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Summary

The purpose of this work is to illuminate some of the non-smooth phenomena found

in piecewise-smooth continuous and discrete dynamical systems, which do not occur

in smooth systems. We will explain how such non-smooth phenomena arise in appli-

cations which experience impact, such as impact oscillators, and a type of rotating

machine, called magnetic bearing systems. The study of their dynamics and sensitivity

to parameter variation gives not just insights into the critical motion found in these

applications, but also into the complexity and beauty in their own right.

This work comprises two parts. The first part studies a general one-dimensional

discontinuous power law map which can arise from impact oscillators with a repelling

wall. Parameter variation and the influence of the exponent on the existence and

stability of periodic orbits is presented.

In the second part we analyse two coupled oscillators that model rotating machines

colliding with a circular boundary under friction. The study of the dynamics of rigid

bodies impacting with and without friction is approached in two ways. On the one hand

existence and stability conditions for non-impacting and impacting invariant sets are

derived using local and global methods. On the other hand the analysis of parameter

variation reveals new non-smooth bifurcations. Extensive numerical studies confirm

these results and reveal further phenomena not attainable otherwise.
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CHAPTER 1

Introduction

1.1 Motivation

Some processes, behaviours or physical phenomena can be described in terms of systems

that evolve in time and which experience fast changes. These changes occur so rapidly

that one can assume they are instantaneous when setting up a mathematical model for

them. Dynamical systems can model many of the applications that experience such a

sudden change by describing the dynamics using non-smooth functions. Often these

functions are smooth in general but have non-smooth transitions at certain points (they

are piecewise-smooth). This type of dynamical system is then called a piecewise-smooth

dynamical system. Piecewise smooth dynamical systems have now become an essential

tool for understanding not only problems in engineering, as discussed in Section 1.2.1,

but also a wide range of applications in other fields such as Biology and Ecology, which

will be briefly discussed in Section 1.2.2. It is the rich and subtle dynamics of such

piecewise-smooth systems, and the problems they model, which forms the basis of this

Thesis.

As examples of such systems, a sudden change can occur when an object impacts

another, when a switch is applied in an electric system, or when an object is sliding and

experiencing friction. Such engineering applications have been and still are a driving

force in developing the mathematical theory in the field of piecewise-smooth dynamical

systems. One problem in mechanical engineering stands out: the problem of describing

the dynamics of an object which, under external forcing, impacts an obstacle. This

problem is referred to as the single degree of freedom impact oscillator, and has been

discussed in the literature [3, 122, 97, 106, 113] at least since 1958, [3]. Often it is

termed the impact oscillator, a name which we adopt throughout this Thesis. It has

been modelled using piecewise-smooth dynamical systems which give rise to phenomena
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that do not occur in smooth dynamical systems.

One such phenomenon manifests in the case of a trajectory that touches the obstacle

in precisely one point tangentially with zero velocity. This phenomenon is called the

grazing event. These phenomena are typical for piecewise-smooth dynamical systems

and can also be found in more complex or higher dimensional problems. In this Thesis

we will study an example of such a system arising in magnetic bearing systems [89, 41,

22]. A magnetic bearing system comprises a rotating beam (called the rotor), which

levitates due to magnetic forces. During abnormal function it may collide with its

housing (called the stator).

Applications such as these have many interesting properties and understanding how

the dynamics of such systems changes under parameter variation is an essential tool

for finding the overall behaviour of the system. Often the changes are smooth, but at

certain parameter values, called bifurcation points, we see much more dramatic changes

often associated with a change in stability. Bifurcation phenomena that occur in smooth

systems have been well studied and documented in now-standard literature [65, 53, 55].

Similar phenomena also occur in piecewise-smooth systems. At present however, many

types of bifurcations, called discontinuity induced bifurcation (DIB) [34], are unique

to piecewise-smooth dynamical systems. There exists only a sparse literature on using

piecewise-smooth dynamical systems to study magnetic bearing systems. The literature

is even sparser when it comes to deriving analytical conditions to understand certain

dynamics, such as periodic behaviour, or bifurcation, in such systems. These are all

open questions that will be addressed in Chapters 5 and 6.

One method of studying systems with impacts is by constructing a suitable piecewise-

smooth Poincaré map and then studying its dynamics. For the periodically forced im-

pact oscillator, for example, such a map can be constructed by sampling the position

and velocity at periods T of the forcing function. Then the Poincaré map, which is

two-dimensional, maps position and velocity from time t0 to time t0 + T . If there are

no impacts, then the map is linear. However, if an impact occurs then this has to be

taken into account, and the map becomes nonlinear. In [90] Nordmark has developed

a method called discontinuity mapping, which explicitly constructs the map and allows

it to be analysed. The discontinuity mapping takes the non-impacting Poincaré map

and adds a correction term, which takes into account that an impact has occurred.

Such systems can exhibit many behaviours, including periodic and chaotic motions.

Periodic motions (which are a cyclic and finite sequence of iterates of the map) can

themselves be impacting or non-impacting and change as parameters vary. When a

parameter is varied, a non-impacting limit cycle that has a grazing impact can become

an impacting trajectory indicating a change in stability. This phenomenon is know as

a grazing bifurcation and has been extensively studied in particular by Nordmark [90]

and Whiston [123]. In [90] it is shown that near a grazing bifurcation the local Poincaré
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map is the approximation of trajectories that miss the obstacle and trajectories that

hit the obstacle with low impact velocity. As a direct consequence, the associated

Poincaré map is continuous with a non-smooth first derivative which is approximated

by a square-root term. These maps have fascinating dynamics.

Furthermore, the local two-dimensional Poincaré map can be approximated by a

continuous one-dimensional piecewise-smooth map with a non-smooth point at which

the first derivative is non-smooth [90, 91] (under certain assumptions described in

Chapter 2). The form of this one-dimensional map is that on one side of the non-

smooth point it is linear while on the other side it has the square-root term. This

map is referred to as the continuous square-root map and has been studied in [34, 90,

91, 92, 8, 24, 17]. Other applications, for example DC-DC converters [36, 32, 126],

give rise to similar piecewise-smooth one-dimensional maps where on both sides of the

discontinuity the function is linear. This is referred to as the continuous piecewise

linear map [43, 44, 95, 35]. Other piecewise-smooth maps include the discontinuous

piecewise-linear map [59, 8, 9, 61, 7] and the discontinuous square-root map studied

in [38, 102]. All these maps yield complex and intricate dynamics and bifurcations.

In Chapter 3 we present a general one-dimensional map for which all of the above are

special cases. The analysis of such a map has not been presented in the literature and

it allows us both to unite the study of all the earlier problems and also to explain why

certain bifurcations are observed in some maps but not in others.

In summary, the purpose of this Thesis is two-fold. Firstly we will study the dy-

namics and bifurcation phenomena of a one-dimensional piecewise-smooth map which

can result from impact problems. Secondly we will apply this general analysis to the

specific case of the magnetic bearing problem.

1.2 Applications in Engineering to Biology and Ecology

1.2.1 Applications in Engineering

In this section we motivate the Thesis by presenting other applications in engineering

that have been modelled by piecewise-smooth systems. The theory of piecewise-smooth

systems allows a systematic study of the dynamics of these problems.

As a first example, the rocking block model studied in [58] comprises a block on

a harmonically back-and-forth tilting base. In such rocking we can see motion on one

corner or the other or a combination of both. As such, in addition to the object im-

pacting with its base inelastically, to describe the dynamics one has to monitor about

which corner the block is rocking. The transient behaviour of the rocking block is

rich and includes a multitude of periodic and aperiodic motions related to the non-

smoothness of the system [119]. As an example, a large number of inelastic impacts

can accumulate in a short period of time leading to the block coming to rest. This is
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known as chattering and we will also observe it in the motion of the magnetic bearing

problem. Depending on the harmonic forcing and the system parameters, the motion

of the rocking block can be periodic or chaotic [119]. The rocking block problem has

been used to model the effects of earthquakes on buildings or other slender objects,

such as statues, as well as offshore problems such as shipping containers on a ship in

high seas [120]. For these problems, understanding the transient behaviour of the rock-

ing block and its potential for overturning [58] enables safety predictions to be made.

Solving the shipping container problem is difficult and perhaps also unintuitive as it has

been shown in [58] that blocks may not topple under high acceleration and may topple

under low acceleration given the right initial conditions. The non-smoothness of the

system characterises the boundary of the parameter regions that distinguish between

overturning and not overturning blocks in that these boundaries appear fractal [119].

As a second example, the dynamics of gear rattle can be modelled by an impact oscilla-

tor with two impact surfaces. Basin of attraction computations showing the transition

between periodic states [83] give insight into when the gears operate noisily. Further-

more Mason et al show that the global dynamics of such a system is affected by grazing

bifurcations [82]. The intricate parameter dependence was revealed in [81] by studying

co-dimension one, two and three bifurcations.

As a third example, the interaction of a bell and its clapper has been modelled by

a double pendulum impacting a moving boundary [70]. As its phase space is four-

dimensional, non-smooth quasi-periodic motion has been observed as well as typical

non-smooth behaviour like chattering. In addition, synchronisation between bell and

clapper plays an important roll in determining if the bell rings or not.

1.2.2 Applications in Biology and Ecology

More recently, applications of piecewise-smooth systems have been found in biological

and ecological systems.

The human sleep-wake rhythm can be approximated by a slow-fast dynamical sys-

tem with a switch [98]. Skeldon suggests [109] that in the sleep mode, the Phillips-

Robinson model [98] resembles the impact oscillator near grazing and displays the

same non-smooth dynamics such as grazing bifurcations and non-smooth bifurcation

cascades.

Piecewise-linear ordinary differential equations have also been employed to study

gene regulatory networks. The differential inclusion framework has been applied to

show existence and stability of equilibria [19, 31] and limit cycles [42].
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To model insect populations and achieve good agreement with experimental data,

Varley, Gradwell and Hassel proposed a one-dimensional piecewise-smooth map [118,

57]. It has been suggested in [57] that the population growth switches its form be-

tween a constant function and a nonlinear function, depending on a population density

threshold. The dynamics of this map, which is studied in [14, 15], gives rise to non-

smooth bifurcation phenomena such as sudden transitions from stable periodic orbits

to chaotic orbits as the bifurcation parameter is varied.

Competing algae populations have been modelled by a piecewise-smooth predator-

prey model in [100]. In [100] it is assumed that the predators switch between different

prey according to an optimal hunting and foraging theory giving rise to the lack of

smoothness in the model.

There have also been applications of piecewise-smooth models in the study of certain

heart arrhythmias [66] and of firing neurons [29, 27, 28]. The evolution of these systems

is bound by thresholds which, when exceeded, leads to switching. This behaviour gives

rise to the non-smoothness in the system.

1.3 Thesis Outline

This thesis comprises two main topics in piecewise-smooth dynamical systems: systems

evolving in discrete time and systems evolving in continuous time. The first part,

Chapters 3 and 4, is concerned with discrete time systems. In certain cases these

have been shown to approximate continuous time systems, [34], but they give rise to

interesting dynamics and bifurcations in their own right. The second part, Chapters 5

and 6, is concerned with the study of the impacting magnetic bearing problem and the

remarkable dynamics found in such problems, deriving in part from a novel bifurcation.

Chapter 2: Piecewise-Smooth Dynamical Systems Theory

In this Chapter we introduce the basic concepts and terminology of smooth dynamical

systems, which is kept brief, and also review some of the background theory of non-

smooth dynamical systems. In particular, we describe the impact oscillator problem

to give an introduction to impacting systems. We also show how it gives rise to one-

dimensional maps which motivate Chapter 3. The numerical methods applied to the

study of piecewise-smooth dynamical systems, which we will use in the later Chapters

of this Thesis, are also presented. We finish with a brief introduction of magnetic

bearing systems.

Chapter 3: The Piecewise Power Law Maps with Exponent p ∈ [0, 1]

In this Chapter we study the dynamics of piecewise-smooth systems described in terms

of a one-dimensional map with one discontinuity. This map takes a linear form on one
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side of the discontinuity and a power law form with exponent p ∈ [0, 1] on the other side

of the discontinuity. It is a general map in the sense that other well known and studied

maps, such as the continuous and discontinuous linear or square-root map, represent

special cases of our map. We show that both chaotic and stable periodic orbits exist

depending on the bifurcation parameter. We study discontinuity induced bifurcations

that give rise to a cascade of bifurcations under parameter variation. By analysing

certain periodic orbits we learn about this bifurcation cascade, i.e. its structure and how

it manifests. Furthermore, we identify the role of the exponent p and the discontinuity

of the piecewise power law map in the bifurcation cascade as this has barely been

addressed in the literature.

Chapter 4: The Piecewise Power Law Maps with Exponent p > 1

As in Chapter 3, we study the dynamics of piecewise-smooth systems described in

terms of a one-dimensional map. We propose to study a map with one discontinuity

of the same form as found in Chapter 3. The difference to the previous Chapter lies in

the assumption that the exponent p > 1. Also in this Chapter we show that chaotic

and stable periodic orbits exist. However, in the bifurcation cascades, arising from

the discontinuity induced bifurcation, these periodic and chaotic orbits are organised

in different structures compared to those in Chapter 3. More importantly, we identify

and analyse a new route to chaos.

Chapter 5: Non-smooth Hopf Type Bifurcations in Rotating Machinery

with Impact and Friction

In Chapters 5 and 6 we study an application of piecewise-smooth systems to a practical

problem in engineering. We consider in particular the novel dynamics arising in the

behaviour of a nonlinear rotor in a circular bearing where the rotor impacts with the

wall of the bearing. This is done by investigating discontinuity induced bifurcations

corresponding to collisions with the rotor housing (touchdown bearing surface inter-

actions). The simplified Föppl/Jeffcott rotor with clearance and mass imbalance is

modelled by a two degree of freedom impact-friction oscillator. Three types of motion

have been observed in magnetic bearing systems: no contact, repeated instantaneous

contact and continuous contact (rub). We study how these are affected by damping and

stiffness present in the system using a combination of analytical and numerical meth-

ods developed for non-smooth dynamical systems. By studying the impact map, we

show that all three types of motion arise at a novel non-smooth Hopf-type bifurcation

from a discontinuity induced bifurcation point for certain parameter values. A local

analysis of this bifurcation point allows a complete understanding of this behaviour in

a general setting. The analysis identifies criteria for the existence of such smooth and

non-smooth bifurcations, which is an essential step towards achieving reliable and ro-
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bust controllers that can take compensating action to avoid impacts or at least reduce

the effects of impacts.

(This Chapter has been submitted for publication.)

Chapter 6: Numerical Investigation of Magnetic Bearing Systems

In this Chapter we extend the local bifurcation analysis of Chapter 5 to give a more

complete global understanding of the magnetic bearing system. To do this we identify

and classify three types of motion: non-impacting orbits, orbits undergoing a chattering

sequence and repeatedly impacting orbits which may be periodic or chaotic. We further

identify new and interesting dynamics in the global analysis of such motions. Finally we

compute the complex domains of attraction of each type of motion, allowing a general

picture of the dynamics to be determined.

Chapter 7: Conclusions

In the final Chapter we summarise the Thesis and the main results. As the Thesis

consists of two seemingly separate parts, we describe how they both fit together. Last

but not least we discuss open problems and questions that still have to be addressed

in future work.

New Work Contained in this Thesis

The one-dimensional piecewise-smooth maps that have been studied in the literature

(continuous/discontinuous linear or square-root map) give some insight into the ef-

fects of the discontinuity and nonlinearity of the map on the map’s dynamics, the

discontinuity-induced bifurcations and hence the resulting bifurcation cascades. How-

ever, by studying the general maps proposed in Chapters 3 and 4 we systematically

generalise present results in terms of the parameters of the map, in particular the

nonlinear exponent p and the discontinuity. Analytically we prove in Chapter 3 why

different dynamics, such as chaotic attractors and cascades of bifurcating periodic or-

bits (called period-incrementing cascades), are observed for certain parameter values.

We show why the breakdown of the cascade occurs for the discontinuous nonlinear

map but not for the continuous piecewise-smooth linear map. We explain why in cer-

tain piecewise-smooth linear maps chaotic attractors are observed while in others only

coexisting stable periodic orbits make up the dynamical landscape.

In both Chapters 3 and 4 we show the existence of bifurcation cascades that have

not been presented in literature. Although the mechanism of one of these cascades is

well known, we show numerically that it consists of a different kind of periodic orbit

than reported in literature. More importantly, we show the existence of a bifurcation
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mechanism, unlike the well understood and widely published period-incrementing or

period-adding cascades, first introduced in [51] for a map with nonlinear functions on

both sides of the discontinuity. We show numerically that such a bifurcation cascade,

called the anharmonic cascade, exists in the piecewise-power law map proposed in

Chapter 4, which is nonlinear only on one side of the discontinuity.

In the study of magnetic bearing systems, piecewise-smooth dynamical systems the-

ory has rarely been adopted to understand the system’s dynamics. In fact, particular

impact problems have often been considered without an analysis of possible bifurca-

tions. This is the purpose of Chapters 5 and 6. Analytically and numerically we prove

the existence and stability of impacting and non-impacting equilibria as well as limit

cycles which have one impact with the boundary per period. We analytically derive

the conditions of a new type of bifurcation we refer to as the non-smooth Hopf-type

bifurcation, where two kinds of equilibria and two limit cycles bifurcate. Furthermore,

we show numerically that typical non-smooth phenomena can be observed, such as the

grazing impact and grazing bifurcation. We numerically identify the critical parameter

values that can lead to repeated impact or continuous contact between the rotor and

its boundary, the stator.
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CHAPTER 2

Dynamical Systems Theory

A physical system is characterised by the set X = Rn of all its possible states, called

phase space. The change of a state in time t ∈ T , where T is a number set, is called

evolution. In this Thesis we will study the evolution of systems in discrete time, i.e.

T = Z, and in continuous time T = R. The evolution of an initial state x0 ∈ X

to a state xt ∈ X, as time t moves on, can be described by an evolution operator φ

parametrised by t, i.e. a family of maps given by

φt : X → X, xt = φt(x0).

2.1 Smooth Dynamical Systems

We now give the definition of a dynamical system.

Definition 2.1. [34] A phase space X, time set T and the evolution operator φt are

said to define a dynamical system {T,X, φt} if

φ0(x) = x, for all x ∈ X, (2.1)

φt+s(x) = φs(φt(x)) for all x ∈ X, t, s ∈ T. (2.2)

Definition 2.2. [71] An orbit or trajectory with initial condition x0 is an ordered

subset of the state space X and is the set

{x ∈ X : x = φt(x0), for all t ∈ T such that φt(x0) is defined}. (2.3)

Definition 2.3. [71] The phase portrait of the dynamical system is the partitioning

of the state space into orbits.
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Definition 2.4. [34] A dynamical system {T,X, φt} is said to be smooth of index r,

or Cr, if the first r derivatives of φ with respect to x exist and are continuous at every

point x ∈ X.

Definition 2.5. [71] A subset Y ⊂ X, such that x0 ∈ Y implies φt(x0) ∈ Y for all

t ∈ T , is called an invariant set of a dynamical system {T,X, φt}.

We are interested in dynamical systems whose asymptotic state is stable, i.e. at-

tracting. Let Y0 be a closed (contains its own boundary) and bounded invariant set.

Definition 2.6. [71] An invariant set Y0 is called an attractor if

1. for any sufficiently small neighbourhood U ⊃ Y0 there exists a neighbourhood

V ⊃ Y0 such that φt(x) ∈ U for all x ∈ V and all t > 0 (Lyapunov stability); and

2. there exists a neighbourhood U0 ⊃ Y0 such that φt(x) → Y0 for all x ∈ U0, as

t→∞ (asymptotic stability).

Dynamical systems can have several attractors. The role of each attractor within

the dynamics of the whole system can be understood by examining the sets on which

the initial conditions of particular orbits accumulate. The attracting set of an orbit is

called the basin of attraction.

Definition 2.7. [34] The domain of attraction (basin of attraction) of an at-

tractor Y0 is the maximal set U∗ for which x ∈ U∗ implies φt(x)→ Y0 as t→∞.

We now define two types of invariant sets that describe the long-term asymptotics

of a trajectory.

Definition 2.8. [53] The ω-limit set of x,Λ(x), and the α-limit set of x,A(x), are the

sets

Λ(x) = {y ∈ Rn| ∃ a sequence {tn} with tn →∞ and φtn(x)→ y as n→∞}

and

A(x) = {y ∈ Rn| ∃ a sequence {sn} with sn → −∞ and φtn(x)→ y as n→∞}.

In this Thesis we set out to study states x ∈ X ⊂ Rn of dynamical systems that

evolve in continuous time t ∈ T = R, described by a system of ordinary differential

equations (ODEs)
dx

dt
≡ ẋ = F (x), x ∈ D ⊂ Rn (2.4)

where D is a domain and F : Rn → Rn is smooth in an open region U ⊂ Rn. Then, by

standard theory [71], there is a unique function x = x(t, x0), x : R × Rn → Rn, which

is smooth in (t, x) and, for each initial condition x0 ∈ U , satisfies the conditions:

10



Chapter 2. Dynamical Systems Theory

1. x(0, x0) = x0, and

2. there is an interval I = (−δ1, δ2), where δ1,2 = δ1,2(x0) > 0 such that for all t ∈ I,

y(t) = x(t, x0) ∈ U, and

ẏ(t) = f(y(t)).

Let D = X ⊂ Rn then the ODE system given by (2.4) is a continuous time dynamical

system {T,X, φt} with evolution operator φt(x0) := x(t, x0). Currently, we are assum-

ing that F depends only on the states x ∈ X explicitly and not on time t ∈ T . Then

the dynamical system {T,X, φt} is called autonomous.

In periodically forced systems, which form the bedrock of this Thesis, F depends

on the time set T explicitly, i.e. F (x, t). However, this system can be rewritten to be

autonomous by setting time as the (n + 1)-state, i.e. xn+1 = t. Thus X = Rn+1 and

the general theory and framework for autonomous systems applies.

We will also study states x ∈ X ⊂ Rn of dynamical systems that evolve in discrete

time t ∈ T = Z, described by a system of difference equations, also called maps,

x 7→ f(x), x ∈ D ⊂ Rn,

xm+1 = f(xm), m = {0, 1, 2, . . .}
(2.5)

where D is a domain and the function f : Rn → Rn is smooth. Let D = X ⊂ Rn then

the system (2.5) is a discreet-time dynamical system {T,X, φt} where the evolution

operator is the mth iterate of the map, i.e.

φm(x0) = xm = f(xm−1) = . . . := f (m)(x0)

where m ≥ 0 and f is composed with itself m times, i.e. f (m)(x0) = f ◦ f ◦ . . . ◦ f(x0).

The simplest type of invariant sets which are the key to the analysis presented in

this Thesis are equilibria and limit cycles (or fixed points and periodic orbits).

Definition 2.9. An equilibrium or fixed point x∗ ∈ X of a dynamical system

{X,T, φt} is a point that satisfies

φt(x∗) = x∗ (2.6)

for all t ∈ T .

For a continuous-time dynamical system (2.4) the condition (2.6) becomes

F (x∗) = 0

and we refer to x∗ as an equilibrium of the ODE system (2.4).
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The equivalent condition to (2.6) for a discrete-time dynamical system is

f(x∗) = x∗

and we call x∗ a fixed point of the map (2.5).

Definition 2.10. [71] A periodic orbit is a nonequilibrium orbit L such that each

point x∗ ∈ L satisfies

φt+T
∗
x∗ = φtx∗ (2.7)

with some T ∗ > 0, for all t ∈ T .

The period of a periodic orbit L is the smallest T ∗ which satisfies this definition.

Consider the continuous-time dynamical system (2.4). Then the condition corre-

sponding to (2.7) for a periodic orbit L is given by

x(T ∗, x∗) = x∗, with period T ∗ > 0

for each x∗ ∈ L. In phase space, the periodic orbit L is a closed curve. If, in the

neighbourhood of L, there are no other periodic orbits, then L is termed a limit

cycle.

Consider the discrete-time dynamical system (2.5). Then the condition correspond-

ing to (2.7) for a periodic orbit L, sometimes referred to as a periodic point, is given

by

f (m)(x∗) = x∗, with period T ∗ = m > 0

for each x∗ ∈ L. Thus the period-m periodic orbit L is given by a (finite) sequence of

points

{x∗, f(x∗), f2(x∗), . . . , fm(x∗) = x∗}

for fixed m > 0. Other types of invariant sets exist and are discussed in [34, 71, 53],

for example.

Consider a continuous-time dynamical system (2.4) which has a limit cycle L. The

fate of an arbitrary value xp on the limit cycle L can be determined by reducing a

continuous-time dynamical system to a discrete-time dynamical system. This can be

done by constructing an (n− 1)-dimensional smooth cross-section Σ through the flow,

such that the orbit intersects Σ transversely and xp lies on Σ. Let g(x) : Rn → R be a

scalar function with g(xp) = 0. The section Σ, referred to as the Poincaré section,

is defined by

Σ = {x ∈ Rn : g(x) = 0}.

The limit cycle L must intersect the Poincaré section again, say at the point x̃. Thus

a map P from Σ to itself can be constructed to study the intersection points.
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Definition 2.11. [71] The map P : Σ→ Σ, given by

xp 7→ x̃ = P (x),

is called a Poincaré map associated with the limit cycle L.

The advantage of such a construction is that the phase space dimension is reduced

by one. Thus, the study of limit cycles corresponds to the study of fixed points of

Poincaré maps.

This Thesis considers the parametrised versions of the ODE system (2.4) or the

map (2.5)

ẋ = F (x, µ) or x 7→ f(x, µ)

with state x ∈ Rn and parameter µ ∈ Rp. A bifurcation is the transition point between

two qualitatively different dynamics of a flow (2.4) or a map (2.5), such as loss of

stability or a change in the number of invariant sets. Before we make this statement

more precise, we remind the reader that a homeomorphism is a continuous invertible

function with a continuous inverse function.

Definition 2.12. [71] A dynamical system {T,Rn, φt} is called topologically equiv-

alent to a dynamical system {T,Rn, ψt} if there is a homeomorphism h : Rn → Rn

mapping orbits of the first system onto orbits of the second system, preserving the

direction of time.

We now formally define the term bifurcation.

Definition 2.13. [71] A bifurcation occurs at µ = µ∗ ∈ Rp if the phase portrait of

the smooth dynamical system {T,X, φt} is not topologically equivalent as µ is varied

through the value µ = µ∗.

We adopt this concept of bifurcation in this Thesis, rather than the concept using

the Implicit Function Theorem [55, 71] (i.e. a bifurcation occurs when the Implicit

Function Theorem does not hold), because it is similar to the concept of non-smooth

bifurcation we introduce in Section 2.2, [34].

As part of the analysis of this Thesis we will plot bifurcation and cobweb diagrams.

A one-parameter bifurcation diagram, a state component against a parameter,

illustrates stable invariant sets and their bifurcation as a parameter is varied.

A two-parameter bifurcation diagram illustrates one-parameter bifurcation

curves as two parameters are varied.

A cobweb diagram is a tool for graphically iterating a one-dimensional discrete

dynamical system (2.5) to determine the fate of an initial value and the stability of

invariant sets. To determine the next iterate, a reflection on the main diagonal is

required.
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Bifurcations that occur in smooth dynamical systems can also occur in piecewise-

smooth dynamical systems. As we will be studying Poincaré maps of flows, we will now

discuss some bifurcations that occur in discrete systems, in particular bifurcations of

fixed points and periodic orbits that have a direct analogy to flows. Many other types

of bifurcations in smooth dynamical systems can be found in [71].

The birth or destruction of two fixed points is the phenomenon termed fold bifur-

cation at µ = µ∗, see Figure 2-1a. It occurs when the discrete system (2.5) has one

fixed point at µ = µ∗ with eigenvalue +1. The analogous bifurcation in a continuous-

time dynamical system is the birth or destruction of two equilibria.

The birth or destruction of a period-2 periodic orbit while coexisting with a fixed

point is termed a period-doubling bifurcation at µ = µ∗, see Figure 2-1b. It occurs

when the discrete system (2.5) has one fixed point at µ = µ∗ with eigenvalue −1. The

analogous bifurcation in a continuous-time dynamical system is the birth or destruction

of a period-2 periodic orbit while coexisting with an equilibrium.
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Figure 2-1: Figure 2-1a: Smooth fold bifurcation. Figure 2-1b: Smooth period-doubling bifur-
cation.

Higher period periodic orbits, other than period-2, can also undergo a period-

doubling bifurcation. Consider the logistic map given by

x 7→ µx(1− x), x ∈ [0, 1], 0 < µ ≤ 4. (2.8)

A bifurcation diagram of this map is presented in Figure 2-2c. There are two fixed

points, x∗1 = 0 and x∗2 = (µ − 1)/µ which are stable for 0 < µ < 1 and 1 < µ < 3

respectively, Figure 2-2a. The fixed point x∗2 bifurcates into a stable period-2 periodic

orbit at µ = 3 and loses stability, see Figure 2-2b. As µ increases further, the stable

period-2 orbit loses stability and bifurcates into a stable period-4 periodic orbit. This

sequence of bifurcations, which continues ad infinitum and in which the period m tends

to infinity, is termed a period-doubling cascade, see Figure 2-2c. This cascade

leads to a more complex invariant set, as µ increases from 1 and crosses the point of
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accumulation. This is an aperiodic attracting set termed a chaotic invariant set. We

now give the formal definition of such a set.
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Figure 2-2: Cobweb diagrams of the logistic map (2.8) with initial value x0 = 0.765 illustrate
that the map has a stable period-2 periodic orbit for µ = 3.1, Figure 2-2a, and a chaotic attractor
for µ = 4, Figure 2-2b. The bifurcation diagram of the logistic map (2.8), Figure 2-2c, shows the
bifurcation structure of attracting orbits. In particular, the period-doubling cascade is observed.

Definition 2.14. [34] A closed and bounded invariant set Λ is called chaotic if it

satisfies two additional conditions:

1. It has sensitive dependence on the initial conditions; i.e.:

There exists an ε > 0 such that, for any x ∈ Λ, and any neighbourhood U ⊂ Λ of

x, there exists y ∈ U and t > 0 such that |φt(x)− φt(y)| > ε.

2. There exists a dense trajectory that eventually visits arbitrarily close to every

point of the attractor, i.e.:

There exists an x ∈ Λ such that for each point y ∈ Λ and each ε > 0 there exists

a time t (which may be positive or negative) such that |φt(x)− y| < ε.
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In this Thesis we focus our attention on chaotic attractors. The transition of a

dynamical system from a bifurcation cascade to a chaotic attractor, as a parameter is

varied, is referred to as a route to chaos [54, 53]. Furthermore this kind of transition

can be observed in piecewise-smooth dynamical systems and will be introduced in

Chapters 2.2, 3 and 4. However, there exist other types of routes to chaos in smooth

dynamical systems discussed in [54, 53].

