme 

regulatory motif, it might be a heme sensing/binding protein (reviewed by McCoubrey et al., 

1997). 

 

1.4.3.2 Ferritin (Ft)  

Cairo et al. (1995) have suggested that liver Ft can act as a pro- or an anti-oxidant in a 

time-dependent manner. Treating Wistar rats with phorone, a glutathione-depleting drug that 

amplifies the effects of ROS, led to an early decrease in Ft. Interestingly, a 6-fold increase of 

Ft synthesis was shown as a late response (Cairo et al., 1995). Treatment of skin fibroblasts 

with UVA led to a total degradation of Ft (Pourzand et al., 1999b). However, Ft levels 

returned to normal six hours following UVA treatment. Then Ft levels increased up to 3-fold 

24-48h following UVA treatment (Vile and Tyrrell, 1993). Furthermore, it seems from 
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studies with different cell types: in the early stages of oxidative challenge including H2O2 

treatment, Ft might act as a pro-oxidant molecule since its degradation could be a potential 

source of iron involved in exacerbating the oxidative damage occurred in cells as a result of 

oxidative insult (Balla et al., 1992; Balla et al., 1993; Lin and Girotti, 1997; Garner et al., 

1998). The evidence for Ft acting as an antioxidant molecule is also overwhelming (reviewed 

in Arosio and Levi, 2002). Various studies have reported that different forms of oxidative 

challenge have demonstrated an increase in Ft levels, conferring resistance to the subsequent 

insult. It was demonstrated that the ferroxidase sites in H-Ft significantly reduces the 

production of OH
• 
from the Fenton reaction (Zhao et al., 2006).UV radiation has also been 

shown to increase Ft levels in both the epidermal and dermal tissue allowing increased 

protection against oxidative stress (Applegate et al., 1998). Further in vivo and in vitro 

studies demonstrated that acute UVA exposure increased in the long term the Ft levels in 

basal epidermal cells (Seite et al., 2004). Also, an increase in H- and L-Ft synthesis was 

observed after exposing Hela cells to H2O2 treatment and this overexpression in turn reduced 

the accumulation of ROS (Orino et al., 2001). It was suggested that Ft has an active role in 

regulating LIP levels and reducing ROS generation in human erythroleukemia cells (Kakhlon 

et al., 2001). Interestingly, L-Ft has been suggested to have an important role in the 

protection against oxidative damage due to the presence of an antioxidant-responsive element 

(ARE) in the human L-Ft gene, which was positively regulated by hemin (Hintze and Theil, 

2005). The ARE increases the expression of a diverse set of proteins involved in redox 

homeostasis such as TRx, HO and glutathione. 

Levi et al, (2001) have described a gene that encodes a mitochondrial ferritin (MtF) 

located inside the matrix of human mitochondria. MtF has been suggested to be responsible 

for the detoxification and the trafficking of iron in the mitochondria (reviewed in(Arosio and 

Levi, 2002). 

Since iron has an important role as a catalyst in oxidative reactions, iron transport- and 

storage-proteins may play an important part as constitutive and/or inducible antioxidant 

defense by keeping “circulating iron” low and in a non-toxic form. The intracellular storage 

protein Ft appears to play a critical role in this respect (see section 1.4.3.2).  
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1.5 Iron 

 

1.5.1 General aspects 

Iron is a transition metal that can exist in two stable configurations: electron donor 

ferrous (Fe
2+

) and electron acceptor ferric (Fe
3+

). The easy access to two oxidation states 

allows iron to act as a catalyst in mammalian cellular pathways that involve redox 

mechanisms (Richardson and Ponka, 1997; Hentze et al., 2004). 

Iron plays a key role in cell growth, respiration and replication. Many iron-containing 

proteins catalyze key reactions involved in energy metabolism (cytochromes, mitochondrial 

aconitase, iron-sulfur proteins of the electron transport chain), respiration (hemoglobin and 

myoglobin), and DNA synthesis (ribonucleotide reductase). And it is well known that iron 

depletion leads to G1/S cell cycle arrest and apoptosis (Le and Richardson, 2002). 

Additionally, iron-containing proteins are required for the metabolism of collagen, tyrosine 

and catecholamines (Richardson and Ponka, 1997). 

The total amount of iron in an average human body is about 4-5g (Trenam et al., 1992), the 

majority of which is incorporated into the heme complex which is present in proteins such as 

haemoglobin, myoglobin and cytochromes (Fig. 1.5). The other type of iron is non-heme iron 

that is found in (4Fe–4S) cluster proteins such as iron regulatory proteins (IRPs), transferrin 

(Tf), ferritin (Ft) and hemosiderin (Cairo et al., 2006). 

In addition, there is now a strong evidence for the existence of a pool of “free” transit ionic 

iron known as the labile iron pool “LIP”. The cellular LIP in quiescent conditions comprises 

only minor fractions of the total cellular iron (i.e. less than 5%) (Kakhlon and Cabantchik, 

2002; Kruszewski, 2003). 

 

Labile iron pool (LIP):  

The intracellular LIP which exists at concentrations of 0.1-1µM , is defined as a pool 

of redox-active iron complexes and it was first suggested by Jacobs (1977) as an intermediate 

or transitory pool between extracellular iron and cellular iron associated with proteins 

(Jacobs, 1977). Iron belonging to this intracellular pool is considered to be in steady-state 

equilibrium, loosely bound to low-molecular-weight compounds, accessible to permeant 

chelators and metabolically and catalytically reactive (Breuer et al., 1996; Epsztejn et al., 

1997; Cairo and Pietrangelo, 2000; Petrat et al., 2001). Cabantchik and coworkers have 
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defined LIP operationally as a cell chelatable pool that comprises both ionic forms of iron 

(Fe
2+

 and Fe
3+

) associated with a diverse population of ligands such as organic anions 

(phosphates and carboxylates), polypeptides, and surface components of membranes (e.g. 

phospholipid head groups) (see Kakhlon and Cabantchik, 2002; Kruszewski, 2003). This 

definition implies that LIP can not only potentially participate in redox cycling but also be 

scavenged by permeant chelators. The latter properties form the basis for the quantification of 

the cellular LIP (Kakhlon and Cabantchik, 2002; Kruszewski, 2003).  

Labile iron pool is associated with important functions: (a) physiologically, as readily 

available sources of iron for incorporation into proteins; (b) pharmacologically, as targets for 

chelators or metal scavengers; and (c) toxicologically, as vehicles for promoting the 

formation of free radicals. 

However, labile iron in excess can be highly toxic due to its ability to react with ROS such as 

O2
•-
 and H2O2 giving rise to OH

• 
via Haber-Weiss and Fenton reactions (Halliwell and 

Gutteridge, 1999). Such highly ROS are capable of interacting with most biomolecules that 

results in damage in cells, tissues and organs (Shinar and Rachmilewitz, 1990; Wong et al., 

1999). In contrast to the intracellular LIP, there is also the presence of the extracellular LIP, 

which is often associated with pathological conditions. This form of LIP has been originally 

observed in iron-over-load β-thalassemia patients whose plasma Tf iron-binding capacity was 

surpassed (Hershko et al., 1978). Further to -thalassemia, other conditions of iron imbalance 

have been defined (i.e. hemochromatosis), in which the LIP has been found to be bound to 

ligands other than Tf as non-Tf bound iron. Finally there is evidence for age-related 

accumulation of LIP associated with rheumatoid arthritis (Guillen et al., 1998).  

Therefore, the pool of reactive iron in cells is strictly regulated by specialised proteins which 

transport and store iron in a soluble and non-toxic form (Richardson and Ponka, 1997).  
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Figure 1.5: Diagrammatic representation of iron distribution in the body. Reproduced with 

the permission of Dr Pourzand. 
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1.5.2 Iron and oxidative stress 

The LIP is able to induce oxidative stress through its ability to increase the rate of 

reactions to produce ROS, giving rise to a highly reactive OH
•
 via the Fenton reaction (2) or 

the Haber-Weiss reaction (3) 

2

23
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O  +  Fe  Fe  + O             


                  (1)            




3-2
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Fe  +  OH  OH  Fe  + OH         

    
  (2)            (Fenton reaction) 

 Net:  2

-Iron

22

-

2
O  +  OH  OH   OH   O         



   (3)      (Haber-Weiss reaction)    

(Halliwell and Gutteridge, 1999) 
 

And, vice versa, Oxidative stress in the form of UV light has been shown to accumulate iron. 

UVB radiation was shown to increase the skin level of non-heme iron (Bissett et al., 1991)  

and UVA radiation caused an immediate increase in 'free' iron in fibroblast (Pourzand et al., 

1999b). Such highly ROS are capable of interacting with most biomolecules, depending on 

the site of bound iron, including sugars, lipids, proteins, and nucleic acids. These interactions 

that promote various harmful processes in cells such as lipid peroxidation, protein oxidation, 

DNA/RNA oxidation and DNA lesions, ultimately overwhelm the cellular antioxidant 

defense mechanisms and lead to cell damage and death. As a consequence of these reactions, 

high levels of iron have been identified as a risk factor for the development of cancer 

(Toyokuni, 1996). Numerous studies across a variety of populations have found a positive 

correlation between iron stores in the body and risk of the development of a range of cancers 

including colorectal, liver, kidney, lung and stomach cancers (Richardson et al., 2009). 

Furthermore, the pathological consequences of iron-catalyzed oxidative damage are 

recognised in diseases such as hepatitis, hemochromatosis, liver cirrhosis, cancer and 

neurodegenerative disease (Bacon and Britton, 1990; Kowdley, 2004; Gaeta and Hider, 2005; 

Kalinowski and Richardson, 2005; Valko et al., 2006; Valko et al., 2007; Molina-Holgado et 

al., 2008). Excess iron may also aggravate diabetes, cancer, cardiovascular disease and 

alcoholic and non-alcoholic steatohepatitis (Swanson, 2003; Kohgo et al., 2005; Petersen, 

2005; Brewer, 2007; Imeryuz et al., 2007). The presence of excess iron has also been 

demonstrated in a variety of skin disorders such as psoriasis (Molin and Wester, 1973), 

venous ulceration (Ackerman et al., 1988) and atopic eczema (David et al., 1990), indicating 

the involvement of iron in the pathology of skin. 
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To minimise damage caused by labile iron, cellular iron levels are tightly regulated in order 

to maintain an adequate substrate for vital cell functions, while also minimising the pool of 

potentially toxic LIP.  

 

1.5.3 Overview of iron homeostasis  

 

1.5.3.1 Systemic iron absorption, recycling and storage 

Due to the dual role of iron, there are strict control mechanisms that maintain 

appropriate iron levels by means of a complex network of transporters, storage molecules and 

regulators that coordinately govern iron absorption, iron recycling, and the mobilisation of 

stored iron. Any disruption in these processes causes a variety of disorders associated with 

iron deficiency or overload (Camaschella, 2005; Piccinelli and Samuelsson, 2007; Andrews, 

2008; De Domenico et al., 2008; MacKenzie et al., 2008).  

Iron is absorbed by enterocytes in the small intestine (Yu et al., 2007). In the diet iron exists 

as either heme or non-heme (inorganic) iron (Yu et al., 2007). There are two separate 

pathways that facilitate the absorption of these two forms of dietary iron (Recalcati et al., 

2010) (Fig. 1.6). The majority of the non-heme iron is in the Fe
3+

 form, which needs to be 

reduced in the duodenal lumen by the postulated ferrireductase, Duodenal cytochrome b 

(Dcytb) (Recalcati et al., 2010) which catalyses the conversion of Fe
3+

 to Fe
2+

(Richardson et 

al., 2009).Although studies in Dcytb-knockout mice have found that the activity of this 

enzyme is not critical for the uptake of dietary iron (Frazer et al., 2005; Gunshin et al., 2005) 

suggesting the presence of an alternative ferrireductase (Richardson et al., 2009). Once iron is 

in the  Fe
+2

 form , it is able to be transported into enterocytes via the divalent metal ion 

transporter (DMT1) that is expressed on the apical pole of enterocytes in the proximal 

duodenum (Mims and Prchal, 2005). Uptake of iron through DMT1 is regulated at the mRNA 

level, in part, by the iron-regulatory proteins 1 and 2 (IRP1 and IRP2). On the other hand, 

heme iron is thought to be transported to the cell by heme carrier protein 1 (HCP1) that was 

recently identified in the apical membrane of duodenal enterocytes (Shayeghi et al., 2005; 

Latunde-Dada et al., 2006). However, while this protein appears to transport heme, there is 

no strong evidence as yet that it is a physiologically-relevant mechanism. In addition, a latter 

study demonstrated that HCP1 was a folate transporter (Qiu et al., 2006), questioning its role 

in heme metabolism (Andrews, 2007), or suggesting that it transports both heme and folate 

(Richardson et al., 2009). Once internalized, heme is metabolized by HO to release iron, 
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carbon monoxide (CO) and bilirubin (section 1.4.3.1) (Yu et al., 2007). After transport into 

the enterocyte, these forms of iron are consolidated to form the intracellular LIP consisting of 

Fe
2+

 and Fe
+3

 in redox equilibrium (St Pierre et al., 1992). Iron is either stored in Ft or 

transported out of the enterocyte into the blood via the basolateral  iron export protein, 

ferroportin-1 (FP1) (Hugman, 2006). The intracellular ferroxidase, hephaestin, also appears 

to be involved in this process, although its exact contribution remains unclear (Vulpe et al., 

1999; Han and Kim, 2007). Once at the surface of the enterocyte, Fe
2+

is converted back to 

Fe
3+

by means of multicopper oxidases (ceruloplasmin in the circulation and hephaestin on the 

basolateral membrane of enterocytes) (Recalcati et al., 2010). To keep to a minimum the 

level of unbound iron, and its consequent redox activity, body iron is either incorporated to 

Tf or recycled for heme synthesis as found in hemoproteins and myoglobin, haemoglobin 

being the major protein, or stored in the safe form in Ft in liver. 
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Figure 1.6: Schematic diagram of the pathways of absorption of heme and non-heme iron 

from the gut lumen to the portal circulation (Adapted from(Syed et al., 2006). 

Heme enters the cells via the Heme Carrier Protein 1 (HCP1) which is expressed in the apical membrane of 

duodenal epithelial cells, and is degraded by Heme Oxygenase (HO) to yield ferrous iron inside the cell.  Iron 

enters the LIP where it may be then stored in Ferritin (Ft) or transferred to the plasma and tissues via Ferroportin 

1 (FP1) aided by Hephaestin (Hp) which exhibits ferroxidase activity. The enterocytes of the lumenal brush 

border contain an enzymatic ferric reductase activity, apparently the cytochrome b-like protein Dcytb, to ensure 

that non-heme iron is reduced when it is in the ferric state. Divalent Metal Transporter (DMT1) is the apical 

major ferrous transporter, which is responsible for transporting iron into cells. 

HCP1: heme carrier protein 1; Dcytb: duodenal cytochrome b; FP1: ferroportin 1 (=Ireg1); Hp: hephaestin; Tf: 

transferrin; Ft: Ferritin; DMT1: divalent metal transporter 1  
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1.5.3.2 Cellular iron uptake and storage 

Cells which require iron express the transferrin receptor-1 (TfR1) on their surface, 

which binds two molecules of Tf (Yu et al., 2007) . Tf has a high affiniy for Fe
+3

 (Kd= 10
-23

 

mol/L) and its primary function is to accept iron from plasma (and become the diferric  form) 

and to transport iron into various cells and tissues, by binding to TfR1 . The Tf-TfR1 

complex is then internalized by receptor-mediated endocytosis, where the diferric Tf-TfR1 

complex is taken into the cell (Klausner et al., 1983a; Klausner et al., 1983b; Kalinowski and 

Richardson, 2005). Once in the endosome, the pH decreases via a proton pump present on the 

endosomal membrane allowing the Fe
3+ 

to dissociate from the Tf-TfR1 complex. The 

endosomal ferrireductase, six-transmembrane epithelial antigen of the prostate-3 (Steap3) 

(Ohgami et al.,  2005), is thought to convert Fe
3+ 

to Fe
2+ 

in the endosome, allowing Fe
2+ 

to be 

transported out of the endosome by DMT1 (Gunshin et al., 1997). Once in the cell, Fe
2+

can 

either be directly stored in iron storage protein Ft or it can first enter the intracellular LIP and 

then be subsequently stored in Ft (Harrison and Arosio, 1996). Alternatively the newly 

entered ferrous iron can be used in the synthesis of various proteins and enzymes such as 

ribonucleotide reductase (RR) (Yu et al., 2006). The endosome containing the Tf–TfR1 

complex then undergoes exocytosis to recycle TfR1 and return the apo-Tf to the bloodstream 

where it is able to bind more iron from the liver (Eisenstein, 2000) (see Fig. 1.7). 
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Figure 1.7: Schematic diagram illustrating the mechanisms involved in iron uptake. 

(Adapted from (Kalinowski and Richardson, 2005) 

1- Transferrin (Tf) binds two atoms of Fe
3+

 with high affinity. 2- Two molecules of diferric Tf bind to the 

Transferrin Receptor 1 (TfR1) on the cell surface. 3- The Tf-TfR1 complex formed is internalized into an 

endosome. 4- Within the endosome, iron is released from Tf following the decrease in intravesicular pH. 5- Iron 

transfers from Tf to Divalent Metal ion Transporter (DMT1) and is released in the Fe
2+ 

form.  6- DMT1 

transports Fe
2+

 across the endosomal membrane into the cytosol. 7- Apo-Tf is released into the plasma via 

exocytosis, whereby TfR1 returns to the cell surface.  
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1.5.3.3 Iron homeostasis  

Mammalian cells maintain steady levels of metabolically active iron through the 

regulation of iron uptake and storage. The pathway of iron uptake via TfR and the iron 

storage in Ft are co-ordinately regulated at the post-transcriptional level by cytoplasmic 

factors known as iron regulatory proteins (IRPs). These regulatory mechanisms operate in 

order to prevent the expansion of the intracellular LIP, but still secure adequate supply of iron 

for the synthesis of iron-dependent proteins. 

 

Transferrin (Tf) 

Tf belongs to a family of related-binding proteins that includes: (a) serum Tf which 

binds iron in the circulation (b) lactoferrin, which is found both intracellularly and in 

secretions such as milk, tears and semen; (c) ovotransferrin, which is present in egg white and 

(d) melanotransferrin, which is formally known as tumour antigen p97. These proteins share 

a high degree of sequence homology. 

Serum Tf is the plasma iron-binding glycoprotein, it is synthesised in hepatocytes and 

functions as the major vehicle for transfer of iron in the body between sites of absorption, 

storage and use. It is normally the only source of iron for hemoglobin synthesis.  

Human serum Tf is a monomeric glycoprotein with a molecular weight of 80 kDa of which 

6% is carbohydrate (MacGillivray et al., 1983). It is encoded by gene on chromosome 3 

(Yang et al., 1984; Schaeffer et al., 1987). Tf is a bilobal molecule and only one Fe
3+

 attaches 

to one of the two globular domains with high affinity at physiological pH (Kd=10
−23

 M) at 

sites located in the N and C lobes of the protein (Morgan, 1983; Richardson and Ponka, 

1997). Transferrin exists as a mixture of iron-free (apoTf), one iron (monoTf) and two iron 

(difericTf) forms of the molecule. The binding of Fe
+3

 to Tf is a pH-dependent process 

(Chasteen, 1983). 

In defined chemical systems iron can be released from Tf by three mechanisms i.e. (i) 

reduction of pH with resultant protonation of the iron-ligand bonds,  (ii) reduction of Fe
+3

 to 

Fe
+2

, and (iii) direct chelation by a stronger Fe-binding ligand (Aisen and Listowsky, 1980). 

There is strong evidence to indicate that Fe
+3

 is released from Tf via a decrease in pH in the 

endosome, leaving only apoTf (Huebers et al., 1978). 

Tf has three major functions: (1) it allows ferric iron to remain soluble i.e. in an aqueous and 

pH neutral plasma environment, (2) it allows iron to circulate in the safe form, and (3) it 

facilitates the cellular import of iron (Heeney and Andrews, 2004). The primary function of 
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Tf is to accept iron from plasma and to transport iron into various cells and tissues, by 

binding to membrane receptors (TfRs, see below). 

There are several processes of iron uptake from Tf which have been identified in normal and 

neoplastic cells. The main process was consistent with saturable binding of Tf to the TfR1 

and subsequent internalization of the protein via receptor mediated endocytosis (RME). 

However, a second process of iron uptake from Tf has also been identified which increases 

after saturation of the TfR1 (Page et al., 1984; Trinder et al., 1986; Richardson and Baker, 

1990, 1994). It was suggested that this mechanism was consistent with adsorptive pinocytosis 

of Tf (Richardson and Baker, 1994). The control of iron uptake by the TfR1 is determined by 

the number of TfRs on the plasma membrane and the affinity of the TfR1 for Tf may play a 

role in controlling iron uptake in some cell types (Kwok and Richardson, 2002). It has been 

suggested that Tf may protect against oxidative damage by binding to iron and preventing 

oxidative reactions catalysed by iron (Klausner et al., 1993; Kuhn, 1994). 

 

Transferrin receptor (TfR) 

Transferrin receptors (TfRs) provide controlled access of Tf to the cells. There are 

two forms of TfR, TfR1 and TfR2 (Kawabata et al., 1999; Fleming et al., 2000; Kawabata et 

al., 2000) that have a distinct cell- and tissue-specific pattern. However, TfR2 was only 

described in 1999 in liver, liver-derived and human erythroleukemia K562 cell lines and is 

much less abundant than TfR1. So TfR1 has been the most studied one and was simply 

designated the TfR.  

TfR is ubiquitously expressed in all cell types apart from mature erythrocytes and other 

terminally differentiated cells. It comprises two transmembrane glycoprotein subunits, 

covalently linked by S-S bonds. Each subunit has a MW of 90 kDa and binds one molecule of 

Tf (Enns and Sussman, 1981). The TfR subunits are encoded by genes on chromosome 3. Tf 

binds to the TfR at the cell surface and is internalised through clathrin-coated pits into 

endosomes.  
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Ferritin (Ft) 

Most of the iron that is not metabolised is stored in Ft in order to prevent the 

formation of toxic free radical species (Kwok and Richardson, 2002). Therefore Ft plays a 

dual role in LIP homeostasis, acting on one hand as an iron-sequestering protein and on the 

other hand as a potential source of LIP. Ft is the major iron storage protein, ubiquitous in 

mammalian cells and is tightly regulated by IRPs and it is found in the cytoplasm, 

mitochondria and nucleus of cells (Arosio et al., 2009). 

Ft is composed of a protein shell (MW between 430 and 460 kDa) that can accommodate up 

to 4500 atoms of iron in the ferric form in its internal cavity as ferric-oxyhydroxide 

phosphate. Ft is made up of 24 subunits of two types, a light L-subunit (MW 19 kDa) and a 

heavy H-subunit (MW 21 kDa) (Munro and Linder, 1978; Theil, 1987; Drysdale, 1988). The 

Ft molecule has an internal diameter of 70–80 Å and an external diameter of 120–130 Å. The 

entry and exit of iron may occur via channels in the protein shell, and these are found on the 

three-fold and four-fold symmetry axes. There are six four-fold channels which are 

hydrophobic in nature plus eight three-fold channels that are hydrophilic, and all of these 

channels are approximately 3–4 Å in diameter (Richardson and Ponka, 1997). 

Mammals have three functional Ft genes: FTH on human chromosome 11 encodes the 

cytosolic heavy chain (H-chain) of 183 amino acids, FTL on chromosome 19 encodes the 

cytosolic light chain (L-chain) of 175 amino acids, and the intronless MtF gene on 

chromosome 5 encodes the precursor of the mitochondrial ferritin (MtF) of 242 residues (the 

latter to be discussed below) (Richardson and Ponka, 1997). 

Cytosolic Ft is composed of 2 subunits; H and L, which have approximately 50% sequence 

identity. The H-subunit has a high affinity for Fe
3+

 (Kd = 10
-25

 mol/L), and has the catalytic 

site with ferroxidase activity that converts Fe
+2

 to Fe
+3 

(Lawson et al., 1989). In contrast, the 

L-subunit has no ferroxidase activity but has a nucleation site that is involved in the 

formation of the iron core (Levi et al., 1992) and has more iron storage capacity. The H- and 

L-chains co-assemble in different proportions generating a large number of isoferritins, 

probably formed by subunit homodimers, (H24L0, H22L2, H0L24) with tissue-specific 

distributions. Modification of the proportion of H- and L-subunits in the Ft shell may allow 

the cell to adjust to changes in iron requirement (Drysdale, 1988). An increase in the 

proportion of the L-subunit is associated with iron storage and is found mainly in spleen and 

liver, whereas the H-subunit is more abundant when iron is required  for cellular metabolism 

and is found mainly in heart and brain (Jones et al., 1978; Wagstaff et al., 1978; Drysdale, 

1988; McClarty et al., 1990).  
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The process of iron release from Ft may involve iron reduction and/or chelation, and it has 

been suggested that the degradation of Ft is necessary for iron to be released (Raja et al., 

1986). Ft mRNA molecules are subjected to translational or “post-transcriptional” control by 

iron (Zahringer et al., 1976; Aziz and Munro, 1986).  

Studies on cytosolic Ft overexpression have revealed that H-Ft could regulate cell growth 

based on its potential to modulate the intracellular LIP levels (Epsztejn et al., 1999; Cozzi et 

al., 2000; Kakhlon et al., 2001). Marked overexpression of H-Ft in HeLa cells attenuated cell 

growth in a manner that is dependent on its ferroxidase activity to incorporate iron (Cozzi et 

al., 2000), whereas moderate overexpression of H-Ft, as well as partial repression of H- and 

L-Ft, produced no significant effect on cell growth (Epsztejn et al., 1999; Cozzi et al., 2000; 

Kakhlon et al., 2001). 

While Ft is mainly an intracellular protein, small amounts exist in the serum, and this 

is usually proportional to the quantity of iron in stores (Jacobs and Worwood, 1975). Serum 

Ft is increased in cases of iron overload and inflammation, but its function is obscure 

although it may play a role in regulating blood vessel formation (Coffman et al., 2009). It is 

controversial whether serum Ft represents a different gene product or a glycosylated form of 

the intracellular protein that is routed along a secretory pathway (Linder et al., 1996; Tran et 

al., 1997). 

 

In addition to Ft, iron overloaded cells, in conditions such as hereditary 

hemochromatosis, may contain another storage form of iron called hemosiderin. Hemosiderin 

is a degradation product of Ft under conditions of iron excess; Ft is taken-up by lysosomes 

where it undergoes a partial dissolution of the core resulting in the formation of insoluble 

hemosiderin (Hoffman et al., 1991; Harrison and Arosio, 1996).  

 

In 2001, Levi et al. reported a new Ft gene for mitochondrial Ft (MtF) (Levi et al., 

2001). It is known that the mitochondrion is vital for heme synthesis and for playing a critical 

role in the genesis of (Fe-S) clusters. The recently discovered MtF may store iron in ring 

sideroblasts and have a role to regulate the level of iron needed for these functions. 

MtF is encoded by an intronless gene on chromosome 5q23.1, and shows 79% identity with 

H-Ft and 63% identity with L-Ft (Levi and Arosio, 2004). Its 3D structure is very similar to 

that of H-Ft with some differences in localization and presence of metal-binding sites 

(Langlois d'Estaintot et al., 2004). The protein is synthesised as a 30 kDa precursor that is 

targeted to mitochondria by a leader sequence of 60 amino acids where it is processed into a 
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typical Ft shells. The leader sequence is cleaved in the mitochondrion to produce 22kDa 

subunits that have a ferroxidase center and form homopolymeric Ft shells that bind Fe like Ft 

H-chain (Corsi et al., 2002). Unlike cytoplasmic Ft, MtF mRNA lacks an iron responsive 

element (IRE) and may be transcriptionally regulated by iron (Corsi et al., 2002; Drysdale et 

al., 2002). 

MtFt expression is correlated with tissues that have high numbers of mitochondria (e.g. testis) 

rather than with tissues involved in iron storage (e.g. the liver and the spleen) (Napier et al., 

2005) which suggests that MtFt may play a protective role against iron-mediated oxidative 

damage (Santambrogio et al., 2007). Interestingly, MtF was shown to be highly expressed in 

sideroblasts of patients with X-linked sideroblastic anemia (XLSA) but not in normal 

erythroblasts (Levi et al., 2001; Cazzola et al., 2003). 

MtFt overexpression resulted in decreased cytoplasmic Ft, increased TfR1 expression, 

decreased heme synthesis, and increased iron-loading of MtFt. This effect not only alters 

mitochondrial iron metabolism, but also the whole-cell iron metabolism (Nie et al., 2005), 

leading to a cytosolic iron-deficiency and reduced proliferation in neoplastic cells over-

expressing MtFt in vivo (Nie et al., 2006). 

 

Iron Regulatory Proteins (IRPs) 

As iron is required for a variety of cellular processes, a balance between iron uptake, 

usage, and storage must be maintained. Therefore alterations in LIP are normally sensed by 

the cytosolic iron regulatory proteins 1 and 2 (IRPs) which function as post-transcriptional 

regulators of both iron uptake via the TfR and iron sequestration by the iron-storage protein 

Ft (Klausner et al., 1993; Kuhn, 1994; Guo et al., 1995). IRP1 is a monomeric cytoplasmic 

protein (MW=90–95 kDa) (Leibold and Munro, 1988; Walden et al., 1989; Barton et al., 

1990) that resembles mitochondrial aconitase in sequence (Hentze and Argos, 1991; Kaptain 

et al., 1991; Rouault et al., 1991; Haile et al., 1992a; Haile et al., 1992b), and has been found 

in all cells and tissues so far tested (Rothenberger et al., 1990; Mullner et al., 1992). IRP-1 

can assemble an (4Fe–4S) cluster and is enzymatically active (Kaptain et al., 1991). 

Depending on its iron content, IRP1 can act either as an RNA-binding protein or as a 

cytoplasmic aconitase (Kuhn, 1994). Whereas IRP2 that has a MW of 105 kDa (Henderson et 

al., 1994) does not show any aconitase activity and does not accumulate an (4Fe–4S) cluster. 

Human IRP2 is 57% identical and 79% similar to IRP1 in amino acid sequence (Rouault et 

al., 1992).  
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Both IRP1 and IRP2 regulate the expression of crucial proteins involved in iron 

homeostasis. This is attained by the binding of the IRPs to hairpin-loop structures known as 

iron-responsive elements (IREs) located in the 5‟ or 3‟untranslated regions (UTRs)  of 

several mRNAs including those encoding the Ft H- and L-subunits and TfR1 (Hentze et al., 

2004). The binding of IRP1 and IRP2 to the IRE is controlled by intracellular iron levels. 

