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Abstract 

Code optimisation in modern compilers is an accepted misnomer for performance im­

provement some of the time. The code that compilers generate is often significantly 
improved, but it is unlikely to produce optimal sequences of instructions; and if it 
does, it will not be possible to determine that they are indeed optimal. None of the 
existing approaches, or techniques for creating new optimisations, is likely to change 
this state of play. 

Superoptimisation is a radical approach to generating provably optimal code, that per­
forms searches over the space of all possible instructions. Rather than starting with 
naively generated code and improving it, a superoptimiser starts with the specification 
of a function and performs a directed search for an optimal sequence of instructions 
that fulfils this specification. 

In this thesis, we present TOAST, the Total Optimisation using Answer Set Techno­

logy system, a provably optimal code generation system that applies superoptimising 
techniques to optimise acyclic integer-based code for modern microprocessor architec­
tures. TOAST utilises Answer Set Programming (ASP), a declarative logic program­
ming language, as an expressive modelling and efficient computational framework to 
solve the optimal code generation problem. 

We demonstrate the validity of the approach of superoptimisation using Answer Set 
Programming by optimising code sequences for two 32-bit RISC architectures, the 
MIPS R2000 and the SPARC V8. We also present an application of the TOAST sys­
tem as a peephole optimiser, by generating libraries of equivalence classes of all op­
timal instruction sequences of a given length for a specific microprocessor architecture. 
While this is a computationally expensive process, it only ever needs to be performed 
once per architecture. We also provide significant benchmarks for the performance of 
state of the art domain solver tools, further demonstrating the applicability of Answer 
Set Programming in modelling complex real-world problems. 
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Chapter 1 

Introduction 

We should forget about small 

efficiencies, say about 97% of the 

time: premature optimisation is the 

root of all evil. Yet we should not 

pass up our opportunities in that 

critical 3%. 

Donald Knuth 

1.1 Background 

Although the word optimisation shares the same etymological root as “optimal”, it is 
rare for an optimisation process in computing to produce a truly optimal system. The 
optimised system may only be optimal for a very specific situation or environment; 
also, the path to optimality is not always an obvious or intuitive process. 

More specifically, within the field of compilers the term optimisation is something of 
a misnomer. Compilers typically use a series of templates to generate machine-level 
instructions from an intermediate representation generated from the input program [2]. 
An optimisation phase then attempts to improve this code (with respect to both size 
and performance) by applying a set of transforms, reductions and equivalences. In 
many modern compilers, this results in significant improvements, but it is unlikely to 
produce optimal sequences of instructions; and if it does, it will not be possible to 
determine that they are indeed optimal [98]. To further complicate matters, it is often 
not clear in which order these improvement techniques should be applied, as they may 
inhibit rather than enable further improvements. The current order of application of 
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these optimising phases and improvement techniques in modern compilers is a result 
of experience rather than by design [36]. 

This situation is especially apparent in embedded systems and mobile appliances, 
where engineers need to derive the optimum hardware-software configuration to achieve 
the application’s real-time demands, while minimising power requirements and retain­
ing flexibility [39, 184]. They need to generate code for multiple system-on-a-chip 
variants, consisting, for example, of processor core, signal processor and graphics 
device, from a common code base. They need to derive a custom system-on-a-chip 
configuration from the program structure. Standard libraries need to be automatically 
tuned for each custom processor configuration [117]. Therefore, the development of 
efficient compiler toolchains for these resource-critical platforms is of huge import­
ance. 

A comparison between the advances in microprocessor performance (with respect to 
Moore’s Law [135]) and compiler performance led to the assertion commonly referred 
to as Proebsting’s Law [154, 160]. This stated that compiler performance doubles 
every 18 years, in comparison to every 18 months for microprocessors. The main 
implication from this comparison was that the cost of research and development on 
compiler technologies was a wasted effort and that resources would be better spent 
elsewhere. However, this 4% increase in performance per year [154] is actually a 
significant improvement and is important for a range of resource-critical environments 
(agreeing in part with the Knuth quote presented at the start of this chapter). There is a 
clear justification for continued investment in compiler development and in particular, 
novel optimisation strategies for these new environments [82, 97, 153]. 

Superoptimisation [131] is a radical approach to generating provably optimal code se­
quences, that uses exhaustive search to find the optimal code for a given function. Su­
peroptimisation naturally decomposes into two sub-problems: searching for sequences 
that meet specific criteria and then verifying which of these candidates are function­
ally equivalent to the input function. It has previously only been studied in the context 
of computing small mathematical functions or optimising fragments of performance-
critical code [79]. Superoptimisation provides a fresh approach to the optimisation 
problem, by aiming for optimality from the outset. 

The goal of this thesis is to apply superoptimising techniques to create a practical 
toolchain for provably optimal code generation. This thesis applies Answer Set Pro­
gramming (ASP), an expressive declarative logic programming paradigm for model­
ling real-world problems, to a significant new application domain. It is used to model 
the machine architectures and their instructions, along with providing a powerful and 
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efficient computational framework. By modelling the superoptimisation problem in 
ASP, we are able to use existing domain tools, known as solvers, to generate solutions. 
The expressive semantics of ASP enables clear and concise modelling of the complex 
constraints of the problem domain. 

1.2 Motivation 

Building upon the previous section, the motivation for this thesis is as follows: 

Structured approach to optimisation: none of the existing approaches, or methods 
for creating new approaches, to optimising code aim for optimality from the 
outset. Developing a structured framework for applying superoptimising tech­
niques to generating optimal code for modern machine architectures would be a 
significant step. These new strategies for code optimisation would have potential 
application to existing compiler toolchains. 

Lack of proven optimality: with the existing code improvement algorithms it is the­
oretically complex and computationally expensive demonstrating the equival­
ence of optimised code sequences to the original code. 

Emergence of new performance-critical domains: especially embedded environments; 
the development of new models and metrics of optimality, such as program size, 
execution speed, low memory usage and low power consumption, is hugely im­
portance. A practical and adaptable optimisation framework would be applicable 
to a large number of microprocessor architectures and environments. 

Modelling of real-world problems using Answer Set Programming: the expressive 
language and clear semantics of ASP, coupled with a powerful computational 
framework and the wide availability of open source solver tools. ASP is regarded 
as the computational embodiment of non-monotonic reasoning and a primary 
candidate for an effective knowledge representation tool. This makes it a clear 
candidate for modelling the provably optimal code generation problem. 

1.3 Main Contributions 

The main contribution of this thesis is validation of the approach of applying super­
optimising techniques to generating provably optimal code sequences for modern ma­
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chine architectures using Answer Set Programming. Furthermore: 

•	 Development of a practical and adaptable superoptimising code generation sys­
tem based on ASP technology, with proof of optimality for short code sequences. 
This system will be benchmarked against existing superoptimising implementa­
tions. 

•	 Demonstrating that superoptimisation of code is achievable in the general case 
and that the technique can be applied to generate provably optimal code se­
quences for modern machine architectures. 

•	 Benchmarks and observations on the performances of a range of ASP solver 
tools, notably the performance of the more recent SAT-based and clause learning 
solvers compared to the traditional backtracking solvers. 

•	 Demonstrating that ASP is an suitable language for reasoning about large-scale, 
real-world problems. The application of ASP to the code optimisation problem 
will also contribute to the ASP community and further drive tool development. 

1.4 Related Publications 

The following list includes all publications by the author which are related to this 
thesis, in accordance with Regulation 16.5 subsection k(ii) of the University of Bath 
Regulations for Students 2008/2009. 

[37]	 Generating Optimal Code using Answer Set Programming 

Tom Crick, Martin Brain, Marina De Vos and John Fitch 
10th International Conference on Logic Programming and Non-Monotonic Reas­
oning (LPNMR’09) 
September 2009, Potsdam, Germany 

[24]	 TOAST: Applying Answer Set Programming to Superoptimisation 

Martin Brain, Tom Crick, Marina De Vos and John Fitch 
22nd International Conference on Logic Programming (ICLP 2006) 
August 2006, Seattle, USA 

[23]	 An Application of Answer Set Programming: Superoptimisation ­

A Preliminary Report 

Martin Brain, Tom Crick, Marina De Vos and John Fitch 
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11th International Workshop on Non-Monotonic Reasoning (NMR’06) 
May 2006, Lake District, UK 

1.5 Structure of the Thesis 

The remainder of this thesis is organised into the following chapters: 

In Chapter 2 (page 7) we introduce compilers and modern compiler toolchains and 
outline the state of the art of code optimisation. We also present common meth­
ods of improving code, the problems faced by optimising phases in compilers 
and the future of compiler technology. 

In Chapter 3 (page 14) we introduce superoptimisation and how it differs from tradi­
tional code improvement techniques. We analyse the complexity of the problem 
and describe the existing superoptimising implementations, providing bench­
marks on illustrative code sequences. 

In Chapter 4 (page 24) we introduce the Answer Set Programming (ASP) paradigm 
and its underlying logical formalism AnsProlog. We explain its syntax and se­
mantics, introduce existing domain tools and present some successful imple­
mentations of ASP technology. 

In Chapter 5 (page 42) we present TOAST, the Total Optimisation using Answer Set 

Technology system, a framework for applying superoptimising techniques to op­
timising code for modern machine architectures. We explain the rationale for 
its development using Answer Set Programming, and how we model the archi­
tectures and semantics of their instructions with this expressive language. The 
utility of the TOAST system is demonstrated via benchmark tests for the MIPS 
R2000, a popular 32-bit RISC architecture. We also provide a number of bench­
marks tests of the performance of ASP tools applied to TOAST problems. 

In Chapter 6 (page 64) we apply the TOAST system to superoptimising code se­
quences for the SPARC V8 architecture, a popular 32-bit RISC server archi­
tecture. We present benchmarks for searching for and verifying optimal se­
quences on the SPARC V8, along with a discussion on the future application 
of the TOAST framework. 

In Chapter 7 (page 74) we introduce a significant application for the TOAST system 
as a peephole superoptimiser. We describe the rationale and motivation for ap­
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plying TOAST to this application area, in which we generate equivalence classes 
of optimal sequences for a given instruction length and number of inputs. This 
library of optimal sequences can then be applied to optimising code in compiler 
toolchains and other optimisation frameworks. 

In Chapter 8 (page 85) we summarise the contributions of this thesis, demonstrating 
the validity of the TOAST approach to superoptimising code sequences using 
Answer Set Programming, and discuss future research directions. 
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Chapter 2 

Compilers and Optimisation 

optimise 
verb. make the best or most effective 

use of (a situation or resource) 

The Oxford English Dictionary 

2.1 Introduction 

The focus for microprocessor architecture development over the past ten years has 
been in advances in architecture design: data-level parallelism, instruction-level paral­
lelism, multi-threaded and multi-core. Because of this, there has been a distinct lack of 
emphasis on the importance of developing compilers and producing efficient code for 
these increasingly complex architectures. The cost of developing a compiler for a new 
architecture is dwarfed, by orders of magnitude, by the cost of the development of the 
architecture [154, 156], but the absence of an efficient compiler can effectively kill an 
architecture; a prime example of this phenomenon would be the limited success for the 
original Intel IA-64 Itanium architecture, due to the lack of tools that could generate 
efficient code for it. For a wide range of resource-critical environments, there is a real 
need for continued research into compiler technology and in particular, new strategies 
for optimising code [82]. 

In this chapter, we introduce compilers, their significant phases and processes and how 
they optimise and generate code for modern architectures. We discuss a number of 
common techniques for optimising code in modern compiler toolchains, before dis­
cussing future key research areas in compiler technology. 
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2.2 Compilers 

Compilers are software systems that transform programs written in higher-level lan­
guages into functionally equivalent programs in object code or machine assembly lan­
guage for execution [2]. This definition can also be widened to include systems that 
translate from one higher-level language to another, or from one machine language to 
another, and so on. 

A compiler typically consists of a series of phases that sequentially analyse a program 
and construct new ones, beginning with a sequence of characters constituting a source 
program to be compiled and ultimately producing object code to be executed on a 
machine. Examples of modern compiler toolchains include the GNU Compiler Col­
lection (GCC) [62,66], LLVM+clang [111,125], Open64 (formerly Pro64) [123,144], 
SUIF Compiler System [83, 175], Intel Compiler Suite [90, 93] and the Sun Java JIT 
compilers [169]. 

In a generalised compiler system (see Figure 2-1), there are six typical phases: 

lexical analysis of the program presented to it and breaking it into the legal tokens 
(single atomic units) of the language in which the program is written, for ex­
ample, keywords, identifiers or symbol names. The token syntax is typically a 
regular language, so a finite state automaton constructed from a regular expres­
sion can be used to recognise it [2]. There may also be a language-dependent 
preprocessing phase which supports macro substitution and conditional compil­
ation. 

syntactic analysis involves parsing the token sequence to identify the syntactic struc­
ture of the program. This phase typically builds an intermediate-level represent­
ation, such as a parse tree, according to the rules of a formal grammar which 
define the language’s syntax [2]. The intermediate representation is often ana-
lysed and transformed by later phases of the compiler. 

semantic analysis where the compiler adds semantic information to the parse tree and 
builds the symbol table, required to record the identifiers used in the program 
and their attributes. This phase performs static semantic checks required by the 
source language, such as type checking (checking for type errors), object binding 
(associating variable and function references with their definitions) or definite 
assignment (if there is a requirement for all local variables to be initialised before 
use) [8]. Semantic analysis usually requires a complete parse tree, meaning that 
this phase logically follows the parsing phase. 
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program analysis is the gathering of information from the intermediate representa­
tion generated during the previous phases. Typical analyses include data flow 
analysis to build use-define chains (data structures that consist of a use, a vari­
able, and all the definitions of that variable that can reach that use without any 
other intervening definitions), dependence analysis, alias analysis and pointer 
analysis [3]. The call graph (a directed graph that represents calling relationships 
between subroutines) and the control flow graph (another graph representation 
of all paths that might be traversed through a program during its execution) are 
also built during the analysis phase [8]. Accurate analysis is a prerequisite for 
performing code optimisation. 

code optimisation and improvement where the intermediate representation is trans­
formed into functionally equivalent but faster (or smaller) forms. These include 
a number of optimising transforms, reductions and equivalences that range from 
the relatively simple (such as dead code elimination, constant propagation and 
inline expansion [2]) to ones requiring significant analysis (for example, register 
allocation and automatic parallelisation [8]). 

code generation is the final transformation of the intermediate representation into the 
output language of the compiler, usually the native machine assembly language. 
This involves storage and resource decisions, such as which variables to fit into 
registers and memory, and the selection and scheduling of machine instructions. 

The front end of a compiler consists of the early lexical, syntactic and semantic phases 
that build the intermediate representation, while the back end is usually associated with 
the code generation phase. Confusingly, some literature use the term middle end to 
distinguish the generic analysis and optimisation phases from the machine-dependent 
code generation phase. 

For a more detailed description of the phases of a compiler, see Aho et al. [2]. 

2.3 Code Optimisation 

Code optimisation in a compiler is the process of tuning the output to minimise or 
maximise some attribute of an executable computer program. Most code is written for 
optimality with respect to execution speed, but this usually translates into optimising 
for low memory usage. The growth of the embedded domain has highlighted the need 
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Figure 2-1: Phases of a generalised compiler 

for new metrics of optimality, especially minimising the power consumption of a pro­
gram. The use of numerous optimisation phases to improve the code generated by a 
compiler can be significant [26, 82]. 

Techniques used in optimising transformations can be categorised by scope, which can 
be anything from single statements, to the procedural level, to the entire program. Gen­
erally, locally-scoped techniques are easier to implement than global ones (and require 
less time and fewer resources), but tend to result in smaller gains: an example would 
be peephole optimisation (described in Section 2.4). Interprocedural or whole pro­
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gram analysis [112] can utilise the greater quantity of available information to optim­
ise than when compared to only having access to localised information [2]. However, 
local optimisations such as loop optimisations, for example loop unrolling and loop 
fusion [3], act on the statements which make up a loop and can perform loop-invariant 
code motion. Loop optimisations can provide significant runtime improvements to 
programs, because many programs spend a large percentage of their time executing 
code inside loops. It is also common to optimise the object code after the code genera­
tion phase [41,127,163]. There also exists a range of programming language-specific, 
machine-dependent and independent optimisations that can significantly improve the 
generated code [2, 159]. Effective and efficient code optimisation is hard [113], with 
even designers of modern microprocessor architecture having to write optimisation 
manuals for developers to effectively use their platforms [4, 5, 88, 91, 92]. 

For a more detailed overview and discussion of common compiler optimisations, along 
with the analyses that support them, see [2, 3, 137]. 

2.4 Peephole Optimisation 

A peephole optimisation is a simple but effective technique for locally improving 
code [133]. It is performed by examining a sliding window of target instructions 
(the “peephole”) and replacing instruction sequences within this peephole by better 
sequences (depending on the metric of optimality desired). Peephole optimisation can 
be applied directly after intermediate code generation to improve the intermediate rep­
resentation [42, 172] or as a post-pass optimisation phase to object code [41, 43]. 

It is characteristic of peephole optimisation that each improvement may spawn op­
portunities for additional improvements. In general, repeated passes over the target 
code are necessary to obtain the maximum benefit. Examples of common peephole 
optimisations include redundant instruction elimination, flow of control optimisations 
(such as removing jumps and straightlining code), algebraic simplifications (such as 
strength reduction, where it is less expensive on certain machine architectures to mul­
tiply rather than calculating powers, or division by a power of two via shifting), and 
use of machine-specific features such as auto-increment or auto-decrement addressing 
modes. 

Peepholing techniques exist in some form in most modern compiler toolchains and 
has seen widespread use in Just In Time (JIT) compilers to dynamically optimise in­
terpreted code at runtime [11, 169]. 
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2.5 Domain Complexity 

The work on the complexity analysis of compiler optimisations has proved that certain 
aspects are NP-complete (or NP-hard), including register allocation [77], instruction 
scheduling [20, 182] and code generation [65]. In the worst-case, certain features of 
optimisation have been shown to be exponential or even factorial [107]. Neverthe­
less, in the general case, optimising and generating code is a tractable problem and 
significant results are possible. 

2.6 The Future of Compiler Technology 

Even with the existing levels of code optimisation in modern compiler toolchains, there 
is a real need for continued research into compiler technology and in particular, in op­
timising code for new metrics of optimality and new environments, such as multi-core 
architectures [82]. The emergence of performance-critical environments, such as the 
embedded domain, with significant low power and low memory consumption require­
ments [100], means that new metrics of optimality need to be considered and provided; 
hence optimising for power and memory consumption are important targets for today’s 
compilers [26, 39, 184]. Recent developments in the GCC toolchain has resulted in 
the implementation of a polyhedral optimisation framework [151, 152, 176], known 
as GRAPHITE, for high-level memory optimisations. This has significantly improved 
code generation in GCC, along with improving the selection of loops transforms and 
adding support for auto-vectorisation [62, 66]. Similar work on speculative analysis 
and optimisation has also been done for the Open64 compiler [123]. 

However, the development and implementation of new techniques, such as link-time 
optimisation and interprocedural optimisation in GCC [29,112,174], automatic gener­
ation of optimisations using equivalence proofs [173], translation validation of optim­
isers [98], along with research and development projects such as MILEPOST GCC [63] 
(which uses machine-learning based self-tuning compilers [146,168]), ACOVEA [110] 
(application of genetic algorithms) and the Collective Tuning (cTuning) project [64] 
(developing iterative feedback-directed compilation techniques, collective optimisa­
tion, run-time adaptation, statistical analysis and machine learning) are pushing the 
performance boundaries of modern compilers and optimisation algorithms. Neverthe­
less, one of the key problems of optimising and generating code for increasingly com­
plex modern archiectures is analysing how the different optimisation techniques inter­
act with each other, and whether they create constrained optimisation problems [183] 
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when attempting to optimise for more than one metric. 

2.7 Summary 

This chapter has presented an overview of modern compilers and code optimisation 
techniques, along with discussing the future of compiler technology. It has been sug­
gested that while the performance improvements of compilers per year is small (in 
comparison to the improvement in the performance of microprocessors), the increasing 
demands of today’s resource-critical environments require a more structured approach 
to developing compiler technologies and more importantly, frameworks for supporting 
more efficient code optimisation. 

In the next chapter we present one such approach to code optimisation, which aims to 
generate truly optimal code sequences from the outset: superoptimisation. 
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Chapter 3 

Superoptimisation 

In almost every computation a great 

variety of arrangements for the 

succession of the processes is 

possible...one essential object is to 

choose that arrangement which shall 

tend to reduce to a minimum the time 

necessary for completing the 

calculation. 

Ada Lovelace 

3.1 Introduction 

As suggested in the previous chapter, there is a real need for continued research and 
development in compiler technology, and in particular new strategies to optimising 
code for different environments. State of the art code optimisation techniques are in­
creasingly specific and rely on complex mathematical specifications; while significant 
improvements are possible, these techniques are unlikely to produce optimal code, and 
if they do, it is not possible to determine whether the code produced is indeed optimal. 

In this chapter, we introduce superoptimisation, a method for finding the shortest se­
quence to compute a function. Superoptimisation is an approach that aims for optim­
ality at the outset, distinguishing it from existing code improvement techniques. We 
describe the motivation for superoptimisation as a technique for generating optimal 
code sequences, introduce and evaluate existing superoptimising implementations and 
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provide some example sequences and how they are superoptimised. 

3.2 Motivation 

Since the earliest days of computer programming, there have been known to exist 
sequences of machine instructions with seemingly magical properties [1, 6, 18, 19, 
138]. By using particular sequences of instructions, often with no obvious connec­
tion between them, it is possible to calculate certain functions using fewer instructions 
than any obvious approach, either hand-coded or compiled from a high-level language. 
These sequences are inadvertent by-products of the design of the instruction set archi­
tecture and, although an entertaining curiosity, seemed not to have an extensive prac­
tical use beyond hand-coded assembly language in specific environments, such as in 
digital signal processing. 

However, early work in this area converted sequences of instructions into single in­
structions [101], based on template matching and utilised as a form of peephole optim­
isation. Nevertheless, the idea that instruction sets exhibited non-obvious functionality 
was implicitly understood but never really exploited. Hence, early approaches to gen­
erating optimal code [163] by applying this knowledge did not receive much interest 
in the compiler community. 