2.2 Piecewise-smooth Dynamical Systems

A piecewise-smooth dynamical system is a dynamical system {T,X, φt} with a flow

or map that is piecewise smooth, i.e. at the non-smooth points the flow or map may

even be discontinuous. There exist several formalisms for piecewise-smooth dynamical

systems which vary depending on the application they model [34].

2.2.1 Impacting Hybrid Systems

Physical systems such as impacting objects can be modelled by a combination of flows

and maps [117, 33, 34, 37] termed hybrid systems. A hybrid system is a specific type

of piecewise-smooth system. Before we give the formal definition, we introduce some

notation that will be used throughout the Thesis. The boundary of a set S is denoted

by ∂S. By the closure of a set S, denoted by S̄, we mean that S̄ = S ∪ ∂S.

Definition 2.15. [34] Let D be a domain such that ∪iSi = D ⊂ Rn and Si has a

non-empty interior. Let the parameter µ ∈ Rm and let i, j ∈ N. A piecewise-smooth

hybrid system comprises a set of ODEs

ẋ = Fi(x, µ), if states x ∈ Si, (2.9)

and a set of reset maps termed reset laws

x 7→ Rij(x, µ), if states x ∈ Σij := S̄i ∩ S̄j . (2.10)

Each Σij, termed a discontinuity boundary, is either an R(n−1)-dimensional man-

ifold included in the boundary ∂Sj and ∂Si, or is the empty set. Each Fi and Rij

are assumed to be smooth and well defined in open neighbourhoods around Si and Σij

respectively.

A hybrid dynamical system is not a unique concept and thus other formalisms and

definitions exist [117]. In particular, a hybrid system modelling impacts is defined in

the following way.

Definition 2.16. [34] An impacting hybrid system is a piecewise-smooth hybrid

16
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system for which Rij : Σij → Σij, and the flow is constrained locally to lie on one side

of the boundary; that is, in S̄i = Si ∪ Σij.

The impact problems considered in this Thesis comprise a moving object under

forcing which comes into contact with one rigid obstacle. Thus we study a hybrid

system (2.9), (2.10) with a single discontinuity boundary Σ, which will also be referred

to as an impact surface as it represents the obstacle. When a trajectory intersects

the impact surface then we will refer to the event as an impact event or an impact.

An impact event is assumed to take zero time. This is a realistic assumption as

the time and length scales at impact are several magnitudes smaller than those of the

entire system [34]. The trajectory of a hybrid system (2.9), (2.10) at an impact is

modelled by the reset law R, which takes the loss of energy and the change in velocity

into account.

For the class of hybrid systems studied in this Thesis, the impact surface Σ can be

defined in terms of a smooth scalar function H(x) : Rn → R such that

Σ = {x : H(x) = 0} and S1 = {x : H(x) > 0}

where S1 is the region to which the dynamics of a system is constrained. The reset law

R prevents any trajectory from entering the region S2 = {x : H(x) < 0}. Trajectories

in S2 are physically unrealistic as they represent the moving object entering a rigid

solid body such as a wall. Thus, the impacting hybrid systems parametrised by µ,

which are studied in this Thesis, take the form

ẋ = F (x, µ) if H(x, µ) > 0,

x 7→ R(x, µ) if H(x, µ) = 0,
(2.11)

with states x ∈ Rn, µ ∈ R, for a smooth vector field F : Rn × R → Rn (which is well

defined in a full neighbourhood of Σ as well as S2) and a reset law R.

Assume that an impact takes place at a time t0. Then the states immediately before

and after the impact, which intersect Σ, x− and x+ respectively, are defined by

x− = lim
t→t−0

x(t) and x+ = lim
t→t+0

x(t).

Thus, in terms of the reset law R, x+ is given by

x+ = R(x−, µ). (2.12)

The following assumptions and definitions are motivated by mechanical applications

[37]. Let v(x, µ) be the normal velocity and a(x, µ) the normal acceleration of the flow
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with respect to Σ given by

v(x, µ) =
dH

dt
= HxF, (2.13)

a(x, µ) =
d2H

dt2
= (HxF )x F = HxxFF +HxFxF. (2.14)

Then, we suppose that the reset law R is of the form

R(x, µ) = x+W (x, µ)HxF = x+W (x, µ)v(x, µ) (2.15)

for some smooth function W : Rn → Rn. Note that if v(x) = 0 then R(x, µ) becomes

the identity mapping.

Therefore, assuming R is of the form (2.15), the impact surface Σ consists of three

separate regions, Σ−,Σ+ and Σ0, depending on the normal velocity v, given by

Σ− = {x ∈ Σ : v(x, µ) < 0},

Σ+ = {x ∈ Σ : v(x, µ) > 0},

Σ0 = {x ∈ Σ : v(x, µ) = 0}.

(2.16)

Definition 2.17. [34] The set Σ0, given by (2.16), is referred to as a grazing set.

Accordingly, for a physically plausible flow, we require that Σ is always approached

by the flow with v ≤ 0, which corresponds to x− ∈ Σ− termed transversal impact

or x− ∈ Σ0 termed grazing impact.

We will now outline the possible flows in an impacting hybrid system described in

[33, 37, 34]. Let the initial value x(0) = x0 ∈ S1. Then the system of ODEs (2.9) hold

and give rise to a smooth flow φt(x0). If φt(x0) does not experience an impact then it

corresponds to a smooth dynamical system. If φt(x0) undergoes a transversal impact

at t0 then x− ∈ Σ− gets mapped to x+ = R(x−) ∈ Σ+ by (2.12) giving rise to the flow

φt(xt) and further impacts can follow. If the flow φt(x0) experiences a grazing impact

x− ∈ Σ0, in which case the reset map R given by (2.15) is the identity mapping, then

the acceleration a(x−) indicates the system’s evolution. If a(x−) > 0 then the flow will

separate instantly from the discontinuity boundary Σ into S1. However, if a(x−) < 0

then φt(x−) sticks to Σ. This type of behaviour is called sticking motion and evolves

under the sliding vector field Fs given by

Fs(x, µ) = F (x, µ)− λ(x, µ)W (x, µ) (2.17)

where, to remain in the sticking region λ(x, µ) > 0, and

λ(x, µ) =
a(x, µ)

(HxF )xW (x, µ)
. (2.18)
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The definition of λ(x, µ) given by (2.18) is chosen to keep H(x, µ) = 0 and v(x, µ) = 0,

[33, 37, 34].

Sticking motion is often a result of a sequence of impacts during which the im-

pact velocity v(x−, µ) and time length between impacts decrease. Such a sequence of

impacts, Figure 2-3, termed chattering [18, 94, 34] or Zeno phenomenon [34], ac-

cumulates in finite time onto a point which marks the beginning of the sticking motion

[18, 94, 34].
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Figure 2-3: A chattering sequence in magnetic bearing systems where r(t) is the distance of
the rotor centre (moving object) from the origin of the coordinates which coincides with the
centre of the circular boundary (impact surface). The impact surface is located at r = 1. A
sequence of impacts for t ∈ [0, 846] that leads to chattering for t ∈ [840, 846].

Equilibria of Impacting Hybrid Systems

We will now introduce the various types of equilibria that can be identified in impacting

hybrid systems.

Definition 2.18. [33, 37, 34] A point x∗ ∈ D is termed an admissible equilibrium

of (2.11) if

F (x∗, µ) = 0 and H(x∗, µ) > 0.

Definition 2.19. [33, 37, 34] A point x∗ ∈ D is termed a virtual equilibrium of

(2.11) if

F (x∗, µ) = 0 and H(x∗, µ) < 0.

Now, we introduce equilibria of the sticking flow.

Definition 2.20. [33, 37, 34] A point x∗ ∈ D is termed a pseudo-equilibrium of
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(2.11) if it is an equilibrium of the sticking vector field (2.17), i.e.

F (x∗, µ)− λW (x∗, µ) = 0,

H(x∗, µ) = 0

with λ as defined in (2.18).

Definition 2.21. [33, 37, 34] A pseudo-equilibrium is termed admissible if

λ > 0,

and virtual if

λ < 0.

We now define an equilibrium point which identifies when equilibria and pseudo-

equilibria can coincide depending on the parameter µ.

Definition 2.22. [33, 37, 34] A point x = x∗ ∈ D, µ = µ∗ ∈ R is termed a boundary

equilibrium point of (2.11) if

F (x∗, µ∗) = 0 and H(x∗, µ∗) = 0.

The boundary equilibrium point also represents the boundary between admissible

and virtual flows, between physically realistic and unrealistic trajectories. This will be

demonstrated in Chapter 5.

Boundary Equilibrium Bifurcation

Bifurcations that occur in smooth dynamical systems, such as those introduced in

Section 2.1, can also occur in piecewise-smooth dynamical systems [34]. We will refer

to these as smooth bifurcations. In this Section we define bifurcations that are

unique to piecewise-smooth systems, termed non-smooth bifurcations.

A bifurcation theory of a general piecewise-smooth dynamical system is still being

developed [34]. In fact, there is no rigorous definition of a general non-smooth bifurca-

tion. However, there have been advancements in the identification and classification of

non-smooth bifurcations of particular systems, such as the impacting hybrid systems

[33, 37, 34]. One class of such bifurcations results from the interaction of the flow with

the discontinuity boundary, causing a structural instability as a parameter is varied,

and is termed discontinuity induced bifurcation (DIB).

We will now introduce bifurcations resulting from an equilibrium of (2.11) cross-

ing the discontinuity boundary. Equivalent bifurcations occurring in piecewise-smooth

discrete systems will be introduced in Section 2.2.2.
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Definition 2.23. [33, 37, 34] The system (2.11) is said to undergo a boundary equi-

librium bifurcation (BEB) at µ = µ∗ if the system (2.11) has a boundary equilibrium

point at x = x∗ and µ = µ∗ that satisfies the following conditions:

1. Fx(x∗, µ∗) is invertible (or equivalently det(Fx) 6= 0), and

2. Hµ(x∗, µ∗)−Hx(x∗, µ∗)F−1
x (x∗, µ∗)Fµ(x∗, µ∗) 6= 0.

We can observe two different scenarios of regular and pseudo-equilibria branching

from a boundary equilibrium bifurcation point.

Definition 2.24. [33, 37, 34] An admissible (virtual) equilibrium and a virtual (ad-

missible) pseudo-equilibrium that bifurcate, at a BEB point, into a virtual (admissible)

equilibrium and an admissible (virtual) pseudo-equilibrium, respectively, is termed per-

sistence.

Definition 2.25. [33, 37, 34] At a BEB point, the birth or destruction of two ad-

missible equilibria, one regular and one pseudo, which turn into two virtual equilibria

respectively, is termed a non-smooth fold.

Theorem 2.26. [34, 37] Assume that x = x∗, µ = µ∗ is a boundary equilibrium bifur-

cation point of (2.11) such that

Hx(x∗, µ∗)F−1
x (x∗, µ∗)W (x∗, µ∗) 6= 0.

1. Persistence is observed at the boundary equilibrium bifurcation point x = x∗, µ =

µ∗ if

Hx(x∗, µ∗)F−1
x (x∗, µ∗)W (x∗, µ∗) > 0.

2. A non-smooth fold is observed at the boundary equilibrium bifurcation point

x = x∗, µ = µ∗ if

Hx(x∗, µ∗)F−1
x (x∗, µ∗)W (x∗, µ∗) < 0.

More complex invariant sets can bifurcate from a BEB point and general results have

been proven for hybrid systems with phase space X ⊂ R2 [33, 37]. Only a few results

have been obtained for higher dimensional systems. The magnetic bearing system

studied in Chapters 5 and 6 gives rise to a novel and complex bifurcation at the BEB

point, where a regular equilibrium, a pseudo-equilibrium and two limit cycles bifurcate.

This result contributes to the ongoing classification of non-smooth bifurcations.

In this Section we have introduced bifurcations that result from the interaction of

equilibria with the discontinuity boundary. Other intricate bifurcations can result from

limit cycles interacting with the discontinuity boundary, called a grazing bifurcation.

These will be introduced in the context of the impact oscillator. In Chapter 6 we will

show that they also occur in magnetic bearing systems.
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2.2.2 Piecewise-smooth Maps

We will now give the definition of piecewise-smooth maps and the associated terminol-

ogy. We will also introduce the non-smooth bifurcations that occur in piecewise-smooth

maps.

Definition 2.27. [34] Let D ⊂ Rn be a domain, Si a non-empty interior for finite

i ∈ N such that ∪iSi = D. A piecewise-smooth map is a finite set of smooth maps

x 7→ Fi(x, µ), for x ∈ Si (2.19)

where Fi : Rn × Rm 7→ Rn.

Definition 2.28. [34] The intersection Σij = S̄i∩ S̄j is termed discontinuity bound-

ary.

Throughout this Thesis we consider piecewise-smooth maps with a single discon-

tinuity boundary Σ = Σ12. This being the case, it is more convenient to introduce a

smooth scalar function H(x) : Rn → R to identify on which side of the discontinuity

boundary a point x lies. The sets S1, S2 and Σ can be defined as

S1 = {x ∈ D : H(x, µ) < 0},

S2 = {x ∈ D : H(x, µ) > 0},

Σ = {x ∈ D : H(x, µ) = 0}.

Thus, according to Definitions 2.27 and 2.28, the form of the general map on a domain

D with interiors S1 and S2 is

x 7→ f(x, µ) =

{
F1(x, µ), if x ∈ S1

F2(x, µ), if x ∈ S2

(2.20)

where x ∈ D ⊂ Rn, µ ∈ Rm and the functions F1 and F2 are smooth in D.

One-dimensional maps where the functions F1, F2 : R 7→ R are of a certain form

have been studied extensively in the literature, see [34] for an outline. We now introduce

some of those maps that will be important in Chapter 3.

Assume F1 and F2 are linear functions with F1 = F2. If H(x, µ) = 0 then the

map (2.20) is termed a piecewise-linear continuous map [43, 44, 95, 35]. However,

if F1 6= F2 when H(x, µ) = 0 then the map (2.20) is termed a piecewise-linear

discontinuous map [59, 8, 9, 61, 7].

Assume F1 is a linear function and F2 is a nonlinear function of the form F2(x, µ) =
√
x+µ, such that F1 = F2 if H(x, µ) = 0. Then the map (2.20) is termed a continuous

square-root map, [34, 90, 91, 92, 8, 24, 17]. If F1 6= F2 when H(x, µ) = 0 then the

map (2.20) is termed a discontinuous square-root map [102, 38].
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If (2.20) is a discontinuous map then either F1 or F2 has to be defined on the

discontinuity boundary Σ. However, the dynamics is not affected by this choice ([34],

p.72).

We will now define the various types of fixed points of a system (2.20).

Definition 2.29. [34] We say that a point x = x∗ is an admissible fixed point of

(2.20) if

x∗ = F1(x∗, µ) if x∗ ∈ S1

or x∗ = F2(x∗, µ) if x∗ ∈ S2.

Definition 2.30. [34] We say that a point x = x∗ is a virtual fixed point of (2.20)

if

x∗ = F1(x∗, µ) if x∗ ∈ S2

or x∗ = F2(x∗, µ) if x∗ ∈ S1.

As for smooth discrete systems, we denote the composition of a piecewise-smooth

function f with itself n times by fn(x) = f ◦ f ◦ . . . ◦ f(x).

Definition 2.31. [34] Let f : R → R be a piecewise-smooth function. We say that a

set of points

L = {x∗, f(x∗), f2(x∗), . . . , fn−1(x∗)}

is termed an admissible period-n periodic orbit if each x ∈ L is an admissible fixed

point of fn(x), i.e. x = fn(x). A virtual period-n periodic orbit exists if there is

x ∈ L such that x is a virtual fixed point of fn(x).

As with flows, an orbit of (2.20) is said to cross Σ transversally at x = x̄ and µ = µ̄

when H(x̄, µ̄) = 0 if

Hx(x̄, µ̄)Fi,µ(x̄, µ̄) 6= 0 for i = 1 or 2.

We now turn to defining the non-smooth bifurcation that occurs in a piecewise-

smooth map (2.20), called a border-collision bifurcation. Without loss of generality, we

assume such a bifurcation occurs at parameter value µ = 0.

Definition 2.32. [34] We say a fixed point x∗ undergoes a border-collision (BC)

bifurcation at µ = 0 if there exists an interval (−ε, ε), with ε small, such that:

1. x∗ is admissible for µ ∈ (−ε, 0),

2. x∗ is virtual for µ ∈ (0, ε),

3. x∗ ∈ Σ for µ = 0,
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4. x∗ crosses Σ transversally for µ ∈ (−ε, ε),

5. the first derivatives of (2.20) satisfy

∂F1

∂x
(x∗, µ)

∣∣∣
µ=0
6= ∂F2

∂x
(x∗, µ)

∣∣∣
µ=0

,

i.e. are discontinuous at x = x∗, µ = 0.

The border-collision bifurcation of a fixed point is the simplest type of DIB in

piecewise-smooth maps and is equivalent to the BEB in flows. As with piecewise-

smooth flows, this bifurcation can give rise to the persistence and non-smooth fold

bifurcation scenarios in n-dimensional piecewise-linear maps [43, 35, 44]. However,

these scenarios will not be investigated in this Thesis. Instead, in Chapters 3 and 4,

we will show how the border-collision of a fixed point of (2.20) gives birth to more

complex invariant sets such as chaotic attractors.

Piecewise-smooth maps with discontinuities in several locations have been discussed

in literature. For example, in [116] it has been shown that piecewise linear maps with

two discontinuity points also exhibit a period-adding scenario at the border-collision

bifurcation.

2.2.3 Numerical Methods

The analysis of piecewise-smooth dynamical systems via analytical methods can be

limited as the associated expressions and equations are often nonlinear due to the

system’s lack of smoothness, as has been described in [90, 91, 34] and as we also

demonstrate in Chapters 3 (example of piecewise-smooth maps) and 5 (example of

impacting hybrid systems). Hence numerical methods can provide an important insight

into the dynamical system through its numerical simulation and the numerical study

of parameter effects on it.

There are currently two prevalent methods to simulate a non-smooth dynamical

system: the event-driven [34] and the time-stepping [2] scheme.

As the name indicates, the event-driven scheme, which will be employed in this

Thesis, is based on accurately computing the event, i.e. the time at which a trajectory

crosses the discontinuity boundary Σ. It is assumed that the solution between events

is differentiable enabling the use of standard numerical integration techniques such as

the subroutines provided by MATLABr [84] which are used throughout this Thesis.

Once such an event has been detected and treated, i.e. the transition rules have been

applied, the system is re-initialised at that instance. Hence without the clear definition

of all discontinuity boundaries and transition laws this scheme cannot be applied.

The time-stepping scheme, which will not be employed in this Thesis, is a time-

discretisation method that evolves the system as a whole and checks whether the sys-
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tem’s constraints are satisfied at each time step. Consequently, uniqueness and ex-

istence of a flow are determined at each time step while the actual event is ignored.

The evolution of an impacting system from one step to the next requires a different

formulation to the hybrid system [2, 1].

The choice of the numerical scheme depends very much on the application. The

event-driven scheme is fast and accurate for low dimensional systems with few discon-

tinuity boundaries (up to 10 according to [34]). Due to the re-initialisation process it

can be computationally expensive, even infeasible, when the number of events is large.

This can happen in two ways:

Case 1 The system experiences an infinite accumulation of impacts in a finite time,

called chattering, or

Case 2 The system has many colliding particles.

The second case does not pose an issue as the phase space of impacting hybrid systems

X studied in this Thesis is at most in R4 (Chapters 5 and 6).

Although the time-stepping scheme is capable of dealing with both cases in addition

to a large number of other constraints, it can miss certain dynamics that depend on the

precise computation of the event, such as grazing events [34]. Furthermore, alternative

methods have been developed for event-driven schemes (sometimes called extended

event-driven schemes) that can detect, handle and progress the simulation of Case

1 type behaviour. In [94] Nordmark and Piiroinen have established conditions that

detect if such dynamics is about to occur using the most recently obtained recorded

events during a simulation. Then, using an asymptotically derived map, the limit of

this accumulation can be approximated and hence the subsequent dynamics, such as

sticking or sliding, can be determined by the algorithm.

Chattering in the magnetic bearing system will be studied in Chapter 6. We will

determine when it occurs but not what happens post accumulation point. Thus, the

method devised by Nordmark and Piiroinen [94] will not be used.

These simulations can be further utilised to understand the qualitative changes in a

dynamical system when a parameter is varied. In this Thesis we compute a brute-force

type of bifurcation diagram called a Monte Carlo bifurcation diagram [34] to study

the attracting invariant sets once the transients have subsided.

We now give a rough explanation of the algorithm.

1. Fix the bifurcation parameter value.

2. Generate a random set of initial conditions.

3. Compute the piecewise-smooth orbit for each initial value until transient be-

haviour has subsided and the orbit has converged to an attractor. For piecewise-
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smooth maps we have chosen 5000 iterations. For the impacting hybrid system

in this Thesis, i.e. magnetic bearing system, we have chosen 1000 impacts.

4. Compute and record the piecewise-smooth orbit for another 1000 iterations or

100 impacts.

5. Plot the recorded states against the bifurcation parameter.

6. Vary the bifurcation parameter slightly and repeat this process.

This quick and accurate method is suited to pick up the most likely dynamics and

indicate coexistence of attractors. Furthermore, a priori knowledge of the set of initial

conditions is not necessary. Finally, note that this method is not adapted to follow

unstable periodic orbits. More details on other piecewise-smooth dynamical systems

and their numerical simulation can be found in [2, 1, 34].

2.3 Impact Oscillator

The one degree of freedom impact oscillator is central to the work presented in this

Thesis as, on the one hand, it gives rise to the type of one dimensional piecewise-smooth

map studied in Chapter 3 and, on the other hand, it is a prime example of an impacting

hybrid system. The methods and concepts introduced in this Section will be used to

study the magnetic bearing system which is modelled by a two degrees of freedom

impact oscillator with friction. We now show how to model the impact oscillator using

impacting hybrid systems introduced in Chapter 2.2.

When we refer to the one degree of freedom impact oscillator we mean a spring-

damper system that impacts a rigid obstacle. The physical model comprises a particle

which is attached to a linear spring and dashpot, its movement externally forced by

a function u(t), and an obstacle which is positioned at x = σ, see Figure 2-4. Let t

denote time. Away from the obstacle the equation of motion for the position of the

centre of mass x(t) is given by

ẍ(t) + 2ζẋ(t) + x(t) = u(t) if x(t) < σ (2.21)

where ζ is the damping ratio and the natural frequency has been scaled to unity.

Here we assume the forcing is periodic and sinusoidal, i.e. u(t) = cos(ωt) with period

T ∗ = 2π/ω. Note that (2.21) can be written in the form ẋ = F (x).

We define the impact surface Σ := {(t, x, ẋ) : H(x) := x − σ = 0}. An impact

occurs at time t = t0 when the particle arrives at the position x(t0) = σ with velocity

ẋ(t0). Any subsequent impact times are denoted by ti with i ∈ N. We assume that

the energy at impact in this system dissipates in zero time and this is modelled by the

reset law that maps pre-impact state (−) to the post-impact state (+). At impact time
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xHtL
x=Σ

Figure 2-4: The impact oscillator with damping and stiffness. The particle (grey disk) with
position x(t) impacts with a fixed obstacle when x(t) = σ.

t = ti the position x remains the same but the velocity ẋ changes direction and reduces

in magnitude to take energy dissipation into account, i.e.

(x+(ti), ẋ
+(ti)) = (x−(ti),−rẋ−(ti)) if x = σ (2.22)

where r is Newton’s coefficient of restitution, with r ∈ (0, 1). Although not con-

sidered here, the impact oscillator with the coefficient of restitution taking the value

r = 1 [73], called elastic impact, or r = 0 [105], called completely dissipative impact,

have been studied. Generally, the appropriate value for the coefficient of restitution

depends on the application and hence on the material properties, geometry of the im-

pacting objects and relative impact velocity [34]. Although it would be more realistic

to assume that r is not a constant and depends, for example, on relative velocity, it has

been shown that such a simple model is a good approximation, i.e. the dynamics pre-

dicted by the model agree with experimental results [96, 99]. This is briefly elaborated

in Section 2.3.1.

Furthermore, note that the ODE (2.21) and reset law (2.22) are linear but due to

the effect of one on the other, the system as a whole is nonlinear [34].

As briefly indicated in the introduction, hybrid dynamical systems are typically

studied by taking a Poincaré section to define a Poincaré map and investigating this

map, which is induced by the piecewise-smooth flow.

The impact surface can be adopted as a Poincaré section. Then the Poincaré map

PI : Σ→ Σ, termed impact map, can be defined. The impact map maps one impact
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event to the next and is given by

(ti+1, ẋ
+(ti+1)) = PI(ti, ẋ

+(ti)), (2.23)

as the position x(ti) = σ for all i ∈ N. This method is used to study simple periodic

orbits with (high) impact velocity, for example, a periodic orbit with one impact per

period T . This periodic orbit, which impacts with the same velocity ẋ+(ti) at each ti,

corresponds to a fixed point of the impact map PI , and its existence condition is given

by

ti+1 = ti mod T and ẋ+(ti+1) = ẋ+(ti). (2.24)

This method is applied as it allows (to an extent) the analytical study of such limit

cycles in the impact oscillator [46] or rotating machines [86] (Chapter 5).

A Poincaré section ΣS can be defined in terms of the forcing period T ∗, i.e. we

measure position x and velocity ẋ after T ∗ time has passed. Then we can define the

Poincaré map PS : ΣS → ΣS , termed stroboscopic map, given by

(x(t+ T ∗), ẋ(t+ T ∗)) = PS(x(t), ẋ(t)). (2.25)

This method is typically used to study orbits with low impact velocity.

We now discuss some of the motions observed in impact oscillators. High impact

velocity orbits can die down via many impacts in finite time. This is called chattering

or Zeno phenomenon, introduced in Chapter 2.2.1. If the chattering sequence is infinite

then the impacts accumulate on a point where the impact velocity ẋ− becomes zero.

If the acceleration is pointing into the obstacle then the particle will stick to it and

enter sticking motion. The particle will only move away from it once the acceleration

changes sign. For the impact oscillator, Budd and Dux [18] use the impact map PI to

find an expression for the point of accumulation. A detailed study of this geometry

near such a point is presented in [23]. Chattering can be part of complex dynamics.

For example, it can be part of periodic motion where the following trajectories and

sequence of events are repeated exactly, ad infinitum: high velocity impacts following a

certain pattern are followed by a chattering sequence which accumulates at one point.

Such motion has been reported in [18] and [4].

Low velocity impacts can lead to trajectories with grazing impacts (Chapter 2.2.1);

these touch the impact surface Σ at precisely one point at which the normal impact

velocity is zero, and are termed grazing trajectories. This means that the orbit

lies tangential to Σ and any small perturbation nearby gives rise to orbits that com-

pletely miss the impact surface or have a low velocity impact. To understand this

local phenomenon and study its effects on the system’s dynamics, a Poincaré map can

be derived. One option is to use the impact map PI (2.23), which has been shown

to be discontinuous at a grazing event [72, 73]. Nordmark [90] applied the strobo-
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scopic map PS to derive a normal form map for the trajectories near grazing, called

zero-time discontinuity mapping (ZDM). The stroboscopic map of non-impacting

orbits is smooth. This is not the case for impacting orbits, i.e. it is piecewise-smooth

[90, 91, 92, 123]. The ZDM, which takes into account all orbits, impacting or non-

impacting, near a grazing trajectory, makes a correction for this error. Nordmark [90]

and Whiston [123] have shown that this map contains a square-root term, which gives

rise to complex dynamics [90, 91, 92, 123, 48, 99, 24, 17, 85, 82]. The square-root term

results from the Taylor series approximation of the orbit’s evolution in time and its

correction, [90, 34].

Furthermore, in [90] Nordmark has shown that grazing trajectories have a desta-

bilising effect on the dynamics of the system, in particular if a parameter is varied.

Consider a limit cycle which does not interact with Σ. If, as a parameter is varied, it

undergoes a grazing event, we term this a grazing bifurcation. The analysis of the

ZDM gives an insight into what the limit cycle bifurcates.

Although we do not give the full details here of how to obtain the ZDM, we note

that a nonlinear change of coordinates described in [90, 85] from position x(t) and

velocity ẋ(t) to the coordinates xn and yn is necessary to obtain the map defined below

by (2.26) and (2.27). We emphasize that the xn does not refer to position x(t). The

ZDM is given by

xn+1 = λxn + yn + µ

yn+1 = −γxn
(2.26)

if xn < 0, i.e. no impact occurs, and

xn+1 = −
√
xn + yn + µ

yn+1 = −γr2xn
(2.27)

otherwise, i.e. an impact takes place. This map is termed a two-dimensional con-

tinuous square-root map.

Consider the parameter γ which depends on damping ratio ζ and forcing period T ∗,

i.e. γ = e−2ζT ∗
. Assume that the term ζT ∗ is large, i.e. ζT ∗ � 1. Then γ ≈ 0 and the

two-dimensional piecewise-smooth map given by (2.26) and (2.27) can be approximated

by a one-dimensional map given by

xn+1 =

{
λxn + µ, if xn < 0

−√xn + µ− `, if xn > 0
(2.28)

where ` = 0 and which is known as the continuous square-root map. Both the one-

and two-dimensional continuous square-root maps have been studied in great detail in

[91, 24, 34] and [90, 92, 24, 34], respectively.

Assume that the obstacle is imparting a repelling impulse onto the impacting object.
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This impulse, which occurs in addition to Newton’s law of restitution, is assumed to

be a constant b. Then the reset law is given by

(x+(ti), ẋ
+(ti)) = (x−(ti),−rẋ−(ti) + b), if x = σ. (2.29)

The impact oscillator (2.21) with reset law (2.29) has been studied by Pring and Budd

in [102]. They have shown that its ZDM can also be approximated by a one-dimensional

map which is of the form (2.28) with ` > 0. This map is know as the discontinuous

square-root map.

The dynamics of the continuous square-root map (2.28) (where ` = 0) is briefly

introduced now and expanded upon in Chapter 3. Assume λ ∈ (0, 1) and µ ∈ R.

Then the map (2.28) (where ` = 0) has a stable fixed point xL for µ < 0. This

fixed point undergoes a border-collision bifurcation at µ = 0 when xL = 0. As a

parameter is varied, this fixed point xL can bifurcate into another fixed point in a

persistence scenario as elaborated in Chapter 2.2.2. The fixed point xL can bifurcate

into a large period periodic orbit which leads to a bifurcation cascade [34], similar to

the one observed in the logistic map (Chapter 2.1, Figure 2-2c). Finally, the fixed point

xL of a piecewise-smooth map can bifurcate into a chaotic attractor as the bifurcation

parameter is varied [34]. The sudden transition from a fixed point to a large period

periodic orbit or a chaotic attractor is a characteristic feature of piecewise-smooth

dynamical systems.

