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Abstract 
 

 

ABSTRACT 

UNIVERSITY OF BATH - DEPARTMENT FOR HEALTH 

Thesis for the Doctor of Philosophy 

USE OF ACCELEROMETRY TO PREDICT ENERGY EXPENDITURE IN MILITARY TASKS 

Fleur Elizabeth Horner 

The overarching aim of this thesis was to enhance the prediction of physical activity energy 

expenditure (PAEE) in military personnel; specifically, improving accuracy and minimising 

obtrusiveness.  

The first experimental chapter provided a thorough assessment of the reliability and validity of the 

3DNX accelerometer. Within unit reliability (CVintra) physical activity counts (PAC) was 0.0-8.9% 

in all axes in a mechanical setting. Between unit reliability (CVinter) did not exceed 4.5%.The 

relationship between PAC and acceleration was r
2
 = 0.99 and standard error of the estimate (SEE) 

of 6 counts∙5s
-1

. During treadmill exercise, the relationship between      and PAC was linear 

(walking, r
2
 =0.65, SEE = 1.42 ml·kg

-1
·min

-1
; running, r

2
 =0.62, SEE = 3.63 ml·kg

-1
·min

-1
). 3DNX 

PAC output was valid and reliable when subjected to a physiologically relevant range of 

mechanically generated accelerations and yielded a linear relationship with       during treadmill 

walking and running. 

Chapter 7 investigated the effect of anatomical placement on PAC in order to find the most suitable 

wear location. Hip and back placements returned similar reliability (CVintra = 3.0% and 2.8% 

respectively).  Hip PAC were higher (p < 0.01) for walking with no differences observed for 

running. Indices of adiposity were related to hip PAC.  Regression analysis revealed hip and back 

PAC as significant predictors of     . Back PAC was the least variable placement. Supraspinale 

skinfold thickness explained 15% additional variance in      to PAC and reduced SEE. 

In Chapter 8, three available devices were compared to doubly labelled water (DLW) for the 

prediction of free living PAEE using a user-oriented approach. All devices underestimated PAEE. 

Actiheart-derived PAEE was not different from DLW. However, the wide absolute limits of 

agreement (LoA) indicated large individual error which was attributed to the use of group rather 

than individual calibration. 3DNX and GT3X PAEE predictions were different from DLW however 

LoA were narrower indicating the possibility of applying a correction factor in future. 

Chapter 9 was an amalgamation of ten independent cohorts in an attempt to produce a military-

specific multivariate model for the prediction of energy expenditure (EE). Stringent data reduction 

techniques were applied to a highly compliant dataset. Allometric models showed PAC, height and 

body mass were related to total energy expenditure (TEE) (p < 0.01). For models predicting TEE, 

PAC explained 4 % of the variance. For models predicting PAEE, PAC accounted for 6 % of the 

variance. The small amount of variance explained by PAC was likely due to the inability of 

accelerometers to detect EE as a result of day-to-day military activities such as load carriage. Such 

small portions of explained variance indicate that traditional accelerometry techniques are 

inadequate for use in military populations.  

In Chapter 10, an alternative approach to characterising military-specific activities was explored due 

to the minor contribution of PAC to PAEE prediction in Chapter 9. Accelerometer raw signal (100 

Hz) was used to develop a classification model which aimed to discriminate load carriage (LC) 

from unloaded ambulation during an occupationally relevant protocol (2-hours, 6.4km∙hr
-1

, 25kg 

load). Fast Fourier transformation showed differences in the frequency distribution of the signal 

between conditions; caused by differences in gait parameters. Load carriage was detected in 97.2% 

of 1-minute samples with reduced classification accuracy during the last 30 minutes. Fatigue was 

suggested as a cause of misclassification; indicated by an upwards drift in     and RPE across time. 

In conclusion, accelerometer PAC is a weak contributor to the prediction of energy expenditure in 

military populations. Accuracy could be improved by detection of load bearing activities which is 

feasible given the advancement in technology and analysis techniques. New technologies such as 

optical interferometrics could be integrated into existing military equipment to detect heartbeat and 

respiration; providing data regarding the physiological strain of training and operations. 
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1 INTRODUCTION 

In an age where diet, health and fitness articles are regularly featured in the media there 

cannot be many members of the public who have not thought about how to effectively 

manage their weight at some point during their lifetime. Although for the general 

population this often means striving to maintain a healthy weight; for populations such as 

serving military personnel, satisfying the energy balance equation is a constant challenge 

due to the rigors of military life. A sustained negative imbalance between energy intake 

and energy expenditure (EE) could lead to impaired occupational functionality for soldiers 

on operations. 

The desire to accurately assess physical activity energy expenditure (PAEE) is an 

important research goal regardless of whether the focus is health or performance-related. 

The association between physical inactivity and obesity-related ill-health is now well 

established (Pate et al., 1995) and has given rise to a sustained academic focus on physical 

activity measurements, promotion and prescription. Indeed, the majority of energy balance 

literature has been generated by health researchers attempting to understand the complex 

physical, environmental, behavioural and psychological mechanisms behind why so many 

are unable to maintain a healthy weight or indeed, why a given dietary or physical activity 

intervention succeeds or fails.  

The increased operational activity of the British military has meant that there is a renewed 

interest in quantifying the activity profile and energy demands of operations in different 

theatres, so that physical training and military field exercises can best match the physical 

demands experienced by soldiers in operational theatres. Beyond informing military 

training programmes, the successful quantification of energy expended during operations 

would better inform military feeding strategies. Energy deficits have been associated with 

reduced physical performance parameters. Guezennec et al. (1994) observed a 15% 

reduction in time to exhaustion during a cycling in a low-energy-intake group following 

five days of military exercise. No performance decrements were seen in the high-energy-

intake group. More chronically, decrements in maximal dynamic lift strength have been 

observed during UK military exercise following a period of eight weeks (Fortes et al., 

2011). In a similar 8-week study, carried out at the same training establishment as Fortes et 

al. (2011), Richmond et al. (2010) discovered a mismatch between energy intake and EE 
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amounting to a deficit of approximately 644 kcal∙day
-1

 across the 8-week observation 

period. Further, Nindl et al. (2007) found a 20 % reduction in maximal lift strength 

following a prolonged (8-week) caloric deficit of approximately 1000 kcal∙day
-1

 during US 

army ranger training. Although the link between prolonged (8-week) energy deficit and 

reductions in physical performance may be implied, there are no conclusive data showing 

that performance is maintained in those who remain in energy balance over the same 

period. If decrements in role-related performance tests following training are related 

prolonged energy deficits then this may translate to similarly impaired performance on 

operations if feeding strategies in this environment are insufficient also. At present there 

are little empirical data available documenting the energy demands of operations upon 

which to form evidence-based feeding strategies. 

While the deployment of a research team, to directly assess the energy demands of such 

operations is possible, on a large scale this is impractical, potentially dangerous and 

intrusive for the soldiers concerned. Movement sensing devices may offer a practical 

compromise whereby EE can be predicted unobtrusively without the need for deployment 

of a large civilian research team. Currently however, movement sensing technologies such 

as accelerometers have shortfalls in their application to military research as they were 

designed to characterise the physical activity of the general population rather than the 

unique activities associated with day-to-day soldiering (e.g. load-carriage). 

The overall aim of this thesis is to enhance the prediction of PAEE in military personnel; 

specifically improving accuracy and minimising obtrusiveness. 

The experimental chapters in this thesis have investigated the use of accelerometry in 

military populations with particular reference to advancing the prediction of PAEE. Initial 

pilot chapters (Studies 1 and 2) were conducted to produce a conversion factor to enable 

the inclusion of data collected using an earlier version of the 3DNX in chapter 9, and to 

evaluate the different internal processing techniques used to calculate an accelerometer 

count (Physical Activity Counts, PAC). The reliability and validity of the 3DNX 

accelerometer was then scrutinised using a controlled mechanical device, followed by 

human participants conducting treadmill exercise in the laboratory (Chapter 6). The most 

suitable anatomical attachment site for the accelerometer was then chosen by establishing 

the least variable accelerometer output from an incremental treadmill protocol (Chapter 7). 

Chapter 8 was a small-scale comparison of three commercially available devices in a free-
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living environment to evaluate their prediction accuracy in relation to PAEE. A large-scale 

multi-cohort study was then conducted within a range of military populations using 

accelerometry and the doubly labelled water technique. Data were combined with similar 

historical data to create a multivariate model for the prediction of PAEE from PAC 

(Chapter 9). Due to the weak relationships revealed between PAC and PAEE in Chapter 9, 

a novel signal processing technique was employed to identify the unique signal features 

associated with load carriage; a common military activity for which PAEE is frequently 

underestimated by conventional accelerometers (Chapter 10). In Chapter 11 the results 

from the various experimental chapters are summarised, limitations highlighted, potential 

applications discussed and future research directions presented. 
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2 REVIEW OF THE LITERATURE: ESTIMATING ENERGY 

EXPENDITURE IN MILITARY POPULATIONS 

The measurement of human EE is not a new concept. In the 1800s Lavoisier and Seguin 

discovered that larger people consumed more oxygen than their smaller counterparts and 

that standing up and moving around required more oxygen than sitting down. It was during 

this series of experiments that the method of indirect calorimetry was established; a 

method still used as a benchmark for quantifying human EE to this day (Ainslie et al., 

2003). The technology associated with indirect calorimetry has become markedly more 

sophisticated since the 18
th

 century work of Lavoisier and Seguin however the requirement 

of the participant to be either confined in a chamber or even linked to a portable gas 

analysis system makes it near impossible to capture the complexity of activities of daily 

living (Speakman, 1998). Multiple attempts have been made to find an unobtrusive method 

of quantifying the energy demands of free-living activity. In this review of the literature, 

the components of EE will be explained followed by an outline of the nature of military 

training in order to provide context for the remainder of the review. A number of criterion 

measures of EE will then be introduced and evaluated, followed by a critical appraisal of 

contemporary methodologies employed to predict physical activity EE. Finally, recent 

advancements in the field of accelerometry and future directions will be discussed.  

2.1 COMPONENTS OF HUMAN ENERGY EXPENDITURE 

For the purpose of this review it is necessary to first distinguish between physical activity 

and EE. Total energy expenditure (TEE) is made up of three components; basal metabolic 

rate (BMR), dietary induced thermogenesis (DIT) and physical activity energy expenditure 

(PAEE). Basal metabolic rate, commonly recognised as the minimum amount of energy 

required to sustain life, is usually the largest component of TEE and is influenced mainly 

by body size and more specifically fat-free mass (Bluck, 2008; Kleiber, 1947; Schofield, 

1985). Basal metabolic rate is the component that explains the largest proportion of TEE, 

except in those who are regularly participate in high intensity and long duration activities 

(De Lorenzo et al., 1999). Often it is not possible to measure BMR due to equipment 

limitations as an accurate estimate is only obtained when a participant is able to sleep in a 

specially designed respiration chamber (i.e. a calorimeter), where oxygen (O2) uptake and 

carbon dioxide (CO2) production can be accurately measured. The literature tends to use 
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BMR and resting metabolic rate (RMR) terminology interchangeably however in reality, as 

most studies have not measured BMR overnight in a respiration chamber, the resting 

component of TEE will be referred to as RMR from here forward. 

The energetic cost of utilisation of dietary fat, carbohydrate and protein is commonly 

termed dietary induced thermogenesis (DIT). Dietary induced thermogenesis is normally 

calculated by dividing the increase in EE above basal fasting level by the energy content of 

the food ingested (Westerterp et al., 2008). Although a relatively small portion of TEE, 

DIT can vary depending upon the amount of dietary protein consumed habitually by the 

study population (Carlson, 1997). It is widely accepted that DIT accounts for 

approximately 10 % of TEE based on a standard western diet (Westerterp, 1999).  

Physical activity energy expenditure is the increase in EE above resting levels that is due to 

body movement produced by skeletal muscle contraction (Westerterp, 2009). It is usually 

expressed independent of inter-individual differences in resting metabolic rate; the lowest 

level of energy expended at rest.  At present it is difficult to accurately translate human 

movement into units of PAEE due to its varied and complex nature. This task is 

particularly challenging in free-living populations, often due to the lack of an appropriate 

criterion measure (Westerterp, 2009).  

Following an introduction to common criterion measures, this review will evaluate the 

various validated methods for the prediction of TEE and PAEE, particularly in relation to 

potential military applications. 

2.2 THE PHYSICAL DEMANDS OF MILITARY OCCUPATIONS 

A career in the military is typically regarded as a physically demanding occupation. The 

unique military-specific activities that are completed habitually by recruits and trained 

soldiers necessitate that a practical and pragmatic approach be taken during this research 

project. The military aspect of this project will inform the study design of the experimental 

chapters and the feasibility of the experimental measures will be an ongoing consideration. 

 In the United Kingdom male and female recruits can begin a career in the military at the 

age of 16 as a regular soldier and begin officer training at 17 yrs 9 months. All regular 

soldiers (excluding infantry) complete the common military syllabus for recruits (CMS(R)) 

prior to their phase 2 training which includes training specific to their chosen trade i.e. 

engineer, nurse, chef.  



Chapter 2 Review of the Literature 

 

 

 
6 

 

The 14-week CMS(R) course comprises activities such as drill, physical training (PT), 

military exercise and adventurous training. Richmond et al. (2012) conducted a physical 

demands analysis of the course and reported mean daily physical activity levels 

(TEE/BMR) as 2.2 ± 0.2 and 2.3 ± 0.2 for males and female recruits respectively. These 

values are regarded as “high” (> 1.85) according to the classification scale proposed by 

Bouten et al (1996) for use in the general population.  

Infantry soldiers complete the entirety of their training at the Infantry Training Centre 

(ITC) in Catterick. A physical demands analysis of the 24-week Combined Infantry Course 

(CIC) was conducted by Wilkinson et al (2008b). During this course, which is necessarily 

arduous, recruits completed a syllabus comprising basic infantry skills such as weapons 

training with the addition of individual and team events, prolonged periods of load 

carriage, a 10-mile speed march and a log race.   Mean daily TEE values were reported as 

approximately 4,700 kcal. Tharion et al. (2005) reported a similar mean value for energy 

expended by military personnel in the United States (US) (4,600 kcal); including data from 

military support staff based mainly in the garrison. However, the range of values was 

between 3109 and 7131 kcal per day. At the higher end of the spectrum, Marines 

completing the US Marine Corps Infantry Officer Course expended 5377 kcal per day and 

although lower than other values cited, recruits completing the US Army Ranger course 

sustained energy expenditures of ~4000 kcal per day for 65 days of continuous training. 

Officer training in the UK consists of 44 weeks of training split into three terms of 14 

weeks and two weeks of adventurous training (Harwood et al., 1999), unfortunately there 

are no published data available relating to typical amounts of energy expended during this 

commissioning course. 

Once military personnel have completed their respective training courses they enter a 

phase of pre deployment where their company is posted to a military base. Day to day 

activities include PT, personal administration, weapons training, sporting events and short 

duration military exercises in preparation for deployment on operations. When mean 

military EE values (~4600 kcal) are compared to those of civilians similar in age (Black, 

1996), civilians appear to expend 38% less energy on a daily basis. It is clear that during 

periods of military exercise (where the majority of data are available), daily EE is likely to 

be much greater than for most civilian jobs. However, it is difficult to compare the 

demands of day to day military life as there are few data available for periods of time spent 
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in camp or on garrison when working days are shorter in duration and physical activity is 

less frequent and intense. Furthermore, a company comprises of a combination of trades 

and support staff, not solely infantry soldiers or marines which results in highly variable 

habitual activity. Demanding civilian occupations such as firefighting can also illicit EEs 

of ~4000 kcal per day during discreet arduous tasks such as wild fire suppression (Ruby et 

al., 2002). Therefore, when age and job type are considered, TEE for military and civilian 

personnel can be comparable (Tharion, et al., 2005). 

What distinguishes military life from other occupations are the physical activities that are 

encountered on a daily basis. Activities cited in the literature as the most frequently 

occurring are walking, marching with a backpack, lifting and lowering loads, lifting and 

carrying loads, digging and running (Rayson et al., 2000; Wyss et al., 2010). This unique 

combination of habitual activities is not encountered by the general population on a day to 

day basis. Therefore, the quantification of EE requires careful consideration in terms of the 

experimental procedures and the instruments used. 

2.3 CRITERION MEASURES OF ENERGY EXPENDITURE 

2.3.1 Direct Calorimetry 

Directly measuring EE involves quantifying heat production and heat loss associated with 

the combustion of fuel in the form or carbohydrate, protein or fat (Westerterp, et al., 2008). 

Although accurate, direct calorimetry is uncommon in the exercise physiology literature as 

it requires a participant to remain unaccompanied in a room-sized calorimeter throughout 

the duration of the observation period. Therefore, as direct calorimetry is not an 

appropriate criterion measure for research undertaken in this thesis, this review will focus 

on more applicable measures; all of which are indirect. 

2.3.2 Indirect Calorimetry 

Indirect calorimetry measures respiratory gas exchange which is then used to calculate EE 

(Seale et al., 1990). Although an indirect measure, Seale et al (1990) reported that direct 

and indirect calorimetry were equivalent when using a whole room calorimeter. Indirect 

calorimetry techniques are more adaptable than direct calorimetry. One of the most 

common indirect calorimetry methods is the Douglas bag technique which was first cited 

in 1911 (Douglas, 1911) and is described in detail by Hopker et al. (2012). Despite being 
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over 100 years old, this technique is still commonly referred to as the ‘gold standard’ for 

assessing oxygen uptake (metabolic rate) and EE in the laboratory (Carter et al., 2002; 

Gladden et al., 2012). Recently, Hopker et al. (2012) examined the reliability of repeated 

gas sampling and reported a coefficient of variation of 0.5% for both CO2 and O2 when 

best practice is adhered to. 

During the Douglas bag sampling procedure the participant wears a mouthpiece and nose 

clip while a one-way valve ensures that only expired air is collected into a Douglas bag. 

The volume of expired air is measured and a sample obtained to measure O2 and CO2 

concentrations. Volume of inspired air and subsequent oxygen uptake (    ) is then 

calculated using the Haldane transformation (Haldane, 1912) and the Fick equation (Fick, 

1870). Providing that steady-state values for      and CO2 production (     )  are known, 

the quantities of fat and carbohydrate oxidised per minute can be calculated and EE 

estimated (Jeukendrup et al., 2005).  

Although the Douglas bag technique is mainly confined to laboratory studies, online 

portable systems offer breath by breath pulmonary gas exchange measurements using 

equipment that comprises a face mask and a backpack-style harness weighing 

approximately 600g (Ainslie, et al., 2003). Validation studies have reported significant 

differences between      and       values measured by portable systems and Douglas 

bags during running (Duffield et al., 2004) and cycling (McLaughlin et al., 2001). The 

overestimation of the portable system reported by Duffield et al. (2004) appears to be 

consistent (indicated by intraclass correlation coefficients of between 0.7 and 0.9). 

Although the Douglas bag method is preferable in a laboratory setting, portable systems  

provide an appropriate measurement of respiratory gas exchange (Meyer et al., 2001). 

Although such systems are being continuously updated, indirect calorimetry is not suitable 

for assessing EE in true free-living populations due to its acute interference with everyday 

activities and its limited deployment time. 

2.3.3 Doubly Labelled Water (DLW) 

The Doubly labelled water (DLW) method is a stable isotope-based technique that 

estimates whole-body CO2 production and hence EE (Speakman, 1997). First reported for 

use in humans by Schoeller and van Santen (1982), the DLW technique is a method of 

assessing TEE in a free-living populations. Following a known oral dose of water enriched 
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with stable isotopes of hydrogen (
2
H) and oxygen (

18
O), the isotopes mix with the more 

abundant forms of the hydrogen (
1
H) and oxygen (

16
O) found in the endogenous body 

water pool. As energy is expended in the body, CO2 and water are produced. Hydrogen is 

eliminated from the body via urination, sweating and other insensible losses. 
18

O is also 

lost from the body via these routes with the addition of loss as CO2 during exhalation. 

Consequently, as both isotopes are ingested simultaneously,
 
their rate of elimination will 

differ, with the 
18

O being eliminated at a faster rate than the 
2
H (Speakman, 2005). Urine 

samples collected over a series of days (typically 7-14) throughout the period of 

observation therefore provide snapshots of the degree of ‘label’ remaining in the total body 

water pool (Bluck, 2008). The difference between the elimination of 
18

O and 
2
H reflects 

the rate at which CO2 is produced. Coupled with an assumed mean respiratory quotient 

value of 0.85 based on a standard western diet, EE can be estimated (Westerterp, 1999).  

The DLW technique is considered the ‘gold standard’ for measuring TEE, but it is not 

without its limitations. In field studies where the respiratory quotient is assumed rather 

than calculated from the food quotients of recorded dietary intake then predicted values are 

likely to be within approximately ±2 % of the true group TEE value (Black et al., 1986). 

This error is increased if a researcher reports PAEE when RMR has been predicted rather 

than measured. If RMR is not measured then a standard error (Hopkins, 2000) of 

approximately 8% of PAEE is expected when using the Schofield RMR prediction 

equation in a population of young males (van der Ploeg et al., 2001). The DLW technique 

is expensive to implement due to the high cost of the stable isotopes and associated 

analyses, particularly given the specialist equipment and expertise needed for the 

assessment of isotope ratios in specific body fluid pools via isotope ratio mass 

spectroscopy (Ainslie, et al., 2003). Although the technique provides an accurate estimate 

of mean EE over an extended period of time (7-14 days), very little detail concerning 

frequency, duration or intensity of activity can be acquired (Plasqui et al., 2007). Despite 

these limitations the technique still provides an appropriate criterion measure for the 

prediction of mean free-living EE in humans (Bouten, et al., 1996). 

2.4 PREDICTION OF ENERGY EXPENDITURE  

Where it is not feasible to use either the DLW or Douglas bag technique, researchers have 

strived to develop user-friendly, objective methods of predicting EE. The development of 

prediction tools normally involves a validation study using one of the criterion measures 
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above. This section will provide a systematic review of the available prediction tools 

followed by an introduction to the more recent advances in technologies.  

2.4.1 Questionnaires 

Cheap and easy to administer, self-report activity questionnaires and diaries are the most 

common tool for assessing physical activity (Westerterp, 2009). Despite their continued 

wide spread use in large population studies, the reliability and validity of questionnaires to 

measure physical activity is limited (Shephard, 2003). This is demonstrated by Sarkin et al. 

(2000) who reported that the proportion of the United States population meeting fitness 

guidelines in the year 2000 ranged from 4% to 70% depending on the self-report method 

used.  Compared to DLW derived estimations, questionnaires generally show low 

correlations systematically underestimating in some cases where actual physical activity 

levels are high (Maddison et al., 2007) and overestimating (Koebnick et al., 2005) EE in 

others where actual physical activity levels are low. Questionnaires may be useful to 

characterise PAEE at the group level and rank groups in order of activity level but it is 

generally accepted that there is considerable error at the individual level (Bonnefoy et al., 

2001). There are no studies where self-reported physical activity has been validated in a 

military population but the indication from the existing literature is that questionnaires or 

activity diaries would not adequately characterise the energy demands of military training 

or operations. 

2.4.2 Heart Rate 

Heart rate (HR) is closely related to EE during exercise within a range of approximately 

90-150 b·min
-1

 (Rennie et al., 2001). It is a relatively easy method to administer and is 

used widely as a measure of physiological strain (Wilkinson, et al., 2008b). At low levels 

of physical activity there is a weak relationship between HR and EE where increases in HR 

are not necessarily accompanied by similar increases in EE (Luke et al., 1997). This is 

probably due to changes in stroke volume associated with change in posture; however, 

particularly at low levels of physical activity, HR is also affected by external factors such 

as ambient temperature, clothing, high humidity, altitude, dehydration and illness (Achten 

et al., 2003). Such external factors can lead to changes in HR without associated changes 

in   O2 causing a dissociation in the nature of relationship between HR and EE (Rennie, et 

al., 2001).  
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It is also difficult to estimate the EE associated with activity that is intermittent in nature 

using HR monitoring. Heart rate tends to lag behind changes in work rate meaning that an 

increase or decrease in work rate will not immediately result in a concurrent increase in 

HR to the level that would have been reached following steady state exercise at that same 

intensity (Achten, et al., 2003). 

When using HR to predict EE there are a number of ways to interpret the data. The most 

promising method is known as the flex HR method (Ainslie, et al., 2003). First reported by 

Spurr et al. (1988) this method requires each individual to record both resting HR values 

and perform an incremental exercise test. This allows the development of an individual 

HR-     calibration curve. The flex HR is found by averaging the highest HR observed at 

rest and the lowest HR observed during light activity (Livingstone, 1997). During the 

monitoring period, any HR values recorded below the flex HR assume that the participant 

is at rest and resting metabolic rate is used to determine EE for that time period. When any 

values above flex HR are recorded then the individual HR-     curve is used to predict 

expended energy. 

 When comparing measured 24-hour EE and values predicted using flex HR there were no 

significant differences between the mean values (Spurr, et al., 1988). Similarly when the 

flex HR method was compared to DLW measurements of EE the group mean estimate 

from flex HR was within 10% of measured values (Livingstone, 1997). However, when 

examined on an individual basis the results of both studies showed that the maximum 

deviations were +20 % to -15% of the 24-hour calorimetry values and +19 % to -17 % of 

the DLW determined values.  

In summary, HR response is well correlated with physical activity EE but it can be affected 

by factors other than movement and requires individual calibration. The variation in HR 

values caused by altitude, ambient temperature and hydration coupled with the need for 

individual calibration means the HR flex method may not be appropriate for use in military 

populations.  

2.4.3 Pedometry 

Pedometers are worn at the hip and reliably count the number of steps accumulated during 

the day (Schneider et al., 2004). Several pedometer models are commercially available 

(Schneider, et al., 2004). If stride length is known then distance travelled via ambulation 
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can also be inferred (Plasqui, et al., 2007). Pedometers have been shown, in the short term 

initially, to act as valuable exercise behaviour change tools (Tudor-Locke et al., 2009), 

however they appear to show limited promise when used as a tool to predict EE. During 

low-moderate intensity scripted exercise, Thompson et al. (2006) found that step counts 

measured by pedometry did not provide a satisfactory estimate of criterion EE. Activities 

of daily living involve more complex movement patterns than both ambulation and 

scripted exercise; as such the applicability of pedometers to assess free-living activity is 

limited. Gardner and Poehlman (1998) assessed the validity of a hip-mounted pedometer 

against DLW in older adults and found a weak relationship between steps·day
-1

 and free-

living PAEE (r
2
 = 0.38 SEE = 124 kcal.day

-1
) compared to the relationship of r

2
 = 0.70 

found between accelerometer counts and PAEE in the same population. Overall it appears 

that although pedometers can accurately measure ambulation and may be a valuable tool 

for motivating individuals to initially engage in exercise behaviour, step counts cannot 

provide detail regarding the frequency, duration and intensity of exercise and cannot be 

used to accurately predict EE. 

2.5 ACCELEROMETRY 

Movement sensors and more specifically body-borne accelerometer-based devices began 

to feature in physical activity research about thirty years ago (Montoye et al., 1983; Wong 

et al., 1981). Accelerometers can provide temporal information about the total amount, 

frequency, intensity and duration of physical activity (Westerterp, 2009). Two main types 

of accelerometer are in widespread use in physical activity research: uniaxial and 

increasingly, triaxial. Uniaxial accelerometers register movement in the vertical axis only 

and triaxial accelerometers register movement in the vertical, horizontal and mediolateral 

axes. A triaxial accelerometer ‘count’ is commonly derived in three ways. First, summing 

the integral of the modulus of acceleration from each axis (Bouten et al., 1997), second, 

summing the integral of the route mean squared acceleration from each axis (Cook et al., 

2011; Schutz et al., 2002) and third, summing the vector magnitude of acceleration from 

each axis (Esliger et al., 2010; Sasaki et al., 2011). The first approach is that used by the 

3DNX accelerometer which is the unit used in the first three chapters of this research 

programme, but comparative analyses suggest there is little difference in the total counts 

derived (see Chapter 5).  
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Widespread use of accelerometry in population-based studies eliminates the extensive 

staffing required for observation methods (McKenzie, 2010) and avoids recall problems, 

and removes subjectivity and bias associated with self-report survey methods. However, 

the quality of information received from accelerometers is only as good as the reliability 

and validity of the devices themselves (Esliger et al., 2006). 

The reliability of commercially available accelerometers is mixed. Some units such as the 

widely-used Actigraph and Actical return coefficients of variation of below 10% intra-unit 

(Esliger, et al., 2006). Whereas others such as the triaxial RT3 can vary up the 100% from 

day to day when subjected to the same testing (Esliger, et al., 2006). The reliability of the 

3DNX accelerometer, the device available for this project, will be thoroughly examined to 

form an important first stage of this research programme.  

