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ABSTRACT 

 

Unlike first generation biofuels, those produced from ligno-cellulosic waste material 

(second generation) have the potential to offer sustainable fuel production without 

competition for food products, whilst making significant savings in terms of greenhouse 

gas emissions.  Second generation bioethanol has the potential to offer a stop-gap 

between current vehicle fuelling technologies and future solutions such as 

biohydrogen.   

 

TMO Renewables Ltd, a leading developer of the second-generation conversion of 

biomass to biofuel, has engineered the organism Geobacillus thermoglucosidasius to 

optimise its production of ethanol.  This thermophilic bacterium grows optimally at 60-

65°C, on a wide range of different substrates including both C5 and C6 sugars.  The 

enzyme responsible for ethanol production has been shown to be a highly-expressed 

bifunctional enzyme (ADHE) that possesses both an acetylating aldehyde 

dehydrogenase (aldDH) and an alcohol dehydrogenase (ADH) activity.  This enzyme is 

responsible for catalysing the reduction of acetyl-CoA to ethanol via an acetaldehyde 

intermediate: 

acetyl-CoA + NADH + H+       →  acetaldehyde + CoA-SH + NAD+ 

acetaldehyde + NADH + H+   →  ethanol + NAD+ 
 

Here we report the characterisation of the bifunctional ADHE in terms of catalytic 

activity, substrate promiscuity and multimeric assembly.  The properties of this enzyme 

in relation to competing pathways in fermentative metabolism, including its expression 

pattern during fermentation, have also been determined.   

 

Investigations included the sub-cloning and separate recombinant expression of the 

aldDH and ADH halves of the protein, followed by the determination of a high-

resolution crystal structure of the active ADH domain.  The structure of the aldDH 

domain has been modelled, including its interaction with the ADH component of ADHE.   

 

An additional aldDH gene was identified in Geobacillus thermoglucosidasius; this has 

also been cloned and expressed, and the recombinant enzyme characterised and its 

high-resolution crystal structure determined.   

 

Through fusion of ADH and aldDH genes, a series of novel ADHE enzymes have been 

generated and their effect on ethanol production within the engineered 

G. thermoglucosidasius strain evaluated.   
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1 INTRODUCTION 

 

1.1 Energy demands 

The world economy is dependent on the production and transfer of energy and on 

human labour.  According to the international energy agency in 2009, over 8000 Mtoe 

(million tonne oil equivalent) were used worldwide (IEA 2011).  The general trend 

observed is an increase in energy usage since accurate records began.  In 2010 more 

than 80% of the energy consumed by the global economy was derived from finite 

sources such as oil, natural gas, peat and coal (The World Bank Group 2012).  As 

shown in Figure 1-1, most countries are heavily dependent on the use of energy 

derived from fossil fuels.  The combustion of such fuels is the widely accepted cause of 

increasing carbon dioxide and other greenhouse gas (GHG) emissions, and a major 

causative factor in global climate change.  The continuing development of previously 

less-developed countries is likely to result in increases in worldwide energy usage in 

the future.   

 

Figure 1-1: World map coloured by % fossil fuel energy of total energy consumption from 2007-
2011 (coloured scale: white = 54.1% and darkest red shown = 68.1% fossil fuel energy 
use) (The World Bank Group 2012).   

 

A major contributor to global GHG emissions is transportation.  The Department for 

Transport report that over 34 million motor vehicles were registered in 2011 for use in 

the UK alone (Department for Transport 2012).  In 2009, 27% of GHG emissions 

produced in the UK originated from international and domestic transport (Department 

for Transport 2011), and this equates to 122 million tonnes of CO2 equivalent 

(MtoCO2e).  Although improvements in engine efficiency and a reduction in domestic 

travel due to current economic factors have seen this figure decrease in recent years, 

consumption of fossil fuels for transportation remains a significant environmental issue.   
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The wide variety of uses of crude oil derivatives other than for fuel means that 

consumption of this finite resource by combustion is becoming undesirable.  Therefore, 

the search for renewable alternatives to current transportation fuels has become 

increasingly important in recent years.   

 

Biohydrogen (see Section 1.2) and renewable electricity derived from solar, 

hydroelectric and wind energy, are potential sources of renewable energy that may 

serve as long-term, clean alternatives to oil-based transport technologies.  The current 

dependence on liquid fuel technology (i.e. petrol and diesel) means that many 

alternative fuel sources for transportation would require extensive redevelopment of 

current vehicle fuelling infrastructure, which may prove prohibitively expensive in the 

short term.  Limitations in vehicle range and sustainability with these fuel technologies 

mean that a short-term renewable solution is required.  Biofuels such as bioethanol and 

biodiesel may provide a “stop-gap” solution between current liquid-based fuelling 

technology and future fuel systems.   

 

1.2 Biofuels 

Fuel products that can be derived from various different forms of biomass are defined 

as biofuels.  These fuels present a renewable energy source derived from the sun’s 

energy, most commonly through photosynthesis by plants.  Combustion of fossil fuels 

results in the release of previously sequestered CO2 that has not been present in the 

atmosphere for millions of years.  In the case of biofuels, atmospheric CO2 sequestered 

during the growth of the plant material, is released when the derived biofuel is 

combusted.  These fuels therefore have the potential to offer a significant saving in 

GHG emissions when compared to fossil fuels.   

 

Major biofuel products include bioethanol, biobutanol, biodiesel, biohydrogen and 

methane.  A wide range of possible biomass feedstocks can be used to produce this 

range of biofuel products (Barnard et al. 2010; Luque et al. 2008).  Some of these 

processes are currently driven by chemical conversion, for example biodiesel, whereas 

others are carried out using microorganisms to convert biomass material, for example 

methane and bioethanol (Antoni et al. 2007).   

 

Two major biofuels of current industrial significance are bioethanol and biodiesel; these 

represent more than 90% of the world biofuel market (Antoni et al. 2007).  Biodiesel is 

produced from various oils and fats (such as sunflower or soybean oils) by a process of 

transesterification.  Triglycerides are reacted with an alcohol, most commonly methanol 
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(with an alkaline catalyst), to produce monoalkyl esters, which can be used in diesel-

powered engines with few modifications (Barnard et al. 2010; Meher et al. 2006).  

Glycerol is a by-product of this reaction.  The majority of bioethanol production is 

focussed around traditional fermentation techniques.  These use microorganisms, such 

as the yeast Saccharomyces cerevisiae, to convert simple sugars from pre-treated 

feedstocks, such as corn or sugar cane, to yield ethanol (Sanchez and Cardona 2008).  

Conventional petrol-fuelled vehicles can run on 5% ethanol inclusion fuel with no 

modifications.  Vehicles can be converted to use up to 85% ethanol using relatively 

inexpensive products that are already commercially available (Department for 

Transport 2010; Fuel Flex International TM 2012).  Conversion of vehicles to usage of 

high biofuel content fuels could represent a significant reduction in oil consumption, 

and if sourced responsibly a reduction in GHG emissions.   

 

Although first generation biofuels produced from feedstocks such as corn, wheat, 

soybean oil and sugar cane are well established technologies, they have been well 

publicised as a potential cause of global food price increases in the “food vs fuel 

debate”.  In the year 2008-2009, 37% of the US corn harvest was used for ethanol 

production (Martin 2010).  The FAO predict that a 34% increase in world population 

size by 2050, coupled with increasing urbanisation of previously less-developed areas, 

may result in a 70% increase in global food demand (Food and Agriculture 

Organization of the United Nations 2009).  The use of first-generation biofuels may 

contribute further by reducing the supply of crops for food.  They have also been 

highlighted as potentially having severe disadvantages where land is converted for 

energy crop production, where a net GHG emission saving may not be made for many 

years (Fargione et al. 2008; Searchinger et al. 2008).  Energetic requirements and 

environmental impacts of a particular feedstock must be accurately determined, to 

ensure the production of the biofuel product does indeed have a net energy gain over 

its production energy costs.  Hill et al (2006) suggested that the overall saving in GHG 

emissions for corn-based bioethanol and soybean-based biodiesel were 12 and 43% 

respectively.  The net energy gain for these two products was 25% for corn-based 

bioethanol and 93% for soybean-biodiesel (Hill et al. 2006).  More recently, others have 

suggested that once land usage changes are also taken into account, some biofuels 

can actually represent a net increase in GHG emissions (Searchinger et al. 2008).   

 

In contrast to first-generation biofuels, second-generation biofuel technologies focus on 

the use of non-food feedstocks to generate fuel products.  Examples include bioethanol 

produced from municipal waste, ligno-cellulosic waste materials (such as corn husks, 
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cassava root and wheat straw) or bioenergy crops (such as switchgrass or poplar 

trees), and the use of microalgal species with a high level of intracellular oils, for 

triglyceride production for biodiesel (Luque et al. 2008).  The use of second-generation 

bioethanol in the transesterification reaction would further improve the sustainability of 

the biodiesel technology.  These technologies have also been suggested to provide 

significantly higher savings in GHG emissions (Searchinger et al. 2008).  This is 

illustrated in Figure 1-2, particularly when produced from waste material where land 

usage changes are not apparent.   

 

Figure 1-2: Summary of GHG emissions for current and predicted fuels determined for the 
California Air Resources Board (Charles 2009).  Image based on figure from Science 1 
May 2009: Vol. 324 p. 587.   

 

It should be emphasised that it is unlikely that one technology can provide the solution 

to the world’s low carbon energy requirement.  Due to limitations in feedstock supplies 

and environmental factors, a range of solutions, including various biofuel technologies, 

will be required to maintain and extend access to energy that is likely to be demanded 

in the future (Potocnik 2007).   

 

This project is in part sponsored by a second-generation bioethanol company, TMO 

Renewables Ltd, and so this specific technology will become the focus of the rest of 

this Introduction.   

 

1.3 Second-generation bioethanol 

As discussed previously, the use of non-food biomass for the production of second-

generation bioethanol has many environmental advantages.  The feedstocks 

associated with this technology are derived from plant material such as wheat straw, 

cassava roots and wood chips.  The resistant nature of these feedstocks to 
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degradation means that development of this technology is heavily dependent on pre-

treatment steps.  This treatment is required to liberate sugars from the complex lignin-

cellulose-hemicellulose matrix that makes up plant cell walls (Lynd et al. 2008).   

 

The composition of plant cell walls varies between feedstocks but is broadly made up 

of cellulose strands (a polymer of ᴅ-glucose molecules) cross-linked by hemi-cellulose 

(includes ᴅ-xylose, ᴅ-mannose, ᴅ-galactose and ʟ-arabinose polymers); the matrix is 

further strengthened by lignin and pectin.  This complex matrix of interlinked polymers 

requires both physical and biochemical treatment to release fermentable sugars for 

bioethanol production (Jordan et al. 2012; Sanchez and Cardona 2008).  Efficient pre-

treatment of biomass typically employs a physical step such as steam explosion (with 

acid hydrolysis), followed by an extensive cellulolytic enzyme treatment to degrade the 

partially-disrupted polymeric sugars.  The costs associated with the addition of these 

enzymes and effective physical pre-treatment can have a significant impact on the 

overall cost of the bioethanol produced (Lynd et al. 2008).   

 

The sugars released by this pre-treatment are diverse and can include short-chain 

polysaccharides (cellobiose and xylobiose) as well as monosaccharaides, including 

both C6 sugars (ᴅ-glucose and ᴅ-mannose) and C5 sugars (ᴅ-xylose and ʟ-arabinose).  

An array of other compounds can also be produced from minor cell wall components.  

Traditional fermentation techniques using organisms such as S. cerevisiae are only 

able to utilise the simple C6 sugars to produce ethanol.  However, C5 sugars can form a 

significant proportion of the sugars present in the pre-treated material (Limayem and 

Ricke 2012).  Increasing the proportion of biomass material that can be utilised is of 

fundamental importance if second-generation bioethanol is to become an 

economically-viable alternative to petrol.  Extensive research is therefore being 

undertaken by various groups in an attempt to extend the substrate promiscuity of 

these organisms (Barnard et al. 2010; Jordan et al. 2012; Sanchez and Cardona 2008).   

 

A possible solution to the narrow substrate range of traditional fermentative organisms 

is to use novel ethanologenic species with broader substrate capacity.  This approach 

also has potential limitations in terms of organism ethanol tolerance and yields, limited 

metabolic manipulation tools and the potential requirement for redevelopment of 

fermentation methodologies.   

 

Thermophilic microorganisms such as some species of Clostridia, Thermoanaerobacter 

and Geobacillus have been identified as suitable for use as industrially-viable ethanol 
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producing organisms (Barnard et al. 2010; Sanchez and Cardona 2008; Taylor et al. 

2008).  Potential advantages of using thermophilic organisms include:  

 broad fermentable substrate specificity (C5 and C6 sugars) 

 robust metabolic systems less sensitive to fluctuations in temperature and pH 

 lower contamination risks (due to higher growth temperatures) 

 high temperature fermentation may allow process optimisation (i.e. less energy 

in cooling hydrolysate and facilitation of ethanol removal).   

 

1.4 Geobacillus thermoglucosidasius 

The second-generation biofuel company TMO Renewables (Guildford UK) selected the 

thermophilic microorganism, Geobacillus thermoglucosidasius NCIMB 11955, as a 

suitable candidate organism for sustainable bioethanol production.  This Gram-positive 

bacterium, which grows optimally between 60-65°C, was selected due to the diverse 

range of substrates on which it could grow, as well as its ability to produce low levels of 

ethanol.  The strain is able to utilise C5 and C6 sugars, including some oligomeric forms 

derived from biomass feedstocks, to produce lactate, formate, acetate and ethanol.   

 

Over recent years, the company have engineered the wild-type strain to optimise its 

metabolism in terms of ethanol production.  This required a series of gene knock-outs 

and up-regulations to significantly increase the yield of ethanol obtained when grown 

anaerobically; these are outlined in Figure 1-3.  This process utilised a “genetic 

toolbox” developed by TMO Renewables to allow manipulation of various genes and 

the controlling promoters (Cripps et al. 2009).   

 

When G. thermoglucosidasius is grown anaerobically, its metabolism concerned with 

ethanol production is driven by the requirement to regenerate NAD+ from NADH.  This 

reduced form of the cofactor is produced by a variety of metabolic processes such as 

glycolysis.  Pyruvate, a product of the pentose-phosphate, Entner-Doudoroff and the 

Embden-Meyerhof pathways, is the major substrate for fermentative metabolism.  In 

the wild-type organism the dominant process to regenerate NAD+ is the action of the 

lactate dehydrogenase enzyme, which does not lead to ethanol production.  TMO 

Renewables removed the gene responsible for this activity to force the dominant 

activity to shift towards ethanol production.  The metabolic flux through two different 

enzymes to form acetyl-CoA therefore increased.  These enzymes are the pyruvate 

formate lyase and the pyruvate dehydrogenase complex (PDH).  The dominant activity 

in the wild-type organism was that of the pyruvate formate lyase.  However, the 
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accumulation of the organic acid formate that results from this enzyme activity inhibited 

the growth of the organism; therefore this enzyme was subsequently knocked out, 

directing the flux of carbon through PDH.  As the expression of this enzyme was low 

under anaerobic conditions in the wild-type organism, this required up-regulation to 

prevent this enzyme becoming rate limiting.  This was achieved by placing the gene 

under the control of a promoter active under oxygen-limited conditions (the lactate 

dehydrogenase promoter from G. stearothermophilus).   

 

Figure 1-3: Overview of modified fermentative metabolism of the TM242 (and TM444) strain.  
Red crosses indicate gene knock-outs and purple arrows indicate up-regulations 
through promoter switching.  A hypothesised acetyl-CoA synthetase activity is shown 
with a dashed arrow.  The two dehydrogenase activities associated with the ADHE 
protein are indicated.   

 

Acetyl-CoA, the product of PDH, is a substrate for two relevant enzymes: phosphate 

acetyl transferase (PAT) and an aldehyde dehydrogenase (aldDH) enzyme.  The 

product of PAT (acetyl-phosphate) is converted to acetate by the action of acetate 

kinase (AK).  This branch of metabolism has not currently been successfully knocked 

out, with PAT and AK gene knock-outs proving lethal; this suggests an essential 

function in the organism.  This essential function may be to regenerate ATP for the 

organism to grow anaerobically.  The product of the aldDH enzyme (acetaldehyde) is 

converted to ethanol by the action of an alcohol dehydrogenase enzyme (ADH).  Of a 

possible 8 annotated ADH genes within the TM242 genome, only one gene when 

knocked out completely abolished ethanol production.  This was a putative adhE gene 
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hypothesised to possess both ADH and aldDH activity.  It is around this protein that this 

project is focussed.   

 

Two molecules of NADH are generated per acetyl-CoA, one by glyceraldehyde 3-

phosphate dehydrogenase during glycolysis, and the second by PDH.  The ethanol 

yielding activity of the two dehydrogenases associated with the ADHE protein is 

therefore required during fermentative metabolism to maintain the redox balance of the 

cell.  The metabolic manipulations described produced the modified strain known as 

TM242.  This was the production strain used by TMO Renewables at the outset of this 

project.  Greater than 90% of the theoretical yield of ethanol was obtained when this 

modified strain was fermented on glucose.  The strain also preformed promisingly on 

other sugars that can be derived from biomass including cellobiose, ᴅ-xylose and 

ʟ-arabinose (Cripps et al. 2009).  The strain has now been further modified to remove 

the ability of the organism to sporulate, thereby producing the current production strain 

TM444.   

 

Strain TM444 forms the basis of the TMO Renewables process that is currently being 

commercialised.  The company have constructed an industrial-scale development plant 

in the UK to demonstrate to potential clients the commercial viability of bioethanol 

production from various feedstocks.  The first commercial agreement was signed 

between TMO Renewables and the US waste management firm Fiberight in 2010.  

Commercial-scale plants will use the process to produce bioethanol from household 

waste (Barley 2010).   

 

1.5 ADHE 

The single protein hypothesised to catalyse the conversion of acetyl-CoA to ethanol in 

G. thermoglucosidasius is known as ADHE.  Preliminary evaluation of an ADHE knock-

out strain of TM242 (TM400) showed complete abolition of ethanol production and an 

inability of the strain to survive under anaerobic conditions (TMO Renewables 2009 

personal communication).  Knock-outs and down regulations of the adhE gene have 

been shown to negatively affect the phenotype of solvent production in several 

organisms including Escherichia. coli (Goodlove et al. 1989), Entamoeba histolytica 

(Espinosa 2001), Giardia lamblia (Dan and Wang 2000) and Clostridium 

acetobutylicum (Fontaine et al. 2002).   

 

AdhE genes are common amongst fermentative microorganisms and have been 

studied in a range of different organisms, as shown in Table 1-1.  The protein is 
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commonly associated with fermentative metabolic pathways catalysing the conversion 

of an acyl-CoA to an alcohol.  The most common activity described is conversion of 

acetyl-CoA to ethanol, although in some Clostridial sp it has also been shown to be 

capable of catalysing conversion of butyryl-CoA to butanol (Fontaine et al. 2002).   

 

A significant amount of research has focussed on the ADHE proteins from E. coli and 

En. histolytica.   

Type of 
organism 

Species Reference 

Gram-positive 
bacteria 

Leuconostoc mesenteroides (Koo et al. 2005) 

Thermoanaerobacter ethanolicus (Peng et al. 2008) 

Thermoanaerobacterium 
saccharolyticum 

(Shaw et al. 2008) 

Lactococcus lactis (Arnau et al. 1998) 

Streptococcus bovis (Asanuma et al. 2004) 

Clostridium acetobutylicum (Fontaine et al. 2002) 

Gram-negative 
bacteria 

E. coli 
(Membrillo-Hernandez 

et al. 2000) 

Anaerobic 
protozoa 

Giardia lamblia (Dan and Wang 2000) 

Entamoeba histolytica 
(Bruchhaus and 
Tannich 1994) 

Algae 
Polytomella sp (within the 

mitochondrion) 
(Atteia et al. 2003) 

 

Table 1-1: A selection of organisms where ADHE proteins have been studied.  

 

The adhE gene sequence annotated in the TM242 genome was translated during this 

project to provide the amino acid coding sequence using the Translate tool (ExPASy 

(Gasteiger E. 2005)) (Section 2.3).  A protein BLAST search (NCBI) indicates that the 

protein is made up of two distinct protein folds linked together.  The N-terminus of the 

protein aligns with an aldehyde dehydrogenase family of proteins, whereas the 

C-terminal domain aligns with an iron containing ADH family (Figure 1-4).  This is the 

characteristic arrangement seen for other ADHE proteins with the two dehydrogenase 

domains linked in a single “fusion” protein.   
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Figure 1-4: Result summary from a protein BLAST of the TM242 ADHE sequence against the 
NCBI database.  Numbers correspond to amino acid residues.  Light blue regions 
indicate compositionally biased regions that were excluded from the search by the 
programme.  Putative catalytic sites are indicated.  ALDH = NAD(P)

+
-dependent 

aldehyde dehydrogenase superfamily and DHQ_Fe-ADH = Dehydroquinate synthase-
like (DHQ-like) and iron-containing alcohol dehydrogenases superfamily.   

 

Catalysis of the conversion of acetyl-CoA to ethanol can in theory be carried out by this 

single protein unit, where the aldehyde product of the first enzyme is consumed by the 

second.  It is not clear whether there is an evolutionary benefit to the expression of 

these two activities on a single polypeptide.  It can be envisaged that accumulation of 

the intermediate product (acetaldehyde) may have a negative effect on the fermenting 

organism, so efficient conversion to ethanol may be desirable.  The ability of 

acetaldehyde to react with proteins within the cell means it is considered a toxic 

compound.  Substrate channelling between the two domains may allow rapid 

conversion of the intermediate product, limiting the accumulation within the cell.  Fusion 

of these two domains may allow positioning of the active sites to facilitate this.  The two 

dehydrogenase activities are required to maintain the redox balance in fermentative 

organisms; it may therefore prove advantageous to express these two activities 

together to optimise cofactor regeneration.   

 

1.5.1 Sequence analysis 

Sequence alignments between the ADHE from TM242 and other ADHE sequences 

carried out here show that the protein is well conserved between organisms, with over 

45% sequence identity being observed for all sequences (Table 1-2).  The ADHE 

protein sequence from TM242 appears to be 99% identical to that from the closely 

related G. thermoglucosidasius C56-YS93 strain.  To the author’s knowledge, no 

characterisation of ADHE proteins from G. thermoglucosidasius or closely related 

strains has been carried out.   
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Protein GADHE TeADHE EADHE VADHE EhADHE CADHE SADHE 

ID % 99 66 47 47 57 49 47 

Similarity % 99 82 67 67 74 68 65 

Gaps % 0 1 5 6 2 2 3 

 

Table 1-2: Protein sequence alignment scores between representative ADHE proteins and 
ADHE from TM242.  GADHE = Geobacillus thermoglucosidasius C56-YS93 ADHE 
(AEH49709.1), TeADHE = Thermoanaerobacter ethanolicus ADHE (ABH06551.1), EADHE 
= E.coli K-12 ADHE (NP_415757.1), VADHE = Vibrio parahaemolyticus RIMD 2210633 
ADHE (NP_798500.1), EhADHE = Entamoeba histolytica ADHE (Q24803), CADHE = 
Clostridium thermocellum ATCC 27405 ADHE (YP_001036854.1), SADHE = 
Streptococcus bovis ADHE (BAC87790.1).  Numbers in brackets indicate protein 
accession numbers.  Alignments were carried out using the T-Coffee sequence 
alignment tool (ExPASy) (Notredame et al. 2000) and interpreted using the GeneDoc 
software package (Nicholas et al. 1997).   

 

Several key residues and motifs are conserved between the proteins in the alignment.  

Figure 1-5 shows the annotated alignment using the PROSITE tool to predict 

nicotinamide- and metal-binding regions (ExPASy) (Sigrist et al. 2010); conserved 

motifs discussed by Fontaine et al (2002) are also shown.  The aldDH domain contains 

the highly conserved aldDH residues and the catalytic site residues predicted for 

similar proteins.  The ADH domain contains a metal ion binding motif.  Four 

hypothetical nicotinamide binding regions were identified within the coding sequence.   
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Continued… 
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Figure 1-5: Protein sequence alignment between representative ADHE proteins and ADHE from 
TM242.  Residues highlighted in red are well conserved between all aligned sequences.  
Yellow highlighted are conserved or conservative changes in most of the sequences, 
grey residues are only partially conserved and conservative changes, whereas white 
indicates less conservation.  TADHE = TM242 ADHE, GADHE = Geobacillus 
thermoglucosidasius C56-YS93 ADHE (AEH49709.1), TeADHE = Thermoanaerobacter 
ethanolicus ADHE (ABH06551.1), EADHE = E.coli K-12 ADHE (NP_415757.1), VADHE 
= Vibrio parahaemolyticus RIMD 2210633 ADHE (NP_798500.1), EhADHE = 
Entamoeba histolytica ADHE (Q24803), CADHE = Clostridium thermocellum ATCC 
27405 ADHE (YP_001036854.1), SADHE = Streptococcus bovis ADHE (BAC87790.1).  
Nicotinamide and iron binding motifs were identified using the PROSITE tool (ExPASy).  
Blue star below the sequence indicates conserved catalytic cysteine identified during 
BLAST search.  Red stars below the sequence indicate conserved metal ion 
coordinating residues identified from ADH domain crystal structure determined during 
this project.  AldDH conserved residues were based on those sequences discussed by 
Fontaine et al (2002).  Numbers in brackets indicate protein sequence accession 
numbers.  Alignment carried out using the T-Coffee sequence alignment tool (ExPASy) 
(Notredame et al. 2000) and interpreted using the GeneDoc software package 
(Nicholas et al. 1997).   
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Conserved residues within the aldDH domain of ADHE have previously been identified 

in other protein sequence alignments (Chen et al. 2004; Fontaine et al. 2002; Perozich 

et al. 1999).  A catalytic cysteine residue is highly conserved within aldDH proteins and 

is also present in the TM242 ADHE protein sequence (Cys257); this is indicated in 

Figure 1-5 with a blue star.  A glycine (Gly254) at position -3 from this residue is highly 

conserved as well as a glutamic acid (Glu348) in an EKLSP motif that appears in the 

aligned protein sequences.  Mutations in the catalytic cysteine and the equivalent 

glutamic acid in the E. histolytica ADHE protein have been shown to abolish aldDH 

activity (Chen et al. 2004).  The conserved proline residues described by Fontaine et al 

(2002) are also conserved in the sequence alignment performed here.  Analysis of the 

amino acid sequence using the PROSITE tool revealed one conserved NAD(P)+ 

binding motif within the aldDH domain, two NAD(P)+ binding motifs within the ADH 

domain, as well as one motif positioned between the two domains of the ADHE protein.   

 

Analysis of the ADH domain revealed an iron-containing ADH motif 1 (Fe binding site) 

within the protein sequence that is conserved between the aligned ADHE proteins.  

This ADH family is distinguished from the more commonly described zinc dependent 

ADH superfamily in terms of sequence homology.  Three histidine residues (His665, 

His730 and His744) and an aspartic acid (Asp661) shown to be coordinating the binding of 

a metal ion during crystallographic study of the ADH domain during this project 

(Chapter 5), were also shown to be highly conserved.  The metal ion is hypothesised to 

be catalytic, polarising the acetaldehyde carbonyl group allowing the formation of the 

alcohol group (Atteia et al. 2003).  In E. histolytica, when His730 or His744 were mutated 

to an arginine, both ADH and aldDH activities were lost.   

 

The activities of the two domains of the E. histolytica ADHE protein have been 

previously isolated independently of one another through the work of Stanley’s 

research group (Chen et al. 2004; Espinosa 2001).  This work showed low levels of 

aldDH activity could be resolved on a protein fragment containing amino acids 1-446; 

the ADH activity was resolved on a fragment containing amino acids 417-870 (Chen et 

al. 2004; Espinosa 2001).  Interestingly, the aldDH activity was not detected on a 

protein fragment containing amino acids 1-532, possibly due to interference by the 

additional C-terminal amino acids.   

 

The translated G. thermoglucosidasius ADHE amino acid sequence was analysed 

using the ProtParam tool (Gasteiger E. 2005) to provide estimations of the basic 

properties of the enzyme.  The protein contains 869 amino acids with a molecular 
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weight of 96,290.  The theoretical pI of the protein is 7.11 and the molar absorption 

coefficient was calculated to be 67,785 M-1cm-1 at 280 nm.   

 

1.5.2 Substrate specificity 

A broad range of substrate specificities have been reported for both the aldDH and 

ADH domains of ADHE proteins.  The aldDH domain of the G. lamblia ADHE shows 

significant activity with acetyl-CoA (100%), propionyl-CoA (52%), isobutyryl-CoA (26%), 

butyryl-CoA (54%), benzoyl-CoA (6%) and succinyl-CoA (3%); bracketed values 

indicate relative percentage activities (Sanchez 1998).  It has also been reported that 

the ADH domain of E. coli ADHE is catalytically active with un-branched primary 

alcohols up to 6 carbons in length; the enzyme from Salmonella typhimurium is capable 

of catalysing the conversion of up to 8 carbon un-branched primary alcohols (Dailly et 

al. 2000).  The probable ADHE enzyme from L. mesenteroides also showed significant 

activity with acetaldehyde, propionaldehyde, butyraldehyde and isobutyraldehyde when 

assayed in the alcohol producing direction (Kazahaya et al. 1972).   

 

One of the goals of TMO Renewables is to use the TM242 “platform” to produce a 

range of different products including other fuel alcohols such as propanol and butanol.  

It is therefore interesting to observe the substrate specificities of various enzymes to 

determine if metabolic pathways may be manipulated to produce other products.  If the 

ADHE enzyme in this organism were to show a broad specificity in terms of acyl-CoAs 

and aldehydes, manipulation of metabolism to achieve this goal may be significantly 

simpler.   

 

1.5.3 Relative activities of the two domains 

The diverse range of assay, expression and purification conditions used during 

previous studies of ADHE proteins makes it difficult to predict the relative activities of 

the two domains.  Kessler et al (1991) report similar levels of activity for the two 

domains for the purified enzyme of E. coli in the forward direction (aldDH 9.6 U/mg and 

9.9 U/mg for the ADH domain), whereas Espinosa et al (2009) report significantly lower 

aldDH activity (7.7 mmol/min/mg) compared to ADH activity (27.9 mmol/min/mg) for the 

partially-purified E. histolytica enzyme.  Pei et al (2010) report that the purified 

T. ethanolicus enzyme showed no ADH activity under physiological conditions 

compared to 113 U/mg for the aldDH domain.  It is therefore important to determine the 

kinetic parameters for the TM242 enzyme to determine the relative activities of the 

domains under defined conditions.   
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The aldDH domain of ADHE has also been suggested in some organisms to be 

relatively unstable compared to the ADH domain (Pei et al. 2010).  Oxidation of the 

catalytic cysteine in the active site of this domain is a possible cause of this instability.   

 

In Thermoanaerobacter sp, the conversion of acetyl-CoA to ethanol through 

fermentative pathways has been suggested to be controlled through a balance of 

different enzyme expression levels, enzyme activities, and ethanol concentrations 

(Burdette and Zeikus 1994; Pei et al. 2010).  The balance of activities between various 

proteins including ADHA, ADHB and ADHE, have been suggested to control the 

metabolic flux to ethanol within these strains.  The activities of these proteins appear to 

regulate the production of ethanol through catalysis of the forward and reverse 

reactions between acetyl-CoA, acetaldehyde and ethanol.  Transcription of the adha 

and adhe genes has been shown to vary according to ethanol concentration.  Although 

other ADH and aldDH genes have been identified in the TM242 genome, 

corresponding genes to adha and adhb have not yet been identified or characterised.   

 

1.5.4 Divalent metal ions 

The activity of the E. coli ADHE protein has been shown to be stimulated by the 

presence of Fe2+ (Kessler et al. 1991) but not by other metal ions.  This was also the 

case for the enzyme from E. histolytica and S. bovis (Asanuma et al. 2004; Espinosa et 

al. 2009); moreover, in these cases the dehydrogenase activities of ADHE were 

inhibited by the presence of other divalent metal ions.  Binding of the Fe2+ ion was 

shown to be relatively weak through stripping experiments using treatment with the 

metal chelator 1,10-phenanthroline (Kessler et al. 1992).  Several investigations into 

ADHE enzymes have not described the Fe2+ dependent activity, with significant activity 

measurements being made in the absence of metal ions (Fontaine et al. 2002; Koo et 

al. 2005; Pei et al. 2010; Sanchez 1998).  The effect of divalent metal ions is therefore 

investigated as part of the characterisation of the TM242 ADHE protein performed 

here.   

 

1.5.5 Regulation of expression 

Expression of the well-studied ADHE protein from E. coli has been shown to be 

induced under anaerobic conditions (Chen and Lin 1991),  with a 10-fold increase 

being reported (Membrillo-Hernandez and Lin 1999).  A similar induction of expression 

of ADHE has been demonstrated in L. lactis when grown on glucose as a carbon 

source.  Interestingly, when grown on galactose, significant aerobic and anaerobic 

expression was observed (Arnau et al. 1998).  Various regulatory factors have been 
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hypothesized including catabolite and nitrate repression.  Particular relevance of the 

NAD+/NADH balance has been shown by manipulating the intracellular levels of these 

cofactors (Leonardo et al. 1996).   

 

Dailly et al (2000) have shown that the level of ADHE activity can vary according to the 

carbon source used during growth of both E. coli and S. typhimurium.  Expression of 

ADHE was solely anaerobic in both cases, with the highest ADHE activity being 

observed when grown on reduced substrates such as sorbitol and mannitol.  Low 

activity was observed during growth on the oxidised sugar acids such as glucuronic 

acid.  The requirement to balance redox potential through fermentative metabolism is 

likely to drive the production of the ADHE protein.  Metabolism of the oxidised sugar 

acids results in no net increase in NADH, hence the low levels of ADHE activity.  

Metabolism of the reduced substrates (i.e. mannitol) can result in 3 NADHs 

accumulating, thus requiring a higher ADHE activity (Dailly et al. 2000; Wolfe 2005).  A 

link between adhE gene expression and the intracellular redox balance of NADH and 

NAD+ is a possible means of regulation of the ADHE activity dependent on metabolic 

substrates.   

 

Expression of the adhE gene in G. thermoglucosidasius has been suggested to be 

under the control of an anaerobic regulation system known as a Redox repressor 

(REX) (Brekasis and Paget 2003; Sickmier et al. 2005; Wang et al. 2008).  Repression 

of the target genes by REX is achieved through the binding of the protein to the 

appropriate DNA operator sequence and preventing expression.  It is hypothesised that 

the balance between NADH/NAD+ is used to regulate the ability of this transcription 

factor to bind to DNA.  When the cellular NADH levels are high (anoxic), the expression 

of the target genes is free from repression; conversely, when NAD+ levels are higher 

the genes are repressed.  NADH binding to the REX protein causes conformational 

changes that prevent its binding to DNA, and thus allows expression of the target 

genes (Wang et al 2008).  A REX coding sequence has been identified in the TM242 

genome suggesting this regulatory protein is present in this organism.  A REX operator 

sequence is also annotated in the ADHE promoter region (TMO Renewables 2012 

personal communication).  Preliminary investigations have confirmed the binding of 

REX to the promoter region of ADHE in G. thermoglucosidasius (Paget, M. S. 2012 

unpublished work).   

 

An ADHE-regulating, redox-sensing protein known as RSP has been identified in 

Thermoanaerobacter spp (Pei et al. 2011).  This protein showed 43% identity to the 
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REX protein from Thermus aquaticus and appears to play a similar role in redox 

controlled expression in this organism.   

 

Due to the proposed role of ADHE proteins in fermentative metabolism, is it not 

surprising that the expression of such proteins may be under regulation linked to the 

redox balance within the cell due to the accumulation of NADH.  Experiments carried 

out during this project aimed to determine the expression pattern of various enzyme 

activities produced during fermentative metabolism.   

 

1.5.6 Spirosome formation 

ADHE proteins have been identified as forming large multimeric assemblies known as 

spirosomes (Bruchhaus and Tannich 1994; Espinosa 2001; Kessler et al. 1992).  

These large polymeric protein structures are made up of greater than 20 copies of the 

ADHE protein forming helical assemblies, as shown in Figure 1-6 A.  The presence of 

these large protein assemblies was demonstrated through size exclusion 

chromatography, protein cross-linking and electron microscopy techniques by Kessler 

et al (1992).  This work also demonstrated the dynamic nature of these structures, 

changing from an inactive “closed” form (without NAD+ and Fe2+ present) to an “open” 

active form upon cofactor binding.  This is shown in Figure 1-6 B, which is a schematic 

diagram of the ADHE conformational change.   

 

Figure 1-6: (A) Electron microscopy image of ADHE spirosomes (black line = 100 nm).  (B) 
Schematic model of conformational change in spirosomes induced by the addition of 
5 mM NAD

+
, 0.3 mM Fe

2+
 and 5 µM CoA-SH.  1 = closed form, 2 = open (cofactor 

bound) form.  Images adapted from Kessler et al (1992).   

 

The reason for the formation of these complexes remains unclear, but if physiologically 

relevant they may provide some improvement of catalysis possibly through substrate 

channelling, or some stabilisation of the proteins may be conferred through assembly.  

The presence of such multimeric assemblies is investigated during this project for the 

TM242 ADHE protein.   
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1.5.7 Structural studies 

No high-resolution structures for ADHE proteins are currently available in the protein 

data bank (PDB).  One unpublished structure exists for the aldDH domain of the 

Vibrio parahaemolyticus ADHE (3MY7) to 2.25 Å resolution.  No corresponding ADH 

domain structure is currently available.  Structures of single domain proteins of a 

similar predicated fold exist for the two domains of ADHE.  Although the overall 

architecture of such proteins is likely to be similar, the intervening loop regions may 

show significant variation.  Potential interactions between the two domains of the 

protein due to their physical linkage may limit the validity of modelling work based on 

these homologous single domain proteins.  Understanding the structural characteristics 

of the ADHE protein, especially in terms of the potential for substrate channelling, is of 

particular academic and industrial interest.  Development of the structural 

understanding of the ADHE protein from TM242 has therefore become an objective of 

this project.   

 

1.5.8 Pyruvate formate lyase inactivation 

As well as functioning as both an aldDH and ADH, the ADHE protein from E. coli has 

also been described as having pyruvate formate lyase inactivating properties under 

aerobic conditions (Kessler et al. 1991; Kessler et al. 1992).  This oxygen-sensitive 

enzyme is active through a “glycyl radical” which is stable anaerobically; upon 

switching to aerobic conditions the protein is cleaved at this catalytic residue and 

inactivated (Sawers and Watson 1998).  ADHE is hypothesised to inactivate the 

enzyme prior to cleavage, allowing the enzyme to be re-activated upon switching to 

anaerobic conditions.  Work carried out more recently has disputed this hypothesised 

inactivating activity (Nnyepi et al. 2007).  As the pyruvate formate lyase has been 

knocked out of the TM242 strain, this debated activity of ADHE was not investigated 

during this project.   

 

1.5.9 Ethanol tolerance 

Inhibitory effects of alcohols on microorganisms in biofuel production are a commonly 

reported barrier to commercialisation (Liu and Qureshi 2009).  There are many possible 

mechanisms by which alcohols such as ethanol inhibit the growth of microorganisms.  

These include effects on membrane integrity and cellular processes such as division 

and protein synthesis (Jones 1989).  A commonly discussed cause is the effect on 

membrane integrity caused by increasing alcohol concentrations.  Tolerant strains have 

been shown to vary the composition of the membrane fatty acids, possibly to overcome 
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increased membrane fluidity caused by increasing ethanol concentrations (Ingram et 

al. 1980; Jones 1989; Liu and Qureshi 2009; Timmons et al. 2009).   

 

Unusually, the ADH domain of the ADHE protein in Clostridium thermocellum has 

recently been reported as an important factor in ethanol tolerance of this ethanol 

producing organism (Brown et al. 2011).  Comparison of the genome sequence of a 

more ethanol tolerant strain to the parent strain showed many differences, although two 

point mutations in the ADH domain of the ADHE protein in isolation were demonstrated 

to influence the ethanol-tolerant phenotype of the organism.  Specifically, a mutation of 

a conserved histidine residue (734) (the second in the conserved HSLAH motif shown 

in Figure 1-5) to an arginine was suggested to be responsible, the modified strain being 

able to tolerate higher concentrations of ethanol in the growth medium.  This tolerant 

phenotype was not linked to increased levels of ethanol production.  A reduction of 

25-fold was observed in the specific activity of the ADH domain of ADHE compared to 

the wild type protein (assaying with NADH as the cofactor).  An increase was observed 

in the specific activity of the enzyme with respect to NADPH as a cofactor (0.03 to 0.12 

µg/min/mg).  The relative increase in NADPH activity observed was low compared to 

the substantial loss of NADH dependent ADH activity (2.7 to less than 0.005 

µg/min/mg).  Ethanol production was not reported to drop significantly between the 

strains.  Brown et al (2011) suggest that this cofactor switching may be linked to 

membrane composition, although this theory remains to be tested.  A significant loss of 

activity (~70%) was observed in a mutant of E. histolytica where the same histidine 

residue (His734 in E. histolytica) was also mutated to an arginine.  No effect in terms of 

ethanol tolerance was investigated (Espinosa 2001).  It is difficult to rationalise the 

reported effect of these mutations on the phenotypic effect of ethanol tolerance.  The 

significance of this work is further discussed during the structural investigation of the 

ADH domain of the TM242 ADHE protein described in Chapter 5 of this thesis.   

 

1.6 Project aims and objectives 

At the start of this project, an open aim was to characterise the ADHE protein from the 

G. thermoglucosidasius TM242 strain, which is used for the commercial production of 

bioethanol by TMO Renewables.  The characterisation was to include kinetic and 

structural evaluation in an effort to develop an understanding of the properties of this 

thermophilic protein in terms of bioethanol production.  Potential optimisation of the 

catalysis of acetyl-CoA to ethanol was of particular interest.   
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2 GENERAL MATERIALS AND METHODS 

 

2.1 General laboratory reagents 

In all cases, unless otherwise stated, laboratory reagents and bacteriological media 

were supplied by Sigma-Aldrich Company Ltd. (Poole, UK) or Fisher Scientific Ltd. 

(Loughborough, UK).  DNA polymerases, restriction enzymes (BsaI, DpnI, HindIII, 

KpnI, NcoI, NdeI, NheI, PstI, SacI, XbaI & XhoI), dNTPs (deoxyribonucleoside 

triphosphates), T4 DNA ligase, DNA markers and associated reaction buffers were 

sourced from Promega (Southampton, UK) or New England Biolabs Ltd. (Hitchin, UK).  

Complete, EDTA-Free, Protease Inhibitor Cocktail Tablets and Shrimp Alkaline 

Phosphatase (SAP) were manufactured by Roche (Mannheim, Germany).   

 

2.2 Strains, media and culture growth 

2.2.1 Escherichia coli (E. coli) 

E. coli BL21 (DE3) cells (Novagen): this strain is deficient in Lon and OmpT proteases 

to aid protein expression.  E. coli BL21 (DE3) (Novagen) containing pTMO259 

(pET28a) were supplied by TMO Renewables at the start of this study.  This plasmid 

contains a kanamycin resistance gene as well as the gene of interest.   

 

E. coli Rosetta© (DE3) competent cells (Novagen): this BL21 derivative strain contains 

the pRARE plasmid, which acts to overcome the difference in codon usage between 

E. coli and eukaryotic proteins (Novy 2001), and a gene coding for chloramphenicol 

resistance.   