This iron-mediated regulatory feedback mechanism allows cells to achieve and maintain a 

desired intracellular iron level (Hentze et al., 2004). Under high intracellular iron levels, 

IRP1 assemble a (4Fe–4S) cluster, which results in the loss of IRE-binding ability, imparting 

aconitase activity (Hentze et al., 2004). In contrast, IRP1 of iron-depleted cells does not 

contain this (4Fe–4S) cluster and hence is able to bind to IREs (Fig. 1.8). The binding affinity 

of IRP2 to IREs is similar to that of IRP1, although this protein does not have a (4Fe–4S) 

cluster. IRP2 protein is rapidly degraded in iron-depleted cells via the proteasomes (Hentze et 

al., 2004).  

As mentioned previously, IRPs are able to bind to IREs located at the 3‟ or 5‟ end of mRNA, 

either increasing mRNA stability or inhibiting translation and consequently regulate protein 

expression (Richardson and Ponka, 1997; Hentze et al., 2004). Under conditions of iron 

deficiency, IRPs are able to bind to IREs located at the 3‟ end of mRNA-encoding iron-

uptake proteins, protecting the molecule from exonuclease activity and hence improving 

mRNA stability (Richardson and Ponka, 1997; Hentze et al., 2004). This increases the 

expression of TfR1 and other proteins involved in iron uptake, thus elevating intracellular 

iron levels. In iron-replete cells, IRPs bind to IRE within the 5‟ untranslated region of Ft 

mRNA, sterically hindering translation, which allows the cell to use the iron that is present 

(Hentze et al., 2004). On the other hand, when iron is abundant, IRPs cannot bind to IREs 

located at the 3‟end of mRNA of iron-uptake proteins, allowing for mRNA degradation and 

subsequently a decrease in intracellular iron levels (Hentze et al., 2004). Simultaneously, 

under high iron levels, IRPs can no longer bind to the 5‟ end of Ft mRNA, increasing Ft 

expression and levels of iron in storage (Kalinowski and Richardson, 2005). 

Other proteins that process stem-loop structures either on the 5‟ or 3‟ untranslated portion of 

their mRNA include erythroid 5-aminolevulinic acid synthase (ALA-synthase, involved in 

heme biosynthesis;(Cox et al., 1991), mitochondrial aconitase (Dandekar et al., 1991)and 

DMT-1 (reviewed by(Sheth and Brittenham, 2000). Additional IRE sequences have also been 

identified in ferroportin1 (FP1, also known as IREG1 and MTP1) (Donovan et al., 2000; 

McKie et al., 2000) which plays a role in iron efflux across membranes to plasma but their 

function in IRP binding has not yet been determined. An important finding correlating IRP 
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and 5-ALA was also observed by (Pourzand et al., 1999a). They demonstrated that there is a 

strict dependence on enhancement on LIP levels by photoporphyrin IX (PPIX) and the level 

of IRP activation. They proposed that the level of IRP activation could serve as a better 

marker for iron deficiencies than TfR expression since it is directly correlated with the level 

of intracellular LIP. 

Relative ratios of IRP1/IRP2 differ between tissues, with IRP1 being the most abundant in 

liver, kidney, intestine and brain, and the least abundant in pituitary and pro-B-lymphocytic 

cell lines (Thomson et al., 1999). 
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Figure 1.8: The schematic presentation of regulation of Ferritin and Transferrin receptor 

mRNAs translation during high and low intracellular labile iron conditions (Adapted from 

Kwok and Richardson, 2002). 

An increase in iron supply will cause inactivation of IRP-1 (and degradation of IRP-2, not shown), leading to 

the induction of Ferritin (Ft) mRNA translation and degradation of Transferrein receptor (TfR) mRNA, resulting 

in decreased levels of intracellular labile iron pool (LIP). Conversely, under conditions of iron deprivation, IRPs 

bind to IREs, leading to inhibition of Ft mRNA translation and induction of TfR protein synthesis  
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1.5.4 Cancer cell iron metabolism  

Compared to normal cells, neoplastic cells require a greater amount of iron because 

generally they proliferate at a greater rate than their normal counterparts (Le and Richardson 

2002; Kalinowski and Richardson, 2005). Therefore there are a significant number of 

alterations in the metabolism of iron in tumour cells (reviewed by(Kwok and Richardson, 

2002). 

 

1.5.4.1 Transferrin and cancer 

Transferrin (Tf) which is the major iron transport protein in the plasma, is a growth 

factor required for all proliferating cells due to its high iron binding properties (Aisen and 

Listowsky, 1980; Richardson and Ponka, 1997). For this reason, Tf is a vital requirement in 

defined medium for the growth of cultured cells (Barnes and Sato, 1980). Furthermore, extra-

hepatic tissues such as T4 lymphocytes and Sertoli cells synthesize Tf, which may permit 

specialised proliferation and differentiation (Skinner and Griswold, 1980; Lum et al., 1986).  

The human basal cell carcinoma (BCC) line MCF-7 secretes a factor which is 

immunologically identical to Tf, and its secretion is enhanced by 17β-oestradiol (OES) and 

reduced by the anti-oestrogen 4-hydroxy-tamoxifen (Vandewalle et al., 1989). It has been 

suggested that Tf secreted by BCC may act as an autocrine growth factor by conferring a 

selective advantage to rapidly proliferating BCC and permitting tumour growth in poorly 

vascularised areas (Vandewalle et al., 1989). Similarly, other cancer cell types, including 

small cell carcinoma (Vostrejs et al., 1988) and T-lymphoma cells (Morrone et al., 1988), 

also secrete Tf and an autocrine function was proposed. In small cell carcinoma, Tf secretion 

increased more than 10-fold when the cells entered the active phase of the cell cycle (Vostrejs 

et al., 1988). However more studies are needed to determine whether Tf plays an important 

role in proliferation as an autocrine growth factor, or whether it represents a general up-

regulation of gene expression related to neoplastic transformation (Kwok and Richardson, 

2002). 

 

1.5.4.2 Oestrogen-inducible transferrin-receptor-like protein 

Poola and colleagues (Poola and Lucas, 1988; Poola et al., 1990; Poola and Kiang, 

1994; Poola, 1997) identified an OES-inducible Tf-binding protein that had limited homology 

(10%) to the TfR1 in chick oviduct cells and BCC. This protein acts like TfR1 during RME 

(Poola et al., 1990) (i.e. in terms of binding to diferric Tf and releasing apoTf) which may 

file:///F:/Asma%20Aroun%20PhD.docx%23_ENREF_134
file:///F:/Asma%20Aroun%20PhD.docx%23_ENREF_134
file:///F:/Asma%20Aroun%20PhD.docx%23_ENREF_108
file:///F:/Asma%20Aroun%20PhD.docx%23_ENREF_296
file:///F:/Asma%20Aroun%20PhD.docx%23_ENREF_296
file:///F:/Asma%20Aroun%20PhD.docx%23_ENREF_5
file:///F:/Asma%20Aroun%20PhD.docx%23_ENREF_5
file:///F:/Asma%20Aroun%20PhD.docx%23_ENREF_447
file:///F:/Asma%20Aroun%20PhD.docx%23_ENREF_35
file:///F:/Asma%20Aroun%20PhD.docx%23_ENREF_491
file:///F:/Asma%20Aroun%20PhD.docx%23_ENREF_332
file:///F:/Asma%20Aroun%20PhD.docx%23_ENREF_546
file:///F:/Asma%20Aroun%20PhD.docx%23_ENREF_546
file:///F:/Asma%20Aroun%20PhD.docx%23_ENREF_556
file:///F:/Asma%20Aroun%20PhD.docx%23_ENREF_367
file:///F:/Asma%20Aroun%20PhD.docx%23_ENREF_132
file:///F:/Asma%20Aroun%20PhD.docx%23_ENREF_132
file:///F:/Asma%20Aroun%20PhD.docx%23_ENREF_296
file:///F:/Asma%20Aroun%20PhD.docx%23_ENREF_296


Page | 48  

 

suggest a possible role in iron uptake. The TfR-like protein in chick oviduct cells is present in 

two forms with molecular weights of 104- and 116-kDa (Poola et al., 1990), and like the 

TfR1, it appears to form a dimer (Poola and Lucas 1988). Immunoprecipitation studies have 

shown that the 104kDa form was present in the OES-sensitive human BCC lines, MCF-7 and 

T-47D (Poola et al., 1990).  

Since BCC cells secrete Tf (Vandewalle et al., 1989) and increase the expression of a 

TfR-like protein that can bind Tf in response to OES, it has been suggested that this autocrine-

loop mechanism may enhance iron uptake (Kwok and Richardson, 2002). Nevertheless, more 

studies are required to determine its exact mechanism. 

 

1.5.4.3 Transferrin receptor 1 and cancer 

Several studies have demonstrated an increased TfR1 expression in cells with a high 

proliferation rate including tumour cells (Sutherland et al., 1981; Trowbridge and Lopez, 

1982; Taetle and Honeysett, 1987).  

As discussed above, TfR1 expression is regulated by intracellular iron levels by the IRP–IRE 

mechanism (Daniels et al., 2006). However, regulation of the expression of TfR1 at the 

transcriptional level seems to be important indicating that this molecule is a downstream 

target of the c-myc proto-oncogene (O'Donnell et al., 2006). Interestingly, microarray 

analysis also revealed that c-myc regulates the expression of other molecules involved in iron 

homeostasis, including the iron transporter DMT1 and frataxin (O'Donnell et al., 2006) that is 

thought to be involved in mitochondrial iron metabolism (Napier et al., 2005). Recent studies 

have also shown that colorectal cancer progression is accompanied with increased expression 

of iron import proteins (Dcytb, DMT1, and TfR1) and reduced expression of proteins 

involved in iron export (namely FP1 and hephaestin) (Brookes et al., 2006). Studies have also 

demonstrated that forced expression of TfR1 enhances cancer cells proliferation, while its 

down-regulation reduces cellular growth and alters expression of genes involved in cell cycle 

control e.g., growth arrest and DNA damage 45α (GADD45α) (O'Donnell et al., 2006). 

Interestingly, it has also been demonstrated that c-myc up-regulates the expression of IRP2 

that is involved in regulating TfR1 (Wu et al., 1999). In addition, c-myc also represses the 

expression of the H-Ft. Collectively, these findings demonstrate that c-myc, which is 

regulated in a wide range of human cancers (Vita and Henriksson, 2006), coordinately 

regulates molecules involved in iron metabolism (Habel and Jung, 2006). This is important 

for understanding the alterations in iron metabolism in cancer cells that facilitate 

tumourigenesis. 
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1.5.4.4 The Transferrin receptor 2 and cancer 

Recently, Kawabata and colleagues have cloned and functionally characterised 

another TfR-like molecule known as the TfR2 (Kawabata et al., 1999; Kawabata et al., 2000). 

This molecule has some structural and functional similarity to the TfR1, and its TfR2 gene has 

been located on chromosome 7 (7q22) (Kawabata et al., 2000). Two transcripts have been 

identified in cells, α and β, neither of which contains an IRE, and both are expressed in normal 

and cancer cells (Fleming et al., 2000; Kawabata et al., 2000). In normal tissues, studies have 

shown that the β-form was found in all human tissues tested. Whereas the expression of the α-

form was limited to the liver, spleen, lung, muscle, prostate and peripheral blood mononuclear 

cells (Kawabata et al., 2000). However, in contrast to the TfR2-α transcript, the TfR2-β 

transcript does not contain the amino terminal portion or the putative transmembrane domain. 

The role of the TfR2-α in iron metabolism remains largely unknown, although its transfection 

into cells lacking the TfR1 results in iron uptake from Tf (Kawabata et al., 2000).  

In contrast to TfR1 that is regulated by intracellular iron concentration, the TfR2 does 

not appear to be regulated in the same manner (Klausner et al., 1983a; Fleming et al., 2000). It 

has been suggested that TfR2-α expression may be regulated in accordance with the cell cycle 

(Fleming et al., 2000).  

Interestingly, it has been demonstrated that desferrioxamine (DFO) reduces cell 

proliferation and DNA synthesis in CHO control cells, while it has little effect on cells 

expressing transfected TfR2-α (Fleming et al., 2000) suggesting that it may act as an 

additional source of iron (Kawabata et al., 2000).  

Surprisingly, despite the fact that TfR2-α has a lower affinity for Tf than the TfR1, 

cells expressing TfR2-α grew into larger tumours than those expressing the TfR1 (Fleming et 

al., 2000). 

Further studies on the function of the TfR2 are needed to be performed in order to understand 

the function of this molecule, and its possible role in the growth of normal and neoplastic cells 

(Kwok and Richardson, 2002). 

 

1.5.4.5 Iron uptake mechanisms from low-molecular-weight iron complexes 

In addition to the uptake of Tf-bound iron, cancer and normal cells can also efficiently 

take up iron from a variety of low MW iron complexes (Page et al., 1984; Fuchs et al., 1988; 

Richardson and Baker, 1990; Sturrock et al., 1990; Kaplan et al., 1991). This may represent a 

mechanism to bind and transport low MW iron complexes released from normal cells 

damaged by the invading tumour. Possible transport molecules involved in the uptake of low 
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MW iron complexes include DMT1 (Fleming et al., 1998) and the stimulator of iron transport 

(SFT) (Gutierrez et al., 1997; Yu and Wessling-Resnick, 1998). However the physiological 

significance of iron uptake from low MW iron complexes in vivo remains an important 

research question (Kwok and Richardson, 2002). 

 

1.5.4.6 Melanotransferrin and cancer 

Some malignant melanoma cells express a membrane-bound Tf homologue known as 

melanotransferrin (MTf) or p97 (Brown et al., 1981a; Brown et al., 1981b; Brown et al., 

1982; Rose et al., 1986). 

MTf shares a number of critical characteristics with serum Tf (reviewed by(Kwok and 

Richardson, 2002), including: (i) MTf has a 37–39% sequence homology with human serum 

Tf, (ii) the MTf gene is on chromosome 3, as are those for Tf and the TfR1; (iii) many of the 

disulfide bonds present in serum Tf are also present in MTf; (iv) MTf has an N-terminal Fe-

binding site that is very similar to that found in serum Tf; and (v) isolated and purified MTf 

can bind iron from iron citrate complexes (Brown et al., 1981a; Plowman et al., 1983; Rose 

et al., 1986; Baker et al., 1992).   

However a variety of in vitro (Richardson and Baker, 1990; Richardson and Baker, 1991a; 

Richardson and Baker, 1991b) and in vivo investigations (Dunn et al., 2006; Sekyere et al., 

2006) have demonstrated that MTf plays little role in Fe metabolism (Dunn et al., 2007; 

Suryo Rahmanto et al., 2007). In fact, MTf has been shown to be involved in the 

proliferation, migration and invasion of melanoma cells in vitro and their growth in vivo 

(Dunn et al., 2006; Bertrand et al., 2007; Suryo Rahmanto et al., 2007). Further studies using 

gene knockout technology are essential to clearly determine the biological role of MTf. 

 

1.5.4.7 Ferritin and cancer 

Several studies have suggested that some relationship may exist between Ft and 

cancer. It has been demonstrated that serum Ft is increased in patients suffering a number of 

neoplasms, despite no increase in Fe stores (Marcus and Zinberg, 1975; Kew et al., 1978; 

Hann et al., 1980). Tumour cells, when compared to their normal counterparts, usually 

contain low quantities of Ft, poor in iron (Munro and Linder, 1978). This fact is somewhat of 

a paradox considering the high rate of iron uptake by tumours via the TfR1. However, it has 

been reported that cells from the childhood tumour neuroblastoma (NB) contain Fe-rich Ft 

and hemosiderin (Iancu, et al.,  1988; Iancu, 1989). This finding, together with the fact that 
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NB appears sensitive to iron depletion with DFO (Richardson, 2002) may indicate that the Fe 

metabolism of this tumour is altered compared to other cell types.  

Serum Ft is markedly increased in NB at stages III and IV, but not in stages I or II (Hann et 

al., 1980; Hann et al., 1981; Hann et al., 1985). It has been suggested that the neoplasm is the 

source of increased serum Ft levels as: (A) NB cells contain Fe-rich Ft and patients with 

advanced NB have increased amounts of Ft within the tumour (Hann et al., 1980; Iancu et al., 

1988; Iancu, 1989); (B) human Ft has been detected in the sera of nude mice bearing NB 

xenografts (Hann, 1984); (C) serum Ft levels become normal with remission (Hann et al., 

1980), and (D) most Ft released from NB is glycosylated, indicating active secretion (Hann et 

al., 1984). 

The H-type Fts may suppress immunological responses (Broxmeyer et al., 1981; Broxmeyer 

et al., 1991), that may aid cancer cell proliferation. However, other properties may be 

important as most Ft secreted by NB cells is of the L-type (Hann et al., 1988).  

Ft may act as an autocrine growth factor, since Ft secreted by NB cells is rich in iron  (Iancu 

et al., 1988; Iancu, 1989), which suggests that it could possibly be used as an iron source by 

other NB cells. However, addition of Ft to serum-free medium only slightly stimulated NB 

growth and DNA synthesis. In addition, specific Ft-binding sites were not identified on these 

cells (Blatt and Wharton, 1992). It has been suggested that Ft has mitogenic activity for NB 

cells (Kwok and Richardson, 2002).  

Also it is of interest that an autocrine growth factor released from leukaemic cells has 

immunological identity with Ft. Interestingly, Ft antibody inhibited the proliferation of these 

cells, suggesting a role for Ft in stimulating cellular growth (Kikyo et al., 1994a; Kikyo et al., 

1994b). Moreover, binding sites for Ft (Covell et al., 1987; Covell and Cook, 1988; Konijn et 

al., 1990; Fargion et al., 1991) and the endocytosis of Ft (Bretscher and Thomson, 1983) 

have been identified in cancer cells, suggesting that Ft iron uptake could occur by receptor-

mediated endocytosis. However, more studies are required to determine the role of secreted 

Ft as a mitogenic factor for cancer cells (Richardson et al., 2009). 

On the other hand, studies have demonstrated that neoplastic transformation can result in 

changes in the expression of Ft and other molecules involved in cellular Fe metabolism. For 

example, E1A oncogene has been found to modulate the expression of H-Ft at the 

transcriptional level (Tsuji et al., 1993). In growing cells the transcription factor encoded by 

c-myc, a proto-oncogene, represses the expression of H-Ft and increases the expression IRP2 

(Wu et al., 1999). Additionally, H-Ft down-regulation was necessary for transformation via 

c-myc. The increase in the expression of IRP2 may enhance its RNA-binding activity that 
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could cause an elevation in the expression of TfR1 and Fe uptake from Tf that is essential for 

tumour proliferation (Wu et al., 1999). 

In contrast, Modjtahedi et al. (Modjtahedi et al., 1992) demonstrated that cells‟ transfection 

with c-myc gene copies lead to H-Ft over-expression due to an increase in the transcription 

rate. This latter study revealed that the H-Ft and cytokeratin expressions were increased in 

tumourigenic compared to non-tumourigenic clones of the SW 613-S human carcinoma cell 

line (Modjtahedi et al., 1992).  

Interestingly, N-myc amplification and secretion of Ft co-exist in patients with advanced NB 

(Brodeur et al., 1984; Hann et al., 1985). A study examining Ft secretion and synthesis in 

three NB cell lines demonstrated that the cell line secreting the highest concentration of Ft, 

also had the highest number of N-myc copies (Selig et al., 1993).  

 

1.6 Cell Cycle 

 

1.6.1 General definitions  

The cell cycle is the series of events that take place in a cell leading to its division and 

duplication (replication).  The cell-division cycle is a vital process by which hair, skin, blood 

cells, and some internal organs are renewed. This process consists of five distinct phases: G0; 

G1 phase, S phase (synthesis), G2 phase (collectively known as interphase) and M phase 

(mitotic phase) (Fig. 1.9). 

 

G0 phase (also known as post-mitotic) 

The term "post-mitotic" is sometimes used to refer to both „quiescent’ and „senescent’ cells.  

‘Quiescent’ cells: non-proliferative cells in multicellular eukaryotes generally enter the 

quiescent G0 state from G1 and may remain quiescent for long periods of time, possibly 

indefinitely (as is often the case for neurons). 

‘Scenescent’ cells: Cellular senescence is a state that occurs in response to DNA damage or 

degradation that would make a cell's progeny non-viable; it is often a biochemical alternative 

to the self-destruction of a damaged cell by apoptosis.  
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Interphase 

Before a cell can enter cell division, it needs to prepare itself by replicating its genetic 

information and all of the organelles. All of the preparations are done during the interphase. 

Interphase proceeds in three stages, i.e. G1 (Gap1), S (Synthesis), and G2 (Gap2). Cell 

division operates in a cycle; therefore, interphase is preceded by the previous cycle of mitosis 

and cytokinesis - the process in which the cytoplasm of a single eukaryotic cell is divided to 

form two daughter cells. 

G1 phase (~12h) is the first phase within interphase, from the end of the previous M 

phase until the beginning of DNA synthesis (is called G1). During this phase – which is also 

called „growth phase‟- the biosynthetic activities of the cell, which had been considerably 

slowed down during M phase, resume at a high rate.  This phase is marked by synthesis of 

various enzymes that are required in S phase, mainly those needed for DNA replication. 

Duration of G1 is highly variable, even among different cells of the same species (Lodish, 

2008). 

S phase (~6h) starts when DNA synthesis commences; when it is complete, all of the 

chromosomes have been replicated, i.e. each chromosome has two (sister) chromatids. Thus, 

during this phase, the amount of DNA in the cell has effectively doubled, although the 

number of single sets of chromosomes in a cell (the ploidy) remains the same. Rates of RNA 

transcription and protein synthesis are very low during this phase. An exception to this is 

histone production, most of which occurs during the S phase (Lodish, 2008). 

G2 phase (~6h): the cell then enters the G2 phase, which lasts until the cell enters 

mitosis. Significant protein synthesis occurs during this phase, mainly involving the 

production of microtubules, which are required during the process of mitosis. Inhibition of 

protein synthesis during G2 phase prevents the cell from undergoing mitosis (Lodish, 2008). 

M (Mitotic) phase is the brief process (~30min) by which a eukaryotic cell separates 

the chromosomes in its cell nucleus into two identical sets in two nuclei. The process of 

mitosis is complex and highly regulated. The sequence of events is divided into prophase, 

prometaphase, metaphase, anaphase and telophase. During the process of mitosis the pairs of 

chromosomes condense and attach to fibres that pull the sister chromatids to opposite sides of 

the cell. It is generally followed immediately by cytokinesis (in conjunction with telophase), 

which divides the nuclei, cytoplasm, organelles and cell membrane into two genetically 

identical daughter cells (Cordon-Cardo, 1995). 
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It is known that errors in cell cycle can either kill a cell through apoptosis or cause mutations 

that may lead to cancer. Therefore the cell cycle is tightly controlled by many regulatory 

mechanisms that either permit or restrain its progression. 
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Figure 1.9: The cell cycle (Adapted from Cerqueira et al., 2007). 

Cell division operates in a cycle and consists of four distinct phases: G
1
 phase, S phase (synthesis), G

2
 phase 

(collectively known as interphase) and M phase (mitosis). G1 phase (Growth phase): is marked by synthesis of 

various enzymes that are required in S phase for DNA replication. S phase (Synthesis phase): involves DNA 

synthesis; when it is complete, all of the chromosomes have been replicated, i.e. each chromosome has two 

(sister) chromatids. the amount of DNA in the cell has effectively doubled. G2 phase: Protein synthesis 

involving the production of microtubules, which are required during the process of mitosis. M (Mitotic) phase: a 

cell separates the chromosomes in its cell nucleus into two identical sets in two nuclei. The pairs of 

chromosomes condense and attach to fibres that pull the sister chromatids to opposite sides of the cell . It is 

followed by which divides the nuclei, cytoplasm, organelles and cell membrane into two genetically identical 

daughter cells. 
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1.6.2 Cell Cycle regulation 

The cell cycle is a very complex and tightly regulated process that can result in cell 

division, differentiation, or growth, or contribute to programmed cell death through apoptosis 

(Elsayed and Sausville, 2001). 

The main families of regulatory proteins that play key roles in controlling cell-cycle 

progression are the cyclins, the cyclin-dependent kinases (Cdks), the Cdk inhibitors (CKI) 

and tumour suppressor genes such as p53 and the retinoblastoma susceptibility gene product 

(pRb) (Fig. 1.10).  These families comprise the basic regulatory machinery responsible for 

catalysing cell cycle transition and checkpoint traversation (Elsayed and Sausville, 2001). 

 

1.6.2.1 Cyclins and Cyclin-dependent kinases (Cdks) 

Cell cycle transitions depend on the activity of the Cyclin-dependent kinases (Cdks). 

The active forms of these kinases occur as heterodimers that are composed of a regulatory 

subunit called a cyclin, and its catalytic counterpart, the Cdk (Sherr, 2000).  It is the 

up-regulation and degradation of the cyclins and their subsequent interaction with Cdks that 

mediate progression through the cell cycle (Zetterberg et al., 1995; Reed, 1997) (Fig. 1.10).  

Cyclins are a family of proteins that are structurally identified by conserved 'cyclin 

box' regions (Joyce et al., 2001). They are 56 kDa proteins and are implicated in the mitosis 

of all eukaryotes (Elsayed and Sausville, 2001). 

Cyclins activate specific Cdks through a 1:1 non-covalent binding and trigger and 

coordinate the transition between the different phases of the cell cycle. 

To date, nine Cdks (Cdk1-9) and at least15 preferentially binding cyclins have been 

identified (see Table 1.1) (Draetta, 1990; Sherr and Roberts, 1999; Sausville et al., 2000). 

Cdks are typically small proteins of 300 amino acids in length and molecular weight of 33-40 

kDa.  

The Cyclin–Cdk complexes are activated by phosphorylation via cyclin-activating 

kinases (CAKs) (Vidal and Koff, 2000) that activates or inactivates target proteins to 

orchestrate coordinated entry into the next phase of the cell cycle. 

Different cyclin-Cdk combinations determine the downstream proteins targeted. Cdks 

are constitutively expressed in cells whereas cyclins are synthesised at specific stages of the 

cell cycle, in response to various molecular signals (Prather et al., 1999). 

An important regulatory mechanism performed by Cdk molecules involves the 

phosphorylation of the retinoblastoma protein (pRb) (Sherr, 2000). This molecule mediates 
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progression of cells from G1 to the S phase of the cell cycle. In its hypophosphorylated form, 

pRb suppresses cellular growth by binding to E2Fs. In addition to that, the mechanism of 

pRb-mediated inhibition involves recruitment of proteins that are repressive for transcription, 

such as histone deacetylases. Following Cyclin D/Cdk4 or Cdk6–mediated phosphorylation, 

however, pRb releases E2Fs that subsequently activate downstream transcriptional targets 

involved in S phase, including DNA polymerase- alpha, Cyclin A, Cyclin E and Cdk1. 

CyclinE/Cdk2 complexes further phosphorylate pRb at the G1-to-S transition, enabling cells 

to pass through a “restriction point” from which the cell proceeds through the remainder of 

the cycle irrespective of mitogenic stimuli. CyclinA/Cdk2 and CyclinB/Cdk1 activities are 

required for S-to-G2 and G2-to-M transitions, respectively (Corn and El-Deiry, 2002). 
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Figure 1.10: The cell cycle in normal cells (Adapted from Yu et al., 2007). 

The cell cycle consists of four main phases: G1, S, G2 and M phases. Under normal conditions, the progression 

of the cell cycle controlled mainly by cyclins A, B, D and E, and the cyclin-dependent kinases (cdks). Cyclin D1 

forms a complex with cdk4, while cyclin E binds with cdk2. These complexes are then involved in hyper-

phosphorylation of the retinoblastoma susceptibility gene product (pRb), which allows it to release the 

transcription factor, E2F1. Once free, E2F1 is able to translocate to the nucleus where it mediates the 

transcription of a range of genes vital for S-phase progression. One of the most important mediators of this G1/S 

checkpoint is p53, which is able to cause G1/S arrest under conditions of cell stress or DNA damage. One 

function of p53 is to transactivate the expression of the cdk inhibitor, p21CIP1/WAF1, which then inhibits the 

activity of cyclin D1/cdk4- and cyclin E/cdk2 complexes, thereby preventing entry into S-phase. However, the 

activity of p21CIP1/WAF1 can be paradoxical and under some conditions can aid in cell cycle progression (see 

section on p21CIP1/WAF1). In addition, p53 is also able to inhibit cyclins A and B leading to G2/M arrest.  
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Table 1.1 Mammalian cyclin-dependent kinase complexes (Carnero, 2002) 

Kinase Regulatory 

subunit 

Substrate Function 

CDC2 cyclin A & B pRb, NF, histone 

H1 

G2/M 

Cdk2 cyclin A, E pRb, p27 G1/S, S 

Cdk3 cyclin E E2F1/DP1 G1/S 

Cdk4 cyclin D1, D2 & D3 pRb G1/S 

Cdk5 p35, cyclin D1 & 

D3 

NF, Tau Neuronal 

differentiation 

Cdk6 cyclin D1, D2 & D3 pRb G1/S 

Cdk7 cyclin H CDC2, Cdk2/4/6 CAK 

Cdk8 cyclin C RNA pol II Transcript. Regulation 

Cdk9 cyclin T pRb, MBP G1/S 
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1.6.2.2 Cdk Inhibitors (CKIs) 

The activity of cyclin-Cdk complexes are negatively regulated by Cdk inhibitors 

(CKI), which in turn act in response to growth inhibitory signals. Based on structural and 

functional homologies (Corn and El-Deiry, 2002), CKIs  are classed into two families , the 

inhibitors of Cdk4 (INK4) or the kinase inhibitor proteins (CIP/KIP) (Vidal and Koff, 2000).  

The CIP/KIP family consists of three proteins: namely p21
WAF1/CIP1

, p27
KIP1

 and 

p57
KIP2

. These molecules prevent cell cycle progression and exert their influence during most 

periods of the cell cycle by binding directly to the Cdk/cyclin complex to inhibit their activity 

(Vidal and Koff, 2000).While the CIP/KIP CKIs bind all Cdks, their affinity is much lower 

for Cyclin B/Cdk1. 

More recent studies have demonstrated that CIP/KIP proteins are required for the assembly of 

active CyclinD/Cdk enzyme complexes. Thus, although they were initially recognized as 

inhibitors, the CIP/KIP proteins actually appear to have both positive and negative regulatory 

effects on G1 cell-cycle progression. This is in part influenced by their stoichiometry with the 

kinase complexes and the regulation of their expression by cell-cycle checkpoints or cell-

cycle position (Corn and El-Deiry, 2002). 

In contrast to the CIP/KIP family of CKIs, the inhibitory activities of INK4 are 

restricted to Cdk4 and Cdk6 (Ruas and Peters, 1998). As a consequence, the INK4 family is 

thought to play a major role in G1/S arrest. This family of CKI includes p15
INK4B

, p16
INK4A

, 

p18
INK4C

 and p19
INK4D

(Ruas and Peters, 1998).  