2.5.1 Using Accelerometry to Predict Energy Expenditure 

Laboratory studies have shown close agreement between activity counts and EE for 

ambulation and other treadmill-based activities (Welk et al., 2000). Despite this close 

agreement for both types of accelerometer in laboratory studies, it is still difficult to 

accurately translate accelerometry data into units of expended energy (Chu et al., 2007). 

During free-living activities it appears that the greater sensitivity of the triaxial 

accelerometer to movement in different planes leads to better prediction of EE than 

uniaxial accelerometers in a free-living environment (Campbell et al., 2002; Plasqui et al., 

2005; Welk, et al., 2000). It is widely accepted that waist-mounted accelerometers tend to 

underestimate EE during free-living conditions, mainly due to the technology’s limited 

ability to detect increased energy cost from load carriage, upper body movement and 

changes in surface or terrain (Hendelman et al., 2000; Trost et al., 2005). Nonetheless, it 

remains that triaxial accelerometry is a promising prospect in terms of objectively 

quantifying TEE and PAEE. 

It is difficult to compare the individual contribution of accelerometer output to the 

estimation of EE between studies as few report PAC data alone. Most data are reported in 

combination with anothropometric variables. A summary of DLW validated studies are 

shown in Table 2.1. 
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Table 2.1 A comparison of accelerometer validation studies using the DLW technique. %r
2
 refers 

to the variance in the dependent variable explained by Counts∙day
-1 

alone. 

Relatively few triaxial accelerometers have been validated against DLW. Those that have, 

often show large prediction error with low EEs commonly being over-predicted and high 

EEs under-predicted at the level of the individual. The early work of Bouten et al. (1996) 

reported that the output from the triaxial Tracmor explained 6 % of the variance in TEE 

measured by DLW with a standard error of the estimate of 18 %. Maddison et al. (2009) 

report an additional 4 % explained variance in TEE measured by DLW when RT3 PAC 

were included in a model containing gender, body fat (kg) and RMR. Bonomi et al. (2010) 

report the most favourable results from the triaxial Tracmor (Phillips New Wellness 

Solutions; www.directlife.phillips.com). Validated against measured TEE, the Tracmor 

returned an explained variance of 76% and standard error of the estimate of 0.9 MJ.day
-1

 

(7.4 %) when combined with measured RMR. Carter et al. (2008) also reported similar 

figures with the triaxial 3DNX
TM

 (Biotel, Bristol, UK) explaining variance of up to 35 % 

using accelerometer counts alone and up to 78 % when accelerometer counts were 

combined with body composition variables. There is difficulty comparing studies using 

different devices due to the non-equivalence of PAC values (Welk et al., 2012), and the 

inconsistency in reporting prediction error. To the author’s knowledge, none of these 

Device Study 
Dependent 

Variable 
Independent Variable r2 %r2 

Actigraph Masse et al. (2004) TEE BM, Counts∙day-1 38% 5% 

Actigraph Masse et al. (2004) TEE FFM, Counts∙day-1 43% 2% 

3DNX Carter et al. (2008) TEE FFM, Counts∙day-1 78% 35% 

Tracmor Plasqui et al. (2005) TEE Age, BM, H, Counts∙day-1 83% 19% 

TracmorD Bonomi et al. (2010) TEE BM, Counts∙day-1 54% 23% 

Actigraph Assah et al. (2009) PAEE∙kg-1 Counts∙day-1 14% 14% 

Actigraph Masse et al. (2004) PAEE BM, Counts∙day-1 9% 5% 

Actigraph Masse et al. (2004) PAEE FFM, Counts∙day-1 12% 4% 

Tritrac R3D Jacobi et al.(2007) PAEE Counts∙day-1 N.S N.S 

Tracmor Plasqui et al. (2005) PAEE Age, BM, H, Counts∙day-1 81% 33% 

TracmorD Bonomi et al. (2010) PAEE BM, Counts∙day-1 46% 16% 
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accelerometer-derived prediction equations have been validated against DLW in a truly 

independent cohort.  

2.6 ADVANCES IN ENERGY EXPENDITURE PREDICTION USING 

ACCELEROMETER-BASED DEVICES  

2.6.1 Combined sensors 

In an attempt to address the shortcomings of accelerometry, researchers identified the 

potential for combining multiple sensor outputs and integrating accelerometry with 

physiological data such as HR in order to capture the physiological strain associated with 

behaviours that are undetectable by accelerometry alone (Lamonte et al., 2001).  

While other studies have investigated the integration of HR and movement sensing 

(Rennie, et al., 2001; Su et al., 2009); the Actiheart (CamnTech, Cambridge, UK) was the 

first device capable of integrating HR and accelerometry in a single unit (Brage et al., 

2005).The technical specifications of the Actiheart are described in chapter 3 and 

elsewhere (Brage, et al., 2005). Depending on the intensity of the activity being performed, 

HR and accelerometer counts contribute in varying proportions, along with gender and HR 

above sleep, to the minute-by-minute calculation of expended energy via a branched 

equation. The development of the branched equation model used for the prediction of EE is 

outlined by Brage et al.(2004).  

The Actiheart has shown encouraging results when used to predict free-living PAEE. 

Crouter et al (2008) aimed to extend the laboratory-based work of Thompson et al. (2006) 

by comparing PAEE values generated by the Actiheart versus those generated from a 

portable indirect calorimeter. Following a series of 18 scripted “free-living” activities, the 

authors reported that when using a group calibration method, PAEE predicted using the 

Actiheart was only significantly different to PAEE generated from the Cosmed K4b
2
 in 

three activities. Since the study by Crouter et al. (2008) there have been few validation 

studies conducted in free-living populations (Spierer et al., 2011), and only one discovered 

using the DLW method as a criterion measure. Assah et al. (2011) evaluated the validity 

and accuracy of the actiheart in sub-saharan adults. The mean bias between measured and 

predicted PAEE was not significant, however the 95% limits of agreement were large, 

particularly in rural populations when individual calibration was not performed (-84.1, 

+52.9 kJ∙kg∙d-1
). The authors attributed the wide limits of agreement to the increased 
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digging, lifting and load carrying associated with rural activities resulting in heart rate 

responses different to that of the group calibration equation. However, the premise of a 

combined HR and accelerometry device is that the HR component can account for such 

activities.  Whether the Actiheart would be suitable for use within military populations 

remains to be established. However, due to the theoretical potential of integrating HR and 

accelerometry for characterising activities where increases in EE are not accompanied by 

comparative increases in movement (e.g. load carrying), the Actiheart will be considered 

alongside other methodologies for use in this research programme. 

Other combined sensors validated in the literature includes the multi-sensor IDEEA 

(Minisun, CA) which was able to predict EE for steady state activities with 95% accuracy 

following a strict laboratory protocol (Zhang et al., 2004). The multi-sensor ShakeNet 

(CSEM, Switzerland) also returned impressive prediction accuracy even within a free-

living population. Rumo et al. (2011) compared ShakeNet-derived values of PAEE to those 

derived using the DLW technique. This system, which combines two triaxial 

accelerometers (upper arm and upper thigh) with HR, predicted PAEE with a standard 

error of 9%. The strength of this system was its ability to recognise seven common 

activities of daily living via unique signal features and apply individual regression 

equations to each epoch when these activities were detected. Sensors such as these are 

clearly more accurate than traditional waist-mounted accelerometers however have limited 

ecological validity as they are likely to be too burdensome for use in the field, particularly 

in the military. 

2.6.2 Alternative Accelerometer processing techniques 

The most recent accelerometry research has begun to recognise the value of the rich raw 

signal an accelerometer can capture. The increased memory of newer devices means they 

are capable of storing the raw, unfiltered acceleration pattern for extended periods (Intille 

et al., 2012). A number of different processing techniques have been proposed in a move 

away from using the relationship between the arbitrary accelerometer ‘count’ and 

expended energy. Reporting accelerometer output in SI units (g or m∙s2
) has been actively 

encouraged by world leaders in the accelerometry field (Freedson et al., 2012). Reporting 

accelerometry-derived data in such a way improves accuracy, utility and allows 

comparison between devices more readily (Heil et al., 2012; Intille, et al., 2012).  
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The ability to capture raw accelerometer data has led some authors to embark on more 

sophisticated methods of predicting PAEE and even detecting the types of activity a person 

is performing (Bonomi et al., 2009a). The principle being that the raw accelerometer signal 

contains useful information beyond the mean (or total) acceleration (Staudenmayer et al., 

2012). No universal standard exists for transforming raw activity monitor data into units of 

EE (Heil, et al., 2012). Historically the majority of studies have used linear models to 

predict TEE and PAEE (Lyden et al., 2010). This appears an over-simplistic approach as 

the relationship between activity counts and AEE is known to vary according to the type of 

activity (Midorikawa et al., 2007). Thus, prediction models that account for the type of 

activity performed could result in more accurate estimates of EE (Bonomi, et al., 2009a). 

Crouter et al. (2006) recognised the shortcomings of linear-style prediction models and 

proposed a two-step procedure. These authors observed that locomotion returned 

consecutive 1-second count values with a relatively low coefficient of variation as opposed 

to less rhythmic activities. This distinction allowed the authors to first classify each minute 

of counts as locomotion or not and then apply specifically calibrated equations to estimate 

metabolic equivalent (MET) values per minute (Staudenmayer, et al., 2012). This approach 

reduced the root mean squared error associated with predicted MET values by 50% 

compared to simple linear regression methods employed most famously by Freedson et al. 

(1998). Rothney et al. (2010) validated the two-regression model in an independent free-

living sample using the DLW technique as a criterion measure. At a population level the 

prediction of TEE was not significantly different from DLW-derived values with a mean 

difference (±SD) of 5.67 ± 16%. The range was -20.0 to 32.3% indicating large prediction 

error at the individual level. As the detailed raw accelerometry signal was not available to 

Crouter et al. (2006), the range of activities that could be identified was limited and may 

cause the large prediction error at the individual level. Regardless, this early methodology 

has been reported as an intuitive first step in advancing the analysis of accelerometer data 

(Staudenmayer, et al., 2012).  

2.6.3 Activity classification from accelerometer data 

Exploiting the accelerometry signal beyond the mean (or total) acceleration per minute or 

even per second is a promising route for improving the prediction of PAEE in military 

populations. The activity profile of military personnel varies markedly from that of the 

general population however, methodologies such as artificial neural networks (Rothney et 
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al., 2007; Staudenmayer et al., 2009; Trost et al., 2012), decision trees (Karantonis et al., 

2006; Schutz, et al., 2002) and bayes classifiers (Long et al., 2009) may be adapted for use 

in this unique population.  

To date, using accelerometry to predict PAEE within military populations has been 

challenging due to the amounts of load carriage and resistance exercise performed. For 

example, soldiers are expected to perform frequent assessments involving load carriage 

during training (Rayson, et al., 2000), and repeated bouts of load carriage during 

operations (McCaig et al., 1986); activities with associated energy demands that are widely 

recognised as problematic for accelerometers to fully capture (Hendelman, et al., 2000).  

Recently, Wyss and Mader (2010) proposed a method of identifying common military 

tasks through a combination of body-fixed sensors, such as the GT1M accelerometer 

(Actigraph, Fort Walton, FL), and HR in a similar approach to that of Rumo et al. (2011) 

introduced in section 2.6.1. Their algorithm aimed to identify some of the most frequently 

performed military tasks including walking, marching with a backpack, running, weapon 

handling and lifting and lowering loads. Although the classification algorithm assigned a 

fixed kilocalorie per minute value for each activity and did not allow for performing each 

task at variable intensities, predicted free-living PAEE was not significantly different to 

measured PAEE during a randomly chosen 90-minute snapshot of a daily military routine 

(Wyss et al., 2011). Of note was the inability of the classification algorithm to detect 

marching with a backpack without the output from an additional sensor located on the 

backpack itself. 

Although these two military-specific studies, took important steps forward in the 

characterisation of military routines, the use of multiple sensors increases user burden and 

may place restrictions on activities performed habitually (Long, et al., 2009). Long et al. 

(2009) used signal features from a single, waist-mounted accelerometer-device to identify 

walking, running, driving, cycling and ‘sports’. The authors trained a Bayesian classifier 

and cross-validated the model using a leave-one-out method. The classifier was reported as 

79.5% ± 11.6% accurate following cross-validation. Although not military-specific, this 

study highlights the potential of using a single waist-mounted accelerometer to identify 

different activities. Transferring a similar methodology to military-specific activities could 

provide a solution to the burden of wearing multiple sensors. In a similar study, Wang et al 

(2009) also used a classification-style model, based on 19 salient features of a 50Hz 
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triaxial accelerometer signal, to determine four different modes of ambulation. In this 

study, an overall accuracy of 90.9% was achieved when a Gaussian Mixture Model 

classifier was used to determine inclined walking of 4.8 and 17.3% from declined walking 

at the same gradients.  Most recently, Zhang et al. (2012) used a an accelerometer 

capturing raw signal (80 Hz) attached at the waist and the wrist to classify sedentary, 

household, walking and running activities in a laboratory setting. The fast fourier transform 

(FFT) and wavelet decomposition analysis were capable of discriminating the activities 

with up to 99% accuracy. 

Loaded marching has been associated with a distinctive forward trunk lean (Majumdar et 

al., 2010) and an increase in stance phase of stride, double support time and pelvic rotation 

(Birrell et al., 2009).  These kinematic changes that occur when an individual carries a 

military load could be reliably and significantly different enough from normal gait to 

confer with consistently different accelerometer signals when compared to normal 

ambulation. 

Comparing the technical merits of different classifier methodologies is outside the scope of 

this review; however, Zhang et al (2012) compared fives types of classifier in their recent 

publication and found their classification accuracies of physical activities to be similar. 

What is apparent is that salient features of a raw signal generated by a single, waist-

mounted accelerometer device can be used to identify a range of activities. It is feasible 

that a classification-style model could be trained to identify military-specific activities such 

as load carriage, given the distinctive kinematics associated with this activity. Accurate 

identification of load carriage in the controlled environment of a laboratory would be an 

important first step towards to a more accurate estimation of the frequency and duration of 

performing such activities in the field and ultimately, improved PAEE estimation during 

training and on operations. 

2.7 SUMMARY OF THE LITERATURE 

The increased operational activity of the British Army has led to a renewed interest in 

quantifying the physiological demands of operations (Section 2.1). A suitable tool for 

estimating EE would help inform feeding strategies as sustained energy imbalances and 

performance decrements have been reported. There is no shortage of studies aiming to 

improve the prediction accuracy of tools for estimating EE. Questionnaires, HR, 

pedometry and accelerometry have all been used in health research to quantify TEE and 
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PAEE with varying degrees of success although few of such tools have been validated in a 

military population (Section 2.5). 

 Accelerometry is widely used to quantify TEE and PAEE in health research however at 

best, PAC alone can only account for 35% of the variance in TEE and 33% of the variance 

in PAEE (Table 2.1). This is surprising given that theoretically, accelerometers measure 

the body accelerations associated with the active component of daily EE. There are little 

data available regarding the prediction of free living PAEE specific to military populations; 

however, the failure of Carter et al (2008) to find a significant relationship between PAC 

and PAEE suggests that the participants were performing activities that the devices were 

unable to fully detect.  

Combined HR and accelerometry sensors were developed on the basis that the HR 

component of such devices can detect the strain associated with activities an accelerometer 

cannot register (Section 2.6.1). Mean data are often not significantly different to measured 

PAEE however 95% LOA can be wide, particularly if individual calibration has not been 

performed. Further investigation and comparison of the ability of stand-alone 

accelerometers versus combined accelerometry and HR devices to predict PAEE in 

military populations has not yet been conducted. 

Recently, there has been a shift in the direction of accelerometry-based research which 

may address some of the difficulties associated with using traditional accelerometer 

methodologies in military populations. Alternative processing techniques have been 

discussed in section 2.6.2 however there are little data available that are military specific. 

Wyss and Mader (2010) developed a novel activity recognition technique using military 

participants. However, the multi-sensor device combined the output from HR and two 

further accelerometers. This limits the broader use of such a device due to its user burden.  

The potential of the raw accelerometer signal from a single device (pre processing) has 

been recognised and the research focus advocated by subject matter experts is centred on 

using unique signal features to identify activities of daily living. Although in its infancy, 

successful recognition of activities of daily living using accelerometer signal features could 

be applied to military specific activities such as load carriage that traditional accelerometer 

methodologies cannot detect (Section 2.6.3).  
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3 GENERAL METHODS 

This chapter introduces methods common to multiple studies and the procedures followed 

so that repetition in subsequent chapters is avoided. 

3.1 DOUBLY LABELLED WATER (DLW) 

The Doubly labelled water (DLW) method is a stable isotope-based technique that 

estimates whole-body CO2 production and hence EE (Speakman, 1997). First reported by 

Schoeller and van Santen (1982), the DLW technique is a method of assessing TEE in a 

free-living individual. Following a known oral dose of water enriched with stable isotopes 

of hydrogen (
2
H) and oxygen (

18
O), the isotopes mix with the more abundant forms of the 

hydrogen (
1
H) and oxygen (

16
O) found in the endogenous body water pool. As energy is 

expended in the body, CO2 and water are produced. Hydrogen is eliminated from the body 

via urination, sweating and other insensible losses. 
18

O is also lost from the body via these 

routes with the addition of loss as CO2 during exhalation. Consequently, if both isotopes 

are ingested simultaneously,
 
their rate of elimination will differ with the 

18
O being 

eliminated at a faster rate than the 
2
H (Speakman, 2005). Urine samples collected over a 

series of days throughout the period of observation provide snapshots of the degree of 

‘label’ remaining in the total body water (TBW) pool (Bluck, 2008). The difference 

between the elimination of 
18

O and 
2
H reflects the rate at which CO2 is produced. Coupled 

with an assumed mean respiratory quotient value  of 0.85 based on a standard western diet, 

EE can be estimated (Westerterp, 1999).  

3.1.1 Kinetics of Elimination 

A description of elimination process is given below. The information is adapted from the 

paper by Bluck (2008) as it describes the methodology employed by the laboratory that 

conducted the DLW analysis throughout this project.  

In order to calculate TEE the rate of oxygen turnover in the TBW pool must first be 

calculated. The rate of loss of water (rH2O) plus the rate of loss of carbon dioxide (rCO2) is 

equal to the turnover rate of oxygen in the TBW pool (kO∙N) and is given in equation 3.1. 
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rH2O  + 2 rCO2 = ko∙N                                              (Equation 3.1)  

The factor two is required since each mole of CO2 contains equal amounts of oxygen to 

two moles of water. As the equation above describes a reaction rate, it follows that for 

every molecule of CO2 expired, an individual will lose twice the amount of O2 per unit of 

time than each water molecule. The difference between the two products (divided by 2) is 

thus equal to rCO2 and is expressed in Equation 3.2 

    
 

         

 
                                                    (Equation 3.2)         

In theory both ingested 
2
H and oxygen 

18
O would equilibrate fully with body water. This is 

not the case due to the free exchange with other compounds in the body and a correction 

must be applied to the equations to represent non-ideal tracer behaviour (Equation 3.3).  

    
 

                   

            
                                    (Equation 3.3) 

Where     
 = CO2 production rate 

kH kO  =  fractional constants of elimination for hydrogen and oxygen  

NH and NO the associated pool sizes. 

   = represents the skin losses that are fractionated (27.3 moles.day
-1

 for adults in a 

temperate climate) 

  = fractionated respiratory losses as a fraction of CO2 production (1.1) 

   = 0.941 fractionation factor for 
2
H leaving the body as water vapour 

   = 0.991 fractionation factor for 
18

O leaving the body as water vapour 

   = 1.037 fractionation factor for the exchange of 
18

O between CO2 and water 

Rate of CO2 production rate must finally be converted to EE (Equation 3.4). Some 

assumptions must be made in terms of the energy equivalent of CO2 (substrate oxidation). 

This method assumes 12% of total energy intake comes from protein (Elia et al., 1988). 

      
     

  
           

                                  (Equation 3.4) 

Where RQ is taken as 0.85 

Where 127.5kcal is used per mol CO2 produced.  
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3.1.2 Isotope dosing and sampling procedure 

Each participant provided baseline urine samples before ingesting a weighed oral dose of 

2
H2

18
O (day 0). The doses were 80 mg∙kg

-1
 deuterium oxide and 145 mg.kg

-1
 H2

18
O. Post-

dose urine samples were collected daily for 7-10 days depending on the study and the time 

of day noted. Urine samples were subsequently frozen at -20 °C and later analysed in 

duplicate using isotope-ratio mass spectrometry (MRC, Human Nutrition Research, Elsie 

Widdowson Laboratory, Cambridge, UK). Using this dosing regimen, TEE can be 

measured with a coefficient of variation lower than 5 % (Bluck, 2008). A sample of 

drinking water was also collected to correct for the natural abundance of 
2
H2

18
O at each 

study location. 

3.1.3 Energy expenditure calculations 

Energy expenditure was calculated, as previously described by Schoeller et al. (1982), 

from the slopes and intercepts of isotope disappearance curves, based on samples collected 

at the first two, middle and last two days of the study. For all subjects the respiratory 

quotient was assumed to have a daily average value of 0.85 and resting metabolic rate 

(RMR) was estimated using the Schofield equations (1985). Physical activity energy 

expenditure (PAEE) was calculated as (TEE x 0.9) – RMR, assuming that diet-induced 

thermogenesis was 10 % of TEE (Plasqui, et al., 2005).  

3.1.4 Limitations 

Despite the advantages of the DLW technique for estimating free living EE, this criterion 

method inevitably contains some precision error and this must be appreciated when 

interpreting the findings of this project. 

There are concerns regarding the accuracy of EE prediction at the individual level. It is 

suggested that imprecision of individual DLW measurements may occur because 

individuals vary in how closely they approximate the necessary assumptions that are made 

when performing the calculations outlined in 3.1.1 (Speakman, 2005).  

For example, the assumption that fractionated water loss is 20% of total water loss may not 

be appropriate for the participants in Chapter 8 where ambient temperatures were in excess 

of 30 °C on a daily basis. Further error may be introduced should the background 

enrichments of O2 and CO2 change during the course of the observation period. Baseline 

samples of the drinking water consumed by participants were sent to the laboratory 
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conducting the DLW analysis as standard, however it was assumed that the background 

enrichment remained constant. 

3.2 DOUGLAS BAG METHOD 

One of the most common indirect calorimetry methods is the Douglas bag technique which 

was first cited in 1911 (Douglas, 1911). Despite being over 100 years old, this technique is 

still commonly referred to as the ‘gold standard’ for assessing oxygen uptake (metabolic 

rate) and EE in the laboratory (Carter, et al., 2002; Gladden, et al., 2012). Recently, 

Hopker et al. (2012) examined the reliability of repeated gas sampling and reported a 

coefficient of variation of 0.5% for both CO2 and O2 when best practice is adhered to. 

During the Douglas bag sampling procedure the participant wears a mouthpiece and nose 

clip while a one-way valve ensures that only expired air is collected into a Douglas bag. 

The volume of expired air is measured and a sample obtained to measure O2 and CO2 

concentrations. Volume of inspired air and subsequent      is then calculated using the 

Haldane transformation (Haldane, 1912) and the Fick equation (Fick, 1870). Providing that 

steady-state values for      and CO2 production are known, the quantities of fat and 

carbohydrate oxidised per minute can be calculated and EE estimated (Jeukendrup, et al., 

2005).  

3.2.1 Sampling Procedure 

One-minute collections of expired gases were made using Douglas bags (Hans Rudolph, 

MO, USA). The Douglas bags were flushed with room air and fully evacuated prior to gas 

collection. Fractions of expired air (O2 and CO2) were assessed using paramagnetic and 

infrared analyzers, respectively (Series 1440 gas analyser, Servomex plc., Crowborough, 

UK) and volume of expired air determined using a dry gas meter (Harvard Apparatus Ltd., 

Edenbridge, UK). The temperatures of expired gases were measured with a digital 

thermometer (model C, Edale Instruments, UK). The gas analyser was calibrated using a 

two point calibration: O2 and CO2 were zeroed using 100 % nitrogen gas; O2 and CO2 were 

spanned to 16.0 and 5.0 % using a known gas mixture (16.0% O2, 5.0% CO2, 79.14% N).  

The dry gas meter was checked regularly during laboratory testing periods. Room air was 

pumped through in 35l increments up to 175l using a 7l syringe (Model 4900, Hans 

Rudolph Inc., Kansas City, USA). 
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Volume of oxygen uptake was calculated using the Haldane transformation and EE was 

calculated according to the equations suggested in a review by Jeukendrup and Wallis 

(2005).  

3.3 ACCELEROMETRY 

3.3.1 3DNX 

The 3DNX model v3 (BioTel Limited, Bristol, UK; www.biotel.co.uk) is sensitive to 

movements in three planes: X (anteroposterior), Y (mediolateral) and Z (vertical). The unit 

measures 54 x 54 x 18 mm, and weighs 70 g including a 3.6 v lithium battery (Saft Ltd., 

UK) with a life of ~21 days collecting data at 5-second epochs. The unit contains two 

ADXL321 biaxial micro-electro-mechanical (MEMS) sensors (Analog Devices Ltd., 

Surrey, UK) positioned orthogonally over a third uniaxial sensor to measure acceleration in 

three movement planes. The raw sample frequency of the 3DNX is 100 Hz with a low pass 

filter set at 0.2 Hz and a high pass filter set at 10Hz which ensures that most non-human 

movement, such as vibration, is not registered. The unit has a full dynamic range of ±18 g 

however the dynamic range is limited to ±5.5 g.  A product specification sheet can be 

found in Appendix A (Chapter 13). 

Following data capture, the raw AC signal is first converted to a DC signal, it is then 

filtered, amplified and the modulus of the absolute acceleration signal (IAA) for each 

sensing axis is integrated over one-second. One-second values are then summed depending 

on the epoch chosen by the user (5-60 seconds) resulting in the variables IAAx, IAAy and 

IAAz. These variables are then summed to produce a single value for the three axes 

combined (IAATOT).  

                                            
 

 

 

 

 

 
                          (Equation 3.5) 

The integral of the modulus of acceleration is described in further detail by Bouten et al. 

(1997). This method was compared with ten other processing methods and was found to 

have the strongest relationship with energy expended during common activities of daily 

living. 

The frequency range of the 3DNX (0.2 – 10 Hz) is compared to other commercially 

available devices in Table 3.1. Most human movement occurs at frequencies between 0.3 

and 3.5 Hz (Sun et al., 1993). Therefore, the remaining portion of the frequency range 
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between 3.5 and 10 Hz is largely redundant and the unit may register accelerations 

resulting from sources other than human movement i.e. vibration (Chen et al., 2005). This 

may impact on the interinstrument reliability of a device. Conversely, a frequency range 

too narrow and the acceleration resulting from some more vigorous movements such as 

running may be incorrectly removed (Fudge et al., 2007). 

Model 
Dimensions: Length x 

Width x Height (mm) 

Weight 

(g) 

Pieziosensor 

Orientation 

Dynamic 

Range (g) 

Frequency 

Range (Hz) 

Actigraph GT3X 38 x 37 x 18 27 Triaxial ± 3 0.2 - 2.5 

RT3 71 x 56 x 28 65 Triaxial 0.5 - 2 2 - 10 

3DNX 54 x 54 x 18 70 Triaxial ± 5.5 0.2 - 10 

Table 3.1 Comparison of the technical specifications for three accelerometer devices 

3.3.2 Actiheart 

Developed in conjunction with Brage et al. (2005) the Actiheart (CamnTech, Cambridge, 

UK), was the first device to combine HR and acceleration components into a single 

wearable device. The Actiheart consists of two clips attaching to standard ECG electrodes 

(Red Dot 2771, 3M, London). The main body of the device contains an omni-directional 

accelerometer and memory capable of storing 21 days of data recording at 60-second 

epochs. The second component is clipped to a second adjacent electrode 10cm away. Heart 

rate (bpm) is generated from an ECG signal. The R wave is detected and the mean of the 

last 16 R-R intervals is taken as the beats per minute value; ignoring any values outside 

25% of the mean. The accelerometer component has a sampling rate of 32Hz and a 

dynamic range of ±2.5g. In both chapters 8 and 10 the device is worn in the lower position 

(Figure 3.1.) however in chapter 10 the device is attached to a sports strap (polar). 

 

 

 

 

 

 

 

 

Figure 3.1 A: the Actiheart placed in the lower position, B: the Actiheart attached to the modified 

sports strap. 