 

E. coli Arctic Express© (pRIL) (DE3) (Stratagene Texas USA): these cells contain the 

pRIL plasmid and plasmid-encoded cold-adapted chaperonin proteins.  The pRIL 

plasmid acts to supply certain additional tRNA genes allowing expression of AT rich 

sequences.  Chaperonins Cpn60 and co-chaperonin Cpn10 from psychrophilic 

bacterium Oleispira antarctica, are used to facilitate protein folding at low growth 

temperatures.  These plasmids also convey streptomycin and gentamycin resistance.  

This strain is deficient in Lon and OmpT proteases (Stratagene 2009).   

 

2.2.2 G. thermoglucosidasius 

Geobacillus strains were supplied by TMO Renewables Ltd: 

TM242 is the modified strain of Geobacillus thermoglucosidasius (ldh-, pfl- pdh+) 

discussed in the Introduction (Cripps et al. 2009).   
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TM444 is a modified version of the TM242 strain.  The ability of the organism to 

sporulate has been removed through specific gene targeting.   

 

TM89 is a modified strain of Geobacillus thermoglucosidasius where the lactate 

dehydrogenase gene has been removed (ldh-).   

 

TM400 is an ADHE knock-out strain produced from TM242 using a targeted integration 

system by TMO Renewables.  A 336 bp (coding for 112 amino acids) section was 

removed from the middle of the adhE gene, covering sections of the predicted aldDH 

and ADH domains.  This strain is unable to grow under anaerobic conditions.   

 

TM393 is an ADHE knock-out strain produced from a TM89 parent strain using a 

targeted integration system by TMO Renewables (as in TM400).  This strain is unable 

to grow under anaerobic conditions.   

 

2.2.3 Cloning strains 

E. coli JM109 (Promega) and DH5α (Invitrogen) strains were used for the preparation 

of plasmid DNA as these strains are recA negative, which ensures DNA stability.  A 

β-galactosidase deficiency in these strains allows blue/white screening for the gene of 

interest being introduced via the plasmid pGEM®-T easy.   

 

2.2.4 Bacterial growth media 

Media were sterilised either by autoclaving or using 0.22 µm Steritop® filter units 

(Millipore) where required.  Unless otherwise stated, solid plates of the different liquid 

media were made by adding 1.5% (w/v) agar prior to autoclaving.   

 

Bacterial strains were cultured in liquid Lysogeny Broth (LB) medium (1% (w/v) NaCl, 

1% (w/v) tryptone and 0.5% (w/v) yeast extract), or on solid plates (LB + 1.5% (w/v) 

agar), unless otherwise stated.   

 

Other media types used during the project were: 

 

Overnight Express Instant Terrific Broth (TB) medium: 6% (w/v) “Instant TB medium” 

(Novagen, Hull, UK) in 1L distilled water, supplemented with 1% (v/v) glycerol.   

 

Yeast Extract Nutrient Broth (YENB) medium: 0.75% (w/v) yeast extract and 0.8% (w/v) 

nutrient broth (BD, NJ, USA). 
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Tryptone Soya Broth (TS): this medium was purchased pre-prepared from Oxoid, 

(Basingstoke, UK); the dehydrated medium was dissolved at 30 g/L in distilled water.   

 

Super Optimal broth with Catabolite repression (SOC) medium: 2% (w/v) tryptone, 

0.5% (w/v) yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4 and 

20 mM glucose. 

 

Soy Peptone Yeast extract (No Glucose) (2-SPY-NG) medium: 1.6% (w/v) soy peptone 

(Solabia, Paris, France), 1% yeast extract (Oxoid, Basingstoke, UK) and 0.5% (w/v) 

NaCl, adjusted to pH 7.0 with 5 M KOH.   

 

Modified Two Tryptone Yeast extract (TTY) medium: 1.6% (w/v) Bacto-tryptone (BD, 

NJ, USA), 1% (w/v) Bacto-yeast extract (BD, NJ, USA) and 0.5% (w/v) NaCl.   

 

50 mM Modified Urea Sulphate Medium (USM): 25 mM NaH2PO4, 50 mM urea, 25 mM 

K2SO4, 5 mM citric acid, 3.125 mM MgSO4, 50 µM CaCl2, 0.31 µM biotin, and 12.5 ml/L 

of trace elements, pH 7.0.  Various concentrations of the appropriate sugar and yeast 

extract (Oxoid, Basingstoke, UK) were added as indicated.   

 

The trace elements solution consisted of 60 mM H2SO4, 1.44 g/L MnSO4.7H2O, 

5.56 g/L FeSO4.7H2O, 1.69 g/L MnSO4.H2O, 0.25 g/L CuSO4.5H2O, 0.562 g/L 

CoSO4.7H2O, 0.06 g/L H3BO3 and 0.886 g/L NiSO4.6H2O dissolved in MilliQ water.   

 

Media were supplemented with antibiotics where required (chloramphenicol (chlor) 

34 μg/ml, kanamycin (kan) 30 μg/ml (12 μg/ml for Geobacillus pUCG18 carrying 

strains), gentamycin (gent) 20 μg/ml, streptomycin (strep) 100 μg/ml or carbenicillin 

(carb) 50 μg/ml.   

 

2.2.5 Strain storage  

Strains used during this project were stored long-term as glycerol stocks at -80°C in 

cryogenic vials.  Aliquots of 10 ml overnight cultures in the required growth medium 

were used for creation of these stocks.  E. coli strains were stored as 80% (v/v) 

overnight culture: 20% (v/v) sterile glycerol, whilst G. thermoglucosidasius strains were 

stored as 70% (v/v) overnight culture: 30% (50% v/v) sterile glycerol (diluted in sterile 

MilliQ H2O).  These stocks were mixed thoroughly and snap-frozen in liquid nitrogen 

prior to immediate transfer to storage at -80°C.  Unless otherwise stated, a loop-full of 

frozen glycerol stock was used to inoculate 10 ml overnight cultures used during 
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experiments performed here.  Agar plates of the desired growth medium were used for 

short-term storage of strains at 4°C where required.  Single colonies were used to 

inoculate overnight cultures.   

 

2.3 Molecular biology 

Prior to this study, the whole length adhE gene of interest was cloned into the 

expression vector pET28a (Novagen), which carries kanamycin resistance, by Novacta 

on behalf of TMO Renewables.  The gene was introduced between the NheI/XhoI 

restriction sites of the vector.  This plasmid is known as pTMO259 and was 

transformed into the various expression strains used in this study.  Isolated pTMO259 

and TM242 genomic DNA was supplied by TMO Renewables.   

 

Vector maps for the various plasmids used during this project are included in 

Appendix 1, as are the gene sequences and corresponding protein amino acid 

sequences for the gene products investigated here.   

 

The amino acid sequence of the ADHE protein was determined from the adhE gene 

sequence annotated in the TM242 genome using the Translate tool (ExPASy 

(Gasteiger E. 2005)).   

 

2.3.1 Primer design 

DNA primers were manufactured by Invitrogen (Paisley, UK), and a complete list of 

primers used during this project can be seen in Appendix 1.  Forward primers were 

designed to be identical to the desired 5’ region of the gene of interest, and reverse 

primers to the desired 3’ end of the target gene.  Approximately 20 bp of coding 

sequence (dependent on the desired Tm of the primers) was used.  Where required, 

DNA primers incorporated an appropriate restriction site at the desired terminus of the 

DNA sequence, along with stop codons in the reverse primers.  Restriction enzymes 

selected for use during this project were selected for their inability to cut the particular 

gene sequence of interest, along with the presence of the required restriction site within 

the cloning/expression vector to be used.  As recommended by the manufacturers, 

some additional non-coding DNA (~1-6 bp) was sometimes added, flanking the 

restriction site in the primers to enhance cleavage using certain restriction enzymes.   

 

2.3.2 Polymerase chain reaction (PCR) 

PCRs using Phusion® DNA polymerase (Finnzymes, Finland) were carried out in an 

Eppendorf Mastercycler (Eppendorf, Germany) as described in the manufacturer’s 
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instructions.  Unless otherwise stated, the reactions used purified plasmid DNA as 

template.  DNA primers were designed to introduce desired restriction sites at the 

appropriate termini where required for subsequent digestion.  A list of DNA primers 

used during this project is included in Appendix 1.  Primers were diluted in nuclease-

free MilliQ H2O as required.  The PCR protocol used during this project is summarised 

in Table 2-1 and Table 2-2.   

 

Reagent 
Volume added 

(to 20 µl reaction) 
Final concentration 

Nuclease-free MilliQ H2O Adjusted to final volume of 20 µl  

5x Phusion® HF buffer 4 µl 1x 

Primer 1 (forward) (5 µM) 1 µl 0.25 µM 

Primer 2 (reverse) (5 µM) 1 µl 0.25 µM 

dNTPs (10 mM) 0.4 µl 200 µM 

DNA template 0.5 µl Variable  

DNA polymerase (Phusion®) 0.2 µl 0.4 U 
 

Table 2-1: Overview of standard PCR reagents used during this project.   

 

Step Temperature (°C) Time (s) 

Initial denaturation 98 30 

Denaturation 98 10 

Annealing ~3 below primer Tmelting 20 

Extension 72 
30 (per kb of target DNA 

sequence) 

Final extension 72 600 
 

Table 2-2: Overview of standard PCR protocol used during this project.   

 

The denaturation-extension steps were cycled 30-35 times to allow sufficient target 

DNA to be amplified.   

 

For PCR colony screening of transformants, a Taq polymerase Master Mix was used 

(Genesys, UK) according to the manufacturer’s instructions.  A small amount of 

bacterial colony was used to provide the DNA template required to screen using the 

desired primers.  The programme used was as described in Table 2-2 with the 

following adjustments:  a 40 s 95°C heat lysis step was included at the start of the 

programme.  Denaturation steps were carried out at 95°C, annealing was at 55°C and 

extension time was 1 min/kb target gene.  The PCR reaction mixture was run on an 

agarose gel to identify positive colonies.   
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2.3.3 Site-directed mutagenesis 

Site-directed mutagenesis was used to make small changes to DNA coding regions of 

various cloned genes produced during this project.  Mutagenesis primers were 

designed using the QuikChange® primer design program (Agilent technologies CA, 

USA) and mutagenesis reactions were carried out according to the QuikChange®II site-

directed mutagenesis kit protocol.  The methylated and hemi-methylated template DNA 

was digested using DpnI prior to transformation of the mutated plasmid.  A list of DNA 

primers used in this project is included in Appendix 1.   

 

2.3.4 Agarose gel electrophoresis 

Electrophoresis in 1% (w/v) agarose gels supplemented with 0.5 μg/ml ethidium 

bromide, produced by dissolving in TAE buffer (40 mM Tris (2-Amino-2-hydroxymethyl-

propane-1,3-diol) acetate (pH 8.0), 1 mM EDTA), was used for DNA visualisation.  

DNA was prepared by dilution with 6x loading dye (50% (v/v) glycerol, 50 mM EDTA, 

pH 8.0, 0.05% (w/v) bromophenol blue).  TAE buffer was used as electrophoresis tank 

buffer and DNA was run at a constant voltage (between 70 and 80V).  The 

electrophoresis was monitored by following the dye front, and the gels were run until 

the desired band separation was obtained.  DNA-ethidium bromide was visualised 

using a UV transilluminator.  Co-electrophoresis of samples with standard DNA 

markers was used to estimate the size of DNA fragments.   

 

2.3.5 DNA purification 

DNA bands were excised from agarose gels with clean razor blades and then purified 

using the Promega Wizard SV gel and PCR clean-up system following the 

manufacturer’s protocol (Promega 2010b).  An elution volume of 30-50 μl MilliQ water 

was used and DNA was stored at -20°C.   

 

2.3.6 A-tailing 

To allow efficient ligation into the pGEM®-T easy vector, gel-purified blunt-ended PCR 

fragments were A-tailed at the 3’ ends using Taq DNA polymerase, following the 

Promega A-tailing protocol (pGEM®-T Vector systems manual, 11th edition, 2006).  The 

reaction was carried out at 70°C for 30 min prior to purification using the Promega 

Wizard SV gel and PCR clean-up system.  This incorporated a single 3’-adenine at 

both ends of the PCR fragment that is complementary to the terminal thymines present 

in the vector.   
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2.3.7 pGEM®-T easy 

The cloning vector pGEM®-T easy was used to amplify high yields of the target genes 

produced during this project, prior to restriction digestion with appropriate enzymes and 

ligation into the protein expression vectors used.  A-tailed PCR fragments were ligated 

into the linearized vector using the overhanging 3’ terminal thymine present at both 

ends of the vector.  The use of this vector also allowed convenient screening of 

transformants using blue/white screening methods.   

 

2.3.8 Ligation 

Target gene inserts were ligated into cut plasmid vectors using the Promega rapid 

ligation kit, according to the protocol provided (using the supplied 10x ligation buffer).  

The 10 μl ligation reactions used a range of ratios of insert to vector and were carried 

out at 16°C overnight.   

 

2.3.9 Ethanol precipitation 

To purify DNA from ligations of DNA inserts and cloning/expression vectors, the ligation 

mixture was ethanol precipitated ready for electroporation using the following protocol:   

 20 µl MilliQ H2O was added to the ligation, which was then heat treated for 20 

min at 70°C.   

 The mixture was cooled on ice prior to the addition of 3.1 µl of 2.5 M sodium 

acetate (pH 5.2), 1 µl of dextran blue (0.15 g dextran blue, 0.5 ml 0.5 M EDTA 

pH 8.0, 9.5 ml MilliQ H2O) and 68.2 µl of cold (-20°C) ethanol.   

 The solution was incubated at -20°C for 30 min prior to centrifuging for 20 min 

at 16,000 x g (4°C).   

 The supernatant was removed and the pellet washed with 100 µl of 70% (v/v) 

ethanol.   

 The solution was centrifuged for 10 min at 16,000 x g (4°C).   

 The supernatant was removed and the pellet washed with 150 µl of 70% (v/v) 

ethanol.   

 The solution was centrifuged for 10 min at 16,000 x g (4°C) and the supernatant 

was removed.   

 The pellet was allowed to air-dry prior to being resuspended in 5 µl of nuclease-

free MilliQ H2O.   
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2.3.10 Blue/white colony screening 

Initial screening of JM109/DH5α transformants of the pGEM®-T easy cloning vector 

was carried out using blue/white screening.  Ligation of the target gene sequence into 

the multiple cloning site of the pGEM®-T easy cloning vector results in the disruption of 

the lacZα gene.  This prevents the restoration of β-galactosidase activity in transformed 

strains.  The phenotype of conversion of X-gal (5-Bromo-4-chloro-3-indolyl β-D-

galactopyranoside) to a blue insoluble precipitate is not observed for transformants 

carrying the successfully ligated pGEM®-T easy-target gene constructs.  White colonies 

were selected for screening using other methods to confirm successful transformation 

and ligation of the pGEM®-T easy-target gene constructs.   

 

Cells were spread onto LB-IPTG-X-Gal agar plates supplemented with carbenicillin 

(previously spread with 100 μl of 100 mM IPTG (Isopropyl β-D-1-thiogalactopyranoside) 

and 20 μl of 50 mg/ml X-Gal (Melford) dried for 30 min) and incubated overnight at 

37°C.   

 

2.3.11 Plasmid DNA preparation 

Cultures of plasmid-carrying strains were grown overnight at 37°C in 10 ml of LB (in a 

50 ml capacity falcon tube) with appropriate antibiotic selection and shaking at 

200 rpm, and were harvested by centrifugation at 5,300 x g for 10 min.  Plasmids were 

subsequently purified using the Promega Wizard plus SV minipreps DNA purification 

system, according to the supplied protocol (Promega 2010a).  DNA was eluted in 30-50 

μl MilliQ water and was stored at -20°C.   

 

2.3.12 Restriction digests 

5 μl of purified plasmid DNA was used for restriction digests (total volume 20 μl made 

up with nuclease free MilliQ H2O).  Where required, BSA (bovine serum albumin) at a 

concentration of 100 μg/ml was added to the reactions.  For digests with two restriction 

enzymes, a reaction buffer that was suitable for both enzymes was selected.  

Approximately 5 U of the appropriate restriction enzyme was added to the reaction 

(star activity was avoided by keeping glycerol concentrations below 10% v/v) and the 

reaction was incubated at 37°C for 2-3 h.  Vector digestion reactions were halted 

through heating at 65°C, prior to immediate treatment with SAP (10 U at 37°C for 1 h).  

This procedure dephosphorylated the cut DNA post digestion, and so prevented re-

ligation in the absence of an insert.  Following incubation, digested samples were 

separated immediately on agarose gels and purified as described in Section 2.3.5.   
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2.3.13 DNA sequencing 

To confirm successful cloning of the target gene sequences described in this project 

into the required cloning/expression vectors, plasmid DNA was sent for sequencing by 

Source BioScience, UK.  The genes were sequenced with vector or gene specific 

primers, including internal primers where required.   

 

2.3.14 Preparation of electrocompetent E. coli 

Unless otherwise stated, electrocompetent E. coli strains were prepared in-house using 

the following protocol.  E. coli strains were grown in YENB media in baffled conical 

flasks until mid-exponential phase (inoculated from a 10 ml overnight culture).  Cells 

were harvested by centrifugation at 4,500 x g for 10 min at 4°C.  All subsequent steps 

were carried out on ice and using chilled equipment and solutions.  Cells were 

resuspended and washed with MilliQ H2O prior to harvesting by centrifugation; this was 

repeated 3 times, and the final resuspension was in 10% (v/v) sterile glycerol in MilliQ 

H2O.  Aliquots (30-50 μl) of the cell solution were snap-frozen in dry ice and stored 

at -80°C until required.   

 

2.3.15 Electroporation (transformation) of electrocompetent E. coli strains 

To transform electrocompetent strains of E. coli with the desired plasmid, the following 

protocol was followed.  Aliquots of cells (30-50 μl) were removed from storage at -80°C 

and left to thaw on ice for 10 min.  0.1 cm gapped electroporation cuvettes (BioRad) 

were placed on ice at this stage, along with the plasmid preparation to be transformed.  

0.5 μl of plasmid preparation was inoculated into the thawed cell aliquots and 

incubated on ice for 2 min.  The cell aliquots were then transferred to the chilled 

cuvettes, placed in the micropulser electroporator (BioRad) and subjected to a 5 m-s 

electrical pulse of approximately 1.8 kV.  The cells were resuspended in 1 ml of SOC 

medium and grown with shaking at 37°C for 1 h without selection.  Between 10 and 

200 μl of cells were then plated onto LB agar plates containing the appropriate 

selection antibiotics, and grown at 37°C overnight. 

 

2.3.16 Transformation of chemically-competent E. coli strains 

The commercially-produced, chemically-competent E. coli BL21 (DE3) cells (Novagen), 

were used during this project.  Transformation used the following procedure.  Aliquots 

of cells (20 μl) were removed from storage at -80°C and left to thaw on ice for 10 min.  

1 μl of plasmid preparation was inoculated into the thawed cell aliquots and incubated 

on ice for 20 min.  The cell aliquots were then incubated at 42°C for 45 s, following 

which the cells were immediately cooled on ice for a minimum of 3 min.  The cells were 
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resuspended in 1 ml of SOC medium and grown with shaking at 37°C for 1 h without 

selection.  Between 10 and 200 μl of cells were then plated onto LB agar plates 

containing the appropriate selection antibiotics, and grown at 37°C overnight.   

 

2.3.17 Preparation of electrocompetent Geobacillus sp 

Electrocompetent Geobacillus strains were prepared in-house using the following 

protocol modified from Cripps et al (2009).  Geobacillus strains were grown in pre-

warmed TTY media in baffled conical flasks (inoculated from a 10 ml overnight culture) 

until early-exponential phase (OD600nm 1.4-2) at 55°C with shaking at 225 rpm.  Cells 

were harvested by centrifugation at 3,220 x g for 20 min at 4°C.  All subsequent steps 

were carried out on ice and using chilled equipment and solutions.  Cells were 

resuspended and washed with filter-sterilised electroporation medium (0.5 M sorbitol, 

0.5 M mannitol, 10% glycerol) prior to harvesting by centrifugation; this was repeated 3 

times, and the final resuspension volume was adjusted to give a final concentration of 

approximately 40 OD600nm/ml.  60 μl aliquots of the cell solution were stored at -80°C.   

 

2.3.18 Electroporation (transformation) of electrocompetent Geobacillus strains 

To transform electrocompetent strains of Geobacillus with the desired plasmid, the 

following protocol, modified from Cripps et al (2009), was followed.  Aliquots of cells 

(60 μl) were taken from storage at -80°C and left to thaw on ice for 10 min.  0.1 cm 

gapped electroporation cuvettes (BioRad) were placed on ice at this stage, along with 

the plasmid preparation to be transformed.  2 μl of plasmid preparation was inoculated 

into the thawed cell aliquots and incubated on ice for 5 min.  The cell aliquots were 

then transferred to the chilled cuvettes, placed in the micropulser electroporator 

(BioRad) and subjected to a 5 m-s electrical pulse of approximately 2.5 kV.  The cells 

were resuspended in 1 ml of pre-warmed (55°C) TTY medium and grown with shaking 

at 200 rpm and 55°C for 2 h without selection.  200 μl of cells were then plated onto 

TTY agar plates (pre-warmed at 55°C) containing the appropriate selection antibiotic, 

and grown at 55°C overnight.   

 

2.4 Protein expression 

Unless otherwise stated, E. coli protein expression cultures were prepared by the 

following method.  A 10 ml starter culture in LB medium was grown in the presence of 

selection antibiotics (if appropriate) with shaking at 250 rpm, 37°C, overnight.  This 

culture was used to inoculate the larger-scale expression culture (1 in 100).  This 

culture was grown at the required growth temperature (see appropriate Results 

sections) until the OD600nm reached the range between 0.5 and 1.0, at which point any 
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necessary temperature change was made and the culture left to equilibrate (if required) 

for approximately 25 min, prior to the culture being supplemented with 1 mM IPTG for 

induction. 

 

Protein expression vectors commonly used during this project allowed modulation of 

protein expression via a T7 promoter.  Expression of the target gene is normally 

repressed by the lac repressor protein.  IPTG is an analogue of allolactose which binds 

the lac repressor protein, alleviates repression and thus induces protein expression 

(Novagen 2011).   

 

2.5 Geobacillus culturing techniques 

2.5.1 Tube fermentation method 

This method of tube fermentation was developed by TMO Renewables Ltd.   

 

 TSA plates inoculated with 150 µl of thawed glycerol stock were prepared for 

each strain to be investigated; these plates were incubated at 60°C for 

approximately 16 h prior to the tube fermentation experiment.   

 Seed tubes were prepared by inoculating 5 ml of pre-warmed (60°C) 2-SPY-NG 

medium in 50 ml falcon tubes with a loop-full of biomass from the TSA plates.  

These tubes were then incubated at 60°C with shaking at 240 rpm for 6 h.   

 1 ml of this seed culture was then used to inoculate 10 ml of pre-warmed (60°C) 

USM medium (2% glucose 0.5% yeast extract) in 15 ml falcon tubes.  These 

tubes were then incubated at 60°C with shaking at 240 rpm for 42-48 h to allow 

tube fermentation to take place.   

 The sample tubes were then centrifuged at 3,220 x g for 20 min at 4°C and the 

supernatant was transferred into fresh tubes prior to analysis.   

 Metabolite concentrations were analysed at TMO Renewables using High 

Performance Liquid Chromatography (HPLC).   

 

2.5.2 Overnight shake-flask method 

This method was used to produce aerobically-grown Geobacillus strains within the 

exponential phase of growth.  This protocol is a modified version of a method 

developed by TMO Renewables Ltd.   

 

 A 50 ml falcon tube containing 25 ml of the desired medium (pre-warmed to 

60°C) was inoculated with 50 µl of thawed glycerol stock of the desired strain.   
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 1 ml of this dilution was used to inoculate 50 ml of medium in a 250 ml baffled 

flask (pre-warmed to 60°C).   

 The cultures were incubated for 16 h at 60°C with shaking at 220 rpm.   

 

Cell pellets produced by this method were obtained by centrifugation at 5,300 x g for 

20 min (4°C).  The supernatant was discarded and the pellets stored at -20°C until 

required.   

 

2.6 Cell extract preparation 

Cells were harvested by centrifugation at 5,300 x g for 20 min (4°C).  The supernatant 

was discarded and the pellets were resuspended in one-tenth of the original culture 

volume of HIS-BIND buffer (50 mM Tris buffer, 300 mM NaCl, pH 8.0, and 20 mM 

imidazole (Acros Organics)) unless otherwise stated.  Protease-inhibitor tablets 

(Roche) were added at a minimum concentration of 1 tablet to 10 ml sample volume, 

as per the manufacturer’s instructions.  Cells were then sonicated on ice at 14 microns 

amplitude; small culture preparations (~2 ml) were given 3 x 10 s bursts with 15 s 

incubation on ice between each burst, whereas large preparations (10 ml maximum) 

were given 5 x 20 s bursts with 20 s incubation on ice between each burst.  Further 

centrifugation (16,000 x g for 18 min at 4°C) allowed separation of the soluble and 

insoluble fractions.  The supernatant (soluble protein fraction) was isolated, and the 

pellet (insoluble fraction) was resuspended in a one-tenth volume of the original culture 

of re-suspension buffer (8 M urea).   

 

Geobacillus cell extracts were prepared in a similar manner in 50 mM EPPS buffer, pH 

8.0 (0.3 g cells/ml buffer) with 1 mM AEBSF (4-(2-Aminoethyl) benzenesulfonyl fluoride 

hydrochloride); 1.5 μl of Benzonase© nuclease (250 U/µl) (Sigma) per ml of 

resuspended cells was also added.   

 

2.7 Sodium Dodecyl Sulphate PolyAcrylamide Gel Electrophoresis (SDS-PAGE) 

SDS-PAGE analysis was performed using a Mini-PROTEAN electrophoresis system 

(BioRad).  Gels (10%) were produced in-house using the components described in 

Table 2-3.  Ammonium Per-Sulphate (APS) and Tetramethylethylenediamine (TEMED) 

were added immediately prior to casting to catalyse polymerisation of the gel.  Gels 

were run in Tris/glycine buffer, pH 8.3 (10x stock = 30 g Tris, 144 g glycine and 100 ml 

of 10% (w/v) SDS made up to 1L with MilliQ H2O).   

 

 



33 

Resolving gel Stacking gel 

Component 
Volume 
added 

Component 
Volume 
added 

MilliQ H2O 4.0 ml MilliQ H2O 2.2 ml 

1.5 M Tris/HCl pH 8.8 2.5 ml 0.5 M Tris/HCl pH 6.8 1.0 ml 

30% (w/v) acrylamide 3.3 ml 30% (w/v) acrylamide 0.66 ml 

10% (w/v) SDS 100 µl 10% (w/v) SDS 40 µl 

10% (w/v) APS 100 µl 10% (w/v) APS 40 µl 

TEMED 10 µl TEMED 10 µl 
 

Table 2-3: SDS-PAGE gel components.   

 

Where required, samples were diluted with the appropriate buffer prior to diluting 1:4 

with 4x SDS-PAGE loading buffer (stock: 4 ml 0.5 M Tris/HCl, pH 6.8, 2 ml 10% (w/v) 

SDS, 4 ml glycerol, 100 µl β-mercaptoethanol and 8 mg bromophenol blue) and 

denatured by heating at 95°C for 3 min prior to loading onto the SDS-PAGE gel (10 

µl/lane).  Gels were electrophoresed at 80V until the sample had passed through the 

stacking gel, after which the voltage was increased to 200V.  The gels were 

subsequently stained with Coomassie brilliant blue R250, de-stained over 4 h using 3-4 

changes of a 60:30:10 distilled water: methanol: glacial acetic acid solution, and 

subsequently dried.   

 

Broad-range Mr markers (Bio-Rad) (6 µl) were used to estimate the Mr values of the 

proteins by co-electrophoresis with the protein samples.  The log Mr values of the 

markers were plotted against their Rf values (distance travelled by the protein 

band/distance travelled by gel front) and a straight line of best fit applied.  The Rf value 

of the protein of interest was then used to estimate the Mr.   

 

The predicted Mr of the various proteins investigated in this project were calculated 

using the ProtParam tool from the ExPASy website (Gasteiger E. 2005).   

 

2.8 Estimation of protein concentration 

Where possible, the concentration of protein present in purified protein samples was 

determined using the absorbance at 280 nm (A280nm), using absorption coefficients 

determined for the protein of interest using the ProtParam tool.   

 

Where the purity of the protein sample analysed was not high enough to use the 

method described above, an estimate of protein concentration was made using the 

Bradford assay (Bradford 1976).  This used the Bio-Rad protein assay reagent 
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(Coomassie brilliant blue G250) comparing samples to BSA standards (between 0 and 

10 µg/ml).   

 

2.9 Metal-affinity purification 

Some of the vectors used for expression of the recombinant proteins allowed the 

incorporation of a histidine “Tag” at the N- or C-terminal end of the protein (depending 

on the restriction sites used).  Metal-affinity columns use the affinity of poly-histidine 

tags for charged Ni2+ to separate the proteins of interest from other proteins produced 

by the expression strain.  The column was prepared according to the manufacturer’s 

instructions and the resin (metal-chelating cellulose) (Bioline) was charged with 

NiSO4·6H2O (2 ml of a 400 mM solution).  The column was washed with distilled water 

and equilibrated with HIS-BIND buffer prior to loading the soluble protein fraction onto 

the column.  The various fractions were collected in separate tubes and stored on ice.   

 

The initial fraction eluted was reloaded to ensure that all tagged protein became bound 

to the column.  Following this, the column was washed with 5 column volumes of HIS-

BIND buffer to elute any unbound material.  An increasing concentration of HIS-ELUTE 

buffer (50 mM Tris buffer pH 8.0, 300 mM NaCl and 1 M imidazole, diluted with HIS-

BIND buffer where required) was used to elute bound proteins stepwise in order of 

affinity (5 ml elution for each step).  These elution solutions were adjusted where 

required to maximise the purity of the protein obtained.  Following collection of the 

fractions, samples were taken for SDS-PAGE to confirm the presence and purity of the 

protein product obtained.   

 

Occasionally, a 5 ml His-Trap HP column on an ÄKTA Explorer system (GE 

Healthcare) was used for purification of His-tagged proteins, using a continuous 

gradient of imidazole as eluate. 

 

2.10 Dialysis 

Dialysis tubing of the appropriate size was prepared by boiling for 10 min in 2% (w/v) 

sodium bicarbonate pH 8.0, and 1 mM EDTA, followed by 10 min boiling in 1 mM 

EDTA pH 8.0, alone.  Rinsing with distilled water followed each treatment.  Protein 

samples were sealed within the tubing and placed in a large volume (normally 2 l) of 

the appropriate dialysis buffer and dialysed at 4°C with slow stirring overnight. 
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2.11 Ion-exchange chromatography  

Ion-exchange chromatography was carried out at 25°C using 5 ml HiTrap SP HP 

(Cation) or HiTrap Q HP (anion) columns on an ÄKTA Explorer Fast Protein Liquid 

Chromatography (FPLC) system (GE Healthcare).  The buffers selected were at least 1 

pH unit higher/lower (Anion/Cation) than the predicted pI of the target protein; columns 

were pre-equilibrated with running buffer prior to loading of the sample.  A gradient of 

0-1 M NaCl was used to elute the protein.  The elution profile of the protein was 

detected by A280nm and those fractions over which the protein eluted were collected and 

stored on ice.   

 

2.12 Gel filtration 

Unless otherwise stated, gel filtration was carried out at 25°C on a Superdex 200 

10/300GL gel filtration column, on an ÄKTA Explorer FPLC system (GE Healthcare).  

The column was calibrated using various Mr standards (Ribonuclease Mr 13,700, 

Ovalbumin Mr 43,000, Conalbumin Mr 75,000, Aldolase Mr 158,000 and Ferritin Mr 

440,000) (GE Healthcare).  The markers selected were dependent on the Mr of protein 

sample run.  The plot used to estimate the Mr of the protein of interest was Log Mr vs 

Kav where Kav = (Ve-Vo)/(Vc-Vo)  (Ve = elution volume, Vo = Column void volume, and 

Vc = geometric column volume).   

 

Where required, protein samples were filtered using an Ultrafree centrifugal filter device 

(0.45 µm) (Millipore) and concentrated using a Vivaspin 5K MWCO centrifugal filter 

device (Sartorius), prior to loading onto the column following the manufacturer’s 

instructions (pre-rinsing with MilliQ H2O).   

 

The elution profile of the protein was detected by A280nm and those fractions over which 

the protein eluted were collected and stored on ice.   

 

2.13 Enzyme activity assays 

The ADHE protein studied in this project is thought to possess two separate enzymatic 

activities, both of which were measured spectrophotometrically at 60°C (the optimum 

growth temperature of the native organism).  A Varian Cary 50 Bio UV/visible light 

spectrophotometer with a Peltier temperature controller was used for enzyme assays.  

Specific activities (µmol/min/mg) were determined using the molar absorption 

coefficient of the monitored substrate, and the concentration of protein determined for 

the enzyme sample.  Substrate-independent background rates were measured for all 

assays and taken into account in the determination of the final rate of reaction.  
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Substrates were dissolved and diluted in the required assay buffer whenever possible.  

The assays described below describe the standard assay mixture used for assays 

throughout this project.  Variations on these assays will be discussed alongside the 

results.  In all assays, it was shown that the rate of reaction was directly proportional to 

the enzyme concentration.   

 

2.13.1 Acetaldehyde dehydrogenase (aldDH) 

Acetyl-CoA + NADH + H+ ⇌ NAD+ + acetaldehyde + CoA-SH 

Two assay methods were developed for this enzyme activity, one measuring the 

appearance of CoA-SH with DTNB (5,5′-dithiobis-(2-nitrobenzoic acid)), and the 

second directly monitoring the disappearance of NADH.   

 

2.13.1.1 AldDH DTNB assay 

DTNB is cleaved by thiol compounds (e.g. CoA-SH) stoichiometrically to release  a 

yellow-coloured compound (2-nitro-5-thiobenzoate2-) (NTB) (Ellman 1959).  This 

compound can be quantified using its absorbance of light at 412 nm using a 

spectrophotometer (ε412 = 13,600 M-1.cm-1), allowing the progress of the reaction to be 

monitored over time (CoA-SH release).  This assay is only suitable for reactions carried 

out at neutral or alkaline pH as the yellow colour comes from the anion2-
, which only 

forms within the neutral-alkaline pH range.  The components used for the assay are 

described in Table 2-4.   

 

Chemical 
Stock solution 
concentration 

(mM) 

Cuvette 
concentration 

(mM) 

Volume added to 
cuvette (ml) 

Buffer - - 0.91* 

NADH ~4** ~0.24 0.06 

Acetyl-CoA ~7** ~0.14 0.02 

DTNB 10 0.1 0.01 
 

Table 2-4: aldDH DTNB assay components.   

 *Volume of buffer and protein sample should add up to 0.91 ml 

 **Each batch of acetyl-CoA and NADH was quantified prior to use 

 Buffer pre-incubated at 60°C 

 Substrates stored on ice 

 Reaction started with protein sample addition 

 

2.13.1.2 AldDH NADH assay 

NADH has a distinct absorbance peak at 340 nm which is not present for the oxidised 

form (NAD+); this allows the oxidation reaction to be monitored directly by the 
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acetyl-CoA dependent loss of absorbance over time at 340 nm (NADH) (ε340 = 

6,220 M-1.cm-1).  This assay was used when activity determination at acidic pH was 

required, rendering the DTNB assay impossible.  The components used for the assay 

are described in Table 2-5.   

 

Chemical 
Stock solution 
concentration 

(mM) 

Cuvette 
concentration 

(mM) 

Volume added 
to cuvette (ml) 

50 mM Citric acid pH 6.0  
0.1 mM zinc acetate 

50 ~50 0.92* 

NADH ~4** ~0.24 0.06 

Acetyl-CoA ~7** ~0.14 0.02 
 

Table 2-5: aldDH NADH assay components.   

 *Volume of buffer and protein sample should add up to 0.92 ml 

 **Each batch of acetyl-CoA and NADH was quantified prior to use 

 Buffer pre-incubated at 60°C 

 Substrates stored on ice 

 Reaction started with protein sample addition 

 

2.13.2 Alcohol dehydrogenase (ADH) (Acetaldehyde reduction) 

Acetaldehyde + NADH + H+ ⇌ NAD+ + ethanol 

 

This assay monitored the acetaldehyde-dependent loss of absorbance over time at 

340 nm (NADH) (ε340 = 6,220 M-1.cm-1).  The components used for the assay are 

described in Table 2-6.   

 

Chemical 
Stock solution 
concentration 

(mM) 

Cuvette 
concentration 

(mM) 

Volume added 
to cuvette (ml) 

50 mM Citric acid pH 6.0  
0.1 mM zinc acetate 

50 ~50 0.89* 

NADH ~4** ~0.24 0.06 

Acetaldehyde 4000 200 0.05 
 

Table 2-6: ADH NADH assay components.   

 *Volume of buffer and protein sample should add up to 0.89 ml 

 **Each batch of NADH was quantified prior to use 

 Buffer pre-incubated at 60°C 

 Substrates stored on ice 

 Reaction started with protein sample addition 
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2.13.3 Acyl-CoA preparation and quantification 

Acyl-CoAs were prepared by the acylation of coenzyme A (CoA-SH) with the required 

acyl-anhydride using the following protocol: a solution of 10 mg of coenzyme A 

dissolved in 1 ml of deionised water was cooled on ice for 10 min prior to the addition 

of 0.2 ml of 1 M potassium bicarbonate followed by 5 µl of the required acyl-anhydride.  

This reaction mixture was left for at least 10 min on ice to allow complete acylation to 

occur.  The extent of acylation was checked by monitoring the reaction between the 

acyl-CoA solution and DTNB at 412 nm to ensure significant levels of free coenzyme A 

were not present.   

 

The stock concentration of acetyl-CoA was quantified using pig heart citrate synthase.  

This enzyme catalyses the following reaction, which goes to >99% completion (Srere 

1975). 

Acetyl-CoA + Oxaloacetate + H2O → Citrate + CoA-SH 

 

Chemical 
Stock solution 

concentration (mM) 

Cuvette 
concentration 

(mM) 

Volume added 
to cuvette (ml) 

20 mM Tris/HCl pH 8.0  20 ~20 0.96* 

Oxaloacetate 20 0.20 0.01 

DTNB 10 0.20 0.02 

Acetyl-CoA TBC TBC 0.01 

Citrate synthase 8.7 mg/ml (≥100 U mg-1) 0.87 mg 0.001 
 

Table 2-7: Acetyl CoA quantification assay components.   

 *Volume of buffer and citrate synthase should add up to 0.96 ml 

 Reaction carried out at room temperature 

The spectrophotometer was calibrated with the above reaction mixture prior to the 

addition of excess citrate synthase.  The reaction was allowed to progress to 

completion prior to measuring the absorbance at 412 nm, allowing the stock 

concentration of acetyl-CoA to be calculated via the concentration of NTB2- anion 

produced (ε412 = 13,600 M-1.cm-1).  As pig heart citrate synthase will not catalyse the 

reaction with other acyl-CoAs, it was assumed that comparable concentrations of the 

other acyl-CoAs were produced by this method.   

 

2.13.4 NAD+ : CoA released ratio assays 

As the product of the aldDH domain is the substrate for the ADH domain of ADHE, 

assays were designed to measure the metabolic flux to ethanol which may be 
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observed within assays.  The ratio of NADH converted relative to CoA-SH released 

was determined using the following method.   

 

These assays consisted of two parts: 

1) The aldDH NADH assay was carried out as in 2.13.1 for 30 s at 60°C.  The 

change in A340nm was measured.   

2) The aldDH NADH assay was carried out as above for 30 s at 60°C; at 30 s 

100 µl DTNB (1 M Tris pH 8.8) was added to shift the pH to pH 8.5 and the 

change in A412nm was measured.   

 

Unless otherwise stated, each of these assays was carried out in triplicate and the 

results were used to calculate the ratio of NADH converted relative to CoA-SH released 

using the absorption coefficients of NADH (ε340 = 6,220 M-1.cm-1) and NTB2- (ε412 = 

13,600 M-1.cm-1).   

 

NADH oxidase (acetyl-CoA free) and PAT (NADH free) background rates were 

measured and taken into account in the calculation of the final result of these assays.   

 

2.13.5 Optimum temperature (Topt) assays 

Assays to determine the optimum temperature of various enzyme activities were 

carried out during this project.  The assay buffer and spectrophotometer were pre-

heated to the desired temperature prior to the assay.  The temperature of the reaction 

mixture immediately following the assay was recorded as the actual temperature of the 

assay.  The results were plotted as % activity of the maximum observed against 

temperature.  These assays were carried out in citric acid buffer, pH 6.0, 0.1 mM zinc 

acetate; the pH of this buffer does not fluctuate with temperature and thus could be 

used across the temperature range without adjustment.   

 

2.13.6 Thermostability (Tstab) assays 

Assays to determine the stability of various enzyme activities at a range of 

temperatures were carried out during this project.  The enzyme solution was aliquoted 

into a number of 0.5 ml Eppendorf tubes (not more than 100 µl).  One tube was kept on 

ice for the duration of the experiment to act as a zero time point.  The other tubes were 

incubated in a pre-heated heat block at the desired temperature for a given period of 

time, at which point the tube was removed and placed immediately on ice.  A pre-

heated metal block (100°C) was placed on top of the lids of the tubes during the 

experiment to prevent evaporation.  Any precipitated protein was removed by 
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centrifugation at 14,000 x g (4°C) for 5 min.  Standard assays were carried out on the 

heated samples to determine the level of activity remaining following incubation.  The 

results were plotted as % activity and ln % activity of the maximum observed against 

time of incubation at the specified temperature.   

 

2.13.7 Kinetic parameter determination 

Where enzyme activities obeyed Michaelis-Menten kinetics, kinetic parameters were 

determined using the direct linear method (Eisenthal and Cornish-Bowden 1974) using 

the EnzPack software programme (Biosoft).  Data are displayed as Michaelis-Menten 

plots and Hanes fits.   

 

2.13.7.1 Standard error 

Standard errors of the kinetic parameters obtained were calculated using the 68% 

confidence limits associated with the direct linear determination of kinetic parameters 

as outlined below:  

                
   

      
 

(where the 68% confidence limits encompasses two SDs and n is the number of data 

points) 

 

2.13.7.2 Percentage saturation 

With the two substrate reactions, it was not always possible to saturate the enzymes 

with the fixed substrate when determining kinetic parameters.  For example, the 

maximum concentration of NADH which could be used for these assays was 0.24 mM 

(A340nm = 1.5).  Also due to the reactive nature of acetaldehyde it was decided that the 

concentration of this substrate should not exceed 400 mM in the assays.  Therefore 

where possible, the Vmax values obtained through the assays under these non-

saturating conditions were adjusted, based upon the predicted % saturation of the 

substrates involved, calculated through rearrangement of the Michaelis-Menten 

equation.  The errors associated with this value were also accounted for.  An example 

of this calculation is shown below: 

The Michaelis-Menten equation:   
        

      
 

Where   = rate of reaction, Vmax = maximum theoretical rate of reaction, [S] = 

concentration of substrate and Km = the Michaelis constant (concentration of substrate 

required to reach ½ Vmax).   