(a) (b) (c)

Figure 2-5: The bifurcation structure of the continuous square-root map (2.28) (where ` = 0).
For µ < 0 we observe the stable fixed point. This fixed point undergoes a border-collision
bifurcation at x = 0, µ = 0. Three qualitatively different bifurcation scenarios can be observed
for µ > 0: robust chaos (λ = 0.8) in Figure 2-5a, the period-incrementing cascade with chaotic
windows (λ = 0.5) in Figure 2-5b, and the period-incrementing cascade with coexisting periodic
orbits (λ = 0.2) in Figure 2-5c.

The bifurcation cascades that have been observed in piecewise-smooth dynamical

systems as a parameter is varied include:

• the period-incrementing cascade (Figures 2-5b and 2-5c): A cascade of peri-

odic orbits, where a period-N orbit bifurcates into a period-(N + 1) orbit as the

bifurcation parameter, µ, is increased (or decreased) towards µ∗, [6],
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• the period-adding cascade (also called a Farey Tree): The periodic orbits

of this cascade are organised such that at the parameter values between two

neighbouring periodic orbits, say of period-N and period-M , there exists a period-

(N +M) orbit. This concatenation of neighbouring periodic orbits can continue

ad infinitum [34],

• robust chaos (Figure 2-5a): A chaotic attractor, which is uninterrupted by

windows of stable periodic orbits, exists over an open interval of parameter values

of µ close to µ∗, [10].

Now we are in the position to give a brief outline of some of the bifurcation scenarios

of a fixed point of the map xL that undergo a border-collision bifurcation at µ = 0.

Three qualitatively different bifurcation scenarios have been reported in literature for

small µ > 0 depending on the parameter λ:

• if 2/3 < λ < 1, robust chaos is observed, Figure 2-5a,

• if 1/4 < λ < 2/3, a period-incrementing cascade with chaotic windows is ob-

served, Figure 2-5b, and

• if 0 < λ < 1/4, a period-incrementing cascade with coexisting periodic orbits is

observed, Figure 2-5c.

By chaotic window we mean that there exists an interval of the bifurcation parameter,

between two periodic orbits, in which a chaotic attractor exists.

2.3.1 Experimental Validation of Non-smooth Systems

In this Section we discuss more recent developments in experimentally validating non-

smooth models. The approximation of these mechanical systems by a simple model

such as the impact oscillator (2.21) with reset law (2.22) has been validated in recent

experiments. Piiroinen et al’s [99] experimental set-up comprises a forced pendulum

impacting a fixed obstacle with low velocity so that the pendulum is near grazing.

Their comparison of the experimental data with simulations of the ODE model (2.21)

and (2.22), as well as with the square-root normal form map derived by applying the

discontinuity mapping, shows good qualitative agreement. In particular, non-smooth

phenomena observed and predicted by the map include the sudden transition from

a periodic orbit to chaos as well as the period-incrementing cascade. Furthermore,

good quantitative agreement has been shown between the numerical simulation and

the square-root map.

Similar good correspondence between model and experiment has been observed for

more complicated impacting systems. Ing et al [60] present the impact oscillator with

an elastic obstacle near grazing. They find sudden transitions from periodic orbits to

31



Chapter 2. Dynamical Systems Theory

chaos. However, they focus on comparing periodic orbits predicted numerically and

periodic orbits observed experimentally for the same system set-up. The two data sets,

the numerical and the experimental, of the same periodic orbit agree well with each

other.

Alzate et al consider the cam-follower system [4], an impact oscillator where the

obstacle is in motion as well. The non-smooth phenomena observed here is chattering

and aperiodic behaviour.

Davis and Virgin [30], who also investigate an impact oscillator with a moving

obstacle, a rigid pendulum driven by a rotating obstacle, present a more realistic impact

law. As the energy at impact is also converted into heat, sound and vibration, they

argue that the resulting uncertainty in the measurement of the coefficient of restitution

should be taken into account by including a random component. The investigation of

high velocity impacts leads to corresponding experimental and numerical data.

2.4 Magnetic Bearing Systems

We will now give a brief introduction into the engineering application, called mag-

netic bearing systems, which will be studied in Chapters 5 and 6. Following the

introduction of the basic set up to model a magnetic bearing system, we outline the

possible motion in such a system.

A magnetic bearing system, Figure 2-6, consists of a cylindrical shaft, also referred

to as a rotor, which is attached to a motor at one end and is free at the other. The

motor spins the rotor at a constant speed Ω. The shaft is supported by magnetic

bearings, which form a circular boundary, called a stator. In this Thesis we assume

that the stator is fixed and rigid. The support from magnetic forces is three fold:

it keeps the rotor levitating, it provides control and it stabilises the rotor motion

[22, 41, 89].

In Chapters 5 and 6 we study a two-dimensional cross section of the systems at the

free end, Figure 2-6. The rotor is a disk with mass m and radius R and the fixed and

rigid stator is the impact surface in the shape of a circle. The imbalance in the disk

is represented by the eccentricity radius ec, which is the distance between the rotor’s

centre and the rotor’s centre of mass and the eccentricity angle φ, Figure 2-6. The

clearance disk with radius cr denotes the area in which the rotor has free motion. The

position of the rotor centre will be expressed either in Cartesian coordinates (x̃, ỹ), in

polar coordinates (r̃, θ̃) or in complex coordinates z = x̃+ iỹ.

The normal operational mode occurs when the rotor does not come into contact

with the stator, i.e. in free motion, also referred to as non-contacting motion, which

is frictionless. The effect of the mass imbalance on the rotor motion gives rise to a

trajectory that is contained within the clearance circle. We say that the rotor’s motion
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is synchronous if the angular velocity (at the rotor centre) is the same as the rotational

speed Ω.

(a)
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Figure 2-6: Fixed Frame: (2-6a) The active magnetic bearing (AMB) currents, iU and iL, are
shown in the vertical axis only. With appropriate control, these determine the AMB stiffness
and damping characteristic. (2-6b) The rotor-touchdown bearing (TDB) impact at the contact
point CP , contact force Fc and frictional force µFc are acting. The rotor centre is shown in
both complex coordinate z and polar coordinates (r̃, θ̃). In free flight its motion is constrained to
be within the clearance disk (white). The rotor is affected by mass imbalance with eccentricity
ec and phase angle φ.

An impact between rotor and stator can occur if there is a power failure or some

other type of electrical fault in one of the components. If, as a result, the magnets

do not support the rotor any longer, then this fault is referred to as delevitation,

[22, 41, 89, 50]. This motion will not be investigated in this Thesis. Other faults can

include mass loss, i.e. additional mass imbalance arises due to a change in mass of the

rotor or stator [22, 41, 89, 50].

We assume that if an impact occurs, the magnetic bearing system remains opera-

tional, i.e. the motor spins the rotor which is still fully supported by magnetic forces.

An impact can lead to further instantaneous impacts which in turn can lead to contin-

uous contact via a chattering sequence [34]. Chattering sequences are investigated in

Chapter 6.

Continuous contact is referred to as rubbing [89, 50], which can be in a forward

sense if the tangential velocity is positive, called forward rubbing, or in a back-

ward sense if the tangential velocity is negative, called backward rubbing [89, 50].

Continuous contact can be pure sliding, a combination of rolling and sliding, or pure

rolling. Pure rolling in a backward sense is referred to as backward whirl rubbing

[11, 89, 50]. In Chapters 5 and 6 we mainly study instantaneous impacts and briefly

look at synchronous forward rubbing.

33



CHAPTER 3

The Piecewise Power Law Maps with

Exponent p ∈ [0, 1]

Analysing and describing the intricate dynamics of applications that are modelled by

piecewise-smooth ODEs or hybrid systems can often be achieved by approximating

them by a piecewise smooth one-dimensional map, [34], parametrised by µ. Such ap-

plications arise in electrical [34], mechanical [90] or biological [16] systems as discussed

in Chapter 2. Two maps of that kind have been studied in great detail in the literature,

i.e. the piecewise-linear map and the square-root map. The continuous and discon-

tinuous linear maps are well understood now, see for example [7, 6, 59, 34, 101] and

the references therein. Similarly, the continuous square-root map has been studied in

great detail, [90, 91, 24]. In summary, these findings conclude that in the vicinity of

a border-collision bifurcation at µ = µ∗ (as defined in Chapter 2: When a fixed point

of the map intersects a discontinuity boundary) these maps, continuous or discontin-

uous, have a qualitatively different dynamic behaviour of great complexity for certain

parameters. Such dynamic behaviour, which was already introduced in Chapter 2.3

and repeated here for clarity, can include

• the period-incrementing cascade: a cascade of periodic orbits where a period-N

orbit bifurcates into a period-(N + 1) orbit as the bifurcation parameter, µ, is

increased (decreased) towards µ∗, [6],

• the period-adding cascade (also called a Farey Tree): The periodic orbits of this

cascade are organised such that at the parameter values between two neighbour-

ing periodic orbits, say of period-N and period-M , there exists a period-(N+M)

orbit. This concatenation of neighbouring periodic orbits can continue ad infini-

tum [34],
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• robust chaos: a chaotic attractor, which is uninterrupted by windows of stable

periodic orbits, exists over an open interval of parameter values of µ close to µ∗,

[10].

We see examples of all three types in Figures 3-2 and 3-11.

In our analysis of such maps we will distinguish between regimes of the bifurcation

parameter where stable periodic orbits can coexist, and regimes where the range of

values of µ, for which different stable periodic orbits exist, are separated by bands of

chaos. In our study the existence of chaotic attractors (and hence ranges of chaotic

windows or robust chaos) is shown by finding trapping regions for the map and then

by proving that no periodic orbit is stable in this region for the same parameter value.

Piecewise-smooth one-dimensional maps of linear and square-root form were origi-

nally introduced in the study of grazing phenomena [90, 91, 92, 123, 47, 48].

More recently attention has shifted to studying the parametrised discontinuous

square-root map which arises, for example, when considering impacts of a mass with

a repelling wall near grazing as Pring and Budd [102] have shown. As described in

Chapter 2 they apply the zero-time discontinuity mapping to derive an appropriate

two-dimensional map and furthermore, by assuming that the system has high damp-

ing, they reduce this to a one-dimensional discontinuous map. A novel dynamical

feature has been shown to exist, [38, 102], where for certain parameter values the

period-incrementing cascade is interrupted by a window of chaos. By that we mean

that stable periodic orbits of low and high period exist but orbits with intermediate

period cease to be stable. For example, period-N orbits are stable if 2 ≤ N ≤ 5 and

N ≥ 8, but unstable if 6 ≤ N ≤ 7. Banerjee and Dutta [38] refer to this scenario as a

breakdown of period-incrementing cascade. For the same parameters only robust chaos

is observed for the continuous square-root map. This emphasizes that the interplay of

the map’s nonlinearity, discontinuity and other parameters needs to be investigated in

more detail to obtain a clear picture of the dynamics and bifurcation structure. In this

Chapter we will do this by studying a general map for which all the previous maps are

special cases. New general conditions are derived which identify for what parameters

the characteristic dynamic behaviour mentioned above occurs.

Let H be a smooth function H : R 7→ R given by

H(x) = x.

Throughout this Chapter we will consider a piecewise-smooth map with one disconti-

nuity boundary Σ = {x : H(x) = 0} where the LHS is linear and the RHS has local

35



Chapter 3. The Piecewise Power Law Maps with Exponent p ∈ [0, 1]

power law form xp given by

xn+1 = f(xm; p, `) =

{
fL(xn) = λxn + µ, if H(xn) < 0

fR(xn) = −ηxpn + µ− `, if H(xn) > 0
(3.1)

where we assume in this Chapter that p ∈ [0, 1], λ ∈ (0, 1), µ ∈ R, η > 0 and that the

discontinuity ` ∈ R. This map (see Figure 3-1), which we will refer to as the piecewise

power law map (PPL map), is continuous for ` = 0 and discontinuous otherwise.

Furthermore, the RHS derivative, dfR/dx given by

dfR/dx = −pηxp−1
n

becomes unbounded as xn tends to zero from the right if p ∈ (0, 1). This results in

significant stretching of fR for small xn, i.e. the slope of fR is very steep. In contrast

the LHS derivative given by

dfL/dx = λ

is bounded and lies in the interval (0, 1) for any negative xn.

Since this system contains four different parameters it is usual practice to scale out

one of them. However, we refrain from this as it makes comparisons to any of the past

results on the continuous and discontinuous piecewise linear or square-root maps, e.g.

in [34], very simple.

Another aim of this Chapter is to generalise the conditions under which the period-

incrementing cascade arises in the map (3.1). We will show how these conditions depend

on the exponent of (3.1), p, and on the size of the discontinuity of (3.1), `. Further,

we investigate why certain dynamics such as the breakdown of the period-incrementing

cascade can be found only in particular maps. We present results for both a positive and

a negative discontinuity. The latter case could arise when analysing impacts with an

attracting wall, as might result, for example, in systems with electrostatic or magnetic

attraction.

The analysis of the map (3.1) is undertaken by studying admissible period-N pe-

riodic orbits, given by the finite sequence {xn}Nn=1 with N ∈ N. Equivalently, this

sequence can be described by a finite symbolic sequence using the letters L and R.

Label a point xn of the period-N periodic orbit by

L if xn < 0 and R if xn > 0

where n ∈ {1, 2, 3, . . . , N}. The order of the letters L and R corresponds to the order

of the points xn with n = {1, . . . , N}. As an example, consider the period-4 periodic

orbit illustrated in Figure 3-1 with corresponding symbolic sequence LLLR or L3R.

This orbit is cyclic if and only if x5 ≡ x1 and exists provided the points xn (with
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Figure 3-1: Piecewise-smooth map with parameters λ = 0.8, µ = 0.3, η = 1 and ` = 1 (in
blue). The intersections of the red line with the map depicts a period-4 periodic orbit of the
form L3R, i.e. three intersections with fL and one intersection with fR.

n ∈ {1, 2, 3, 4}) satisfy the existence condition given by

x1 < x2 < x3 < 0 < x4 (3.2)

where the points of the sequence {xn}4n=1 are given by

x1 = fR(x4) and xn = fL(xn−1) for n ∈ {2, 3, 4}.

If any of the inequalities in (3.2) do not hold then the periodic orbit does not exist.

Moreover, these symbolic sequences are shift invariant, i.e. L3R ≡ L2RL ≡ LRL2.

In general, periodic orbits can have many different symbolic sequences. We will now

introduce two particular sequences that will be studied in more detail in this and the

next Chapter.

Definition 3.1. A period-N periodic orbit given by the symbolic sequence LN−MRM

exists with N,M ∈ N if and only if the points xn of the sequence {xn}Nn=1 satisfy

x1 < x2 < . . . < xN−M < 0 < xN−M+1 < . . . < xN with x1 = xN+1
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where the iterates xn are given by

x1 = fR(xN ), xn = fL(xn−1) for n = {2, . . . , N −M + 1} and

xn = fR(xn−1) for n = {N −M + 2, . . . , N}.

Periodic orbits of this form have been shown to be present in period-adding cascades

of piecewise linear maps [34, 101, 7, 8] and of the more general map (3.1) as we will

show in this and the next Chapter.

Definition 3.2. A period-N orbit corresponding to the symbolic sequence LN−1R is

called a maximal periodic orbit.

The maximal periodic orbit exists if and only if the points xn of the sequence {xn}Nn=1

satisfy

x1 < x2 < . . . < xN−1 < 0 < xN (3.3)

where the iterates xn are given by

x1 = fR(xN ) and xn = fL(xn−1) for n = {2, 3, . . . , N − 1}. (3.4)

Period-incrementing cascades have been shown to be composed of maximal periodic

orbits in piecewise linear maps [34, 6, 7, 5, 8, 9, 16, 59, 31], in square-root maps

[34, 90, 91, 92, 38, 8, 102, 24, 17], and for the map (3.1) as we will see later in this

Chapter.

We will show that when the discontinuity takes the form ` > 0, independent of any

other parameter values, then the period N of stable maximal periodic orbits tends to

infinity as the bifurcation parameter µ tends to zero from above. However, this is not

the case when ` ≤ 0, as we will also show in this Chapter. Analytically we show that

when ` = 0, the maximal period orbits cease to exist near µ = µ∗ ≡ 0 and instead

we see robust chaos. When ` < 0, then numerical results indicate the existence of

other periodic orbits with symbolic sequences LR2N and LR2N−1. LR2N orbits are

organised in a period-incrementing cascade-like structure, by which we mean that the

period increases incrementally by two and not one, while LR2N−1 orbits are organised

in a period-adding scenario. To obtain analytical results when ` < 0 we will study a

simplified version of the map (3.1), where we assume that the LHS multiplier λ = 0.

The remainder of this Chapter is organised in the following way. We analyse the

dynamic behaviour of the continuous PPL map (` = 0) in Section 3.1. Then we move

on to studying the discontinuous PPL map with ` > 0 in Section 3.2 and with ` < 0

in Section 3.3. A comparison of the dynamics of the various maps (linear, nonlinear,

continuous and discontinuous) is presented towards the end of each Section.
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3.1 The Continuous PPL Map: ` = 0

Throughout this Section we consider the map f(xn; p, `) given by (3.1) with ` = 0, which

we will refer to as the continuous power law map f(xn; p, 0). The square-root map [34] is

a special case of this map, i.e. the continuous map f(xn; 1/2, 0), given by (3.1) with p =

1/2 and ` = 0, and has been discussed in literature extensively [34, 90, 91, 92, 24, 17]. In

Chapter 2 the three qualitatively different bifurcation scenarios have been summarised,

i.e.

• robust chaos,

• period-incrementing cascade with chaotic windows, and

• period-incrementing cascade with coexisting periodic orbits.

We will show in this Section that these bifurcation scenarios are also found in the

continuous PPL map and we derive the parameter conditions under which they occur.

Moreover, the intricate and until now unknown dependence of the bifurcation scenarios

on the exponent p is revealed.

We assume initially that

λ ∈ (0, 1), p ∈ (0, 1), η > 0, and that µ < 0. (3.5)

In this case the continuous PPL map f(xn; p, 0) (3.1) has exactly one admissible fixed

point at x = xL given by

xL = µ/(1− λ) < 0. (3.6)

The orbit in (3.6) is stable as the corresponding eigenvalue λ lies in the interval (0, 1).

If µ is increased then at the parameter value

µ ≡ µ∗ = 0

the fixed point x = xL ≡ 0 undergoes a border-collision bifurcation (as defined in

Chapter 2), i.e. it collides with the discontinuity boundary Σ. For µ > 0 the fixed

point xL becomes virtual and we observe complex dynamics for µ close to µ∗ = 0. In

this dynamics we see periodic orbits and possibly windows of chaotic behaviour of the

various forms described at the beginning of this Chapter. The resulting dynamics for

µ > 0 depends on the exponent, p, and the left eigenvalue, λ, and is presented in the

following Theorem.

Theorem 3.3. Consider the map f(xn, p, 0) given by (3.1), with ` = 0 and exponent

p, where 0 < p < 1. Let N ∈ N, λ ∈ (0, 1), η > 0 and define the parameters λ1 and λ2

39



Chapter 3. The Piecewise Power Law Maps with Exponent p ∈ [0, 1]

(a) (b)

(c)

Figure 3-2: The bifurcation structure of the continuous PPL map f(xn; 1/2, 0) with η = 1.
For µ < 0 we observe the stable fixed point xL given by (3.6). This fixed point undergoes a
border-collision bifurcation at x∗ = 0, µ∗ = 0. By Theorem 3.3 three qualitatively different
bifurcation scenarios can be observed for µ > 0: the weakly stable case (λ = 0.8) in Figure
3-2a, the intermediate case (λ = 0.5) in Figure 3-2b, and the strongly stable case (λ = 0.2) in
Figure 3-2c. The period-doubling µPD,N,1/2 and border-collision µBC,N,1/2 bifurcation values
of the period-N periodic orbits with N = 2, 3 and N = 2, respectively, are shown.
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to be

λ1 :=
1

1 + p
and λ2 := 1− p(1 + p)(1−p)/p, (3.7)

respectively, and the parameters µPD,N,p and µBC,N,p to be

µPD,N,p := (1 + p)(1− λ)
(
ppηλN−1

) 1
1−p , (3.8)

µBC,N,p :=
(
η(1− λ)λN−2

) 1
1−p , (3.9)

respectively. Then the bifurcation scenario, for small µ > 0, which depends on λ, p and

η > 0, takes three qualitatively different forms:

I The weakly stable case if λ1 < λ < 1

for which robust chaos is observed for µ ∈ (0, µ1).

II The intermediate case if λ2 < λ < λ1

for which a period-incrementing cascade consisting of maximal periodic orbits of

the form LN−1R is observed. As µ→ 0+ the period N →∞. The stable period-

N maximal periodic orbit exists for µ ∈ (µPD,N,p, µBC,N,p) for N large, i.e. the

unstable orbit gains stability in a period-doubling bifurcation at µ = µPD,N,p and

ceases to exist in a border-collision bifurcation at µ = µBC,N,p. Note that for large

N the existence interval boundary points are scalable, i.e.

µBC,N+1,p

µBC,N,p
=
µPD,N+1,p

µPD,N,p
= λ1/(1−p).

A chaotic attractor is observed for µ ∈ (µBC,N+1,p, µPD,N,p) for all N large.

III The strongly stable case if 0 < λ < λ2.

This case is very similar to the intermediate case with the exception that no

chaotic attractor exists for µ > 0. Instead the neighbouring maximal periodic

orbits with period-N and (N + 1) coexist for µ ∈ (µPD,N,p, µBC,N+1,p) and N

large.

These bifurcation scenarios are illustrated in Figure 3-2. Furthermore, we plot the

boundary points of these bifurcation scenarios, i.e. λ1 and λ2, against the exponent p.

This shows that if p ∈ (0, 1) then all three bifurcation scenarios can occur depending

on λ, whereas if p = 0 then only the strongly stable case can occur for all λ ∈ (0, 1). If

p = 1 then both the weakly stable case and the intermediate case are possible but not

the strongly stable case. This will be discussed in more detail following the proof.

Proof. To prove this result we will generalise a similar argument to the ones presented in

[34] (§4.3.1), [91] and [17] where the conditions for the equivalent bifurcation scenarios

of the square-root map have been derived. The main idea is to construct an interval V
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in a rescaled variable and a discontinuous map F : V → V . F maps V back to itself

under the iteration of f , i.e. several of the iterations lie on the linear side of f (x < 0)

while exactly one iteration lies on its nonlinear side (x > 0). We refer to the map F

as an induced map and V as a trapping region. When the number of iterates on the

linear side is large then F can be approximated by a function G. We will show that by

exploiting the invariance of the function G under the rescaling

µ→ λ
1

1−pµ

the study of the fixed points of G and hence F can be simplified. Thus enabling us to

determine periodic orbits of f(xn; p, 0) given by (3.1) and their role in the creation of

a period-incrementing cascade.

Consider the continuous PPL map (3.1) with ` = 0, 0 < p < 1, λ ∈ (0, 1), η > 0

and small µ > 0. Define the interval W , given by

W = {x : 0 < x ≤ µ},

and let the initial value x0 ∈W . In the interval W , |f ′R(x)| is large for small enough µ

and hence

x1 = f(x0) = −η xp0 + µ < 0.

At the same time the slope of fL(x) lies in the interval (0, 1). Consequently, a large

number of iterates of the continuous map, say up to m(x0, µ), can lie on the linear part

fL of the piecewise smooth map f , where these iterates xn with 1 ≤ n ≤ m − 1 are

given by

xn =
1− λn

1− λ
µ− η λn−1xp0 < 0.

We define xm to be the first such iterate which lies again in W which must exist as

λ < 1. This shows that W is in fact a trapping region, i.e. it is mapped to itself by the

iterations of the map f . When x0 = µ then m(x0, µ) attains its maximum N(µ). As

x0 decreases towards zero, N(µ) decreases.

Assume that x0 ∈W and consider the following change in coordinates

y0 = 1− x0(1− λ)/µ.

Thus the corresponding trapping region to W is V which is given by

V = {y0 : µλ ≤ µ
(
1− y0(1− λ)

)
< µ}
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and the iterate corresponding to xm is ym which is given by

ym = λmµ+ η(1− λ)λm−1µp
(1− y0

1− λ

)p
.

We now define the induced map F : V → V given by

F (y0) = ym (3.10)

≡ λmµ+ η(1− λ)λm−1µp
(1− y0

1− λ

)p
,

which is induced by consecutive actions of the function f . The map F has N continuous

branches. If m is constant then the map F , given by (3.10), is continuous in the interval

VN denoted by

Vm = {y0 : µλ ≤ F (y0) < µ}.

At the point where m increases or decreases F is discontinuous. To study the structure

of F we approximate it by a simpler function G for large m. To do this, let y0 = λ, or

equivalently x0 = µ, then F (λ) which is given by

F (λ) = η(1− λ)λN−1µp + λNµ (3.11)

which corresponds to branch N . Then consider the following expression

( λ

F (λ)/µ

) 1
1−p

=
( λ

η(1− λ)λN−1µp−1 + λN

) 1
1−p

. (3.12)

For large N the expression (3.12) is approximated by

( λ

η(1− λ)λN−1µp−1

) 1
1−p

=
µ

(η(1− λ)λN−2)
1

1−p

.

Define the parameter s to be this approximation, i.e.

s =
µ

(η(1− λ)λN−2)
1

1−p

≈
( λ

F (λ)/µ

) 1
1−p

(3.13)

for large N . Observe the strong self-similarity of s under the rescaling

µ→ λ
1

1−pµ. (3.14)

By that we mean that the parameter s remains the same if we increase the period N

by one, i.e. N → N + 1, and substitute µ with (3.14). This is the crucial property

that enables the analysis of the scaling behaviour of the periodic orbits as we vary the

parameter.
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Next we show that, s ∈ (λ1/(1−p), 1]. As F is continuous on VM and

λµ ≤ F (y0) < µ,

then it follows that this inequality also holds if y0 = λ and if m = N with N large.

Hence, by (3.13)

λµ ≤ F (λ) ≈ λ

s1−p < µ,

where F (λ) is given by (3.11). Solving this inequality for s we obtain s ∈ (λ1/(1−p), 1].

Finally, we can approximate the function F by a simpler function G. To avoid confusion

in later notation let z = y0. Set k = N −m, where k ∈ N0, and consider

F (z)

µ
= η(1− λ)λN−k−1µp−1

(1− z
1− λ

)p
+ λN−k

=
λ1−k

λ

(1− z
1− λ

)p F (λ)

µ
+ λN−k

(
1−

(1− z
1− λ

)p)
≈ λ1−ksp−1

(1− z
1− λ

)p
=: G(z, s) (3.15)

where in the last step we assumed that N is large in comparison to k ≥ 0. Then, the

function G(z, s), as defined in (3.15), is an approximation of F (z)/µ and defined for

all k ≥ 0. Like the map F , the map G is discontinuous. But whereas F has a finite

number of branches, N , the map G has infinitely many, i.e. k ≥ 0 which is illustrated

in Figure 3-3. Along these branches the number k is constant as shown in Figure 3-3.

Let us now consider the first derivative of G, which is given by

Gz(z, s) = −pλ
1−ksp−1

1− λ

(1− z
1− λ

)p−1
. (3.16)

We will now show that as z increases Gz(z, s) decreases. As

λ ≤ z < 1 ⇒ 1− z
1− λ

≤ 1 ⇒
(

1− z
1− λ

)p−1

≥ 1 (3.17)

and −λ1−k ≤ −λ it follows that

Gz(z, s) < Gz(λ, s) = −pλs
p−1

1− λ
. (3.18)

Hence the slope of each branch of G decreases as z, or equivalently k, increases, see

Figure 3-3. Therefore, each branch k of the map G has a unique fixed point. Let zk

denote the fixed point of the kth continuous branch of the map G, i.e. zk satisfies the
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equation

G(zk, s) ≡ λ1−ksp−1
(1− zk

1− λ

)p
= zk. (3.19)

Obviously, as G(zk, s) has infinitely many branches, it has infinitely many fixed points

z = zk. The most likely stable fixed point is z0 by (3.16) and (3.18).

k=0

k=1

k=0

k=2

k=1

0.6 0.7 0.8 0.9 1.0
0.6

0.7

0.8

0.9

1.0

z

G
Hz

,s
L

Figure 3-3: The discontinuous induced map G given by (3.15) with p = 1/2, η = 1, λ = 0.6
and s = 0.9 (blue) as well as with s = λ1/(1−p) 0.9 (orange, dashed). It has k branches, where
k ≥ 0, and each branch intersects the identity line (black) yielding a fixed point. The blue and
orange branches are identical as G remains the same when s is scaled according to (3.14) and
k is increased by one.

Using (3.19), Gz(z, s) can be rewritten such that it only depends on the fixed point

zk, i.e.

Gz(zk, s) = − pzk
1− zk

. (3.20)

We will now make predictions about the dynamics of the map G which also hold for

the map F , for large N in comparison to k, and for the map f(xn; p, 0) given by (3.1).

The stability of these fixed points give rise to three topologically different dynamics.

I The weakly stable case: Assume that λ1 < λ < 1 where λ1 is defined in (3.7).

Then, it follows that

− p < −1− λ
λ

. (3.21)

Above, we have shown that s ∈ (λ
1

1−p , 1], then

− sp−1 < −1. (3.22)

Hence, by using (3.18) we conclude that the first derivative

Gz(zk, s) < −
pλsp−1

1− λ
, ∀zk ∈ [λ, 1)

< −1, by (3.21) and (3.22).
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Thus the map G, given by (3.15), has no stable fixed points and hence the map F ,

given by (3.10), has no stable fixed points. We can now make use of the fact that,

in one-dimensional maps only two types of attractors exist, i.e. stable periodic

orbits or chaotic attractors. Thus, we have shown that for µ > 0 and large m

the continuous power law map f(xn; p, 0) given by (3.1) has a chaotic attractor

and no stable periodic orbits. By definition, this is robust chaos, which lies in

the interval (
µ− η µp , µ

)
.

The intermediate case: Assume that λ2 < λ < λ1, where λ1 and λ2 are defined in

(3.7). If zk < λ1 ≡ 1/(1 + p) then by (3.20)

−1 < Gz(zk, s) < 0, ∀k ≥ 0

for at least one value of k ≥ 0. We recall that by definition zk ∈ [λ, 1). Therefore,

there exists a stable fixed point zk for at least one value of k ≥ 0 if zk ∈ [λ, 1/(1+

p)).

We now consider the leftmost fixed point z0 and explain for which parameters

λ and s it exists and is stable. Assume that s is close to one. Then from

(3.19) it follows that z0 is close to λ. Therefore, if λ < λ1 and s = 1 then the

fixed point z0 = λ exists and is stable. Assume further that λ2 < λ < λ1 and

that s decreases from one. Then, by (3.19) with k = 0, z0 increases and by

(3.18) Gz(z0, s) decreases until the fixed point loses stability in a period-doubling

bifurcation at z0 = λ1 and s = sPD,0, i.e. Gz(z0, sPD) = −1, where

sPD,0 = (1 + p) λ
1

1−p

( p

1− λ

) p
1−p

. (3.23)

Moreover, if λ > λ2 then sPD,0 > λ1/(1−p). Therefore, if λ ∈ (λ2, λ1) and s ∈
(sPD,0, 1] ⊂ (λ(1/1−p), 1] then the fixed point z0 ∈ (λ, λ1) exists and is stable. For

s ∈ (λ(1/1−p), sPD,0) there exists chaotic attractor and we discuss below why that

is. In Figure 3-4 we depict the boundary points of s and their dependence on λ

which visualises the regions of qualitatively different dynamics. Note that this

Figure also includes results from The weakly stable case and from The strongly

stable case.