A B 
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Activity Value  

[25 counts∙min-1] 

Transition HRas 

[0.54 x SHR + 54.3] 

 

(0.1 x ActEE) + (0.9 x HREE) 

(0.5 x ActEE )+ (0.5 x HREE) 

Flex HRas 

[0.05 x SHR + 21.2] 

(0.5 x ActEE )+ (0.5 x 
HREE) 

(0.9 x ActEE) + (0.1 x 
HREE) 

 

The branched equation model used by the Actiheart software (version 4) to predict EE 

using the group calibration (Brage et al., 2007) is given in the diagram below (Figure 3.2). 

The ‘activity value’ was implemented as the lowest value observed during cycling. This 

prevents cycling from following the low intensity route in the branched model. 

 

 

 

 

 

 

 

 

 

Figure 3.2 Where HRas: Heart rate above sleep: HREE is given by:               

                                                              

> 25 counts∙min-1  

  

< 25 counts∙min-1  

  

>

  
  

>

  
  

<

  
  

<

  
  



Chapter 4 Pilot work – Comparison of v2 and V3 output 
 

 

 
28 

 

4 PILOT WORK – COMPARISON OF 3DNX VERSION 2 AND 

3DNX VERSION 3 ACCELEROMETER OUTPUT 

4.1 INTRODUCTION 

The 3DNX version 2 (v2) was last used during the gender streaming in army training OPL 

contract at ATC Pirbright in 2007 (Richmond, et al., 2012). Since then the smaller version 

3 (v3) has been used which has been subjected to both hardware and software upgrades. 

The 3DNX v2 is described by Carter et al. (2008) and the 3DNX v3 is described in Chapter 

3. In order to compare 3DNX data from current work to that conducted before 2007, a 

conversion factor is needed to ensure all data can be combined.  Both v2 and v3 

accelerometers are triaxial and the hardware is similar therefore, providing the relationship 

between accelerometer output, in the form of physical activity counts (PAC), and 

acceleration is linear for both versions then a simple regression equation can be used to 

convert the PAC output from version 2 to version 3 or vice versa. 

4.2 METHODS 

4.2.1  Mechanical Testing 

Five 3DNX v3 and four 3DNX v2 units were attached to a multi axis shaker table (MAST) 

using double-sided floor tape. The units were shaken for eight minutes at three 

accelerations (0.5g, 1g and 1.5g). The units were first positioned so the Z-axis of the 

accelerometer corresponded to the direction of the horizontal actuator. The units were then 

rotated 90º so that the X-axis was aligned with the horizontal actuator. The same protocol 

was then repeated. The units were not tested in the Y-axis as the design of the v2 units 

meant that they were too thin to attach firmly to the shaker in the upright position.  

4.2.2  Human Testing 

During the gender streaming for recruits study at ATR Pirbright in 2007 (Richmond, et al., 

2012), 12 participants wore both a v2 and v3 unit located at the small of the back in the 

same pouch. The units were returned following ten days of data collection. Total PAC 

were then divided by ten days to arrive at an average daily physical activity counts value 
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for both units.  These data provide a second, free-living, comparison of the output from the 

v2 and v3 units. 

All units were set to record at one-minute epochs and downloaded into an Excel 

spreadsheet. The relationship between v2 and v3 units was examined using ordinary least 

product (OLP) regression (Ludbrook, 1997) so that the equation generated is the same 

(once rearranged) regardless of whether converting v2 to v3 counts or vice versa. Standard 

error of the estimate (SEE) was calculated for both relationships. 

4.3 RESULTS 

4.3.1  Mechanical Testing 

The relationship between v2 and v3 counts was linear (r
2
 = 1.00, n = 206, SEE = 17 counts∙min

-1
). 

Figure  4.1 shows the relationship between v2 and v3 counts.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. The relationship between v3 and v2 physical activity counts (counts∙min
-1

) from the 

mechanical shaker table at 0.5 g, 1 g and 1.5 g. 

 

 

v2 counts = 0.224*V3 counts – 5.703 
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The relationship between v2 and v3 counts was linear (r
2
 = 0.99, SEE = 5347 counts·day

-1
) 

(Figure 4.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 The relationship between v2 and v3 counts during free-living activity. 

4.4 DISCUSSION 

The relationships between v2 and v3 accelerometer counts were linear for both mechanical 

and free-living data. Version 2 counts can be successfully converted to version 3 counts 

using a simple OLP regression equation (Equation 4.1) given by: 

 
v2 counts = 0.224*v3 counts – 5.703                                  (Equation 4.1) 

 

This equation allows current accelerometer data and pre 2007 data to be compared or 

combined following a simple mathematical conversion. We recommend using the 

conversion equation generated from the mechanical testing due to the tightly controlled 

nature of the experiment. Although the free living data provide a valuable visual 

comparison, external factors such as tightness of the belt and body fatness could have 

impacted on the relationship between v2 and v3 accelerometer outputs. 

v2 counts = 0.211*V3 counts + 1807.162 
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5 PILOT WORK – COMPARISON OF TWO ACCELEROMETER 

PROCESSING METHODS FOR THE PREDICTION OF OXYGEN 

UPTAKE 

5.1 INTRODUCTION 

Accelerometer devices are commonly used to characterise the relationship between 

physical activity and EE (Westerterp, 2009). Broadly speaking, such devices measure 

accelerations resulting from body movement and convert the direct current (DC) signals 

(following internal processing) into activity “counts”. The linear relationship between 

“counts” and metabolic rate during ambulation is widely used to predict EE (Lyden et al., 

2011). Some manufacturers do not reveal the internal processing steps used to generate 

“counts” (Arvidsson et al., 2007); however, as some manufacturers do publicise their 

processing steps, it becomes clear that there are a number of methods that can be used to 

calculate a physical activity “count” (PAC) from a raw acceleration signal (Chen, et al., 

2005). Three commonly cited methods for deriving PAC from raw acceleration signals are 

summing the integral of the modulus of acceleration (Bouten, et al., 1997), the integral of 

the route mean squared acceleration (Cook, et al., 2011; Schutz, et al., 2002) and the 

vector magnitude of acceleration (Esliger, et al., 2010; Sasaki, et al., 2011) over a user-

defined time period (epoch). At present no consensus has been reached regarding the most 

valid data processing method for the prediction of metabolic rate and subsequent EE. 

Furthermore, there is little transparency by manufacturers regarding the step by step 

method used to generate accelerometer count output (Maddison, et al., 2009). The lack of a 

standard output hinders the comparison of accelerometer performance and may prevent 

researchers from choosing the most appropriate device for their specific application.  

The integral of the modulus of acceleration is described in detail by Bouten et al. (1997). 

This method was compared with ten other processing methods and was found to have the 

strongest relationship with energy expended during common activities of daily living. 

Specifically, after a raw AC signal has been converted to a DC signal it is filtered, 

amplified and the modulus of the absolute acceleration signal (IAA) for each sensing axis 

is integrated over one-second. One-second values are then summed depending on the 

epoch chosen by the user (5-60 seconds) resulting in the variables IAAx, IAAy and IAAz. 
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These variables are then summed to produce a single value for the three axes combined 

(IAATOT).  

                                            
 

 

 

 

 

 
                          (Equation 5.1) 

 

This method has been utilised and discussed in several previous studies and was deemed a 

suitable and appropriate method for characterising an acceleration signal (Bouten, et al., 

1997; Karantonis, et al., 2006; Mathie et al., 2004; Montoye, et al., 1983).  

The second processing method for deriving PAC that is commonly cited in the literature is 

the root mean squared (RMS) acceleration (Schutz, et al., 2002).  The RMS acceleration is 

often included in more complex activity recognition studies where raw acceleration signals 

are interrogated for common features and subsequently utilised to produce models which 

can be trained to detect subsequent activity patterns (Atallah et al., 2010; Voleno et al., 

2010). From a theoretical perspective this method is a more intuitive choice as it returns, 

from a mechanical standpoint, total acceleration over a given time period for all axes 

(RMSTOT). The RMS processing method is defined as: 

 

                  RMSTOT =  
          

  
               

  
               

  
    

 
                        (Equation 5.2) 

Where N = the sample rate of a given device 

The third processing method that appears regularly in the literature is the signal vector 

magnitude (SVM) (Esliger, et al., 2010; Karantonis, et al., 2006; Powell et al., 2004), 

which provides a measure of movement intensity derived from the raw accelerometer 

signal (Karantonis, et al., 2006). The SVM method is defined by: 

                                                     
     

     
                                              (Equation 5.3) 

Where    is the ith sample of the x-axis signal (similarly for    and   ) 

The processing method which returns the strongest relationship between PAC and rate of 

oxygen uptake and hence, EE during treadmill exercise has not yet been established. The 

3DNX accelerometer (Biotel Ltd., Bristol, UK) derives PAC using the IAA method 

(3DNXIAA). However, a modified unit version using the RMS method has been developed 

(3DNXRMS) in order to objectively compare the two processing methods. The hardware 

specifications of the devices are identical. The only difference being the post-hoc signal 
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processing method (i.e. IAA vs. RMS methods). Unfortunately, although requested, the 

manufacturers declined to produce a 3DNX device using the SVM processing method, 

restricting this pilot study to a two-way comparison. Although the 3DNX samples at 100 

Hz, these data are rectified, integrated over one second and gravity is subtracted before 

these values are stored. If data were stored in their raw format then any method of post 

processing would be possible, however in its current form the 3DNX does not have the 

capacity to store raw data. 

The aim of this pilot study was to determine which PAC output, 3DNXIAA or 3DNXRMS, 

produces the least random error in the prediction of rate of oxygen uptake (    ) during 

treadmill exercise in humans. 

5.2 METHODS 

5.2.1  Accelerometry 

Both the 3DNXIAA and the 3DNXRMS contain the same hardware; the 3DNX device is 

described in Chapter 3. The 3DNXIAA unit was configured using the IAATOT approach and 

the 3DNXRMS was configured using the RMS approach (described in Equation 5.1). Both 

accelerometers recorded PAC at 5-second epochs.  

5.2.2  Exercise protocol 

Eleven male, recreationally active participants (age 21 ± 3 yr; height 182 ± 5.4 cm; mass 

78.0 ± 7.1 kg), completed an incremental treadmill protocol on a pre-programmed, 

motorized treadmill (Woodway ELG70, Waukesha, US). The protocol consisted of three 5-

minute walking stages (4 km·h
-1

, 5 km·h
-1

 and 6 km·h
-1

) and three five-minute jogging 

stages (8 km·h
-1

, 10 km·h
-1

 and 12 km·h
-1

). Each participant wore one 3DNXIAA unit and 

one 3DNXRMS unit on an elastic belt, positioned side by side in the small of the back. The 

rate of oxygen uptake was measured during the last minute of all walking and jogging 

stages using the Douglas Bag technique described in chapter 3.  

All accelerometer data were downloaded using dedicated software (Biotel, UK) and 

imported into a spreadsheet where five-second epoch accelerometer counts (PAC) were 

averaged across the duration of each stage. Both the first and the last two epochs of the 

jogging stages were discarded. This ensured that all data used for the subsequent analysis 

were not affected by a change of stage.  
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5.2.3  Statistical Analyses 

A custom model analysis of covariance (ANCOVA) was performed firstly, to determine 

the homogeneity of regression slopes for walking and running data and secondly, to 

establish whether an interaction existed between 3DNXIAA and 3DNXRMS. A two-way (2 x 

6) mixed model analysis of variance (ANOVA) was performed to test for differences 

between unit version (two levels) and PAC for all treadmill speeds (6 levels). Paired 

sample t-tests were used to locate differences. Simple linear regression was then used to 

examine the strength of the relationship between physical activity counts and rate of 

     for each unit version. Standard error of the estimate (SEE) was generated for all 

relationships. All data are presented as mean ± SD. Statistical significance was set a-priori 

at p<0.05.  

5.3 RESULTS 

Descriptive statistics for all treadmill speeds are shown in Table 5.1. Analysis of 

covariance revealed that the slopes and intercepts of the relationship between PAC and 

     did not vary (p=0.442) according to exercise mode indicating that the assumption of 

homogeneity of regression slopes was not violated. All walking and running data were 

therefore combined in subsequent analyses. 

 

Treadmill speed 

(km·hr
-1

) 

Oxygen Uptake 

(ml·kg
-1

·min
-1

) 

Physical Activity Counts (counts·5s
-1

) 

3DNXIAA 3DNXRMS 

4 13.0 ±1.7 120 ±7 154 ±14 

5 14.4 ±1.1 164 ±10 205 ±15 

6 17.8 ±1.4 221 ±19 270 ±24 

8 30.7 ±3.1 507 ±48 585 ±58 

10 36.8 ±2.9 615 ±46 710 ±65 

12 43.7 ±2.6 680 ±47 787 ±72 

Table 5.1 Group values. 3DNXIAA, physical activity counts generated using equation 5.1; 

3DNXRMS, physical activity counts generated using equation 5.2 (values displayed as mean ±SD). 

 

A two-way mixed model ANOVA revealed a significant interaction between unit version 

and speed (p=0.046). Pairwise comparisons showed the 3DNXRMS returning higher PAC 

than the 3DNXIAA unit at all treadmill speeds (p<0.05). The interaction between unit 
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versions is shown in figure 5.1 where the difference between 3DNXIAA PAC and 

3DNXRMS PAC is greater at 8, 10 and 12 km·hr
-1

.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Mean PAC values for 3DNXIAA and 3DNXRMS. * denotes a significant difference 

between integration methods at the p<0.001 level.  

The relationship between PAC for both integration methods and      is shown in Figure 

5.2.  The relationship between 3DNXIAA PAC and      was r
2
=0.94 with a SEE of 2.89 

ml.kg
-1

.min
-1

 (11.1 %). The relationship between PAC generated by the 3DNXRMS and      

was also strong (r
2
=0.94) with a SEE of 2.93 ml.kg

-1
.min

-1
 (11.3 %). 
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Figure 5.2 Relationships between PAC and oxygen uptake for the 3DNXIAA and 3DNXRMS units.  

5.4 DISCUSSION 

This short pilot study aimed to compare the validity of two methods used to integrate 

acceleration signals that are commonly cited in the accelerometer literature. The ability of 

each device to predict oxygen uptake was similar with the 3DNXRMS returning consistently 

higher count values but no greater variability indicated by similar SEEs of 11.1 % and 

11.3% for the 3DNXIAA and 3DNXRMS units respectively. 

The interaction effect observed between unit version and speed indicates that a different 

relationship exists between 3DNXRMS and oxygen uptake rather than simply generating 

consistently higher PAC than the 3DNX. The difference in PAC between the two units 

became larger with increasing speed with the prediction accuracy becoming weaker for 

both units. These findings show that both unit versions could not be used interchangeably 

and indicates that a simple linear correction factor would not be suitable to convert 

3DNXIAA PAC to 3DNXRMS PAC. These data also indicate a logarithmic transformation of 

variables would be appropriate to attenuate the heteroscedasticity observed if these 

relationships were to be used in future studies (Nevill et al., 1995b). 
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In order to fully establish which processing method is the most suitable for assessing 

human EE, a 3DNX unit modified using the SVM processing method should also be 

developed and compared to the current 3DNXIAA model. Further comparison work should 

be undertaken during activities of daily living where movements are more complex. 

However, it does not appear that the 3DNXRMS method is any more valid then the 

3DNXIAA method for predicting human metabolic rate during treadmill exercise, despite an 

arguably more intuitive theoretical basis. Future research will be conducted using the 

unmodified 3DNXIAA unit. 
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6 RELIABILITY AND VALIDITY OF THE 3DNX 

ACCELEROMETER DURING MECHANICAL AND HUMAN 

TREADMILL EXERCISE TESTING 

6.1 INTRODUCTION 

The association between physical inactivity and obesity-related ill-health is now well 

established (Pate, et al., 1995). To characterise the relationship between physical activity 

and health outcomes among different free-living populations, and to provide evidence-

based recommendations, objective measures of physical activity and associated EE are 

required (Maddison, et al., 2009).  

The doubly labelled water (DLW) method is considered the gold standard for assessing 

total EE but its use is often limited to small experimental studies for practical and financial 

reasons (Plasqui, et al., 2007). Furthermore, the method provides only a mean estimate of 

EE over a series of days, and no information regarding the pattern (i.e. frequency, intensity 

and duration) of physical activity and associated EE (Pober et al., 2006).  

In recent years, technical developments have allowed the expansion of physical activity 

assessment and body-borne accelerometers have emerged as valuable tools for objectively 

assessing frequency, duration and intensity of activity (Chen, et al., 2005).  However, it is 

still difficult to accurately translate accelerometry data into units of expended energy (Chu, 

et al., 2007). Widespread use of accelerometry in population-based studies eliminates the 

extensive staffing required for observation methods (McKenzie, 2010) and avoids recall 

problems and bias associated with self-report survey methods. However, the quality of 

information received from accelerometers is only as good as the reliability and validity of 

the devices themselves (Esliger, et al., 2006). 

Few commercially available triaxial accelerometers are available on the market today, one 

of which is the 3DNX (BioTel, Bristol, UK). Two laboratory studies have reported 

favourably on the prediction of metabolic rate (i.e.     ) by the 3DNX model version 2 

(v2) during treadmill exercise (Fudge, et al., 2007; Richmond et al., 2007). The capability 

of the 3DNX to predict EE in free-living adult and adolescent cohorts has also been 

examined using the DLW method as a criterion measure. Carter et al. (2008) reported that 
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35% of the variance in TEE in young adults was explained by the 3DNX output; this 

increased to 78% when combined with anthropometric variables. 

The 3DNX model version 3 (v3) is smaller and lighter than the v2. Minor software changes 

mean that as v3 emerges on the market it is important that its validity and reliability be 

assessed as the quality of information received from accelerometers is only as good as the 

reliability and validity of the devices themselves (Esliger, et al., 2006). Current 

accelerometer reliability research comprises studies using mechanical devices and/or 

human applications, either in the laboratory or under free-living conditions.  The use of a 

mechanical set-up allows the precise control of the amplitude and the frequency of the 

oscillation, which are important variables in relation to accelerometer output. Due to the 

precise control of these experimental conditions, any variability observed can be attributed 

solely to the accelerometer (Metcalf et al., 2002). The information gathered from 

mechanical apparatus aids the interpretation of results from human studies as if the 

measurement error inherent to the accelerometer is low then any variability observed in 

human reliability data can be attributed to other sources such as the position the 

accelerometer is worn on the body or day-to-day variation (Esliger, et al., 2006). 

The aims of this study are fourfold. The objectives are to 1) assess intra- and inter-unit 

reliability during mechanical testing in the physiological range of human movement. 2) 

Assess the technical validity, or more specifically, the individual and combined effects of 

acceleration and frequency of oscillation on 3DNX output during mechanical testing. 3) 

Assess the intra- and inter-unit reliability during human treadmill exercise.4) Assess the 

predictive validity of the 3DNX against metabolic rate during treadmill exercise. 

6.2 METHODS 

6.2.1  Accelerometer 

The triaxial 3DNX model v3 (BioTel Limited, Bristol, UK) is described in detail in 

Chapter 3. It is sensitive to movements in three planes: X (anteroposterior), Y 

(mediolateral) and Z (vertical). Accelerometers were set to record at five-second epochs 
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6.2.2  Multi Axis Shaker Table (MAST) 

The MAST (MAST-9720, Instron Structural Testing Systems Ltd., UK) is powered by 

three vertical, one horizontal and two lateral hydraulic actuators. Only the horizontal 

actuator was used during this testing protocol (Figure 6.1). 

 

 

 

 

 

 

 

Figure 6.1 Schematic of the MAST 9720 

The accelerometers were attached securely to the aluminium alloy mounting plate using 

double-sided floor tape (DS Scrim 306/250, Tape Range distributors Ltd, UK) shown in 

Figure 6.2. The accelerometers were rotated before each test in order that horizontal 

motion of the MAST corresponded to movement along the X-, Y- and Z-axes of the 

3DNX.  

 

 

 

 

 

Figure 6.2. The 3DNX units configured in the Y and Z measurement axes. 

6.2.3  Experiment 1 – Technical Validity 

The MAST testing conditions were chosen to replicate a range of physiologically relevant 

movements which typically occur within a ±6g range at waist level (Bhattacharya et al., 

1980) and have frequency components which tend to fall between 0.3 and 3.5Hz (Sun, et 

Y-Axis 

Z-Axis 
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al., 1993). The protocol was pre-programmed using the MAST’s dedicated software (RS 

Replay, Instron Structural Testing Systems Ltd., High Wycombe, UK). 

 In total, ten units were subjected to the testing schedule (Table 6.1) in all three axes. This 

was repeated on two occasions separated by no more than five-minutes. Initially one trial 

run was completed without logging the data to ensure the MAST was functioning at an 

optimum operating temperature. One unit was excluded following tests as the battery 

casing worked loose causing failure mid-test. The maximum displacement amplitude of the 

MAST (60 mm) limited the testing conditions to a maximum acceleration of 1.5 g. The 

MAST rig is calibrated regularly to an accuracy of 0.1 g.  

By keeping acceleration constant at 4.90m∙s
-2

 in conditions 4, 5 and 6 while changing 

amplitude and frequency, an independent assessment of the effect of frequency on count 

magnitude was conducted. All raw accelerometer data were downloaded using dedicated 

software (Biotel Limited, Bristol, UK) and imported into a spreadsheet where 5-second 

epoch accelerometer counts were averaged over each stage. As each condition was one 

minute long, this was typically the mean of ten values after excluding the first and last 

epochs of each stage. 

Table 6.1 MAST testing protocol 

6.2.4 Experiment 2 – Human Validity 

Ethical approval was obtained from the University of Birmingham research ethics 

committee through chair’s action as a similar protocol had previously been approved prior 

to the start of the current project.   

Condition Duration (min) Frequency (Hz) Acceleration (g) Acceleration (m·s
-2

) 

1 1 0.5 0.08 0.79 

2 1 0.75 0.17 1.67 

3 1 1 0.29 2.85 

4 1 1.5 0.5 4.90 

5 1 2 0.5 4.90 

6 1 2.5 0.5 4.90 

7 1 2 1.0 9.81 

8 1 2.5 1.0 9.81 

9 1 4 1.0 9.81 

10 1 2.5 1.5 14.72 

11 1 4 1.5 14.72 



Chapter 6 Reliability and Validity of the 3DNX Accelerometer 
 

 

 
42 

 

five male and six female, recreationally-active participants (mean ± s: age 22 ± 3 yr; height 

173 ± 9 cm; mass 71 ± 11 kg) completed two incremental treadmill protocols separated by 

no more than five days on a pre-programmed, motorised treadmill (Woodway ELG70). 

The protocol consisted of three five-minute walking stages (4, 5 and 6 km·h
-1

), three five-

minute jogging stages (8, 10 and 12 km·h
-1

) and four 30-second sprints (14, 16, 18 and 20 

km·h
-1

). Each participant wore two 3DNX units on an elastic belt, positioned firmly in the 

small of the back. The counts from each axis were stored every five seconds (5s). The rate 

of oxygen uptake was measured during the last minute of all walking and jogging stages 

using the Douglas Bag technique described in Chapter 3. All raw accelerometer data were 

downloaded using dedicated software (Biotel Limited, Bristol, UK) and imported into a 

spreadsheet where the five-second epoch accelerometer counts from X-, Y- and Z-axes 

were summed. Values were then averaged over each stage where both the first and the last 

two epochs of the jogging stages, and the first and last epochs of the sprinting stages, were 

discarded. This ensured that all data used for analysis were not affected by a change of 

movement velocity.  

6.2.5  Statistical Analyses 

Experiment 1 - Technical Reliability 

For each unit in each condition and each axis (297 in total), the coefficient of variation 

(CVintra) was calculated as a measure of intra-unit reliability. Bland and Altman plots and 

absolute limits of agreement (LoA) were generated for each axis combining data from all 

nine units. 

Inter-unit reliability has been noted by previous investigators to be problematic when 

comparing multiple units (Metcalf, et al., 2002). In this paper an approach similar to that of 

Brage et al. (2003) was used to determine the variability between accelerometers. First, the 

relative difference of the unit means to the overall mean (3DNX_All) was calculated for 

each condition and plotted for visual inspection (modified Bland and Altman plot). Second, 

coefficients of variation (CVinter) and intraclass correlation coefficients were calculated 

using unit mean values and 3DNX_All. 
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Technical Validity 

Technical validity was established using simple linear regression for each axis (n=198) and 

all axes combined (n=594). The correlation coefficients provide an expression of criterion-

related validity. Standard error of the estimate (SEE) was calculated for all relationships. 

Experiment 2 - Human Reliability 

Mean ratio bias limits of agreement, coefficients of variation and intraclass correlation 

coefficients were generated both intra- and inter-unit. 

Human Validity 

Simple linear regression analysis was used to examine the relationship between oxygen 

uptake and accelerometer counts for both units combined and individual units. Standard 

error of the estimate was calculated for all relationships.  

6.3 RESULTS 

6.3.1  Experiment 1 - Technical reliability  

Mean (± SD) accelerometer counts for each of the nine units tested and all units combined 

(3DNX_All) are listed in Table 6.2, for the X-axis, as an example. Intra-unit reliability is 

expressed in Table 6.2 as CV (%). Intra-unit reliability was good with CVintra for X-, Y-, 

and Z-axes ranging from 0.0-8.9%, 0.0-5.7% and 0.0-6.4%, respectively.  The absolute 

bias ± 95% LoA were 0.00 (p>0.05) ± 2.90 counts∙5 s
-1

, -0.12 (p>0.05) ± 2.94 counts∙5 s
-1

 

and -0.23 (p>0.05) ± 3.86 counts∙5 s
-1

 for X-, Y-, and Z-axes, respectively (Figure 6.3).  

Individual units displayed low variability across all conditions with CVinter remaining 

below 4.5%. CVinter ranged from 1.4–3.1%, 2.3–4.0% and 0.9–4.5% for X-, Y- and Z-axes, 

respectively. Mean CVinter for all units in all axes and all tests was 2.61%. Intraclass 

correlation coefficients were 1.0 for all stages in all axes. Inter-unit differences relative to 

3DNX_All are shown in Figure 6.4 for the X-, Y- and Z-axes. 

 



 

 

Table 6.2 X-axis descriptive statistics. All values are average counts•5s
-1

. 

