

University of Bath

PHD

Superoptimisation: provably optimal code generation using answer set programming

Crick, Tom

Award date:
2009

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 22. May. 2019

Superoptimisation: Provably Optimal

Code Generation using Answer Set

Programming

submitted by

Tom Crick

for the degree of Doctor of Philosophy

of the

University of Bath

August 2009

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author. This
copy of the thesis has been supplied on the condition that anyone who consults it is
understood to recognise that its copyright rests with its author and that no quotation
from the thesis and no information derived from it may be published without the prior
written consent of the author.

This thesis may be made available for consultation within the University Library and
may be photocopied or lent to other libraries for the purposes of consultation.

Signature of Author .

Tom Crick

Acknowledgements

I would first like to thank my family for their unwavering moral (and occasional finan
cial) support and understanding throughout my time at Bath. But especially to my girl
friend Sara, who has had to put up with someone who has been permanently attached
to his laptop for the past two years and has not shared his evenings and weekends –
thank you.

From an academic perspective: to Marina De Vos and John Fitch, my supervisors,
without whose guidance, support and understanding, I would not have been able to
complete this thesis. It has been a long journey, but ultimately a fruitful one. I certainly
hope to continue collaborating with both Marina and John in future projects.

Dave Donaghy was superb in the months leading up to submission, with great insight
into the big picture of my thesis, along with motivation, support and a bit of banter.

I have also been lucky to have shared a research lab with a number of people who have
made my time as a PhD student a fun and interesting one: Martin Brain, Owen Cliffe,
Tristan Caulfield, Matthew Collinson, Yi-Zhe Song, Manu Tanguy, Adam Dziedzic,
Sirapat Boonkrong, Mark Wood, Jan Drugowitsch, Ana Martins and Dalia Khader to
name a few.

I would also like to say thank you to Des Watson and Russell Bradford for an enjoyable
viva; I imagine everyone who passes must ultimately find their viva enjoyable, but I can
easily say that mine consisted of a thoroughly stimulating and interesting discussion
of both my work and the wider research domain.

i

Abstract

Code optimisation in modern compilers is an accepted misnomer for performance im

provement some of the time. The code that compilers generate is often significantly
improved, but it is unlikely to produce optimal sequences of instructions; and if it
does, it will not be possible to determine that they are indeed optimal. None of the
existing approaches, or techniques for creating new optimisations, is likely to change
this state of play.

Superoptimisation is a radical approach to generating provably optimal code, that per
forms searches over the space of all possible instructions. Rather than starting with
naively generated code and improving it, a superoptimiser starts with the specification
of a function and performs a directed search for an optimal sequence of instructions
that fulfils this specification.

In this thesis, we present TOAST, the Total Optimisation using Answer Set Techno

logy system, a provably optimal code generation system that applies superoptimising
techniques to optimise acyclic integer-based code for modern microprocessor architec
tures. TOAST utilises Answer Set Programming (ASP), a declarative logic program
ming language, as an expressive modelling and efficient computational framework to
solve the optimal code generation problem.

We demonstrate the validity of the approach of superoptimisation using Answer Set
Programming by optimising code sequences for two 32-bit RISC architectures, the
MIPS R2000 and the SPARC V8. We also present an application of the TOAST sys
tem as a peephole optimiser, by generating libraries of equivalence classes of all op
timal instruction sequences of a given length for a specific microprocessor architecture.
While this is a computationally expensive process, it only ever needs to be performed
once per architecture. We also provide significant benchmarks for the performance of
state of the art domain solver tools, further demonstrating the applicability of Answer
Set Programming in modelling complex real-world problems.

ii

Contents

Acknowledgements i

Abstract ii

List of Figures vii

List of Tables viii

List of Code Listings ix

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 3

1.3 Main Contributions . 3

1.4 Related Publications . 4

1.5 Structure of the Thesis . 5

2 Compilers and Optimisation 7

2.1 Introduction . 7

2.2 Compilers . 8

2.3 Code Optimisation . 9

2.4 Peephole Optimisation . 11

2.5 Domain Complexity . 12

2.6 The Future of Compiler Technology 12

iii

2.7 Summary . 13

3 Superoptimisation 14

3.1 Introduction . 14

3.2 Motivation . 15

3.3 The Superoptimisation Problem . 15

3.4 Implementations . 17

3.4.1 Massalin’s Superoptimiser 17

3.4.2 GSO: the GNU Superoptimiser 18

3.4.3 Denali Project . 20

3.4.4 Stanford Superoptimiser . 21

3.4.5 Other Implementations . 21

3.5 Summary . 21

4 Answer Set Programming 24

4.1 Introduction . 24

4.2 Origins of ASP . 25

4.3 History of Negation in Logic Programming 26

4.4 Relationship to Prolog . 27

4.5 AnsProlog Syntax . 28

4.5.1 Core Syntax . 29

4.5.2 Syntactic Extensions . 34

4.6 Semantics of ASP Programs . 34

4.7 Domain Complexity . 37

4.8 ASP Tools . 37

4.8.1 Grounding Tools . 38

4.8.2 Solving Tools . 38

4.9 Applications of ASP . 40

4.10 Summary . 41

iv

5 TOAST: Total Optimisation using Answer Set Technology 42

5.1 Introduction . 42

5.2 Motivation . 43

5.3 Architecture Overview: MIPS R2000 44

5.4 System Overview . 45

5.4.1 Introduction . 45

5.4.2 Architectural Modelling . 47

5.4.3 Components . 50

5.5 Experimental Results . 54

5.5.1 Searching . 55

5.5.2 Verifying . 55

5.5.3 ASP Tool Benchmarking . 57

5.6 Discussion . 59

5.7 Summary . 61

6 A Case Study: Superoptimising SPARC V8 64

6.1 Introduction . 64

6.2 Architecture Overview: SPARC V7/V8 64

6.3 Superoptimising SPARC . 65

6.3.1 Searching . 66

6.3.2 Verifying . 66

6.3.3 TOAST System Benchmarking 68

6.4 Discussion . 71

6.5 Summary . 73

7 buildMultiple: A Peephole Superoptimiser 74

7.1 Introduction . 74

7.2 Motivation . 75

7.3 System Components . 75

7.4 A buildMultiple Library for SPARC V7 76

v

7.5 Discussion . 78

7.6 Summary . 83

8 Concluding Remarks 85

8.1 Major Contributions . 86

8.2 Future Work . 87

References 90

Appendices 108

A AnsProlog Language Description 110

A.1 Introduction . 110

A.2 Syntax Conventions . 110

B AnsProlog Literals in the TOAST System 112

B.1 Introduction . 112

B.2 Literals . 112

C TOAST Architecture Descriptions 117

C.1 Introduction . 117

C.2 MIPS R2000 . 118

C.3 SPARC V7 . 120

C.4 SPARC V8 . 125

vi

List of Figures

2-1	 Phases of a generalised compiler . 10

4-1	 Answer Set Programming (ASP) modelling paradigm 25

5-1 Plot of sequence5 search test times (in sec) on MIPS R2000 56

5-2 Plot of argredundancetest verify test times (in sec) for increas

ing bit size on MIPS R2000 . 58

5-3 Plot of grounding times (in sec) for increasing bit size on MIPS R2000 59

5-4 TOAST system architecture for an example superoptimisation process 63

6-1	 Plot of sequence5 search test times (in sec) for increasing sequence

length on SPARC V8 . 67

7-1 Plot of buildMultiple run timings (in sec) for SPARC V7 78

7-2 Plot of optimal/non-optimal sequences generated by buildMultiple run

for SPARC V7 . 79

vii

List of Tables

3.1	 Effects of compiler optimisation levels for compiling the signum

function on SPARC V7 . 16

5.1	 TOAST program input format notation 46

5.2	 Timings (in sec) for sequence5 search test on MIPS R2000 56

5.3	 Timings (in sec) for argredundancetest verify test on MIPS R2000 57

5.4	 Timings (in sec) for verifytest1 grounding tests on MIPS R2000 58

6.1	 Timings (in sec) for sequence5 search tests on SPARC V8 66

6.2	 Timings (in sec) for 32-bit verify tests on SPARC V8 68

7.1	 buildMultiple action overview . 76

7.2	 buildMultiple sequence statistics for lengths 1–4 on SPARC V7 77

7.3	 buildMultiple generated equivalent sequences for one instruction-one

input on SPARC V7 . 80

7.4	 buildMultiple generated equivalent sequences for one instruction-two

inputs on SPARC V7 . 81

viii

List of Code Listings

3.1	 Example C function to calculate the sign of an integer (signum) . . . 16

3.2	 Superoptimised signum sequence generated by GSO for SPARC V7 17

3.3	 Superoptimised output generated by GSO for signum sequence on

SPARC V7 . 20

5.1	 Description of TOAST program input format in Extended BNF 46

5.2	 Example program in TOAST input format 47

5.3	 AnsProlog encoding of TOAST flow control rules 49

5.4	 AnsProlog encoding of the logical AND (land) instruction 50

5.5	 AnsProlog encoding of the arithmetic add instruction 51

5.6	 sequence5 search test for MIPS R2000 55

5.7	 argredundancetest verify test for MIPS R2000 57

6.1	 sequence5 search test for SPARC V8 66

6.2	 verifytest1 test programs for SPARC V8 67

6.3	 verifytest2 test programs for SPARC V8 68

6.4	 argredundancetest verify test for SPARC V8 68

6.5	 signum test program for SPARC V8 70

6.6	 Superoptimised candidates generated from argredundance test on

SPARC V8 . 70

6.7	 Constraints generated by searchCut by superoptimising argredundance

verify test on SPARC V8 . 71

C.1	 MIPS R2000 architecture description 118

C.2	 SPARC V7 architecture description 120

C.3	 SPARC V8 architecture description 125

ix

Chapter 1

Introduction

We should forget about small

efficiencies, say about 97% of the

time: premature optimisation is the

root of all evil. Yet we should not

pass up our opportunities in that

critical 3%.

Donald Knuth

1.1 Background

Although the word optimisation shares the same etymological root as “optimal”, it is
rare for an optimisation process in computing to produce a truly optimal system. The
optimised system may only be optimal for a very specific situation or environment;
also, the path to optimality is not always an obvious or intuitive process.

More specifically, within the field of compilers the term optimisation is something of
a misnomer. Compilers typically use a series of templates to generate machine-level
instructions from an intermediate representation generated from the input program [2].
An optimisation phase then attempts to improve this code (with respect to both size
and performance) by applying a set of transforms, reductions and equivalences. In
many modern compilers, this results in significant improvements, but it is unlikely to
produce optimal sequences of instructions; and if it does, it will not be possible to
determine that they are indeed optimal [98]. To further complicate matters, it is often
not clear in which order these improvement techniques should be applied, as they may
inhibit rather than enable further improvements. The current order of application of

1

these optimising phases and improvement techniques in modern compilers is a result
of experience rather than by design [36].

This situation is especially apparent in embedded systems and mobile appliances,
where engineers need to derive the optimum hardware-software configuration to achieve
the application’s real-time demands, while minimising power requirements and retain
ing flexibility [39, 184]. They need to generate code for multiple system-on-a-chip
variants, consisting, for example, of processor core, signal processor and graphics
device, from a common code base. They need to derive a custom system-on-a-chip
configuration from the program structure. Standard libraries need to be automatically
tuned for each custom processor configuration [117]. Therefore, the development of
efficient compiler toolchains for these resource-critical platforms is of huge import
ance.

A comparison between the advances in microprocessor performance (with respect to
Moore’s Law [135]) and compiler performance led to the assertion commonly referred
to as Proebsting’s Law [154, 160]. This stated that compiler performance doubles
every 18 years, in comparison to every 18 months for microprocessors. The main
implication from this comparison was that the cost of research and development on
compiler technologies was a wasted effort and that resources would be better spent
elsewhere. However, this 4% increase in performance per year [154] is actually a
significant improvement and is important for a range of resource-critical environments
(agreeing in part with the Knuth quote presented at the start of this chapter). There is a
clear justification for continued investment in compiler development and in particular,
novel optimisation strategies for these new environments [82, 97, 153].

Superoptimisation [131] is a radical approach to generating provably optimal code se
quences, that uses exhaustive search to find the optimal code for a given function. Su
peroptimisation naturally decomposes into two sub-problems: searching for sequences
that meet specific criteria and then verifying which of these candidates are function
ally equivalent to the input function. It has previously only been studied in the context
of computing small mathematical functions or optimising fragments of performance-
critical code [79]. Superoptimisation provides a fresh approach to the optimisation
problem, by aiming for optimality from the outset.

The goal of this thesis is to apply superoptimising techniques to create a practical
toolchain for provably optimal code generation. This thesis applies Answer Set Pro
gramming (ASP), an expressive declarative logic programming paradigm for model
ling real-world problems, to a significant new application domain. It is used to model
the machine architectures and their instructions, along with providing a powerful and

2

efficient computational framework. By modelling the superoptimisation problem in
ASP, we are able to use existing domain tools, known as solvers, to generate solutions.
The expressive semantics of ASP enables clear and concise modelling of the complex
constraints of the problem domain.

1.2 Motivation

Building upon the previous section, the motivation for this thesis is as follows:

Structured approach to optimisation: none of the existing approaches, or methods
for creating new approaches, to optimising code aim for optimality from the
outset. Developing a structured framework for applying superoptimising tech
niques to generating optimal code for modern machine architectures would be a
significant step. These new strategies for code optimisation would have potential
application to existing compiler toolchains.

Lack of proven optimality: with the existing code improvement algorithms it is the
oretically complex and computationally expensive demonstrating the equival
ence of optimised code sequences to the original code.

Emergence of new performance-critical domains: especially embedded environments;
the development of new models and metrics of optimality, such as program size,
execution speed, low memory usage and low power consumption, is hugely im
portance. A practical and adaptable optimisation framework would be applicable
to a large number of microprocessor architectures and environments.

Modelling of real-world problems using Answer Set Programming: the expressive
language and clear semantics of ASP, coupled with a powerful computational
framework and the wide availability of open source solver tools. ASP is regarded
as the computational embodiment of non-monotonic reasoning and a primary
candidate for an effective knowledge representation tool. This makes it a clear
candidate for modelling the provably optimal code generation problem.

1.3 Main Contributions

The main contribution of this thesis is validation of the approach of applying super
optimising techniques to generating provably optimal code sequences for modern ma

3

chine architectures using Answer Set Programming. Furthermore:

•	 Development of a practical and adaptable superoptimising code generation sys
tem based on ASP technology, with proof of optimality for short code sequences.
This system will be benchmarked against existing superoptimising implementa
tions.

•	 Demonstrating that superoptimisation of code is achievable in the general case
and that the technique can be applied to generate provably optimal code se
quences for modern machine architectures.

•	 Benchmarks and observations on the performances of a range of ASP solver
tools, notably the performance of the more recent SAT-based and clause learning
solvers compared to the traditional backtracking solvers.

•	 Demonstrating that ASP is an suitable language for reasoning about large-scale,
real-world problems. The application of ASP to the code optimisation problem
will also contribute to the ASP community and further drive tool development.

1.4 Related Publications

The following list includes all publications by the author which are related to this
thesis, in accordance with Regulation 16.5 subsection k(ii) of the University of Bath
Regulations for Students 2008/2009.

[37]	 Generating Optimal Code using Answer Set Programming

Tom Crick, Martin Brain, Marina De Vos and John Fitch
10th International Conference on Logic Programming and Non-Monotonic Reas
oning (LPNMR’09)
September 2009, Potsdam, Germany

[24]	 TOAST: Applying Answer Set Programming to Superoptimisation

Martin Brain, Tom Crick, Marina De Vos and John Fitch
22nd International Conference on Logic Programming (ICLP 2006)
August 2006, Seattle, USA

[23]	 An Application of Answer Set Programming: Superoptimisation

A Preliminary Report

Martin Brain, Tom Crick, Marina De Vos and John Fitch

4

11th International Workshop on Non-Monotonic Reasoning (NMR’06)
May 2006, Lake District, UK

1.5 Structure of the Thesis

The remainder of this thesis is organised into the following chapters:

In Chapter 2 (page 7) we introduce compilers and modern compiler toolchains and
outline the state of the art of code optimisation. We also present common meth
ods of improving code, the problems faced by optimising phases in compilers
and the future of compiler technology.

In Chapter 3 (page 14) we introduce superoptimisation and how it differs from tradi
tional code improvement techniques. We analyse the complexity of the problem
and describe the existing superoptimising implementations, providing bench
marks on illustrative code sequences.

In Chapter 4 (page 24) we introduce the Answer Set Programming (ASP) paradigm
and its underlying logical formalism AnsProlog. We explain its syntax and se
mantics, introduce existing domain tools and present some successful imple
mentations of ASP technology.

In Chapter 5 (page 42) we present TOAST, the Total Optimisation using Answer Set

Technology system, a framework for applying superoptimising techniques to op
timising code for modern machine architectures. We explain the rationale for
its development using Answer Set Programming, and how we model the archi
tectures and semantics of their instructions with this expressive language. The
utility of the TOAST system is demonstrated via benchmark tests for the MIPS
R2000, a popular 32-bit RISC architecture. We also provide a number of bench
marks tests of the performance of ASP tools applied to TOAST problems.

In Chapter 6 (page 64) we apply the TOAST system to superoptimising code se
quences for the SPARC V8 architecture, a popular 32-bit RISC server archi
tecture. We present benchmarks for searching for and verifying optimal se
quences on the SPARC V8, along with a discussion on the future application
of the TOAST framework.

In Chapter 7 (page 74) we introduce a significant application for the TOAST system
as a peephole superoptimiser. We describe the rationale and motivation for ap

5

plying TOAST to this application area, in which we generate equivalence classes
of optimal sequences for a given instruction length and number of inputs. This
library of optimal sequences can then be applied to optimising code in compiler
toolchains and other optimisation frameworks.

In Chapter 8 (page 85) we summarise the contributions of this thesis, demonstrating
the validity of the TOAST approach to superoptimising code sequences using
Answer Set Programming, and discuss future research directions.

6

Chapter 2

Compilers and Optimisation

optimise
verb. make the best or most effective

use of (a situation or resource)

The Oxford English Dictionary

2.1 Introduction

The focus for microprocessor architecture development over the past ten years has
been in advances in architecture design: data-level parallelism, instruction-level paral
lelism, multi-threaded and multi-core. Because of this, there has been a distinct lack of
emphasis on the importance of developing compilers and producing efficient code for
these increasingly complex architectures. The cost of developing a compiler for a new
architecture is dwarfed, by orders of magnitude, by the cost of the development of the
architecture [154, 156], but the absence of an efficient compiler can effectively kill an
architecture; a prime example of this phenomenon would be the limited success for the
original Intel IA-64 Itanium architecture, due to the lack of tools that could generate
efficient code for it. For a wide range of resource-critical environments, there is a real
need for continued research into compiler technology and in particular, new strategies
for optimising code [82].

In this chapter, we introduce compilers, their significant phases and processes and how
they optimise and generate code for modern architectures. We discuss a number of
common techniques for optimising code in modern compiler toolchains, before dis
cussing future key research areas in compiler technology.

7

2.2 Compilers

Compilers are software systems that transform programs written in higher-level lan
guages into functionally equivalent programs in object code or machine assembly lan
guage for execution [2]. This definition can also be widened to include systems that
translate from one higher-level language to another, or from one machine language to
another, and so on.

A compiler typically consists of a series of phases that sequentially analyse a program
and construct new ones, beginning with a sequence of characters constituting a source
program to be compiled and ultimately producing object code to be executed on a
machine. Examples of modern compiler toolchains include the GNU Compiler Col
lection (GCC) [62,66], LLVM+clang [111,125], Open64 (formerly Pro64) [123,144],
SUIF Compiler System [83, 175], Intel Compiler Suite [90, 93] and the Sun Java JIT
compilers [169].

In a generalised compiler system (see Figure 2-1), there are six typical phases:

lexical analysis of the program presented to it and breaking it into the legal tokens
(single atomic units) of the language in which the program is written, for ex
ample, keywords, identifiers or symbol names. The token syntax is typically a
regular language, so a finite state automaton constructed from a regular expres
sion can be used to recognise it [2]. There may also be a language-dependent
preprocessing phase which supports macro substitution and conditional compil
ation.

syntactic analysis involves parsing the token sequence to identify the syntactic struc
ture of the program. This phase typically builds an intermediate-level represent
ation, such as a parse tree, according to the rules of a formal grammar which
define the language’s syntax [2]. The intermediate representation is often ana-
lysed and transformed by later phases of the compiler.

semantic analysis where the compiler adds semantic information to the parse tree and
builds the symbol table, required to record the identifiers used in the program
and their attributes. This phase performs static semantic checks required by the
source language, such as type checking (checking for type errors), object binding
(associating variable and function references with their definitions) or definite
assignment (if there is a requirement for all local variables to be initialised before
use) [8]. Semantic analysis usually requires a complete parse tree, meaning that
this phase logically follows the parsing phase.

8

program analysis is the gathering of information from the intermediate representa
tion generated during the previous phases. Typical analyses include data flow
analysis to build use-define chains (data structures that consist of a use, a vari
able, and all the definitions of that variable that can reach that use without any
other intervening definitions), dependence analysis, alias analysis and pointer
analysis [3]. The call graph (a directed graph that represents calling relationships
between subroutines) and the control flow graph (another graph representation
of all paths that might be traversed through a program during its execution) are
also built during the analysis phase [8]. Accurate analysis is a prerequisite for
performing code optimisation.

code optimisation and improvement where the intermediate representation is trans
formed into functionally equivalent but faster (or smaller) forms. These include
a number of optimising transforms, reductions and equivalences that range from
the relatively simple (such as dead code elimination, constant propagation and
inline expansion [2]) to ones requiring significant analysis (for example, register
allocation and automatic parallelisation [8]).

code generation is the final transformation of the intermediate representation into the
output language of the compiler, usually the native machine assembly language.
This involves storage and resource decisions, such as which variables to fit into
registers and memory, and the selection and scheduling of machine instructions.

The front end of a compiler consists of the early lexical, syntactic and semantic phases
that build the intermediate representation, while the back end is usually associated with
the code generation phase. Confusingly, some literature use the term middle end to
distinguish the generic analysis and optimisation phases from the machine-dependent
code generation phase.

For a more detailed description of the phases of a compiler, see Aho et al. [2].

2.3 Code Optimisation

Code optimisation in a compiler is the process of tuning the output to minimise or
maximise some attribute of an executable computer program. Most code is written for
optimality with respect to execution speed, but this usually translates into optimising
for low memory usage. The growth of the embedded domain has highlighted the need

9

Figure 2-1: Phases of a generalised compiler

for new metrics of optimality, especially minimising the power consumption of a pro
gram. The use of numerous optimisation phases to improve the code generated by a
compiler can be significant [26, 82].

Techniques used in optimising transformations can be categorised by scope, which can
be anything from single statements, to the procedural level, to the entire program. Gen
erally, locally-scoped techniques are easier to implement than global ones (and require
less time and fewer resources), but tend to result in smaller gains: an example would
be peephole optimisation (described in Section 2.4). Interprocedural or whole pro

10

gram analysis [112] can utilise the greater quantity of available information to optim
ise than when compared to only having access to localised information [2]. However,
local optimisations such as loop optimisations, for example loop unrolling and loop
fusion [3], act on the statements which make up a loop and can perform loop-invariant
code motion. Loop optimisations can provide significant runtime improvements to
programs, because many programs spend a large percentage of their time executing
code inside loops. It is also common to optimise the object code after the code genera
tion phase [41,127,163]. There also exists a range of programming language-specific,
machine-dependent and independent optimisations that can significantly improve the
generated code [2, 159]. Effective and efficient code optimisation is hard [113], with
even designers of modern microprocessor architecture having to write optimisation
manuals for developers to effectively use their platforms [4, 5, 88, 91, 92].

For a more detailed overview and discussion of common compiler optimisations, along
with the analyses that support them, see [2, 3, 137].

2.4 Peephole Optimisation

A peephole optimisation is a simple but effective technique for locally improving
code [133]. It is performed by examining a sliding window of target instructions
(the “peephole”) and replacing instruction sequences within this peephole by better
sequences (depending on the metric of optimality desired). Peephole optimisation can
be applied directly after intermediate code generation to improve the intermediate rep
resentation [42, 172] or as a post-pass optimisation phase to object code [41, 43].

It is characteristic of peephole optimisation that each improvement may spawn op
portunities for additional improvements. In general, repeated passes over the target
code are necessary to obtain the maximum benefit. Examples of common peephole
optimisations include redundant instruction elimination, flow of control optimisations
(such as removing jumps and straightlining code), algebraic simplifications (such as
strength reduction, where it is less expensive on certain machine architectures to mul
tiply rather than calculating powers, or division by a power of two via shifting), and
use of machine-specific features such as auto-increment or auto-decrement addressing
modes.

Peepholing techniques exist in some form in most modern compiler toolchains and
has seen widespread use in Just In Time (JIT) compilers to dynamically optimise in
terpreted code at runtime [11, 169].

11

2.5 Domain Complexity

The work on the complexity analysis of compiler optimisations has proved that certain
aspects are NP-complete (or NP-hard), including register allocation [77], instruction
scheduling [20, 182] and code generation [65]. In the worst-case, certain features of
optimisation have been shown to be exponential or even factorial [107]. Neverthe
less, in the general case, optimising and generating code is a tractable problem and
significant results are possible.

2.6 The Future of Compiler Technology

Even with the existing levels of code optimisation in modern compiler toolchains, there
is a real need for continued research into compiler technology and in particular, in op
timising code for new metrics of optimality and new environments, such as multi-core
architectures [82]. The emergence of performance-critical environments, such as the
embedded domain, with significant low power and low memory consumption require
ments [100], means that new metrics of optimality need to be considered and provided;
hence optimising for power and memory consumption are important targets for today’s
compilers [26, 39, 184]. Recent developments in the GCC toolchain has resulted in
the implementation of a polyhedral optimisation framework [151, 152, 176], known
as GRAPHITE, for high-level memory optimisations. This has significantly improved
code generation in GCC, along with improving the selection of loops transforms and
adding support for auto-vectorisation [62, 66]. Similar work on speculative analysis
and optimisation has also been done for the Open64 compiler [123].

However, the development and implementation of new techniques, such as link-time
optimisation and interprocedural optimisation in GCC [29,112,174], automatic gener
ation of optimisations using equivalence proofs [173], translation validation of optim
isers [98], along with research and development projects such as MILEPOST GCC [63]
(which uses machine-learning based self-tuning compilers [146,168]), ACOVEA [110]
(application of genetic algorithms) and the Collective Tuning (cTuning) project [64]
(developing iterative feedback-directed compilation techniques, collective optimisa
tion, run-time adaptation, statistical analysis and machine learning) are pushing the
performance boundaries of modern compilers and optimisation algorithms. Neverthe
less, one of the key problems of optimising and generating code for increasingly com
plex modern archiectures is analysing how the different optimisation techniques inter
act with each other, and whether they create constrained optimisation problems [183]

12

when attempting to optimise for more than one metric.

2.7 Summary

This chapter has presented an overview of modern compilers and code optimisation
techniques, along with discussing the future of compiler technology. It has been sug
gested that while the performance improvements of compilers per year is small (in
comparison to the improvement in the performance of microprocessors), the increasing
demands of today’s resource-critical environments require a more structured approach
to developing compiler technologies and more importantly, frameworks for supporting
more efficient code optimisation.

In the next chapter we present one such approach to code optimisation, which aims to
generate truly optimal code sequences from the outset: superoptimisation.

13

Chapter 3

Superoptimisation

In almost every computation a great

variety of arrangements for the

succession of the processes is

possible...one essential object is to

choose that arrangement which shall

tend to reduce to a minimum the time

necessary for completing the

calculation.