The fixed point z0 of the map G corresponds to a period-N maximal periodic

orbit with N large and symbolic sequence LN−1R of the map f(xn; p, 0) given by

(3.1). Assume that µ is small, then we can derive its values that are equivalent to

s ∈ (sPD,0, 1] by using (3.13). Corresponding to s = sPD,0 the maximal periodic
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Figure 3-4: Existence and stability of the fixed points zk as the parameters s and λ are varied
for p = 1/2. The curves represent the period-doubling value sPD,1 for z1 (blue dashed), the
period-doubling value sPD,0 for z0 (blue), and the lower bound for s, i.e. λ1/(1−p) (red). In the
region NA the parameter s lies outside the admissible interval (λ1/(1−p), 1]. In region C there
exists a chaotic attractor. In region 0 the stable fixed point z0 exists. In region 1 the stable fixed
point z1 exists.

orbit undergoes a period-doubling bifurcation at µ = µPD,N,p, where

µPD,N,p = (1 + p)(1− λ)(ppη λN−1)
1

1−p . (3.24)

The upper bound of s, s = 1, corresponds to a border-collision bifurcation at

µ = µBC,N,p where

µBC,N,p =
(
η(1− λ)λN−2

) 1
1−p

. (3.25)

Hence, the period-N maximal periodic orbit with bifurcation parameter µ exists

and is stable for µ ∈ (µPD,N,p, µBC,N,p) if λ ∈ (λ2, λ1). Increasing the period

N by one gives rise to the period-N + 1 maximal periodic orbit. Note that

µBC,N+1,p < µPD,N,p for all N ≥ 2 and hence the period-N and N + 1 orbits

do not coexist. In fact, no stable maximal periodic exists in that interval and

hence we observe a chaotic attractor if µ ∈ (µBC,N+1,p, µPD,N,p). This µ-interval

corresponds to s ∈ (λ(1/1−p), sPD,0).

It is straightforward to see that N tends to infinity as µ tends to zero from the

right. This gives rise to a period-incrementing scenario, i.e. the period N of

maximal periodic orbits increases by one as µ decreases.

Moreover, the boundary points of the existence and stability interval scale with
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λ1/(1−p), i.e.
µBC,N+1,p

µBC,N,p
=
µPD,N+1,p

µPD,N,p
= λ1/(1−p).

The strongly stable case: Assume that 0 < λ < λ2 then sPD,0 < λ1/(1−p) and hence

s lies outside the permissible interval (λ1/(1−p), 1]. Therefore, the fixed point z0

does not undergo a period-doubling bifurcation. As a result the fixed point z1

on the following branch k = 1 is stable for µ close to one. We proceed with the

stability analysis of z1 as we did with z0 in the intermediate case. Decrease µ

from one, then the fixed point z1 loses stability at a period-doubling bifurcation

at the point s = sPD,1 where

sPD,1 = (1 + p)
( p

1− λ

) p
1−p

. (3.26)

The value sPD,1 has been obtained by making use of the self-similarity of s under

the rescaling (3.14). Thus we can conclude that if λ ∈ (0, λ2) the two stable fixed

points z0 and z1 coexist for s ∈ (sPD,1, 1), see Figure 3-4. As in the intermediate

case the fixed points z0 and z1 of the map G correspond to maximal periodic

orbits of period-N and (N + 1), respectively, of the map f . We are now able

to derive the existence and stability boundary points in terms of the bifurcation

parameter µ. The stable period-N + 1 maximal periodic orbit exists for µ ∈
(µPD,N+1,p, µBC,N+1,p) for all N large, where µPD,N+1,p and µBC,N+1,p are given

by (3.24) and (3.25), respectively, by replacing N by N + 1. Note that, µ =

µPD,N+1,p and µ = µBC,N+1,p correspond to s = sPD,1 and s = 1 with k = 1,

respectively.

Similarly, corresponding to s = 1 with k = 0 the period-N maximal periodic orbit

undergoes a border-collision bifurcation at µ = µBC,N,p which is given by (3.25).

However, unlike the corresponding fixed point z0, the stable period-N maximal

orbit does lose stability in a period-doubling bifurcation at µ = µPD,N,p which is

given by (3.24). We conclude this from the fact that the stable period-(N + 1)

orbits exist for all N large within the permissible parameter interval as explained

above. Finally, the period-N and (N + 1) maximal periodic orbits coexist for

µ ∈ (µPD,N,p, µBC,N+1,p).

In the next Section in Theorem 3.5 we will show that the lower and upper bound

of the µ existence and stability interval, i.e. µPD,N,p and µBC,N,p respectively, can be

computed exactly and not just for a large period N .

Now, we explain what can be deduced from Theorem 3.3 about piecewise-linear

maps, i.e. as p = 0 or p = 1. Let p = 0. Then the map under investigation, f(xn; 0, 0)

given by (3.1), is discontinuous and piecewise-linear with discontinuity −η where fL is
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Figure 3-5: The boundary values λ1 (dashed) and λ2 (black), given by (3.7), against the
exponent p. As described in Theorem 3.3 these boundary values separate the regions I-III in
which qualitatively different bifurcation scenarios arise in the PPL map f(xn; p, 0). For the
values λ and p in region I we observe the weakly stable case, in region II we observe the
intermediate case, and in region III we observe the strongly stable case.

a linear function and fR is a constant. This map has been studied in [6]. According

to Theorem 3.3 the only characteristic stable dynamics for µ > 0 is the strongly stable

case if λ ∈ (0, 1), i.e. a period-incrementing cascade with coexisting periodic orbits

(Figure 3-5). As the bifurcation parameter µ decreases towards zero, the stable period-

N maximal periodic orbit is created in a border-collision bifurcation at µ = µBC,N,0

given by (3.9) for N large. Furthermore, the orbit loses stability at µ = µµPD,N,0 given

by (3.8). Although the value of this bifurcation is predicted correctly its type is not,

i.e. it is not a period-doubling bifurcation but a border-collision bifurcation. Therefore,

the stable period-N maximal period orbit exists for µ ∈ (µBC2,N,0, µBC,N,0) where

µBC2,N,0 =
1− λ

1− λN
ηλN−1 ≡ µPD,N,0 , (3.27)

µBC,N,0 =
1− λ

1− λN−1
ηλN−2. (3.28)

We give reason for this in the next Section, when discussing the extension of the

Theorem 3.3 to discontinuous maps. Moreover, neither chaotic windows nor robust

chaos can arise within the parameter region that was assumed at the beginning. In

other words, there exists no λ that can satisfy the other two cases, the weakly stable

and the intermediate case, as both λ1 and λ2 are one if p = 0. Theorem 3.3 holds for

p = 0 and predicts the results obtained in literature, such as [34] (pp 184-5), [7].
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Let p = 1. Then the map under investigation, f(xn; 1, 0) given by (3.1), is contin-

uous and piecewise-linear where both fL and fR are linear functions. This map has

been studied by [] and its dynamics can also be predicted by Theorem 3.3. If p = 1

then λ1 and λ2, both given by (3.7), are 1/2 and 0 respectively. By Theorem 3.3 two

qualitatively different bifurcation scenarios can arise for µ > 0 and N large: the weakly

stable case if λ ∈ (1/2, 1) and the intermediate case if λ ∈ (0, 1/2). Hence there exists

no λ ∈ (0, 1) that satisfies the strongly stable case and therefore maximal periodic

orbits never coexist. Let λ ∈ (0, 1/2) and define

ηPD,N =
1

λN−1
and ηBC,N =

1− λN−1

(1− λ)λN−2
. (3.29)

If η < ηPD,N,1 then µPD,N,1 tends to zero as p tends to one. Furthermore, if η > ηBC,N

then µBC,N,1 tends to infinity as p tends to one. Therefore, by Theorem 3.3 the stable

period-N maximal periodic orbit exists for µ ∈ (0,∞) for N large. This result can be

better explained in terms of the parameter η. Choose η to be the bifurcation parameter.

If λ ∈ (1/2, 1) then for η > 0 the weakly stable case is observed. If λ ∈ (0, 1/2) then for

η > 0 the intermediate case is observed. It follows that a stable periodic orbit of the

form LN−1R exists and is stable for η ∈ (ηBC,N , ηPD,N ) where the boundary values are

given by (3.29). With a little additional work we have shown that Theorem 3.3 also

holds for p = 1 and agrees with results obtained in literature, such as [34] (p 146), [7]

and [56].

To further support our results we now consider a special case - the map (3.1) with

p = 1/2 which is the well understood continuous square-root map. The following

example demonstrates that by applying Theorem 3.3 to this map the description of

the dynamics is consistent with those in [91, 17], [34] (pp 188 - 93) and the references

therein.

Example 3.4. The square-root map: Let p = 1/2, η = 1 then the discrete system

(3.1) is called the square-root map. By Theorem 3.3 its qualitatively different dynamics

for µ > 0 is described by the strongly stable case if 0 < λ < 1/4, the intermediate case

if 1/4 < λ < 2/3 and the weakly stable case if 2/3 < λ < 1 (Figures 3-2 and 3-5).

Its stable maximal periodic orbits of the form LN−1R exist for µ ∈ (µPD,N,p, µBC,N,p)

where the bifurcation points are given by

µPD,N,1/2 =
3

4
λ2(N−1) and

µBC,N,1/2 = (1− λ)λ2(N−2).
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3.2 The Discontinuous PPL Map I: ` > 0

In the following we will analyse the dynamics of the map (3.1) when the discontinuity

parameter ` > 0. As in the case of the continuous map this has a stable fixed point

if µ < 0 which has a border-collision bifurcation at µ = 0. For µ > 0 complex

dynamics exist. We will show that in this case, for small µ > 0, we always observe a

period-incrementing cascade consisting of maximal periodic orbits of the form LN−1R
with large period N . Moreover period-N and period-(N + 1) maximal periodic orbits

coexist. However, for certain values of the left multiplier λ, small values ` and small

but finite period N the orbits are unstable and we observe a breakdown in the period-

incrementing cascade, as described for the square-root map in [102] and [38]. Note that

in the following Theorem the expressions for λ1 and λ2 are the same as in the previous

Section, i.e. given by (3.7). For clarity we will restate them in the following Theorem.

Theorem 3.5. Consider the discontinuous map (3.1) with discontinuity ` > 0, expo-

nent p ∈ (0, 1) and η > 0. Let N ∈ N, λ ∈ (0, 1) and define the parameters λ1 and λ2

to be

λ1 :=
1

1 + p
and λ2 := 1− p(1 + p)(1−p)/p, (3.30)

respectively, and the parameter µPD,N,p to be

µPD,N,p :=
1− λ

1− λN

(
λN−1`+

(
ppηλN−1

) 1
1−p (p+ 1)

)
. (3.31)

The parameter µBC,N,p cannot be defined explicitly but it is the unique solution µ =

µBC,N,p of the order p algebraic equation(
1− λN−1

1− λ

)
µ− ηλN−2µp − λN−2` = 0. (3.32)

Finally, define the parameters `1 and `2 to be

`1 :=
(1 + p)λ− 1− pλN

1− λ

(
ηppλp(N−1)

) 1
1−p

, (3.33)

`2 :=
(1 + p)(λ− 1 + p(1 + p)

1−p
p (1− λN ))

1− λ

(
ηppλp(N−1)

) 1
1−p

, (3.34)

respectively. Then the bifurcation scenario, for µ > 0, depends on λ, p, η and ` and

takes three qualitatively different forms.

Case I if λ ∈ (λ1, 1) and ` ∈ (0,maxN `1)

for which there exists a finite set Nk = {N1, . . . , Nm} with

3 ≤ N1 < N2 < . . . < Nm
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such that each N ∈ Nk satisfies the inequality

` < `1, ∀N ∈ Nk.

Then robust chaos exists for µ ∈ (µPD,N1−1,p,µBC,Nm+1,p). Furthermore, there

exists a finite set Nb = {Nm+1, Nm+2, . . . , Ns} with

Nm < Nm+1 < Nm+2 < . . . < Ns

such that each N ∈ Nb satisfies the inequality

` < `2, ∀N ∈ Nb.

Then stable period-N maximal periodic orbits exist for µ ∈ (µPD,N,p, µBC,N,p) for

all N ≥ Nm + 1. If ` ∈ (`1, `2) then the maximal periodic orbits of period-N and

(N+1) are separated by a chaotic attractor which exists for µ ∈ (µBC,N+1,p, µPD,N,p)

for all N ∈ Nb.

If N ≥ Ns + 1 then the period-N and (N + 1) maximal periodic orbits coexist for

µ ∈ (µPD,N,p, µBC,N+1,p).

Case II if

λ ∈ (λ2, λ1) and ` ∈ (0,max
N

l2) or (3.35)

λ1 < λ < 1 and ` ∈ (max
N

`1,max
N

`2) (3.36)

for which a period-incrementing cascade consisting of stable period-N maximal

periodic orbits is observed. These orbits exist for µ ∈ (µPD,N,p, µBC,N,p) for all

N ≥ 2. There exists a finite set Na = {N1, N2, . . . , Nα} with 3 ≤ N1 < N2 <

. . . < Nα such that N ∈ Nα satisfies the inequality

0 < ` < `2

if (3.35) holds or

max
N

`1 < ` < `2

if (3.36) holds. Then the maximal periodic orbits of period-N and (N + 1) are

separated by a chaotic attractor which exists for µ ∈ (µBC,N+1,p, µPD,N,p) for all

N ∈ Na.

If N ≥ Nα + 1 then the period-N and (N + 1) maximal periodic orbits coexist for

µ ∈ (µPD,N,p, µBC,N+1,p).

Case III if λ ∈ (0, 1) and ` > maxN `2 for which a period-incrementing cascade con-
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sisting of stable period-N maximal periodic orbits is observed. The stable period-N

maximal periodic orbits exist for µ ∈ (µPD,N,p, µBC,N,p) for all N ≥ 2. Further-

more, period-N and period-(N+1) orbits coexist for µ ∈ (µPD,N,p, µBC,N+1,p) for

all N ≥ 2.

The bifurcation scenarios of cases II and III are illustrated in Figures 3-8b and

3-8a, respectively. In Figure 3-6 we plot the functions maxN `1 and maxN `2, where

`1 is given by (3.33) and `2 by (3.34), against the parameter λ for fixed parameters

p and η. Finally, we plot the border-collision bifurcation value µ = µBC,N,p and the

period-doubling bifurcation value µ = µPD,N,p against ` for N = 2, ..., 28 and while

keeping the other parameters η and p fixed for the bifurcation scenario of case I. This

illustrates how, for certain µ robust chaos, chaotic windows and coexisting periodic

orbits arise in case I of this Theorem. Furthermore, the bifurcation scenario described

in case I has been termed breakdown in period-incrementing cascade in [38].

Proof. Consider the discontinuous power law map (3.1) with λ ∈ (0, 1), η > 0, p ∈
(0, 1), µ > 0 and ` > 0. We will first derive the conditions for which a period-N

maximal periodic orbit exists. Then we will find the conditions for which it is stable.

From these conditions we will show when the cases I-III hold.

Consider the period-N maximal periodic orbit of the form LN−1R with the sequence

{xn}Nn=1 of the map f given by (3.1). This orbit exists if and only if its iterates xn

satisfy (3.3) such that (3.4) holds. Note that (3.3) is equivalent to showing that

xN > 0 and xn < 0 for n = {1, 2, . . . , N − 1},

and that (3.3) can be expressed explicitly by

x1 = −ηxp + µ− `, (3.37)

xn = λxn−1 + µ for n = {2, . . . , N}. (3.38)

To show that these conditions are satisfied by the iterates xn for n = {1, . . . , N}, it is

sufficient to show that xN−1 < 0. This follows by induction, i.e. if xN−1 < 0 then

xN−1 = λxN−2 + µ ⇒ xN−2 =
xN−1 − µ

λ
< 0

as λ ∈ (0, 1) and µ > 0. Hence, by induction, xn < 0 for n = {1, . . . , N − 1}.
Furthermore, if x1 < 0 then

x1 = −ηxpN + µ− ` ⇒ xN =
(x1 − µ+ `

η

) 1
p
> 0

as µ and ` > 0 and if x1 < µ − `. Note that µ − ` < 0 for positive small µ. When

53



Chapter 3. The Piecewise Power Law Maps with Exponent p ∈ [0, 1]

this does not hold true then we derive the necessary boundaries for `. Thus we can

show that LN−1R exists if xN−1 < 0. From (3.38) it can be seen that as µ increases so

do xN−1 and xN−2 for fixed λ. Hence, the iterate xN−1 undergoes a border-collision

bifurcation at xN−1 = 0 and µ = µBC,N,p. Equivalently, the period-N maximal periodic

orbit exists, i.e. xN−1 < 0, if µ < µBC,N,p. Now we determine the border-collision

bifurcation value µBC,N,p in terms of the other parameters λ, `,N and p.

Consider the largest negative iterate xN−1 which satisfies

xN−1 = fN−2
L ◦ fR ◦ fL(xN−1)

= −ηλN−2(λxN−1 + µ)p − λN−2`+ µ
1− λN−1

1− λ
=: h1(xN−1). (3.39)

Rearranging (3.39) and applying the inequality xN−1 < 0 gives

−λN−2`+ µ
1− λN−1

1− λ
= xN−1 + ηλN−2(λxN−1 + µ)p

< ηλN−2µp. (3.40)

Set xN−1 = 0 into (3.39) then

ηλN−2µp − 1− λN−1

1− λ
µ+ λN−2` = 0. (3.41)

The solution of this equation yields the border-collision value µ = µBC,N,p. This

equation can be solved exactly for p = 1/2, as shown in [102]. However, for other values

of p the border-collision bifurcation value µBC,N,p has to be computed numerically for

prescribed values of η, `, λ, N and p.

Next we consider the positive iterate xN given by

xN = fN−1
L ◦ fR(xN )

= −ηλN−1xpN − λ
N−1`+ µ

1− λN

1− λ
=: h2(xN ) (3.42)

The first derivative of h2(xN ) is negative and hence the corresponding orbit LN−1R is

stable if

∂(h2(xN ))

∂xN
= −pηλN−1xp−1

N > −1 (3.43)

requiring that

xN >
(
pηλN−1

) 1
1−p . (3.44)

Hence the period-N orbit LN−1R loses stability in a period-doubling bifurcation at
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µ = µPD,N,p. The value µPD,N,p is determined from (3.42) by collecting all terms

involving xN on the RHS, then applying (3.44) to it and finally solving for µ. Hence

the period-N maximal periodic orbit is stable if

µ >
1− λ

1− λN

(
λN−1`+

(
ppηλN−1

) 1
1−p (p+ 1)

)
=: µPD,N,p .

Therefore, a stable maximal periodic orbit exists for µ ∈ (µPD,N,p, µBC,N,p). As µBC,N,p

cannot be computed explicitly another condition needs to be derived to ensure that

µPD,N,p < µBC,N,p. For that purpose consider the first derivative of the map h1(xN−1)

given by (3.39)

∂(h1(xN−1))

∂xN−1
= −pηλN−1(λxN−1 + µ)p−1. (3.45)

This derivative is negative and if

xN−1 >
1

λ

((
ηpλN−1

) 1
1−p − µ

)
=: ν . (3.46)

Then the maximal periodic orbit is stable, i.e. the derivative of h1(xN−1) is greater

than −1. At the same time, the existence condition, xN−1 < 0, must be satisfied. This

is the case if and only if

µ >
(
ηpλN−1

) 1
1−p =: µ1. (3.47)

This property says that if xN−1 = ν and xN−1 = 0 then the period-N maximal

periodic orbit undergoes a period-doubling and a border-collision bifurcation at µ = µ1,

i.e.

µ1 ≡ µBC,N,p ≡ µPD,N,p. (3.48)

Now, if ` = `1 given by (3.33) then (3.48) holds. Therefore if ` > `1 given (3.33) then

there exists a µ = µPD,N,p such that µ > µ1. Hence xN−1 < 0 and ∂h1(xN−1)/∂xN−1 >

−1. Therefore the stable period-N maximal periodic orbit of the form LN−1R exists

for µ ∈ (µPD,N,p, µBC,N,p) and µBC,N,p > µPD,N,p where µPD,N,p is given by (3.31) and

µBC,N,p can be computed by solving (3.32).

Now we will discuss the properties of the parameter `1 that are necessary for cases

I-III. As N tends to infinity `1 tends to zero from the right and hence all stable maximal

orbits with large period N exist for any fixed ` > `1 ≈ 0. The derivative with respect

to N of `1 = `1(N) defined in (3.33) is given by

d`1
dN

=
p(ηλ(N−1)ppp)

1
1−p (−1 + (1 + p)λ− λN ) log(λ)

(1− p)(1− λ)
.
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The parameter `1(N) has a maximum at N = N∗ where

N∗ =
ln ((1 + p)λ− 1)

ln(λ)
, (3.49)

which is defined if λ > λ1. As N increases, `1(N) increases up to N = N∗ and then

decreases. Hence if ` > maxN `1 = `1(N∗), then the stable periodic orbit LN−1R exists

for all N and µ ∈ (µPD,N,p, µBC,N,p), see Figure 3-7 for an example. Next, we turn our

attention to deriving the condition for which period-N and period-(N + 1) orbits can

coexist. Consider the border-collision bifurcation value of LN−1R, i.e. µ = µBC,N+1,p.

It can be computed from (3.41) by substituting N + 1 for N . Then define this RHS by

FCEx i.e.

FCEx(µ) :=
1− λN

1− λ
µ− λN−1`− ηλN−1µp . (3.50)

We will show that if ` > `2 then FCEx(µPD,N,p) < 0. This means that µBC,N+1,p >

µPD,N,p and that the stable maximal periodic orbits with period-N and (N + 1) co-

exist for µ ∈ (µPD,N,p, µBC,N+1,p). Note that if FCEx(µPD,N,p) = 0 then µPD,N,p =

µBC,N+1,p and the period-N and (N + 1) maximal periodic orbits coincide at precisely

that value.

Consider

FCEx(µPD,N,p) =

(1 + p)
(
ηppλN−1

) 1
1−p − ηλN−1

(
1− λ

1− λN

(
λN−1`+

(
ppηλN−1

) 1
1−p (p+ 1)

))p
.

Then applying the inequality ` > `2 where `2 is given by (3.34) and simplifying the

negative term yields

FCEx < (1 + p)
(
ηppλN−1

) 1
1−p − ηλN−1

(
1− λ

1− λN
(1 + p)

1
p
(
ηpλN−1

) 1
1−p

1− λN

1− λ

)p
= (1 + p)

(
ηppλN−1

) 1
1−p − (1 + p)

(
ηppλN−1

) 1
1−p

= 0 .

As FCEx satisfies (3.40) for period-(N + 1) orbit, it follows that µPD,N,p < µBC,N+1,p.

Hence period-N and period-(N + 1) maximal periodic orbits coexist for

µ ∈ (µPD,N,p, µBC,N+1,p).

We now discuss the properties of the parameter `2 which are necessary for proving

cases I-III. The parameter `2 tends to zero from the right as N → ∞ and hence all

maximal orbits with large period coexist for any fixed ` > 0. The derivative with
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respect to N of `2 = `2(N) defined in (3.34) is given by

d`2
dN

=
p(p+ 1)(ηλ(N−1)ppp)

1
1−p (−1 + λ+ (p− λN )(1 + p)

1−p
p ) log(λ)

(1− λ)(1− p)
.

The parameter `2(N) has a maximum at N = N̂ where

N̂ =
log[(1 + p)

p−1
p (−1 + λ+ p(1 + p)

1−p
p )]

log(λ)

which is defined if λ > λ2. As N increases, `2(N) increases up to N = N̂ and then

decreases. Hence if a fixed ` > maxN `2 = `2(N̂) then the stable period-N and (N + 1)

maximal periodic orbits coexist for all N and µ ∈ (µPD,N,p, µBC,N+1,p), see Figure

3-7 for an example. We are now able to identify the cases I-III and their respective

parameter regions that give rise to three topographically different dynamics.

Case I: Let λ ∈ (λ1, 1) and choose ` ∈ (0,maxN `1). Then there exists a finite set

Nk = {N1, . . . , Nm} with

3 ≤ N1 < N2 < . . . < Nm

such that each N ∈ Nk satisfies the inequality

` < `1, ∀N ∈ Nk.

Therefore µ = µPD,N,p does not satisfy the condition (3.47), i.e. µ < µ1. This

means that although the orbit LN−1R exists it is not stable for ∀N ∈ Nk. Hence

the only attractor possible is chaotic as this is a one-dimensional map. We can

conclude that for µ ∈ (µPD,N1−1,p, µBC,Nm+1,p) we observe robust chaos.

Increasing N from Nm decreases `1 and `2 and so there exists a finite set Nb =

{Nm+1, Nm+2, . . . , Ns} with

Nm < Nm+1 < Nm+2 < . . . < Ns

such that each N ∈ Nb satisfies the inequality

` < `2 ∀N ∈ Nb.

As a result of this the condition (3.47) now holds for µ = µPD,N,p. But as ` < `2

it follows that FCEx, defined in (3.50), is greater than zero and we conclude

that period-N and (N + 1) maximal periodic orbits do not coexist. As the

period-N maximal periodic orbit loses stability before the period-(N + 1) orbit

is created in a border-collision bifurcation, we observe a chaotic attractor for
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µ ∈ (µBC,N+1,p, µPD,N,p) for all N ∈ Nb. As N increases from Ns + 1, the

parameters `1 and `2 decrease. Then both the existence condition, µ > µ1, and

the stability condition, FCEx < 0, are satisfied for the period-N maximal orbit

with N ≥ Ns + 1. Thus period-N and (N + 1) maximal periodic orbits coexist

for µ ∈ (µPD,N,p, µBC,N+1,p).

Case II: Assume 3.35 and 3.36. Then `1 < 0 and the stable LN−1R orbit exists for µ ∈
(µPD,N,p, µBC,N,p) for all N ≥ 2. There exists a finite set Na = {N1, N2, . . . , Nα}
with 3 ≤ N1 < N2 < . . . < Nα such that N ∈ Nα satisfies the inequality

0 < ` < `2

if (3.35) holds or

max
N

`1 < ` < `2

if (3.36) holds. For fixed ` in these intervals the coexistence condition does not

hold, i.e. FCEx > 0. Thus by the same argument as in the previous case, a

chaotic attractor exists for µ ∈ (µBC,N+1,p, µPD,N,p) for all N ∈ Na. Increasing

N beyond Na+1 results in a decrease in the parameter `2 and now the coexistence

condition, FCEx < 0, holds as well. Therefore period-N and (N + 1) maximal

periodic orbits coexist for µ ∈ (µPD,N,p, µBC,N+1,p) for all N ≥ Nα + 1.

Case III: Assume λ ∈ (0, 1) and ` > maxN `2. Then both the existence condition,

µ > µ1, and the coexistence condition, FCEx < 0, are satisfied for all N ≥ 2.

Hence stable LN−1R orbits exist for µ ∈ (µPD,N,p, µBC,N,p) and period-N and

(N + 1) maximal periodic orbits coexist for µ ∈ (µPD,N,p, µBC,N+1,p).

The fixed point xL, given by (3.6), of fL is the same for the continuous (` = 0)

and discontinuous map (` 6= 0). By Theorem 3.5 it bifurcates into a period-N maximal

periodic orbit of the form LN−1R, with N → ∞, in a border-collision bifurcation at

µ = 0 for all λ ∈ (0, 1), ` > 0, η > 0 and p ∈ (0, 1). This is clearly different to the

three bifurcation scenarios of the continuous PPL map described in Theorem 3.3. In

the case of the discontinuous PPL map, the more complex dynamics is observed as µ

increases from zero which is described by Theorem 3.5.

The approach taken to prove Theorem 3.5 is well suited for studying maximal

periodic orbits of the form LN−1R for all periods N . If we would have chosen to use the

induced map method as in Theorem 3.3 to study the existence and stability of periodic

orbits of the discontinuous map (3.1) we would have only been able to demonstrate that

if ` > 0, maximal periodic orbits are stable and coexist if their period N is large. By

taking a direct approach, i.e. computing smooth and non-smooth bifurcation values,

58



Chapter 3. The Piecewise Power Law Maps with Exponent p ∈ [0, 1]

III

II I

0.2 0.4 0.6 0.8 1.0
Λ

0.2

0.4

0.6

0.8

1.0
{

Figure 3-6: The boundary values maxN `1 (dashed) and maxN `2 (black), where `1 and `2 are
given by 3.33 and 3.34, against λ, where p = 1/2 and η = 1. As described in Theorem 3.5, these
boundary values separate the regions I-III in which qualitatively different bifurcation scenarios
arise in the PPL map f(xn; p, `). For the values of ` and λ in region I we observe case I, in
region II we observe case II and in region III we observe case III.

µBC,N,p and µPD,N,p, we are able to compute the existence and stability conditions for

all periods-N periodic orbits.

From Theorem 3.5 we can deduce the effects the discontinuity ` and the exponent

p have on the map (3.1) and its dynamics.

Although Theorem 3.3 for the continuous PPL map (` = 0) is not included within

Theorem 3.5 it can be easily deduced from this proof. Assume that ` = 0, then for

large N condition ` < `1 holds if λ < λ1. Then stable maximal periodic orbits exist

(intermediate case); otherwise, if λ ∈ (λ1, 1), all orbits are unstable and robust chaos

is observed, weakly stable case. Similarly, two neighbouring orbits coexist if 0 = ` > `2.

Hence for large enough N the parameter λ ∈ (0, λ2) which is consistent with the strongly

stable case.

Furthermore, we observe robust chaos in the continuous PPL map for λ > λ1

because then `1 → 0+ as N tends to infinity, i.e. `1 approaches zero but never becomes

zero, Figure 3-7. This implies that the maximal periodic orbits do not regain stability

for ` = 0. However, if λ < λ1 then `1 → 0− and so all stable maximal periodic orbits

exist. A similar case can be made for coexisting orbits of period-N and period-(N + 1)

by analysing the limit of `2 as N tends to infinity, Figure 3-7.