Rearranging:   
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The errors associated with these adjusted Vmax values were calculated using the 

relationship between standard errors equation: 
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2.13.7.3  Substrate inhibition 

Some of the enzyme activities observed in this project appeared to be under the 

influence of substrate inhibition.  Kinetic parameters were deduced from these data 

through analysis using the Origin computer programme (Originlab, USA) fitting the data 

to the substrate inhibition equation shown below: 
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  ⁄ )

 

 

(where Ki = the dissociation constant of the non-productive enzyme-substrate complex) 
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3 CHARACTERISATION OF THE ADHE ENZYME FROM GEOBACILLUS 

THERMOGLUCOSIDASIUS  

 

3.1 Introduction 

ADHE proteins are bi-functional enzymes that possess both an aldDH and ADH activity 

on a single polypeptide.  Such proteins have been well studied in a variety of different 

organisms including: 

 Gram-positive bacteria (Leuconostoc mesenteroides (Koo et al. 2005), 

Thermoanaerobacter ethanolicus (Peng et al. 2008), Streptococcus bovis 

(Asanuma et al. 2004), Clostridium acetobutylicum (Fontaine et al. 2002)), 

 Gram-negative bacteria (E. coli (Membrillo-Hernandez et al. 2000)), 

 the anaerobic protozoan Entamoeba histolytica (Bruchhaus and Tannich 1994), 

 the Polytomella sp of algae (Atteia et al. 2003) (within the mitochondrion).   

 

At the start of this project, the adhE gene product from Geobacillus 

thermoglucosidasius was predicted to be the enzyme responsible for catalysing ethanol 

production from acetyl-CoA produced earlier in fermentative metabolism.  This 

prediction was based upon work carried out by TMO Renewables, to look at the ability 

of adhE knock-out strains to produce ethanol under anaerobic conditions (TMO 

Renewables 2009 personal communication).  Genes coding for several other 

independent ADH and aldDH proteins are annotated within the TM242 genome.  From 

the preliminary experiments carried out by TMO Renewables, it would appear that it is 

the ADHE protein that drives ethanol production.   

 

This chapter describes the work carried out to characterise the ADHE enzyme from 

Geobacillus thermoglucosidasius produced by the native organism and in recombinant 

expression strains of E. coli.   

 

As discussed in the Introduction to this thesis, the adhE gene has been suggested to 

be under the control of an anaerobic regulation system known as REX (Sickmier et al. 

2005; Wang et al. 2008).  The native material chosen for assays of ADHE was from 

fermentatively grown cells where anoxic conditions would drive ADHE expression due 

to the predicted anaerobic regulation of the adhE gene.   

 

The ADHE protein has been shown by several authors to form large multimeric protein 

complexes known as spirosomes.  These are large “rod like” helical assemblies of the 
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ADHE monomeric unit.  Kessler et al. used electron microscopy to demonstrate that 

the addition of ligands (NAD+ and CoA-SH) appeared to have a dynamic effect on the 

overall conformation of the structures (Kessler et al. 1992).  The final section of this 

chapter describes the work carried out to determine if such structures are present in 

the ADHE protein studied here.   

 

3.2 Materials and methods 

3.2.1 TM242 fermenter growth protocol 

TM242 fermentation cell pellets used for this section of the project were produced in a 

Braun Biostat B fermenter with 2.5 litre capacity using the following protocol: 

 

 Seed cultures were prepared using the method described in Section 2.5.2 in 

USM medium (30 g/L glycerol, 2% yeast extract).  The fermentation was carried 

out in USM medium (60 g/L sucrose, 2% yeast extract).   

 The sterilised fermentation vessel was inoculated with 2 L of filter sterilised 

medium prior to fermentation.  The sterility of the system was confirmed by 

setting the system to 30°C, stirring at 200 rpm for 16 h prior to the fermentation 

run.   

 The system was then set to 60°C stirring at 600 rpm, at pH 6.7 and allowed to 

equilibrate.  The control solutions used to regulate conditions were 5 M KOH, 

5 M H3PO4 and antifoam 204 (Sigma).   

 An inoculum of 200 AU of the seed culture was added to the fermentation 

vessel and an OD600nm measurement was taken.   

 Oxygen levels were monitored using a calibrated oxygen probe.  Once the level 

had reached 0%, the fermentation was allowed to continue for a further 2.5 h 

prior to ending the run.   

 Samples were taken at regular time points and the OD600nm measured to 

monitor the growth of the culture.   

 Following completion of the fermentation, cells were harvested by centrifugation 

at 5300 x g for 20 min prior to snap freezing in liquid nitrogen and storing 

at -20°C.  Typically a fermentation run would yield approximately 30 g of cell 

pellet.   

 

A typical fermentation run data set and growth curve are shown in Figure 3-1.   
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Figure 3-1: Typical fermentation run data for a TM242 culture.   

 

3.2.2 Protein expression 

Protein expression was carried out as described in Section 2.4. 

 

When using the Arctic Express© strain, the expression culture was grown in the 

presence of selection antibiotics (Strep Gent Kan) at 30°C to the required OD600nm.  The 

temperature of the culture was then lowered to 12°C prior to the addition of IPTG.  The 

protein expression was allowed to progress for 24 h prior to harvesting the bacterial cell 

cultures.   

 

It is hypothesised that the slower rate of protein expression at the lower temperature 

used for this strain, coupled with the presence of molecular chaperonin complexes, 

helps to improve the ratio of soluble to insoluble protein produced.   

 

3.2.3 Mass spectrometry analysis of SDS-PAGE gel excised protein bands 

The selected SDS-PAGE gel protein bands were excised with clean razor blades and 

placed in individual Eppendorf tubes with 10 µl of destain solution.  The MS analysis 

was carried out at the BSRC Mass Spectrometry and Proteomics Facility (St Andrews 

University).  This work followed the standard protocols outlined below (Botting C.H 

2012): 
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In-gel digestion 

The gel band was cut into 1 mm cubes.  These were then subjected to in-gel digestion 

using a ProGest Investigator in-gel digestion robot (Genomic Solutions, Ann Arbor, MI) 

using standard protocols.  Briefly, the gel cubes were destained by washing with 

acetonitrile and subjected to reduction and alkylation before digestion with trypsin at 

37°C. The peptides were extracted with 10% formic acid (Shevchenko et al. 1996).   

 

MALDI TOF/TOF analysis 

The digest solution (0.5 mL) was applied to the MALDI target along with alphacyano-4-

hydroxycinnamic acid matrix (0.5 mL, 10 mg/mL in 50:50 acetonitrile:0.1% TFA) and 

allowed to dry.  MALDI MS was acquired using a 4800 MALDI TOF/TOF Analyser 

(Applied Biosystems, Foster City, CA) equipped with an Nd:YAG 355 nm laser and 

calibrated using a mixture of peptides.  The most intense peptides (up to 15) were 

selected for MS-MS analysis and the combined MS and MS-MS data were analysed, 

using GPS Explorer (Applied Biosystems) to interface with the Mascot 2.1 search 

engine (Matrix Science, London, UK), against the UniProt (Swiss-Prot and TREMBL 

combined) database (April 2009).  No species restriction was applied.  The data were 

searched with tolerances of 100 ppm for the precursor ions and 0.5 Da for the fragment 

ions, trypsin as the cleavage enzyme, assuming up to one missed cleavage, 

carbamidomethyl modification of cysteines as a fixed modification and methionine 

oxidation selected as a variable modification.   

 

3.2.4 Dynamic light scattering 

Dynamic light scattering analysis was carried out using a Nano-S Zetasizer, (Malvern, 

UK).  50 µl of sample was used for analysis in a low-volume quartz cuvette.  Readings 

were taken over an 80-s period (carried out at 25°C).  The buffers used were assumed 

to have the same viscosity as water.  The analysis software on the instrument was 

used to provide an estimate of the protein Mr.  This estimate is based on the protein 

being globular in nature so the results obtained should be treated with caution. 

 

3.2.5 NanoSight analysis 

Samples of purified protein were subjected to analysis using a NanoSight LM10 

instrument (NanoSight, UK).   

 

This technique monitors the scattering of laser light by particles within a suspension.  

By monitoring this scattering an estimate of particle size based on Brownian motion 

measurements (using the equation shown below) is made.  This technique employs 
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single-particle tracking rather than providing an average of all the particles present in a 

sample to give an accurate representation of the particle species present.  A CCD 

camera is used to collect images of the scattered light and these images are analysed 

frame-by-frame to determine the average speed of each monitored particle.  This 

technique has been shown to be comparable to DLS in detection of nanoparticles 

(Filipe et al. 2010).  The equation used to determine the hydrodynamic radius is based 

upon the Stokes-Einstein equation: 

     ̅̅ ̅̅ ̅̅ ̅   
    

     
 

Where      ̅̅ ̅̅ ̅̅ ̅  is the average speed of the particle squared, T is temperature,    is the 

Boltzmann constant,   is the viscosity of the medium and    is the hydrodynamic 

radius. 

 

Figure 3-2 provides an overview of the technique.  The ideal detectable particle number 

was 107-109/ml, so samples were diluted into this range with the appropriate storage 

buffer where required.   

 

Figure 3-2: Overview of the NanoSight technology (image taken from (Malloy and Carr 2008)).   

 

Protein samples were injected into the sample chamber and subjected to the 635 nm 

laser light; images were collected at a rate of 30 frames per second.  The data were 

then analysed using the analytical software which generated the particle size 

distribution plots.   

 

3.2.6 Transmission electron microscopy (TEM) 

Partially-purified protein samples were adsorbed onto UV-exposed, pioloform-coated 

300-mesh copper grids which had been previously coated with evaporated carbon (2 

thin strands).  Samples were applied to the grid and left to settle for 1 min prior to 

removal of the excess liquid using filter paper.  Negative-stain solution was added onto 

the grid and was partially removed with filter paper, prior to air drying the sample.  The 
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samples were then visualised using a JEOL (Japan) JEM1200EXII transmission 

electron microscope (running at 100 kV).  2% Uranyl-Acetate and 2% phosphotungstic 

acid (PTA) were both tried as negative-staining agents for the samples.  These 

experiments were carried out with Mrs Ursula Potter (University of Bath Microscopy 

and Analysis Suite).   

3.3 Native ADHE 

3.3.1 Results  

The following section of this chapter will focus on the study of the ADHE protein when it 

was produced by Geobacillus strains.   

 

3.3.2 Assay development 

A standard buffer was used for the enzyme assays in an effort to standardise the 

kinetic parameters obtained for the activities described in this project.  The standard 

buffer used was 50 mM citric acid pH 6.0, 0.1 mM zinc acetate.  Assays at 60°C were 

carried out in TM242 cell extracts to determine the optimum conditions for both the 

aldDH and ADH domains of the protein, with respect to pH, metal ions used and metal 

ion concentration.   

 

Assays were carried out between pH 5.4 and 6.8 (citric acid buffer); the optimum pH for 

the aldDH assay was pH 6.0, whereas the optimum pH for the ADH activity was pH 

6.4.   

 

Preliminary experiments suggested divalent metal ions had a positive effect on the 

activity of the ADH domain.  The aldDH activity was unaffected by the 

presence/absence of divalent metal ions.  Assays were undertaken with different 

divalent metal ions and the effect on enzyme activity measured.  The effect of the 

concentration of zinc present in the assays was also measured.   

 

Metal ion 
(0.1 mM) 

% ADH activity (of activity 
with no metal ions) 

None 100 

Zn2+ 144 

Cu2+ 314 

Fe2+ 132 

Ni2+ 106 

Co2+ 140 

Mn2+ 118 

Mg2+ 182 
 

Table 3-1: Relative effect of metal ions in the assay buffer on ADH enzyme activity.   
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Figure 3-3: Assays of ADH activity relative to zinc acetate concentration in citric acid buffer.   

 

No aldDH activity was detected when assayed with NADPH, suggesting this domain of 

the enzyme is specific for NADH.  ADH activity was detected at approximately 30% of 

the activity observed with the same concentration of NADH, suggesting this domain is 

significantly more specific for NADH.   

 

3.3.3 Optimum temperature of native ADHE activity 

The optimum temperature of the ADHE enzyme activities in cell extracts was 

determined by assaying the enzymes using the standard assays at varying 

temperatures, as described in Section 2.13.5.   

 

Figure 3-4: Plot of % activity of maximum against temperature (K) for both ADHE activities in 
native TM242 cell extracts.   

 

The optimum temperature for the ADH activity was approximately 64°C and the 

optimum for the aldDH activity was approximately 58°C.   
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3.3.4 Tube fermentation analysis 

Tube fermentations of TM242 and TM400 (ADHE k/o) strains were carried out in USM 

medium (111 mM glucose, 0.5% yeast extract) as described in Section 2.5.1.  

Metabolite concentrations were then analysed at TMO Renewables using HPLC.   

Figure 3-5: Tube fermentation analysis of TM400 and TM242 grown in USM medium. Glucose 
and ethanol levels are shown following 48 h growth.  Results are averages of 4 
replicates (error bars = standard errors).   

 

3.3.5 SDS-PAGE analysis 

The total and soluble fractions of a cell extract made from TM242 fermenter cell pellets 

(as described in Section 2.6) were analysed by SDS-PAGE as shown in Figure 3-6.  A 

distinct protein band corresponding to the predicted molecular weight of ADHE was 

observed, and appeared to be relatively intense compared to some other protein 

components of the cell extract.  This gives an indication that this protein may be highly 

expressed in this organism when grown under fermentative conditions.   
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Figure 3-6: SDS-PAGE analysis of TM242 cell extract. 1 = total, 2 = soluble, 3 = markers 
(Mr/1000). The predicted ADHE band (Mr = 96,290) is highlighted with a blue arrow.   

 

3.3.6 Kinetics of ADHE in cell extracts 

Both ADH and aldDH enzymatic activities were detected in TM242 cell extracts.  

Accurate kinetic analysis was undertaken to obtain estimates of the key kinetic 

parameters for these two activities from the native organism.  A substrate-independent 

NADH-oxidase background activity was detected in the cell extract.  This was taken 

into account when determining the observed rate of reaction during these assays.  

Where appropriate, the data were analysed by the direct linear method (Eisenthal and 

Cornish-Bowden 1974) using the Enzpack computer programme (Biosoft).   

 

3.3.6.1 AldDH 

Results of the aldDH activity assays (using the aldDH NADH assay, Section 2.13.1.2) 

are shown in the following Figures.   

 

Figure 3-7: Michaelis-Menten plot of aldDH enzymic activity (U mg
-1

 of protein) against 
concentration of acetyl-CoA (mM) at a fixed concentration of NADH (0.22 mM) in a 
TM242 cell extract.   

←200 

 ←116.25 

 
←97.4 

 ←66.2 

 
←45 

 

←31 

 

 1      2      3 



51 

Non Michaelis-Menten kinetics were observed for the aldDH activity with respect to 

acetyl-CoA.  These data appear to fit the trend expected for substrate inhibition.  To 

allow kinetic parameters for NADH to be determined, a fixed concentration of 

acetyl-CoA, close to that where the maximum observed activity was obtained was used 

(0.13 mM).   
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Figure 3-8: Michaelis-Menten plot of aldDH enzymic activity (U mg
-1

 of protein) against 
concentration of NADH (mM) at a fixed concentration of acetyl-CoA (0.13 mM) in a 
TM242 cell extract.   
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Figure 3-9: Hanes-Woolf plot ([S]/v vs. [S]) for the variation of aldDH activity (U mg
-1

) with 
respect to concentration of NADH (mM).   
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3.3.6.2 ADH 

Results of the ADH activity assays (using the ADH assay described in Section 2.13.2) 

are shown in the following Figures.  The results of these assays with respect to varying 

the concentration of acetaldehyde did not appear to obey Michaelis-Menten kinetics, 

and appeared to show a “biphasic” relationship between V and [S].  The presence of a 

second ADH activity within the cell extract is a likely explanation.  It was possible to 

resolve the kinetic parameters for each by deducting the observed Vmax of the lower 

activity from the observed activities of the higher.  “ADH” corresponds to the ADH 

activity with the higher Km for acetaldehyde whereas “ADH2” refers to the ADH activity 

with a lower Km for acetaldehyde.   

 

Figure 3-10: Michaelis-Menten plot of ADH enzymic activity (U mg
-1

 of protein) against 
concentration of acetaldehyde (mM) at a fixed concentration of NADH (0.22 mM) in a 
TM242 cell extract “full range”.   
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Figure 3-11: Michaelis-Menten plot of ADH enzymic activity (U mg
-1

 of protein) against 
concentration of acetaldehyde (mM) up to 4 mM at a fixed concentration of NADH (0.22 
mM) in a TM242 cell extract.   
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Figure 3-12: Hanes-Woolf plot ([S]/v vs. [S]) for the variation of ADH activity (U mg
-1

) with 
respect to concentration of acetaldehyde (mM) up to 4 mM acetaldehyde).   
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Figure 3-13: Michaelis-Menten plot of adjusted ADH enzymic activity (U mg
-1

 of protein) against 
concentration of acetaldehyde (mM) 10-400 mM at a fixed concentration of NADH (0.22 
mM) in a TM242 cell extract.   
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Figure 3-14: Hanes-Woolf plot ([S]/v vs. [S]) for the variation of ADH activity (U mg
-1

) with 
respect to concentration of acetaldehyde (mM) (10-400 mM acetaldehyde).   

 

Variable concentration of NADH ADH assays in the cell extract did not show biphasic 

activity, so the full range of data was used to determine the kinetic parameters.   
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Figure 3-15: Michaelis-Menten plot of ADH enzymic activity (U mg
-1

 of protein) against 
concentration of NADH (mM) at a fixed concentration of acetaldehyde (200 mM) in a 
TM242 cell extract.   
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Figure 3-16: Hanes-Woolf plot ([S]/v vs. [S]) for the variation of ADH activity (U mg
-1

) with 
respect to concentration of NADH (mM).   

 

3.3.6.3 Summary of kinetic analyses 

It was not possible to fully saturate the enzyme with the fixed substrates during these 

assays (as described in Section 2.13.7).  Using the kinetic parameters determined, the 

percentage saturation was calculated for each substrate.  These can then be used to 

adjust the observed Vmax values to give an estimation of the true Vmax.  The errors 

stated take into account any adjustment made using this calculation.  U is defined as 

µmol substrate (NADH) converted per min.   

 

Activity Substrate 
Kinetic 

parameter 
Parameter value Units 

ADH Acetaldehyde 
Km 33.8 +/- 1.9 mM 

Vmax (adjusted) 1.1 +/- 0.1 U mg-1 

ADH NADH 
Km 0.038 +/- 0.003 mM 

Vmax (adjusted) 2.0 +/- 0.1 U mg-1 

ADH 2 Acetaldehyde 
Km 0.160 +/- 0.002 mM 

Vmax (adjusted) 0.78 +/- 0.06 U mg-1 

AldDH Ac-CoA* 
Km 0.019 +/- 0.003 mM 

Vmax (adjusted) 1.24 +/- 0.14 U mg-1 

AldDH NADH 
Km 0.157 +/- 0.014 mM 

Vmax (adjusted) 1.0 +/- 0.2 U mg-1 
 

Table 3-2: Summary of kinetic parameters determined in TM242 cell extracts.  *Kinetic 
parameters for aldDH with respect to acetyl-CoA were determined by fitting the data to 
the substrate inhibition equation as described in Section 2.13.7.3.   
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As the two ADH activities could not be distinguished with respect to NADH, the Vmax for 

the ADH activity shown in Table 3-2 (NADH) is based on the two ADH activities 

together.  The predicted value from both the ADH Vmax values together is 1.88 U mg-1 

which is close to the observed value of 2.0 U mg-1.   

 

3.3.6.4 NAD:CoA released ratio assays 

Assays of the ratio of NADH oxidised relative to CoA-SH produced were carried out on 

TM242 cell extracts (as described in Section 2.13.4).  Background rates used in these 

assays took into account both the NADH oxidase (acetyl-CoA independent NADH 

oxidation) and any PAT (NADH-independent DTNB cleavage) activities that may be 

present.   

 

The average of three separate assays gave an estimate of 1.8 NADHs oxidised per 

1 CoA-SH produced.  This suggests that proteins within the cell extracts were 

converting acetyl-CoA through to ethanol within the enzyme assays.  The aldDH 

assays may therefore be a measure of metabolic flux to ethanol.   

 

3.3.7 Preliminary substrate specificity experiments 

Preliminary experiments were carried out to assess the substrate specificity of the 

ADHE activity in TM242 cell extracts.  AldDH activity was observed with both butyryl-

CoA and propionyl–CoA.  It was not possible to determine the concentration of these 

substrates, so accurate kinetic parameters could not be obtained.  Assuming the 

concentration of these acyl-CoAs were comparable to that of the acetyl-CoA prepared 

at the same time, the specific activities obtained with a fixed concentration of each 

acyl-CoA (0.054 mM) were compared.   

 

Substrate 
Specific 
activity 
(U mg-1) 

% activity of 
Acetyl-CoA 

Acetyl-CoA 0.57 100.0 

Propionyl-CoA 0.37 64.9 

Butyryl-CoA 0.34 59.6 
 

Table 3-3: AldDH activity with different acyl-CoAs in TM242 cell extracts.   

 

ADH activity with propionaldehyde and butyraldehyde was also compared to 

acetaldehyde.  Due to the immiscibility with water of these compounds, 1 µl of neat 

compound was added directly to the cuvette.  Comparable levels of enzyme activity 

were observed for all three aldehydes.   
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Substrate 
Resultant 

rate 
(abs/min) 

% activity of 
Acetaldehyde 

Acetaldehyde 0.26 100.0 

Propionaldehyde 0.24 92.3 

Butyraldehyde 0.22 84.6 
 

Table 3-4: ADH activity with different aldehydes in TM242 cell extracts.   

 

3.3.8 Purification of native ADHE 

Attempts were made to isolate the ADHE protein from TM242 using anion exchange 

chromatography and gel filtration.  The objective of these experiments was to resolve 

the ADHE protein from other proteins in the cell extract but also to estimate the 

molecular weight of the protein in solution.   

 

The isoelectric point (pI) of the native ADHE protein was calculated to be 7.11 using 

the Protparam tool (ExPASy).   

 

3.3.8.1 Initial purification attempts 

A wide variety of different purification techniques were utilised in an effort to resolve the 

native ADHE protein from cell extracts.  Most effort was focussed on using separation 

by charge (anion exchange) followed by size exclusion (gel filtration) under a variety of 

different conditions.  These purifications were carried out on an ÄKTA Explorer FPLC 

system (GE Healthcare).   

 

During these purifications the aldDH activity of the protein appeared to be unstable 

relative to the ADH activity.  To confirm whether this loss of activity was due to the 

removal of a second aldDH activity from within the cell extract, every fraction from an 

anion exchange run of a TM242 cell extract was assayed for aldDH activity.  No other 

peak of aldDH activity was observed other than that co-eluting with ADH activity 

corresponding to ADHE.  The presence of reducing agents (DTT and reduced 

glutathione (GSH)) appeared to improve the stability of the aldDH activity of the protein 

through purifications.  These results suggest a potential oxygen sensitivity of the aldDH 

domain.  The addition of EDTA appeared to have a negative effect on the activity of the 

ADH domain of the protein.   

 

Other purification strategies included salt precipitation and dye-binding methods.  

Ammonium sulphate precipitation was carried out between 40 & 70% saturation; 

however this technique was not specific enough for ADHE.  Dye-binding purification 
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was also attempted using a Reactive Red agarose column eluting with KCl; again, 

many other proteins co-eluted with ADHE using this technique.   

 

3.3.8.2 Optimised ADHE purification 

A TM242 soluble cell extract (~6 ml) (prepared as described in Section 2.6 replacing 

50 mM EPPS pH 8.0, with anion exchange buffer A) was loaded onto two pre-

equilibrated GE HiTrap 5 ml Q-Sepharose HP columns run in series at a flow rate of 1 

ml/min.  Buffer A consisted of 50 mM EPPS pH 8.7, 0.1 mM zinc acetate and 5 mM 

reduced glutathione.  Proteins were eluted from the columns using a 0-1 M NaCl 

gradient (in buffer A) over a 60-min period.  Fractions were assayed to identify the peak 

of ADHE activity prior to pooling the highest activity fractions ready for the following 

purification step.   

 

 

Figure 3-17: Chromatograph of a TM242 cell extract anion exchange purification.  Blue line = 
A280nm (mAU), Green line = salt gradient of 0-1 M.  Activity measurements (abs/min) for 
both ADH and aldDH are overlaid onto corresponding fractions (blue = ADH, red = 
aldDH).  Fractions A15-B6 were pooled, assayed and concentrated prior to gel filtration.   

 

5.5 ml of the pooled anion-exchange sample (fractions A15-B6) was concentrated 

down to 0.75 ml using a Vivaspin 5K MWCO centrifugal filter device (Sartorius).  0.6 ml 

of this concentrated pool was loaded onto a pre-equilibrated GE Superdex 200 10/300 

GL column run at a flow rate of 0.3 ml/min.  The buffer consisted of 50 mM EPPS pH 

8.0, 0.1 mM zinc acetate, 5 mM reduced glutathione, and 10 % (v/v) glycerol.  
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Fractions were assayed to identify the peak of ADHE activity prior to pooling the 

highest activity fractions.   

 

Figure 3-18: Chromatograph of a TM242 anion exchange sample gel filtration purification.  Blue 
line = A280nm (mAU).  Activity measurements (abs/min) for both ADH and aldDH are 
overlaid onto corresponding fractions (blue = ADH, red = aldDH).  Peak activity fractions 
(A5-A7) were pooled and assayed.   

 

 

Figure 3-19: SDS-PAGE analysis of ADHE purification from TM242 cell extracts.  1 = soluble, 2 
= markers (Mr/1000), 3 = pooled anion exchange sample, 4-6 = pooled gel filtration 
sample run at different protein concentrations.  Predicted ADHE band is highlighted with 
a blue arrow.  Several other proteins appeared to co-elute with ADHE from the gel 
filtration column; these are not very clear on the SDS PAGE gel image but are 
indicated.   
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Assay Sample 
Activity 

(µmol/min/
ml) 

Total 
activity 

(µmol/min)* 

Protein 
concentration 

(mg/ml) 

Specific 
Activity 
(U mg-1) 

% 
recovery 

A
D

H
 

Soluble 24.4 146.6 12.7 1.9 100.0 

Anion 
Exchange 

13.9 83.8 1.9 7.4 57 

Gel 
Filtration 

23.7 56.4 0.5 49.3 38 

Assay Sample 
Activity 

(µmol/min/
ml) 

Total 
activity 

(µmol/min)* 

Protein 
concentration 

(mg) 

Specific 
Activity 
(U mg-1) 

% 
recovery 

A
ld

D
H

 

Soluble 7.1 42.4 12.7 0.6 100.0 

Anion 
Exchange 

3.1 18.7 1.9 1.6 44 

Gel 
Filtration 

2.7 6.5 0.5 5.7 15 

 

Table 3-5: Protein purification table for ADHE purification from native cell extract, *gel filtration 
total activity has been adjusted to reflect theoretical activity had previous step’s entire 
sample been loaded onto column.   

 

3.3.9 Estimation of the Mr of the ADHE protein 

The peak of ADHE activity eluted from the gel filtration column in the void volume.  This 

provided an estimate of Mr of greater than 1.3 x 106 which would correspond to a 

protein complex of larger than 13 ADHE polypeptide units (9.6 x 104
 per ADHE).   

 

3.3.10 Kinetics of partially-purified ADHE 

To determine if the second ADH activity had been resolved through this purification 

strategy, the partially-purified ADHE protein from TM242 cell extract was subjected to 

kinetic analysis.  The biphasic activity was still present but the relative levels of the two 

activities had changed significantly.  The kinetic parameters for each activity could 

once again be resolved by deducting the observed Vmax of the lower activity from the 

observed activities of the higher.   
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Figure 3-20: Michaelis-Menten plot of ADH enzymic activity (U mg
-1

 of protein) against 
concentration of acetaldehyde (mM) at a fixed concentration of NADH (0.21 mM) in a 
partially-purified TM242 cell extract.   
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Figure 3-21: Michaelis-Menten plot of ADH enzymic activity (U mg
-1

 of protein) against 
concentration of acetaldehyde (mM) up to 1 mM at a fixed concentration of NADH (0.21 
mM) in a partially-purified TM242 cell extract.   
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Figure 3-22: Hanes-Woolf plot ([S]/v vs. [S]) for the variation of ADH activity (U mg
-1

) with 
respect to concentration of acetaldehyde (mM) (up to 1 mM acetaldehyde).   
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Figure 3-23: Michaelis-Menten plot of ADH enzymic activity (U mg
-1

 of protein) against 
concentration of acetaldehyde (mM) 4-300 mM at a fixed concentration of NADH (0.21 
mM) in a partially-purified TM242 cell extract.   



63 

[S]

-100 0 100 200 300 400

[S
]/
v

2

4

6

8

 

Figure 3-24: Hanes-Woolf plot ([S]/v vs. [S]) for the variation of ADH activity (U mg
-1

) with 
respect to concentration of acetaldehyde (mM) (4-300 mM acetaldehyde). 

 

Activity 

(Acetaldehyde) 

Km 

(mM) 

Standard 

Error 

Vmax  

(U mg-1) 

Standard 

Error 

Relative % activity 

[(Vmax ADH2)/(Vmax ADH)]x100 

"ADH" CE 33.8 +/- 1.9 0.93 +/- 0.01 
71.9% 

"ADH 2" CE 0.155 +/- 0.002 0.67 +/- 0.002 

"ADH" GF 79.5 +/- 6.6 51.5 +/- 2.1 
8.3% 

"ADH 2" GF 0.184 +/- 0.002 4.26 +/- 0.03 

 

Table 3-6: Comparison of kinetic parameters determined for ADH activities in TM242 cell extract 
and in partially-purified sample.  (Vmax values not adjusted for saturation).  CE = Cell 
Extract GF = sample following gel filtration.  Relative % activity corresponds to the 
“ADH2” activity relative to the “ADH” activity.   

 

The kinetics of the aldDH activity for the partially-purified enzyme with respect to 

acetyl-CoA concentration were also determined: 
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Figure 3-25: Michaelis-Menten plot of aldDH enzymic activity (U mg
-1

 of protein) against 
concentration of acetyl-CoA (mM) at a fixed concentration of NADH (0.22 mM) in a 
partially-purified TM242 cell extract.   

 

Activity Substrate 
Kinetic 

parameter 
Parameter value Units 

AldDH Ac-CoA* 
Km 0.006 +/- (0.001) mM 

Vmax 6.22 +/- (0.38) U mg-1 
 

Table 3-7: Kinetic parameters determined for partially-purified ADHE aldDH domain.  *Kinetic 
parameters for aldDH with respect to acetyl-CoA were determined by fitting the data to 
the substrate inhibition equation as described in Section 2.13.7.3.   

 

3.3.11 TM400 enzyme assays  

TM400 was grown using the overnight shake-flask method (Section 2.5.2) to produce 

aerobically grown cell pellets for assays.  A soluble cell extract was produced by the 

standard method.  An ADH activity independent of aldDH activity was detected in the 

cell extract and the activity was shown to be proportional to enzyme concentration.  

The specific activity for this ADH was determined to be 0.046 U mg-1, however, due to 

the low level of this activity and a relatively high NADH oxidase background, accurate 

kinetic parameters were not determined.   

 

3.3.12 Discussion 

The standard assay buffer used for the assays in this project was based on a 

standardised ADH assay buffer.  Zinc is commonly associated with alcohol 

dehydrogenase proteins (BRENDA enzyme database 2012) as both a structural and a 

catalytic cofactor, and was initially found to cause a higher activation of the ADH 

activity of the protein than the other metal ions originally tested.  Towards the end of 
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the experimental phase of this thesis it was discovered that copper and magnesium 

appeared to give a higher activation than zinc.   

 

During the initial stages of the project, the buffer used for the assays was changed to 

citric acid buffer due to interference from the activity of the PAT protein (phosphate 

acetyl-transferase) in phosphate buffers when using TM242 cell extracts.  

Reassessment of metal ion concentration (again towards the end of the experimental 

phase of the project) suggested that in citric acid higher concentrations of zinc should 

have been used to achieve optimal activity as the buffer is known to chelate metals 

ions (AppliChem 2008).  As all the assays were carried out in this citric acid buffer, the 

results obtained are still comparable but it should be noted that these values may not 

be optimal for ADH.   

 

The work carried out during this section of the chapter has successfully confirmed the 

important role of the ADHE protein within the TM242 strain.   

 

Tube fermentation experiments confirmed the findings of TMO Renewables (TMO 

Renewables 2009 personal communication) showing that when the organism does not 

have the ADHE protein it not only loses the ability to produce ethanol, but also the 

ability to metabolise glucose efficiently under anaerobic conditions.  SDS-PAGE 

analysis of fermenter-grown cell extracts indicated that the ADHE protein may be highly 

expressed under fermentative growth conditions.   

 

Kinetic analysis of the soluble cell extract of TM242 showed that metabolic flux to 

ethanol was occurring during the reaction in the cuvette.  This result suggests that the 

estimates of aldDH maximal activity may be an overestimate as NADH-linked assays 

were used during these experiments and it is likely that 2 NADHs were converted per 

CoA-SH released.  That is, the product of aldDH, acetaldehyde, appears to be 

converted to ethanol by the ADH activity of ADHE, resulting in a further NADH 

molecule being oxidised to NAD+. 

 

The aldDH activity of ADHE appears to be subject to substrate inhibition, although the 

relatively high fitting errors observed for the kinetic parameters suggest other factors 

may also contribute to the unusual kinetics with respect to acetyl-CoA.  Due to the 

influence of this suspected inhibition the kinetic parameters with respect to acetyl-CoA 

were estimated using the Origin computer programme fitting the data to the substrate 

inhibition equation as discussed in Section 2.13.7.3.  The errors associated with this 
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fitting are relatively high so the estimation of kinetic parameters for this domain of the 

protein is also subject to these errors.  Different values of Km were determined for the 

aldDH in cell extract and in the partially-purified sample.  The data are in a similar 

region of concentration (0.019 ±0.003 mM and 0.006 ±0.001 mM).  These data show 

that the Km for acetyl-CoA is relatively low compared to that observed for the ADH 

protein for acetaldehyde.   

 

The loss of aldDH activity observed during initial purification attempts did not appear to 

be due to the removal of other aldDH activities from the cell extract.  This was 

demonstrated by assaying all the fractions from an anion-exchange purification.  The 

presence of reducing agents was shown to reduce the loss of aldDH activity through 

purification.  A catalytic thiol residue in the active site of this domain may help explain 

the apparent oxygen sensitivity of this protein.  Cys257 is highly conserved between the 

TM242 ADHE and several other ADHE proteins discussed in the literature as indicated 

in the Introduction to this thesis (Chen et al. 2004; Espinosa 2001).  Oxidation of this 

catalytic thiol residue could be the cause of the significant loss of aldDH activity 

observed.   

 

The ADH activity observed in the cell extracts appears to show a “biphasic” activity, i.e. 

at least two ADH activities appeared to be present.  The two activities can be 

differentiated due to their contrasting kinetic parameters, “ADH2” with a relatively low 

Km for acetaldehyde (0.155 mM) and “ADH” with a relatively high Km (33.8 mM).  A 

similar biphasic activity was observed in other assay buffers between pH 6-7, 

suggesting that it is not the result of an anomaly caused by the assay conditions.   

 

A significant decrease in the “ADH2” activity relative to the suspected ADH activity of 

ADHE, was observed following the partial purification of the ADHE protein.  This result 

supports the hypothesis that it is the presence of a second ADH activity within the cell 

extract causing the non Michaelis-Menten kinetics observed.  Several other protein 

bands appeared to co-elute with the ADHE protein following purification, and it is likely 

that one of these bands may correspond to an independent ADH protein.  Such a 

protein may interact with ADHE causing the two proteins to co-elute following anion-

exchange and gel-filtration purifications.  The difference in Km values observed 

between the purified and non-purified ADH activities (79.5 mM compared to 33.8 mM) 

could reflect the influence of the “ADH2” activity on the deduced ADHE activity in cell 

extracts.  As discussed in the introduction to this chapter, several other ADH-encoding 
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genes are annotated within the TM242 genome that may be responsible for this second 

activity.   

 

TM400 cell extracts produced were assayed for ADH activity, in an effort to confirm 

whether the biphasic activity observed for ADH was indeed due to the presence of a 

second ADH protein.  A low level of ADH activity was observed in the aerobically grown 

TM400 strain (0.046 U mg-1); however, this activity was too low to determine accurate 

kinetic parameters.  Without growing this strain under the fermentative conditions used 

for TM242, it is difficult to say whether this ADH activity is indeed the observed “ADH2” 

activity from the cell extract.  The ADHE knock-out in TM400 means this strain cannot 

grow anaerobically, and thus cannot be used as a true control for comparison with 

fermentatively grown TM242.  It is possible that the expression of both ADHE and this 

second “ADH2” are controlled by anaerobic promoters such as the REX system 

discussed in the Introduction.   

 

The elution of the ADHE protein in the void volume of the gel filtration column suggests 

that it may form a very large protein complex within the cell extract or that the protein 

forms large aggregates during purification.  These hypotheses will be discussed in a 

later section of this chapter.   

 

The following section of this chapter will focus on the use of recombinant protein 

expression to study ADHE when it was not produced by Geobacillus strains.   

 

3.4 Recombinant ADHE 

3.4.1 Results 

The plasmid pTMO259 (pET28a-adhE) was supplied by TMO Renewables at the start 

of this project.  The adhE gene was ligated into the plasmid between the NheI/XhoI 

sites of the pET28a vector.  This introduced an N-terminal histidine tag to the ADHE 

protein to facilitate purification.   

 

3.4.2 Gene cloning and protein expression trials 

The pTMO259 plasmid was transformed into competent protein expression strains and 

transformants were screened with the required selection antibiotics.   

 

Protein expression trials of the ADHE protein were carried out in E. coli expression 

strains BL21 (DE3), Rosetta© (DE3) and Arctic Express© (DE3).  Various attempts were 

made to improve the yield of soluble protein obtained, including the use of auto-
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induction medium (Overnight Express, Novagen), varying the concentration of and time 

of exposure to IPTG and using higher temperature expression according to the work of 

Koma et al. (2006).  The Arctic Express© (ArcX) expression strain, which possesses 

two psychrophilic chaperonin proteins for low temperature protein expression, was 

selected for use in this project as this strain appeared to significantly increase the ratio 

of soluble to insoluble protein.   

 

Cells of this strain were grown according to the described method in Section 3.2.2 

(lowering the temperature prior to induction from 30°C to 12°C).   

 

Figure 3-26: SDS-PAGE analysis of ArcX ADHE protein expression trial.  1 = markers 
(Mr/1000), 2 = total, 3 = insoluble, and 4 = soluble.  Predicted His-tagged-ADHE band 
(Mr = 98,456) is highlighted with a blue arrow (samples were heavily diluted due to the 
presence of the overexpressed Cpn60 chaperone (indicated with dashed arrow).   

 

3.4.3 Protein purification 

Cell extracts of ArcX ADHE were prepared as described in Section 2.6.  The protein 

expressed from pTMO259 has an N-terminal histidine tag which allowed purification 

using a metal-affinity chromatography column charged with Ni2+ (according to the 

method outlined in Section 2.9).   
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Figure 3-27: SDS-PAGE analysis of ArcX ADHE protein metal affinity chromatography samples.  
1 = soluble, 2 = markers (Mr/1000), 3 = flow through, 4 = 0%, 5 = 5%, 6-10 = 1 ml 40% 
washes and 11 = 100%.  Predicted His-tagged-ADHE band (Mr = 98,456) is highlighted 
with a blue arrow) (% values = %HIS-ELUTE buffer diluted in HIS-BIND buffer).   

 

The protein product (Mr 98,456) bound to the column and was eluted with a 40% 

solution of HIS-ELUTE.  Several smaller co-contaminant proteins appeared to be 

eluted with the protein of interest.  The presence of imidazole used during the protein 

purification appeared to interfere with the assays of ADHE activity, so the 40% elution 

samples were pooled and dialysed into 60 mM tetrasodium pyrophosphate, pH 6.0, 

0.1 mM zinc acetate ready for assays.   

 

Following metal-affinity purification, the use of dye-binding purification was also 

attempted using a Cibacron blue agarose column.  Attempts were made to elute the 

protein with various concentrations of NAD+ and NaCl.  The ADHE protein bound too 

strongly to the column and could not be eluted in an active form.   

 

Gel filtration of the His-purified material was also carried out in an attempt to resolve 

the co-eluting bands observed, but several of the co-purified proteins remained 

following this purification.  The recombinant ADHE appeared to elute in the void volume 

of the gel filtration column as was observed with the native ADHE protein.   

 

3.4.4 Mass spectrometry (MS) of co-eluting bands 

The pooled 40% HIS-ELUTE fraction was diluted and run on an SDS-PAGE gel prior to 

the key bands observed being excised for Matrix assisted laser desorption/ionisation-

time of flight/time of flight (MALDI-TOF/TOF) mass spectrometry analysis as described 

in Section 3.2.3.   
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Sample 
number 

Predicted 
protein 

Mascot 
score 

% 
Sequence 
Coverage 

Number of 
unique 
peptide 
peaks 

1 ADHE 1750 62 15 

3 
Cpn60 876 57 11 

ADHE 145 21 1 

2 
ADHE  
(ADH 

domain) 
1330 50 12 

 

Figure 3-28: SDS-PAGE analysis of purified ArcX ADHE protein and mass spectrometry 
analysis.  1 = markers (Mr/1000), 2 = sample with bands analysed indicated.  
Overloading of the gel to maximise the concentration of co-eluting bands appeared to 
cause the ADHE protein to run further than expected on this SDS-PAGE gel.   

 

MS analysis revealed that sample 1 was the expected His-tagged ADHE recombinant 

protein.  Sample 2 also corresponded to the ADHE protein expected.  However, 

reviewing the ion scores for this sample, only 1 of the 12 unique peptide peaks were 

observed in the N-terminal domain of the protein; the other 11 were all present in the 

ADH domain of the protein.  Sample 3 consisted of a chaperonin from Oleispira 

antarctica as well as the ADHE protein.  The sequence coverage was poor for the 

ADHE protein suggesting only a small fragment of the protein was present in the 

sample.   

 

3.4.5 Kinetics of partially-purified recombinant ADHE 

The dialysed pooled protein sample of His-purified recombinant ADHE material was 

used for kinetic characterisation.  ADH and aldDH enzymatic activities were detected in 

the purified protein sample.  Accurate kinetic analysis was undertaken to obtain 

estimates of the key kinetic parameters for these two activities.  Where appropriate, the 

data were analysed using the direct linear method using the Enzpack computer 

programme (Biosoft).   

 

3.4.5.1 AldDH 

Following the addition of enzyme to start the reaction, a lag in activity was observed for 

the recombinant aldDH activity.  During these experiments the aldDH assay was 

modified to measure the maximum rate observed during the reaction following the lag 

period as illustrated in Figure 3-29.   

1  2 
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Figure 3-29: Example assay trace for the recombinant aldDH activity.  A = no acetyl-CoA 
control, B = full assay mixture.  Abs = absorbance measured at 340 nm.   

 

Results of the aldDH activity assays (using the modified aldDH NADH assay described 

in Section 2.13.1.2) are shown in the following figures.   

Figure 3-30: Michaelis-Menten plot of aldDH enzymic activity (U mg
-1

 of protein) against 
concentration of acetyl-CoA (mM) at a fixed concentration of NADH (0.22 mM) for 
partially-purified recombinant ADHE.   