Ada Lovelace

3.1 Introduction

As suggested in the previous chapter, there is a real need for continued research and
development in compiler technology, and in particular new strategies to optimising
code for different environments. State of the art code optimisation techniques are in
creasingly specific and rely on complex mathematical specifications; while significant
improvements are possible, these techniques are unlikely to produce optimal code, and
if they do, it is not possible to determine whether the code produced is indeed optimal.

In this chapter, we introduce superoptimisation, a method for finding the shortest se
quence to compute a function. Superoptimisation is an approach that aims for optim
ality at the outset, distinguishing it from existing code improvement techniques. We
describe the motivation for superoptimisation as a technique for generating optimal
code sequences, introduce and evaluate existing superoptimising implementations and

14

provide some example sequences and how they are superoptimised.

3.2 Motivation

Since the earliest days of computer programming, there have been known to exist
sequences of machine instructions with seemingly magical properties [1, 6, 18, 19,
138]. By using particular sequences of instructions, often with no obvious connec
tion between them, it is possible to calculate certain functions using fewer instructions
than any obvious approach, either hand-coded or compiled from a high-level language.
These sequences are inadvertent by-products of the design of the instruction set archi
tecture and, although an entertaining curiosity, seemed not to have an extensive prac
tical use beyond hand-coded assembly language in specific environments, such as in
digital signal processing.

However, early work in this area converted sequences of instructions into single in
structions [101], based on template matching and utilised as a form of peephole optim
isation. Nevertheless, the idea that instruction sets exhibited non-obvious functionality
was implicitly understood but never really exploited. Hence, early approaches to gen
erating optimal code [163] by applying this knowledge did not receive much interest
in the compiler community.

3.3 The Superoptimisation Problem

Superoptimisation is a radically different approach to code optimisation, first described
by Massalin [131]. As noted in later work [95], the term superoptimisation is itself an
oxymoron: if a program has been optimised – meaning it is optimal – then what does
it mean to superoptimise it? The terminology problem lies in the need to distinguish
superoptimisation from garden-variety code improvement techniques. As discussed
previously, modern optimising compilers apply a defined set of transforms, reductions
and equivalences. This often results in significant code improvement, but it is not
necessarily going to produce optimal sequences of instructions; and if it does, it will
not be able to determine that they are indeed optimal.

The classical meaning of superoptimisation is to find an optimal code sequence for a
loop-free assembly language sequence of instructions. This requirement for straight-
line loop-free code was due to the inherent problems of optimising away loops and
branches without the appropriate analysis.

15

int signum(int x) {
if (x > 0) return 1;
else if (x < 0) return −1;
else return 0;

}
Listing 3.1: Example C function to calculate the sign of an integer (signum)

Rather than starting with naively generated code and improving it, a superoptimiser
starts with the specification of a function and performs a directed search for an optimal
sequence of instructions that fulfils this specification. Superoptimisation therefore nat
urally decomposes into two sub-problems: searching for sequences that meet specific
criteria and then verifying which of these candidate sequences are equivalent to the
original function. As the length of the original sequence increases, the search space in
creases at a worst-case exponential rate [131]. This has previously made the technique
unsuitable for use in standard compiler toolchains, though for improving the code gen
erators of compilers and for targeting key sections of performance critical functions,
the results can be significant [79, 96].

A good example of how superoptimisation works is demonstrated by the signum

function given in Listing 3.1, originally presented by Massalin [131], which returns the
sign of an integer, or zero if the input is zero. As you can see from the results presented
in Table 3.1 (generated by compiling the function on a Sun UltraSPARC IIIi running
Solaris 10, using GCC 3.4.3 and Sun C Compiler 5.8), a basic compilation of this
function would generate twelve or more instructions, including at least two conditional
branch instructions. An experienced assembly language programmer might be able to
implement it in six instructions, with only one conditional branch. Modern compilers
can normally achieve similar results.

GNU C Compiler (3.4.3) Sun C Compiler (5.8)
Flags Instructions Branches Flags Instructions Branches
None 19 4 None 12 4
-O1 7 1 -xO1 20 4
-O2 6 1 -xO2 8 2
-O3 6 1 -xO3 8 2

Table 3.1: Effects of compiler optimisation levels for compiling the signum function
on SPARC V7

However, superoptimising this function (in this case for the SPARC V7 [12], a 32-bit
RISC architecture) produces the sequence of three instructions presented in Listing 3.2.
Not only is this sequence shorter in instruction length, it does not require any condi

16

! input in %i0
addcc %i0 %i0 %l1
subxcc %i0 %l1 %l2
addx %l2 %i0 %o1
! output in %o1

Listing 3.2: Superoptimised signum sequence generated by GSO for SPARC V7

tional branches, a significant saving on modern pipelined processors. This example
shows another interesting property of code produced by superoptimisation: it is not
immediately obvious how it provides the required functionality, in this case how it
computes the sign of a number. The pattern of addition and subtraction essentially
‘cancels out’, with the actual computation being done by how the carry flag is set and
used by each instruction (on the SPARC V7, instructions whose names include cc set
the carry flag, while x denotes instructions that use the carry flag [12]).

3.4 Implementations

3.4.1 Massalin’s Superoptimiser

Massalin’s original superoptimiser [131] accepts as input a sequence of assembly
language instructions which computes a function and then attempts to generate the
shortest program which computes that same function. This is done by an exhaustive
search over all possible sequences. The search space is defined by a subset of the archi
tecture’s instruction set, generating all combinations of these instructions, first length
one, then of length two and so on. Each of the generated programs are tested and if
found to match the input program in terms of its function, it is returned as a match.

This exhaustive search approach grows exponentially with the number of instructions
in the input function, so techniques and heuristics to prune the search space are re
quired. A fast probabilistic test for determining the equivalence of two programs is
used, in which a directed set of test input values are used to discard invalid sequences.
Also, clearly non-optimal (i.e. impossible) sequences are discarded, as they do not
exist in any optimal program. Examples of this include sequences that have the same
effect on the machine state as a sequence of shorter length, or sequences that perform
operations that destroys the output of a previous instruction. However, none of these
techniques compromise the completeness of the search.

The rationale behind this probabilistic test is that in general, the majority of incorrect

17

candidate programs will fail this simple test, meaning that you only have to perform a
full verification test (for all input values) on as few candidates programs as possible.
The set of directed test values include edge cases such as byte boundaries and all ones
and zeros; if a sequence passes these chosen tests, then all numbers from -1024 to
1024 would be tested. Due to the computational burden of performing a full Boolean
test (which would express the function output in terms of Boolean logic operations), it
was not deemed feasible to perform full equivalence tests for sequences of more than
three instructions in reasonable time [131]. Hence, the probabilistic test was used as
a shortcut to validate large numbers of sequences very quickly (c.50000 programs per
second), but it was acknowledged that there was a possibility of a sequence passing
the probabilistic test but failing a full verification test. Because of this, all sequences
were manually checked by hand for correctness.

However, Massalin’s superoptimiser was deemed to have limited usefulness as a code
generator for a compiler, due to the time taken to find and verify sequences. This
was also due to problems with concisely modelling certain features of the instruc
tion set architectures, along with issues of portability: the superoptimiser was written
in Motorola 68000 assembly language. Porting to a new architecture would require
translation to the assembly language, requiring significant knowledge and experience.

3.4.2 GSO: the GNU Superoptimiser

The GNU Superoptimiser (GSO) [79] is a function sequence generator that applies
superoptimising techniques via an exhaustive generate-and-test approach to finding
the shortest sequence for a given function. It further developed Massalin’s brute force
search strategy by attempting to apply constraints whilst generating elements of the
search space; so rather than generating all possible sequences and then discarding those
that were marked as clearly redundant, it would prune them during generation. One of
its main criteria was on the elimination of conditional jumps in sequences by careful
modelling of the processor flags, due to the inherent cost of jumps on modern pipelined
architectures. However, many of these approaches were architecture-specific.

GSO is a goal-directed superoptimiser, meaning that it is only able to compute optimal
sequences for a specific encoded goal function, such as finding the sign of a number
(as given in Listing 3.1), rather than allowing any arbitrary sequence of instructions
as input to the system. In this way, it is efficient in generating shorter sequences for
these goals, but they first have to be efficiently translated and encoded internally before
they can be superoptimised. The time complexity of the GSO algorithm is approxim

18

ately O(mn2n), where m is the number of available instructions on the architecture
and n is the shortest sequence for the goal function. The practical sequence length
limit depends on the target architecture and goal function arity; in most cases it is
approximately five instructions, but for richer instructions sets it may be lower [79].

GSO was originally developed on the IBM RS/6000 architecture, but was also de
ployed on a number of other architectures, including the SPARC V7, Motorola 68000,
AMD 29K and the Intel 80386. GSO is written in C, rather than machine-specific as
sembly language, which made porting significantly easier. Its generic structure relied
on lookup tables, which mapped instructions to architectures. If you wanted to target
a new instruction set or machine architecture, you would need to create new instruc
tion definitions in a special internal format. One of the main successes of GSO was
its contributions to optimisation patterns for the GCC toolchain; when it was used to
superoptimise sequences for the GCC port to the POWER architecture, it produced
a number of sequences that were shorter than the processor’s designers thought pos
sible [79].

As with Massalin’s superoptimiser, GSO is unable to guarantee that it generates the
best possible instruction sequence for all possible goal functions. This is partly due to
the fact that only a subset of the instruction set is modelled, but mainly because the
generated code sequences are not exhaustively checked. It is therefore possible that
the generated sequences are not valid for all input values.

Example 3.1. An example demonstrating how GSO superoptimises the signum func
tion introduced in Listing 3.1 is as follows:

• Length 1: No sequences are found (5 sec to search)

• Length 2: No sequences are found (5 sec to search)

• Length 3: 13 sequences generated (10 sec to search)

As you can see from the 13 results presented in Listing 3.3, the output is in a internal
GSO format, similar to C, which describes the abstracted instructions for the machine
architecture (in this example, the SPARC V7 [12]). This superoptimisation is a demon
stration of the speed of GSO in finding small sequences for certain functions quickly,
but this does not scale for larger sequences [79].

19

1:	 r1:=add_co(r0,r0)
r2:=sub_cio(r0,r1)
r3:=add_cio(r2,r0)

2:	 r1:=add_co(r0,r0)
r2:=sub_cio(r0,r1)
r3:=add_ci(r2,r0)

3:	 r1:=add_co(r0,-1)
r2:=arith_shift_right(r0,0x1f)
r3:=add_cio(r2,r2)

4:	 r1:=add_co(r0,-1)
r2:=arith_shift_right(r0,0x1f)
r3:=add_ci(r2,r2)

5:	 r1:=sub_co(0,r0)
r2:=arith_shift_right(r0,0x1f)
r3:=add_cio(r2,r2)

6:	 r1:=sub_co(0,r0)
r2:=arith_shift_right(r0,0x1f)
r3:=add_ci(r2,r2)

7:	 r1:=arith_shift_right(r0,0x1f)
r2:=sub_co(r1,r0)
r3:=add_cio(r2,r0)

8:	 r1:=arith_shift_right(r0,0x1f)
r2:=sub_co(r1,r0)
r3:=add_ci(r2,r0)

9:	 r1:=arith_shift_right(r0,0x1f)
r2:=sub_co(r1,r0)
r3:=add_cio(r1,0)

10:	 r1:=arith_shift_right(r0,0x1f)
r2:=add_co(r0,-1)
r3:=add_cio(r1,r1)

11:	 r1:=arith_shift_right(r0,0x1f)
r2:=add_co(r0,-1)
r3:=add_ci(r1,r1)

12:	 r1:=arith_shift_right(r0,0x1f)
r2:=sub_co(0,r0)
r3:=add_cio(r1,r1)

13:	 r1:=arith_shift_right(r0,0x1f)
r2:=sub_co(0,r0)
r3:=add_ci(r1,r1)

Listing 3.3: Superoptimised output generated by GSO for signum sequence on
SPARC V7

3.4.3 Denali Project

The Denali project [95, 96] applies superoptimising techniques to generating optimal
code sequences by using automatic theorem proving technology as an intelligent ap
proach to handling the large search spaces. It accepts input in a low-level machine
model, similar to C or assembly language, which contains higher-level language con
structs. By converting sequences into a form that a matcher tool can accept, axioms
are added and directed graphs with equivalence relations on nodes are constructed. If
two terms are semantically equivalent, then a relationship would be created between
these nodes. By adding the information from the architecture descriptions, a constraint
generator reduces the problem to the Boolean satisfiability problem to be solved by a
domain tool known as a SAT solver. The output of the solver is a confirmation of the
equivalence of the sequence or not.

20

Preliminary experimental results were presented [95], with the Denali system able to
produce minimum-cycle optimal code for the DEC Alpha EV6 processor. Its formal
approach was very well documented, with proofs for all of the superoptimising al
gorithms, but the development of the system stalled. Verification of code sequences
was also a significant problem, as in previous superoptimising implementations, espe
cially due to the size of some of the Boolean expressions passed to the domain tools
to solve, requiring significant compute time [96]. For large complex sequences, the
solver tools timed out and sequences were discarded.

3.4.4 Stanford Superoptimiser

The Stanford superoptimiser [14] applies superoptimising techniques to the automatic
generation of peephole optimisers. It uses a learning approach to populate its database
of optimisations, which were verified using SAT solving techniques, in a similar way
to the Denali system. Experimental results demonstrated the utility of this system for
the Intel x86 architecture, but as with previous superoptimising implementations, full
verification of sequences timed out if they exceeded a time limit, with the potential of
having discarded an optimal sequence. This peepholing library framework was also
applied to the problem of binary translation [15], with some success. However, the
framework did not develop further beyond an experimental system for the Intel x86
architecture.

3.4.5 Other Implementations

Simple superoptimising techniques have been deployed in a number of applications,
including the GNU Multiple Precision Arithmetic Library (GMP) [78] and for simple
analysis of branch code generation in GCC [158]. Superoptimising implementations
have been created for Microchip’s PIC family [162] and the Atmel AVR, an 8-bit
RISC architecture, but these have all been proof-of-concept developments with limited
success. While generating some interesting results, the problems encountered by the
existing implementations has hindered wide-scale uptake of this promising technology.

3.5 Summary

In this chapter we have introduced superoptimisation, a technique for generating op
timal code sequences, and how it differs from existing approaches to improving code.

21

We have also given an overview of existing superoptimising implementations and the
common problems encountered, specifically:

•	 The complexities of modelling the machine architecture and the semantics of its
instructions

•	 The significant time taken to search the large space of all possible instruction
sequences for modern machine architectures.

•	 The complexity and large computational resources required to prove that two
code sequences are equivalent for all possible input values.

•	 The problem of proving that a generated code sequence is indeed optimal.

Due to the difficulties of showing the functional equivalence of two non-trivial se
quences of code, most of the existing implementations use a representative test to
shortcut the verification, or timeout and discard sequences that take too long to verify.
With this approach, there is a possibility of discarding potential optimal sequences.

However, there exists a number of techniques briefly mentioned in Chapter 2 (page 12)
that may also support efficient searching of the large spaces for candidate optimal se
quences. The use of genetic algorithms [110], machine-learning [63, 64] and evolu
tionary techniques [87], analysing discrete sections of the search space, may provide
a method of pruning the large search spaces, possibly using distributed computational
techniques.

Nevertheless, superoptimising techniques have application to other areas, such as the
analysis of the design of instruction set architectures. For example, it may be feas
ible to encode a proposed instruction set architecture, generate code sequences for a
given function and feedback into the design if a superoptimiser discovers shorter se
quences; hence, a form of superoptimisation-directed instruction set design. Overall,
superoptimisation was identified as a aid to the assembly language programmer, with
the unexpected nature of the sequences raising questions about the design of instruc
tion sets, along with a better understanding of the interrelations between arithmetic
and logic instructions. Another useful application would be the generation of tables
containing lists of equivalent sequences for use in a conventional peephole optimiser
(as discussed in Section 2.4, page 11).

In Chapter 5 (page 42), we present the TOAST system, a framework for applying
superoptimising techniques to generating provably optimal code sequences. In the next

22

chapter, we first introduce Answer Set Programming (ASP), the modelling language

and computational framework which underpins the TOAST superoptimising system.

23

Chapter 4

Answer Set Programming

The main purpose of a programming

language is to help the programmer

in the practice of his art.

C.A.R. Hoare

4.1 Introduction

Answer Set Programming (ASP) 1 [73,130] is a declarative logic programming paradigm
that allows reasoning about real-world problems in the absence of complete informa
tion. It is a powerful and intuitive non-monotonic [50] 2 logic programming language
for modelling, reasoning and verification tasks.

ASP describes a problem as a logic program, a set of axioms and a goal statement, un
der the answer set semantics of logic programming [73] in such a way that the models
of the program (answer sets) correspond to the solutions of the problem. Therefore,
by encoding the description of the problem domain and the description of what con
stitutes a solution, solving the problem is reduced to computing the answer sets of the
program.

With its clear syntax and formal expressive semantics, combined with efficient domain
tools known as solvers, ASP provides an excellent basis from which derived models

1ASP has also been referred to in the literature as A-Prolog, AnsSet-Prolog, Answer Set Prolog and
Extended Logic Programming.

2A formal logic whose consequence relation is not monotonic; meaning that adding a formula to a
theory never produces a reduction of its set of consequences

24

may be computed. It differs from traditional logic programming in that it represents
solutions to a problem by models or answer sets (see Figure 4-1), rather than by answer
substitution or querying [16], such as in Prolog.

Figure 4-1: Answer Set Programming (ASP) modelling paradigm

In essence, an ASP program can be seen as a formalisation of the underlying reasoning
problem in its own right, with the advantage of being able to solve this formalisation
directly through the application of solver tools. At this stage, it is important to be
clear regarding terminology: Answer Set Programming (ASP) is the programming
paradigm, underpinned by the formal language AnsProlog.

In this chapter, we describe the history and development of ASP and its roots in non-
monotonic reasoning and logic programming. We present its syntax and semantics,
along with common extensions. We then give an overview of popular domain tools
and successful implementations of ASP technology. We use ASP as a modelling
framework throughout this thesis, adhering to the AnsProlog notation introduced in
Baral [16].

4.2 Origins of ASP

Logic programming is, in its broadest sense, the use of mathematical logic for com
puter programming. Logic is used as a purely declarative representation language,
with theorem-proving or model generation as the method of generating solutions to
the problem. Logic programming in a narrower sense can be traced back to debates
in the late 1960s and early 1970s regarding declarative versus procedural represent
ations of knowledge in artificial intelligence; for example, the PLANNER language
for theorem proving in robotics [85].

McCarthy [132] proposed the use of logical formulae as the basis for a knowledge rep
resentation language, in which declarative statements were used to express information
about the problem. The work in automated theorem proving [106, 126, 157] to prove
theorems in first-order logic led to the proposal of the concept of logic programming
by Kowalski [104], and later to the first implementation of the programming language

25

Prolog [33]. The use of Prolog as a practical programming language was given great
momentum in 1977 by the development of an efficient compiler [179].

For a comprehensive overview of the history and development of logic programming,
see the survey articles [9, 17, 50, 105].

4.3 History of Negation in Logic Programming

The implementation and hence the semantics of negation in logic programming lan
guages is important [9], with different mechanisms for computing when the negation
of a predicate is true; a variety of different intuitions of what this means have been
proposed [48]. The logical status of negation as failure (i.e. not(p) is true if p cannot
be proved using the current information) was unresolved until it was shown that, under
certain natural conditions, it is a correct (and sometimes complete) implementation of
classical negation [74] (i.e. every proposition is either true or false and cannot be both)
with respect to the completion of the program [31]. This is closely related to the closed
world assumption [155]: the presumption that what is not currently known to be true,
is false. As an alternative to this completion semantics, negation as failure can also
be interpreted epistemically, as in the answer set semantics of Answer Set Program
ming (discussed in more detail later on in this chapter). This means that the epistemic
interpretation can be easily combined with classical negation, enabling the formalism
of phrases such as the contrary cannot be shown, where contrary is classical negation
and cannot be shown is the epistemic interpretation of negation as failure [17].

By linking negation as failure with classical negation, anything that cannot be proven to
be true is known to false, essentially assuming that everything that is known about the
world is contained in the program. Fages [60] proved that a syntactic condition of logic
programs (referred to as tightness, which defines the transitive closure of a relation),
guarantees the stability of every model of a program’s completion. This means that
for tight logic programs, the answer set semantics are equivalent to the completion
semantics [57]. This idea was further developed by making the completion of a non-
tight program stronger by the addition of loop formulae [122] (in which for each loop
in the program, a corresponding loop formula is added to the program’s completion),
so that all the program’s non-answer set solutions are eliminated.

From the perspective of knowledge representation, a set of ground atoms (in which all
variables have been removed) can be thought of as a description of a complete state of
knowledge: the atoms that belong to the set are known to be true and that atoms that do

26

not belong to the set are known to be false. A possibly incomplete state of knowledge
can be described using a consistent, but possibly incomplete set of literals; if an atom
p does not belong to the set and its negation does not belong to the set either, then it is
not known whether p is true.

Hence, there is a need to distinguish between two types of negation – negation as fail
ure and classical negation. The following example, illustrating the difference between
the two types of negation is attributed to McCarthy [74]:

Example 4.1. A school bus may cross the railway tracks under the condition that there
is no train approaching. If we do not necessarily know whether a train is approaching,
then the rule using negation as failure:

cross not train ←

is not an adequate description of this idea: it says that it is acceptable to cross in the
absence of information about an approaching train. The weaker rule, that uses classical
negation, is preferable:

cross train ← ¬

this indicates that it is acceptable to cross if and only if we know there is no train
approaching.

4.4 Relationship to Prolog

ASP is a powerful and intuitive non-monotonic logic programming language for mod
elling, reasoning and verification tasks. One common question asked of researchers
working on non-monotonic logic programming systems such as ASP is that Prolog

has been around for many years and is a mature technology, so why not just use that?

The short answer is that Prolog has a number of limitations both in concept and design
that make it unsuitable for many knowledge representation and real-world reasoning
tasks.

Although Prolog developed out of programming with Horn clauses – a subset of
first order logic – several non-declarative features were added to Prolog to make it
programmer-friendly, such as the cut operator [35]. The cut is a goal added to a pro
gram which cannot be backtracked past, so it prevents extra solutions being generated.

27

It has been described as a controversial control feature because it is not a Horn clause
and was only added for efficiency [124].

The ordering of literals in the body of a rule matters in Prolog as it processes them
from left to right. Similarly, the positioning of rules in the program is significant in
Prolog, as it processes them from top to bottom. This is not the case for ASP, as a
program is a set of AnsProlog rules in which the body is a set of literals. Because of
this top-down query processing of rules and literals in Prolog, a program may get into
an infinite loop for even simple programs without negation as failure.

There are also problems in Prolog dealing with negation as failure: in general, Prolog
has trouble with programs that define recursions through the negation as failure op
erator. AnsProlog does not have these problems, and as its name suggests it uses the
answer set semantics to characterise negation as failure (as described in Section 4.3,
page 26).

Another key difference is that ASP programs have to be explicitly ground to remove
variables before being solved; however, given a query, the Prolog engine attempts
to find a resolution refutation of the negated query i.e. an instantiation for all free
variables is found that makes the union of clauses consisting of the negated query false.
It then follows that the original query, with the found instantiation applied, is a logical
consequence of the program [34]. However, the method of generating models in ASP
is always guaranteed to terminate (though without any constraints on the time taken);
this is not the case for Prolog. Even though syntactically ASP programs look like
Prolog programs (although Prolog programs do not require explicit grounding) they
are treated by rather different computational mechanisms. Indeed, model generation
instead of query evaluation can be seen as a recent trend in the encompassing field
of knowledge representation and reasoning [50], although there have been efforts to
bridge between the two paradigms [53].

4.5 AnsProlog Syntax

In this section, we present the AnsProlog language that underpins the Answer Set
Programming paradigm. For an informal specification of the AnsProlog language, see
Appendix A (page 110).

A number of syntactic variations of AnsProlog exist, the broadest of which is referred
to as AnsProlog*, which denotes there are no restrictions on the rules. Within this
thesis, we limit ourselves to the use of a syntactic and functional subset of AnsProlog*,

28

referred to as AnsProlog¬, ⊥, which allows classical negation and the use of constraints.

4.5.1 Core Syntax

Definition 4.1. The language of an AnsProlog program consists of sets of the follow
ing:

1. variables
2. constants
3. n-ary function symbols
4. n-ary predicates
5. connectives
6. punctuation symbols
7. the special symbol ⊥

Connectives and punctuation symbols are fixed to the sets { not , } and¬ ←

{ () . } respectively.

In general, variables are expressed as arbitrary sequence of letters that start with an
upper-case letter, while constants are expressed as a sequence of characters starting
with a lower-case letter. n-ary predicates are expressed as a sequence of characters (the
predicate name) starting with a lower-case letter followed by a bracketed list of zero
or more arguments. In the case that a predicate has zero arguments, the brackets are
omitted. n-ary function symbols are expressed as a sequence of characters starting with
a lower-case letter followed by a bracketed list of one or more arguments. To make
a clear distinction between the connectives in a first-order theory and the connectives
in the languages of an answer set framework, we use different symbols than normally
used in first-order theories: or instead of ∨ and ‘,’ instead of ∧. The above language
forms the basis for an AnsProlog program in ASP. This language is used to define the
terms, atoms and rules which compose a program.

Terms in ASP are recursively defined as follows [16]:

Definition 4.2. A term is inductively defined as follow:

1. A variable is a term.

2. A constant is a term.

3. If f is an n-ary function symbol and t1, . . . , tn are terms then f(t1, . . . , tn) is a
term.

29

For example, if V is a variable, f is a function symbol with a single argument and c is
a constant, then all of the following are terms:

c, V, f(c), f(V), f(f(c)), f(f(f(c)))

Terms may be applied to the arguments of predicates to form atoms. Atoms are defined
as follows:

Definition 4.3. An atom is of the form p(t1, . . . , tn), where p is a predicate symbol
and each ti is a term.

For example, if p0 is a predicate with zero arguments, p1 is a predicate with one ar
gument and p2 is a predicate with two arguments and c, V and f(c) are terms, the
following are atoms:

p0, p1(V), p1(c), p2(c, V), p2(f(c), V)

A term is said to be ground if no variable occurs in it. An atom is referred to as ground
if all of its arguments are ground. Terms and atoms are referred to as unground if they
are not ground.

Definition 4.4. A literal is either an atom or its classical negation (preceded by the
symbol). The former is referred to as a positive literal, while the latter is referred to ¬
as a negative literal.

A literal is referred to as ground if the atom in it is ground.

An extended literal is either an atom or an atom preceded by the symbol not, denoting
negation as failure. The former is referred to as a positive extended literal, while the
latter is referred as a negative extended literal.

An AnsProlog¬, ⊥ program is made up of a set of rules.

Definition 4.5. A rule is of the form:

L0 ← Lk+1, . . . , Lm, not Lm+1, . . . , not Ln. (4.1)

where Lis are literals or when k = 0, L0 may be the symbol ⊥, and k ≥ 0, m ≥ 0,
and n ≥ m.

30

The parts on the left and on the right of the ‘ ’ are called the head and the body of←
the rule, denoted Head(r) and Body(r) respectively, for a rule r. A rule is said to be
ground if all the literals of the rule are ground.

In addition to adding literals to the answer sets of a program, rules can also be used
to indicate inconsistencies in a given set of literals. We refer to rules of this form as
constraint rules (or simply constraints). A constraint in AnsProlog¬, ⊥ is a rule of the
form:

⊥← Lk+1, . . . , Lm, not Lm+1, . . . , not Ln.