3.3 The Superoptimisation Problem 

Superoptimisation is a radically different approach to code optimisation, first described 
by Massalin [131]. As noted in later work [95], the term superoptimisation is itself an 
oxymoron: if a program has been optimised – meaning it is optimal – then what does 
it mean to superoptimise it? The terminology problem lies in the need to distinguish 
superoptimisation from garden-variety code improvement techniques. As discussed 
previously, modern optimising compilers apply a defined set of transforms, reductions 
and equivalences. This often results in significant code improvement, but it is not 
necessarily going to produce optimal sequences of instructions; and if it does, it will 
not be able to determine that they are indeed optimal. 

The classical meaning of superoptimisation is to find an optimal code sequence for a 
loop-free assembly language sequence of instructions. This requirement for straight-
line loop-free code was due to the inherent problems of optimising away loops and 
branches without the appropriate analysis. 
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int signum(int x) {
if (x > 0) return 1; 
else if (x < 0) return −1; 
else return 0; 

}
Listing 3.1: Example C function to calculate the sign of an integer (signum) 

Rather than starting with naively generated code and improving it, a superoptimiser 
starts with the specification of a function and performs a directed search for an optimal 
sequence of instructions that fulfils this specification. Superoptimisation therefore nat­
urally decomposes into two sub-problems: searching for sequences that meet specific 
criteria and then verifying which of these candidate sequences are equivalent to the 
original function. As the length of the original sequence increases, the search space in­
creases at a worst-case exponential rate [131]. This has previously made the technique 
unsuitable for use in standard compiler toolchains, though for improving the code gen­
erators of compilers and for targeting key sections of performance critical functions, 
the results can be significant [79, 96]. 

A good example of how superoptimisation works is demonstrated by the signum 

function given in Listing 3.1, originally presented by Massalin [131], which returns the 
sign of an integer, or zero if the input is zero. As you can see from the results presented 
in Table 3.1 (generated by compiling the function on a Sun UltraSPARC IIIi running 
Solaris 10, using GCC 3.4.3 and Sun C Compiler 5.8), a basic compilation of this 
function would generate twelve or more instructions, including at least two conditional 
branch instructions. An experienced assembly language programmer might be able to 
implement it in six instructions, with only one conditional branch. Modern compilers 
can normally achieve similar results. 

GNU C Compiler (3.4.3) Sun C Compiler (5.8) 
Flags Instructions Branches Flags Instructions Branches 
None 19 4 None 12 4 
-O1 7 1 -xO1 20 4 
-O2 6 1 -xO2 8 2 
-O3 6 1 -xO3 8 2 

Table 3.1: Effects of compiler optimisation levels for compiling the signum function 
on SPARC V7 

However, superoptimising this function (in this case for the SPARC V7 [12], a 32-bit 
RISC architecture) produces the sequence of three instructions presented in Listing 3.2. 
Not only is this sequence shorter in instruction length, it does not require any condi­
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! input in %i0 
addcc %i0 %i0 %l1 
subxcc %i0 %l1 %l2 
addx %l2 %i0 %o1 
! output in %o1 

Listing 3.2: Superoptimised signum sequence generated by GSO for SPARC V7 

tional branches, a significant saving on modern pipelined processors. This example 
shows another interesting property of code produced by superoptimisation: it is not 
immediately obvious how it provides the required functionality, in this case how it 
computes the sign of a number. The pattern of addition and subtraction essentially 
‘cancels out’, with the actual computation being done by how the carry flag is set and 
used by each instruction (on the SPARC V7, instructions whose names include cc set 
the carry flag, while x denotes instructions that use the carry flag [12]). 

3.4 Implementations 

3.4.1 Massalin’s Superoptimiser 

Massalin’s original superoptimiser [131] accepts as input a sequence of assembly 
language instructions which computes a function and then attempts to generate the 
shortest program which computes that same function. This is done by an exhaustive 
search over all possible sequences. The search space is defined by a subset of the archi­
tecture’s instruction set, generating all combinations of these instructions, first length 
one, then of length two and so on. Each of the generated programs are tested and if 
found to match the input program in terms of its function, it is returned as a match. 

This exhaustive search approach grows exponentially with the number of instructions 
in the input function, so techniques and heuristics to prune the search space are re­
quired. A fast probabilistic test for determining the equivalence of two programs is 
used, in which a directed set of test input values are used to discard invalid sequences. 
Also, clearly non-optimal (i.e. impossible) sequences are discarded, as they do not 
exist in any optimal program. Examples of this include sequences that have the same 
effect on the machine state as a sequence of shorter length, or sequences that perform 
operations that destroys the output of a previous instruction. However, none of these 
techniques compromise the completeness of the search. 

The rationale behind this probabilistic test is that in general, the majority of incorrect 
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candidate programs will fail this simple test, meaning that you only have to perform a 
full verification test (for all input values) on as few candidates programs as possible. 
The set of directed test values include edge cases such as byte boundaries and all ones 
and zeros; if a sequence passes these chosen tests, then all numbers from -1024 to 
1024 would be tested. Due to the computational burden of performing a full Boolean 
test (which would express the function output in terms of Boolean logic operations), it 
was not deemed feasible to perform full equivalence tests for sequences of more than 
three instructions in reasonable time [131]. Hence, the probabilistic test was used as 
a shortcut to validate large numbers of sequences very quickly (c.50000 programs per 
second), but it was acknowledged that there was a possibility of a sequence passing 
the probabilistic test but failing a full verification test. Because of this, all sequences 
were manually checked by hand for correctness. 

However, Massalin’s superoptimiser was deemed to have limited usefulness as a code 
generator for a compiler, due to the time taken to find and verify sequences. This 
was also due to problems with concisely modelling certain features of the instruc­
tion set architectures, along with issues of portability: the superoptimiser was written 
in Motorola 68000 assembly language. Porting to a new architecture would require 
translation to the assembly language, requiring significant knowledge and experience. 

3.4.2 GSO: the GNU Superoptimiser 

The GNU Superoptimiser (GSO) [79] is a function sequence generator that applies 
superoptimising techniques via an exhaustive generate-and-test approach to finding 
the shortest sequence for a given function. It further developed Massalin’s brute force 
search strategy by attempting to apply constraints whilst generating elements of the 
search space; so rather than generating all possible sequences and then discarding those 
that were marked as clearly redundant, it would prune them during generation. One of 
its main criteria was on the elimination of conditional jumps in sequences by careful 
modelling of the processor flags, due to the inherent cost of jumps on modern pipelined 
architectures. However, many of these approaches were architecture-specific. 

GSO is a goal-directed superoptimiser, meaning that it is only able to compute optimal 
sequences for a specific encoded goal function, such as finding the sign of a number 
(as given in Listing 3.1), rather than allowing any arbitrary sequence of instructions 
as input to the system. In this way, it is efficient in generating shorter sequences for 
these goals, but they first have to be efficiently translated and encoded internally before 
they can be superoptimised. The time complexity of the GSO algorithm is approxim­
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ately O(mn2n), where m is the number of available instructions on the architecture 
and n is the shortest sequence for the goal function. The practical sequence length 
limit depends on the target architecture and goal function arity; in most cases it is 
approximately five instructions, but for richer instructions sets it may be lower [79]. 

GSO was originally developed on the IBM RS/6000 architecture, but was also de­
ployed on a number of other architectures, including the SPARC V7, Motorola 68000, 
AMD 29K and the Intel 80386. GSO is written in C, rather than machine-specific as­
sembly language, which made porting significantly easier. Its generic structure relied 
on lookup tables, which mapped instructions to architectures. If you wanted to target 
a new instruction set or machine architecture, you would need to create new instruc­
tion definitions in a special internal format. One of the main successes of GSO was 
its contributions to optimisation patterns for the GCC toolchain; when it was used to 
superoptimise sequences for the GCC port to the POWER architecture, it produced 
a number of sequences that were shorter than the processor’s designers thought pos­
sible [79]. 

As with Massalin’s superoptimiser, GSO is unable to guarantee that it generates the 
best possible instruction sequence for all possible goal functions. This is partly due to 
the fact that only a subset of the instruction set is modelled, but mainly because the 
generated code sequences are not exhaustively checked. It is therefore possible that 
the generated sequences are not valid for all input values. 

Example 3.1. An example demonstrating how GSO superoptimises the signum func­
tion introduced in Listing 3.1 is as follows: 

• Length 1: No sequences are found (5 sec to search) 

• Length 2: No sequences are found (5 sec to search) 

• Length 3: 13 sequences generated (10 sec to search) 

As you can see from the 13 results presented in Listing 3.3, the output is in a internal 
GSO format, similar to C, which describes the abstracted instructions for the machine 
architecture (in this example, the SPARC V7 [12]). This superoptimisation is a demon­
stration of the speed of GSO in finding small sequences for certain functions quickly, 
but this does not scale for larger sequences [79]. 
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1:	 r1:=add_co(r0,r0) 
r2:=sub_cio(r0,r1) 
r3:=add_cio(r2,r0) 

2:	 r1:=add_co(r0,r0) 
r2:=sub_cio(r0,r1) 
r3:=add_ci(r2,r0) 

3:	 r1:=add_co(r0,-1) 
r2:=arith_shift_right(r0,0x1f) 
r3:=add_cio(r2,r2) 

4:	 r1:=add_co(r0,-1) 
r2:=arith_shift_right(r0,0x1f) 
r3:=add_ci(r2,r2) 

5:	 r1:=sub_co(0,r0) 
r2:=arith_shift_right(r0,0x1f) 
r3:=add_cio(r2,r2) 

6:	 r1:=sub_co(0,r0) 
r2:=arith_shift_right(r0,0x1f) 
r3:=add_ci(r2,r2) 

7:	 r1:=arith_shift_right(r0,0x1f) 
r2:=sub_co(r1,r0) 
r3:=add_cio(r2,r0) 

8:	 r1:=arith_shift_right(r0,0x1f) 
r2:=sub_co(r1,r0) 
r3:=add_ci(r2,r0) 

9:	 r1:=arith_shift_right(r0,0x1f) 
r2:=sub_co(r1,r0) 
r3:=add_cio(r1,0) 

10:	 r1:=arith_shift_right(r0,0x1f) 
r2:=add_co(r0,-1) 
r3:=add_cio(r1,r1) 

11:	 r1:=arith_shift_right(r0,0x1f) 
r2:=add_co(r0,-1) 
r3:=add_ci(r1,r1) 

12:	 r1:=arith_shift_right(r0,0x1f) 
r2:=sub_co(0,r0) 
r3:=add_cio(r1,r1) 

13:	 r1:=arith_shift_right(r0,0x1f) 
r2:=sub_co(0,r0) 
r3:=add_ci(r1,r1) 

Listing 3.3: Superoptimised output generated by GSO for signum sequence on 
SPARC V7 

3.4.3 Denali Project 

The Denali project [95, 96] applies superoptimising techniques to generating optimal 
code sequences by using automatic theorem proving technology as an intelligent ap­
proach to handling the large search spaces. It accepts input in a low-level machine 
model, similar to C or assembly language, which contains higher-level language con­
structs. By converting sequences into a form that a matcher tool can accept, axioms 
are added and directed graphs with equivalence relations on nodes are constructed. If 
two terms are semantically equivalent, then a relationship would be created between 
these nodes. By adding the information from the architecture descriptions, a constraint 
generator reduces the problem to the Boolean satisfiability problem to be solved by a 
domain tool known as a SAT solver. The output of the solver is a confirmation of the 
equivalence of the sequence or not. 
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Preliminary experimental results were presented [95], with the Denali system able to 
produce minimum-cycle optimal code for the DEC Alpha EV6 processor. Its formal 
approach was very well documented, with proofs for all of the superoptimising al­
gorithms, but the development of the system stalled. Verification of code sequences 
was also a significant problem, as in previous superoptimising implementations, espe­
cially due to the size of some of the Boolean expressions passed to the domain tools 
to solve, requiring significant compute time [96]. For large complex sequences, the 
solver tools timed out and sequences were discarded. 

3.4.4 Stanford Superoptimiser 

The Stanford superoptimiser [14] applies superoptimising techniques to the automatic 
generation of peephole optimisers. It uses a learning approach to populate its database 
of optimisations, which were verified using SAT solving techniques, in a similar way 
to the Denali system. Experimental results demonstrated the utility of this system for 
the Intel x86 architecture, but as with previous superoptimising implementations, full 
verification of sequences timed out if they exceeded a time limit, with the potential of 
having discarded an optimal sequence. This peepholing library framework was also 
applied to the problem of binary translation [15], with some success. However, the 
framework did not develop further beyond an experimental system for the Intel x86 
architecture. 

3.4.5 Other Implementations 

Simple superoptimising techniques have been deployed in a number of applications, 
including the GNU Multiple Precision Arithmetic Library (GMP) [78] and for simple 
analysis of branch code generation in GCC [158]. Superoptimising implementations 
have been created for Microchip’s PIC family [162] and the Atmel AVR, an 8-bit 
RISC architecture, but these have all been proof-of-concept developments with limited 
success. While generating some interesting results, the problems encountered by the 
existing implementations has hindered wide-scale uptake of this promising technology. 

3.5 Summary 

In this chapter we have introduced superoptimisation, a technique for generating op­
timal code sequences, and how it differs from existing approaches to improving code. 
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We have also given an overview of existing superoptimising implementations and the 
common problems encountered, specifically: 

•	 The complexities of modelling the machine architecture and the semantics of its 
instructions 

•	 The significant time taken to search the large space of all possible instruction 
sequences for modern machine architectures. 

•	 The complexity and large computational resources required to prove that two 
code sequences are equivalent for all possible input values. 

•	 The problem of proving that a generated code sequence is indeed optimal. 

Due to the difficulties of showing the functional equivalence of two non-trivial se­
quences of code, most of the existing implementations use a representative test to 
shortcut the verification, or timeout and discard sequences that take too long to verify. 
With this approach, there is a possibility of discarding potential optimal sequences. 

However, there exists a number of techniques briefly mentioned in Chapter 2 (page 12) 
that may also support efficient searching of the large spaces for candidate optimal se­
quences. The use of genetic algorithms [110], machine-learning [63, 64] and evolu­
tionary techniques [87], analysing discrete sections of the search space, may provide 
a method of pruning the large search spaces, possibly using distributed computational 
techniques. 

Nevertheless, superoptimising techniques have application to other areas, such as the 
analysis of the design of instruction set architectures. For example, it may be feas­
ible to encode a proposed instruction set architecture, generate code sequences for a 
given function and feedback into the design if a superoptimiser discovers shorter se­
quences; hence, a form of superoptimisation-directed instruction set design. Overall, 
superoptimisation was identified as a aid to the assembly language programmer, with 
the unexpected nature of the sequences raising questions about the design of instruc­
tion sets, along with a better understanding of the interrelations between arithmetic 
and logic instructions. Another useful application would be the generation of tables 
containing lists of equivalent sequences for use in a conventional peephole optimiser 
(as discussed in Section 2.4, page 11). 

In Chapter 5 (page 42), we present the TOAST system, a framework for applying 
superoptimising techniques to generating provably optimal code sequences. In the next 
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chapter, we first introduce Answer Set Programming (ASP), the modelling language

and computational framework which underpins the TOAST superoptimising system.
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Chapter 4 

Answer Set Programming 

The main purpose of a programming 

language is to help the programmer 

in the practice of his art. 

C.A.R. Hoare 

4.1 Introduction 

Answer Set Programming (ASP) 1 [73,130] is a declarative logic programming paradigm 
that allows reasoning about real-world problems in the absence of complete informa­
tion. It is a powerful and intuitive non-monotonic [50] 2 logic programming language 
for modelling, reasoning and verification tasks. 

ASP describes a problem as a logic program, a set of axioms and a goal statement, un­
der the answer set semantics of logic programming [73] in such a way that the models 
of the program (answer sets) correspond to the solutions of the problem. Therefore, 
by encoding the description of the problem domain and the description of what con­
stitutes a solution, solving the problem is reduced to computing the answer sets of the 
program. 

With its clear syntax and formal expressive semantics, combined with efficient domain 
tools known as solvers, ASP provides an excellent basis from which derived models 

1ASP has also been referred to in the literature as A-Prolog, AnsSet-Prolog, Answer Set Prolog and 
Extended Logic Programming. 

2A formal logic whose consequence relation is not monotonic; meaning that adding a formula to a 
theory never produces a reduction of its set of consequences 
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may be computed. It differs from traditional logic programming in that it represents 
solutions to a problem by models or answer sets (see Figure 4-1), rather than by answer 
substitution or querying [16], such as in Prolog. 

Figure 4-1: Answer Set Programming (ASP) modelling paradigm 

In essence, an ASP program can be seen as a formalisation of the underlying reasoning 
problem in its own right, with the advantage of being able to solve this formalisation 
directly through the application of solver tools. At this stage, it is important to be 
clear regarding terminology: Answer Set Programming (ASP) is the programming 
paradigm, underpinned by the formal language AnsProlog. 

In this chapter, we describe the history and development of ASP and its roots in non-
monotonic reasoning and logic programming. We present its syntax and semantics, 
along with common extensions. We then give an overview of popular domain tools 
and successful implementations of ASP technology. We use ASP as a modelling 
framework throughout this thesis, adhering to the AnsProlog notation introduced in 
Baral [16]. 

4.2 Origins of ASP 

Logic programming is, in its broadest sense, the use of mathematical logic for com­
puter programming. Logic is used as a purely declarative representation language, 
with theorem-proving or model generation as the method of generating solutions to 
the problem. Logic programming in a narrower sense can be traced back to debates 
in the late 1960s and early 1970s regarding declarative versus procedural represent­
ations of knowledge in artificial intelligence; for example, the PLANNER language 
for theorem proving in robotics [85]. 

McCarthy [132] proposed the use of logical formulae as the basis for a knowledge rep­
resentation language, in which declarative statements were used to express information 
about the problem. The work in automated theorem proving [106, 126, 157] to prove 
theorems in first-order logic led to the proposal of the concept of logic programming 
by Kowalski [104], and later to the first implementation of the programming language 
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Prolog [33]. The use of Prolog as a practical programming language was given great 
momentum in 1977 by the development of an efficient compiler [179]. 

For a comprehensive overview of the history and development of logic programming, 
see the survey articles [9, 17, 50, 105]. 

4.3 History of Negation in Logic Programming 

The implementation and hence the semantics of negation in logic programming lan­
guages is important [9], with different mechanisms for computing when the negation 
of a predicate is true; a variety of different intuitions of what this means have been 
proposed [48]. The logical status of negation as failure (i.e. not(p) is true if p cannot 
be proved using the current information) was unresolved until it was shown that, under 
certain natural conditions, it is a correct (and sometimes complete) implementation of 
classical negation [74] (i.e. every proposition is either true or false and cannot be both) 
with respect to the completion of the program [31]. This is closely related to the closed 
world assumption [155]: the presumption that what is not currently known to be true, 
is false. As an alternative to this completion semantics, negation as failure can also 
be interpreted epistemically, as in the answer set semantics of Answer Set Program­
ming (discussed in more detail later on in this chapter). This means that the epistemic 
interpretation can be easily combined with classical negation, enabling the formalism 
of phrases such as the contrary cannot be shown, where contrary is classical negation 
and cannot be shown is the epistemic interpretation of negation as failure [17]. 

By linking negation as failure with classical negation, anything that cannot be proven to 
be true is known to false, essentially assuming that everything that is known about the 
world is contained in the program. Fages [60] proved that a syntactic condition of logic 
programs (referred to as tightness, which defines the transitive closure of a relation), 
guarantees the stability of every model of a program’s completion. This means that 
for tight logic programs, the answer set semantics are equivalent to the completion 
semantics [57]. This idea was further developed by making the completion of a non-
tight program stronger by the addition of loop formulae [122] (in which for each loop 
in the program, a corresponding loop formula is added to the program’s completion), 
so that all the program’s non-answer set solutions are eliminated. 

From the perspective of knowledge representation, a set of ground atoms (in which all 
variables have been removed) can be thought of as a description of a complete state of 
knowledge: the atoms that belong to the set are known to be true and that atoms that do 
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not belong to the set are known to be false. A possibly incomplete state of knowledge 
can be described using a consistent, but possibly incomplete set of literals; if an atom 
p does not belong to the set and its negation does not belong to the set either, then it is 
not known whether p is true. 

Hence, there is a need to distinguish between two types of negation – negation as fail­
ure and classical negation. The following example, illustrating the difference between 
the two types of negation is attributed to McCarthy [74]: 

Example 4.1. A school bus may cross the railway tracks under the condition that there 
is no train approaching. If we do not necessarily know whether a train is approaching, 
then the rule using negation as failure: 

cross not train ← 

is not an adequate description of this idea: it says that it is acceptable to cross in the 
absence of information about an approaching train. The weaker rule, that uses classical 
negation, is preferable: 

cross train ← ¬ 

this indicates that it is acceptable to cross if and only if we know there is no train 
approaching. 

4.4 Relationship to Prolog 

ASP is a powerful and intuitive non-monotonic logic programming language for mod­
elling, reasoning and verification tasks. One common question asked of researchers 
working on non-monotonic logic programming systems such as ASP is that Prolog 

has been around for many years and is a mature technology, so why not just use that? 

The short answer is that Prolog has a number of limitations both in concept and design 
that make it unsuitable for many knowledge representation and real-world reasoning 
tasks. 

Although Prolog developed out of programming with Horn clauses – a subset of 
first order logic – several non-declarative features were added to Prolog to make it 
programmer-friendly, such as the cut operator [35]. The cut is a goal added to a pro­
gram which cannot be backtracked past, so it prevents extra solutions being generated. 
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It has been described as a controversial control feature because it is not a Horn clause 
and was only added for efficiency [124]. 

The ordering of literals in the body of a rule matters in Prolog as it processes them 
from left to right. Similarly, the positioning of rules in the program is significant in 
Prolog, as it processes them from top to bottom. This is not the case for ASP, as a 
program is a set of AnsProlog rules in which the body is a set of literals. Because of 
this top-down query processing of rules and literals in Prolog, a program may get into 
an infinite loop for even simple programs without negation as failure. 

There are also problems in Prolog dealing with negation as failure: in general, Prolog 
has trouble with programs that define recursions through the negation as failure op­
erator. AnsProlog does not have these problems, and as its name suggests it uses the 
answer set semantics to characterise negation as failure (as described in Section 4.3, 
page 26). 