 

Non Michaelis-Menten kinetics were observed for the aldDH activity with respect to 

acetyl-CoA, these data appear to fit the trend expected for substrate inhibition.   

 

Accurate kinetics for the aldDH domain with respect to NADH were unable to be 

determined.  The nature of the extended assay meant that at low levels of NADH the 

increasing rate of reaction was more difficult to resolve.   

 

 

Lag 

Reported activity  
A B 
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3.4.5.2 ADH 

Results of the ADH activity assays (using the ADH assay Section 2.13.2): 
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Figure 3-31: Michaelis-Menten plot of ADH enzymic activity (U mg
-1

 of protein) against 
concentration of acetaldehyde (mM) at a fixed concentration of NADH (0.22 mM) for 
partially-purified recombinant ADHE.   
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Figure 3-32: Hanes-Woolf plot ([S]/v vs. [S]) for the variation of ADH activity (U mg
-1

) with 
respect to concentration of acetaldehyde (mM).   



73 

[NADH] (mM)

0.00 0.05 0.10 0.15 0.20 0.25

S
p

e
c
if
ic

 a
c
ti
vi

ty
 (

µ
m

o
l/m

in
/m

g
)

0

10

20

30

40

 

Figure 3-33: Michaelis-Menten plot of ADH enzymic activity (U mg
-1

 of protein) against 
concentration of NADH (mM) at a fixed concentration of acetaldehyde (240 mM) for 
partially-purified recombinant ADHE.   
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Figure 3-34: Hanes-Woolf plot ([S]/v vs. [S]) for the variation of ADH activity (U mg
-1

) with 
respect to concentration of NADH (mM).   
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3.4.5.3 Summary of kinetic analyses 

 

Activity Substrate 
Kinetic 

parameter 
Parameter value Units 

ADH Acetaldehyde 
Km 201.0 +/- (5.9) mM 

Vmax (adjusted) 91.4 +/- (5.2) U mg-1 

ADH NADH 
Km 0.065 +/- (0.004) mM 

Vmax (adjusted) 85.6 +/- (2.9) U mg-1 

AldDH Ac-CoA* 
Km 0.029 +/- (0.003) mM 

Vmax 1.7 +/- (0.08) U mg-1 
 

Table 3-8: Kinetic parameters determined for partially-purified recombinant ADHE.  *Kinetic 
parameters for aldDH with respect to acetyl-CoA were determined by fitting the data to 
the substrate inhibition equation as described in Section 2.13.7.3.   

 

3.4.6 Optimum temperature of recombinant ADHE activity 

The optimum temperature of the ADHE enzyme activities were determined by assaying 

the enzymes using the standard assays at varying temperatures as described in 

Section 2.13.5. 

 

Figure 3-35: Plot of % activity of maximum against temperature (K) for both ADHE activities in 
partially-purified recombinant ADHE extracts.   

 

The optimum temperature for both activities appeared to be approximately 57°C.   

 

3.4.7 Zinc stimulation of ADH activity 

When assayed in unfractionated cell extracts prior to purification, the recombinant 

ADHE protein was shown to be significantly stimulated by the addition of 0.1 mM zinc 

acetate; this stimulation was not observed after metal-affinity purification and dialysis 

into 0.2 M phosphate buffer pH 6.0, as shown in Table 3-9.  No ADH activity was 
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detected in a cell extract of the non-transformed expression strain used when grown 

under similar conditions, with and without zinc in the assays.   

 

Sample 
Metal ion 
(0.1 mM) 

% ADH activity (of activity 
with no metal ions) 

Cell 
extract 

None 100 

Zn2+ 237 

Partially 
purified 
ADHE 

None 100 

Zn2+ 105 

 

Table 3-9: Relative effect of metal ions in the assay buffer on the ADH activity of the 
recombinant ADHE enzyme.  Assays were performed as in Section 3.3.2.   

 

3.4.8 Discussion 

An N-terminal His-tagged version of the Geobacillus thermoglucosidasius (TM242) 

ADHE protein has been successfully cloned, expressed and partially-purified from 

E. coli expression strains.  Using mass spectrometry analysis, the ADHE protein was 

confirmed to be the dominant species in protein samples partially-purified by metal-

affinity chromatography.  Some of the other co-eluting bands visible on the SDS-PAGE 

gel were also analysed using mass spectrometry.   

 

As the Mr values for all the significant co-eluting protein bands observed on the SDS-

PAGE gels were smaller than the predicted Mr of the ADHE protein, it is likely that 

some of the co-eluting bands are degradation products of the target protein.  In the 

mass spectrometry analysis, sample 2 (the second most intense band) appears to 

correspond to part of the ADHE protein.  It is hypothesised that this band corresponds 

to the ADH domain of the protein due to the low sequence coverage observed over the 

N-terminal region.  A low level of Cpn60 (the chaperonin used in the Arctic express 

strain) also appears to co-purify with the protein of interest.   

 

The role of Cpn60 in this expression strain is to act as an aid to protein folding, and 

interactions between this protein and the ADHE protein may explain the co-elution of 

the two proteins following nickel-affinity purification.  A susceptibility within the linker 

region of the two domains to degradation may explain the number of co-purifying 

protein bands observed for both the recombinant and native ADHE proteins, although 

protease inhibitors (no EDTA) were present during their purification.   

 

The recombinantly-produced ADHE protein in this section of the project has been 

shown to be catalytically active with both ADH and aldDH activities present in the 
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partially-purified protein samples.  Both these activities do differ significantly from the 

ADHE enzyme partially isolated from TM242 cell extracts.   

 

The aldDH activity of the recombinant protein was significantly lower than that 

observed for the native protein assuming equal purity (1.7 U mg-1 and 6.22 U mg-1, 

respectively, for the partially-purified proteins).  The loss of activity due to the predicted 

oxygen sensitivity of this protein observed for the native protein may also explain the 

lower levels of aldDH activity observed for the recombinant protein.  Reducing agents 

were not included in the metal-affinity chromatography purification due to the problems 

caused by reduction of nickel ions on the column.  Assays of the cell extract 

immediately post cell lysis also showed a relatively low aldDH compared to the ADH 

activity.   

 

This relatively low specific activity observed for the aldDH domain, along with the 

activity lag seen in enzyme assays, suggests this domain of the protein may not be 

correctly/fully folded when produced using the E. coli expression strains used in this 

work.  It should also be noted that the growth of the E. coli strains was under aerobic 

conditions (500 ml medium in 2.5 L baffled flasks with 250 rpm shaking), whereas the 

native material was from anaerobically grown cells.  This may also have a significant 

effect on the activity/stability of the aldDH domain of ADHE.  The apparent requirement 

of the recombinant aldDH domain of the protein for pre-incubation prior to an increased 

enzymatic rate may also be due to the low temperature of expression used (12°C) 

when producing the protein recombinantly.   

 

The non Michaelis-Menten kinetics observed for the ADH in the native protein 

experiments were not observed for the recombinantly-produced protein, confirming that 

this effect was due to the presence of a second ADH activity.  The activity observed for 

the ADH domain was higher than that observed for the native protein (91.4 U mg-1 and 

51.5 U mg-1, respectively, in the partially-purified samples).  The difference here is less 

significant than that observed for the aldDH domain and is likely to be due to 

differences in protein purity.  A significant difference in the Km for acetaldehyde (80 mM 

in native, 201 mM for the recombinant) was observed between the differently produced 

ADHE proteins.  The lack of influence of the “ADH2” protein may go some way to 

explaining the higher Km observed for the recombinant ADHE.  Another possibility is 

that if, as hypothesised, the aldDH domain of this protein is incorrectly folded, it may 

interfere with the ADH domain of the protein, increasing the observed value of Km.   
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The optimum temperature observed for the recombinant enzyme is similar to that 

observed for the native protein.  These results are consistent with the optimum growth 

temperature for the organism of approximately 60°C.   

 

Zinc stimulation of the ADH activity of the recombinant ADHE protein in cell extracts is 

consistent with the stimulation observed for the native protein previously; the variation 

in the magnitude of this effect is likely to be due to differences in protein expression 

conditions.  It is hypothesised that this is not observed for the recombinant protein post 

purification due to its scavenging Ni2+ ions from the metal-affinity column, thus limiting 

the activation by additional metal ions due to saturation.  The influence of metal ions on 

the ADH domain of ADHE is further discussed in subsequent chapters.   

 

During the purification of both the native and recombinant ADHE proteins it was 

observed that the protein consistently appeared to elute in the void volume of the gel 

filtration column used for purification.  This provided an estimate of Mr of greater than 

1.3 x 106 which would correspond to a protein complex of larger than 13 ADHE 

polypeptides (9.6 x 104
 per ADHE).  The final section of the chapter is concerned with 

confirming and understanding this observation.   

 

3.5 Investigation into the multimeric assembly of ADHE proteins 

3.5.1 Results 

As discussed in the introduction to this chapter, ADHE has been suggested to be a 

protein capable of forming large multimeric assemblies known as “spirosomes”.  Initial 

observations that ADHE appeared to elute as a large multimeric assembly from a gel 

filtration column, suggested this may also be the case for the ADHE protein from 

TM242.  A series of experiments were carried out in an attempt to confirm this 

hypothesis.   

 

3.5.2 Gel filtration 

As described in Section 3.3.8.2, the native ADHE protein appeared to elute in the void 

volume of the gel filtration column used under a variety of conditions.   

 

3.5.2.1 Recombinant ADHE 

The recombinant ADHE protein was also run on the gel filtration column following His-

purification: 
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His-purified recombinant ADHE (9 ml) was concentrated down to 2 ml using a Vivaspin 

5K MWCO centrifugal filter device (Sartorius); 1 ml of this concentrated sample was 

loaded onto a pre-equilibrated GE Superdex 200 10/300 GL column run at a flow rate 

of 0.5 ml/min.  The buffer consisted of 60 mM pyrophosphate pH 6.0, 0.1 M KCl, and 

0.1 mM zinc acetate.  Fractions were assayed to identify the peak of ADHE activity.   

 

Figure 3-36: Chromatograph of a recombinant ADHE gel filtration purification.  Blue line = A280nm 
(mAU).  Peak of activity measurements (µmol/min/ml) for both ADH and aldDH are 
overlaid onto corresponding fractions (blue = ADH red = aldDH).  An SDS-PAGE gel of 
the peak fractions is also shown.  (Fraction numbers shown on gel M = markers 
(Mr/1000), predicted His-tagged-ADHE band (Mr = 98,456) is highlighted with a blue 
arrow).   

 

As shown in Figure 3-36, the recombinant ADHE protein also eluted in the void volume 

of the column.   

 

3.5.2.2 Superose 6 gel filtration of native ADHE 

The partially-purified native protein was also run on a Superose 6 10/300 GL gel 

filtration column (GE healthcare), which has a higher exclusion limit (4 x 107) than the 

Superdex 200 column (1.3 x 106).  0.6 ml of concentrated gel filtration sample was 

loaded onto a pre-equilibrated GE Superose 6 10/300 GL column run at a flow rate of 

0.3 ml/min.  The buffer consisted of 50 mM EPPS pH 8.0, 5 mM EDTA and 10% (v/v) 

glycerol.  Fractions were run on SDS-PAGE gels to confirm the presence of the ADHE 

protein.   

 

Fractions A7-11 (corresponding to the peak of ADHE) were pooled and concentrated 

for analysis by dynamic light scattering.   
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Figure 3-37: Chromatograph of a native ADHE gel filtration on Superose 6 column.  Blue line = 
A280nm (mAU).  An SDS-PAGE gel of the peak fractions is also shown.  (Fraction 
numbers shown on gel: M = markers (Mr/1000); predicted ADHE band (Mr = 96,291) is 
highlighted with a blue arrow).   

 

3.5.3 Dynamic light scattering (DLS) 

In an effort to determine whether the sample was mono-dispersed the concentrated 

pooled sample from Section 3.5.2.2 (0.048 mg/ml) was subjected to dynamic light 

scattering analysis as described in Section 3.2.4.   

 

The DLS analysis showed that the purified protein sample was virtually mono-disperse; 

a small amount of very large particles were observed in the intensity plot but there 

appears to be one dominant protein species present in the sample.  The globular 

protein estimate for this species was 4883.8 kDa.  This estimate assumes that the 

protein is globular in nature and therefore may be inaccurate especially if the 

hypothesised spirosome complexes are present.   
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Figure 3-38: DLS analysis: Both distributions by volume and intensity results are shown; a peak 
value of 33 nm was used for the globular protein estimation.   

 

3.5.4 Nanosight analysis 

Samples of purified native protein (as in Section 3.5.2.2 in the presence of 5 mM GSH) 

and recombinant protein (as in Section 3.4.3) were also subjected to analysis using a 

NanoSight LM10 instrument as described in Section 3.2.5.  To confirm whether any 

large particles observed were indeed the protein of interest, samples were compared to 

buffer only control samples.  Both samples appeared to contain large protein particles 

in the 50-300 nm range.  The peak of the native ADHE was approximately 200 nm, 

whereas that of the recombinant sample was lower at approximately 110 nm.   
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3.5.4.1 Native ADHE 

 

Figure 3-39: Native ADHE NanoSight particle distribution.   

 

3.5.4.2 Recombinant ADHE 

A negative control sample for the recombinant ADHE was made by growing Arctic 

Express© cells (no ADHE construct) in the same way as protein expression cells; 

extracts were produced in the same way as for protein expression i.e. metal-affinity 

purification.  This preparation acted as an expression strain control to ensure it was the 

recombinant protein that was being detected.   

 

Figure 3-40: Recombinant ADHE NanoSight particle distribution.   

 

3.5.5 Electron Microscopy 

Partially-purified ADHE protein (as in Section 3.3.8.2) was used for “spirosome” 

(Bruchhaus and Tannich 1994; Kessler et al. 1992; Matayoshi et al. 1989) visualisation 

attempts using TEM (as in Section 3.2.6).  Protein samples at 23, 50 and 100 µg/ml in 

50 mM EPPS pH 8.0, 5 mM GSH 5 mM EDTA and 10% (v/v) glycerol were used for the 

experiments; 2% Uranyl-Acetate (pH 4) and 2% phosphotungstic acid (pH 8) (PTA) 
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were both tried as negative staining agents for the samples.  The optimum contrast and 

minimal artefacts were observed when using PTA with the 50 µg/ml protein sample.   

 

 

Figure 3-41: Representative TEM images for the ADHE protein samples; possible indications of 
spirosomes are indicated in the figure.  The bar shown indicates 100 nm at the 
magnification used for the images.   

 

The low resolution of the images obtained means these results are not conclusive for 

the presence or absence of spirosomes; there is, however, an indication of larger 

protein structures that appear to be linear in nature.   

 

3.5.6 Dissociation experiments 

Experiments were carried out to determine whether there is a link between the 

assemblies of ADHE particles and enzyme activity.   

 

Anion exchange samples of TM242 cell extracts as in Section 3.3.8.2 were dialysed 

overnight into the gel filtration buffer (50 mM EPPS pH 8.0, 5 mM EDTA, 5 mM GSH, 

and 10% (v/v) glycerol) containing 0 M, 0.5 M and 1 M urea, prior to concentration for 

gel filtration.  The gel filtration stage was then carried out in the standard buffer (with 0 

M 0.5 M or 1 M urea) to determine if the large protein aggregates had dissociated into 

smaller units.  In all these experiments, the characteristic void volume peak in the gel 

filtration run was observed (as in Section 3.3.8.2), corresponding to the large ADHE 

protein assemblies/aggregates suggesting that the multimeric structures had not 

dissociated.   
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A 0 M urea sample was re-run on the gel filtration column prior to overnight dialysis into 

the gel filtration buffer with 4 M urea.  The sample was then concentrated and loaded 

onto the gel filtration column and run with 4 M urea in the running buffer.   

 

 

Figure 3-42: Chromatograph of the TM242 denaturant gel filtration experiment. (A) = 0 M urea 
and (B) = 4 M urea sample.  Blue line = A280nm (mAU).  Peak of activity measurements 
(abs/min) for ADH is overlaid onto corresponding fractions.  An SDS-PAGE gel of the 
peak fractions of the new smaller Mr protein peak is also shown (Fraction numbers 
shown on gel: M = markers (Mr /1000), Load = sample loaded onto column).   

 

A second protein peak corresponding to a smaller Mr species appeared following 

treatment with 4 M urea.  No ADH activity was detected in the new peak.  A small 

amount of ADH activity was detected in the much reduced void volume peak.   

 

It would appear that treatment with high concentrations of denaturant is able to cause 

dissociation of the ADHE particles.  The successfully dissociated form of ADHE 

appeared to be inactivated by the denaturant treatment.  Comparison of the second 

peak retention volume with standard proteins as described in Section 2.12 gave an 

estimate of molecular weight of 188,000 which corresponds to approximately two 

ADHE monomers (96,291).   

 

3.6 Discussion 

Some ADHE proteins have been shown to be capable of forming large multimeric 

assemblies known as “Spirosomes” (Bruchhaus and Tannich 1994; Kessler et al. 1992; 

Matayoshi et al. 1989; Nnyepi et al. 2007).  The role that these multimeric assemblies 

play is not entirely clear but they do appear to be dynamic structures capable of 

responding to the presence of substrates as shown by Kessler et al. (1992).   
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The work carried out in this section of the project provides some evidence that the 

ADHE produced by TM242 may also form these large multimeric assemblies.  Both the 

native and recombinant ADHE proteins were shown by gel filtration to form large 

protein assemblies or aggregates which were eluted in the void volume of the standard 

gel filtration column used.  The Superose 6 column purification was used in an attempt 

to remove other contaminant proteins within the sample prior to light scattering 

analysis, but was not calibrated with standard proteins so could not be used to provide 

further estimates of Mr.   

 

Light scattering analysis with the DLS and NanoSight techniques suggested samples 

contained large particles.  DLS provided an estimate of molecular weight of 4883 kDa 

which would correspond to approximately 50 ADHE monomers (Mr/1000 = 96.3).  

NanoSight analysis suggested a range of particle sizes with a peak of 190 nm for the 

native material and 102 nm for the recombinantly expressed material.  These size 

estimates are of a similar size to those described in the references discussed above, 

which suggests a range of 50-120 nm for the rod like particles (~40 monomers) 

(Kessler et al. 1992).  As the light-scattering techniques are based around globular 

proteins it is not surprising that the observed particle size is larger than expected for 

these potentially “rod-like” protein complexes, estimated by the authors from electron 

microscopy images.   

 

It would appear that the formation of these large multimeric assemblies of proteins is 

required for ADHE activity, as shown through dissociation experiments using urea.  

Dissociation of the multimeric assemblies into protein dimers coincided with the loss of 

activity observed.  Due to the high concentration of denaturant required to dissociate 

the multimers, it should be noted that the tertiary structure of the enzyme itself may 

have been adversely affected by the denaturant, thus causing a loss of activity.  

Further investigation is therefore required to determine if the multimeric assemblies are 

truly required for enzyme function. 

 

It is unfortunate that the images obtained using TEM do not provide high enough 

resolution to confirm the presence or absence of spirosomes in the samples.   

 

3.7 ADHE general discussion 

The characterisation of the ADHE protein from Geobacillus thermoglucosidasius has 

been described when produced from native material and recombinant expression 

strains.  This bi-functional protein possesses both aldDH and ADH activities; it remains 
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unclear from these experiments as to whether both or only one of the activities present 

on the protein are required for ethanol production.   

The aldDH domain of the protein was shown to be relatively unstable compared to the 

ADH domain, especially in terms of oxygen sensitivity.  The aldDH domain of ADHE 

has also been suggested to be unstable when purified from other organisms (Pei et al. 

2010).  Kinetic characterisation of this domain using the NADH based assay suggests it 

may be under the influence of substrate inhibition with respect to acetyl-CoA.  Work 

carried out later in the project using the DTNB assay at pH 6.5, did not appear to be 

subject to this substrate inhibition effect.  This may therefore be an artefact of the 

assay conditions used rather than a property of the enzyme itself.  The aldDH assay 

was shown to be acting as a measure of metabolic flux to ethanol (2 NADH converted 

per CoA-SH released) so the substrate inhibition observed may be due to a limited rate 

of channelling of the acetaldehyde to the ADH domain of the protein.   

 

Estimates of the catalytic efficiencies of the two domains of the ADHE protein are 

outlined in the following summary table: 

 

Activity Substrate 
Vmax 

app
 

(U mg-1) 
Km (mM) 

Vmax 
app/Km 

((U mg-1)/mM) 

TM242 Native ADHE partially-purified 

ADH Acetaldehyde 51.5 79.5 0.7 

AldDH Ac-CoA 6.22 0.006 1065.1 

Recombinant ADHE partially-purified 

ADH Acetaldehyde 70.5 201 0.4 

AldDH Ac-CoA 1.7 0.029 59.3 

TM242 Native “ADH2” partially-purified 

“ADH2” Acetaldehyde 4.26 0.184 23.2 
 

Table 3-10: Summary of catalytic efficiencies for ADHE from native material and partially-
purified recombinant material.   

 

The ratio kcat/Km (or Vmax/Km) is conventionally used to provide a measure of the 

catalytic efficiency of an enzyme for a variety of different substrates.  However, it 

should be used with considerable caution to compare two enzymes acting on the same 

substrate (Eisenthal et al. 2007; Fox and Clay 2009) or, as in Table 3-10, to compare 

the efficiency of, and flux through, two enzymes acting in sequence.  As this measure 

of catalytic efficiency is determined at high concentrations of substrate, the in vivo 

implications of the derived parameter is limited.  The kcat/Km (or Vmax/Km) value 
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determined for two enzymes may be identical, but the rates observed at different 

substrate concentrations may differ substantially due to relative differences in the kcat 

and Km values (Cornish-Bowden and Cardenas 2010).  Without determining the 

intracellular concentrations of the substrates involved, more suitable measures such as 

catalytic competence (Ceccarelli et al. 2008) also cannot be used.   

 

Considering the native ADHE, it would appear that the aldDH is significantly more 

efficient catalytically than the ADH enzyme, even though the Vmax for ADH is 8-fold 

higher.  However, the in vivo flux through the two enzymes will depend on the intra-

cellular concentration of acetyl-CoA and NADH with respect to their Km values, and the 

very high Km of ADH for acetaldehyde may well be overcome by substrate channelling 

between the two enzymes.  A similar argument may apply to the recombinant ADHE, 

where again there is a significant difference in the values of Vmax/Km for the aldDH and 

ADH enzymes.  The over-estimation of aldDH rates in the NADH based aldDH assays 

may also artificially increase the difference between the two activities.   

 

Of the work carried out on ADHE enzymes from other organisms, a majority has 

focussed on confirming the presence and activity of the protein rather than full kinetic 

characterisation (Chen et al. 2004; Fontaine et al. 2002; Nair et al. 1994; Peng et al. 

2008).  Specific activities under defined conditions are commonly quoted, but specific 

kinetic parameters are not.  Of those that do quote kinetic parameters, some of the 

assays have been carried out in the non-physiological direction (Membrillo-Hernandez 

et al. 2000).  Bruchhaus et al (1994) and Espinosa (2001) determined the kinetic 

parameters for the enzyme from E. histolytica in the physiological direction (Bruchhaus 

and Tannich 1994; Espinosa 2001).  Bruchhaus et al (1994) determined the Km values 

for the ADH to be 0.15 mM (acetaldehyde) and 0.05 mM (NADH), whereas the aldDH 

values are 0.015 mM (acetyl-CoA) and 0.18 mM (NADH) (comparable values were 

obtained by Espinosa et al (2001)).  The relative activities stated for partially-purified 

protein were ADH 233 U mg-1 and aldDH 87 U mg-1.  The Km value obtained for 

acetaldehyde in this project for the ADH domain of the protein is significantly higher 

than that for the E. histolytica enzyme.  This may be due to other effects not taken into 

account such as oxygen sensitivity, protein mis-folding, differences between the 

proteins or in the assay conditions used.   

 

Substrate channelling between the two domains may explain the relatively high Km 

values determined for acetaldehyde for the ADH domain of the protein.  Substrate 

channelling can be defined as the passing of the product of one enzyme within a 
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pathway as the substrate to the subsequent enzyme without going via the bulk solution.  

This phenomena is common within metabolic pathways and is discussed in a recent 

review (Zhang 2011).  Many factors have been suggested to be involved in 

channelling, including the proximity of the active sites of the two enzyme activities.  

This may be the case for the ADHE protein with two distinct domains held together by a 

linker region between them.  A particularly important aspect of channelling may be 

when the product of one enzyme may have toxic effects on the organism in which it is 

produced.  Acetaldehyde is a reactive compound that is likely to have a negative effect 

on the cell if high concentrations were allowed to accumulate, and so efficient 

channelling of this compound may be favourable.  If this were the case for ADHE, the 

substrate would be released by the aldDH close to the ADH active site.  The ADH 

would therefore not tend to encounter acetaldehyde free in solution.  Assaying the 

enzyme by adding acetaldehyde to the solution may therefore not be a fair reflection of 

the conditions this domain would normally experience within the cell.   

 

Multimerisation of proteins has also been suggested to be linked to channelling 

(Perham 1975; Schoffelen and van Hest 2011).  The likely formation of large multimeric 

protein assemblies (spirosomes) shown here can be envisaged to play a part in the 

efficient channelling of the potentially toxic intermediate product of the ADHE enzyme.   

 

It is conceivable that it is only the aldDH domain of ADHE that is essential for ethanol 

production in TM242.  The presence of a second ADH activity in the TM242 cell extract 

(when grown anaerobically) and the high Km of the ADHE ADH domain support this 

hypothesis.  Work in the following chapters attempting to resolve the two domains of 

ADHE was carried out with the intention of using any active truncated aldDH fragments 

to test this hypothesis.   

 

The competition between the aldDH of ADHE and the phosphate acetyl-transferase 

(PAT) for acetyl-CoA in TM242 is a key factor in maximising ethanol production by this 

organism (Figure 1-3).  The activity of PAT is being investigated in another PhD CASE 

studentship in conjunction with TMO Renewables; preliminary data suggest that PAT 

may be a more catalytically active enzyme than the aldDH domain of ADHE (Hills, C 

2011 unpublished work).  Other aldDH proteins are annotated within the 

G. thermoglucosidasius genome; later parts of this project were focused on identifying 

a more stable/catalytically active aldDH activity from these proteins.   
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It would appear that the ADH activity of ADHE is positively affected by the presence of 

various divalent metal ions.  The influence of these metal ions is further investigated in 

subsequent chapters of this thesis.   

 

In conclusion, the ADHE enzyme from TM242 has been characterised and shown to 

possess potential limitations under the conditions used here, in terms of aldDH stability 

and ADH catalytic efficiency.  The presence of a second ADH activity within cell 

extracts of TM242 may overcome the limitations of the ADH domain of ADHE.  The 

protein appears to form large multimeric assemblies as observed for other ADHE 

proteins, but the purpose of these assemblies is currently unresolved.   
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4 ISOLATION AND CHARACTERISATION OF INDEPENDENT ADHE DOMAINS 

 

4.1 Introduction 

The structural interdependence of the two domains of ADHE has been investigated in 

E. histolytica through a series of papers by Stanley’s group.  Their work has shown that 

the two domains of the ADHE protein appear to be structurally independent and are 

able to be expressed individually (Chen et al. 2004; Espinosa 2001).  The 870 amino 

acid protein was successfully resolved into two functional protein fragments.  The 

aldDH activity was found on a fragment containing amino acids 1-446 and the ADH 

activity was isolated on a fragment containing amino acids 417-870.  In the earlier 

paper (Espinosa 2001), aldDH activity was not detected on a fragment containing 

amino acids 1-532; the authors suggested that interference from C-terminal residues 

may be responsible for the lack of activity in this fragment.   

 

The ADH fragment obtained had a significantly lower Km for acetaldehyde and NADH 

than that of the full length protein, suggesting that removing this domain from ADHE 

may affect the kinetic properties of the enzyme.  Given the high value of Km obtained 

for the ADH domain for the protein in Chapter 3, it was hypothesised that this may also 

be the case for the protein from G. thermoglucosidasius.   

 

Alignment scores between the two ADHE proteins show 57% identity with 74% 

similarity (2% gaps).  The experiments carried out here were designed to replicate the 

fragmentation carried out for the E. histolytica ADHE in G. thermoglucosidasius, 

attempting to obtain the minimal functional units required for both aldDH and ADH 

activity from this protein.   

 

The library of protein fragments designed for these experiments is shown in Figure 4-1.  

Fragments were designed around the hypothetical motifs annotated within the ADHE 

sequence.  These motifs were identified using the PROSITE tool (ExPASy) (Sigrist et 

al. 2010) using the tool’s database and searching for known NAD+ binding motifs.   
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Figure 4-1: Overview of fragmentation of ADHE (scale diagram).  Red blocks indicate 
hypothetical NAD

+
 binding sites.  The predicted metal ion binding site 

(AIVDPQFVMTVPKHVTADTGMDVLTHAIE) is also indicated.   

 

The TM400 and TM393 strains were initially used to express the fragments due to the 

potential mis-folding of the aldDH domain in E. coli.  Protein fragments were cloned 

and expressed using the pUCG18-pLDH-pheB construct, a modified version of the 

vector pUCG18 (Taylor et al. 2008).  This modified vector was developed by Bartosiak-

Jentys (Bartosiak-Jentys 2010) specifically for expressing proteins in Geobacillus spp.  

The vector contains the LDH promoter from G. stearothermophilus regulating a 

catechol reductase marker gene pheB.  The pheB gene was excised using the 

restriction enzymes XbaI/SacI and the fragments of interest were cloned in at this point 

using these sites.   

 

Aerobic and micro-aerophilic expression conditions were used for these experiments, 

as expression under the LDH promoter is affected by the level of aeration of a culture 

(Bartosiak-Jentys 2010).  The possibility that active aldDH fragments may be toxic 

under fermentative conditions, due to the accumulation of acetaldehyde, was also a 

consideration.   

 

A selection of fragments was chosen for expression in E. coli, incorporating an N-

terminal His-Tag into the proteins to facilitate protein purification.  The pET28a vector 

and conventional E. coli expression strains were used for these experiments.   
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4.2 Materials and methods 

4.2.1 ADHE fragment cloning 

The pTMO259 construct purified from JM109 cells was used as the DNA template for 

the PCRs for construction of the fragments described here.  These were carried out 

according to the method described in Section 2.3.2.   

 

The primers used to amplify the required protein fragments with the XbaI/SacI 

restriction sites are shown in Table 4-1.  The DNA sequences of the primers used are 

reported in Appendix 1.  AldDH fragment reverse primers incorporated a stop codon 

immediately prior to the SacI restriction site.  An artificial start codon was introduced 

immediately following the XbaI restriction site where required for the ADH fragments.   

 

Protein fragment Forward primer Reverse primer 

Fragment 1 (1-532 aa) GB ADHE Fwd1 GB aldDH Rev1 

Fragment 2 (417-869 aa) GB ADH Fwd1 GB ADHE Rev1 

Fragment 3 (1-446 aa) GB ADHE Fwd1 GB aldDHshort Rev1 

Fragment 4 (1-345 aa) GB ADHE Fwd1 GB 1-345aa Rev1 

Fragment 5 (1-400 aa) GB ADHE Fwd1 GB 1-400aa Rev1 

Fragment 6 (1-505 aa) GB ADHE Fwd1 GB 1-505aa Rev1 

Fragment 7 (1-600 aa) GB ADHE Fwd1 GB 1-600aa Rev1 

Fragment 8 (1-745 aa) GB ADHE Fwd1 GB 1-745aa Rev1 

Fragment 9 (1-800 aa) GB ADHE Fwd1 GB 1-800aa Rev1 

Fragment 10 (517-869 aa) GB 517-869aa Fwd1 GB ADHE Rev1 

Fragment 11 (459-869 aa) GB 459-869aa Fwd1 GB ADHE Rev1 

Fragment 12 (267-869 aa) GB 267-869aa Fwd1 GB ADHE Rev1 

ADHE (1-869 aa) GB ADHE Fwd1 GB ADHE Rev1 
 

Table 4-1: PCR primers used for initial fragmentation of the ADHE protein.   

 

The PCR products for the library of fragments constructed were A-tailed, ligated into 

the pGEM®-T easy vector, ethanol-precipitated and transformed into JM109 cells for 

blue/white screening.  Successful cloning of the fragments was confirmed by DNA 

sequencing.  The fragments in pGEM®-T easy were then digested with XbaI/SacI, gel 

purified and ligated into the previously-digested Geobacillus protein expression vector 

pUCG18-pLDH (replacing the marker gene pheB).  Ligations were transformed into 

JM109 cells, which were then subject to PCR colony screening.  Positive plasmids from 

the PCR screen were screened by restriction digestion with XbaI/SacI, prior to positive 

constructs being sent for DNA sequencing with vector-specific primers.  The pUCG18-

pLDH-fragment vectors were transformed into electrocompetent TM400 and TM393 for 

protein expression trials.   
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4.2.2 Aerobic Geobacillus expression 

Aerobic protein expression trials used the shake flask method described in Section 

2.5.2 at 58°C.   

 

4.2.3 Micro-aerophilic Geobacillus expression 

The following method was used to produce micro-aerophilic protein expression cultures 

of G. thermoglucosidasius: 

 A loop-full of biomass from the required glycerol stock was inoculated into 5 ml 

of pre-warmed (55°C) TTY medium containing 12 µg/ml Kan and allowed to 

grow for 2 h shaking at 220 rpm.   

 This culture was then transferred into 50 ml of pre-warmed (55°C) TTY medium 

containing 12 µg/ml Kan in a 250 ml baffled flask and grown for 16 h shaking at 

220 rpm.   

 A 500 ml Duran bottle containing 550 ml of pre-warmed (55°C) TTY medium 

containing 12 µg/ml Kan, was inoculated with 10 ml of the overnight culture and 

grown for the required time period with shaking at 200 rpm.   

 Cell pellets produced by this method were obtained by centrifugation at 

5300 x g for 20 min (4°C).   

 The supernatant was discarded and the pellets stored at -20°C until required.   

 

4.2.4 Partial purification and sizing of active ADH fragments 

The pI value’s for the active ADH fragments were determined using the ProtParam tool 

to be: 

 Fragment 2  pH 8.73 

 Fragment 11  pH 7.72 

 Fragment 12  pH 7.95 

 

Cell extracts (prepared as described in Section 2.6, but replacing 50 mM EPPS pH 8.0 

with ion-exchange buffer A) were loaded onto two pre-equilibrated ion-exchange 

columns (GE HiTrap 5 ml Q-Sepharose SP for Fragment 2, and GE HiTrap 5 ml Q-

Sepharose HP columns for Fragments 11 and 12) and run in series at a flow rate of 

1 ml/min.  Proteins were eluted from the columns using a 0-1 M NaCl gradient (in buffer 

A) over a 60 min period.  Fractions were assayed to identify the peak of ADH activity 

prior to pooling the highest activity fractions ready for sizing by gel filtration.   
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Buffer A consisted of 50 mM EPPS, 0.1 mM zinc acetate and 5 mM reduced 

glutathione.  For Fragment 2, the buffer was pH 7.3 and for Fragments 11 and 12 pH 

8.8 was used.   

 

Prior to loading onto a GE Superdex 200 10/300 GL gel filtration column, protein 

samples were concentrated using a Vivaspin 5K MWCO centrifugal filter device 

(Sartorius) and filtered using a Ultrafree centrifugal filter device (0.45 µm) (Millipore).  

The column was run at a flow rate of 0.4 ml/min.  The buffer consisted of 50 mM EPPS 

pH 8.0, 5 mM reduced glutathione, 5 mM EDTA, and 10% (v/v) glycerol.  The elution 

profile of the protein was detected by A280nm and those fractions over which the protein 

eluted were collected and stored on ice.  Fractions were assayed to identify the peak of 

ADH activity prior to SDS-PAGE analysis to confirm the presence of the expected 

fragment.   

 

4.2.5 His-tagged fragment cloning 

Fragments 1, 2, 3 and 11 were selected for recombinant expression in E. coli, using the 

pET28a vector incorporating an N-terminal His-Tag into each fragment.   

 

Protein fragment Forward primer Reverse primer 
Restriction 
sites used 

Fragment 1 
(1-532 aa) 

Fragment 1 (AldDH) F Fragment 1 (AldDH) R NheI/XhoI 

Fragment 2 
(417-869 aa) 

Fragment 2 (ADH) F Fragment 2 (ADH) R NdeI/XhoI 

Fragment 3 
(1-446 aa) 

Fragment 3 (AldDHs) F Fragment 3 (AldDHs) R NheI/XhoI 

Fragment 11 
(459-869 aa) 

Frag11pET28aF Frag11pET28aR NdeI/XhoI 

 

Table 4-2: PCR primers used for amplification of fragments of the ADHE protein selected for 
recombinant expression using pET28a.   

 

Due to an oversight made during primer design for Fragment 1 (discovered late in the 

experimental phase of the project), no stop codon was introduced using the reverse 

primer.  The next in-frame stop codon in this vector was 33 base pairs later on, 

meaning an extra amino acid sequence (APPPPPLRSGC-) was present at the C-

terminus of this fragment.   
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4.3 Geobacillus expression hosts results 

4.3.1 Fragment cloning 

PCR amplified DNA fragments were sized as shown in Figure 4-2; DNA bands of the 

expected size were excised and gel purified.  The fragments were A-tailed and ligated 

into the pGEM®-T easy vector overnight.   

 

Figure 4-2: Agarose gel electrophoresis of PCR products.  Lanes 1-12 = fragments 1-12, A = 
ADHE, M = DNA markers sizes given in kb.  Predicted sizes (kb) of DNA fragments are 
shown below the appropriate lane.   

 

Ligations were ethanol-precipitated and transformed into JM109 cells for blue/white 

screening.  Isolated plasmids were purified from overnight cultures of white colonies 

selected for each fragment.  These plasmids were screened using restriction digestion 

with the appropriate enzymes, and selected positive clones were sent for sequencing.  

Once the fragments were confirmed to be successfully cloned into pGEM®-T easy, the 

DNA fragments were excised using XbaI/SacI and ligated into the previously-digested 

and SAP-treated pUCG18-pLDH vector.   

 

Ligations were ethanol-precipitated prior to transformation into JM109 and screened 

using the Carb resistance marker for E. coli present in this vector.  Representative 

colonies for each fragment were picked for overnight cultures prior to plasmid 

preparation.  Initially, the vectors were screened using restriction digestion (Figure 4-3), 

and positive clones were confirmed by DNA sequencing of the fragments using vector 

specific primers (and internal primers where required).   
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Figure 4-3: Agarose gel electrophoresis of restriction digested pUCG18-pLDH constructs.  
Numbers above = Fragments 1-12, A = ADHE, M = DNA markers sizes given in kb.  
The predicted sizes of the fragments are shown below the respective lane for each 
fragment.  The predicted size of the pUCG-18-pLDH vector is 6.5 kb.   

 

The purified constructs were transformed into TM400 and TM393 electrocompetent 

cells; screening used the Kan resistance marker for Geobacillus spp present in this 

vector.   

 

4.3.2 Fragment expression trials (Geobacillus) 

As discussed in Chapter 3, a low level of ADH activity was detected in cell extracts of 

the TM400 strain without the expression vector present; therefore, only ADH activities 

significantly higher than this background activity are reported here.   

 

4.3.2.1 Aerobic TM400 trial 

Cell extracts for each of the aerobically-grown TM400-fragment strains were produced, 

and the soluble fractions were assayed for enzymatic activities (Figure 4-4) and 

analysed by SDS-PAGE (Figure 4-5).  The protein concentration for any soluble 

fraction displaying enzymatic activity was determined by the Bradford assay.  AldDH 

activity was only detected in the cell extract from TM400-ADHE; even then, this activity 

was very low (0.06 U mg-1).  ADH activity was detected in 4 of the cell extracts tested.  

Fragment 11 displayed the highest activity and corresponds to the smallest functional 

ADH fragment produced.   
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The low level of aldDH activity observed in the aerobically-grown TM400-ADHE strain, 

is likely to be due to the oxygen sensitivity of the aldDH domain.  To confirm this 

hypothesis and to try to improve the level of expression of the fragments, the 

experiment was repeated in anaerobically-grown strains.   

 

Figure 4-4: Assay data for TM400 fragments in the aerobic expression trial.  Only ADH data for 
cell extracts displaying activity are shown. 
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Figure 4-5: SDS-PAGE gel analysis of the aerobic TM400 expression trial samples.  A = ADHE, 
1-12 = fragment numbers, S = soluble fraction, I = insoluble fraction, M = markers 
(Mr/1000).  Red boxes indicate predicted Mr of fragments and possible corresponding 
bands.   

 

4.3.2.2 Anaerobic TM400 trial 

Cell extracts for each TM400 strain grown for 4 h anaerobically were produced.  The 

soluble fractions were assayed for enzymatic activities and analysed by SDS-PAGE.  

The protein concentration for any soluble fractions displaying enzymatic activity was 

determined by the Bradford assay.   
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Figure 4-6: Assay data for TM400 fragments anaerobic expression trial.  Only data for active 
extracts are shown.   

 

AldDH activity was only detected in the cell extract from TM400-ADHE.  ADH activity 

was detected in 4 of the cell extracts with the highest observed being for TM400-

Fragment 11.   

 

 

Figure 4-7: SDS-PAGE gel analysis of the anaerobic TM400 expression trial samples.  A 
= ADHE, 1-12 = fragment numbers, S = soluble fraction, I = insoluble fraction, M = 
markers (Mr/1000).  Red boxes indicate predicted Mr of fragments and possible 
corresponding bands.   
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Protein 
Identity 

ADH specific activity 
(U mg-1) 

AldDH specific activity 
(U mg-1) 

TM400 Aerobic expression 

Fragment 2 0.4 n/a 

Fragment 11 13.8 n/a 

Fragment 12 1.0 n/a 

ADHE 2.8 0.06 

TM400 Anaerobic expression 

Fragment 2 3.7 n/a 

Fragment 11 16.4 n/a 

Fragment 12 1.3 n/a 

ADHE 10.9 3.1 
 

Table 4-3: Summary of specific activity measurements for catalytically-active proteins expressed 
in TM400 grown both aerobically and anaerobically.   

 

Activities of all the active proteins appeared higher under anaerobic expression 

conditions.  In both aerobic and anaerobic expression trials, TM400 Fragment 11 was 

the most active ADH containing cell extract.  The only significant aldDH activity was 

detected in the anaerobically expressed TM400-ADHE.  Several of the fragments were 

produced in the insoluble fraction of the cell extract, whilst others were poorly 

expressed.  Similar results were obtained for expression of the fragments in the TM393 

strain, with no detectable aldDH activity being observed.   

 

4.3.3 Kinetic characterisation of the ADH domain 

As the minimal functional unit of the ADH domain of ADHE, Fragment 11 was 

characterised kinetically in cell extracts of aerobically-grown TM400-Fragment 11 

(using the overnight shake-flask method).  This method was used as the anaerobic 

expression system produced very limited amounts of biomass.  Cell extracts were 

diluted 1 in 10 with the standard cell extract buffer ready for assays.   