A rule of this form indicates that if the body of the rule is applicable, then the current
set of considered literals is not considered as an answer set of the program. In the
standard syntax of AnsProlog¬, ⊥, we may omit the ⊥ symbol from constraint rules
and assume its presence in any rule with an empty head.

We refer to facts in programs as an abbreviation for rules of the form b ← �, for
a given atom b. Within this thesis, we treat the � as being implicit and assume its
presence in any rule with an empty body.

Terms applied to predicates in rules may contain variables, in order to interpret a
rule containing variables, the rules is expanded through a process called grounding.
Grounding translates a program containing variables into a program containing no
variables.

In order to ground a program, we must first determine the Herbrand Universe of the
program:

Definition 4.6. The Herbrand Universe of a language L, denoted by HUL, is the set
of all ground terms which can be formed with the constants and function symbols in
L.

Definition 4.7. The Herbrand Base of a language L, denoted by HBL, is the set of all
ground atoms that can be formed with predicates from L and terms from HUL.

A program Π is grounded by taking each rule in Π and applying each grounded term
in HU to each variable in each rule of Π. More formally: L

Definition 4.8. Let r be a rule in the language L. The grounding of r in L, denoted
by ground(r, L), is the set of all rules obtained from r by all possible substitutions of
elements of HU for the variables in r.L

For any logic program Π, we define:

31

ground(Π, L) = ground(r, L)

r∈Π

and write ground(Π) for ground(Π, L(Π)).

The grounding process is best illustrated with an example, using the following un
ground program:

Example 4.2.

bird(pigeon).

bird(buzzard).

has feathers(X) bird(X).
←

The Herbrand Universe of the program consists of the terms pigeon and buzzard

and these are used to expand the variable X in the third rule. The Herbrand Base of this
program consists of the atoms bird(pigeon), bird(buzzard),
has feathers(pigeon) and has feathers(buzzard).

The ground version of this program is thus:

bird(pigeon).

bird(buzzard).

has feathers(pigeon) bird(pigeon).
←

has feathers(buzzard) bird(buzzard).←

It should be noted that for an unground program containing function symbols, the
Herbrand Universe and Herbrand Base may be infinite. For a ground program, the
Herbrand Universe and Herbrand Base will both be finite. Current ASP solver tools
only operate on ground programs with finite sets of rules; as a consequence of this, we
limit acceptable unground programs to only those which have a finite ground repres
entation. For a further discussion of the case when the Herbrand Universe is infinite,
see Baral [16].

In order to constrain programs to those with only finite numbers of rules we introduce
two constraints on the structure of rules and programs. The first of these constraints is
the range-restriction property, and is specified as follows:

32

Definition 4.9. An unground rule is range-restricted, if each variable in the rule ap
pears in at least one positive atom (not negated by negation as failure) in the body
of the rule. A program is range-restricted if all of its rules are range-restricted. The
range-restriction property requires that each variable be associated with one or more
predicates in the body of the rule.

The second property applies to the whole program and is called the domain-restriction
property and is specified as follows:

Definition 4.10. A rule is domain-restricted if every variable which appears in the
rule also appears in a positive domain predicate in the body of the rule. A program
is domain-restricted if all rules of the program are domain-restricted. A predicate is a
domain predicate if a ground atom derived from that predicate appears in the head of
at least one rule with an empty body (as a fact) and the predicate does not appear in
the head of any rules with non-empty bodies.

Example 4.3. For example, the program:

p(a).

p(f(X)) p(X)
←

is range-restricted but not domain-restricted, as the predicate p appears in the head of
both a domain-restricted rule and non-domain-restricted rule.

While variables allow a great deal of flexibility and syntactic clarity of programs, it
should be noted that in the worst case the number of rules generated by the grounding
process may be exponentially larger than the original program.

When speaking about the status of rules with respect to a given set of ground atoms
we use the terms applicable and applied:

Definition 4.11. A rule is said to be applicable with respect to a set of atoms S, if all
of the positive literals in the body are in the set: li ∈ S, 1 ≤ i ≤ n, and none of the
negated literals are in the set lj ∈/ S, n + 1 ≤ m.

A rule is applied if it is applicable and the head atom l0 is also in the set.

33

4.5.2 Syntactic Extensions

A number of syntactic extensions to AnsProlog have been proposed and are commonly
used; the most important of these with respect to this thesis is the use of choice rules.

Choice rules are a syntactic extension of AnsProlog¬, ⊥ for selecting applicable atoms
non-deterministically from a set of possible atoms. However, they can be removed
from a program by the addition of new rules. A choice rule of the form:

h1, . . . , hn Lk+1, . . . , Lm, not Lm+1, . . . , not Ln.←

states that if every positive atom in the body of the rule Lk+1, . . . , Lm is applied and
every negated atom is not applicable, then any subset of h1, . . . , hn is applicable.

Example 4.4. Consider the following program containing the choice rule:

a.

b, c a.
←

The valid answer sets of this program are {a}, {a, b}, {a, c} and {a, b, c}.

4.6 Semantics of ASP Programs

Having defined the syntax of AnsProlog¬, ⊥ programs, we now turn to the intuitive
semantics. In this section, we only deal with ground programs (in which variables
have been eliminated), where the Herbrand Base of the program is finite.

Given a rule of the form in Definition 4.1, an intuitive definition of the semantics of
rules of this form can be as follows: if all positive atoms (those without negation as
failure) in the body of the rule: l1, . . . , ln are known to be true and none of the negated
literals in the body l(n+1), . . . , lm are known to be true, then the head of the rule l0

can also be considered to be true. In the case that l0 is false (⊥), then this indicates a
contradiction.

An ASP program consists of a set of statements, called rules. Each rule h B is←

made of two parts, namely the body B, which is a set of extended literals, and a head
literal h.

It should be read as: if all of the elements of B are true, so is the head l; or l is

34

�

supported if all elements of B are considered to be true. We only assume those literals
to be true that are actually supported. This form of reasoning is referred to as the
minimal model semantics.

An interpretation of a program Π is any set of literals of the program’s Herbrand Base:
I ⊂ HBΠ. We can use interpretations to define models of a program, as follows:

Definition 4.12. Let Π be a ground program consisting of rules of the form: ⊥← B ∈

Π (i.e. constraints) and l ← B ∈ Π, where B is the set of (non-negated) literals in the
body of the rule and l is a literal. An interpretation I ⊂ HBΠ of the program Π is a
model of the program Π iff for each rule of the program the following is true:

h B ∈ Π
h ≡⊥: B � I

←
h �≡⊥: B ⊆ I ⇒ l ∈ I

M is a minimal model of Π if, given the set of all models of Π: M1, . . . ,Mn, Bj , 1 ≤

j ≤ n such that Mj is a strict subset of M .

Models of programs represent interpretations of the program which include atoms that
are supported by one or more rules of the program. A minimal model of a program is
a model in which only supported atoms are included.

However, the above definition does not take into account negation as failure; in this
case, rules of the program may contain negated literals which must not be in the inter
pretations of the program in order for the rule to be supported. In order to account for
programs containing negation as failure, we define a reduct or transformation, often
referred to as the Gelfond-Lifschitz reduct [73], as follows:

Definition 4.13. Let Π be a ground program. The Gelfond-Lifschitz reduct of Π with
respect to an interpretation I where I ⊂ HBΠ, is the program ΠI containing rules
l B such that for all rules of the form: ←

l B, not C ∈ Π, C ∩ I = ∅←

The reduced program includes all rules of the original program, omitting any rules
which contain negated literals which are in the interpretation. The answer sets of a
program are defined as follows:

Definition 4.14. A set of ground atoms I is an answer set of Π iff I is the minimal
model of ΠI .

35

The uncertain interpretation of negation as failure gives rise to the possibility of more
than one answer set, each of which is an acceptable solution to the program. It is
this non-determinism in which the strength of ASP lies, where we are able to model
problems that may have more than one solution [57]. We refer to the set of answer sets
for a program Π as AΠ.

Example 4.5. Consider the simple program Π:

a ← .

b a, not c.
←

c a, not b.←

The Herbrand Base, HBΠ, of this program (the set of all atoms used in rules in the
program) is the set of atoms {a, b, c}.

The program has the interpretations (similar to the power set):

{{}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} (4.2)

Given the interpretation J = {a, b} and the Gelfond-Lifschitz reduct ΠJ :

a ← .

b a.←

The interpretation J is a model of Π, as the atoms in J are supported by both rules.
This interpretation is also a minimal model with respect to ΠJ as it includes only atoms
supported by the program.

In contrast, given the interpretation K = {c} and the transformation ΠK :

a ← .

c a.←

The interpretation K is not a model of ΠK as it does not include the atom a which is
supported by ΠK .

Finally, given the interpretation L = {a, b, c} and the Gelfond-Lifschitz reduct ΠL:

a ← .

36

The interpretation L is a model of ΠL as it includes a but is not a minimal model as it
includes the atoms {b, c} which are not supported by ΠL. The same is also true for the
empty set {}.

Therefore, the answer sets of the above program are the interpretations {a, b} and
{a, c}.

4.7 Domain Complexity

ASP is very expressive in a precise mathematical sense; for AnsProlog in its general
form, allowing negation in rule bodies (but no disjunction in the rule heads), decid
ing whether a finite ground logic program has an answer set is NP-complete [130].
Furthermore, allowing disjunction in the rule heads, ASP can represent every problem
in the complexity class Σ
P2 (and hence, deciding whether a disjunctive logic program

has an answer set is Σ
P2 -complete). Thus, ASP is strictly more powerful than propos

itional satisfiability (known as SAT, which is NP-complete, one of the first problems
in computational complexity theory for this to be proven [65]), as it allows for solving
problems which cannot be translated to SAT in polynomial time (unless P = NP) [38].

However, while many of these problems are NP-complete in the worst-case, numerous
instances are tractable in the general case and it is the solving times of real problems
that is of interest. Due to the increasing efficiency of its solver tools, ASP is particu
larly suited to modelling difficult (primarily NP-hard) search problems.

For a detailed discussion of the complexity classes relating to AnsProlog and its asso
ciated subclasses, see Baral [16].

4.8 ASP Tools

A number of algorithms have been proposed for computing the answer sets of a logic
program, leading to the development of numerous solver tools. Nearly all of the avail
able solvers deal with ground programs, in which all variables have been removed, so
the following section presents a short overview of the available grounding tools be
fore we describe the main classes of solvers. For an informal specification of the core
AnsProlog language accepted by the majority of the domain tools, see Appendix A
(page 110).

37

4.8.1 Grounding Tools

As discussed in Section 4.5 (page 28), before computation an ASP program is groun

ded to remove variables, an instantiation process that creates copies of the rules for
each usable value of each variable. The grounding process can be computationally
expensive [27, 115], in some instances even in proportion to the time cost of actually
solving the program. This can be indicative of poorly-defined programs, where un
necessary modelling constructs or complex statements have a significant effect on the
time taken to solve the program. Nevertheless, many modern grounding tools will
attempt to perform a number of simplifications of the program during the grounding
process, such as removing redundant rules [71, 171].

Two of the most common grounding systems are LPARSE [171] (developed alongside
the SMODELS solving system) and GRINGO [67, 68, 71] (part of the CLASP family of
ASP tools), while the DLV system [116] includes a grounding component as part of
the front-end of the main system.

4.8.2 Solving Tools

The development of efficient ASP solver tools has increased rapidly over the past two
years. Advances in the development of SAT-based and hybrid solver tools has pushed
the boundaries for applications and benchmark competitions [49,70]. A detailed com
parison of solver tools is presented in a number of survey papers [76, 129].

The SMODELS System

The SMODELS system [141] was one of the first ASP solving system which included an
efficient solving algorithm [140] and associated tools to assist the practical application
of Answer Set Programming.

The SMODELS system consists of two programs: the SMODELS solver, which generates
answer sets of ground programs; and the grounder LPARSE [164, 171], which accepts
unground AnsProlog programs and generates a program in an efficient internal format
for SMODELS.

The language accepted by LPARSE and the SMODELS system is referred to AnsPro

logsm, as it is an extension to AnsProlog* and includes additional features such as car
dinality rules, weighted atoms and weight constraint rules. For a detailed description
of these features, see Niemela and Simons [142].

38

SMODELS is capable of reasoning efficiently with programs which contain large num
bers of rules and atoms [165] and is based on the DPLL algorithm [44]. This is a
backtracking search algorithm which exhibits tree-like resolution for deciding the sat
isfiability of propositional logic formulae in conjunctive normal form (known as CNF
SAT) [44].

Derivations of the SMODELS system include SMODELS-IE [25], a cache-optimised
version; and SMODELS-CC [178], which applied an early form of clause learning.

SAT-based and Conflict-Driven Clause Learning Systems

ASP solvers, such as SMODELS and DLV, efficiently generate answer sets using care
fully adapted heuristic algorithms designed for that purpose. In recent years, the study
of complex reasoning and problem-solving systems has lead to the definition of a num
ber of efficient algorithms for solving the more general Boolean (propositional) satis
fiability problem (known as SAT) [51,136]. These advances led to the development of
ASSAT [122], CMODELS [120], SMODELS-CC [178], CLASP [69] and SUP [119] for
generating answer sets using SAT solving techniques or using hybrid approaches.

The early SAT-based systems (ASSAT and CMODELS) translate an AnsProlog pro
gram (with some constraints on the program structure) into a propositional satisfiabil
ity problem containing a set of Boolean formulae which describe the constraints on the
atoms in the program. These satisfiability problems are solved directly using a SAT
solver which yields the solutions and which may in turn be translated back into answer
sets of the program. However, more recent systems such as CLASP are based on tech
niques from constraint solving and could be regarded as neither a pure ASP nor a pure
SAT-based solver, as there is no explicit conversion between representations [69].

Modern SAT-based ASP solvers, utilising a number of techniques derived from state
of the art SAT solving systems (such as conflict-driven clause learning [69]), have
been shown to perform competitively when compared to the conventional backtracking
solvers; often outperforming their conventional counterparts [119, 120] by an order of
magnitude in certain cases.

The DLV System

The DLV system [52] originated as a system for reasoning in Datalog, an extension of
Answer Set Programming which allows exclusive disjunction (logical OR) in the head
of the rules. As well as supporting disjunction, DLV also handles a large subset of the

39

AnsProlog language and is capable of solving problems involving large numbers of
rules efficiently [116]. However, it accepts as input a different syntax from the widely-
accepted LPARSE/SMODELS format. Numerous extensions to the DLV system exist,
including an SQL front-end [116], but they are out of scope for this thesis.

Other Systems

A range of other solvers for ASP programs exist, including DERES [30], SURYA [134]
and NOMORE++ [7], which are either adaptations of existing solver frameworks or
hybrid solving systems. There has also been recent development in incremental answer
set solving, with ICLINGO [67], a stateful implementation of the GRINGO grounder
and CLASP solver; along with early versions of solvers than ground on the fly, such as
ASPERIX [114]. Recent work in the optimisation of ASP programs and in particular,
removing redundant rules from programs [94], has also improved the performance of
ASP solvers.

There has also been work in the field of distributed ASP solving, particular with
PLATYPUS [81] (based on the SMODELS system) and CLASPPAR [54], an early dis
tributed version of CLASP. Distributed solving [150] and the use of Beowulf systems
in ASP solving has demonstrated the validity of the approach [24, 149], along with
preliminary work in parallel grounding [27].

4.9 Applications of ASP

ASP has been successfully applied to various application areas outside of the tradi
tional domains of planning and diagnosis [13, 52, 121] (with the most notable imple
mentation of decision support systems for the NASA Space Shuttle [143]); includ
ing software engineering [145], instruction scheduling [108], program analysis [181],
automatic music composition [21, 22], e-tourism [89], evolutionary history of lan
guages [58], biological networks [72], phylogenetics [55], haplotype inference [56],
multi-agent systems [28, 45, 46], security engineering [75] and cryptography [47, 86].

The Working Group on Answer Set Semantics (WASP), a European Commission Fifth
Framework Programme (FP5)-funded project (from 2002-2005), further developed re
search in the Answer Set Programming formalism and related tools [59]. The wide
range of domains to which ASP has been applied demonstrates its versatility and ap
plicability in modelling complex real-world problems.

40

4.10 Summary

In this chapter we presented an overview of the Answer Set Programming (ASP)
paradigm and its underlying formalism AnsProlog, its origins and development within
the wider field of logic programming and non-monotonic reasoning and its relationship
to Prolog. Furthermore, we described its clear syntax and semantics and introduced
the state of the art domain tools for generating solutions (answer sets) of programs. We
also presented a wide range of successful applications of ASP technology in modelling
real-world problems.

In the next chapter we present our application of Answer Set Programming: the TOAST
superoptimising system, which generates provably optimal code sequences for modern
machine architectures.

41

Chapter 5

TOAST: Total Optimisation using
Answer Set Technology

The worthwhile problems are the

ones you can really solve or help

solve, the ones you can really

contribute something to.

Richard Feynman

5.1 Introduction

As was identified in Chapter 2, none of the existing approaches to optimising code
specifically aims for optimality from the outset. Superoptimisation, introduced in
Chapter 3, addresses this problem by providing an approach that can generate optimal
code sequences for a particular goal function on a specific machine architecture. Ex
isting superoptimising implementations, such as the GNU Superoptimizer (GSO) [79]
and the Stanford superoptimiser [14], are able to generate optimal sequences under
certain constraints, but there are a number of caveats with their approaches, especially
regarding verification of the equivalence of code sequences.

In this chapter, we introduce TOAST, the Total Optimisation using Answer Set Techno

logy system, a provably optimal code generation system that applies superoptimising
techniques to generate optimal sequences for acyclic, integer-based code. The TOAST
system utilises Answer Set Programming, introduced in Chapter 4, as an expressive
modelling language and efficient computational framework.

42

We first describe the motivation for the design of the TOAST system, then describe
its main components, illustrated by optimising sequences for the MIPS R2000, a 32
bit RISC architecture. We then discuss key design issues and present a model for
validating the system, along with examples of searching for candidates sequences and
verifying that these sequences are indeed optimal. We demonstrate that the TOAST
approach to generating provably optimal code sequences is achievable and scalable
for real code sequences on 32-bit architectures of up to five instructions long. This
is actually a significant result, due to the average size of basic blocks in code being
on average between 5-6 instructions long [84, 103]. By superoptimising real code
sequences of these lengths, it is possible to extend the system and apply the technique
to programs of arbitrary length.

An initial proof of concept design for the TOAST system was first presented in Brain
et al. [24], with some benchmark results for optimising code sequences presented in
Crick et al. [37].

5.2 Motivation

As discussed in Chapters 1 and 2, new strategies for creating efficient and cost-effective
compiler tools and hence new strategies for optimising code for modern architectures
is required [82]. Being able to generate efficient code for an architecture is of huge
importance; this is the prime motivation for the development of the TOAST system.

Aside from the inclusion of results from GSO into a specific architecture port of
GCC [79], the lack of uptake of the existing implementations has prevented the further
development of superoptimising techniques. Their approaches have not scaled well for
real code sequences, especially with proving the equivalence of two code sequences.
Another of the key issues is to do with guaranteeing the optimality of the sequences
generated. All of the existing implementations perform a representative test or time-
out during equivalence verification. While this is a cautious approach to verification –
and in doing so, makes the problem more tractable, as they invariably discard the more
troublesome sequences to verify – it is possible to construct cases which could pass a
representative test but fail a full equivalence test (this process will be discussed further
in Section 5.6). By timing out in this way, there is a risk of discarding potentially
optimal sequences. In contrast, the TOAST system performs a full verification stage
on all generated sequences.

The expressibility of ASP and its clear applicability to modelling real-world problems,

43

along with the availability of efficient domain tools, are the key reasons for its ap
plication within the TOAST system. Since its inception, it has been regarded as the
computational embodiment of non-monotonic reasoning and a primary candidate for
an effective knowledge representation tool. It is a burgeoning research area [59] and
has been successfully applied to a wide range of domains (as shown in Section 4.9,
page 40). This significant application of ASP technology in disparate domains has
had a positive effect for tool development, especially over the past two years. In the
TOAST system, we utilise off-the-shelf, open source solver tools, with our main cri
terion for use being the correct output in the fastest time.

However, ASP is not the only knowledge representation or declarative logic language
with real-world applications. Other paradigms such as constraint logic programming,
linear (integer) programming or even propositional satisfiability-based representations
could have been utilised for the TOAST system, but the expressiveness, clear model
ling semantics and wide availability of efficient domain tools for ASP push it to the
forefront as an efficient language for modelling real-world problems.

The use of logic and declarative techniques for compiler-related problems has a long
history: for example, using logic programming for compiler development [177] (es
pecially Prolog [32, 118, 179]), along with declarative techniques for analysis and op
timisation [61], proving the correctness of optimisations [109, 139], register alloca
tion [77] and instruction scheduling [128, 182]. In particular, ASP has been applied
to program analysis [181] and more recently, multi-core instruction scheduling [108],
with some success.

5.3 Architecture Overview: MIPS R2000

In this section we give an overview of the MIPS R2000 architecture, one of the test
architectures for the TOAST system, which is used for the benchmarking tests in this
chapter.

The MIPS (originally an acronym for Microprocessor without Interlocked Pipeline

Stages) is a load/store reduced instruction set computer (RISC) architecture. The MIPS
architecture family has had broad application in embedded systems; in the late 1990s
a third of all RISC processors were MIPS-based [148]. The early MIPS architectures
were 32-bit, while later versions were 64-bit; the current revisions are the MIPS32 and
MIPS64 [99].

The first commercial MIPS CPU model, the R2000, was announced in 1985. It added

44

multiple-cycle multiply and divide instructions in a somewhat independent on-chip
unit. The R2000 can be used in either big-endian or little-endian mode. It has thirty-
two 32-bit general purpose registers, but no condition code register (as the designers
considered it a potential bottleneck), a feature it shares with the AMD 29000 and
the DEC Alpha architectures. Also, unlike other registers, the program counter is
not directly accessible [99]. The MIPS design uses triadic addressing, with six bits
of the 32-bit word for the basic opcode; the rest may contain a single 26-bit jump
address or it may have up to four 5-bit fields specifying up to three registers, plus a
shift value combined with another six bits of opcode; another format, specifies two
registers combined with a 16-bit immediate value. This allows the CPU to load up the
instruction and the data it needed in a single cycle [99].

The R2000 also had support for up to four co-processors, one of which is built into the
main CPU and handled exceptions, traps and memory management, while the other
three are left for other uses, such as floating point operations.

The MIPS R2000 was chosen as a test architecture for the TOAST system as it was
possible to concisely model a significant proportion of its instruction set (even though
multiple and divide are modelled as multiple-cycle instructions) and that it is an ex
ample of a generalised 32-bit RISC architecture. Also, the availability of a mature
MIPS simulator (SPIM [148]) that can read and execute assembly language programs,
made it an effective initial validation architecture for the TOAST system.

The architectural description for the MIPS R2000 used in the TOAST system can be
found in Appendix C (page 117).

5.4 System Overview

5.4.1 Introduction

The TOAST system consists of modular interacting components that generate Ans-

Prolog programs and parse answer sets, with a controlling interface that applies these
components to generate a superoptimised version of the original code sequence. In
formation is passed between components either as fragments of ASP programs or in
an architecture-independent, assembly language-like format.

Input to the TOAST system is a sequence of instructions in an internal format, with
the output either a shorter, optimal program, or no shorter optimal sequence exists.
The format of TOAST input programs consists of declarations of inputs, instructions

45

and outputs, as represented by the Extended BNF description given in Listing 5.1; an
example TOAST input program is given in Listing 5.2.

toastprogram = { input } , { instruction }, { output } ;

input = "in: " , { variable , immediate , mixed , flag } ;

instruction = "inst: " , instructionname , { instructionarg } ;

outputs = "out: " , { variable , immediate , mixed , flag } ;

variable = "v" , number ;

immediate = "i" , number ;

mixed = { "v" , binarydigit } ;

flag = "f+" , flagname | "f-" , flagname | "?" , flagname ;

flagname = ? any valid flag name ? ;

instructionname = ? any valid machine instruction ? ;

instructionarg = "i" , number | number ;

number = digit , { digit } ;

digit = binarydigit | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;

binarydigit = "0" | "1" ;

Listing 5.1: Description of TOAST program input format in Extended BNF

In addition to the Extended BNF description, the notation presented in Table 5.1 gives
an overview of the input and output encoding, specifically how to represent values
and also how to set and check the architectural flags. For example, 01vvv001 would
represents an eight bit pattern with three variable bits that would be randomly assigned,
while an architectural flag example would be f+carry, which sets the carry flag to 1
on input.

Notation Description

v Variable, followed by number of bits
i Immediate, followed by value in two’s-complement format
m Mixed, bit pattern in which specified bits are fixed or variable
f+ Flag (set to 1 on input), then flag name
f- Flag (set to 0 on input), then flag name
f? Flag (set on output), then flag name

Table 5.1: TOAST program input format notation

The format of the instruction arguments is as follows: i0 refers to the hardwired zero
(if it exists for that architecture), ix refers to the xth input (indexed from one), while
an integer y refers to the output of the yth instruction in the sequence.

ASP solvers are used as ‘black-box’ tools to generate solutions to the programs pro
duced by the TOAST system. We first generate an AnsProlog encoding of the input
program, its instructions and the number and type of inputs and outputs. This pro
gram is then used as a starting point for searching for candidate sequences of shorter
length, start from length one. The answer sets (i.e. models) produced by the solvers
are the candidate sequences encoded in AnsProlog. This set of candidates is pruned

46

using a number of heuristics and each candidate is tested for equivalence to the ori
ginal sequence; first using a fast probabilistic test and if passed, a full equivalence test
over all inputs. If the sequence is equivalent, no answer sets will be returned from
the solver; essentially the AnsProlog program models the verification as show me the

inputs on which these two programs differ. Hence, no answer sets returned means they
do not differ on any input and are equivalent. The structure and key components of the
TOAST system, presented as a process for an example program, is shown in Figure 5-4
(page 63).

in: v32
in: v32
inst: add i1 i2
inst: sub 1 i1
out: v32

Listing 5.2: Example program in TOAST input format

While previous superoptimising implementations have been written in a machine-
specific assembly language [131] or C [14, 79, 95], the TOAST system has been de
veloped using Perl. This is due to the observation that most of the actions performed
within the system are fundamentally text processing: manipulating programs and in
structions, parsing answer sets and outputting sequences. While there may be perform
ance ramifications in comparison to using assembly language or C, the text processing
capabilities of Perl are of huge benefit. Compared to previous superoptimising im
plementations, we have no requirement or dependencies on efficiently encoded goal
functions (as in GSO), or require the creation of large data structures to map the search
space (as in the Stanford system). In the TOAST system, all of the computation of
solutions is delegated to the ASP solver tools.

5.4.2 Architectural Modelling

The architecture descriptions used in the TOAST system define the mappings from
the architecture-specific assembly language syntax to the TOAST internal instruction
format. AnsProlog is used to model the functionality of the integer processing unit
of the target processors; this is usually a one-to-one mapping. The expressive nature
of ASP enables simple and concise modelling of the properties of each architecture,
such as the bit-level semantics of the instructions, while also allowing the modelling
of complex constraints. The majority of the modelling is at the bit level; for example,
AnsProlog rules that relate input bits of an instruction to the output bits.

47

The TOAST system adheres to the following architecture modelling rules, but they can
be encapsulated by only instructions that change registers and/or condition codes are

modelled. Furthermore:

•	 Floating point instructions are not modelled; this is due to the significant com
plexities of representing floating point numbers and their arithmetic operations
in the numerous floating point systems, along with handling special values (for
example, signed zero, subnormal numbers, infinities and NaNs [2]), conversions
and rounding modes. This is further compounded by the problems of proving
the equivalence of two floating point values.