Acceleration 

(g) 

f 

(Hz) 

Amplitude 

(mm) 

Test Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 3DNX_All 

Mean 

(SD) 

CV Mean 

(SD) 

CV Mean 

(SD) 

CV Mean 

(SD) 

CV Mean 

(SD) 

CV Mean 

(SD) 

CV Mean 

(SD) 

CV Mean 

(SD) 

CV Mean 

(SD) 

CV Mean 

(SD) 

0.08 0.50 62 1 10 

(0.0) 

3.2 12 

(0.5) 

0.0 13 

(1.2) 

8.9 11 

(0.7) 

4.7 10 

(0.0) 

0.0 13 

(0.8) 

6.7 13 

(0.5) 

6.1 12 

(0.7) 

4.9 10 

(0.0) 

0.0 12 

(1.2) 

2 11 

(0.0) 

12 

(0.7) 

14 

(1.5) 

10 

(0.0) 

10 

(0.0) 

13 

(0.8) 

13 

(0.5) 

10 

(0.4) 

10 

(0.2) 
12 

(1.3) 

0.17 0.75 62 1 30 

(0.9) 

1.6 30 

(0.9) 

2.2 30 

(1.1) 

2.2 30 

(0.6) 

1.2 31 

(0.8) 

1.2 31 

(1.4) 

2.0 31 

(1.3) 

1.3 30 

(0.9) 

1.0 30 

(0.7) 

0.7 30 

(0.2) 

2 31 

(0.5) 

30 

(0.7) 

30 

(0.7) 

31 

(0.9) 

30 

(0.7) 

31 

(1.0) 

31 

(0.9) 

30 

(0.9) 

30 

(0.7) 
30 

(0.5) 

0.29 1.00 62 1 55 

(0.0) 

0.0 55 

(0.0) 

0.0 55 

(0.3) 

0.0 55 

(0.0) 

0.9 55 

(0.0) 

0.0 55 

(0.0) 

1.8 55 

(0.0) 

0.0 55 

(0.0) 

0.0 55 

(0.0) 

0.0 55 

(0.0) 

2 55 

(0.6) 

55 

(0.9) 

55 

(0.0) 

56 

(0.8) 

55 

(0.0) 

57 

(1.5) 

55 

(0.0) 

55 

(0.6) 

55 

(0.0) 
55 

(0.8) 

0.5 1.5 55 1 115 

(0.0) 

0.5 115 

(0.0) 

0.4 112 

(1.5) 

0.8 113 

(1.0) 

0.9 117 

(0.7) 

0.4 115 

(0.5) 

0.4 114 

(0.7) 

0.3 114 

(0.5) 

0.4 116 

(0.8) 

0.8 114 

(1.6) 

2 115 

(0.8) 

117 

(0.5) 

115 

(0.5) 

115 

(0.5) 

115 

(0.0) 

116 

(0.7) 

116 

(0.3) 

116 

(0.4) 

113 

(0.9) 
115 

(1.1) 

0.5 2 31 1 115 

(0.3) 

0.2 114 

(0.4) 

0.6 110 

(0.3) 

0.5 112 

(1.0) 

0.7 114 

(1.0) 

0.8 115 

(0.0) 

0.6 112 

(1.0) 

0.6 115 

(0.4) 

0.4 115 

(0.3) 

0.3 113 

(1.8) 

2 110 

(0.0) 

113 

(1.3) 

112 

(0.7) 

114 

(0.7) 

114 

(1.3) 

111 

(0.9) 

114 

(0.7) 

111 

(0.7) 

110 

(0.3) 
112 

(1.8) 

0.5 2.5 20 1 115 

(0.5) 

0.4 115 

(0.5) 

0.4 114 

(0.5) 

0.5 114 

(0.7) 

0.5 114 

(0.7) 

0.5 115 

(0.4) 

0.4 112 

(0.5) 

0.6 113 

(0.9) 

0.5 113 

(0.5) 

0.4 114 

(0.9) 

2 114 
(0.4) 

115 
(0.5) 

114 
(0.5) 

115 
(0.5) 

115 
(0.5) 

114 
(0.5) 

113 
(0.7) 

113 
(1.0) 

115 
(0.5) 

114 

(0.8) 

1.00 2 62 1 232 

(0.3) 

0.2 231 

(0.3) 

0.3 229 

(0.7) 

0.2 233 

(0.0) 

0.1 232 

(0.4) 

0.2 233 

(0.4) 

0.3 234 

(0.4) 

0.3 232 

(0.3) 

0.2 232 

(0.5) 

0.2 232 

(1.3) 

2 231 

(0.3) 

231 

(0.7) 

230 

(0.4) 

234 

(0.4) 

233 

(0.5) 

232 

(0.5) 

235 

(0.5) 

231 

(0.5) 

231 

(0.3) 
232 

(1.6) 

1.00 2.5 40 1 233 

(0.3) 

0.3 235 

(0.7) 

0.3 233 

(0.5) 

0.2 233 

(0.7) 

0.2 232 

(0.7) 

0.2 233 

(1.1) 

0.6 231 

(0.5) 

0.2 231 

(0.5) 

0.2 231 

(0.5) 

0.2 232 

(1.3) 

2 233 

(0.4) 

236 

(0.5) 

233 

(0.7) 

233 

(0.0) 

233 

(0.8) 

232 

(1.1) 

231 

(0.0) 

231 

(0.3) 

232 

(0.3) 
233 

(1.6) 

1.00 4 16 1 226 
(0.5) 

0.2 230 
(0.8) 

0.3 227 
(0.5) 

0.2 228 
(0.7) 

0.2 232 
(0.5) 

0.4 229 
(0.4) 

0.1 229 
(0.4) 

0.1 229 
(0.7) 

0.3 226 
(0.5) 

0.2 228 

(1.8) 

2 227 
(0.6) 

229 
(0.4) 

226 
(0.0) 

227 
(0.5) 

230 
(0.7) 

229 
(0.5) 

229 
(0.0) 

230 
(0.4) 

227 
(0.5) 

228 

(1.4) 

1.50 2.5 60 1 352 

(0.5) 

0.1 360 

(0.5) 

0.1 353 

(0.5) 

0.1 353 

(1.1) 

0.2 357 

(0.7) 

0.2 354 

(0.5) 

0.2 357 

(1.1) 

0.2 354 

(0.5) 

0.2 356 

(0.5) 

0.1 355 

(2.5) 

2 354 

(0.5) 

359 

(0.9) 

355 

(0.0) 

355 

(0.0) 

356 

(0.4) 

353 

(0.7) 

355 

(0.4) 

352 

(0.7) 

355 

(0.3) 
355 

(2.0) 

1.5 4 23 1 330 

(0.7) 

0.3 337 

(0.5) 

0.2 333 

(0.4) 

0.2 333 

(0.0) 

0.2 338 

(0.4) 

0.2 335 

(0.5) 

0.2 335 

(0.9) 

0.2 335 

(0.7) 

0.2 331 

(0.5) 

0.3 334 

(2.6) 

2 331 

(0.9) 

336 

(0.3) 

334 

(0.7) 

330 

(0.5) 

338 

(0.0) 

336 

(0.0) 

333 

(0.6) 

335 

(0.0) 

332 

(0.7) 
334 

(2.6) 
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Figure 6.3. Figures 1.3A, 1.3B and 1.3C. Bland and Altman plots showing the absolute bias and 

95% Limits of Agreement for the X- , Y and Z-axes. 
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Figure 6.4. Figures 1.4A, 1.4B, and 1.4C - Modified Bland and Altman plots showing the relative 

difference between individual units and the overall mean (3DNX_All) for the X-, Y-, and Z-axes. 
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6.3.2 Technical Validity 

Figure 6.5 shows a strong positive linear relationship observed when the average counts 

from conditions 1 - 11 from all axes in all units are displayed together (n=594). The 

relationship yielded an r
2 

value of 0.99 and a standard error of the estimate (SEE) of 6 

counts∙5s
-1

. When the data are reported by individual axis, r
2
 values are all 0.99 and SEEs 

are 6 counts∙5s
-1

. 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 6.5 Relationship between count magnitude and acceleration (n = 594). 

The results from holding acceleration constant at 0.5 g while changing the frequency of 

oscillation are displayed in Figure 6.6. The 3DNX_All accelerometer counts at 4.9 m·s
-1 

are 114 ± 2 counts∙5s
-1

. Figure 6.6 is a graph adapted from data reported by Esliger and 

Tremblay (2006) who used a mechanical rig to investigate the reliability and validity of 

three commercially-available accelerometers.  The graph displays data from three models 

with the addition of the 3DNX data collected in this study, showing the independent effect 

of changing the frequency of oscillation on count magnitude. 3DNX
 
values have been 

multiplied by 12 so that they correspond to counts·min
-1

. 
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Figure 6.6 Between model comparison of frequency effects on count magnitude and variability 

(acceleration held constant at 4.9 m∙s-1
). Data from the present study has been added to data 

reported by Esliger and Tremblay (2006) for comparison. It should be noted that although these 

data are expressed in the same units (counts∙min
-1

), each device generates a “count” using different 

processing techniques. 

 

6.3.3  Human reliability 

Table 6.3 shows the descriptive statistics and intra-unit reliability for both trials. The 

variability between units was highest during walking stages with coefficients of variation 

for inter-unit reliability ranging from 7.7 to 16.0 % for trial one and 7.7 to 16.2 % for trial 

two. Intraclass correlation coefficients between units ranged from 0.95 to 1.00 for trial one 

and 0.90 to 0.99 for trial two. Mean ratio bias ± 95 % limits of agreement for intra-unit 

(n=220) and inter-unit (n=220) reliability were -0.7 % (p>0.05) ± 12.4 % and 0.4 % 

(p>0.05) ± 5.6 %, respectively. 

 

 

 

 

 



Chapter 6 Reliability and Validity of the 3DNX Accelerometer 

 

 

 
46 

 

 

Table 6.3 Descriptive statistics for units 1 and 2. Coefficient of variation (CV) and Intraclass 

correlation coefficient (ICC) values are intra-unit. Due to equipment limitations it was not possible 

to measure     values for 14, 16, 18 and 20 km∙hr
-1

.  Estimates have been generated using the 

equation by Hagan et al. (1980). 

 

6.3.4 Experiment 2 - Human validity 

The relationship between      expressed as ml·kg
-1

·min
-1 

and average 3DNX counts from 

units 1 and 2 (Figure 6.7) was linear during walking (r
2
=0.65, SEE=1.42 ml·kg

-1
·min

-1
) 

and running (r
2
=0.62, SEE=3.63 ml·kg

-1
·min

-1
). 

When relative      values are converted to METs by dividing by 3.5, cut-scores can be 

established that correspond to ACSM guidelines for light (< 3 METs), moderate (3 – 6 

METs) and vigorous (> 6 METs) exercise. These are < 106, 106–281 and > 281 counts∙5s
-1

 

for light, moderate and vigorous zones, respectively.  

 

 

 

 

 

Treadmill speed 

(Km·hr-1) 

Trial      (ml·min-

1·kg-1 ) 

 

Unit 1 (counts·5s-1)  Unit 2 (counts·5s-1) 

Mean SD 
 

Mean SD CV ICC  Mean SD CV ICC 

4 

 

1 

2 

12.3 

11.8 

1.3 

0.9 

 

 126 

127 

17 

20 

16.0 

 

0.91 

 

 

 
122 

124 

16 

20 

16.0 

 

0.91 

 

5 

 

1 

2 

14.3 

14.1 

0.9 

1.1 

 
 171 

172 

23 

24 

15.1 

 

0.91 

 

 

 
165 

168 

23 

26 

16.2 

 

0.89 

 

6 

 

1 

2 

17.4 

17.0 

0.9 

1.1 

 

 235 

238 

29 

29 

13.0 

 

0.87 

 

 

 
227 

234 

29 

30 

14.0 

 

0.90 

 

8 

 

1 

2 

30.4 

29.6 

2.2 

1.7 

 
 538 

543 

40 

41 

8.0 

 

0.56 

 

 

 
542 

547 

39 

44 

8.3 

 

0.71 

 

10 

 

1 

2 

36.8 

36.7 

2.2 

1.7 

 

 640 

641 

53 

41 

7.7 

 

0.56 

 

 

 
637 

642 

48 

47 

7.7 

 

0.64 

 

12 

 

1 

2 

43.7 

42.9 

2.5 

2.2 

 
 706 

705 

60 

44 

7.8 

 

0.65 
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704 

56 

46 

7.7 

 

0.74 
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1 

2 
54.6 0.3 
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744 

64 

55 

8.2 

 

0.77 
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745 

61 

57 

8.3 

 

0.73 

 

16 

 

1 
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61.6 0.3 

 
 802 

798 

79 

63 

9.3 

 

0.78 

 

 

 
792 

797 

76 

65 

9.4 

 

0.83 

 

18 

 

1 

2 
68.6 0.3 

 
 860 

854 

96 

69 

10.1 

 

0.68 

 

 

 
848 

851 

88 

73 

10.0 

 

0.77 

 

20 
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2 
75.6 0.3 

 
 930 
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107 

86 

10.9 

 

0.80 
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Figure 6.7 Relationship between average counts and oxygen uptake for walking and 

running (n = 264). 

6.4 DISCUSSION 

Body-born accelerometers are emerging as valuable tools for the prediction of EE. When 

attempting to characterise the relationship between physical activity and health in free-

living populations it is imperative that the device chosen to measure physical activity is 

valid and reliable. This study aimed to test extensively the reliability and validity of 3DNX 

v3 triaxial accelerometer in a mechanical setting and during treadmill exercise. The unit 

yielded promising results in both.  

6.4.1  Experiment 1 - Technical reliability 

All nine units, regardless of measurement axis, demonstrated high intra- and inter-unit 

reliability. Inter-unit coefficients of variation (CVinter) in the present study compared well 

to those reported for the RT3
TM

 (Stayhealthy Inc, Monrovia, CA, USA) - another 

commercially-available triaxial accelerometer. Powell et al. (2003) reported inter-unit CVs 

ranging from 6.3 % to 38.5 % across two similar frequencies for the RT3 whereas CVinter 

for the 3DNX did not rise above 4.5 % in any measurement axis. More recently, Esliger 
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and Tremblay (2006) reported slightly poorer values for the RT3 to those of Powell et al. 

(2003) citing a mean CVinter of 42.9% in comparable testing conditions. The 3DNX 

displayed higher inter-unit variability at the lower accelerations due to variations from the 

mean of one or two counts equating to a larger percentage of the mean count value. Other 

units have displayed similar trends (Brage, et al., 2005; Brage, et al., 2003; Powell, et al., 

2003) but in real terms such low absolute variability at the lowest accelerations is unlikely 

to impact on the overall classification of physical activity. High inter-unit reliability is 

particularly desirable for studies attempting to compare across a population. If poor 

technical reliability is inherent between units then it becomes unclear whether any 

variability found within a human population can be attributed solely to variation in 

behaviour. Individual unit calibration is a potential solution but may be impractical on a 

large scale, indeed the literature differs in relation to whether individual calibration is 

worth the effort. Brage et al. (2003) noted that for the CSA 7164 (Computer & Science 

Applications Inc., MTI, Fort Walton Beach FL, USA), the magnitude of inter-unit 

variability translated in vivo to up to 20% difference in activity counts for walking and 

40% for running. This would lead to a distortion of the classification of which subjects met 

the recommended daily amount of PAEE and which did not. In contrast, Moeller et al. 

(2008) concluded that calibration of the Actigraph 7164 using a mechanical rig was almost 

ineffectual when applied to free-living data due to other, more dominant sources of 

variation. 

Intra-unit reliability becomes most important when trying to characterise changes in 

activity profiles over time during intervention studies. The 3DNX units performed well 

across all accelerations. CVintra ranged from 0.0-8.9 %. These results are slightly poorer 

than the intra-unit reliability expressed as CVintra reported by Esliger and Tremblay (2006) 

for the Actical (0.2-1.1 %), similar to the Actigraph 7164 (0.2-9.5 %) and better than the 

RT3 (36.2-106.9 %). Intra-unit variability is best observed in the Bland and Altman plot 

(Figure 6.3) with 95% LoA for all units in all axes within ±3.86 counts.5s
-1

 between test 

one and two.  

It is unusual for CVintra values to be higher than CVinter values. Although the MAST 

performed a dummy run of the protocol to warm up it is possible that it was not fully warm 

at the start of the experimental protocol. The actual accelerations that the units were 

subjected to may have been slightly different towards the end of testing. Furthermore, 
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although care was taken to attach each unit as securely as possible to the MAST it is 

possible that the double-sided tape lost some adhesiveness by the final trial which may 

have allowed some movement during stages seven and eight. This could account for the 

heteroscedasticity, most easily observed in the Z-axis plot (Figure 6.3). 

6.4.2  Technical Validity 

The results from experiment one indicate that the 3DNX demonstrated good validity, 

expressed as a linear correlation with increasing acceleration. The reported linearity of 0.99 

between 0.08 and 1.5 g is in accordance with most industry-standard accelerometers 

(Chen, et al., 2005).  

In addition to the data collected in this study, data reported by previous researchers in 

similar mechanical set-ups provide valuable sources of comparison between commercially-

available devices. Outputs from the Actigraph 7164 and Actical (Esliger, et al., 2006), RT3 

(Powell, et al., 2003) and the CSA 7164 (Brage, et al., 2003) have all been shown to be 

dependent on movement frequency in a mechanical set-up, whereas 3DNX
 
count output 

remained unchanged at 0.5 g when subjected to a range of frequencies and amplitudes. It 

should be noted that due to the limitations of the MAST, it was not possible to create 

testing conditions near to the upper band pass filter of the 3DNX. The comparison between 

the Actigraph, Actical and RT3 should not be taken at face value as frequencies of 1.5, 2 

and 2.5 Hz are well within the frequency range of the 3DNX whereas they are either below 

or close to the lower limit of the RT3 band pass filter (2 Hz) and near to high band pass 

filter of the Actigraph and Actical. The salient discussion point is that users should be 

aware of the frequency and dynamic range of the devices they are using and whether they 

are appropriate for their chosen study population thereby avoiding loss of meaningful data.  

The current study is one of only a few that have scrutinised the mechanical validity of 

commercially-available units; by contrast there are numerous human validation studies 

(Trost, et al., 2005). We contend that all accelerometers should undergo a similar protocol 

to the one outlined in this paper to ensure that when human variability is removed, 

accelerometer counts are directly related to acceleration. As earlier studies have 

demonstrated, a unit can possess strong inter- and intra-unit reliability but may show 

disconcerting results when an independent assessment of frequency is conducted (Esliger, 

et al., 2006).  
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6.4.3  Study 2 - Human Reliability 

Following the results of the mechanical testing it can be inferred that any variability in the 

3DNX observed in humans can be attributed mainly to biological variables. 

Under laboratory conditions inter-unit reliability was acceptable across all treadmill speeds 

(ICC = 0.90 – 1.00, CV = 6.6 – 17.4%). The 3DNX compares well to the results reported 

by Krasnoff et al. (2008) (CV = 9.5 – 34.5%) for the triaxial RT3
TM

. As observed in other 

accelerometer models, reliability of the 3DNX at the two slowest walking speeds was 

poorer than at the jogging speeds (Trost et al., 1998). Although both units were placed in 

the small of the back (they were positioned side by side) and as such, may have been 

subjected to contralateral variability which is more apparent at slower speeds (Zijlstra, 

1997).  

Many population studies measure physical activity over a number of separate days. This 

makes the test-retest reliability of any one unit particularly important. In this study it was 

only practical to attach two units to each participant due to participant comfort and the 

difficulty of firmly fixing more than two devices. With coefficients of variation ranging 

from 7.7 - 16.2 % (mean 10.8 %) the 3DNX compares favourably to the results of Welk 

(2004) who examined the within-unit reliability of four commercially-available 

accelerometers during treadmill exercise. The results of this earlier study reported that for a 

standardised bout of treadmill activity, accelerometers yielded coefficients of variation 

from 16 – 31 % for each participant on separate days.  

6.4.4  Human Validity 

The 3DNX was shown to be a valid predictor of      during incremental treadmill exercise 

over a wide range of walking and running speeds. 3DNX counts increased linearly with 

     during walking and running displaying positive relationships in both exercise modes 

with low standard error. On first inspection, these correlations appear lower than findings 

elsewhere for other accelerometer units which typically report r
2
 values of 0.85 - 0.92 

under laboratory conditions (Welk, et al., 2004).  However, these values are derived from 

walking and running data combined leading to a larger range of values and hence a higher 

r
2
 value. When walking and running data are combined in the present study an r

2
 value of 

0.95 is produced.  
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To date there have been no other studies reported which have examined the validity of the 

3DNX model v3 during treadmill exercise and comparative data are lacking. However, the 

relationship between counts and      from the present 3DNX v3 model can be compared to 

the 3DNX model v2 in a similar study conducted by Fudge et al. (2007) which yielded a 

higher r
2
 values and larger SEEs (r

2
=0.83, SEE=2.20 and r

2
=0.76, SEE=4.88) for walking 

and running respectively. The higher r
2
 values reported by Fudge et al. (2007) are likely 

due to the wider range of treadmill speeds (3-20km∙hr
-1

) where      was calculated. The 

smaller standard error values of the present study indicate slightly improved predictive 

validity compared to the 3DNX model v2.  

While the findings of the current study demonstrate promising capabilities of the 3DNX, 

the human reliability component of the study would have been more complete if a range of 

non-ambulatory movements had been included. Also an accurate estimate of the resting 

component of EE would have permitted a more specific analysis of the relationship 

between activity counts and PAEE. In addition, a more extensive analysis would have been 

possible had the raw signal been accessible. In order to fully compare the performance of 

accelerometer models, acceleration in m∙s
-2

 rather than arbitrary “counts” should be 

compared to a criterion measure. Accelerometer manufacturers should be urged to release 

these data before applying proprietary algorithms. 

In conclusion, the 3DNX is a reliable and valid device for measuring acceleration in a 

mechanical setting and during treadmill exercise. 
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7 EFFECT OF ANATOMICAL PLACEMENT AND TRUNK 

ADIPOSITY ON THE RELIABILITY AND VALIDITY OF 

TRIAXIAL ACCELEROMETER OUTPUT DURING TREADMILL 

EXERCISE 

7.1 INTRODUCTION  

Physical activity (PA) has many different dimensions (e.g. intensity, frequency, duration 

and type) and can be assessed using a variety of wearable sensors.  

Accelerometer-based devices have emerged as a promising tool for assessing free-living 

human PA and energy expenditure (EE) (Chen, et al., 2005). Accelerometers measure 

body accelerations in either one (uniaxial), two (biaxial) or three (triaxial) sensing axes. 

Outputs in the form of physical activity counts (PAC) can subsequently be used to estimate 

the intensity, duration and frequency of the motion (Chen, et al., 2005).  Physical activity 

counts can be translated into METs and then categorised into light, moderate and vigorous 

exercise intensity (Freedson, et al., 1998; Vanhelst et al., 2010).  These zones are normally 

established by calibrating accelerometer output against an EE criterion, such as measured 

oxygen uptake (    ) via, most commonly, linear regression equations during specific 

activities of varying intensities (Lyden, et al., 2011).   

When wearing an accelerometer, users are often instructed to attach devices at the hip in 

the mid-axillary line. This is true for the uniaxial ActiGraph GT1M (Fort Walton Beach, 

FL); the most studied commercial accelerometer device (Rothney et al., 2008). In contrast, 

the triaxial 3DNX
TM

 (Biotel, Bristol, UK) is positioned in the small of the back in 

accordance with the manufacturer’s instructions. It has been argued that the lower back 

placement is a more intuitive location due to its proximity to the whole body centre of 

gravity. Furthermore, it has been suggested that count output from hip placement could be 

differentially affected, depending on the type of activity performed as movements on one 

side are not always representative of the other (Yngve et al., 2003; Zijlstra, 1997).  The 

effect of placement on the sensors at either the lower back or the hip has previously been 

assessed (Bouten, et al., 1997; Yngve, et al., 2003) showing a difference in accelerometer 

output between the hip and back.  However, neither study provided any empirical evidence 



Chapter 7 Effect of Placement and Adiposity on Accelerometer Output 

 

 

 
53 

 

to explain the differences observed or investigated the level of variability in count output at 

each placement.   

Sources of error in accelerometer outputs can originate from detecting factors other than 

the intended physical activity. For example, accelerations due to movement of the tissue 

over which the monitor is placed will affect PAC (Bouten, et al., 1997). This could impact 

on the reliability and validity of the devices for predicting EE and possibly lead to the 

misclassification of PA intensity.  Brage et al. (2003) suggested that individual 

characteristics such as body size, hip geometry and the amount of fat deposition on the hip 

may explain the large inter-instrument variability that they found in the uniaxial Computer 

Science Applications (CSA) monitor. Light et al. (1980) suggested that fixing 

accelerometers to soft tissue overestimates the amplitude of the accelerometer output 

compared with fixing the device to a bony landmark. From this, it could be inferred that 

thicker skinfold measurements beneath the sensor location may affect the validity of the 

device to predict metabolic rate because of oscillations that are additional and more 

variable than the acceleration experienced at the centre of mass. Feito et al (2011) 

investigated the effect of body mass index (BMI) on the accuracy of activity monitor step 

count function and found no main effect of BMI on counting accuracy; however, to our 

knowledge, there are no previously published studies specifically investigating the 

relationship between trunk adiposity and accelerometer PAC reliability and validity. 

The aim of this study was to establish whether there was a difference in the relationship 

between PAC and       (i.e. predictive validity) when accelerometers were positioned at 

the hip or lower back.  A secondary aim of the study was to determine whether individual 

differences in trunk adiposity mediated the relationship between       and PAC.  Finally, 

intra-instrument reliability at each landmark was also assessed. 

It was hypothesised that PAC would be higher and more variable at the hip and that there 

would be a difference in the PAC-      relationship between placements.  It was further 

hypothesised that measures of abdominal/hip adiposity would contribute to the prediction 

of       from PAC at the hip. 
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7.2 METHODS 

7.2.1 Accelerometry 

The triaxial 3DNX
TM

 model v3 (BioTel Limited, Bristol, UK; www.biotel.co.uk) is 

described in Chapter 3. Briefly, the device is sensitive to movements in three planes: X 

(anteroposterior), Y (mediolateral) and Z (vertical). The output from the three sensing axes 

are integrated in a process described by Bouten et al. (1997) to return a PAC value. The 

unit dimensions are 54 x 54 x 18 mm with a mass of 70 g including a 3.6 v lithium battery 

(Saft Ltd., UK). The unit contains two ADXL321 biaxial micro-electro-mechanical 

(MEMS) sensors (Analog Devices Ltd., Surrey, UK) positioned orthogonally to measure 

acceleration in three movement planes.  

7.2.2 Exercise protocol 

Following ethics approval from the University of Bath Research Ethics Approval 

Committee for Health (REACH), a convenience sample of 26 recreationally active, female 

participants (mean ± SD: age 20.4 ± 1.3 yr; mass 62.72 ± 6.9 kg; height 1.67 ± 0.05 m) 

reported to the laboratory on two occasions. No more than two weeks separated each visit 

to ensure that no significant changes in physical characteristics occurred.  During the first 

visit, anthropometric measurements were taken followed by familiarisation on a motorised 

treadmill (Woodway ELG 70, Munich, Germany), consisting of walking and jogging.  

Stature was measured using a stadiometer and body mass was measured using traditional 

beam scales (Weylux, England).  Lower limb length, waist circumference and hip 

circumference were measured using a fabric tape measure.  Skinfold thickness (Skf) was 

measured using Harpenden skin callipers (British Indicators, West Sussex, UK) from eight 

marked locations on the right side of the body: biceps, triceps, abdominal, supraspinale, 

iliac crest, subscapular, anterior thigh and medial calf. All reported values are the mean of 

three measurements. All anthropometric measurement techniques and sites have been 

previously defined and described by the International Society for the Advancement of 

Kinanthropometry (ISAK) (Marfell-Jones et al., 2006). 

During the second visit participants were fitted with two 3DNX accelerometers fixed 

directly to the skin (Hyperfix self-adhesive dressing retention tape, Smith & Nephew 

Healthcare Ltd., UK) at the hip (midaxillary line) and the lower back (Figure 7.1). A 15 

cm
2
 patch of tape was used to minimise the risk of introducing error from movement of an 



Chapter 7 Effect of Placement and Adiposity on Accelerometer Output 

 

 

 
55 

 

elasticated belt (the normal method of affixation).  Participants performed a continuous 

pre-programmed treadmill protocol consisting of four, 4-minute stages (4, 6, 8 and 10 

km·h
-1

). Participants rested for 20-min before repeating the treadmill protocol; this was 

considered a suitable recovery period based on the submaximal nature of the exercise.   

Unprocessed accelerometer data were downloaded using dedicated software (Biotel 

Limited, Bristol, UK) and imported into spreadsheets where 5-second epoch accelerometer 

counts were averaged over each stage. The first and last epochs of each stage were 

removed to ensure only steady state values were included in the analysis. All data are 

expressed as counts per five seconds (counts∙5s
-1

). 

 

 

 

 

 

 

Figure 7.1 3DNX accelerometers placed at A) the lower back and B) the supra-illiac skinfold site. 

Expired gases were collected during the last minute of each stage using the Douglas bag 

technique. Fractions of expired O2 and CO2 were assessed using paramagnetic and infrared 

analyzers, respectively (Servomex 1440, UK). The total volume of gas expired was 

determined using a dry gas meter (Harvard Apparatus, UK), and the temperatures of 

expired gases were measured with a digital thermometer (model C, Edale Instruments, 

UK). All values were corrected to reflect standard temperature and pressure. The analysers 

were calibrated before the test with gases of known composition and volume within the 

physiological range. 

7.3 STATISTICAL ANALYSIS 

Intra-instrument reliability 

 A custom model analysis of covariance (ANCOVA) was used to test for homogeneity of 

test one and test two regression slopes.  The dependent variable was      and the 

independent variables were PAC and test number (one or two).  Where no significant 

differences were observed, data were subsequently clustered.  Intra-instrument coefficients 

of variation (CVintra) were used to compare the variability of the PAC between tests. 

A B 
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Placement and     -PAC relationship 

A custom model ANCOVA was also used to test for an interaction effect of placement on 

the PAC-      relationship with PAC and placement as the independent variables.  Where 

an interaction was found, the data were split for subsequent analyses. 

Exercise Mode and      -PAC relationship 

A custom model ANCOVA was used to test for homogeneity of regression lines for 

walking and running.  This tested for a main effect and an interaction effect of different 

exercise mode (walking/running) on the PAC-       relationship.   

Speed and PAC
 

A 2-way mixed model ANOVA was performed with the four speeds (4, 6, 8 and 10 km∙h-1
) 

as repeated measures and placement as the between-subjects variable.  This ANOVA was 

used to test for significant differences in PAC between placements at different speeds.  In 

the event of a main effect, paired t-tests with Bonferroni correction were used post-hoc to 

locate differences. 

Adiposity and     -PAC relationship at the hip 

An ANCOVA testing for main effects was performed using only hip data with PAC as the 

dependant variable and speed and individual body composition measures as independent 

variables.  This ANCOVA was used to establish which, if any, body composition variables 

might explain any differences in PAC from the hip compared to the lower back.    

Instrument Validity   

Multiple linear regression analysis was used to compare the prediction of      between 

placement, exercise mode and the contribution of individual anthropometric 

measurements. Significance was set a priori at p < 0.05. 