 

During the initial protein expression trials, the level of ADH activity in aerobically grown 

TM400 alone was very low (0.05 U mg-1) compared to Fragment 11 (13.8 U mg-1), 

reinforcing the case for the predicted anaerobic expression of the “ADH2”.  Dilution of 

the cell extract coupled with this relatively low activity meant that no ADH2 activity was 

detected in these experiments.   
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Activity Substrate 
Kinetic 

parameter 
Parameter value Units 

ADH Acetaldehyde 
Km 91.4 +/- (2.9) mM 

Vmax (adjusted) 28.3 +/- (1.3) U mg-1 

ADH NADH 
Km 0.04 +/- (0.001) mM 

Vmax (adjusted) 27.3 +/- (0.9) U mg-1 
 

Table 4-4: Kinetic parameters of Fragment 11 in TM400-Fragment 11 cell extracts.   
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Figure 4-8: Michaelis-Menten plot of ADH enzymic activity (U mg
-1

 of protein) versus 
concentration of acetaldehyde (mM) at a fixed concentration of NADH (0.22 mM) in a 
TM400-Fragment 11 cell extract.   

[S]

-100 0 100 200 300 400

[S
]/
v

2

4

6

8

10

12

14

16

18

20

 

Figure 4-9: Hanes-Woolf plot ([S]/v vs. [S]) for the variation of ADH activity (U mg
-1

) with respect 
to concentration of acetaldehyde (mM) in a TM400-Fragment 11 cell extract.  
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Figure 4-10: Michaelis-Menten plot of ADH enzymic activity (U mg
-1

 of protein) versus 
concentration of NADH (mM) at a fixed concentration of acetaldehyde (240 mM) in a 
TM400-Fragment 11 cell extract.   
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Figure 4-11: Hanes-Woolf plot ([S]/v vs. [S]) for the variation of ADH activity (U mg
-1

) with 
respect to concentration of NADH (mM) in a TM400-Fragment 11 cell extract.   

 

The observed Km of the protein fragment is similar to that obtained for the ADH domain 

of the semi-purified ADHE protein which was 79.5 mM (Chapter 3).  This observation 

suggests the absence of the aldDH domain does not significantly affect the activity of 

the ADH domain of the enzyme with respect to acetaldehyde.   
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4.3.4 Protein fragment sizing experiments 

As described in Section 3.5, the ADHE protein appears to form larger multimeric 

protein complexes.  To determine if the aldDH domain is required for this assembly, the 

three functional ADH fragments were partially-purified using ion-exchange 

chromatography prior to sizing by gel filtration (method described in Section 4.2.4).   

 

 

Figure 4-12: Chromatograph of a TM400-Fragment 2 cell extract purification by cation 
exchange.  Blue line = A280nm (mAU), Green line = salt gradient 0-1 M.  Peak of activity 
measurements (abs/min) for ADH is overlaid onto corresponding fractions.   

 

Figure 4-13: Chromatograph of a TM400-ADH Fragment 11 cell extract purification by anion 
exchange.  Blue line = A280nm (mAU), Green line = salt gradient 0-1 M.  Peak of activity 
measurements (abs/min) for ADH is overlaid onto corresponding fractions.   
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Figure 4-14: Chromatograph of a TM400-ADH Fragment 12 cell extract purification by anion 
exchange.  Blue line = A280nm (mAU), Green line = salt gradient 0-1 M.  Peak of activity 
measurements (abs/min) for ADH is overlaid onto corresponding fractions.   

 

To estimate the size of the protein fragments, the pooled peak fractions from ion-

exchange purifications were concentrated and run individually on the gel filtration 

column.  Standard proteins were used to provide an estimate of the sizes of the protein 

species observed by gel filtration.  The estimates of size for the major peaks of activity 

are shown in Table 4-5.   

 

Protein peak identity Velution (ml) Mr Observed Mr Subunit Mr Observed/ Mr Subunit 

Frag 2 

peak 1 8.23* >1,300,000 

50,679 

>26.0 

peak 2 12.93 171,000 3.4 

peak 3 15.13 66,000 1.3 

Frag 11 
peak 1 14.58 84,000 

46,315 
1.8 

peak 2 15.50 56,000 1.2 

Frag 12 
peak 1 14.90 73,000 

67,244 
1.1 

peak 2 16.26 41,000 0.6 
 

Table 4-5: Summary of the ADH fragment sizing by gel filtration.  * This volume corresponds to 
elution in the void volume of the column.   
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Figure 4-15: Summary chromatograph of TM400-fragment gel filtration runs.  Chromatograph 
lines correspond to normalised A280nm readings (mAU).  Peak of ADH activity 
measurements (% activity of maximum) are overlaid onto corresponding fractions (black 
= Fragment 2, red = Fragment 11, blue = Fragment 12).  Peaks used for size estimation 
are indicated with the appropriately coloured arrow.   

 

A peak in the void volume of the column, corresponding to the large protein multimers 

observed for ADHE, was only observed for Fragment 2.  This species was relatively 

low in abundance compared to smaller assemblies (trimers and monomers) within the 

sample.  The absence of the large multimers in Fragment 12 may be due to the large 

portion of the aldDH domain (potentially disordered) present at the N-terminus 

interfering with assembly.  It would appear that the whole ADHE protein is required to 

fully form the large multimeric assemblies observed in Section 3.5.  Fragment 11, the 

smallest functional ADH protein, appeared to form dimers and monomers.   

 

4.4 E. coli expression host results 

To ensure that the lack of detectable aldDH activity was not caused by poor expression 

using the Geobacillus expression system, two of the aldDH fragments (1 & 3) were 

selected for expression in E. coli.  Fragments 2 and 11 (ADH) were also selected for 

recombinant expression to produce greater yields of protein for characterisation and 

structural investigation.  The recombinant expression scheme selected for the proteins 

incorporated a Histidine tag at the N-terminus to facilitate purification of the proteins 

produced.   
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4.4.1 Fragment cloning (pET28a) 

PCR amplified DNA fragments were sized (Figure 4-16), and bands corresponding to 

the expected fragments were excised from agarose gels.  Fragments were gel purified, 

A-tailed and ligated into the pGEM®-T easy vector overnight, prior to ethanol 

precipitation and transformation into JM109 cells for blue/white screening.  Isolated 

plasmids were purified from overnight cultures of white colonies selected for each 

fragment.  These plasmids were screened using restriction digestion with the 

appropriate enzymes.  Positive results were sent for sequencing.   

 

Figure 4-16: Agarose gel electrophoresis of PCR products for His-tagged fragments.  Lanes 1-
11 = Fragments 1-11, M = DNA markers sizes given in kb.   

 

Once the fragments were confirmed to be successfully cloned into pGEM®-T easy, the 

DNA fragments were excised using the appropriate restriction enzymes, prior to ligation 

into the previously-digested and SAP-treated pET28a vector.  Ligations were ethanol 

precipitated prior to transformation into JM109.  Transformants were screened using 

the Kan resistance marker for E. coli present in this vector.  Representative colonies for 

each fragment were picked for overnight cultures prior to plasmid preparation.  Initially, 

the vectors were screened using restriction digestion.  Positive results were confirmed 

by DNA sequencing of the fragments using vector-specific primers.   

 

 

Figure 4-17: Agarose gel electrophoresis of pET28a-Fragments restriction digests.  Numbers 
above = Fragments 1-11, M = DNA markers sizes given in kb.  The predicted sizes of 
the fragments are shown below the respective lane for each fragment.  The predicted 
size of the pET28a vector is 5.4kb.   
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4.4.2 Recombinant protein expression trials 

Purified plasmid constructs were transformed into E. coli protein expression strains 

BL21 (DE3), Rosetta© (DE3) and Arctic Express© (DE3).  The time of exposure to IPTG 

was varied in an effort to optimise protein expression.  Suitable levels of protein 

expression for the ADH fragments were found in BL21 (DE3) cells, following 4.5 h of 

protein expression conditions.  Rosetta© (DE3) cells following 4.5 h of protein 

expression conditions were used for the aldDH fragments.   

 

 

Figure 4-18: SDS-PAGE analysis of Rosetta (aldDH) and BL21 (ADH) fragment protein 
expression trials.  M = markers (Mr/1000), T = total, I = insoluble & S = soluble.  A = 
Fragment 1, B = Fragment 3, C = Fragment 2 and D = Fragment 11.  Predicted His-
tagged-fragment bands are highlighted with blue arrows, and in each case the expected 
Mr/1000 is shown.   

 

4.4.3 Protein purification 

Extracts of cells expressing the recombinant fragments were prepared as described in 

Section 2.6.  The proteins expressed from the pET28a vector possessed an N-terminal 

histidine tag; this allowed purification using metal-affinity chromatography (column 
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charged with Ni2+ according to the method outlined in Section 2.9).  Conditions were 

optimised for the respective fragments and proteins were resolved to differing levels of 

purity.   

 

Figure 4-19: SDS-PAGE analysis of Fragment 1 metal affinity chromatography samples. 1 = 
soluble, 2 = markers (Mr/1000), 3 = flow through, 4 = 0%, 5 = 5%, 6 = 20%, 7 = 40% & 8 
= 100%.  Predicted His-tagged-Fragment 1 band (Mr/1000 = 62.4) is highlighted with a 
blue arrow (% values = %HIS-ELUTE buffer diluted in HIS-BIND buffer).   

 

Figure 4-20: SDS-PAGE analysis of Fragment 3 metal affinity chromatography samples. 1 = 
soluble, 2 = flow through, 3 = markers (Mr/1000), 4 = 0%, 5 = 2.5%, 6 = 30%, 7 = 60% & 
8 = 100%.  Predicted His-tagged-Fragment 3 band (Mr/1000 = 51.2) is highlighted with a 
blue arrow (% values = %HIS-ELUTE buffer diluted in HIS-BIND buffer).   
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Figure 4-21: SDS-PAGE analysis of Fragment 2 metal affinity chromatography samples.  1 = 
soluble, 2 = flow through, 3 = markers (Mr/1000), 4 = 0%, 5 = 5%, 6 = 20%, 7 = 40%, 8 
= 100% & 9 = Pooled 5+20%.  Predicted His-tagged-Fragment 2 band (Mr/1000 = 52.8) 
is highlighted with a blue arrow (% values = %HIS-ELUTE buffer diluted in HIS-BIND 
buffer).   

 

 

Figure 4-22: SDS-PAGE analysis of Fragment 11 metal affinity chromatography samples.  1 = 
soluble, 2 = flow through, 3 = markers (Mr/1000), 4 = 0%, 5 = 2.5%, 6 = 10%, 7 = 30%, 
8 = 60%, 9 = 100%, 10 = 10% diluted & 11 = 30% diluted.  Predicted His-tagged-
Fragment 11 band (Mr/1000 = 48.6) is highlighted with a blue arrow (% values = %HIS-
ELUTE buffer diluted in HIS-BIND buffer).   

 

Fractions containing the protein fragments of interest (assessed by SDS-PAGE and by 

enzyme assays where appropriate) were pooled and dialysed into the buffers used for 

storage overnight at 4°C (Fragments 1, 2 and 3 : 0.2 M phosphate buffer pH 6.0, 0.1 

mM zinc acetate; Fragment 11: 50 mM EPPs pH 8.0, 0.1 mM zinc acetate).   

 

4.4.4 AldDH fragments enzyme assays 

No aldDH activity was detected for any of the protein fragments during the metal affinity 

purification or following dialysis.  Experiments focussed on the well-expressed 

Fragment 3 that corresponds to the active aldDH fragment described by Chen et al. 

(2004) in E. histolytica.  Incubation with DTT (1 mM) did not have any effect on the 
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activity of the protein and no activity was detected in assays in the reverse direction 

(acetaldehyde to acetyl-CoA).  The N-terminal tag was removed using the thrombin 

cleavage site present in this expression system, in case it was interfering with the 

activity of the protein. 

 

The tag was cleaved using a thrombin cleavage kit according to the manufacturer’s 

instructions, (Novagen) using 0.04 U of thrombin to 0.2 mg of purified Fragment 3 for 

6 h at 20.5°C.  The protein was run on a metal affinity column and eluted in the flow-

through (as confirmed by SDS-PAGE).  No activity was detected following the cleavage 

of the tag in the pre or post metal affinity column samples.   

 

Co-assaying of the ADH Fragment 2 with Fragment 1 and 3 in a 1:1 ratio was also 

attempted, to see if the presence of the ADH domain was needed for aldDH activity to 

be restored.  AldDH activity was not detected in these assays.   

 

4.4.5 ADH fragments enzyme assays 

ADH activity was detected for both recombinantly expressed protein fragments 

following dialysis into storage buffers.  Kinetic characterisation of the two fragments 

was carried out.   
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Figure 4-23: Michaelis-Menten plot of ADH enzymic activity (U mg
-1

 of protein) versus 
concentration of acetaldehyde (mM) at a fixed concentration of NADH (0.22 mM) for 
partially-purified recombinant Fragment 2.   
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Figure 4-24: Hanes-Woolf plot ([S]/v vs. [S]) for the variation of ADH activity (U mg
-1

) with 
respect to concentration of acetaldehyde (mM) for partially-purified recombinant 
Fragment 2.   
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Figure 4-25: Michaelis-Menten plot of ADH enzymic activity (U mg
-1

 of protein) versus 
concentration of NADH (mM) at a fixed concentration of acetaldehyde (200 mM) for 
partially-purified recombinant Fragment 2.   
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Figure 4-26: Hanes-Woolf plot ([S]/v vs. [S]) for the variation of ADH activity (U mg
-1

) with 
respect to concentration of NADH (mM) for partially-purified recombinant Fragment 2. 

 

Activity Substrate 
Kinetic 

parameter 
Parameter value Units 

ADH Acetaldehyde 
Km 108.0 +/- (3.8) mM 

Vmax (adjusted) 74.6 +/- (4.8) U mg-1 

ADH NADH 
Km 0.048 +/- (0.003) mM 

Vmax (adjusted) 71.0 +/- (2.8) U mg-1 
 

Table 4-6: Kinetic parameters for purified recombinant Fragment 2 protein.   
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Figure 4-27: Michaelis-Menten plot of ADH enzymic activity (U mg
-1

 of protein) versus 
concentration of acetaldehyde (mM) at a fixed concentration of NADH (0.21 mM) for 
purified recombinant Fragment 11.   
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Figure 4-28: Hanes-Woolf plot ([S]/v vs. [S]) for the variation of ADH activity (U mg
-1

) with 
respect to concentration of acetaldehyde (mM) for purified recombinant Fragment 11. 
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Figure 4-29: Michaelis-Menten plot of ADH enzymic activity (U mg
-1

 of protein) versus 
concentration of NADH (mM) at a fixed concentration of acetaldehyde (240 mM) for 
partially-purified recombinant Fragment 11.   
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Figure 4-30: Hanes-Woolf plot ([S]/v vs. [S]) for the variation of ADH activity (U mg
-1

) with 
respect to concentration of NADH (mM) for purified recombinant Fragment 11. 

 

Activity Substrate 
Kinetic 

parameter 
Parameter value Units 

ADH Acetaldehyde 
Km 121.0 +/- (4.5) mM 

Vmax (adjusted) 430.8 +/- (9.7) U mg-1 

ADH NADH 
Km 0.062 +/- (0.001) mM 

Vmax (adjusted) 427.2 +/- (16.1) U mg-1 
 

Table 4-7: Kinetic parameter summary data for purified recombinant Fragment 11 protein.   

 

Activity Substrate 
Vmax (adjusted)

 

(U mg-1) 
Km 

(mM) 
Vmax/Km 

((U mg-1)/mM) 

Fragment 2 

ADH 
Acetaldehyde 74.6 108.0 0.7 

NADH 71.0 0.048 1479 

Fragment 11 

ADH 
Acetaldehyde 430.8 121.0 3.6 

NADH 427.2 0.062 6890 
 

Table 4-8: Summary of catalytic efficiency calculations for recombinant ADH fragments.   

 

Due to the limited purity of the Fragment 2 protein, Vmax/Km was used as an indication 

of catalytic efficiency for the two recombinant ADH proteins.  As explained in Chapter 

3, comparison of Vmax/Km values should be treated with some caution due to limitations 

surrounding this parameter.  SDS-PAGE gels of the Fragment 2 protein showed the 
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sample to be approximately 80% pure compared to the virtually fully purified Fragment 

11 protein.  Even when the difference in protein purity is taken into consideration, 

comparison of the kinetic parameters determined for the two ADH protein fragments 

showed Fragment 11 to be the more catalytically active of the two proteins.  This 

protein was also expressed at much higher levels by the protein expression strains 

used.   

 

Further characterisation of the isolated ADH domain of the ADHE protein focussed on 

Fragment 11.   

 

4.4.6 Fragment 11 optimum temperature assays 

Temperature optimum assays were carried out on the purified Fragment 11 protein as 

described in Section 2.13.5.   

 

Figure 4-31: Plot of % activity of maximum against temperature (°C) for ADH activity of 
Fragment 11 compared to native ADHE ADH domain (Chapter 3).   

 

The optimum temperature of the recombinant Fragment 11 protein was 53°C.  This is 

lower than that observed for the native ADHE protein ADH domain (64°C), and the 

recombinant ADHE protein (57°C).   

 

4.4.7 Fragment 11 thermo-stability assays 

Thermo-stability assays were carried out on the purified Fragment 11 protein as 

described in Section 2.13.6.  The protein was split into 100 µl aliquots for incubation at 

the desired temperatures.   
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Figure 4-32: Plot of ln % activity of maximum versus time (s) at a defined temperature (°C) for 
ADH activity of Fragment 11.   

 

The half-life of Fragment 11 at 60°C was approximately 10 min.  At 55°C the half-life 

was in excess of 30 min.  Due to the relative impurity of the native ADHE protein 

compared to purified Fragment 11, the thermo-stabilities could not be compared as 

other proteins present in the sample may influence protein thermo-stability.   

 

4.4.8 Estimation of the size of Fragment 11 

Gel filtration was carried out on purified recombinant Fragment 11 (0.6 ml of 11.9 

mg/ml were loaded) in 50 mM EPPS pH 8.0, 5 mM reduced glutathione, 5 mM EDTA 

and 10% (v/v) glycerol.  Assays of ADH activity were used to monitor the presence of 

Fragment 11.  The retention time of the peak of ADH activity was compared to 

standard proteins to provide an estimate of the Mr.   
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Figure 4-33: Gel filtration of recombinant Fragment 11.  Chromatograph line corresponds to 
A280nm (mAU).  Peak of ADH activity measurements (µmol/min/fraction) are overlaid 
onto corresponding fractions.  SDS-PAGE analysis of peak fractions is shown (L = load, 
M = markers (Mr/1000), B1-B9 = protein fractions from gel filtration).  The expected 
Mr/1000 of Fragment 11 is 48.6.   

 

Protein peak identity Velution (ml) Mr Observed Mr Subunit Mr Observed/ Mr Subunit 

Frag 11 peak 1 14.53 86,000 48,609 1.8 
 

Table 4-9: Fragment 11 sizing by gel filtration.   

 

Fractions B3-7 were pooled and analysed by DLS at 20°C as described in Section 

3.2.4, taking into account the viscosity of the buffer used.   

 

 

Figure 4-34: Recombinant Fragment 11 DLS analysis result: distribution by volume.   
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A peak value of 8.49 nm was used for the globular protein estimation.  The purified 

protein sample was shown to be mono-disperse, and the globular protein estimate for 

this species calculated using the instrument software was 99 kDa (2.03 polypeptides).   

 

Both DLS and gel filtration showed that Fragment 11 appears to be dimeric.   

 

4.4.9 Association experiments 

The ADHE protein appears to form large spirosome complexes when produced in the 

full length form.  It is likely that the two domains of the protein interact in this assembly, 

and this may have implications for protein activity.  Fragments 1, 3 and 11 were purified 

using metal affinity columns prior to dialysis into the running buffer for gel filtration (50 

mM EPPS pH 8.0, 5 mM reduced glutathione, 5 mM EDTA and 10% (v/v) glycerol).  

The proteins were run on the gel filtration column individually, prior to incubating 

Fragment 11 1:1 with Fragment 1 or 3 for approximately 20 min on ice.  These protein 

mixtures were then re-run on the gel filtration column looking for any shift in the elution 

volume for the proteins due to association.  No shift was observed for either of these 

protein mixtures suggesting the protein fragments do not associate.   

 

4.4.10 Metal ion stimulation of ADH activity 

Experiments to investigate the effect of zinc ions on ADH activity were carried out as in 

Chapter 3.  As shown in Table 4-10, assays of Fragment 11 activity in unfractionated 

cell extracts (prior to purification) showed ADH activity was stimulated by the addition 

of zinc to the assay.  No ADH activity was detected in a cell extract of a no-vector BL21 

control, grown under similar conditions (with and without zinc in the assays), showing 

the activation to be Fragment 11 specific.  As observed for the recombinant ADHE 

protein in Chapter 3, this modulation of activity was not detected for the post-

purification samples.   

 

Sample 
Metal ion 
(0.1 mM) 

% ADH activity (of activity 
with no metal ions) 

Cell 
extract 

None 100 

Zn2+ 136 

Purified 
Fragment 

11 

None 100 

Zn2+ 102 

 

Table 4-10: Relative effect of metal ions in the assay buffer on the recombinant ADH activity of 
Fragment 11.   
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Samples of the purified Fragment 11 protein were subsequently dialysed overnight at 

4°C into 50 mM EPPS pH 8.0, +/- 1 mM EDTA; a 75% loss in specific activity was 

observed for the EDTA-containing sample, which was not restored upon incubation 

with zinc acetate.  Difficulties with protein stability prevented further investigation of 

metal ion activation.   

 

4.5 Discussion 

Fragmentation of the ADHE protein, using both homologous and recombinant 

expression systems, has successfully resolved the ADH domain of ADHE.  The aldDH 

activity of the ADHE protein could not be resolved independently of the ADH domain.   

 

No active aldDH fragments were obtained using the homologous expression system.  

Most of the aldDH fragments produced were not well expressed, or were produced 

insolubly in the Geobacillus strains used.  It is possible that active aldDH fragments 

may have been toxic to the expressing cells due to the accumulation of acetaldehyde.   

 

Two of the aldDH fragments were also expressed in E. coli.  Despite Fragment 3 being 

well expressed as a soluble protein, neither of these fragments were produced in an 

active form.  This expression was aerobic which may be unfavourable for the aldDH 

activity, considering the previously observed oxygen sensitivity of the aldDH domain of 

ADHE.  The presence of DTT did not appear to activate the aldDH protein fragments.  

Possible interference by the N-terminal tag used during protein expression was also 

tested without successful activation of the aldDH.  The hypothesis that the ADH domain 

may in some way be required to stabilise/activate the aldDH was tested through co-

incubation experiments, but again no aldDH activity could be restored.   

 

As a similar protein from E. histolytica yielded an active aldDH protein fragment, it was 

predicted that a similar result may be observed here.  Alignment scores between the 

two ADHE proteins show 57% identity with 74% similarity, so there are significant 

regions of the proteins that are not homologous.  The differences between the two 

proteins are a possible cause of the differing results.  Key residues from the ADH 

domain could be required for activity/stabilisation of the aldDH domain to retain 

function.  It is likely that such a requirement would be necessary during the protein 

folding stage and may not be restored through co-incubation of the two domains.   

 

Three of the four ADH domain-containing protein fragments of ADHE produced active 

ADH proteins.  Fragment 11 was the smallest functional ADH protein fragment 
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produced.  This was the most catalytically active of the ADH proteins, as well as being 

the protein that had the highest expression level, in both Geobacillus and E. coli 

strains.  The protein appears to be dimeric in nature when produced by both 

expression systems, as shown by gel filtration and DLS experiments.  Larger Mr 

species were observed for Fragment 2 by gel filtration, which were not observed for 

Fragments 11 or 12.  The additional 40 amino acids between Fragments 2 and 11 may 

play a role in the multimeric assembly of ADHE.  The larger portion of the aldDH 

domain present in Fragment 12, may interfere with the association of the ADH domains 

observed for Fragment 2.  A majority of the Fragment 2 protein eluted as smaller 

protein assemblies, i.e. trimers and monomers, so the observed association may be 

weak.   

 

The Km observed for Fragment 11 from TM400 (91 mM), is similar to that observed for 

the partially-purified native ADHE ADH domain (80 mM).  Espinosa et al (2001) 

showed the Km for acetaldehyde decreased for the ADH domain alone compared to the 

full-length ADHE protein.  This was not observed during these experiments for the 

homologously-expressed protein.   

 

There was a significant difference in Km between the TM400 (91.4 mM +/- 2.9) and 

BL21 (121 mM +/- 4.5) produced Fragment 11 proteins.  This may be due to the 

addition of the N-terminal His-tag, as well as the different temperatures used for protein 

expression (58°C & 37°C).  The difference observed in the Km for acetaldehyde for the 

recombinantly expressed Fragments 2 and 11 was relatively small (Fragment 2: 108 

mM +/- 3.8 & Fragment 11: 121 mM +/- 4.5).  The recombinantly-produced protein 

fragments both have a significantly lower Km than the full-length recombinant protein 

produced in Arctic Express® (201 mM +/- 5.9).  The removal of the potentially mis-

folded aldDH domain from the ADHE would appear to have a significant effect on the 

kinetics of the enzyme.   

 

The Topt for the recombinant Fragment 11 (53°C) was lower than the growth 

temperature of TM242 (60°C).  The protein also had a limited thermo-stability around 

this temperature with a half-life at 60°C of approximately 10 min.  The truncation of the 

protein to resolve the ADH domain alone may have made the protein less stable.  This 

could be due to an increased flexibility due to the lack of stabilisation by the aldDH 

domain of the protein.  Although no association between the inactive aldDH fragments 

and Fragment 11 was observed, a physical link between the two domains may be 
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required for such interactions to form.  Structural studies looking at the interactions 

between the two domains of ADHE would allow this theory to be tested further.   

 

The recombinantly produced Fragment 11 protein could be purified to homogeneity at 

high yields, making it suitable for structural studies using X-ray crystallography.  This 

was used in an effort to further investigate this domain of the ADHE protein, in terms of 

protein interactions and key amino-acid residues involved in catalysis.  This work is 

discussed in Chapter 5.   

 

Experiments reported in Chapter 3 and in this chapter suggest that the ADH activity of 

ADHE, although present without additional metal ions in the assay, can be increased 

upon the addition of divalent metal ions such as zinc.  Stimulation was observed in cell 

extracts of TM242, in extracts of ArcX cells expressing ADHE and in extracts of BL21 

cells expressing Fragment 11; however, modulation of activity was not observed for the 

recombinant proteins post metal-affinity purification.  It would appear that the protein is 

capable of scavenging divalent metal ions from the column, thus limiting the stimulation 

of activity during subsequent assays.  A metal ion has been identified in the active site 

of the Fragment 11 protein and is reported in the subsequent chapter describing its 

structural resolution, implying that catalysis may be directly influenced by the presence 

of a divalent metal ion.  The decrease in activity following metal ion stripping with EDTA 

also suggests that the presence of metal ions may have a direct effect on catalysis.   

 

In conclusion, experiments carried out during this section of the project have 

successfully resolved the ADH domain of the ADHE protein, and shown it to be active 

independently of the aldDH.  The minimal functional unit appeared to be 411 amino 

acids in length and form dimers.  ADH fragments appeared to retain the relatively high 

Km for acetaldehyde observed with the ADHE protein.  The aldDH domain remains 

unresolved despite several different sized fragments being tested and attempts at 

reactivation being carried out.   
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5 CRYSTALLISATION OF THE MINIMAL FUNCTIONAL ADH DOMAIN 

(FRAGMENT 11) 

 

5.1 Introduction 

Although several attempts were made, the ADHE protein from G. thermoglucosidasius 

was not crystallised successfully (see Section 5.3).  The presence of a flexible linker 

between the two domains of the protein, limitations in terms of protein purity, and the 

presence of the multimeric spirosome structures are possible explanations for the lack 

of crystallisation screen hits.  The ADH domain of ADHE in isolation was therefore 

investigated.   

 

No published protein structures were available for the ADH domain of an ADHE protein 

at the time this work was carried out.  The smallest functional fragment of ADHE 

corresponding to the ADH domain of the protein was Fragment 11.  This protein was 

highly soluble and purified readily from recombinant expression strains using the N-

terminal His-tag incorporated with the pET28a vector.  Structural analysis of the ADH 

domain of the ADHE protein was carried out in order to elucidate various properties of 

the domain, such as its potential interactions with the aldDH domain of ADHE, the 

presence/absence of divalent metal ions and the catalytic/structural properties of any 

metal ions present.   

 

Also of interest was the recent observation that point mutations in the ADHE protein of 

Clostridium thermocellum can increase the ethanol tolerance of these strains (Brown et 

al. 2011).  Mutations at key residues appeared to reduce ADH activity and switch its 

cofactor specificity from NADH to NADPH.  The structural basis of their work was 

models generated from similar structures (a 1,3-propanediol dehydrogenase from  

Klebsiella pneumoniae (3BFJ) and an iron containing ADH from Thermotoga maritima 

(1O2D)).  Alignments were carried out between the predicted ADH domain of 

C. thermocellum, Fragment 11 and the two proteins used in the paper (Brown et al. 

2011); these showed Fragment 11 to have a much higher sequence identity and 

similarity to the ADH domain of C. thermocellum than the models used. 

 

 

 

 

 



122 

Protein sequence % Identity % Similarity % Gaps 

TM242 Fragment 11 50 70 2 

Klebsiella pneumoniae 
1,3-propanediol dehydrogenase (3BFJ) 

32 48 12 

Thermotoga maritima Fe-ADH (1O2D) 22 42 16 
 

Table 5-1: Alignment scores for Fragment 11 and two protein used in Brown et al. (2011) for 
modelling the ADH domain of C. thermocellum ADHE (residues 455-873).   

 

To better understand the nature of these mutations and the effect they may have in 

TM242, a high resolution crystal structure of Fragment 11 was desirable.   

 

Crystallisation of the non-functional aldDH protein Fragment 3 was also attempted 

during this project; however, these efforts were unsuccessful.   

 

The X-ray crystallography work described here and subsequently in Chapter 7 was 

carried out under the supervision of Dr Susan Crennell (University of Bath).  The author 

wishes to acknowledge assistance with this work, particularly the final refinement 

stages of the described structures.   

 

5.2 Materials and Methods (X-ray crystallography) 

X-ray crystallography is a widely-used technique within protein biochemistry to 

determine the three dimensional structure of the protein of interest.  To obtain a high 

resolution crystal structure of a particular protein, an ordered crystal made up of the 

repeating protein units must be obtained that will adequately diffract X-rays.  These 

diffraction data are used for the determination of the structure of the protein.   

 

For protein crystals to nucleate and grow, the protein and precipitant concentrations, as 

well as other factors i.e. buffer type, concentration of metal ions, pH, temperature and 

precipitant type, must all allow the protein to be under supersaturated conditions.  If 

these conditions are not met then no crystal will form, and the protein will either remain 

soluble or precipitate out of solution (shown in Figure 5-1).   
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Figure 5-1: Theoretical conditions for crystal nucleation and growth.   

 

The conditions required for crystal growth vary from protein to protein and are 

influenced by a wide variety of factors such as temperature, surface charge and 

hydrophobicity.   

 

The method used in this project to achieve supersaturated conditions was vapour 

diffusion.  This technique uses a hanging/sitting drop of protein solution, which is mixed 

in different ratios with the particular precipitant-containing well solution used for the 

experiment.  The drop is suspended above the un-diluted well solution and left to 

equilibrate.  Water diffuses from the drop containing the protein to the undiluted 

solution below, gradually changing the conditions experienced by the protein in the 

drop.  If successful, this allows supersaturation conditions for the protein of interest to 

be met and nucleation followed by crystal growth to follow.  A wide variety of conditions 

are commonly screened for initial crystal “hits”, which are then optimised in an attempt 

to obtain the best conditions for well-ordered crystal growth.   

 

Unless otherwise stated, crystallisation-specific chemicals and consumables used were 

supplied by Molecular Dimensions (UK).   

 

5.2.1 Pre-crystallisation tests 

To ensure the concentration and purity of protein used for crystallisation screens was 

within an appropriate range, protein samples were subjected to the pre-crystallisation 

test (PCT) according to the manufacturer’s instructions (Hampton Research, USA).   
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5.2.2 Crystallisation screens 

Many high-throughput crystallisation screens are commercially available, ranging from 

sparse matrix screens to more complex screens with a variety of different additives 

hypothesised to aid crystal formation.  The preliminary screens performed during this 

project were carried out using a Phoenix crystallisation robot (Art Robbins, UK) in the 

96-well format.  Plates used for this screening employed the sitting-drop method.  

Three drops were normally used per well solution for the screens tested.  The 

proportion of protein to well solution was varied between the drops to maximise the 

potential for reaching supersaturation conditions.  The wells were sealed with plastic 

film prior to incubation at 16°C.   

 

5.2.3 Optimisation of crystallisation conditions 

Hits from the initial high-throughput screening conditions were scaled up to larger drop 

sizes using the hanging drop method in 24-well XRL crystallisation plates, with plastic 

coverslips sealed with vacuum grease.  Drop sizes of 3 µl of a variety of ratios of 

protein to well solution were suspended above 500 µl of well solution in the plates.  

Optimisation was generally based around gradients of pH, precipitant concentration 

and additive concentration depending on the conditions of the best initial hits.  Trays 

were stored at 16°C during the timescale of the experiments.   

 

5.2.4 Data collection 

Unless otherwise stated, data were collected at the Diamond light source (Oxford, UK).  

Crystals were transferred using a cryo-loop from the drop in which they had grown, into 

a fresh drop containing the well solution with the appropriate concentration of cryo-

protectant added.  Crystals were then mounted onto the collection apparatus within a 

stream of nitrogen gas to freeze the crystals.  Data collection is described in the 

appropriate results section of this thesis and was processed using the HKL2000/0.98 or 

Xia2 software packages.   

 

5.2.5 Molecular replacement and model refinement 

BALBES (Long et al. 2008) was used for molecular replacement identifying the best 

structures to use from the PDB.  The model was automatically re-built and refined 

using the ARPwARP programme (Langer et al. 2008).  The COOT software 

programme (Emsley et al. 2010) was used for manual model building, refinement was 

carried out using the Refmac5 programme (CCP4i (Potterton et al. 2003)) and model 

evaluation was carried out using MolProbity (Chen et al. 2010).  The cycle of model 

refinement and evaluation is shown in Figure 5-2.   
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Figure 5-2: Flowchart of model refinement using collected data.   

 

5.2.6 Metal ion analysis 

A Perkin Elmer AAnalyst 100 Atomic Absorption spectrometer was used to investigate 

the presence of zinc and iron within Fragment 11 protein samples.  The instrument was 

calibrated as required with zinc standard solutions at 0.2, 0.4, 1 and 2 parts per million 

or iron standard solutions 2.5, 5 and 7.5 parts per million.  The appropriate dialysis 

buffer was analysed as a protein-free blank prior to sample analysis.  Analysis was 

carried out by Mr Alan Carver (University of Bath).   

 

Protein samples were previously dialysed overnight at 4°C into 50 mM EPPS pH 8.0, 

0.1 mM zinc acetate, prior to dialysis into 50 mM EPPS pH 8.0, with two changes of 

dialysis buffer overnight at 4°C.  Where required, protein samples were diluted in 

dialysis buffer prior to measurements being taken.  The sample was drawn into the 

instrument and allowed to equilibrate until a steady value for ion concentration was 

obtained.  Concentrations of each protein analysed were determined using the A280nm 

method described in Section 2.8.   

 

Samples of protein were also analysed by Scanning Electron Microscope-Energy 

Dispersive X-ray Spectroscopy (SEM-EDS) analysis, using a JSM6480LV scanning 
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electron microscope (JEOL, UK) fitted with an INCA X-ray analyser (Oxford 

instruments, UK).  In this process, the incident electron beam (15keV) is targeted onto 

the sample causing collisions with electrons present in the sample.  X-rays are 

released when some of these displaced electrons are replaced with higher energy 

electrons and excess energy is released as X-rays.  Analysis of the emitted X-rays 

provides an indication of the atoms present within a sample.  Protein samples were 

dried onto graphene-coated sample mounts and the residue was analysed.  The 

instrument was optimised using a copper standard at the same energy settings as the 

samples.  Analysis was carried out by Dr John Mitchels (University of Bath).   

 

5.2.7 Thrombin cleavage of His-Tag 

A thrombin cleavage site was incorporated between the His-tag and the start of the 

Fragment 11 protein sequence when expressed from the pET28a vector.  The tag was 

removed from the purified Fragment 11 protein where required using the following 

method: 

 

The protein purified as in Section 4.4.3 was dialysed overnight at 4°C into 20 mM Tris-

HCl pH 8.4, 2.5 mM CaCl2, 150 mM NaCl and 20 mM imidazole.  The protein was 

digested with 1.2 U mg-1 of thrombin for 16 h at 20°C, prior to re-purifying using metal 

affinity chromatography (replacing the HIS-BIND buffer with the buffer described here 

and the HIS-ELUTE buffer with 20 mM Tris-HCl pH 8.4, 2.5 mM CaCl2, 150 mM NaCl 

and 1 M imidazole).  Fragment 11, which eluted through washing with 0% HIS-BIND 

(i.e. did not bind to the column), was assayed to confirm activity and dialysed into the 

required buffer for subsequent analysis.   

 

5.3 Unsuccessful crystallisation trials 

Samples of the partially-purified native ADHE protein (Section 3.3.8.2) in 50 mM EPPS 

pH 8.0, 0.1 mM zinc acetate, 5 mM GSH and 10% (v/v) glycerol were screened for 

crystallisation.  Structure screen I & II, PGA, JCSG-plus and Proplex screens 

(Molecular Dimensions, UK) in a 1:1 ratio of sample to well solution (300 nl drop size), 

at 2 different protein concentrations (4.45, & 2.51 mg/ml), were used.   

 

No crystal hits were obtained for any of the conditions tested.  A majority of the 

conditions resulted in formation of amorphous precipitates.   

 

The purified His-tagged Fragment 3 protein dialysed into 50 mM Tris-HCl pH 8.0, 150 

mM NaCl, was screened for crystallisation with Structure screen I & II, and PGA 
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screens (Molecular Dimensions, UK) in a 1:1 ratio with well solution (300 nl drop size) 

at 2 different protein concentrations (7.2 & 3.7 mg/ml).  The 7.2 mg/ml sample was also 

screened with the JCSG-plus and Proplex screens (Molecular Dimensions, UK) in a 1:1 

ratio with well solution (300 nl drop size).  A 7.2 mg/ml sample dialysed into 50 mM 

Citric acid buffer pH 6.0, 0.1 mM zinc acetate, was also screened with Structure screen 

I & II, & PGA screens (Molecular Dimensions, UK) in a 1:1 ratio with well solution 

(300 nl drop size).   

 

No crystal hits were obtained for any of the conditions tested.  Granular precipitate was 

commonly observed as well as amorphous precipitate.   

 

5.4 Fragment 11 crystallisation results 

5.4.1 Protein crystallisation  

The purified His-tagged Fragment 11 protein dialysed into 50 mM EPPS pH 8.0, 0.1 

mM zinc acetate, was screened for crystallisation with Structure screen I & II, PGA, 

JCSG-plus and heavy and light twin-pack screens (Molecular Dimensions, UK) in a 1:1 

ratio with well solution (400 nl drop size) at 3 different concentrations of protein (6.3, 

3.3, & 1.8 mg/ml).   

 

The best hit obtained was for the PGA screen well C4 at a protein concentration of 6.3 

mg/ml.  This condition contained 0.1 M sodium acetate pH 5.0, 0.1 M ammonium 

sulphate, 0.3 M sodium formate, 10% (v/v) Peg2K MME and 3% (v/v) poly-glutamic 

acid (PGA-LM).   

 

Optimisation of the conditions employed various gradients of Peg2K MME, PGA-LM, 

pH and protein concentration to obtain the most suitable crystals for X-ray diffraction.  

Crystals producing the best diffraction data were grown at a protein concentration of 

5.4 mg/ml diluted 1:1 with well solution (0.1 M sodium acetate pH 5.0, 0.1 M 

ammonium sulphate, 0.3 M sodium formate, 11.5% (v/v) Peg2K MME, and 3-3.5% (v/v) 

PGA-LM).  The crystals produced were flat and diamond shaped in morphology.  

Crystals took approximately 1 week to appear at 16°C and growth stopped after 2 

weeks; representative crystal forms are shown in Figure 5-3.  Glycerol (30%, v/v) was 

required as a cryo-protectant when the crystals were frozen for data collection.   
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Figure 5-3: Fragment 11 representative crystal forms (scale shown = mm).   

 

5.4.2 Data collection and molecular replacement 

Data were collected at the Diamond light source beam-line I03 at a wavelength of 

0.97625Å.  Data were processed using the Xia2 (Winter 2010) software package.  

Statistics of data collection are shown in Table 5-2.   

 

Parameter Value 

Unit cell dimensions 
a = 73.43 Å  b = 96.28 Å  c = 58.00 Å 

α=β=γ = 90.00° 

Space group P21212 

Rmerge 0.063 (0.618) 

Completeness 99.5 % (99.9) 

I/σI 13.4 (2.0) 

Multiplicity 4.5 (4.6) 

Number of reflections 
used 

66581 (4959) 

Number of unique 
reflections 

14837 (1085) 

Resolution 40.26-2.49 Å (2.56-2.49) 
 

Table 5-2: Fragment 11 data collection statistics (numbers in brackets for highest resolution 
bin).   

 

The processed data were submitted to BALBES, which suggested the structure of 

E. coli lactaldehyde reductase (PDB code 1RRM) be used for molecular replacement 

(99% likely as structure).  The protein sequence of the 1RRM structure is 32% identical 

and 51% similar (8% gaps) to the non-His-tagged Fragment 11 sequence.  This 

0 1 2 3
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solution was submitted to ARPwARP to improve the fit of the model to the X-ray data 

collected.   

 

5.4.3 Data refinement 

Following creation of the model, the data were subjected to a rigid body refinement in 

Refmac5.  At this point in the refinement process, the R factor was 0.2598 and Rfree 

was 0.3184.   

 

The model was subjected to several rounds of refinement and validation, 20 water 

molecules, a sulphate ion, a Zn2+ ion and a glycerol molecule were all added to regions 

of un-modelled density, and the model refinement process continued until the solution 

was judged to be complete.  The final model excluded one loop region in the structure 

(discussed later) as there was not sufficient density for the conformation of this loop to 

be determined.  Statistics for the refined final model are shown in Table 5-3.   

 

Parameter Value 

Number of reflections used 14056 (5% test set) 

Number of protein atoms 3182 

Number of non-solvent atoms 12 

Number of solvent molecules 20 

Mean B-factors (Å2) 

Overall 58.06 

Protein main chain 54.0 

Side chains 60.9 

Water molecules 55.3 

R 0.1728 

Rfree 0.2624 

RMS Bond Length 0.012 Å 

RMS Bond Angle 1.557° 
 

Table 5-3: Final refinement statistics for the Fragment 11 crystal structure.   

 

The structure was further evaluated using MolProbity.   

Parameter Value 

Ramachandran favoured 96% (382/398) 

Ramachandran allowed 99.7% (397/398) 

Ramachandran outliers 0.25% (1/398) 

MolProbity score 2.45 (78th percentile n=6897, 2.49Å ± 0.25Å) 

Clashscore 15.92 (84th percentile n=269, 2.49Å ± 0.25Å) 
 

Table 5-4: MolProbity validation results for Fragment 11.   
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The only Ramachandran outlier present is Thr188, which is located at the end of the 

most mobile loop visible within the structure (loop F in Figure 5-13).  The density 

observed for this loop was of lower quality than the rest of the structure.  Predictions of 

residue conformations could be made from the limited density due to the relatively 

short loop length.  It is not surprising that Thr188 is an outlier due to this limited density.  

However, as the residue is not located within the active site, the implications of this 

residue being an outlier are limited.   

 

 

Figure 5-4: MolProbity Ramachandran analysis of Fragment 11 structure.   