•	 Any instruction that touches memory, either altering or putting addresses into
registers, is not modelled. This is because the TOAST system currently has no
model of the memory system (apart from the machine registers) because of the
complexities with modelling large amounts of memory.

•	 Higher privilege instructions are not modelled, as these are an unlikely source of
optimal sequences for normal programs: if they are being requested, a hardware
interrupt has occurred and they are not directly executed by the user. Similarly,
it does not model anything that could throw an exception.

•	 Co-processor operations and vector operations are not modelled, as they also
depend on precise modelling of the memory layout. However, if the co-processor
has its own set of registers then it can be modelled as a separate processor and
integrated. Vector operations can be modelled as single operations and then
converted.

•	 A general modelling decision: anything that does not create a value (for ex
ample, nop, jmp, etc) should not alter value for that time step. While this is
common sense, it is explicitly modelled.

The architecture description file also defines which flags are available for that specific
processor (see Appendix C, page 117), via a space-separated list or declared as ‘none’.
All flags are undefined at the start of execution and are governed by simple inertia
rules: they maintain their value unless changed. To use a flag, the flagStatus(C,T,F)

AnsProlog literal must be referenced. To change the value of a flag, set its new value
(i.e. flagStatus(C,T,F) or -flagStatus(C,T,F)) and then set
flagChanged(C,T,F). Both literals must be set or the inertia principle will still

48

hold and create a contradiction if the flag’s status has changed. For an overview of the
AnsProlog literals used within the TOAST system, see Appendix B (page 112).

The description is used to generate a list of which instructions are available for a given
architecture, along with general information, such as the word size and the availability
of a zero register (a special hardware register that ignores anything written to it and will
always return zero when read). The TOAST system currently supports the following
architectures: MIPS R2000, SPARC V7 and SPARC V8 (see Appendix C, page 117),
along with a number of test architectures adapted from the MIPS R2000 instruction
set.

The instruction sequence itself is represented as a series of facts, or in the case of
searching, a set of choice rules in AnsProlog. These literals are then used by the
instruction definitions to control the value literals that give the value of various re
gisters within the processor. If the literal is in the answer set, the given bit is taken
to be a 1, if the classical negated version of the literal is in the answer set then it is
a 0. An example instruction definition for a logical AND (land) is given in List
ing 5.4 (page 50). Note the use of negation as failure to reduce the number of rules
needed and the declaration that AND is symmetric, which is used to reduce the search
space. None of the programs generated within the TOAST system requires disjunc
tion, aggregates or any other non-syntactic extensions to the answer set semantics (as
discussed in Chapter 4, page 24).

haveJumped(C,T) :- jump(C,T,J), colour(C), time(C,T), jumpSize(C,J).
pc(C,PCV+J,T+1) :- pc(C,PCV,T), jump(C,T,J), colour(C), position(C,PCV), time(C,T),

jumpSize(C,J).
pc(C,PCV+1,T+1) :- pc(C,PCV,T), not haveJumped(C,T), colour(C), position(C,PCV),

time(C,T).
pc(C,1,1).

Listing 5.3: AnsProlog encoding of TOAST flow control rules

The instruction library describes properties of the instructions, such as whether they are
unary or binary, symmetric or asymmetric in their arguments, along with an AnsProlog

description of the semantics of the instruction. A more complex example is given
in Listing 5.5 (page 51) of an arithmetic ADD instruction, which demonstrates the
relationship between the first bit and the following bits and how the carry is handled.

Flow control rules define which instruction will be ‘executed’ at a given time step by
controlling the program counter (pc) literal. As AnsProlog programs in the TOAST
system may need to simultaneously model multiple independent code streams (for
example, when trying to verify the equivalence of two sequences of code), all literals
are tagged with an abstract property named colour. The inclusion of the colour(C)

49

value(C,T,B) :- istream(C,P,land,R1,R2,none), pc(C,P,T),
value(C,R1,B), value(C,R2,B), register(R1),
register(R2), colour(C), position(C,P), time(C,T),
bit(B).

-value(C,T,B) :- istream(C,P,land,R1,R2,none), pc(C,P,T),
not value(C,T,B), register(R1), register(R2),
colour(C), position(C,P), time(C,T), bit(B).

symmetricInstruction(land).

Listing 5.4: AnsProlog encoding of the logical AND (land) instruction

literal in each rule allows copies to be created for each code stream during instantiation.
In most cases, when only one code stream is used, only one value of colour is defined
and only one copy of each set of rules is produced; the overhead involved in generating
the sets of rules is negligible. An example encoding of a flow control rule is given
in Listing 5.3, while a description of the important literals relating to the colour

property can be found in Appendix B (page 112).

By using basic instruction descriptions and AnsProlog to model the semantics of these
instructions, it is possible to rapidly model new architectures and their instructions
sets, along with making it simple to tweak and amend the semantics of instructions.
Clearly, an understanding of the target architecture is required, but this means it is
possible to model a new architecture for use within the TOAST system by using the
information available in an architecture reference manual. Porting to a new architec
ture is dependent on how many of the instructions in the new architecture have already
been modelled within the TOAST system (and whether you are required to model any
significant non-standard features or semantics).

5.4.3 Components

In the following section, we introduce the key components of the TOAST system (see
Figure 5-4 for a process diagram of the system, page 63), their functionality and how
they interact. Each of the components are separate programs that are utilised within
the TOAST system to generate optimal sequences.

As described in Section 5.4, the input to the TOAST system is a program in the
TOAST-specific format which encodes the instruction sequence and information about
its inputs and outputs. The output of the TOAST system is either a shorter optimal
sequence, or nothing if the sequence cannot be optimised further.

50

% First bit
-value(C,T,0) :- istream(C,P,add,R1,R2,none), pc(C,P,T), -value(C,R1,0),

-value(C,R2,0), colour(C), position(C,P), time(C,T), register(R1), register(R2).
-value(C,T,0) :- istream(C,P,add,R1,R2,none), pc(C,P,T), value(C,R1,0),

value(C,R2,0), colour(C), position(C,P), time(C,T), register(R1), register(R2).
value(C,T,0) :- istream(C,P,add,R1,R2,none), pc(C,P,T), not -value(C,T,0),

colour(C), position(C,P), time(C,T), register(R1), register(R2).
additionCarry(C,T,1) :- istream(C,P,add,R1,R2,none), pc(C,P,T), value(C,R1,0),

value(C,R2,0), colour(C), position(C,P), time(C,T), register(R1), register(R2).
-additionCarry(C,T,1) :- istream(C,P,add,R1,R2,none), pc(C,P,T), not

additionCarry(C,T,1), colour(C), position(C,P), time(C,T), register(R1),
register(R2).

% Subsequent bits
value(C,T,B) :- istream(C,P,add,R1,R2,none), pc(C,P,T), value(C,R1,B),

value(C,R2,B), additionCarry(C,T,B), colour(C), position(C,P), time(C,T),
bit(B), B != 0, register(R1), register(R2).

value(C,T,B) :- istream(C,P,add,R1,R2,none), pc(C,P,T), -value(C,R1,B),
-value(C,R2,B), additionCarry(C,T,B), colour(C), position(C,P), time(C,T),
bit(B), B != 0, register(R1), register(R2).

value(C,T,B) :- istream(C,P,add,R1,R2,none), pc(C,P,T), -value(C,R1,B),
value(C,R2,B), -additionCarry(C,T,B), colour(C), position(C,P), time(C,T),
bit(B), B != 0, register(R1), register(R2).

value(C,T,B) :- istream(C,P,add,R1,R2,none), pc(C,P,T), value(C,R1,B),
-value(C,R2,B), -additionCarry(C,T,B), colour(C), position(C,P), time(C,T),
bit(B), B != 0, register(R1), register(R2).

-value(C,T,B) :- istream(C,P,add,R1,R2,none), pc(C,P,T), not value(C,T,B),
colour(C), position(C,P), time(C,T), bit(B), B != 0, register(R1), register(R2).

additionCarry(C,T,B+1) :- istream(C,P,add,R1,R2,none), pc(C,P,T), value(C,R1,B),
value(C,R2,B), additionCarry(C,T,B), colour(C), position(C,P), time(C,T),
bit(B), B != 0, register(R1), register(R2).

additionCarry(C,T,B+1) :- istream(C,P,add,R1,R2,none), pc(C,P,T), -value(C,R1,B),
value(C,R2,B), additionCarry(C,T,B), colour(C), position(C,P), time(C,T),
bit(B), B != 0, register(R1), register(R2).

additionCarry(C,T,B+1) :- istream(C,P,add,R1,R2,none), pc(C,P,T), value(C,R1,B),
-value(C,R2,B), additionCarry(C,T,B), colour(C), position(C,P), time(C,T),
bit(B), B != 0, register(R1), register(R2).

additionCarry(C,T,B+1) :- istream(C,P,add,R1,R2,none), pc(C,P,T), value(C,R1,B),
value(C,R2,B), -additionCarry(C,T,B), colour(C), position(C,P), time(C,T),
bit(B), B != 0, register(R1), register(R2).

-additionCarry(C,T,B+1) :- istream(C,P,add,R1,R2,none), pc(C,P,T), not
additionCarry(C,T,B+1), colour(C), position(C,P), time(C,T), bit(B), B != 0,
register(R1), register(R2).

symmetricInstruction(add).

Listing 5.5: AnsProlog encoding of the arithmetic add instruction

51

toast - the control program
input: program
output: program (optimal) or ∅

The toast program is the controlling interface to the TOAST system, enabling option-
setting (such as fine-tuning of the search heuristics and verification options). The main
control flow searches for candidate sequences, prunes the set of candidates and then
verifies which of the candidates are equivalent to the original sequence. An import
ant emphasis is on pruning as many sequences during the search phase as possible, in
order to reduce the number of candidates to verify.

The key observation underlying the design of the TOAST system is that any super
optimised sequence will necessarily be returned by using search on the appropriate
instruction length. However, not everything that search returns is necessarily a cor
rect answer; due to the initial search constraints, it is possible that there are a number
of invalid candidate sequences found. Thus, to remove these invalid candidates, the
front end generates further search constraints from the input instruction sequence. In
struction sequences of length one, up to one less than the length of the input sequence,
are then searched sequentially. If candidates are found, another constraint set is gen
erated and the same length searched again. The two results sets are intersected, as any
correct sequence must appear in both searches. This process is repeated until either the
intersection is empty, in which case the search moves on to the next length, or until the
intersection stabilises. verify is then used to check the candidates for equivalence to
the original input sequence. A representative pre-verification test is performed before
a full verification test, using a selected set of test vectors. The output of toast is an
optimised version of the input program, if one exists.

findPath

input: program
output: paths

findPath generates a list of possible execution paths (if one exists) through the in
put program. As the TOAST system currently only supports straight-line code, without
explicit branches or loops, this will return a comma-delimited list of integers represent
ing the possible execution order of instructions in the input program. Example output
from findPath for the program given in Listing 5.2 would be 1,2, which represents
the first instruction in the program, followed by the second instruction.

52

pickPath

input: path, program
output: AnsProlog vectors

pickPath generates a set of inputs (referred to as input vectors) in AnsProlog for the
input program that will follow the instruction path generated from findPath. These
input vectors are a set of selected bit values for all of the inputs in the original program.
For example, if a program has three 32-bit inputs, then pickPath will generate three
32-bit binary values, picking a 0 or 1 for each bit. This gives an initial set of values for
searching for candidate sequences. At this stage it is also possible to explicitly select
difficult edge cases and pick vectors for these; for example, picking a set of values on
a boundary, such as all zeros or all ones, to prune the search space of clearly redundant
sequences.

execute

input: AnsProlog vectors, program
output: AnsProlog constraints

The execute program emulates running the input instruction sequence using the
generated input vectors from pickPath, producing constraints in AnsProlog that
describe the original instruction sequence’s outputs. These constraints are used to
bound the initial search space.

search

input: search space, AnsProlog vectors, AnsProlog constraints
output: program fragments

By using the input vectors and constraints (essentially start and end values for the
original input program), it searches for all instruction sequences of a given length (the
search space) that produce the correct output for the given input values. A number of
heuristics have been developed to prune the initial search space, as certain sequences
can generate large numbers of candidate sequences on initial searches. Code sequences
that are used in an incorrect fashion (for example, sequences that discard previously
calculated values, or instructions with invalid arguments) are discarded, hence avoiding
a form of runtime error; we can also assert that every instruction must contribute to the
output, otherwise it may be possible to have redundant instructions in the sequence.
We can also do the same with asserting that every input must be used, along with
every instruction’s output. While the application of these heuristics does not affect the

53

outcome of the search, it can provide significant savings in runtime.

searchCut

input: instructions
output: AnsProlog constraints

searchCut generates extra constraints to append to those accepted by search to
further trim the size of the search space. After the first search, it is possible to search
within the original results rather than performing another full search. This is an obvi
ous step, because any optimal sequence would have to be contained within this original
search (because by definition, it would have to match the tuple of every possible in
put/output value).

verify

input: program, program, vectors*
output: Boolean

If candidate sequences are found during the search, then they have to be verified for full
equivalence to the original sequence over all possible input values. In certain cases,
it is possible for a large amount of candidate sequences to be generated that are not
pruned during the search phase, so the following verify processes are performed:

•	 pre-verify, a fast heuristic that uses a directed set of input vectors to perform
a representative verify on the two sequences. As mentioned previously, it is
possible to explicitly select difficult edge cases and pick specific vectors for
these; for example, picking a set of values on a boundary, such as all zeros or
all ones. If pre-verify returns false, then the candidate is discarded (since it is
definitely not an optimal sequence); if true, then a full verify must be performed
to prove full equivalence.

•	 A full verify tests if two sequences are equivalent for all input values. If they
are not equivalent, it is possible to output a set of vectors representing values on
which they differ, in a suitable form for execute and search.

5.5 Experimental Results

Superoptimisation naturally decomposes into two discrete tasks: searching for can
didate sequences and then verification of the equivalence of these candidates to the

54

original sequence. In this section, we present benchmarks for these two main tasks of
the TOAST system for the MIPS R2000, a 32-bit RISC architecture. All tests were
run on quad-core Intel 2.8GHz Xeon E5462 processors with 32GB RAM, running a
variant of Scientific Linux. Programs were grounded using GRINGO and tested with
the following five solvers: CLASP, CMODELS, SMODELS, SMODELS-IE and SUP; all
tools were built in 32-bit mode (this is significant for a number of reasons, relating
to the size of addressable memory, but mainly because a number of ASP tools do not
currently build as 64-bit programs).

5.5.1 Searching

The sequence5 search test, as given in Listing 5.6, attempts to find shorter optimal
sequences for a five instruction program, with two 32-bit inputs. This sequence was
selected as an example of a sequence that cannot be superoptimised (i.e. it is already
optimal), giving an approximate ceiling on the performance of the system. Benchmark
times for the sequence5 test for the five chosen solvers are given in Table 5.2; solver
timeouts occurred after 240 hours.

! input 1 in %i1
! input 2 in %i2
and %l1 %i2 %i2
add %l2 %i1 %l1
add %l3 %i1 %l2
add %l4 %i1 %l3
sub %o1 %i0 %l4
! output in %o1

Listing 5.6: sequence5 search test for MIPS R2000

The timings plotted in Figure 5-1, confirm that search times increase at a near expo
nential rate as the sequence length increases. The TOAST system is able to search over
sequences of five instructions in approximately six hours, but this is dependent on the
solver used (discussed further in Section 5.5.3).

5.5.2 Verifying

The argredundancetest verify test checks to see if a non-trivial redundant argu
ment is optimised away, reducing the three instruction sequence to one instruction. In
these tests, we amended the bit-level modelling of the input programs to demonstrate

55

Search sequence length
Solver 1 2 3 4 5

clasp-1.2.1 0.23 1.83 179.00 5191.48 20268.21
cmodels-3.79 0.36 6.12 1006.00 4244.83 21176.82
smodels-2.33 0.24 6.58 5578.63 t/o t/o
smodels-ie-1.0.0 0.18 4.91 2115.37 t/o t/o
sup-0.4 0.46 2.18 177.24 5516.97 22942.46

Atoms 853 1411 2098 2941 4003
Rules 47925 130956 259223 442589 712166

Table 5.2: Timings (in sec) for sequence5 search test on MIPS R2000

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5

Ti
m

e
(s

ec
)

Sequence length

sequence5 search timings on aquila for MIPS R2000

clasp-1.2.1
cmodels-3.79
smodels-2.33

smodels-ie
sup-0.4

Figure 5-1: Plot of sequence5 search test times (in sec) on MIPS R2000

the scalability of the TOAST system in verifying sequences on 8-bit, 16-bit, 32-bit and
64-bit architectures. Benchmarks for the five solvers is given in Table 5.3.

The timings plotted in Figure 5-2, confirm that verify times also appear to increase at
an exponential rate as word size increases, as expected. The TOAST system is able to
verify most 32-bit programs in less than one second, but again this is dependent on the
type of solver used (again, discussed further in Section 5.5.3).

56

in: v32
in: v32
in: v32
inst : lxor i2 i3
inst : lxor 1 i3
inst : add i1 2
out: v32

Listing 5.7: argredundancetest verify test for MIPS R2000

Program word size
Solver 8-bit 16-bit 32-bit 64-bit

clasp-1.2.1 0.12 0.05 0.15 2.00
cmodels-3.79 0.11 0.06 0.39 0.82
smodels-2.33 0.14 11.21 - -
smodels-ie-1.0.0 0.06 11.38 - -
sup-0.4 0.24 3.16 - -

Atoms 922 2314 7402 26858
Rules 1643 4915 17219 64803

Table 5.3: Timings (in sec) for argredundancetest verify test on MIPS R2000

5.5.3 ASP Tool Benchmarking

In this section we analyse the search and verify results with respect to ASP tool per
formance.

Grounding Tools

The grounding process is an overlooked component of solving, but in certain cases can
represent a large proportion of the overall solving time. Grounding becomes more of
an issue in scenarios when you need to perform a large number of solves; for example,
when a TOAST run generates a large number of candidate sequences that need to be
verified. From the benchmark timings in Table 5.4 (and plotted in Figure 5-3) for
the two most common grounding tools LPARSE and GRINGO in comparison to the
associated solver results in Figure 5.3, it takes at least an equivalent amount of time to
ground as it does to solve a 32-bit program. GRINGO does appear to scale at near linear
time for increased bit size compared to LPARSE, which becomes increasingly more
expensive. Modern grounders perform simple optimisations and remove redundant
parts of a program, but in certain cases a naive fast grounding option would be more
suitable. Grounding has been neglected as a research and development area in favour of

57

 0.01

 0.1

 1

 10

 100

 8 16 32 64

Ti
m

e
(s

ec
)

Word size (bits)

argredundance verify timings on aquila for MIPS R2000

clasp-1.2.1
cmodels-3.79
smodels-2.33

smodels-ie
sup-0.4

Figure 5-2: Plot of argredundancetest verify test times (in sec) for increasing
bit size on MIPS R2000

developing more sophisticated solving algorithms, but there are a number of domains
that require more efficient grounding solutions, including TOAST. This is increasingly
apparent in certain applications of the TOAST system, as presented in Chapter 7.

Program bit size
Grounder 8 16 32 64

gringo-2.0.3 0.06 0.12 0.13 0.13
lparse-1.1.1 0.20 0.38 0.74 1.37

Atoms 1524 2820 5412 10596
Rules 3580 7164 14332 28668

Table 5.4: Timings (in sec) for verifytest1 grounding tests on MIPS R2000

Solver Tools

The solver results presented in Table 5.3 indicate that there is a large gap between the
two main classes of solvers used: the well-established solvers based on the SMODELS

58

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 8 16 32 64

Ti
m

e
(s

ec
)

Word size (bits)

Grounding timings from aquila for verifytest1 on MIPS R2000

gringo-2.0.3
lparse-1.1.1

Figure 5-3: Plot of grounding times (in sec) for increasing bit size on MIPS R2000

algorithm and the more recent SAT-based and clause learning solvers, such as CLASP,
SUP and CMODELS. The performance of the latter class of solvers on TOAST-specific
problems are orders of magnitude faster than the SMODELS-based tools. As can be
seen in Table 5.3 (and also in results presented in Chapters 6 and 7), we are unable to
generate results for verifying 32-bit programs with the SMODELS-based tools, on any
architecture. In fact, the upper bound for this class of solver is greater than 250 hours
of compute time. This has influenced the solver choice for use within the TOAST
system.

5.6 Discussion

As we have presented in this chapter, superoptimisation decomposes into the two main
tasks of searching for candidate sequences and then verifying their equivalence. In
certain cases, it is possible to generate a large number of candidates during the search
phase (which is problematic during the computationally-heavy verification phase),
but none of the implemented heuristics have the potential of discarding any valid se

59

quences.

Alongside the 32-bit architectures that we have modelled (MIPS R2000 and SPARC
V7/V8), pseudo 8-bit and 16-bit architectures (derived from the MIPS R2000) have
been modelled to demonstrate the complexity curve with respect to increasing word
size. This required manipulation of certain instructions to create 8-bit and 16-bit spe
cific versions (notably logical shifts, but generally operations that are concerned about
the actual length of the bit sequences). This has provided an insight to how the TOAST
system scales with increasing architecture word size. TOAST is able to search for and
verify sequences on 32-bit architectures, while searching is more dependent on the
number of instructions in the input sequence. On an n-bit architecture, the raw search
space is 2inputs∗n, so TOAST is currently able to search over sequences of up to five
instructions in an acceptable time. However, as discussed earlier, this is a reasonable
limitation and actually a significant result, with empirical studies [84, 148] showing
that the average size of basic blocks is between 5-6 instructions long. Hence, TOAST
can be applied to optimising real-world code sequences.

The 8-bit and 16-bit test architectures were used to verify and validate the search pro
cess to ensure that actual candidates are not discarded or invalid sequences included.
Using the 8-bit architecture, the TOAST system was validated to ensure it met the
original design specification. By using an exhaustive search without any pruning or
heuristics, we were able to see if all possible instruction sequences were generated.
This was validated against the architecture description. Each search heuristic was then
tested to ensure that sequences were not inappropriately added or removed; again, this
was validated against the architectural model.

The use of the pre-verify heuristic is a key part of the verification model of the TOAST
system. As with the existing superoptimising implementations, especially GSO [79],
a representative verify test enables a fast check of whether sequences are equivalent.
However, we do not overlook a full verification strategy, in contrast to other imple
mentations. If a sequence is discarded by pre-verify, it is definitely not a valid se
quence, but the reverse is not true: if a sequence passes the pre-verify test, there is
no guarantee that this is equivalent. A full verify must be performed to guarantee full
equivalence for all input/output values. Empirical tests [37] from repeated runs of the
TOAST system has shown that while we have never encountered a sequence that has
passed pre-verify but failed a full verify, it would be trivial to construct one. In fact, it
would be feasible to construct a program to get the TOAST system to generate these
programs. For example, since the heuristic only selects values for the middle bits of
a sequence, a pair of instruction sequences that differ on one input and only use the

60

lower 25 bits (assuming a 32-bit word), prefixing both with shift left 2 and shift right
(arithmetic or zero fill) 7 would give a pair that would pass pre-verify with probability
of 1 − 1 It may also be possible to utilise the TOAST system to generate sets of

225 .
these sequences. However, whether these are likely to appear in real code sequences
remains to be seen. Nevertheless, by only performing representative testing (as in
Massalin’s original superoptimiser and GSO) or timing out after a fixed period (like
the Stanford superoptimiser) means there is a chance that you either validate a non-
optimal sequence or potentially discard an optimal sequence. With no guarantee of
equivalence there is always the requirement to hand-check sequences. By design, this
is not possible in the TOAST system.

As stated earlier, the architectural model is complete with respect to the instructions
that we have chosen to represent; in this case no floating point operations, privileged
instructions or anything that allows exceptions. While this is a simplification of the
complete functionality of the architecture, it is a justifiable one due to the complexities
of proving equivalences in floating point operations and the problems of manipulating
privileged and exception-raising code sequences. The caveat of this choice is that
there may exist potential improvements or amendments to the model that could allow
more optimal sequences. This issue is discussed further in the future work section in
Chapter 8.

With the goal-directed superoptimisers like GSO means that while they may be quicker
in finding certain sequences, they are not able to accept any arbitrary code sequence
like the TOAST system. This means that the burden is on the user to efficiently encode
new goal functions, with a requirement to understand the underlying nature of the
problem. This is not the case for TOAST; while there is a measure of translating and
encoding required for the architectural descriptions, a potential user would only need
to know the TOAST program input format and how to run the system.

5.7 Summary

In this chapter we have presented the TOAST: Total Optimisation using Answer Set

Technology superoptimising system, along with its main components, and have shown
the following:

•	 The TOAST system is a practical superoptimising toolchain that guarantees full
equivalence of code sequences.

61

•	 The TOAST system is able to superoptimise 32-bit programs of up to five in
structions long on modern machine architectures.

•	 The application of ASP to the problem domain demonstrates the ease of mod
elling machine architectures and the semantics of its instructions in the TOAST
system.

•	 The relative performance of ASP tools within the TOAST system, with clear
recommendations for the most efficient classes of grounders and solvers.

In Chapter 6 we apply the TOAST system to superoptimising sequences for the SPARC
V8 architecture, while in Chapter 7 we utilise the whole of the TOAST system in
generating equivalence classes of optimal sequences of length one upwards to generate
a library of peephole optimisations for a specific machine architecture.

62

Figure 5-4: TOAST system architecture for an example superoptimisation process
63

Chapter 6

A Case Study: Superoptimising
SPARC V8

It doesn’t matter how beautiful your

theory is, it doesn’t matter how smart

you are. If it doesn’t agree with

experiment, it’s wrong.

Richard Feynman

6.1 Introduction

In this chapter we apply the TOAST system (presented in Chapter 5) to superoptim
ising sequences for the SPARC V8 architecture. We provide benchmarks for a wide
range of tests, demonstrating the interconnection of the system components, while also
providing insight into the potential bottlenecks. We also compare aspects of the system
to other existing superoptimising implementations.

6.2 Architecture Overview: SPARC V7/V8

SPARC (from Scalable Processor Architecture) is a load/store RISC architecture de
veloped by Sun Microsystems in 1986. The SPARC V7 [12] and V8 [166] are mi
croprocessor specifications and not specific implementations. They consist of a linear
32-bit address space with few and simple instruction formats; all instructions are 32
bits wide, and are aligned on 32-bit boundaries in memory. There are only three basic

64

instruction formats, and they feature uniform placement of opcode and register ad
dress fields. Only load and store instructions access memory and I/O. There are few
addressing modes - a memory address is given by either register-register or register-
immediate. The SPARC has triadic register addresses: most instructions operate on
two register operands (or one register and a constant), and place the result in a third
register [170]. The V7 uses 80-bit extended addressing (128-bit aligned) instead of
quad word. The SPARC V8 differs from the V7 by the inclusion of improved mul
tiply/divide instructions and tagged instructions; the tagged add/subtract instructions
assume that the two least-significant bits of the operands are tag bits. A recent update
to the SPARC architecture (V9) extends the addresses to 64-bit, including the addition
of a number of instructions [180].

The SPARC V7/V8 architectures were chosen as a test architecture for the TOAST sys
tem due to the more complex modelling requirements compared to the MIPS R2000
architecture. While the SPARC architecture also represents a clean RISC model, it in
cludes 64-bit extensions and more modern design features, such as tagged instructions.
It was also a class of machine architecture that we have physical access to, allowing
possible real system testing. In this way, it was chosen as a effective second validation
architecture for the TOAST system.

The SPARC V7 and V8 architectures are used in both this chapter and also in Chapter 7;
the architectural description for the both architectures can be found in Appendix C
(page 117).