Another key difference is that ASP programs have to be explicitly ground to remove 
variables before being solved; however, given a query, the Prolog engine attempts 
to find a resolution refutation of the negated query i.e. an instantiation for all free 
variables is found that makes the union of clauses consisting of the negated query false. 
It then follows that the original query, with the found instantiation applied, is a logical 
consequence of the program [34]. However, the method of generating models in ASP 
is always guaranteed to terminate (though without any constraints on the time taken); 
this is not the case for Prolog. Even though syntactically ASP programs look like 
Prolog programs (although Prolog programs do not require explicit grounding) they 
are treated by rather different computational mechanisms. Indeed, model generation 
instead of query evaluation can be seen as a recent trend in the encompassing field 
of knowledge representation and reasoning [50], although there have been efforts to 
bridge between the two paradigms [53]. 

4.5 AnsProlog Syntax 

In this section, we present the AnsProlog language that underpins the Answer Set 
Programming paradigm. For an informal specification of the AnsProlog language, see 
Appendix A (page 110). 

A number of syntactic variations of AnsProlog exist, the broadest of which is referred 
to as AnsProlog*, which denotes there are no restrictions on the rules. Within this 
thesis, we limit ourselves to the use of a syntactic and functional subset of AnsProlog*, 
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referred to as AnsProlog¬, ⊥, which allows classical negation and the use of constraints. 

4.5.1 Core Syntax 

Definition 4.1. The language of an AnsProlog program consists of sets of the follow­
ing: 

1. variables 
2. constants 
3. n-ary function symbols 
4. n-ary predicates 
5. connectives 
6. punctuation symbols 
7. the special symbol ⊥ 

Connectives and punctuation symbols are fixed to the sets { not , } and¬ ← 

{ ( ) . } respectively. 

In general, variables are expressed as arbitrary sequence of letters that start with an 
upper-case letter, while constants are expressed as a sequence of characters starting 
with a lower-case letter. n-ary predicates are expressed as a sequence of characters (the 
predicate name) starting with a lower-case letter followed by a bracketed list of zero 
or more arguments. In the case that a predicate has zero arguments, the brackets are 
omitted. n-ary function symbols are expressed as a sequence of characters starting with 
a lower-case letter followed by a bracketed list of one or more arguments. To make 
a clear distinction between the connectives in a first-order theory and the connectives 
in the languages of an answer set framework, we use different symbols than normally 
used in first-order theories: or instead of ∨ and ‘,’ instead of ∧. The above language 
forms the basis for an AnsProlog program in ASP. This language is used to define the 
terms, atoms and rules which compose a program. 

Terms in ASP are recursively defined as follows [16]: 

Definition 4.2. A term is inductively defined as follow: 

1. A variable is a term. 

2. A constant is a term. 

3. If f is an n-ary function symbol and t1, . . . , tn are terms then f(t1, . . . , tn) is a 
term. 
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For example, if V is a variable, f is a function symbol with a single argument and c is 
a constant, then all of the following are terms: 

c, V, f(c), f(V ), f(f(c)), f(f(f(c))) 

Terms may be applied to the arguments of predicates to form atoms. Atoms are defined 
as follows: 

Definition 4.3. An atom is of the form p(t1, . . . , tn), where p is a predicate symbol 
and each ti is a term. 

For example, if p0 is a predicate with zero arguments, p1 is a predicate with one ar­
gument and p2 is a predicate with two arguments and c, V and f(c) are terms, the 
following are atoms: 

p0, p1(V ), p1(c), p2(c, V ), p2(f(c), V ) 

A term is said to be ground if no variable occurs in it. An atom is referred to as ground 
if all of its arguments are ground. Terms and atoms are referred to as unground if they 
are not ground. 

Definition 4.4. A literal is either an atom or its classical negation (preceded by the 
symbol ). The former is referred to as a positive literal, while the latter is referred to ¬
as a negative literal. 

A literal is referred to as ground if the atom in it is ground. 

An extended literal is either an atom or an atom preceded by the symbol not, denoting 
negation as failure. The former is referred to as a positive extended literal, while the 
latter is referred as a negative extended literal. 

An AnsProlog¬, ⊥ program is made up of a set of rules. 

Definition 4.5. A rule is of the form: 

L0 ← Lk+1, . . . , Lm, not Lm+1, . . . , not Ln. (4.1) 

where Lis are literals or when k = 0, L0 may be the symbol ⊥, and k ≥ 0, m ≥ 0, 
and n ≥ m. 

30 



The parts on the left and on the right of the ‘ ’ are called the head and the body of←
the rule, denoted Head(r) and Body(r) respectively, for a rule r. A rule is said to be 
ground if all the literals of the rule are ground. 

In addition to adding literals to the answer sets of a program, rules can also be used 
to indicate inconsistencies in a given set of literals. We refer to rules of this form as 
constraint rules (or simply constraints). A constraint in AnsProlog¬, ⊥ is a rule of the 
form: 

⊥← Lk+1, . . . , Lm, not Lm+1, . . . , not Ln. 

A rule of this form indicates that if the body of the rule is applicable, then the current 
set of considered literals is not considered as an answer set of the program. In the 
standard syntax of AnsProlog¬, ⊥, we may omit the ⊥ symbol from constraint rules 
and assume its presence in any rule with an empty head. 

We refer to facts in programs as an abbreviation for rules of the form b ← �, for 
a given atom b. Within this thesis, we treat the � as being implicit and assume its 
presence in any rule with an empty body. 

Terms applied to predicates in rules may contain variables, in order to interpret a 
rule containing variables, the rules is expanded through a process called grounding. 
Grounding translates a program containing variables into a program containing no 
variables. 

In order to ground a program, we must first determine the Herbrand Universe of the 
program: 

Definition 4.6. The Herbrand Universe of a language L, denoted by HUL, is the set 
of all ground terms which can be formed with the constants and function symbols in 
L. 

Definition 4.7. The Herbrand Base of a language L, denoted by HBL, is the set of all 
ground atoms that can be formed with predicates from L and terms from HUL. 

A program Π is grounded by taking each rule in Π and applying each grounded term 
in HU to each variable in each rule of Π. More formally: L 

Definition 4.8. Let r be a rule in the language L. The grounding of r in L, denoted 
by ground(r, L), is the set of all rules obtained from r by all possible substitutions of 
elements of HU for the variables in r.L 

For any logic program Π, we define: 
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ground(Π, L) = ground(r, L) 

r∈Π 

and write ground(Π) for ground(Π, L(Π)). 

The grounding process is best illustrated with an example, using the following un­
ground program: 

Example 4.2. 

bird(pigeon).


bird(buzzard).


has feathers(X) bird(X).
← 

The Herbrand Universe of the program consists of the terms pigeon and buzzard 

and these are used to expand the variable X in the third rule. The Herbrand Base of this 
program consists of the atoms bird(pigeon), bird(buzzard), 
has feathers(pigeon) and has feathers(buzzard). 

The ground version of this program is thus: 

bird(pigeon).


bird(buzzard).


has feathers(pigeon) bird(pigeon).
← 

has feathers(buzzard) bird(buzzard).← 

It should be noted that for an unground program containing function symbols, the 
Herbrand Universe and Herbrand Base may be infinite. For a ground program, the 
Herbrand Universe and Herbrand Base will both be finite. Current ASP solver tools 
only operate on ground programs with finite sets of rules; as a consequence of this, we 
limit acceptable unground programs to only those which have a finite ground repres­
entation. For a further discussion of the case when the Herbrand Universe is infinite, 
see Baral [16]. 

In order to constrain programs to those with only finite numbers of rules we introduce 
two constraints on the structure of rules and programs. The first of these constraints is 
the range-restriction property, and is specified as follows: 
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Definition 4.9. An unground rule is range-restricted, if each variable in the rule ap­
pears in at least one positive atom (not negated by negation as failure) in the body 
of the rule. A program is range-restricted if all of its rules are range-restricted. The 
range-restriction property requires that each variable be associated with one or more 
predicates in the body of the rule. 

The second property applies to the whole program and is called the domain-restriction 
property and is specified as follows: 

Definition 4.10. A rule is domain-restricted if every variable which appears in the 
rule also appears in a positive domain predicate in the body of the rule. A program 
is domain-restricted if all rules of the program are domain-restricted. A predicate is a 
domain predicate if a ground atom derived from that predicate appears in the head of 
at least one rule with an empty body (as a fact) and the predicate does not appear in 
the head of any rules with non-empty bodies. 

Example 4.3. For example, the program: 

p(a).


p(f(X)) p(X)
← 

is range-restricted but not domain-restricted, as the predicate p appears in the head of 
both a domain-restricted rule and non-domain-restricted rule. 

While variables allow a great deal of flexibility and syntactic clarity of programs, it 
should be noted that in the worst case the number of rules generated by the grounding 
process may be exponentially larger than the original program. 

When speaking about the status of rules with respect to a given set of ground atoms 
we use the terms applicable and applied: 

Definition 4.11. A rule is said to be applicable with respect to a set of atoms S, if all 
of the positive literals in the body are in the set: li ∈ S, 1 ≤ i ≤ n, and none of the 
negated literals are in the set lj ∈/ S, n + 1 ≤ m. 

A rule is applied if it is applicable and the head atom l0 is also in the set. 
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4.5.2 Syntactic Extensions 

A number of syntactic extensions to AnsProlog have been proposed and are commonly 
used; the most important of these with respect to this thesis is the use of choice rules. 

Choice rules are a syntactic extension of AnsProlog¬, ⊥ for selecting applicable atoms 
non-deterministically from a set of possible atoms. However, they can be removed 
from a program by the addition of new rules. A choice rule of the form: 

h1, . . . , hn Lk+1, . . . , Lm, not Lm+1, . . . , not Ln.← 

states that if every positive atom in the body of the rule Lk+1, . . . , Lm is applied and 
every negated atom is not applicable, then any subset of h1, . . . , hn is applicable. 

Example 4.4. Consider the following program containing the choice rule: 

a.


b, c a.
← 

The valid answer sets of this program are {a}, {a, b}, {a, c} and {a, b, c}. 

4.6 Semantics of ASP Programs 

Having defined the syntax of AnsProlog¬, ⊥ programs, we now turn to the intuitive 
semantics. In this section, we only deal with ground programs (in which variables 
have been eliminated), where the Herbrand Base of the program is finite. 

Given a rule of the form in Definition 4.1, an intuitive definition of the semantics of 
rules of this form can be as follows: if all positive atoms (those without negation as 
failure) in the body of the rule: l1, . . . , ln are known to be true and none of the negated 
literals in the body l(n+1), . . . , lm are known to be true, then the head of the rule l0 

can also be considered to be true. In the case that l0 is false (⊥), then this indicates a 
contradiction. 

An ASP program consists of a set of statements, called rules. Each rule h B is← 

made of two parts, namely the body B, which is a set of extended literals, and a head 
literal h. 

It should be read as: if all of the elements of B are true, so is the head l; or l is 
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supported if all elements of B are considered to be true. We only assume those literals 
to be true that are actually supported. This form of reasoning is referred to as the 
minimal model semantics. 

An interpretation of a program Π is any set of literals of the program’s Herbrand Base: 
I ⊂ HBΠ. We can use interpretations to define models of a program, as follows: 

Definition 4.12. Let Π be a ground program consisting of rules of the form: ⊥← B ∈ 

Π (i.e. constraints) and l ← B ∈ Π, where B is the set of (non-negated) literals in the 
body of the rule and l is a literal. An interpretation I ⊂ HBΠ of the program Π is a 
model of the program Π iff for each rule of the program the following is true: 

h B ∈ Π 
h ≡⊥: B � I 

← 
h �≡⊥: B ⊆ I ⇒ l ∈ I 

M is a minimal model of Π if, given the set of all models of Π: M1, . . . ,Mn, Bj , 1 ≤ 

j ≤ n such that Mj is a strict subset of M . 

Models of programs represent interpretations of the program which include atoms that 
are supported by one or more rules of the program. A minimal model of a program is 
a model in which only supported atoms are included. 

However, the above definition does not take into account negation as failure; in this 
case, rules of the program may contain negated literals which must not be in the inter­
pretations of the program in order for the rule to be supported. In order to account for 
programs containing negation as failure, we define a reduct or transformation, often 
referred to as the Gelfond-Lifschitz reduct [73], as follows: 

Definition 4.13. Let Π be a ground program. The Gelfond-Lifschitz reduct of Π with 
respect to an interpretation I where I ⊂ HBΠ, is the program ΠI containing rules 
l B such that for all rules of the form: ← 

l B, not C ∈ Π, C ∩ I = ∅← 

The reduced program includes all rules of the original program, omitting any rules 
which contain negated literals which are in the interpretation. The answer sets of a 
program are defined as follows: 

Definition 4.14. A set of ground atoms I is an answer set of Π iff I is the minimal 
model of ΠI . 
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The uncertain interpretation of negation as failure gives rise to the possibility of more 
than one answer set, each of which is an acceptable solution to the program. It is 
this non-determinism in which the strength of ASP lies, where we are able to model 
problems that may have more than one solution [57]. We refer to the set of answer sets 
for a program Π as AΠ. 

Example 4.5. Consider the simple program Π: 

a ← .


b a, not c.
← 

c a, not b.← 

The Herbrand Base, HBΠ, of this program (the set of all atoms used in rules in the 
program) is the set of atoms {a, b, c}. 

The program has the interpretations (similar to the power set): 

{{}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} (4.2) 

Given the interpretation J = {a, b} and the Gelfond-Lifschitz reduct ΠJ : 

a ← . 

b a.← 

The interpretation J is a model of Π, as the atoms in J are supported by both rules. 
This interpretation is also a minimal model with respect to ΠJ as it includes only atoms 
supported by the program. 

In contrast, given the interpretation K = {c} and the transformation ΠK : 

a ← . 

c a.← 

The interpretation K is not a model of ΠK as it does not include the atom a which is 
supported by ΠK . 

Finally, given the interpretation L = {a, b, c} and the Gelfond-Lifschitz reduct ΠL: 

a ← . 
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The interpretation L is a model of ΠL as it includes a but is not a minimal model as it 
includes the atoms {b, c} which are not supported by ΠL. The same is also true for the 
empty set {}. 

Therefore, the answer sets of the above program are the interpretations {a, b} and 
{a, c}. 

4.7 Domain Complexity 

ASP is very expressive in a precise mathematical sense; for AnsProlog in its general 
form, allowing negation in rule bodies (but no disjunction in the rule heads), decid­
ing whether a finite ground logic program has an answer set is NP-complete [130]. 
Furthermore, allowing disjunction in the rule heads, ASP can represent every problem 
in the complexity class Σ
P2 (and hence, deciding whether a disjunctive logic program

has an answer set is Σ
P2 -complete). Thus, ASP is strictly more powerful than propos­

itional satisfiability (known as SAT, which is NP-complete, one of the first problems 
in computational complexity theory for this to be proven [65]), as it allows for solving 
problems which cannot be translated to SAT in polynomial time (unless P = NP) [38]. 

However, while many of these problems are NP-complete in the worst-case, numerous 
instances are tractable in the general case and it is the solving times of real problems 
that is of interest. Due to the increasing efficiency of its solver tools, ASP is particu­
larly suited to modelling difficult (primarily NP-hard) search problems. 

For a detailed discussion of the complexity classes relating to AnsProlog and its asso­
ciated subclasses, see Baral [16]. 

4.8 ASP Tools 

A number of algorithms have been proposed for computing the answer sets of a logic 
program, leading to the development of numerous solver tools. Nearly all of the avail­
able solvers deal with ground programs, in which all variables have been removed, so 
the following section presents a short overview of the available grounding tools be­
fore we describe the main classes of solvers. For an informal specification of the core 
AnsProlog language accepted by the majority of the domain tools, see Appendix A 
(page 110). 
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4.8.1 Grounding Tools 

As discussed in Section 4.5 (page 28), before computation an ASP program is groun­

ded to remove variables, an instantiation process that creates copies of the rules for 
each usable value of each variable. The grounding process can be computationally­
expensive [27, 115], in some instances even in proportion to the time cost of actually 
solving the program. This can be indicative of poorly-defined programs, where un­
necessary modelling constructs or complex statements have a significant effect on the 
time taken to solve the program. Nevertheless, many modern grounding tools will 
attempt to perform a number of simplifications of the program during the grounding 
process, such as removing redundant rules [71, 171]. 

Two of the most common grounding systems are LPARSE [171] (developed alongside 
the SMODELS solving system) and GRINGO [67, 68, 71] (part of the CLASP family of 
ASP tools), while the DLV system [116] includes a grounding component as part of 
the front-end of the main system. 

4.8.2 Solving Tools 

The development of efficient ASP solver tools has increased rapidly over the past two 
years. Advances in the development of SAT-based and hybrid solver tools has pushed 
the boundaries for applications and benchmark competitions [49,70]. A detailed com­
parison of solver tools is presented in a number of survey papers [76, 129]. 

The SMODELS System 

The SMODELS system [141] was one of the first ASP solving system which included an 
efficient solving algorithm [140] and associated tools to assist the practical application 
of Answer Set Programming. 

The SMODELS system consists of two programs: the SMODELS solver, which generates 
answer sets of ground programs; and the grounder LPARSE [164, 171], which accepts 
unground AnsProlog programs and generates a program in an efficient internal format 
for SMODELS. 

The language accepted by LPARSE and the SMODELS system is referred to AnsPro­

logsm, as it is an extension to AnsProlog* and includes additional features such as car­
dinality rules, weighted atoms and weight constraint rules. For a detailed description 
of these features, see Niemela and Simons [142]. 
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SMODELS is capable of reasoning efficiently with programs which contain large num­
bers of rules and atoms [165] and is based on the DPLL algorithm [44]. This is a 
backtracking search algorithm which exhibits tree-like resolution for deciding the sat­
isfiability of propositional logic formulae in conjunctive normal form (known as CNF­
SAT) [44]. 

Derivations of the SMODELS system include SMODELS-IE [25], a cache-optimised 
version; and SMODELS-CC [178], which applied an early form of clause learning. 

SAT-based and Conflict-Driven Clause Learning Systems 

ASP solvers, such as SMODELS and DLV, efficiently generate answer sets using care­
fully adapted heuristic algorithms designed for that purpose. In recent years, the study 
of complex reasoning and problem-solving systems has lead to the definition of a num­
ber of efficient algorithms for solving the more general Boolean (propositional) satis­
fiability problem (known as SAT) [51,136]. These advances led to the development of 
ASSAT [122], CMODELS [120], SMODELS-CC [178], CLASP [69] and SUP [119] for 
generating answer sets using SAT solving techniques or using hybrid approaches. 

The early SAT-based systems (ASSAT and CMODELS) translate an AnsProlog pro­
gram (with some constraints on the program structure) into a propositional satisfiabil­
ity problem containing a set of Boolean formulae which describe the constraints on the 
atoms in the program. These satisfiability problems are solved directly using a SAT 
solver which yields the solutions and which may in turn be translated back into answer 
sets of the program. However, more recent systems such as CLASP are based on tech­
niques from constraint solving and could be regarded as neither a pure ASP nor a pure 
SAT-based solver, as there is no explicit conversion between representations [69]. 

Modern SAT-based ASP solvers, utilising a number of techniques derived from state 
of the art SAT solving systems (such as conflict-driven clause learning [69]), have 
been shown to perform competitively when compared to the conventional backtracking 
solvers; often outperforming their conventional counterparts [119, 120] by an order of 
magnitude in certain cases. 

The DLV System 

The DLV system [52] originated as a system for reasoning in Datalog, an extension of 
Answer Set Programming which allows exclusive disjunction (logical OR) in the head 
of the rules. As well as supporting disjunction, DLV also handles a large subset of the 
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AnsProlog language and is capable of solving problems involving large numbers of 
rules efficiently [116]. However, it accepts as input a different syntax from the widely-
accepted LPARSE/SMODELS format. Numerous extensions to the DLV system exist, 
including an SQL front-end [116], but they are out of scope for this thesis. 

Other Systems 

A range of other solvers for ASP programs exist, including DERES [30], SURYA [134] 
and NOMORE++ [7], which are either adaptations of existing solver frameworks or 
hybrid solving systems. There has also been recent development in incremental answer 
set solving, with ICLINGO [67], a stateful implementation of the GRINGO grounder 
and CLASP solver; along with early versions of solvers than ground on the fly, such as 
ASPERIX [114]. Recent work in the optimisation of ASP programs and in particular, 
removing redundant rules from programs [94], has also improved the performance of 
ASP solvers. 

There has also been work in the field of distributed ASP solving, particular with 
PLATYPUS [81] (based on the SMODELS system) and CLASPPAR [54], an early dis­
tributed version of CLASP. Distributed solving [150] and the use of Beowulf systems 
in ASP solving has demonstrated the validity of the approach [24, 149], along with 
preliminary work in parallel grounding [27]. 

4.9 Applications of ASP 

ASP has been successfully applied to various application areas outside of the tradi­
tional domains of planning and diagnosis [13, 52, 121] (with the most notable imple­
mentation of decision support systems for the NASA Space Shuttle [143]); includ­
ing software engineering [145], instruction scheduling [108], program analysis [181], 
automatic music composition [21, 22], e-tourism [89], evolutionary history of lan­
guages [58], biological networks [72], phylogenetics [55], haplotype inference [56], 
multi-agent systems [28, 45, 46], security engineering [75] and cryptography [47, 86]. 

The Working Group on Answer Set Semantics (WASP), a European Commission Fifth 
Framework Programme (FP5)-funded project (from 2002-2005), further developed re­
search in the Answer Set Programming formalism and related tools [59]. The wide 
range of domains to which ASP has been applied demonstrates its versatility and ap­
plicability in modelling complex real-world problems. 
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4.10 Summary 

In this chapter we presented an overview of the Answer Set Programming (ASP) 
paradigm and its underlying formalism AnsProlog, its origins and development within 
the wider field of logic programming and non-monotonic reasoning and its relationship 
to Prolog. Furthermore, we described its clear syntax and semantics and introduced 
the state of the art domain tools for generating solutions (answer sets) of programs. We 
also presented a wide range of successful applications of ASP technology in modelling 
real-world problems. 

In the next chapter we present our application of Answer Set Programming: the TOAST 
superoptimising system, which generates provably optimal code sequences for modern 
machine architectures. 
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Chapter 5 

TOAST: Total Optimisation using 
Answer Set Technology 

The worthwhile problems are the 

ones you can really solve or help 

solve, the ones you can really 

contribute something to. 

Richard Feynman 

5.1 Introduction 

As was identified in Chapter 2, none of the existing approaches to optimising code 
specifically aims for optimality from the outset. Superoptimisation, introduced in 
Chapter 3, addresses this problem by providing an approach that can generate optimal 
code sequences for a particular goal function on a specific machine architecture. Ex­
isting superoptimising implementations, such as the GNU Superoptimizer (GSO) [79] 
and the Stanford superoptimiser [14], are able to generate optimal sequences under 
certain constraints, but there are a number of caveats with their approaches, especially 
regarding verification of the equivalence of code sequences. 