Both continuous (` = 0) and discontinuous (` > 0) PPL maps give rise to the
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Figure 3-7: Semi-log plot of µ against `. As µ decreases towards zero the period-N orbit
LN−1R is created in a border-collision bifurcation at µ = µBC,N,p and loses stability in a period-
doubling bifurcation at µ = µPD,N,p. We plot µBC,N,p and µPD,N,p, as defined in (3.31) and
(3.32) against the discontinuity ` for N = 2, . . . , 28, (where p = 1/2, λ = 0.825, η = 1). Here
we see when the periodic orbit LN−1R is stable (orange), unstable (blue) and when neighbouring
period-N and (N + 1) orbits coexist (red). For ` > 0.1 the maximal periodic orbits are stable
for all N , whereas for ` < 0.1 robust chaos is possible. The white space is due to uncomputed
periodic orbits, i.e. where period-N periodic orbits lie with N ≥ 29.

same creation and destruction mechanism of maximal periodic orbits LN−1R in the

period-incrementing cascade, i.e. for p ∈ (0, 1) an orbit is created in a border-collision

bifurcation at µ = µBC,N,p and loses its stability in a period-doubling bifurcation at

µ = µPD,N,p as µ is decreasing towards zero. As we have seen in the previous Section

3.1, this is not the case for discontinuous linear map f(xn; 0, 0) (3.1) with p = 0 and

` = 0. In fact, µ = µPD,N,p = µBC2,N,0, given by (3.27), another border-collision

bifurcation point, for p = 0. To give evidence, we consider the derivative in (3.43)

which is zero if p = 0. Hence the only restriction that needs to be imposed to ensure

existence and stability of maximal periodic orbits is (3.44), i.e. xN > 0, with boundary

value xN = 0 which is a border-collision bifurcation point.

Set p = 0 and let ` > 0. Then the resulting map f(xn; 0, `) in (3.1) is the same

linear discontinuous map f(xn; 0, 0) in (3.1) that was discussed in the previous Section

3.1 with the exception of its discontinuity. The only difference is that the discontinuity

of f(xn; 0, 0) is η and of f(xn; 0, `) is η+ `. Hence the same dynamics, a strongly stable

period-incrementing cascade, results. Further, the bifurcation points µ = µPD,N,0 ≡
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(a) (b)

Figure 3-8: The bifurcation structure of the discontinuous PPL map f(xn; p, `) with p =
1/2, η = 1 and λ = 0.825. By Theorem 3.5 we observe a period-incrementing cascade with
chaotic windows for ` = 0.11 (Figure 3-8a), whereas for ` = 0.9 (Figure 3-8b), we observe
robust chaos for µ ∈ (0.008, 0.05) (equivalent to black line in Figure 3-7).

µBC2,N and µBC,N,0 agree with (3.27) if we substitute η + ` for η.

Finally, set p to one, then the resulting map f(xn; 1, `) (3.1) is a discontinuous linear

map. For µ > 0 case III applies as both `1 and `2 are zero if p is one. Thus no ` exists

that satisfies the other two cases, I and II. We restrict our attention to η ∈ (0, 1) as

then by Theorem 3.5 the maximal periodic orbits of all periods-N exist and are stable

for µ ∈ (µPD,N,1, µBC,N,1) given by

µPD,N,1 =
1− λ

1− λN
λN−1`,

µBC,N,1 =
(1− λ)λN−2`

1− λN−1 − ηλN−2(1− λ)
> 0.

This agrees with the dynamics of the maps that are special cases of 3.1 presented in

the literature [34, 6].

3.3 The Discontinuous PPL Map II: ` < 0

We will show in this Section that also in the case of negative discontinuity, i.e. ` < 0,

the dynamics of the PPL map is intricate. First we will demonstrate that periodic

orbits of the form LN−1R cease to exist for ` small enough. However, other periodic

orbits can be observed, e.g. Figure 3-9. For a better understanding of these dynamical

features, at the end of this Section we will briefly consider the piecewise linear map

(p = 1) and nonlinear map (3.1) when the multiplier λ is zero.

Proposition 3.6. Assume that 0 < λ < 1, η > 0, N ≥ 2 and ` < 0. Consider the
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(a) (b)

Figure 3-9: Bifurcation plots illustrating Case 2 of Proposition 3.6. Figure 3-9a: (where
λ = 0.4, ` = −0.5, η = 1, p = 0.5) Period-adding cascade close to µ = 0 and chaotic attractor.
No maximal periodic orbits. Figure 3-9b: (where λ = 0.1, ` = −0.2, η = 0.8, p = 0.5)
Period-adding cascade and period-incrementing cascade of LR2N−1.

(a) (b)

Figure 3-10: Piecewise-linear map (λ = 0). Figure 3-10a: As µ increases through zero we
observe stable periodic orbits LR2N which accumulate in a stable fixed point xFP followed by
stable periodic orbits LR2N−1. (Parameters: ` = −0.1, η = 1.8 and p = 1). Figure 3-10b PPL
map with p = 1/2: As µ increases through zero we observe the same type of stable periodic
orbits. Further, we have an additional point of accumulation, R2 which is followed by a stable
fixed point. The latter is not present in the piecewise linear map. (Parameters: ` = −0.2, η = 1
and p = 0.5).
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discontinuous map f(xn; p, `) in (3.1). Suppose there exists `1 is given by (3.33) and

`2 given by

`2 := η(p− 1)

(
ηpλN−2(1− λ)

1− λN−1

) p
1−p

< 0,

which is negative for all parameters involved. Suppose further, that there exists µPD,N,p

given by (3.31) and µBC,N,p given by (3.32).

Then we observe the following cases:

Case 1 : Period-incrementing cascade does not exist for all periods N .

• If λM > 2λ− 1 and ` ∈ (`2, 0), or

• if 2λ− 1 > λM > ((1 + p)λ− 1)/p and ` ∈ (`1, 0)

then periodic orbits of the form LN−1R are stable for 2 ≤ N ≤M . The closer `

is chosen to zero the larger M is.

Further, if 2λ− 1 > λM > ((1 + p)λ− 1)/p and `2 < ` < `1, then these periodic

orbits exist but are unstable.

Case 2 : No Existence.

If 0 < λ < 1 and ` < `2|N=2 then periodic orbits of the form LN−1R do not exist.

Further, period-N orbits of the form LN−1R are stable in the interval (µPD,N,p, µBC,N,p).

Proof. Similar to Theorem 3.5.

Therefore, the closer ` is to zero the more maximal periodic orbits exist and are

stable but never for all N , i.e. period-incrementing is not robust.

We return to the piecewise linear map (p = 1). It has been documented in e.g. [34]

that for 0 < λ < 1, η < 1 and ` = −1 two fixed points are observed which coexist in the

discontinuity region. However, for η > 1 we obtain two kinds of period-incrementing

cascades, see Figure 3-10. As µ increases through zero we observe stable periodic orbits

of the form LR2N and their period increases by two as µ increases. Moreover, these

orbits accumulate in a stable fixed point

xFP,p ≡ µFP,p =

(
−`
η

)1/p

and are followed by stable periodic orbits of form LR2N−1 whose period decreases by

two as µ increases.

Similar dynamical behaviour occurs for the nonlinear map (0 < p < 1). As µ

increases through zero we observe the same types of stable periodic orbits. Further,

LR2N−1 accumulates in the periodic orbit R2. The orbit R2 is given by the iterates
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xR1 = fe(xR2) > 0 and xR2 = fR(xR1) > 0. Hence xR1 = f(f(xR1)) and xR2 =

f(f(xR2)). The accumulation occurs if xR1,p = µFP,p and xR2,p = µR2,p where µR2,p

satisfies

µR2,p − ηµpR2,p − `−
(
−`
η

) 1
p

= 0. (3.51)

For the square-root map (p = 1/2) this equation can be solved exactly and we obtain

µR2,1/2 =

(
η +

`

η

)2

. (3.52)

In the case when ` > −η2/2 it follows that µR2,1/2 > µR1,1/2 and both accumulation

points are stable, see Figure 3-10b. Otherwise, the fixed point is unstable and the only

stable periodic orbits are LR2N which accumulate in the periodic orbit R2, see Figure

3-9a.

We can see from the results shown in Figure 3-10 that there is a coexistence of

periodic orbits accumulating at a stable R2 orbit.

Numerical results, e.g. a comparison of Figure 3-9 with 3-10, show that the left multi-

plier λ introduces chaos into the dynamical system and introduces a Farey tree struc-

ture to the periodic orbits of the form LR2N . These periodic orbits become stable in

a period-doubling bifurcation and are destroyed in a border-collision, in contrast to

the periodic orbits LR2N−1 which are stabilised and destroyed in a border-collision

bifurcation. It is notable that these are not the only stable periodic orbits that can be

observed. But numerically they don’t appear to be stable for N →∞, see Figure 3-11.

Finally, it is noteworthy that for ` < 0 there is an incredible variety of stable periodic

orbits which is not the case for ` > 0 or for the continuous map for that matter. As can

be seen in Figure 3-11 there are still other periodic orbits that we have not mentioned

yet. However, these will have to be the subject of future investigations.

3.4 Conclusions

In this Chapter we have considered the piecewise power law map (3.1). We assumed

that its linear LHS function has increasing slope λ less than one. Thus its stable

fixed point undergoes a border-collision bifurcation at the point x = 0 and µ = 0.

For µ > 0 the map’s dynamics is complex and depends on the eigenvalue λ, and the

parameters of the nonlinear RHS function, in particular the exponent p ∈ (0, 1) and

the discontinuity `. We have distinguished between three cases that show qualitatively

different bifurcation scenarios depending on the discontinuity `. The three cases are

` = 0, ` > 0 and ` < 0. In the first case, ` = 0, we have shown that, depending
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Figure 3-11: Bifurcation diagram for square-root map with λ = 0.1, ` = −0.02, η = 1.
Period-adding cascade near border-collision bifurcation point x = 0, µ = 0. As µ is increased
from µ = 0 we observe a chaotic attractor and a period-incrementing cascade.

on the given parameters, we observe robust chaos, a period-incrementing cascade of

maximal periodic orbits which are separated by chaotic windows or which coexist.

This dynamics is observed for µ > 0 and close to the border-collision bifurcation value

µ = 0. The general conditions we have derived show that the exponent of the nonlinear

term p influences the size of the regions where these dynamics occur but not the general

features.

In the second case, ` > 0, we have shown that the dynamics is more stable than for

the continuous map (3.1). By that we mean that for µ > 0 and close to the border-

collision value µ = 0, a stable periodic-incrementing cascade exists for any ` > 0. Other

dynamics such as robust chaos and chaotic attractors are still found in the map but

away from the border-collision value µ = 0.

For all the cases, we have derived general existence and stability conditions for

maximal periodic orbits of the form LN−1R. We have shown that the maximal periodic

orbit is the prevalent feature of the map’s dynamics if ` ≥ 0 and that it is the building

block of the period-incrementing cascade. If ` < 0 then cascades of periodic orbits

exist but these do not contain the maximal periodic orbit for large periods N . Instead

we have seen periodic orbits with at least two iterates on the RHS. Furthermore, for

` < 0 we have numerically observed period-adding cascades, which do not feature in

the map’s dynamics if ` ≥ 0.
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We have also found good agreement results on maps presented in the literature,

which are special cases of the piecewise power law map (3.1). These special cases

include the piecewise-linear map [34, 6, 7, 5, 8, 9, 16, 59, 31] and the square-root map

[34, 90, 91, 92, 38, 8, 102, 24, 17].
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CHAPTER 4

The Piecewise Power Law Maps with

Exponent p > 1

In this Chapter we extend the work of Chapter 3 to look at superlinear discontinuous

maps, which have qualitatively different behaviour from sublinear maps. In particular

we are interested in understanding the dynamics that arise in the following map

xn+1 =

{
fL(xn) = λxn + a if xn < 0

fR(xn) = −ηxpn + b if xn ≥ 0
(4.1)

where λ ∈ (−1, 1), a ∈ R, η ∈ R can be scaled such that η ∈ {−1, 0, 1}, p > 1 and

b ∈ R. We will refer to the map given by (4.1) as the superlinear piecewise power

law map (SPPL map). If a = b then the SPPL is continuous. If a 6= b then the

SPPL map is discontinuous.

In Chapter 2 we have introduced, and in Chapter 3 we have studied, two types of bi-

furcation cascades that arise through non-smooth bifurcations, the period-incrementing

cascade and the period-adding cascade. These cascades have been observed in the

SPPL map (4.1) with

• η = 0, λ ∈ (−1, 1), a ∈ R and b ∈ R. Then the SPPL map becomes the piecewise-

linear map which has been studied by Avrutin and Schanz in [6].

• a = b ∈ R, p ∈ {3/2, 2}, λ ∈ (−1, 1) and η ∈ {−1, 1} in [56]. Halse et al [56]

pay particular attention to studying the period-incrementing cascade with a as

the bifurcation parameter. For the periodic orbits of this cascade they derive

existence and stability conditions. These maps arise in planar piecewise smooth

systems where grazing or sliding occurs [34].
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Glendinning [51, 52] observed a third cascade in piecewise-smooth superlinear type

maps that is unlike the period-doubling or period-adding cascade. Glendinning studied

a family of maps where both fL and fR are nonlinear, fL is decreasing and fR is

increasing. We will refer to the maps he studied as fGlen maps. In [51, 52] Glendinning

showed that as the bifurcation parameter b decreases the period-N periodic orbits are

ordered according to the following sequence of periods N :

N = p1, 2p1, p2, 2p2, . . . where pk+1 = 2pk + (−1)k with p0 ∈ N (4.2)

for k ∈ N0. A cascade with such an ordering of bifurcating periodic orbits is termed

anharmonic cascade. The anharmonic cascade has only been reported in superlinear

maps [51, 52], not in sublinear maps, such as those studied in Chapter 3.

Our novel, primary observation is the existence of the anharmonic cascade in the

SPPL map (4.1) which is illustrated in Figure 4-1.

Furthermore, Gardini et al. [49] and Tramontana and Gardini [115] show that

continuous and discontinuous SPPL type maps arise from economic applications.

Sufficient conditions for a period-incrementing cascades for a one-dimensional map

have been presented in [5]. Although the map (4.1) that we study is a special case

of the map investigated by Avrutin and Schanz [5], we analyse it differently using

similar methods to those described in Chapter 3 and numerically computed bifurcation

diagrams.

4.1 The Anharmonic Cascade in the SPPL map

Consider the map (4.1) with the following parameters

λ ∈ (−1, 0), a ≤ 0, η = −1, p > 1 (4.3)

where b ∈ R is chosen to be the bifurcation parameter.

Fixed Points

We will now consider fixed points of the map (4.1). The map fL, (4.1), has one fixed

point x = xL (Figure 4-1) given by

xL =
a

1− λ
.

It is admissible, i.e. xL < 0, and stable for all b ∈ R given the parameters in (4.3).

The map fR, (4.1), has two fixed points, x = xR1 (Figures 4-1 and 4-1c) and x = xR2
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(Figure 4-1c), which can be obtained by solving the nonlinear equation

xp − x− b = 0.

To see that this equation has at most two solutions, and hence two fixed points, x = xR1

and x = xR2 for b ≤ 0, solve it for b. Then we obtain the function b(x) given by

b(x) = xp − x.

This function has two zeros at x = 0 and x = 1 and a minimum value at x = xF :=

p1/(1−p). Therefore it has at most two solutions for any fixed b ≤ 0.

The fixed points xR1 and xR2, which are created in a smooth fold bifurcation at

b = bF := (1− p)pp/(1−p) < 0, exist for b > bF . Let xR1 < xF , i.e. the lower fixed point

branch, and let xR2 > xF , i.e. the upper fixed point branch. Then xR2 is unstable for

all b > bF as |f ′R(xR2)| > 1 and the lower fixed point xR1 is stable for all b > bF as

|f ′R(xR1)| < 1. The fixed point xR1 is destroyed in a border-collision (BC) bifurcation

at the point x = 0, b = 0. Hence the stable fixed xR1 exists for b ∈ (bF , 0).

The Anharmonic Cascade

Numerically, we find that for b > 0 the border-collision bifurcation gives rise to a

cascade of bifurcating periodic orbits, which is termed anharmonic cascade, Figure 4-1.

As the bifurcation parameter increases from b = 0, the periods N of the periodic orbits

are given by the following sequence:

N = p1, 2p1, p2, 2p2, . . . where pk+1 = 2pk + (−1)k with p0 = 1 (4.4)

for k ∈ N0. We plot two bifurcation diagrams with the parameters λ = −0.9, η = −1,

p = 2 and a = −0.1, shown in Figures 4-1a and 4-1b, and a = 0, shown in Figure 4-1c.

In these Figures 4-1a - 4-1c, the sequence of periods N is

2, 4, 3, 6, 7, 14, 13, . . . .

Numerically (Figure 4-1) we find that the mechanism for creation and destruction of

periodic orbits, as b increases from b = 0, is as follows. Periodic orbits of period-N are

created in a border-collision bifurcation at b = bBC,1,N and lose stability in a smooth

period-doubling bifurcation at b = bPD,N . At b = bPD,N the birth of a period-2N

periodic orbit occurs. Increasing b further, it ceases to exist in a second border-collision

bifurcation at b = bBC,2,2N , Figure 4-1. In Figure 4-1a, for example, the period-2 and

period-4 periodic orbits have the following bifurcation values (approximations):

bBC,1,N ≈ 0.116, bPD,N ≈ 1.036, bBC,2,2N = 1.344.
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(a) (b)

(c)

Figure 4-1: At the BC bifurcation point x = 0, b = 0, the stable fixed point xR1 > 0 bifurcates
into an anharmonic cascade where λ = −0.9, η = −1, p = 2 and a = −0.1, in Figures 4-1a
and 4-1b, and a = 0 in Figure 4-1c. Figure 4-1b is a magnification of Figure 4-1a. The stable
fixed point xL = a/(1 − λ) = −0.053 in Figures 4-1a and 4-1b or xL = 0 in Figure 4-1c. In
Figure 4-1c at b = 2.3 the cascade appears to bifurcate with the unstable fixed point xR2 (blue
dotted line) and cease to exist as b increases. Chaos is observed for a = 0 in Figure 4-1c but
not for a = −0.1 in Figures 4-1a and 4-1b.
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As b increases, we conjecture that the period N tends to infinity and the quantity

bBC,2,2N − bBC,1,N tends to zero. This has been proven for the map fGlen in [51, 52]

but not for the SPPL map. Furthermore, in Figures 4-1a and 4-1c we observe that the

stable periodic orbits of the anharmonic cascade accumulate at a point of accumulation

b = b∞, much like the logistic map in Chapter 2. However, it is difficult to determine

this point numerically as the intervals in which the periodic orbits are stable become

very small as b increases towards the point of accumulation. We approximate that in

Figure 4-1b the accumulation point is b∞ = 1.9.

Finally, as b increases beyond the point of accumulation b∞, periodic orbits and

chaotic attractors arise for a = 0 and only periodic orbits for a < 0. For a = 0, the

cascade appears to be destroyed when it bifurcates with the unstable fixed point xR2

at b ≈ 2.35, Figure 4-1c. We conjecture that the same happens for a < 0, however this

is harder to see as the existence and stability intervals of stable periodic orbits near

that point are much smaller.

4.2 Period-Incrementing and Period-Adding Cascades

Consider the map (4.1)

λ ∈ (0, 1), a > 0, η = 1, p > 1, (4.5)

where b ∈ R is chosen to be the bifurcation parameter.

Case b < 0: Period-Incrementing Cascade

Let b < 0 then we observe a period-incrementing cascade of stable periodic orbits of

the form LN−1R with N ≥ 2, which are called maximal periodic orbits and were

defined in Chapter 3. As we decrease b these orbits are created in a border-collision (BC)

bifurcation at b = bBC1,N and are either destroyed in a border-collision at b = bBC2,N

(Figure 4-2a) or lose their stability in a period-doubling (PD) bifurcation at b = bPD,N

(Figure 4-2b) as b increases. If the latter is the case then the stable periodic orbit of

the form (LN−1R)2, which arises from the period-doubling bifurcation, is destroyed

in a border-collision bifurcation at b = bBC4,N (Figure4 − 2b). Furthermore, periodic

orbits of the form (LN−1R)2 do not exist for large N . This is the case because the

border-collision bifurcation occurs before the period-doubling bifurcation.

We state for what parameter values these scenarios occur in the following Theorem.

Theorem 4.1. Consider the SPPL map given by (4.1). Let N ≥ 2, a > 0, 0 < λ < 1,
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b < 0 and η = 1. Define the parameters bPD,N , bBC1,N , bBC2,N and bBC4,N to be

bPD,N =

(
p+ 1

p

(
1

ηλN−1p

) 1
p−1

− a(1− λN−1)

1− λ

)
1

λN−1
,

bBC1,N = −a(1− λN−1)

λN−1(1− λ)
,

bBC2,N = ηap − a(1− λN−2)

λN−2(1− λ)
,

bBC4,N =

((
1

ηλN−1p

) 1
p−1

− a(1− λN−1)

1− λ

)
1

λN−1
,

respectively. The parameter bBC3,N cannot be defined explicitly but it is the unique

solution b = bBC3,N of the order p algebraic equation

0 = fN−1
L (fR(fN−1

L (fR(0)))). (4.6)

Define the parameters a1 and a2 to be

a1 =

(
1

ηλN−1p

) 1
p−1

, (4.7)

a2 =
p+ 1

p

(
1

ηλN−1p

) 1
p−1 1− λ

1− λN−1
, (4.8)

respectively. Then stable periodic orbits of the form LN−1R exist

Case 1 for b ∈ (bBC1,N , bBC2,N ) if 0 < a < a1.

Case 2 for b ∈ (bBC1,N , bPD,N ) if a > a1. Furthermore, stable periodic orbits of the

form (LN−1R)2 are created in a period-doubling bifurcation at b = bPD,N and are

destroyed in a border-collision bifurcation at

(a) b = bBC3,N if a1 < a < a2.

(b) b = bBC4,N if a > a2.

Proof. The proof for this Theorem is omitted as it follows the same principles and very

similar steps as the proof of Theorem 3.5.

Let N tend to infinity. Then a1, given by (4.7), and a2, given by (4.8), tend to

infinity. Thus, only Case 1 holds in Theorem 4.1 for large N . Then, by Theorem 4.1,

stable maximal periodic orbits exist for b ∈ (bBC1,N , bBC2,N ) but no periodic orbits

of the form (LN−1R)2. This Theorem reveals that for N large enough, the period-

incrementing cascade is comprised of maximal periodic orbits. Furthermore, for large

enough N when only LN−1R are stable, the existence intervals scale with 1/λ as b

decreases.
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(a) (b)

(c)

Figure 4-2: Examples of the dynamics predicted by Theorem 4.1. Figure 4-2a: period-
incrementing cascade with maximal periodic orbits only (Case 1), where p = 2, η = 1, a = 0.3
and λ = 0.5. Figure 4-2b: period-incrementing cascade consisting of maximal periodic orbits
and periodic orbits of the form (LN−1R)2 (Case 2(a)) where p = 2, η = 1, a = 1.7 and λ = 0.5.
Figure 4-2c shows an example for Case 2(b) where p = 2, η = 1, a = 2.5 and λ = 0.5. The
birth of a period-adding cascade is observed in the neighbourhood of the border-collision point
x = 0, b = 0. Observe the existence of an accumulation point of the period-adding cascade at
b ≈ −0.3.
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Case b ≥: Period-Incrementing and Period-Adding Cascade

(a) (b)

(c)

Figure 4-3: Bifurcation diagram showing the bifurcation cascade of the periodic orbits LN−2R2

for b ≥ 0 with p = 2, η = 1. Figure 4-3a: LN−2R2 orbits undergo a border-collision bifurcation
and are organised in a period-incrementing cascade where a = 0.1 and λ = 0.85. Figure 4-
3b: LN−2R2 orbits undergo a fold bifurcation, where a = 0.4 and λ = 0.85. These orbits are
organised in a period-adding cascade. Figure 4-3c LN−2R2 orbits, which are organised in a
period-incrementing cascade, undergo a border-collision bifurcation for a = 0.4 and λ = 0.85.

We now let b ≥ 0. Unlike the previous case, the SPPL map (4.1), in particular fR,

has a fixed point x = xR (Figures 4-2b and 4-2c). This fixed point cannot be defined

explicitly but it is the unique solution x = xR of the order p algebraic equation

x = −ηxp + b.

As b increases it is created in a border-collision bifurcation point at x = 0, b = 0 and

loses its stability in a period-doubling bifurcation at b = bFP,PD which is given by

bFP,PD =
p+ 1

p

(
1

ηp

) 1
p−1

.
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Note that bFP,BC < bFP,PD for all p > 1 and η = 1. Hence, the stable fixed point xR

exist for b ∈ (bFP,BC , bFP,PD).

The notation used in the following paragraph is used for convenience and is only

valid in this Section.

Increasing b beyond b = bFP,PD, we numerically observe periodic orbits of the form

LN−2R2 with N ≥ 3, Figure 4-3. This orbit becomes stable in a fold bifurcation at

b = bF,N (Figure 4-3b) or in a border-collision bifurcation at b = bBC1,N (Figure 4-3a)

depending on the other parameters λ and a. As b is increased further the periodic orbit

is destroyed in a border-collision bifurcation at b = bBC2,N (Figure 4-3). These values

can only be obtained explicitly for p = 2, except for bF,N which is given by

bF,N :=
1

a

(
1

η2λN−2p2

) 1
p−1

+ ηap. (4.9)

From numerically computed two-parameter bifurcation diagrams (a, λ) (Figure 4-

4a) and (a, b) (Figure 4-4b) we can identify the critical parameter values for which

the periodic orbit of the form LN−2R2 is stable. The stable orbit LN−2R2 exists for

b ∈ (bBC1,N , bBC2,N ) if λ and a are chosen such that they lie in the region below all

blue curves in Figure 4-4a.

Furthermore, for fixed λ the orbits LN−2R2 undergo a fold bifurcation only for

finitely manyN (Figure 4-4a). Thus for largeN the existence interval is (bBC1,N , bBC2,N )

for all λ, a, η and p.

(a)

(b)

Figure 4-4: Two-parameter diagram illustrating the bifurcation curves bF,N (blue) in Figure
4-4a (for p = 2, N ∈ 3, 4, 5, 6, 10, 20, 100) and bF,N (green), bBC1,N (blue) and bBC2,N (red) in
Figure 4-4b (for p = 2, λ = 0.85, N ∈ 2, . . . , 9). Figure 4-4a: In the parameter region below
all blue curves the orbit LN−2R2 will not undergo a fold bifurcation, but will do so otherwise.
Figure 4-4b: The switch from yellow to dark grey indicates when bF,N = bBC1,N .
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4.3 Conclusions

In this Chapter we have shown that the superlinear piecewise-powerlaw map gives rise

to bifurcation cascades that have been observed in the sublinear map in Chapter 3

such as the period-incrementing and period-adding cascade. We have also shown that

the birth of the anharmonic cascade occurs in the SPPL map for certain parameter

values. This cascade has only been reported in maps where both function fL and fR

are nonlinear [51, 52]. We have shown numerically that the periodic orbits, organised in

an anharmonic cascade, are created in a border collision bifurcation and lose stability

in a period-doubling bifurcation, which in turn gives rise to a stable periodic orbit

that is destroyed in a border-collision bifurcation. The bifurcation diagrams suggested

that chaotic attractors are only observed in a special case, i.e. when a = 0 but not

otherwise.

For a set of parameter values, in particular b < 0, we derived the general conditions

of existence and stability of maximal periodic orbits. For the same set of parameter

values with b > 0 we used two-parameter bifurcation diagrams to determine the critical

parameter regions in which the periodic orbit of the form LN−2R2 is stable and exists.

The SPPL map (4.1) studied in this Chapter does not contain any linear terms in

the RHS function which could affect the map’s dynamics. Alternatively, to study such

effects of linear terms we propose a perturbation of (4.1)

xn+1 =

{
fL(xn) = λxn + a if xn < 0

fR(xn) = −η(xn + ε)p + b if xn ≥ 0
(4.10)

as a possible avenue for future work.

The period-incrementing cascade has been shown to explain impact patterns result-

ing from grazing bifurcations in mechanical problems. What application would require

a more complex cascade, such as the anharmonic cascade?
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CHAPTER 5

Non-smooth Hopf Type Bifurcations in

Rotating Machinery with Impact and

Friction

5.1 Introduction

In rotating machines that are levitated by magnetic bearings, non-smooth events in-

volving impact and friction can occur between a rotor and its housing, the stator. These

events are undesirable as they may be destructive and hence costly [104]. An under-

standing of the resulting dynamics, often characterised by novel types of non-smooth

bifurcations, could enable rigorous derivation of possible control strategies. Systems

experiencing instantaneous impact and/or friction contact events have been success-

fully modelled by non-smooth hybrid systems, which model the dynamics of systems

with piecewise-smooth flows interrupted by events such as impacts described by maps.

These systems experience energy dissipation, which can be modelled by Newton’s resti-

tution law and Coulomb’s friction law, respectively, [34, 33, 37, 125, 79, 114]. In this

Chapter we adopt this formalism to study a simplified rotating machine, i.e. contact

events between a disk (rotor) and a rigid circular boundary (stator) modelled by a

2-degree of freedom impact-friction oscillator. Although other energy dissipation mod-

els, such as Poisson’s kinetic [75] or Stronge’s energetic [110, 93] laws, can be adopted

all three are equivalent for this system due to the rotor’s properties; we will elaborate

the details in §5.2. The study of such hybrid systems has led to the identification

and classification of many discontinuity induced bifurcations such as the non-smooth

fold or persistence boundary equilibrium bifurcation (BEB) [34, 33, 37]. These arise
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when the regular equilibrium evolves to lie on the impact surface under a change of the

bifurcation parameter. We will demonstrate that, in a suitable rotating frame, such

phenomena occur when considering the rotor motion without contact and in continu-

ous contact (synchronous forward rubbing). However, many more non-smooth related

phenomena exist [34, 33] such as creation of limit cycles at BEB and we identify them

in this Chapter.

In general the behaviour of rotating machines such as these can be very complex.

Simplified models that do not take rotor damping and/or stiffness into account have

been studied in [77, 78]. Li and Päıdoussis [77] focus on numerically investigating

continuous contact (rub) and repeated impact motion which yields rich dynamics such

as chaos as well as non-smooth bifurcation. While Lu et al. [78] analytically derive

existence conditions of periodically impacting motion. Our intention in this Chapter is

not to give a complete survey of such, but to consider a specific form of motion and the

novel Hopf-type bifurcations which lead to this. In particular, Keogh and Cole show

[67] that a rotor stator system with damping and friction can exhibit various forms of

stable and unstable synchronous single impact limit cycles. We now present a global

analysis of the existence of this type of orbit and describe the novel bifurcation of the

aforementioned equilibrium states without impact and two coexisting limit cycles with

different period at the BEB point. This bifurcation has many of the qualitative features

of a smooth Hopf bifurcation in that small amplitude impacting limit cycles of non-zero

period are created close to the BEB point. For the sake of classification we shall call

it a non-smooth Fold–Hopf bifurcation. Our analysis of this bifurcation will be general

and applicable to many other related problems.

Similar discontinuity induced Hopf bifurcations, exhibiting a bifurcation of the reg-

ular equilibrium to one limit cycle, have been observed in planar piecewise-smooth

continuous systems [33, 37, 108] with sliding [62] and with biological applications [107].