 

1.6.2.3 The p53 tumour suppressor protein 

The p53 tumour suppressor protein plays a pivotal role in preventing cancer 

development by acting as a critical transcription factor to induce cellular cycle arrest to 

initiate repair mechanism and when damage is irreparable it will activate apoptosis (Le and 

Richardson, 2002). 

Many stress factors can initiate the stabilization, accumulation and activation of p53. These 

include DNA damage, decreased dNTP levels, hypoxia, loss of a cell survival signal, 

oncogene activation, abnormal cell growth and, more recently, iron chelation (Fuchs et al., 

1988; Linke et al., 1996; An et al., 1998; Vousden and Woude, 2000). 

 

Once activated, p53 can initiate the transcription and subsequent expression of various 

downstream genes that commit the cell to differentiation, senescence, DNA repair, cellular 
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arrest and/or apoptosis (Table 1.2) (Vousden and Woude, 2000). Consequently, p53 

transcription, translation, protein stabilization, subcellular localization and activation are 

tightly regulated. 

Murine double minute-2 (mdm-2) protein acts as an ubiquitin ligase to mediate p53 

degradation (Honda et al., 1997). And any increase in p53 results in increased mdm-2 

expression (Honda et al., 1997) to form an auto-regulatory feedback loop. 

Several pathways can activate and stabilize p53:  

- For instance DNA damage caused by cells exposure to ionising radiation leads to the 

expression of the ataxia telangiectasia mutated (ATM) protein and check-point kinase 2 

(CHK2) phosphokinase which stabilize p53 by phosphorylation (Carr, 2000). 

- Other forms of DNA damage (e.g. chemotherapeutic drugs, ultraviolet light or protein 

kinase inhibitors) can stabilize p53 by phosphorylation via the ataxia telangiectasia-related 

(ATR) phosphokinase) (Tibbetts et al., 1999). 

- On the other hand, oncogenes such as c-myc and ras, can increase the levels of p53 via the 

expression of the alternative reading frame of the INK4A locus (ARF) protein (Sherr, 2000; 

Elliott et al., 2001; Lin and Lowe, 2001). 

As a result of cellular damage, either p53 or mdm-2 can be post-translationally modified to 

stabilize p53 for nuclear accumulation (Le and Richardson, 2002). 
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Table1.2 p53-inducible proteins involved in apoptosis, cell arrest and DNA repair (Le and 

Richardson, 2002). 

p53-inducible molecule Comments 

BAX Well Characterised pro-apoptotic protein. 

 

BAX is inactivated by bcl-2 

 

Overexpression of BAX induces mitochondrial apoptosis. 

NOXA (for damage) Member of the bcl family of pro- and anti-apoptotic proteins. 

 

Cells exposed to X-ray inrradiation express NOXA to induce 

mitochondrial apoptosis. 

PUMA (p53 up-regulated 

modulator of apotosis) 

Consists of an alpha and beta form with similar apoptosis 

functions. 

 

Localizes to mitochondria to induce apoptosis. 

p53AIPI (p53 mediated 

apoptosis inducing protein 1) 

Pro-apoptotic protein. 

 

Localizes to mitochondria to induce apoptosis. 

 

Requires p53 to be phosphorylated at serine 46. 

p53 DINPI (p53-dependent 

damage-inducible nuclear 

protein 1) 

Apoptosis induced after double-stranded DNA breaks via 

p53AIPI expression. 

 

This protein in associated with the phosphorylation of p53 at 

serine 46 to initiate apoptosis 

p21 WAF1/CIP1 Cell cycle inhibitor of the CIP//KIP family. 

 

Can arrest cell during all stages of the cell cycle. 

GADD45 Protein causes cellular arrest and DNA excision repair 

p53R2 (p53-inducible R2) Shares 80% homology to R2. 

 

This protein is probably required for RR activity during DNA 

repair 

 

MDM-2 Involved in the targeting of p53 via ubiquitination for 

proteasomal degradation. 
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1.6.3 Ribonucleotide Reductase  

Ribonucleotide reductase (RR) is a ubiquitous radical-containing enzyme, which 

belongs to a family of enzymes that are involved in the conversion of both purine and 

pyrimidine ribonucleotide diphosphates into their corresponding deoxyribonucleotide 

(dNTPs) by replacing the C2'-hydroxyl group on the ribose moiety by a hydrogen atom. After 

phosphorylation, the resulting molecules are the precursors needed for DNA replication, cell 

cycle progression and cellular repair (Fig. 1.11) (Cerqueira et al., 2007). 

The discovery of this enzyme was reported in 1961 by Peter Reichard. The first RR enzyme 

was discovered in E. coli but later on it was found in all growing cells of every living 

organism and even several species of viruses carry their own copy of RR (Jordan and 

Reichard, 1998).  

All RR enzymes contain two components; an R1 subunit i.e. the reductase component 

that is involved in the binding of ribonucleotides and allosteric effectors, and an R2 subunit 

i.e. the radical generator, that contains a tyrosyl radical that is stabilised by iron (Fig. 1.11)  

(Thelander and Reichard, 1979; Thelander et al., 1983; Guittet et al., 2001; Shao et al., 

2004). The R1 subunit is somewhat similar between all RR classes, whereas the R2 subunit is 

not the same within all the RR enzymes and is deeply buried inside the protein, in order to be 

protected from the environment (Cerqueira et al., 2007). 

The RR enzyme is classified into three classes (Yu et al., 2009): 

Class I RRs are found in all eukaryotic organisms and in some prokaryotic and viruses 

(Yu et al., 2009). They are characterized by a tyrosyl radical that is stabilized by an oxo-

bridged binuclear Fe
+3

 complex and requires oxygen for its generation. This class is further 

divided into three subclasses (Ia, Ib and Ic) based on polypeptide sequence homology and 

allosteric behaviour (Jordan et al., 1994). Human RR is a tetramer that belongs to class Ia 

(Yu et al., 2007). 

Class II RRs are restricted to prokaryotes (both aerobic and anaerobic) whereas class 

III RRs, only function in anaerobic conditions. (Cerqueira et al., 2007). 

 

For the purpose of my thesis, RR is referred to as human RR i.e. Class Ia. 
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1.6.3.1 Ribonucleotide Reductase regulation 

The levels and activity of RR are highly regulated by the cell cycle and DNA checkpoints 

which maintain optimal dNTP pools required for genetic fidelity.  The enzyme can be 

regulated by two factors: by transcription of the genes or by allosteric control of RR by 

triphosphate effectors. The genes of each subunit are located on separate chromosomes and 

the corresponding mRNAs are similarly expressed during the S-Phase of the cell cycle.  

During the normal cell cycle the levels of the R1 protein do not change substantially 

and can be detected throughout the whole cycle. In contrast, protein R2 can only be truly 

detected between the S phases, where it slowly accumulates, up to late mitosis, where it is 

rapidly degraded. This mechanism ensures an adequate supply of dNTPs for replication 

and/or repair during the S and G2 phase of the cell cycle. 

Recently, Guittet et al (2001) found that when DNA damage occurs, a transcriptional 

induction of a new protein called p53R2 is observed in a p53-dependant manner (Thelander 

and Reichard, 1979; Thelander et al., 1983; Guittet et al., 2001; Shao et al., 2004). It has 

been reported that there is also an additional p53-independent induction of p53R2, because 

cells with mutated p53 still express this molecule in response to DNA-damaging agents. In 

fact, p53R2 can be a transcriptional target of the p53 family member, p73 (Nakano et al., 

2000). Furthermore, it has been demonstrated that protein R1 can form a functional complex 

either with protein R2 or protein p53R2. Therefore, R2 protein appears to be responsible for 

the maintenance of dNTPs levels for replication in S/G2 phase, whereas p53R2 is responsible 

for production of dNTPs in response to DNA damage (Cerqueira et al., 2007) in G0/G1 phase 

(Renton and Jeitner, 1996). 

 

1.6.3.2 Ribonucleotide Reductase and iron 

A series of reactions between the di-iron centre and tyrosyl radicals of the R2 subunit 

and conserved cysteine residues of the R1 subunit are required before effective catalysis takes 

place  (Ke and Costa, 2006). 

The mechanism by which the substrate-binding site of the R1subunit is activated 

involves the generation of radicals at the tyrosine residues of the R2 subunit(Kolberg et al., 

2004). These radicals are subsequently transferred to the cysteine residues in the active site of 

the R1 subunit (Kolberg et al., 2004). The role of iron in this process is the generation of 

tyrosyl radicals in the R2 subunit through reactions with molecular oxygen (Kolberg et al., 

2004). Once the radicals have been formed, iron is also involved in the radical transfer chain 

formed between the R1 and R2 subunit (Levy et al., 1995).  
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In the absence of a constant supply of iron to R2, the R1 subunit is inactive and thus, 

RR cannot function (Thelander and Reichard, 1979; Thelander et al., 1983), therefore the 

activity of RR is iron-dependent (Le and Richardson, 2002). Both the R2 and p53R2 subunits 

possess an iron-binding site that is important for their enzymatic function (Shao et al., 2004), 

and hence are susceptible to the action of iron chelators (Nyholm et al., 1993; Cooper et al., 

1996). 

In comparison to several key enzymes, RR shows the greatest increase in activity in 

tumours compared to normal cells (Witt et al., 1978; Takeda and Weber, 1981). This means 

that this Fe-containing enzyme is an important target for anti-tumour drugs. 

The potential of RR as a therapeutic target for the treatment of cancer is illustrated by 

the cytotoxic drug hydroxyurea (HU) that acts to scavenge the tyrosyl radical of this enzyme 

(Nyholm et al., 1993). However, HU has limited potency due to its short half-life, low 

affinity for RR, and the development if HU resistanc (Beckloff et al., 1965; Gwilt and 

Tracewell, 1998). 

Therefore, iron chelation may provide an alternative mechanism to inhibit RR activity 

in HU-resistant tumours. In fact, in vitro studies have shown that some chelators that are RR 

inhibitors can overcome HU-resistance via their ability to bind iron (Green et al., 2001). 

Indeed, several iron chelators such as pyridoxal isonicotinoyl hydrazone (PIH), 

deferoxamine, and thiosemicarbazone derivatives inhibit enzymatic activity, either by 

chelation of the cofactors, which precludes the incorporation of the cofactor in the enzyme or 

directly at the enzyme-bound metallic center. The success of these iron chelators, particularly 

DFO (Deferrioxamine mesylate; Desferal®, Novartis, Switzerland), Triapine (3-

aminopyridine-2-carboxaldehydethiosemicarbazone) and 2-hydroxy-1-naphthyl-aldehyde- 

isonicotinoyl hydrazone (van Reyk et al., 2000) in in vitro, in vivo and in some clinical trials, 

together with their selective antitumour activity, confirms their potential as anti-cancer drugs 

(Cerqueira et al., 2007). This is discussed in more detail below.  
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Figure 1.11: The Structure of protein R1 and R2 of Ribonucleotide reductases (RR) and the 

reaction that provides the building blocks for DNA in all living cells. (Adapted from 

Cerqueira et al., 2007). 
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1.6.4 Cell Growth Regulation in cancer 

Human neoplasms develop following the progressive accumulation of genetic and 

epigenetic alterations to oncogenes and tumour suppressor genes.  These alterations confer a 

growth advantage to the cancer cell.  Genes that are altered in neoplasia affect three major 

biologic pathways that normally regulate cell growth and tissue homeostasis, i.e. the cell 

cycle, apoptosis, and differentiation (Corn and El-Deiry, 2002). 

 

1.6.4.1 Disturbance of cell-cycle control in oncogenesis 

As mentioned above, the fundamental task of the cell cycle is to ensure that DNA is 

faithfully replicated once during S phase and that identical chromosomal copies are 

distributed equally to two daughter cells during M phase (Heichman and Roberts, 1994; 

Wuarin and Nurse, 1996). However, defects in cell cycle control may lead to abnormal 

proliferation of cancer cells.  Indeed, two regulatory pathways of the cell cycle that are 

disrupted in virtually all human tumours are the p53- and Rb-dependent pathways (Corn and 

El-Deiry, 2002). 

 

Oncogenic alterations of the components of pRB-dependent pathway such as cyclins, 

Cdks and CKIs, have been reported in more than 90% of human neoplasms and are 

summarized in Table 1.3 (Elsayed and Sausville, 2001). 

- The cyclin D1 gene is induced by various oncogenic signals including activating mutations 

in ras, src, and mitogen-activated protein kinases (MAPK) (Albanese et al., 1995; Lee et al., 

1999). Cyclin D1 promotes transformation and malignancy (Daksis, Lu et al., 1994; Lovec, 

Grzeschiczek et al., 1994), and in transgenic mice it facilitates development of breast 

adenocarcinoma (Wang et al., 1994) and lymphoma (Bodrug et al., 1994). It is also 

associated with higher incidence of recurrence in head and neck cancers (Michalides et al., 

1995). 

- Cyclin E dysregulation is associated with hyperproliferation and malignant transformation 

(Keyomarsi and Herliczek, 1997). Overexpression of cyclin E correlated well with breast 

tumour aggressiveness and independently predicted the risk of distant visceral relapse (Kim 

et al., 2000). 

- Inactivation of the CKIs p16 or p21 by mutation, deletion, or p53-mediated inactivation 

might result in aberrant activity of Cdks, and in turn phosphorylation within activation of 

pRB. The loss of p16
INK4A

, p27
KIP1

, and p21
WAF1 

was a predictor of poor outcome in several 
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tumour types (Tsihlias et al., 1999). Similarly, mutations in the p53 gene are found in more 

than half of all human cancers, and the „p53 pathway‟ appears to be disrupted in the vast 

majority of the remaining tumours. Loss of p53 function has consequences on pathways of 

cell-cycle control (p21
Cip/Waf1

, 14-3-3 sigma), DNA repair (Gadd45, p53R2) and apoptosis 

(Bax, KILLER/DR5, p53AIP1) (Vogelstein et al., 2000).  
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Table 1 3.Abnormalities of cyclins, cyclin-dependent kinases, and cyclin-dependent  

kinase inhibitors in various human cancers (Elsayed and Sausville, 2001) 

Cyclin/Cdk/CKI  Phase/activity  Tumour types  

Cyclin D1 G1 Lymphoma, mantle cell lymphoma 95%, breast 35%-81%, 

esophagus 40%, lung 10%-20%, parathyroid, myeloma, head 

and neck 40%, sarcoma 33%, hepatocellular 10%, bladder 

15% 

Cyclin D2 G1 Colorectal, testicular, CLL 

Cyclin D3 G1 Lymphoma 50%, ALL 50%, retinoblastoma 

Cyclin K (D-like) G1 Kaposi sarcoma 

Cyclin E late G1, early S Colorectal, breast, prostate, ovarian, gastric, lung, CLL, renal, 

pancreatic 

Cyclin E2 G1/S Breast, small cell lung, cervical 

Cyclin B1 G2/M Colorectal, breast 

Cyclin A mid S/G2 Hepatocellular, breast 

Cdk2 G1/S Colorectal 

Cdk4 G1/S Sarcoma 8%-36%, glioma 10%, melanoma, Colorectal, breast 

Cdk6 G1/S Glioma 

p16
INK4 inhibits Cdk4/6 Melanoma, ALL 30%, bladder 30%, head and neck 10%, lung 

30%, breast, ovary 20%, esophagus 30%, pancreas 40%, 

glioma 50%, mesothelioma 50%, nasopharyngeal 40%, 

sarcoma 10%, biliary tract 50% 

p15
INK4 inhibits Cdk4/6 Melanoma, T-cell ALL, lung, head and neck 

p21
WAF1/CIP1 inhibits all Cdks Brain, colorectal, leukemia, melanoma 

p27
kip inhibits all Cdks Breast, colon, melanoma 
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1.6.4.1.1 Disturbance of apoptotic pathway in oncogenesis 

In normal tissues, there is a tightly regulated balance between cellular proliferation 

and cellular death. If this balance is disturbed, tumours may develop.  

While increased cellular proliferation has long been regarded as the predominant 

cause of neoplasia, in more recent years a growing body of evidence supports the alternative 

hypothesis that cancer cells survive because they fail to undergo normal apoptosis, or 

programmed cell death (Corn and El-Deiry, 2002).  

 

Apoptosis involves an orchestrated series of biochemical events leading to cell death 

(Lawen, 2003). There are two principal molecular pathways that signal apoptosis by cleaving 

the initiator caspases; the intrinsic mitochondrial pathway and the extrinsic death receptor 

pathway:  

- The mitochondrial pathway is triggered by a number of stimuli, such as DNA damage, 

ischemia and oxidative stress (Lawen, 2003). This pathway is initialized with the 

permeabilisation of the mitochondrial outer membrane leading to protein release, such as 

cytochrome c and apoptosis-inducing factor (AIF) (Lawen, 2003). The release of cytochrome 

c leads to the induction of Apaf-1 that activates caspase-9 by the formation of the 

apoptosome. Caspase-9 then proceeds to activate caspases-3 and -7 resulting in the induction 

of apoptosis (Lawen, 2003). Permeability of the mitochondrial membrane is regulated by the 

Bcl-2 family of proteins that consist of pro-apoptotic molecules (Bax, Bid, Bad, Puma and 

Bim) and anti-apoptotic molecules (Bcl-2 and Bcl-xL). Apoptosis induced by p53 is mediated 

through the mitochondrial pathway and is linked to pro-apoptotic signals directed from 

certain Bcl-2 members. For example, Bax is a p53-induced pro-apoptotic molecule and the 

loss of p53, which is common in human tumours, results in decreased Bax activity 

(Amundson et al., 1998; LaCasse et al., 1998). 

 

- The second major apoptosis pathway is the death-receptor pathway (Hengartner, 2000) 

Examples of cell-surface death receptors are Fas/APO1/CD95, tumour necrosis factor 

receptor-1 (TNFR1), and KILLER/DR5, and their natural ligands are FasL, TNF, and TRAIL 

respectively. When these receptors are engaged by their ligands, they aggregate to form a 

potent death-inducing signaling complex (DISC) that uses an adaptor protein (e.g., FADD) to 

recruit and activate caspase-8, which in turn activates caspase-3 to carry out the remainder of 

the death program. 
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 There is cross talk between the death-receptor and mitochondrial pathways through Bid, a 

proapoptotic Bcl-2 member that is cleaved by caspase-8 and translocates to the mitochondria 

to enhance cytochrome c release.  The death-receptor pathway is subject to regulation by Fas 

(DcR3), TRAIL (TRID and TRUNDD), c-FLIP, and IAPs (inhibitors of apoptosis) (for 

review see (Corn and El-Deiry, 2002). 

 

1.6.4.1.2 Disturbance of apoptotic pathway in skin hyperproliferative diseases 

Skin cancer and hyperproliferative disease such as psoriasis are the most notable 

examples of that involve decreased keratinocytes‟ (KC) apoptosis. A common feature of 

these diseases is expression of Survivin (Bowen et al., 2004). Survivin is generally not 

expressed in normal skin. Interestingly, in psoriasis survivin expression is localized to the 

upper third of the epidermis, whereas in actinic keratoses (AK), basal-cell carcinoma (BCC), 

and squamous-cell carcinoma (SCC) reveal staining in all epidermal layers  (Bowen et al., 

2004). 

In psoriasis, there is decreased spontaneous KC apoptosis in lesional skin (Laporte et 

al., 2000), which correlates with decreased levels of caspase-14 (Lippens et al., 2000). KCs 

in psoriatic plaques exhibit a phenotype reminiscent of that of senescent KCs, characterized 

by resistance to apoptosis compared with normal KCs and lack of p53 activation (Wrone-

Smith et al., 1997; Qin et al., 2002). In addition to Survivin, multiple studies consistently 

demonstrated increased levels of Bcl-xL in psoriasis (Fukuya et al., 2002). 

  Non-melanoma skin cancers (e.g. SCC and BCC) demonstrate multiple examples of 

apoptotic dysregulation in which proapoptotic regulatory molecules are reduced or 

antiapoptotic molecules are overexpressed. Mutation or deletion of p53 occurs in many skin 

cancers. Moreover, in BCC there is a concomitant decrease in Bax expression (Tomkova et 

al., 1998) that coincides with increased Bcl-2 expression (Morales-Ducret et al., 1995). In 

addition, Bcl-xL is overexpressed in SCC (Wrone-Smith et al., 1999). The presence of 

Survivin in pre-malignant lesions (Bowen et al., 2004) suggests that its expression represents 

an early step in KC transformation. In SCC, expression of Bcl-2 (Hantschmann and Kurzl, 

2000; Matsumoto et al., 2001), Bcl-xL (Matsumoto et al., 2001), and Survivin (Lo Muzio et 

al., 2001) is associated with metastasis or poor prognosis (Raj et al., 2006). These 

dysregulations have important implications for cancer therapies. Since it has been shown that 

cells with inactivated p53 or Bax could be resistant to chemotherapy (Bunz et al., 1999; 

Zhang et al., 2000). 

  



Page | 72  

 

1.6.4.1.3 Disturbance of cell differentiation in oncogenesis 

Cellular differentiation as a biologic process appears to be quite distinct from the cell 

cycle or apoptosis. However it is closely linked to both processes. Differentiation entails a 

definitive withdrawal from the cell cycle, thus cells that cannot arrest will not be able to 

differentiate. The two cell-cycle proteins that have been closely linked to differentiation are 

pRb and p21
Cip/Waf1

(Corn and El-Deiry, 2002). Additionally, there is an important 

relationship between dysregulated apoptosis and abnormal differentiation (Corn and El-

Deiry, 2002). Indeed using the small intestine as a model, differentiation and apoptosis have 

been linked as integral pathways for normal cellular homeostasis. The antiapoptotic protein 

Bcl-2 has been proposed to be a candidate protein that inhibits differentiation (Von 

Wangenheim and Peterson, 2001). Cancer cells that overexpress Bcl-2 often retain their 

clonogenic potential when exposed to a variety of differentiating agents. This has important 

implications for the use of differentiation agents in cancer therapy, since many tumours 

overexpress Bcl-2. 

Skin cancer and some pathologic disorders such as psoriasis are characterised by incomplete 

differentiation of the stratum granulosum and SC (Lippens et al., 2009). 
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1.7 Role of iron in cell cycle and related molecules 

Iron depletion may alter the expression and/or function of molecules that are critical in 

regulating progression of the cell cycle. Some of these include: RR, cyclins, Cdks p53, 

p21
CIP1/WAF1

, p27
Kip

, GADD45α, hypoxia inducible factor-1α (HIF-1α), N-myc downstream 

regulatory gene-1 (Ndrg-1), and pRb. By altering the expression and/or function of the above 

molecules, iron-depletion is able to effectively inhibit the growth of tumour cells (reviewed 

by(Yu et al., 2007). Therefore iron chelation has been proposed as an alternative therapy for 

cancer (see section 1.9). 

 

1.7.1 Cyclins and Cdk 

 As previously described, it is the regulated alterations in the availability and activity 

of cyclins and Cdks that allows the transition between the cell cycle phases (Sherr, 1994). 

 Studies have demonstrated that iron-chelation in SK-N-MC neurblastoma (NB) cells 

can markedly decrease the expression of cyclins D1, D2 and D3, while having a lesser effect 

on reducing the levels of cyclin A and B (Gao and Richardson, 2001). It has also been shown 

that there was a reduction in cyclin A protein and its kinase activity in normal T lymphocytes 

after incubation with DFO (Lucas et al., 1995). 

 A more recent study has confirmed that the mechanism of the iron-depletion-mediated 

reduction in cyclin D1 protein expression is due to its proteasomal degradation, there being 

no decrease in cyclin D1 mRNA levels (Nurtjahja-Tjendraputra et al., 2007). 

 Iron-chelation has also been shown to reduce the expression of Cdk2 (Gao and 

Richardson, 2001; Chaston et al.,  2003) or Cdk4 (Kulp et al.,  1996) protein depending on 

the cell type. Furthermore, DFO was found to decrease the protein levels and kinase activity 

of p34
cdc2

 in NB cells (Brodie et al., 1993). This is important, as p34
cdc2

 functions in the 

G2/M and potentially G1/S phase transitions, by forming complexes with cyclin A, B and E 

(Aleem et al., 2005; Kaldis and Aleem, 2005). This may explain the G1/S and G2/M arrest 

seen after iron depletion under some experimental conditions. In contrast to other cyclins, 

cyclin E protein expression was found to be elevated in response to iron-depletion in NB cells 

(Gao and Richardson, 2001).  

 Several studies have shown that following iron-depletion, pRb becomes 

hypo-phosphorylated leading to G1/S arrest (Hollstein et al., 1991; Terada et al., 1991). 

Indeed, as mentioned above, iron-depletion reduces cyclin D1 and Cdk2 expression (Gao and 

Richardson, 2001; Chaston et al., 2003; Nurtjahja-Tjendraputra et al., 2007) which prevents 
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cyclin-Cdk complexes formation leading to pRb hypophosphorylation that will contribute to 

cell G1/S arrest (Gao and Richardson, 2001). This observation was further confirmed by 

studies on NB cells (Gao and Richardson, 2001), human breast cancer cells (Kulp et al., 

1996) and T lymphocytes (Terada et al., 1991), where iron chelation resulted in the pRb 

hypo-phosphorylation (Gao and Richardson, 2001; Terada et al., 1991). 

Hypo-phosphorylation of pRb during mid to late G1 phase by Cdk4- or Cdk6-cyclin D 

complexes prevents the release of transcription factor E2F1 from pRb that is necessary for 

cell cycle arrest (Hatakeyama and Weinberg, 1995; Weinberg, 1995). 

 

1.7.2 p53 

 Iron-depletion was found to elevate the level of p53 protein expression (Fukuchi et 

al., 1995; Sun et al., 1997; Liang and Richardson, 2003) at the post-transcriptional level but 

there is no change in p53 mRNA (Fukuchi et al., 1995; Gao and Richardson, 2001). In 

cellular studies, it has been shown that iron-chelation induced the transactivational activity of 

p53 and its sequence-specific DNA binding in a dose- and time-dependent manner (Sun et 

al., 1997; Liang and Richardson, 2003). Many mechanisms may be involved in the p53 

activation by iron depletion (Yu et al., 2007). These include: (i) an increase in the expression 

of p53 protein (Liang and Richardson, 2003); (ii) an increase in the  conversion of latent p53 

to its active DNA-binding form (Ashcroft et al., 2000); (iii) p53 phosphorylation at serine-15 

which increases p53 stability and prevents mdm-2-mediated proteasomal degradation 

(Ashcroft et al., 2000). The elevated phosphorylation  of p53 at serine-15 may indicate 

up-regulation of ataxia telangiectasia mutated (ATM) and/or ATM-Rad3 related (ATR) genes 

or proteins after iron-chelation (Ashcroft et al., 2000); (iv) other target-molecules of 

iron-chelation that can also increase the expression of p53, such as the transcription factor 

hypoxia inducible factor-1α (HIF-1α) (Golias et al., 2004). However, it is unclear which of 

the p53 molecular targets that are affected by iron-depletion. The expression of both 

p21
CIP1/WAF1 

and GADD45 mRNA are increased after iron depletion, but this occurs in both 

p53-dependant and independent pathways (Darnell and Richardson, 1999) 
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1.7.3 Cdk inhibitors 

Investigations in this field have focussed on the effects of iron chelators on the more 

well-characterised Cdk inhibitors (e.g, p21
WAF1/CIP1

, p27
KIP1

) (Darnell and Richardson, 1999; 

Ashcroft et al., 2000; Gao and Richardson, 2001). Iron-depletion mediated by DFO and 311 

markedly upregulates p21
WAF1/CIP1 

mRNA by a p53-independent pathway (Darnell and 

Richardson, 1999; Le and Richardson, 2004). This effect has  been observed in a variety of 

cell types (Fukuchi et al., 1995; Darnell and Richardson, 1999; Gao and Richardson, 2001; 

Becker et al., 2003; Le and Richardson, 2003) and is  relevant to the pharmacological effects 

of chelators as anti-tumour agents (Yu et al., 2007). However,  p21
WAF1/CIP1 

protein 

expression decreased after iron-depletion (Fu and Richardson, 2007). This downregulation of 

p21
WAF1/CIP1 

is important, as apart from being a Cdk inhibitor and positive regulator of the 

cell cycle, this protein has also anti-apoptotic activity. 

On the other hand, iron-depletion mediated by the iron chelator „mimosine‟ 

upregulates p27
KIP1

 at both mRNA and protein levels (Wang et al., 2000; Yoon et al., 2002; 

Dong and Zhang, 2003; Wang et al., 2004). It was suggested that iron-depletion also 

increased the expression of transforming growth factor β1 (TGF- β1) (Yoon et al., 2002). 

Interestingly, the upregulation of p27
KIP1

 was prevented when TGF- β1was neutralized using 

a TGF- β1antibody (Yoon et al., 2002). 

 

1.7.4 The growth arrest and DNA-damage-inducible genes(GADD) family 

 The GADD group of genes are stress response molecules comprising of GADD34, 

GADD45 and GADD153. Their expression is increased when cells are subjected to a stress 

such as nutrient deprivation (e.g., glucose, glutamine, zinc) (Carlson et al., 1993; Abcouwer 

et al., 1999; Fanzo et al., 2001) or exposed to DNA-damaging agents (e.g., peroxynitrite) 

(Oh-Hashi, Maruyama et al., 2001) leading to cell cycle arrest and/or apoptosis.  

 The GADD45 group of genes encodes three proteins, GADD45α, GADD45β and 

GADD45γ. Although these proteins are structurally-related , only GADD45α has been 

demonstrated to cause p53-dependent G2/M arrest and inhibit cdc2 kinase (Zerbini and 

Libermann, 2005). GADD45α has also been shown to interact with cell cycle regulatory 

molecules, such as p21
CIP1/WAF1  

(Kearsey et al., 1995), cdc2/cyclin B1 (Vairapandi et al., 

2002) and p38 mitogen-activated protein kinase (MAPK; see section 1.7.5) (Bulavin et al., 

2003). The GADD45α cellular activity also depends on its interacting partner. For instance, 
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interaction between GADD45α and p38 MAPK has been shown to regulate p53 which 

prevent, in part, oncogene-induced growth (Bulavin et al., 2003). 

 It has been suggested that GADD34 and GADD153 may directly initiate apoptosis 

rather than inducing cell cycle arrest (Hollander et al., 2001; Maytin et al., 2001). 

Overexpression of each GADD gene leads to the inhibition of growth and/or apoptosis, 

whereas combined overexpression of the three GADD genes causes synergistic or cooperative 

effects on antiproliferative activity (Zhan et al., 1994). 

 Interestingly, studies have demonstrated that DFO or 311-mediated iron chelation has 

caused a marked increase in the GADD45 mRNA expression in BE-2 neuroblastoma, 

SK-N-MC neuroepithelioma and K562 erythroleukemia cell lines, in a concentration- and 

time-dependent manners (Darnell and Richardson, 1999). Iron-depletion has also been found 

to increase GADD153 mRNA (Yu et al., 2007). Further studies are required to assess the 

GADD45 protein level in cells after iron-depletion since one study has shown there was no 

appreciable increase in the GADD45 protein level in cells after iron-depletion (Gao and 

Richardson, 2001).  