6.3 Superoptimising SPARC

To demonstrate the utility of the TOAST system we will use the following benchmark
tests:

Search: sequence5 (see page 55) generates programs that search the space of SPARC
V8 instructions for candidate sequences for a program of five instructions. This
sequence was selected as a worst-case, an example of a sequence that is already
optimal, giving an approximate ceiling on the performance of the system.

Verify: consists of two tests: verifytest1 which tests the non-trivial equivalence
of two short code sequences, adding an unsigned number to itself and multiply
ing it by two; and verifytest2, which tests the non-equivalence of two code
sequences, that only differ on one set of inputs and hence will result in the solver

65

returning only one answer set (which is an AnsProlog encoding of the inputs on
which they differ).

TOAST: returning complete runs for the TOAST system, utilising all components (as
presented in Chapter 5). Two tests: argredundance, which tests to see if a
non-trivial redundant argument is optimised away, reducing a three instruction
sequence to one instruction; and signum, which returns the sign of a binary
integer, or zero if the input is zero. This second test is used to give a comparison
to the GSO system [79] as presented in Chapter 3.

6.3.1 Searching

The sequence5 test program, as given in Listing 6.1, is a test sequence that is already
optimal, so it gives an approximate ceiling on the performance of the system in search
ing over the space of SPARC V8 instructions. Timings are given in Table 6.1 and
plotted in Figure 6-1; solver timeouts occurred after 240 hours.

! input 1 in %i1
! input 2 in %i2
andcc %i1 %i2 %l1
addcc %i1 %l1 %l2
addcc %i1 %l2 %l3
addcc %i1 %l3 %l4
subcc %i0 %l4 %o1
! output in %o1

Listing 6.1: sequence5 search test for SPARC V8

Search sequence length
Solver 1 2 3 4 5

clasp-1.2.1 0.28 2.01 189.00 5211.84 20625.16
cmodels-3.79 0.37 6.89 1019.00 4314.38 21699.27
smodels-2.33 0.28 7.57 6100.36 t/o t/o
smodels-ie-1.0.0 0.21 6.91 2279.31 t/o t/o
sup-0.4 0.44 3.15 177.24 5596.71 23012.61

Table 6.1: Timings (in sec) for sequence5 search tests on SPARC V8

6.3.2 Verifying

The verifytest1 program tests the (non-trivial) equivalence of two code sequences,
as presented in Listing 6.2. The verifytest2 program tests the non-equivalence

66

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5

Ti
m

e
(s

ec
)

Sequence length

sequence5 search timings on aquila for SPARC V8

clasp-1.2.1
cmodels-3.79
smodels-2.33

smodels-ie
sup-0.4

Figure 6-1: Plot of sequence5 search test times (in sec) for increasing sequence
length on SPARC V8

of two code sequences (as given in Listing 6.3), that only differ on one set of inputs.
Timings for both tests for the five solvers are given in Table 6.2; again, solver timeouts
occurred after 240 hours.

in: v32
in: i2
inst: multu i1 i2
out: v32

in: v32
in: i2
inst: add i1 i1
out: v32

Listing 6.2: verifytest1 test programs for SPARC V8

67

in: v32
in: i1
in: i31
inst: srs32 i1 i3
inst: lorcc 1 1
inst: cbne 2
inst: add 1 i2
out: v32

in: v32
in: i1
in: i31
inst: addcc i1 i1
inst: csubcc i1 1
inst: cadd 2 i1
out: v32

Listing 6.3: verifytest2 test programs for SPARC V8

Verify tests
Solver verifytest1 verifytest2

clasp-1.2.1 15.20 8.17
cmodels-3.79 22.19 10.22
smodels-2.33 t/o t/o
smodels-ie-1.0.0 t/o t/o
sup-0.4 t/o 8.77

Table 6.2: Timings (in sec) for 32-bit verify tests on SPARC V8

6.3.3 TOAST System Benchmarking

For the TOAST system tests, we performed a full run through the TOAST process,
utilising each component and validating the input and output we obtain. This would
be performed automatically during a real system run, but has been decomposed to
demonstrate the modular components of the system and how they interact.

in: v32
in: v32
in: v32
inst : xor i2 i3
inst : xor 1 i3
inst : add i1 2
out: v32

Listing 6.4: argredundancetest verify test for SPARC V8

Example 6.1. Using the argredundance test program as shown in Listing 6.4, we
will demonstrate the control flow of the TOAST system:

68

Find all paths through the input program: this results in a direct instruction path
of 1, 2, 3, which means instruction one, two and three are executed sequentially.
This is more relevant when there are multiple paths through a program to ensure
that we test all possible paths.

Generate vectors and constraints for search space 1, run 1: we pick a path through
the program using a set of selected vectors, to give each input a starting value.
The instruction sequence is then executed using these chosen vectors to generate
constraints, essentially giving us input and output values encoded in AnsProlog

to perform the initial search.

Initial search over space 1: initial search over sequences of length one using the vec
tors and constraints. This generates the first results set of potential candidates.
In this example we generate 25 candidates in 10 sec.

Generate vectors and constraints for search space 1, run 2: we pick a new set of
vectors (input values) which enables us to generate a new set of constraints (out
put values). We then perform a new directed search over space 1.

Cut and search over space 1: we generate further search constraints (as shown in
Listing 6.7) to trim the search space using information from the initial search
and then re-search. We again generate 25 candidates in 11 sec. The criteria
for searching means we always search at least twice to enable us to generate
cut constraints; if the set of candidates varies (either increases or decreases) we
continue searching, if it is empty we move onto the next space, if it stabilises we
stop searching. In this example, we have generated 25 candidates on two distinct
searches, so the set of candidates is stable and we move onto verification.

25 candidate(s) to verify: we perform the pre-verify heuristic on the 25 candidates
(given in Listing 6.6). This is the representative test using a chosen set of input
vectors to remove trivially incorrect sequences that have not been pruned during
the search. This heuristic takes less than one second and discards 24 of the 25
sequences, with only add i1 i2 (from line 22 in Listing 6.6) passing the test.

Full verify for candidate: add i1 i2: the full verify test checks to see if two sequences
are equivalent over all input values, demonstrating full equivalence. In this case,
the candidate passes a full verify in 1 sec and we have therefore found an optimal
sequence of length one.

Summary: this full run of the TOAST system took 41 secs to complete, superoptim
ising the original length three sequence to a sequence of length one.

69

1 in: v32
2 in: i1
3 inst: subcc i1 i0
4 inst: cbg 4
5 inst: cbl 5
6 inst: lor i0 i0
7 inst: cba 4
8 inst: lor i0 i2
9 inst: cba 2

10 inst: sub i0 i2
11 out: v32

Listing 6.5: signum test program for SPARC V8

1 land i2 i2
2 sdiv i2 i0
3 lor i0 i3
4 add i3 i3
5 add i1 i1
6 add i2 i3
7 add i0 i1
8 lor i3 i3
9 add i1 i3

10 add i0 i0
11 lor i1 i2
12 lor i2 i2
13 sdiv i2 i3
14 lor i0 i1
15 umult i2 i2
16 lor i0 i0
17 lor i1 i1
18 smult i2 i2
19 add i0 i2
20 lor i1 i3
21 lor i2 i3
22 add i1 i2
23 add i0 i3
24 sdiv i2 i1
25 lor i0 i2

Listing 6.6: Superoptimised candidates generated from argredundance test on
SPARC V8

A similar run to above was performed for the signum function as first introduced in
Chapter 3 (page 16) and given in Listing 6.5. This is one of the sequences found by
both Massalin [131] and GSO [80]. As expected, no candidates were found at sequence
length one and two, whereas over 120 sequences were found on the initial search
at sequence length three. This candidate set was pruned on the second search over
length three and 13 sequences were passed to verify. All of these sequences passed the
pre-verify stage and a full verify, confirming the sequences found by GSO. The total

70

1 :- not validSequence.

2 validSequence :- istream(blue,1,umult,i2,i2,none), requireValidSequence.

3 validSequence :- istream(blue,1,smult,i2,i2,none), requireValidSequence.

4 validSequence :- istream(blue,1,land,i2,i2,none), requireValidSequence.

5 validSequence :- istream(blue,1,add,i0,i0,none), requireValidSequence.

6 validSequence :- istream(blue,1,add,i0,i1,none), requireValidSequence.

7 validSequence :- istream(blue,1,add,i0,i2,none), requireValidSequence.

8 validSequence :- istream(blue,1,add,i0,i3,none), requireValidSequence.

9 validSequence :- istream(blue,1,add,i1,i1,none), requireValidSequence.

10 validSequence :- istream(blue,1,add,i1,i2,none), requireValidSequence.
11 validSequence :- istream(blue,1,add,i1,i3,none), requireValidSequence.
12 validSequence :- istream(blue,1,add,i2,i3,none), requireValidSequence.
13 validSequence :- istream(blue,1,add,i3,i3,none), requireValidSequence.
14 validSequence :- istream(blue,1,lor,i0,i0,none), requireValidSequence.
15 validSequence :- istream(blue,1,lor,i0,i1,none), requireValidSequence.
16 validSequence :- istream(blue,1,lor,i0,i2,none), requireValidSequence.
17 validSequence :- istream(blue,1,lor,i0,i3,none), requireValidSequence.
18 validSequence :- istream(blue,1,lor,i1,i1,none), requireValidSequence.
19 validSequence :- istream(blue,1,lor,i1,i2,none), requireValidSequence.
20 validSequence :- istream(blue,1,lor,i1,i3,none), requireValidSequence.
21 validSequence :- istream(blue,1,lor,i2,i2,none), requireValidSequence.
22 validSequence :- istream(blue,1,lor,i2,i3,none), requireValidSequence.
23 validSequence :- istream(blue,1,lor,i3,i3,none), requireValidSequence.
24 validSequence :- istream(blue,1,sdiv,i2,i1,none), requireValidSequence.
25 validSequence :- istream(blue,1,sdiv,i2,i0,none), requireValidSequence.
26 validSequence :- istream(blue,1,sdiv,i2,i3,none), requireValidSequence.
27 requireValidSequence.

Listing 6.7: Constraints generated by searchCut by superoptimising
argredundance verify test on SPARC V8

runtime for this test was 144 seconds, in comparison to a GSO runtime of under 10
seconds. Although the results for the TOAST system are not strictly competitive with
respect to time, it is important to note that the results are validated as correct by both
superoptimising implementations. This will be discussed in more detail in Section 6.4.

6.4 Discussion

As presented in the previous section, we have further reinforced the applicability of
the TOAST system in superoptimising sequences for 32-bit machine architectures.
A high-level comparison between the results for searching and verifying sequences
for the MIPS R2000 and SPARC V8 architecture indicates that the complexity of the
modelling instruction set architecture has a small effect on the benchmark results. Even
though the number of instructions provided by an architecture is a crude metric of
complexity, the SPARC V8 architecture provides more than twice as many instruction
as the MIPS R2000 architecture. However, many of these are undefined within the
TOAST model due to the lack of floating point operations on the MIPS R2000, but
the SPARC V8 is a more modern RISC architecture with more complex instructions,
such as tagged arithmetic. There also exists significant complexity issues with the

71

SPARC instruction pipeline and how this complicates generating and optimising code
for that machine architecture, especially with respect to instruction scheduling and
data dependencies [166]. The values for searching up to length five are approximately
the same, with the discrepancy attributed to the wider range of instructions available
on the SPARC V8. The verify tests are different for the two architectures, but general
comparisons for solving 32-bit programs indicates that again this is achievable for the
TOAST system. The two types of verify test demonstrates that not only can TOAST
verify non-trivial programs, but it can also quickly verify when sequences are not
equivalent, and on which inputs they differ. Ideally, the search heuristics and the pre-
verify step would prune all non-equivalent sequences, but it is feasible that a sequence
could reach a full verify and fail. This is an important validation of the interaction and
functionality of the various components of the TOAST system, along with highlighting
the importance of the full verify stage.

The results presented in this chapter indicate that while TOAST can confirm and valid
ate results of existing superoptimising implementations, it is currently not as compet
itive from a runtime perspective in certain areas, especially against the goal function
approach of GSO. However, a direct comparison is not necessarily a fair one: goal-
directed functions (especially written in C or assembly language) will generate certain
candidate sequences very quickly due to precise and efficient encoding of that specific
problem description. TOAST is able to accept any arbitrary instruction sequence as
input, whether that describes the specific goal used in the signum test, or a slight
variation. GSO, for example, would not be able to handle this variation, as it would
require defining a new specific goal function and how this maps to each machine ar
chitecture. For TOAST, this change is trivial; this flexibility is an important difference
between the systems and may offset certain performance considerations. The TOAST
system generated more sequences during the initial search phase for the signum test,
which indicates that improvements could be made in the search heuristics. However,
the verification step was a full equivalence test for all input values and performed for
all of the equivalent sequences.

The results presented in this chapter indicate it would be possible to harvest instruction
sequences from a suitable SPARC V7/V8 binary program source and attempt to op
timise sequences of up to length five. This idea will be discussed further in Chapter 8.

72

6.5 Summary

In this chapter we have used the TOAST system to superoptimise sequences for the
SPARC V8 architecture. We have shown that:

•	 The TOAST system is able to superoptimise real code sequences for a complex
32-bit machine architecture.

•	 In comparison to existing superoptimising implementations, the TOAST system
produces results that are guaranteed optimal: no further manual checking step is
required.

•	 The flexibility of the TOAST system for accepting arbitrary sequences as input is
more applicable to potential future application areas than restricted goal-directed
superoptimisers.

In the following chapter, we present one of these possible application areas for the
TOAST system: generating all optimal sequences of length one, which are then used
to generate all optimal sequences of length two and so on, to construct a library of
equivalence classes of instruction sequences that can be used in a peephole optimiser.
This library of optimal sequences also has potential application into the optimisation
phases of a standard compiler toolchain.

73

Chapter 7

buildMultiple: A Peephole
Superoptimiser

The lurking suspicion that something

could be simplified is the world’s

richest source of rewarding

challenges.

Edsger W. Dijkstra

7.1 Introduction

As first introduced in Chapter 2, peephole optimisation is a technique for locally im
proving code sequences by substituting shorter or faster sequences in a small win
dow, known as the “peephole” [40, 133]. It is characteristic of peephole optimisation
that each improvement may spawn opportunities for additional improvements, such
as redundant instruction elimination or algebraic simplifications [2, 41]. Most modern
compiler toolchains utilise forms of peephole optimisation, whether used during the
construction of the intermediate representations [172], or as a post-code generation
optimisation phase [41].

In this chapter, we present an application of the TOAST system: a peephole super
optimiser based upon a generated library of all optimal sequences for a specific ma
chine architecture. We present the rationale for this approach to generating equivalence
classes of optimal sequences, describe how we utilise the TOAST system and give ex
perimental results for the SPARC V7 architecture.

74

7.2 Motivation

Peephole optimisers have found widespread use in most modern compiler toolchains,
with the technique first identified by McKeeman in the 1960s [133]. There has been
a rich history of developing and applying peepholing techniques [40, 41, 172], for ex
ample using architectural descriptions [102], combining with register allocation [43]
and even using superoptimising techniques [14]. There have also been declarative ap
proaches to generating rules for peephole optimisation using a form of string pattern
matching [167].

The buildMultiple tool utilises the components of the TOAST system to build and re
fine a set of constraints which augment the search component. Its design is based on the
observation that an optimal sequence of instructions will not contain any sub-optimal
instruction sequence. As was demonstrated in the previous chapters, the TOAST sys
tem can easily perform directed searches for sequences that meet specified criteria;
these sequences are then verified for equivalence. The flexibility of ASP allows the
addition of constraints to enable the generation of large search programs that generate
all optimal sequences of a given length for a specific number of inputs.

By generating this library of optimal sequences for a given instruction length and num
ber of inputs, it is possible to apply this information to optimising any code sequence
for the chosen architecture. While this process may take a significant amount of time
to generate these sequences (potentially of the order of months of compute time), this
would only ever need to be performed once per architecture model. In this way, the
high up-front computational cost is mitigated by its long-term use.

7.3 System Components

The search component of TOAST is used to generate the set of all possible instructions
sequences for the tuple of instruction length and number of inputs. This search set is
then superoptimised using the TOAST system; if they are found to be sub-optimal
or equivalent to an existing optimal sequence then they are abstracted away to form
additional constraints for the run. If they are found to be optimal they are marked as
such and output. If anything shorter in instruction length than the current sequence
is found, it is clearly non-optimal; if it is found to only optimise to itself, it is again
marked as an optimal sequence; if it fuzzy matches to itself (in which orderings of
inputs are taken into consideration) then these multiple orderings are equivalent and
they need to be saved. If it matches another candidate then the two are marked as

75

equivalent and the other sequence is removed. If it fuzzy matches another target then
all of the re-orderings of that are equivalent to the same re-orderings of the target - thus
the other sequence is removed. A summary of the actions for handling sequences in
buildMultiple are presented in Table 7.1.

Result Action

Shorter than target Mark target as non-optimal
Equal to target Ignore
Fuzzy match to target Remove reorderings and keep
Equal to other target Remove other
Fuzzy match to other target Remove other
Other Mark as non-optimal

Table 7.1: buildMultiple action overview

Due to the exponential nature of the buildMultiple process, the use of search heur
istics is vital to prune the large search spaces as much as possible. A large number
of candidates (hundreds for length one) will be generated during the search, which
will then need to be verified to identify equivalences and which sequences can be dis
carded. Although this procedure is time consuming and computationally expensive,
it produces very strong sets of constraints (in AnsProlog) and only ever needs to be
run once for a given architecture. Even if this takes a number of months to complete,
the resulting equivalence classes generated would provide an ample source of optimal
code sequences for use within a peephole optimiser. It also highlights a key advantage
of using AnsProlog; the flexibility to easily add extra constraints without altering the
search algorithm. With a procedural system (like all previous superoptimising imple
mentations) buildMultiple would simply not be feasible.

7.4 A buildMultiple Library for SPARC V7

In this section, we present the results for using buildMultiple to generate equivalence
classes of optimal sequences for the SPARC V7 architecture. We show timings and
sequence statistics for instruction sequence lengths one to four, with number of inputs
from one to six (dependent on instruction length).

The SPARC V7 architecture has 194 instructions defined in the architecture descrip
tion [12]: 23 instructions declared for search (which means that the internal single
instruction form should be included in both the search and the execute space), 17 in
structions declared for the execute space only and six declared as combo instructions

76

(which means there must exist a single instruction definition for search or exec else
where). The represents the raw space of instruction combinations, which are pruned
and optimised to make searching and verifying sequences feasible.

Due to the large number of results generated for sequences of instruction length two
and higher, we have not been able to present the results in the body of this thesis;
however, these are available from the author on request. An overview of the buildMul

tiple run results is given in Table 7.2, with timings plotted in Figure 7-1. A plot of
the relationship between the number of optimal and non-optimal sequences generated
in each run is given in Figure 7-2. buildMultiple sequence information for the one
instruction-one input run is given in Table 7.3; for the one instruction-two input run in
Table 7.4.

Instructions Inputs Non- Optimal Run Time
Optimal (secs)

1 1 0 4 23
1 2 0 3 31
1 3 0 0 <1
1 4 0 0 <1
2 1 83 34 234
2 2 98 190 906
2 3 32 74 498
2 4 0 0 2
2 5 0 0 2
3 1 135 12 812
3 2 201 52 3276
3 3 88 220 7762
3 4 41 98 5919
3 5 0 0 7
3 6 0 0 8
4 1 203 3 32805
4 2 348 23 99124
4 3 525 102 203564
4 4 297 326 356374
4 5 122 187 181378
4 6 46 83 69202

Table 7.2: buildMultiple sequence statistics for lengths 1–4 on SPARC V7

77

 1

 10

 100

 1000

 10000

 100000

 1e+06

1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4 2-5 3-1 3-2 3-3 3-4 3-5 3-6 4-1 4-2 4-3 4-4 4-5 4-6

Ti
m

e
(s

ec
)

no. of instructions/no. of inputs

buildMultiple run timings for SPARC V7

SPARC V7

Figure 7-1: Plot of buildMultiple run timings (in sec) for SPARC V7

7.5 Discussion

There are some interesting results presented from applying buildMultiple to the SPARC
V7 architecture. While it is a computationally expensive task, it is a worthwhile pro
cess to generate all optimal sequences of a given length and number of inputs. As
expected, the timings shown in Figure 7-1 indicate the exponential nature of the prob
lem, although it is somewhat mitigated by the method in which we generate the se
quences. By using the constraints created by generating length one sequences, we can
use these to prune the search space for generating all sequences of length two and so
on. A problem with this approach is the sequential nature the task; parallelisation is
possible, but this means that the significant benefit of using the constraints generated
by the previous instruction length to prune the search space is lost.

The plot in Figure 7-2 that shows the number of optimal versus non-optimal sequences
generated on each run is fairly intuitive and as expected. For example, for the results
produced from the one instruction-one input run, the number of optimal sequences
generated is four; this does not indicate four sequences, but four distinct equivalence

78

 0

 100

 200

 300

 400

 500

 600

1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4 2-5 3-1 3-2 3-3 3-4 3-5 3-6 4-1 4-2 4-3 4-4 4-5 4-6

Nu
m

be
r o

f s
eq

eu
en

ce
s

instructions-inputs

buildMultiple run for SPARC V7

non-optimal
optimal

Figure 7-2: Plot of optimal/non-optimal sequences generated by buildMultiple run for
SPARC V7

classes of unique optimal sequences.

Even though a significant number of sequences are marked equivalent and kept, or
are equivalent and removed, the key relationship is between the number of sequences
marked optimal and non-optimal. As can be seen in Figure 7-2, both the number of
optimal and non-optimal sequences increase exponentially, but the number of optimal
sequences increases more slowly. This is what we would expect of a well-designed in
struction set architecture: if a large number of optimal sequences were found as the in
struction lengths increase, this would imply something about the available instructions
of the architecture, if they easily combine to form optimal sequences. If the converse
were true, if a large number of non-optimal sequences were found as the instruction
length increased, this may imply something negative about the design of the instruc
tion set, with poorly selected instructions. This is a interesting general point from the
results generated by buildMultiple, whether it is possible to infer information about
the design of the instruction set architecture and the measure of orthogonality of the
instructions. The data for the SPARC V7 architecture implies that there exists redund
ancy in the instruction set. This may allow testing of instruction sets from a specific

79

Candidate	 Equivalent

inst: adcc i1 i1	 inst: add i1 i1
inst: addcc i1 i1
inst: taddcc i1 i1

inst: lnot i1 inst: lnot i1

inst: srs32 i1 i1 inst: srs32 i1 i1

inst: lor i1 i1	 inst: lorcc i1 i1
inst: lor i1 i1
inst: land i1 i1
inst: landcc i1 i1

inst: subcc i1 i1	 inst: lxor i1 i1
inst: subcc i1 i1
inst: sub i1 i1
inst: lxorcc i1 i1
inst: tsubcc i1 i1

inst: slz32 i1 i1 inst: slz32 i1 i1

inst: srz32 i1 i1 inst: srz32 i1 i1

Summary

addcc i1 i1 equivalent-keep
lnot i1 optimal
srs32 i1 i1 optimal
lor i1 i1 equivalent-keep
lorcc i1 i1 equivalent-remove
subcc i1 i1 equivalent-keep
land i1 i1 equivalent-remove
taddcc i1 i1 equivalent-remove
sub i1 i1 equivalent-remove
slz32 i1 i1 optimal
srz32 i1 i1 optimal
add i1 i1 equivalent-remove
lxor i1 i1 equivalent-remove
landcc i1 i1 equivalent-remove
lxorcc i1 i1 equivalent-remove
tsubcc i1 i1 equivalent-remove

Table 7.3: buildMultiple generated equivalent sequences for one instruction-one input
on SPARC V7

theoretical perspective, assuming that the single instructions are a baseline and look at
how combinations of instructions interact and what functionality they provide. This
level of meta-analysis is problematic, as it may be possible to infer too much from the

80

Candidate	 Equivalent

inst: lxorcc i1 i2 inst: lxor i1 i2
inst: lxorcc i1 i2

inst: srs32 i1 i2 inst: srs32 i1 i2

inst: addcc i1 i2	 inst: addcc i1 i2
inst: add i1 i2
inst: taddcc i1 i2

inst: landcc i1 i2 inst: landcc i1 i2
inst: land i1 i2

inst: tsubcc i1 i2	 inst: subcc i1 i2
inst: sub i1 i2
inst: tsubcc i1 i2

inst: slz32 i1 i2 inst: slz32 i1 i2

inst: srz32 i1 i2 inst: srz32 i1 i2

inst: lorcc i1 i2 inst: lor i1 i2
inst: lorcc i1 i2

Summary

lxorcc i1 i2 equivalent-keep
srs32 i1 i2 optimal
addcc i1 i2 equivalent-keep
landcc i1 i2 equivalent-keep
taddcc i1 i2 equivalent-remove
tsubcc i1 i2 equivalent-keep
lxor i1 i2 equivalent-remove
land i1 i2 equivalent-remove
slz32 i1 i2 optimal
add i1 i2 equivalent-remove
subcc i1 i2 equivalent-remove
srz32 i1 i2 optimal
lorcc i1 i2 equivalent-keep
lor i1 i2 equivalent-remove
sub i1 i2 equivalent-remove

Table 7.4: buildMultiple generated equivalent sequences for one instruction-two inputs
on SPARC V7

results, more so since it would be prudent to obtain further data points to see how the
timings scale for increasing instruction length and number of inputs. Furthermore, the
measure of optimality of an instruction set is certainly a metric, but there is a balance
between providing an optimised instruction set that has esoteric and complex instruc

81

tion semantics, if the users or developers are unable to understand or use it efficiently:
there is a balance between optimality, maintainability and usability [147].

A phenomenon that is apparent from Figure 7-2 is that the number of sequences in
creases steadily, but decreases when the number of inputs hits a limit, and then drops
to zero. This can be explained by analysing the maximum number of inputs it is feas
ible to use in a sequence of length n: this is 2n, as it is only possible to utilise at
most two inputs per instruction, due to the triadic addressing in the test architectures.
Therefore, the decline to zero is explained by reaching this limit; for example, for two
instructions-four inputs; for three instructions you would expect this to occur at six
inputs, but in this case occurs at five. Reasons for this disparity may be explained
by a proportion of the generated combinations consisting of instructions that only re
quire one input. The converse case of fixing the number of inputs and constraining
the number of instructions is not true: the instruction length can increase arbitrarily
as you could be performing some mathematical operation that utilises say two inputs
and performs some sort of unrolled iteration or summation with a large number of
instructions.

Another scenario is that as the instruction length increases, buildMultiple may generate
no optimal sequences for a certain number of inputs, but then by introducing another
input generates a whole set of optimal sequences. The relationship between number of
instructions and inputs is complex and has an strong effect on the number of sequences
generated and the time taken to find them. Further research and testing is required to
infer more about this relationship.

The question of how do we verify that the generated sequences are valid and correct, is
demonstrated by referencing back to the architectural model and then hand-checking
a subset of sequences to ensure they are correct. However, the design of the system
is such that the constraints we include decide which sequences are generated. One
issue is the ramifications of problems in an earlier run; if a mistake is made for a
length one sequence that is marked as optimal and it is non-optimal, then this would
have an effect on the constraints for generating length two sequences and so on. This
scenario is mitigated by verification of the search and the heuristics used within the
TOAST system. However, as with the TOAST system, the optimality of the sequences
generated is with respect to the architectural model.