 

5.4.4 Interpretation of the Fragment 11 crystal structure 

5.4.4.1 Overview 

An overview of the Fragment 11 crystal structure is shown in Figure 5-5. 
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Figure 5-5: A cartoon view of the Fragment 11 crystal structure in front and back views.  Red 
spirals = α-helices, yellow arrows = β-strands & Term = terminus.  A metal ion (brown 
sphere), glycerol (purple) and a sulphate molecule (yellow) are also shown in the 
structure.   

 

Fragment 11 is composed of two structural domains.  The N-terminal domain has a 3-

layer (αβα) sandwich or Rossmann fold architecture (CATH code: 3.40.50.1970) typical 

of NAD(P)+ cofactor-binding domains (Rossmann et al. 1974).  The C-terminal domain 

is α-helical with an Up-down Bundle architecture known as a dehydroquinate synthase-

like α-domain (CATH code: 1.20.1090.10).   

 

Poor electron density was observed for one loop region of the protein (F330-E337) so this 

was excluded from the structure.  As shown in Figure 5-6, a gap in the unit cell packing 

can be observed around the missing loop region.  This loop region was likely to be in 

multiple conformations and thus difficult to determine.  No other region of the protein is 

occupying this space.  This implies that the loop had not been cleaved but was 

hypermobile and not occupying one fixed conformation.  Density for the N-terminal His-

tag was also not observed in the data (MGSSHHHHHHSSGLVPRGSHMM).  The last 

methionine in the missing tag is the first coding residue of the ADH domain of ADHE.  

The unstructured flexible nature of the additional tag means it is likely to be in multiple 

conformations and so could not be resolved from the data.   
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Figure 5-6: Cα traces of symmetry-related molecules (orange) surrounding the missing loop 
region in the Fragment 11 structure (green).  Proximal symmetry-related termini are 
indicated as are the termini of the truncated loop.   

 

Positive electron density was observed at the terminal Sγ of Cys409; when the residue 

was changed to an S-hydroxycysteine during refinement, the density fit was much 

improved.  The residue may be readily oxidised through radiation damage caused by 

exposure to high-energy synchrotron radiation.  This modified residue has been 

observed in other high-resolution protein crystal structures within the PDB (292 entries 

(RCSB 2012)).  The residue appears close to the glycerol in the active site but does not 

appear to form interactions with that molecule.   

 

 

Figure 5-7: Electron density map for modified Cys409 (S-hydroxycysteine) showing the improved 
fit, lack of difference density and distance to the “glycerol” in the active site.  Blue map = 
2Fo - Fc (where Fo = Fobserved, Fc = Fcalculated, and F = structural factor) σ level = 1.02, 
negative (red) and positive (green) difference map (Fo – Fc) σ level = 3.0.  Molecules 
are shown in stick form, with carbons in purple, and the glycerol is indicated.   

 

Nloop 
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NTerm 

CTerm  (symmetry related) 

Glycerol 
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5.4.4.2 Dimerization 

During biochemical characterisation of the Fragment 11 protein (Chapter 4), it was 

shown to form dimers by gel filtration and DLS techniques.  It would appear that a 

dimeric structure is also present within the unit cell of the crystals.   

 

The EBI Protein Interfaces, Surfaces and Assemblies service (PISA) was used to 

evaluate the observed interactions between the protein monomers; this analysis 

predicts the most likely physiologically relevant interaction (Krissinel and Henrick 

2007).  Within the unit cell there were 3 possible interactions between Fragment 11 

monomers, and these are shown in Figure 5-8.  Each of these interactions was 

evaluated using PISA, which determined the likelihood of the particular interaction 

being involved in complex formation.   

  

Figure 5-8: Cartoon diagram for the three interactions between Fragment 11 molecules within 
the crystal (front and back views).  Green = molecule A, blue = interaction partner 1, red 
= interaction partner 2, and yellow = interaction partner 3.   

 

Interaction 
# 

# interfacing 
residues Interface 

area (Å2) 
∆iG 

(kcal/mol) 
∆iG 

P-value 
#HB #SB CSS 

A B 

1 49 50 1774.5 -26.9 0.019 20 6 0.563 

2 23 24 844.5 -8.5 0.210 7 0 0.000 

3 13 10 444.0 -0.6 0.697 3 1 0.000 
 

Table 5-5: PISA analysis results summary.  ∆
i
G = solvation free energy gain upon interface 

formation (-ve = hydrophobic interface).  P-value = probability that the decrease in ∆
i
G 

through the interface is not random, where P>0.5 = non-specific and P<0.5 shows 
interface that may be considered interaction specific.  HB = hydrogen bonds formed, SB 
= salt bridges formed.  CSS = complexation significance score, which is a measure of 
interface significance in terms of complex formation (the higher the value between 0 
and 1, the more significant the interface).   
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PISA analysis showed the most significant interface between the monomers was the 

interaction on the N-terminal side of the two proteins (interaction 1).  The dimerization 

interface is shown in Figure 5-9 and key interaction-forming residues are shown in 

Table 5-6.  Interaction 2 is coordinated by an SO4
2- molecule (discussed in 5.4.4.7).  

This is likely to be a crystallisation artefact rather than a physiologically relevant 

interaction.  The PISA scores for interaction 3 are too low to be considered relevant.   

 

Figure 5-9: PISA interface space-filling diagram for interaction 1 (front and back views shown).  
Dark blue = molecule A, light blue = molecule B.  Interface residues are shown in red for 
A and green for B.   
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Hydrogen Bond Forming Residues 
# Molecule A Distance (Å) Molecule B 
1 GLN 25 [N] 2.82 PHE 35 [O] 

2 PHE 27 [N] 2.72 ILE 33 [O] 

3 VAL 29 [N] 3.68 PRO 31 [O] 

4 LYS 32 [NZ] 3.57 GLU 198 [OE1] 

5 ILE 33 [N] 2.88 PHE 27 [O] 

6 TYR 34 [OH] 2.84 ARG151 [O] 

7 PHE 35 [N] 2.79 GLN 25 [O] 

8 TYR 242 [OH] 2.85 ASN 276 [OD1] 

9 LYS 273 [NZ] 2.96 ASP 241 [OD2] 

10 ASN276 [ND2] 2.84 ASP 241 [OD1] 

11 PHE 35 [O] 2.82 GLN 25 [N] 

12 ILE 33 [O] 2.72 PHE 27 [N] 

13 PRO 31 [O] 3.68 VAL 29 [N] 

14 GLU 198 [OE1] 3.57 LYS 32 [NZ] 

15 PHE 27 [O] 2.88 ILE 33 [N] 

16 ARG 151 [O] 2.84 TYR 34 [OH] 

17 GLN 25 [O] 2.79 PHE 35 [N] 

18 ASN 276 [OD1] 2.85 TYR 242 [OH] 

19 ASP 241 [OD2] 2.96 LYS 273 [NZ] 

20 ASP 241 [OD1] 2.84 ASN 276 [ND2] 

Salt Bridge Forming Residues 

1 LYS 32 [NZ] 3.57 GLU 198 [OE1] 

2 LYS 273 [NZ] 3.93 ASP 241 [OD1] 

3 LYS 273 [NZ] 2.96 ASP 241 [OD2] 

4 GLU 198 [OE1] 3.57 LYS 32 [NZ] 

5 ASP 241 [OD1] 3.93 LYS 273 [NZ] 

6 ASP 241 [OD2] 2.96 LYS 273 [NZ] 
 

Table 5-6: Summary of the PISA interface analysis result ([X] = atom identity from annotated 
residue, distance = distance between interacting atoms).   

Schematic diagrams of the individual residues shown to be interacting to form the 

interface between the dimers are shown in Figure 5-10 and Figure 5-11.   

 

 

Figure 5-10: Cartoon diagram for the dimerization interactions between Fragment 11 molecules. 
Green = molecule A, blue = interaction partner 1 (B).  Residues predicted by PISA to be 
involved in hydrogen bonding between the two molecules are coloured (red = A, purple 
= B).  Some regions of the protein are excluded for clarity.   

 

N term (B)  

N term (A)  
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Figure 5-11: Cartoon diagram showing the salt bridges in the proposed dimerization interface 
between Fragment 11 molecules.  Green = molecule A, blue = interaction partner 1 (B).  
Residues forming salt bridges between the two molecules predicted by PISA are 
coloured (blue = A, orange = B).  Some regions of the protein are excluded for clarity.   

 

Analysis showed that the physiologically relevant interaction between the monomers is 

the interaction on the N-terminal side of the proteins.  This interaction is mediated 

through 20 hydrogen bonds and 6 salt bridges.  The interface area for this interaction is 

much larger than for the other interactions and, according to the analysis, much more 

significant.  This dimerization appears to orientate the proteins so the predicted active 

site clefts are pointing outwards away from one another as shown in Figure 5-12.   

 

N term (B) 

N term (A)  
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Figure 5-12: Cartoon diagram for the main interface between Fragment 11 molecules within the 
crystal.  Green = molecule A, blue = molecule B and the active site metal ion is shown 
in brown.  The predicted active site clefts are indicated with black arrows.   

 

5.4.4.3 Visualisation by temperature factor (B-factor) 

Visualising the structure by temperature factor (a measure of the mobility of the 

individual atoms present), allows mobile regions of the structure to be identified.  In the 

following Figures an increasing width and “redness” (on a rainbow scale) of a region 

indicate increased mobility.  It can be observed that the region around the predicted N-

terminal dimerization interface has a limited mobility, whereas some of the outer loop 

regions are significantly more mobile.  The side of the protein where the missing loop 

termini are situated appears to be more mobile than the opposite side.   
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Figure 5-13: Fragment 11 visualised by temperature factor in a view showing the two structural 
domains making up each subunit.  Wider and redder regions indicate increased mobility 
compared to thinner blue regions, which indicate limited mobility.  The visible termini 
(Term) and truncated loops are indicated in the image.  Purple A-F labels correspond to 
loops described in Figure 5-16.   

 

Figure 5-14: Fragment 11 visualised by temperature factor in a view looking down the 2-fold 
axis seen in Figure 5-13.  Wider and redder regions indicate increased mobility 
compared to thinner blue regions, which indicate limited mobility.  The termini (Term) 
and truncated loops are indicated in the image.   
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The most mobile region of the protein visible in the structure is loop F, (Ile183-Pro193), 

which has an average temperature factor of 93.6 Å2 compared to the average of the 

whole molecule of 58.06 Å2.  Loop B (Thr135-Lys161) is the second most mobile region 

and has an average temperature factor of 81.0 Å2.  These loops are significantly more 

mobile than other regions of the protein.  Fragment 11 corresponds only to the ADH 

domain of the ADHE protein.  It is likely some stabilisation may be conferred by the N-

terminal aldDH domain of the protein that is missing in Fragment 11.  The relatively 

large difference observed between R and Rfree for the structure is likely to be due to the 

high temperature factors observed indicating flexibility in these loop regions of the 

protein.   

 

5.4.4.4 Structural alignment between Fragment 11 and homologous structures 

Structural alignments between Fragment 11 and structures suggested by BALBES as 

good molecular replacement models were carried out; this process used the DaliLite 

pairwise protein comparison tool (EMBL) (Holm and Park 2000).   

 

PDB 
code 

(chain ID) 

Source 
organism 

Protein 
description 

Aligned 
residues 

Seq 
ID 

Z-
score 

RMSD 
(Å) 

1RRM (B) E. coli 
Lactaldehyde 

reductase 
366 35 % 47.5 2.3 

3BFJ (A) 
Klebsiella 

pneumoniae 
1,3-propanediol 
oxidoreductase 

377 38 % 54.3 1.8 

1O2D (A) 
Thermotoga 

maritima 

Alcohol 
dehydrogenase,  
iron-containing 

344 30 % 40.3 2.5 

 

Table 5-7: Results of the structural alignment analysis using DaliLite.  Z-Score describes the 
quality of the alignment (if Z-score >20, structures are considered homologous).  RMSD 
is used as a measure of deviation in terms of distance of the Cαs in the aligned 
structures.   
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Figure 5-15: Cα traces of aligned Fragment 11 (purple), 1RRM (red), 3BFJ (green) & 1O2D 
(orange) “front and back” views shown.  Visible termini are indicated as is the truncated 
loop of Fragment 11.   

 

The interior secondary structure regions of the Fragment 11 protein align well with the 

other proteins in the alignments.  The outer loops of the protein are the most divergent 

areas, and these are shown in detail in Figure 5-16.  These loops also correspond to 

the most mobile regions of the protein as shown in Figure 5-13.  The largest 

divergence between Fragment 11 and the other proteins would appear to be around 

the missing loop.  It can be observed from the alignment that the other proteins have a 

much shorter loop in this position.  Although loop F in Figure 5-16 is the most mobile in 

the structure, it appears to be relatively well conserved in the alignment between the 

homologous structures.   

Missing 
loop 

C-Term 
C-Term 

N-Term 
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Figure 5-16: Cα traces of aligned Fragment 11 (purple), 1RRM (red), 3BFJ (green) & 1O2D 
(orange) with the major divergent loop regions annotated.  Residues indicated are from 
the His-tagged Fragment 11 amino acid sequence.  A-F labels correspond to loops 
annotated in Figure 5-13; F = the most mobile loop observed in structure.   

 

Shorter loops can be observed in some regions for the aligned proteins compared to 

Fragment 11.  As 1RRM (E. coli) and 3BFJ (K. pneumonia) both come from non-
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thermophilic organisms, differences in these loops cannot be explained by differences 

in terms of growth temperature.  The key difference between these proteins is the 

expression as individual domains as opposed to the fusion protein in the case of 

ADHE.  This supports the hypothesised role of the aldDH domain in loop stabilisation of 

the ADH domain.   

 

5.4.4.5 Metal ion coordination within the structure 

Strong positive electron density was observed between an aspartic acid (Asp225), three 

histidine residues (His229, His294 and His308) (which are all part of the α-helical domain of 

the protein) and a glycerol molecule.  This density appeared to correspond to an 

octahedrally coordinated metal ion as shown in Figure 5-17.   

 

 

Figure 5-17: Cartoon of metal ion coordination in the Fragment 11 crystal structure.  Red spirals 
= α-helices.  The metal ion

 
and glycerol molecule are indicated.  Coordination distances 

(Å) are given in blue and their direction indicated by the purple dashed lines.  Some 
regions of the structure are excluded for clarity.   

 

Zn2+ and Fe2+ ions were fitted alternately into the observed density and the structure 

refined using Refmac5.  Divalent metal ions were selected as the catalytic activity of 

the ADH domain of ADHE was shown to be stimulated by a variety of divalent metal 

ions.  Zn2+ was used in the enzyme storage buffer used during crystallisation, but other 

proteins with this type of fold have been shown to contain an Fe2+ ion, so this metal ion 

was also considered.   

Metal Ion 

Glycerol 
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Figure 5-18: Electron density map for fitted metal ions.  Blue map (2Fo - Fc) σ level = 1.02, 
negative difference (red) and positive difference maps (green) (Fo – Fc), σ level = ±3.0.  
Amino acids are drawn in stick form with carbon atoms shown in purple.  Grey cross = 
metal ion (Zn

2+
 in A, Fe

2+
 in B).   

 

Negative electron density visible below σ level = -3.5 was observed when a Zn2+ ion 

was introduced.  The Fe2+ ion fitted the observed density better with negative electron 

density only being visible below σ level = -3.0 (Figure 5-18).  The additional electrons 

present in Zn2+ appeared to over-account for the density observed in the structure.   

 

Metal ion coordination analysis of structures in the PDB showed that in catalytic sites 

both Zn2+ and Fe2+ are commonly coordinated by histidine residues (Dokmanic et al. 

2008).  Zn2+ was shown to be more common with coordination number 4 where the 

metal ion is in a structural site, whereas in a catalytic site both coordination number 5 

and 6 are commonly observed.  It should be noted that the number of structural zinc 

sites within the PDB appears higher than catalytic sites.  Fe2+ tends to be coordinated 

with a number of 6 (Dokmanic et al. 2008).  Although this does not allow the metal ion 

in Fragment 11 to be unambiguously identified, it does indicate that Fe2+ or Zn2+ are the 

most likely metal ions to be present in the active site of this protein.   

 

5.4.4.6 Ion analysis 

In an attempt to identify the metal ion present in the protein, ion analysis was carried 

out as described in Section 5.2.6 using Atomic Absorption Spectroscopy.  Initially, this 

was carried out on a purified His-tagged Fragment 11 sample and a ratio of 2.5 zinc 

atoms : 1 polypeptide was observed.  This was higher than would be expected as only 

one metal ion appeared in the Fragment 11 crystal structure.   

 

It has been shown that His-tags on recombinant proteins can be involved in the binding 

of zinc ions (Evers et al. 2008) and therefore thrombin protease was used to 

Zn2+ Fe2+ 

A B 
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specifically remove the tag from Fragment 11 prior to re-analysis.  Thrombin cleavage 

and re-purification was carried out as described in Section 5.2.7 (Figure 5-19).  The 

samples were assayed to check activity was still present and, following dialysis into 

50mM EPPS buffer pH 8.0, were re-analysed.   

 

Figure 5-19: SDS-PAGE analysis of thrombin-cleaved Fragment 11 after metal affinity 
chromatography.  1 = markers (Mr/1000), 2 = load sample, 3 = flow through, 4-6 = wash 
steps where 4 = 0%, 5 = 5%, and 6 = 100% HIS-ELUTE buffer.  The 0% sample was 
selected for dialysis.  The Mr of cleaved Fragment 11 = 46,727.   

 

Atomic Absorption Spectroscopy analysis revealed a ratio of 0.43 zinc atoms per 

protein monomer.   

 

This experiment was repeated in an attempt to determine if iron was present within the 

structure.  No iron was detected within the protein samples tested (thrombin-cleaved 

and un-cleaved), although the sensitivity of the instrument to iron solutions was 

significantly lower than for zinc and levels may have been below those required for 

detection.   

 

Analysis by SEM-EDS for the cleaved and un-cleaved Fragment 11 samples (in buffer 

and H2O) also did not detect any iron within the various samples tested.  Low levels of 

zinc and nickel were detected in some of the samples.  This may indicate that the 

protein is capable of scavenging a range of divalent metal ions.   
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Figure 5-20: Example spectrum from SEM-EDS analysis of cleaved Fragment 11 in H2O.  
Element peaks detected are labelled.  Counts for carbon were up to 1300, but the graph 
is scaled to visualise less abundant peaks.   

 

Fe2+ was not detected during analysis of the protein samples, whereas some Zn2+ was 

detected.  Zn2+ was therefore modelled into the final structure of the protein.  Ion 

analysis indicated less than 1 Zn2+ per polypeptide was present and during refinement 

a fully-occupied zinc atom appeared to over-account for the observed density.  The 

occupancy of the zinc was therefore varied until a reasonable temperature factor for 

the metal ion was obtained.  The average side chain B-factor is 61 Å2 whereas the 

average for the metal coordinating atoms is 58 Å2.  A reasonable B-factor for the metal 

ion was determined to be 59 Å2, which was observed when the occupancy of the zinc 

was reduced from 1 to 0.8.  Partial occupancy by the Zn2+ ion fitted the observed 

density much better, with negative electron density only being visible below σ level 

= -2.7.   
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Figure 5-21: Electron density map for fitted Zn
2+

 ion.  Blue map (2Fo - Fc) σ level = 1.09, 
negative difference (red) and positive difference maps (green) (Fo – Fc), σ level = ±3.0.  
Amino acids are drawn in stick form with carbon atoms shown in purple.  Grey cross = 
Zn

2+
 ion (occupancy = 0.8).   

 

5.4.4.7 Other molecules observed in structure 

Some regions of anomalous positive density were observed in the structure, with the 

highest located close to the coordinated metal ion.  Initially this was modelled by two 

water molecules and then a fragment of PEG; however, glycerol (which was used as a 

cryo-protectant) appeared to fit best when refined into this density.  The molecule 

appears to be interacting with the active-site metal ion (Figure 5-22).   

 

Figure 5-22: Electron density map for fitted glycerol.  Blue map (2Fo - Fc) σ level = 1.02, 
negative difference (red) and positive difference maps (green) (Fo – Fc), σ level = ±3.0.  
Amino acids and glycerol are drawn in stick form, with carbon atoms shown in purple.  
Grey cross = Zn

2+
 ion.  Environment distances for the glycerol are shown.   

 

Although the density fit of the glycerol is not ideal, it appeared to be the best fit of the 

various molecules tested.  An interaction between a terminal OH group and the active-

site metal ion was observed for both the PEG and glycerol molecules when refined into 

the structure.  The terminal alcohol group in glycerol is similar to that of ethanol (Figure 

5-23) and so was considered to be a product mimic for this ADH domain.  This gives an 

Zn2+ 

Metal 

2.47Å 

Glycerol 
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indication as to the location of the active site of the protein between the Rossmann fold 

and the α-helical domain of the ADH.   

 

Figure 5-23: Structures of glycerol and ethanol.   

 

A sulphate ion (present in the crystallisation buffer) was refined into some positive 

difference density next to Lys396, at the interface between the protein and one of the 

symmetry-related molecules (interaction partner 2 in Figure 5-8).  This density was too 

large to correspond to a water molecule and did not appear to be part of the protein 

itself.  The sulphate ion appears to be interacting with the positively-charged side 

chains of two lysines (Lys396 & Lys399) and two arginines (Arg75 & Arg74) from a 

symmetry-related molecule.   

 

Figure 5-24: Electron density map for fitted SO4
2-

.  Blue map (2Fo - Fc) σ level = 1.02, negative 
difference (red) and positive difference maps (green) (Fo – Fc), σ level = ±3.0.  
Molecules are drawn as sticks with carbons in purple and in grey in the symmetry-
related molecule.  Environment distances for SO4

2-
 are shown (Å).   

 

5.4.4.8 NAD+ binding 

Two predicted NAD(P)+ binding motifs (GXGS) are annotated within the Fragment 11 

amino acid sequence.  These motifs appear in the loop regions of the Rossmann fold, 

facing the α-helical domain of the protein that includes the previously-annotated metal 

ion binding motif (Chapter 1).   
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Figure 5-25: Cartoon of NAD(P)
+
 binding motif regions in the Fragment 11 crystal structure, 

shown in top (A) and side (B) views.  Spirals = α-helices, arrows = β-strands & red 
regions = GXGS motifs.  The Zn

2+
 and glycerol present in the structure are indicated.  

Some regions are excluded for clarity.   

 

Attempts to obtain a Fragment 11 structure with cofactor bound were made during data 

collection; the crystals were soaked in a cryo-protectant-well solution containing 0.2 or 

0.04 mM NAD+.  Immediately upon introduction of the crystal to the cofactor-cryo-

protectant mixture, the crystals were observed to crack and no longer diffracted X-rays 

sufficiently.  This is likely to be due to a significant conformational change induced by 

the presence of the cofactor.   

 

The 1O2D structure (Fe-ADH from Thermotoga maritima) contains an NADP+ molecule 

close to the predicted active site of the protein.  As the structure of Fragment 11 aligns 

reasonably well with 1O2D, it is possible to superimpose the NADP+ from 1O2D onto 

Fragment 11 following structural alignment to provide an estimate of where the 

NAD(P)+ cofactor may bind in this structure.  These cofactors differ only with respect to 

the presence/absence of a 2’ phosphate group of the ribose ring closest to the adenine 

ring of the molecule.   

 

Zn2+ 

Glycerol 

A           B 
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Figure 5-26: Cartoon of the NAD(P)
+
 binding motif regions in the Fragment 11 crystal structure 

with a model NADP
+
 superimposed.  Spirals = α-helices, arrows = β-strands & red 

regions = GXGS motifs.  The Zn
2+

 and superimposed NADP
+
 are indicated.  The 2’ 

additional phosphate group present in NADP
+
 is highlighted with a dashed circle.  Some 

regions of the Fragment 11 structure are excluded for clarity.   

 

Modelling the NADP+ from 1O2D provides an indication of the residues that may be 

interacting with NAD(P)+ in the active site of this domain.  It should be noted that, 

without a structure in the presence of NAD(P)+, these predicted interactions cannot be 

determined accurately.  The CONTACT programme (CCP4i) was used to analyse the 

predicted interactions between Fragment 11 and the NADP+.  Hydrogen bonding and 

hydrophobic interactions were observed, and these interactions are compared to those 

observed in 1O2D in the following Tables and Figures.  As the ADH domain of ADHE is 

more specific for NADH than NADPH (Chapter 3), interactions between the protein and 

the 2’ additional phosphate group present in NADP+ were not considered during the 

comparison.   

 

 

 

 

 

 

 

 

 

Zn2+ 
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NADP+ 
Atom 

Frag 11 
Residue 

Frag 11 
Atom 

Distance 
Å 

1O2D 
Residue 

1O2D 
Atom 

Distance 
Å 

N1A 
Thr 213 OG1 2.81 Ser 177 OG 2.69 
Val 214 N 3.23  

N6A 
 

Thr 169 O 2.96 Thr 136 O 2.82 

Phe 210 O 2.52 Tyr 174 O 2.85 
 Ser 177 OG 3.28 

N7A 
 

Thr 169 OG1 3.16 Thr 136 OG1 2.93 

Thr 169 O 3.07  

N7N 
 

Asp 122 OD1 3.98 Asp 100 OD1 2.76 
Thr 178 OG1 3.37 Tyr 147 O 3.07 
Phe 180 O 3.93  

Ser 175 OG 2.8  

O1A  Ser 97 OG 2.68 

O1N 
 

Thr 170 OG1 3.07 Gly 96 N 2.93 
Thr 173 OG1 3.24 Thr 137 OG1 2.65 

O2A 
 

Gly 117 N 3.22 Ser 97 N 3.03 

Gly 118 N 2.87  

O2D  Lys 157 NZ 2.81 

O3D 
 Lys 157 NZ 3 

 Asn 69 OD1 3.28 

O4D Thr 173 OG1 3.07  

O5D 
 

Gly 118 N 3.02 Gly 96 N 3.12 
Thr 173 OG1 2.81  

O7N Thr 178 OG1 3.03 Thr 145 OG1 3.01 
 

Table 5-8: Comparison of NADP
+
 hydrogen bonding residues and distances for Fragment 11 

and 1O2D crystal structures.  NADP
+
 atoms missing interactions are highlighted in red.  

Fragment 11 data based on CONTACT analysis (CCP4i); 1O2D data taken from the 
associated publication (Schwarzenbacher et al. 2004).   

 

 

Figure 5-27: Cartoon of predicted hydrogen bonding between Fragment 11 and NADP
+
 (from 

1O2D) view shows the interface between the N and C terminal domains.  Spirals = α-
helices, arrows = β-strands, blue residues = hydrogen bonding residues, and blue 
dashes = hydrogen bonds.  Some regions of the structure are excluded for clarity.   

 

NADP+ 
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Figure 5-28: Cartoon of predicted hydrogen bonding between Fragment 11 and NADP
+
 (from 

1O2D) view shows NADP
+
 from C-terminal domain side.  Spirals = α-helices, arrows = 

β-strands, blue residues = hydrogen bonding residues, and blue dashes = hydrogen 
bonds.  Some regions of the structure are excluded for clarity.   

 

Most of the key hydrogen bonding interactions in the 1O2D structure 

(Schwarzenbacher et al. 2004) are conserved in Fragment 11, although, three 

interactions with the C-terminal domain are missing.  It appears that the NADP+ 

molecule is not close enough to the C-terminal domain of Fragment 11 to interact in the 

model.  The Rossmann fold is the major NAD(P)+ binding structural motif so these 

interactions would be expected to be highly conserved.  Cofactor-induced structural 

changes are not predicted in the model, yet may have been the cause of crystal 

deterioration on soaking with NAD+, so the C-terminal domain may be closer to the N-

terminal domain when the cofactor is present in the protein.   

 

NADP+ Ring Frag 11 Residue 1O2D Residue 

Nicotinamide 

Thr 173 Thr 140 
His 229 Ile 149 
Phe 285 His 193 

 His 270 

Ribose 1  Thr 140 

Ribose 2  Glu 68 

Adenine 
Met 60 Met 178 
Leu 63 Leu 182 
Val 214  

 

Table 5-9: Comparison of residues interacting hydrophobically with NADP
+
 in the Fragment 11 

model and the 1O2D crystal structure.  The missing interactions between the enzyme 
and the ribose rings of NADP

+
 are highlighted in red.  Fragment 11 data are based on 

CONTACT analysis (CCP4i), while 1O2D data are taken from Schwarzenbacher et al. 
(2004).   

 

NADP+ 
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Figure 5-29: Cartoon of predicted hydrophobic interaction forming residues between Fragment 
11 and NADP

+
 (from 1O2D).  Spirals = α-helices, arrows = β-strands, yellow regions = 

hydrophobically interacting residues with the adenine ring of NADP
+
, and red regions = 

hydrophobically interacting residues with the nicotinamide ring of NADP
+
.   

 

Both the adenine and nicotinamide rings appear to be forming hydrophobic interactions 

with Fragment 11 residues in a similar position to those observed in 1O2D.   

 

 

Figure 5-30: Cartoon of 2’ phosphate of NADP
+
 clashing with Asp57 in the Fragment 11 crystal 

structure.  Spirals = α-helices, arrows = β-strands & purple residue = Asp57.  The 
superimposed NADP

+
 is indicated.  The distance between the Asp side-chain and the 2’ 

phosphate group of NADP
+
 is indicated by a red dashed line (1.9 Å).  Some regions of 

the structure are excluded for clarity.   

 

When the additional 2’ phosphate (absent in NAD+) was not considered, the NADP+ 

cofactor fitted reasonably well into the structure of Fragment 11.  However if NADP+ did 

attempt to bind, Asp57 in Fragment 11 would clash with the 2’ phosphate group of the 

ribose ring sterically and electrostatically (both negatively charged).  In NAD+ the diol 

group of the ribose ring may be stabilised through hydrogen bonding interactions with 

this residue.  Key interactions were also missing in the Fragment 11 model with NADP+ 

Val214

Leu63 

Met60 

NADP+ 

Adenine ring 

Phe285 Thr173 

His229 

Nicotinamide 

ring 

NADP+ 

Asp57 
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around the additional phosphate (coordinated by Ser38 & Ser39 in 1O2D).  The ADH 

domain of ADHE catalyses the conversion of acetaldehyde to ethanol in the presence 

of NADPH at a much lower level (~70% lower activity) than with NADH; it is suggested 

that differences in these residues may be important in distinguishing the nicotinamide 

cofactors.  Significant structural movements may need to occur in the region 

surrounding Asp57 to permit catalysis with NADPH.   

 

5.4.5 N-terminal domain modelling work 

Attempts to structurally resolve the ADHE protein and the aldDH domain were 

unsuccessful.  In silico modelling work was carried out in an effort to predict the 

possible interactions between the aldDH domain and the ADH domain of the ADHE 

protein.  Model creation, evaluation and docking was carried out by Dr Susan Crennell 

(University of Bath), but is reproduced here with permission.   

 

5.4.5.1 Generation of a homology model of the aldDH domain 

A homology model of the aldDH domain of the G. thermoglucosidasius ADHE protein 

was generated using the MODELLER programme (Sali and Blundell 1993).  This was 

based on two homologous structures from within the PDB, 3MY7 (an aldDH domain of 

an ADHE from Vibrio parahaemolyticus) and 3K9D (a probable aldDH from Listeria 

monocytogenes).  Sequence alignment scores for the proteins with the N-terminal 

domain of ADHE are shown in Table 5-10.  The MODELLER programme generated a 

homology model of the aldDH domain of ADHE based on structure-based sequence 

alignments between the proteins; a structural alignment of this model and the two 

homologous structures is shown in Figure 5-31.   

 

Protein sequence % Identity % Similarity % Gaps 

3MY7 46 67 4 

3K9D 41 63 4 
 

Table 5-10: Amino acid sequence alignment scores for residues 1-458 of ADHE with the two 
proteins used for modelling the aldDH domain.   

 

The N-terminal region of the modelled aldDH domain of ADHE appeared to be 

unstructured compared to the homologous proteins used to generate the model.  The 

model was truncated to Val10 for the subsequent docking work to prevent interference 

by this unstructured region.  The C-terminal region of the protein appeared ordered so 

was not truncated.   
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Figure 5-31: Cα traces of the aligned model aldDH domain (purple), 3MY7 (grey) and 3K9D 
(yellow).  A = front view; B = back view.  The termini of the proteins are indicated as is 
Val10 in the modelled aldDH domain.   

 

The protein was modelled as a dimer as observed for the proteins of a similar fold, with 

the C-terminal regions interacting with the interaction partner as shown in Figure 5-32.   

 

 

Figure 5-32: Cartoon diagram of the modelled dimeric aldDH.  Green = molecule A, blue = 
molecule B.  Visible termini in the Figure are indicated.   

 

Two structural domains appear to be present in the aldDH domain of ADHE.  The 

CATH assignment of these domains was assessed using the CATH structural 
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comparison tool.  The N-terminal domain is part of the 3.40.605.10 superfamily 

(aldehyde dehydrogenase; chain A, domain 1) and the C-terminal domain is part of the 

3.40.309.10 superfamily (aldehyde dehydrogenase; chain A, domain 2).  The two 

domains both have 3-layer (αβα) sandwich topologies.   

 

Evaluation of the model in comparison to the two homologous proteins used to create it 

(Figure 5-33) showed few significant differences in terms of the energy of the residues 

within the protein.  Any differences that were observed were not above the maximum 

peaks observed for the 3K9D structure, suggesting the model was of reasonable 

quality.   

 

 

Figure 5-33: Modeller evaluation plot of Discrete Optimized Protein Energy (DOPE) score per 
residue for the aldDH model.   

 

The main chain of the model was also evaluated using MolProbity; 891/894 residues 

were in Ramachandran allowed positions, leaving 3 residues as Ramachandran 

outliers.  This shows that a majority of the main chain is modelled in an energetically 

favourable conformation.  This evaluation suggested that the aldDH model structure 

was suitable for use in investigation of protein docking.   

 

5.4.5.2 Docking of the aldDH model and Fragment 11 

The aldDH model dimer was “docked” with the Fragment 11 dimer using three different 

protein interaction prediction programmes.  No restrictions were imposed on the 

modelled interactions in terms of termini locations, or interaction face in an attempt to 

elucidate any biologically relevant interactions without bias.  The three programmes 

used were ClusPro (Comeau et al. 2004), Hex (Ritchie and Kemp 1999) and ZDOCK 
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(Sali and Blundell 1993).  The top-ranked interactions for each of the programmes are 

shown in Figure 5-34 and Figure 5-35.   

 

Figure 5-34: Cartoon overview of the predicted interactions between the modelled aldDH and 
Fragment 11 dimers.  Grey = Fragment 11, brown = modelled aldDH top Hex result, 
blue = modelled aldDH top ClusPro result, and green = modelled aldDH top ZDOCK 
result. 

 

Figure 5-35: Cartoon diagram for the predicted interaction interface between the modelled 
aldDH and Fragment 11 dimers.  Grey = Fragment 11, brown = modelled aldDH top 
Hex result, blue = modelled aldDH top ClusPro result, and green = modelled aldDH top 
ZDOCK result.  Red dashed circles indicate the C-termini of modelled aldDH domains; 
the black dashed circle indicates the N-terminus of Fragment 11.  Pink termini indicate 
the missing loop of Fragment 11.   
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PISA analysis was carried out on the top-rated model from each of the programmes 

used to evaluate the predicted interfaces between the two domains of ADHE.   

 

Model 
generated 

with: 

Interface 
area (Å2) 

∆iG 
(kcal/mol) 

∆iG 
P-value 

#HB #SB 

ZDOCK 2026.5 -16.7 0.452 13 0 

Hex 1798.7 -1.9 0.623 9 6 

ClusPro 1704.4 -6.2 0.99 0 21 
 

Table 5-11: Summary of PISA analysis.  ∆
i
G = solvation free energy gain upon interface 

formation (-ve = hydrophobic interface).  P-value = probability that the decrease in ∆
i
G 

through the interface is not random, where P>0.5 = non-specific, and P<0.5 shows 
interface that may be considered interaction specific.  HB = hydrogen bonds formed, 
and SB = salt bridges formed.   

 

All the programmes independently predicted a similar interaction face between the 

aldDH and ADH domains as shown in Figure 5-35.  These modelling results indicate 

that this face of the ADH domain of the protein is the most likely to be forming 

physiologically relevant interactions in the full ADHE protein with an aldDH domain.   

 

There is no gap in the sequence between the modelled N-terminal aldDH domain and 

the C-terminal ADH domain; the gap between the two termini in the unlinked model 

would therefore be predicted to be short.  The result of the ZDOCK programme 

positioned the aldDH C-terminus 7.4 Å away from the ADH N-terminus while the other 

two, although on the same face were more distant.  This indicates that the modelled 

interaction by this programme may be physiologically relevant for the ADHE protein.  

PISA analysis suggested this model was also the most likely to be physiologically 

relevant although it should be noted that even this model had a relatively high P-value.   

 

5.4.5.3 ZDOCK “ADHE” model interpretation 

As the ZDOCK model gave the most promising docking result, further interpretation of 

the interactions between the modelled aldDH domain and the ADH domain of ADHE 

was based on this model.  This model suggested that the dimerization interactions 

made by the aldDH and ADH domains of a single ADHE may be with different ADHE 

monomers, rather than within the same monomer (Figure 5-36).   
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Figure 5-36: Cartoon overview diagram of the top result for the predicted interaction between 
modelled aldDH and Fragment 11 dimers using ZDOCK.  Dark blue = modelled aldDH 
of ADHE 1, light blue = Fragment 11 of ADHE 1, grey = modelled aldDH monomer, and 
black = Fragment 11 monomer.  The hypothesised link between the C-terminus of the 
aldDH and the N-terminus of Fragment 11 is shown in red.  A schematic diagram in the 
same colour scheme is shown where one ADHE monomer is outlined in red.   

 

 

Figure 5-37: Cartoon diagram of the interface region for the top result for the predicted 
interaction between modelled aldDH and Fragment 11 dimers using ZDOCK.  Dark blue 
= modelled aldDH of ADHE 1, light blue = Fragment 11 of ADHE 1, grey = modelled 
aldDH monomer, and black = Fragment 11 monomer.  The hypothesised link between 
the C-terminus of the aldDH and the N-terminus of Fragment 11 is shown in red.  Red 
circles indicate the termini of the truncated loop in the Fragment 11 structure.   
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The most mobile loop observed in the Fragment 11 crystal structure (loop F) did not 

appear to be directly involved in the modelled interaction with an aldDH domain.  This 

loop may be sufficiently mobile to allow interaction in vivo, but this could not be 

predicted using the model derived here.  The second most mobile loop (loop B) and the 

missing loop region in the Fragment 11 structure are both interacting in the model, 

suggesting these loops may be stabilised through interaction with an aldDH domain.   

 

 

Figure 5-38: ZDOCK modelled interaction between Fragment 11 (visualised by temperature 
factor) and a modelled aldDH domain (grey in cartoon view).  Wider and redder regions 
indicate increased mobility compared to thinner blue regions that indicate limited 
mobility.  Loop labels correspond to those described in Figure 5-16.  The aldDH domain 
predicted to be linked to the Fragment 11 monomer is shown in blue (cartoon view) with 
the termini linked by a red line; the second Fragment 11 monomer is shown in black 
(cartoon view).   

 

The sequence of the missing loop in the Fragment 11 structure is 

KPKKFTAFPKYEYFK (the 8 missing residues in the structure are underlined).  The 

whole loop is positively charged and enriched in aromatic residues.  To identify 

possible stabilising residues at the predicted interface of the two domains, the solvent 

accessible areas for residues of the modelled aldDH dimer were calculated using 

AREAIMOL (CCP4i).  Negatively-charged amino acids (Glu and Asp) and aromatic 

amino acids (Phe, His, Tyr and Trp) that had an accessible solvent area greater than 

20 Å, were mapped onto the protein structure (range of accessible solvent areas 

observed ranged from 0-198 Å).  As shown in Figure 5-39, several negative amino 

acids and aromatic residues are present close to the modelled interface between the 
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missing loop in Fragment 11, and the interacting aldDH monomer.  This indicates the 

positively-charged, aromatic-enriched loop could feasibly be stabilised by residues in 

the interaction area proposed by the model.   

 

 

Figure 5-39: Cartoon diagram of the predicted interaction between the modelled aldDH and 
Fragment 11 dimers using ZDOCK, focussing on the missing loop region of Fragment 
11.  Faded blue = modelled aldDH of ADHE 1, light blue = Fragment 11 of ADHE 1, 
dark grey = modelled aldDH monomer and light grey = Fragment 11 monomer.  The 
hypothesised link between the C-terminus of the ADHE aldDH domain and the N-
terminus of the corresponding Fragment 11 is shown with a black line.  The termini of 
the missing loop of Fragment 11 in ADHE 1 are shown in red.  Residues potentially 
involved in loop stabilisation are shown; dark blue = Tyr, orange = His (N in blue), teal = 
Phe, purple = Glu and green = Asp.   

 

It was not possible to infer the possibility of substrate channelling between the two 

domains of ADHE using the model produced here.  The conserved Cys257 of the aldDH 

domain of ADHE discussed in the Introduction to this thesis was used as the predicted 

active site of the domain.  Figure 5-40 shows the significant distance between the 

active sites of the two domains (approximately 40 Å).  For channelling to occur it would 

be predicted that the active sites would be proximal to one another.  It is possible that 

interactions between the two domains including the missing loop region, may allow 

channelling to occur.  Conformational changes upon substrate binding may also affect 

the potential for channelling, although without a high resolution crystal structure of the 

ADHE protein this cannot be accurately determined.   
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Figure 5-40:  Cartoon overview diagram of the top result for the predicted interaction between 
modelled aldDH and Fragment 11 dimers using ZDOCK.  Dark blue = modelled aldDH 
of ADHE 1, light blue = Fragment 11 of ADHE 1, grey = modelled aldDH monomer, and 
black = Fragment 11 monomer.  The hypothesised link between the C-terminus of the 
aldDH and the N-terminus of Fragment 11 is shown in red.  The predicted active site 
locations of the two domains are indicated with red arrows.  The distance between the 
aldDH Cys257 and the active-site metal ion of the ADH domain is approximately 40Å.   

 

When the interactions predicted between the two domains of ADHE shown in Figure 

5-36 are extrapolated, a helical assembly of ADHE monomers can be observed (Figure 

5-41 and Figure 5-42).  Significant differences exist between this assembly and the 

spirosome structures observed by Kessler et al (1992) by electron microscopy.  These 

authors report a left-handed helix, with 4 subunits per turn, whereas this model is right 

handed with 7 subunits per turn.  Large multimeric assemblies of ADHE monomers 

were also observed during characterisation of the protein in Chapter 3.  Variation in the 

interface angles generated by the model could cause the significant differences 

observed compared to the electron microscopy images.  However, the potential for the 

modelled ADHE to form helical assemblies is an intriguing observation, although 

without a high-resolution structure of the ADHE protein, coupled with an electron 

density map of the spirosome assemblies, the models described remain purely 

speculative.   
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Figure 5-41: Cα trace of ADHE assembly based on the ZDOCK model in side-on view.  Colours 
of the predicted ADHE monomers alternate through the Figure (right to left red-blue-
black-green…).  Approximately 7 monomers make up a whole turn, taking 125 Å to 
complete.   

 

 

Figure 5-42: Cα trace of ADHE assembly based on the ZDOCK model in end-on view.  Colours 
of the predicted ADHE monomers alternate through the Figure (right to left red-blue-
black-green…). 