In this chapter, we introduce TOAST, the Total Optimisation using Answer Set Techno­

logy system, a provably optimal code generation system that applies superoptimising 
techniques to generate optimal sequences for acyclic, integer-based code. The TOAST 
system utilises Answer Set Programming, introduced in Chapter 4, as an expressive 
modelling language and efficient computational framework. 
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We first describe the motivation for the design of the TOAST system, then describe 
its main components, illustrated by optimising sequences for the MIPS R2000, a 32­
bit RISC architecture. We then discuss key design issues and present a model for 
validating the system, along with examples of searching for candidates sequences and 
verifying that these sequences are indeed optimal. We demonstrate that the TOAST 
approach to generating provably optimal code sequences is achievable and scalable 
for real code sequences on 32-bit architectures of up to five instructions long. This 
is actually a significant result, due to the average size of basic blocks in code being 
on average between 5-6 instructions long [84, 103]. By superoptimising real code 
sequences of these lengths, it is possible to extend the system and apply the technique 
to programs of arbitrary length. 

An initial proof of concept design for the TOAST system was first presented in Brain 
et al. [24], with some benchmark results for optimising code sequences presented in 
Crick et al. [37]. 

5.2 Motivation 

As discussed in Chapters 1 and 2, new strategies for creating efficient and cost-effective 
compiler tools and hence new strategies for optimising code for modern architectures 
is required [82]. Being able to generate efficient code for an architecture is of huge 
importance; this is the prime motivation for the development of the TOAST system. 

Aside from the inclusion of results from GSO into a specific architecture port of 
GCC [79], the lack of uptake of the existing implementations has prevented the further 
development of superoptimising techniques. Their approaches have not scaled well for 
real code sequences, especially with proving the equivalence of two code sequences. 
Another of the key issues is to do with guaranteeing the optimality of the sequences 
generated. All of the existing implementations perform a representative test or time-
out during equivalence verification. While this is a cautious approach to verification – 
and in doing so, makes the problem more tractable, as they invariably discard the more 
troublesome sequences to verify – it is possible to construct cases which could pass a 
representative test but fail a full equivalence test (this process will be discussed further 
in Section 5.6). By timing out in this way, there is a risk of discarding potentially 
optimal sequences. In contrast, the TOAST system performs a full verification stage 
on all generated sequences. 

The expressibility of ASP and its clear applicability to modelling real-world problems, 

43




along with the availability of efficient domain tools, are the key reasons for its ap­
plication within the TOAST system. Since its inception, it has been regarded as the 
computational embodiment of non-monotonic reasoning and a primary candidate for 
an effective knowledge representation tool. It is a burgeoning research area [59] and 
has been successfully applied to a wide range of domains (as shown in Section 4.9, 
page 40). This significant application of ASP technology in disparate domains has 
had a positive effect for tool development, especially over the past two years. In the 
TOAST system, we utilise off-the-shelf, open source solver tools, with our main cri­
terion for use being the correct output in the fastest time. 

However, ASP is not the only knowledge representation or declarative logic language 
with real-world applications. Other paradigms such as constraint logic programming, 
linear (integer) programming or even propositional satisfiability-based representations 
could have been utilised for the TOAST system, but the expressiveness, clear model­
ling semantics and wide availability of efficient domain tools for ASP push it to the 
forefront as an efficient language for modelling real-world problems. 

The use of logic and declarative techniques for compiler-related problems has a long 
history: for example, using logic programming for compiler development [177] (es­
pecially Prolog [32, 118, 179]), along with declarative techniques for analysis and op­
timisation [61], proving the correctness of optimisations [109, 139], register alloca­
tion [77] and instruction scheduling [128, 182]. In particular, ASP has been applied 
to program analysis [181] and more recently, multi-core instruction scheduling [108], 
with some success. 

5.3 Architecture Overview: MIPS R2000 

In this section we give an overview of the MIPS R2000 architecture, one of the test 
architectures for the TOAST system, which is used for the benchmarking tests in this 
chapter. 

The MIPS (originally an acronym for Microprocessor without Interlocked Pipeline 

Stages) is a load/store reduced instruction set computer (RISC) architecture. The MIPS 
architecture family has had broad application in embedded systems; in the late 1990s 
a third of all RISC processors were MIPS-based [148]. The early MIPS architectures 
were 32-bit, while later versions were 64-bit; the current revisions are the MIPS32 and 
MIPS64 [99]. 

The first commercial MIPS CPU model, the R2000, was announced in 1985. It added 
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multiple-cycle multiply and divide instructions in a somewhat independent on-chip 
unit. The R2000 can be used in either big-endian or little-endian mode. It has thirty-
two 32-bit general purpose registers, but no condition code register (as the designers 
considered it a potential bottleneck), a feature it shares with the AMD 29000 and 
the DEC Alpha architectures. Also, unlike other registers, the program counter is 
not directly accessible [99]. The MIPS design uses triadic addressing, with six bits 
of the 32-bit word for the basic opcode; the rest may contain a single 26-bit jump 
address or it may have up to four 5-bit fields specifying up to three registers, plus a 
shift value combined with another six bits of opcode; another format, specifies two 
registers combined with a 16-bit immediate value. This allows the CPU to load up the 
instruction and the data it needed in a single cycle [99]. 

The R2000 also had support for up to four co-processors, one of which is built into the 
main CPU and handled exceptions, traps and memory management, while the other 
three are left for other uses, such as floating point operations. 

The MIPS R2000 was chosen as a test architecture for the TOAST system as it was 
possible to concisely model a significant proportion of its instruction set (even though 
multiple and divide are modelled as multiple-cycle instructions) and that it is an ex­
ample of a generalised 32-bit RISC architecture. Also, the availability of a mature 
MIPS simulator (SPIM [148]) that can read and execute assembly language programs, 
made it an effective initial validation architecture for the TOAST system. 

The architectural description for the MIPS R2000 used in the TOAST system can be 
found in Appendix C (page 117). 

5.4 System Overview 

5.4.1 Introduction 

The TOAST system consists of modular interacting components that generate Ans-

Prolog programs and parse answer sets, with a controlling interface that applies these 
components to generate a superoptimised version of the original code sequence. In­
formation is passed between components either as fragments of ASP programs or in 
an architecture-independent, assembly language-like format. 

Input to the TOAST system is a sequence of instructions in an internal format, with 
the output either a shorter, optimal program, or no shorter optimal sequence exists. 
The format of TOAST input programs consists of declarations of inputs, instructions 
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and outputs, as represented by the Extended BNF description given in Listing 5.1; an 
example TOAST input program is given in Listing 5.2. 

toastprogram = { input } , { instruction }, { output } ;

input = "in: " , { variable , immediate , mixed , flag } ;

instruction = "inst: " , instructionname , { instructionarg } ;

outputs = "out: " , { variable , immediate , mixed , flag } ;

variable = "v" , number ;

immediate = "i" , number ;

mixed = { "v" , binarydigit } ;

flag = "f+" , flagname | "f-" , flagname | "?" , flagname ;

flagname = ? any valid flag name ? ;

instructionname = ? any valid machine instruction ? ;

instructionarg = "i" , number | number ;

number = digit , { digit } ;

digit = binarydigit | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;

binarydigit = "0" | "1" ;


Listing 5.1: Description of TOAST program input format in Extended BNF 

In addition to the Extended BNF description, the notation presented in Table 5.1 gives 
an overview of the input and output encoding, specifically how to represent values 
and also how to set and check the architectural flags. For example, 01vvv001 would 
represents an eight bit pattern with three variable bits that would be randomly assigned, 
while an architectural flag example would be f+carry, which sets the carry flag to 1 
on input. 

Notation Description 

v Variable, followed by number of bits 
i Immediate, followed by value in two’s-complement format 
m Mixed, bit pattern in which specified bits are fixed or variable 
f+ Flag (set to 1 on input), then flag name 
f- Flag (set to 0 on input), then flag name 
f? Flag (set on output), then flag name 

Table 5.1: TOAST program input format notation 

The format of the instruction arguments is as follows: i0 refers to the hardwired zero 
(if it exists for that architecture), ix refers to the xth input (indexed from one), while 
an integer y refers to the output of the yth instruction in the sequence. 

ASP solvers are used as ‘black-box’ tools to generate solutions to the programs pro­
duced by the TOAST system. We first generate an AnsProlog encoding of the input 
program, its instructions and the number and type of inputs and outputs. This pro­
gram is then used as a starting point for searching for candidate sequences of shorter 
length, start from length one. The answer sets (i.e. models) produced by the solvers 
are the candidate sequences encoded in AnsProlog. This set of candidates is pruned 
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using a number of heuristics and each candidate is tested for equivalence to the ori­
ginal sequence; first using a fast probabilistic test and if passed, a full equivalence test 
over all inputs. If the sequence is equivalent, no answer sets will be returned from 
the solver; essentially the AnsProlog program models the verification as show me the 

inputs on which these two programs differ. Hence, no answer sets returned means they 
do not differ on any input and are equivalent. The structure and key components of the 
TOAST system, presented as a process for an example program, is shown in Figure 5-4 
(page 63). 

in: v32 
in: v32 
inst: add i1 i2 
inst: sub 1 i1 
out: v32 

Listing 5.2: Example program in TOAST input format 

While previous superoptimising implementations have been written in a machine-
specific assembly language [131] or C [14, 79, 95], the TOAST system has been de­
veloped using Perl. This is due to the observation that most of the actions performed 
within the system are fundamentally text processing: manipulating programs and in­
structions, parsing answer sets and outputting sequences. While there may be perform­
ance ramifications in comparison to using assembly language or C, the text processing 
capabilities of Perl are of huge benefit. Compared to previous superoptimising im­
plementations, we have no requirement or dependencies on efficiently encoded goal 
functions (as in GSO), or require the creation of large data structures to map the search 
space (as in the Stanford system). In the TOAST system, all of the computation of 
solutions is delegated to the ASP solver tools. 

5.4.2 Architectural Modelling 

The architecture descriptions used in the TOAST system define the mappings from 
the architecture-specific assembly language syntax to the TOAST internal instruction 
format. AnsProlog is used to model the functionality of the integer processing unit 
of the target processors; this is usually a one-to-one mapping. The expressive nature 
of ASP enables simple and concise modelling of the properties of each architecture, 
such as the bit-level semantics of the instructions, while also allowing the modelling 
of complex constraints. The majority of the modelling is at the bit level; for example, 
AnsProlog rules that relate input bits of an instruction to the output bits. 
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The TOAST system adheres to the following architecture modelling rules, but they can 
be encapsulated by only instructions that change registers and/or condition codes are 

modelled. Furthermore: 

•	 Floating point instructions are not modelled; this is due to the significant com­
plexities of representing floating point numbers and their arithmetic operations 
in the numerous floating point systems, along with handling special values (for 
example, signed zero, subnormal numbers, infinities and NaNs [2]), conversions 
and rounding modes. This is further compounded by the problems of proving 
the equivalence of two floating point values. 

•	 Any instruction that touches memory, either altering or putting addresses into 
registers, is not modelled. This is because the TOAST system currently has no 
model of the memory system (apart from the machine registers) because of the 
complexities with modelling large amounts of memory. 

•	 Higher privilege instructions are not modelled, as these are an unlikely source of 
optimal sequences for normal programs: if they are being requested, a hardware 
interrupt has occurred and they are not directly executed by the user. Similarly, 
it does not model anything that could throw an exception. 

•	 Co-processor operations and vector operations are not modelled, as they also 
depend on precise modelling of the memory layout. However, if the co-processor 
has its own set of registers then it can be modelled as a separate processor and 
integrated. Vector operations can be modelled as single operations and then 
converted. 

•	 A general modelling decision: anything that does not create a value (for ex­
ample, nop, jmp, etc) should not alter value for that time step. While this is 
common sense, it is explicitly modelled. 

The architecture description file also defines which flags are available for that specific 
processor (see Appendix C, page 117), via a space-separated list or declared as ‘none’. 
All flags are undefined at the start of execution and are governed by simple inertia 
rules: they maintain their value unless changed. To use a flag, the flagStatus(C,T,F) 

AnsProlog literal must be referenced. To change the value of a flag, set its new value 
(i.e. flagStatus(C,T,F) or -flagStatus(C,T,F)) and then set 
flagChanged(C,T,F). Both literals must be set or the inertia principle will still 
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hold and create a contradiction if the flag’s status has changed. For an overview of the 
AnsProlog literals used within the TOAST system, see Appendix B (page 112). 

The description is used to generate a list of which instructions are available for a given 
architecture, along with general information, such as the word size and the availability 
of a zero register (a special hardware register that ignores anything written to it and will 
always return zero when read). The TOAST system currently supports the following 
architectures: MIPS R2000, SPARC V7 and SPARC V8 (see Appendix C, page 117), 
along with a number of test architectures adapted from the MIPS R2000 instruction 
set. 

The instruction sequence itself is represented as a series of facts, or in the case of 
searching, a set of choice rules in AnsProlog. These literals are then used by the 
instruction definitions to control the value literals that give the value of various re­
gisters within the processor. If the literal is in the answer set, the given bit is taken 
to be a 1, if the classical negated version of the literal is in the answer set then it is 
a 0. An example instruction definition for a logical AND (land) is given in List­
ing 5.4 (page 50). Note the use of negation as failure to reduce the number of rules 
needed and the declaration that AND is symmetric, which is used to reduce the search 
space. None of the programs generated within the TOAST system requires disjunc­
tion, aggregates or any other non-syntactic extensions to the answer set semantics (as 
discussed in Chapter 4, page 24). 

haveJumped(C,T) :- jump(C,T,J), colour(C), time(C,T), jumpSize(C,J). 
pc(C,PCV+J,T+1) :- pc(C,PCV,T), jump(C,T,J), colour(C), position(C,PCV), time(C,T), 

jumpSize(C,J). 
pc(C,PCV+1,T+1) :- pc(C,PCV,T), not haveJumped(C,T), colour(C), position(C,PCV), 

time(C,T). 
pc(C,1,1). 

Listing 5.3: AnsProlog encoding of TOAST flow control rules 

The instruction library describes properties of the instructions, such as whether they are 
unary or binary, symmetric or asymmetric in their arguments, along with an AnsProlog 

description of the semantics of the instruction. A more complex example is given 
in Listing 5.5 (page 51) of an arithmetic ADD instruction, which demonstrates the 
relationship between the first bit and the following bits and how the carry is handled. 

Flow control rules define which instruction will be ‘executed’ at a given time step by 
controlling the program counter (pc) literal. As AnsProlog programs in the TOAST 
system may need to simultaneously model multiple independent code streams (for 
example, when trying to verify the equivalence of two sequences of code), all literals 
are tagged with an abstract property named colour. The inclusion of the colour(C) 
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value(C,T,B) :- istream(C,P,land,R1,R2,none), pc(C,P,T), 
value(C,R1,B), value(C,R2,B), register(R1), 
register(R2), colour(C), position(C,P), time(C,T), 
bit(B). 

-value(C,T,B) :- istream(C,P,land,R1,R2,none), pc(C,P,T), 
not value(C,T,B), register(R1), register(R2), 
colour(C), position(C,P), time(C,T), bit(B). 

symmetricInstruction(land). 

Listing 5.4: AnsProlog encoding of the logical AND (land) instruction 

literal in each rule allows copies to be created for each code stream during instantiation. 
In most cases, when only one code stream is used, only one value of colour is defined 
and only one copy of each set of rules is produced; the overhead involved in generating 
the sets of rules is negligible. An example encoding of a flow control rule is given 
in Listing 5.3, while a description of the important literals relating to the colour 

property can be found in Appendix B (page 112). 

By using basic instruction descriptions and AnsProlog to model the semantics of these 
instructions, it is possible to rapidly model new architectures and their instructions 
sets, along with making it simple to tweak and amend the semantics of instructions. 
Clearly, an understanding of the target architecture is required, but this means it is 
possible to model a new architecture for use within the TOAST system by using the 
information available in an architecture reference manual. Porting to a new architec­
ture is dependent on how many of the instructions in the new architecture have already 
been modelled within the TOAST system (and whether you are required to model any 
significant non-standard features or semantics). 

5.4.3 Components 

In the following section, we introduce the key components of the TOAST system (see 
Figure 5-4 for a process diagram of the system, page 63), their functionality and how 
they interact. Each of the components are separate programs that are utilised within 
the TOAST system to generate optimal sequences. 

As described in Section 5.4, the input to the TOAST system is a program in the 
TOAST-specific format which encodes the instruction sequence and information about 
its inputs and outputs. The output of the TOAST system is either a shorter optimal 
sequence, or nothing if the sequence cannot be optimised further. 
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% First bit 
-value(C,T,0) :- istream(C,P,add,R1,R2,none), pc(C,P,T), -value(C,R1,0), 

-value(C,R2,0), colour(C), position(C,P), time(C,T), register(R1), register(R2). 
-value(C,T,0) :- istream(C,P,add,R1,R2,none), pc(C,P,T), value(C,R1,0), 

value(C,R2,0), colour(C), position(C,P), time(C,T), register(R1), register(R2). 
value(C,T,0) :- istream(C,P,add,R1,R2,none), pc(C,P,T), not -value(C,T,0), 

colour(C), position(C,P), time(C,T), register(R1), register(R2). 
additionCarry(C,T,1) :- istream(C,P,add,R1,R2,none), pc(C,P,T), value(C,R1,0), 

value(C,R2,0), colour(C), position(C,P), time(C,T), register(R1), register(R2). 
-additionCarry(C,T,1) :- istream(C,P,add,R1,R2,none), pc(C,P,T), not 

additionCarry(C,T,1), colour(C), position(C,P), time(C,T), register(R1), 
register(R2). 

% Subsequent bits 
value(C,T,B) :- istream(C,P,add,R1,R2,none), pc(C,P,T), value(C,R1,B), 

value(C,R2,B), additionCarry(C,T,B), colour(C), position(C,P), time(C,T), 
bit(B), B != 0, register(R1), register(R2). 

value(C,T,B) :- istream(C,P,add,R1,R2,none), pc(C,P,T), -value(C,R1,B), 
-value(C,R2,B), additionCarry(C,T,B), colour(C), position(C,P), time(C,T), 
bit(B), B != 0, register(R1), register(R2). 

value(C,T,B) :- istream(C,P,add,R1,R2,none), pc(C,P,T), -value(C,R1,B), 
value(C,R2,B), -additionCarry(C,T,B), colour(C), position(C,P), time(C,T), 
bit(B), B != 0, register(R1), register(R2). 

value(C,T,B) :- istream(C,P,add,R1,R2,none), pc(C,P,T), value(C,R1,B), 
-value(C,R2,B), -additionCarry(C,T,B), colour(C), position(C,P), time(C,T), 
bit(B), B != 0, register(R1), register(R2). 

-value(C,T,B) :- istream(C,P,add,R1,R2,none), pc(C,P,T), not value(C,T,B), 
colour(C), position(C,P), time(C,T), bit(B), B != 0, register(R1), register(R2). 

additionCarry(C,T,B+1) :- istream(C,P,add,R1,R2,none), pc(C,P,T), value(C,R1,B), 
value(C,R2,B), additionCarry(C,T,B), colour(C), position(C,P), time(C,T), 
bit(B), B != 0, register(R1), register(R2). 

additionCarry(C,T,B+1) :- istream(C,P,add,R1,R2,none), pc(C,P,T), -value(C,R1,B), 
value(C,R2,B), additionCarry(C,T,B), colour(C), position(C,P), time(C,T), 
bit(B), B != 0, register(R1), register(R2). 

additionCarry(C,T,B+1) :- istream(C,P,add,R1,R2,none), pc(C,P,T), value(C,R1,B), 
-value(C,R2,B), additionCarry(C,T,B), colour(C), position(C,P), time(C,T), 
bit(B), B != 0, register(R1), register(R2). 

additionCarry(C,T,B+1) :- istream(C,P,add,R1,R2,none), pc(C,P,T), value(C,R1,B), 
value(C,R2,B), -additionCarry(C,T,B), colour(C), position(C,P), time(C,T), 
bit(B), B != 0, register(R1), register(R2). 

-additionCarry(C,T,B+1) :- istream(C,P,add,R1,R2,none), pc(C,P,T), not 
additionCarry(C,T,B+1), colour(C), position(C,P), time(C,T), bit(B), B != 0, 
register(R1), register(R2). 

symmetricInstruction(add). 

Listing 5.5: AnsProlog encoding of the arithmetic add instruction 
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toast - the control program 
input: program 
output: program (optimal) or ∅ 

The toast program is the controlling interface to the TOAST system, enabling option-
setting (such as fine-tuning of the search heuristics and verification options). The main 
control flow searches for candidate sequences, prunes the set of candidates and then 
verifies which of the candidates are equivalent to the original sequence. An import­
ant emphasis is on pruning as many sequences during the search phase as possible, in 
order to reduce the number of candidates to verify. 