However, it is also possible that the numbers generated from a buildMultiple run do
not allow us to draw any significant conclusions, but just confirms intuition about
what would be expected for a well-designed microprocessor architecture. The results
may provide some insight into the upper bounds of searching and verifying with the

82

TOAST system, but the emphasis is on the methodology and whether it is scalable.
Results for sequences of length five would provide an interesting data point, as this
would provide insight into how the timings scale. With sequences of length four taking
approximately four to five days, a sensible estimation on the time taken to generate
length five sequences would be of the order of four to five months, extrapolating from
the existing data.

As mentioned previously, the intended application of these generated equivalence classes
is as a library of optimal sequences for use as a peephole optimiser (as introduced in
Chapter 2 (page 11). It could be applied to optimising object code or utilised in the
code optimisation phase of a compiler toolchain (similar to how GSO contributed to
GCC [79]). The canonicalisation of sequences is important to ensure they are abstrac
ted and can be applied generically, along with efficient encoding, storage and retrieval
of the sequences.

The main peepholing implementations [40, 42, 43, 133, 167] rely on significant code
analysis and pattern matching, generating sequences from machine descriptions. With
buildMultiple, we work from the machine description and the available instructions to
generate all optimal sequences of length one upwards, for a given number of inputs,
which are then used to generate sequences of length two, and so on. This approach
is different and initially computationally more expensive than approaches for existing
peephole optimisers, as we generate equivalence classes of optimal sequences rather
than directly looking for basic pre-encoded program transformations.

The Stanford superoptimiser [14] performs automatic generation of peephole optim
isations using a brute force superoptimising approach, with some successful results
presented for the Intel x86 architecture. Their approach relied on harvesting sequences
from a large repository of pre-existing Intel x86 binary programs, to automatically
generate optimisations. A similar approach has also been applied to binary transla
tion [15].

7.6 Summary

In this chapter, we have presented a significant application of the TOAST system as a
peephole superoptimiser, based on the creation of a library of equivalence classes of
optimal sequences. We have demonstrated the technique for using the TOAST system
and the rationale for generating all optimal sequences of a certain length and number
of inputs and then identifying equivalences between these sequences. We showed the

83

viability of the buildMultiple approach by generating all optimal sequence of instruc
tion length one to four with varying number of inputs on the SPARC V7 architecture,
with a discussion of what the buildMultiple results implies about the design of the in
struction set architecture, how this technique can scale for longer sequences and how
it can be applied in the future. A further discussion of this future work and potential
applications for buildMultiple is presented in Chapter 8.

84

Chapter 8

Concluding Remarks

We can only see a short distance

ahead, but we can see plenty there

that needs to be done.

Alan Turing

Optimisation in modern compilers is an accepted misnomer for performance improve

ment some of the time. With the emergence of resource-critical environments, such
as the embedded domain, new optimisation strategies are required. New metrics of
optimality, such as low memory usage and low power consumption will be of huge
importance. However, due to the potentially conflicting nature of these metrics, we
may soon encounter constrained optimisation problems, for example, attempting to
optimise for both program size and low power consumption. This is an established
problem for modern compiler toolchains, such as GCC, and needs to be considered
when optimising for multiple metrics in the TOAST system.

Superoptimisation is one possible approach to the code optimisation problem. Due to
the exhaustive nature of the approach, superoptimisation has previously not scaled for
optimising significant real-world code sequences. Nevertheless, a true code optimiser
is not possible at present (if even theoretically possible due to the lack of program
and data analysis); for example, would this true optimiser recognise naive code for a
bubble sort and replace this with a quicksort algorithm? This would require significant
static and runtime analysis, along with an estimation of the likely input data. In the
practical case, this may not be the panacea of optimisation. Nevertheless, the TOAST
approach to superoptimisation is an important step to providing a structured framework
for generating truly optimal code sequences for a given microprocessor architecture.

85

The TOAST approach is a significant research step in developing superoptimisation as
a practical technique and applying it to mainstream code optimisation. The TOAST
system is able to superoptimise 32-bit code sequences of up to five instructions long,
which could be further extended with new heuristics and improved searching and veri
fication techniques. The peephole superoptimiser approach is a valid application for
the TOAST system, with the generation of all optimal sequences of a certain length
and number of inputs providing an significant resource for optimising machine code.
The large up-front computation cost is mitigated by the need to only ever run once per
machine architecture.

Issues with verification of the architectural model to the functionality of the physical
device indicates that we are only ever able to optimise to the constrained model we
have implemented, which may not fully encapsulate the functionality of the physical
processor. The architectural model has been abstracted and TOAST has generated op
timal code to the constraints of the model, but there are almost certainly improvements
to be made to each model. Fortunately, the use of AnsProlog makes this improvement
process simple, as is it possible to make amendments to any architecture or instruction
description and re-run a test. The availability of efficient off-the-shelf solver tools,
means that while we are reliant on external development resources, we can contrib
ute to these communities and projects by pushing the state of the art and providing
complex benchmark cases.

8.1 Major Contributions

The major contributions of this thesis are as follows:

1. Development of a practical and adaptable superoptimising code generation sys
tem based on ASP technology, presenting a structured approach to optimisation,
with proof of optimality for acyclic code sequences. This functionality has been
benchmarked and compared against existing superoptimising implementations.

2. A demonstration that superoptimisation of code is achievable in the general case
and can be used to generate provably optimal code sequences for 32-bit architec
tures (and that extending the functionality for 64-bit architectures is also achiev
able).

3. Observations on the performances of a range of ASP solver tools, notably the
performance of the more recent SAT-based and clause learning solvers compared

86

to the traditional backtracking solvers, on a complex real-world problem.

4. Demonstrating that ASP is an appropriate modelling paradigm for reasoning
about large-scale, real-world problems. The application of ASP to the code op
timisation problem has also contributed to the ASP community and will further
stimulate future tool development.

8.2 Future Work

While some significant work has been achieved in this dissertation, there are numerous
extensions and directions for future work:

New metrics of optimality: adapting the TOAST system to optimise for new metrics,
such as low power consumption, runtime speed and memory usage. This would
present a range of modelling problems, especially with regards to analysing and
encapsulating the power consumption of specific instructions, but this is a logical
extension of the instruction length optimality upon which the system is currently
based. This may create linear optimisation and constrained optimisation prob
lems whilst attempting to optimise for these new metrics or more than one metric
in the optimisation model. It should be noted that optimising 64-bit architectures
does not pose any new problems (and is in fact tractable with existing tools), it
just requires more computational resources.

Optimising longer code sequences: if we are currently unable to optimise sequences
of length eight, it should be feasible to break an eight instruction sequence into
two tractable sub-sequences and optimise them. If we decompose the length
eight sequence into two sub-sequences of length five and length three, or two
sequences of length four, is it may be possible to combine the results of the
superoptimised sub-sequences to get an optimised version of the length eight
sequence. However, this will not necessarily be the optimal solution, only po
tentially an improved sequence. The benefit of breaking longer sequences into
sub-sequences is that is then becomes possible to parallelise the system. There
already exist aspects of the TOAST system which are inherently parallel, and
recent work [24,27,54,149] on parallel ASP solving tools would further support
a distributed approach. However, there still remains questions about the nature
of local and global optimisations [2], especially whether it is more effective to
optimise at a global level rather than focus on local peephole-like optimisations.

87

Nevertheless, this could be a promising approach to targeting longer sequences
than the TOAST is currently able to optimise.

Targeting the embedded domain: this would be a significant domain to validate the
TOAST system, by focusing on superoptimising a suitable embedded platform,
such as the ARM microprocessor family 1, and developing research and devel
opment collaboration with industry. There would be significant new modelling
challenges, for example, implementing predicated instructions (which enable
conditional execution of instructions) and other DSP-like features of the ARM
instruction set architecture [161], but this represents a key future development
and target domain for the TOAST system.

Optimising for multi-core and multi-threaded architectures: at present the TOAST
system has only modelled single-core RISC architectures. A next step would be
to extend the system to optimise code for multi-core or multi-threaded archi
tectures. Again, this presents significant modelling challenges, but it should
be possible to extend the TOAST model to encapsulate this functionality and
its semantics. With the development of microprocessor architectures favouring
multi-core and multi-threaded designs [82], this is an important area to focus
upon.

Integration into compiler toolchains: for example, the GNU Compiler Collection
(GCC); this would be a significant metric of success for the TOAST system,
if it was utilised for part of a standard compiler toolchain, or its output was
integrated into its optimisation phases. This has already been achieved by an ex
isting superoptimising implementation (GSO), so this indicates that there is still
a contribution to be made. The use of the buildMultiple approach to generating
equivalence classes of optimal sequences for a peephole library for a specific
architecture could provide a rich source of information and may also allow us to
analyse the design of instruction sets. This may also provide way of bounding
what is possible via conventional optimisation, perhaps empirically evaluating to
what level code is improved by modern optimising compilers and the theoretical
limit to code optimisation.

General modelling: there exists a plethora of modelling problems that pose inter
esting questions, including extending the TOAST system to model conditional

1ARM announced in February 2009 that it had shipped ten billion ARM-powered processors to the
mobile device market – the equivalent of 2.5 ARM processors for every mobile cellular subscriber in
the world [10].

88

branches, unrolling loops, optimising in immediate values, perhaps even devel
oping a strategy for modelling floating point operations. To enable future applic
ation of the TOAST system to optimising code for real-world platforms, some
of these will have to be addressed.

89

Bibliography

[1] The Aggregate Magic Algorithms.	 http://aggregate.org/MAGIC/.
[accessed 2009-08-01].

[2] Alfred Aho, Monica Lam, Ravi Sethi, and Jeffrey Ullman.	 Compilers: Prin

ciples, Techniques and Tools. Addison Wesley, 2nd edition, 2006.

[3] Randy Allen and Ken Kennedy.	 Optimizing Compilers for Modern Architec

tures: A Dependence-Based Approach. Morgan Kaufmann, 2002.

[4] AMD, Inc. AMD Athlon Processor x86 Code Optimization Guide. AMD, Inc.,
2002. Version 22007 Revision K.

[5] AMD, Inc.	 Software Optimization Guide for AMD64 Processors. AMD, Inc.,
2005. Version 25112 Revision 3.06.

[6] Sean	 Eron Anderson. Bit Twiddling Hacks. http://graphics.

stanford.edu/˜seander/bithacks.html. [accessed 2009-08-01].

[7] Christian Anger, Martin Gebser, Thomas Linke, Andr Neumann, and Torsten
Schaub. The NOMORE++ Approach to Answer Set Solving. In Proceedings

of the 12th International Conference on Logic for Programming, Artificial In

telligence, and Reasoning (LPAR 2005), volume 3835 of LNCS, pages 95–109.
Springer, 2005.

[8] Andrew W. Appel. Modern Compiler Implementation in C. Cambridge Univer
sity Press, 2004.

[9] Krzysztof R. Apt and Roland Bol. Logic Programming and Negation: A Survey.
Journal of Logic Programming, 19:9–71, 1994.

[10] ARM Holdings.	 ARM Announces 10 Billionth Mobile Processor. http:

//www.arm.com/about/newsroom/24403.php, February 2009. [ac
cessed 2009-08-01].

90

http://aggregate.org/MAGIC/
http://graphics.stanford.edu/~seander/bithacks.html
http://graphics.stanford.edu/~seander/bithacks.html
http://www.arm.com/about/newsroom/24403.php
http://www.arm.com/about/newsroom/24403.php

[11] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter F.
Sweeney. A Survey of Adaptive Optimization in Virtual Machines. Proceed

ings of the IEEE, 92(2):449–466, 2005. Special issue on Program Generation,
Optimization, and Adaptation.

[12] Atmel	 Corporation. SPARC V7 Instruction Set, 2001. Revision
4168CAERO08/01.

[13] Marcello Balduccini and Michael Gelfond.	 Diagnostic Reasoning with A-

Prolog. Theory and Practice of Logic Programming, 3(4):425–461, 2003.

[14] Sorav Bansal and Alex Aiken.	 Automatic Generation of Peephole Superop
timizers. In Proceedings of the 12th International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS XII),
pages 394–403. ACM, 2006.

[15] Sorav Bansal and Alex Aiken.	 Binary Translation Using Peephole Superop
timizers. In Proceedings of the 8th USENIX Symposium on Operating Systems

Design and Implementation (OSDI’08), 2008.

[16] Chitta Baral.	 Knowledge Representation, Reasoning and Declarative Problem

Solving. Cambridge University Press, 2003.

[17] Chitta Baral and Michael Gelfond. Logic Programming and Knowledge Rep
resentation. Journal of Logic Programming, 19-20:73–148, 1994.

[18] Michael Beeler, William Gosper, and Richard Schroeppel.	 HAKMEM. A.I.
Laboratory Memo 239, Massachusetts Institute of Technology, 1972.

[19] Jon Bentley. Programming Pearls. ACM Press, 2nd edition, 1999.

[20] David Bernstein, Michael Rodeh, and Izidor Gertner.	 On the Complexity of
Scheduling Problems for Parallel/Pipelined Machines. IEEE Transactions on

Computers, 38(9):1308–1313, 1989.

[21] Georg Boenn, Martin Brain, Marina De Vos, and John ffitch. Automatic Com
position of Melodic and Harmonic Music by Answer Set Programming. In Pro

ceedings of the 24th International Conference on Logic Programming (ICLP

2008), volume 5366 of LNCS, pages 160–174. Springer, 2008.

91

[22] Georg Boenn, Martin Brain, Marina De Vos, and John ffitch. ANTON: Com
posing Logic and Logic Composing. In Proceedings of 10th International Con

ference on Logic Programming and Nonmonotonic Reasoning (LPNMR’09),
volume 5753 of LNCS, pages 542–547. Springer, 2009.

[23] Martin Brain, Tom Crick, Marina De Vos, and John Fitch. An Application
of Answer Set Programming: Superoptimisation - A Preliminary Report. In
Proceedings of the 11th International Workshop on Non-Monotonic Reasoning

(NMR’06), pages 258–266, 2006.

[24] Martin Brain, Tom Crick, Marina De Vos, and John Fitch. TOAST: Applying
Answer Set Programming to Superoptimisation. In Proceedings of the 22nd

International Conference on Logic Programming (ICLP 2006), volume 4079 of
LNCS, pages 270–284. Springer, 2006.

[25] Martin Brain and Marina De Vos. The Significance of Memory Costs in Answer
Set Solver Implementation. Journal of Logic and Computation, 19(4):615–641,
2009.

[26] Joe Bungo. The Use of Compiler Optimizations for Embedded Systems Soft
ware. Crossroads, 15(1):8–15, 2008.

[27] F. Calimeri, S. Perria, and F. Ricca.	 Experimenting with Parallelism for the
Instantiation of ASP Programs. Journal of Algorithms, 63(1-3):34–54, 2008.

[28] Tran Cao Son, Enrico Pontelli, and Chiaki Sakama.	 Logic Programming for
Multi-Agent Planning with Negotiation. In Proceedings of the 25th Interna

tional Conference on Logic Programming (ICLP 2009), volume 5649 of LNCS,
pages 99–114. Springer, 2009.

[29] John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael F.	 P.
O’Boyle, and Olivier Temam. Rapidly Selecting Good Compiler Optimizations
using Performance Counters. In Proceedings of the International Symposium on

Code Generation and Optimization (CGO’07), pages 185–197. IEE Computer
Society, 2007.

[30] Pawel Cholewinski, Victor W. Marek, and Mirosław Truszczy´ Default nski.
Reasoning System DERES. In Proceedings of the 5th International Confer

ence on Principles of Knowledge Representation and Reasoning (KR’96), pages
518–528, 1996.

92

[31] K. L. Clark.	 Negation as Failure. In Logic and Data Bases, pages 293–322,
1977.

[32] Jacques Cohen and Timothy J. Hickey.	 Parsing and Compiling using Prolog.
ACM Transactions on Programming Languages and Systems, 9(2):125–163,
1987.

[33] A. Colmerauer, H. Kanoui, R. Pasero, and P. Roussel.	 Un Systeme de Com
munication Homme-Machine en Francais. Technical report, Université de Aix-
Marseille, France, 1973.

[34] Alain Colmerauer.	 Prolog in 10 Figures. Communications of the ACM,
28(12):1296–1310, 1985.

[35] Alain Colmerauer and Philippe Roussel. The Birth of Prolog. In Proceedings

of the 2nd ACM SIGPLAN Conference on History of Programming Languages

(HOPL-II), pages 37–52. ACM, 1993.

[36] Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven Reeves, Devika
Subramanian, Linda Torczon, and Todd Waterman. ACME: Adaptive Compila
tion Made Efficient. In Proceedings of the ACM SIGPLAN Conference on Lan

guages, Compilers and Tools for Embedded Systems (LCTES’05), pages 69–77.
ACM, 2005.

[37] Tom Crick, Marina De Vos, Martin Brain, and John Fitch.	 Generating Op
timal Code using Answer Set Programming. In Proceedings of 10th Inter

national Conference on Logic Programming and Nonmonotonic Reasoning

(LPNMR’09), volume 5753 of LNCS, pages 554–559. Springer, 2009.

[38] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov.	 Com
plexity and Expressive Power of Logic Programming. ACM Computing Surveys,
33(3):374–425, 2001.

[39] Shuhaizar Daud, R. Badlishah Ahmad, and Nukala S. Murthy.	 The Effects of
Compiler Optimisations on Embedded System Power Consumption. Interna

tional Journal of Information and Communication Technology, 2(1-2):73–82,
2009.

[40] Jack W. Davidson and Christopher W. Fraser.	 The Design and Application of
a Retargetable Peephole Optimizer. ACM Transactions on Programming Lan

guages and Systems, 2(2):191–202, 1980.

93

[41] Jack W. Davidson and Christopher W. Fraser.	 Eliminating Redundant Object
Code. In Proceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Prin

ciples of Programming Languages (POPL’82), pages 128–132. ACM, 1982.

[42] Jack W. Davidson and Christopher W. Fraser. Automatic Generation of Peeph
ole Optimizations. In Proceedings of the ACM SIGPLAN Symposium on Com

piler Construction, pages 111–116. ACM, 1984.

[43] Jack W. Davidson and Christopher W. Fraser. Register Allocation and Exhaust
ive Peephole Optimization. Software: Practice and Experience, 14(9):857–865,
1984.

[44] Martin Davis, George Logemann, and Donald Loveland. A Machine Program
for Theorem-Proving. Communications of the ACM, 5(7):394–397, 1962.

[45] Marina De Vos, Tom Crick, Julian Padget, Martin Brain, Owen Cliffe, and
Jonathan Needham. LAIMA: A Multi-agent Platform Using Ordered Choice
Logic Programming. In Proceedings of the 3rd International Workshop on De

clarative Agent Languages and Technologies (DALT 2006), volume 3904 of
LNCS, pages 72–88. Springer, 2006.

[46] Marina De Vos and Dirk Vermeir.	 Extending Answer Sets for Logic Program
ming Agents. Annals of Mathematics and Artificial Intelligence, 42(1-3):103–
139, 2004.

[47] James P. Delgrande, Torsten Grote, and Aaron Hunter.	 A General Approach
to the Verification of Cryptographic Protocols Using Answer Set Programming.
In Proceedings of 10th International Conference on Logic Programming and

Nonmonotonic Reasoning (LPNMR’09), volume 5753 of LNCS, pages 355–367.
Springer, 2009.

[48] Marc Denecker.	 Whats in a Model? Epistemological Analysis of Logic Pro
gramming. In Proceedings of the 9th International Conference on the Principles

of Knowledge Representation and Reasoning (KR2004), pages 106–113. AAAI
Press, 2004.

[49] Marc Denecker, Joost Vennekens, Stephen Bond, Martin Gebser, and Mirosław
Truszczyński. The Second Answer Set Programming Competition. In Proceed

ings of 10th International Conference on Logic Programming and Nonmono

tonic Reasoning (LPNMR’09), volume 5753 of LNCS, pages 637–654. Springer,
2009.

94

[50] J´	 a. Handbook of Automated Reasurgen Dix, Ulrich Furbach, and Ilkka Niemel¨
oning, chapter Nonmonotonic Reasoning: Towards Efficient Calculi and Imple
mentations, pages 1241–1354. Elsevier, 2001.

[51] Niklas E´	 orensson. An Extensible SAT-Solver. In Proceedings en and Niklas S¨
of 7th International Conference on Theory and Applications of Satisfiability

Testing (SAT 2004), volume 2919 of LNCS, pages 333–336. Springer, 2004.

[52] Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer.	 The Dia
gnosis Frontend of the DLV System. AI Communications, 12(1-2):99–111,
1999.

[53] Omar Elkhatib, Enrico Pontelli, and Tran Cao Son. ASP-PROLOG: A System
for Reasoning about Answer Set Programs in Prolog. In Proceedings of the

6th International Symposium on Practical Aspects of Declarative Languages

(PADL 2004), volume 3057 of LNCS, pages 148–162. Springer, 2004.

[54] Enrico Ellguth, Martin Gebser, Markus Gusowski, Benjamin Kaufmann, Ro
land Kaminski, Stefan Liske, Torsten Schaub, Lars Schneidenbach, and Bettina
Schnor. A Simple Distributed Conflict-Driven Answer Set Solver. In Proceed

ings of 10th International Conference on Logic Programming and Nonmono

tonic Reasoning (LPNMR’09), volume 5753 of LNCS, pages 490–495. Springer,
2009.

[55] Esra Erdem.	 PHYLO-ASP: Phylogenetic Systematics with Answer Set Pro
gramming. In Proceedings of 10th International Conference on Logic Program

ming and Nonmonotonic Reasoning (LPNMR’09), volume 5753 of LNCS, pages
567–572. Springer, 2009.

[56] Esra Erdem, Ozan Erdem, and Ferhan T¨ HAPLO-ASP: Haplotype Inure.
ference Using Answer Set Programming. In Proceedings of 10th Inter

national Conference on Logic Programming and Nonmonotonic Reasoning

(LPNMR’09), volume 5753 of LNCS, pages 573–578. Springer, 2009.

[57] Esra Erdem and Vladimir Lifschitz. Tight Logic Programs. Theory and Practice

of Logic Programming, 3(4-5):499–518, 2003.

[58] Esra Erdem, Vladimir Lifschitz, Luay Nakhleh, and Donald Ringe.	 Recon
structing the Evolutionary History of Indo-European Languages Using Answer

95

Set Programming. In Proceedings of the 5th International Symposium on Prac

tical Aspects of Declarative Languages (PADL 2003), volume 2562 of LNCS,
pages 160–176. Springer, 2003.

[59] European Commission Fifth Framework Programme (FP5).	 WASP: Working

Group on Answer Set Semantics (IST-FET-2001-37004). http://tinyurl.

com/ist-wasp, 2005. [accessed 2009-08-01].

[60] François Fages. Consistency of Clark’s Completion and Existence of Stable
Models. Journal of Methods of Logic in Computer Science, 1:51–60, 1994.

[61] Henry Falconer, Paul H.J. Kelly, David M. Ingram, Michael R. Mellor, Tony
Field, and Olav Beckmann. A Declarative Framework for Analysis and Optim
ization. In Proceedings of the 16th International Conference on Compiler Con

struction (CC 2007), volume 4420 of LNCS, pages 218–232. Springer, 2007.

[62] Free Software Foundation.	 GCC, the GNU Compiler Collection. http://

gcc.gnu.org. [accessed 2009-08-01].

[63] Grigori Fursin, Cupertino Miranda, Olivier Temam, Mircea Namolaru, Elad
Yom-Tov, Ayal Zaks, Bilha Mendelson, Phil Barnard, Elton Ashton, Eric Cour
tois, Francois Bodin, Edwin Bonilla, John Thomson, Hugh Leather, Chris Wil
liams, and Michael O’Boyle. MILEPOST GCC: Machine Learning Based Re
search Compiler. In Proceedings of the GCC Developers’ Summit, pages 7–19,
2008.

[64] Grigori Fursin and Olivier Temam.	 Collective Optimization. In Proceedings

of the International Conference on High Performance Embedded Architectures

and Compilers (HiPEAC 2009), volume 5409 of LNCS, pages 34–49. Springer,
2009.

[65] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman, 1979.

[66] GCC Developer Community.	 GNU Compiler Collection Internals. Free Soft
ware Foundation, 2009.

[67] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Tor
sten Schaub, and Sven Thiele. A Users Guide to GRINGO, CLASP, CLINGO, and

ICLINGO. University of Potsdam, 2008.

96

http://tinyurl.com/ist-wasp
http://tinyurl.com/ist-wasp
http://gcc.gnu.org
http://gcc.gnu.org

[68] Martin Gebser, Roland Kaminski, Max Ostrowski, Torsten Schaub, and Sven
Thiele. On the Input Language of ASP Grounder GRINGO. In Proceedings of

10th International Conference on Logic Programming and Nonmonotonic Reas

oning (LPNMR’09), volume 5753 of LNCS, pages 502–508. Springer, 2009.

[69] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub.
CLASP: A Conflict-Driven Answer Set Solver. In Proceedings of the 9th In

ternational Conference on Logic Programming and Nonmonotonic Reasoning

(LPNMR’07), volume 4483 of LNCS, pages 260–265. Springer, 2007.

[70] Martin Gebser, Lengning Liu, Gayathri Namasivayam, André Neumann, Tor
sten Schaub, and Mirosław Truszczyński. The First Answer Set Programming
System Competition. In Proceedings of the 9th International Conference on

Logic Programming and Nonmonotonic Reasoning (LPNMR’07), volume 4483
of LNCS, pages 3–17. Springer, 2007.

[71] Martin Gebser, Torsten Schaub, and Sven Thiele. GRINGO: A New Grounder
for Answer Set Programming. In Proceedings of the 9th International Con

ference on Logic Programming and Nonmonotonic Reasoning (LPNMR’07),
volume 4483 of LNCS, pages 266–271. Springer, 2007.

[72] Martin Gebser, Torsten Schaub, Sven Thiele, Bjrn Usadel, and Philippe Veber.
Detecting Inconsistencies in Large Biological Networks with Answer Set Pro
gramming. In Proceedings of the 24th International Conference on Logic Pro

gramming (ICLP 2008), volume 5366 of LNCS, pages 130–144. Springer, 2008.

[73] Michael Gelfond and Vladimir Lifschitz. The Stable Model Semantics for Logic
Programming. In Proceedings of the 5th International Conference on Logic

Programming (ICLP’88), pages 1070–1080. MIT Press, 1988.

[74] Michael Gelfond and Vladimir Lifschitz. Classical Negation in Logic Programs
and Disjunctive Databases. New Generation Computing, 9:365–385, 1991.

[75] Paolo Giorgini, Fabio Massacci, John Mylopoulos, and Nicola Zannone. Re
quirements Engineering for Trust Management: Model, Methodology and Reas
oning. International Journal of Information Security, 5(4):257–274, 2006.

[76] Enrico Giunchiglia, Nicola Leone, and Marco Maratea. On the Relation Among
Answer Set Solvers. Annals of Mathematics and Artificial Intelligence, 53(1
4):169–204, 2008.

97

[77] David W. Goodwin and Kent D. Wilken.	 Optimal and Near-Optimal Global
Register Allocations using 0-1 Integer Programming. Software: Practice and

Experience, 26(8):929–965, 1996.

[78] Torbjorn¨ Granlund. GNU Multiple Precision Arithmetic Library (GMP).
http://gmplib.org/. [accessed 2009-08-01].

[79] Torbjörn Granlund and Richard Kenner. Eliminating Branches using a Superop
timizer and the GNU C Compiler. In Proceedings of the ACM SIGPLAN 1992

Conference on Programming Language Design and Implementation (PLDI’92),
pages 341–352. ACM, 1992.

[80] Torbjörn Granlund and Richard Kenner. GSO: the GNU Superoptim
izer. http://directory.fsf.org/project/superopt/, 1995. [ac
cessed 2009-08-01].