Statistical analyses were conducted using the software package SPSS, version 18 (SPSS, 

Inc., Chicago, IL).   
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7.4 RESULTS 

There were 24 completed trials from the 26 participants due to spurious accelerometer data 

from two trials. Group characteristics are shown in Table 7.1.  

 Age 

(years) 

Height 

(m) 

Mass 

(kg) 

BMI Waist 

to hip 

ratio 

Leg 

length 

(cm) 

Abdominal 

(mm) 

Supraspinale 

(mm) 

Iliac 

crest 

(mm) 

Mean 20.4 1.67 62.7 22.4 0.8 85.5 21.4 14.57 20.42 

± SD 1.3 0.05 6.9 2.0 0.1 3.8 7.0 5.12 7.47 

MAX 23.0 1.75 75.0 26.7 0.9 93.4 35.3 24.80 36.30 

MIN 18.0 1.59 51.6 19.5 0.6 79.2 7.9 7.10 10.20 

Table 7.1 Group characteristics (mean ± SD). BMI; body mass index  

7.4.1 Intra-Instrument Reliability  

Analyses revealed that the assumption of homogeneity was not violated between test 1 and 

test 2 since there was no significant main effect (p = 0.89 or interaction (p = 0.94) between 

tests on PAC. For all remaining analyses the data were combined.  This demonstrates good 

intra-unit reliability which was also reflected by the mean CVintra of 3.0 % at the hip (range 

of 0.0-12.4 %) and 2.8 % at the lower back (range = 0.02-17.41). 

7.4.2  Inter-instrument Validity 

There was a significant main effect (p = 0.03) and a significant interaction effect (p = 0.02) 

of placement on the prediction of     from PAC.  Therefore the assumption of 

homogeneity of regression slopes was violated and all remaining analyses were performed 

with the data split by placement. A second ANCOVA performed on data split by 

placement revealed no significant main (p = 0.26) or interaction effect (p = 0.21) of 

exercise mode on the     -PAC relationship (Figure 7.2), indicating that the slopes and 

intercepts of both relationships were similar for walking and running. 
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Figure 7.2 The relationship between physical activity counts and       from accelerometers at the 

hip and back.  

7.4.3 Placement and PAC 

There was a significant main effect of speed (p < 0.01) and placement (p < 0.01) and an 

interaction effect of speed and placement (p < 0.01) on PAC.  Post hoc analyses showed 

that the difference in PAC between the hip and back was found at speeds 4 and 6 km.h
-1

 (p 

< 0.01) (Figure 7.3). Physical activity counts were higher at the hip (4 km.h
-1

 = 165 ± 22.6, 

6 km.h
-1

 = 281 ± 32.1 counts·5s
-1

) than the back (4 km.h
-1

 = 136 ± 16.0, 6 km.h
-1

 = 249 ± 

22.9 counts·5s
-1

).   
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Figure 7.3 The relationship between PAC and speed at the hip and lower back. 

* Significant differences in PAC between the hip and lower back (p < 0.05). 

7.4.4  Body Composition and PAC at the hip 

Since the 2-way mixed model ANOVA indicated a significant difference in accelerometer 

output between the hip and the back during walking, two separate ANCOVAs were 

performed for each placement using data from speeds 4 and 6 km∙h-1
. Various 

anthropometric measurements were offered into the analysis in an attempt to explain the 

differences between placement during walking (n = 96).   

At the two walking speeds the supraspinale (p < 0.01), abdominal (p < 0.01) and iliac crest 

(p < 0.01) skinfold thicknesses were all significant predictors of PAC at the hip. Body 

mass index, waist to hip ratio and leg length were also significant predictors (p<0.01).  

None of these variables was a significant predictor of PAC at the lower back. Of all the 

variables, supraspinale explained the most variance in PAC additional to speed and was 

therefore retained in the regression equations. 
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Linear regression analysis between PAC (counts∙5s
-1

) and      (ml·kg
-1

·min
-1

) for all 

speeds (n= 384) revealed that PAC alone explained 91.8 % of variance in      (r
2
 = 0.92) 

with a standard error of the estimate (SEE) = 3.80 ml·kg
-1

·min
-1

 at the hip and 90.1 % of 

variance at the back with SEE = 4.18 ml·kg
-1

·min
-1

.  When the hip data were split by 

exercise mode, the supraspinale skinfold thickness explained the most additional variance 

in      other than PAC.  Regression equations are shown in Table 7.2. 

 

Source Placement Linear Regression equation r
2
 SEE 

PAC                           

s                             

Hip          = (0.061*PAC) + 6.267 0.92 3.80 

PAC                              

c 

Back          = (0.056*PAC) + 8.960 0.90 4.18 

PAC  (walking data 

only) 

Hip          = (0.052*PAC) + 8.205 0.60 2.76 

PAC  (walking data 

only) 

Back          = (0.059*PAC) + 8.589 0.66 2.53 

PAC  (running data 

only) 

Hip          = (0.065*PAC) + 3.889 0.51 4.64 

PAC  (running data 

only) 

Back          = (0.059*PAC) + 7.418 0.34 5.38 

PAC (walking data 

only), supraspinale  

Hip          = (0.057*PAC) – 

(0.339*supraspinale) + 12.137 

0.75 2.18 

PAC  (running data 

only), supraspinale  

Hip          = (0.067*PAC) – 

(0.425*supraspinale) + 8.669 

0.61 4.13 

Table 7.2 Regression equations for the prediction of      

7.5 DISCUSSION 

The purposes of this study were three-fold.  Firstly, the aim was to establish any influence 

of placement on accelerometer output comparing hip and lower back placements.  The 

second purpose was to determine whether intra-instrument reliability and instrument 

validity for the prediction of      was influenced by placement.  The final objective was to 

determine whether adiposity at the accelerometer attachment site, measured by skinfold 

thickness, explained any variation in accelerometer output or instrument validity. It was 

hypothesised that monitors placed at the hip would produce higher and more random PAC 

than those at the lower back and that any increases would be related to hip adiposity.  

The 3DNX accelerometer demonstrated good intra-unit reliability indicated by a similar 

    -PAC relationship between tests and coefficients of variation below 3.0 % for both 

placements.  However, physical activity counts were significantly higher at the hip, with 
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the differences identified at walking velocities of 4 and 6 km∙h-1
. Interestingly, no 

differences were observed during running. Adiposity at the hip, determined by a range of 

variables, was related to accelerometer output at the hip but not at the back. Indeed, 

placement at the hip marginally increased the random error associated with predicting      

from PAC. Linear regressions for all data and split by exercise mode revealed good 

validity for the prediction of      from monitors at both placements. 

7.5.1  Intra instrument reliability 

Intra-unit reliability is important for longitudinal studies assessing PA levels of a 

population over time. It is essential that any observed variance in PA or EE is due to 

changes in participant behaviour rather than random error associated with the device 

(Welk, 2005). 

The 3DNX monitors demonstrated good intra-unit reliability indicated by the lack of an 

effect of trial on the relationship between PAC and     .  This is in agreement with the 

results of study 3 assessing the intra-unit reliability of the 3DNX
TM

 over speeds ranging 

from 4-20 km∙h-1
 during treadmill exercise.  The CVintra in the present study ranged from 

0.0-12.4 % at the hip and 0.0-17.4 % at the back where the mean values were 3.0 % and 

2.8 %, respectively.  These values are slightly lower than those reported in study 3 which 

found a range of 7.7–16.2 % and a mean of 10.8 % when the 3DNX was positioned at the 

lower back. The reduced variability in the current study is likely due to fixation of the 

device directly to the skin.   

7.5.2  Instrument validity 

The regression slopes for PAC and treadmill speed were not homogenous between 

placements suggesting that, in a laboratory setting, hip and lower back placements cannot 

be used interchangeably within studies.  These findings are in accordance with those by 

Yngve et al. (2003) who concluded that the placement of a uniaxial accelerometer (hip 

versus lower back) had a significant effect on the classification of different exercise 

intensities. The use of a triaxial accelerometer may exacerbate the differences observed by 

Yngve et al. (2003) as the additional sensing axes could register  rotation and horizontal 

displacement that uniaxial devices could not detect. 
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In contrast to the findings of the present study, Yngve et al. (2003) found that output from 

the hip was lower during walking and running compared to the lower back.  Washburn & 

Laporte (1988) also compared hip and lower back placements and found no effect on PAC 

from a uniaxial monitor during normal and fast paced walking.  Both of these studies used 

uniaxial devices.  The equivocal findings between uni and triaxial monitors could be 

explained by the relative contributions from the horizontal acceleration component during 

different exercise modes which are not detected by uniaxial accelerometers; it could be that 

horizontal accelerations of the hip are greater than the lower back during walking 

(Kavanagh et al., 2008). 

 Various indices of trunk adiposity were independently associated with PAC at the hip but 

not the lower back during walking.  Bouten et al. (1997) suggested that output from body-

mounted accelerometers could be affected by the motion of soft tissue under the sensor.  In 

the present study, external vibrations and oscillations from loose attachment were 

mitigated by direct attachment to the skin.  With increasing soft tissue at the monitor 

attachment site, there may have been increased movement compared to the centre of mass 

(Light, et al., 1980).  Measurements other than hip adiposity were independently related to 

PAC at the hip (BMI, leg length and waist:hip ratio) however, due to the co-linearity 

between many of these physiological variables, only the variable explaining most 

additional variance was included in regression analysis (supraspinale skinfold thickness). 

7.5.3  Prediction of      

3DNX counts increased linearly with      during walking and running. Regression 

analysis revealed strong, positive relationships between PAC and      at all speeds for both 

hip and back placements.  When all speeds were combined, r
2
 and SEE values at the hip (r

2
 

= 0.92, SEE = 3.8 ml∙kg
-1∙min

-1
) and back (r

2
 = 0.90, SEE = 4.2 ml∙kg

-1∙min
-1

) were 

similar. These values are similar to the r
2
 values reported by Welk et al. (2004) who 

compared two different devices, the Biotrainer (r
2
 = 0.88, SEE = 1.47 kcal∙min

-1
) and 

Actical (r
2
 = 0.91, SEE = 1.24 kcal∙min

-1
).  The marginally higher r

2
 values in the present 

study are likely due to the wider range of speeds studied, naturally increasing the 

correlation coefficient value ((Hopkins, 2000)).  Fudge et al. (2007) validated the 3DNX 

v2 during treadmill exercise. These authors reported r
2
 and SEE values of 0.83 and 2.20 

ml∙kg
-1∙min

-1
 and 0.76 and 4.88 ml∙kg

-1∙min
-1 

for walking and running, respectively.  These 
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data were derived from treadmill velocities ranging from 3 – 20 km∙h-1
, which could 

explain the increased linearity and similar SEE values.  In Chapter 6, the 3DNX v3 was 

validated during treadmill exercise and returned r
2
 and SEE values similar to those of the 

present study for walking (r
2
 = 0.65, SEE = 1.4 ml·kg

-1
·min

-1
). Values for running were 

more favourable in the present study than the previous chapter (r
2
 = 0.62, SEE = 3.6 ml·kg

-

1
·min

-1
); however, in Chapter 6, a greater range of running velocities were included which 

would contribute to producing higher r
2
 values.    

It was necessary in the current study to split the data by mode of exercise for sub-analyses 

because of an interaction effect between placement and PAC during walking.  When 

walking data only were further separated by placement, the     -PAC relationship using 

hip data only was r
2
 = 0.60 (SEE = 2.76 ml∙min

-1∙kg
-1

) and r
2
 = 0.66 (SEE = 2.53 ml∙min

-

1∙kg
-1

) using back data only.   This regression analysis revealed that during walking, PAC 

at the back displayed a slightly stronger linear relationship with      and lower SEE 

compared to the hip.  This infers that, during walking, the lower back placement may be 

more suitable due to reduced random error.  Walking is one of the most common 

movements performed as part of habitual PA (Wang et al., 2010) consequently, it is often 

prescribed as part of rehabilitation and disease prevention interventions (Hakim et al., 

1998). It would therefore be beneficial to select the least variable accelerometer attachment 

site so that reliable estimates of physical activity and EE could be made. The opposite was 

found during running; the r
2
 value at the back was the lowest observed in all regression 

analyses (r
2
 = 0.34) and the SEE was the highest observed at 5.3 ml∙kg

-1∙min
-1

.  This 

implies that different attachment sites would be preferable depending on the activity 

selected.  The participants involved in the current study were all recreationally active, 

young and with a narrow range of body size and trunk adiposity.  For this reason, caution 

must be taken before applying these findings to a wider sample of females, and of course, 

to males. 

When indices of adiposity were added to the regression analysis for walking, r
2
 and SEE 

values were improved at the hip.  Previous laboratory studies found the inclusion of 

individual characteristics improved the prediction of EE (Welk, et al., 2004) but  to the 

authors’ knowledge, there are no published articles on the effect of trunk adiposity on 

accelerometer reliability and validity during treadmill walking or running. As such, 

comparison with the wider literature is impossible.  
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The regression equations presented in this study could be applied to a similar sample of 

young active females for the prediction of metabolic rate.  It has been suggested that the 

use of individual calibration equations might improve the accuracy of prediction equations 

although this is impractical for large samples and applications (Welk, 2005).  The finding 

that trunk adiposity affects PAC suggests that if the monitor were worn at the hip during 

walking, different calibration equations would be required for populations with different 

levels of trunk adiposity.  This provides support for positioning accelerometer devices at 

the lower back during walking activities so that group calibration equations could be 

employed.  Further investigation into the relationship between PAC and trunk adiposity is 

required in more variable populations. Furthermore, males tend to have less subcutaneous 

fat stores than females (Geer et al., 2009) suggesting the relationship between PAC and 

body fatness may differ by gender.   

In conclusion, the 3DNX is a valid and reliable tool for estimating      during treadmill 

exercise in young active females.  During walking, PAC are higher at the hip compared to 

the lower back and therefore these placements cannot be used interchangeably within 

studies.  Overall, the increase in PAC at the hip, in this population, was largely consistent 

and therefore did not affect the validity of this monitor to predict     . Individual 

differences and variability in hip-derived PAC, at least during walking, appear to be 

explained by subcutaneous hip adiposity. A more objective measure of fat deposition at the 

hip obtained from dual x-ray absorptiometry (DEXA) may strengthen such associations. 

Overall, the lower back appears a more suitable location for wearing the 3DNX if 

anthropometric data are unavailable or individual calibration impractical. The effect of 

accelerometer placement on PAC in overweight, obese and mixed gender populations 

remains to be established. 



Chapter 8  Comparing  Accelerometers for Predicting  Energy Expenditure  

 

 

 
65 

 

8 A COMPARISON OF THREE ACCELEROMETER DEVICES FOR 

THE PREDICTION OF FREE-LIVING ENERGY EXPENDITURE 

8.1 INTRODUCTION 

Body-borne accelerometers are now widely used for objectively assessing the frequency, 

duration and intensity of free-living physical activity (Chen, et al., 2005), the most studied 

being the uniaxial Actigraph GT1M (Rothney, et al., 2008). However, it is still difficult  to 

accurately use the resulting dimensionless physical activity ‘counts’ (PAC); the standard 

output of accelerometers, to predict units of expended energy (Chu, et al., 2007). Despite 

this difficulty, prediction of physical activity energy expenditure (PAEE) remains the end 

goal of many device manufacturers and researchers alike.  

While it has its limitations, the doubly labelled water (DLW) method is considered the 

‘gold standard’ for determination of free-living total energy expenditure (TEE) in humans 

(Ainslie, et al., 2003). PAEE can be calculated by subtracting measured or predicted 

resting metabolic rate (RMR) from TEE (Plasqui, et al., 2007). The use of DLW is often 

limited to small experimental studies due to resource and financial costs. Furthermore, it 

only provides a mean estimate of EE over a series of days (usually 7-14), rather than a 

detailed profile of TEE or PAEE over time. Although DLW has been used to describe 

differences in TEE over individual days (Myers et al., 2008), the accuracy of these 

estimations is questionable (Campbell, et al., 2002). Despite these limitations it remains a 

suitable reference technique for the evaluation of other methods of TEE and/or PAEE 

estimation (Bouten, et al., 1997).    

The most common approach to predict TEE or PAEE has been to develop equations in 

laboratory settings combining anthropometric variables with accelerometer PAC. 

However, algorithms and equations are often proprietary, meaning that the interpretation of 

the returned values may be limited and prediction errors are often high. The prediction 

error appears to arise from two main sources. Firstly, waist-mounted accelerometers tend 

to underestimate EE associated with upper body movement, load carriage and changes in 

surface or terrain (Hendelman, et al., 2000; Trost, et al., 2005). Secondly, the majority of 

devices employ linear models to predict TEE and PAEE (Lyden, et al., 2010). This is an 
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over-simplistic approach as the relationship between activity counts and PAEE is known to 

vary according to the type of activity being performed (Midorikawa, et al., 2007). 

In an attempt to better capture the multi-directional nature of free-living activity, devices 

that measure acceleration in three dimensions, so called triaxial accelerometers, have been 

developed and many have been validated during treadmill exercise using protocols similar 

to that used in Study 3. Two such devices are the 3DNX (v3) (BioTel Ltd., Bristol, UK) 

and the Actigraph GT3X (ActiGraph, Pensacola, USA). In both these devices, post data 

collection prediction equations can be used convert arbitrary activity ‘counts’ to units of 

expended energy (Carter, et al., 2008; Lyden, et al., 2011). Indeed, triaxial accelerometers 

appear to offer greater prediction accuracy of PAEE than uniaxial accelerometers (de 

Graauw et al., 2010; Plasqui, et al., 2005; Welk, et al., 2000). To our knowledge, no DLW 

validation studies have been performed using the GT3X. A recent DLW validation 

(Chapter 9) reported that 3DNX PAC and height explained 41 % of the variance in PAEE 

with a standard error of prediction of 32 %. Physical activity counts alone explained 6% of 

the variance in PAEE. This modest amount of explained variance indicates that 

accelerometry alone is not sufficient to accurately estimate PAEE even when using the 

more sophisticated triaxial devices. Using a combination of accelerometry and HR data has 

been used in an attempt to improve the accuracy of PAEE prediction. The ActiHeart 

(CamNtech Ltd., Cambridge, UK), uses a branched-equation modelling approach to ensure 

that the prediction of PAEE is more heavily weighted towards HR during moderate and 

intense activities and accelerometry during lower intensity activities (Ainslie, et al., 2003).  

Given that the physical characteristics of the population being studied plays such an 

important role when predicting of free living PAEE, a true comparison of the accuracy of 

available devices should be performed using the same population undertaking the same 

activity. Therefore, the aim of this study was to take a user-oriented approach to comparing 

the prediction accuracy of the GT3X, 3DNX and Actiheart against criterion values of 

PAEE derived from the DLW technique. The hypothesis was that there would be no 

significant difference between DLW derived PAEE and the HR integration method (i.e. 

ActiHeart), but that accelerometer-only estimates would be significantly different from 

DLW PAEE.  
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8.2 METHODS 

8.2.1  General Approach 

Ten young adult, Emirati nationals from a military preparation school in the United Arab 

Emirates volunteered to participate in this study, which was approved by the School of 

Sport and Exercise Sciences Ethics Committee at the University of Birmingham as part of 

an ongoing project pre-dating the start of this research programme. Participants provided 

written informed consent following verbal and written explanation of all procedures. 

Stature (Leicester Stadiometer, Seca, Hamburg, Germany) and body mass (Alpha 770, 

Seca, Hamburg, Germany) were measured on the day prior to the start of the observation 

period. Following these measurements, participants completed a multistage fitness test to 

estimate maximum oxygen uptake (VO2max) and determine maximum HR max (HRmax) 

(Ramsbottom et al., 1988) .  

Environmental temperature and relative humidity were measured using a wet bulb globe 

thermometer (QUESTemp°32 Thermal Environment Monitor, QuestTechnologies, 

Wisconsin) 

During an observation period of ten days, participants total energy expenditure (TEE) was 

estimated using DLW (see Section 8.2.2). Each individual also wore a HR monitor (Team 
2
 

system, Polar Electro Oy, Kempele, Finland) and three accelerometer devices (as per 

manufacturer’s instructions); the 3DNX (in the small of the back), the GT3X on the 

(midaxillary line at the right hip) and the Actiheart fixed to the chest in the upper position 

(2006). Participants were fitted with the devices each morning on waking and instructed to 

wear the devices during the entire waking day. The devices were removed by 

experimenters at “lights out”. The typical waking duration of a weekday was 

approximately 15 hours (05:45–21:30). However, participants regularly removed the 

devices for approximately two hours during the day while sleeping. Time spent sleeping 

was recorded by participants, verified by visual inspection of the data and removed from 

the total waking hours for that day. At the weekend, sleeping patterns varied between 

individuals but the duration of a waking day remained 15 ± 1.8 hours.  

No formal information was gathered regarding daytime sleep patterns over the weekend, 

resulting in daytime accelerometer removal for sleeping during this period being included 
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as part of the waking day and classed as non-wear. Non wear time was identified in two 

ways. Firstly, a period of 20 minutes rolling zero counts was classed as accelerometer non 

wear. Secondly, due to the small participant numbers, data were visually inspected and 

non-wear was verified on a case by case basis. Maximum possible waking hours were 

calculated for the ten days and actual wear time (total waking hours – non wear time), 

expressed as a percentage of this maximum. All devices were downloaded using dedicated 

software and imported into Microsoft Excel for subsequent analysis. 

8.2.2  Measurement of Energy Expenditure using DLW 

The DLW method used has been described in full in Chapter 3. Briefly, each participant 

provided baseline urine samples before ingesting a weighed oral dose of 
2
H2

18
O (day 0). 

The doses were 80 mg·kg
-1

 deuterium oxide and 145 mg.kg
-1

 H2
18

O. Post-dose urine 

samples were collected daily for the 10 subsequent days and the time of day the urine 

sample was produced was recorded by each participant. Urine samples were subsequently 

frozen at -20 °C and later analysed in duplicate using isotope-ratio mass spectrometry 

(MRC, Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, UK). Using 

this dosing regimen, EE can be estimated with a coefficient of variation lower than 5.0 % 

(Bluck, 2008). A sample of drinking water was also collected to correct for the natural 

abundance of 
2
H2

18
O at the study location. 

8.2.3 Prediction of Energy Expenditure using Accelerometer Devices 

3DNX 

The triaxial 3DNX  (54 x 54 x 18 mm) (v3; BioTel Ltd, Bristol, UK) is described in 

Chapter 3. It is sensitive to movements in three planes: X (anteroposterior), Y 

(mediolateral) and Z (vertical). Accelerometers were set to record at one-minute epochs 

and activity counts were converted to PAEE using a prediction equation described in 

Chapter 9.  

Actigraph  

The Actigraph GT3X (38 x 37 x 18 mm) weighs 27 g and measures acceleration within a 

dynamic range of ± 3 g. The GT3X has a sample frequency of 30 Hz. The accelerometer 

signal is digitised and the accelerations summed each minute to provide an activity counts 
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value. Once downloaded the software offers the user three options for converting activity 

counts to PAEE. The first is the ‘Work energy theorem’ (GT3XWE): 

                                                                             (Equation 8.1) 

The ‘Freedson’ option (GT3XF) (Freedson, et al., 1998) is the second option where: 

                                                              

(Equation 8.2) 

                                   

        
            

  
                                                        (Equation 8.3) 

Finally the ‘combination’ option where the Freedson equation (Freedson, et al., 1998) was 

used to predict EE above 1951 counts.min
-1

 and the work-energy theorem was used below 

that threshold (GT3XC). The outputs from all three of these options have been included in 

subsequent analyses. 

 Actiheart 

The Actiheart (CamnTech, Cambridge, UK) is described in chapter 3 and elsewhere 

(Brage, et al., 2005). In short, the device returns a value for EE for each minute based on a 

combination of the relationships between HR, accelerometer counts and EE. The group 

calibration proposed by Brage (2007) was selected for all participants. Individual values 

for maximum HR were entered manually and sleeping HR was recorded as the lowest 

value from a 20-minute rolling average. Where HR data from the Actiheart were missing 

due to incomplete ECG data, values from the Polar HR monitor were integrated into 

existing files using bespoke Actiheart  software (CamnTech, Cambridge, UK) altered by 

the manufacturer following a request by the authors. This provided an additional, more 

complete dataset to demonstrate the capability of the Actiheart had it worked according to 

the manufacturers’ specifications (ActiheartPolar). 

8.2.4  Data reduction 

Given that an entire waking day was approximately 15 hours long, the true amount of 

physical activity undertaken during that period may not have been fully captured on any 

day where an accelerometer was worn for less than 15 hours.  

In the absence of a consensus regarding best practice for data reduction, the threshold at 

which a day was labelled complete or incomplete was carefully considered and a 
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population-specific approach was taken. A histogram was generated similar to that of 

Colley et al. (2010) to visualise the effect of manipulating the threshold at which a day was 

deemed viable. The value of 11 hours allowed the inclusion of the largest number of days 

while exceeding the recommended threshold of 10 hours recommended by Triano et al. 

(2008) Days when wear time was less than 11 hours (including removal for daytime 

sleeping), wear time was deemed insufficient to capture the majority of physical activity 

for that day and coded as “incomplete”. No individuals registered more than three 

“incomplete” days during the 10-day monitoring period. Any days that did not meet the 11 

hour threshold were excluded from the 10-day mean for each participant. It was decided 

that imputing missing days was not acceptable for such a small sample size. Overall wear 

time compliance based on the maximum possible waking hours (summation of time 

between waking and “lights out” for the entire observation period) was 85.0 ±11.3 % 

before incomplete days were excluded. After excluding incomplete days the wear time 

compliance for the remaining days was 88.8 ±7.8%. 

8.2.5  Statistical Analysis  

Paired t-tests were used to compare between mean PAEE estimated by DLW and each of 

the accelerometer prediction equations. Limits of agreement (LoA) were calculated to 

show the level of agreement between methods (Bland et al., 1986). Statistical significance 

was set at a priori <0.05.  

8.3 RESULTS 

Participant characteristics and estimated PAEE values are shown in Table 8.1. One 

Actiheart monitor was removed due to skin irritation and one 3DNX unit failed during the 

observation period, therefore the final dataset was reduced to n=8 for all comparisons. 

DLW PAEE was greater than that predicted by 3DNX
 
(p=0.001), GT3XWE (p<0.001), 

GT3XF (p<0.001) and GT3XC (p<0.001). However, there were no differences between 

DLW PAEE and PAEE predicted by Actiheart (p=0.199) or ActiheartPolar (p=0.381).The 

bias and LoA between the predicted PAEE values from each of the accelerometer devices 

and those measured by DLW are shown in Figure 8.1 

The absolute bias ±95% LoA were -860 (p< 0.001) ±318 kcal·d
-1

, -897 (p< 0.001) ±263 

kcal·d
-1 

and -1047 (p< 0.001) ±304 kcal·d
-1 

for the GT3XWE, GT3XF and GT3XC 
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respectively. The absolute bias ± 95% LoA were -326 (p< 0.001) ±335 kcal·d
-1 

for the 

3DNX, -288 (p>0.05) ±1060 kcal·d
-1 

and -215 (p>0.05) ±1198 kcal·d
-1 

for the Actiheart 

and ActiheartPolar, respectively.  

Environmental temperature and relative humidity during the observation period were 32.6 

± 2.2 °C and 54 ± 11% respectively. 
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Figure 8.1. The relationships between PAEE estimated by the DLW technique and PAEE predicted 

by the 3DNX
TM

 (A), the Actiheart (B), ActiheartPolar, (C), GT3XWE (D), GT3XF  (E), and the 

GT3XC (F)  



 

 

 

 

 

 

 

 

 

 

 

 

Table 8.1. Participant characteristics and estimated physical activity energy expenditure (PAEE). RMR, predicted resting metabolic rate; Mean PAEE, estimated physical 

activity energy expenditure over the 10 day observation period; 3DNX, PAEE estimated using the equation generated in Chapter 9; Actiheart, PAEE estimated using the 

untouched Actiheart data;  ActiheartPolar, Actiheart PAEE estimation with missing HR values replaced; GT3XWE, PAEE estimation using the ‘work energy theorem’ option; 

GT3XF, PAEE estimation using the ‘Freedson’ option; GT3XC, PAEE estimated using the ‘combination’ option 

*symbol denotes that mean values were significantly lower than DLW (p≤0.01). 