The key observation underlying the design of the TOAST system is that any super­
optimised sequence will necessarily be returned by using search on the appropriate 
instruction length. However, not everything that search returns is necessarily a cor­
rect answer; due to the initial search constraints, it is possible that there are a number 
of invalid candidate sequences found. Thus, to remove these invalid candidates, the 
front end generates further search constraints from the input instruction sequence. In­
struction sequences of length one, up to one less than the length of the input sequence, 
are then searched sequentially. If candidates are found, another constraint set is gen­
erated and the same length searched again. The two results sets are intersected, as any 
correct sequence must appear in both searches. This process is repeated until either the 
intersection is empty, in which case the search moves on to the next length, or until the 
intersection stabilises. verify is then used to check the candidates for equivalence to 
the original input sequence. A representative pre-verification test is performed before 
a full verification test, using a selected set of test vectors. The output of toast is an 
optimised version of the input program, if one exists. 

findPath 

input: program 
output: paths 

findPath generates a list of possible execution paths (if one exists) through the in­
put program. As the TOAST system currently only supports straight-line code, without 
explicit branches or loops, this will return a comma-delimited list of integers represent­
ing the possible execution order of instructions in the input program. Example output 
from findPath for the program given in Listing 5.2 would be 1,2, which represents 
the first instruction in the program, followed by the second instruction. 
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pickPath 

input: path, program 
output: AnsProlog vectors 

pickPath generates a set of inputs (referred to as input vectors) in AnsProlog for the 
input program that will follow the instruction path generated from findPath. These 
input vectors are a set of selected bit values for all of the inputs in the original program. 
For example, if a program has three 32-bit inputs, then pickPath will generate three 
32-bit binary values, picking a 0 or 1 for each bit. This gives an initial set of values for 
searching for candidate sequences. At this stage it is also possible to explicitly select 
difficult edge cases and pick vectors for these; for example, picking a set of values on 
a boundary, such as all zeros or all ones, to prune the search space of clearly redundant 
sequences. 

execute 

input: AnsProlog vectors, program 
output: AnsProlog constraints 

The execute program emulates running the input instruction sequence using the 
generated input vectors from pickPath, producing constraints in AnsProlog that 
describe the original instruction sequence’s outputs. These constraints are used to 
bound the initial search space. 

search 

input: search space, AnsProlog vectors, AnsProlog constraints 
output: program fragments 

By using the input vectors and constraints (essentially start and end values for the 
original input program), it searches for all instruction sequences of a given length (the 
search space) that produce the correct output for the given input values. A number of 
heuristics have been developed to prune the initial search space, as certain sequences 
can generate large numbers of candidate sequences on initial searches. Code sequences 
that are used in an incorrect fashion (for example, sequences that discard previously 
calculated values, or instructions with invalid arguments) are discarded, hence avoiding 
a form of runtime error; we can also assert that every instruction must contribute to the 
output, otherwise it may be possible to have redundant instructions in the sequence. 
We can also do the same with asserting that every input must be used, along with 
every instruction’s output. While the application of these heuristics does not affect the 
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outcome of the search, it can provide significant savings in runtime. 

searchCut 

input: instructions 
output: AnsProlog constraints 

searchCut generates extra constraints to append to those accepted by search to 
further trim the size of the search space. After the first search, it is possible to search 
within the original results rather than performing another full search. This is an obvi­
ous step, because any optimal sequence would have to be contained within this original 
search (because by definition, it would have to match the tuple of every possible in­
put/output value). 

verify 

input: program, program, vectors* 
output: Boolean 

If candidate sequences are found during the search, then they have to be verified for full 
equivalence to the original sequence over all possible input values. In certain cases, 
it is possible for a large amount of candidate sequences to be generated that are not 
pruned during the search phase, so the following verify processes are performed: 

•	 pre-verify, a fast heuristic that uses a directed set of input vectors to perform 
a representative verify on the two sequences. As mentioned previously, it is 
possible to explicitly select difficult edge cases and pick specific vectors for 
these; for example, picking a set of values on a boundary, such as all zeros or 
all ones. If pre-verify returns false, then the candidate is discarded (since it is 
definitely not an optimal sequence); if true, then a full verify must be performed 
to prove full equivalence. 

•	 A full verify tests if two sequences are equivalent for all input values. If they 
are not equivalent, it is possible to output a set of vectors representing values on 
which they differ, in a suitable form for execute and search. 

5.5 Experimental Results 

Superoptimisation naturally decomposes into two discrete tasks: searching for can­
didate sequences and then verification of the equivalence of these candidates to the 
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original sequence. In this section, we present benchmarks for these two main tasks of 
the TOAST system for the MIPS R2000, a 32-bit RISC architecture. All tests were 
run on quad-core Intel 2.8GHz Xeon E5462 processors with 32GB RAM, running a 
variant of Scientific Linux. Programs were grounded using GRINGO and tested with 
the following five solvers: CLASP, CMODELS, SMODELS, SMODELS-IE and SUP; all 
tools were built in 32-bit mode (this is significant for a number of reasons, relating 
to the size of addressable memory, but mainly because a number of ASP tools do not 
currently build as 64-bit programs). 

5.5.1 Searching 

The sequence5 search test, as given in Listing 5.6, attempts to find shorter optimal 
sequences for a five instruction program, with two 32-bit inputs. This sequence was 
selected as an example of a sequence that cannot be superoptimised (i.e. it is already 
optimal), giving an approximate ceiling on the performance of the system. Benchmark 
times for the sequence5 test for the five chosen solvers are given in Table 5.2; solver 
timeouts occurred after 240 hours. 

! input 1 in %i1 
! input 2 in %i2 
and %l1 %i2 %i2 
add %l2 %i1 %l1 
add %l3 %i1 %l2 
add %l4 %i1 %l3 
sub %o1 %i0 %l4 
! output in %o1 

Listing 5.6: sequence5 search test for MIPS R2000 

The timings plotted in Figure 5-1, confirm that search times increase at a near expo­
nential rate as the sequence length increases. The TOAST system is able to search over 
sequences of five instructions in approximately six hours, but this is dependent on the 
solver used (discussed further in Section 5.5.3). 

5.5.2 Verifying 

The argredundancetest verify test checks to see if a non-trivial redundant argu­
ment is optimised away, reducing the three instruction sequence to one instruction. In 
these tests, we amended the bit-level modelling of the input programs to demonstrate 
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Search sequence length 
Solver 1 2 3 4 5 

clasp-1.2.1 0.23 1.83 179.00 5191.48 20268.21 
cmodels-3.79 0.36 6.12 1006.00 4244.83 21176.82 
smodels-2.33 0.24 6.58 5578.63 t/o t/o 
smodels-ie-1.0.0 0.18 4.91 2115.37 t/o t/o 
sup-0.4 0.46 2.18 177.24 5516.97 22942.46 

Atoms 853 1411 2098 2941 4003 
Rules 47925 130956 259223 442589 712166 

Table 5.2: Timings (in sec) for sequence5 search test on MIPS R2000
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Figure 5-1: Plot of sequence5 search test times (in sec) on MIPS R2000 

the scalability of the TOAST system in verifying sequences on 8-bit, 16-bit, 32-bit and 
64-bit architectures. Benchmarks for the five solvers is given in Table 5.3. 

The timings plotted in Figure 5-2, confirm that verify times also appear to increase at 
an exponential rate as word size increases, as expected. The TOAST system is able to 
verify most 32-bit programs in less than one second, but again this is dependent on the 
type of solver used (again, discussed further in Section 5.5.3). 
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in: v32 
in: v32 
in: v32 
inst : lxor i2 i3 
inst : lxor 1 i3 
inst : add i1 2 
out: v32 

Listing 5.7: argredundancetest verify test for MIPS R2000 

Program word size 
Solver 8-bit 16-bit 32-bit 64-bit 

clasp-1.2.1 0.12 0.05 0.15 2.00 
cmodels-3.79 0.11 0.06 0.39 0.82 
smodels-2.33 0.14 11.21 - -
smodels-ie-1.0.0 0.06 11.38 - -
sup-0.4 0.24 3.16 - -

Atoms 922 2314 7402 26858 
Rules 1643 4915 17219 64803 

Table 5.3: Timings (in sec) for argredundancetest verify test on MIPS R2000 

5.5.3 ASP Tool Benchmarking 

In this section we analyse the search and verify results with respect to ASP tool per­
formance. 

Grounding Tools 

The grounding process is an overlooked component of solving, but in certain cases can 
represent a large proportion of the overall solving time. Grounding becomes more of 
an issue in scenarios when you need to perform a large number of solves; for example, 
when a TOAST run generates a large number of candidate sequences that need to be 
verified. From the benchmark timings in Table 5.4 (and plotted in Figure 5-3) for 
the two most common grounding tools LPARSE and GRINGO in comparison to the 
associated solver results in Figure 5.3, it takes at least an equivalent amount of time to 
ground as it does to solve a 32-bit program. GRINGO does appear to scale at near linear 
time for increased bit size compared to LPARSE, which becomes increasingly more 
expensive. Modern grounders perform simple optimisations and remove redundant 
parts of a program, but in certain cases a naive fast grounding option would be more 
suitable. Grounding has been neglected as a research and development area in favour of 
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bit size on MIPS R2000 

developing more sophisticated solving algorithms, but there are a number of domains 
that require more efficient grounding solutions, including TOAST. This is increasingly 
apparent in certain applications of the TOAST system, as presented in Chapter 7. 

Program bit size 
Grounder 8 16 32 64 

gringo-2.0.3 0.06 0.12 0.13 0.13 
lparse-1.1.1 0.20 0.38 0.74 1.37 

Atoms 1524 2820 5412 10596 
Rules 3580 7164 14332 28668 

Table 5.4: Timings (in sec) for verifytest1 grounding tests on MIPS R2000 

Solver Tools 

The solver results presented in Table 5.3 indicate that there is a large gap between the 
two main classes of solvers used: the well-established solvers based on the SMODELS 
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algorithm and the more recent SAT-based and clause learning solvers, such as CLASP, 
SUP and CMODELS. The performance of the latter class of solvers on TOAST-specific 
problems are orders of magnitude faster than the SMODELS-based tools. As can be 
seen in Table 5.3 (and also in results presented in Chapters 6 and 7), we are unable to 
generate results for verifying 32-bit programs with the SMODELS-based tools, on any 
architecture. In fact, the upper bound for this class of solver is greater than 250 hours 
of compute time. This has influenced the solver choice for use within the TOAST 
system. 

5.6 Discussion 

As we have presented in this chapter, superoptimisation decomposes into the two main 
tasks of searching for candidate sequences and then verifying their equivalence. In 
certain cases, it is possible to generate a large number of candidates during the search 
phase (which is problematic during the computationally-heavy verification phase), 
but none of the implemented heuristics have the potential of discarding any valid se­
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quences. 

Alongside the 32-bit architectures that we have modelled (MIPS R2000 and SPARC 
V7/V8), pseudo 8-bit and 16-bit architectures (derived from the MIPS R2000) have 
been modelled to demonstrate the complexity curve with respect to increasing word 
size. This required manipulation of certain instructions to create 8-bit and 16-bit spe­
cific versions (notably logical shifts, but generally operations that are concerned about 
the actual length of the bit sequences). This has provided an insight to how the TOAST 
system scales with increasing architecture word size. TOAST is able to search for and 
verify sequences on 32-bit architectures, while searching is more dependent on the 
number of instructions in the input sequence. On an n-bit architecture, the raw search 
space is 2inputs∗n, so TOAST is currently able to search over sequences of up to five 
instructions in an acceptable time. However, as discussed earlier, this is a reasonable 
limitation and actually a significant result, with empirical studies [84, 148] showing 
that the average size of basic blocks is between 5-6 instructions long. Hence, TOAST 
can be applied to optimising real-world code sequences. 

The 8-bit and 16-bit test architectures were used to verify and validate the search pro­
cess to ensure that actual candidates are not discarded or invalid sequences included. 
Using the 8-bit architecture, the TOAST system was validated to ensure it met the 
original design specification. By using an exhaustive search without any pruning or 
heuristics, we were able to see if all possible instruction sequences were generated. 
This was validated against the architecture description. Each search heuristic was then 
tested to ensure that sequences were not inappropriately added or removed; again, this 
was validated against the architectural model. 

The use of the pre-verify heuristic is a key part of the verification model of the TOAST 
system. As with the existing superoptimising implementations, especially GSO [79], 
a representative verify test enables a fast check of whether sequences are equivalent. 
However, we do not overlook a full verification strategy, in contrast to other imple­
mentations. If a sequence is discarded by pre-verify, it is definitely not a valid se­
quence, but the reverse is not true: if a sequence passes the pre-verify test, there is 
no guarantee that this is equivalent. A full verify must be performed to guarantee full 
equivalence for all input/output values. Empirical tests [37] from repeated runs of the 
TOAST system has shown that while we have never encountered a sequence that has 
passed pre-verify but failed a full verify, it would be trivial to construct one. In fact, it 
would be feasible to construct a program to get the TOAST system to generate these 
programs. For example, since the heuristic only selects values for the middle bits of 
a sequence, a pair of instruction sequences that differ on one input and only use the 
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lower 25 bits (assuming a 32-bit word), prefixing both with shift left 2 and shift right 
(arithmetic or zero fill) 7 would give a pair that would pass pre-verify with probability 
of 1 − 1 It may also be possible to utilise the TOAST system to generate sets of 

225 . 
these sequences. However, whether these are likely to appear in real code sequences 
remains to be seen. Nevertheless, by only performing representative testing (as in 
Massalin’s original superoptimiser and GSO) or timing out after a fixed period (like 
the Stanford superoptimiser) means there is a chance that you either validate a non-
optimal sequence or potentially discard an optimal sequence. With no guarantee of 
equivalence there is always the requirement to hand-check sequences. By design, this 
is not possible in the TOAST system. 

As stated earlier, the architectural model is complete with respect to the instructions 
that we have chosen to represent; in this case no floating point operations, privileged 
instructions or anything that allows exceptions. While this is a simplification of the 
complete functionality of the architecture, it is a justifiable one due to the complexities 
of proving equivalences in floating point operations and the problems of manipulating 
privileged and exception-raising code sequences. The caveat of this choice is that 
there may exist potential improvements or amendments to the model that could allow 
more optimal sequences. This issue is discussed further in the future work section in 
Chapter 8. 

With the goal-directed superoptimisers like GSO means that while they may be quicker 
in finding certain sequences, they are not able to accept any arbitrary code sequence 
like the TOAST system. This means that the burden is on the user to efficiently encode 
new goal functions, with a requirement to understand the underlying nature of the 
problem. This is not the case for TOAST; while there is a measure of translating and 
encoding required for the architectural descriptions, a potential user would only need 
to know the TOAST program input format and how to run the system. 

5.7 Summary 

In this chapter we have presented the TOAST: Total Optimisation using Answer Set 

Technology superoptimising system, along with its main components, and have shown 
the following: 

•	 The TOAST system is a practical superoptimising toolchain that guarantees full 
equivalence of code sequences. 
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•	 The TOAST system is able to superoptimise 32-bit programs of up to five in­
structions long on modern machine architectures. 

•	 The application of ASP to the problem domain demonstrates the ease of mod­
elling machine architectures and the semantics of its instructions in the TOAST 
system. 

•	 The relative performance of ASP tools within the TOAST system, with clear 
recommendations for the most efficient classes of grounders and solvers. 

In Chapter 6 we apply the TOAST system to superoptimising sequences for the SPARC 
V8 architecture, while in Chapter 7 we utilise the whole of the TOAST system in 
generating equivalence classes of optimal sequences of length one upwards to generate 
a library of peephole optimisations for a specific machine architecture. 
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Figure 5-4: TOAST system architecture for an example superoptimisation process
63 



Chapter 6 

A Case Study: Superoptimising 
SPARC V8 

It doesn’t matter how beautiful your 

theory is, it doesn’t matter how smart 

you are. If it doesn’t agree with 

experiment, it’s wrong. 

Richard Feynman 

6.1 Introduction 

In this chapter we apply the TOAST system (presented in Chapter 5) to superoptim­
ising sequences for the SPARC V8 architecture. We provide benchmarks for a wide 
range of tests, demonstrating the interconnection of the system components, while also 
providing insight into the potential bottlenecks. We also compare aspects of the system 
to other existing superoptimising implementations. 

6.2 Architecture Overview: SPARC V7/V8 

SPARC (from Scalable Processor Architecture) is a load/store RISC architecture de­
veloped by Sun Microsystems in 1986. The SPARC V7 [12] and V8 [166] are mi­
croprocessor specifications and not specific implementations. They consist of a linear 
32-bit address space with few and simple instruction formats; all instructions are 32 
bits wide, and are aligned on 32-bit boundaries in memory. There are only three basic 
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instruction formats, and they feature uniform placement of opcode and register ad­
dress fields. Only load and store instructions access memory and I/O. There are few 
addressing modes - a memory address is given by either register-register or register-
immediate. The SPARC has triadic register addresses: most instructions operate on 
two register operands (or one register and a constant), and place the result in a third 
register [170]. The V7 uses 80-bit extended addressing (128-bit aligned) instead of 
quad word. The SPARC V8 differs from the V7 by the inclusion of improved mul­
tiply/divide instructions and tagged instructions; the tagged add/subtract instructions 
assume that the two least-significant bits of the operands are tag bits. A recent update 
to the SPARC architecture (V9) extends the addresses to 64-bit, including the addition 
of a number of instructions [180]. 

The SPARC V7/V8 architectures were chosen as a test architecture for the TOAST sys­
tem due to the more complex modelling requirements compared to the MIPS R2000 
architecture. While the SPARC architecture also represents a clean RISC model, it in­
cludes 64-bit extensions and more modern design features, such as tagged instructions. 
It was also a class of machine architecture that we have physical access to, allowing 
possible real system testing. In this way, it was chosen as a effective second validation 
architecture for the TOAST system. 

The SPARC V7 and V8 architectures are used in both this chapter and also in Chapter 7; 
the architectural description for the both architectures can be found in Appendix C 
(page 117). 

6.3 Superoptimising SPARC 

To demonstrate the utility of the TOAST system we will use the following benchmark 
tests: 

Search: sequence5 (see page 55) generates programs that search the space of SPARC 
V8 instructions for candidate sequences for a program of five instructions. This 
sequence was selected as a worst-case, an example of a sequence that is already 
optimal, giving an approximate ceiling on the performance of the system. 

Verify: consists of two tests: verifytest1 which tests the non-trivial equivalence 
of two short code sequences, adding an unsigned number to itself and multiply­
ing it by two; and verifytest2, which tests the non-equivalence of two code 
sequences, that only differ on one set of inputs and hence will result in the solver 
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returning only one answer set (which is an AnsProlog encoding of the inputs on 
which they differ). 

TOAST: returning complete runs for the TOAST system, utilising all components (as 
presented in Chapter 5). Two tests: argredundance, which tests to see if a 
non-trivial redundant argument is optimised away, reducing a three instruction 
sequence to one instruction; and signum, which returns the sign of a binary 
integer, or zero if the input is zero. This second test is used to give a comparison 
to the GSO system [79] as presented in Chapter 3. 

6.3.1 Searching 

The sequence5 test program, as given in Listing 6.1, is a test sequence that is already 
optimal, so it gives an approximate ceiling on the performance of the system in search­
ing over the space of SPARC V8 instructions. Timings are given in Table 6.1 and 
plotted in Figure 6-1; solver timeouts occurred after 240 hours. 

! input 1 in %i1 
! input 2 in %i2 
andcc %i1 %i2 %l1 
addcc %i1 %l1 %l2 
addcc %i1 %l2 %l3 
addcc %i1 %l3 %l4 
subcc %i0 %l4 %o1 
! output in %o1 

Listing 6.1: sequence5 search test for SPARC V8 

Search sequence length 
Solver 1 2 3 4 5 

clasp-1.2.1 0.28 2.01 189.00 5211.84 20625.16 
cmodels-3.79 0.37 6.89 1019.00 4314.38 21699.27 
smodels-2.33 0.28 7.57 6100.36 t/o t/o 
smodels-ie-1.0.0 0.21 6.91 2279.31 t/o t/o 
sup-0.4 0.44 3.15 177.24 5596.71 23012.61 

Table 6.1: Timings (in sec) for sequence5 search tests on SPARC V8 

6.3.2 Verifying 

The verifytest1 program tests the (non-trivial) equivalence of two code sequences, 
as presented in Listing 6.2. The verifytest2 program tests the non-equivalence 
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Figure 6-1: Plot of sequence5 search test times (in sec) for increasing sequence 
length on SPARC V8 

of two code sequences (as given in Listing 6.3), that only differ on one set of inputs. 
Timings for both tests for the five solvers are given in Table 6.2; again, solver timeouts 
occurred after 240 hours. 

in: v32 
in: i2 
inst: multu i1 i2 
out: v32 

in: v32 
in: i2 
inst: add i1 i1 
out: v32 

Listing 6.2: verifytest1 test programs for SPARC V8 
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in: v32 
in: i1 
in: i31 
inst: srs32 i1 i3 
inst: lorcc 1 1 
inst: cbne 2 
inst: add 1 i2 
out: v32 

in: v32 
in: i1 
in: i31 
inst: addcc i1 i1 
inst: csubcc i1 1 
inst: cadd 2 i1 
out: v32 

Listing 6.3: verifytest2 test programs for SPARC V8 

Verify tests 
Solver verifytest1 verifytest2 

clasp-1.2.1 15.20 8.17 
cmodels-3.79 22.19 10.22 
smodels-2.33 t/o t/o 
smodels-ie-1.0.0 t/o t/o 
sup-0.4 t/o 8.77 

Table 6.2: Timings (in sec) for 32-bit verify tests on SPARC V8 

6.3.3 TOAST System Benchmarking 

For the TOAST system tests, we performed a full run through the TOAST process, 
utilising each component and validating the input and output we obtain. This would 
be performed automatically during a real system run, but has been decomposed to 
demonstrate the modular components of the system and how they interact. 

in: v32 
in: v32 
in: v32 
inst : xor i2 i3 
inst : xor 1 i3 
inst : add i1 2 
out: v32 

Listing 6.4: argredundancetest verify test for SPARC V8 

Example 6.1. Using the argredundance test program as shown in Listing 6.4, we 
will demonstrate the control flow of the TOAST system: 

68 



Find all paths through the input program: this results in a direct instruction path 
of 1, 2, 3, which means instruction one, two and three are executed sequentially. 
This is more relevant when there are multiple paths through a program to ensure 
that we test all possible paths. 

Generate vectors and constraints for search space 1, run 1: we pick a path through 
the program using a set of selected vectors, to give each input a starting value. 
The instruction sequence is then executed using these chosen vectors to generate 
constraints, essentially giving us input and output values encoded in AnsProlog 

to perform the initial search. 

Initial search over space 1: initial search over sequences of length one using the vec­
tors and constraints. This generates the first results set of potential candidates. 
In this example we generate 25 candidates in 10 sec. 

Generate vectors and constraints for search space 1, run 2: we pick a new set of 
vectors (input values) which enables us to generate a new set of constraints (out­
put values). We then perform a new directed search over space 1. 

Cut and search over space 1: we generate further search constraints (as shown in 
Listing 6.7) to trim the search space using information from the initial search 
and then re-search. We again generate 25 candidates in 11 sec. The criteria 
for searching means we always search at least twice to enable us to generate 
cut constraints; if the set of candidates varies (either increases or decreases) we 
continue searching, if it is empty we move onto the next space, if it stabilises we 
stop searching. In this example, we have generated 25 candidates on two distinct 
searches, so the set of candidates is stable and we move onto verification. 

25 candidate(s) to verify: we perform the pre-verify heuristic on the 25 candidates 
(given in Listing 6.6). This is the representative test using a chosen set of input 
vectors to remove trivially incorrect sequences that have not been pruned during 
the search. This heuristic takes less than one second and discards 24 of the 25 
sequences, with only add i1 i2 (from line 22 in Listing 6.6) passing the test. 