[81] Jean Gressmann, Tomi Janhunen, Robert E. Mercer, Torsten Schaub, Sven
Thiele, and Richard Tichy. PLATYPUS: A Platform for Distributed Answer
Set Solving. In Proceedings of the 8th International Conference on Logic Pro

gramming and Nonmonotonic Reasoning (LPNMR’05), volume 3662 of LNCS,
pages 227–239. Springer, 2005.

[82] Mary Hall, David Padua, and Keshav Pingali. Compiler Research: the Next 50
Years. Communications of the ACM, 52(2):60–67, 2009.

[83] Mary W. Hall, Jennifer M. Anderson, Saman P. Amarasinghe, Brian R. Murphy,
Shih-Wei Liao, Edouard Bugnion, and Monica S. Lam. Maximizing Multipro
cessor Performance with the SUIF Compiler. Computer, 29(12):84–89, 1996.

[84] John L. Hennessy and David A. Patterson.	 Computer Architecture: A Quantit

ative Approach. Morgan Kaufmann, 4th edition, 2007.

[85] Carl Hewitt. PLANNER: A Language for Manipulating Models and Proving
Theorems in a Robot. A.I. Laboratory Memo AIM-168, Massachusetts Institute
of Technology, 1970.

[86] Maarit Hietalahti, Fabio Massacci, and Ilkka Niemelä. DES: A Challenge Prob
lem for Nonmonotonic Reasoning Systems. In Proceedings of the 8th Interna

tional Workshop on Non-Monotonic Reasoning (NMR 2000), 2000.

98

http://gmplib.org/
http://directory.fsf.org/project/superopt/

[87] Kenneth Hoste and Lieven Eeckhout.	 COLE: Compiler Optimization Level
Exploration. In Proceedings of the 6th Annual IEEE/ACM International Sym

posium on Code Generation and Optimization (CGO’08), pages 165–174.
ACM, 2008.

[88] IBM Corporation. The Power PC Compiler Writer’s Guide. Warthman Associ
ates, 1996.

[89] Salvatore Maria Ielpa, Salvatore Iiritano, Nicola Leone, and Francesco Ricca.
An ASP-Based System for e-Tourism. In Proceedings of 10th Interna

tional Conference on Logic Programming and Nonmonotonic Reasoning

(LPNMR’09), volume 5753 of LNCS, pages 368–381. Springer, 2009.

[90] Intel Corporation.	 Intel Compiler Suite. http://www.intel.com/

software/products/compilers. [accessed 2009-08-01].

[91] Intel Corporation.	 Intel Architecture Optimization Reference Manual. Intel
Corporation, 1999. 245127-001.

[92] Intel Corporation.	 Intel 64 and IA-32 Architectures Optimization Reference

Manual. Intel Corporation, 2009. 248966-018.

[93] Intel Corporation.	 Intel C++ Compiler 11.1 User and Reference Guides. Intel
Corporation, 2009. 304968-023US.

[94] Tomi Janhunen. Removing Redundancy from Answer Set Programs. In Pro

ceedings of the 24th International Conference on Logic Programming (ICLP

2008), volume 5366 of LNCS, pages 729–733. Springer, 2008.

[95] Rajeev Joshi, Greg Nelson, and Keith Randall. Denali: A Goal-Directed Super-
optimizer. In Proceedings of the ACM SIGPLAN 2002 Conference on Program

ming Language Design and Implementation (PLDI’02), pages 304–314. ACM,
2002.

[96] Rajeev Joshi, Greg Nelson, and Yunhong Zhou. Denali: A Practical Algorithm
for Generating Optimal Code. ACM Transactions on Programming Languages

and Systems, 28(6):967–989, 2006.

[97] Samuel Kamin and Eric Golin. Report of a Workshop on Future Directions in
Programming Languages and Compilers. ACM SIGPLAN Notices, 30(7):9–28,
1995.

99

http://www.intel.com/software/products/compilers
http://www.intel.com/software/products/compilers

[98] Aditya Kanade, Amitabha Sanyal, and Uday P. Khedker.	 Validation of GCC
Optimizers Through Trace Generation. Software: Practice and Experience,
39(6):611–639, 2009.

[99] Gerry Kane. MIPS RISC Architecture. Prentice Hall, 1988.

[100] Christoph Keßler and Andrzej Bednarski. A Dynamic Programming Approach
to Optimal Integrated Code Generation. In Proceedings of the ACM SIG

PLAN Workshop on Languages, Compilers and Tools for Embedded Systems

(LCTES’01), pages 165–174. ACM, 2001.

[101] Peter B. Kessler. Discovering Machine-Specific Code Improvements. In
Proceedings of the SIGPLAN Symposium on Compiler Construction (SIG

PLAN’86), pages 249–254. ACM, 1986.

[102] Robert R. Kessler.	 Peep – An Architectural Description Driven Peephole Op
timizer. In Proceedings of the SIGPLAN Symposium on Compiler Construction

(SIGPLAN’84), pages 106–110. ACM, 1984.

[103] Donald E. Knuth.	 An Empirical Study of FORTRAN Programs. Software:

Practice and Experience, 1(2):105–133, 1970.

[104] Robert A. Kowalski. Predicate Logic as Programming Language. In Proceed

ings of the International Federation of Information Processing Congress 74,
pages 569–574, 1974.

[105] Robert A. Kowalski. The Early Years of Logic Programming. Communications

of the ACM, 31(1):38–43, 1988.

[106] Robert A. Kowalski and Donald Kuehner.	 Linear Resolution with Selection
Function. Artificial Intelligence, 2:227–260, 1971.

[107] Ulrich Kremer.	 Optimal and Near-Optimal Solutions For Hard Compilation
Problems. Parallel Processing Letters, 7(4):371–378, 1997.

[108] Viren Kumar and James Delgrande. Optimal Multicore Scheduling: An Applic
ation of ASP Techniques. In Proceedings of 10th International Conference on

Logic Programming and Nonmonotonic Reasoning (LPNMR’09), volume 5753
of LNCS, pages 604–609. Springer, 2009.

100

[109] David Lacey, Neil D. Jones, Eric Van Wyk, and Carl Christian Frederiksen.
Proving Correctness of Compiler Optimizations by Temporal Logic. In Pro

ceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Pro

gramming Languages (POPL’02), pages 283–294. ACM, 2002.

[110] Scott Robert Ladd. ACOVEA: Analysis of Compiler Options via Evolutionary

Algorithm. http://www.coyotegulch.com/products/acovea/.
[accessed 2009-08-01].

[111] Chris Lattner.	 LLVM: An Infrastructure for Multi-Stage Optimization. Mas
ter’s thesis, Department of Computer Science, University of Illinois at Urbana-
Champaign, 2002.

[112] Chris Lattner and Vikram Adve.	 Architecture for a Next-Generation GCC. In
Proceedings of the First Annual GCC Developers’ Summit, pages 75–84, 2003.

[113] Han Lee, Daniel von Dincklage, Amer Diwan, and J. Eliot B. Moss.	 Under
standing the Behavior of Compiler Optimizations. Software: Practice and Ex

perience, 36(8):835–844, 2006.

[114] Claire Lefèvre and Pascal Nicolas. The First Version of a New ASP Solver:
ASPERIX. In Proceedings of 10th International Conference on Logic Pro

gramming and Nonmonotonic Reasoning (LPNMR’09), volume 5753 of LNCS.
Springer, 2009.

[115] Nicola Leone, Simona Perri, and Francesco Scarcello. Improving ASP Instan
tiators by Join-Ordering Methods. In Proceedings of the 6th International Con

ference on Logic Programming and Nonmonotonic Reasoning (LPNMR’01),
volume 2173 of LNCS, pages 280–294. Springer, 2001.

[116] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob,
Simona Perri, and Francesco Scarcello. The DLV System for Knowledge
Representation and Reasoning. ACM Transactions on Computational Logic,
7(3):499–562, 2006.

[117] Rainer Leupers.	 Code Optimization Techniques for Embedded Processors:

Methods, Algorithms and Tools. Springer, 2000.

[118] Chuck Liang. Compiler Construction in Higher Order Logic Programming. In
Proceedings of the 4th International Symposium on Practical Aspects of Declar

ative Languages (PADL 2002), volume 2257 of LNCS, pages 47–63. Springer,
2002.

101

http://www.coyotegulch.com/products/acovea/

[119] Yuliya Lierler.	 Abstract Answer Set Solvers. In Proceedings of the 24th In

ternational Conference on Logic Programming (ICLP 2008), volume 5366 of
LNCS, pages 377–391. Springer, 2008.

[120] Yuliya Lierler and Marco Maratea. CMODELS-2: SAT-based Answer Set Solver
Enhanced to Non-Tight Programs. In Proceedings of the 7th International Con

ference on Logic Programming and Nonmonotonic Reasoning (LPNMR’04),
volume 2923 of LNCS, pages 346–350. Springer, 2004.

[121] Vladimir Lifschitz. Answer Set Programming and Plan Generation.	 Artificial

Intelligence, 138(1-2):39–54, 2002.

[122] Fangzhen Lin and Yuting Zhao. ASSAT: Computing Answer Sets of a Logic
Program by SAT Solvers. Artificial Intelligence, 157(1-2):115–137, 2004.

[123] Jin Lin, Tong Chen, Wei-Chung Hsu, Pen-Chung Yew, Roy Dz-Ching Ju, Ting-
Fook Ngai, and Sun Chan. A Compiler Framework for Speculative Analysis and
Optimizations. In Proceedings of the ACM SIGPLAN Conference on Program

ming Language Design and Implementation (PLDI’03, pages 289–299. ACM,
2003.

[124] John W. Lloyd.	 Foundations of Logic Programming. Springer, 2nd edition,
1993.

[125] LLVM Project.	 clang: a C Language Family Frontend for LLVM. http:

//clang.llvm.org/. [accessed 2009-08-01].

[126] D. W. Loveland. A Linear Format for Resolution. In Proceedings of the Sym

posium on Automatic Declaration, volume 125 of Lecture Notes in Mathemat

ics, pages 147–162. Springer, 1970.

[127] Edward S. Lowry and C. W. Medlock. Object Code Optimization. Communic

ations of the ACM, 12(1):13–22, 1969.

[128] Abid M. Malik, Michael Chase, Tyrel Russell, and Peter van Beek. An Ap
plication of Constraint Programming to Superblock Instruction Scheduling. In
Proceedings of th 14th International Conference of Principles and Practice of

Constraint Programming (CP 2008), volume 5202 of LNCS, pages 97–111.
Springer, 2008.

102

http://clang.llvm.org/
http://clang.llvm.org/

[129] Toni Mancini, Davide Micaletto, Fabio Patrizi, and Marco Cadoli.	 Evaluat
ing ASP and Commercial Solvers on the CSPLib. Constraints, 13(4):407–436,
2008.

[130] Victor Marek and Mirosław Truszczy´ Stable Models and an Alternative nski.
Logic Programming Paradigm. In The Logic Programming Paradigm: A 25

Year Perspective, pages 375–398. Springer, 1999.

[131] Henry Massalin. Superoptimizer: A Look at the Smallest Program. In Proceed

ings of the 2nd International Conference on Architectural Support for Program

ming Languages and Operating Systems (ASPLOS II), pages 122–126. IEEE
Computer Society, 1987.

[132] John McCarthy. Programs with Common Sense. In Semantic Information Pro

cessing, pages 403–418. MIT Press, 1959.

[133] W. M. McKeeman.	 Peephole Optimization. Communications of the ACM,
8(7):443–444, 1965.

[134] Veena S. Mellarkod.	 Optimizing the Computation of Stable Models using
Merged Rules. Master’s thesis, Texas Tech University, Texas, USA, May 2002.

[135] Gordon Moore. Cramming More Components Onto Integrated Circuits.	 Elec

tronics, 38(8), 1965.

[136] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: Engineering an Efficient SAT Solver. In Proceedings of

the 38th Conference on Design Automation (DAC’01), pages 530–535. ACM,
2001.

[137] Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann, 1997.

[138] Alan Mycroft. HAKMEMC – HAKMEM Programming Hacks in C. http://

www.cl.cam.ac.uk/users/am/hakmemc.html. [accessed 2009-08
01].

[139] George Necula.	 Translation Validation for an Optimizing Compiler. In Pro

ceedings of the ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI’00), pages 83–94. ACM, 2000.

103

http://www.cl.cam.ac.uk/users/am/hakmemc.html
http://www.cl.cam.ac.uk/users/am/hakmemc.html

[140] Ilkka Niemelä and Patrik Simons. Efficient Implementation of the Well-founded
and Stable Model Semantics. In Proceedings of the Joint International Confer

ence and Symposium on Logic Programming, pages 289–303. MIT Press, 1996.

[141] Ilkka Niemelä and Patrik Simons. Smodels – An Implementation of the Stable
Model and Well-Founded Semantics for Normal Logic Programs. In Proceed

ings of the 4th International Conference on Logic Programming and Nonmono

tonic Reasoning (LPNMR’97), volume 1265 of LNCS, pages 420–429. Springer,
1997.

[142] Ilkka Niemelä and Patrik Simons. Logic-Based Artificial Intelligence, chapter
Extending the Smodels System with Cardinality and Weight Constraints, pages
491–521. Kluwer Academic Publishers, 2001.

[143] Monica Nogueira, Marcello Balduccini, Michael Gelfond, Richard Watson, and
Matthew Barry. An A-Prolog Decision Support System for the Space Shuttle. In
Proceedings of 3rd International Symposium on Practical Aspects of Declarat

ive Languages (PADL 2001), volume 1990 of LNCS, pages 169–183. Springer,
2001.

[144] Open64 Project.	 Open64 - The Open Research Compiler. http://www.

open64.net/. [accessed 2009-08-01].

[145] Mario Ornaghi, Camillo Fiorentini, Alberto Momigliano, and Francesco Pa
gano. Applying ASP to UML Model Validation. In Proceedings of 10th In

ternational Conference on Logic Programming and Nonmonotonic Reasoning

(LPNMR’09), volume 5753 of LNCS, pages 457–463. Springer, 2009.

[146] Zhelong Pan and Rudolf Eigenmann. Fast and Effective Orchestration of Com
piler Optimizations for Automatic Performance Tuning. In Proceedings of

the International Symposium on Code Generation and Optimization (CGO’06),
pages 319–332. IEE Computer Society, 2006.

[147] David A. Patterson and David R. Ditzel. The Case for the Reduced Instruction
Set Computer. ACM SIGARCH Computer Architecture News, 8(6):25–33, 1980.

[148] David A. Patterson and John L. Hennessy. Computer Organization and Design:

The Hardware/Software Interface. Morgan Kaufmann, 3rd edition, 2004.

[149] E. Pontelli, M. Balduccini, and F. Bermudez.	 Non-monotonic Reasoning on
Beowulf Platforms. In Proceedings of 5th International Symposium on Prac

104

http://www.open64.net/
http://www.open64.net/

tical Aspects of Declarative Languages (PADL 2003), volume 2562 of LNCS,
pages 37–57. Springer, 2003.

[150] Enrico Pontelli, Hung Viet Le, and Tran Cao Son. An Investigation in Parallel
Execution of Answer Set Programs on Distributed Memory Platforms: Task
Sharing and Dynamic Scheduling. Computer Languages, Systems & Structures,
36(2):158–202, 2010.

[151] Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen, and John Cavazos. Iterative
Optimization in the Polyhedral Model: Part II, Multidimensional Time. In Pro

ceedings of the ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI’08), pages 90–100, 2008.

[152] Louis-No¨ edric Bastoul, Albert Cohen, and Nicolas Vasilache. It-el Pouchet, C´
erative Optimization in the Polyhedral Model: Part I, One-Dimensional Time.
In Proceedings of the International Symposium on Code Generation and Op

timization (CGO’07), pages 144–156. IEE Computer Society, 2007.

[153] President’s Information Technology Advisory Committee (PITAC). Computa
tional Science: Ensuring America’s Competitiveness. Technical report, Execut
ive Office of the President of the United States, June 2005.

[154] Todd A. Proebsting. Proebsting’s Law: Compiler Advances Double Computing
Power Every 18 Years. http://research.microsoft.com/en-us/

um/people/toddpro/papers/law.htm. [accessed 2009-08-01].

[155] Raymond Reiter. A Logic for Default Reasoning. Artificial Intelligence, 13:81–
132, 1980.

[156] Arch D. Robinson. Impact of Economics on Compiler Optimization. In Pro

ceedings of the Joint ACM-ISCOPE Conference on Java Grande (JGI’01),
pages 1–10. ACM, 2001.

[157] J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle.
Journal of the ACM, 12(1):23–41, 1965.

[158] Roger Anthony Sayle. A Superoptimizer Analysis of Multiway Branch Code
Generation. In Proceedings of the GCC Summit, pages 103–116, 2008.

[159] Paul B. Schneck. A Survey of Compiler Optimization Techniques. In Proceed

ings of the ACM Annual Conference, pages 106–113, 1973.

105

http://research.microsoft.com/en-us/um/people/toddpro/papers/law.htm
http://research.microsoft.com/en-us/um/people/toddpro/papers/law.htm

[160] Kevin Scott. On Proebsting’s Law. Technical Report CS-2001-12, Department
of Computer Science, University of Virginia, 2001.

[161] David Seal, editor. ARM Architecture Reference Manual. Addison-Wesley, 2nd
edition, 2000.

[162] Daniel Serpell. SuperOptimizer for Microchip’s PIC Microcontrollers. http:

//tinyurl.com/pic-superoptimizer. [accessed 2009-08-01].

[163] Ravi Sethi and Jeffrey D. Ullman. The Generation of Optimal Code for Arith
metic Expressions. Journal of the ACM, 17(4):715–728, 1970.

[164] Patrik Simons. Extending and Implementing the Stable Model Semantics. PhD
thesis, Helsinki University of Technology, Helsinki, Finland, April 2000.

[165] Patrik Simons, Ilkka Niemelä, and Timo Soininen. Extending and Implementing
the Stable Model Semantics. Artificial Intelligence, 138(1-2):181–234, 2002.

[166] SPARC International, Inc.	 The SPARC Architecture Manual, Version 8, 1992.
Revision SAV080SI9308.

[167] Diomidis Spinellis.	 Declarative Peephole Optimization using String Pattern
Matching. ACM SIGPLAN Notices, 34(2):47–50, 1999.

[168] Mark Stephenson, Saman Amarasinghe, Martin Martin, and Una-May O’Reilly.
Meta Optimization: Improving Compiler Heuristics with Machine Learning.
In Proceedings of the ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI’03), pages 77–90. ACM, 2003.

[169] Sun Developer Network. The Java HotSpot Performance Engine Architecture.
Technical report, Sun Microsystems, 2008.

[170] Sun Microsystems, Inc.	 SPARC Assembly Language Reference Manual, 2002.
Version 816168110.

[171] Tommi Syrjänen. Lparse 1.0 User’s Manual. Helsinki University of Techno
logy, 2007.

[172] Andrew S. Tanenbaum, Hans van Staveren, and Johan W. Stevenson. Using Pee
phole Optimization on Intermediate Code. ACM Transactions on Programming

Languages and Systems, 4(1):21–36, 1982.

106

http://tinyurl.com/pic-superoptimizer
http://tinyurl.com/pic-superoptimizer

[173] Ross Tate, Michael Stepp, and Sorin Lerner.	 Generating Compiler Optimiza
tions from Proofs. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL’10), pages 389–
402, 2010.

[174] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner.	 Equality Satur
ation: a New Approach to Optimization. In Proceedings of the 36th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL’09), pages 264–276. ACM, 2009.

[175] The Stanford SUIF Compiler Group.	 SUIF Compiler System. http://

suif.stanford.edu/. [accessed 2009-08-01].

[176] Nicolas Vasilache, Cédric Bastoul, and Albert Cohen. Polyhedral Code Gener
ation in the Real World. In Proceedings of the 15th International Conference

on Compiler Construction (CC 2006), volume 3923 of LNCS, pages 185–201.
Springer, 2006.

[177] Jürgen Vollmer. Experiences with Gentle: Efficient Compiler Construction
based on Logic Programming. In Proceedings of the 3rd International Sym

posium on Programming Language Implementation and Logic Programming

(PLILP ’91), volume 528 of LNCS. Springer, 1991.

[178] Jeffrey Ward and John S. Schlipf. Answer Set Programming with Clause Learn
ing. In Proceedings of 7th International Conference on Logic Programming and

Nonmonotonic Reasoning (LPNMR’04), volume 2923 of LNCS, pages 302–313.
Springer, 2004.

[179] David H. D. Warren.	 Logic Programming and Compiler Writing. Software:

Practice and Experience, 10(2):97–125, 1980.

[180] David L. Weaver and Tom Germond. The SPARC Architecture Manual, Version

9. SPARC International, Inc, 1994. Revision SAV09R1459912.

[181] John Whaley and Monica S. Lam.	 Cloning-Based Context-Sensitive Pointer
Alias Analysis Using Binary Decision Diagrams. In Proceedings of the ACM

SIGPLAN Conference on Programming Language Design and Implementation

(PLDI’04), pages 131–144. ACM, 2004.

[182] Kent Wilken, Jack Liu, and Mark Hefferman. Optimal Instruction Scheduling
using Integer Programming. In Proceedings of the ACM SIGPLAN Conference

107

http://suif.stanford.edu/
http://suif.stanford.edu/

on Programming Language Design and Implementation (PLDI’00), pages 121–
133. ACM, 2000.

[183] Gareth Williams.	 Linear Algebra with Applications. Jones and Bartlett, 4th
edition, 2001.

[184] Min Zhao, Bruce R. Childers, and Mary Lou Soffa.	 Predicting the Impact
of Optimizations for Embedded Systems. In Proceedings of the ACM SIG

PLAN Conference on Languages, Compilers and Tools for Embedded Systems

(LCTES’03), pages 1–11. ACM, 2003.

108

Appendices

109

Appendix A

AnsProlog Language Description

A.1 Introduction

In the following section, we present an informal description of the AnsProlog language.
No formal grammar or Extended BNF for the language has yet been defined, but there
are a number of widely-accepted standards to which the domain tools adhere. The
language that the LPARSE/SMODELS family of ASP tools accept [141,171] is the most
commonly implemented (referred to as AnsPrologsm); this is accepted (and extended)
by the GRINGO/CLASP family of ASP tools [67, 68, 71]. The DLV system [52, 116]
accepts a different subset of the AnsProlog language (which includes disjunction in the
head) and is not currently compatible with the other domain tools.

A.2 Syntax Conventions

The generally-accepted syntax conventions for AnsProlog are as follows:

Predicate symbols are composed of lower-case letters and digits and must start with
a letter.

Constant symbols are either just digits or composed of lower-case letters and digits,
starting with a lower-case letter.

Variable symbols are composed of letters and digits and must start with an upper-case
letter.

A fact is followed by a dot ‘.’.

Rules use the following symbols and are followed by a dot ‘.’.

• Negation as failure: ‘not’

If (): ‘:-’ • ←
• Conjunction (∧): ‘,’

110

•	 Disjunction (∨): ‘;’

• Classical negation (¬): ‘-’

Arithmetic comparisons use the following symbols:

•	 Equality: ‘==’

•	 Inequality: ‘!=’

•	 Less than or equal: ‘<=’

•	 Greater than or equal: ‘>=’

Less than: ‘<’ •
Greater than: ‘>’ •

111

Appendix B

AnsProlog Literals in the TOAST
System

B.1 Introduction

This is a definitive list of all AnsProlog literals used within the TOAST system, de
scribing their format, arguments and usage.

B.2 Literals

•	 arg(R)

R is a register or it is none.

•	 asymmetricInstruction(I)

Instruction I takes two arguments, order irrelevant.

•	 before(R1,R2)
An aribtrary ordering on the register (input and output) so that re-orderings can
be removed.

•	 bit(B)
Each bit of a register is modelled independently.

•	 bitOrExtended(B)
A copy of bit(B) with additional values for -1 -wordLength, basically →
zero padding the lower part of a register so shifted subtracts (in divide) work
correctly.

•	 colour(C)
Each instruction stream is labeled by a colour, the following are in use: red
- execute and verify; the initial code sequence, blue - search and
verify; the new code sequence, purple - verify; used to save on rule
generation.

112

•	 constrained(C,CT,R)
True if register R in stream C is used constraint CT.

•	 dividend(C,T,B)
Register for the sign removed version of the first argument of a signed multiply.

•	 dividendCarry(C,T,B)
Similar to above, but with carry.

•	 divideSubCycle(C,T,S)
True if subcycle S is needed to compute a division.

•	 divideSubCycleCount(C,T,B,S)
A counter used to correctly work out what divideSubCycle(C,T,S) should
be set to.

•	 divisor(C,T,B)
Second argument of signed multiply.

•	 divisorCarry(C,T,B)
Similar to above, but with carry.

enableConstraints•
Trivial atom used to make generating rules easier in buildMultiple.

•	 extended(E)
A workaround to get lparse to generate the correct values for bitOrExtended.

•	 finishedAt(C,T)
The time, T, at which stream C executes its last valid instruction (inclusive).
Currently used in execute and verify.

•	 flag(F)
F is a processor flag.

•	 flagChanged(C,T,F)
True is flag F has been altered by the instruction run at time step T in stream C.

•	 flagStatus(C,T,F)
True if flag F is set at time T in stream C, true negated if it is set to 0.

•	 flagUseful(C,F,P1,P2)
True if flag F (set at P1) is still usable at P2 (in stream C). Used for in optimisa
tions in search.

•	 haveJumped(C,T)
Whether a jump has occured at in stream C at time T (product of jump instruc
tion, defined by flow control).

113

•	 hiOutput(I)
True if instruction I gives a high output (i.e. [wordLength, 2*wordLength
1]), accessible with hi.

•	 immediate(R)
Register R is an immediate.

•	 input(R)
Register R is an input.

•	 instruction(I)
I is an instruction.

•	 instructionChoice(C,T,I)
At time T in stream C, there is an instruction I.

•	 instructionUsed(C,P)
True if the instruction at position P in stream C is used. Used for optimisations
in search.

•	 istream(C,P,IN,R1,R2,R3)
Instruction stream C, at position P is instruction IN using registers R1 and R2
(may also have the value none). R3 is an optional third argument, used in
execution only.

•	 jump(C,T,J)
When executing stream C at time T, jump J positions forward, asserted by in
structions.

•	 jumpSize(C,J)
The possible sizes of jump, 2 to (lengthOfInstructionSequence - 1)

•	 leadingZero(C,T,B)
A means for discounting the leading zeros when counting the number of sub
cycles needed to divide.

•	 lessThanInDivide(C,T,B,S)
True with B = 0 if the divisor is less than or equal to the subCycle value; for
B != 0, used to calculate.

•	 mayJump(C,T,J)
True if it is possible there is a jump of J at time T in stream C.

•	 negateResult(C,T)
Where the output of the multiply executed in C at time T needs to be negated or
not.

•	 negateResultCarry(C,T)
Used to negate the result of a signed multiply.

114

•	 noArgInstruction(I)
Instruction I takes no arguments

•	 nonEquivalent
The code streams red and blue are not equivalent.

•	 output(R)
Register R is an output.

•	 outputConstraints(CT)
The number of outputs on which two code streams have to match (in verify),
numbered from 1 in the order they appear in the program.

•	 pc(C,PCV,T)
The program counter for stream C has value PCV at time T.

•	 pcValue(C,PCV)
The possible values of the program counter, position + jumpSize (set addi
tion), so 1 to (2 * lengthOfInstructionSequence - 1).

•	 position(C,P)
Indexes istream C, counting from 1 to lengthOfInstructionSequence.

•	 predicateVar(C,T,B)
The second argument of a signed multiplication after sign removal.

•	 range(E)
A workaround to get lparse to generate the corretc values for extended and
bitOrExtended.