Participant Height 

(cm) 

Mass 

(kg) 

Age 

(Yrs) 

RMR 

(kcal·d
-1

) 

Mean PAEE (kcal·d
-1

) 

DLW 3DNX Actiheart ActiheartPolar GT3XWE GT3XF GT3XC 

1 172.3 65.7 16.3 1820 1253 990 1391 1358 415 241 434 

2 174.6 99.5 18.1 2186 1287 915 2209 2520 558 439 699 

3 177.4 63.6 18.8 1646 1401 1393 599 583 438 268 455 

4 176.8 81.6 18.7 1917 1096 916 650 742 298 184 337 

5 175.9 57.4 17.8 1690 1432 969 804 947 352 177 343 

6 178.9 65.2 18.8 1670 1414 1107 816 902 336 171 354 

7 161.5 61.8 18.3 1620 1138 635 939 939 389 252 400 

8 171.0 74.3 18.0 1807 1393 879 698 698 452 300 507 

Mean 

 ± SD 

173.6  

± 5.5 

71.1  

± 13.7 

18.1  

± 0.8 

1794 

 ± 188 

1302 

± 131 

976* 

± 215 

1013 

± 543 

1086 

± 624 

389* 

± 86 

240* 

± 84 

424* 

± 115 
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8.4 DISCUSSION 

This study was the first to compare the validity of 3DNX, GT3X and Actiheart 

accelerometer devices for the prediction of PAEE in the same free living population. The 

practical user-oriented approach was designed to mimic that of a novice end user meaning 

that the equations used for the prediction of PAEE were either those embedded in the 

device software in the case of the GT3X and the Actiheart, or the only available generic 

prediction equation in the case of the 3DNX. The main finding of this study was that all 

three devices under-predicted PAEE compared to the DLW technique regardless of 

prediction equation chosen. 

A comparison of the findings of this study to previous research is challenging due to 

different evaluation criteria (e.g. doubly labelled water, indirect calorimetry etc.) and 

different durations of wear time. Furthermore, the GT3X; the newest of the Actigraph 

models and the 3DNX are comparatively new devices, so at present there are no published 

independent free-living validation studies. 

The Actiheart and the subsequent ActiheartPolar derivative were the only devices that 

returned PAEE values that were not statistically different from DLW. This pattern 

continued when the absolute bias was calculated with both Actiheart derivatives returning 

a non-significant mean difference. This may be slightly misleading as the 95% limits of 

agreement were the largest for this device indicating the greatest random error at an 

individual level. The GT3X underestimated PAEE to the largest extent, regardless of 

which prediction equation option was chosen by the user. Overall these findings are similar 

to those summarised by de Graauw et al. (2010) whereby accelerometry consistently 

underestimated PAEE with large limits of agreement. These authors also observed that 

accelerometry underestimated more vigorous activity to a greater degree. The substantially 

larger underestimation by the GT3X may be in part due to the dynamic acceleration 

measurement range of the unit. In the present study it is likely that participants were, at 

times, performing vigorous activities above the 3g and 2.5Hz thresholds that are filtered 

out by the manufacturers’ settings of the GT3X (John et al., 2012). This has previously 

been reported during incremental treadmill exercise for the GT1M; the predecessor of the 

GT3X (Fudge, et al., 2007) and the GT3X (Brychta et al., 2010) where ambulation above 

9.66 km∙hr
-1

 no longer resulted in increased counts.  
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The overall underestimation of PAEE estimated by accelerometry is unsurprising given 

that the activities undertaken by the subject population were military in nature and often 

included resistance exercise such as push ups and sit ups. It is well known that waist-

mounted accelerometers cannot reasonably quantify the EE associated with such 

movements (Trost, et al., 2005). In these scenarios the Actiheart should display clear 

advantages over the 3DNX and the GT3X as HR data should better reflect the true 

metabolic cost of such exercise. Despite the improved suitability of the Actiheart to this 

population, its estimation of PAEE was not as accurate as that reported by Crouter et al. 

(2008) where the combined HR and activity algorithm provided similar estimates of PAEE 

at both group and individual level. 

The underestimation of PAEE across all devices could also be partly explained by the 

~11% of missing data. Wear time compliance after excluding incomplete days was 88.8 

±7.8 % leaving a proportion of the waking day where the devices were not worn. During 

this time any physical activity performed and its resulting EE would not have been 

captured by the devices.  

The large limits of agreement, and indeed the non significant mean bias, returned by the 

Actiheart were mainly due to a large overestimation of PAEE for participant 2. The data 

for participant 2 were scrutinised and no reason could be found to remove the participant 

from the analysis. It appears that the large overestimation is a result of the participant’s 

relatively high body mass (99.5kg) and body mass index (32kg∙m2
), and low sleeping heart 

rate (48 bpm). When this parameter was manually altered to correspond to the group mean 

(71.1kg), the estimated PAEE value reduces to a value similar to the DLW PAEE group 

mean. It would seem that the group calibration (Brage, et al., 2007) used in the Actiheart 

prediction model may not be suitable for use in physically active populations which 

include overweight or obese participants. This observation should be substantiated in a 

larger population with a wider range of body sizes and PAEE levels. Furthermore, the 

effect of high seasonal temperatures (32.6 °C) could have caused the dissociation of the 

HR-   2 relationship. The participants were however; all local and as such were 

acclimatised to the environment. 

There were a number of limitations to the current study which was driven by the desire to 

evaluate the three devices from a user perspective conducting a field study. The first 

methodological limitation was the large amount of missing HR data from the Actiheart. It 
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would not be feasible for the majority of users to integrate their own HR data; it was done 

in the present study so that the device could be evaluated as if it had worked perfectly. The 

Actiheart was positioned by a researcher each day according to the user instructions; thus, 

no more could have been done to improve the quality of the HR data recorded by the 

device. The imputation of missing HR data for six out of eight participants made minor 

improvements to the prediction accuracy of the device over 10 days (Figure 8.1 B and C), 

but further investigation in a larger sample and a greater range of PAEE values would be 

valuable to find out to what extent missing HR data affects predicted PAEE. In addition, 

although sleeping HR was recorded over night, it was not repeated on additional nights 

introducing the potential for error in the Actiheart predictions as heart rate is subject to 

large random variation across a period of several days (Cipryan et al., 2012). 

Unfortunately due to the nature of the assumptions made during the DLW analysis, there 

are likely to be some inaccuracies introduced to the criterion measure of PAEE. For 

example, the factor used to correct for the labelled isotopes leaving the body via sweat and 

water vapour in breath (fractionation) may not be appropriate for the UAE where summer 

temperatures can be in excess of 50°C. Furthermore, the assumption of a respiratory 

quotient of 0.85 may not be appropriate for a non-western diet. Despite these limitations, it 

is unlikely that a large portion of PAEE underestimation is attributable to error in the 

criterion measure.  

 It was not possible in the present study to measure RMR which was instead estimated 

using the equations of Schofield (1985) incorporating age, gender, body mass and height. 

Such an equation is widely used despite concerns that it may not be appropriate for all 

populations and individuals. At present there are many different published equations for 

the prediction of RMR and others have suggested that the Schofield equation can lead to 

inaccurate predictions particularly in non-western populations (Hofsteenge et al., 2010). 

Introducing inaccuracies such as predicted RMR into the criterion measure of PAEE is a 

likely contributor to the poor prediction of PAEE. Despite this limitation, Carter et al. 

(2008) contend that predicting RMR may be just as appropriate for validation of prediction 

equations in a field-based setting as accurate measures of RMR are rarely possible. The 

present study should be repeated on a larger cohort with a wider range of PAEE values and 

measured RMR to gain a better insight into the performance of the devices for potential 

use in larger epidemiological studies. In the case of the 3DNX, the prediction equation 
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used in this study was developed in a military-style setting, albeit in a more active 

population, so it could be argued that the current validation was not truly independent for 

that unit. 

In summary, the Actiheart appears the most accurate tool for the prediction of free-living 

PAEE due, in part, to the integration of HR data. However, in practise the quantity of 

missing data leads to inaccuracies. These inaccuracies could be exacerbated if participants 

were left to position their own device. The 3DNX and the GT3X both underestimated 

PAEE, the 3DNX to a much lesser extent. Although both the mean values for 3DNX and 

GT3X units were statistically different to that of DLW values, the narrower 95% limits of 

agreement compared to the Actiheart suggest that these units could still be more suitable 

for intervention studies. Any changes in group mean values would be detected due to the 

consistent nature of the prediction error both pre and post intervention. In conclusion, we 

contend that based on our observations, users should be aware of the large limits of 

agreement associated with the Actiheart caused by the large overestimation of PAEE for 

one participant. Although Actiheart mean values were not significantly different from 

DLW PAEE, this was likely due to the large over estimation for one participant. Future 

users should determine what level of individual and group error is acceptable before its 

deployment.  Despite similar findings showing poor prediction accuracy in other published 

research (de Graauw, et al., 2010; Ekelund et al., 2001; Maddison, et al., 2009), 

accelerometers and linear prediction equations continue to be used by the research 

community partly due to their ease of application (Rothney, et al., 2007). Therefore, 

comparison studies of this nature provide valuable information for researchers designing 

studies where more complex processing techniques may not be feasible. Exploring 

alternative but user-friendly approaches to establishing relationships between actual PAEE 

and that predicted using accelerometer counts and other variables is likely to be of benefit.   
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9 DEVELOPMENT OF AN ACCELEROMETER-BASED 

MULTIVARIATE MODEL TO PREDICT FREE-LIVING ENERGY 

EXPENDITURE IN A LARGE MILITARY COHORT 

9.1 INTRODUCTION 

The doubly labelled water (DLW) method is considered the gold standard for 

determination of free-living total energy expenditure (TEE) in humans (Ainslie, et al., 

2003). Physical activity energy expenditure (PAEE) can be calculated by subtracting 

measured or predicted resting metabolic rate (RMR) from TEE (Plasqui, et al., 2007). The 

use of DLW is often limited to small experimental studies due to resources and financial 

costs. Furthermore, it only provides a mean estimate of EE over a series of days (usually 7-

14), and no pattern of activity over time can be determined (Campbell, et al., 2002). 

Despite these limitations it remains a suitable reference technique for the evaluation of 

other methods of physical activity measurement where estimating EE over an extended 

period of time is the end goal (Bouten, et al., 1997).    

Body-borne accelerometers are now widely used for objectively assessing frequency, 

duration and intensity of activity (Chen, et al., 2005). It is still difficult however, to 

accurately use the dimensionless physical activity counts (PAC) to predict units of 

expended energy (Chu, et al., 2007). Many laboratory-derived prediction equations are 

developed using a series of scripted activities such as walking, stepping, sweeping and 

deskwork (Chen et al., 2003). However, such equations may not accurately translate to 

activities of daily living. An alternative and, arguably, more ecologically valid approach, is 

to derive a prediction equation from relevant free-living data in a population that is to be 

observed in future studies. During such a study, physical activity should ideally be 

accurately determined over a period of time representative of habitual activity (Bonomi, et 

al., 2010). Past validation studies that have been conducted in a free-living cohort often use 

accelerometer data from periods substantially shorter than the DLW observation period 

(Colley, et al., 2010). Trost et al.  (2000) recommended that over a 7-day measurement 

period, 4-5 days of monitoring including a weekend day (i.e. 2-3 missing or incomplete 

days) returns sufficient reliability to characterise an individual’s typical weekly activity 

profile. By including an incomplete dataset when developing a prediction model, a 

researcher assumes that the activity patterns observed on the selected days are consistent 
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for the remainder of the measurement period. This approach ignores potential differences 

in activity levels between days, making the estimated summary statistics subject to 

selection bias (Catellier et al., 2005). This is of particular importance when developing 

prediction models in military cohorts where the waking day has been previously reported 

as ~17-h on camp and up to 24-h during military exercise when military activities are 

continued throughout the night (Wilkinson, et al., 2008b). In this scenario an observation 

period encompassing both days in camp and days on exercise will lead to variable physical 

activity patterns which would unlikely be characterised by a subsample of 4-5 days of 

accelerometer data. 

Two main types of accelerometer are in widespread use in physical activity research: 

uniaxial and triaxial. Laboratory studies have shown close agreement between both types 

of accelerometer for human ambulation (Welk, et al., 2000). However, during free-living 

activities it has been suggested that triaxial accelerometry offers greater prediction 

accuracy of EE (Plasqui, et al., 2005; Welk, et al., 2000). Even so, it is widely accepted 

that waist-mounted accelerometers tend to underestimate EE associated with load carriage, 

upper body movement and changes in surface or terrain (Hendelman, et al., 2000; Trost, et 

al., 2005), mainly due to technological limitations in their ability to detect increased energy 

cost associated with such activities. Nonetheless, it appears that the greater sensitivity of 

the triaxial accelerometer to movement in different planes leads to better prediction of EE 

than uniaxial accelerometers in a free-living environment (Campbell, et al., 2002).  

The 3DNX (v3) is a small, lightweight triaxial accelerometer which has recently become 

commercially available. It has been shown to be valid and reliable in a mechanical setting 

and correlates well with oxygen consumption during treadmill exercise (Fudge, et al., 

2007). A recent study demonstrated the capability of the 3DNX (v2) to predict TEE in two 

free-living cohorts and reported explained variance of up to 35 % using accelerometer 

counts alone and up to 78 % when accelerometer counts were combined with body 

composition variables (Carter, et al., 2008). However, the models presented by Carter et al. 

(2008) were divided into two groups; young adults and adolescents. When considered as 

independent cohorts, the young adult military-based prediction equations were developed 

using only twelve data points. Furthermore, a prediction equation developed in a single 

platoon of trainee guardsmen may not be applicable to other military groups, particularly 

female personnel. 
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This study aims to test the hypothesis that PAC are independently associated with TEE and 

PAEE in a large pooled dataset from a number of independent cohort studies. This will be 

achieved using a stringent data reduction method to produce a model which is based upon 

a large, highly compliant sample and developed using DLW as a gold standard criterion 

measure. The inclusion of a range of cohorts would make the resultant mathematical model 

more generic, at least within the military context.  

To our knowledge, this will be the largest independent evaluation of the efficacy of an 

accelerometer to predict EE against the DLW method in multiple cohorts. 

9.2 METHODS 

9.2.1 General Approach 

This study has added together a group of studies with common methodologies. A large and 

diverse group of participants have been combined for the first time using data collected 

prior to and during this project. 

Over a six-year period from 2004 to 2010, ten data collection periods with military cohorts 

in the UK and UAE produced 288 individual datasets where average daily 3DNX PAC and 

average daily EE using the DLW technique were measured simultaneously. Data from 

studies 4, 6 and 7 (Table 1) have been reported in a different format elsewhere (Carter, et 

al., 2008; Richmond, et al., 2012) and were collected during a period of employment pre-

dating this research programme. Only data from study 4 were collected by an independent 

team of researchers who have given their consent for these data to be included in the 

present study. Studies 1, 2, 3, 5, 8, 9 and 10 were completed during this research 

programme. 

In all studies, written informed consent was provided and where necessary countersigned 

by a legal guardian following a full explanation of procedures. Ethical approval for each 

study was sought and obtained from the most appropriate research ethics committee, 

including the UK Ministry of Defence Research Ethics Committee and the School of Sport 

and Exercise Sciences Ethics Committee at the University of Birmingham. Ethical 

approval was granted prior to the commencement of this project as part of a larger body of 

work. 
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Despite small methodological differences between each study i.e. different monitoring 

period lengths, DLW and accelerometry techniques remained constant throughout.  

9.2.2 Preliminary Measures 

Stature (Leicester Stadiometer, Seca, Hamburg, Germany) and body mass (Alpha 770, 

Seca, Hamburg, Germany) were measured on the day prior to the start of each observation 

period. Body composition was calculated from total body water using the average 

Deuterium and 18-Oxygen dilution spaces from the DLW measurements.  Total body 

water was corrected by 1.04 and 1.01 respectively to account for non-aqueous exchange of 

the two isotopes within the body.  Fat free mass was calculated using a hydration factor of 

73 % with fat mass as the difference between body mass and fat free mass. 

9.2.3 Isotope dosing and sampling 

The DLW method is described fully in chapter 3. Briefly, each participant provided 

baseline urine samples before ingesting a weighed oral dose of 
2
H2

18
O (day 0). The doses 

were 80 mg.kg
-1

 deuterium oxide and 145 mg.kg
-1

 H2
18

O. Post-dose urine samples were 

collected daily for 7-10 days depending on the study (see below) and the time of day noted. 

Urine samples were subsequently frozen at -20 °C and later analysed in duplicate using 

isotope-ratio mass spectrometry (MRC, Human Nutrition Research, Elsie Widdowson 

Laboratory, Cambridge, UK). Using this dosing regime, TEE can be measured with a 

coefficient of variation lower than 5 % (Bluck, 2008). A sample of drinking water was also 

collected to correct for the natural abundance of 
2
H2

18
O at each study location. 

9.2.4 Accelerometry 

The triaxial 3DNX model v3 (BioTel Ltd, Bristol, UK) is described fully in chapter 3. 

In studies 5, 6, 7 and 8 an earlier version of the 3DNX accelerometer (v2) was used. For a 

full description of the 3DNX v2 see Carter et al. (2008). Slight differences in the unit 

software meant that a conversion factor was applied in order to standardise the activity 

counts between unit versions. This conversion factor was developed by in Chapter 4 by 

simultaneously shaking both versions on a multi-axis shaker table (MAST-9720, Instron 

Structural Testing Systems Ltd., UK) at a range of accelerations and producing an ordinary 

least product linear regression equation (Ludbrook, 1997). The relationship between v3 

and v2 units is given by y = 0.224x – 5.703, where y is v2 counts and x is v3 counts. This 
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relationship was confirmed during unpublished observations in free-living human data 

where both versions of the accelerometer were worn simultaneously and showed close 

agreement once converted (r
2
 = 0.99 SE = 3.9 %). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.1 Histogram showing the effect of changing the threshold for a ‘viable’ day. The 

histogram also shows the additional viable datasets that were included when one “missing” day was 

imputed using a population mean for that day.  

Participants were given the accelerometers on waking and instructed to wear the unit in the 

small of the back (attached to an elastic belt) during the whole of the waking day. 

Participants were asked to remove the device during water-based activities which 

amounted to two hours swimming during the 7-day observation period for studies 1 and 2 

and exclusion of 1 entire day for study 8 due to a scheduled river crossing. A typical 

waking day was approximately 16 hours long (unless during military exercise where it 

could be up to 20 hours) and collection periods ranged from 7-10 days depending on the 

study protocol. Maximum possible waking hours were calculated for each study and actual 

wear time expressed as a percentage of the maximum. Data were downloaded on collection 
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of the unit using dedicated software (BioTel, UK) and imported into Microsoft Excel for 

further analysis. 

Actual wear time and daily physical activity counts for each individual were calculated and 

the dataset was reduced in an approach similar to Chapter 8. A histogram was generated 

(Figure 9.1) and a period of 11 hours monitoring was chosen as a threshold that included as 

many participants as possible whilst capturing most of the waking day. Any days where the 

accelerometer was worn for less than 11 hours (including removal for water activities) 

were coded as “missing”. An individual was excluded from the analysis if they had more 

than one “missing” day.  Overall wear time compliance based on each cohort’s maximum 

possible waking hours before imputation was 93.5 ± 5.6 % (i.e. participants wore the 

activity monitors for an average of 93.5 % of the time between the distribution of the 

monitors in the morning and their collection at night). For those individuals with no more 

than one “missing” day, a group mean value was imputed. Imputation is encouraged when 

incomplete accelerometer data are observed (Catellier, et al., 2005).The imputation method 

for this study was chosen due to the military nature of the subject population. Minimal 

between-participant variation was observed in the type and pattern of activities performed 

on a daily basis as groups often performed activities as a platoon. The inconsistent nature 

of physical activity patterns between days could have led to an artificial increase or 

decrease in the mean PAC had a day simply been excluded. In total, PAC for 30 individual 

days were imputed out of 1349 days measured (2.2%). 

9.2.5 Statistical analysis 

As EE, along with other physiological variables, is known to increase with body size 

(Nevill et al., 2005), a multiplicative allometric modelling approach was used as detailed 

by Nevill and Holder (1995b). Where Y is the dependent variable, a  is the intercept, bX is 

the independent variable and   is the error associated with the model. 

                                               bXaY                                                       (Equation. 9.1) 

Linear regression assumes the error term associated with the model is constant. When the 

residual errors associated with the model are proportional to the size of the dependent 

variable, which is often the case with physiological variables (Nevill, et al., 1995b), the 

data must be transformed. Both the dependent and independent variables were log-

transformed to overcome the heteroscedasticity which was observed when plotting size-
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related independent variables such as body mass and height against TEE and PAEE. 

Analysis of covariance (ANCOVA) was then used to identify any categorical differences 

(e.g. sex differences) by defining loge(TEE) and loge(PAEE) as dependent variables and 

using loge(PAC), loge(Mass) and loge(Height) as covariates. The log-linear model used to 

investigate the relationship between EE (Z) and PAC (Y), mass (X) and height (W) is given 

by 

                                             321
bbb WXYaZ                                          (Equation. 9.2) 

The coefficient of determination (r
2
) was used to describe the association between PAC 

and dependent variables. The partial r
2
 value is reported to indicate how much variance is 

explained by the PAC variable alone above that which is explained by the combination of 

other variables in the model. The standard error of the estimate (SEE) is reported for all 

models. All measured variables are reported as mean ± standard deviation (SD). All 

statistical analysis was conducted using SPSS (version 16.0, SPSS inc., Chicago, IL). The 

significance level was set a priori at p < 0.05. 

9.3 RESULTS 

Following application of the exclusion process, the final dataset was reduced to n = 155. 

Participant characteristics are presented by study in Table 9.1. Physical activity counts 

alone, expressed as loge(PAC), were associated with logeTEE (r
2
 = 0.08, P < 0.01) and 

logePAEE (r
2
 = 0.07, P < 0.01). 

General linear modelling using multiple log-linear regression revealed a difference (p < 

0.01) between the male and female models for height   and   parameters. Therefore, two 

separate models were developed for the prediction of TEE and PAEE, allowing the 

intercepts and height exponents to vary with gender. In all models PAC, height and body 

mass were related to EE (p < 0.01).  

 



 

 

 

Table 9.1 Physical characteristics of participants (±SD). GCC, Gulf Cooperation Council; RMR, predicted resting metabolic rate; TEE, total energy expenditure; PAEE, 

physical activity energy expenditure; PAC, 3DNX output

Study 

Study 

duration 

(days) 

Study Description N (M/F) 
Age  

(years) 

Body Mass 

 (kg) 

Height 

 (m) 

RMR 

(kcal·day-1)
 

TEE 

(kcal·day-1) 

PAEE 

(kcal ·day -1) 

PAC - no 

imputation 

(counts·day-1) 

PAC 

(counts·day-1) 

1 7 GCC officer cadets 29 (29/0) 19.2 ± 1.9 70.0 ± 14.4 1.69 ± 0.06 1769 ± 239 3270 ± 489 1174 ± 340 645002 ± 65940 657379 ± 66437 

2 7 GCC officer cadets 15 (15/0) 20.5 ± 1.9 67.2 ±7.7 1.72 ± 0.03 1701 ± 116 3278 ± 476 1249 ± 356 572908 ± 51000 587763 ± 64524 

3 7 GCC officer cadets 6 (6/0) 21.1 ± 1.8 68.3 ± 9.0 1.71 ± 0.06 1716 ± 136 3010 ± 442 993 ± 324 460208 ± 74993 510268 ± 80513 

4 10 Advanced field training 6 (6/0) 29.5 ± 4.1 72.2 ± 2.7 1.74 ± 0.06 1748 ± 30 4946 ± 224 2704 ± 216 645789 ± 56385 667570 ± 58585 

5 10 GCC military college 6 (6/0) 16.0 ± 1.3 67.3 ± 21.7 1.66 ± 0.02 1806 ± 293 3233 ± 451 1104 ± 220 477007 ± 102580 476570 ± 111492 

6 10 Recruits in training 21 (8/13) 19.4 ± 2.4 64.0 ± 10.8 1.71 ± 0.10 1571 ± 249 3426 ± 760 1512 ± 496 604635 ± 109088 578904 ± 109242 

7 10 Recruits in training 9 (4/5) 18.7 ± 1.9 64.3 ± 10.1 1.70 ± 0.10 1601 ± 249 3612 ± 428 1650 ± 245 592349 ± 106714 610079 ± 107619 

8 10 Infantry training 10 (10/0) 19 ± 2.0 71.0 ± 9.2 1.78 ± 0.06 1806 ± 148 4502 ± 378 2426 ± 251 657190 ± 87025 669529 ± 61372 

9 10 Recruits in training 27 (14/13) 21.8 ± 4.4 67.9 ± 12.4 1.71 ± 0.10 1621 ± 285 3580 ± 704 1600 ± 387 536976 ± 59464 536342 ± 55144 

10 10 Recruits in training 20 (10/10) 22.6 ± 4.4 68.5 ± 12.9 1.73 ± 0.10 1639 ± 291 3625 ± 771 1623 ± 470 522238 ± 78769 536040 ± 62304 

Overall   155 (111/41) 20.6 ± 3.9 67.9 ± 12.0 1.71 ± 0.10 1679 ± 246 3553 ± 725 1531 ± 546 531107 ± 125880 586388 ± 93457 
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9.3.1 Prediction of TEE 

The power function model relating TEE to PAC, mass and height for males is given by 

                        
322.2434.0257.067.1)( HeightMassPACkcalTEE                        (Equation. 9.3) 

The power function model relating TEE to PAC, mass and height for females is given by 

                       
364.0434.0257.0666.2)( HeightMassPACkcalTEE                     (Equation. 9.4) 

These models displayed a strong positive relationship with TEE (r
2
 = 0.65, SEE = 462 

kcal.day
-1

 (13.0 %)). Physical activity counts contributed significantly to the prediction of 

TEE explaining 4 % of the total variance.  

 

Figure 9.2 Regression plot of the prediction models of total energy expenditure (TEE) based on 

3DNX output (PAC), body mass, height and gender Regression plot of the prediction models of 

TEE based on 3DNX output (PAC), body mass, height and gender  
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9.3.2 Prediction of PAEE 

Body mass did not make a significant contribution to the prediction of PAEE and was 

removed from the model, hence the power function model relating PAEE to PAC and 

height for males is given by 

                           
856.5590.0755.3 HeightPACPAEE                                            (Equation 9.5) 

The power function model relating PAEE (Z) to PAC (Y) and height (X) for females is 

given by 

                          
217.1590.0227.1)( HeightPACkcalPAEE                                 (Equation. 9.6) 

These models showed a moderate positive relationship with PAEE (r
2
 = 0.41, SE = 490 

kcal.day
-1

 (32.0 %)). Physical activity counts contributed significantly to the prediction of 

PAEE explaining 6 % of the total variance. 

 

Figure 9.3 Regression plot of the prediction models of physical activity energy expenditure (PAEE) 

based on 3DNX output, height and gender 
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9.4 DISCUSSION 

Triaxial accelerometry has emerged as a useful tool for assessing physical activity and its 

associated EE in large scale epidemiological studies (Vanhelst et al., 2012). In order to 

translate physical activity counts into more meaningful units of expended energy, statistical 

models must be developed using an appropriate criterion measure such as DLW. In the 

present analysis, ten independent cohort studies, using the same methodological approach, 

were combined with the aim of developing a generic model for the prediction of both TEE 

and PAEE in free-living military populations. Allometric modelling was used to provide a 

biologically plausible method of fitting the data. The relatively poor fit of the models in 

this study suggest that it may not be appropriate to use a generic prediction equation for 

different military populations and that careful consideration must therefore be given to 

generalising such models across other diverse sub-populations. 

The prediction models developed showed that PAC measured by the 3DNX accelerometer 

significantly contributed to the explained variance in TEE and PAEE for both genders.  As 

height was the only component that was different for males and females gender could not 

be used as a covariate in a single model. PAC accounted for between 4 % and 6 % of the 

variance in TEE and PAEE respectively for both male and female models. These small but 

significant contributions of PAC to the prediction of TEE and PAEE meant that greater 

accuracy could be achieved when including PAC as a variable in each model. All models 

were improved by the addition of fat free mass as a covariate in exploratory analyses. 

However, as the majority of researchers would not be able to measure fat free mass via the 

DLW technique, simple anthropometric measurements were used throughout. Height is a 

known surrogate estimate of lean body mass (Nevill et al., 1995a) and contributes more to 

the prediction of TEE in males than in females. This is unsurprising given that predicted 

RMR, which is largely dependent on body size (Ainslie, et al., 2003), is 23 % lower for 

females than males. 