 Similarly, both GADD45 and GADD153 mRNAs have been found to be up-regulated 

during hypoxia (Price and Calderwood, 1992). This suggests that the transcription factor 

HIF-1α plays a role in the up-regulation of these genes that may be activated by both hypoxia 

and iron-chelation via prolyl hydroxylases (see section 1.7.5). 

 It has been suggested that GADD45 may cause growth arrest by inhibiting the activity 

of cyclin B and Cdk2 (Vairapandi et al., 2002) and studies have demonstrated that 

iron-chelation causes a reduction in the expression of these regulatory molecules (Gao and 

Richardson, 2001). 

 

1.7.5 p38 MAPK 

 The p38 MAPK signalling molecule is a member of the MAPK family which also 

includes extracellular signal-regulated kinase (ERK) and c-Jun N-terminal protein 

kinase/stress-activated protein kinase (JNK/SAPK). These proteins affect processes such as 

cell differentiation and apoptosis and are activated by many environmental stresses and 

inflammatory cytokines (Bulavin et al., 2003). 

It has been shown that iron-chelation with DFO strongly activated p38 MAPK and 

ERK, but did not activate JNK (Lee et al., 2006).  
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Interestingly, growth inhibition mediated by p38 has been suggested to involve p53 

activation (Bulavin et al., 1999) and reduce cyclin D1 expression (Lavoie et al., 1996), both 

of which also occur upon iron-chelation (Fukuchi et al., 1995; Kulp et al., 1996; Gao and 

Richardson, 2001; Nurtjahja-Tjendraputra et al., 2007). 

 

1.7.6 Hypoxia inducible factor-1 (HIF-1) 

 HIF-1 is a transcription factor that is activated under hypoxic conditions and acts to 

initiate a signalling pathway leading to cell survival (Semenza, 1999; Greijer et al., 2005).  

This protein is a heterodimer composed of an “α” subunit which is regulated by the hypoxic 

state, and a “β” subunit which is constitutively expressed (Wang et al., 1995). Under normal 

conditions, HIF-1α is regulated by prolyl hydroxylase enzymes (Ivan et al., 2001; Stockmann 

and Fandrey, 2006) which mediates its degradation (Semenza, 1999; Ivan et al., 2001; Greijer 

et al., 2005). However, under conditions of oxygen-deprivation and/or iron-depletion, prolyl 

hydroxylases does not function, causing HIF-1α accumulation in the cell (Ivan et al., 2001; 

Stockmann and Fandrey, 2006). HIF-1α then translocates to the nucleus where it binds to 

HIF-1β to form the HIF-1 complex (Wang et al., 1995; Caro, 2001).  

 Once formed, HIF-1 can upregulate TfR1 transcriptionally (Bianchi et al., 1999; 

Tacchini et al., 1999) leading to an increase in intracellular iron levels. HIF-1 can also target 

Ndrg-1 (see section 1.7.7) (Kovacevic and Richardson, 2006). Moreover, under conditions of 

severe hypoxia, HIF-1α can stabilise p53 expression (An et al., 1998) and upregulate 

proapoptotic factors such as BNIP3 (Bruick, 2000; Guo et al., 2001) that may lead to 

apoptosis. 

 Iron-depletion results in the activation of HIF-1α and its down-stream targets, 

ultimately leading to cell cycle arrest, apoptosis, metastasis suppression and inhibition of 

growth (Le and Richardson, 2004). Although HIF-1α up-regulation may lead to growth and 

angiogenesis (e.g., through vascular endothelial factor-1 VEGF1), potent iron chelators have 

been shown to override this and activate apoptotic pathways (Gao and Richardson, 2001; Le 

and Richardson, 2004). 

 

1.7.7 N-myc downstream regulated gene 1 (Ndrg-1) 

Ndrg-1 is a metastasis suppressor gene that is involved in cell differentiation and 

proliferation (Bandyopadhyay et al., 2004; Kovacevic and Richardson, 2006; Maruyama et 
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al., 2006). Iron-chelation markedly upregulates Ndrg-1 mRNA and the expression of the 

protein in a number of cancer cell types. It has been found that in prostate cancer patients, 

high expression of Ndrg-1 is associated with greater survival and less aggressive tumours 

(Bandyopadhyay et al., 2003). Additionally, in pancreatic adenocarcinoma patients, there is a 

significant inverse correlation of Ndrg-1 expression with depth of invasion (Maruyama et al., 

2006). Moreover, in breast and prostate cancer patients with lymph node or bone metastasis, 

Ndrg-1 expression was significantly reduced when compared to those with localized disease 

(Bandyopadhyay et al., 2003; Bandyopadhyay et al., 2004). Furthermore, studies in vivo and 

in vitro have demonstrated that over-expression of Ndrg-1 protein results in smaller tumours 

that are less aggressive (Kurdistani et al., 1998; Bandyopadhyay et al., 2003; Maruyama et 

al., 2006). Hence, the up-regulation of Ndrg-1 after iron depletion may, in part, play an 

important role in inhibiting the proliferation observed after treatment with these agents. 

The Ndrg-1 expression in normal breast epithelial cells was found to be high during 

G1 and G2/M phases and low during the S-phase, suggesting a potential role in regulating the 

cell cycle. In contrast, in breast cancer cells, Ndrg-1 levels remains constant throughout the 

cell cycle (Kurdistani et al., 1998). 

It has been suggested that Ndrg-1 plays a role in cell cycle regulation. Analysis of the 

nucleotide sequence of the Ndrg-1 promoter has revealed a motif for the transcription factor 

E2F1 (Kovacevic and Richardson, 2006), which plays a pivotal role in the G1 to S-phase 

transition. Furthermore, it has been found that Ndrg-1 was induced by p53 following DNA 

damage, which suggests that Ndrg-1 is necessary for p53-dependent apoptosis (Stein et al., 

2004). 

Recently, it has been found that DFO, 311 and Dp44mT up-regulate the Ndrg-1 level 

in a range of cancer cell types in an iron-dependent but p53-independent manner (Le and 

Richardson, 2004). Interestingly the degree of Ndrg-1 up-regulation was proportional to the 

efficacy of the anti-proliferative activity of the chelator assessed. Furthermore the 

up-regulation of Ndrg-1 following iron-chelation was found to be due to both 

HIF-1α-dependent and -independent mechanisms (Le and Richardson, 2004).  

Since Ndrg-1 potentially plays a pivotal role in cell cycle regulation, its up-regulation 

following iron-chelation may be one mechanism by which iron chelators cause cell cycle 

arrest and apoptosis (Yu et al., 2007). 
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1.7.8 CDC14A 

 Sanchez et al. (2006) have identified a novel IRE in the 3' UTR of CDC14A mRNA 

that binds IRPs. Iron-chelation using DFO lead to an increase in the expression of the 

CDC14A transcript that contains the IRE (Sanchez et al., 2006). Interestingly, it has been 

demonstrated that CDC14A de-phosphorylates p27
Kip1

 and cyclin E, which are critical for the 

G1 to S transition (Kaiser et al., 2002). Therefore, it was suggested that CDC14A may play a 

role in the cell cycle arrest seen after iron-chelation. However, the effect of iron-chelation on 

CDC14A expression was only reported at the mRNA level. Further studies are necessary to 

determine whether iron-depletion affects the protein expression of CDC14A. 

 

1.7.9 Iron-depletion and apoptosis 

 Many studies have demonstrated the ability of iron chelators to induce apoptosis 

(Hileti et al., 1995). For example, DFO induced apoptosis in a number of cancer cells 

including ovarian cancer (Brard et al., 2006) , NB (Fan et al., 2001), Kaposi‟s sarcoma 

(Simonart et al., 2000) malignant oral KC (Lee et al., 2006) and cervical carcinomas 

(Simonart et al., 2002). Silmilarly, iron chelators such as Triapine (Alvero et al., 2006), 

Tachpyridine (Greene et al., 2002; Zhao et al., 2004), O-Trensox (Rakba et al., 1998) and 

Dp44mT (Yuan et al., 2004) have also been shown to induce apoptosis in a variety of 

neoplastic cell types both in vitro and in vivo. 

 Furthermore, it has been shown that DFO increased the activity of caspase-3, -8  

and -9 (Brard et al., 2006; Lee et al., 2006; Wang et al., 2006), while Dp44mT markedly 

increased the activity of caspase-3 (Yuan et al., 2004). Numerous studies have demonstrated 

that iron chelators induce apoptosis through the mitochondrial pathway. For instance, 

Triapine-induced apoptosis was mediated by Bid activation (Alvero et al., 2006). Moreover, 

apoptosis caused by Tachpyridine was not inhibited by blocking the CD95 death receptor 

pathway with a Fas-associated death domain protein dominant-negative mutant (Greene et 

al., 2002). Furthermore, apoptosis induction by Dp44mT and DFO was associated with a 

reduction in Bcl-2 expression, an increase in Bax and efflux of cytochrome c from the 

mitochondrion (Yuan et al., 2004; Lee et al., 2006). Additionally, DFO has been found to 

cause the nuclear accumulation of pleomorphic adenoma gene like 2 (PLAGL2) which results 

in the expression of the proapoptotic factor, BNIP3 (Mizutani et al., 2002). The BNIP3 

overexpression increases Bax and Bak levels which leads to the release of cytochrome c and 

apoptosis (Kubli et al., 2007). 
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 It still remains unclear whether p53 accumulation upon iron-deprivation is necessary 

for apoptosis. For instance, incubation of cells with Tachpyridine led to rapid accumulation 

of p53 and death but this did not require p53 activation (Abeysinghe et al., 2001). In contrast, 

other mechanisms have been suggested where iron-depletion activates p38 and ERK MAPK 

to transduce signals for induction of the apoptotic cascade (Lee et al., 2006). 

 

1.8 Skin Hyper-proliferative Disease  

 

1.8.1 Skin cancer 

In the United Kingdom, the incidence of skin cancer is greater than that of all other 

cancers. According to Cancer Research UK, it is estimated that at least 100,000 new cases are 

diagnosed each year (Cancer Research UK, 2008).   

The common skin cancers, which are also named after the type of skin cell they arise 

from, are basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), known together 

as Non-Melanoma Skin Cancer (NMSC) which is the most common cancer in UK with 

official figures reporting over 72400 cases diagnosed only in 2004. In addition to malignant 

melanoma which is substantially less common but often fatal, BCC comprises 75% of all 

NMSC cases. 

BCC may be categorized into three major growth patterns: nodular (nBCC), superficial 

(sBCC) and morphoeiform (or sclerotic; mBCC). Nodular BCC is the most frequent form of 

BCC. It usually presents as a waxy, pearly or translucent papule/nodule with overlying fine 

telangiectasias, with frequent ulceration or erosion of the surface. Tumours may occasionally 

be pigmented to varying degrees. Superficial BCC most commonly arise on the trunk and 

extremities, but may be seen anywhere on the body.  The tumours are characterized by an 

erythematous macule or patch, which may be variably pigmented. There may also be an 

overlying fine scale, a superficial erosion or hemorrhagic scale crust. mBCC is  frequently 

seen in chronic arsenism and as late sequelae of radiation therapy. Morpheaform or sclerosing 
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has a scar-like appearance. It consists of a dermal plaque with overlying epidermal atrophy in 

a sun-exposed distribution (Toro et al., 2009). 

Squamous cell carcinoma (SCC) is the second most common type of skin cancer in 

this country after BCC, accounting for 20% of all skin cancers. It commonly presents as a 

red, scaling, thickened patch on sun-exposed skin. Some are firm hard nodules and dome 

shaped like keratoacanthomas. Ulceration and bleeding may occur. When SCC is not treated, 

it may develop into a large mass. SCC metastasis rate is quite low, with the exception of 

SCCs of the lip, ear, and in immunosuppressed patients. 

 

Melanoma is the least frequent of the 3 common skin cancers.  However it frequently 

metastasises, and is deadly once spread. Most skin cancer deaths (i.e. more than 1800 each 

year), are from malignant melanoma.  The mortality related to melanoma has quadrupled 

since the 1970s and its rate has risen faster than any other cancer in the UK in the last 25 

years. Melanoma is also the most common cancer in young adults aged 15-34 (Bruce and 

Brodland, 2000). Most melanomas are brown to black-looking lesions. Unfortunately, a few 

melanomas are pink, red or fleshy in colour.  These are called amelanotic melanomas and 

tend to be more aggressive.  Warning signs of malignant melanoma include change in the 

size, shape, colour or elevation of a mole. Other signs are the appearance of a new mole 

during adulthood or new pain, itching, ulceration or bleeding.  

The rising incidence rates of NMSC and melanoma is probably due to a combination 

of increased exposure to UV light primarily from sunlight (Rigel, 2008) and from the 

recreational use of sunbeds, increased outdoor activities, changes in clothing style, increased 

longevity and ozone depletion (Bruce and Brodland, 2000). 

 

1.8.1.1 Current therapies for skin cancer   

Surgery is the most common approach with the Mohs micrographic surgery being the 

best treatment so far, but owing to the time and expenses involved with this procedure, it is 

indicated only in patients with aggressive tumours. In addition to the potential for 

disfigurement and the inherent risks associated with any surgical procedure (Martinez and 

Otley, 2001). Radiation therapy (external beam radiotherapy or brachytherapy) is also 

effective. However this treatment requires several sessions and is the most expensive. It is not 

considered for patients under 55 years because it predisposes the treated area to radiation-

induced skin cancer and cosmesis can worsen over time (Neville et al., 2007).  
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Further non-invasive options for NMSC include topical chemotherapeutics 

(imiquimod or 5-fluorouracil), cryotherapy (freezing the tumour off),  biological immune 

response modifiers (e.g. imiquimod), retinoids and photodynamic therapy (PDT), using 

photosensitizing porphyrin 5-ALA or the methyl ester of ALA (mALA) together with  a light 

source in the 450–750 nm wavelength range (Neville et al., 2007). 

Several regimens of chemotherapy have been clinically applied for the treatment of 

NMSC but have turned out to be insufficient at improving the prognosis (Cassileth and 

Chapman, 1996; McCann, 1997). 

 

Treatments so far are tailored to tumour type, location, size and histological pattern 

but with increasing incidence of NMSC, there is a clear need to design new non-invasive 

treatments to target cancer cells more generally at all stages of tumourigenesis.  

 

As mentioned previously, iron is essential for cell proliferation due to its important 

role in the active sites of a wide range of proteins involved in energy metabolism, respiration 

and DNA synthesis; and neoplastic cells, in particular, have a high iron requirement due to 

their rapid proliferation (Richardson and Baker, 1990; Richardson and Ponka, 1994; Le and 

Richardson, 2002). Moreover, in both animals and humans, primary neoplasms develop at 

body sites of excessive iron deposits such as skin, which is potentially the target of significant 

oxidative damage due to its constant exposure to high oxygen tensions, and frequent exposure 

to UV light. These observations, in addition to the critical roles of iron and iron proteins in 

cell proliferation, highlight the importance of iron chelation as a suitable therapeutic strategy 

for cancer treatment. 

 

1.8.2 Psoriasis 

Psoriasis is a well-recognised, chronic skin condition affecting approximately 3% of 

the population in the UK, commonly presenting before the age of 35 years. It is a chronic 

life-long condition which has significant effects on the patient‟s quality of life as well as 

detrimentally affecting their physical and emotional well-being. Several clinical phenotypes 

of psoriasis are recognised, of which chronic plaque psoriasis (psoriasis vulgaris) is the most 

common, presenting in approximately 90% of cases. The rest of phenotypes include chronic 

plaque psoriasis, guttate psoriasis, pustular psoriasis, flextural psoriasis, erythrodermic 

psoriasis (Myers et al., 2006). 
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Chronic plaque psoriasis presents as slightly raised, reddish and well demarcated 

papulo-squamous lesions of varying dimensions, covered with silvery white scales. Peeling 

of the scales reveals characteristic pin-point bleeding in the underlying dermis. The lesions 

are usually distributed symmetrically over the body, especially presenting on the extensor 

aspects of elbows and knees, the scalp, genitals and soles and palms. Up to 15% of sufferers 

may develop a potentially destructive and disabling arthritis called psoriatic arthritis that can 

attack the joints, mainly the distal inter-phalangeal joints of the hands and feet. 

 

Psoriasis is characterized by hyperproliferation of epidermal keratinocytes and 

hyperkeratosis (Champion, 1981; Stevenson and Zaki, 2002). The normal turnover of 

epidermis is between 3-4weeks and in psoriasis this is reduced to 2-5 weeks (Champion, 

1981; Stevenson and Zaki, 2002). The hyperproliferation of epidermis in psoriatic lesion 

leads to thickening of the superficial layers of the skin.  

Psoriasis is also known to involve lymphocytic infiltration that consists mainly of T 

lymphocytes (Stevenson and Zaki, 2002). Activation of T lymphocytes, migration of T 

lymphocytes to the skin, and T lymphocyte mediated production of cytokines such as 

interferon gamma, interleukin-2, and tumour necrosis factor alpha is important in the 

pathogenesis. Interferon gamma inhibits apoptosis of keratinocytes, interleukin-2 stimulates 

growth of T lymphocytes and tumour necrosis factor alpha increases proliferation of pro-

inflammatory cytokines and adhesion molecules. The adhesion molecules further stimulate T 

lymphocytes to produce cytokines. 

Angiogenic factors produced by epidermal keratinocytes may also play a role in 

causing abnormal dermal vascular proliferation and angiogenesis, with levels of VEGF 

(vascular 

endothelial growth factor) being found to be significantly raised in psoriasis plaques. 

This is therefore a potential area for future research to investigate the role of angiogenic 

factors further. 

There is a great body of evidence indicating that oxidative stress and antioxidant 

imbalance could play a pivotal role in the pathogenesis of psoriasis (Briganti and Picardo, 

2003; Wojas-Pelc and Marcinkiewicz, 2007). It has been shown that in psoriatic lesions ROS 

are generated by both keratinocytes and activated inflammatory cells (mostly neutrophiles) 

(Pelle et al., 2005). Under such conditions the natural antioxidant defense system is 

overwhelmed by a prolonged production of ROS, and the resulting free radicals cause 

damage to proteins, lipids and DNA (Kohen, 1999). Furthermore, it has been reported that in 



Page | 84  

 

psoriatic skin there is a decreased level of natural antioxidants namely SOD, GPx and 

ascorbic acid (Trenam et al., 1992). 

 

Interestingly, elevated iron levels have been detected in psoriatic epidermis (Trenam 

et al., 1992; Morris et al., 1995) and dermis (Leveque et al., 2004) that act almost certainly to 

exacerbate both proliferation and inflammatory sides of the disease.  

Psoriasis is a relapsing remitting condition that can flare up at any time. Predisposing 

factors include the use of chloroquine, withdrawal of corticosteroid in a susceptible 

individual, emotional stress, alcohol or tobacco consumption, trauma (Köebner 

phenomenon), hypocalcaemia, and sunburn. Streptococcal infection can precipitate guttate 

psoriasis via a mechanism that involves activation of CD4+ T cells by a superantigen (Clark, 

2004). 

 

At present there is no satisfactory method to cure psoriasis. The common methods 

available at present to control this disease are topical therapies aided by natural sunlight or 

UVB in mild and moderate cases (Clark, 2004). In severe cases, the combination of 

photosensitizing drugs known as psoralens and UVA (PUVA) has been used, as well as 

systemic therapy. However since chronic plaque psoriasis is a lifelong condition, long-term 

therapy is indicated which limits the use of many of these therapies due to unacceptable side-

effects. 

Bath solutions and moisturizers, mineral oil, and petroleum jelly may help soothe 

affected skin and reduce the dryness which accompanies the build-up of skin on psoriatic 

plaques. Ointment and creams containing coal tar, dithranol (anthralin), corticosteroids like 

desoximetasone (Topicort), fluocinonide, vitamin D3 analogues, calcipotriol, and retinoids 

are routinely used. The mechanism of action of each is probably different but they all help to 

normalise skin cell production and reduce inflammation. Corticosteroids are most commonly 

prescribed agents due to their anti-inflammatory effects. However their accompanying 

adverse side effects such as skin thinning, iatrogenic Cushing‟s disease, etc, limit their use to 

short term only. Vitamin D analogues, Calcitriol (the active vitamin D metabolite) and its 

synthetic analogues Talcalcitriol and Calcipotriol, are thought to exert their effect by 

inhibiting KC proliferation and inducing terminal differentiation of psoriatic cell (Menter, 

2009). They are used often in combination with corticosteroids as first line treatment for 

psoriasis. With a better long term safety profile they are much more amenable for 

maintenance therapy than the corticosteroids. Calcineurin inhibitors (Tacrolimus and 
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Pimecrolimus) are also used topically. However due to inefficient skin penetration, they are 

used only under occlusion or on thinner skin such as the face and genitals (Menter, 2009).  

Topical Retinoids such as Tazarotene are available for therapy of psoriasis, however they are 

only moderately effective (Menter, 2009) and cause local irritation and so are usually only 

used in combination with other topical therapy such as vitamin D analogues and topical 

corticosteroids. Tazarotenes potential for teratogenicity precludes its use in pregnancy. 

 

Some topical agents are used in conjunction with other therapies, especially 

phototherapy. PUVA photo-chemotherapy which consists of ingested psoralen (P) 

photosensitiser and UVA light has been shown to facilitate clearance of psoriatic plaques 

(James et al., 2006). PUVA is thought to modulate the expression of cellular adhesion 

molecules and induce T cell apoptosis (Clark, 2005). However its use is limited by its 

associated adverse gastro-intestinal side effects and headaches. It was also found to cause 

structural damage to DNA and can generate ROS such as O2
•-
 that are clastogenic. This may 

contribute to the increased risk for developing SCC and melanoma in the skin of PUVA-

treated patients (Bickers and Athar, 2006). 

Psoriasis that is resistant to topical treatment and phototherapy is treated by systemic 

medications.  Patients undergoing systemic treatment are required to have regular blood and 

liver function tests because of the toxicity of the medication. Methotrexate is the mainstay of 

systemic treatment for psoriasis at present. It is a folic acid antagonist and therefore works by 

inhibiting DNA synthesis and cell replication. Thus KC hyper-proliferation is halted. It also 

suppresses T-cell. However severe adverse effects of methotrexate including nephrotoxicity, 

bone marrow suppression and teratogenicity, limits its use long term (Clark, 2005). 

Cyclosporine is a calcineurin inhibitor inhibiting the synthesis and release of TH-1 and TH-2 

type cytokines in T cells which play a pivotal role in the inflammatory response mechanism 

leading to the formation of psoriatic plaques. However as with methotrexate, severe 

nephrotoxicity associated with systemic cyclosporin therapy precludes its use long term, with 

the FDA administration recommending that cyclosporine should not be given for duration of 

longer than 1 year of continuous treatment (Clark, 2005). Oral Retinoids such as acitretin are 

vitamin A derivatives which bind to nuclear retinoid receptors altering gene transcription and 

returning keratinocyte proliferation and differentiation to normal. However its use is limited 

by its adverse effects on liver and kidney function and teratogenicity especially to women of 

child bearing age (Clark, 2005). One approach may be to use anti-proliferative agents either 
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systematically or topically but such drugs have extremely potent side-effects and their use 

must be strictly controlled. 

 

In principle, RR could provide a suitable target to prevent proliferation, and topical 

use could minimize systemic exposure to potentially toxic molecules. Furthermore elevated 

iron levels have been detected in psoriatic skin that almost certainly act to exacerbate both 

proliferation and inflammatory side of the disease. As a result iron chelators that inhibit both 

RR and residual excess of iron in psoriatic skin should have great potential for the treatment 

of psoriasis. 

 

1.9 Iron Chelation Therapy for Hyperproliferative Diseases   

Iron chelators are ligating drugs that avidly bind iron depriving cells from essential 

nutrient iron (Kalinowski and Richardson, 2005). Selective iron chelators can play an 

important role in treating situations where a local increase in iron concentration causes an 

unfavourable pathology:  

- For example elevated iron levels detected in psoriatic skin will almost certainly act to 

exacerbate both proliferation and inflammation. As a result, iron chelators that inhibit both 

RR and residual excess of iron in psoriatic skin should have great potential for its treatment 

(Singh et al., 1995; Finch et al., 2000; Chaston et al., 2003). Systemic application of iron 

chelators such as ICRF-159 (razoxane) was found to be remarkably successful for the 

treatment of psoriasis. Unfortunately, prolonged exposure of patients to such chelators was 

associated with high incidence of epitheliomas and leukemia (Horton et al., 1983; Horton et 

al., 1984). 

- The higher utilization of iron by cancer cells compared to their normal counterparts 

provides also a rationale for the selective anti-tumour activity of iron chelator molecules.  

Because of the crucial role of iron in hyperproliferative diseases, „iron chelation therapy‟ 

(ICT) which uses iron-trapping drugs (i.e. iron chelators) to reduce harmful levels of iron in 

cells, has been recognized as an attractive alternative to the existing drug-based approaches. 

Indeed iron chelators are powerful tools in the context of cancer and psoriasis, to prevent cell 

division by depleting essential nutrient iron and by inhibiting RR the key enzyme involved in 

DNA synthesis. 
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ICT should also have distinct advantages over conventional cancer chemotherapy as 

problems associated with resistance and unresponsive of cancer cells to such agents may be 

avoided (Whitnall et al., 2006).  

 

1.9.1 Iron chelators and cancer 

The selectivity of the iron chelators in the context of cancer is based upon the fact that 

rapidly growing tumour cells have a higher iron requirement than normal cells (Le and 

Richardson, 2004). Therefore these agents theoretically have little effect on normal cells 

while inhibiting neoplastic cell growth. Numerous studies have demonstrated that tumour 

cells are responsive to iron deprivation by chelation treatment (Gao and Richardson, 2001; 

Becker et al., 2003).  

Iron chelators consist of bi-dentate, tri-dentate or hexadentate ligands in which two, three, or 

six atoms respectively, bind with iron (Richardson and Kalinowski, 2005).  

In addition to leukaemia and NB (Chaston et al., 2004; Chaston et al., 2003; Donfrancesco et 

al., 1990; Donfrancesco et al., 1995; Estrov et al., 1987) ICT has been shown to inhibit the 

growth and/or induce the apoptosis of malignant cell lines from patients with melanoma, 

hepatoma, Kaposi's sarcoma and cervical cancer (Hann et al., 1990; Richardson et al., 1994; 

Simonart et al., 2000; Simonart et al., 2002). 

 

1.9.1.1 Desferrioxamine (DFO) 

DFO (Fig. 1.12), a hexadentate siderophore isolated from Streptomyces pilosus, is the 

current clinical chelator of choice for the treatment of iron overload diseases such as β-

thalassemia (Kalinowski and Richardson, 2005). 

Interestingly, various studies have shown that DFO possess anti-proliferative activity against 

a wide variety of tumour cells (Buss et al., 2003; Kalinowski and Richardson, 2005; Pahl and 

Horwitz, 2005; Richardson, 2005) . Some examples are outlined below:  

- Upon DFO treatment, NB cells displayed a 10-fold higher sensitivity to iron-depletion than 

normal bone-marrow cells (Becton and Bryles, 1988). 

- An in vitro study found 90% cell death in two NB cell lines (CHP 126 and CHP 100) and 

minimal effects in non-NB cells treated with DFO (Blatt and Stitely, 1987). Importantly the 

anti-proliferative activity of DFO was found to be due to iron deprivation (Blatt and Stitely 

1987). 
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- A clinical trial study showed a 50% decrease in bone-marrow infiltration in 7 out of 9 NB 

patients, while one patient experienced a 48% reduction in tumour size (Donfrancesco et al., 

1990). 

- Another trial with 57 NB patients treated with DFO in combination with a series of other 

anti-cancer agents, including cyclophosphamide, etoposide, carboplatin and thio-TEPA, 

resulted in complete responses in 24 patients, 26 partial responses, 3 minor responses and 4 

showing no response (Donfrancesco et al., 1995).  

- A case study of an infant patient with acute leukaemia (Estrov et al., 1987) showed no rise 

in peripheral blood blast cell numbers after DFO administration, while an increase in the 

growth of normal haematopoietic progenitor cells was observed (Estrov et al., 1987).  

- Animal studies demonstrated the efficacy of DFO at inhibiting the growth of tumours. For 

example, DFO inhibited or caused total regression of hepatocellular carcinoma xenografts 

(Hann et al., 1992), it inhibited the growth of mammary carcinoma transplanted in Fischer 

rats (Wang et al., 1999), and it prolonged the life of mice with L1210 leukemia (Yu et al., 

2006).  

- In addition, there are much in vitro cell culture-based studies demonstrating that DFO can 

inhibit tumour cell growth (for reviews see(Donfrancesco et al., 1996; Richardson, 1997).  

 

 
 

Figure 1.12: Chemical structures of free (DFO) and its complex with iron. 
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The anti-proliferative activity caused by iron depletion mediated by DFO is thought to 

be related to its effect on RR, the rate-limiting enzyme in the formation of 

deoxyribonucleotides for DNA synthesis. Nevertheless DFO has also a significant effect on 

cellular energy metabolism which was evident in a study done by Oexle and colleagues 

(Oexle et al., 1999) in which DFO decreased the expression of mitochondrial aconitase, 

citrate synthase, isocitrate dehydrogenase, and succinate dehydrogenase (Oexle et al., 1999). 

This resulted in decreased mitochondrial oxygen consumption and ATP formation via 

oxidative phosphorylation and an increase in glycolysis (Oexle et al., 1999). Other targets of 

DFO include proteins involved in cell cycle control which are discussed in the Aroyl 

Hydrazone section (section 1.9.1.3). 

Despite the preclinical in vivo and in vitro studies, as well as clinical trials that gave evidence 

of the potential of DFO in cancer therapy; in other studies the anti-proliferative activity of 

DFO has not been so marked. For instance, DFO treatment failed to produce a response in 10 

children with recurrent NB (Blatt, 1994). It also failed to inhibit the growth of human tumour 

xenografts in mice (Selig et al., 1998). The lack of an effect of DFO in these studies is 

probably due to its short plasma half-life and its low efficiency at permeating biological 

membranes (Frazer et al., 2005; Mims and Prchal, 2005; Dunn et al., 2006).  Such studies 

highlight the fact that DFO was never designed for cancer treatment but rather for the therapy 

of iron overload diseases. Moreover DFO is expensive to produce and not suitable for topical 

application, since it is hydrophilic in nature (the calculated n-Octanol-Water partition 

coefficient log Pcalc = -0.14) and therefore suffers from poor plasma membrane permeability. 

In cellular studies, it has been shown that DFO takes several hours to enter the cells 

via the slow process of endocytosis. Then it is transported into the lysosomal compartment 

where it remains intact (i.e. undegraded) and acts as a sink for iron, decreasing rapidly the 

cytosolic LIP (Lloyd et al., 1991; Glickstein et al., 2005; Kurz et al., 2006; Kurz et al., 2008). 