•	 register(R)
These are the registers, iX are input vectors, X are created during execution. i0
is the hardwired register (if available), X starts at 1.

•	 registerDefined(C,R)
True if register R is defined in stream colour C.

•	 relevantFlag(F)
True if the value of the given flag at the end of the program is deemed to be
important.

•	 requireValidSequence
Trivial atom used to make generation in searchCut easier

•	 runTimeError(C,T)
The instruction executed at time T in stream C causes a run time error (i.e. it is
poorly defined). These are mostly synthesised now.

•	 setsFlag(I,F)
True if instruction I may set flag F.

115

•	 subCycle(C,T,B,S)
A variant on value, true if bit B of sub cycle S at time T (in stream C) is 1, true
negated if it is 0.

•	 subCycleBorrow(C,T,B,S)
Used to denote the carry bits in the subtraction within divide.

•	 subtractionBorrow(C,T,B)
The borrow register of the subtraction implementation.

•	 sumVar(C,T,B)
The first argument of a signed multiplication after sign removal.

•	 sumVarCarry(C,T,B)
Used to convert to sumVar.

•	 symmetricInstruction(I)
Instruction I takes two arguments, order is irrelevant.

•	 time(C,T)
The steps of a program’s execution, bounded by program size. Stream depend
ant.

•	 unaryInstruction(I)
Instruction I takes one argument.

•	 usesFlag(I,F)
True if instruction I may use flag F.

•	 validSequence
Trivial atom used by searchCut to reduce the search space covered by search.

•	 value(C,R,B)
The value of bit B of register R in instruction stream C, positive for 1, true neg
ated for 0.

116

Appendix C

TOAST Architecture Descriptions

C.1 Introduction

In the following sections, we list the full TOAST architecture descriptions for the
following architectures: MIPS R2000, SPARC V7 and SPARC V8.

Each architecture has its own file that defines general information, the available in
structions and to which part of the TOAST system they are applicable. It has one
declaration per line, with columns separated by two tabs. A declaration is either an
option (two column) or a mapping (three column). Comments are denoted by a #
character and are to the end of the line.

The initial options section defines the number of architecture bits, its family and name
e.g. risc and sparc-v8. zero is whether the architecture has a hardwired zero
register. Flags define which condition codes are present and how they are handled.

The instruction section takes the following form:

[assembly] {search,exec,combo,undef} [internal form]

The [assembly] column is the machine-specific assembly language name. This can
be ‘-’, which means that the internal form is included in the search space. However,
the caveat of this encoding is that if it is picked in any combination it will not map it
back unless it also appears in a combo declaration (explained below).

search means that the internal form (single instruction) should be included in both
the search and the execute space.

exec means that the internal form (single instruction) should be included in the ex
ecute space.

combo mean that the internal form is multiple instructions. There must also exist
individual search or exec definitions for this to be valid.

undef mean that the internal form is undefined. There should be an explanation of
why the instruction is not defined.

117

The [internal form] column is a pattern of one or more internal TOAST op
codes (separated by semi-colons) with directions for how the arguments and instruc
tion outputs are modelled. For example, a1, a2, a3 should be substituted for the
first, second and third arguments of the assembly instruction (once converted to the
appropriate internal TOAST form); n is the location of the first instruction in the se
quence, n+1 the second, and so on. o1, o2, o3 are the outputs of the first, second
and third opcodes.

C.2 MIPS R2000

Architectural and instruction information taken from the MIPS RISC Architecture book [99];
a brief overview of the MIPS R2000 architecture can also be found in Section 5.3
(page 44).

1 ## MIPS R2000 processor
2 ## General info
3 bits 32
4 zero yes
5 family risc
6 name mips-r2000
7 flags none
8
9 ## Instructions

10 # Assembler is Intel-style : destination, source, source
11 add undef May trigger overflow exception
12 addi undef May trigger overflow exception
13 addiu search add a2 a3
14 addu search add a2 a3
15 and search land a2 a3
16 andi search land a2 a3
17 bczf undef Co-processor is implementation defined
18 bczt undef Co-processor is implementation defined
19 beq exec beq a1 a2 a3
20 bgez exec bgez a1 a2
21 bgezal undef Puts address in register
22 bgtz exec bgtz a1 a2
23 blez exec blez a1 a2
24 bltz exec bltz a1 a2
25 bltzal undef Puts address in register
26 bne exec bne a1 a2 a3
27 break undef Triggers execption
28 cfcz undef Co-processor is implementation defined
29 copz undef Co-processor is implementation defined
30 ctcz undef Co-processor is implementation defined
31 div search sdiv a1 a2
32 divu search udiv a1 a2
33 j exec br a1
34 jal undef Puts address in register
35 jalr undef Puts address in register

118

36 jr undef Mixes register values and addresses
37 lb undef Load
38 lbu undef Load
39 lh undef Load
40 lhu undef Load
41 lui undef Load
42 lw undef Load
43 lwz undef Co-processor is implementation defined
44 lwl undef Patented
45 lwr undef Patented
46 mfcz undef Co-processor is implementation defined
47 mfhi search hi a1
48 mflo undef Translation implemented
49 mtcz undef Co-processor is implementation defined
50 mthi undef Translation implemented
51 mtlo undef Translation implemented
52 mult search smult a1 a2
53 multu search umult a1 a2
54 nor search lnor a2 a3
55 or search lor a2 a3
56 ori search lor a2 a3
57 rfe undef Non local jump
58 sb undef Store
59 sh undef Store
60 sll search slz32 a2 a3
61 sllv search slz32 a2 a3
62 slt search slt a2 a3
63 slti search slt a2 a3
64 sltiu search sltu a2 a3
65 sltu search sltu a2 a3
66 sra search srs32 a2 a3
67 srav search srs32 a2 a3
68 srl search srz32 a2 a3
69 srlv search srz32 a2 a3
70 sub undef May trigger overflow exception
71 subu search sub a2 a3
72 sw undef Store
73 swcz undef Store
74 swl undef Patented
75 swr undef Patented
76 syscall undef Non local jump
77 tlbp undef TLB operation
78 tlbr undef TLB operation
79 tlbwi undef TLB operation
80 tlbwr undef TLB operation
81 xor search lxor a2 a3
82 xori search lxor a2 a3
83
84 # Generic definitions needed by an number of instructions
85 - exec equal
86 - exec greaterThanZero

119

87 - exec isZero

Listing C.1: MIPS R2000 architecture description

C.3 SPARC V7

Architectural and instruction information taken from the SPARC V7 Instruction Set
manual [12]; a brief overview of the SPARC V7 architecture can also be found in
Section 6.2 (page 64).

1 ## General info
2 bits 32
3 zero yes
4 family risc
5 name sparc-v7
6 flags neg zero over carry
7
8 ## Instructions
9 # Assembler is AT&T style : source, source, destination

10
11 # B.1 Load Integer Instructions
12 ldsb undef Load
13 ldsba undef Load, privileged
14 ldsh undef Load
15 ldsha undef Load, privileged
16 ldub undef Load
17 lduba undef Load, privileged
18 lduh undef Load
19 lduha undef Load, privileged
20 ld undef Load
21 lda undef Load, privileged
22 ldd undef Load
23 ldda undef Load, privileged
24
25 # B.2 Load Floating-point Instructions
26 ldf undef Load, floating point
27 lddf undef Load, floating point
28 ldfsr undef Load, floating point
29
30 # B.3 Load Coprocessor Instructions
31 ldc undef Load, coprocessor, implementation

dependent
32 lddc undef Load, coprocessor, implementation

dependent
33 ldcsr undef Load, coprocessor, implementation

dependent
34
35 # B.4 Store Integer Instructions

120

45

71

36 stb undef Store
37 stba undef Store, privileged
38 sth undef Store
39 stha undef Store, privileged
40 st undef Store
41 sta undef Store, privileged
42 std undef Store
43 stda undef Store, privileged
44

B.5 Store Floating-point Instructions
46 stf undef Store
47 stdf undef Store
48 stfsr undef Store
49 stdfq undef Store, privileged
50
51 # B.6 Store Coprocessor Instructions
52 stc undef Store, coprocessor, implementation

dependent
53 stdc undef Store, coprocessor, implementation

dependent
54 stcsr undef Store, coprocessor, implementation

dependent
55 stdcq undef Store, coprocessor, implementation

dependent, privil.
56
57 # B.7 Atomic Load-Store Unsigned Byte Instructions

Load, store58 ldstub undef
Load, store, privileged 59 ldstuba undef

60
61 # B.8 SWAP r Register with Memory Instruction
62 swap undef Load, store
63 swapa undef Load, store, privileged
64
65 # B.9 Add Instructions
66 # one argument can be a 13 bit immediate, which is then sign

extended
67 add search add a1 a2
68 addcc search addcc a1 a1
69 addx search cadd a1 a2
70 addxcc search caddcc a1 a2

72 # B.10 Tagged Add Instructions
73 # one argument can be a 13 bit immediate, which is then sign

extended
74 taddcc search taddcc a1 a1
75 taddcctv undef May trap
76
77 # B.11 Subtract Instructions
78 # one argument can be a 13 bit immediate, which is then sign

extended
79 sub search sub a1 a2
80 subcc search subcc a1 a2
81 subx search csub a1 a2

121

82 subxcc search csubcc a1 a2
83
84 # B.12 Tagged Subtract Instructions
85 # one argument can be a 13 bit immediate, which is then sign

extended
86 tsubcc search tsubcc a1 a2
87 tsubcctv undef May trap
88
89 # B.13 Multiply Step Instruction
90 # one argument can be a 13 bit immediate, which is then sign

extended
91 #mulscc search multstcc a1 a2
92 mulscc undef Temporary fix
93
94 # B.14 Logical Instructions
95 # one argument can be a 13 bit immediate, which is then sign

extended
96 and search land a1 a2
97 andcc search landcc a1 a2
98 andn combo lnot a2; land a1 o1
99 andncc combo lnot a2; landcc a1 o1

100 or search lor a1 a2
101 orcc search lorcc a1 a2
102 orn combo lnot a2; lor a1 o1
103 orncc combo lnot a2; lorcc a1 o1
104 xor search lxor a1 a2
105 xorcc search lxorcc a1 a2
106 xnor combo lxor a1 a2 ; lnot o1
107 xnorcc combo lnot a2; lxorcc a1 o1
108 - search lnot
109 - search isZero
110
111 # B.15 Shift Instructions
112 # one argument can be a 13 bit immediate, which is then sign

extended
113 sll search slz32
114 srl search srz32
115 sra search srs32
116
117 # B.16 SETHI Instruction
118 # this is slightly problematic as it can / only/ take an

immediate as an argument
119 sethi
120
121 # B.17 SAVE
122 save
123 restore
124

exec sethi a1

and RESTORE Instructions
undef Requires modelling of specific registers
undef Requires modelling of specific registers

125 # B.18 Branch on Integer Condition Codes Instructions
126 ba exec cba a1
127 bn exec cbn a1
128 bne exec cbne a1
129 be exec cbe a1

122

161

130 bg exec cbg a1
131 ble exec cble a1
132 bge exec cbge a1
133 bl exec cbl a1
134 bgu exec cbgu a1
135 bleu exec cbleu a1
136 bcc exec cbcc a1
137 bcs exec cbcs a1
138 bpos exec cbpos a1
139 bneg exec cbneg a1
140 bvc exec cbvc a1
141 bvs exec cbvs a1
142
143 # B.19 Branch on Floating-point Condition Codes Instructions
144 fba undef Floating point
145 fbn undef Floating point
146 fbu undef Floating point
147 fbg undef Floating point
148 fbug undef Floating point
149 fbl undef Floating point
150 fbul undef Floating point
151 fblg undef Floating point
152 fbne undef Floating point
153 fbe undef Floating point
154 fbue undef Floating point
155 fbge undef Floating point
156 fbuge undef Floating point
157 fble undef Floating point
158 fbule undef Floating point
159 fbo undef Floating point
160

B.20 Branch on Coprocessor Condition Codes Instructions
162 cba undef
163 cbn undef
164 cb3 undef
165 cb2 undef
166 cb23 undef
167 cb1 undef
168 cb13 undef
169 cb12 undef
170 cb123 undef
171 cb0 undef
172 cb03 undef
173 cb02 undef
174 cb023 undef
175 cb01 undef
176 cb013 undef
177 cb012 undef
178
179 # B.21 Call and Link
180 call undef
181
182 # B.22 Jump and Link

Coprocessor, implementation dependent
Coprocessor, implementation dependent
Coprocessor, implementation dependent
Coprocessor, implementation dependent
Coprocessor, implementation dependent
Coprocessor, implementation dependent
Coprocessor, implementation dependent
Coprocessor, implementation dependent
Coprocessor, implementation dependent
Coprocessor, implementation dependent
Coprocessor, implementation dependent
Coprocessor, implementation dependent
Coprocessor, implementation dependent
Coprocessor, implementation dependent
Coprocessor, implementation dependent
Coprocessor, implementation dependent

Instruction
Position dependent

Instruction

123

183 jmpl undef Position dependent
184
185 # B.23 Return from Trap Instruction
186 rett undef privileged
187
188 # B.24 Trap on Integer Condition Codes Instruction
189 ta undef Trap
190 tn undef Trap
191 tne undef Trap
192 te undef Trap
193 tg undef Trap
194 tle undef Trap
195 tge undef Trap
196 tl undef Trap
197 tgu undef Trap
198 tleu undef Trap
199 tcc undef Trap
200 tcs undef Trap
201 tpos undef Trap
202 tneg undef Trap
203 tvc undef Trap
204 tvs undef Trap
205
206 # B.25 Read State Register Instructions
207 rdy search hi
208 rdasr undef privileged, implementation dependent
209 rdpsr undef privileged
210 rdwim undef privileged
211 rdtbr undef privileged
212
213 # B.26 Write State Register Instructions
214 wry undef You /shouldn’t/ need to do this
215 wrasr undef privileged, implementation dependent
216 wrpsr undef privileged
217 wrwim undef privileged
218 wrtbr undef privileged
219
220 # B.27 Unimplemented Instruction
221 unimp undef And neither will we...
222
223 # B.28 Flush Instruction Memory
224 iflush undef Self modifying code!
225
226 # B.29 Floating-point Operate (FPop) Instructions
227 fpop1 undef Floating point
228 fpop2 undef Floating point
229 fitos undef Floating point
230 fitod undef Floating point
231 fitox undef Floating point
232 fstoi undef Floating point
233 fdtoi undef Floating point
234 fxtoi undef Floating point
235 fstod undef Floating point

124

236 fstox undef Floating point
237 fdtos undef Floating point
238 fdtox undef Floating point
239 fxtos undef Floating point
240 fxtod undef Floating point
241 fmov undef Floating point
242 fnegs undef Floating point
243 fabs undef Floating point
244 fsqrts undef Floating point
245 fsqrtd undef Floating point
246 fsqrtx undef Floating point
247 fadds undef Floating point
248 faddd undef Floating point
249 faddx undef Floating point
250 fsubs undef Floating point
251 fsubd undef Floating point
252 fsubx undef Floating point
253 fmuls undef Floating point
254 fmuld undef Floating point
255 fmulx undef Floating point
256 fsmuld undef Floating point
257 fdmulx undef Floating point
258 fdivs undef Floating point
259 fdivd undef Floating point
260 fdivx undef Floating point
261 fcmps undef Floating point
262 fcmpd undef Floating point
263 fcmpx undef Floating point
264 fcmpes undef Floating point
265 fcmped undef Floating point
266 fcmpex undef Floating point
267 fcmpex undef Floating point
268
269 # B.34 Coprocessor Operate Instructions
270 cpop1 undef Coprocessor, implementation dependent
271 cpop2 undef Coprocessor, implementation dependent

Listing C.2: SPARC V7 architecture description

C.4 SPARC V8

Architectural and instruction information taken from the SPARC V8 Instruction Set
manual [166]; a brief overview of the SPARC V8 architecture can also be found in
Section 6.2 (page 64).

1 ## SPARC V8 processor
2 # General info
3 bits 32

125

4 zero yes
5 family risc
6 name sparc-v8
7 flags neg zero over carry
8
9 ## Instructions

10 # Assembler is AT&T style: source, source, destination
11
12 # B.1 Load Integer Instructions
13 ldsb undef Load
14 ldsh undef Load
15 ldub undef Load
16 lduh undef Load
17 ld undef Load
18 ldd undef Load
19 ldsba undef Load, privileged
20 ldsha undef Load, privileged
21 lduba undef Load, privileged
22 lduha undef Load, privileged
23 lda undef Load, privileged
24 ldda undef Load, privileged
25
26 # B.2 Load Floating-point Instructions
27 ldf undef Load, floating point
28 lddf undef Load, floating point
29 ldfsr undef Load, floating point
30
31 # B.3 Load Coprocessor Instructions
32 ldc undef

dependent
33 lddc undef

dependent
34 ldcsr undef

dependent
35
36 # B.4 Store Integer
37 stb undef
38 sth undef
39 st undef
40 std undef
41 stba undef
42 stha undef
43 sta undef
44 stda undef
45

Load, coprocessor, implementation

Load, coprocessor, implementation

Load, coprocessor, implementation

Instructions
Store

Store

Store

Store

Store, privileged

Store, privileged

Store, privileged

Store, privileged

46 # B.5 Store Floating-point Instructions
47 stf undef Store
48 stdf undef Store
49 stfsr undef Store
50 stdfq undef Store, privileged
51
52 # B.6 Store Coprocessor Instructions

126

53 stc undef
dependent

54 stdc undef
dependent

55 stcsr undef
dependent

56 stdcq undef
dependent, privil.

57

Store,

Store,

Store,

Store,

coprocessor,

coprocessor,

coprocessor,

coprocessor,

implementation

implementation

implementation

implementation

58 # B.7 Atomic Load-Store Unsigned Byte Instructions
59 ldstub undef Load, store
60 ldstuba undef Load, store, privileged
61
62 # B.8 SWAP Register with Memory Instruction
63 swap undef Load, store
64 swapa undef Load, store, privileged
65
66 # B.9 SETHI Instruction
67 # can only take an immediate as an argument
68 sethi exec sethi a1
69
70 # B.10 NOP Instruction
71 nop exec nop
72
73 # B.11 Logical Instructions
74 # one argument can be a 13 bit immediate, which is then sign

extended
75 and search land a1 a2
76 andcc search landcc a1 a2
77 andn combo lnot a2; land a1 o1
78 andncc combo lnot a2; landcc a1 o1
79 or search lor a1 a2
80 orcc search lorcc a1 a2
81 orn combo lnot a2; lor a1 o1
82 orncc combo lnot a2; lorcc a1 o1
83 xor search lxor a1 a2
84 xorcc search lxorcc a1 a2
85 xnor combo lxor a1 a2 ; lnot o1
86 xnorcc combo lnot a2; lxorcc a1 o1
87 - search lnot
88 - search isZero
89
90 # B.12 Shift Instructions
91 # one argument can be a 13 bit immediate, which is then sign

extended
92 sll search slz32
93 srl search srz32
94 sra search srs32
95
96 # B.13 Add Instructions
97 # one argument can be a 13 bit immediate, which is then sign

extended
98 add search add a1 a2

127

99 addcc search addcc a1 a1
100
 addx search cadd a1 a2
101
 addxcc search caddcc a1 a2
102

103
 # B.14 Tagged Add Instructions
104
 # one argument can be a 13 bit immediate, which is then sign

extended
105
 taddcc search taddcc a1 a1
106
 taddcctv undef May trap
107

108
 # B.15 Subtract Instructions
109
 # one argument can be a 13 bit immediate, which is then sign

extended
110
 sub search sub a1 a2
111
 subcc search subcc a1 a2
112
 subx search csub a1 a2
113
 subxcc search csubcc a1 a2
114

115
 # B.16 Tagged Subtract Instructions
116
 # one argument can be a 13 bit immediate, which is then sign

extended
117
 tsubcc search tsubcc a1 a2
118
 tsubcctv undef May trap
119

120
 # B.17 Multiply Step Instruction
121
 # one argument can be a 13 bit immediate, which is then sign

extended
122
 #mulscc search multstcc a1 a2
123
 mulscc undef Temporary fix
124

125
 # B.18 Multiply Instructions
126
 # one argument can be a 13 bit immediate, which is then sign

extended
127
 umul search umult a1 a2
128
 smul search smult a1 a2
129
 umulcc search umultcc a1 a2
130
 smulcc search smultcc a1 a2
131

132

133
 # B.19 Divide Instructions
134
 # one argument can be a 13 bit immediate, which is then sign

extended
135
 udiv undef May trap
136
 sdiv undef May trap
137
 udivcc undef May trap
138
 sdivcc undef May trap
139

140
 # B.20 SAVE and RESTORE Instructions
141
 save undef Requires modelling of specific registers
142
 restore undef Requires modelling of specific registers
143

144
 # B.21 Branch on Integer Condition Codes Instructions
145
 ba exec cba a1

128

146 bn exec cbn a1
147 bne exec cbne a1
148 be exec cbe a1
149 bg exec cbg a1
150 ble exec cble a1
151 bge exec cbge a1
152 bl exec cbl a1
153 bgu exec cbgu a1
154 bleu exec cbleu a1
155 bcc exec cbcc a1
156 bcs exec cbcs a1
157 bpos exec cbpos a1
158 bneg exec cbneg a1
159 bvc exec cbvc a1
160 bvs exec cbvs a1
161
162 # B.22 Branch on Floating-point Condition Codes Instructions
163 fba undef Floating point
164 fbn undef Floating point
165 fbu undef Floating point
166 fbg undef Floating point
167 fbug undef Floating point
168 fbl undef Floating point
169 fbul undef Floating point
170 fblg undef Floating point
171 fbne undef Floating point
172 fbe undef Floating point
173 fbue undef Floating point
174 fbge undef Floating point
175 fbuge undef Floating point
176 fble undef Floating point
177 fbule undef Floating point
178 fbo undef Floating point
179
180 # B.23 Branch on Coprocessor Condition Codes Instructions
181 cba undef Coprocessor, implementation dependent
182 cbn undef Coprocessor, implementation dependent
183 cb3 undef Coprocessor, implementation dependent
184 cb2 undef Coprocessor, implementation dependent
185 cb23 undef Coprocessor, implementation dependent
186 cb1 undef Coprocessor, implementation dependent
187 cb13 undef Coprocessor, implementation dependent
188 cb12 undef Coprocessor, implementation dependent
189 cb123 undef Coprocessor, implementation dependent
190 cb0 undef Coprocessor, implementation dependent
191 cb03 undef Coprocessor, implementation dependent
192 cb02 undef Coprocessor, implementation dependent
193 cb023 undef Coprocessor, implementation dependent
194 cb01 undef Coprocessor, implementation dependent
195 cb013 undef Coprocessor, implementation dependent
196 cb012 undef Coprocessor, implementation dependent
197
198 # B.24 Call and Link Instruction

129

199 call undef Position dependent
200
201 # B.25 Jump and Link Instruction
202 jmpl undef Position dependent
203
204 # B.26 Return from Trap Instruction
205 rett undef privileged
206
207 # B.27 Trap on Integer Condition Codes Instruction
208 ta undef Trap
209 tn undef Trap
210 tne undef Trap
211 te undef Trap
212 tg undef Trap
213 tle undef Trap
214 tge undef Trap
215 tl undef Trap
216 tgu undef Trap
217 tleu undef Trap
218 tcc undef Trap
219 tcs undef Trap
220 tpos undef Trap
221 tneg undef Trap
222 tvc undef Trap
223 tvs undef Trap
224
225 # B.28 Read State Register Instructions
226 rdy search hi
227 rdasr undef privileged, implementation dependent
228 rdpsr undef privileged
229 rdwim undef privileged
230 rdtbr undef privileged
231
232 # B.29 Write State Register Instructions
233 wry undef You should not need to do this
234 wrasr undef privileged, implementation dependent
235 wrpsr undef privileged
236 wrwim undef privileged
237 wrtbr undef privileged
238
239 # B.30 STBAR Instruction
240 stbar undef Memory subsystem only
241
242 # B.31 Unimplemented Instruction
243 unimp undef And neither will we...
244
245 # B.32 Flush Instruction Memory
246 flush undef Self modifying code!
247
248 # B.33 Floating-point Operate (FPop) Instructions
249 fpop1 undef Floating point
250 fpop2 undef Floating point
251 fitos undef Floating point

130

252 fitod undef Floating point
253 fitoq undef Floating point
254 fstoi undef Floating point
255 fdtoi undef Floating point
256 fqtoi undef Floating point
257 fstod undef Floating point
258 fstoq undef Floating point
259 fdtos undef Floating point
260 fdtoq undef Floating point
261 fqtos undef Floating point
262 fqtod undef Floating point
263 fmov undef Floating point
264 fnegs undef Floating point
265 fabs undef Floating point
266 fsqrts undef Floating point
267 fsqrtd undef Floating point
268 fsqrtq undef Floating point
269 fadds undef Floating point
270 faddd undef Floating point
271 faddq undef Floating point
272 fsubs undef Floating point
273 fsubd undef Floating point
274 fsubq undef Floating point
275 fmuls undef Floating point
276 fmuld undef Floating point
277 fmulq undef Floating point
278 fsmuld undef Floating point
279 fdmulq undef Floating point
280 fdivs undef Floating point
281 fdivd undef Floating point
282 fdivq undef Floating point
283 fcmps undef Floating point
284 fcmpd undef Floating point
285 fcmpq undef Floating point
286 fcmpes undef Floating point
287 fcmped undef Floating point
288 fcmpeq undef Floating point
289 fcmpeq undef Floating point
290
291 # B.34 Coprocessor Operate Instructions
292 cpop1 undef Coprocessor, implementation dependent
293 cpop2 undef Coprocessor, implementation dependent

Listing C.3: SPARC V8 architecture description

131

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	List of Code Listings
	Introduction
	Background
	Motivation
	Main Contributions
	Related Publications
	Structure of the Thesis

	Compilers and Optimisation
	Introduction
	Compilers
	Code Optimisation
	Peephole Optimisation
	Domain Complexity
	The Future of Compiler Technology
	Summary

	Superoptimisation
	Introduction
	Motivation
	The Superoptimisation Problem
	Implementations
	Massalin's Superoptimiser
	GSO: the GNU Superoptimiser
	Denali Project
	Stanford Superoptimiser
	Other Implementations

	Summary

	Answer Set Programming
	Introduction
	Origins of ASP
	History of Negation in Logic Programming
	Relationship to Prolog
	 AnsProlog Syntax
	Core Syntax
	Syntactic Extensions

	Semantics of ASP Programs
	Domain Complexity
	ASP Tools
	Grounding Tools
	Solving Tools

	Applications of ASP
	Summary

	TOAST: Total Optimisation using Answer Set Technology
	Introduction
	Motivation
	Architecture Overview: MIPS R2000
	System Overview
	Introduction
	Architectural Modelling
	Components

	Experimental Results
	Searching
	Verifying
	ASP Tool Benchmarking

	Discussion
	Summary

	A Case Study: Superoptimising SPARC V8
	Introduction
	Architecture Overview: SPARC V7/V8
	Superoptimising SPARC
	Searching
	Verifying
	TOAST System Benchmarking

	Discussion
	Summary

	buildMultiple: A Peephole Superoptimiser
	Introduction
	Motivation
	System Components
	A buildMultiple Library for SPARC V7
	Discussion
	Summary

	Concluding Remarks
	Major Contributions
	Future Work

	References
	Appendices
	AnsProlog Language Description
	Introduction
	Syntax Conventions

	AnsProlog Literals in the TOAST System
	Introduction
	Literals

	TOAST Architecture Descriptions
	Introduction
	MIPS R2000
	SPARC V7
	SPARC V8