In vibro-impacting systems of two degrees of freedom non-smooth Hopf bifurcations

have been observed and can also be a route to chaos. [79, 125].

In the bifurcation analysis we present in this Chapter, when studying the effects

of bearing damping, we find two coexisting smooth fold bifurcations. We also show

the existence of orbits which, at the point of impact, have zero normal velocity and lie

tangential to the impact surface, called grazing orbits [90].

The remainder of this Chapter is laid out as follows. In §5.2, we give a brief

introduction to magnetic bearing systems comprising a rotating circular rotor with

a disk cross-section impacting with a bearing. We derive the non-dimensionalised

equations of the disk in free flight and at impact. In §5.3 we give examples of the

rotor motion in the absence of impact and under impact. In §5.4 we study boundary

equilibrium bifurcations of synchronous non-impacting states. To do this, the hybrid

system approach for modelling systems with instantaneous impact described in [33] is
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adopted. This procedure reveals standard non-smooth fold and persistence bifurcation

for certain parameters. In §5.5 we apply a Poincaré mapping technique which allows us

to determine solutions which are the simplest forms of periodically or quasi-periodically

impacting orbit. The resulting global analysis yields interesting and new smooth and

non-smooth dynamics described above, including the existence of the non-smooth Hopf-

type bifurcations from non-impacting equilibria to periodic orbits with impact. In §5.6

we focus on the local analysis of this Hopf-like bifurcation, looking at a more general

class of problems. This analysis allows us to make more a more detailed (local) study

of the non-smooth Hopf-type bifurcation and the results can be compared with the

calculations in §5.5. Finally, in §5.7 we present our conclusions and suggest some open

questions.

5.2 Introduction to Magnetic Bearing Systems and their

Associated Dynamics

1 Rotating machines are prevalent in engineering applications that require power to be

generated or utilised. The power rating is determined by the product of the driving or

load torque and the rotational speed. In order to operate effectively, a rotor should spin

in a stable manner under the support of bearings. The bearings should also be able

to cope with inherent rotor imbalance and any fault conditions that may occur during

operation of the machine. A number of bearing types are available to designers of

machines, commonly including those based on rolling ball or cylindrical elements, and

bushings with oil films. Usually, there is a specified maximum operating speed below

which it is safe to run the rotor. If this speed is exceeded for any significant period,

the bearing is likely to fail due to high mechanical or thermal stresses. Gas bearings

may allow higher speed operation, but they are limited in their load carrying capacity

and require a continuous flow of pressurised air. Foil/gas bearings are self-acting and

do not require a pressurised source, though below a threshold speed the foil element is

in rubbing contact with the rotor and is then prone to wear.

Active magnetic bearings have been under development since the 1970s [63] and

have seen a growing number of applications including in turbomolecular and vacuum

pumps [63], compressors [63], motors [63], generators [63], centrifuges [63], flywheels

[63] and beam choppers [63]. An arrangement of electromagnets under feedback con-

trol enables a rotor to be levitated. It may then rotate without direct interaction with

bearing surfaces or fluids, which has advantages in terms of friction reduction and the

elimination of the need for pressurised oil or gas supplies. Higher operating speeds are

therefore possible. However, magnetic bearing functionality may be compromised by

failure of power supplies, which would lead to rotor delevitation. Also, any external dis-

1beginning of Patrick Keogh’s first comment
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turbance may cause the load capacity of the bearing, which is limited by magnetic flux

saturation, to be exceeded. Magnetic bearings may be configured to transmit low forces

at a particular operating speed, through use of a notch filter in the feedback control,

but high acceleration input disturbances, e.g. shock conditions, would be problematic.

For these reasons, magnetic bearings usually contain secondary touchdown bearings

to prevent rotor motion from exceeding damaging limits. The design issues for such

systems are given in [80].

Although some studies have been made to investigate the nonlinear rotor dynamics

that arise from rotor contact with touchdown bearings, the problem is still not com-

pletely understood [63]. The condition for backward whirl rubbing, which may involve

severe contact forces is understood as the condition in which the rotor is in rolling con-

tact with the touchdown bearing [67]. A number of authors have considered the dynam-

ics of a rotor within a clearance space [11, 13, 20, 21, 25, 39, 40, 64, 69, 74, 88, 87, 121].

With respect to operational magnetic bearing systems, which is in contrast to non-

operational delevitation, it is important to gain a full understanding of all nonlinear

dynamic issues so that appropriate control action may be designed to recover contact-

free levitation. Without this knowledge it is not possible to ensure that normally

levitated control is recoverable.2

(a)
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R
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Figure 5-1: Fixed Frame: (5-1a) The active magnetic bearing (AMB) currents, iU and iL, are
shown in the vertical axis only. With appropriate control, these determine the AMB stiffness
and damping characteristic. (5-1b) The rotor-touchdown bearing (TDB) impact at the contact
point CP ; contact force Fc and frictional force µFc are acting. The rotor centre is shown in
both complex coordinate z and polar coordinates (r̃, θ̃). In free flight its motion is constrained to
be within the clearance disk (white). The rotor is affected by mass imbalance with eccentricity
ec and phase angle φ.

The mechanical model, illustrated in Figure 5-1, is adopted from [67]. It comprises a

2end of Patrick Keogh’s first comment
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spinning rotor with disk cross-section of radius R rotating inside a circular touchdown

bearing. At the bearing centre lies the origin from which we measure the rotor’s

position (disk centre) in polar coordinates (r̃, θ̃). The rotor comes into contact with

the bearing when r̃ = cr. We describe the position of the centre z at time τ using

complex coordinates in the form

z(τ) = x̃(τ) + iỹ(τ) = r̃(τ)eiθ̃(τ).

The system under consideration has magnetic bearing supports which are under

proportional-integral-derivative (PID) control. Then the rotor’s motion can be approx-

imated by a linear spring-damper system with stiffness k and damping c, [67]. Further,

the rotor, of mass m spinning at constant speed Ω > 0, is affected by mass imbalance.

In free flight when the rotor centre, defined by the complex coordinate z, lies within the

clearance circle with radius cr it satisfies a linear constant coefficient complex valued

ODE,

mz̈(τ) + cż(τ) + kz(τ) = fu e
iΩτ if |z(τ)| < cr (5.1)

where m, c and k are real and positive parameters. The forcing term depends on the

angular speed Ω as well as the complex imbalance force fu, which is given by

fu = mec Ω2eiφ

where e is the imbalance eccentricity (distance between geometric centre and centre of

mass) and the imbalance phase φ, see Figure 5-1.

It is possible to introduce integral control action in equation (5.1). For real machines

the integral (I) gain would be typically set at a level that gives rise to a dynamic mode

having a very long time constant. Thus, when the magnetic bearing is activated the

integral action ensures that the rotor rises slowly to the bearing centre. Thereafter,

it is common to set the integral gain to zero and the established control currents

will continue to levitate the rotor at the bearing centre. The remaining proportional

(P) and derivative (D) gains will then cause the spring-damper terms to be effective

when the rotor deviates from levitated equilibrium at the magnetic bearing centre.

Hence equation (5.1), without integral control action, is representative of a practically

levitated and spinning rotor.

We assume that the system experiences an instantaneous collision at time τi,− when

the rotor centre z comes into contact with the clearance circle, i.e. |z| = cr, and in

that case a reset law applies. With τi,− we denote the impact time as the rotor is

approaching the stator and with τi,+ as the rotor is leaving the stator. Before stating

the reset law we will specify our assumptions. First, the stator is assumed to be

infinitely stiff and to behave like a fixed impact surface. Second, as the rotational

speed Ω is high, the change of Ω during impact is negligible and hence we presume
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that it remains unchanged during impact. Third, at the point of contact, the relative

tangential velocity vrel(τi,−) between the rotor and frame is given by

vrel(τi,−) = RΩ + cr
˙̃
θ(τi,−). (5.2)

If
˙̃
θ(τi,−) > −RΩ/cr then the relative tangential velocity does not change sign at im-

pact. In §5.4 and in §5.5 we will show that this condition is satisfied for the periodically

impacting limit cycles considered in this Chapter. Hence, it follows that the three co-

efficient of restitution models, i.e. kinetic, kinematic and energetic, yield the same

impact velocity, [110, 93]. It has been shown in [110] that if vrel(τi,−) is not constant

during an instantaneous impact with friction then the kinetic and kinematic models

can lead to a non-physical increase in kinetic energy.

Finally, at the impact time τi,− the rotor experiences an impulsive normal con-

tact force Fc in the z-direction with an associated impulsive frictional force Ff in

the iz-direction. The energy dissipation in the normal contact direction is approxi-

mated by Newton’s coefficient of restitution d and in the tangential contact direction

by Coulomb’s coefficient of friction µ. This gives

Ff = −µ sgn(vrel(τi,−))Fc = −µFc = −µ(1 + d)m ˙̃r(τi,−)δ(τ − τi,−) (5.3)

where ˙̃r(τi,−) is the normal impact velocity and δ is the Dirac delta function.

Under these assumptions the rotor’s position is unchanged by the impact:

z(τi,+) = z(τi,−) ≡ z(τi).

In contrast its complex velocity changes instantaneously and satisfies a reset law given

by

ż(τi,+) = ż(τi,−)− qRe(z∗ż(τi,−))z

|z|2
= ż(τi,−)− q ˙̃r(τi,−)

z

|z|
. (5.4)

where q = (1 + d)(1 + iµ) and z∗ is the complex conjugate of z. Note that although

the reset law is nonlinear in the (x̃, ỹ) Cartesian frame with z = x̃ + iỹ, it is linear in

the polar coordinates frame (r̃, θ̃) and we have

˙̃r(τi,+) = −d ˙̃r(τi,−) (5.5)

˙̃
θ(τi,+) =

˙̃
θ(τi,−)− µ(1 + d)

˙̃r(τi,−)

cr
. (5.6)

3 There is a range of designs for practical touchdown bearings, including bushing

and rolling element types. These are mounted in housings, either directly as push fits

or with some compliant backing material to provide some degree of cushioning. A

3beginning of Patrick Keogh’s second comment
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rotor mounted touchdown sleeve may be included as another component. However, a

requirement is that the rotor motion must be constrained sufficiently so as to protect the

rotor and magnetic bearing. This necessitates that the radial stiffness associated with

a touchdown bearing must be significantly greater that associated with a magnetic

bearing [104, 112, 111]. Any contact between a rotor and touchdown bearing will

generate a finite region of contact, the size of which will depend on material properties

and contact force. The contact mechanics will also determine the level of penetration or

relative closure of the touchdown bearing and rotor geometric centres under contact. In

the limiting case of zero penetration, or infinite contact stiffness, dynamic contact forces

become idealised impulsive approximations to the practically finite contact forces. We

also remark that considerable uncertainty of contact conditions may arise from angular

misalignment between a rotor and touchdown bearing. The impulsive approximation

therefore provides an impact model against which consistent rotor dynamic behaviour

may be derived. For this reason, it is adopted in this Chapter. Predicted rotor motions

will generally involve sequences of instantaneous impacts involving impulsive normal

and tangential forces. In principle, intervals of persistent contact may be regarded as

limiting cases when time intervals between impacts tend to zero [67].4

However, for most of the analysis, except for the BEB computation in §5.4, it is not

appropriate to transform the entire system into the latter frame (r̃, θ̃) as in this frame

the equation of motion (5.1) is nonlinear. It is convenient for further computations to

introduce a complex co-rotating frame with coordinate u so that

z = ueiΩτ .

As the name indicates, this frame rotates synchronously with the rotor at speed Ω. This

will be advantageous when examining synchronous impacting limit cycles. It follows

that by substituting into the defining equations and cancelling the factor of eiΩτ we

have, in free flight,

mü+ (c+ 2imΩ)u̇+ (k −mΩ2 + icΩ)u = mecΩ
2eiφ. (5.7)

A general solution of (5.7) may have an impact at a subsequent time τi. In this case

the reset law (5.4) in the co-rotating frame becomes

u̇(τi,+) = u̇(τi,−)− (1 + d)(1 + iµ)
Re(u(τi)

∗u̇(τi,−))u(τi)

|u(τi)|2
.

where u∗ is the complex conjugate of u. We now non-dimensionalise the system both

to reduce the number of free parameters and also to show that no natural large or small

4end of Patrick Keogh’s second comment
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parameters are present in this system. We introduce a scaled time t = Ωτ , so

d

dτ
= Ω

d

dt
and

d2

dτ2
= Ω2 d

2

dt2
.

This new term moves through one period in time t = 2π if the original time goes

through one period of the forcing term, 2π/Ω. If primes denote differentiation with

respect to the scaled time t

ü = Ω2u′′, u̇ = Ωu′, δ(τ − τi,−) = Ωδ(t− ti,−)

then substituting into (5.7) and dividing by mΩ2 we obtain

u′′ +
( c

mΩ
+ 2i

)
u′ +

(
k

mΩ2
− 1 + i

c

mΩ

)
u = ec e

iφ. (5.8)

Setting the parameters

γ =
c

mΩ
, ω2 =

k

mΩ2
and the variable u = crU (5.9)

then (5.8) in scaled co-rotating complex coordinate U := reiθ becomes

Ü + (γ + 2i) U̇ + (ω2 − 1 + iγ)U = ρ eiφ in |U | ≤ 1 (5.10)

where ρ = ec/cr. The corresponding inertial complex coordinate Z := reΘ with Θ :=

θ + t. Consequently, the reset law is

U(t+) = U(t−) (5.11)

U̇(t+)− U̇(t−) = −q ṙ(t−)U(t−) (5.12)

where ṙ(t−) is the normal velocity in polar coordinates and q = (1 + d)(1 + iµ). The

choices of parameters (in consistent units) corresponding to the experimental applica-

tion in [67] are

m = 50 kg, c = 1400 N s/m, k = 9.8× 105 N/m, ec = 0.3× 10−3 m,

cr = 0.7× 10−3m, R = 0.4× 10−1 m, φ = 0.21 rad, Ω = 184.2 rad/s,

µ = 0.15, d = 0.95

and the revised parameters, valid in the unit disk after rescaling are

γ ≈ 0.152, ω ≈ 0.76, ρ = 3/7 ≈ 0.428, µ = 0.15, d = 0.95

i.e. all the parameters are now order one and there are no privileged small or large

parameters. In this Chapter the bearing damping coefficient γ > 0 will act as the
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bifurcation parameter and the remaining parameters will take the values given above

unless stated otherwise.

5.3 Basic Solution Types of Synchronous Rotor Dynamics

In this Section we introduce the simplest solution types in the co-rotating frame, and

in particular study solutions which are either not in contact, or are in continuous

contact, or which have instantaneous impacts. To do this we firstly, we rewrite the

scaled equations of motion (5.10) as a first order complex system. This will be helpful

in the global and local analysis of a periodically impacting orbit in later Sections. Let

the complex vector w(t) = (U(t), U̇(t)), then the equation of free motion of the rotor

centre U in terms of w is given by

ẇ(t) = Aw(t) + b if |U | < 1 (5.13)

where the matrix A and the vector b are constant and are defined by

A =

(
0 1

1− ω2 − iγ −γ − 2i

)
and b =

(
0

ρeiφ

)
. (5.14)

If |U | = 1 an impact occurs and then the rotor position U and velocity U̇ obey the

reset law given by

w0,+ = w0,− −

(
0

qṙ0,−U0

)
if |U | = 1 (5.15)

where q = (1+d)(1+iµ) and we simplify the notation w(t0,+) ≡ w0,+. As the equation

of motion (5.13) is linear and the vector b is constant the general solution with initial

conditions w(t0,+) given by (5.15) can be written as

w(t) = exp(A(t− t0))
(
w0,+ +A−1b

)
−A−1b if |U | ≤ 1. (5.16)

The eigenvalues λ± of the matrix A are given by

λ± =
−γ + i

(
−2±

√
4ω2 − γ2

)
2

(5.17)

with real part Re(λ) = −γ/2 < 0 as we assume (given the experimentally defined

values) that 0 < γ < 2ω. This implies that in the absence of impact there is an

asymptotically stable equilibrium solution given by

w = −A−1b. (5.18)
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Depending on the parameters this equilibrium can lie either

1. inside (equilibrium is physically realistic, we denote this steady state admissible)

2. on: (continuous contact) or

3. outside: (equilibrium is physically unrealistic, we denote this steady state virtual)

the clearance circle. By extension, this nomenclature is implemented for other orbits.

In the first case this motion is called non-contacting whirl, Figure 5-2a. The second case

describes the critical transition point between physically realistic (case 1) and physically

unrealistic orbits (case 3). Due to rotor faults, such as rotor imbalance or mass loss,

more complicated rotor trajectories are possible, such as those involving continuous

(zero normal velocity and non-negative normal acceleration) or instantaneous rotor-

stator contact. When the rotor and stator are in continuous contact, sliding [67] or

pure rolling (if relative tangential velocity vrel(t) = 0, e.g. [67]), are possible. In the

case of sliding, forward rubbing is observed if θ̇(t) > −1 (in the co-rotating frame), and

backward rubbing if θ̇(t) < −1 (in the co-rotating frame). In this Chapter we consider

only one particular type of continuous contact called synchronous forward rubbing, i.e.

in the co-rotating frame the rotor sticks to the stator (tangential velocity θ̇(t) = 0), e.g.

[67]. In particular, we will only study the equilibria of this kind of motion and show

that standard non-smooth bifurcations with the non-impacting equilibrium occurs in

§5.4. Other continuous contact motions are not studied in this Chapter as the reset

law is not sufficient to describe such behaviour and how it arises.

When the rotor and stator experience an instantaneous contact it can lead to orbits

that impact periodically or quasi-periodically and synchronously in the co-rotating

frame, Figures 5-2b, 5-2c. We call these period-T synchronous impacting limit cycles

as the orbit experiences one impact per period T . The limit cycles with small amplitude

(Figure 5-2c) are created in a non-smooth Hopf-type bifurcation, see §5.5. Whereas

limit cycles with large amplitude (Figure 5-2b) can lead to grazing events [90], i.e.

the trajectory interacts tangentially with the impact surface. A systematic way of

analysing such motions with instantaneous impact, is to consider them as orbits of

hybrid piecewise-smooth dynamical systems, in which smooth flows between impact

are combined with maps describing the impact. Such an approach is very suitable for

finding both the existence and the stability of periodic orbits [34] and we will adopt it

here.

In addition to periodic [78] or quasi-periodic orbits [77] it has been shown that in

similar models the rotor-stator motion can be chaotic [77]. Other types of motion can

include an accumulation of infinite number of impacts in finite time [77, 45], often called

chattering. Chattering can lead to sticking [18] and sliding motion [34] and hence can

be used to predict the onset of continuous contact motion without actually computing

continuous contact trajectories. Li and Päıdoussis [77] have done this to identify for
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Figure 5-2: Orbits (black) with period T in the inertial and the rotating frame as well as am-
plitude r(t) against time t. The clearance circle (grey) has radius 1. (5-2a) Regular equilibrium
without impact (γ = 0.3). (5-2b) Limit cycle B1,d near grazing (γ = 0.065). (5-2c) Limit cycle
B1,a near non-smooth Fold–Hopf Bifurcation, (γ = 0.1).
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what values of coefficient of friction, µ, and eccentricity, ec, continuous contact motion

occurs. Similarly, the occurrence of chattering sequences and the possibly resulting

continuous contact also depends on damping, c, and spring stiffness, k, parameters as we

will show in Chapter 6. Such, particle motion can best be systematically described by

set valued functions instead of hybrid systems. These types of models, called differential

inclusion [76] are particularly well suited to analyse problems involving only friction,

e.g. sliding and sticking motion of rotating particles. Such a model, a forced rotating

pendulum in continuous contact with a circular boundary, shows similar features to

ours in that various orbits collapse onto the equilibrium set in finite time [12]. Whilst

it is certainly possible that such chattering and sticking motions may arise in a magnetic

bearing system, in this Chapter we will restrict or analysis to that of the simpler types

of periodic motion described above.

5.4 Boundary Equilibrium Solutions and their Bifurca-

tions

Boundary equilibria are steady states of the form (5.18) that lie on the impact surface,

so that |U | = cr. They are important in the bifurcation analysis of non-smooth systems

as other equilibria or limit cycles can bifurcate from them. In this Section we focus

on the system’s equilibria of both motion in free flight and in continuous contact (only

sticking), called regular and pseudo equilibria respectively, in the co-rotating frame.

The standard theory developed in [33, 37, 34] and introduced in Chapter 2 will be

applied to study their existence and stability and categorise the bifurcation scenarios.

Depending on the system’s parameters we will observe either persistence or a non-

smooth fold. In the first case a regular equilibrium becomes a pseudo equilibrium as

the bifurcation parameter γ is varied. In the second case these two are created in a

fold like bifurcation and coexist.

The analysis using the methods mentioned above is much simpler when the reset

law is linear; this is the case when the system (5.10) is formulated in polar coordinates.

Let the state vector of the rotor centre in polar coordinates x ∈ R4 be given by

x = (x1, x2, x3, x4) := (r, θ, ṙ, θ̇).

In contrast, its motion in free flight (5.10) is now given by the nonlinear system

ẋ = F (x), H(x) := 1− x1 > 0 (5.19)
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where

F (x) =


x3

x4

x1

(
(1 + x4)2 − ω2

)
− γx3 + ρ cos (φ− x2)

(−(1 + x4)(γx1 + 2x3) + ρ sin (φ− x2)) /x1

 .

An impact is observed when the state vector x lies on the impact surface Σ defined by

Σ = {x : H(x) := 1− x1 = 0} (5.20)

in which case the reset law R applies. The state after impact x+ is given by

x+ = R(x−) = x− +W (x−)v(x−)

where the vector W = (0, 0, 1 + d, µ(1 + d))T . Let v(x) be the velocity of the vector

field F relative to H, denoted by

v(x) := HxF (x) = −x3 (5.21)

and let a(x) be the respective acceleration given by

a(x) := (HxF )xF (x) = −ẋ3. (5.22)

In the special case when the normal velocity x3 is zero, the reset law R is the identity

mapping.

Next, we will describe the motion in continuous contact. The rotor centre under-

goes sticking motion (in the co-rotating frame) when it comes into contact with the

boundary, i.e. H = 0, and remains there, i.e. when the velocity v(x) = 0 and the

acceleration a(x) < 0, called sticking conditions. The motion, which is degenerate, is

maintained along the vector field Fs, as defined by

Fs(x) := F (x)− η(x)W (x)

=


x3

x4

0(
− (1 + x4)(γx1 + 2x3) + ρ sin(φ− x2)− µ(1 + d) η (x)

)
/x1


where η, chosen such that the sticking conditions are satisfied, is given by

η(x) :=
a(x)

(HxF )xW (x)
=
−1

1 + d

(
x1(ω2 − (1 + x4)2)− γx3 − ρ cos(φ− x2)

)
.

As η depends on the acceleration a(x) its sign determines when the sticking vector field
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is physically realistic, i.e. η(x) > 0. In an impacting system with these two motions
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Figure 5-3: Bifurcation scenario of regular (grey) and pseudo (black) equilibria. (5-3a) Virtual
(dashed) regular xR and pseudo xP1 equilibria clash in a non-smooth fold bifurcation at γ∗ ≈
0.072 and become admissible (solid). (5-3b) The admissible pseudo equilibrium xP2 and virtual
regular equilibrium xR become virtual and admissible, respectively, in a persistence bifurcation
at γ∗ ≈ 0.428.

the following equilibria can be observed; the admissible equilibrium of the steady state:

E1 of free flight motion called regular equilibrium xR if F (xR) = 0 and H(xR) > 0

hold,

E2 of sticking motion called pseudo equilibrium xP if Fs(xP ) = 0, H(xP ) = 0 and

η(xP ) > 0 hold.

The regular equilibrium is called virtual if it lies outside of the stator boundary, i.e.

H(xR) < 0. The pseudo equilibrium is called virtual if the acceleration points away

from the stator, i.e. η(xP ) < 0.

We are interested in when these two equilibria bifurcate. In an impacting system

this happens when the regular equilibrium lies on the impacting surface. This is called

boundary equilibrium point at x = xB with γ = γ∗ if F (xB, γ
∗) = 0 and H(xB, γ

∗) = 0

hold.

We claim that our system has one regular equilibrium (non-impacting whirl) given

by

xR =

(
ρ√

γ2 + (−1 + ω2)2
, φ− π + arctan

(
γ

1− ω2

)
, 0, 0

)
,

but two pseudo equilibria (synchronous forward rubbing)

xP1,P2 =

(
1, φ− π ∓ arccos

(
γ + µ(1− ω2)

ρ
√

1 + µ2

)
+ arctan

(
1

µ

)
, 0, 0

)
,
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with the sticking vector field admissibility condition given by

η1,2 =
1− ω2 − γµ∓

√
ρ2(1 + µ2)− (γ + µ(1− ω2))2

(1 + d)(1 + µ2)
.

Before we state the bifurcation scenario at the boundary equilibrium point

xB =

(
1, φ− π + arctan

(√
ρ2 − (−1 + ω2)2

1− ω2

)
, 0, 0

)
with γ∗ =

√
ρ2 − (−1 + ω2)2

of this system we briefly explain the methods developed in [33, 37, 34].

Linearising about the boundary equilibrium point xB with γ∗ yields the condi-

tions which determine how the regular and pseudo equilibrium bifurcate at that point.

Assuming that the following conditions hold

(C1) det(F−1
x (xB, γ

∗)) 6= 0

(C2) Hγ(xB, γ
∗)−Hx(xB, γ

∗)F−1
x (xB, γ

∗)Fγ(xB, γ
∗) 6= 0

(C3) −Hx(xB, γ
∗)F−1

x (xB, γ
∗)W (xB, γ

∗) 6= 0

two bifurcation scenarios can occur. Persistence describes the situation when the ad-

missible pseudo equilibrium becomes an admissible regular equilibrium, or vice versa.

This is the case when the following inequality holds

(C4) −Hγ(xB, γ
∗)F−1

x (xB, γ
∗)W (xB, γ

∗) < 0.

A non-smooth fold bifurcation takes place when the admissible regular and pseudo

equilibrium are created in a fold like bifurcation and coexist as the bifurcation param-

eter γ is changed in one direction but not the other; they cease to exist in one direction

as they are not realisable in a physical sense. Assuming the same conditions as for the

previous bifurcation scenario the opposite inequality must hold:

(C5) −Hγ(xB, γ
∗)F−1

x (xB, γ
∗)W (xB, γ

∗) > 0.

Now, we can state our results and explain all the details of this system’s bifurcation

scenario. For an example of these scenarios with particular parameters see Figure 5-3.

Combining these results we have established the following.

Proposition 5.1. Assume that the scaled spring constant ω ∈ (0, 1), scaled imbalance

radius ρ ∈ (0, 1), coefficient of restitution d ∈ (0, 1) and friction constant µ ∈ (0, 1).

Then at the boundary equilibrium point xB with γ∗ conditions (C1-3) are satisfied and

we observe:

a non-smooth fold bifurcation of the regular equilibrium xR and the pseudo equilib-
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rium xP1 if √
1− ρ < ω <

√
1− µρ√

1 + µ2
. (5.23)

The two equilibria, xR and xP1, coexist for γ ∈ (γ∗, 1) while the second pseudo equilib-

rium xP2 exists for all γ ∈ (0, 1).

a persistence bifurcation of the regular equilibrium xR and the pseudo equilibrium

xP2 if √
1− µρ√

1 + µ2
< ω < 1.

Then, no equilibrium coexists as the pseudo equilibrium xP1 is virtual and xP2 exists

for γ ∈ (0, γ∗) while xR exists for γ ∈ (γ∗, 1).

Note that ω >
√

1− ρ as otherwise the scaled damping parameter γ∗ at the bound-

ary equilibrium point is complex. Also, without damping, i.e. if γ = 0 the rotor in free

motion is purely oscillatory.

We complete this Section with the stability analysis of the three equilibria xR, xP1

and xP2 as well as the boundary equilibrium point xB with γ∗. The Jacobian matrix

at the regular equilibrium Fx(xR) has four distinct eigenvalues Λ given by

ΛR =
1

2

(
−γ ± 2i± i

√
4ω2 − γ2

)
.

We assume the scaled damping constant γ is positive and hence it follows that the

regular equilibrium xR is stable as Re(ΛR) < 0 for all γ > 0.

In order to determine the stability of the pseudo equilibria within the sticking set

we study the Jacobian of the sticking vector field at the pseudo equilibria Fs,x(xP1,P2).

Two eigenvalues of this matrix are zero as the sticking vector field is degenerate due

to the conditions which maintain the motion on the impact surface. But the other two

eigenvalues do determine the stability of each pseudo equilibria xP1 and xP2 which are

given by

ΛP1 =
1

2

(
γ − 2µ∓

√
(γ + 2µ)2 + 4`2

)
and

ΛP2 =
1

2

(
γ − 2µ∓

√
(γ + 2µ)2 − 4`2

)
,

respectively. The first pseudo equilibrium xP1 is unstable as the real part of the

second eigenvalue is positive, whereas the second pseudo equilibrium xP2 is stable for

γ ∈ (0, ρ
√

1 + µ2 − µ(1− ω2) but unstable for γ > ρ
√

1 + µ2 − µ(1− ω2).
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5.5 Global Analysis of Synchronous Periodically Impact-

ing Limit Cycles

In this Section existence conditions for the simplest type of limit cycles for the full

system in which the periodic orbits have one instantaneous impact are derived ana-

lytically and are supported by numerical calculations. We show that these invariant

sets undergo smooth fold bifurcations and new non-smooth Hopf-like bifurcations, i.e.

at the BEB regular and pseudo equilibria as well as two limit cycle bifurcate. In §5.6

we give a local analysis of the latter in a more general setting. We also discuss the

stability of these limit cycles in §5.5.1 and codimension-2 bifurcations related to the

Hopf-type bifurcation (dependence on the stiffness related parameter ω) in §5.5.2. Hav-

ing considered equilibrium solutions we now study the simplest type of limit cycle in

our system (5.16). These, period-T periodically impacting limit cycles, experience one

impact per cycle with identical impact velocity U̇(ti,−) at each impact event at time

ti for i = 0, 1, 2 . . .. We further assume that these impacts occur synchronously with

respect to the rotating framework. As a consequence the impact position U(ti) is iden-

tical at each impact at time ti. In summary, we will study the periodically impacting

limit cycles which satisfy repeatable initial conditions between consecutive impacts at

time ti and ti+1 given by

w(ti,−) ≡

(
U(ti)

U̇(ti,−)

)
=

(
U(ti+1)

U̇(ti+1,−)

)
≡ w(ti+1,−) (5.24)

where we abbreviate the notation to Ui = U(ti) and U̇i,− = U̇(ti,−). It follows that, in

polar coordinates, the normal and tangential velocity components must satisfy ṙi,− =

ṙi+1,− and θ̇i,− = θ̇i+1,−. We will show that for certain values of the damping parameter

γ a finite number of such limit cycles coexist with a regular equilibrium. We will

then demonstrate that only one set of a pair of physically plausible limit cycles with

different period T undergoes a discontinuity induced bifurcation (DIB) at the BEB

point γ = γ∗ =: γDIB. That bifurcation will be shown to be of non-smooth Hopf type

as two cycles collide with the boundary equilibrium point as their amplitude shrinks to

zero. We conclude with illustrations for cases in which these limit cycles are physically

realistic and for which they are stable.