Furthermore prolonged exposure to DFO provokes severe iron starvation in cells, resulting in 

removal of essential iron from various sites including iron-containing enzymes leading to 

clinical complications (Porter and Huehns, 1989). At the cellular level, prolonged DFO 

treatment results in cell cycle arrest and cell death (Doulias et al., 2003; Yu et al., 2006).  

As a result of DFO limitations, there is a great need to develop more effective iron  chelators 

for cancer therapy.  
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1.9.1.2 Thiosemicarbazones 

The thiosemicarbazone class of chelators were one of the first groups of ligands to be 

characterised for potent anti-tumour activity (Sartorelli and Booth, 1967; Sartorelli et al., 

1971; Antholine et al., 1977; Agrawal and Sartorelli, 1978).  

The best characterised member of this family of chelators is the 3-aminopyridine-2-

carboxyaldehyde thiosemicarbazone (Triapine®, Fig. 1.13; Vion Pharmaceuticals Inc, New 

Haven, CT), 

Triapine®; is a tridentate chelator that ligates iron via a sulfur and two nitrogen donor 

atoms. It is the one of the most potent RR inhibitors (Wadler et al., 2004). Unlike the 

clinically used RR inhibitor, hydroxyurea, that inhibits R2 only, Triapine can equally inhibit 

both R2 and p53R2 (Shao et al., 2004) preventing DNA repair and synthesis (Shao et al., 

2006) both in vivo and in vitro (Finch et al., 2000; Chaston et al., 2003; Shao et al., 2006). 

Triapine exerts its antiproliferative activity mainly by forming a complex with iron. The 

Triapine-iron complex is redox active (Chaston et al., 2003), and has been shown to be more 

active at inhibiting RR than free Triapine. Indeed Triapine forms a complex with Fe
3+

, which 

is then reduced to Fe
2+

 that acts as a catalyst to form ROS. The generated ROS quench the 

RR tyrosyl radical and cause its inactivation (Shao et al., 2006).   

Over the last few years, Triapine® has been developed as an anti-cancer agent and is 

currently undergoing Phase I and II clinical trials (Gojo et al., 2007; Knox et al., 2007; 

Mackenzie et al., 2007).  

In a Phase I clinical trial conducted in 21 patients, a decrease in tumour markers 

associated with stable disease was observed in four patients (Wadler et al., 2004) (Table 1.4). 

Triapine® administered at a dose of 120 mg/m
2
/day once per fortnight was well-tolerated, but 

at 160 mg/m
2
/day, 3 out of 6 patients suffered from toxic effects including anaemia, 

thrombocytopenia, leucopenia and met-haemoglobinemia (Wadler et al., 2004). One trial 

reported that patients with deficiencies in glucose-6-phosphate dehydrogenase (G6PD) 

experienced severe met-haemoglobinemia and hemolysis after Triapine® treatment (Foltz et 

al., 2006).  Another Phase I clinical trial demonstrated that Triapine® administered by 

infusion had anti-leukaemia activity (Gojo et al., 2007). Although no patients were observed 

to have complete or partial remission, 76% of patients were found to have a > 50% decrease 

in white blood cell counts (Gojo et al., 2007).  

A Triapine® dose of 96 mg/m
2
 administered using daily 2 h infusions for 5 days 

every other week was found to be well-tolerated. However one patient developed met-
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haemoglobinemia, diarrhoea, dyspnoea and hypoxia when triapine was administered at a dose 

of 85 mg/m
2
 twice daily by the same schedule, (Gojo et al., 2007). 

A Phase II clinical trial of Triapine® in patients with metastatic renal cell carcinoma 

demonstrated that when patients were administered with 2 h infusions of 96 mg/m
2
 

Triapine® every 2 weeks, adverse effects were observed including fatigue, nausea and 

vomiting in 74%, 68% and 58% of patients, respectively (Knox et al., 2007).  Adverse events 

of greater severity, such as neutropenia, hypoxia, hypotension and met-haemoglobinaemia 

were also noted. Consequently, only 47% of patients received at least 90% of the planned 

Triapine® dose (Knox et al., 2007). The study was early terminated due to a failure to meet 

minimal efficacy criteria (Knox et al., 2007). 

Another recent two-step Phase II clinical trial examined the anti-tumour activity of 

Triapine® in combination with gemcitabine in patients with advanced pancreatic 

adenocarcinoma (Mackenzie et al., 2007). Patients were treated with Triapine® at 105 mg/m
2
 

over a 2 h infusion. Gemcitabine was subsequently administered 4 h after the Triapine® 

infusion at 1000 mg/m
2
 and this treatment schedule was given on days 1, 8 and 15 of a 28-

day cycle (Mackenzie et al., 2007). Of the 25 patients assessed, 4 discontinued treatment due 

to adverse effects including myocardial infarction, hypertension, vomiting and hypoxia. 

While no objective responses were observed, 11 patients had stable disease. However, this 

two-stage trial was stopped after stage 1 due to the lack of anti-tumour activity (Mackenzie et 

al., 2007). 

Triapine
®
 continues to be examined in clinical trials, particularly in combination with 

standard chemotherapy drugs. However, the deleterious effects associated with it must be 

considered when designing future studies with compounds of this class.  

 
 

Figure 1.13 Chemical structures of 3-aminopyridine-2- carboxaldehyde (3-AP or Triapine) 

(Yu et al., 2006).
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Table 1.4 : Summary of clinical trials with DFO and Triapine (Yu et al., 2006). 

 
  

Treatment No. of patients Outcome References 

DFO 9 patients with NB 7 patients showed decrease in bone marrow 

infiltration; 

1 patient showed a 50% reduction in tumour mass 

 Donfrancesco et al., 1995 

DFO 10 children with 

recurrent NB 

No partial or complete responses, although 

decreased serum ferritin were noted in 4 patients 

(Blatt, 1994) 

DFO 14 patients with 

advanced hormone-

refractory prostate 

cancer 

13 patients had disease progression, although 9 had 

stable 

measurable or evaluable disease 

(Dreicer et al., 1997) 

DFO 

Cyclophospha

mide 

Etoposide 

Carboplatin 

Thiotepa (D-

CECaT) 

23 patients with 

advanced NB and 

2 patients with 

PNET 

In previously untreated patients, there were 15 

complete responses and 2 partial responses. 

In patients who had a different drug regimen 

previously, there were 2 very good partial 

responses  

and 4 partial responses.  

Median survival for most patients was 22 mo 

 Donfrancesco et al., 1995 

D-CECaT 57 patients with 

advanced NB 

Following four treatment courses, almost all 

patients underwent surgery. After surgery there 

were 

24 complete responses, 26 partial responses, 3 

minor responses and 4 with disease progression 

 Donfrancesco et al., 1995 

DFO 

IFN α 

(Roferon) 

Adriamycin 

Tamoxifen 

Ascorbic acid 

7 patients with 

inoperable 

hepatocellular 

carcinoma 

Compared with 5 untreated patients, the treated 

patients had a longer survival rate, increased 

tumour regression and less progressive disease 

(Kountouras et al., 1995) 

DFO 

Doxorubicin or 

CHOP regimen 

Iron sorbitol 

citrate 

9 patients with 

refractory malignant 

disease 

Partial responses were observed in 2 of 4 patients 

with refractory non-Hodgkin's lymphoma 

(Voest et al., 1993) 

Triapine 27 patients with 

advanced cancer 

8 patients experienced stabilization of disease for 2-

4 mo, the remaining patients  

experienced progression. No objective tumour 

responses were observed 

(Feun et al., 2002) 

Triapine 24 patients with 

refractory leukemia 

No patient had an objective response. Over 70% of 

patients had >50% reduction of WBC count  

(Giles et al., 2003) 

Triapine 32 patients with 

different tumour 

types 

No partial or complete responses were observed;  

5 patients showed a positive antitumour effect, in 

which 2 achieved disease stabilization; 4 of the 5  

patients had metastatic disease 

(Murren et al., 2003) 

Triapine 

gemcitabine 

26 patients with 

progressive 

metastatic or locally 

advanced cancer 

3 patients had objective responses; 2 other patients 

achieved a partial response; another patient  

achieved tumour size reduction without meeting the 

criteria for a partial response 

 Yen et al., 2004 

Triapine 21 patients with 

advanced or 

metastatic cancer 

No partial or complete responses of tumour size 

reduction were observed; 2 patients remained  

progression-free for 6 and 10 mo, whereas 4 others 

achieved stable disease for 3-4 mo 

 Wadler et al., 2004 

Triapine 

Cytarabine 

(ara-C) 

31 patients with 

refractory acute 

leukemia and high-

risk MDS 

4 patients achieved a complete response after the 

first cycle of therapy 
 Yee et al,. 2006 



Page | 93  

 

1.9.1.3 Aroylhydrazones 

Novel aroylhydrazone chelators such as pyridoxal isonicotinoyl hydrazone (PIH) and 

salicaldehyde isonicotinoyl hydrazone (SIH) have shown promise as effective iron chelators 

for cancer therapy (Richardson and Ponka, 1994; Richardson et al., 1995) and skin 

photoprotection (Yiakouvaki et al., 2006). 

  

PIH and SIH (Fig 1.14) are tridentate iron chelators which binds iron octahedrally in a 

ligand/iron ratio of 2:1(Ponka et al., 1979a) through the carbonyl oxygen, imine nitrogen, and 

phenolic oxygen (Kalinowski and Richardson, 2005). Both SIH and PIH have high affinity 

and selectivity for Fe
3+ 

that is comparable to that of DFO (Richardson et al., 1995). They also 

bind Fe
2+

 but with a lower affinity (Kalinowski and Richardson, 2005). The efficiency of 

both PIH and SIH in preventing iron uptake and mobilization is superior to DFO (Richardson 

et al., 1995). 

 An acid dissociation constant study of PIH and SIH revealed that at physiological pH, 

the majority (∼80%) of PIH and (~86%) of SIH are present in a neutral state, with a small 

proportion being found as a singly charged anionic species (Kalinowski and Richardson, 

2005). These results, in combination with the lipophilicity of these ligands (Baker et al., 

1985) (Clog P= 0.69 for PIH and 2.04 for SIH), indicate that both iron chelators are able to 

readily permeate cell membranes and tissues (Ponka et al., 1979b; Huang and Ponka, 1983; 

Richardson and Baker, 1990; Epsztejn et al., 1997). The chelator SIH is sufficiently 

lipophilic to readily cross the cell membrane and even transport iron to the extracellular 

media (Yiakouvaki et al., 2006). 

 

Importantly the high lipophilicity of PIH and SIH make these iron chelators ideal 

candidates for topical therapy of iron-related hyperproliferative skin disorders, notably skin 

cancer and psoriasis. Furthermore these chelators have already shown promising protection 

against UVA-induced iron damage in skin (Yiakouvaki et al., 2006), as they readily enter 

cells and firmly chelate the redox-active LIP and block the production of iron-catalysed ROS 

formation.  

 

Indeed numerous studies with PIH and SIH used under conditions of limited exposure 

time have shown the protective effect of these compounds in a series of iron-related oxidative 

stress conditions and pathologies (Richardson et al., 1995; Horackova et al., 2000; Simunek 
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et al., 2005; Kurz et al., 2006). However, prolonged exposure of cells to these strong iron 

chelators induces cell death due to severe iron starvation (Gao and Richardson, 2001; Buss et 

al., 2004). This property of PIH, SIH and their derivatives has been exploited in iron 

chelation therapy of cancer (Yu et al., 2006).  

 
 

Figure 1.14: Chemical Structures of PIH, PIH-Fe Complex, SIH and 311. 
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Well before any of these aroylhydrazones were demonstrated to be highly efficient 

iron chelators in cellular or whole animal systems, Sah (Sah and Peoples, 1954) noted that 

PIH has distinct activity against mammary tumours and certain leukemias in mice. 

 

In an in vitro study involving human melanoma, bladder, and lung epithelial 

carcinoma cell lines, Johnson and colleagues (Johnson 1982)demonstrated that both SIH and 

its derivative ligand 201 possess higher iron chelation-dependent anti-tumour activity than 

their corresponding 100 series analogs, PIH and 101 (Johnson et al., 1982). The study also 

demonstrated that the Cu
2+

 complexes of these ligands, in particular that of analog 201, 

contain higher anti-tumour activity than the chelators alone (Johnson et al., 1982).  

 

Considering the high activity of PIH and its analogues and the ability of DFO to 

inhibit the proliferation of tumour cells, studies were initiated to determine the iron chelation 

efficacy of DFO, PIH, and 5 of their analogues in SK-N-MC NB cells (Richardson and 

Ponka, 1994) . This study demonstrated that PIH was more effective than DFO at mobilizing 

59
Fe from the SK-N-MC NB cells and preventing 

59
Fe uptake from Fe-Tf . However PIH was 

equally or far less effective than DFO at preventing [
3
H]-thymidine incorporation. 

(Richardson and Ponka, 1994) .  

 

Interestingly, 3 analogues of PIH, namely, pyridoxal benzoyl hydrazone (101), 

pyridoxal p-methoxybenzoyl hydrazone (107), and pyridoxal m-fluorobenzoyl hydrazone 

(109), had chelation activities comparable to PIH but were more effective than either DFO or 

PIH at inhibiting [
3
H]-thymidine incorporation (Richardson and Ponka, 1994) . These results 

suggested that these iron chelators target different iron pools (Richardson and Ponka, 1994; 

Richardson et al., 1995). 

Considering the high activity of these latter analogues it was deemed worthwhile to 

investigate the effect of a wide range of the aroyl hydrazone class of chelators on the growth 

of NB cells in vitro. 

 

Richardson and colleagues examined a range of PIH analogues with systematic 

substitutions to examine the structure–activity relationships of the aroylhydrazone ligands.  

These chelators were synthesised from various acid hydrazides and three parent aromatic 

aldehydes, namely: pyridoxal, salicylaldehyde and 2-hydroxy-1-naphthylaldehyde and were 

termed the 100, 200 and 300 series, respectively (Fig. 1.15) (Richardson et al., 1995; 

http://pharmrev.aspetjournals.org/content/57/4/547.long#ref-118#ref-118
http://pharmrev.aspetjournals.org/content/57/4/547.long#ref-118
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Richardson and Milnes, 1997), (for IC 50 values see Table 1.5). The study demonstrated that 

out of 15 members of the 100 series examined, only 3 exhibited higher antiproliferative 

effects than DFO, and this highlights the suitability of the 100 series for the treatment of iron 

overload disease (Richardson et al., 1995). The ligand (106) (p-tert-butyl-substituted), the 

most lipophilic derivative of the 100 series, demonstrated increased antiproliferative effect 

over other more hydrophilic members, such as the p-hydroxy substituted chelator (102) 

(Richardson et al., 1995)The antiproliferative effect of these ligands was shown to be caused 

by their ability to bind iron as the addition of ferric ammonium citrate was found to prevent 

their cytotoxic effects (Richardson et al., 1995). Interestingly, the analysis of the relationship 

between the lipophilicity of the PIH analogs and their antitumour effects illustrated a weak 

linear relationship (Richardson et al., 1995; Johnson et al., 1982). The same study illustrated 

the increased cytotoxic effects of the (200) series in comparison to the (100) series of ligands 

(Richardson et al., 1995). Out of the (11) of (200) series analogs examined, SIH and (9) other 

derivative possessed higher antiproliferative activity than their 100 series counterparts 

(Richardson et al., 1995). This study also demonstrated a clear linear relationship between 

antiproliferative activity and the ability of the chelator to either prevent iron uptake from Tf 

or induce iron mobilization from pre-labeled cells (Richardson et al., 1995).  

 

Another range of PIH analogs developed, namely the 300 series, showed even higher 

lipophilicity than that of the 100 and 200 series by incorporating a 2-hydroxy-1-

naphthaldehyde group (Richardson et al., 1995). The analysis of the cytotoxic effects 

demonstrated that from all of the 100, 200, and 300 series of analogs, the latter group of 

chelators had the highest lipophilicity and greatest antiproliferative activity (Richardson et 

al., 1995). All members of the 300 series were found to have antiproliferative activity 

markedly higher than that DFO (Table 1.5) (Richardson et al., 1995). This study also 

highlighted the 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone, also known as 311 

(Fig. 1.14) as one of the most active chelators (Richardson et al., 1995; Richardson and 

Milnes, 1997).  

 

Complexation of 311 with iron resulted in the inhibition of its cytotoxic effects, 

indicating that its antitumour activity relies on its ability to bind iron (Richardson and 

Bernhardt, 1999). The effects of 311 were also studied in CCRF-CEM, breast, bladder, and 

head and neck cancer cell lines, and the chelator again showed strong growth inhibitory effect 

(Green et al., 2001). Studies from the Richardson laboratory have also illustrated that 311 is 

http://pharmrev.aspetjournals.org/content/57/4/547.long#ref-216#ref-216
http://pharmrev.aspetjournals.org/content/57/4/547.long#ref-216#ref-216
http://pharmrev.aspetjournals.org/content/57/4/547.long#ref-118#ref-118
http://pharmrev.aspetjournals.org/content/57/4/547.long#ref-216#ref-216
http://pharmrev.aspetjournals.org/content/57/4/547.long#ref-216#ref-216
http://pharmrev.aspetjournals.org/content/57/4/547.long#ref-216#ref-216
http://pharmrev.aspetjournals.org/content/57/4/547.long#ref-216#ref-216
http://pharmrev.aspetjournals.org/content/57/4/547.long#ref-216#ref-216
http://pharmrev.aspetjournals.org/content/57/4/547.long#ref-216#ref-216
http://pharmrev.aspetjournals.org/content/57/4/547.long#ref-216#ref-216
http://pharmrev.aspetjournals.org/content/57/4/547.long#ref-91#ref-91
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able to increase the RNA-binding activity of the IRPs far more effectively than DFO (Darnell 

and Richardson, 1999). This in turn results in a marked increase of TfR1 mRNA and protein 

levels (Chaston et al., 2003).  

 

From the screening study described above (Richardson et al., 1995), 5 of the most 

effective, PIH analogues: (206), (308), (309), (311) and (315), were examined further for 

their mechanism of action (Richardson and Milnes, 1997). These studies demonstrated that 

all these analogues were far more effective than DFO at inhibiting cellular proliferation and 

[
3
H]thymidine, [

3
H]leucine and [

3
H]uridine incorporation and the marked inhibition of DNA, 

RNA, and protein synthesis (Richardson and Milnes, 1997) 

Compared to other types of cytotoxic drugs, these PIH analogues also showed comparable 

activity to cisplatin, bleomycin, although they were less effective than doxorubicin 

(Richardson and Milnes, 1997). 

 

  In the above study on SK-N-MC NB cells, Richardson and colleagues clearly 

demonstrated that chelators that were derived from pyridoxal had high iron chelation activity 

but poor anti-proliferative effects, suggesting that these compounds may be more suitable as 

effective agents to treat iron overload disease (Richardson et al., 1995; Richardson and 

Milnes, 1997). In contrast, the more lipophilic ligands derived from salicylaldehyde or 2-

hydroxy-1-naphthylaldehyde that had both high iron chelation activity and marked 

antiproliferative efficacy may be more suitable for the treatment of cancer. These latter 

compounds also showed much greater iron chelation-dependent anti-tumour activity than 

DFO (Richardson et al., 1995; Richardson and Milnes, 1997). 

 

To better understand the effects of PIH analogs on molecular targets involved in 

proliferation, the effects of 311 on the expression of molecules necessary for cell cycle 

progression have also been assessed. Treatment of different cell lines with 311 has been 

shown to increase WAF1 and GADD45 mRNA expression, but not mdm2. The increase in 

GADD45 and WAF1 mRNA was seen only after a 20h exposure to the ligands and was 

reversible upon removal of the chelators and re-incubation with iron (Darnell and 

Richardson, 1999). These effects were observed not only in cells with native p53 but also in 

those that lack p53 expression. Interestingly, much higher levels of DFO were required to 

increase WAF1 and GADD45 mRNA levels (Darnell and Richardson 1999). 

 

http://pharmrev.aspetjournals.org/content/57/4/547.long#ref-71#ref-71
http://pharmrev.aspetjournals.org/content/57/4/547.long#ref-71#ref-71
http://pharmrev.aspetjournals.org/content/57/4/547.long#ref-54#ref-54
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However, despite the marked increase in WAF1 mRNA after iron chelation with 311 

(Darnell and Richardson, 1999; Gao and Richardson, 2001), the nuclear levels of its protein 

product, p21
CIP1/WAF1

, were found to decrease (Le and Richardson, 2003; Liang and 

Richardson, 2003), illustrating the inhibition of its translation or its increased degradation 

after iron chelation. Incubation with ferric ammonium citrate was observed to reverse the 

effects of this chelator, indicating that p21
CIP1/WAF1

 protein levels are dependent upon the 

intracellular iron concentration (Le and Richardson, 2003). 

 

The mechanism by which 311 mediates its anti-proliferative activity was found to be 

related to the ability of the chelator to deplete iron pools required for the activity of RR and 

other processes (Green et al., 2001; Chaston and Richardson, 2003). This resulted in a 

decrease in the RR tyrosyl radical, leading to enzyme inhibition and subsequent apoptotic cell 

death (Green et al., 2001; Chaston and Richardson, 2003). 

 

Apart from the activity of chelators at inhibiting RR, several studies have shown that 

their effect on the expression of molecules involved in cell cycle control could be a factor in 

their antitumour activity. For instance, DFO and 311 decreased levels of the cell cycle 

regulators cyclins D1, D2, and D3 (Gao and Richardson, 2001). Additionally, 311 reduced 

expression of CDK2 and the cyclins A and B1 (Gao and Richardson, 2001). Inhibition of 

expression of these molecules would be effective in inducing cell cycle arrest. This activity 

was not observed after incubation of cells with the iron complexes of DFO or 311, or the RR 

inhibitor hydroxyurea (Gao and Richardson, 2001).  

Interestingly the level of cyclin E was found to increase after treatment with 311 or 

DFO, although the effect of 311 was more marked. The latter observation may reflect the 

cell-cycle dysregulation induced by chelators. Alternatively, the ligands may inhibit 

progression through G1 at approximately the G1/S transition, when cyclin E proteins are at 

their maximum and Cyclin D levels have fallen (Gao and Richardson, 2001). 

 

Recently, a gene array study demonstrated that iron chelation up-regulated the 

expression of Ndrg-1, which has been characterised as a metastasis suppressor protein 

(Wadler et al., 2004).  Although the exact function of this gene remains unclear, it is thought 

that Ndrg-1 acts as a potent metastasis suppressor as the incubation of cells with 311 resulted 

in an increase in both mRNA and protein levels, a result not induced by incubation with the 

iron complex (Le and Richardson, 2004). Based on these observations, Richardson and 

http://pharmrev.aspetjournals.org/content/57/4/547.long#ref-71#ref-71
http://pharmrev.aspetjournals.org/content/57/4/547.long#ref-87#ref-87
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coworkers suggest that Ndrg1 may act as a novel link between the effect of iron chelation 

therapy by 311 and the inhibition of cellular proliferation (Le and Richardson, 2004).  

 

Collectively, the above results clearly demonstrate the many molecular targets of iron 

chelators. These effects were absent upon treatment with the 311-Fe complex, indicating that 

changes induced by 311 were a direct result of the ability of 311 to chelate cellular iron (Gao 

and Richardson, 2001; Shao et al., 2004) . 

 

The significantly greater antitumour activity of 311 and the success of Triapine led to 

studies assessing the structure-activity relationships of several new series of 

aroylhydrazone/thiosemicarbazone hybrid ligands. These included the di-2-pyridylketone 

isonicotinoyl hydrazone series (Becker et al., 2003), and the di-2-

pyridylketonethiosemicarbazone series (Yuan et al., 2004).  
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Table 1.5: the Effects of PIH Analogues on Cellular Proliferation of SK-N-MC NB Cells 

   IC50 (µM)   

  
Pyridoxal  
(100 series) 

Isonicotinoyl 
 (200 series) 

2-Hydroxy 
-1-Naphthylaldehyde 

(300 series) 

Benzoyl (1) 35 5 3 

p- Hydrozybenzoyl (2) >80 36 4 

p- Methylbenzoyl (3) 28   

p- Nitrobenzoyl (4) >80 49  

p- Aminobenzoyl (5) >80 76 8 

p- Butylbenzoyl (6) 7 1  

p- Methoxybenzoyl (7) 52 8 2 

m-Chlorobenzoyl (8) 24 20 1 

m-Fluorobenzoyl (9) 17 2 1 

m-Bromobenzoyl (10) 41  2 

Isonicotinoyl (11) 75 21 1 

Acetyl (12) >80 >80 7 

2-Pyridyl(13) 7   

2-Furoyl (14) >80   

2-Thiophenecarboxyl (15) 30 8 1 

IC50 (µM) 

DFO  22  
The iron chelators were incubated with cells for 72h, at the end of this incubation period, cells density was 

determined by the MTT assay (Richardson et al., 1995). 
 
 

 

 

Figure 1.15:  PIH analogs illustrating the 100, 200, 300 series backbone and their 

corresponding R groups as used by Richardson et al., 1995.  
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1.9.1.4 Di-2-pyridylketone isonicotinoyl hydrazone analogs: 

Following development of the PIH analogues, an additional range of aroylhydrazones 

known as the di-2-pyridylketone isonicotinoyl hydrazone (PKIH) series was synthesised (Fig. 

1.16) (Bernhardt et al., 2003). These iron chelators have been shown to readily cross the cell 

membrane due to their lipophilicity, and they predominately remain neutral at physiological 

pH (Bernhardt et al., 2003). Studies on SK-N-MC cells demonstrated that all PKIH 

analogues, apart from di-2-pyridylketone 3-bromobenzoyl hydrazone (PK3BBH) were 

efficient in both increasing iron efflux from pre-labeled cells and preventing iron uptake from 

Tf (Becker et al., 2003). Of the chelators examined, PKIH, di-2-pyridylketone 

thiophenecarboxyl hydrazone, di-2-pyridylketone benzoyl hydrazone, and PK3BBH , were 

found to have the highest antiproliferative activity in SK-N-MC cells similar to that of 311 

(Table 1.6) (Becker et al., 2003). 

 

 The Fe
2+

-PKIH series complexes demonstrated anti-proliferative activity similar to 

that of the uncomplexed PKIH ligand, suggesting that they act through other mechanisms in 

addition to iron chelation (Becker et al., 2003). Subsequent investigations demonstrated that 

the Fe
2+

-PKIH complexes were redox-active leading to the hydroxylation of benzoate and the 

degradation of DNA in the presence of Fe
2+

and H2O2  (Bernhardt et al., 2003; Chaston et al., 

2003). Additionally, this series of ligands showed selectivity toward tumour cells as their 

activity against MRC-5 fibroblasts was much less pronounced (Becker et al., 2003).  

 

PKIH analogs were found to decrease [
3
H] thymidine, [

3
H]leucine, and [

3
H]uridine 

incorporation (Becker et al., 2003). They were also found to increase the expression of both 

GADD45 and WAF1 mRNA levels leading to G1/S arrest, to a higher extent than 311 

(Becker et al., 2003). Investigations into the structure activity relationship of this series of 

ligands demonstrated no strong correlation between their log P values and their 

antiproliferative activity (Becker et al., 2003).  

http://pharmrev.aspetjournals.org/content/57/4/547.long#ref-34
http://pharmrev.aspetjournals.org/content/57/4/547.long#ref-21
http://pharmrev.aspetjournals.org/content/57/4/547.long#ref-21
http://pharmrev.aspetjournals.org/content/57/4/547.long#ref-21
http://pharmrev.aspetjournals.org/content/57/4/547.long#ref-21
http://pharmrev.aspetjournals.org/content/57/4/547.long#ref-21
http://pharmrev.aspetjournals.org/content/57/4/547.long#ref-21
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Table 1.6: The Effects of PKIH Analogues on Cellular Proliferation of SK-N-MC NB Cells 

(Becker et al., 2003). 
 

Iron Chelators IC50 (µM) 

DFO  >50 

311 3±2 

PKIH 2±1 

PKTH 3±1 

PKBH 3±1 

PKBBH 1±1 

PKAH 42±9 

PKHH 38±10 

Cell density was determined by the MTT assay. 

 

 

 

 

 
 

 

 

 
 

 
 

 

 

Figure 1.16: The Molecular Structure of PKIH analogs (Becker et al., 2003). 
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1.9.1.5 Di-2-pyridylketone thiosemicarbazone (DpT) series 

Structure–activity relationship studies of  aroyl hadrazone led to the identification of a 

number of structural characteristics important for iron chelating efficacy and potent anti-

proliferative activity and development of  hybrid Iron chelators notably the  di-2-

pyridylketone thiosemicarbazone (DpT, Fig 1.17) series  (Yuan et al., 2004). These chelators 

are hybrids of the PKIH  (Becker et al., 2003) and 2-hydroxy-1-napthylaldehyde 

thiosemicarbazone series of ligands (Lovejoy and Richardson, 2002). The resulting ligands 

were assessed in terms of their antiproliferative activity both in in vitro and in vivo 

experiments against DFO, 311 and Triapine. The IC50 values for  DpT analogues in  SK-N-

MC NB cells were between 0.03 and 0.06 µM compared to 5 µM ,0.3 µM and 0.26 µM for 

DFO, 311 and Triapine, respectively, (Table 1.7) (Yuan et al., 2004) as analysed by the MTT 

assay 72 h after incubation with the compounds.  

Similar results were also observed when the chelators were examined in SK-Mel-28 

melanoma and MCF-7 breast cancer cells (Yuan et al., 2004) . These iron chelators were far 

less efficient in inhibiting normal cells‟ proliferation (IC50 > 25 µM) (Table 1.7). 

 

A further in vivo study was performed on Dp44mT to examine its ability to inhibit the 

growth of a cytotoxic drug-resistant lung carcinoma M109 cell line (Yuan et al., 2004). After 

a treatment period of 5 days at a dose of 0.4 mg/kg, it was observed that Dp44mT could 

reduce tumour growth up to 47% of the control. In the same mouse model, Triapine® was 

found to be more effective at a much higher dose of 6 mg/kg, being able to reduce tumour 

size to 10% of the control (Yuan et al., 2004). However, it was found that unlike Dp44mT, 

Triapine® significantly decreased animal weight, haemoglobin concentration, haematocrit, 

erythrocyte and leukocyte cell counts (Yuan et al., 2004). 

 

In a study by Whitnall and coworkers, the antiproliferative activity of Dp44mT was 

compared to that of Triapine® both in vitro and in vivo (Whitnall et al., 2006). The anti-

proliferative activity of both ligands was examined for both ligands across a range of 28 

tumour cell lines. This study indicated that Dp44mT had a significantly higher 

antiproliferative effect than Triapine, and a much greater activity than DFO in the tested cell 

lines (Whitnall et al., 2006). Furthermore, in this study, Dp44mT could overcome resistance 

to other anti-tumour agents, by exerting its antiproliferative effect via a p53-independent 

mechanism. The latter highlighted the suitability of Dp44mT as a potential anti-cancer agent, 

as approximately 50% of tumours have a mutated p53. 
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Figure 1.17: Molecular Structure of Dpt Analogs (Yuan et al., 2004). 