It is difficult to compare the individual contribution of accelerometry to the estimation of 

EE between other studies in the extant literature as few report these data. Most data are 

reported in combination with anothropometric variables. The results of the present study 

compare favourably to those of Mâsse et al. (2004) where the uniaxial accelerometer’s 

counts·day
-1

 explained 2 % of the variance in TEE when combined with body mass. The 

early work of Bouten et al. (1996) reported that the output from the triaxial Tracmor 
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explained 6 % of the variance in TEE measured by DLW with a standard error of the 

estimate of 18 %. The results from Bouten’s (1996) work are largely similar to the present 

study with the exception of a slightly lower standard error demonstrated here. The 3DNX 

returns similar results to the triaxial RT3. Maddison et al. (2009) report an additional 4 % 

explained variance in TEE measured by DLW when RT3 PAC were included in a model 

containing gender, body fat (kg) and RMR. More recently, Bonomi et al. (2010) compared 

TEE measured by DLW and PAC measured by the Tracmor and reported explained 

variance of 16 % (SE = 7.4 %) when combined with body mass. Furthermore, Carter et al. 

(2008) reported explained variance of 27 % (SE = 7.0%) when 3DNX (v2) combined with 

height was compared to TEE measured by DLW in young adults. These two studies report 

a higher degree of predictive validity, with lower prediction error, compared to the present 

study. Although it is not readily apparent why the present study reports less favourable 

results for the predictive validity of 3DNX PAC, differences in study populations and the 

very high EEs (up to 5199 kcal.day
-1

) reported for some subjects may have been 

accumulated during activities which the accelerometer failed to quantify sufficiently. This 

is likely comprised of the frequent load carriage and uneven terrain encountered as part of 

military exercise (Knapik et al., 1996; Pandolf et al., 1977). When combined with RMR, 

Tracmor PAC explained 76 % of the variance in TEE and when combined with body 

composition variables the 3DNX (v2) explained 78 % of the variance in TEE (Bonomi, et 

al., 2010; Carter, et al., 2008). In the present study, 3DNX (v3) output explained 65 % of 

the variance in TEE when combined with body composition and study variables with an 

SE of 13.0 %. 

In the model to predict PAEE, PAC accounted for 6 % of the variance in PAEE (SEE = 32 

%). In comparison to the results of Bouten (1996) and Plasqui et al. (2005) the 3DNX 

appears to poorly predict PAEE. Bouten (1996) reported 22 % of the variance in PAEE 

could be explained by Tracmor PAC alone (SEE = 12 %) and more recently Plasqui et al. 

(2005) reported an increase in the explained variance of PAEE measured by DLW from 48 

to 81 % (SEE = 17 %) when Tracmor PAC was added to a model containing body 

composition variables. The poorer prediction of PAEE than TEE may be in part due to the 

military populations studied. As well as frequent load carriage and ambulation on uneven 

terrain, the majority of military training is conducted in groups (i.e. Platoons), where 

recruits largely complete the same physical activity, particularly during transits and drill. It 

is unsurprising therefore that mean PAC·day
-1

 does not accurately predict PAEE when 
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there is such little variation in PAC between subjects in a cohort. For example, when the 

standard deviation of PAC for each group is expressed as a percentage of the mean, the 

variation ranges between 8.8 and 23.4 % (overall = 15.9 %). In comparison to other studies 

using the DLW technique this overall variation in PAC is markedly lower than that 

reported by Bonomi et al. (2010) (28.6 %), Plasqui et al. (2005) (29.1 %) and Maddison et 

al. (2009) (42.0 %).  

The reduction of variance in TEE and PAEE explained by 3DNX (v3) compared to the 

3DNX (v2) in the recent Carter et al. (2008) paper is not easily accounted for but is most 

likely due to the combination of a number of different populations. It seems that there may 

have been different sources of unexplained variance for each population leading to a 

cumulative reduction in the common explained variance. This indicates that a generic 

equation for predicting EE in different free-living populations may not be appropriate 

particularly when researchers seek to combine cohorts with different physiological 

characteristics and physical activity patterns. This is particularly pertinent when the 

prediction of EE available to the user is derived from a manufacturer’s proprietary 

equation. Indeed, some accelerometer models such as the RT3 do not publish details of 

their proprietary prediction equation (Maddison, et al., 2009), and consequently limits the 

user’s knowledge as to whether the instrument is suitable for predicting EE within their 

chosen population and/or physical activities. We contend that some form of calibration 

should be undertaken, any proprietary equations should be refined and specific prediction 

equations should be developed for each free-living population studied.  

9.4.1 Limitations 

The data reduction approach that was taken in this study was driven by the desire to retain 

as many participants while maintaining a stringent approach to wear time compliance. 

There is no consensus in the literature regarding a best practice method for deciding a 

threshold for viable datasets and as such there may have been a better way to conduct this 

process. We used an absolute value of 11 hours as a threshold for classifying a day of wear 

as valid. On reflection it may have been better to use a percentage value due to the 

variation in the waking day between populations. For example, soldiers on exercise could 

be active for up to 18 out of 24 hours in which case an individual registering 11 hours for 

this day would be retained when a large proportion of physical activity could be missed. 

Equally, 11 hours could be close to 100% of waking hours for a weekend day in the UAE. 
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The imputation of one “missing” day i.e. less than 11 hours wear time using a population 

mean for that day enabled the retention of almost twice the number of participants. This 

imputation procedure did not markedly alter the mean PAC values for each population 

(shown in Table 9.1).  

Unfortunately due to the nature of the assumptions made during the DLW analysis, there 

are likely to be some inaccuracies introduced to the criterion measure of TEE and PAEE. 

For example, the factor used to correct for the labelled isotopes leaving the body via 

sweating and water vapour in breath (fractionation) may not be appropriate for the UAE 

where summer temperatures can be in excess of 50°C. Furthermore, the assumption of a 

respiratory quotient of 0.85 may not be appropriate for a non-western diet. Despite these 

limitations the DLW technique is still an appropriate criterion as it enables participants to 

be truly free living; negating a source of error inherent in other available measures such as 

portable indirect calorimeters. 

The field-based setting of the studies combined in this analysis meant it was not feasible to 

directly measure RMR. As a result, RMR was estimated using the equations of Schofield 

(1985) incorporating age, gender, body mass and height. Such an equation is widely used 

despite concerns that it may not be appropriate for all populations however; the population 

used to develop the equation contained a number of conscripts making it more relevant to 

this study population than other equations. At present there are many different published 

equations for the prediction of RMR and according to a recent study by Hofsteenge et al. 

(2010) the Schofield equation can lead to inaccurate predictions particularly in non-

western populations. In addition, the Schofield equation does not include a measure of fat 

free mass which may lead to an under prediction of RMR in athletic individuals such as 

military personnel (De Lorenzo, et al., 1999; Thompson et al., 1996). Introducing 

inaccuracies such as predicted RMR into the criterion measure of PAEE a likely cause of 

reduced explained variance compared to other validation studies where RMR has been 

measured. Despite this limitation, Carter et al. (2008) contend that it may be just as 

appropriate to validate prediction equations in a field-based setting as accurate measures of 

RMR are rarely possible. 

9.4.2 Summary and Conclusions 

This is the first large-scale study where the DLW technique has been used as a criterion 

measure to assess the accuracy of an accelerometry-derived multivariate model to predict 
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free-living TEE and PAEE within a military population. We have used a highly compliant 

subject sample and provided a transparent and open account of the methodological issues 

surrounding the pooling of different populations. The results of this study demonstrate that 

3DNX (v3) does improve the estimation of free-living EE in sub-groups of military 

populations when combined with anthropometric variables. However, the accurate 

prediction of individual free-living EE requires careful consideration of multiple variables 

such as anthropometric measurements as well as the type of activities undertaken. It is for 

researchers to decide whether such small portions of explained variance are of sufficient 

value to warrant the additional effort and expense of instrumenting similar populations 

with accelerometers like the 3DNX in future.  

We contend that in its present form, triaxial accelerometry is not suitable for predicting 

energy expenditure in military populations.  For such populations, where day-to-day 

soldiering includes large amounts of resistance-style activity such as load carriage; a more 

accurate estimate of PAEE could be achieved if time spent performing such activities 

could be identified and appropriate relationships with   O2 attributed. The recent shift in 

accelerometer-based research towards using the rich, raw accelerometer signal to identify 

activities of daily-living (Heil, et al., 2012) could be a suited to identifying common 

soldiering activities that traditional accelerometry methodologies cannot, at present, fully 

detect. The exploitation of raw accelerometry signals for the identification common 

military tasks such as load carriage warrants further investigation as it appears that only 

small gains in prediction accuracy can be made using traditional analysis techniques 

regardless of how ‘high quality’ a dataset may be. 
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10 CLASSIFICATION OF LOAD CARRIAGE USING A SINGLE WAIST-

MOUNTED ACCELEROMETER: A FEASIBILITY STUDY 

10.1 INTRODUCTION 

Load carriage (LC) is a common task for military personnel and is regarded as a key component 

of day-to-day soldiering in both training and operations (Knapik et al., 2004). A review of US 

military personnel currently serving in Afghanistan noted that infantrymen were, on average, 

regularly carrying ‘fighting loads’ of approximately 29kg, representing, on average, 35% of their 

body weight (Dean, 2004). This is comparable to the LC task that forms the final assessment 

during British Army Infantry training, which requires recruits to walk 12.8 km in two hours 

carrying a 25 kg load depending on specific job role (Rayson, et al., 2000). 

Interest in quantifying the energy demands of operations has increased in recent years due to 

extensive deployment of British forces. Energy expenditure (EE) is one component that can 

contribute to characterising the physical demands of operations. Gathering this information 

would assist in developing physical training programmes and military field exercises that best 

match the demands experienced by soldiers in theatre.  

Beyond informing military training programmes, the successful quantification of energy 

expended during training and operations would better inform military feeding strategies to help 

maintain health and physical performance (Henning et al., 2011). Energy deficits are commonly 

reported during military training and have been associated with reduced physical performance 

parameters. Guezennec et al. (1994) observed a 15% reduction in time to exhaustion during 

cycling in a low-energy-intake group following five days of military exercise. No performance 

decrements were seen in the high-energy-intake group. More chronically, Nindl et al. (2007) 

found a 20 % reduction in maximal lift strength following a prolonged (8-week) caloric deficit of 

approximately 1000 kcal∙day
-1

 during US army ranger training. Although the link between 

prolonged (8-week) energy deficit and reductions in physical performance may be implied, there 

are no conclusive data showing that performance is maintained in those who remain in energy 

balance over the same period. If decrements in role-related performance tests following training 

are related to prolonged energy deficits, then this may translate to similarly impaired 

performance on operations if feeding strategies in this environment are also insufficient.  
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Although it has been reported that training and field exercises elicit a high level of energy 

expenditure (EE), (upwards of 5000 kcal
.
day

-1
) (Tharion, et al., 2005), there are little empirical 

data available documenting the energy demands of operations upon which to form evidence-

based feeding strategies.  

While the deployment of a research team to measure the energy demands of such operations is 

possible, on a large scale this is impractical, potentially dangerous and intrusive for the soldiers 

concerned. Movement sensing devices may offer a practical compromise whereby EE can be 

predicted unobtrusively in a large number of personnel without the need for deployment of a 

large civilian research team. Currently however, movement sensing technologies such as 

accelerometers have shortfalls in their application to military research. This was demonstrated in 

chapter 9 where accelerometer counts (PAC) explained only 4% of the variance in PAEE in 

military populations. A likely reason for the small contribution of PAC was that participants 

were often carrying loads as part of military training so the increased EE was not matched by 

increased displacement of the centre of mass or indeed PAC. The ability to detect when military 

personnel are conducting LC activities could capture the additional EE resulting from LC 

compared to walking unloaded (Knapik, et al., 2004). At present single accelerometer-based 

devices are largely incapable of detecting this additional EE. 

Variation in activity-specific relationships between PAC and EE is not a problem unique to 

military populations. Attempts have been made in the health-related research domain to account 

for the variation in daily activities using a number of methods as it is widely recognised that the 

relationship between EE and PAC varies depending on the type of activity performed (Bonomi et 

al., 2009b). One example of such an approach is the work of Rumo et al. (2011) who integrated 

the raw signal features from two triaxial accelerometers (hip and thigh) with HR to identify 

seven common activities of daily living so that different regression equations could be assigned 

to each activity.  

Wyss and Mader (2010) used a multi-sensor approach (two accelerometers and a HR monitor) in 

an attempt to recognise specific military activities  conducted during training and assign specific 

regression equations to each. Although this research took important steps forward in the 

characterisation of military routines, and predicted EE was not different from that measured by 

indirect calorimetry, the use of multiple sensors increases user burden and may place restrictions 

on activities performed habitually (Long, et al., 2009).  
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Combined sensors are a strong theoretical prospect for the quantification of EE associated with 

military activities; particularly, integrated biosensors which are capable of detecting increased 

physiological strain without a concomitant increase in centre of mass displacement. The 

SenseWear Pro armband (BodyMedia, Pittsburgh, PA) integrates accelerometry with a variety of 

heat-realted sensors (galvanic skin response, heat flux, skin temperature and near body 

temperature) to arrive at a minute-by-minute kilocalorie value (via a proprietary algorithm). 

Although this device has been shown to accurately predict EE during low-moderate intensity 

activity (St-Onge et al., 2007), the SenseWear Pro underestimated energy expenditure at high 

intensities (Drenowatz et al., 2011). Although little detail is available regarding the product 

specifications of this device it is likely that high intensity activities register accelerations outside 

of the frequency and dynamic range of the device, contributing to the underestimation of EE. In 

its current form, the SenseWear Pro is not suitable for use in military populations. 

A further consideration regarding the use of combined sensors in military populations is the 

feasibility of deploying such a device. The Actiheart is included in this study for comparison 

however it is not acceptable for military applications due to its location on the chest. Anecdotal 

evidence from personal correspondence suggests that a device worn under the body armour 

would create a point of pressure limiting the effectiveness of the protective equipment. 

Elsewhere, researchers have begun to recognise the value of the rich raw signal an accelerometer 

can capture. The increased memory of newer devices means they are capable of storing raw, 

unfiltered acceleration signals for extended periods (Intille, et al., 2012). In the health-research 

domain, recognition of activities from the unique accelerometer signal features they generate has 

been identified as a research priority (Freedson, et al., 2012; Heil, et al., 2012) and has been 

achieved with 99% accuracy in a laboratory setting (Zhang, et al., 2012). 

 The kinematic changes that have been associated with LC include a distinctive forward trunk 

lean (Majumdar, et al., 2010) and an increase in stance phase of stride, double support time and 

pelvic rotation (Birrell, et al., 2009).  These kinematic changes that occur when an individual 

carries a military load could be reliably and significantly different enough from normal gait to 

confer with consistently different accelerometer signals when compared to normal ambulation.  

The potential of using raw accelerometer signals to recognise military specific activities such as 

LC has yet to be investigated yet the use of a small unobtrusive device located outside of the 

body armour is attractive from an applied perspective. Therefore, the primary aim of this study 
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was to investigate the feasibility of using raw accelerometer signal to build a model with the 

ability to distinguish loaded (L) from unloaded (U) ambulation in a sample of experienced load 

carriers. Load carriage for longer durations (i.e. >15 mins), which is typical of military LC tasks 

(Knapik, et al., 2004) is known to result in a gradual drift in EE over time (Blacker et al., 2011), 

neuromuscular fatigue (Blacker et al., 2010b) and change in gait (Attwells, 2008). Therefore, the 

secondary aim of this study was to evaluate the classification accuracy of the model during 

prolonged LC. 

10.2 METHODS 

10.2.1 Participants 

Following approval from the University of Bath Research Ethics Approval Committee Health 

(REACH), 12 male participants (mean ± SD: age 23.8 ± 5.2 years; height 1.77 ± 0.07 m; mass 

76.8 ± 7.6 kg;     max 59.4 ± 4.1 ml
.
kg

-1.
min

-1
) visited the laboratory on two occasions separated 

by no less than three days. Participants were a combination of military reservists and experienced 

mountaineers. All participants provided a self-reported account of their years of LC experience.  

Prior to the beginning of the study all procedures were verbally explained to participants and a 

questionnaire was completed to ensure the good general health of the participants; particularly 

the absence of musculoskeletal injuries associated with LC.  

10.2.2 Preliminary Measures 

Height was determined using a stadiometer (Holtain Ltd., Crymych, UK) and nude body mass 

was determined using Seca 770 digital scales (Seca, Hamburg, Germany).  

Participant’s maximal oxygen uptake (    max) was estimated from self-reported 2.4 km run 

time; a regular military fitness test, using the equation: 

 

                                         
   

 
                        Equation 10.1 

 

Where x is the time to run 2.4 km expressed as a decimal in minutes (American College of 

Sports Medicine. et al., 2010). 
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Resting metabolic rate (RMR) was measured during the first laboratory visit, prior to the L 

protocol. Participants were asked to abstain from vigorous intensity exercise, caffeine 

consumption and alcohol ingestion for a period of 24 hours prior to visiting the laboratory and 

maintain a food diary for the same period. In addition, participants arrived at the laboratory in a 

fasted state to avoid any dietary influence upon RMR. The measurement of RMR was conducted 

in accordance with best practice recommendations of Compher et al. (2006). In summary, 

following a 10-minute rest period, expired air was collected from the participant via the Douglas 

bag method for five minute periods until a steady state was achieved with less than a 10% 

variation in calculated RMR between collection periods. 

10.2.3 Experimental Protocol 

Participants visited the laboratory on two occasions where they walked on a treadmill for two-

hours, either unloaded (U) or carrying a 25 kg load  (L) separated by no less than 72 hours to 

allow for adequate recovery(Blacker, et al., 2010b).  

During each trial, participants marched on a treadmill (Woodway ELG 70, Steinackerstraße, 

Munich, Germany) at a constant speed of 6.4 km
.
h

-1 
(1.78 m

.
s

-1
) and 0 % gradient. This speed 

replicated the minimum constant speed required to pass the British Combat Fitness Test (BCFT); 

12.8 km in two hours (Rayson, et al., 2000). For both L and U trials, participants wore, when 

possible, military issue C95 combat dress (trousers, combat belt and lightweight shirt) and 

combat boots. If this was not possible, walking boots, lightweight walking trousers and shirt 

were worn.  

During the L trial, each participant carried the same military issue Bergen (rucksack) containing 

evenly-spaced gravel bags and padding totalling 24 kg. A simulated rifle with a mass of 4.3 kg 

was also carried providing a total external load of 28.3 kg.  

10.2.4 Experimental Measures 

Expired gas was collected at 15 minute intervals, with samples collected for 60 seconds using the 

Douglas bag method. Oxygen uptake (    ) and energy expenditure (EE) were calculated 

according to Jeukendrup and Wallis (2005). The protocol is outlined in Chapter 3. 

Core body temperature was recorded at 5-minute intervals for safety reasons throughout the 

duration of each trial using an ingestible temperature sensor (HQ Inc., Palmetto, FL, USA), 

transmitting to a hand held recorder. A core temperature threshold of 39.5 °C was set as the 
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upper limit of safe working conditions. If any participant reached a core temperature of 39.5 °C 

the trial would have been stopped and the individual actively cooled. 

Ratings of Perceived Exertion (RPE) were obtained on a 15 point scale (Borg, 1982) following 

each gas collection. Water was provided ad libitum throughout the trial and kept at a constant 

37.5 °C using a digital water bath (Grant Instruments, Cambridge, UK). Warming the 

participants’ drinking water attenuated any interference of ingested water temperature with 

temperature pill in the gut (Wilkinson et al., 2008a).  

10.2.5 Accelerometry 

Two body-borne, accelerometer-based movement sensors were worn during each trial. The 

3DNX (Biotel Ltd., Bristol, UK) triaxial accelerometer, and the ActiHeart (v4.2, CamnTech, 

Cambridge, UK) combined HR and accelerometer device. Both devices aim to predict EE and 

are described in detail in Chapter 3 (3.3.1 and 3.3.2 respectively).  

The Actiheart was attached to a modified material strap (Polar sports strap, Kempele, Finland) 

and worn around the chest. Sleeping HR was entered as the lowest value observed during the 

measurement of RMR. Data were downloaded using bespoke software (Version 4) and exported 

to a spreadsheet where EE was calculated for each 15-minute sample interval. The Actiheart was 

calibrated using the group calibration described by Brage et al. (2007).  

The 3DNX was worn at the lower back; attached to the participants’ combat belt. All 

accelerometer data were downloaded after each trial using dedicated software (Biotel Limited, 

Bristol, UK) and imported into a spreadsheet where the 5-second epoch accelerometer counts 

(PAC) from X-, Y- and Z-axes were summed. The mean PAC value was calculated for each 15-

minute sample interval.  

Physical activity counts were used to predict      (ml·kg
-1

·min
-1

) using the walking equation 

outlined in Chapter 6 (Figure 6.7). The predicted relative      value (ml·kg
-1

·min
-1

) was 

converted to an absolute value by multiplying by body mass and dividing by 1000 to convert to 

absolute      (l·min
-1

). Absolute      (l·min
-1

) was converted to an estimate of EE (kcal·min
-1

) 

using the ACSM assumption that for every litre of oxygen consumed, 5 kcal of energy is 

expended (Glass et al., 2007). 
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10.2.6 Pattern recognition 

Three high-resolution triaxial accelerometer-devices (Geneactiv, Activinsights, Cambridge, UK) 

were worn by each participant. The GENEA, the predecessor of the Geneactiv is described in 

detail elsewhere (Esliger, et al., 2010). Briefly, the Geneactiv is a small (43 x 40 x 13 mm), and 

lightweight (16 g) unit. The device has an adjustable sampling frequency of between 10-100Hz 

and is capable of storing up to seven days of data sampled at 100 Hz. One sensor was worn in the 

small of the back and one at each hip (midaxillary line). Each Geneactiv was attached directly to 

the skin (Hyperfix self-adhesive dressing retention tape, Smith & Nephew Healthcare Ltd., UK) 

and set to record the raw accelerometer signal at 100Hz. Each unit was oriented so that the X-

axis corresponded to vertical movement (for participant comfort).  

The accelerometer data from the vertical axis only was exported to MATLAB where spurious 

data were removed using a Butterworth filter (anomalies coinciding with adjustment of clothing 

or Bergen).  

An initial Fast Fourier Transform (FFT) was conducted and an initial visual inspection of the 

plot (Figure 10.1) indicated differences between unloaded and loaded conditions in the frequency 

range of >5Hz. The analysis also revealed that some individuals recorded greater amplitudes 

than others. However, these differences were consistent across the whole frequency range 

allowing the signal to be normalised to account for individual variation.  In order to normalise 

the data between individuals, the frequency range >5Hz was integrated and expressed as a 

percentage of the integral across the whole 0-50Hz frequency range examined. 

Using the first 15 minutes of data from all participants, normal distribution curves (assuming 

normality) were fitted to the loaded and unloaded data (Figure 10.2). Only the first 15 minutes 

were used to create the model thereby ensuring that the data were not contaminated by possible 

fatigue-related changes in gait. The x intersect (0.1) was derived; any values greater than 0.1 

were classified as unloaded and any values less than 0.1 were classified as loaded. This 

classification model was applied to all subsequent minutes of data for all participants for each 

15-minute sample interval. For clarity, Figure 10.3 is a flow diagram of the analysis procedure. 
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10.2.7 Biomechanical analysis 

A subsample of 6 participants (mean ± SD; age: 21.5 ± 0.6 years; height: 1.82 ± 0.05 m; mass: 

78.1 ± 6.0 kg, LC experience 3.3 ± 3.1 years) were instrumented with 10 reflective markers 

(CODA motion analysis system, Version CX1-6.30B) sampling at 200 Hz to capture objectively 

any changes in gait patterns between conditions.  

Markers were attached to participant’s clothing and footwear at the fifth metatarsal-phalangeal 

joint, the calcaneous, the malleolus, the femoral condyle, the greater trochanter, the mid-thigh 

(placed directly in the middle of the markers at the femoral condyle and greater trochanter) and 

the greater tubercle. Further markers were placed medially on the left foot at the first metatarsal-

phalangeal joint and calcaneous. All markers were placed on the right side of the body. 

Data were sampled for a period of 12 seconds after the first 13 minutes of walking. Data 

collection was scheduled in the minute preceding expired gas collection to avoid any potential 

gait disturbances associated with the collection. 

Data were filtered and interpolated to estimate coordinate data at time points where markers 

were obscured. A range of spatiotemporal and joint angle kinematic variables were calculated for 

a total of six consecutive strides from each trial.  
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Figure 10.1 Example Fast Fourier Transformation plot for one participant, showing the differences in the 

signal frequency distribution between loaded and unloaded trials 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.2 Normal distribution curves for all data (minutes 0-15). FFT, fast fourier transform. 
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Evaluation 

[accuracy confusion matrix, 15-minute intervals (% accuracy)] 

Validation 
[model applied to all subsequent 1-minute segments] 

Classification model developed 
[if value > 0.1, unloaded; if value < 0.1, loaded] 

x-axis intersect identification (figure 1) 

Normal distribution curves fitted 
[first 15 minutes of normalised data] 

Normalisation 
[Integrated FFT % = (Integral of Frequency range >5Hz/Integral of 0-50Hz frequency range) * 100] 

Integration of frequencies >5Hz for each participant 

FFT analysis 
[visual inspection of group data] 

Removal of spurious data [Butterworth filter] 

Data Export 
[MATLAB] 

Data reduction 
[cropping to 2hr .CSV files] 

Data collection 
[2 hrs, 100Hz] 

 

Figure 10.3 Flow diagram of the model building and evaluation process for load carriage recognition 
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10.2.8 Statistical Analysis 

Physiological measures 

Two-way (2x8) repeated measures analysis of variance (ANOVA) tests were performed to 

determine within-participant main effects for trial (two levels) and time (eight levels), as well as 

interaction effects for a range of physiological variables (e.g.      and RPE). Where significant 

differences were identified, students’ paired t-tests were performed post hoc to identify where 

differences occurred between conditions or between specific time points. A Bonferroni 

adjustment was used to minimise type 1 error if significant differences were found at more than 

three time points.  

Pearson bivariate correlations were used to determine the relationship between measured and 

predicted EE and students’ paired t-tests were used to assess the agreement between measured 

and predicted values.  

Pattern Recognition 

A classification-accuracy confusion matrix was generated to assess the percentage of correct 

classifications at each time interval. Box and whiskers plots were generated for each 15-minute 

sample interval to show the differences between normalised FFT values for loaded and unloaded 

conditions across time. The extent to which the whiskers overlap indicates where normalised 

FFT values were similar for both conditions causing potential misclassification. 

Biomechanical analysis 

Paired t-tests were used to determine which variables were different between loaded and 

unloaded conditions.  

Statistical analysis was performed using SPSS for Windows v.18 (SPSS Inc., Chicago, IL, USA) 

and Statistical significance was set a priori at p < 0.05 for all analyses. Data are presented as 

mean ± SD. 

10.3 RESULTS 

Two participants were unable to complete the L condition due to injury and were removed from 

the analysis. Participant characteristics are detailed in Table 10.1 for the ten subjects who 

completed both trials. The mass of the Bergen and weapon carried in the loaded condition 

equated to a mean of 35.4 ± 2.8 % of participants’ body mass. When participants’ clothing was 
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included, the mean total load increased to 31.6 ± 0.6 kg, representing 39.9 ± 3.0 % of 

participants’ body mass.  

Participant Age 

(yrs) 

Height 

(m) 

1.5 mile 

run 

(mm:ss) 

Body 

Mass 

(kg) 

RMR 

(kcal.day
-1

) 

LC 

experience 

(yrs) 

Predicted 

    max  

(ml·kg
-1

·min
-1

) 

1 34 1.71 10:30 87.5 2060 4.0 49.50 

2 24 1.78 07:50 72.5 1656 5.0 65.19 

3 18 1.84 09:14 72.1 1940 0.5 55.83 

4 22 1.84 09:50 83.9 2126 1.0 52.64 

5 35 1.77 09:38 83.4 2124 9.0 53.66 

6 22 1.83 11:00 84.1 1624 6.2 47.41 

7 21 1.85 09:30 74.2 2180 7.0 54.34 

8 21 1.81 08:35 82.4 2100 0.6 59.79 

9 23 1.73 08:30 71.8 1872 2.0 60.32 

10 23 1.79 08:30 77.3 2246 1.5 60.32 

Mean ± SD 
24.3  

± 4.6 

1.80 

 ± 0.05 

09:19 

 ± 00:59 

78.9  

± 6.0 

1992 

 ± 215 

3.7 

 ± 3.0 

55.9   

± 5.5 

Table 10.1 Participant characteristics. RMR: resting metabolic rate. LC: Load carriage 

10.3.1 Oxygen Uptake and RPE 

There was a main effect of trial on      (L vs. U) (p<0.001) and a main effect of time (p<0.001). 

Post hoc analysis showed differences at all eight time points (p=0.001-0.019). There was also an 

interaction effect for      (p<0.001). During the L trial,      increased across time with a 

difference found between 15 and 120 minutes. Furthermore, there was a main effect of trial 

(p<0.001) and a main effect for time (p<0.001) on RPE. Post hoc analysis showed differences 

between trials at seven out of eight time points. The difference in RPE between L and U trials 

increased across time with a difference between 15 minutes and 90, 105 and 120 minutes 

respectively (p<0.001), for the loaded condition (Figure 10.4). 