A systematic approach to studying the limit cycles of the hybrid system comprising

smooth flows between instantaneous impacts, is to consider the map from one impact

event to the next. In particular, to determine the existence and stability of such limit

cycles of period T = t1− t0 it is equivalent to investigate the fixed points of the impact
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map PI defined by

PI : Σ→ Σ (5.25)

w(ti,−) 7→ PI
(
w(ti,−)

)
= w(ti+1,−). (5.26)

Such fixed points (i = 1) of period T , w(t0,−), satisfy the conditions

w(t1,−) = w(t0,−) or equivalently (t1, θ1, ṙ1,−, θ̇1,−) = (t0 + T, θ0 + 2π, ṙ0,−, θ̇0,−).

As before Σ ⊂ Rn denotes the impact surface (5.20). The advantage of this construction

is that we can reduce the dimension of the problem by one as the radial coordinate

r = 1, when the rotor is in contact with the boundary. Note that the set of solutions

can include trajectories which are physically implausible in that they exit the interior of

the bearing. However, these can be detected numerically once the existence conditions

have been obtained.

To find fixed points, w0,−, we substitute the repeatable initial condition (5.24) into

the general solution of the flow given by (5.16)

w0,− = exp(AT )(w0,+ +A−1b)−A−1b

where A and b are given in (5.14), and where the real part of the eigenvalues of A,

given in (5.17), is negative, i.e. Re(λ±) = −γ/2 < 0 for γ > 0. Now, we solve for w0,−

to obtain

w0,− = −
(

exp(−AT )− I
)−1

(
0

qṙ0,−U0

)
−A−1b. (5.27)

The matrix expression can be simplified further by considering the eigendecomposition

of A = V DV −1. Then

(
exp(−AT )− I

)−1

=
1

1− tr
(

exp(AT )
)

+ det
(

exp(AT )
) ( exp(AT )− det

(
exp(AT )

)
I
)

=
1

1− tr
(

exp(DT )
)

+ exp
(

tr(AT )
) ( exp(AT )− exp

(
tr(AT )

)
I
)

by Jacobi’s formula. Finally, we can use the eigenvalues of A, λ+ and λ−, given in
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(5.17), to obtain

(
exp(−AT )− I

)−1

= κ

(
ν−e

λ+T − ν+e
λ−T − e(λ++λ−)T ν+ν−(eλ−T − eλ+T )

eλ+T − eλ−T ν−e
λ−T − ν+e

λ+T − e(λ++λ−)T

)

=:

(
a11(T ) a12(T )

a21(T ) a22(T )

)

where ν± = −λ±/(1 − ω2 − iγ) and κ = 1/((1 − eλ−T )(1 − eλ+T )(ν− − ν+)). Hence

substituting this matrix into (5.27) simplifies to

w0,− ≡

(
U0

U̇0,−

)
≡

(
eiθ0

(ṙ0,− + iθ̇0,−)U0

)
=

(
−q a12(T ) ṙ0,−U0 + k

−q a22(T ) ṙ0,−U0

)
(5.28)

where k = ρeiφ/(ω2 − 1 + iγ). The system (5.28) yields three equations by solving the

first row equation for U0, taking the real part of the second row equation and solving

it for ṙ0,−, and taking the imaginary part of the second row equation, respectively,

U0(1 + a12(T ) q ṙ0,−) = k (5.29)

ṙ0,−
(
1 + Re(q a22(T ))

)
= 0 (5.30)

θ̇0,− = − Im
(
q a22(T )

)
ṙ0,− . (5.31)

To determine the fixed points w0,− from (5.28), we first find the period T , unknown

a priori, from (5.30) and then compute the corresponding values ṙ0,− from (5.29), θ0

from (5.29) and θ̇0,− from (5.31). Now, (5.30) is satisfied if ṙ0,− is zero, which only

yields the boundary equilibrium xB, or if the nonlinear term in T , denote it by F1(T ),

is zero. Hence the period T can be determined by finding the zeroes of F1(T ), given by

F1(T ) := 1 + Re
(
q a22(T )

)
= 1− Re

(
q

λ+ − λ−

(
λ+e

λ+T

eλ+T − 1
− λ−e

λ−T

eλ−T − 1

))
(5.32)

= 1 +
(1 + d)e−γT/2

s1
× (5.33)(

s−2 e
γT/2 − 2s−3 e

γT cos(s−4 T + ζ−)

2(1 + eγT − 2eγT/2 cos(s−4 T ))
+
−s+

2 e
γT/2 + 2s+

3 e
γT cos(s+

4 T + ζ+)

2(1 + eγT − 2eγT/2 cos(s+
4 T ))

)
(5.34)

where s1 =
√

4ω2 − γ2, s∓2 = 2 ∓ s1 + γµ, s∓3 =
√

(1 + µ2)(1 + ω2 ∓ s1), s∓4 = (∓2 +

s1)T/2, s∓5 = ±γ + (∓2 + s1)µ, and ζ∓ = 2 arctan(s∓5 /(s
∓
3 + s∓2 )).

We now consider the analytic form of F1(T ). It is evident from (5.32) that it is

oscillatory in T . If γ > 0 then the oscillations have decreasing amplitude as the period

T increases and F1(T ) tends to one as T tends to infinity. If T is fixed and γ > 0
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Figure 5-4: The form of the function F1(T ) for fixed parameters ω = 0.76, d = 0.95 and
µ = 0.15 with γ = 0.1 shown in Figure 5-4a and with γ = 0.05 shown in Figure 5-4b. In (5-4c)
we plot the zeros of F1(T ) as the damping coefficient γ is varied (ω = 0.76, d = 0.95, µ =
0.15, γF,1 ≈ 0.178, γDIB ≈ 0.072). In this figure we see, as γ decreases, a smooth fold bifurca-
tion at γF,1 creating two fixed point branches. As γ decreases more fixed points are created at γ2

etc. The symbol
... indicates that more fold bifurcation give rise to more fixed points. In (5-4d)

we show a schematic of the Non-smooth Fold–Hopf-type Bifurcation of the regular equilibrium
xR (dot), pseudo equilibrium xP1 (square) and the two limit cycles B1,a and B1,b. These bifur-
cate at the boundary equilibrium bifurcation point γ = γDIB. Black indicates physically realistic
orbits and grey unphysical orbits.
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increases then the amplitude of the oscillations also decreases to zero. Furthermore, if

we fix γ and assume that T is large, then

F1(T ) ≈ 1 +
(1 + d)e−γT/2

s1

(
− s−3 cos(s−4 T + ζ−) + s+

3 cos(s+
4 T + ζ+)

)
(5.35)

and is bounded, i.e. F−1 (T ) < F1(T ) < F+
1 (T ) where

F±1 (T ) = 1± (1 + d)e−γT/2

s1

(
s−3 + s+

3

)
. (5.36)

The upper and lower bounds F±1 (T ) are positive for all large T . Therefore, for fixed

parameters, and if γ > 0 the nonlinear function F1(T ) has finitely many zeroes. This is

consistent with the plots presented in Figures 5-4a and 5-4b. As γ is decreased and the

amplitude of the oscillations of F1 increase then more zeroes arise pairwise. Moreover,

if γ is zero then F1(T ) is purely oscillatory and hence has infinitely many zeroes.

The period T depends on the damping parameter, γ, the stiffness, ω, the coefficient

of restitution, d, and the coefficient of friction, µ. Therefore varying imbalance radius

ρ, or imbalance angle φ will not affect it. We illustrate the period’s dependence on

γ in a bifurcation plot for fixed parameters ω = 0.76, d = 0.95 and µ = 0.15 (Figure

5-4c). This figure not only illustrates the existence of a finite number of zeroes for

γ ∈ (0, γF,1 ≈ 0.178) and hence of fixed points of the map PI of a period T but also

that no such fixed points exist otherwise.

The next variable, normal impact velocity, ṙ0,−, can now be determined from T by

taking the absolute value of (5.29) and solving for ṙ0,−. Then for each value of the

period T , ṙ0,− has two solutions ṙ0,−,a and ṙ0,−,c given by

ṙ0,−,c/a(T ) =
−g(T )±

√
g(T )2 − |q|2|a12(T )|2(1− |k|2)

|q|2|a12(T )|2
(5.37)

where g(T ) = (1 + d)
(

Re
(
a12(T )

)
− µ Im

(
a12(T )

))
.

However, we observe that these solutions may themselves coalesce at a fixed bifur-

cation at γ = γ−F ≈ −0.497 (Figure 5-5a). But as γ−F is negative it has no physical

context on the application. As γ is increased these two branches persist under varying

stability and admissibility.

A fixed point is potentially admissible if the rotor is approaching the impact surface

from within the clearance circle, i.e. ṙ0,− > 0. Otherwise (ṙ0,− < 0), it is virtual. Note

that one of the radial velocities (5.37) becomes zero if 1 − |k|2 = 0, i.e. when γ = γ∗.

In Figure 5-5 it becomes evident that only low normal impact velocity fixed points

undergo a sign change in ṙ0,−.

The angle at impact θ0 and the tangential impact velocity θ̇0,−, do not need any

constraints imposed upon them to ensure admissibility. From (5.29) and (5.31) we
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obtain their expressions, respectively,

θ0(T, ṙ0,−) = Arg

(
k

1 + a12(T )qṙ0,−

)
(5.38)

θ̇0,−(T, ṙ0,−) = − Im
(
q a22(T )

)
ṙ0,− (5.39)

which are determined by T and ṙ0,−. Note that the imbalance phase φ has no effect

on the fixed points, i.e. it shifts the angle at impact θ0 but does not change the nature

of the dynamics. In fact, φ could have been scaled out of the equation. Furthermore,

to satisfy the equivalent scaled condition for the relative tangential velocity, (5.2), the

tangential velocity θ̇0,− would have to be greater than −40 taking pre- and post-impact

values into account. This is the case as shown in Figure 5-5c and 5-5d. We can now
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Figure 5-5: (5-5a) and (5-5b) Normal impact velocity of the four fixed points B1,m. (5-5a)
The two fixed points B1,a and B1,c coalesce at γ−F ≈ −0.497. (5-5b) Enlarged view of (5-5a):
the two fixed points B1,a and B1,b including the respective estimate of the fixed points obtained
by the local linearisation of the system described in §5.6. (γDIB ≈ 0.072). (5-5c) and (5-
5d) Tangential impact velocity θ̇(t−) of the four fixed points B1,m with m = a, b, c, d. (5-5d)
Enlarged view of (5-5c): the two fixed points B1,a and B1,b including the respective estimate of
the fixed points obtained by the local linearisation of the system described in §5.6.
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summarise the main result concerning the period T periodic points.

Proposition 5.2. Let n ∈ {1, . . . , N} and m ∈ {a, b, c, d}.
If there exists a period T0,n,m such that

F1(T0,n,m) = 0

then there are finitely many (up to 2N), period-T periodic points Bn,m given by

Bn,m = (T0,n,m, θ0,n,m, ṙ0,−,n,m, θ̇0,−,n,m) (5.40)

with T0,n,m, θ0,n,m, ṙ0,−,n,m and θ0,−,n,m determined by the equations (5.32), (5.38),

(5.37) and (5.39), respectively. Two pairs of fixed points, Bn,a and Bn,c, and Bn,b and

Bn,d, have the same period, i.e.

T0,n,a ≡ T0,n,c and T0,n,b ≡ T0,n,d.

If γ ∈ (0, γ∗) then half of the fixed points, Bn,a and Bn,b, are virtual and the other half,

Bn,c and Bn,d, are admissible.

Proof. If the damping coefficient γ > 0 then, as stated above, F1(T ) has finitely many

zeroes T0,n,m. Now, let n ∈ {1, . . . , N} and m ∈ {a, b, c, d}. Then for each T0,n,a two

normal impact velocities, ṙ0,−,n,a and ṙ0,−,n,c can be computed from (5.37) and hence

θ0,n,a and θ0,n,c from (5.38) and θ̇0,−,n,a and θ̇0,−,n,c (5.39). Thus we obtain two different

periodic points, Bn,a and Bn,c given by (5.40), with the period T0,n,a. For the purpose

of nomenclature set T0,n,c = T0,n,a. Due to the oscillatory character of F1(T ) its zeros

arise pairwise, i.e. there exists a second zero T0,n,b. Assume that T0,n,b 6= T0,n,a then

the equivalent result follows for Bn,b and Bn,d.

Assume γ ∈ (0, γ∗) then |k|2 > 1. Assume further that there exists a period T0,n,a.

Consider

ṙ0,−,n,a := ṙ0,−(T0,n,a) =
−g −

√
g2 − |q|2|a12|2(1− |k|2)

|q|2|a12|2
<
−g − |g|
|q|2|a12|2

6 0.

Similarly,

ṙ0,−,n,c := ṙ0,−(T0,n,a) =
−g +

√
g2 − |q|2|a12|2(1− |k|2)

|q|2|a12|2
>
−g + |g|
|q|2|a12|2

> 0.

The same holds for the period T0,n,b. Therefore the fixed points Bn,a and Bn,b are

virtual but Bn,c and Bn,d are admissible.

Proposition 5.3. Let n ∈ {1, . . . , N} and assume that the fixed points Bn,m exist for

all m ∈ {a, b, c, d}. Then at γ = γF,n for fixed n there are two simultaneous smooth
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fold bifurcations to which the fixed points coalesce, i.e. Bn,a and Bn,b meet at the first

fold and Bn,c and Bn,d at the other.

Proof. As stated above, the function F1 has finitely many zeros for any γ > 0 and an

infinite number as γ → 0. Furthermore, F1 is a smooth function of γ and has regular

quadratic minima. It follows, that as γ decreases, then zeros arise pairwise at regular

fold bifurcations at points γF,n. Let n ∈ {1, . . . , N} and m ∈ {a, b, c, d}. Assume

0 < γ < γF,n and that the fixed points Bn,m exists. Then there exist γ, T0,n,a ≡ T0,n,c

and T0,n,b ≡ T0,n,d with T0,n,a 6= T0,n,b such that

F1(T0,n,a, γ) = F1(T0,n,b, γ) = 0.

as F1(T ) is oscillatory with decreasing amplitude due to γ > 0. By the continuity of

F1(T, γ) there exists γ = γF,n such that

T0,n,a = T0,n,b =: T0,n,F .

Then for each n and T = T0,n,F there exist two fixed points Bn,a and Bn,c. For γ > γF,n

the nonlinear function F1(T ) has no zeroes. Hence for each n two pairs of fixed points

coincide at γ = γF,n, i.e. Bn,a and Bn,b bifurcate in a smooth fold bifurcation and so

do Bn,c and Bn,d.

A numerical example of the this bifurcation at γ = γF,n is depicted in Figures 5-4c

and 5-5a.

Now let us turn to the question of admissibility. If 0 < γF,N < γ∗ then the low

impact velocity branches Bn,a and Bn,b are virtual for all n whereas the other two, Bn,c

and Bn,d are admissible by Proposition 5.2. However, in the other case, γF,N > γ∗,

further information about ṙ0,−,n,m is required. If ṙ0,−,n,m is increasing as γ is increasing

then all four fixed point sets are admissible. Otherwise they are virtual.

In either case the normal velocity ṙ0,− of a pair of fixed points, m = a, b or c, d,

changes sign, Figure 5-5b, leading one to anticipate a discontinuity-induced bifurcation,

setting the scene for the main result of this Chapter. We call this a sub-critical non-

smooth Fold–Hopf bifurcation (NSFH).

Proposition 5.4. Let n ∈ {1, . . . , N} and assume that the fixed points Bn,m exist

∀m = a, b, c, d. Assume further that γF,1 > γ∗, ω satisfies the non-smooth fold condition

(5.23) and that ṙ0,−,1,m is increasing as the damping parameter γ is increasing. Then

at the BEB point

γ = γ∗ ≡ γDIB

a more general discontinuity-induced bifurcation occurs. The fixed point pairs, Bn,a and

Bn,b, clash with the regular non-impacting equilibrium xR and the pseudo equilibrium
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xP1. As γ decreases through γDIB the four invariant sets switch from being admissible

to virtual.

Proof. Let γ = γ∗. Then either ṙ0,−,n,a = 0 or ṙ0,−,n,c = 0 by (5.37). Consequently, by

(5.27), it follows that

w0,− = −A−1b =

(
k

0

)
= w0,+ .

Therefore the fixed point corresponds to the equilibrium solution w(t) = −A−1b, which

is the boundary equilibrium xB. Hence as the impact velocity ṙ0,−,n,a = 0 increases

through γ = γ∗ it undergoes a sign change corresponding to the limit cycle transitioning

from physically implausible to plausible. Taking Proposition 5.1 into consideration it

follows that a clash of two limits cycles Bn,a and Bn,b and two equilibria xR and xP1

occurs.

A schematic of this phenomenon in (r, θ) phase space is illustrated in Figure 5-

4d. Our statement is further supported by numerical examples such as Figure 5-7a

where the limit cycles corresponding to fixed points B1,a and B1,b are depicted. Their

amplitudes, min(r(t)) between impacts at times ti and ti+1, increase as γ decreases and

clash with the boundary, the regular equilibrium xR, and pseudo equilibrium xP1.

Although we have identified under what conditions pairs of fixed points Bn,m are

admissible, their physical plausibility is not guaranteed as it is possible that between

impacts the corresponding limit cycle trajectory has a further impact, Figure 5-2b.

Therefore, whilst in our global analysis we have derived the necessary existence condi-

tion for such limit cycles further sufficient conditions are necessary as large amplitude

limit cycles can undergo a grazing event, [90].

In order to demonstrate whether such an impact occurs we present the numerical

analysis for our model example. We compute the trajectories of the corresponding fixed

points B1,m and plot all local extrema of r(t) between impacts t ∈ (ti, ti+1), Figure 5-7.

The branches, B1,a, B1,b and B1,c are not affected by this phenomenon unlike the limit

cycle corresponding to the fixed point B1,d. As γ is decreased a grazing event [90]

(orbit lies tangential to Σ with zero normal impact velocity) occurs, i.e. amplitude r(t)

crosses the impact surface at γ = γgraze ≈ 0.0636, Figure 5-7b.

Furthermore, these numerical calculations indicate that fixed point pairs with high

normal impact velocity, Bn,c and Bn,d with n > 1, are virtual. We believe this to be the

case as these pairs only exist for γ ∈ (0, γgraze), where the orbit of the corresponding

limit cycle exceeds the boundary [86] (Chapter 6). In §5.6 we extend this result using

a local linearised system to give more precise results.
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5.5.1 Stability Analysis

In the following we present the stability analysis of the fixed points of the impact map

PI . In particular, we focus on the first pair of fixed points, i.e. B1,m with m = a, b, c, d,

as these appear to be the only physically plausible ones, as shown in the previous

Section. Their stability is determined by the eigenvalues λ̃ of the Jacobian matrix

J(B1,m) =
∂(t1, θ1, ṙ1,−, θ̇1,−)

∂(t0, θ0, ṙ0,−, θ̇0,−)
.

It is evident that determining this matrix analytically is difficult as the general solution

to (5.16) in polar coordinates is a complicated nonlinear function. But we can compute

the Jacobian eigenvalues numerically. In Figure 5-6b we present max (|λ̃|) of the four

fixed points illustrating that B1,a, B1,b and B1,c are unstable for all γ and that B1,d

is quasi-periodically stable for γ ∈ (0.083, γF,1) but unstable otherwise. Taking into

account the results from the previous Section it is evident that as γ decreases from γF,1

the fixed point B1,d becomes unstable before it undergoes grazing.
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Figure 5-6: (5-6a) Co-dimension-2 bifurcation by varying damping γ and stiffness ω. (5-6b)
Eigenvalue analysis yields only one stable fixed point B1,d for γ > 0.0834.

5.5.2 Codimension-2 Bifurcation

We complete this Section with a codimension-2 bifurcation analysis studying the coa-

lescence of various bifurcation points. Of interest is the influence of other parameters

on the NSFH bifurcation. Certain magnetic bearing parameters are constrained due

to the system’s characteristics such as coefficient of friction, µ, or restitution, d, which

are governed by material properties. Stiffness, however, can be more easily adjusted
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through the PID control. Hence we have chosen ω to be the second bifurcation param-

eter.

For our particular example, µ = 0.15, d = 0.95 and ρ = 3/7, we analyse the smooth

fold at γF,1 of the first fixed point set B1,m and the DIB point, γDIB =
√
ρ2 − (1− ω2)2,

as we vary γ and ω (Figure 5-6a). This shows that γF,1 and γDIB coincide at γ ≈ 0.178

and ω ≈ 0.781, and that four critical regions can be identified (not taking pseudo-

equilibria into account):

R1: The three invariant sets xR, B1,a and B1,b are virtual, whereas B1,c and B1,d are

admissible.

R2: No fixed points exist and the regular equilibrium xR is virtual.

R3: No fixed points exist and xR is admissible.

R4: All invariant sets B1,m and xR are admissible.

This demonstrates that three types of non-smooth bifurcation between equilibria and/or

period-T limit cycles occurs, i.e. the already known NSF and persistence (Pers) bifur-

cations and the new NSFH bifurcation, on the boundary of regions R1 and R2. We

observe that the limit cycle corresponding to B1,d undergoes a grazing event in regions

R1 and R2. Identifying this grazing set is part of future work.
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Figure 5-7: Bifurcation diagram of γ against local extrema of r(t) for t ∈ (ti, ti+1) for fixed
point pairs (5-7a) B1,a and B1,b and (5-7b) B1,c and B1,d. (γF,1 ≈ 0.178 (4)). In (5-7a)
we also plot the regular equilibrium xR to illustrate the non-smooth Fold–Hopf bifurcation at
γDIB ≈ 0.072 (◦). Fig. (5-7b) depicts a grazing bifurcation at γ ≈ 0.0636 (�) after an increase
in the number of local extrema of r(t) at γ = 0.0785 (♦).
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5.6 Generalised Local Analysis of the Hopf-type Bifurca-

tion

5 The global analysis of this specific nonlinear system implies that limit cycles bifurcate

in pairs at a non-smooth Fold–Hopf-type bifurcation from a boundary equilibrium

point. We now examine this bifurcation in more detail locally by considering a locally

linearisation of the system described earlier close to the bifurcation point. This allows

us to perform the local analysis for a more general system which includes the one

discussed in Section 5. The purpose of this Section is two fold. On the one hand we

can establish the conditions for the existence of two fixed point solutions of the impact

map PI with period T given by the solutions of the equation (5.44). On the other

hand we also obtain a more precise description of the local behaviour of the periodic

solutions. We find that the estimates obtained by this analysis agree well with the

calculations given in §5.5. To do this local analysis we consider the complex linear

differential equation in w = (z, ż)

ẇ = Aw + b in |z| < σ (5.41)

with a reset law applying at |z| = σ

ż+ − ż− = −(1 + d)(1 + iµ) Re(z∗ ˙z−)
z

|z|2
(5.42)

where

A =

(
0 1

−β −α

)
and b =

(
0

Γ

)
.

Our basic assumptions are that there exist parameters α0, β0 and Γ0 such that |Γ0/β0| =
σ and that the eigenvalues of the matrix A have negative real part. These conditions

imply that at the critical parameters there is a stable boundary equilibrium as is the

case for the bearing problem.

We now consider the dynamical behaviour of solutions which are small perturbations

to this situation. To do this we introduce a small real parameter ε and consider the

perturbed system coefficients (5.41) with

α ∼ α0 + εα1, β ∼ β0 + εβ1 and Γ ∼ Γ0 + εΓ1

and the same reset law (5.42). From here onwards we use the symbol ∼ to denote

equality up to the stated order in ε. We pose the asymptotic solution

z(t) ∼ z0 + εz1(t), or w(t) = w0 + εw1(t)

5This section is work done in collaboration with Prof. Paul Glendinning
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with z0 = Γ0/β0 = σeiΨ defining the phase Ψ of z0 and z1(t) = r1(t)eiθ1(t). At order ε,

i.e. ignoring terms higher than ε,

ẇ1 ∼ A0w1 + b1 in |z| < σ

where

A0 =

(
0 1

−β0 −α0

)
and b1 =

(
0

Γ1 − β1z0

)

and |z| < σ becomes |σ + εr1(t)ei(θ1(t)−Ψ)| or

εr1(t) cos(θ1(t)−Ψ) < 0.

There is an equilibrium at z0 = Γ0/β0, z1 = (Γ1 − β1z0)/β0. Defining real constants c

and ψ by

z1 =
Γ1β0 − β1Γ0

β2
0

= ceiψ

the equilibrium lies in |z| < σ if

εc cos(ψ −Ψ) < 0.

In order to find a choice for ε we look at the magnetic bearing example β0 = ω2 − 1 +

iγ∗, β1 = i, Γ0 = ρeiφ and Γ1 = 0. Then the expression above becomes

−2εγ∗ < 0.

As γ∗ is positive the equilibrium lies within the clearance circle if ε is negative. By

choice of the sign of ε (and hence of Γ1 and β0) we may assume that

cos(ψ −Ψ) < 0

and hence the stable equilibrium lies inside the clearance circle if ε > 0 but not other-

wise. The question we wish to answer is what happens if ε > 0 in this case.

The general solution in |z| < σ at order ε is

w1(t) = exp
(
A(t− t0)

)
(w1,0,+ +A−1

0 b1)−A−1
0 b1 (5.43)

where w1,0,+ = w1(t0+) denotes the post impact initial condition. Next we need to

find the reset law at order ε and hence consider the impact position first

|z(t0)| = |σeiΨ + cr1,0e
iθ1,0 | = σ.

105



Chapter 5. Non-smooth Hopf Type Bifurcations in Rotating Machinery with Impact and Friction

This yields a constraint on the angle at impact

εcr1,0 cos(θ1,0 −Ψ) = 0

or θ1,0 = Ψ + π/2. Deriving the reset law for the impact velocity components requires

a few more computations and we shall derive them in stages. Consider the RHS of

(5.42)

Re
(
z∗(t0)ż(t0,−)

) z0

|z0|2
= −εr1,0θ̇1,0,−

σ
(σeiΨ + εr1,0e

iθ1,0) = −εr1,0θ̇1,0,−e
iΨ

where we have substituted for θ1,0. As the LHS of (5.42) can be expressed in the form

of

ε
(
i(ṙ1,0,+ − ṙ1,0,−)− r1(θ̇1,0,+ − θ̇1,0,−)

)
we can now equate the real and imaginary parts of (5.42) to find the reset law at order

ε

ż1,0,+ = ż1,0,− + (1 + d)(1 + iµ) r1,0 θ̇1,0,− e
iθ1,0 .

As in the problem considered earlier, this system may have a variety of motions,

possibly including chattering behaviour. However, for the purposes of our analysis,

we seek solutions which comprise a simple periodic orbit with a single impact. Thus

we look for a time of impact t1 = t0 + T depending on the previous impact time t0

and the limit cycle period T . As described in previous Sections, such limit cycles

satisfy repeatability conditions for position and velocity, given by z(t0) = z(t1) and

ż(t0−) = ż(t1−) respectively. The equivalent conditions at order ε are

z1(t0) = z1(t1) and ż1(t0−) = ż1(t1−).

Substituting these into the general solution (5.43) we can obtain the impact maps PI

for the perturbed orbit by solving for the initial conditions w1,0,− = (z1,0, ż1,0,−) that

yield period-T limit cycles,

w1,0,− = −A−1
0 b−

(
a11(T ) a12(T )

a21(T ) a22(T )

)(
0

i(1 + d)(1 + iµ) r1,0 θ̇1,0,−

)
eiθ1,0

where (
a11(T ) a12(T )

a21(T ) a22(T )

)
:=
(

exp(−A0T )− I
)−1

.

By methods similar to those used in §5.5 we can find the period T by solving the

nonlinear equation

F1(T ) := 1− (1 + d) Re
(

(1 + iµ)a22(T )
)

= 0. (5.44)
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A necessary condition for the existence of such periodic orbits is then given by the

requirement that the nonlinear problem (5.44) has a solution T . Note, that such a

solution will then describe a family of periodic orbits, parametrised by ε close to the

bifurcation point. The period T of the limit cycle only depends on the parameters at

the BEB, i.e. α0 and β0, and the impact parameters µ and d. Then the other unknowns

determined by T are given by

r1,0 =
c
(
`3 cos(ψ −Ψ)− `4 sin(ψ −Ψ)

)
−`4

,

θ̇1,0,− =
cos(ψ −Ψ)

(1 + d)
(
`3 cos(ψ −Ψ)− `4 sin(ψ −Ψ)

) ,
ṙ1,0,− =

c cos(ψ −Ψ) Im
(
(1 + iµ)a22(T )

)
`4

,

where `3 := µRe
(
a12(T )

)
+ Im

(
a12(T )

)
and `4 := Re

(
a12(T )

)
−µ Im

(
a12(T )

)
. Hence

it follows that the linearised impact map PI is given by

θ(t0) := arg
(
z(t0)

)
= Ψ +

r1,0

σ
ε, ṙ(t0−) = −εr1,0 θ̇1,0,−, and θ̇(t0−) = εṙ1,0,−

where the period T = t1 − t0 is a constant and does not depend ε. If we let ε tend to

zero then θ(t0) tends to Ψ and both ṙ(t0−) and θ̇(t0−) tend to zero, clearly indicating

that the limit cycle resulting from this impact map tends to the boundary equilibrium.

Depending on the signs of the parameters, the normal impact velocity switches sign and

hence demonstrates the transition from admissible to virtual limit cycle or vice versa

giving rise to the NSFH bifurcation. This linearisation agrees with the global analysis

from the previous Section we illustrate, Figure 5-5b. Furthermore, this is evidence that

the NSFH bifurcation can be approximated by a linear impact map in general.

5.7 Conclusions

In this chapter we used impacting hybrid systems to model magnetic bearing systems.

We studied analytically and numerically the simplest dynamics, equilibria and periodic

orbits that experience one impact per cycle.

In the first part we studied regular equilibria (no impact), boundary equilibria (on

impact surface) and pseudo equilibria (sticking motion). We determined existence and

stability conditions for these three type of equilibria. Furthermore, we derived the

conditions that give rise to standard boundary equilibrium bifurcations, such as the

non-smooth fold and persistence.

In the second part we studied periodic orbits of the hybrid system that experience

one impact per period. To discretise the system and reduce its dimensions we computed

the impact map PI . We derived global existence conditions for the fixed points of the
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impact map, which are associated with the periodic orbits of the piecewise-smooth flow.