Full verify for candidate: add i1 i2: the full verify test checks to see if two sequences 
are equivalent over all input values, demonstrating full equivalence. In this case, 
the candidate passes a full verify in 1 sec and we have therefore found an optimal 
sequence of length one. 

Summary: this full run of the TOAST system took 41 secs to complete, superoptim­
ising the original length three sequence to a sequence of length one. 
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1 in: v32 
2 in: i1 
3 inst: subcc i1 i0 
4 inst: cbg 4 
5 inst: cbl 5 
6 inst: lor i0 i0 
7 inst: cba 4 
8 inst: lor i0 i2 
9 inst: cba 2 

10 inst: sub i0 i2 
11 out: v32 

Listing 6.5: signum test program for SPARC V8 

1 land i2 i2 
2 sdiv i2 i0 
3 lor i0 i3 
4 add i3 i3 
5 add i1 i1 
6 add i2 i3 
7 add i0 i1 
8 lor i3 i3 
9 add i1 i3 

10 add i0 i0 
11 lor i1 i2 
12 lor i2 i2 
13 sdiv i2 i3 
14 lor i0 i1 
15 umult i2 i2 
16 lor i0 i0 
17 lor i1 i1 
18 smult i2 i2 
19 add i0 i2 
20 lor i1 i3 
21 lor i2 i3 
22 add i1 i2 
23 add i0 i3 
24 sdiv i2 i1 
25 lor i0 i2 

Listing 6.6: Superoptimised candidates generated from argredundance test on 
SPARC V8 

A similar run to above was performed for the signum function as first introduced in 
Chapter 3 (page 16) and given in Listing 6.5. This is one of the sequences found by 
both Massalin [131] and GSO [80]. As expected, no candidates were found at sequence 
length one and two, whereas over 120 sequences were found on the initial search 
at sequence length three. This candidate set was pruned on the second search over 
length three and 13 sequences were passed to verify. All of these sequences passed the 
pre-verify stage and a full verify, confirming the sequences found by GSO. The total 
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1 :- not validSequence.

2 validSequence :- istream(blue,1,umult,i2,i2,none), requireValidSequence.

3 validSequence :- istream(blue,1,smult,i2,i2,none), requireValidSequence.

4 validSequence :- istream(blue,1,land,i2,i2,none), requireValidSequence.

5 validSequence :- istream(blue,1,add,i0,i0,none), requireValidSequence.

6 validSequence :- istream(blue,1,add,i0,i1,none), requireValidSequence.

7 validSequence :- istream(blue,1,add,i0,i2,none), requireValidSequence.

8 validSequence :- istream(blue,1,add,i0,i3,none), requireValidSequence.

9 validSequence :- istream(blue,1,add,i1,i1,none), requireValidSequence.


10 validSequence :- istream(blue,1,add,i1,i2,none), requireValidSequence. 
11 validSequence :- istream(blue,1,add,i1,i3,none), requireValidSequence. 
12 validSequence :- istream(blue,1,add,i2,i3,none), requireValidSequence. 
13 validSequence :- istream(blue,1,add,i3,i3,none), requireValidSequence. 
14 validSequence :- istream(blue,1,lor,i0,i0,none), requireValidSequence. 
15 validSequence :- istream(blue,1,lor,i0,i1,none), requireValidSequence. 
16 validSequence :- istream(blue,1,lor,i0,i2,none), requireValidSequence. 
17 validSequence :- istream(blue,1,lor,i0,i3,none), requireValidSequence. 
18 validSequence :- istream(blue,1,lor,i1,i1,none), requireValidSequence. 
19 validSequence :- istream(blue,1,lor,i1,i2,none), requireValidSequence. 
20 validSequence :- istream(blue,1,lor,i1,i3,none), requireValidSequence. 
21 validSequence :- istream(blue,1,lor,i2,i2,none), requireValidSequence. 
22 validSequence :- istream(blue,1,lor,i2,i3,none), requireValidSequence. 
23 validSequence :- istream(blue,1,lor,i3,i3,none), requireValidSequence. 
24 validSequence :- istream(blue,1,sdiv,i2,i1,none), requireValidSequence. 
25 validSequence :- istream(blue,1,sdiv,i2,i0,none), requireValidSequence. 
26 validSequence :- istream(blue,1,sdiv,i2,i3,none), requireValidSequence. 
27 requireValidSequence. 

Listing 6.7: Constraints generated by searchCut by superoptimising 
argredundance verify test on SPARC V8 

runtime for this test was 144 seconds, in comparison to a GSO runtime of under 10 
seconds. Although the results for the TOAST system are not strictly competitive with 
respect to time, it is important to note that the results are validated as correct by both 
superoptimising implementations. This will be discussed in more detail in Section 6.4. 

6.4 Discussion 

As presented in the previous section, we have further reinforced the applicability of 
the TOAST system in superoptimising sequences for 32-bit machine architectures. 
A high-level comparison between the results for searching and verifying sequences 
for the MIPS R2000 and SPARC V8 architecture indicates that the complexity of the 
modelling instruction set architecture has a small effect on the benchmark results. Even 
though the number of instructions provided by an architecture is a crude metric of 
complexity, the SPARC V8 architecture provides more than twice as many instruction 
as the MIPS R2000 architecture. However, many of these are undefined within the 
TOAST model due to the lack of floating point operations on the MIPS R2000, but 
the SPARC V8 is a more modern RISC architecture with more complex instructions, 
such as tagged arithmetic. There also exists significant complexity issues with the 
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SPARC instruction pipeline and how this complicates generating and optimising code 
for that machine architecture, especially with respect to instruction scheduling and 
data dependencies [166]. The values for searching up to length five are approximately 
the same, with the discrepancy attributed to the wider range of instructions available 
on the SPARC V8. The verify tests are different for the two architectures, but general 
comparisons for solving 32-bit programs indicates that again this is achievable for the 
TOAST system. The two types of verify test demonstrates that not only can TOAST 
verify non-trivial programs, but it can also quickly verify when sequences are not 
equivalent, and on which inputs they differ. Ideally, the search heuristics and the pre-
verify step would prune all non-equivalent sequences, but it is feasible that a sequence 
could reach a full verify and fail. This is an important validation of the interaction and 
functionality of the various components of the TOAST system, along with highlighting 
the importance of the full verify stage. 

The results presented in this chapter indicate that while TOAST can confirm and valid­
ate results of existing superoptimising implementations, it is currently not as compet­
itive from a runtime perspective in certain areas, especially against the goal function 
approach of GSO. However, a direct comparison is not necessarily a fair one: goal-
directed functions (especially written in C or assembly language) will generate certain 
candidate sequences very quickly due to precise and efficient encoding of that specific 
problem description. TOAST is able to accept any arbitrary instruction sequence as 
input, whether that describes the specific goal used in the signum test, or a slight 
variation. GSO, for example, would not be able to handle this variation, as it would 
require defining a new specific goal function and how this maps to each machine ar­
chitecture. For TOAST, this change is trivial; this flexibility is an important difference 
between the systems and may offset certain performance considerations. The TOAST 
system generated more sequences during the initial search phase for the signum test, 
which indicates that improvements could be made in the search heuristics. However, 
the verification step was a full equivalence test for all input values and performed for 
all of the equivalent sequences. 

The results presented in this chapter indicate it would be possible to harvest instruction 
sequences from a suitable SPARC V7/V8 binary program source and attempt to op­
timise sequences of up to length five. This idea will be discussed further in Chapter 8. 

72




6.5 Summary 

In this chapter we have used the TOAST system to superoptimise sequences for the 
SPARC V8 architecture. We have shown that: 

•	 The TOAST system is able to superoptimise real code sequences for a complex 
32-bit machine architecture. 

•	 In comparison to existing superoptimising implementations, the TOAST system 
produces results that are guaranteed optimal: no further manual checking step is 
required. 

•	 The flexibility of the TOAST system for accepting arbitrary sequences as input is 
more applicable to potential future application areas than restricted goal-directed 
superoptimisers. 

In the following chapter, we present one of these possible application areas for the 
TOAST system: generating all optimal sequences of length one, which are then used 
to generate all optimal sequences of length two and so on, to construct a library of 
equivalence classes of instruction sequences that can be used in a peephole optimiser. 
This library of optimal sequences also has potential application into the optimisation 
phases of a standard compiler toolchain. 
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Chapter 7 

buildMultiple: A Peephole 
Superoptimiser 

The lurking suspicion that something 

could be simplified is the world’s 

richest source of rewarding 

challenges. 

Edsger W. Dijkstra 

7.1 Introduction 

As first introduced in Chapter 2, peephole optimisation is a technique for locally im­
proving code sequences by substituting shorter or faster sequences in a small win­
dow, known as the “peephole” [40, 133]. It is characteristic of peephole optimisation 
that each improvement may spawn opportunities for additional improvements, such 
as redundant instruction elimination or algebraic simplifications [2, 41]. Most modern 
compiler toolchains utilise forms of peephole optimisation, whether used during the 
construction of the intermediate representations [172], or as a post-code generation 
optimisation phase [41]. 

In this chapter, we present an application of the TOAST system: a peephole super­
optimiser based upon a generated library of all optimal sequences for a specific ma­
chine architecture. We present the rationale for this approach to generating equivalence 
classes of optimal sequences, describe how we utilise the TOAST system and give ex­
perimental results for the SPARC V7 architecture. 
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7.2 Motivation 

Peephole optimisers have found widespread use in most modern compiler toolchains, 
with the technique first identified by McKeeman in the 1960s [133]. There has been 
a rich history of developing and applying peepholing techniques [40, 41, 172], for ex­
ample using architectural descriptions [102], combining with register allocation [43] 
and even using superoptimising techniques [14]. There have also been declarative ap­
proaches to generating rules for peephole optimisation using a form of string pattern 
matching [167]. 

The buildMultiple tool utilises the components of the TOAST system to build and re­
fine a set of constraints which augment the search component. Its design is based on the 
observation that an optimal sequence of instructions will not contain any sub-optimal 
instruction sequence. As was demonstrated in the previous chapters, the TOAST sys­
tem can easily perform directed searches for sequences that meet specified criteria; 
these sequences are then verified for equivalence. The flexibility of ASP allows the 
addition of constraints to enable the generation of large search programs that generate 
all optimal sequences of a given length for a specific number of inputs. 

By generating this library of optimal sequences for a given instruction length and num­
ber of inputs, it is possible to apply this information to optimising any code sequence 
for the chosen architecture. While this process may take a significant amount of time 
to generate these sequences (potentially of the order of months of compute time), this 
would only ever need to be performed once per architecture model. In this way, the 
high up-front computational cost is mitigated by its long-term use. 

7.3 System Components 

The search component of TOAST is used to generate the set of all possible instructions 
sequences for the tuple of instruction length and number of inputs. This search set is 
then superoptimised using the TOAST system; if they are found to be sub-optimal 
or equivalent to an existing optimal sequence then they are abstracted away to form 
additional constraints for the run. If they are found to be optimal they are marked as 
such and output. If anything shorter in instruction length than the current sequence 
is found, it is clearly non-optimal; if it is found to only optimise to itself, it is again 
marked as an optimal sequence; if it fuzzy matches to itself (in which orderings of 
inputs are taken into consideration) then these multiple orderings are equivalent and 
they need to be saved. If it matches another candidate then the two are marked as 
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equivalent and the other sequence is removed. If it fuzzy matches another target then 
all of the re-orderings of that are equivalent to the same re-orderings of the target - thus 
the other sequence is removed. A summary of the actions for handling sequences in 
buildMultiple are presented in Table 7.1. 

Result Action


Shorter than target Mark target as non-optimal 
Equal to target Ignore 
Fuzzy match to target Remove reorderings and keep 
Equal to other target Remove other 
Fuzzy match to other target Remove other 
Other Mark as non-optimal 

Table 7.1: buildMultiple action overview 

Due to the exponential nature of the buildMultiple process, the use of search heur­
istics is vital to prune the large search spaces as much as possible. A large number 
of candidates (hundreds for length one) will be generated during the search, which 
will then need to be verified to identify equivalences and which sequences can be dis­
carded. Although this procedure is time consuming and computationally expensive, 
it produces very strong sets of constraints (in AnsProlog) and only ever needs to be 
run once for a given architecture. Even if this takes a number of months to complete, 
the resulting equivalence classes generated would provide an ample source of optimal 
code sequences for use within a peephole optimiser. It also highlights a key advantage 
of using AnsProlog; the flexibility to easily add extra constraints without altering the 
search algorithm. With a procedural system (like all previous superoptimising imple­
mentations) buildMultiple would simply not be feasible. 

7.4 A buildMultiple Library for SPARC V7 

In this section, we present the results for using buildMultiple to generate equivalence 
classes of optimal sequences for the SPARC V7 architecture. We show timings and 
sequence statistics for instruction sequence lengths one to four, with number of inputs 
from one to six (dependent on instruction length). 

The SPARC V7 architecture has 194 instructions defined in the architecture descrip­
tion [12]: 23 instructions declared for search (which means that the internal single 
instruction form should be included in both the search and the execute space), 17 in­
structions declared for the execute space only and six declared as combo instructions 
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(which means there must exist a single instruction definition for search or exec else­
where). The represents the raw space of instruction combinations, which are pruned 
and optimised to make searching and verifying sequences feasible. 

Due to the large number of results generated for sequences of instruction length two 
and higher, we have not been able to present the results in the body of this thesis; 
however, these are available from the author on request. An overview of the buildMul­

tiple run results is given in Table 7.2, with timings plotted in Figure 7-1. A plot of 
the relationship between the number of optimal and non-optimal sequences generated 
in each run is given in Figure 7-2. buildMultiple sequence information for the one 
instruction-one input run is given in Table 7.3; for the one instruction-two input run in 
Table 7.4. 

Instructions Inputs Non- Optimal Run Time 
Optimal (secs) 

1 1 0 4 23 
1 2 0 3 31 
1 3 0 0 <1 
1 4 0 0 <1 
2 1 83 34 234 
2 2 98 190 906 
2 3 32 74 498 
2 4 0 0 2 
2 5 0 0 2 
3 1 135 12 812 
3 2 201 52 3276 
3 3 88 220 7762 
3 4 41 98 5919 
3 5 0 0 7 
3 6 0 0 8 
4 1 203 3 32805 
4 2 348 23 99124 
4 3 525 102 203564 
4 4 297 326 356374 
4 5 122 187 181378 
4 6 46 83 69202 

Table 7.2: buildMultiple sequence statistics for lengths 1–4 on SPARC V7
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Figure 7-1: Plot of buildMultiple run timings (in sec) for SPARC V7 

7.5 Discussion 

There are some interesting results presented from applying buildMultiple to the SPARC 
V7 architecture. While it is a computationally expensive task, it is a worthwhile pro­
cess to generate all optimal sequences of a given length and number of inputs. As 
expected, the timings shown in Figure 7-1 indicate the exponential nature of the prob­
lem, although it is somewhat mitigated by the method in which we generate the se­
quences. By using the constraints created by generating length one sequences, we can 
use these to prune the search space for generating all sequences of length two and so 
on. A problem with this approach is the sequential nature the task; parallelisation is 
possible, but this means that the significant benefit of using the constraints generated 
by the previous instruction length to prune the search space is lost. 

The plot in Figure 7-2 that shows the number of optimal versus non-optimal sequences 
generated on each run is fairly intuitive and as expected. For example, for the results 
produced from the one instruction-one input run, the number of optimal sequences 
generated is four; this does not indicate four sequences, but four distinct equivalence 
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classes of unique optimal sequences. 

Even though a significant number of sequences are marked equivalent and kept, or 
are equivalent and removed, the key relationship is between the number of sequences 
marked optimal and non-optimal. As can be seen in Figure 7-2, both the number of 
optimal and non-optimal sequences increase exponentially, but the number of optimal 
sequences increases more slowly. This is what we would expect of a well-designed in­
struction set architecture: if a large number of optimal sequences were found as the in­
struction lengths increase, this would imply something about the available instructions 
of the architecture, if they easily combine to form optimal sequences. If the converse 
were true, if a large number of non-optimal sequences were found as the instruction 
length increased, this may imply something negative about the design of the instruc­
tion set, with poorly selected instructions. This is a interesting general point from the 
results generated by buildMultiple, whether it is possible to infer information about 
the design of the instruction set architecture and the measure of orthogonality of the 
instructions. The data for the SPARC V7 architecture implies that there exists redund­
ancy in the instruction set. This may allow testing of instruction sets from a specific 
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Candidate	 Equivalent


inst: adcc i1 i1	 inst: add i1 i1 
inst: addcc i1 i1 
inst: taddcc i1 i1 

inst: lnot i1 inst: lnot i1


inst: srs32 i1 i1 inst: srs32 i1 i1


inst: lor i1 i1	 inst: lorcc i1 i1 
inst: lor i1 i1 
inst: land i1 i1 
inst: landcc i1 i1 

inst: subcc i1 i1	 inst: lxor i1 i1 
inst: subcc i1 i1 
inst: sub i1 i1 
inst: lxorcc i1 i1 
inst: tsubcc i1 i1 

inst: slz32 i1 i1 inst: slz32 i1 i1


inst: srz32 i1 i1 inst: srz32 i1 i1


Summary


addcc i1 i1 equivalent-keep 
lnot i1 optimal 
srs32 i1 i1 optimal 
lor i1 i1 equivalent-keep 
lorcc i1 i1 equivalent-remove 
subcc i1 i1 equivalent-keep 
land i1 i1 equivalent-remove 
taddcc i1 i1 equivalent-remove 
sub i1 i1 equivalent-remove 
slz32 i1 i1 optimal 
srz32 i1 i1 optimal 
add i1 i1 equivalent-remove 
lxor i1 i1 equivalent-remove 
landcc i1 i1 equivalent-remove 
lxorcc i1 i1 equivalent-remove 
tsubcc i1 i1 equivalent-remove 

Table 7.3: buildMultiple generated equivalent sequences for one instruction-one input 
on SPARC V7 

theoretical perspective, assuming that the single instructions are a baseline and look at 
how combinations of instructions interact and what functionality they provide. This 
level of meta-analysis is problematic, as it may be possible to infer too much from the 
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Candidate	 Equivalent


inst: lxorcc i1 i2 inst: lxor i1 i2 
inst: lxorcc i1 i2 

inst: srs32 i1 i2 inst: srs32 i1 i2


inst: addcc i1 i2	 inst: addcc i1 i2 
inst: add i1 i2 
inst: taddcc i1 i2 

inst: landcc i1 i2 inst: landcc i1 i2 
inst: land i1 i2 

inst: tsubcc i1 i2	 inst: subcc i1 i2 
inst: sub i1 i2 
inst: tsubcc i1 i2 

inst: slz32 i1 i2 inst: slz32 i1 i2


inst: srz32 i1 i2 inst: srz32 i1 i2


inst: lorcc i1 i2 inst: lor i1 i2 
inst: lorcc i1 i2 

Summary


lxorcc i1 i2 equivalent-keep 
srs32 i1 i2 optimal 
addcc i1 i2 equivalent-keep 
landcc i1 i2 equivalent-keep 
taddcc i1 i2 equivalent-remove 
tsubcc i1 i2 equivalent-keep 
lxor i1 i2 equivalent-remove 
land i1 i2 equivalent-remove 
slz32 i1 i2 optimal 
add i1 i2 equivalent-remove 
subcc i1 i2 equivalent-remove 
srz32 i1 i2 optimal 
lorcc i1 i2 equivalent-keep 
lor i1 i2 equivalent-remove 
sub i1 i2 equivalent-remove 

Table 7.4: buildMultiple generated equivalent sequences for one instruction-two inputs 
on SPARC V7 

results, more so since it would be prudent to obtain further data points to see how the 
timings scale for increasing instruction length and number of inputs. Furthermore, the 
measure of optimality of an instruction set is certainly a metric, but there is a balance 
between providing an optimised instruction set that has esoteric and complex instruc­
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tion semantics, if the users or developers are unable to understand or use it efficiently: 
there is a balance between optimality, maintainability and usability [147]. 

A phenomenon that is apparent from Figure 7-2 is that the number of sequences in­
creases steadily, but decreases when the number of inputs hits a limit, and then drops 
to zero. This can be explained by analysing the maximum number of inputs it is feas­
ible to use in a sequence of length n: this is 2n, as it is only possible to utilise at 
most two inputs per instruction, due to the triadic addressing in the test architectures. 
Therefore, the decline to zero is explained by reaching this limit; for example, for two 
instructions-four inputs; for three instructions you would expect this to occur at six 
inputs, but in this case occurs at five. Reasons for this disparity may be explained 
by a proportion of the generated combinations consisting of instructions that only re­
quire one input. The converse case of fixing the number of inputs and constraining 
the number of instructions is not true: the instruction length can increase arbitrarily 
as you could be performing some mathematical operation that utilises say two inputs 
and performs some sort of unrolled iteration or summation with a large number of 
instructions. 

Another scenario is that as the instruction length increases, buildMultiple may generate 
no optimal sequences for a certain number of inputs, but then by introducing another 
input generates a whole set of optimal sequences. The relationship between number of 
instructions and inputs is complex and has an strong effect on the number of sequences 
generated and the time taken to find them. Further research and testing is required to 
infer more about this relationship. 

The question of how do we verify that the generated sequences are valid and correct, is 
demonstrated by referencing back to the architectural model and then hand-checking 
a subset of sequences to ensure they are correct. However, the design of the system 
is such that the constraints we include decide which sequences are generated. One 
issue is the ramifications of problems in an earlier run; if a mistake is made for a 
length one sequence that is marked as optimal and it is non-optimal, then this would 
have an effect on the constraints for generating length two sequences and so on. This 
scenario is mitigated by verification of the search and the heuristics used within the 
TOAST system. However, as with the TOAST system, the optimality of the sequences 
generated is with respect to the architectural model. 

However, it is also possible that the numbers generated from a buildMultiple run do 
not allow us to draw any significant conclusions, but just confirms intuition about 
what would be expected for a well-designed microprocessor architecture. The results 
may provide some insight into the upper bounds of searching and verifying with the 
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TOAST system, but the emphasis is on the methodology and whether it is scalable. 
Results for sequences of length five would provide an interesting data point, as this 
would provide insight into how the timings scale. With sequences of length four taking 
approximately four to five days, a sensible estimation on the time taken to generate 
length five sequences would be of the order of four to five months, extrapolating from 
the existing data. 