 

5.5 Discussion 

The ADH domain of the Geobacillus thermoglucosidasius ADHE protein has been 

resolved structurally using X-ray crystallography to 2.49 Å resolution.  The protein has 
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been shown to consist of an NAD+ binding domain (Rossmann fold), and an α-helical 

domain containing residues that are coordinating a metal ion.  This metal ion is likely to 

be catalytic in nature due to its positioning at the interface between the two domains.   

 

The metal ion identified in the structure of Fragment 11 is also present in similarly 

structured proteins in the PDB.  The increased rate of catalysis observed for the ADH 

domain in Chapters 3 & 4 in the presence of divalent metal ions suggests this metal ion 

is likely to be catalytic in nature.  As illustrated in Figure 5-43, the role of the divalent 

metal ion in the active site of the protein is probably to aid polarisation of the 

acetaldehyde carbonyl oxygen, allowing reduction by NADH to proceed.  The identity of 

the metal ion may have an effect on the rate of catalysis due to differences in the 

strength of the polarisation of the carbonyl group.  However, several different metal 

ions may be able to perform this role, the physiologically relevant metal ion present in 

the ADH domain of ADHE has not been unambiguously identified.  Moreover, the 

intracellular conditions within G. thermoglucosidasius may influence the ion identity in 

vivo.   

 

Figure 5-43: Reaction mechanism for the ADH catalysed reduction of acetaldehyde to form 
ethanol in the presence of a divalent metal ion.   

 

Comparison of the Fragment 11 crystal structure to published proteins with similar folds 

in the PDB, showed that the overall protein structures were reasonably conserved 

(Table 5-7).  Differences observed were mainly concentrated around the loop regions 
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of the proteins as shown in Figure 5-15 & Figure 5-16.  Although significant variation in 

loop regions of proteins is common amongst homologous structures, the difference in 

length seen in some of the loops is considerable.  In Fragment 11 the missing loop 

(loop C) is approximately 14 residues longer than the loops observed in 1O2D, 3BFJ 

and 1RRM.  The loop sequence is KPKKFTAFPKYEYFK where missing residues in the 

structure are underlined.  Several aromatic residues are present and the loop is 

positively charged.  If the aldDH domain were to have a corresponding pocket enriched 

in negatively-charged and hydrophobic-residues in which this loop could reside, this 

may form part of a stabilising interaction between the two domains of the protein.  

Without the resolved aldDH domain of ADHE it is not possible to accurately determine 

if such a region exists.  The loop is not close to the active site of the protein so does 

not appear to be directly involved in catalysis.  In silico modelling of Fragment 11 with 

the modelled aldDH domain of ADHE, suggests that a suitable region may exist in the 

interacting aldDH domain of the protein that may act to stabilise this loop.   

 

The unusually high temperature factors associated with several of the loop regions of 

the Fragment 11 protein, coupled with the limited thermostability observed during 

biochemical characterisation (Chapter 4), indicate that some stabilising interactions 

may exist between the two domains of ADHE.  Exposed flexible loop regions within 

proteins can be susceptible to degradation and play a role in the instability of a protein 

at high temperatures (Nagi and Regan 1997).  It is therefore common in the case of 

thermophilic proteins to limit the flexibility of loop regions to enhance stability.  This 

may be through loop shortening (Russell et al. 1997), or by stabilisation of the loops 

through oligomerization (Vieille and Zeikus 2001).  In the case of ADHE it is 

hypothesised that interactions with the N-terminal sister domain may be key to 

stabilising these mobile regions.  It can be postulated that the aldDH domain may be 

orientated to interact with the more mobile side of the protein, thus stabilising the 

mobile loops.  In silico modelling suggests that some of these mobile loop regions may 

be stabilised through interactions with an aldDH domain.  Interestingly, this work 

suggests that such interactions may be inter-molecular, rather than intra-molecular, i.e. 

between different ADHE monomers.  This may also help explain the spirosome 

assemblies that have been observed for ADHE proteins.  Without a high resolution 

crystal structure of the ADHE protein, the hypothesised interactions between the aldDH 

and ADH domains of ADHE proteins cannot be validated.   

 

Modelling of Fragment 11 with the NADP+ molecule from the structurally similar 1O2D, 

provides some indication of residues likely to be interacting with NAD(P)+ during 
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substrate binding.  The actual conformation of the cofactor may differ significantly from 

the model.  Comprehensive identification of key interactions involved in cofactor 

binding would therefore require a high-resolution crystal structure in the presence of 

NAD(P)+.  Although attempts were made to introduce NAD+ into the crystals prior to 

collection of diffraction data, these attempts were unsuccessful.  Co-crystallisation of 

Fragment 11 with NAD+ may allow a high-resolution, cofactor-bound structure to be 

determined.   

 

As discussed in the introduction to this Chapter, a recent publication by Brown et al 

(2011) described the effect of two point mutations (Pro704 to Leu704 and His734 to Arg734) 

within the ADH domain of an ADHE from Clostridium thermocellum.  These mutations 

were shown to convey an increased ethanol tolerance to this organism.  The mutation 

identified as responsible is a histidine (His734) to an arginine close to the active site of 

the protein (see Figure 5-44).  This mutation was shown to convey a 25-fold reduction 

in ADH activity with respect to NADH.  This was coincident with a 5-fold increase in 

specific activity in the presence of NADPH, as well as the increased ethanol tolerance 

of the organism.   

 

It should be noted that in the experiments described by Brown et al (2011), the specific 

activity of the mutated protein with NADPH (0.12 µg/min/mg) remained significantly 

lower than the original specific activity of the un-mutated protein with NADH (2.7 

µg/min/mg).  This shift in cofactor specificity should be considered minor compared to 

the significant decrease in activity observed with NADH.   
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Figure 5-44: Cartoon of NADP
+
 superimposed into the Fragment 11 crystal structure.  Spirals = 

α-helices, arrows = β-strands, magenta residue = Asp57 & orange residue = His298 
(equivalent to His734 discussed in Brown et al (2011).  The superimposed NADP

+ 
and 

active-site metal ion are indicated.   

 

The ADH domain of the C. thermocellum ADHE is 50% identical and 70% similar to 

Fragment 11.  Conserved active site residues were identified through sequence 

alignments, this includes His298 of Fragment 11 which is equivalent to His734 in 

C. thermocellum (residue numbers differ significantly as Fragment 11 is the ADH 

domain only).  Given the significant effects of mutations discussed in Brown et al 

(2011) on the host organism and the enzyme, the results will be interpreted in the light 

of the Fragment 11 crystal structure.   

 

The significant decrease in activity observed may be caused by the introduction of a 

positive charge in the active site region (depending on the pH of the residue 

environment) possibly disrupting interactions with cofactor or the acetaldehyde 

substrate.  A key interaction that may be disrupted is between His298 and Asp407, which 

may have some influence over the conformation of the active site.  The two residues 

are interacting in the Fragment 11 structure as shown in Figure 5-45.  The Asp407 

residue is also conserved in the sequence of the C. thermocellum ADHE (Asp844), so 

the disruption of this interaction through mutation to an arginine may cause the 

changes in activity observed for the protein.  The longer side-chain length may also 

cause disruption of the interaction between the active-site metal ion and the binding 

substrate, resulting in the significant decrease in activity.   

 

NADP+ 

Asp57 

His298 
Zn2+ 
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Figure 5-45: Cartoon of the Fragment 11 crystal structure around the His298 region.  Spirals = α-
helices, arrows = β-strands, orange residues = His298 (equivalent to His734 discussed in 
Brown et al (2011) and Asp407 (equivalent to Asp844 in the C. thermocellum ADHE).  The 
distance between the interacting residues is indicated.   

 

Lactate dehydrogenase is an example of an enzyme where cofactor switching between 

NADH and NADPH has been successfully carried out (Richter et al. 2011; Tomita et al. 

2006).  Richter et al. (2011) highlight a conserved Asp38 residue in the NADH specific 

B. subtilis LDH, and steric and electrostatic clashes with the additional 2’ phosphate 

were suggested to prevent NADPH binding.  This is a common feature that has 

previously been identified as potentially key in distinguishing NAD+ and NADP+ in 

enzyme active sites (Carugo and Argos 1997).  Mutation of a proximal residue (Val39) 

to a large positively charged residue (Arg), was shown to allow (and improve) catalysis 

in the presence of both NADH and NADPH.  This mutation may have significantly 

changed the structural orientation of the originally-clashing loop region, allowing 

interactions with the additional phosphate of NADP+ to form.  Tomita et al (2006) 

showed for the LDH from Thermus thermophilus, that substituting a loop from an 

NADPH dependent malate dehydrogenase (removing the clashing Asp containing 

region), shifted the cofactor specificity of the enzyme.  The mutations required to shift 

the cofactor specificities of these enzymes appear close to the point of interaction of 

the additional phosphate group of NADPH.  However, the cofactor shifting mutations 

described by Brown et al (2011) are not close to the predicted site of interaction 

between the additional phosphate group of NADP+ and the ADH domain of ADHE.   

 

A key residue that may be controlling cofactor specificity in the Fragment 11 protein is 

Asp57.  This residue is also conserved in the C. thermocellum ADHE amino acid 

sequence (Asp494).  Activity of the enzyme with NADP+ may be limited due to the steric 

His298 

Asp407 
2.3 Å 
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and electrostatic clash between the additional phosphate group and the Asp side chain.  

This residue is also likely to be a stabilising influence on the diol of the ribose group 

closest to the adenine ring of the NAD+ molecule.  Given the distance between His298 

and the additional phosphate group (18.4 Å), it is difficult to resolve how the increased 

activity with respect to NADPH is caused by this mutation in the C. thermocellum 

ADHE.  A high-resolution crystal structure of the ADH domain of this mutant protein in 

the presence of NADP+ and NAD+ could provide significant insight as to the effect of 

these mutations on catalysis.  Interestingly, another publication by the same group 

suggests that another ethanol tolerant strain of C. thermocellum showed a mutation in 

this Asp494 residue, although biochemical evaluation of this mutant version was not 

described (Shao et al. 2011).   

 

The effect of the mutations on the host organism’s ethanol tolerance is intriguing, as 

conventional understanding of ethanol tolerance is influenced by cell membrane 

properties (Liu and Qureshi 2009).  Brown et al (2011) suggest a link between electron 

flow and membrane properties that may be influenced by a shift in cofactor specificity 

of metabolic enzymes.  This hypothesis was not further investigated as part of this 

project.   

 

An appealing future direction may be to monitor the effect of targeted mutagenesis of 

the ADH domain of ADHE, in terms of ethanol tolerance and cofactor specificity.  The 

structure determined for Fragment 11 would provide valuable information to determine 

specific target residues for such mutagenesis.  As well as evaluating the effect of 

mutating His298, a potential target for cofactor switching could be Asp57, changing to a 

smaller uncharged residue such as serine or glycine or alternatively, the introduction of 

a positively charged residue such as arginine or lysine, may also facilitate interaction 

with the additional phosphate group of NADPH.   

 

In conclusion, the structure of the ADH domain of the TM242 ADHE protein has been 

successfully resolved during this section of the project.  The dimeric protein appears to 

require stabilisation by the aldDH domain of the protein for optimal thermostability, due 

to the presence of highly mobile loop regions within the structure.  Simulated docking 

experiments have suggested that these interactions may be between different ADHE 

monomers rather than between the two domains of an ADHE protein.  Modelling of an 

NADP+ cofactor into the structure has indicated some key residues likely to be involved 

in cofactor binding.  The presence of a divalent metal ion has been confirmed at the 

active site of the protein.  Analysis of the structure indicates that the loss in activity 
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observed for a mutant of the similar ADHE protein of C. thermocellum (Brown et al. 

2011), may be due to disruption of regions of the protein close to the active site.  The 

basis of the observed change in cofactor preference could not be determined on the 

basis of this structure without bound co-factor.   
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6 IDENTIFICATION & CHARACTERISATION OF OTHER FUNCTIONAL 

ACETYLATING ALDEHYDE DEHYDROGENASES FROM GEOBACILLUS 

THERMOGLUCOSIDASIUS 

 

6.1 Introduction 

Efficient metabolism of acetyl-CoA to acetaldehyde is a key factor in ethanol production 

in TM242.  However, within cell extracts the activity detected for the aldDH domain of 

ADHE was consistently lower than that observed for PAT (Hills, C 2011 unpublished 

work; TMO Renewables 2009 personal communication).  Within fermentative 

metabolism, competition between these two enzymes for the acetyl-CoA was 

suggested as a potential “bottle-neck” in ethanol production.  Characterisation of the 

ADHE protein from TM242 (Chapter 3) showed the aldDH domain to be relatively 

unstable compared to the ADH domain.  This domain also appeared to be subject to 

substrate inhibition, limiting the maximum rate of catalysis.  Assuming the relatively 

high Km for the ADH domain with respect to acetaldehyde may be overcome through 

substrate channelling, the aldDH activity was identified as a potentially limiting step in 

ethanol production.  In vitro evidence suggests that there may be an opportunity to 

optimise the metabolism of acetyl-CoA through the manipulation of the aldDH activity 

within the cell.   

 

Attempts were made to resolve the aldDH domain of ADHE independently of ADH both 

structurally and kinetically (Chapters 4 & 5).  Although soluble protein fragments were 

produced, no activity was detected and the most soluble of these fragments did not 

crystallise under the conditions tested.  Efforts therefore focussed on identifying 

suitable independent aldDH proteins from the TM242 genome.  Such proteins could 

provide a “metabolic boost” in terms of conversion of acetyl-CoA to ethanol, or could be 

used to replace the aldDH domain of ADHE in an attempt to produce a more 

catalytically active/stable protein fusion.  Due to regulations regarding genetically 

modified organisms, it is preferential in a production strain for process applications to 

use genes already present in the organism and manipulate their expression/activity, 

rather than introducing genes from another organism (TMO Renewables 2009 personal 

communication).   

 

This chapter describes the cloning of two acetylating aldDH-encoding genes identified 

in the TM242 genome, and characterisation of the recombinantly expressed enzymes.   
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6.2 Materials and methods 

6.3 Gene identification 

To identify possible aldDH protein coding genes in the TM242 genome, a protein 

BLAST search (of hypothesised gene products) was carried out based on the protein 

sequence of the ADHE protein Fragment 1 (predicted aldDH domain) using the ERGO 

(Integrated Genomics) tool.   

 

6.3.1 AldDH protein cloning 

TM242 genomic DNA (50 ng/µl) prepared by TMO Renewables was used as the DNA 

template for PCR-amplification of the genes described here.  These were carried out 

according to the method described in Section 2.3.2.  The Tm of the primers used was 

higher than for amplification from plasmid DNA so an annealing temperature of 77°C 

was used for these reactions.  The DNA primer combinations used to amplify the genes 

are shown in Table 6-1.  Primer DNA sequences are reported in Appendix 1.  Primers 

incorporated additional bases where required to keep the desired tags in-frame.   

 

Protein 
(expression vector) 

Forward primer Reverse primer 
Restriction 

sites 

EutE 
(pUCG18-pLDH) 

eutEpUCG18F eutEpUCG18R XbaI/SacI 

EutE (pET45b) eutEpET45bF eutEpET45bR KpnI/XhoI 

EutE (pLM303) eutE pLM303 eutEpET45bR KpnI/XhoI 

AcAldDH 
(pUCG18-pLDH) 

GB ACaldDH Fwd1 GB ACaldDH Rev1 XbaI/SacI 

AcAldDH (pET28a) ACaldDH pet28 F1 ACaldDH pet28 rev1 NheI/XhoI 
 

Table 6-1: PCR primers used for the amplification of genes encoding acetylating aldDH 
proteins.   

 

The PCR products were A-tailed, ligated into the pGEM®-T easy vector, ethanol 

precipitated and transformed into JM109 cells for blue/white screening.  Successful 

cloning of the protein-coding genes was confirmed by DNA sequencing.  The genes in 

pGEM®-T easy were then digested with the appropriate restriction enzymes, gel 

purified and ligated into the previously-digested protein-expression vectors.  Ligations 

were transformed into JM109 cells that were then subjected to PCR colony screening.  

Positive plasmids from the PCR screen were screened by restriction digestion with the 

required enzymes, prior to positive constructs being sent for DNA sequencing with 

vector specific primers.   

 

Protein expression vectors were transformed into the desired protein expression strains 

as detailed previously.   
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6.3.2 Maltose binding protein tag 

During experiments with the EutE protein, a maltose binding protein (MBP) solubility 

tag was incorporated at the N-terminus of the protein using the pLM303 vector.  This is 

a non-commercially available vector produced by the Vanderbilt centre for structural 

biology (Nashville TN, USA).  This vector also incorporates a poly-histidine tag at the 

N-terminus of the MBP allowing the MBP-protein fusion to be purified by metal affinity 

chromatography.  The MBP can also act as a purification tag through its interaction 

with amylose resin.   

 

Amylose columns use the affinity of the maltose binding protein tag for maltose 

(amylose), to separate the proteins of interest from other proteins produced by the 

expression strain.  The column was prepared according to the manufacturer’s 

instructions using amylose-agarose resin (NEB).  The column was washed with distilled 

water and equilibrated with HIS-BIND buffer prior to loading of the soluble protein 

fraction onto the column.  The various fractions were collected in separate tubes and 

stored on ice.   

 

The initial fraction eluted was reloaded to ensure that all the tagged protein became 

bound to the column.  Following this, the column was washed with 20 column volumes 

of HIS-BIND buffer to elute any unbound material.  An increasing concentration of 

maltose (in HIS-BIND buffer) was used to elute bound proteins stepwise in order of 

affinity (5 ml elution for each step).  This protocol was adjusted where required to 

maximise the purity of the protein obtained.  Following collection of the fractions, 

samples were taken for SDS-PAGE to confirm the presence and purity of the protein 

product obtained.   

 

A “PreScission” protease site (GE) between the MBP and the target protein allowed 

cleavage of the solubility tag post-purification.   

 

6.3.3 Enzyme assays 

Unless otherwise stated, aldDH NADH assays (Section 2.13.1.2) were used to 

measure enzyme activity.  Assays of the AcAldDH protein showed rapid curvature 

indicative of product inhibition (discussed in the Results section of this chapter); initial 

rates for this enzyme were therefore taken over the first 10-15 seconds of the assay.   

Assays to determine the AcAldDH kinetic parameters in the reverse direction were 

carried out.  These assays used citrate synthase as a coupling enzyme to rapidly 
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regenerate the CoA-SH, allowing accurate kinetic parameters to be determined 

(illustrated in Figure 6-1).   

 

Figure 6-1: Overview diagram of the coupled AcAldDH reverse direction assay.   

 

Chemical 
Stock 
concn 
(mM) 

Volume 
added 

(µl) 

Assay 
concn 
(mM) 

Citric acid buffer pH 6.0 
0.1 mM zinc acetate 

50 864* ~50 

CoA-SH  6.5 50 0.33 

Acetaldehyde 4000 5 20 

NAD+ 10 50 0.5 

Enzyme / cell extract  10  

Oxaloacetate 10 20 0.2 

Citrate synthase 
8.7mg/ml  

(≥100 U mg-1) 
1 0.87 mg 

 

Table 6-2: Reverse direction AcAldDH with citrate synthase assay conditions.   

 *Buffer volume adjusted as required where volume of CoA-SH varied for assays 

 Buffer pre-incubated at 60°C 

 Substrates stored on ice 

 Reaction started with protein sample addition 

 

6.4 Results 

6.4.1 Gene identification 

Two additional aldDH coding genes were identified through the BLAST search of the 

TM242 genome.  These were both annotated as belonging to EC 1.2.1.10 (acetylating 

aldehyde dehydrogenases).   

 

The first protein, known as EutE, was an aldehyde oxidoreductase protein (25% 

identity, 43% similarity, 21% gaps to Fragment 1).  This protein was annotated as a 

EutE protein, the name for which is derived from its involvement in ethanolamine 

metabolism in other organisms (Garsin 2010).  The second, known as AcAldDH, was 

annotated as an acetylating aldehyde dehydrogenase (43% identity, 59% similarity, 
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12% gaps to Fragment 1).  Both these proteins were selected for expression trials and 

characterisation.   

 

The annotated start codon of the eutE gene was TTG; this was changed to the stronger 

start codon ATG for protein expression.   

 

6.4.2 Gene cloning 

The sizes of PCR-amplified DNA fragments for the various expression vectors were 

determined as shown in Figure 6-2; DNA bands of the expected size were excised and 

gel purified.  The fragments were A-tailed and ligated into the pGEM®-T easy vector 

overnight.   

 

Figure 6-2: Agarose gel electrophoresis of PCR products.  1 = eutE for pET45, 2 = eutE for 
pUCG18-pLDH, 3 = eutE for pLM303, 4 = AcAldDH for pUCG18-pLDH, 5 = AcAldDH 
for pET28a.  M = DNA markers with sizes given in kb.  The predicted sizes of DNA 
fragments are shown below the appropriate lane.   

 

Once the genes were confirmed to be successfully cloned into pGEM®-T easy, the 

DNA fragments were excised using the appropriate restriction enzymes, prior to ligation 

into the previously-digested and SAP-treated expression vectors.  Ligations were 

ethanol precipitated prior to transformation into JM109.  Transformants were screened 

using the antibiotic resistance markers for E. coli present in the vectors.  

Representative colonies for each were picked for overnight cultures prior to plasmid 

preparation.  Initially the vectors were screened using restriction digestion.  Positive 

results were confirmed by DNA sequencing using vector-specific primers.   
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Figure 6-3: Agarose gel electrophoresis of expression vector restriction digests.  1 = eutE in 
pET45b, 2 = eutE in pUCG18-pLDH, 3 = eutE in pLM303, 4 = AcAldDH in pUCG18-
pLDH, 5 = AcAldDH in pET28a.  M = DNA markers with sizes given in kb.  The 
predicted sizes of DNA fragments are shown below the appropriate lane.   

 

6.4.3 Protein expression trials and protein purification 

The purified plasmid constructs required were transformed into protein expression 

strains BL21 (DE3), Rosetta© (DE3) and Arctic Express© (DE3) E. coli strains.   

 

6.4.3.1 EutE 

The majority of the His-tagged EutE protein produced appeared to be in the insoluble 

fraction of the cell extracts in the E. coli protein expression strains.  Expression of the 

untagged EutE was also tested in TM242 and TM400 grown both aerobically and 

anaerobically (produced as in Chapter 4), but the protein was still insoluble.  A 

representative gel of the BL21 expression trial is shown in Figure 6-4 (A), where the 

insoluble protein consistently ran at a higher Mr than predicted for the protein.  Low 

levels of aldDH activity were detected in the soluble cell extracts, suggesting that if the 

protein was folded correctly it may be active.  It was decided to use an MBP solubility 

tag (introduced using the pLM303 vector) in an effort to induce soluble protein 
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expression (Kapust and Waugh 1999).  The MBP tag successfully induced soluble 

expression of the EutE protein.   

  

Figure 6-4: Representative SDS-PAGE analysis of BL21 protein expression trials.  A = EutE 
(pET45b) and B = MBP-EutE (pLM303).  M = markers (Mr/1000), T = total, I = insoluble 
& S = soluble (BL21 4.5 h expression shown).  Predicted His-tagged-protein bands are 
highlighted with a blue arrow, and their expected Mr/1000 values shown.   

 

The MBP-EutE fusion protein expressed in BL21 (DE3) (4.5 h induction) was used for 

subsequent experiments (Figure 6-4 B).  The protein was initially purified from soluble 

cell extracts using metal affinity chromatography.  Pooled fractions with the highest 

aldDH activity were then loaded onto the amylose column.  A representative SDS-

PAGE gel for this purification is shown in Figure 6-5.   

 

Figure 6-5: SDS-PAGE gel of MBP-EutE purification.  1-8 = Metal affinity samples, 1 = soluble, 
2 = flow-through, 3 = 0%, 4 = 5%, 5 = 10%, 6 = 20%, 7 = 30% & 8 = 60% (% = % HIS-
ELUTE buffer).  9-13 = amylose purification samples, 9 = load, 10 & 11 = 0 mM 
maltose, 12 = 10 mM maltose, 13 = 20 mM maltose.  M = markers (Mr/1000).   

 

The specific activity observed (using aldDH NADH assays) for the purified MBP-EutE 

fusion protein (sample 12 in Figure 6-5) was 3.2 U mg-1.  The 10 mM maltose elution 

sample was dialysed into HIS-BIND buffer for 6 h at 4°C and the MBP tag was then 
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successfully cleaved using the “PreScission” protease (GE) according to the 

manufacturer’s instructions.  The cleaved MBP protein was unable to be resolved from 

EutE through amylose or metal affinity purifications.  Due to the issues with protein 

solubility and the relatively low observed specific activity for EutE, subsequent 

experimental efforts focussed on the AcAldDH protein.   

 

6.4.3.2 AcAldDH 

The AcAldDH protein was expressed in the soluble cell extract of all the protein 

expression strains tested.  The BL21 (DE3) strain was selected for expression of 

AcAldDH using 4.5 h protein expression (Figure 6-6 A).  The AcAldDH protein was 

purified using metal affinity chromatography as shown in Figure 6-6 B.   

 

Figure 6-6: A = SDS-PAGE analysis of AcAldDH BL21 protein expression trial.  M = markers 
(Mr/1000), T = total, I = insoluble & S = soluble (BL21 4.5 h expression shown).  The 
predicted His-tagged-protein band is highlighted with a blue arrow, and the Mr/1000 of 
the expected protein is shown.  B = SDS-PAGE gel of an AcAldDH metal affinity 
purification.  1 = soluble, 2 = flow-through, 3 = 0%, 4 = 2.5%, 5 = 5%, 6 = 10%, 7 = 
20%, 8 = 30%, & 9 = 40% (% = % HIS-ELUTE buffer).   

 

The 10 & 20% fractions from the metal affinity purification showed the highest aldDH 

activity.  These samples were pooled prior to dialysis into 50 mM Tris-HCl pH 8.0, 150 

mM NaCl after a 2 h dialysis against 50 mM Tris-HCl pH 8.0, 150 mM NaCl and 75 mM 

imidazole.  This method of purification was used for all the AcAldDH protein samples 

used during this project.   

 

6.4.4 Kinetic characterisation of the AcAldDH protein 

AldDH NADH assays (NADH depletion) of the AcAldDH protein showed rapid curvature 

and the reaction did not go to completion; an example trace for this assay is shown in 

Figure 6-7.  Initial rates for this enzyme were therefore taken over the initial 10-15 

seconds where the reaction was linear in nature.   
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Figure 6-7: An example AcAldDH enzyme reaction trace (Abs340nm vs time (min)).   

 

Assays were undertaken to determine kinetic parameters for this enzyme under these 

conditions.   

 

Activity (substrate) Km (mM) 
Standard 

Error 
Vmax 

(U mg-1) 
Standard 

Error 

AcAldDH: (acetyl-CoA) 0.024 +/- 0.001 37.5 +/- 4.0 

AcAldDH: (NADH) 0.042 +/- 0.002 34.5 +/- 3.8 
 

Table 6-3: Summary of kinetic parameters determined for the AcAldDH protein.  Vmax reported 
was adjusted for the degree of saturation with the fixed substrate.   
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Figure 6-8: Michaelis-Menten plot of aldDH enzymic activity (U mg
-1

 of protein) against 
concentration of acetyl-CoA (mM) at a fixed concentration of NADH (0.21 mM) for the 
purified AcAldDH enzyme.   
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Figure 6-9: Hanes-Woolf plot ([S]/v vs. [S]) for the variation of aldDH activity (U mg
-1

) with 
respect to concentration of acetyl-CoA (mM).   
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Figure 6-10: Michaelis-Menten plot of aldDH enzymic activity (U mg
-1

 of protein) against 
concentration of NADH (mM) at a fixed concentration of acetyl-CoA (0.34 mM) for the 
purified AcAldDH enzyme.   
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Figure 6-11: Hanes-Woolf plot ([S]/v vs. [S]) for the variation of aldDH activity (U mg
-1

) with 
respect to concentration of NADH (mM).   

 

The rapid curvature of the progress curves observed during the assay of this enzyme 

suggested strong product inhibition.  Assays were carried out to determine the nature 

of this inhibition.   

 

6.4.5 Investigation into product inhibition of AcAldDH domain 

Assays to determine which of the reaction products was causing the inhibition were 

carried out.  The AcAldDH protein was assayed in the presence of different 

concentrations of each of the reaction products.  Approximately 0.08 mM CoA-SH and 

NAD+ had accumulated by the point of curvature of the progress curves; reaction 

products in this concentration range were therefore used for these assays.  The 

specific activities observed in these assays appear higher than those observed in 

Section 6.4.4.  The reason for this discrepancy is unknown; differences in protein purity 

between enzyme preparations is a possible explanation.   
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Figure 6-12: Initial rates of AcAldDH measured in the presence of reaction products.   

 

CoA-SH and acetaldehyde were both shown to inhibit the forward reaction.  As the 

effect of CoA-SH appeared more significant, this product was used as the inhibitor for 

subsequent experiments.   

 

Kinetic parameters for the AcAldDH protein with respect to acetyl-CoA were re-

determined in the presence and absence of 0.13 mM CoA-SH.  The effect of this 

product on the kinetic parameters allowed the type of inhibition to be determined.   

 

Activity 
Km 

(mM) 
Standard 

Error 
Vmax 

(U mg-1) 
Standard 

Error 

AcAldDH: (0 mM CoA-SH) 0.032 +/- 0.001 57.7 +/- 0.55 

AcAldDH: (0.13 mM CoA-SH) 0.054 +/- 0.001 36.7 +/- 0.21 
 

Table 6-4: Comparison of kinetic parameters for the AcAldDH protein with respect to 
acetyl-CoA concentration, determined with and without 0.13 mM CoA-SH (a fixed 
concentration of 0.18 mM NADH was used in these assays).   
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Figure 6-13: Hanes-Woolf plot ([S]/v vs. [S]) for the variation of aldDH activity (U mg
-1

) with 
respect to concentration of acetyl-CoA (mM) in the presence or absence of CoA-SH.   

 

The intersection of the two lines below the X-axis indicates mixed inhibition with 

respect to CoA-SH where the value of Ki (dissociation constant for EI) is less than Ki’ 

(dissociation constant for ESI) (Wharton and Eisenthal 1981).  Thus, in the presence of 

CoA-SH, the Km 
app

 increases and the Vmax
app decreases.   

 

It was hypothesised that the tight binding of CoA-SH in the active site of the enzyme 

may be involved in the product inhibition.  To confirm this, the kinetic parameters for 

CoA-SH for the AcAldDH in the reverse direction were determined, using the citrate 

synthase coupled assay described in Section 6.3.3.  This assay was used due to the 

low concentration of CoA-SH present in the assay causing rapid curvature of the 

enzyme rate.   

 

Activity (Substrate) Km (mM) 
Standard 

Error 
Vmax 

(U mg-1) 
Standard 

Error 

AcAldDH reverse:  (CoA-SH) 0.012 +/- 0.0002 11.60 +/-0.16 
 

Table 6-5: Kinetic parameters of the reverse reaction of AcAldDH with respect to CoA-SH.   

 

A relatively low Km for CoA-SH was observed in the reverse direction.  This Km is lower 

than that for acetyl-CoA (0.024 mM).  Tight binding of CoA-SH to the enzyme is a 

possible explanation for this difference and for the inhibition observed for this protein.  

As Km is composed of both catalytic and binding constants, this hypothesis cannot be 

unequivocally confirmed.   
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Figure 6-14: Michaelis-Menten plot of the reverse direction aldDH enzymic activity (U mg
-1

 of 
protein) against concentration of CoA-SH (µM) at a fixed concentration of NAD

+
 (0.5 

mM) & acetaldehyde (20 mM) for the purified AcAldDH enzyme.   
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Figure 6-15: Hanes-Woolf plot ([S]/v vs. [S]) for the variation of aldDH activity (U mg
-1

) with 
respect to concentration of CoA-SH (µM).   

 

6.4.6 Preliminary substrate specificity experiments 

Preliminary experiments were carried out to assess the substrate specificity of the 

AcAldDH protein.  AldDH activity was observed with both butyryl-CoA and 

propionyl-CoA.  It was not possible to determine the concentration of these substrates, 

so accurate kinetic parameters could not be obtained.  Assuming the concentration of 

these acyl-CoAs was comparable to that of the acetyl-CoA prepared at the same time, 
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the specific activities obtained with a fixed concentration of each acyl-CoA (0.28 mM) 

were compared.   

Substrate 
Specific 
activity 
(U mg-1) 

% activity of 
Acetyl-CoA 

Acetyl-CoA 52.0 100.0 

Propionyl-CoA 14.3 27.5 

Butyryl-CoA 4.7 9.0 
 

Table 6-6: AldDH activity observed with different acyl-CoAs for the purified AcAldDH protein.   

 

6.4.7 AcAldDH thermostability assays 

Thermostability assays were carried out on the purified AcAldDH protein as described 

in Section 2.13.6.  The protein was incubated in 100 µl aliquots at the desired 

temperatures.   

 

Figure 6-16: Plot of ln (% activity) versus time (s) at a defined temperature (°C) for aldDH 
activity of AcAldDH.  Each data point displayed is an average of a minimum of 2 
assays.   

 

The half-life of the AcAldDH protein at 60°C was greater than 30 min.  At 67°C the half-

life was approximately 13 min.   

 

6.4.8 AcAldDH optimum temperature assays 

The dependence of enzyme activity on temperature was investigated with the purified 

AcAldDH protein as described in Section 2.13.5.   
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Figure 6-17: Plot of % activity of maximum against temperature (°C) for aldDH activity of 
AcAldDH and of native ADHE (Chapter 3).   

 

The optimum temperature of the AcAldDH protein was approximately 57°C.  This is 

almost identical to that observed for the aldDH activity of ADHE (58°C).   

 

6.4.9 Oligomeric nature of AcAldDH  

Gel filtration was carried out on purified AcAldDH (0.5 ml of 7.6 mg/ml solution loaded 

onto a pre-equilibrated GE Superdex 200 10/300 GL column run at a flow rate of 0.4 

ml/min) in 50 mM EPPS pH 8.0, 5 mM reduced glutathione, 5 mM EDTA, and 10% 

(v/v) glycerol.  SDS-PAGE was used to monitor the elution of the protein.  The retention 

time of the major peak corresponding to the AcAldDH was compared to standard 

proteins to provide an estimate of the Mr.   

 

Figure 6-18: Summary chromatograph of an AcAldDH gel filtration run.  Chromatograph line 
corresponds to A280nm reading (mAU).  SDS-PAGE analysis of peak fractions is shown 
(L = load, M = markers [Mr/1000], 1-13 = protein fractions from gel filtration A10-B7); the 
expected Mr of AcAldDH is 52,174.   
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Protein peak identity Velution (ml) Mr Observed Mr Subunit Mr Observed/ Mr Subunit 

AcAldDH peak 2 12.71 191,000 52,174 3.7 
 

Table 6-7: Estimation of the Mr of AcAldDH by gel filtration.   

 

The major protein peak corresponding to the AcAldDH protein eluted from the gel 

filtration column close to the predicted Mr of a tetramer.   

 

6.5 Discussion 

Two acetylating aldDH encoding genes were identified in the TM242 genome, eutE and 

acAldDH.  During characterisation of the native ADHE protein (Chapter 3), all fractions 

from an anion exchange run of a cell extract derived from a TM242 fermenter cell pellet 

were assayed for aldDH activity.  No other peak of aldDH activity was observed other 

than that co-eluting with ADH activity (corresponding to ADHE).  It is therefore 

assumed that these enzymes are not expressed during normal fermentative 

metabolism.  AldDH assays performed during Chapter 9 on fermentation run samples 

also support this conclusion.   

 

The EutE protein (25% identity, 43% similarity, 21% gaps compared to Fragment 1) 

appeared to be insoluble during expression experiments in both E. coli and Geobacillus 

strains.  Although the addition of an MBP solubility tag did facilitate soluble protein 

expression, the protein produced appeared less catalytically active than the AcAldDH 

protein.  Due to the issues surrounding its soluble expression and seemingly lower 

activity, it was decided to focus efforts on the AcAldDH protein.   

 

The AcAldDH protein had a higher sequence identity than EutE to the aldDH domain of 

ADHE (43% identity, 59% similarity, 12% gaps to Fragment 1).  This protein was 

readily expressed and purified from the E. coli expression strains used, by metal affinity 

chromatography.  Running the protein on a gel filtration column showed that the protein 

appeared to associate to form tetramers.  No oxygen sensitivity was observed for this 

protein in contrast to the aldDH domain of ADHE.  Characterisation of the protein 

showed it to be active and stable around the growth temperature of Geobacillus 

thermoglucosidasius.   

 

The kinetic parameters determined for the protein are shown in Table 6-8.  The 

AcAldDH protein had a similar Km for acetyl-CoA as that observed for the native ADHE 

protein.  The Km for NADH (in the presence of acetyl-CoA) was significantly lower for 

the AcAldDH than ADHE.   
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Protein Activity Substrate 
Kinetic 

parameter 
Parameter 

value 
Units 

AcAldDH 
(purified) 

AldDH Ac-CoA 
Km 0.024 mM 

Vmax (adjusted) 37.5 U mg-1 

AldDH NADH 
Km 0.042 mM 

Vmax (adjusted) 34.5 U mg-1 

ADHE 
(TM242 cell 

extract) 

AldDH Ac-CoA* 
Km 0.019 mM 

Vmax (adjusted) 1.24 U mg-1 

AldDH NADH 
Km 0.16 mM 

Vmax (adjusted) 1.0 U mg-1 
 

Table 6-8: Comparison of kinetic parameters for purified AcAldDH (produced in BL21) and the 
aldDH of ADHE in TM242 cell extracts.  *Kinetic parameters for the aldDH domain with 
respect to acetyl-CoA were determined by fitting the data to the substrate inhibition 
equation as described in Section 2.13.7.3.  Vmax values reported are adjusted for 
saturation with the fixed substrate.   

 

The catalytic parameters determined for the AcAldDH protein are shown below: 

Activity Substrate 
Vmax 

(U mg-1) 
Km 

(mM) 
kcat 

(s-1) 

kcat /Km 

(mM-1•s-1) 

AcAldDH 

aldDH 
Acetyl-CoA 37.5 0.024 32.6 1358 

NADH 34.5 0.042 30.0 714 
 

Table 6-9: Summary of the kinetic parameters determined for the purified AcAldDH protein.   

 

The Vmax values obtained for the native protein in cell extracts and for the purified 

AcAldDH protein cannot be directly compared.  The enzyme appears to be as, if not 

more, catalytically active than the aldDH activity of ADHE with a similar Km for acetyl-

CoA.  The protein was shown to be catalytically active with butyryl and propionyl–

CoAs, but a significantly higher activity was observed with acetyl-CoA.  The native 

ADHE appeared to be less specific for acetyl-CoA (Chapter 3).   

 

There was a discrepancy in Vmax values determined between Sections 6.4.4 and 6.4.5 

(37.5 and 57.7 U.mg-1, respectively).  Differences in protein purity between the different 

enzyme preparations used are a likely explanation for these observed differences.   

 

The AcAldDH protein appeared to be inhibited by the products of the catalysed 

reaction.  Inhibition was shown to be mixed with respect to CoA-SH, which had the 

strongest inhibitory effect.  Under mixed inhibition, the inhibitor can bind to the free 

enzyme (E) and the substrate-bound enzyme complex (ES).  When the data were 

plotted on a Hanes-Woolf plot, the lines intersect below the X-axis.  This shows the 
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inhibitor binds the free enzyme more strongly than the ES complex as Ki is lower than 

Ki’.  This is illustrated in Figure 6-19.   

 

Figure 6-19: Representative Hanes-Woolf plot ([S]/v vs. [S]) for the variation of enzyme activity 
with respect to concentration of S, in the presence (red line) or absence (black line) of a 
fixed concentration of a mixed inhibitor.  Figure based on Figure 6.10 from Wharton and 
Eisenthal (1981).   

 

Both acetaldehyde and CoA-SH were shown to inhibit the enzyme.  The Km for 

CoA-SH in the reverse direction was determined to be 0.012 mM; this is lower than that 

determined for acetyl-CoA in the forward direction (0.024 mM).  The inhibition observed 

could be caused by inefficient release of these products from the active site of the 

enzyme.   

 

During preliminary experiments, the effect of assaying the aldDH activity of AcAldDH in 

the presence of the Fragment 11 protein was tested.  Neither the rate of reaction nor 

the curvature of the assay was affected by the presence of excess Fragment 11.  This 

suggested the acetaldehyde produced was either not efficiently released by the 

AcAldDH, or not effectively bound by the ADH protein.  It was hypothesised that the 

positioning the ADH domain close to the AcAldDH through a protein fusion, may help 

over-come the product inhibition which had been observed for this enzyme.  A protein 

fusion between the AcAldDH and Fragment 11 was also of interest due to the potential 

for improving ADHE protein activity in terms of ethanol production.   

 

The aldDH domain of ADHE was unable to be resolved structurally during this project.  

The reasonably high sequence identity with the aldDH domain of ADHE implies a high 

resolution AcAldDH structure may provide useful information regarding the ADHE 
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protein.  A high resolution crystal structure was also considered desirable as it could 

prove informative as to potential targets for modification of this protein to alleviate 

product inhibition.  The protein could be readily purified to the high yields required for 

structural characterisation, which is described in Chapter 7.   

 

In summary, genes encoding two active acetylating aldDH proteins have been 

successfully identified within the TM242 genome.  The catalytically active and readily 

expressed AcAldDH protein has been characterised.  The enzyme was stable and 

optimally active at the required temperatures for use in the TM242 organism.  Product 

inhibition was observed for the protein with respect to the reaction products.  

Subsequent chapters describe the structural resolution of the AcAldDH protein and the 

production of fusion proteins consisting of Fragment 11 and the AcAldDH.   
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7 CRYSTALLISATION OF THE ACETYLATING ALDEHYDE DEHYDROGENASE 

PROTEIN (ACALDDH) 

 

7.1 Introduction 

This chapter details the determination of two crystal structures for the AcAldDH protein 

identified and characterised in Chapter 6.  One structure at high resolution is reported 

in the absence of substrates or products, with a lower resolution structure in the 

presence of NAD+ and acetyl-CoA also being obtained.   

 

The structure of this protein is of interest for a number of reasons.  Firstly, it will 

contribute to an understanding of the AcAldDH mechanism, particularly the product 

inhibition observed; it was hoped that key residues potentially interfering with product 

release may be identified, allowing optimisation of catalytic activity.  Optimisation of 

catalysis was also desirable as the AcAldDH was used in the creation of an artificial 

ADHE protein through fusion with the isolated ADH domain known as Fragment 11 

(described during Chapter 8).  Product inhibition remained following the fusion of the 

two domains, and so manipulation of the AcAldDH may also be used to improve the 

productivity of fusion proteins described subsequently.   

 

Secondly, ordered substrate binding in a “bi-uni-uni-uni ping-pong” scheme has been 

suggested for other acetylating aldDH enzyme mechanisms (Shone and Fromm 1981; 

Smith and Kaplan 1980); this suggests that a shared binding site may exist for NADH 

and acetyl-CoA, which may be the origin of the product inhibition observed during 

Chapter 6 for this enzyme.  Structural investigation of substrate binding was carried out 

to test this hypothesis.   

 

As the aldDH domain of the ADHE protein shares significant sequence identity with the 

AcAldDH protein (43% identity, 59% similarity, 12% gaps), further development of the 

structural understanding of similar proteins was appealing.  Isolated acetylating aldDH 

proteins are not extensively described in the literature, so additional structural 

information may also prove valuable for future investigations.   