10.3.2 Energy Expenditure 

The relationships between measured EE and EE predicted by accelerometer-based devices are 

shown in Figure 10.5 and Figure 10.6. The Actiheart failed to record HR on five occasions due 

to internal faults; for these participants’ Actiheart data were removed from the analysis for both 

loaded and unloaded conditions. The 3DNX unit was removed on five occasions during the 

loaded condition due to participant discomfort; these participants’ data were removed from the 

analysis for both loaded and unloaded conditions.  
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Figure 10.4 Mean (±SD) difference in absolute      between loaded (L) and unloaded (U) conditions. * 

denotes a significant difference between conditions.  denotes a significant difference between time 

points. 
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Figure 10.5 The relationship between measured and predicted EE for the Actiheart. n=5 (subjects 1, 2, 5, 

9 and 10). Error bars represent the standard deviation of both measured and predicted EE across all time 

points. L, loaded; U, unloaded. 

The relationship between measured and predicted EE by the Actiheart for the unloaded trial 

(ActiheartU) was not significant (p = 0.06, r
2
 = 0.61, SEE = 1.14 kcal·min

-1
). Although the 

Actiheart significantly underpredicted EE (p=0.02), the relationship between measured and 

predicted EE for the loaded condition (ActiheartL) was significant (p < 0.01, r
2
 = 0.98, SEE = 

0.233 kcal·min
-1

). 

The relationship between measured and predicted EE by the 3DNX for the unloaded trial 

(3DNXU) was not significant (p = 0.06, r
2
 = 0.65, SEE = 0.48 kcal·min

-1
). However, although the 

3DNX significantly underpredicted EE (p< 0.001), the relationship between measured and 

predicted EE for the loaded condition (3DNXL) was significant (p = 0.01, R
2
 = 0.92, SEE = 0.35 
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kcal·min
-1

). Mean PAC (counts∙5s
-1

) for 3DNXU were not different from mean PAC for 3DNXL 

(p=0.07). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.6. The relationship between measured and predicted EE for the 3DNX. n=5 (subjects 1, 4, 6, 7 

and 10). Error bars represent the standard deviation of both measured and predicted EE across all time 

points. 

10.3.3 Load carriage classification 

The distributions of loaded and unloaded integrated FFT data are shown in Figure 10.7. The 

classification accuracy of the model is given in Table 10.2. The overall accuracy of the model 

was 99.5%. 
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Figure 10.7 Box and whiskers plots showing the distribution of integrated FFT values with increasing 

time. The tops and bottoms of each "box" are the 25th and 75th percentiles of the samples respectively, 

with the line in the box indicating the sample median. Whiskers denote the range of the data (excluding 

outliers).   Outliers are indicated by crosses and represent values which fall outside the 25th or 75th 

percentiles plus (or minus) 1.5 times the interquartile range. 

 

   Time (minutes) 
   0-15 16-30 31-45 46-60 61-75 76-90 91-105 106-120 

C
o
n

d
it

io
n

 Unloaded 

No. of 

samples 
140 149 150 150 149 148 149 150 

Accuracy 

(%) 
98.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Loaded 

No. of 

samples 
138 150 145 132 137 148 149 132 

Accuracy 

(%) 
100 98 99.3 100 99.3 98 93.3 89.4 

Table 10.2 Classification accuracy of the load carriage recognition model. Where the number of samples 

is less than 150 this indicates removal of spurious samples by the Butterworth filter. 

             Unloaded              

             Loaded 

In
te

g
ra

te
d

 F
F

T
 (

%
) 

Sample Interval (minutes) 

  0-15           16-30          31-45           46-60           61-75           76-90       91-105       106-120 

0.35 

0.3 

0.25 

0.15 

0.2 

0.05 
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10.3.4 Biomechanical analysis 

Two spatiotemporal parameters were different between conditions at minute 13. Load carriage 

decreased flight phase duration (p = 0.025) and increased double support time by 5.9 % (p = 

0.001). Load carriage also effected seven kinematic changes which are shown in Table 10.3.  

Variable 
Unloaded 

(mean± SD) 

Loaded 

 (mean ± SD) 
p - value 

Mean trunk angle -2.80° (± 4.21°) -18.45° (± 2.68°) < 0.001 

Maximum hip extension 187.50° (± 6.51°) 178.64° (± 3.88°) 0.023 

Maximum hip flexion 160.81° (± 5.95°) 138.15° (± 3.73°) 0.001 

Hip range of motion 26.69° (± 3.56°) 40.49° (± 5.14°) 0.020 

Maximum trunk extension 4.86° (± 4.27°) -14.86° (± 2.46°) < 0.001 

Maximum trunk flexion -10.36° (± 5.00°) -22.64° (± 3.02°) 0.002 

Trunk range of motion 15.22° (± 2.96°) 7.78° (± 1.93°) 0.019 

Table 10.3. Changes in joint angle kinematics between loaded and unloaded conditions 

10.4 DISCUSSION 

Load carriage forms an integral part of day-to-day soldiering activities (Knapik, et al., 2004). 

The ability to recognise the additional energy expended due to carrying loads using unobtrusive, 

wearable movement sensors could improve the prediction of daily EE in military populations. 

Current methods of processing accelerometer signals may be unsuitable when day-to-day 

routines contain resistance-style activities. 

This is the first study to demonstrate the feasibility of using accelerometer signal characteristics 

to detect LC which could lead to improved prediction of EE. We hypothesised that differences in 

gait associated with carrying a military-style load would be reflected in the accelerometer signal 

and could be detected using FFT analysis. A secondary aim of the study was to build a 

classification model and assess its accuracy during a prolonged L trial.  

10.4.1 Prediction of EE using PAC 

The initial phase of this study investigated the ability of traditional accelerometer-based devices 

to predict EE associated with treadmill ambulation with (L) and without (U) load.  

     was greater for L compared to U walking and increased during L between 15 and 120 

minutes. This      drift has previously been observed during LC (Blacker, et al., 2010b; Patton 



Chapter 11 General Discussion 

 

 

 
110 

 

et al., 1991).      drift during  LC has been suggested to be caused by a change in mechanical 

efficiency due to  fatigue (Patton, et al., 1991) or a change in substrate oxidation (Blacker, et al., 

2011). The increase in energy cost during prolonged LC suggests that an equation aiming to 

predict EE should include a variable capturing the minutes elapsed since LC commenced. 

When      was expressed as EE, there were no relationships between predicted and measured 

EE for either the 3DNXU or the ActiheartU. This is not wholly unexpected for 3DNXU given that 

the trial was completed at a constant treadmill speed reflecting the pace required to pass the 

British Army backpack fitness test. Physical activity counts and subsequent predictions did not 

vary greatly between individuals across time (shown by the narrow Y error bars in Figure 10.6 

A). The prediction equation generated in chapter 6 which was used to calculate EE from 3DNX 

physical activity counts did not include anthropometric variables such as body mass as 

covairates. Body size; which is highly related to EE (Nevill, et al., 2005), is likely to explain the 

most variance in EE between individuals when all participants are walking at the same constant 

speed. 

For the ActiheartU the branched equation model used to predict EE does include body mass as a 

covariate, however no individual HR calibration was performed prior to the main trials and true 

sleeping HR was not recorded which could explain the weak relationship as the HR 

    relationship is known to vary at an individual level (Ainslie, et al., 2003). 

For both devices there were relationships between predicted and measured EE in the L condition. 

This may be because higher EEs were associated with less efficient movers (i.e. higher PAC) 

leading to more detectable variability between individuals. However, predicted EE was lower 

than measured EE. This consistent under-prediction demonstrates the difficulties traditional 

accelerometer devices face when trying to account for load-bearing activities. If LC could be 

detected, and the external load known, then this could be added to body mass to create an 

alternative prediction equation for use in a two-regression model similar to that of Crouter et al. 

(2006). 

No other research has specifically investigated using a single accelerometer and the raw signal to 

identify LC tasks. Wyss and Mader (2010) used body acceleration (Actigraph GT1M recording 

data at 2-second epochs), HR and backpack acceleration to develop a decision tree to classify six 

of the most common military-specific activities performed by Swiss Army infantry recruits in 

training.  This method showed the classifier’s inability to discriminate ‘marching with a 



Chapter 11 General Discussion 

 

 

 
111 

 

backpack’ from ‘walking’ without using the data from a sensor placed on the backpack. This 

finding supports that of the present study where PAC from the unloaded condition were not 

different from the mean PAC values generated during the loaded condition despite differences in 

EE between the two conditions. 

These data should be interpreted with care as only a sub-sample of data from five participants 

could be used for each device and participants were not the same for both device sub-samples. 

Despite the small sample size, this sub analysis indicates that traditional accelerometry is 

unlikely to be a suitable method for predicting EE when LC is performed. Of note is the both the 

failure rate of the Actiheart heart rate component (50%) and the removal of the 3DNX from the 

combat belt due to discomfort (50%). Chapter 7 suggested that the lower back was the most 

suitable location for positioning the 3DNX and Chapter 9 deployed the device during periods of 

military exercise without issue however this may need to be reconsidered to maximise 

compliance if the unit is to be used during periods of LC. 

10.4.2 Load carriage classification 

The model created to classify loaded from unloaded ambulation returned promising accuracy. 

The differences seen in the spatiotemporal and kinematic variables translated to differences in 

the raw acceleration output generated in the vertical axis. The addition of load led to an increase 

in double support time and decreased flight phase duration which have been previously observed 

during LC (Birrell, et al., 2009). The increase in the time both feet spent in contact with the 

ground during one stride could have conferred with a different dominant frequency content of 

the vertical acceleration signal compared to unloaded ambulation (Figure 10.1).  

The model validation showed that it was able to correctly classify unloaded ambulation with 

99.8% accuracy for 1186 samples during treadmill walking at 6.4 km∙hr
-1

. When the model was 

validated in the loaded condition accuracy decreased across time. This was indicated by the 

overlap in the whiskers, and the outliers in the last two stages on the box and whiskers plot. 

Loaded ambulation was misclassified as unloaded ambulation on 24 of 281 occasions in the last 

30 minutes of the loaded trial. A direct measure of fatigue was not collected in this study; 

however there was an increase in RPE across time during the loaded trial. In a similar L protocol 

(120 minutes, walking at 6.4 km∙hr
-1

, carrying 25 kg), fatigue of the lower limb, trunk and 

shoulder muscle groups has been demonstrated  (Blacker et al., 2010a). These findings suggest 
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that fatigue-related changes in gait may have been a contributor to the classification error 

towards the end of the trial.  

There are few data available detailing the spatiotemporal and kinematic changes associated with 

prolonged LC therefore the link between fatigue, gait characteristics and reduced classification 

accuracy cannot be fully established. A study conducted by Frykman et al. (1994) manually 

digitised the video captured during paced walking pre and post a 20 km load carry. The authors 

observed significantly increased forward trunk inclination, and decreased flight phase, stride 

frequency and stride length following the load carry. Although this protocol used different 

methodology to the present study it does suggest that fatigue causes changes in gait 

characteristics. Attwells et al. (2008) also observed an increased trunk lean following a two-hour 

military load carry and increases in stride frequency that were approaching significance. 

10.4.3 Limitations 

The main limitation of this study was the small sample size. In trying to maintain the ecological 

validity of the trial by recruiting experienced load carriers (from the Territorial Army and Marine 

reservists where possible), recruitment of subjects was difficult. When fitting normal distribution 

curves to the first 15 minutes of data (Figure 10.2), normality was assumed despite observing a 

degree of skewness. It was decided that assuming that the data were non-normally distributed 

would be as inaccurate for a small sample as assuming that the data would subsequently become 

normally distributed with the addition of more participants. 

Unfortunately the signal from the accelerometer and the CODA system were not synchronised 

and the biomechanical analysis was only performed on 6 participants. Although the 

biomechanical analysis provided evidence showing the differences in gait between loaded and 

unloaded ambulation, temporal aspects of the accelerometer signal could not be objectively 

identified (e.g. foot strike, stance phase, toe off). Secondly, it was not possible to verify the 

changes in gait which caused the changes in accelerometer signal across the 120 minutes. CODA 

markers fell off the participants’ clothing at varying time points which prevented the collection 

of biomechanical data across time. An alternative method for attaching markers should be 

employed in future. The small-scale biomechanical aspect of this study was included for 

descriptive purposes; interpretations should be made with care. 

While the simplicity of the raw signal analysis could be regarded from a user perspective as a 

strength of this study, it is likely that FFT analysis alone is not sufficient to distinguish LC in a 
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more variable free-living scenario as the energy content of the signal could be contaminated by 

other motion artefacts. Wang et al. (2010) included FFT in addition to other signal features 

during their classification of inclined versus level walking. This could be a possible future 

direction if the detection of LC is of interest to the military. 

10.4.4 Summary and Conclusions 

Health and military-specific researchers alike have recognised the potential for assigning 

individual prediction equations to predict EE following the classification of discrete activities 

(Crouter, et al., 2006; Wyss, et al., 2011). The findings of the present study indicate that EE is 

underestimated using current accelerometer-based technologies and could be improved by the 

differentiation of loaded from unloaded ambulation and the assigning of separate prediction 

equations accordingly. The use of FFT is a valuable first step in the development of more 

sophisticated accelerometer signal processing techniques however it is unlikely to be sensitive 

enough as a standalone methodology for detecting more varied and complex movements. 

In conclusion, the model designed to discriminate L from U ambulation classified LC correctly 

in 97.2% of cases across two hours with an overall accuracy of 99.5 % for both conditions. 

Prolonged LC has been shown to illicit an upwards drift in     and associated EE. The 

classification of loaded ambulation is less accurate at 105 and 120 minutes compared to 15 

minutes and this is likely due to the effect of fatigue on gait parameters. Prediction of EE may be 

improved by using the accelerometer raw signal to distinguish LC from unloaded ambulation 

however, more complex modelling of the relationship between gait characteristics,     and 

fatigue over time could further improve LC classification accuracy. Future research investigating 

the feasibility of classifying LC with the addition of uneven terrain, variable speeds, variable 

loads and more participants would make any subsequent model more directly applicable to 

military scenarios. Indeed, the ability to detect large differences in EE associated with 

progressively increasing military loads is of particular importance. 
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11 GENERAL DISCUSSION 

A simple online search (www. http://www.ncbi.nlm.nih.gov/pubmed/) using accelerometry 

as a keyword returns 663 results since 2009 alone; the year this research programme 

began. It is clear that accelerometry has emerged as a popular tool for objectively 

quantifying physical activity yet a challenge that still faces the research community is the 

conversion of accelerometer output to EE. It has been shown widely that, in a laboratory 

setting, there are strong relationships between accelerometer output and EE. However, 

when moving from scripted activities to free-living scenarios, there does not appear to be 

an accelerometer-based device to date that can account for the varying relationships 

between day-to-day activities and EE; certainly not without the addition of either 

individually calibrated and integrated HR monitors or a network of multiple sensors.  

The overarching aim of this thesis was to improve the prediction of EE in military 

personnel using an accelerometer-based device. From the first three experimental chapters 

it became clear that in order to improve prediction accuracy, a methodology accounting for 

the energy expended due to resistance style activities (i.e. load carriage) would be central 

to reducing prediction error. 

11.1 SUMMARY 

The first experimental chapter (Chapter 6) provided a thorough assessment of the 

reliability and validity of the 3DNX accelerometer. Care was taken in this thesis to use an 

instrument which was shown to be valid and reliable in a mechanical setting and during 

incremental human treadmill exercise so that any error in subsequent studies could be 

attributed to sources other than the accelerometer itself.  

The second experimental chapter investigated the effect of accelerometer placement (hip or 

lower back) on the reliability and validity of the 3DNX output. This chapter provided 

evidence for using the lower back as the anatomical placement of preference for future 

studies. The results showed that in a sample of female participants with a narrow range of 

skinfold thickness, accelerometer output was higher at the hip than at the back during 

treadmill exercise with suprailliac skinfold thickness mediating the relationship.  

The third experimental chapter (Chapter 8) sought to compare three commercially 

available devices for the prediction of free-living EE in a military population. Although the 
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sample size was small, the results indicated that the Actigraph GT3X was not a suitable 

device for use in military populations as it underestimated PAEE to the greatest degree. 

The Actiheart did not clearly outperform the 3DNX in terms of prediction accuracy; this 

was attributed to the use of a group rather than individual HR calibration. 

Chapter 9 combined the data from ten independent military cohorts with the aim of 

developing a multivariate model to predict EE. This was the first large scale study using 

the doubly labelled water technique as a criterion measure. Accelerometer output explained 

small but meaningful portions of variance in TEE and PAEE however; the particularly 

poor overall prediction accuracy for PAEE indicated that, where possible, equations should 

be derived specific to the population being studied. Furthermore, results indicated that 

there was a large portion of energy expended due to activity that was neither explained by 

anthropometric variables nor detected by accelerometer output. 

It was suggested that day-to-day military activities such as load carriage would be difficult 

for traditional accelerometer processing methodologies to detect due to the additional 

energy cost of carrying a load not conferring with a similar increase in whole body 

movement. Therefore, Chapter 10 used an alternative accelerometer device (capable of 

storing raw accelerometer signal) to differentiate between loaded and unloaded treadmill 

ambulation based on the signal characteristics associated with each. A model was 

developed to classify load carriage which correctly identified the activity in 97.2% of cases 

when validated across a two hour time period. The model was less accurate in the last 30 

minutes of the trial which was attributed to the effect of fatigue on gait parameters. 

11.2 PREDICTING ENERGY EXPENDITURE USING ACCELEROMETER 

DEVICES 

The initial laboratory study conducted in Chapter 6 showed a strong positive relationship 

between physical activity counts (PAC) and       during incremental treadmill exercise. 

Different equations were generated for walking and running as the slopes and intercepts of 

the regression lines were different. It was recognised that using equations derived during 

treadmill walking and running could not be applied to free-living populations. Chapters 8 

and 9 sought first to directly compare accelerometer devices and second to develop a 

prediction equation in a large, highly compliant sample. However due to the applied nature 

of this thesis, some compromises were made in order to maintain the ‘ecological validity’ 

of the research. 
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11.2.1 Prediction of RMR 

One of the main limitations of the field-based studies (Chapters 8 and 9) was the lack of a 

direct measurement of resting metabolic rate (RMR). It was not possible for participants in 

these studies to visit a laboratory therefore the prediction equation developed by Schofield 

(1985) was used to predict resting metabolic rate for each individual. It is recommended 

that prediction equations for RMR are developed within a similar population to that 

studied. In the majority of cases this is not possible so authors must choose the most 

appropriate equation for their population. The inclusion of conscripts in the population 

used to develop the Schofield equation meant that in the absence of a prediction equation 

developed exclusively in military personnel, it was deemed the most appropriate choice. 

Comparison of the mean measured RMR value for participants in Chapter 10 and the mean 

predicted value for male participants in Chapter 9 indicates that the Schofield equation 

may underestimate RMR, for military personnel, by approximately 200 kcal∙day
-1

. This is 

unsurprising as it is likely that military personnel would have a larger percentage of fat free 

mass than the majority of the population due to the nature of the occupation. It is known 

that fat free mass has approximately 6.5 times higher resting EE than adipose tissue (124.3 

vs. 18.8 kJ∙kg
-1∙day

-1
) (Elia, 1992) therefore, development of an RMR prediction equation 

for military personnel would be of benefit for future field studies where direct 

measurement of RMR is not practical. 

11.2.2 Calibration of Accelerometer Devices 

Throughout this thesis, no attempts were made to individually calibrate the accelerometer 

devices. It is known that the relationship between HR and work rate varies between 

individuals (Ainslie, et al., 2003) and as such the Actiheart device offers a step-test 

calibration function to try and capture this variability. In keeping with the applied nature of 

this thesis, it was deemed that performing individual calibrations in larger, population-wide 

military studies would not be acceptable so a “black box” approach was taken to mimic 

that of a novice user. It seems that a simple, field-based calibration procedure could have 

improved the prediction accuracy achieved by both the Actiheart and the 3DNX. 

Since the completion of this study, a field-based calibration for the 3DNX has been 

proposed as a practical method of normalising physical activity counts (PAC) for 
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individual differences. The premise being that the total counts accrued by each in the first 

six stages of the multi-stage fitness test (MSFT) acted as a calibration factor. The total 

PAC accumulated each day were then divided by the calibration factor to produce adjusted 

values (PACMSFT). When this method was employed by Blacker et al. (2012), the 

relationship between PAC and PAEE (doubly labelled water-derived), r
2
 improved from 

0.44 to 0.72. Furthermore, PACMSFT significantly contributed to the explained variance in a 

multivariate model (r
2
 = 0.68, SEE = 7.67%) for the prediction of PAEE where unadjusted 

PAC did not. Using a similar field-based calibration could also be suitable for the Actiheart 

due to the incremental nature of the MSFT and should be investigated further. 

11.3 CLASSIFICATION OF LOAD CARRIAGE 

Using the raw signal from the Geneactiv accelerometer to build a model capable of 

discriminating loaded from unloaded ambulation was successful (Chapter 10). The model 

was built using simple processing steps and showed clear differences in the frequency 

distribution of loaded and unloaded signals. 

The main limitation of this study was the small sample size. When fitting normal 

distribution curves to the first 15 minutes of data (Figure 10.2), normality was assumed and 

curves fitted accordingly despite a degree of skewness observed. It was decided that it 

would be as inaccurate to assume skewness as it would be to assume that if more 

participants were added, the distribution would become normal.  

Further limitations of the study were the failure to synchronise the real time of the 

accelerometers to the CODA markers and the failure to collect biomechanical data 

throughout the duration of the trial. Although the biomechanical analysis provided 

evidence showing the differences in gait between loaded and unloaded ambulation, 

temporal aspects of the accelerometer signal could not be objectively identified (e.g. foot 

strike, stance phase, toe off). Secondly, it was not possible to verify the changes in gait that 

caused the changes in accelerometer signal across time. CODA markers fell off the 

participants’ clothing at varying time points which prevented the collection of 

biomechanical data across time. An alternative method for attaching markers must be 

employed in future. 
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If more complex models are to be built to account for changes in speed, load and terrain, 

these additional data would aid the interpretation of accelerometer signals and subsequent 

model development. 

11.4 FUTURE RESEARCH DIRECTIONS 

The final experimental chapter in this thesis was designed to investigate the feasibility of 

discriminating L from U ambulation in a shift away from traditional accelerometer 

methodology. The protocol required participants to exercise at a set speed, carrying a set 

load, for a set duration. This provided a relevant occupational framework within which to 

assess the accuracy of the classifier. However, it would be of benefit to continue the 

research by varying load carried and speed marched, extending the duration of the trial and 

eventually, altering the terrain covered (i.e. free-living). It is probable that the noise 

introduced to the accelerometer signal would make a more complex model-building 

process necessary. Wang et al (2009) used a more complex approach to classifying four 

different gradients of incline using a down-selection of 13 unique signal features including 

both statistical (e.g. Standard deviation of the ‘left swing’ segments in the anteroposterior 

plane), and ‘energy’ (e.g. frequency spectrum energy in the band 0.5-4.5 Hz for ‘left 

swing’ segments in the anteroposterior plane) features. This type of analysis would require 

substantial input from an engineering subject matter expert however, this type of 

collaboration is advocated by leaders in the field of accelerometry research (Heil, et al., 

2012).  

The ability to detect LC would benefit the military in a number of ways. If the detection of 

LC improved the accuracy of predicting EE during military field exercises and operations 

then the army would have evidence on which to base their feeding strategies and ultimately 

better fulfil their duty of care to personnel. Furthermore, simply detecting the number of 

minutes per day spent carrying loads regardless of energy expended would be of use to the 

British Army. Modelling and manipulating risk factors for injury has long been a priority 

for the military in order to increase operational effectiveness and reduce the demands on 

associated medical care provision (Wilkinson et al., 2011). Load carriage is known to be 

associated with injury (Birrell, et al., 2009; Birrell et al., 2007) and as such, information 

regarding the frequency and duration of LC would be a useful variable to include in future 

injury models. 
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Although the Actiheart may not be suitable for use within military populations due to its 

position on the chest, there are a number of technologies currently under development that 

could allow the integration of movement and biosignals in an unobtrusive manner. For 

example, textile-based smart systems exist such as the MagIC that incorporates 

seismocardiogram technology into a vest (Castiglioni et al., 2007). However at present; the 

micro accelerations generated by the ejection of blood from the heart are masked by the 

major accelerations associated with locomotion (Di Rienzo et al., 2011). A different 

technique called optical interferometrics, which is mainly used for unobtrusively detecting 

vital signs in resting or unconscious individuals, is also a prospect for quantifying heart 

rate. An optical cable can be in direct or indirect contact with the human body is capable of 

detecting the mechanical and acoustic activity of cardiac muscle through distortions and 

concomitant changes in cable length (Sprager et al., 2012). However, this technique has 

not yet been adapted for use during human movement.  

In terms of military application, the technology most advanced in its potential application 

is the integration of pressure sensors into insoles. Saito et al. (2011) have recently 

developed a system comprising eight small rubberised sensors that can fit into an 

individual’s own shoe without affecting normal gait. With further development (the current 

data storage limits wear time to approximately 20 hours), a sensor such as this has the 

potential to both detect LC as well as variation in the mass being carried and changes in 

stride frequency. Integration of a pressure sensor into military issue boots warrants further 

investigation.    

11.5 CONCLUSION 

The research presented in this thesis has shown that in order to characterise EE in military 

populations, the identification of military specific activities such as load carriage is both 

necessary and feasible.  

Evaluation in a mechanical set-up showed that physical activity counts generated by the 

3DNX accelerometer were positively related to acceleration. Physical activity counts in 

turn were positively related to      during walking and running but a single regression 

equation characterising both activities it not appropriate. A further laboratory study found 

that increases and variability in hip-derived physical activity counts, at least during 

walking, were explained by subcutaneous hip adiposity. The lower back is recommended 
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as the most suitable attachment site as it tends to have less fatty deposition in the area and 

avoids the need for knowing more detailed anthropometric measurements.   

Field-based studies have shown that of three commercially available accelerometer 

devices, the mean Actiheart-derived predictions of physical activity energy expenditure 

were not different to doubly labelled water derived values; however, Actiheart had the 

widest 95% limits of agreement of all three devices. Users should determine what level of 

individual and group error is acceptable before its use on a case by case basis. A large 

field-based study found that accelerometry improved the estimation of free-living EE in 

sub-groups of military populations when combined with anthropometric variables. 

However, the contribution of accelerometry was small which was likely due to 

accelerometers failing to detect the additional energy cost of military-style activities such 

as load carriage. 

The final laboratory based study found that a model designed to discriminate L from U 

ambulation during a prolonged treadmill protocol returned good overall classification 

accuracy. The accuracy of the classifier was reduced in the last 30 minutes of the trial and 

this was attributed to the effects of fatigue on gait parameters and the resulting 

accelerometer signal. 
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13 APPENDIX A 

13.1 3DNX PRODUCT SPECIFICATIONS 

 

Manufacturer  : Biotel Ltd. Bristol, UK 

Measurement range : full scale range +/- 18 g 

Frequency response : 0.2 – 10 Hz 

Power supply  : 3.6 Volt  

Current consumption : 2 mA 

Battery model  : 3.6 V AA Lithium (Saft (128-2764 or 128-2765)) 

Battery lifetime : 6-7 weeks (60 second sampling interval) 

Memory size  : 8 MB (ca. 705 days storage time / 60 seconds sampling interval) 

Communication : RS232, 921k600, 8 bits, 1 stopbit, No Parity 

Dimensions  : 58 x 46 x 17 mm 

Weight   : 75 g (Including battery) 

 

Part 
# of 

Axes 

Range 

(g) 

Sensitivity 

(mV/g) 

Sensitivity 

Accuracy 

(%) 

Output 

Band 

Width 

(kHz) 

Noise 

Density 

(µg/rtHz) 

Voltage 

Supply 

(V) 

Supply 

Current 

(mA) 

ADXL321 2 ±18 57  ±10 Analog 2.5 320 2.4 to 6 0.5 

Table  13.1 Technical specifications of the accelerometer used by the 3DNX 

13.1.1 Dynamic Range 

The ADXL321 has a measurement range of +/- 18 g. The electronics do not use the full 

range. The sensitivity of the sensor is 57 mVolt/g.  

For all positive g values 3DNX has a range of 1.25 V, amplified four times between the 

sensor and the AD converter. The 3DNX has an actual measurement range of 1.25 / (4 x 

0.057) = +5.5 g. 

For negative g values the 3DNX has the same range, which results in a full scale range of ± 

5.5 g. 

 