As mentioned previously, the intended application of these generated equivalence classes 
is as a library of optimal sequences for use as a peephole optimiser (as introduced in 
Chapter 2 (page 11). It could be applied to optimising object code or utilised in the 
code optimisation phase of a compiler toolchain (similar to how GSO contributed to 
GCC [79]). The canonicalisation of sequences is important to ensure they are abstrac­
ted and can be applied generically, along with efficient encoding, storage and retrieval 
of the sequences. 

The main peepholing implementations [40, 42, 43, 133, 167] rely on significant code 
analysis and pattern matching, generating sequences from machine descriptions. With 
buildMultiple, we work from the machine description and the available instructions to 
generate all optimal sequences of length one upwards, for a given number of inputs, 
which are then used to generate sequences of length two, and so on. This approach 
is different and initially computationally more expensive than approaches for existing 
peephole optimisers, as we generate equivalence classes of optimal sequences rather 
than directly looking for basic pre-encoded program transformations. 

The Stanford superoptimiser [14] performs automatic generation of peephole optim­
isations using a brute force superoptimising approach, with some successful results 
presented for the Intel x86 architecture. Their approach relied on harvesting sequences 
from a large repository of pre-existing Intel x86 binary programs, to automatically 
generate optimisations. A similar approach has also been applied to binary transla­
tion [15]. 

7.6 Summary 

In this chapter, we have presented a significant application of the TOAST system as a 
peephole superoptimiser, based on the creation of a library of equivalence classes of 
optimal sequences. We have demonstrated the technique for using the TOAST system 
and the rationale for generating all optimal sequences of a certain length and number 
of inputs and then identifying equivalences between these sequences. We showed the 
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viability of the buildMultiple approach by generating all optimal sequence of instruc­
tion length one to four with varying number of inputs on the SPARC V7 architecture, 
with a discussion of what the buildMultiple results implies about the design of the in­
struction set architecture, how this technique can scale for longer sequences and how 
it can be applied in the future. A further discussion of this future work and potential 
applications for buildMultiple is presented in Chapter 8. 
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Chapter 8 

Concluding Remarks 

We can only see a short distance 

ahead, but we can see plenty there 

that needs to be done. 

Alan Turing 

Optimisation in modern compilers is an accepted misnomer for performance improve­

ment some of the time. With the emergence of resource-critical environments, such 
as the embedded domain, new optimisation strategies are required. New metrics of 
optimality, such as low memory usage and low power consumption will be of huge 
importance. However, due to the potentially conflicting nature of these metrics, we 
may soon encounter constrained optimisation problems, for example, attempting to 
optimise for both program size and low power consumption. This is an established 
problem for modern compiler toolchains, such as GCC, and needs to be considered 
when optimising for multiple metrics in the TOAST system. 

Superoptimisation is one possible approach to the code optimisation problem. Due to 
the exhaustive nature of the approach, superoptimisation has previously not scaled for 
optimising significant real-world code sequences. Nevertheless, a true code optimiser 
is not possible at present (if even theoretically possible due to the lack of program 
and data analysis); for example, would this true optimiser recognise naive code for a 
bubble sort and replace this with a quicksort algorithm? This would require significant 
static and runtime analysis, along with an estimation of the likely input data. In the 
practical case, this may not be the panacea of optimisation. Nevertheless, the TOAST 
approach to superoptimisation is an important step to providing a structured framework 
for generating truly optimal code sequences for a given microprocessor architecture. 
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The TOAST approach is a significant research step in developing superoptimisation as 
a practical technique and applying it to mainstream code optimisation. The TOAST 
system is able to superoptimise 32-bit code sequences of up to five instructions long, 
which could be further extended with new heuristics and improved searching and veri­
fication techniques. The peephole superoptimiser approach is a valid application for 
the TOAST system, with the generation of all optimal sequences of a certain length 
and number of inputs providing an significant resource for optimising machine code. 
The large up-front computation cost is mitigated by the need to only ever run once per 
machine architecture. 

Issues with verification of the architectural model to the functionality of the physical 
device indicates that we are only ever able to optimise to the constrained model we 
have implemented, which may not fully encapsulate the functionality of the physical 
processor. The architectural model has been abstracted and TOAST has generated op­
timal code to the constraints of the model, but there are almost certainly improvements 
to be made to each model. Fortunately, the use of AnsProlog makes this improvement 
process simple, as is it possible to make amendments to any architecture or instruction 
description and re-run a test. The availability of efficient off-the-shelf solver tools, 
means that while we are reliant on external development resources, we can contrib­
ute to these communities and projects by pushing the state of the art and providing 
complex benchmark cases. 

8.1 Major Contributions 

The major contributions of this thesis are as follows: 

1. Development of a practical and adaptable superoptimising code generation sys­
tem based on ASP technology, presenting a structured approach to optimisation, 
with proof of optimality for acyclic code sequences. This functionality has been 
benchmarked and compared against existing superoptimising implementations. 

2. A demonstration that superoptimisation of code is achievable in the general case 
and can be used to generate provably optimal code sequences for 32-bit architec­
tures (and that extending the functionality for 64-bit architectures is also achiev­
able). 

3. Observations on the performances of a range of ASP solver tools, notably the 
performance of the more recent SAT-based and clause learning solvers compared 
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to the traditional backtracking solvers, on a complex real-world problem. 

4. Demonstrating that ASP is an appropriate modelling paradigm for reasoning 
about large-scale, real-world problems. The application of ASP to the code op­
timisation problem has also contributed to the ASP community and will further 
stimulate future tool development. 

8.2 Future Work 

While some significant work has been achieved in this dissertation, there are numerous 
extensions and directions for future work: 

New metrics of optimality: adapting the TOAST system to optimise for new metrics, 
such as low power consumption, runtime speed and memory usage. This would 
present a range of modelling problems, especially with regards to analysing and 
encapsulating the power consumption of specific instructions, but this is a logical 
extension of the instruction length optimality upon which the system is currently 
based. This may create linear optimisation and constrained optimisation prob­
lems whilst attempting to optimise for these new metrics or more than one metric 
in the optimisation model. It should be noted that optimising 64-bit architectures 
does not pose any new problems (and is in fact tractable with existing tools), it 
just requires more computational resources. 

Optimising longer code sequences: if we are currently unable to optimise sequences 
of length eight, it should be feasible to break an eight instruction sequence into 
two tractable sub-sequences and optimise them. If we decompose the length 
eight sequence into two sub-sequences of length five and length three, or two 
sequences of length four, is it may be possible to combine the results of the 
superoptimised sub-sequences to get an optimised version of the length eight 
sequence. However, this will not necessarily be the optimal solution, only po­
tentially an improved sequence. The benefit of breaking longer sequences into 
sub-sequences is that is then becomes possible to parallelise the system. There 
already exist aspects of the TOAST system which are inherently parallel, and 
recent work [24,27,54,149] on parallel ASP solving tools would further support 
a distributed approach. However, there still remains questions about the nature 
of local and global optimisations [2], especially whether it is more effective to 
optimise at a global level rather than focus on local peephole-like optimisations. 
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Nevertheless, this could be a promising approach to targeting longer sequences 
than the TOAST is currently able to optimise. 

Targeting the embedded domain: this would be a significant domain to validate the 
TOAST system, by focusing on superoptimising a suitable embedded platform, 
such as the ARM microprocessor family 1, and developing research and devel­
opment collaboration with industry. There would be significant new modelling 
challenges, for example, implementing predicated instructions (which enable 
conditional execution of instructions) and other DSP-like features of the ARM 
instruction set architecture [161], but this represents a key future development 
and target domain for the TOAST system. 

Optimising for multi-core and multi-threaded architectures: at present the TOAST 
system has only modelled single-core RISC architectures. A next step would be 
to extend the system to optimise code for multi-core or multi-threaded archi­
tectures. Again, this presents significant modelling challenges, but it should 
be possible to extend the TOAST model to encapsulate this functionality and 
its semantics. With the development of microprocessor architectures favouring 
multi-core and multi-threaded designs [82], this is an important area to focus 
upon. 

Integration into compiler toolchains: for example, the GNU Compiler Collection 
(GCC); this would be a significant metric of success for the TOAST system, 
if it was utilised for part of a standard compiler toolchain, or its output was 
integrated into its optimisation phases. This has already been achieved by an ex­
isting superoptimising implementation (GSO), so this indicates that there is still 
a contribution to be made. The use of the buildMultiple approach to generating 
equivalence classes of optimal sequences for a peephole library for a specific 
architecture could provide a rich source of information and may also allow us to 
analyse the design of instruction sets. This may also provide way of bounding 
what is possible via conventional optimisation, perhaps empirically evaluating to 
what level code is improved by modern optimising compilers and the theoretical 
limit to code optimisation. 

General modelling: there exists a plethora of modelling problems that pose inter­
esting questions, including extending the TOAST system to model conditional 

1ARM announced in February 2009 that it had shipped ten billion ARM-powered processors to the 
mobile device market – the equivalent of 2.5 ARM processors for every mobile cellular subscriber in 
the world [10]. 
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branches, unrolling loops, optimising in immediate values, perhaps even devel­
oping a strategy for modelling floating point operations. To enable future applic­
ation of the TOAST system to optimising code for real-world platforms, some 
of these will have to be addressed. 
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Appendix A 

AnsProlog Language Description 

A.1 Introduction 

In the following section, we present an informal description of the AnsProlog language. 
No formal grammar or Extended BNF for the language has yet been defined, but there 
are a number of widely-accepted standards to which the domain tools adhere. The 
language that the LPARSE/SMODELS family of ASP tools accept [141,171] is the most 
commonly implemented (referred to as AnsPrologsm); this is accepted (and extended) 
by the GRINGO/CLASP family of ASP tools [67, 68, 71]. The DLV system [52, 116] 
accepts a different subset of the AnsProlog language (which includes disjunction in the 
head) and is not currently compatible with the other domain tools. 

A.2 Syntax Conventions 

The generally-accepted syntax conventions for AnsProlog are as follows: 

Predicate symbols are composed of lower-case letters and digits and must start with 
a letter. 

Constant symbols are either just digits or composed of lower-case letters and digits, 
starting with a lower-case letter. 

Variable symbols are composed of letters and digits and must start with an upper-case 
letter. 

A fact is followed by a dot ‘.’. 

Rules use the following symbols and are followed by a dot ‘.’. 

• Negation as failure: ‘not’ 

If ( ): ‘:-’ • ←
• Conjunction (∧): ‘,’ 
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•	 Disjunction (∨): ‘;’ 

• Classical negation (¬): ‘-’ 

Arithmetic comparisons use the following symbols: 

•	 Equality: ‘==’ 

•	 Inequality: ‘!=’ 

•	 Less than or equal: ‘<=’ 

•	 Greater than or equal: ‘>=’ 

Less than: ‘<’ • 
Greater than: ‘>’ • 
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Appendix B 

AnsProlog Literals in the TOAST 
System 

B.1 Introduction 

This is a definitive list of all AnsProlog literals used within the TOAST system, de­
scribing their format, arguments and usage. 

B.2 Literals 

•	 arg(R)

R is a register or it is none.


•	 asymmetricInstruction(I)

Instruction I takes two arguments, order irrelevant.


•	 before(R1,R2) 
An aribtrary ordering on the register (input and output) so that re-orderings can 
be removed. 

•	 bit(B) 
Each bit of a register is modelled independently. 

•	 bitOrExtended(B) 
A copy of bit(B) with additional values for -1 -wordLength, basically →
zero padding the lower part of a register so shifted subtracts (in divide) work 
correctly. 

•	 colour(C) 
Each instruction stream is labeled by a colour, the following are in use: red 
- execute and verify; the initial code sequence, blue - search and 
verify; the new code sequence, purple - verify; used to save on rule 
generation. 
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•	 constrained(C,CT,R) 
True if register R in stream C is used constraint CT. 

•	 dividend(C,T,B) 
Register for the sign removed version of the first argument of a signed multiply. 

•	 dividendCarry(C,T,B) 
Similar to above, but with carry. 

•	 divideSubCycle(C,T,S) 
True if subcycle S is needed to compute a division. 

•	 divideSubCycleCount(C,T,B,S) 
A counter used to correctly work out what divideSubCycle(C,T,S) should 
be set to. 

•	 divisor(C,T,B) 
Second argument of signed multiply. 

•	 divisorCarry(C,T,B) 
Similar to above, but with carry. 

enableConstraints• 
Trivial atom used to make generating rules easier in buildMultiple. 

•	 extended(E) 
A workaround to get lparse to generate the correct values for bitOrExtended. 

•	 finishedAt(C,T) 
The time, T, at which stream C executes its last valid instruction (inclusive). 
Currently used in execute and verify. 

•	 flag(F) 
F is a processor flag. 

•	 flagChanged(C,T,F) 
True is flag F has been altered by the instruction run at time step T in stream C. 

•	 flagStatus(C,T,F) 
True if flag F is set at time T in stream C, true negated if it is set to 0. 

•	 flagUseful(C,F,P1,P2) 
True if flag F (set at P1) is still usable at P2 (in stream C). Used for in optimisa­
tions in search. 

•	 haveJumped(C,T) 
Whether a jump has occured at in stream C at time T (product of jump instruc­
tion, defined by flow control). 
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•	 hiOutput(I) 
True if instruction I gives a high output (i.e. [wordLength, 2*wordLength­
1] ), accessible with hi. 

•	 immediate(R) 
Register R is an immediate. 

•	 input(R) 
Register R is an input. 

•	 instruction(I) 
I is an instruction. 

•	 instructionChoice(C,T,I) 
At time T in stream C, there is an instruction I. 

•	 instructionUsed(C,P) 
True if the instruction at position P in stream C is used. Used for optimisations 
in search. 

•	 istream(C,P,IN,R1,R2,R3) 
Instruction stream C, at position P is instruction IN using registers R1 and R2 
(may also have the value none). R3 is an optional third argument, used in 
execution only. 

•	 jump(C,T,J) 
When executing stream C at time T, jump J positions forward, asserted by in­
structions. 

•	 jumpSize(C,J) 
The possible sizes of jump, 2 to (lengthOfInstructionSequence - 1) 

•	 leadingZero(C,T,B) 
A means for discounting the leading zeros when counting the number of sub 
cycles needed to divide. 

•	 lessThanInDivide(C,T,B,S) 
True with B = 0 if the divisor is less than or equal to the subCycle value; for 
B != 0, used to calculate. 

•	 mayJump(C,T,J) 
True if it is possible there is a jump of J at time T in stream C. 

•	 negateResult(C,T) 
Where the output of the multiply executed in C at time T needs to be negated or 
not. 

•	 negateResultCarry(C,T) 
Used to negate the result of a signed multiply. 
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•	 noArgInstruction(I) 
Instruction I takes no arguments 

•	 nonEquivalent 
The code streams red and blue are not equivalent. 

•	 output(R) 
Register R is an output. 

•	 outputConstraints(CT) 
The number of outputs on which two code streams have to match (in verify), 
numbered from 1 in the order they appear in the program. 

•	 pc(C,PCV,T) 
The program counter for stream C has value PCV at time T. 

•	 pcValue(C,PCV) 
The possible values of the program counter, position + jumpSize (set addi­
tion), so 1 to (2 * lengthOfInstructionSequence - 1). 

•	 position(C,P) 
Indexes istream C, counting from 1 to lengthOfInstructionSequence. 

•	 predicateVar(C,T,B) 
The second argument of a signed multiplication after sign removal. 

•	 range(E) 
A workaround to get lparse to generate the corretc values for extended and 
bitOrExtended. 

•	 register(R) 
These are the registers, iX are input vectors, X are created during execution. i0 
is the hardwired register (if available), X starts at 1. 

•	 registerDefined(C,R) 
True if register R is defined in stream colour C. 

•	 relevantFlag(F) 
True if the value of the given flag at the end of the program is deemed to be 
important. 

•	 requireValidSequence 
Trivial atom used to make generation in searchCut easier 

•	 runTimeError(C,T) 
The instruction executed at time T in stream C causes a run time error (i.e. it is 
poorly defined). These are mostly synthesised now. 

•	 setsFlag(I,F) 
True if instruction I may set flag F. 
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•	 subCycle(C,T,B,S) 
A variant on value, true if bit B of sub cycle S at time T (in stream C) is 1, true 
negated if it is 0. 

•	 subCycleBorrow(C,T,B,S) 
Used to denote the carry bits in the subtraction within divide. 

•	 subtractionBorrow(C,T,B) 
The borrow register of the subtraction implementation. 

•	 sumVar(C,T,B) 
The first argument of a signed multiplication after sign removal. 

•	 sumVarCarry(C,T,B) 
Used to convert to sumVar. 

•	 symmetricInstruction(I) 
Instruction I takes two arguments, order is irrelevant. 

•	 time(C,T) 
The steps of a program’s execution, bounded by program size. Stream depend­
ant. 

•	 unaryInstruction(I) 
Instruction I takes one argument. 

•	 usesFlag(I,F) 
True if instruction I may use flag F. 

•	 validSequence 
Trivial atom used by searchCut to reduce the search space covered by search. 

•	 value(C,R,B) 
The value of bit B of register R in instruction stream C, positive for 1, true neg­
ated for 0. 
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Appendix C 

TOAST Architecture Descriptions 

C.1 Introduction 

In the following sections, we list the full TOAST architecture descriptions for the 
following architectures: MIPS R2000, SPARC V7 and SPARC V8. 

Each architecture has its own file that defines general information, the available in­
structions and to which part of the TOAST system they are applicable. It has one 
declaration per line, with columns separated by two tabs. A declaration is either an 
option (two column) or a mapping (three column). Comments are denoted by a # 
character and are to the end of the line. 

The initial options section defines the number of architecture bits, its family and name 
e.g. risc and sparc-v8. zero is whether the architecture has a hardwired zero 
register. Flags define which condition codes are present and how they are handled. 

The instruction section takes the following form: 

[assembly] {search,exec,combo,undef} [internal form] 

The [assembly] column is the machine-specific assembly language name. This can 
be ‘-’, which means that the internal form is included in the search space. However, 
the caveat of this encoding is that if it is picked in any combination it will not map it 
back unless it also appears in a combo declaration (explained below). 

search means that the internal form (single instruction) should be included in both 
the search and the execute space. 

exec means that the internal form (single instruction) should be included in the ex­
ecute space. 

combo mean that the internal form is multiple instructions. There must also exist 
individual search or exec definitions for this to be valid. 

undef mean that the internal form is undefined. There should be an explanation of 
why the instruction is not defined. 
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The [internal form] column is a pattern of one or more internal TOAST op­
codes (separated by semi-colons) with directions for how the arguments and instruc­
tion outputs are modelled. For example, a1, a2, a3 should be substituted for the 
first, second and third arguments of the assembly instruction (once converted to the 
appropriate internal TOAST form); n is the location of the first instruction in the se­
quence, n+1 the second, and so on. o1, o2, o3 are the outputs of the first, second 
and third opcodes. 

C.2 MIPS R2000 

Architectural and instruction information taken from the MIPS RISC Architecture book [99]; 
a brief overview of the MIPS R2000 architecture can also be found in Section 5.3 
(page 44). 

1 ## MIPS R2000 processor 
2 ## General info 
3 bits 32 
4 zero yes 
5 family risc 
6 name mips-r2000 
7 flags none 
8 
9 ## Instructions 

10 # Assembler is Intel-style : destination, source, source 
11 add undef May trigger overflow exception 
12 addi undef May trigger overflow exception 
13 addiu search add a2 a3 
14 addu search add a2 a3 
15 and search land a2 a3 
16 andi search land a2 a3 
17 bczf undef Co-processor is implementation defined 
18 bczt undef Co-processor is implementation defined 
19 beq exec beq a1 a2 a3 
20 bgez exec bgez a1 a2 
21 bgezal undef Puts address in register 
22 bgtz exec bgtz a1 a2 
23 blez exec blez a1 a2 
24 bltz exec bltz a1 a2 
25 bltzal undef Puts address in register 
26 bne exec bne a1 a2 a3 
27 break undef Triggers execption 
28 cfcz undef Co-processor is implementation defined 
29 copz undef Co-processor is implementation defined 
30 ctcz undef Co-processor is implementation defined 
31 div search sdiv a1 a2 
32 divu search udiv a1 a2 
33 j exec br a1 
34 jal undef Puts address in register 
35 jalr undef Puts address in register 
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36 jr undef Mixes register values and addresses 
37 lb undef Load 
38 lbu undef Load 
39 lh undef Load 
40 lhu undef Load 
41 lui undef Load 
42 lw undef Load 
43 lwz undef Co-processor is implementation defined 
44 lwl undef Patented 
45 lwr undef Patented 
46 mfcz undef Co-processor is implementation defined 
47 mfhi search hi a1 
48 mflo undef Translation implemented 
49 mtcz undef Co-processor is implementation defined 
50 mthi undef Translation implemented 
51 mtlo undef Translation implemented 
52 mult search smult a1 a2 
53 multu search umult a1 a2 
54 nor search lnor a2 a3 
55 or search lor a2 a3 
56 ori search lor a2 a3 
57 rfe undef Non local jump 
58 sb undef Store 
59 sh undef Store 
60 sll search slz32 a2 a3 
61 sllv search slz32 a2 a3 
62 slt search slt a2 a3 
63 slti search slt a2 a3 
64 sltiu search sltu a2 a3 
65 sltu search sltu a2 a3 
66 sra search srs32 a2 a3 
67 srav search srs32 a2 a3 
68 srl search srz32 a2 a3 
69 srlv search srz32 a2 a3 
70 sub undef May trigger overflow exception 
71 subu search sub a2 a3 
72 sw undef Store 
73 swcz undef Store 
74 swl undef Patented 
75 swr undef Patented 
76 syscall undef Non local jump 
77 tlbp undef TLB operation 
78 tlbr undef TLB operation 
79 tlbwi undef TLB operation 
80 tlbwr undef TLB operation 
81 xor search lxor a2 a3 
82 xori search lxor a2 a3 
83 
84 # Generic definitions needed by an number of instructions 
85 - exec equal 
86 - exec greaterThanZero 
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87 - exec isZero 

Listing C.1: MIPS R2000 architecture description 

C.3 SPARC V7 

Architectural and instruction information taken from the SPARC V7 Instruction Set 
manual [12]; a brief overview of the SPARC V7 architecture can also be found in 
Section 6.2 (page 64). 