 
  

  

General Structure of the 
 DpT Analogs 
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In accordance with previous in vivo studies using a murine tumour (Yuan et al., 

2004), Whitnall and coworkers demonstrated that Dp44mT can inhibit the growth of a variety 

of solid human tumour xenografts in nude mice (Whitnall et al., 2006). The results of this 

study confirmed the growth inhibitory efficacy of Dp44mT both in in vitro and in vivo 

models under short- and long-term treatment regimens. For example, under a short-term 

regimen (i.e. administration of Dp44mT for 14 days at a dose of 0.75 mg/kg), the tumour 

burden in treated mice was on average 5.6% of the control (Whitnall et al., 2006). However 

under long term regimen (i.e. 7 weeks of treatment at a dose of 0.4 mg/kg), the tumours of the 

treated mice were 92% smaller than those of the control group (Whitnall et al., 2006). 

 

Interestingly, this study showed that in vivo iron-depletion was not a major 

mechanism of the anti-tumour activity of this compound, since under the experiments‟ 

conditions, Dp44mT did not lead to iron-depletion within the tumour (Whitnall et al., 2006) 

nor in the whole body (Whitnall et al., 2006). It was suggested that the redox activity of the 

Dp44mT-Fe complex (Yuan et al., 2004; Richardson et al., 2006) played a significant role in 

its anti-cancer effects. At high non-optimal doses, Dp44mT was shown to result in post-

necrotic cardiac fibrosis (Whitnall et al., 2006).  

 

Studies on the mechanism of action of the DpT series and Dp44mT in particular, 

revealed that the antiproliferative effect of Dp44mT was mediated by its activity against 

multiple molecular targets, which is a desirable characteristic of potential anti-cancer 

therapeutics (Lilenbaum et al., 1999). The effect of this series was also due to their ability to 

gain access and bind intracellular iron, forming redox-active complexes which are able to 

generate ROS. Hence, the DpT series of chelators act via a “double punch” mechanism, 

depleting cellular iron and forming redox-active iron complexes (Richardson et al., 2006). 

 

Interestingly Dp44mT and other iron chelators, including 311 and DFO markedly up-regulate 

the expression of the metastasis suppressor gene N-myc downstream regulated gene-1 

(Ndrg1) in tumour cells in vitro (Wadler et al., 2004) and in vivo (Whitnall et al., 2006). 

Increased Ndrg1 expression was correlated to chelator antiproliferative activity and was 

reversed by iron repletion (Wadler et al., 2004). These results on the effect of iron chelator on 

Ndrg1 suggest another link between iron metabolism and proliferation and points to a novel 

mode of anticancer activity. 



Page | 106  

 

Table 1.7: The Effects of Dpt Analogues on cellular proliferation of cancer cells  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The Chelators were incubated with cells for 72h, at the end of this incubation period, cells 

density was determined by the MTT assay (Yuan et al., 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

     Neoplastic cells     Normal  cells   

   

  SK-N-MC  
neuroblastoma   

  SK-Mel-28  
melanoma   

  MCF-7  
breast cancer   

  MRC-5  
fibroblasts   

  DFO     5 ± 2     15 ± 7     14 ± 9     > 25   
  311     0.3 ± 0.2     0.9 ± 0.5     —     > 25   

Triapine   0.26 ± 0.01     2.6 ± 0.6     3.0 ± 1.5     —   
  Dp2mT     > 25     > 25     > 25     > 25   
  Dp4mT     0.19 ± 0.1     0.6 ± 0.5     0.3 ± 0.2     > 25   
  Dp44mT     0.03 ± 0.01     0.06 ± 0.03     0.06 ± 0.01     > 25   
  Dp4eT     0.06 ± 0.01     0.09 ± 0.06     0.08 ± 0.01     > 25   
  Dp4aT     0.06 ± 0.01     0.10 ± 0.06     0.07 ± 0.01     > 25   
  Dp4pT     0.05 ± 0.006     0.09 ± 0.05     0.07 ± 0.01     > 25   

Doxorubicin    0.02 ± 0.01     0.35 ± 0.09   0.6 ± 0.2     —   
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1.9.1.6 Tachypyridine 

N,N′,N″-tris(2-pyridylmethyl)-cis,cis-1,3,5-triaminocyclohexane (tachpyridine or 

tachpyr, Fig. 1.18) is a hexadentate chelator with higher antiproliferative activity than DFO 

(Torti et al., 1998). A study by Torti and co workers have demostrated that tachpyridine 

inhibits Ft synthesis and the proliferation of bladder cancer cells in culture with an IC50 of 4.6 

μmol/L compared with 70 μmol/L for DFO (Torti et al., 1998). Toxicity studies with 

tachypyridine complexes suggest that iron depletion mediates its cytotoxic effects (Torti et 

al., 1998).  

Similar to Triapine and Dp44mT, tachpyridine induces apoptotic cell death via a p53-

independent pathway (Abeysinghe et al., 2001; Greene et al., 2002). Additionally, 

tachpyridine-induced death was prevented in cells microinjected with Bcl-XL and a 

dominant-negative caspase-9 expression vector, suggesting the involvement of the 

mitochondrial apoptotic pathway (Greene et al., 2002). Furthermore, tachpyridine-Fe 

complexes produce OH
.
 or hypervalent Fe through the Haber-Weiss reaction, which 

contributes to its anti-tumour activity (Samuni et al., 2002). Interestingly, unlike most iron 

chelators that arrest cells at the G1-S interface due to RR  inhibition, tachpyridine arrests cells 

at G2, which is a radiosensitive phase of the cell cycle (Turner et al., 2005). In fact, radiation 

increased the sensitivity of tumour cells to the action of tachpyridine (Turner et al., 2005).  

Tachpyridine binds iron, but it can also bind Cu
+2

 and Zn
+2

, which may underlie its ability to 

arrest cells in G2 (Torti et al., 1998).  

Currently, tachpyridine is in preclinical development with the National Cancer Institute 

(Turner et al., 2005), and evaluation of tachpyridine derivatives, such as trenpyr, are under 

way (Torti et al., 2005).  

 

 

 

Figure 1.18: Molecular Structure of Tachypyridine (Torti et al., 1998). 
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1.10  Caged Iron Chelators 

The extensive in vitro and in vivo studies provided in this section clearly demonstrate the 

enormous anti-tumour potential of ICT, but a new approach is required that will avoid 

problems of toxicity that accompany the prolonged and repeated exposure of a patient to 

“classical” iron chelators. Ideally, smart chelating agents are required that possess appropriate 

physicochemical properties for effective cellular uptake, and that may be selectively activated 

in situ within tumours. One way to achieve such in situ activation is to apply caged iron 

chelators (CICs) that are ordinarily inactive as chelators, but which upon exposure to a 

physiologically relevant light source (e.g.UVA, 320-400 nm),  are converted to the free iron-

binding molecule in a highly spatially selective and dose-controlled fashion. Such a strategy 

most readily lends itself to topical administration of CICs, which is ideally suited to the 

challenge of treating external lesions as in NMSC. Indeed, although the promise of 

antitumour ICT is widely recognised, the potential of iron chelators in skin cancer has yet to 

be properly explored. The use of light-activated CICs for treatment of NMSC would allow 

for specific localised release of a given therapeutic chelator within the targeted tissue, while 

substantially decreasing the need for systemic repeated exposure of the patient to strong ICs 

and their obvious toxic side effects. Topical CICs therapy might also provide a powerfull 

alternative for treatment of other iron-related hyperproliferatve skin disorders such as 

psoriasis.  

Pourzand and colleagues from our laboratory have recently developed two prototype 

photo-activatable and photo-controlled „caged‟ iron chelators derived from SIH and PIH (see 

Fig. 1.19). The caging group blocks the critical iron-binding function of the iron chelators 

PIH and SIH. Initial proof of concept of this approach was delivered with the 2-nitrophenyl 

ethyl (2-NPE) caging group for the purpose of skin photoprotection (Yiakouvaki et al., 2006). 

In these studies the prototypes were examined for (i) uncaging by broad spectrum UVA 

radiation at a physiologically relevant dose; (ii) iron chelation by caged and uncaged products 

in vitro; (iii) modulation of the intracellular labile iron concentration prior to, and following 

UVA irradiation of a human skin fibroblast cell line, FEK4; (iv) protection of skin cells from 

oxidative damage following radiation treatment. These initial testings revealed that exposure 

to UVA light (320-400 nm) cleaves the caging function to generate the parent chelator and an 

inactive fragment (Fig. 1.19). Furthermore, unlike the parent compounds, the caged chelators 

2NPE-SIH and 2NPE-PIH did not diminish the normal labile iron pool in cells.  However, 

exposure to a physiologically relevant UVA dose subsequently provided promising levels of 
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protection of skin fibroblast cells against UVA-mediated oxidative damage and necrotic cell 

death in monolayer cultures (Yiakouvaki et al., 2006). Highly localised topical application of 

light-activated caged-iron chelators could not only be beneficial for skin photoprotection but 

could also provide a powerful alternative  therapeutic strategy for hyperproliferative skin 

disease states in which elevated iron levels are implicated such as psoriasis and NMSC (Yu et 

al., 2006). 

 

 

Figure 1.19: Prototype phoactivatable CICs. Reproduced with the permission of Dr Ian 

Eggleston. 

  

ON 
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1.11  Aims and objectives of the study 

The purpose of this study was to evaluate the growth inhibitory potential of iron 

chelators SIH, PIH and their caged-derivatives (+/- UVA) in monolayer cultures of normal, 

psoriatic and skin cancer cells (SCC) isolated from the patients. The primary objective was to 

provide evidence for the efficient and selective antiproliferative activity of the caged-

chelators as powerful alternatives to existing therapies against skin hyperproliferative 

disorders notably NMSC and psoriasis. 

 

The project workplan was split into 4 periods: 

 

(1) Synthesis and in vitro characterisation of PIH, SIH and their caged derivatives 2NPE-PIH 

and 2NPE-SIH. Synthesised compounds were fully characterised by NMR, MS, and dark 

stability in PBS buffer, pH 7.4, assessed by RP-HPLC. Kinetics of uncaging upon UVA 

irradiation was assessed by HPLC, and quantum efficiency of release determined.  

 

(2) Evaluation of the rate of proliferation of skin cell models and elucidation of the role of 

intracellular LIP in cell proliferation. The growth rate of cells was evaluated by cell counting 

assay and light microscopy. The intracellular LIP was evaluated by Calcein-fluorescent 

assay. 

 

(3) Comparison of the antiproliferative activity of „classical‟ PIH/SIH in normal, psoriatic 

and cancer-derived SCC cell lines: Cell growth retardation/inhibition of the chelators was 

evaluated by MTT and then the effect of those compounds was further examined by BrdU 

assay (i.e. to monitor the rate of DNA synthesis) and Annexin V/PI assay (i.e. to monitor cell 

death). The antiproliferative/antitumour activity of the chelators was then confirmed with 

colony-forming ability assay.  

 

(4) Comparison of the antiproliferative activity of caged iron chelators in absence or presence 

of UVA. The caged chelators were either uncaged in vitro or in situ (inside the cells) with 

UVA. Their antiproliferative activity was then evaluated using MTT assay. 
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CHAPTER TWO 

 

MATERIALS AND METHODS 

 

 

2.1 Chemicals and Reagents 

Cell culture materials were obtained from Gibco (Germany) except for Foetal 

Calf Serum (FCS) that was purchased from PAA Laboratories (Austria). All chemicals were 

from Sigma-Aldrich Chemical (Poole, UK) unless otherwise indicated. Annexin-V-FLUOS 

and Bovine Serum Albumin (BSA) were supplied from Roche (Mannheim, Germany). CA-

AM (Calcein-acetoxymethyl ester) was purchased from Molecular Probes (Leiden, 

Netherlands). Desferrioxamine mesylate Ph. Eur. (Desferal, DFO) was purchased from Ciba-

Geigy laboratories (Basel, Switzerland). MilliQ water used to prepare phosphate buffered 

saline (PBS) and other stock solutions were issued from a Millipore purification system 

(MilliQ cartridge: Millipore, Bedford, MA) in order to minimize the presence of trace 

elements such as transition metals.  

 

2.2. Cell culture  

All the cell lines outlined below were cultured routinely and incubated in a humidified 

atmosphere at 37
o
C with 5% CO2. 

 

2.2.1 FEK4 

FEK4 cells are human primary forskin fibroblasts (a kind gift from Prof R. M. Tyrrell). The 

FEK4 fibroblasts are passage-dependent and in this project were used between passages 11 

to16.  

The growth medium was composed of 15% FCS (heat-inactivated at 56
o
C

 
for 45 min before 

use)-EMEM (Earle‟s modified minimum essential medium) supplemented with 0.25% 

sodium bicarbonate, 2 mM L-glutamine and 50 IU/ml of each of penicillin/ streptomycin 

(P/S).  

The stock FEK4 cells were passaged by trypsinisation once a week and then seeded in tissue 

culture plates for experiments as detailed below:   
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- For MTT and clonogenic assays, 2 x 10
4
 cells were seeded per 3 cm plate in 3ml media. 

- For flow cytometry, LIP and BrdU assays, 12 x 10
4 

cells were seeded per 10 cm plate in 12 

ml media. 

 

2.2.2 HaCaT  

Human spontaneously immortalised skin keratinocyte (KC) cell line (a kind gift from Prof R. 

M. Tyrrell). This cell line maintains full epidermal differentiation capacity, but remains non-

tumourigenic (Boukamp et al., 1988) .  

The growth medium was 10% FCS-DMEM (high-glucose Dulbecco‟s modified eagles 

medium) containing 50 IU/ml P/S. 

Cells were passaged once a week and seeded for experiments as follows:   

- For MTT and clonogenic assays, 2 x 10
4
 cells were seeded per 3 cm plate in 3 ml media. 

- For flow cytometry, LIP and BrdU assays, 8 x 10
4 

cells were seeded per 10 cm plate in 12 

ml of media.. 

 

2.2.3 Swiss 3T3  

The Swiss 3T3 are spontaneously immortalized mouse embryonic fibroblasts (a kind gift 

from Prof I. Leigh, Dundee). This cell line is used as a feeder layer for the cultivation of 

keratinocytes (Proby et al., 2000). The 3T3 cells secrete both extracellular matrix proteins 

that aid KC attachment, and growth factors that stimulate proliferation.  

 

3T3 Feeder layer preparation: Cells were first grown in 10% FCS DMEM containing 50 

IU/ml P/S. When the cells reached 80% confluency, mitomycin C (stock 0.2 g/ml in PBS) 

was added to cultured media at 4 µg/mL final concentration, and incubated for 2 h at 37
0
C. 

Mitomycin C is a DNA cross-linker that inhibits DNA replication in 3T3 cells to avoid their 

overgrowth when used with keratinocytes (KCs). After incubation, medium was aspirated 

and cells were washed thoroughly (three times) with warm PBS to ensure that no mitomycin 

C remained to inhibit the growth of the keratinocytes. The mitomycin-treated 3T3 fibroblasts 

were then trypsinised and resuspended in RM+ media (see below). This fibroblast cell 

suspension was then used as a feeder layer for matrix-dependent KC cultures (i.e. KCP7, 

KCP8, PM1, Met2 and MKPS cells) . 
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2.2.4 KCP7 and KCP8  

The KCP7 and KCP8 are human primary skin KCs derived from infant foreskin (Zhong et 

al., 2004). 

Cells were grown in a rich medium called RM+ (i.e. DMEM and Ham‟s F12 medium in a 

ratio of 3:1 (v/v) supplemented with 10% FCS, hydrocortisone (0.4 µg/ml), cholera toxin (10
-

10 
M), epidermal growth factor (10 ng/ml), insulin(5 µg/ml), transferrin (5 µg/ml), 

liothyronine (2 x 10
-11

 M), 0.25% sodium bicarbonate, 2 mM L-glutamine and 50 IU/ml of 

each of penicillin/ streptomycin (P/S). 

These primary KC cells were seeded at a density of 1 x 10
5
 cells per 3 cm plate in the 

presence of 3T3 feeder layer seeded at a density of 4 x 10
5
 cells per 3 cm plate. The primary 

KCs were used at passage 3. 

 

2.2.5 PM1 and Met 2  

PM1 is an epidermal KC cell line, clonally derived from forehead skin showing dysplasia. 

Met2 is a Squamous Cell Carcinoma (SCC) KC cell line, clonally derived from a local 

recurrence of invasive SCC. 

PM1 and Met 2 are isogenic cell lines isolated from the same patient. (a kind gift from Prof 

Irene Leigh, Dundee, see(Popp et al., 2000; Proby et al., 2000).  

- For the MTT assay, 5 x 10
4
 cells were seeded per 3 cm plates containing 3ml of RM+ 

media.  

-  For BrdU and LIP assays, 25 x 10
4 

cells were seeded per 10 cm plates containing 12 

ml of RM+ media.  

  

2.2.6 MKPS  

MKPS is an immortalised KC cell line derived from the skin of a male patient with chronic 

plaque psoriasis. (a kind gift from Prof Irene Leigh, Dundee). 

MKPS cells stock was grown in RM+ media in the presence of 3T3 feeder layer.  

For the MTT assay, the MKPS cells were seeded in RM+ media without 3T3 in 3 cm dishes 

at a density of 5 x 10
4
 cells/ plate in 5 ml of media. 

For BrdU and LIP assays, MKPS cells were seeded in 10 cm plates containing 15ml of RM+ 

media at a density of 25 x 10
4 

cells per plate. 
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2.3 Chemical treatments 

The compounds were added to media of cells grown for 2 or 3 days (i.e. conditioned media, 

CM) at the required final concentrations. The cells were incubated with the compounds for 

24-72 h, depending on the experimental requirement. 

 

2.3.1. Stock solutions:  

 

DFO (MW 657): The DFO stock solution was prepared at the final concentration of 150 mM 

in H2O. Aliquots were kept at -20
o
C until required. 

 

BIH (MW 225): The BIH stock solution was prepared at the final concentration of 100 mM 

in dimethyl sulphoxide (DMSO). Aliquots were kept at -20
o
C until required. 

 

PIH (MW 286): PIH powder was first dissolved in 1N HCl at the final concentration of 500 

mM and then further diluted in PBS to obtain a 25 mM stock solution. Because of the 

tendency of the stock solution to precipitate over time, for experiments involving PIH 

treatment, the stock solution was prepared freshly on the day of treatments. 

 

SIH (MW 241): The SIH stock solution was prepared at the final concentration of 100 mM or 

200 mM in DMSO, depending on the experimental condition. 

 

2NPE PIH (MW 435) and 2NPE SIH (MW 390): The stock solutions were prepared at the 

final concentrations of 4, 100, or 200 mM in DMSO, depending on the experimental 

requirement. 

 

To avoid the toxicity of DMSO in cell treatments with stock solutions made in DMSO (i.e. 

BIH, SIH, 2NPE-PIH and 2NPE-SIH), for cell treatments, the DMSO‟s final concentration in 

CM was kept to less than 01%. 
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2.4 Iron saturation assay  

The Fe
3+

 complexes of the chelators were prepared by
 
adding Fe

3+
  (as FeCl3) to the ligands 

in a 1:1 ligand:metal ratio
 
for the hexadentate chelators (i.e., DFO) and in a 2:1 ligand:metal

 

ratio for the tridentate chelators (i.e., PIH, SIH,  UVA irradiated 2NPE-PIH and -SIH).
 
The 

solutions were then mixed thoroughly and incubated for 1h at 37°C prior to addition to cell 

culture media. Cells were incubated with the iron-complexed chelator for 72 h at a 

concentration equivalent to their IC50 for relevant ligands. Then the MTT assay was 

performed as described in section 2.9. 

 

2.5. UVA irradiation   

 

2.5.1 Irradiation of cells in plates 

Prior to irradiation, the CM medium was removed from the plates, and the cells were washed 

thoroughly with PBS. Cells were then covered with PBS (i.e. 2 ml for 3 cm plate). This was 

followed by irradiation of cells at doses of 50, 100 and 250 kJ/m
2
.  

The UVA doses were measured using an IL1700 radiometer (International Light, Newbury, 

MA). All irradiations were performed with a broad-spectrum Sellas 4kW UVA lamp (Sellas, 

Germany). This lamp emits primarily UVA radiation (significant emission in the range of 

350–400 nm) and some near-visible radiation longer than 400 nm. The incident dose rate was 

150W/m
2
. The spectrum of the lamp is shown in Fig 2.1. 

 

Irradiation was carried out in an air-conditioned room at 18
o
C in order to maintain the 

temperature of the cells to approximately 25
0
C throughout the irradiation procedure.   

The PBS was then removed, and cells were incubated in CM with or without the compound 

for the appropriate incubation time (e. g. 4 h to 72 h) at 37
o
C. 
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Figure 2.1.: Spectrum of the Sellas 4kW UVA lamp.  

 

2.5.2 Irradiation of 2-NPE-PIH and 2-NPE-SIH 

For cell culture treatments, 2-NPE-PIH and 2-NPE-SIH stock solutions were prepared in 

DMSO at final concentrations of 100 mM or 200 mM, depending on the experimental 

requirement and then irradiated at in quartz cuvettes at a UVA dose 250 kJ/m
2
. The cells 

were then treated with the UVA-irradiated (uncaged) compounds for 24-72 h.  

 

To generate the uncaged profile for 2-NPE-PIH and 2-NPE-SIH by reverse phase HPLC, 

2NPE-PIH and 2NPE-SIH were prepared in DMSO at a final concentration of 1 mg/ml and 

then irradiated in quartz cuvettes with increasing UVA doses of 5, 10, 20, 50, 100, 250 and 

500 kJ/m
2
. 

 

2.6 Reverse Phase HPLC analysis of 2NPE-PIH and 2NPE-SIH 

following in vitro uncaging with UVA irradiation 

 

HPLC profiles of 2NPE-PIH and 2NPE-SIH and SIH were monitored at 280nm, 1h following 

UVA irradiation.  

 

HPLC: Dionex UltiMate 3000 HPLC system was equipped with a Phenomenex Gemini 5 µm 

C-18 (150 x 4.6 mm) column with a flow rate of 1 ml/min. 
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Mobile phase A was MeCN (Acetonitrile) containing 0.1% TFA (Trifluoroacetic acid), B 

H2O containing 0.1% TFA using a HPLC gradient of 5% A to 60% A over a period of 10 

min.  

 

2.7 Cell Growth Curve  

FEK4 and HaCaT cells were seeded in 3cm plates containing 3ml media at a density of  

2 x 10
4
. Over a period of 7 days cells were trypsinised and counted on a hemocytometer 

every 24 h in triplicate.   

The mean cell counts at each time point were then used to plot the growth curve, based on 

which the cells‟ doubling time was calculated.   

 

2.8. BrdU assay 

 

2.8.1 Principle of the assay  

During cell proliferation the DNA has to be replicated before the cell is divided into two 

daughter cells. This close association between DNA synthesis and cell doubling makes the 

measurement of DNA synthesis very attractive for assessing cell proliferation. If labelled 

DNA precursors are added to the cell culture, cells that are about to divide incorporate the 

labelled nucleotide into their DNA.  

 

The thymidine analogue 5-bromo-2‟-deoxy-uridine (BrdU) is a synthetic nucleotide that can 

be incorporated into the newly synthesized DNA of replicating cells (during the S phase of 

the cell cycle), by substituting for thymidine during DNA replication. 

 

Antibodies specific for BrdU can then be used to detect the incorporated chemical, thus 

indicating cells that were actively replicating their DNA. Binding of the antibody requires the 

denaturation of the DNA by exposing the cells to acid. FITC-conjugated second antibodies 

will then allow the detection of the "newly synthesized" DNA that will fluoresce green. The 

denatured DNA can be stained with propidium iodide (PI) and will fluoresce red. 
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2.8.2 BrdU Pulsing 

To pulse cells, 10 µM BrdU was added to cells for 1 h at 37
o
C. For the negative control no 

BrdU was added. After incubation, cells were washed with PBS, then harvested with 0.25% 

(w/v %) trypsin, and collected in the CM and kept on ice. Cells were then centrifuged at 1000 

rpm (120 x g) for 8 min in a Falcon 6/300 MSE centrifuge pre-cooled to 4
o
C. Medium was 

then removed. To permeabilise the cells, 5ml of ice-cold 70% ethanol was added slowly, 

drop-wise onto them while vortexing to avoid formation of clumps. The cells were left on ice 

for a minimum of 30 min and then stored at 4
o
C prior to BrdU staining. 

 

2.8.3 BrdU Staining 

Cells were first centrifuged at 2000 rpm (120 x g) to remove ethanol and then washed twice 

with PBS. Then the DNA was denatured by resuspending the cell suspension in 2M 

hydrochloric acid (HCl), for 30min with occasional mixing. This step allows the access of the 

anti-BrdU antibody to its epitope in the DNA. Cells were then centrifuged at 1000 rpm  

(120 x g) to remove the HCl, followed by washing with PBS-T (PBS + 0.1% BSA + 0.2% 

Tween20, pH7.4). Cells were then stained with the anti-BrdU primary antibody (Beckton 

Dickinson), for 20min at room temperature (RT) in the dark. Following a second wash with 

PBS-T, the cell suspension was incubated with the FITC-conjugated secondary antibody 

(DAKO) for 20 min (at RT in the dark). Cells were then washed with PBS-T and then RNAs 

were eliminated, by treating the cells with RNAse (DNAse-free) for 15min at RT. Then PI 

was added and cells were further incubated in the dark for 30min. 

 

RNAse treatment is necessary because PI incorporates into both DNA and RNA. But we are 

only interested in the signal coming from PI incorporated into DNA. 

 

Cells were then analyzed by flow cytometry. Fluorochromes were excited by a 488nm laser. 

The FITC fluorescence was collected between 515 and 545nm and the PI fluorescence was 

collected above 580nm. Pulse processing of the PI signal was used to distinguish true G2 

from G1 doublets and to eliminate the latter (i.e to gate G2 in our experiment). 20,000 events 

were collected, at a low flow rate setup. 
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Plan of Experiments to evaluate the antiproliferative effects of Compounds 
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 2.9 MTT Assay 

 

2.9.1 Principle of the assay  

The MTT assay is widely used in cell proliferation and cytotoxicity assays (Berridge et al., 

1996). It is a sensitive colorimetric assay (Mosmann, 1983; Doyle and Griffiths, 1998) that is 

performed to determine the viability of cells after relevant treatments. The principle of this 

assay is based on the capacity of cellular and mitochondrial dehydrogenase enzyme to 

convert MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide], a yellow 

water-soluble substrate, into a dark blue formazan product that is water-insoluble. The 

amount of formazan produced is directly proportional to the viable cell number.  

 

2.9.2. Procedure 

The procedure involves the preparation of the MTT stock solution in PBS at 5mg/ml, which 

was then filtered through a 0.2 μm filter (Ministart®, Germany) for sterilisation and stored at 

–20ºC. 

 

MTT/SFM stock solution: The fresh MTT solution in serum free media (SFM) was prepared 

at a final concentration of 0.5 mg/ml.  

 

On the day of the assay (24 to 72 h post-treatment with compounds +/- UVA) cells were 

washed with PBS and incubated with 500 l of MTT/SFM for 3 h at 37C. After incubation, 

MTT/SFM solution was aspirated and 500 l of DMSO was added to each plate. Then the 

plates were swirled for 3 minutes on 3D rocking platform (Stuart Scientific, UK). Finally, 

100 l of each sample (for FEK4) or 20 l of sample diluted in 80l DMSO for the rest of 

keratinocytes, was added in duplicate to a 96-well micro-plate. Absorbance was read by 

VERSAmaxTM (Molecular devices,California) at 570 nm.  
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2.10 Clonogenic Assay (Colony Forming Assay) 

 

2.10.1 Principle of the assay 

This assay is the most reliable method for assessing viable cell number. It is based on the 

ability of a single cell to grow into a colony and its ability to undergo “unlimited” division. 

The colony is defined to consist of at least 50 cells (Doyle and Griffiths, 1998). 

 

2.10.2 Procedure 

Cells were grown and treated with compounds as described above for 24, 48, and 72h. On the 

day of experiments, cells were trypsinised and re-seeded as single cell suspension at a density 

of 500 cells/ 3cm plate for FEK4, and 250 cells/ 3 cm plate for HaCaT in fresh media in 

triplicates. Cells were then allowed to grow for 12 days by replacing thr media every 3-4 

days. At day 12 media was removed, and colonies were fixed and stained with 0.2% w/v 

crystal violet solution (in 20% v/v methanol, 2% w/v paraform aldehyde) for 15min. Then the 

plates were washed twice with PBS and colonies were counted. Data were expressed as 

percent survival relative to the control. 

 

2.11 Annexin V / Propidium Iodide Dual Staining Assay 

 

2.11. 1 Principle of the assay 

Quantification of apoptotic, necrotic, and live cells was evaluated by flow cytometry. 

Apoptotic cells were shown to express phosphatidyl serine (PS) on the outer layer of the 

plasma membrane (Fadok et al., 1992). In the early stages of apoptosis, PS translocates from 

the inner part of the plasma membrane to the outer layer. Annexin-V-FLUOS is a 

phospholipid-binding protein with a high affinity for PS. Therefore it is suitable for the 

detection of apoptotic cells. On the other hand, necrotic cells that lose cell membrane 

integrity are stained with both Annexin-VFLUOS and PI. Therefore, Annexin-V-FLUOS and 

PI double-staining can differentiate between necrotic and apoptotic cells. 
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2.11.2 Procedure  

After relevant treatments and incubation periods (i.e. 4h to 72h), cells were collected and 

washed with incubation buffer (10 mM Hepes/NaOH, pH 7.4, 5 M NaCl, 100 mM CaCl2).  

Then 5 x 10
5
 cells were resuspendded in 100 µl of incubation buffer containing Annexin-V-

FLUOS (20 μl/ml) and PI (20 μg/ml). Samples were then transferred to a 5 ml polystyrene 

round-bottom tube and incubated for 20 min at RT under dark condition. Finally 400 μl of 

incubation buffer was added. Data analysis was performed using FACSDiva software 

(Becton-Dickinson, Erembodegem, Belgium). 

 

2.12 Organotypic 3D raft culture using de-epidermalised dermis 

(DED) 

Glycerol preserved skin (Euro Skin Bank, Netherlands) was washed and incubated in PBS at 

37
o
C for up to 10 days. Epidermis was then mechanically removed using Forceps and the de-

epidermalized dermis was cut into 2 x 2 cm squares and placed in culture plates with the 

papillary dermal surface on the underside. Stainless steel rings were placed on top of the 

dermis, and 5x 10
5
 FEK4 were inoculated into the rings on the reticular dermal surface. 