We showed that for certain damping related parameter values γ there exists a large

but finite number of fixed points. Numerical simulations suggested that at most four

of the fixed points are associate with orbits that are physically realisable, i.e. orbits

that do not cross the impact surface. Furthermore, the computation of the eigenvalues

showed that only one of these fixed points is stable.

To study qualitatively different dynamics we set γ to be the bifurcation parameter.

A discontinuity induced Hopf–type bifurcation has been shown to exist in the impacting

hybrid system. We have shown that in a sub-critical non-smooth Fold–Hopf bifurcation

two unstable periodic orbits, a stable equilibrium without impact and a stable pseudo–

equilibrium, are created and coexist. This type of bifurcation has not been reported in

literature to our knowledge. Thus, we believe this result contributes to the classification

of discontinuity induced bifurcation in higher dimensional systems.

For a general linear complex system the local analysis revealed that the impact

map is linear in the bifurcation parameter in the neighbourhood of the non-smooth

Fold–Hopf bifurcation, indicating that this phenomenon can be expected in higher-

dimensional impacting systems.

Other typical impact dynamics such as grazing have been observed which will be

studied in more detail in the following Chapter. One avenue for further research is use

the stroboscopic map to see if grazing bifurcation are a route to chaos via a period-

incrementing cascade, which has been observed in the 1D impact oscillators. Further-

more, we conjecture that other Hopf-type bifurcations leading, for example, to torus

doubling as in [79, 125] could be observed in this system.

The rich dynamics studied in this Chapter also revealed co-existing smooth fold

bifurcations, which to our knowledge have not been reported in impacting systems.

Finally, future work could include the comparison of this simplified model to ex-

perimental data from rigid magnetic bearing systems and determine how much of the

qualitative dynamics discussed in this Chapter can be observed.

108



CHAPTER 6

Numerical Investigation of Magnetic

Bearing Systems

6.1 Overview

In this Chapter we continue our study of the magnetic bearing system of Chapter 5.

In particular we use numerical methods to extend the bifurcation results of Chapter

5 and look at a wider class of the dynamics of the magnetic bearing system. To

be specific, we study the same impacting hybrid system (5.13), (5.14) with reset law

(5.15) and general solution (5.16) as in Chapter 5. We will show that in magnetic

bearing systems, rich and intricate dynamics and smooth and non-smooth bifurcations

exist. In particular, we will show that grazing bifurcations, as described in Chapter

2.2.1, can indeed occur for certain parameter values leading to the creation of a wide

range of different and complex behaviours. A part of our investigation is dedicated to

identifying when chattering, as described in Chapter 2, occurs as this behaviour can

lead to damaging interactions between rotor and stator.

For convenience we now state the scaled equation of motion of the rotor centre

again. As before, we consider the motion of a rotor in the co-rotating frame, i.e. the

frame rotates synchronously with the rotor at scaled rate 1. Let the complex variable

U(t) = x(t) + iy(t) = r(t)eiθ(t) denote the position of the rotor centre at time t in the

co-rotating frame. Then the complex velocity U̇(t) = ẋ + iẏ = (ṙ(t) + ir(t)θ̇(t))eiθ(t).

Note that the angle θ(t) in the co-rotating frame can be expressed in terms of the angle

in the fixed frame with complex position vector Z(t) = r(t)eΘ(t), i.e. θ(t) = Θ(t)− t.
Let the complex vector w = (U, U̇) then the rotor’s free motion can be modelled
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by the linear ODE (identical to (5.13))

ẇ(t) = Aw(t) + b for |U | < 1 (6.1)

where the matrix A and the vector b are constant (identical to (5.14)) and are defined

by

A =

(
0 1

1− ω2 − iγ −γ − 2i

)
and b =

(
0

ρeiφ

)
.

Recall that the scaled parameter γ, defined in (5.9), depends on damping c and that

the parameter ω, defined in (5.9), depends on stiffness k.

An impact between rotor and stator occurs at t0 if |U | = 1 in which case the energy

dissipation during impact is modelled by a reset law. Before impact (−) and after

impact (+) the position remains the same, U(t0,−) = U(t0,+) =: U0, but the normal

impact velocity ṙ(t0,+) = −dṙ(t0,−) and the tangential velocity θ̇(t0,+) = θ̇(t0,−)−µ(1+

d)ṙ(t0,−), where d is the coefficient of restitution and µ is the coefficient of friction. In

terms of the complex vector w, the reset law (identical to (5.15)) is given by

w0,+ = w0,− −

(
0

qṙ0,−U0

)
if |U | = 1, (6.2)

where q = (1 + d)(1 + iµ) and we simplify the notation w(t0,+) ≡ w0,+. In the fixed

frame, the tangential velocity at impact Θ̇0,− will later be used to indicate if the rotor

moves in a forward sense, i.e. anticlockwise Θ̇0,− > 0, or in a backward sense, i.e.

clockwise Θ̇0,− < 0.

Throughout this Chapter we will numerically investigate how the system’s dynamics

changes as the parameter γ (damping) is varied. We will fix the other scaled parameters,

which correspond to the experimental application in [67], i.e.

ω ≈ 0.76, ρ = 3/7 ≈ 0.428, φ = 0.21, µ = 0.15, d = 0.95, (6.3)

where ρ is the scaled imbalance radius and φ is the imbalance angle. In Section 6.5

the stiffness related parameter ω will become the second bifurcation parameter for a

numerically computed two-parameter bifurcation diagram.

6.2 Numerical Simulation

The balanced rotor is said to be in normal operating mode if the rotor centre U is

positioned at the origin with zero angular and tangential velocity in the co-rotating

frame, i.e. U̇ = 0. In the fixed frame this motion corresponds to a rotor, rotating

at rate 1, with centre Z positioned at the origin. Due to rotor faults, such as those
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described in Chapter 2.4, a mass imbalance can arise and the rotor will deviate from

the origin. From an engineer’s point of view it is important to know for what damping

related parameter value γ an impact can occur and what motion can result from this

impact. Hence the numerical simulations forthwith will be prescribed with the initial

condition w = (0, 0) at initial time t = 0. This means that for both the one- and

two-parameter bifurcation diagrams the Monte Carlo method, described in Chapter 2,

was not used here. However, this could be an avenue for future work.

In a typical simulation, the system (6.1), (6.2) was evolved from the steady state

until it settled into either an asymptotic state or exhibited some other behaviour,

such as chattering. As described in Chapter 2, chattering (Figure 6-1b) is an infinite

sequence of impacts that occurs in finite time. As the sequence tends towards a point

of accumulation, the impact velocity decreases and so does the time between impacts.
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Figure 6-1: A sequence of impacts for t ∈ [0, 846] that leads to chattering where γ = 0.077
and ω = 0.76. In Figure (a) we observe the transient behaviour that leads to chattering for
t ∈ [0, 840] and in Figure (b) we observe the chattering sequence for t ∈ [840, 846].

The solution of the magnetic bearing system (6.1) was obtained by using standard

numerical integration techniques such as the subroutines provided by MATLABr [84].

To compute the impact, MATLABr’s [84] event detection function was used. For a

repeatedly impacting orbit, 1200 impacts were computed and the last 200 stored for

plotting. We dismissed the first 1000 impacts as transient behaviour is not the focus of

our analysis. When chattering occurred then the complete sequence was not computed.

Instead we used an error bound to ensure that the impact time ti and the normal impact

velocity ṙi,− > 0 were decreasing similar to those introduced in [94].

In Section 6.4 we use these simulations to plot one-parameter bifurcation diagrams

and two-parameter bifurcation diagrams. By that we mean that we plot the asymptotic

state as one parameter γ is varied or two parameters γ and ω are varied, respectively.
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6.3 Dynamics Observed

The most prominent form of the behaviour of the magnetic bearing system (6.1), (6.2)

is periodic motion. In Chapter 5 and [86] we saw such behaviour. Our analytical and

numerical studies then followed this behaviour as parameters varied.

In particular, in Chapter 5.5 we have shown analytically and numerically that there

exists a stable period-T orbit which experiences one impact per cycle. It was associated

with the fixed point B1,d of the impact map PI (5.25). This periodic orbit can also be

computed using the simulation method introduced in Section 6.2, see Figure 6-2, which

agrees with numerical calculations in Chapter 5.5.

Periodic orbits experiencing several impacts per period in the co-rotating frame

are also found in these systems, e.g. 2 impacts per period, Figures 6-3 and 6-4, and

11 impacts per period, Figure 6-5. These periodic orbits will be referred to as N-

impact periodic orbits, where N ∈ N. In addition we observe chaotic attractors

(with Lyapunov exponent greater than zero), Figure 6-6. Note that in the delay plots

of Figures 6-3 and 6-5 we observe blobs rather than clear dots. This is due to remaining

transient behaviour. This effect is not observed when simulating these periodic orbits

for a total of 3000 impacts and plotting the last 200 impacts.

The transition between these states will be discussed in Section 6.4 and is illustrated

in Figure 6-7.
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Figure 6-2: Periodic orbit with one impact per period where ω = 0.76 and γ = 0.0834. Figure
(a) r(t) against t. Figure (b) Rotor trajectory in the rotating complex frame (x, y) with one
impact at (x, y) = (1, 0) on the impact surface (grey). Delay plots for angle at impact θ(tn) in
Figure (c), and pre-impact normal velocity ṙ(tn−) in Figure (d) and tangential impact velocity
θ̇(tn−) in Figure (e).
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Figure 6-3: Periodic orbit with 2 impacts per period where ω = 0.76 and γ = 0.0833. This orbit
is created in a non-smooth period-doubling bifurcation from a 1-impact periodic orbit. Figure
(a) r(t) against t. Figure (b) Rotor trajectory in the rotating complex frame (x, y) (black) with
impact surface (grey). Delay plots for angle at impact θ(tn) in Figure (c), and pre-impact
normal velocity ṙ(tn−) in Figure (d) and tangential impact velocity θ̇(tn−) in Figure (e).

6.4 One-parameter Bifurcation Analysis

In this Section we explore the dynamics reported in Chapter 5.5 in much more detail.

We will use the numerical simulation method introduced in Section 6.2 to compute

bifurcation diagrams where the bifurcation parameter is γ. We assume that the other

parameters are fixed and their values are given in (6.3). The resulting diagrams are

presented in Figure 6-7, where Figure 6-7a is the main bifurcation diagram, and Figures

6-7b, 6-7c and 6-7d are magnifications of 6-7a. These clearly show that rich dynamics

exist in the magnetic bearing system (6.1), (6.2).

In [86] and Chapter 5 we have shown that a periodic orbit, experiencing one im-

pact per period, exists and is stable within a certain damping parameter interval

γ ∈ (0.08335, 0.178). At both boundaries of this interval this periodic orbit loses sta-

bility. When γ ≈ 0.178 it does so in a fold bifurcation (Figure 5-6b). When γ ≈ 0.0824

the equations that determine existence and stability of the 1-impact periodic orbit are

not suited to investigate the progression of the dynamics as γ decreases beyond the

lower limit.

Now, the bifurcation diagrams (Figure 6-7) computed from numerical simulations,

as described in Section 6.2, will provide insight into the dynamics of (6.1), (6.2) as γ is

decreased beyond γ = 0.08335. In Figure 6-7a we observe that the periodic orbit with

one impact per period (Figure 6-2) loses stability at γ ≈ 0.08335 and bifurcates into a
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Figure 6-4: Periodic orbit with two impacts per period near a grazing event ω = 0.76 and
γ = 0.0827. Figure (a) r(t) against t. Figure (b) Rotor trajectory in the rotating complex frame
(x, y) (black) with impact surface (grey). Delay plots for angle at impact θ(tn) in Figure (c),
and pre-impact normal velocity ṙ(tn−) in Figure (d) and tangential impact velocity θ̇(tn−) in
Figure (e).
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Figure 6-5: Periodic orbit with 11 impacts per period where ω = 0.76 and γ = 0.08156. Figure
(a) r(t) against t. Figure (b) Rotor trajectory in the rotating complex frame (x, y) (black) with
impact surface (grey). Delay plots for angle at impact θ(tn) in Figure (c), and pre-impact
normal velocity ṙ(tn−) in Figure (d) and tangential impact velocity θ̇(tn−) in Figure (e).
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Figure 6-6: Chaotic attractor (with Lyapunov exponent greater than zero) with ω = 0.76 and
γ = 0.0823. Figure (a) r(t) against t. Figure (b) Rotor trajectory in the rotating complex frame
(x, y) (black) with impact surface (grey). Delay plots for angle at impact θ(tn) in Figure (c),
and pre-impact normal velocity ṙ(tn−) in Figure (d) and tangential impact velocity θ̇(tn−) in
Figure (e).
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2-impact periodic orbit (Figure 6-3e). We conjecture that this is a non-smooth period-

doubling bifurcation as both branches of the periodic orbit increase as γ decreases

(Figure 6-7b), which is unlike a smooth period-doubling bifurcation. Furthermore,

the maximum eigenvalue computed numerically in Chapter 5.5 was not −1 for the 1-

impact periodic orbit. Determining the bifurcation type is a possibility for future work.

Note that in Figure 6-7b we do not observe straight lines due to remaining transient

behaviour as discussed in Section 6.3.
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Figure 6-7: Bifurcation diagram with bifurcation parameter γ. Figures 6-7b, 6-7c and 6-
7d are magnifications of the main diagram Figure 6-7a. In all diagrams we see a number of
different types of behaviour. Figures 6-7a and 6-7b: As γ decreases from γ = 0.085 the stable 1-
impact periodic orbit bifurcation into a 2-impact periodic orbit in a non-smooth period-doubling
bifurcation at γ ≈ 0.08335. The 2-impact periodic orbit bifurcates into a chaotic attractor at
γ ≈ 0.08265 (Figure 6-7a). In Figures 6-7a, 6-7c and 6-7d, for γ ∈ (0.08195, 0.08126) coexisting
many-impact periodic orbits and possibly chaos and quasi-periodic orbits are observed. In Figure
6-7d we see a smooth period-doubling cascade for γ ∈ (0.08128, 0.08145).

Decreasing the parameter γ further in Figure 6-7 we observe a sudden bifurcation

to a chaotic attractor at γ ≈ 0.08265. This bifurcation, called a grazing bifurcation
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and defined in Chapter 2, can be classified when looking at the 2-impact periodic orbit

in Figure 6-4. In Figure 6-4 we see that the trajectory of the 2-impact periodic orbit

is close to the boundary at (x, y) ≈ (−0.55,−0.85). As γ is further decreased, the

periodic orbit will graze the impact surface with zero normal velocity ṙ, i.e. a grazing

event, also defined in Chapter 2. From the grazing bifurcation complex orbits can

arise. Investigating the chaotic orbit in more detail in Figure 6-6, where γ = 0.0823,

we observe that characteristics of the 2-impact periodic orbit seem to irregularly emerge

for a few impacts, Figure 6-6f.

Further decreasing the bifurcation parameter in Figures 6-7a and 6-7c, we observe

for γ ∈ (0.08195, 0.08126) coexisting, many-impact periodic orbits and perhaps even

small chaotic intervals or quasi periodic orbits. As γ decreases, the birth of a 6-

impact periodic orbit is observed at γ ≈ 0.08195 in what appears to be another grazing

bifurcation, which needs further investigation. This orbit loses stability in a smooth

period-doubling bifurcation at γ ≈ 0.08145 which gives rise to a smooth period-doubling

cascade for γ ∈ (0.08128, 0.08145), Figures 6-7a, 6-7c and 6-7d. Eventually this cascade

becomes chaotic in what appears to be another grazing bifurcation at γ ≈ 0.08145 as

γ decreases.

6.5 Two-parameter Bifurcation Analysis

Essentially, chattering arises when the bearing is forced towards the stator and comes

into contact, leading to a theoretically infinite number of impacts with it. A chattering

sequence (Figure 6-1) can be very damaging to the rotor as a large number of impacts

occur on a small surface area. Consequently thermal issues arise [68] and ultimately

material deterioration is inevitable. Furthermore, it can lead to continuous contact

between rotor and stator [18, 77], such as sticking [67, 26], sliding [67, 26] or rolling

[67, 26]. It is crucial to identify for what parameter values chattering can occur.

In this Section we present a crude two-parameter bifurcation diagram, Figure 6-8,

that distinguishes between four types of motions:

Type 1 trajectories that after no or a few impacts settle into a non-impacting orbit.

Type 2 trajectories that lead to chattering with tangential impact velocity Θ0,− > 0

(in the fixed frame), which are referred to as forward chattering.

Type 3 trajectories that lead to chattering with tangential impact velocity Θ0,− < 0

(in the fixed frame), which are referred to as backward chattering.

Type 4 trajectories that will repeatedly impact the stator, but do not include chat-

tering.
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The rotor motion with Type 1 trajectories is classed as not damaging if no impacts

occur, or the least damaging if a few impacts occur. Some examples of such motion

have been discussed in Chapter 5, in particular Chapters 5.3 and 5.4, as well as Figure

5-2a.

Type 4 motion has been analysed in Chapter 5 and Sections 6.4, where a detailed

numerical bifurcation analysis has been presented. Repeated instantaneous contact

between rotor and stator is viewed as damaging [67, 26].

Both Type 2 and 3 motion can result in continuous contact [77], called rub or

rubbing (Chapter 2). More specifically, Type 3 motion can lead to forward rub, a

sliding motion (Chapter 2). Type 4 motion can lead to either backward rub, a sliding

motion possibly mixed with rolling motion (Chapter 2), or backward whirl rub, a pure

rolling motion (Chapter 2). These motions have been observed in magnetic bearing

models simpler than the one studied in this Thesis (6.1), (6.2), [77]. Both Type 2 and

3 motions are very damaging [67, 26, 103]. However, backward whirl rub has been

described as the most damaging, [67, 26, 103], due to the large contact forces. In such

cases, no control is possible, i.e. the rotor cannot be returned to a non-contacting

operating state [103].

We present a two-parameter bifurcation diagram (Figure 6-8) where we vary the

damping parameter γ and stiffness ω to determine for what values Type 1-4 motion

occurs. We vary γ and ω as these are easily controllable in experiments [67, 26, 103],

whereas the impact parameters, coefficient of restitution d and friction µ, are dictated

by material properties that are usually fixed [80]. The unbalance properties can sud-

denly vary during an experiment [22, 41, 89, 50].

We have found that for γ large enough (Figure 6-8a: dotted area) the orbits do

not experience impact, which corresponds to Type 1 motion. Type 4 motion is mainly

confined to the parameter area where γ ∈ (0.1, 0.2). By comparison, Type 2 (Figure 6-

8a: black ∗) motion seems more distributed and very intertwined with Type 3 motion

(Figure 6-8a: grey ∗) provided that γ < 0.1. In particular, low damping and high

stiffness yields mainly Type 3 motion, the potentially most damaging type. Under

magnification, the delineation of these regions is not clear (Figure 6-8b). In fact, a

complex distribution of Type 2, 3 and 4 motion is found, Figure 6-8b, which could be

fractal. This is not unusual for impacting hybrid system [34]. Generally, it appears

that the damping related parameter has a larger effect on the dynamics of the magnetic

bearing system (6.1), (6.2). By that we mean that if ω is fixed and γ is varied, all four

motion types can be observed in the system (6.1), (6.2), but not vice versa, i.e. if γ is

fixed and ω is varied.

From an engineer’s point of view the magnetic bearing system will operate normally,

if the damping related parameter γ > 0.4, for the prescribed parameter values given in

(6.3).
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Figure 6-8: Numerically computed two-parameter bifurcation diagram depicting orbits with no
impact (.), forward chattering (black ∗), backward chattering (grey ∗), continuously impacting
orbit without chattering (white space). Figure 6-8b displays a magnified section of the bifurcation
diagram in Figure 6-8a. In Figure 6-8b we see that the boundary between continuously impacting
orbits and chattering orbits is very complex, perhaps fractal.
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6.6 Conclusions

In this Chapter we were able to complete the bifurcation analysis of the 1-impact

periodic orbit, which was extensively studied in Chapter 5. We showed numerically that

this periodic orbit loses stability in a non-smooth period doubling bifurcation, which

gives rise to a 2-impact periodic orbit. We were able to demonstrate that in addition

to the 1-impact periodic orbit other, more complex, attractors are found in magnetic

bearing systems. These include many-impact periodic orbits, chaos and possibly quasi-

periodic orbits.

Moreover, we have illustrated that for certain parameter values

• smooth bifurcations, such as smooth period-doubling and period-doubling bifur-

cation cascades, and

• non-smooth bifurcations, such as grazing bifurcation and non-smooth period-

doubling bifurcation

can arise in magnetic bearing systems. However, a more detailed analysis for a larger

interval of the damping related parameter is necessary for a better understanding and

classification of other non-smooth bifurcation phenomena. This could be numerically

analysed by computing a Monte Carlo bifurcation diagram (defined in Chapter 2).

Furthermore, we have identified critical regions in the (ω, γ)-parameter space, that

can lead to damaging rotor-stator contact motion. In future work this analysis could

be used to assess the thermal effects [68] resulting from the rotor dynamics and thus

not only identify possible damage but also predict the longevity of magnetic bearing

components.

An important issue that needs addressing is how to resolve the infinite chattering

sequence, i.e. what motion occurs after the accumulation point? There are several

possibilities: sticking, sliding, a combination of sliding and rolling, or pure rolling. The

simple model studied in this Thesis is not suited for such an investigation; other models

are probably more appropriate [93].
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CHAPTER 7

Conclusions

In this Thesis we have demonstrated that the theory of piecewise-smooth dynamical

systems can provide a mathematical framework which enables the study of impacting

systems, such as magnetic bearing systems, and the study of non-smooth phenomena

arising in such applications. These applications are of great interest to mechanical

engineers. We have also studied piecewise-smooth dynamical systems in their own

right. Throughout the Chapters, the piecewise-smooth continuous or discrete systems

were shown to give rise to intricate and interesting dynamics and bifurcations. A diverse

set of analytical tools and numerical methods were utilised to show how these arise.

In the first part of this work we focused on studying the dynamics and bifurcations of

one-dimensional piecewise-smooth maps. These maps can arise from many applications

such as the impact oscillator [90]. We introduced the piecewise power law map which

contains a nonlinear term with exponent p,

xn+1 =

{
λxn + µ, if xn < 0

−ηxpn + µ− `, if xn > 0.
(7.1)

We have studied the dynamics and bifurcations of the map when p ∈ [0, 1] in Chapter

3 and when p > 1 in Chapter 4.

Chapter 3 concerned the border-collision bifurcation of the negative stable fixed

point and the resulting bifurcation scenarios for the bifurcation parameter µ > 0. For

the continuous map (7.1), i.e. ` = 0, we proved, utilising an induced map, that the

three characteristic scenarios (robust chaos, period-incrementing cascade with chaotic

windows and period-incrementing cascade with coexisting periodic orbits) depend on

the exponent p. We derived the necessary and sufficient conditions for these scenarios

to arise. However, the exponent p does not introduce new dynamics or bifurcations.
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For the discontinuous map (7.1) with ` > 0 we derived the general conditions

required for the breakdown of the period-incrementing cascade for µ > 0, i.e. some

of the periodic orbits in the cascade lose stability and give rise to a chaotic attractor.

These conditions were then utilised to conclude that a chaotic attractor will never exist

in the neighbourhood of small µ > 0, unlike in the continuous piecewise power law map.

Instead, a period-incrementing cascade is observed. To obtain these results we studied

the maximal periodic orbits of which the period-incrementing cascade is composed.

These results agreed with the dynamics of the maps, which represent special cases

of (7.1) (continuous/discontinuous piecewise linear or square-root map) presented in

literature.

Finally, when considering the discontinuous map (7.1) with ` < 0, we proved that

stable maximal periodic orbits with large periods do not exist, i.e. as N →∞ maximal

periodic orbits cease to exist. Numerically, we demonstrated that the negative fixed

point bifurcates into a period-adding cascade. Period-incrementing cascades and chaos

have also been observed. However, a detailed analysis, similar to the one in the first

part of this Chapter, is required to fully understand how the bifurcation structures,

period-adding and period-incrementing cascade, arise. It also remains to show what

parameter conditions are required to observe chaotic attractors are robust chaos.

In Chapter 4 we considered the border-collision bifurcations of the positive stable

fixed point. Numerically, we illustrated that as b := µ − ` < 0 decreases through

zero this fixed point can bifurcate into a range of invariant sets such as period-2,

period-4 and large period periodic orbits. The main organising structure for this map

is the period-incrementing cascade for b < 0 and the period-adding cascade for b >

0. However, increasing µ introduces a period-adding cascade for large b < 0 in the

neighbourhood of the border collision bifurcation. For certain parameter values the

fixed point also bifurcates into a chaotic attractor in the neighbourhood of the border-

collision bifurcation point. In the final part of this chapter we chose a new bifurcation

parameter µ. For the parameter region µ > 0 we showed that the anharmonic cascade,

which was first discovered by Glendinning [51, 52], also arises in the piecewise power law

map. However, this last result throws up more questions than it answers. Glendinning

was able to show, using renormalisation methods and kneading theory, that the period

of the periodic orbits in the anharmonic cascade tends to zero as b tends to a point

of accumulation. Is this the case for the piecewise power law map? Is it possible

to compute or at least approximate the point of accumulation? A two parameter

bifurcation analysis of b and µ could yield how the mechanism of the period-adding

scenario and the anharmonic cascade are connected.

Chapters 3 and 4 clearly illustrate the richness of non-smooth dynamics in piecewise

power law maps. As briefly explained in Chapter 2, this map can arise from the study

of non-smooth events in the impact oscillator that impacts with a repelling wall. A
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variety of motions, including grazing events, of such an impact system are currently

being investigated numerically and experimentally by Virgin [124]. A comparison of

the predictions in this Thesis with experimental data would indicate how realistic the

repulsive reset law is. Although certain dynamics of the impact oscillator can be

approximated by a one-dimensional map, the Poincaré map, near grazing or elsewhere,

is two-dimensional. This indicates the necessity for extending these results to two- or

higher-dimensional maps as part of future work to contribute to the current but sparse

literature [35, 85, 101, 125].

In Chapters 5 and 6 the theory of impacting hybrid dynamical systems was used

to model and study magnetic bearing systems. In Chapter 5, boundary equilibrium

bifurcations of regular equilibria in the co-rotating frame were shown to exist in this

system and the conditions for persistence and non-smooth fold bifurcation scenarios

were derived. The impact map, a type of Poincaré map, was calculated reducing the

system’s dimension to investigate fixed points associated with limit cycles that ex-

perience one impact per period T in the co-rotating frame. The fixed points’ global

existence conditions were derived mostly analytically and it was revealed that there can

exist a large but finite number of fixed points for certain damping parameter values.

However, at most four fixed points give rise to physically realistic limit cycles. The

stability and bifurcation analysis, which were performed numerically, showed that, as

the damping parameter is varied, at most one fixed point is stable and that it loses

stability before it undergoes a grazing event. The key finding was that a more complex

bifurcation scenario than the non-smooth fold scenario is taking place at the boundary

equilibrium bifurcation point. In fact, we have proved that a novel Hopf-like bifurcation

occurs, which we termed non-smooth Fold-Hopf bifurcation, where a regular equilib-

rium, a virtual equilibrium and two limit cycles (experiencing an impact) bifurcate.

This bifurcation is unlike any other reported in literature and is, we believe, an im-

portant contribution to the classification of bifurcation scenarios in higher dimensional

piecewise-smooth dynamical systems. Finally, we showed that local to the bifurcation

point the impact map associated with the limit cycle (one impact per period T ) is

linear. From the analysis of this map the same non-smooth Fold-Hopf bifurcation was

deduced.

In Chapter 6 the numerical investigation gave an insight into other intricate dy-

namics and bifurcations that occur in the magnetic bearing systems. As the magnetic

bearing system is four-dimensional in phase space we have observed a range of at-

tracting invariant sets such as periodic orbits, quasi-periodic orbits, chaotic orbits and

chattering motion. It was essential, in particular from an engineer’s point of view,

to identify for what damping and stiffness values damaging motion occurs; chatter-

ing motion is very damaging as it can lead to continuous contact. We defined four

categories of motion: impacts that lead to a non-impacting orbit (least damaging),
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orbits which experience repeated impacts (no chattering, damaging), forward chatter-

ing (very damaging) and backward chattering motion (most damaging). We concluded

that these types of motion are largely influenced by the damping parameter, whereas

the influence of the stiffness parameter is minor. The unbalanced rotor starting from

the origin settles into a non-impacting orbit provided damping is large enough (scaled

parameter γ > 0.3). Orbits experiencing repeated impacts are most likely to occur for

γ ∈ (0.1, 0.2). If γ ∈ (0.2, 0.3) forward chattering can occur, whereas for γ ∈ (0, 0.1)

both forward and backward chattering is possible. The boundaries between these re-

gions were intricate and appeared fractal. Furthermore, from this analysis we concluded

that large enough damping could prevent rotor-stator interaction and thus avoid severe

damage to both rotor and stator. Finally, the numerical bifurcation analysis obtained

from varying the damping parameter yielded smooth and non-smooth bifurcation, such

as grazing.

One avenue for future work could be to compare experimental data to the motion

predicted in this work. However, great care would have to be taken for three reasons.

Firstly, we assumed that the stator (impact surface) behaves rigidly during impact. Yet

even for a very stiff experimental set up, the stator is not completely rigid and thus could

affect the rotor dynamics. Secondly, the rotor motion is not only influenced by impacts

but also by other rotor behaviour that occurs at high speeds, such a shaft bending.

Thirdly, experimental data is notorious for its noise. In all cases, small scale dynamics

predicted analytically and numerically might be missed in experimental data, e.g. small

amplitude limit cycles. Major non-smooth phenomena such as sudden transitions from

periodic to chaotic motion should be detectable.

The hybrid system model studied in this work has stringent limitations on pre-

dicting the transition into continuous contact motion and is unsuitable for modelling

the continuous contact motion itself. However, there are more capable formalisms for

that purpose such as the altered reset law suggested by Stronge [110]. He suggests an

energetic coefficient of restitution and a breakdown of the impact event into distinct

phases of stick and slip. An altered impacting hybrid dynamical system implementing

Stronge’s reset laws has been suggested in [93]. Modelling magnetic bearing systems

with the altered impacting hybrid system [93] could be another avenue for future work.

We suspect that this model is better suited to study the rotor motion following grazing

events, which can lead to continuous contact.

The study of the impact oscillator near grazing via the discontinuous square-root

map, a special case of the piecewise power law map (7.1), showed that the repulsing

impact surface (i.e. the discontinuity `) introduced stable periodic orbits near the

grazing event. If a magnetic bearing system could implement the idea of a repelling

impact surface, would it enable less damaging motion?

In conclusion, our study of magnetic bearing systems in Chapters 5 and 6 certainly
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contributes to the wider understanding of higher dimensional piecewise-smooth sys-

tems, continuous and discrete. At the same time it is clear that even this simple model

of a magnetic bearing system gives rise to an abundance of interesting and intricate

dynamics and bifurcations which need further investigation from a mathematical and

an engineering point of view.
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