1 ## General info 
2 bits 32 
3 zero yes 
4 family risc 
5 name sparc-v7 
6 flags neg zero over carry 
7 
8 ## Instructions 
9 # Assembler is AT&T style : source, source, destination 

10 
11 # B.1 Load Integer Instructions 
12 ldsb undef Load 
13 ldsba undef Load, privileged 
14 ldsh undef Load 
15 ldsha undef Load, privileged 
16 ldub undef Load 
17 lduba undef Load, privileged 
18 lduh undef Load 
19 lduha undef Load, privileged 
20 ld undef Load 
21 lda undef Load, privileged 
22 ldd undef Load 
23 ldda undef Load, privileged 
24 
25 # B.2 Load Floating-point Instructions 
26 ldf undef Load, floating point 
27 lddf undef Load, floating point 
28 ldfsr undef Load, floating point 
29 
30 # B.3 Load Coprocessor Instructions 
31 ldc undef Load, coprocessor, implementation 

dependent 
32 lddc undef Load, coprocessor, implementation 

dependent 
33 ldcsr undef Load, coprocessor, implementation 

dependent 
34 
35 # B.4 Store Integer Instructions 
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45 

71 

36 stb undef Store 
37 stba undef Store, privileged 
38 sth undef Store 
39 stha undef Store, privileged 
40 st undef Store 
41 sta undef Store, privileged 
42 std undef Store 
43 stda undef Store, privileged 
44 

# B.5 Store Floating-point Instructions 
46 stf undef Store 
47 stdf undef Store 
48 stfsr undef Store 
49 stdfq undef Store, privileged 
50 
51 # B.6 Store Coprocessor Instructions 
52 stc undef Store, coprocessor, implementation 

dependent 
53 stdc undef Store, coprocessor, implementation 

dependent 
54 stcsr undef Store, coprocessor, implementation 

dependent 
55 stdcq undef Store, coprocessor, implementation 

dependent, privil. 
56 
57 # B.7 Atomic Load-Store Unsigned Byte Instructions 

Load, store58 ldstub undef 
Load, store, privileged 59 ldstuba undef 

60 
61 # B.8 SWAP r Register with Memory Instruction 
62 swap undef Load, store 
63 swapa undef Load, store, privileged 
64 
65 # B.9 Add Instructions 
66 # one argument can be a 13 bit immediate, which is then sign 

extended 
67 add search add a1 a2 
68 addcc search addcc a1 a1 
69 addx search cadd a1 a2 
70 addxcc search caddcc a1 a2 

72 # B.10 Tagged Add Instructions 
73 # one argument can be a 13 bit immediate, which is then sign 

extended 
74 taddcc search taddcc a1 a1 
75 taddcctv undef May trap 
76 
77 # B.11 Subtract Instructions 
78 # one argument can be a 13 bit immediate, which is then sign 

extended 
79 sub search sub a1 a2 
80 subcc search subcc a1 a2 
81 subx search csub a1 a2 
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82 subxcc search csubcc a1 a2 
83 
84 # B.12 Tagged Subtract Instructions 
85 # one argument can be a 13 bit immediate, which is then sign 

extended 
86 tsubcc search tsubcc a1 a2 
87 tsubcctv undef May trap 
88 
89 # B.13 Multiply Step Instruction 
90 # one argument can be a 13 bit immediate, which is then sign 

extended 
91 #mulscc search multstcc a1 a2 
92 mulscc undef Temporary fix 
93 
94 # B.14 Logical Instructions 
95 # one argument can be a 13 bit immediate, which is then sign 

extended 
96 and search land a1 a2 
97 andcc search landcc a1 a2 
98 andn combo lnot a2; land a1 o1 
99 andncc combo lnot a2; landcc a1 o1 

100 or search lor a1 a2 
101 orcc search lorcc a1 a2 
102 orn combo lnot a2; lor a1 o1 
103 orncc combo lnot a2; lorcc a1 o1 
104 xor search lxor a1 a2 
105 xorcc search lxorcc a1 a2 
106 xnor combo lxor a1 a2 ; lnot o1 
107 xnorcc combo lnot a2; lxorcc a1 o1 
108 - search lnot 
109 - search isZero 
110 
111 # B.15 Shift Instructions 
112 # one argument can be a 13 bit immediate, which is then sign 

extended 
113 sll search slz32 
114 srl search srz32 
115 sra search srs32 
116 
117 # B.16 SETHI Instruction 
118 # this is slightly problematic as it can / only/ take an 

immediate as an argument 
119 sethi 
120 
121 # B.17 SAVE 
122 save 
123 restore 
124 

exec sethi a1 

and RESTORE Instructions 
undef Requires modelling of specific registers 
undef Requires modelling of specific registers 

125 # B.18 Branch on Integer Condition Codes Instructions 
126 ba exec cba a1 
127 bn exec cbn a1 
128 bne exec cbne a1 
129 be exec cbe a1 
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161 

130 bg exec cbg a1 
131 ble exec cble a1 
132 bge exec cbge a1 
133 bl exec cbl a1 
134 bgu exec cbgu a1 
135 bleu exec cbleu a1 
136 bcc exec cbcc a1 
137 bcs exec cbcs a1 
138 bpos exec cbpos a1 
139 bneg exec cbneg a1 
140 bvc exec cbvc a1 
141 bvs exec cbvs a1 
142 
143 # B.19 Branch on Floating-point Condition Codes Instructions 
144 fba undef Floating point 
145 fbn undef Floating point 
146 fbu undef Floating point 
147 fbg undef Floating point 
148 fbug undef Floating point 
149 fbl undef Floating point 
150 fbul undef Floating point 
151 fblg undef Floating point 
152 fbne undef Floating point 
153 fbe undef Floating point 
154 fbue undef Floating point 
155 fbge undef Floating point 
156 fbuge undef Floating point 
157 fble undef Floating point 
158 fbule undef Floating point 
159 fbo undef Floating point 
160 

# B.20 Branch on Coprocessor Condition Codes Instructions 
162 cba undef 
163 cbn undef 
164 cb3 undef 
165 cb2 undef 
166 cb23 undef 
167 cb1 undef 
168 cb13 undef 
169 cb12 undef 
170 cb123 undef 
171 cb0 undef 
172 cb03 undef 
173 cb02 undef 
174 cb023 undef 
175 cb01 undef 
176 cb013 undef 
177 cb012 undef 
178 
179 # B.21 Call and Link 
180 call undef 
181 
182 # B.22 Jump and Link 

Coprocessor, implementation dependent 
Coprocessor, implementation dependent 
Coprocessor, implementation dependent 
Coprocessor, implementation dependent 
Coprocessor, implementation dependent 
Coprocessor, implementation dependent 
Coprocessor, implementation dependent 
Coprocessor, implementation dependent 
Coprocessor, implementation dependent 
Coprocessor, implementation dependent 
Coprocessor, implementation dependent 
Coprocessor, implementation dependent 
Coprocessor, implementation dependent 
Coprocessor, implementation dependent 
Coprocessor, implementation dependent 
Coprocessor, implementation dependent 

Instruction 
Position dependent 

Instruction 
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183 jmpl undef Position dependent 
184 
185 # B.23 Return from Trap Instruction 
186 rett undef privileged 
187 
188 # B.24 Trap on Integer Condition Codes Instruction 
189 ta undef Trap 
190 tn undef Trap 
191 tne undef Trap 
192 te undef Trap 
193 tg undef Trap 
194 tle undef Trap 
195 tge undef Trap 
196 tl undef Trap 
197 tgu undef Trap 
198 tleu undef Trap 
199 tcc undef Trap 
200 tcs undef Trap 
201 tpos undef Trap 
202 tneg undef Trap 
203 tvc undef Trap 
204 tvs undef Trap 
205 
206 # B.25 Read State Register Instructions 
207 rdy search hi 
208 rdasr undef privileged, implementation dependent 
209 rdpsr undef privileged 
210 rdwim undef privileged 
211 rdtbr undef privileged 
212 
213 # B.26 Write State Register Instructions 
214 wry undef You /shouldn’t/ need to do this 
215 wrasr undef privileged, implementation dependent 
216 wrpsr undef privileged 
217 wrwim undef privileged 
218 wrtbr undef privileged 
219 
220 # B.27 Unimplemented Instruction 
221 unimp undef And neither will we... 
222 
223 # B.28 Flush Instruction Memory 
224 iflush undef Self modifying code! 
225 
226 # B.29 Floating-point Operate (FPop) Instructions 
227 fpop1 undef Floating point 
228 fpop2 undef Floating point 
229 fitos undef Floating point 
230 fitod undef Floating point 
231 fitox undef Floating point 
232 fstoi undef Floating point 
233 fdtoi undef Floating point 
234 fxtoi undef Floating point 
235 fstod undef Floating point 
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236 fstox undef Floating point 
237 fdtos undef Floating point 
238 fdtox undef Floating point 
239 fxtos undef Floating point 
240 fxtod undef Floating point 
241 fmov undef Floating point 
242 fnegs undef Floating point 
243 fabs undef Floating point 
244 fsqrts undef Floating point 
245 fsqrtd undef Floating point 
246 fsqrtx undef Floating point 
247 fadds undef Floating point 
248 faddd undef Floating point 
249 faddx undef Floating point 
250 fsubs undef Floating point 
251 fsubd undef Floating point 
252 fsubx undef Floating point 
253 fmuls undef Floating point 
254 fmuld undef Floating point 
255 fmulx undef Floating point 
256 fsmuld undef Floating point 
257 fdmulx undef Floating point 
258 fdivs undef Floating point 
259 fdivd undef Floating point 
260 fdivx undef Floating point 
261 fcmps undef Floating point 
262 fcmpd undef Floating point 
263 fcmpx undef Floating point 
264 fcmpes undef Floating point 
265 fcmped undef Floating point 
266 fcmpex undef Floating point 
267 fcmpex undef Floating point 
268 
269 # B.34 Coprocessor Operate Instructions 
270 cpop1 undef Coprocessor, implementation dependent 
271 cpop2 undef Coprocessor, implementation dependent 

Listing C.2: SPARC V7 architecture description 

C.4 SPARC V8 

Architectural and instruction information taken from the SPARC V8 Instruction Set 
manual [166]; a brief overview of the SPARC V8 architecture can also be found in 
Section 6.2 (page 64). 

1 ## SPARC V8 processor 
2 # General info 
3 bits 32 
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4 zero yes 
5 family risc 
6 name sparc-v8 
7 flags neg zero over carry 
8 
9 ## Instructions 

10 # Assembler is AT&T style: source, source, destination 
11 
12 # B.1 Load Integer Instructions 
13 ldsb undef Load 
14 ldsh undef Load 
15 ldub undef Load 
16 lduh undef Load 
17 ld undef Load 
18 ldd undef Load 
19 ldsba undef Load, privileged 
20 ldsha undef Load, privileged 
21 lduba undef Load, privileged 
22 lduha undef Load, privileged 
23 lda undef Load, privileged 
24 ldda undef Load, privileged 
25 
26 # B.2 Load Floating-point Instructions 
27 ldf undef Load, floating point 
28 lddf undef Load, floating point 
29 ldfsr undef Load, floating point 
30 
31 # B.3 Load Coprocessor Instructions 
32 ldc undef 

dependent 
33 lddc undef 

dependent 
34 ldcsr undef 

dependent 
35 
36 # B.4 Store Integer 
37 stb undef 
38 sth undef 
39 st undef 
40 std undef 
41 stba undef 
42 stha undef 
43 sta undef 
44 stda undef 
45 

Load, coprocessor, implementation 

Load, coprocessor, implementation 

Load, coprocessor, implementation 

Instructions 
Store

Store

Store

Store

Store, privileged

Store, privileged

Store, privileged

Store, privileged


46 # B.5 Store Floating-point Instructions 
47 stf undef Store 
48 stdf undef Store 
49 stfsr undef Store 
50 stdfq undef Store, privileged 
51 
52 # B.6 Store Coprocessor Instructions 
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53 stc undef 
dependent 

54 stdc undef 
dependent 

55 stcsr undef 
dependent 

56 stdcq undef 
dependent, privil. 

57 

Store, 

Store, 

Store, 

Store, 

coprocessor, 

coprocessor, 

coprocessor, 

coprocessor, 

implementation 

implementation 

implementation 

implementation 

58 # B.7 Atomic Load-Store Unsigned Byte Instructions 
59 ldstub undef Load, store 
60 ldstuba undef Load, store, privileged 
61 
62 # B.8 SWAP Register with Memory Instruction 
63 swap undef Load, store 
64 swapa undef Load, store, privileged 
65 
66 # B.9 SETHI Instruction 
67 # can only take an immediate as an argument 
68 sethi exec sethi a1 
69 
70 # B.10 NOP Instruction 
71 nop exec nop 
72 
73 # B.11 Logical Instructions 
74 # one argument can be a 13 bit immediate, which is then sign 

extended 
75 and search land a1 a2 
76 andcc search landcc a1 a2 
77 andn combo lnot a2; land a1 o1 
78 andncc combo lnot a2; landcc a1 o1 
79 or search lor a1 a2 
80 orcc search lorcc a1 a2 
81 orn combo lnot a2; lor a1 o1 
82 orncc combo lnot a2; lorcc a1 o1 
83 xor search lxor a1 a2 
84 xorcc search lxorcc a1 a2 
85 xnor combo lxor a1 a2 ; lnot o1 
86 xnorcc combo lnot a2; lxorcc a1 o1 
87 - search lnot 
88 - search isZero 
89 
90 # B.12 Shift Instructions 
91 # one argument can be a 13 bit immediate, which is then sign 

extended 
92 sll search slz32 
93 srl search srz32 
94 sra search srs32 
95 
96 # B.13 Add Instructions 
97 # one argument can be a 13 bit immediate, which is then sign 

extended 
98 add search add a1 a2 
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99 addcc search addcc a1 a1 
100
 addx search cadd a1 a2 
101
 addxcc search caddcc a1 a2 
102

103
 # B.14 Tagged Add Instructions 
104
 # one argument can be a 13 bit immediate, which is then sign 

extended 
105
 taddcc search taddcc a1 a1 
106
 taddcctv undef May trap 
107

108
 # B.15 Subtract Instructions 
109
 # one argument can be a 13 bit immediate, which is then sign 

extended 
110
 sub search sub a1 a2 
111
 subcc search subcc a1 a2 
112
 subx search csub a1 a2 
113
 subxcc search csubcc a1 a2 
114

115
 # B.16 Tagged Subtract Instructions 
116
 # one argument can be a 13 bit immediate, which is then sign 

extended 
117
 tsubcc search tsubcc a1 a2 
118
 tsubcctv undef May trap 
119

120
 # B.17 Multiply Step Instruction 
121
 # one argument can be a 13 bit immediate, which is then sign 

extended 
122
 #mulscc search multstcc a1 a2 
123
 mulscc undef Temporary fix 
124

125
 # B.18 Multiply Instructions 
126
 # one argument can be a 13 bit immediate, which is then sign 

extended 
127
 umul search umult a1 a2 
128
 smul search smult a1 a2 
129
 umulcc search umultcc a1 a2 
130
 smulcc search smultcc a1 a2 
131

132

133
 # B.19 Divide Instructions 
134
 # one argument can be a 13 bit immediate, which is then sign 

extended 
135
 udiv undef May trap 
136
 sdiv undef May trap 
137
 udivcc undef May trap 
138
 sdivcc undef May trap 
139

140
 # B.20 SAVE and RESTORE Instructions 
141
 save undef Requires modelling of specific registers 
142
 restore undef Requires modelling of specific registers 
143

144
 # B.21 Branch on Integer Condition Codes Instructions 
145
 ba exec cba a1 
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146 bn exec cbn a1 
147 bne exec cbne a1 
148 be exec cbe a1 
149 bg exec cbg a1 
150 ble exec cble a1 
151 bge exec cbge a1 
152 bl exec cbl a1 
153 bgu exec cbgu a1 
154 bleu exec cbleu a1 
155 bcc exec cbcc a1 
156 bcs exec cbcs a1 
157 bpos exec cbpos a1 
158 bneg exec cbneg a1 
159 bvc exec cbvc a1 
160 bvs exec cbvs a1 
161 
162 # B.22 Branch on Floating-point Condition Codes Instructions 
163 fba undef Floating point 
164 fbn undef Floating point 
165 fbu undef Floating point 
166 fbg undef Floating point 
167 fbug undef Floating point 
168 fbl undef Floating point 
169 fbul undef Floating point 
170 fblg undef Floating point 
171 fbne undef Floating point 
172 fbe undef Floating point 
173 fbue undef Floating point 
174 fbge undef Floating point 
175 fbuge undef Floating point 
176 fble undef Floating point 
177 fbule undef Floating point 
178 fbo undef Floating point 
179 
180 # B.23 Branch on Coprocessor Condition Codes Instructions 
181 cba undef Coprocessor, implementation dependent 
182 cbn undef Coprocessor, implementation dependent 
183 cb3 undef Coprocessor, implementation dependent 
184 cb2 undef Coprocessor, implementation dependent 
185 cb23 undef Coprocessor, implementation dependent 
186 cb1 undef Coprocessor, implementation dependent 
187 cb13 undef Coprocessor, implementation dependent 
188 cb12 undef Coprocessor, implementation dependent 
189 cb123 undef Coprocessor, implementation dependent 
190 cb0 undef Coprocessor, implementation dependent 
191 cb03 undef Coprocessor, implementation dependent 
192 cb02 undef Coprocessor, implementation dependent 
193 cb023 undef Coprocessor, implementation dependent 
194 cb01 undef Coprocessor, implementation dependent 
195 cb013 undef Coprocessor, implementation dependent 
196 cb012 undef Coprocessor, implementation dependent 
197 
198 # B.24 Call and Link Instruction 
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199 call undef Position dependent 
200 
201 # B.25 Jump and Link Instruction 
202 jmpl undef Position dependent 
203 
204 # B.26 Return from Trap Instruction 
205 rett undef privileged 
206 
207 # B.27 Trap on Integer Condition Codes Instruction 
208 ta undef Trap 
209 tn undef Trap 
210 tne undef Trap 
211 te undef Trap 
212 tg undef Trap 
213 tle undef Trap 
214 tge undef Trap 
215 tl undef Trap 
216 tgu undef Trap 
217 tleu undef Trap 
218 tcc undef Trap 
219 tcs undef Trap 
220 tpos undef Trap 
221 tneg undef Trap 
222 tvc undef Trap 
223 tvs undef Trap 
224 
225 # B.28 Read State Register Instructions 
226 rdy search hi 
227 rdasr undef privileged, implementation dependent 
228 rdpsr undef privileged 
229 rdwim undef privileged 
230 rdtbr undef privileged 
231 
232 # B.29 Write State Register Instructions 
233 wry undef You should not need to do this 
234 wrasr undef privileged, implementation dependent 
235 wrpsr undef privileged 
236 wrwim undef privileged 
237 wrtbr undef privileged 
238 
239 # B.30 STBAR Instruction 
240 stbar undef Memory subsystem only 
241 
242 # B.31 Unimplemented Instruction 
243 unimp undef And neither will we... 
244 
245 # B.32 Flush Instruction Memory 
246 flush undef Self modifying code! 
247 
248 # B.33 Floating-point Operate (FPop) Instructions 
249 fpop1 undef Floating point 
250 fpop2 undef Floating point 
251 fitos undef Floating point 
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252 fitod undef Floating point 
253 fitoq undef Floating point 
254 fstoi undef Floating point 
255 fdtoi undef Floating point 
256 fqtoi undef Floating point 
257 fstod undef Floating point 
258 fstoq undef Floating point 
259 fdtos undef Floating point 
260 fdtoq undef Floating point 
261 fqtos undef Floating point 
262 fqtod undef Floating point 
263 fmov undef Floating point 
264 fnegs undef Floating point 
265 fabs undef Floating point 
266 fsqrts undef Floating point 
267 fsqrtd undef Floating point 
268 fsqrtq undef Floating point 
269 fadds undef Floating point 
270 faddd undef Floating point 
271 faddq undef Floating point 
272 fsubs undef Floating point 
273 fsubd undef Floating point 
274 fsubq undef Floating point 
275 fmuls undef Floating point 
276 fmuld undef Floating point 
277 fmulq undef Floating point 
278 fsmuld undef Floating point 
279 fdmulq undef Floating point 
280 fdivs undef Floating point 
281 fdivd undef Floating point 
282 fdivq undef Floating point 
283 fcmps undef Floating point 
284 fcmpd undef Floating point 
285 fcmpq undef Floating point 
286 fcmpes undef Floating point 
287 fcmped undef Floating point 
288 fcmpeq undef Floating point 
289 fcmpeq undef Floating point 
290 
291 # B.34 Coprocessor Operate Instructions 
292 cpop1 undef Coprocessor, implementation dependent 
293 cpop2 undef Coprocessor, implementation dependent 

Listing C.3: SPARC V8 architecture description 

131



	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	List of Code Listings
	Introduction
	Background
	Motivation
	Main Contributions
	Related Publications
	Structure of the Thesis

	Compilers and Optimisation
	Introduction
	Compilers
	Code Optimisation
	Peephole Optimisation
	Domain Complexity
	The Future of Compiler Technology
	Summary

	Superoptimisation
	Introduction
	Motivation
	The Superoptimisation Problem
	Implementations
	Massalin's Superoptimiser
	GSO: the GNU Superoptimiser
	Denali Project
	Stanford Superoptimiser
	Other Implementations

	Summary

	Answer Set Programming
	Introduction
	Origins of ASP
	History of Negation in Logic Programming
	Relationship to Prolog
	 AnsProlog Syntax
	Core Syntax
	Syntactic Extensions

	Semantics of ASP Programs
	Domain Complexity
	ASP Tools
	Grounding Tools
	Solving Tools

	Applications of ASP
	Summary

	TOAST: Total Optimisation using Answer Set Technology
	Introduction
	Motivation
	Architecture Overview: MIPS R2000
	System Overview
	Introduction
	Architectural Modelling
	Components

	Experimental Results
	Searching
	Verifying
	ASP Tool Benchmarking

	Discussion
	Summary

	A Case Study: Superoptimising SPARC V8
	Introduction
	Architecture Overview: SPARC V7/V8
	Superoptimising SPARC
	Searching
	Verifying
	TOAST System Benchmarking

	Discussion
	Summary

	buildMultiple: A Peephole Superoptimiser
	Introduction
	Motivation
	System Components
	A buildMultiple Library for SPARC V7
	Discussion
	Summary

	Concluding Remarks
	Major Contributions
	Future Work

	References
	Appendices
	AnsProlog Language Description
	Introduction
	Syntax Conventions

	AnsProlog Literals in the TOAST System
	Introduction
	Literals

	TOAST Architecture Descriptions
	Introduction
	MIPS R2000
	SPARC V7
	SPARC V8