Following an overnight incubation, the depidermalized dermis was inverted to orient the 

papillary dermal surface on top before the rings were replaced. Then 3 x 10
5
 HaCaT KCs 

were seeded inside the rings onto the dermis. After 2 days, the dermis was raised to the air-

liquid interface in the same orientation, by placing the comosites on stainless steel grids (Fig. 

2.2). 

After 7 days of raising the HaCaT Raft-DEDs, the 3D cultures were treated with DFO, PIH or 

2NPE-PIH (+/- UVA) at a final concentration of 100 µM for 72 h. The cultures were then 

incubated for an additional 10 days (in the absence of compounds). On the 10
th

 day, HaCaT 

Raft-DEDs were removed from the grids, fixed in 10% formalin and embedded in paraffin.  

Deparafinized sections were stained with haematoxylin and Eosin for histologic 

examination.The medium used for this experiment was the rich RM+ that allows the skin cell 

to achieve a higher proliferative state, and was refreshed every 3 days. 
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Figure 2.2: Organotypic raft culture using de-epidermalised dermis (DED). Provided by Dr 

Reelfs with thanks. 
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2.13 LIP determination in 96 well-plates 

 

2.13.1 Principle of the assay 

The level of LIP was determined by an adaptation of the method developed by (Epsztejn et 

al., 1999; Petrat et al., 1999). 

The cytochemical calcein acetoxymethyl ester (CA-AM) assay is well established as a 

technique for the assay of cellular LIP. The principle of this assay is that non-fluorescent 

lipophilic CA-AM that easily penetrates cellular membranes produces fluorescent CA when 

rapidly cleaved by unspecific cytosolic esterases. The fluorescent CA is a fluorochromic 

alcohol that chelates labile iron (Tenopoulou et al., 2007). The level of intracellular CA-Fe 

complexes is determined by the increase in fluorescence produced by the addition of the fast 

membrane permeable iron chelator, SIH. SIH is a lipophilic strong chelator that restores the 

fluorescence by removing the complexed iron (Glickstein et al., 2005). 

 

2.13.2 Procedure 

Step I: CA Loading 

Cells were grown for 72, 96 or 120 h as indicated in the cells section. On the day of 

treatment, the CM was aspirated and the cells were washed with PBS. Cells were then 

harvested by treatment with 0.125% trypsin and neutralised with 10% FCS PBS to avoid 

interference with fluorescence. Bovine serum albumin (BSA) was then added at a final 

concentration of 3 mg/ml to keep the osmotic integrity of the cells. Next, the cell suspension 

was centrifuged at 1000rpm (120 x g) for 2min in a Falcon 6/300 MSE centrifuge.The 

supernatant was then aspirated and the cells were loaded with 0.25 μM CA-AM for 15 min at 

37°C in Earle‟s minimum essential media, containing 20 mM HEPES (pH 7.3) and  3 mg/ml 

BSA . 

 

Step II: washing 

This step allows the elimination of the excess CA-AM from the cell suspension. After 

loading, the cell suspension was centrifuged at 1000rpm (120 x g) for 2 min. The supernatant 

was then aspirated and the cells were resuspended in 4 ml of BSA (3 mg/ml in PBS) and 

centrifuged for 2 min at 1000 rpm (120 x g). The supernatant was then aspirated. 
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Step III: fluorescence monitoring 

This step allows the measurement of basal fluorescence intensity of free CA, CA-Fe and total 

CA. After washing, the cell pellet was re-suspended in 300 µl of fixing solution [10 mM 

HEPES buffer containing 150 mM NaCl and 2 mM diethyltriamine-pentaacetic acid (DTPA) 

which is a non-permeable iron chelator, affinity > 10
27

]. At this point the cell suspension was 

transferred to 96 well plates (Costar 3603) (i.e.100µl cell suspension per well in 

triplicate).The fluorescence (F1) was then measured (excitation 485 – emission 535) by a 

Fluoroskan Ascents microplate reader (Labsystems, OY). Next, 5 µl of SIH (4 mM stock 

solutions) was then added to obtain the final concentration of 0.2 mM. The 96 well plate was 

then placed on a rocking platform (Stuart Scientific, UK) for 15 min to allow chelation. The 

fluorescence (F2) was then recorded at an excitation wavelength of 485 nm and an emission 

wavelength of 535 nm. The fractional increase of fluorescence (ΔF = (F2-F1) / F2) was first 

determined by the calibration curve and then normalised to total cellular protein. This 

correlates with the LIP (μM / μg) within the cells (Duarte and Jones, 2007). 

 

The calibration curve was prepared with ferrous ammonium sulphate (Petrat et al., 2000). It 

was initially diluted with PBS to 1 mM and then to a final concentration of 1 μM (final). 

From this solution, a series of  1:1 serial dilutions were prepared up to the final concentration 

of 2.44 x 10
-4

 μM (i.e. in total 12 concentrations were used). Next, 0.25 μM of CA stock 

solution (Sigma, C0875) was added to the 12 serial dilutions and the fluorescence (F1) was 

recoded (Excitation 485 – Emission 535) by a Fluoroskan Ascents microplate reader 

(Labsystems, OY).  

To each well, 5 µl of SIH (4 mM stock solutions) was added and the plate was placed on a 

rocking platform (Stuart Scientific, UK) for 15 min to allow chelation. After the 15 min, the 

fluorescence (F2) was measured (Excitation 485 – Emission 535). For the calibration curve 

(Darbari et al, 2003), the fractional increase of fluorescence (ΔF = (F2-F1) / F2) was plotted 

against the iron concentration used (y = 9.981x + 0.088, is the linear equation of the 

trendline). 
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Step IV: Protein measurements:  

Protein concentrations were then measured according to the method of Bradford (Bradford, 

1976) with slight modification. This modification was performed to enable the 

measurements of the protein content to be carried out in the 96-well plate to decrease the 

amount of protein extract used.  To calibrate the standard curve, BSA (2 mg/ml) was first 

diluted (1:1) with MilliQ water (i.e. to 1 mg/ml) and then used at final concentrations of 0, 1, 

2, 3, 4, 6, 8, 10 mg/ml.   

The total volume of cellular extract (1 μl) or BSA (0-10 μl) with MilliQ water used in the 

each well was 160 µl, done in duplicates.  Finally 40 µl of Bio-rad Protein Reagent (Bio-rad. 

500-0006) was added, and the solution was thoroughly mixed with a pipette (preferably, a 

multichannel pipette). The absorbance was read using a VERSAmax
TM

 (Molecular devices, 

California) at 595 nm.  
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The schematic presentation of the steps for measuring CA-Fe by CA-assay 

 

       CA loading (via CA-AM) 

 Washing 

   Monitoring Fluorescence 

Protein Measurement 

Step I 

Step II 

Step III 

Step IV 
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2.14 Statistical analysis 

      Results are expressed as mean  standard deviation (SD). Paired or unpaired Student‟s 

one-tailed t-test was used as appropriate to test differences between groups of data. Note that 

the rejection p value is 0.05. Statistical analysis was performed using Microsoft Excel. 

 

2.15 Synthesis of Caged –iron chelators and analogues 

All compounds were synthesised in the School of Chemistry, University of Nottingham under 

the supervision of Dr James Dowden, according to Yiakouvaki et al. (2006) and unpublished 

procedures by Dr Savovic (Pourzand and Dowden‟s laboratories). 

 

2.15.1 Solvents, reagents, equipments 

All solvents and reagents were purchased from commercial sources and used as received.  

1
H and 

13
C NMR (nuclear magnetic resonance) were obtained on a Varian EX-400 NMR 

spectrometer at 400 and 100 MHz, respectively.  

 

2.15.2 General procedure for phenol alkylation (2NPE-SIH precursor a 

and 2-NPE-PIH precursor b) 

 A solution of the phenol (salycilaldehyde or pyridoxal HCl) (2.5 mmol), 1-(1-bromo-ethyl)-

2-nitro-benzene, and K2CO3 anhydrous (for precursor a) or Cs2CO3 (for precursor b) in 

dimethyl formamide was stirred at 60°C for 12 h and then concentrated under vacuum. The 

obtained crude extracts were separated as outlined in the following table: 

 

 

Aimed Product 

 

Residue Partitioned between 

 

Column chromatography 

 

Recrystalisation  

 

2-NPE-SIH precursur (a) 

 

DCM x 3 and H2O 

 

EtOAc:Hexane (7:3) 

 

- 

 

2-NPE-PIH precursor (b) 

 

EtOAc x 3 and H2O 

 

Et2O: Hexane (2:8) 

 

EtOAc:Hexane 
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2.15.3 General procedure for hydrazide formation (to synthesise 2NPE-SIH 

and 2-NPE-PIH, BIH, SIH, PIH) 

 A solution of aldehyde (1 mmol) and isonicotinic acid hydrazide (1 mmol) in ethanol (10 ml) 

or ethanol: water (9:1, 10 ml) for PIH and 2-NPE-PIH, was heated at reflux for 24 h. 

The reaction to make 2-NPE-PIH (final product) was performed in presence of filtered 

Dowex
®
 50WX4-100 acidic resin. 

The obtained crude extracts were separated as outlined in the following table: 

Aimed Product Column chromatography Recrystalisation  

2NPE-SIH  EtOAc:Hexane (7:3) EtOAc:EtOH 

2-NPE-PIH MeOH:DCM (0.3: 9.7) to  

(0.6:9.4) 

EtOAc: EtOH: Et2O 

SIH - EtOAc:EtOH 

PIH - EtOH: H2O (9:1) 

BIH - MeOH:EtOH 

 

 

 

Figure 2.3: Structures of caged iron chelators and control compounds. (1) Cs2CO3, 

DMF; (2) isonicotinic acid hydrazide, Dowex
®

 50WX4-100, EtOH/H2O (9:1). 

(Adapted from Yiakouvaki et al., 2006)(Yiakouvaki et al., 2006). 

 

  

       1,2 

  

Pyridoxal (2-nitrophenyl)ethyl pyridoxal isonicotinoyl hydrazone 

(2NPE PIH)  
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CHAPTER THREE 

 

RESULTS AND DISCUSSION 

 

 

3.1. The Choice of Cell Lines 

 

To investigate the antiproliferative potential of Fe chelation as a powerful alternative therapy 

for skin hyperproliferative diseases such as NMSC or psoriasis, a series of experiments was 

performed to evaluate the impact of the parental compounds (PIH and SIH) and their caged 

derivatives (+/-UVA) on cell growth and cell cycle. The Fe chelator DFO was used as a 

positive control and the SIH derivative BIH, which lacks the iron binding moiety, was used 

as a negative control. 

The proof of concept studies were carried out using FEK4 fibroblasts and HaCaT 

keratinocytes (KCs) as cell models. FEK4 cells are human primary skin fibroblasts that were 

originally isolated from the foreskin of a newborn baby in Tyrrell‟s laboratory (ISREC, 

Switzerland). FEK4 fibroblasts are not immortalised and are therefore passage-dependent. 

HaCaT KCs are spontaneously immortalised cells and were originally isolated from a male 

human in Boukamp‟s laboratory (1988). The HaCaT cell line has proved to be a useful and 

reliable in vitro model of human skin cell carcinoma. Furthermore as a cell line, it shows high 

genomic stability with successive passaging and provides reproducible results with time. This 

cell line is hyperproliferative and has a significantly higher proliferation rate than normal 

human skin KCs and fibroblasts (unpublished data, this laboratory). Both FEK4 and HaCaT 

cells are well characterised in Pourzand‟s laboratory in terms of their molecular and 

enzymatic antioxidant defence capacity, susceptibility to UVA and H2O2, labile iron profile 

(+/- UVA), intracellular content of Ft, HO-1, HO-2 (+/- UVA) and short-term response to Fe 

chelators DFO, PIH, SIH and their caged-derivatives (+/- UVA) (Pourzand and Tyrrell, 1999; 

Pourzand et al., 2000; Zhong et al., 2004; Yiakouvaki et al., 2006; Reelfs et al., 2010).  

The proof of concept experiments described in this section was first carried out with FEK4 

and HaCaT cells. The obtained results were then further confirmed in a series of 

hyperproliferative cancerous and psoriatic cell lines. The cancer cell models used in this 
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study consisted of one keratinocyte cell line (i.e. PM1), clonally derived from forehead skin 

showing dysplasia, and one SCC line (i.e. Met 2) derived from a local recurrent cutaneous 

tumour. PM1 and Met 2 are isogenic KC cell lines isolated from the same patient (a kind gift 

from Prof Irene Leigh, Dundee, see Proby et al., 2000 and Popp et al., 2000). As additional 

model of hyperproliferative cell line, we also used the MKPS cell line. MKPS is an 

immortalised KC cell line derived from the psoriatic lesion of a male patient (a kind gift from 

Prof Irene Leigh, Dundee). Other control cells also included human primary cultured KC 

cells KCP7 and KCP8 that were passage-dependent and were used between passages 3-5 

after which they usually differentiate. 

 

3.1.1 Comparison of the Growth Rate of Skin Cells 

 

3.1.1.1 Cell Count Assay 

For the purpose of this PhD project, the growth rate of HaCaT KCs was compared to that of 

human primary skin fibroblasts FEK4, using the cell count assay. HaCaT and FEK4 cells 

were seeded at low confluency (i.e. 2 x 10
4
 cells per 3cm plate) and the doubling time was 

calculated for both cell lines by counting the number of cells every 24 h in triplicates over a 

period of 7 days. The results (Fig 3.1A) showed that both in FEK4 and HaCaT cultures, there 

was a lag period of about 24 h after seeding, corresponding to the adaptation and recovery of 

the cells. However from 24 h onwards, the cells started to proliferate and rapidly entered the 

exponential phase, as evidenced by the logarithmic straight line plot in Fig 3.1A. As the cell 

density increased, the proliferation rate receded as a result of cell-cell contact inhibition and 

the cells entered the plateau phase after the 7
th

 day (data not shown). Further comparison, 

revealed significant difference in proliferation rates of both cell types (i.e. 0.01754 versus 

0.01056 for HaCaT and FEK4 cells respectively, p=0.01513). The doubling time for HaCaT 

was found to be ~17h, against ~28h for FEK4. The latter is in agreement with previous 

findings from this laboratory (unpublished).  

The differential growth rate of FEK4 and HaCaT cells made them suitable as models of slow 

and fast growing cells for comparative studies aiming at evaluating the growth inhibitory 

effects of Fe chelators used in our study. Also since under conditions used in this study, both 

cell types maintained their exponential growth phase profile over the period of 24-120 h after 

seeding (see Fig 3.1A), it was possible to monitor the antiproliferative potential of Fe 

chelators in a time-dependent manner within this period.  
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3.1.1.2 BrdU Assay 

The BrdU incorporation assay was used to compare the growth rate of FEK4, HaCaT and 

MKPS cells with that of cancer cell models PM1 and Met2 (all in exponential phase of their 

growth). The BrdU incorporation assay coupled with flow cytometry is a highly sensitive and 

reproducible technique particularly for determining the proportion of cells in the S phase of 

the cell cycle and provides both quantitative and qualitative data. The results (Fig. 3.1B) 

showed that in the exponential growth phase of cells, only 18% ± 2of FEK4 cells were in S 

phase. In contrast in PM1 and Met 2 cancer cell models, the percentages of cells in S phase 

were much higher than FEK4 (i.e. 49% and 38%, respectively). In comparison, the 

percentage of HaCaT cells in S phase was even higher (i.e. 55% ± 8). The psoriatic MKPS 

cells had the highest proliferation rate with 79% of cells in S phase. In summary, these results 

illustrated that compared to FEK4 control cells, all other cell lines have much higher growth 

rate.   

 

3.1.1.3 Growth rate of primary keratinocytes 

Previous unpublished work from this laboratory has already established that in comparison to 

the immortalised HaCaT KCs, the primary human KC cells KCP7 and KCP8 have much 

slower growth rate (i.e. several fold-lower than HaCaT cells). However these cell lines were 

not suitable as cell models for routine experiments. This is because the culture of KCP 

primary KCs is very time consuming and for experimental set up they often require 3-4 

weeks of growth in culture before reaching the appropriate cell density for methodologies 

used in the study. In comparison, FEK4 and HaCaT experimental set up required only 2-3 

days of growth in culture to reach the appropriate stage. Furthermore KCP cell culture is not 

only matrix-dependent (i.e. requires feeder layer for growth similar to PM1, Met2 and 

MKPS) but also extremely passage-dependent, since as primary KCs, KCP 7 and KCP8 can 

only be used between passages 1-5 after which they differentiate. The latter reason was also a 

major limitation for the number of repeats of the experiments. Therefore in this PhD project, 

KCP7 and KCP8 cells were only used as checkpoints in some of the experiments to compare 

the results obtained with other cell models. 
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1A. 

 
 
1B. 
 

 
 
Figure 3.1: Comparison of growth rate of a series of skin cell lines.  

1A. Combined logarithmic plot of growth curves data for HaCaT keratinocytes and human primary skin 

fibroblasts FEK4 cells. Log values of average cell counts were plotted and the best fit line was plotted using 

linear regression analysis. Statistical analysis was carried out using Graphpad Prism 5.0. (n=3).  

1B. Cell proliferation rate of FEK4 fibroblasts and HaCaT, PM1, Met2 and MKPS KCs as measured by BrdU-

assay. Exponentially-growing cells were first pulsed with BrdU (10 µM) for 1 h, and then harvested and 

processed by flow cytometry for determination of the percentage of cells in S phase. 20‟000 events were 

collected and analysed (n=2-3).  

  

h 
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3.1.2 Comparison of the Basal LIP Level in Skin Cells  

Numerous studies have highlighted that compared to normal cells, the cancer cells are more 

sensitive to Fe-depletion. It has been suggested that this sensitivity relates to their high 

requirement for iron which is necessary for the rapid cancer cell multiplication. However to 

our knowledge, no study has demonstrated to date a clear relationship between the high 

turnover of iron in cancer cells and their high rate of proliferation. This information is also 

missing for skin-related hyperproliferative disorders notably NMSC and psoriasis. 

Nevertheless it is known that iron is involved in the pathology of skin diseases as the 

presence of excess iron has been demonstrated in a variety of skin disorders such as psoriasis, 

venous ulceration and atopic eczema.  

 

Our cell models provided us with an opportunity to investigate whether there is a correlation 

between the intracellular level of labile iron and the proliferation rate of the cells. Such 

studies could provide valuable clues to understand the modulation of intracellular iron levels 

during progression of normal skin cells towards early and late stages of carcinogenesis.  

 

Zhong et al. (2004), from this laboratory, have already demonstrated that epidermal 

keratinocytes (e.g. HaCaT, KCP7 and KCP8)  are more resistant to UVA-induced oxidative 

damage and cell death than dermal fibroblasts (e.g. FEK4, FCP7 and FCP8) presumably 

because both the „basal‟ and „UVA- induced‟ level of labile iron is considerably lower in 

keratinocytes than in fibroblasts. Indeed this study has revealed that the basal intracellular 

LIP level of primary skin KCs, KCP7 and KCP8, is 3-4-fold lower than their respective 

matched primary skin fibroblasts FCP7 and FCP8. The basal intracellular level of LIP in 

HaCaT KCs was also found to be 2.5-fold lower than that of FEK4 fibroblasts (see Table I 

and (Zhong et al., 2004). 

 

For the purpose of this PhD project, the intracellular level of LIP was evaluated with the 

highly sensitive CA fluorescence assay in PM1, Met2, MKPS and HaCaT KC cell lines over 

a period of 120 h after seeding. The results (Table II) demonstrated that in exponential 

growth phase, the basal LIP levels of PM1, Met2 and MKPS KCs are on average 1.6-2-fold 

higher than that of HaCaT cells. The comparison of data obtained in this study (Table II) 

with that of Zhong et al. (2004; Table I) further revealed that the basal LIP levels of cancer 
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cell lines PM1 and Met 2 as well as the psoriatic cell line MKPS are on average 3-4 fold 

higher than primary KCs, KCP7 and KCP8.  

The higher labile iron content of the PM1, Met2 and MKPS (Table II) appeared to correlate 

with their proliferation rate, since the intracellular LIP levels of these fast growing cells were 

significantly higher than that of primary KCs (Table I and unpublished data, this laboratory). 

Nevertheless primary FEK4 fibroblasts that had comparable basal level of LIP to PM1, Met2 

and MKPS, showed much lower growth rate as shown in Fig 3.1B.  

 

These observations suggested that although the basal LIP level might not always correlate 

with cell proliferation rate, it might however be a useful parameter to measure as it could 

provide valuable information about the sensitivity of the cell lines to Fe-depletion for 

instance during ICT. The PM1, Met2 and MKPS cell lines were therefore used as models of 

high proliferating cells to evaluate the antiproliferative potential of SIH, PIH and their caged 

derivatives i.e. 2NPE−PIH and 2NPE−SIH, followed or not by exposure to low to moderate 

doses of UVA.  Sections 3.2 and 3.3 provide the summary of these findings. 
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Table I. The comparison of the basal intracellular level of LIP in skin cell lines  

Note: reproduced from Zhong et al, 2004. 

 

Table II. Fold difference in basal LIP of PM1, Met2 and MKPS as compared to HaCaT cells  

Note: Average from 2-3 experiments. 



Page | 137  

 

3.2. The Antiproliferative Effect of Parental Iron Chelators 

 

3.2.1. Comparison of the Growth Inhibitory Effect of Equimolar 

Concentration of PIH, SIH, DFO and BIH in skin cells 

Prolonged exposure of cells to strong Fe chelators has been associated with severe toxicity 

and cell death due to iron starvation. Previous studies from this laboratory have demonstrated 

that short term treatment (i.e. 4-18 h) of FEK4 cells with Fe chelators Desferal (DFO) as well 

as parental PIH, SIH compounds and their caged-derivatives (at a final concentration of 100 

M) successfully depletes the basal and UVA-induced transit labile iron in cells but has no 

significant toxicity to the cells (Pourzand et al., 1999b; Reelfs et al., 2004; Zhong et al., 

2004; Yiakouvaki et al., 2006). This was also confirmed for HaCaT KCs when treated for 4-

18 h with DFO at a final concentration of 100 µM (Zhong et al., 2004). 

In the present study we extended these observations by incubating the exponentially growing 

cultures of HaCaT and FEK4 cells for longer periods (up to 72 h) with Fe Chelators DFO, 

PIH and SIH at a final concentration of 100 µM. The SIH derivative „BIH‟ that lacks the iron 

binding moiety was used as a non-chelating analogue control compound. A study performed 

by Yiakouvaki et al. (2006, this laboratory) has already demonstrated that overnight 

treatment of FEK4 cells with BIH at a final concentration of 100 µM triggers no toxicity to 

cells and unlike its analogues PIH and SIH, it does not modulate the basal or UVA-induced 

level of LIP in the cells. 

 

3.2.1.1 MTT Assay 

We first evaluated the cytotoxicity of the compounds with the MTT assay 24, 48 and 72 h 

after addition of compounds to exponentially growing HaCaT and FEK4 cells. The MTT 

assay monitors the ability of cellular dehydrogenases to convert the yellow soluble MTT (3-

(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) into a insoluble purple 

formazan product. The intensity of the production of this purple product is directly 

proportional to cell density as well as cellular reductive capacity and subsequently cell 

viability. Therefore this rapid and sensitive assay is often used as the first line of evaluation 

and screening of novel compounds in both cell proliferation and cytotoxicity studies. 
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The MTT assay (Fig 3.2) demonstrated a significant reduction in cellular enzymatic activity 

of both FEK4 and HaCaT cells following prolonged treatment with Fe chelators. 

Nevertheless while with DFO and SIH, this effect occurred in both cell lines in a time-

dependent manner, with PIH, the time-dependent reduction in activity could only be observed 

in FEK4 cells (Fig 3.2A). Indeed in PIH-treated HaCaT cells the observed reduction in 

enzymatic activities at 24h did not significantly change on progressing to 48 and 72 h time 

points (Fig 3.2B). Nevertheless, compared to FEK4 cells, SIH- and DFO-treatment had a 

more pronounced effect on HaCaT cells, as reflected by a more significant reduction in 

enzymatic activity at all time points used in the study. In contrast, the effect observed with 

PIH was less impressive and comparable in both cell lines (Fig 3.2A and 3.2B). For example 

at the 72 h post-treatment time point, the percentage control enzymatic activities calculated 

for both PIH-treated HaCaT and FEK4 cells were 54% ± 8 and 46% ± 9, respectively (see 

Fig 3.2A and 3.2B). For the same time point, the observed percentage control activity in SIH- 

and DFO-treated FEK4 cells was slightly lower (i.e. 34% ±7 and 35% ± 4, respectively) than 

the corresponding PIH-treated cells (Fig 3.2A). In contrast in SIH- and DFO-treated HaCaT 

cells, the respective percentage control activities were substantially lower (i.e. 4% ± 1 and 

3% ± 2, respectively) than the corresponding PIH-treated cells (Fig 3.2B). 

 

The treatment of both cell lines with BIH, a SIH derivative lacking the iron-binding moiety, 

did not have a significant effect in both cell lines (Fig 3.2), suggesting that the observed 

reduction in activity with its analogues PIH and SIH might be related to their Fe chelation 

property.  

 

Overall HaCaT cells were found to be more sensitive to Fe chelators DFO and SIH than 

FEK4. The lower basal LIP level of HaCaT cells might play a role in their increased 

sensitivity to Fe-depletion when compared to FEK4 cells (Table I and (Zhong et al., 2004). 

Finally the lower response of both cell types to PIH when compared to that of SIH and DFO, 

suggested that PIH might not be a suitable candidate chelator for iron chelation therapy. 

  



Page | 139  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2: The evaluation of growth inhibitory effect of PIH, SIH, and DFO on FEK4 (A) 

HaCaT (B) cells with MTT assay.  

 

Exponentially growing cells were incubated for 24, 48, and 72 h with compounds prior to MTT assay, as 

described in Materials and Methods section. The results were expressed as percentage of control (Mean ±SD; 

n=3-8) 

* : p< 0.05 Significant difference between value and corresponding untreated control. 

┼ : p< 0.05 Significant difference between value and corresponding 24h treatment 

Δ : p< 0.05 Significant difference between value and corresponding 48h treatment. 
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3.2.1.2 Cell Count Assay 

To ascertain that the observed reduction in enzymatic activity in MTT assay was related to 

decrease in cell density due to the growth inhibitory effect of the chelators rather than direct 

impact on cellular dehydrogenases enzymatic activity, we used the cell count assay as a 

control methodology to evaluate the change in cell density 24, 48 and 72 h following 

treatment of HaCaT cells with 100 µM DFO and PIH. While the MTT assay is invariably 

more sensitive than the cell count assay, there are a number of benefits associated with the 

latter. Namely, cell counting provides a direct measure of cell proliferation rates and it can 

give a clear indication of compound cytotoxicity. On a par with the benefits of cell counting, 

its drawbacks include an inherently increased risk of error (the procedure involves many 

more steps than the MTT assay), a reduced sensitivity and a much more labour intensive 

procedure. The results (Fig 3.3) showed that the trend of PIH and DFO cell count data are 

similar to those obtained with the MTT assay. Namely, both PIH and DFO treatments at a 

final concentration of 100 µM, substantially decreased the HaCaT cell proliferation rate, as 

reflected by the decrease in the number of viable cells. However the effect was much smaller 

with PIH. Also, there was again evidence of much reduced time-dependence with PIH.  
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Figure 3.3: The evaluation of growth inhibitory effect of PIH (A) and DFO (B) on HaCaT 

cells, with the cell count assay.  

 

Exponentially growing cells were incubated for 24, 48, and 72 h with compounds prior to the cell count assay, 

as described in Materials and Methods section.  

The results were expressed as percentage of control (Mean ± SD; n=3) 

* : p< 0.05 Significant difference between value and corresponding control. 

  Δ : p< 0.05 Significant difference between value and corresponding 24h treatment. 

┼ : p< 0.05 Significant difference between value and corresponding 48h treatment. 

A. 

B. 
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3.2.1.3 Light Microscopy 

The relative reduction in cell density was also visualized by light microscopy in both FEK4 

(Fig 3.4A) and HaCaT cells (Fig 3.4B), 72 h following treatment of cells with DFO, SIH and 

PIH at a final concentration of 100 µM. With the BIH-treated cells, there was again no 

evidence of reduction in cell density.   
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Figure 3.4A. The microscopic evaluation of cell confluency in FEK4 cells treated (or not) 

with Fe chelators DFO, PIH and SIH. 

The microscopic photography was taken 72 h following treatment of the cells with compounds at a final 

concentration of 100 µM.  BIH was used as a non-chelating control compound. 
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Figure 3.4B: The microscopic evaluation of cell confluency in HaCaT cells treated (or not) 

with Fe chelators DFO, PIH and SIH. 

The microscopic photography was taken 72 h following treatment of the cells with compounds at a final 

concentration of 100 µM. BIH was used as a non-chelating control compound. 
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3.2.2 Effect of PIH, SIH and DFO on Skin Cell Survival Using Colony 

Forming Ability Assay 

The results obtained with the MTT assay provided information about the short term effect of 

Fe chelators on HaCaT cells‟ proliferation (i.e. up to 72 h post-treatment). In an attempt to 

relate these findings to an in vivo setting, the colony forming ability (CFA) assay was also 

performed in parallel with the MTT assay in HaCaT cells. The CFA assay is a useful 

methodology for monitoring the antiproliferative behaviour of the Fe chelators since unlike 

the MTT assay, it monitors the long term toxic/growth-inhibitory effect of the compounds. 

The CFA assay assesses the ability of a single cell to plate, divide and form colonies 14 days 

following treatment with compounds of interest (e.g. Fe-chelators in this study). The CFA 

assay has been recognized as a reliable and powerful first line in vitro method (i.e. prior to in 

vivo testing) for evaluation of the anticancer effects of the chemotherapeutic agents in terms 

of inhibition of cancer cell proliferation and their ability to form a colony. Furthermore the 

CFA assay has been used to reliably predict treatment outcomes in vivo.  

 

For the purpose of this study, the exponentially growing HaCaT cells were treated with SIH, 

PIH and DFO at a final concentration of 100 µM for 24, 48 or 72 h. After each treatment, the 

cells were trypsinised and then seeded at single cell density and allowed to grow for 14 days 

in the absence of the compounds. At day 14
th

, the colonies were counted and expressed as 

percentage colony formation of the untreated control. The results (Fig 3.5) showed that in 

HaCaT cells, SIH and DFO have a much higher antiproliferative activity than PIH. Indeed the 

counting of colonies revealed that SIH and DFO treatments considerably reduce the 

percentage of colony formation in a time-dependent manner. Briefly, compared to control 

HaCaT cells, the 24 h treatment of cells with DFO and SIH decreased the percentage of 

colonies from 100% (i.e. control) to 74% ± 3 and 48%, respectively, and the 48 h treatment 

reduced further the DFO and SIH values to 14% ± 8 and 19%, respectively. Interestingly, 

only very few colonies were formed in cell culture plates that were originally treated with 

both compounds for 72 h. These results were in agreement with those of the MTT assay, 

although the effects observed with CFA were more pronounced. 

 

Surprisingly, PIH treatment did not have a significant effect on colony formation in HaCaT 

cells, even after 72 h pre-treatment. The latter observation did not correlate with the MTT and 

cell count data, suggesting that the short term decrease in cell proliferation in PIH-treated 
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HaCaT cells must have been a transient effect that only occurred in the presence of the 

compound, and that presumably after removal of the compounds and addition of fresh media, 

cells have re-started to proliferate. In other words, the Fe chelating property of PIH might 

only cause „growth retardation‟ in cells due to a transient Fe depletion rather than „growth 

inhibition‟. Growth retardation due to transient iron starvation could translate as a longer S 

phase in the cell cycle, since the iron required for RR implicated in DNA synthesis is scarce. 

In this scenario, the removal of the Fe chelator should restore the DNA synthesis and cell 

division as a whole. In contrast growth inhibition may occur when RR activity is inhibited by 

the Fe chelator, so that the cell cycle stops at G1/S phase. The G1/S arrest in cell cycle 

usually leads to cell death. To distinguish between these two phenomena, it was therefore 

necessary to monitor both the percentage of cells in S phase of the cell cycle and cell death 

following Fe chelator treatments. Section 3.2.3 and 3.2.4 provide the summary of these 

analyses.  
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Figure 3.5: The evaluation of growth inhibitory effect of PIH, SIH, and DFO on HaCaT cells 

with the clony forming ability assay. 

 Exponentially growing cells were incubated for 24, 48, and 72 h with Fe chelators at a concentration of  

100 µM. Cells were then seeded at single cell density, incubated for 14 days, stained and counted. The values 

are expressed as percentage of control (Mean ± SD) n=2-3.  

* : p< 0.05 Significant difference between value and control. 

┼ : p< 0.05 Significant difference between value and corresponding 24h 

Δ : p< 0.05 Significant difference between value and corresponding 48h. 
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3.2.3 Effect of PIH, SIH and DFO on HaCaT Cell Proliferation as 

Measured by BrdU Incorporation Assay 

To verify the above hypothesis, we evaluated the percentage of HaCaT cells in S phase of the 

cell cycle with BrdU incorporation assay following 72 h treatment with DFO, SIH and PIH at 

a final concentration of 100 µM. The results (Fig 3.6) revealed that both SIH and DFO are 

capable of efficiently decreasing the percentage of cells in S phase, although the effect with 

DFO was more pronounced than SIH.  In contrast, compared to control cells, PIH-treatment 

did not show any change in the percentage of cells in S phase. These results implied that the 

observed decrease in percentage colony formation with DFO and SIH in CFA experiments 

(Fig 3.5) might be due to the fact that these compounds provoke a significant G1/S arrest in 

HaCaT cell cycle, leading to cell death as reflected by reduced colony formation. In contrast, 

the PIH-treated cells progress to S phase and therefore fully survive (Fig 3.5 and 3.6).   
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Figure 3.6: The evaluation of growth inhibitory effect of DFO, PIH and SIH HaCaT cells as 

measured by the BrdU-assay. 

 

Exponentially growing cells were incubated for 72 h with the indicated compounds at a 

concentration of 100 µM prior to pulsing with BrdU (10 µM) for 1h, then harvested and 

processed by flow cytometry for determination of the percentage of cells in S phase. 20,000 

events were collected and analysed. 

The results were expressed as percentage of control (n=2). 
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3.2.4 Effect of PIH, SIH and DFO on HaCaT Cell Death as Measured by 

Annexin V / PI Dual Staining Assay 

To further verify the above assumption, it was decided to quantify the percentage of cell 

death using the sensitive flow cytometry-based Annexin V / PI dual staining assay. For this 

purpose, the exponentially growing HaCaT cells were treated for 24, 48 or 72 h with SIH, 

PIH and DFO at a final concentration of 100 µM. The flow cytometry analysis (Fig 3.7) 

demonstrated that in agreement with CFA (Fig 3.5) and BrdU data (Fig 3.6), prolonged 

exposure of HaCaT keratinocytes to DFO and SIH provokes a time-dependent increase in cell 

death and at the 72 h time point, only 8% and 5% of cells survive, respectively. However the 

percentage of dead cells remained extremely low in cells exposed to PIH for the same period 

of time (Fig 3.7).  

 

These results suggested that in contrast to PIH, DFO and SIH should have much higher 

inhibitory effect on the RR enzyme, since treatment of cells with both of these chelators led 

to substantial G1/S arrest of cells in cell cycle leading to cell death. This assumption is in 

agreement with previous findings by Richardson and coworkers who demonstrated that 

compared to PIH, SIH and DFO have much higher antiproliferative activity presumably 

because they are more potent inhibitors of RR (Richardson et al., 1995; Yu et al., 2006). 

Furthermore they demonstrated that in general, the pyridoxal (PIH) analogues show high Fe 

chelation efficacy but low anti-proliferative activity (Richardson et al., 1995). Using the 

hepatocyte and reticulocyte cell models, they further demonstrated that among the PIH 

analogues, the least cytotoxic chelators (i.e. PIH, 101, and 107) were highly effective Fe 

chelators but lacked anti-proliferative activity (Richardson et al., 1995).   

 

A recent study on both normal and immortalized skin keratinocyte (HaCaT) versus oral 

normal and SCC cancer cell lines has also demonstrated that prolonged Fe chelation with 

DFO (72-96 h) induces cell death in all cell lines used
 
(Lee et al., 2006). In the same study, 

the reduction in cell proliferation with DFO was also demonstrated in HaCaT cells grown in 

3-dimensional (3D) organotypic collagen-based culture. DFO caused severe growth 

inhibition in the form of less epithelial maturation, decreased epithelial thickness and 

decreased surface keratinisation compared to controls.   
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Figure 3.7: The evaluation of percentage of „live‟ (grey) and „dead‟ (black) HaCaT cells by 

flow cytometry 4, 24, 48 and 72 h following treatment with DFO, PIH and SIH.  

 

 Exponentially growing cells were incubated for 4, 24, 48 and 72 h with the indicated compounds at a 

concentration of 100 µM prior harvesting and dual Annexin-V/ PI staining, and processed by flow cytometry for 

determination of the percentage of dead cells. 10,000 events were scored . The results were expressed as 

percentage of total events recorded (n=1). 
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3.2.5 Effect of PIH and DFO on HaCaT Epidermal Cells in 3D De-

epidermalised Dermis Raft Organotypic Culture 

The low antiproliferative activity of PIH was further verified with morphological studies in a 

HaCaT 3D organotypic skin equivalent raft culture. Fig 3.8 illustrates a typical section of a 

primary human keratinocyte raft made with DED and grown for 17 days. 

 

For the purpose of this experiment, HaCaT cells were raised on a series of 3D de-

epidermalised dermis (DED) and at day 7 of growth, they were treated with 100 µM DFO or 

PIH for 72 h. The media containing the chelators was then removed and replaced with fresh 

media. The cultures were then incubated for an additional 10 days and then stained with 

haematoxylin–Eosin for microscopic view. As it can be seen in Fig 3.9, the DED-raft cultures 

of the untreated HaCaTcells as well as those treated with PIH produced epithelial 

stratification with well-preserved morphologic differentiation and distinct stratum corneum 

that was comparable to that of normal keratinocytes illustrated in Fig 3.8. In contrast the 

DFO-treated culture produced a very thin stratum corneum (or at least invisible) and the 

epidermis thickness on average was lower when compared to that of control or PIH-treated 

cells. Furthermore the epidermal layer in DFO-treated epidermis appeared significantly 

damaged with the appearance of considerable holes within the tissue. Also the damaged cells 

appeared to have condensed chromatin, presumably due to their propensity to undergo 

apoptotic cell death as a result of G1/S cycle arrest by DFO (see Fig 3.10). These results 

further confirmed that in contrast to DFO, PIH lacks effective antiproliferative activity. 
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Figure 3.8: Typical section of a primary human keratinocyte raft made with DED and grown 

for 17 days.  

The epidermal and dermal layers are clearly indicated for information. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Morphological study of DED-Raft HaCaT cultures treated with 100 µM DFO 

and PIH for 72 h. 
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Figure 3.10: Magnification of the epidermal layer of control and DFO-treated DED-rafts of 

Figure 3.9.  
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3.2.6 Determination of IC50 for PIH, SIH and DFO  

All the chelators used in this study are known to have similar strong iron binding activities 

but DFO and SIH were found to have more potent antiproliferative activity than PIH. 

Therefore it was of particular interest to determine the IC50 values of these chelators (i.e. the 

Fe chelator doses necessary to inhibit the proliferation of cells by 50%) as a mean to evaluate 

the extent of their growth inhibitory effect in skin cells.  For this purpose FEK4 and HaCaT 

cells were analyzed by the MTT assay 72 h following treatment with a range of doses of PIH, 

SIH, and DFO, as detailed in the Materials and Methods section. The results were 

expressed as a percentage of the control values. 

 

Table III summarises the IC50 values obtained by the MTT assay for PIH, SIH and DFO in 

the skin cell models of the study. As it can be seen, the IC50 values for PIH were overall 

much higher that SIH and DFO for all the cell lines used, consistent with the notion that this 

chelator is the least effective antiproliferative agent. Furthermore as it was demonstrated 

above, the decrease in cell proliferation with PIH was transient as it only occured in the MTT 

assay in the presence of the compound. In contrast, SIH and DFO appeared to have a much 

stronger growth inhibitory effect than PIH as reflected by their lower IC50 values obtained 

for all the cell lines, except PM1 that required a much higher concentration of these chelators 

to achieve the IC50 value. These results suggested that the response of cells to the 

antiproliferative action of Fe-chelators depends not only on the chelator identity but also on 

the cell type.   
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   Table III. Comparison of the IC50 values of Fe chelators in skin cell models  

Note: Average from 2-8 experiments. 
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3.2.7 Effect of Fe
3+

-Chelator Complexes on Cellular Proliferation 

To confirm that the observed growth retardation / inhibitory effects of the Fe chelators used 

in the study were related to their Fe chelating property, additional MTT assays were 

performed with DFO, SIH and PIH where the chelators were complexed (or not) with Fe
3+ 

(Fe-citrate). The compounds were then added to the cells at their corresponding IC50 (see 

Table III) and higher concentrations, so that the observed effect could also be verified in a 

dose-dependent context.   

As it can be seen in Fig 3.11, the treatment of FEK4 cells with iron saturated PIH, SIH and 

DFO reversed significantly the observed decrease in enzymatic activity (as measured by 

MTT assay) of the cells treated with Fe chelators alone at both their IC50 and higher 

concentrations. For example the comparison at IC50 concentrations revealed that iron 

saturation of PIH could substantially increase the enzymatic activity of cells treated with PIH 

alone from 46% ± 9 to 85% ± 10. Also iron saturation of SIH increased the enzymatic 

activity of SIH-treated cells from 48% ± 5 to 94% ± 5. Finally iron saturation of DFO 

increased the enzymatic activity of DFO-treated cells from 52% ± 4 to 84% ± 12, 

respectively.  

 

Similarly when HaCaT cells were treated with 100 μM PIH, 20 μM SIH and 10 μM DFO 

complexed with Fe
3+

, the cellular enzymatic activity also significantly increased when 

compared to treatment with Fe chelatros alone (Fig 3.12) (i.e. from 54% ±8 in PIH-treated 

cells to 75% ± 9 in PIH+ Fe
3+

-treated cells; from 37% ± 13 in SIH-treated cells to 97% ± 6 in 

SIH+ Fe
3+

-treated cells and from 53% ±8 in DFO-treated cells to 91% ± 16 in DFO+ Fe
3+

-

treated cells,  respectively. 

 

Interestingly in both FEK4 and HaCaT cells, the iron saturation of Fe chelators at the IC50 or 

at higher concentrations yielded the same increase in enzymatic activity. 

 

We also checked the response of PM1 and Met2 to DFO, PIH and SIH saturated or not with 

Fe
3+ 

at their corresponding IC50 concentrations (Fig 3.13), results for PIH are demonstrated 

in Fig 3.18. Again here, the iron saturation of Fe chelators substantially reversed the observed 

decrease in enzymatic activity of the chelator-treated cells, although the effect was more 

pronounced with DFO-Fe
3+

 than SIH- and PIH-Fe
3+

. 
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Overall the results confirmed that saturation of Fe chelators with iron reverses the 

antiproliferative activities of the chelators at both IC50 and higher concentrations, so the 

growth retardation/inhibitory effects of Fe chelators were iron-related. These results were in 

agreement with previous studies carried out with these chelators in other cell models 

(Richardson et al., 2005) 
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Figure 3.11: Growth inhibitory effect of PIH, SIH, and DFO (+/- iron-citrate) on FEK4 cells 

as measured by the MTT assay.  

Exponentially growing cells were incubated for 72 h with compounds complexed (or not) with iron, prior to the 

MTT assay, as described in the Materials and Methods section. The results were expressed as the percentage 

of untreated control (Mean + SD; n=3-5) 

* : p< 0.05 Significant difference from the corresponding untreated control.  
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Figure 3.12: Growth inhibitory effect of PIH, SIH, and DFO (+/- iron-citrate) on HaCaT cells 

(MTT assay).  

Exponentially growing cells were incubated for 72h with compounds complexed (or not) with iron, prior to the 

MTT assay, as described in Materials and Methods section. The results were expressed as a percentage of the 

untreated control (Mean + SD; n=3-5). 

*: p< 0.05: Significant difference from the corresponding untreated control. 

 



Page | 161  

 

 

 

 

 

 

 

 

Figure 3.13: Growth inhibitory effect of SIH, and DFO (+/- iron-citrate) on PM1 and MET2 

cells (MTT assay).  

Exponentially growing cells were incubated for 72 h with compounds complexed (or not) with iron, prior to the 

MTT assay, as described in Materials and Methods section. The results were expressed as a percentage of the 

untreated control. 
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3.3 Antiproliferative Effect of Caged Iron Chelators 

 

While SIH as a lipophilic Fe chelator with strong antiproliferative activity appears to be 

suitable for topical Fe chelation therapy of skin hyperproliferative diseases such as skin 

cancer, the prolonged topical application of SIH per se may be harmful as it could locally 

cause starvation of the normal skin cells surrounding the skin tumour/lesion from the 

essential nutrient iron. Our novelly designed light-activatable caged iron chelators (CICs) 

should circumvent this problem, as in practice the compounds will be first applied topically 

and then switched on selectively in situ within the tumour in a dose- and context-dependent 

manner. This section provides the summary of the pilot study performed with the aim of 

evaluating the antiproliferative activity of CICs derived from PIH and SIH (i.e. 2NPE−PIH 

and 2NPE−SIH, respectively) following uncaging with UVA radiation. 

 

3.3.1 In vitro Characterisation of 2NPE-PIH and 2NPE-SIH (+/- UVA) by 

Reverse Phase HPLC  

The first stage of this project involved the chemical synthesis of 2NPE-PIH and 2NPE-SIH in 

Nottingham under supervision of Dr James Dowden who initially designed and synthesized 

these CICs in collaboration with Dr Pourzand (see (Yiakouvaki et al., 2006). Following 

synthesis and evaluation of the purity of the compounds in Nottingham with NMR and MS 

analyses, the decaging profile of the CICs (+/- UVA or ambient light) was further 

characterised in the Bath laboratory in collaboration with Dr Ian Eggleston:  

Fig 3.14A illustrates the reverse HPLC profile of 2NPE-PIH and PIH with or without 

irradiation with a UVA dose of 250kJ/m
2
 as compared to the previously obtained profile of 

2NPE-SIH and SIH (+/-UVA, 250kJ/m
2
) by Yiakouvaki et al. (2006) (Fig 3.14B). As can be 

seen, UVA irradiation triggers the uncaging of the 2NPE-PIH and 2NPE-SIH CICs and 

converts them to parental compounds PIH and SIH, respectively. This is further illustrated by 

co-injection of UVA-irradiated CICs with pure parental compounds (Fig 3.14A and 3.14B). 

The uncaging of 2NPE-PIH and 2NPE-SIH by UVA and the release of active PIH and SIH is 

schematised in Fig 3.15.    
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PIH*: UVA-irradiated 2NPE-PIH 

Figure 3.14: Prototype photo-activatable CICs (in collaboration with Dr Ian Eggleston). 

2-NPE-SIH /PIH were run first (0.1mm in CH3CN/aq 1:1); then same samples were run after irradiation with 

250kJ/m2 UVA; and irradiated samples were run with parental compounds i.e. with SIH or PIH co-injection. 

  

Time (min) 
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To evaluate the minimum UVA dose necessary for uncaging of  2NPE-SIH and 2NPE-PIH 

caged-chelators and  release of parental compounds, the CICs were exposed to a range of 

doses of UVA (i.e. 5, 10, 20, 50, 100 and 250 kJ/m
2
) and then the relative peak areas of the 

reverse-HPLC profiles were quantified 1h following irradiation. The results (Fig 3.16) 

revealed that even at very low doses of 5-10 kJ/m
2
, UVA could trigger the uncaging of the 

CICs.  For 2NPE-SIH a low dose of 50 kJ/m
2
 was sufficient to fully release the uncaged 

compound i.e. SIH. At natural exposure level, 50 kJ/m
2
 will be equivalent to 10-15 min 

exposure to sunlight at sea level (i.e. a sub-erythemal non-damaging dose). Typically with a 

fluence rate of 150 W/cm
2
, and a distance of 15 cm, the irradiation time for this dose will be 

around 2-3min in the laboratory setting (or during CIC-based therapy in the clinical setting). 

For 2-NPE-PIH however higher doses of 100-250 kJ/m
2
 were necessary for clean conversion 

of the caged-PIH to parental PIH. In comparison, in psoralen-UVA (PUVA) therapy, the 

typical UVA dose applied for sensitisation of skin is between 5-50 kJ/m
2
 depending on the 

skin type of the patients. However PUVA is not an effective single therapy and usually 

necessitates multiple treatments that would cause an accumulation of the UVA doses applied. 

The cumulative doses in PUVA treatments of psoriatic patients could reach values up to 

500kJ/m
2
.  The single and lower UVA dose treatment necessary to uncage the CIC 

compounds might therefore provide a clear advantage for caged-iron chelation therapy of 

skin hyperproliferative disease when compared to PUVA.  

 

To evaluate the stability of the prototype CICs, additional reverse-HPLC analyses were 

performed with samples of 2NPE-PIH and –SIH kept for a few days at room temperature 

under ambient light. These results (not shown) revealed that the compounds are fully stable at 

ambient light and uncaging of the compounds occurs only upon exposure to a UVA broad 

spectrum lamp (i.e. 340-400nm with maximum peak at 364nm) 

To exclude partial uncaging of the CICs, a UVA dose of 250kJ/m
2 

was used for experiments 

involving CIC uncaging by UVA. 
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Figure 3.15: Prototype photoactivatable CICs. Reproduced with the permission of Dr Ian 

Eggleston 

 

 

 Figure 3.16: Reverse-HPLC analysis of UVA-induced uncaging of 2NPE-SIH and 2NPE-

PIH.   

Quantifications of relative peak areas of reverse-HPLC analysis of (A) 2NPE-SIH and SIH;  

(B) 2NPE-PIH and PIH (collected at 280nm 1h post-UVA treatment).  

  

ON 

 O 
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3.3.2 Comparative IC50 Values for Parental PIH, SIH and their UVA-

irradiated Caged Derivatives 

To compare the antiproliferative activity of uncaged CICs versus the parental compounds, a 

series of MTT assays in FEK4 and HaCaT cells 72 h following treatment with a range of 

concentrations of the compounds (see a representative example in Fig 3.17) was performed. 

These experiments allowed determination of the IC50 values of both parental and their UVA-

irradiated caged derivatives. Table IV provides the summary of the main findings as outlined 

below: 

- The IC50 values calculated for UVA irradiated 2-NPE-PIH-treated FEK4 and HaCaT cells 

were similar to that of parental PIH (i.e. 100 μM). Furthermore the unirradiated 2-NPE-PIH 

had no antiproliferative activity, consistent with the notion that the UVA-mediated release of 

PIH from the caged-compound is necessary for its antiproliferative action (Fig 3.17). 

- The IC50 values calculated for SIH and its UVA-irradiated caged derivative were found to 

be around 50 μM and 20 μM, respectively for FEK4, and 20 μM for HaCaT cells. Again the 

unirradiated 2-NPE-SIH had no apparent antiproliferative activity, consistent with the notion 

that the UVA-mediated release of SIH from the caged-compound is necessary for its 

antiproliferative action (Fig 3.17).   

 

To ascertain that the antiproliferative activity of UVA-irradiated CICs is related to their Fe 

chelation properties as a result of their conversion to their respective parental compounds, the 

UVA-irradiated 2NPE-PIH were complexed with Fe
+3

 using iron citrate and then performed 

MTT assays were then carried out 72 h following addition of the compound (at its IC50 

concentration) to HaCaT cell cultures. The results (Fig 3.18) revealed that iron saturation of 

both parental PIH and its UVA-irradiated caged version significantly reduced the decrease in 

enzymatic activity following treatment of cells with PIH and UVA-irradiated 2NPE-PIH 

alone.  
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Figure 3.17: The deterimation of IC50 values for PIH/ SIH and 2NPE-PIH/-SIH (+/- UVA, 

250 kJ/m
2
) HaCaT cells with the MTT assay. 

The results are expressed as mean ± SD, (n=3) for PIH and its derivatives, and (n=2) for SIH and its derivatives. 
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Table IV. The comparison of IC50 values of PIH, SIH to UVA-irradiated 2NPE-PIH and 

2NPE-SIH in FEK4 and HaCaTcells (MTT assay- 72h post treatment)  
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Figure 3.18: Growth inhibitory effect of PIH and UVA irradiated 2NPE PIH(+/- iron-citrate) 

on FEK4  cells (MTT assay). 

Exponentially growing cells were incubated for 72 h at concentrations of 100 µM or 200 µM of compounds 

complexed (or not) with iron, prior to MTT assay, as described in Material and Methods section. The results 

were expressed as percentage of the untreated control (Mean ± SD; n=3) 

* : p< 0.05 Significant difference from the corresponding free ligand. 

  

DFO:Iron = 1:1 

SIH:Iron   = 2:1 

PIH:Iron   = 2:1 
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3.3.3 Effect of PIH/SIH, 2-NPE-PIH/SIH and Subsequent UVA Irradiation 

on the Proliferation of Skin Cells 

After assessing the antiproliferative effect of parental PIH/SIH and their UVA-irradiated 

caged derivatives, it was important to assess the antiproliferative activity of the CICs uncaged 

in situ inside the cells. For this purpose, exponentially growing FEK4 and HaCaT cells were 

first treated for 18 h with 2NPE-SIH or SIH and 2NPE-PIH or PIH, respectively, at a final 

concentration of 100µM and then irradiated with a range of UVA doses.  Following UVA 

irradiation, the cells were incubated for 72 h in the absence of compounds and then analysed 

with the MTT assay. 

  

The results (Fig 3.19A) demonstrated that in the absence of UVA, caged-PIH does not alter 

the cellular enzymatic activity of HaCaT cells, but following UVA irradiation provides a 

significant decrease in the observed activity of cells. UVA-irradiated controls only marginally 

altered the enzymatic activity of HaCaT cells, indicating that the effect observed in caged-

treated irradiated cells is unrelated to radiation but rather related to uncaging of the 2NPE-

caging group and release of active antiproliferative PIH compound. The antiproliferative 

activities of UVA-irradiated PIH- treated cells were quite similar to those obtained with 

caged-PIH, implying efficient in situ uncaging of caged-PIH by UVA even at lower doses of 

50 and 100kJ/m
2
.  Similarly, when SIH and 2NPE-SIH were tested in FEK4 cells, the 

antiproliferative activity of UVA-irradiated SIH-treated cells was also quite similar to that 

obtained with UVA-irradiated caged-SIH (Fig 3.19 B). Nevertheless UVA irradiation of 

FEK4 cells in the absence of compounds revealed higher toxicity at 250 kJ/m
2
. This is in 

agreement with previous findings from this laboratory that have shown that FEK4 fibroblasts 

are more susceptible to UVA irradiation than HaCaT cells (Zhong et al., 2004). Nevertheless 

the lower non-damaging UVA dose of 50 kJ/m
2
 appeared to be sufficient to uncage the 

2NPE-SIH in agreement with the in vitro uncaging UVA dose evaluated by the reverse HPLC 

data. Furthermore the results of Fig 3.19B suggested that for 2NPE-PIH the lower UVA 

doses of 50 and 100 kJ/m
2
 are also effective in in situ uncaging as the effect observed with 

the caged-PIH using the MTT assay was quite similar to that obtained with parental 

compound upon low doses of UVA.  
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PIH 100M 18h: PIH was added for 18h prior to UVA irradiation and then removed.   

2NPE PIH 100M 18h : Caged PIH was added for 18h prior to UVA irradiation and then removed. 

 

SIH 100M 18h: SIH was added for 18h prior to UVA irradiation and then removed. 

2NPE SIH 100M 18h : Caged PIH was added 18 h prior to UVA irradiation then removed. 

Figure 3.19: The evaluation of cell proliferation following treatment of (A) HaCaT cells with PIH and 

2NPE-PIH +/-UVA (n=3) and treatment of (B) FEK4 cells with SIH and 2NPE-SIH +/-UVA (n=2) with MTT 

assay. The results are expressed as mean + SD. 

T-test (vertical comparisons):  

†: (p< 0.05), significant difference between caged PIH treated -/+UV and untreated cells -/+UV. 

‡ : (p< 0.05), significant difference between PIH treated -/+UV and untreated cells -/+UV. 

ᵪ: (p< 0.05), significant difference between PIH treated -/+UV and Caged PIH treated cells -/+UV. 

T-test (horizontal comparisons):  

+: (p< 0.05), significant difference between unirradiated and irradiated cells. 

∆ : (p< 0.05), significant difference between Caged PIH treated  and Caged PIH + UV treated cells. 

* : (p< 0.05), significant difference between PIH treated  and PIH + UV treated cells.  

B 

A 
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3.4 Concluding remarks 

 

The evaluation of the antiproliferative activity of PIH and SIH and their caged derivatives in 

our cell models revealed that while short-term (i.e. 4 -18 h post - UVA) exposure of cells to 

2NPE-based CICs provides protection against UVA-induced oxidative damage with no 

apparent toxicity (see(Yiakouvaki et al., 2006), the prolonged (i.e. 24 – 72 h) exposure of 

cells to parental SIH or UVA-irradiated 2NPE-SIH triggers growth inhibition because of 

G1/S arrest in the cell cycle leading to substantial cell death. PIH and UVA-irradiated PIH on 

the other hand only caused transient growth retardation in cells in the form of a delayed S 

phase but had no apparent toxicity to skin cells, since the percentage of dead cells remained 

extremely low in cells exposed to these compounds for the same length of time. These results 

highlighted the importance of the choice of the parental Fe chelators in determining the level 

of toxicity of cells. Based on these results, 2NPE-PIH, that had very low toxicity, appeared to 

be the best candidate for skin photoprotection. In contrast, 2NPE-SIH that triggered high 

levels of cell death upon UVA light appeared to have potential for topical caged-iron 

chelation therapy of iron-related skin disorders, notably skin cancer. The low toxicity of 

UVA-irradiated 2NPE-PIH was further confirmed in morphological studies in 3D 

organotypic raft cultures using the DED dermis. 

 

The growth-retardation or -inhibitory effects observed with Fe chelators or uncaged CICs 

were related to their iron-chelating property, as their saturation with iron, could reverse their 

antiproliferative activity in analysed skin cells. Finally, the studies aimed at evaluating the 

antiproliferative activity of CICs upon in situ uncaging with low doses of UVA revealed that 

in the absence of UVA, 2NPE−PIH and –SIH do not alter the cell growth, but following 

„low‟ UVA radiation doses, they provide a significant decrease in growth rate of cells that is 

comparable to the effects observed with the parental chelators alone. 

  

Taken together, these data indicated that 2NPE-PIH, which possesses very high iron chelating 

potential, but low antiproliferative activity (i.e. upon uncaging by UVA), is more suitable for 

skin photoprotection. In contrast, 2NPE-SIH which remains inactive inside the cells until its 

strong iron binding activity and high antiproliferative properties are activated by UVA, offers 

a highly selective and dose-controlled alternative for the treatment of hyperproliferative skin 

disorders such as skin cancer and psoriasis.  
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3.5 Future Work 

 

Although the pilot study performed in this PhD project provided the first evidence for the 

suitability of 2NPE-SIH for caged-iron chelation therapy of skin hyperproliferative disease, it 

is clear that more data are still required to validate this approach. One of the essential 

requirements for the continuation of this project is to study the antiproliferative potential of 

this promising prototype CIC in additional cell models of cancerous and psoriatic cell lines. 

Also the effect observed in monolayer cultures should be further validated in 3D DED raft 

cultures so that the long-term antiproliferative action of the CIC could be clearly 

demonstrated. At this point, it will also be necessary to evaluate the minimum UVA dose 

necessary to uncage the CIC compound in the epidermal layer of the 3D raft culture.  Dr 

Reelfs from this laboratory has already established an enzymatic protocol that would allow 

the separation of the epidermal layer of the rafts and further digestions in order to obtain the 

KC cell suspension. This cell suspension can be analysed with the CA assay by flow 

cytometry to evaluate the modulation of LIP in epidermal layers treated with CICs + UVA. 

Furthermore Dr Eggleston‟s laboratory are presently designing a series of fluorescent 2NPE-

SIH molecules that could allow the visualization of the depth of penetration of the CICs in 

epidermal layer of rafts with fluorescence microscopy. Such studies are necessary to 

complement the studies performed in this thesis. 

Following the above investigations, the antiproliferative action of 2-NPE-SIH-type CICs 

should then be validated in skin xenografts of cancerous and psoriatic cell lines in animal 

models. At this point further measures have also to be taken to find out the best topical 

formulation for efficient administration of the CICs.   

Future work should also include the design of more improved CICs with new Fe chelators 

and new caging groups allowing uncaging at lower UVA doses while keeping the high 

lipophilicity, high iron-binding activity and high antiproliferative activity upon uncaging. An 

in-depth analysis of novel and improved CICS might allow then the selection of CICs with 

the most efficient growth inhibitory/ iron binding ability for subsequent in vivo testing in 

order to identify the most promising CIC(s) for topical caged iron-chelation therapy of iron-

related skin hyperproliferative diseases, notably skin cancer and psoriasis. 

Furthermore the prototype CICs studied in this thesis offer considerable scope for 

optimisation/fine tuning, with respect to wavelength of release (by varying the caging group), 
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lipophilicity and toxicity (by varying the chelators and/or caging group). For instance, 

chemical fine-tuning of either chelator or caging moieties to enhance either cytotoxic or 

protective functions upon release from the inactive caged structure could offer a wide range 

of medical and healthcare applications. This is a major advantage for several applications, 

and cannot be achieved with systemic iron chelation approaches currently in development.
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