 

7.2 AcAldDH methods 

Unless otherwise stated, crystallographic methods used here were the same as those 

described in Chapter 5.   
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1 M MMT buffer at pH 4 and pH 9 (adjusted with HCl or NaOH) was prepared 

according to the PACT screen manufacturer’s instructions and mixed to obtain the 

desired pH buffer for crystallisation.  The buffer comprised DL-malic acid, MES and Tris 

base mixed 1:2:2 respectively.   

 

7.2.1 Soaking experiments 

Attempts to obtain crystal structures of the AcAldDH protein with substrates/products 

bound in the active site were made.  Crystals were transferred using a cryo-loop from 

the drop in which they had grown, into a fresh drop containing the well solution with the 

appropriate concentration of cryo-protectant and substrate/product of interest.  Crystals 

were then mounted onto the collection apparatus within a stream of nitrogen gas to 

freeze the crystals.   

 

7.2.2 Room-temperature diffraction 

Where crystals being screened did not diffract well under freezing conditions, room-

temperature diffraction was attempted.  The Micro RT™ system (MiTeGen, USA) was 

used to mount the crystals as shown in Figure 7-1.  This prevents the crystals drying 

out due to the reservoir of well solution at the top of the tube allowing vapour diffusion 

to keep the crystals hydrated.   

 

Figure 7-1: The Micro RT™ system for room-temperature diffraction (MiTeGen 2012).   

 

7.3 AcAldDH crystallisation results 

Crystallisation of the AcAldDH protein was attempted in the absence and in the 

presence of substrates.  Results obtained for the two conditions will be reported 

separately in the following sections.   
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7.4 AcAldDH protein crystallisation without substrates 

7.4.1 Crystallisation conditions 

The purified His-tagged AcAldDH protein (described in Chapter 6) dialysed into 50 mM 

Tris-HCl pH 8.0, 150 mM NaCl, was screened with structure screen I & II, PGA, JCSG-

plus and PACT screens (Molecular Dimensions, UK), at a protein concentration of 8.9 

mg/ml.  The ratio of well solution to protein was varied between the three wells of the 

screens (300 nl drop size); mixtures of 1:1, 2:1 and 1:2 protein: well solution (v/v) were 

used.   

 

The best hit obtained was for the PACT screen, well A7 (0.1 M sodium acetate pH 5.0, 

0.2 M NaCl, 20% (v/v) PEG 6000) for the 2 protein: 1 well solution (v/v) sample.   

 

To obtain the most suitable crystals for X-ray diffraction, optimisation of the conditions 

employed a variety of concentrations of different metal salts (NaCl, MgCl2, LiCl & 

CaCl2) and various gradients of PEG 6000 and pH.   

 

Crystals producing the best diffraction data were grown at a protein concentration of 

9.25 mg/ml, diluted 2:1 (v/v) with well solution (0.1 M sodium acetate pH 4.8, 0.2 M 

MgCl2, 15% (v/v) PEG 6000).  Crystals took 2-4 weeks to appear at 16°C, in which time 

a “skin” had formed on the protein drops; this had to be peeled back using a needle to 

allow crystals to be removed.  Representative crystal forms are shown in Figure 7-2.  

Glycerol (30%, v/v) was required as a cryo-protectant when the crystals were frozen for 

data collection.   

 

 

Figure 7-2: AcAldDH (no substrate) representative crystal forms (scale shown = mm), 
indications of skin on the drop can be observed (indicated with an arrow) in the left hand 
image.   
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7.4.2 Data collection and molecular replacement 

Data were collected at the Diamond light source beam-line IO4 at a wavelength of 

0.97949 Å.  Data were processed using the HKL2000/0.98 software package.  

Statistics of data collection are shown in Table 7-1.   

 

Parameter Value 

Unit cell dimensions 
a = 98.579 Å, b = 109.120 Å, c = 196.243 Å, 

α=β=γ = 90.00° 

Space group P212121 

Rmerge 0.136 (0.684) 

Completeness 99.9 (98.9)% 

I/σ(I) 15.4 (2.23) 

Multiplicity 7.1 (5.5) 

Number of reflections observed 2590618 

Number of unique reflections 123787 (6036) 

Resolution 50.0-2.1 Å (2.14-2.10) 
 

Table 7-1: AcAldDH data collection statistics (numbers in brackets for highest resolution bin).   

 

A range of crystal forms in various space groups had been previously tested in-house 

prior to this data collection.  One of the preliminary p212121 structures was used as a 

starting model for the Diamond dataset.   

 

The preliminary structure used was based on the BALBES (Long et al. 2008) 

suggested structure of Listeria monocytogenes aldehyde dehydrogenase (PDB code 

3K9D) for molecular replacement (BALBES solution was 99% likely).  The amino acid 

sequence of 3K9D is 53% identical and 73% similar (1% gaps) to the non-His-tagged 

AcAldDH sequence.  The preliminary structure was rigid-body refined into the Diamond 

data and the refinement process started as previously described.   

 

7.4.3 Data refinement 

Following the rigid-body refinement in Refmac5, the R factor was 0.27916 and Rfree 

was 0.27407.   

 

The model was subjected to several rounds of refinement and validation; 4 AcAldDH 

proteins were visible in the unit cell (molecules A-D).  Several different non-protein 

molecules present in the crystallisation condition, as well as 1251 waters, were added 

to regions of un-modelled density (full list in Table 7-2), with the model refinement 

process continuing until no further improvement in fit to the density was observed.  

Dual conformations were observed for 39 residues in the final structure and were 
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therefore modelled with partial occupancy.  Statistics for the refined final model are 

shown in Table 7-3.   

Molecule Number observed 

Water 1251 

Glycerol 30 

PEG fragments 3 

Acetate 12 

Chloride 4 

Magnesium 4 
 

Table 7-2: A summary of any additional molecules visible in the AcAldDH crystal structure.   

 

Reasonable electron density was observed for residues 25 to 476 of all AcAldDH 

molecules; however, the N-terminal 25 amino acids and C-terminal 12 amino acids 

proved difficult to resolve due to unresolvable or poor electron density.  Ten difference 

map peaks (Fo – Fc) above σ level 5.0 remained at the end of refinement, 9 of which 

were associated with the N-termini.   

 

Parameter Value 

Number of reflections used 117457 (5% test set) 

Number of protein atoms 13967 

Number of non-solvent molecules 53 

Number of solvent molecules 1251 

Mean B-factors (Å2) 

Overall 25.9 

Protein main chain 22.7 

Side chains 27.1 

Water molecules 35.5 

R 0.1551 

Rfree 0.2085 

RMS Bond Length 0.0193 Å 

RMS Bond Angle 1.9408° 
 

Table 7-3: Final refinement statistics for the AcAldDH crystal structure.   

 

Evaluation of the structure was carried out using MolProbity (Chen et al. 2010).   

 

Parameter Value 

Ramachandran favoured 98.4% (1866/1896) 

Ramachandran allowed 100% (1896/1896) 

Ramachandran outliers 0 

MolProbity score 1.80 (90th percentile) 

Clashscore 10.96 (82nd percentile) 
 

Table 7-4: Validation results for the AcAldDH structure from MolProbity.   
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Figure 7-3: MolProbity Ramachandran analysis of the AcAldDH structure.   

 

Positive electron density was observed at the terminal Sγ of Cys273 in all AcAldDH 

monomers; the residue was replaced with an S-cysteinesulfinic acid during refinement, 

and this significantly improved the density fit as shown in Figure 7-4.  High-energy 

synchrotron radiation may allow oxidation of this residue through radiation damage.  

This modified residue has been observed in over 180 other high-resolution protein 

crystal structures within the PDB (RCSB 2012).   
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Figure 7-4: Electron density map for the modified Cys273 (S-cysteinesulfinic acid), demonstrating 
the improved fit and lack of difference density (residue from AcAldDH molecule A 
shown).  Blue map = 2Fo - Fc (where Fo = Fobserved, Fc = Fcalculated, and F = structural 
factor), σ level = 1.10, negative (red) and positive (green) difference map (Fo – Fc), σ 
level = 3.0.  Molecules are shown in stick form, with carbons in purple.  Red crosses 
represent water molecules.   

 

Sequence alignments between AcAldDH and the aldDH domain of ADHE showed that 

this cysteine residue aligns with the conserved catalytic cysteine (Cys257 in ADHE) 

described in the Introduction to this thesis; it is also located proximal to the conserved 

Glu362 residue (part of the EKLSP motif).  This Glu has been suggested to be involved 

in the initiation of catalysis through the removal of the Sγ proton from Cys273 (Chen et 

al. 2004). 

 

7.4.4 Interpretation of the AcAldDH structure 

Two structural domains were observed for the AcAldDH protein.  The CATH structural 

comparison tool was used to determine the structural classification of these domains.  

The N-terminal domain was shown to be part of the 3.40.605.10 superfamily (aldehyde 

dehydrogenase; chain A, domain 1) and the C-terminal domain was shown to be part 

of the 3.40.309.10 superfamily (aldehyde dehydrogenase; chain A, domain 2).  The two 

domains both have 3-layer (αβα) sandwich topologies.  The structure of the modelled 

aldDH of ADHE discussed in Chapter 5 also appeared to be made up of the same 

structural domains.   
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7.4.4.1 Overview 

 

Figure 7-5: Cartoon overview of AcAldDH chain A.  Red spirals = α-helices and yellow arrows = 
β-strands.  Ligands are shown in stick representations, the glycerols and acetates with 
orange carbon atoms and a PEG molecule with black carbons.  A magnesium ion is 
shown in grey and the acetate/chloride molecule is coloured blue.  The catalytic 
cysteine (Cys273) is shown in purple.   

 

7.4.4.2 Structural alignment between AcAldDH and homologous structures 

Structural alignments between AcAldDH and structures suggested by BALBES as good 

molecular replacement models were carried out using the DaliLite pairwise protein 

comparison tool (EMBL) (Holm and Park 2000).  The structures suggested by BALBES 

were the same structures used to create the aldDH domain model during Chapter 5.   

 

PDB 
code 

(chain) 

Source 
organism 

Protein 
description 

Aligned 
residues 

Seq 
ID 

Z-
score 

RMSD 
(Å) 

3K9D (A) 
Listeria 

monocytogenes 

Probable 
aldehyde 

dehydrogenase 
450 55% 60.8 1.1 

3MY7 (A) 
Vibrio 

parahaemolyticus 
aldDH domain 
of an ADHE 

404 45% 49.4 2.0 

 

Table 7-5: Results of structural alignment analysis using DaliLite.  Z-Score describes the quality 
of the alignment (if >20 structures are considered homologous).  RMSD is used as a 
measure of deviation in terms of distance of the Cαs in the aligned structures.   
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Figure 7-6: Cα traces of aligned A chains of AcAldDH (purple), 3K9D (green) and 3MY7 
(orange); “front and back” views are shown.  Visible termini are indicated.   

 

The AcAldDH structure aligns well with 3K9D; a relatively low RMSD value was 

observed between the two structures and few differences were observed in the 

structural superimposition (Figure 7-6).  The alignment with 3MY7 was not as good, but 

it should be noted that several loop regions are missing in the 3MY7 structure which 

may affect the quality of the alignment.  The protein sequence of AcAldDH was also 

more similar to 3K9D than to the 3MY7 sequence.   

 

7.4.5 Other molecules in the structure 

As reported in Table 7-2, several additional molecules were visible within the AcAldDH 

structure.  Various crystallisation condition components were fitted into the observed 

density and those appearing to fit best were refined into the final model.  An 

octahedrally-coordinated ion, interacting with Asp215 and four water molecules, was 

observed at the surface of all the protein chains, and a Mg2+ ion was refined into this 

density and appeared to fit reasonably (Figure 7-7 i).  Strong difference density was 

observed beside each chain near to Lys92, Lys95 and Ser145; a variety of possible 

molecules were modelled into this region and the model refined to evaluate the fit.  The 

best refinement statistics were obtained when a combination of a chloride ion and an 

acetate were refined into this region.  This suggests that a variety of molecules may be 

present here interacting with the surrounding residues (Figure 7-7 ii).  These additional 

molecules/ions appear to be a consequence of crystallisation conditions, rather than 

playing any key structural or catalytic role within the protein.   
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Figure 7-7: Electron density map for AcAldDH molecule D focussed on: (i) the Mg
2+

 and (ii) the 
acetate/Cl

-
 which were refined into the final model.  Blue map = 2Fo - Fc (where Fo = 

Fobserved, Fc = Fcalculated, and F = structural factor), σ level = 1.10; negative (red) and 
positive (green) difference map (Fo – Fc), σ level = 3.0.  Molecules are shown in stick 
form, with carbons in purple.  Red crosses represent water molecules.   

 

Twenty four glycerol molecules as well as three PEG fragments were also observed in 

the structure around the surface of the protein.  Glycerol was used as a cryo-protectant 

and PEG 6000 was present in the well solution, and therefore the presence of these 

molecules surrounding the protein was expected.   

 

The predicted substrate-binding cleft of the protein chains A-C appeared to contain two 

additional glycerols and one acetate molecule close to Cys273 (Figure 7-4 and Figure 

7-8).  These are also located in the vicinity of His166 which is shown in Section 7.5.5 to 

be close to the region with which the ADP moiety of NADH and acetyl-CoA may 

interact.  Only density for the acetate was observed in the active site of chain D with 

waters appearing to replace the glycerols; this difference may be due to limited electron 

density observed for this region.  The presence of these molecules supports the 

concept of a polar binding-cleft into which the non-homologous regions of NADH and 

acetyl-CoA may bind.   
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Figure 7-8: (i) AcAldDH cartoon structure chain A (grey) with other molecules in the structure 
visible (chain B is shown in black).  Chain A Cys273 and His166 are shown with carbon 
atoms coloured purple.  Ligands are represented in stick form with non-active site 
glycerol and acetate molecules carbon atoms shown in orange.  A PEG molecule is 
shown with red carbon atoms and the acetate-Cl

-
 is shown in blue.  The two glycerol 

molecules and the acetate present in the active site are shown with green carbon 
atoms.  (ii) A close-up view of the active-site region of chain A.   

 

7.4.6 Multimeric assembly 

Electron density corresponding to the N-terminal region of the protein (aa 1-24) could 

not be resolved for the AcAldDH chains; the N-termini of chains A and C, and B and D, 

appear to be closely interacting.  Despite attempts during model building and 

refinement, the orientation of these termini could not be resolved; the chains were 

therefore truncated such that one residue of the AcAldDH protein (Met24) was missing 

from the structure.  The remaining residues correspond to the histidine tag incorporated 

to facilitate purification.  Had time permitted, it would have been preferable to resolve 

the AcAldDH protein structure following cleavage of the tag to determine the native 

positioning of these terminal residues.  Up to 12 amino acids were unresolved at the C-

terminus of the protein (VEGAQKEPALTK-); as close interactions between the C-

terminal regions were observed in the structure, it is likely that these additional amino 

acids are not required for dimer formation, and may be highly mobile within the 

structure and thus unresolvable from the collected data.   
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Gel filtration analysis carried out during Chapter 6 suggested that the AcAldDH protein 

may form tetrameric assemblies.  A tetrameric assembly was also observed during 

crystallographic analysis as shown in Figure 7-9.  Analysis of the structure using PISA 

showed the dimerization interaction between monomers A and B, or C and D, as 

identified in Figure 7-9, to be the most physiologically relevant of the interactions (data 

summarised in Table 7-6).  This interaction appears to form as a result of a “wrapping 

round” of the protein C-termini to form stable dimeric units as shown in Figure 7-10.  

The formation of a “dimer of dimers” (interaction between dimer A-B and C-D in Figure 

7-9) would appear to be a relatively weak interaction compared to the formation of 

these dimeric units.  A summary of the residues forming interactions between proteins 

A and B is shown in Table 7-7 and Table 7-8.  For all chains, the predicted catalytic 

“cleft” containing the Cys273 residue is positioned facing inwards towards the N-terminal 

region of the tetramer.   

 

 

Figure 7-9: Cartoon diagram showing the interactions between AcAldDH proteins within the 
crystal.  (i) = “upper” and (ii) = “side-on” views.  Green = molecule A, brown = molecule 
B, purple = molecule C, and blue = molecule D.  Terminal regions are indicated in (ii).   

 

 

 

 

 

 

 

 

 



202 

Interaction 
# 

# interfacing 
residues 

Interface 
area (Å2) 

∆iG 
(kcal/mol) 

∆iG 
P-value 

#HB #SB CSS 
A B 

1 86 85 2983.3 -24.4 0.192 56 14 0.430 

 C D  

2 82 81 2912.9 -22.2 0.212 57 8 0.430 

 A C  

3 9 11 455.7 3.4 0.896 15 13 0.000 

 B D  

4 11 11 462.9 3.9 0.903 11 12 0.000 
 

Table 7-6: Summary of the PISA analysis results for AcAldDH multimer formation.  ∆
i
G = 

solvation free energy gain upon interface formation (-ve = hydrophobic interface).  P-
value = probability that the decrease in 

i
G through the interface is not random, where 

P>0.5 = non-specific and P<0.5 shows interface that may be considered interaction 
specific.  HB = hydrogen bonds formed, SB = salt bridges formed.  CSS = complexation 
significance score, which is a measure of interface significance in terms of complex 
formation (the higher the value between 0 and 1, the more significant the interface).   

 

 

Figure 7-10: PISA interface space-filling diagram for interaction 1 (front and back views shown).  
Dark blue = molecule A, light blue = molecule B.  Interface residues are shown in red for 
A and green for B.   

 

Salt Bridge Forming Residues 
# Molecule A D (Å) Molecule B # Molecule A D (Å) Molecule B 

1 GLU407 [OE2] 3.93 ARG118 [NH2] 8 ARG118 [NH1] 3.18 GLU407 [OE1] 

2 GLU472 [OE1] 3.43 LYS256 [NZ] 9 ARG118 [NH2] 3.35 GLU407 [OE1] 

3 GLU472 [OE2] 3.17 LYS256 [NZ] 10 ARG118 [NH2] 3.73 GLU407 [OE2] 

4 ASP453 [OD1] 2.89 ARG465 [NH1] 11 ARG465 [NH1] 2.79 ASP453 [OD1] 

5 ASP453 [OD1] 3.33 ARG465 [NH2] 12 ARG465 [NH2] 3.3 ASP453 [OD1] 

6 ASP91 [OD1] 2.92 LYS475 [NZ] 13 LYS256 [NZ] 3.72 GLU472 [OE1] 

7 ASP91 [OD2] 3.48 LYS475 [NZ] 14 LYS256 [NZ] 3.24 GLU472 [OE2] 
 

Table 7-7: Summary of the residues in the AcAldDH interaction 1 forming salt bridges according 
to PISA analysis ([X] = atom identity from annotated residue, D = distance between 
interacting atoms).   
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Hydrogen Bond Forming Residues 

# Molecule A D (Å) Molecule B # Molecule A D (Å) Molecule B 

1 TYR230 [O] 3.47 SER232 [N] 29 ASN434 [ND2] 2.89 ASN122 [O] 

2 TYR230 [O] 2.8 GLY233 [N] 30 GLY233 [N] 2.74 TYR230 [O] 

3 TYR230 [O] 3.85 LYS234 [N] 31 LYS234 [N] 3.83 TYR230 [O] 

4 ILE450 [O] 3.86 TYR237 [OH] 32 SER232 [N] 3.59 TYR230 [O] 

5 GLU472 [OE1] 3.43 LYS256 [NZ] 33 LYS227 [NZ] 3.27 GLY233 [O] 

6 GLU472 [OE2] 3.17 LYS256 [NZ] 34 ASN448 [ND2] 3.02 GLY233 [O] 

7 MET473 [O] 3.48 GLN263 [NE2] 35 ARG118 [NH1] 3.18 GLU407 [OE1] 

8 ARG465 [O] 2.99 ILE418 [N] 36 ARG118 [NH2] 3.35 GLU407 [OE1] 

9 ALA467 [O] 2.93 VAL420 [N] 37 LYS464 [NZ] 2.97 ILE411 [O] 

10 ASN122 [O] 2.91 ASN434 [ND2] 38 LYS464 [NZ] 2.65 LYS413 [O] 

11 ASN462 [OD1] 3.1 ALA445 [N] 39 ARG465 [N] 2.94 GLY416 [O] 

12 GLY233 [O] 2.87 ASN448 [ND2] 40 ALA467 [N] 2.88 ILE418 [O] 

13 ILE463 [O] 2.74 SER452 [OG] 41 GLY469 [N] 2.86 VAL420 [O] 

14 SER452 [OG] 3.29 ILE463 [N] 42 ARG471 [NH2] 3.46 GLY430 [O] 

15 LYS413 [O] 2.74 LYS464 [NZ] 43 ARG471 [NE] 2.95 ALA431 [O] 

16 ILE411 [O] 3.34 LYS464 [NZ] 44 ARG471 [NH2] 3.37 ALA431 [O] 

17 GLY416 [O] 2.87 ARG465 [N] 45 VAL470 [N] 2.96 THR432 [O] 

18 ASP453 [OD1] 2.89 ARG465 [NH1] 46 ARG471 [N] 3.39 THR432 [O] 

19 ILE418 [O] 2.87 ALA467 [N] 47 ARG471 [NH2] 3.39 VAL433 [O] 

20 VAL420 [O] 2.89 GLY469 [N] 48 ARG471 [NH2] 3.17 ASN434 [OD1] 

21 THR432 [O] 2.87 VAL470 [N] 49 ARG471 [NH1] 2.8 ASN434 [OD1] 

22 THR432 [O] 3.38 ARG471 [N] 50 ILE463 [N] 3.4 SER452 [OG] 

23 ALA431 [O] 3.00 ARG471 [NE] 51 ARG465 [NH1] 2.79 ASP453 [OD1] 

24 ASN434 [OD1] 2.78 ARG471 [NH1] 52 ALA445 [N] 2.97 ASN462 [OD1] 

25 GLY430 [O] 3.36 ARG471 [NH2] 53 SER452 [OG] 2.72 ILE463 [O] 

26 VAL433 [O] 3.37 ARG471 [NH2] 54 ILE418 [N] 2.65 ARG465 [O] 

27 ALA431 [O] 3.2 ARG471 [NH2] 55 VAL420 [N] 2.93 ALA467 [O] 

28 ASP91 [OD1] 2.92 LYS475 [NZ] 56 LYS256 [NZ] 3.24 GLU472 [OE2] 
 

Table 7-8:  Summary of residues forming hydrogen bonds in the AcAldDH interaction 1 
according to PISA analysis ([X] = atom identity from annotated residue, D = distance 
between interacting atoms).   

 

It should be noted that interactions between AcAldDH molecules may be further 

stabilised by the missing regions at the N and C termini that were not resolved in this 

structure.   

 

7.4.7 Modelled NAD+ binding 

No structurally similar proteins to AcAldDH were identified within the PDB with either 

acetyl-CoA or CoA-SH bound; a structurally similar protein with a nicotinamide cofactor 

bound was identified (3JZ4) (Langendorf et al. 2010).  This semi-aldehyde 

dehydrogenase was superimposed onto the AcAldDH structure (shown in Figure 7-11) 

and the structural alignment was evaluated using DaliLite as shown in Table 7-9.  The 

NADP+ from this structure was then overlaid onto AcAldDH to provide an indication of 

the NAD+ binding site.  The substrate-binding regions of the proteins aligned well, but 

significant variation was observed for some of the loops on the N-terminal side.   
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PDB code 
(chain ID) 

Source 
organism 

Protein 
description 

Aligned 
residues 

Seq 
ID 

Z-
score 

RMSD 
(Å) 

3JZ4 (A) E. coli 
Succinic semi-

aldehyde 
dehydrogenase 

385 19% 31.0 2.8 

 

Table 7-9: Results of the structural alignment analysis between AcAldDH and 3JZ4 using 
DaliLite.  Z-Score describes the quality of the alignment (if >20 structures are 
considered homologous).  RMSD is used as a measure of deviation in terms of distance 
of the Cαs in the aligned structures.   

 

 

Figure 7-11: Cα traces of aligned A chains of AcAldDH (purple) and 3JZ4 (green); “front and 
back” views are shown.  Visible termini are indicated and the NADP

+
 molecule is shown 

in red.   

 

The active site of the protein would appear to be arranged at the interface between the 

two domains of the protein and is positioned such that the active site is orientated away 

from the C-terminal dimerization face.  Some clashes between the AcAldDH and 

modelled NADP+ were observed, and are discussed during Section 7.5.5. 

 

To further investigate the binding of substrates in AcAldDH, attempts were made to 

resolve the AcAldDH protein structure in the presence of substrates.  Soaking 

experiments were attempted for the AcAldDH protein crystals that formed in the 

absence of substrates.  Soaks for 30 s in cryo-protectant well-solution plus substrate 

mixtures, including acetyl-CoA (0.1 mM and 50 µM) or 1 mM acetaldehyde were tested.  

The acetaldehyde-soaked crystals did not diffract X-rays following soaking.  The acetyl-

CoA-soaked crystals did diffract X-rays, but no density for the substrate was observed 

in the processed data.  Due to the lack of observable substrates following the soaking 

experiments, co-crystallisation experiments were attempted.   
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7.5 AcAldDH protein co-crystallisation with substrate-product mix 

7.5.1 Crystallisation conditions 

The purified His-tagged AcAldDH protein dialysed into 50 mM Tris-HCl pH 8.0, 150 mM 

NaCl, was screened with structure screen I & II, PGA, Morpheous, heavy and light twin 

pack and PACT screens (Molecular Dimensions, UK), at a protein concentration of 

10.7 mg/ml.  Two different concentrations of substrate-product mix were added to the 

protein solution immediately prior to the screens, identified as “low” (50 µM acetyl-CoA 

& 1.4 mM NAD+) and “high” (0.5 mM acetyl-CoA & 5 mM NAD+); this mixture of product 

and substrate was used in an attempt to obtain a structure with each of these 

molecules present to allow comparison of substrate/product binding.  A 1:1 ratio (v/v) of 

protein solution: well solution (300 nl drop size) was used for the screening.   

 

The best hit obtained was for the PACT screen in wells D2 & D3 (0.1 M MMT buffer pH 

5.0 & 6.0, 25% (v/v) PEG 1500).  To obtain the most suitable crystals for X-ray 

diffraction, optimisation of the conditions employed pH and PEG 1500 gradients.   

 

Crystals producing the best diffraction data were grown at a protein concentration of 

10.7 mg/ml diluted 1:1 with well solution (0.1 M MMT buffer pH 5.0, 21% and 23% (v/v) 

PEG 1500) with the “high” concentration of substrates.  Crystals took approximately 4 

weeks to appear at 16°C.  The crystals were thin and plate-like.  Stacks of crystals 

were often formed where new crystals nucleated on the side of existing crystals.  

Representative crystal forms are shown in Figure 7-12.   

 

 

Figure 7-12: Representative crystal forms for AcAldDH co-crystallised with substrate-product 
mix (high) (scale-bar shown = mm).   
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Several cryo-protectants were tested with these crystals, including glycerol, ethylene 

glycol and formate over a range of concentrations.  The crystals tested either dissolved 

in the cryo-protectant well-solution mix or did not diffract to any significant resolution 

when exposed to the X-ray beam.  Freezing the crystals appeared to have a negative 

effect on X-ray diffraction; the room-temperature method was therefore employed in an 

attempt to improve resolution of the co-crystallised structure.   

 

Cryo-crystallography, where crystals are exposed to the X-ray beam while in a steady 

stream of nitrogen gas, improves the lifetime of protein crystals (Garman and Owen 

2006).  Although the diffraction at room-temperature for the crystals was much 

improved compared to when frozen, the radiation damage experienced by the crystals 

was significantly increased (Nave 1995).  This shortened the lifetime of the crystals and 

thus limited the completeness of the datasets obtained.  Multiple partial datasets were 

collected and merged together to form the final dataset used.   

 

7.5.2 Data collection and molecular replacement 

Data were collected in-house using a MicroMax 007HF X-ray generator fitted with a 

Saturn 944+ detector (Rigaku, Japan); this used a copper K alpha rotating anode 

producing X-rays of wavelength 1.54060 Å.  Data from 6 different crystals were used, 

and only crystals with unit cells within 0.5% for each axis were merged to ensure 

isomorphism.  Images were separated by 0.5° of rotation.  The merged dataset was 

processed using the HKL2000/0.98 software package.  Data collection statistics are 

shown in the two following tables.   

 

Crystal 
identity 

Number of 
images 

Unit cell dimensions 

Crystal 1 
(Rt 2001_2) 

35 
a = 93.054 Å, b = 109.543 Å, c = 204.149 Å, 

α=β=γ = 90.00° 

Crystal 2 
(Rt 2001_3) 

20 
a = 93.346 Å, b = 109.736 Å, c = 204.401 Å, 

α=β=γ = 90.00° 

Crystal 3 
(Rt 2001_4) 

30 
a = 93.181 Å, b = 109.479 Å, c = 204.252 Å, 

α=β=γ = 90.00° 

Crystal 4 
(Rt 2001_5) 

24 
a = 93.303 Å, b = 109.578 Å, c = 204.607 Å, 

α=β=γ = 90.00° 

Crystal 5 
(Rt 2001_6) 

18 
a = 93.200 Å, b = 109.581 Å, c = 204.306 Å, 

α=β=γ = 90.00° 

Crystal 6 
(Rt 3) 

45 
a = 93.109 Å, b = 109.538 Å, c = 204.094 Å, 

α=β=γ = 90.00° 
 

Table 7-10: Crystal parameters for the AcAldDH (co-crystallised) individual datasets used for 
generation of the final merged dataset.   
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Parameter Value 

Average unit cell dimensions 
a = 93.198 Å, b = 109.576 Å, c = 204.301 Å, 

α=β=γ = 90.00° 

Space group P212121 

Rmerge 0.267 (0.466) 

Completeness 78.0 (70.5)% 

I/σ(I) 3.87 (2.26) 

Multiplicity 2.5 (2.2) 

Number of reflections observed 193392 

Number of unique reflections 14328 (869) 

Resolution 50-4.00 Å (4.07-4.00) 
 

Table 7-11: AcAldDH (co-crystallised) data collection statistics (numbers in brackets for highest 
resolution bin).   

 

The p212121 AcAldDH structure without substrates was used as a starting model for the 

co-crystallised dataset.  The model structure determined during Section 7.4 was rigid-

body refined into the in-house data and the refinement process started as previously 

described.   

 

7.5.3 Data refinement  

Following the rigid-body refinement in Refmac5, the R factor was 0.3364 and Rfree was 

0.3355.   

 

The model was subjected to several rounds of refinement and validation.  Four ADP 

molecules and four chloride ions were added to regions of un-modelled density (one for 

each monomer), and the model refinement process continued until the solution was 

completed.  Positive electron density was again observed at the terminal Sγ of Cys273 in 

all the AcAldDH monomers; the residue was replaced with an S-cysteinesulfinic acid 

during refinement as with the high-resolution structure described in Section 7.4.3.  A 

dual conformation was observed for Glu287 in chain A; this was modelled with partial 

occupancy for both, and three water molecules were also added to the structure.  

Statistics for the refined final model are shown in Table 7-12.  Following refinement, no 

difference map peaks (Fo – Fc) above σ level 5.0 were observed in the structure.   

 

Up to 4 additional residues were distinguishable at the N-terminus of the AcAldDH co-

crystallised structure compared to the high-resolution structure.  Differences in the 

crystallisation conditions are likely to have affected the flexibility of these termini, 

allowing further residues to be resolved.  The extensions of the N-termini suggest that 

the additional His-tags do not interact, but point out of the structure in different 

directions.   
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Parameter Value 

Number of reflections used 13488 (5% test set) 

Number of protein atoms 13640 

Number of non-solvent molecules 8 

Number of solvent molecules 3 

Overall mean B-factor (Å2) 48.05 

R 0.2264 

Rfree 0.3006 

RMS Bond Length 0.0095 Å 

RMS Bond Angle 1.5095° 
 

Table 7-12: Final refinement statistics for the co-crystallised AcAldDH crystal structure with 
acetyl-CoA and NAD

+
.   

 

The structure was evaluated using MolProbity: 

 

Parameter Value 

Ramachandran favoured 95.34% (1722/1807) 

Ramachandran allowed 98.3% (1776/1807) 

Ramachandran outliers 1.7% (31/1807)  

MolProbity score 2.58 (98th percentile) 

Clashscore 20.73 (91st percentile) 
 

Table 7-13: AcAldDH (co-crystallised) MolProbity validation results.   

 

The quality of the final structure is limited due to the relatively-low completeness of the 

data, caused by the requirement to merge several datasets together, as well as the 

limited resolution of the data used to produce the structure.   

 

7.5.4 Overview of the co-crystallised structure 

Although the resolution of the structure was poor compared to the structure in the 

absence of substrates, several regions of additional electron density were observed.  

The common ADP component of the substrates was successfully refined into the 

structure, but it was not possible to determine if the density was associated with NAD+ 

or acetyl-CoA.   
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Figure 7-13: Cartoon overview diagram of the AcAldDH structure in the presence of NAD
+
 and 

acetyl-CoA.  Green = molecule A, brown = molecule B, purple = molecule C, and blue = 
molecule D.  Black sphere = Cl

-
, cyan spheres = water molecules, red molecules = 

ADP, and termini regions are indicated.   

 

When the AcAldDH structure without substrate was superimposed onto this structure, 

each of the individual chains aligned well, but small structural differences were 

observed between molecules forming close dimeric interactions (i.e. molecule A and B 

or molecules C and D).  However, the orientation of molecules forming the dimer of 

dimers appeared to have shifted more significantly, as shown in Figure 7-14.  These 

differences may in part be due to differences in crystallisation conditions, but may also 

be due to the presence of acetyl-CoA and NAD+.  Structural alignment between the 

structures did not show RMSD values in excess of 0.8 Å between any of the chains, 

suggesting any differences were relatively small.  Due to the limited resolution of the 

co-crystallised structure, meaningful interpretation of side-chain repositioning could not 

be made.   
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Figure 7-14: Cα traces of aligned AcAldDH tetramers.  The A chain was used as reference for 
superimposition.  The co-crystallised structure chains are shown in various shades of 
red, and the high-resolution structure chains are shown in shades of blue.  Chain 
identities and terminal regions are indicated.   

 

7.5.5 Regions of additional electron density 

As shown in Figure 7-15, additional electron density was observed beside each of the 

AcAldDH chains proximal to His166; this appeared to correspond to the shared ADP 

moiety that is present in both NAD+ and acetyl-CoA (see Figure 7-19).  The NADP+ 

taken from the 3JZ4 structure shown in Section 7.4.7, occupied the same binding 

pocket when overlaid onto the co-crystallised AcAldDH structure; this implied that the 

ADP moiety was indeed likely to be interacting in this region.   

 

The terminal phosphate oxygen of ADP is positioned between 10.6 and 11.6 Å from the 

Sγ of Cys273 for all the protein chains, allowing space for either the remaining portion of 

NAD+ or acetyl-CoA to fit.  Unfortunately, sufficient density was not present beyond that 

associated with the ADP to allow the substrate/product identity to be distinguished.   
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Figure 7-15 A-D: Electron density maps for the 4 ADP molecules in the co-crystallised AcAldDH 
structure (A-D = chain id in structure).  Blue map = 2Fo - Fc (where Fo = Fobserved, Fc = 
Fcalculated, and F = structural factor), σ level = 1.09; negative (red) and positive (green) 
difference map (Fo – Fc), σ level = 3.0.  Molecules are shown in stick form, with carbons 
in purple.   

 

The presence of an ADP in this region of the protein confirms the orientation of the 

active-site cleft as facing inwards towards the N-terminal faces of the monomers 

(Figure 7-13).  The observed tetrameric assembly may offer some protection to the 

active-site cysteines by orientating all the active sites into the centre of the multimer 

rather than their being exposed on the surface of the protein.   

 

As shown in Figure 7-16, the positioning of the ADP appeared significantly different 

from that portion of NADP+ in 3JZ4; this may be expected due to the presence of 

clashing residues when this NADP+ was superimposed onto the AcAldDH structure.  

Significant steric clashes were observed between the 2’ additional phosphate of NADP+ 

and a loop containing residues His166 – Ser168.  Given that AcAldDH would appear to 

bind acetyl-CoA/Co-ASH in this region, it is likely that some differences in substrate 

orientation may exist between the two structures.  The orientation observed in the 

AcAldDH structure would position the 2’ and 3’ phosphate on the ADP ribose in NADP+ 

and acetyl-CoA, respectively, away from the active site alleviating any steric clashes 

observed.  This may explain how CoA-SH and acetyl-CoA are able to bind at the same 

site as NAD+ in the AcAldDH protein.  The adenosine ring observed here is also in a 

different position from the modelled NADP+; this positioning avoids the clash predicted 

between this ring and Thr205.   
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Figure 7-16: Cartoon diagram of the co-crystallised AcAldDH active-site region in the presence 
of NAD

+
 and acetyl-CoA with NADP

+
 from 3JZ4 overlaid.  Grey = molecule A, Cys273 is 

shown with purple carbon atoms.  Residues clashing with NADP
+
 are shown with 

orange carbon atoms.  Green molecule = superimposed NADP
+
, red regions of NADP

+
 

indicate clashes, blue = ADP moiety visible in the structure (ligands shown in stick 
form).   

 

Figure 7-17: Cartoon overview diagram of the AcAldDH structure (molecule A) in the presence 
of NAD

+
 and acetyl-CoA.  Protein termini, Cys273 (purple), residues interacting with ADP 

in all chains (shown in green) and the ADP moiety (stick form with carbons shown in 
red) are indicated. 

 

Detailed analysis of ligand binding could not be carried out due to the limited resolution 

of the cofactor-bound structure.  Uncertainty surrounding the precise conformation of 

interacting residues was of particular concern.  Given the substantial involvement of 
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water molecules in substrate binding observed for 3JZ4 (Langendorf et al. 2010), the 

low-resolution structure generated here can only provide limited information.  According 

to CONTACT analysis (CCP4i), Pro165, His166 and Leu225 are interacting with ADP in all 

chains as shown in Figure 7-17.   

 

7.6 Discussion 

The AcAldDH protein from G. thermoglucosidasius has been structurally resolved to 

2.1 Å resolution in the absence of substrates; a less complete, lower resolution 

structure (4.0 Å) has also been obtained in the presence of NAD+ and acetyl-CoA.  As 

discussed in the Introduction to this thesis, the conserved residues in the aldDH 

domain of ADHE are conserved in the AcAldDH protein; the structure also aligns well 

with the 3K9D structure used for molecular replacement, showing these proteins to be 

of a similar topology.  The conserved catalytic cysteine residue (Cys273) identified 

through sequence alignments, appeared to have been oxidised due to radiation 

damage during the data collection process.  This residue is positioned proximal to the 

likely position of the nicotinamide ring of NADH as required to perform catalysis.   

 

In contrast to the aldDH domain of ADHE, the AcAldDH protein did not appear to show 

any oxygen sensitivity during biochemical characterisation.  As the catalytic mechanism 

for the two proteins is likely to be the same, it is not clear why inactivation caused by 

the hypothesised oxidation of the catalytic cysteine (observed during Chapter 3) did not 

affect the AcAldDH protein.  Alignment of the aldDH domain model (Chapter 5) with the 

AcAldDH structure obtained here (Figure 7-18), suggests no significant difference in 

key-residue positioning or interactions in the two proteins.  The aldDH structure is only 

a homology model, and without a high-resolution structure of the aldDH domain it is 

impossible to accurately rationalise the differences in stability observed for the two 

enzymes.  One possibility is that interactions formed between the ADH and aldDH 

domains in ADHE, may leave the aldDH domain more vulnerable to oxidation; the 

AcAldDH protein that is produced in isolation may be free to form tetrameric 

assemblies which may protect the catalytic cysteine.  The catalytic clefts of the proteins 

appear to be reasonably open, which may leave this residue vulnerable if inter-protein 

interactions were to be disrupted.   
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Figure 7-18: Cartoon diagram of an AcAldDH monomer (dark grey) superimposed on the aldDH 
model (light grey) created during Chapter 5.  Conserved residues described in the 
Introduction to this thesis are indicated.  Red = PXGXXXXXPXXXP motif, green = 
GXGXG motif, purple = catalytic cysteine containing motif, orange = GXGXXG motif 
and light blue = EKLSPXL motif.  The conserved cysteine is labelled.   

 

A “bi-uni-uni-uni ping-pong” scheme has been suggested for other acetylating aldDH 

enzyme mechanisms, where there is an ordered binding of substrates.  This scheme 

has been investigated in E. coli and Clostridium kluyveri in the “reverse” direction to the 

assays described here, where acetaldehyde and NAD+ bind to the enzyme first, and 

NADH is then released prior to CoA-SH binding and subsequent acetyl-CoA release 

(Shone and Fromm 1981; Smith and Kaplan 1980).  The catalytic cysteine conserved 

between various aldDH proteins (described in the Introduction to this thesis) has been 

suggested to play a key role in the formation of an acetyl-S-enzyme intermediate 

during this reaction.  The observation of an acetate close to the catalytic cysteine in the 

high-resolution structure (as discussed in Section 7.4.5), supports the prediction of this 

intermediate forming during the reaction mechanism.  Smith and Kaplan (1980) 

hypothesise that the NAD+ and CoA-SH molecules share a binding site on the protein, 
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leading to the independent binding during the reaction mechanism.  Figure 7-19 shows 

the significant homology around the adenosine diphosphate regions of NAD+ and CoA-

SH.  It can be envisaged that, due to the similar composition of this region, the two 

molecules may both be stabilised by the same interacting residues in the active site 

region.  Variation in stabilising residues may occur around the non-homologous regions 

of these substrates.   

 

Figure 7-19: Chemical structure of NAD
+
 and CoA-SH, with homologous “ADP” regions 

indicated in red.   

 

Product inhibition was observed for the AcAldDH protein with respect to CoA-SH and 

acetaldehyde (Chapter 6).  A shared binding site may explain this observation where 

the inefficient release of CoA-SH impedes NADH binding and hence limits catalysis.  

Inhibition by acetaldehyde cannot be rationalised by this mechanism, but the 

accumulation of this highly reactive product could be envisaged to have a negative 

influence on protein stability/activity.  The DmpF protein, which is an acetylating aldDH 

from Pseudomonas sp. CF600, has been suggested to possess a shared binding site 

in a Rossmann fold for CoA-SH and NAD+, as informed by an X-ray crystal structure 

and deuterium-exchange experiments (Lei et al. 2008).   

 

In contrast to AcAldDH, the aldDH domain of ADHE did not display any product 

inhibition.  Possible differences in the binding of the substrates/products may be the 

cause of the differences observed; the amino acid sequence of AcAldDH is 43% 

identical and 59% similar to that of the aldDH domain of ADHE, and thus significant 
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differences in interacting residues outside the common aldDH residues may occur.  

The presence of the ADH domain may also act as an influence over efficient product 

release.  The difficulty in resolving the aldDH domain of ADHE independently of the 

ADH domain prevented examination of these potential factors.   

 

Although diffraction data for AcAldDH crystals in the presence of acetyl-CoA and NAD+ 

were obtained, as well as density indicative of portions of these substrate/products 

being visible, poor diffraction and the short lifetime of the AcAldDH crystals in the X-ray 

beam at room-temperature prevented full resolution of the hypothesised shared binding 

site.  Several different crystals were used to generate the model and differences in 

occupancy of the molecules may have affected the density observed for the substrates.  

The additional density observed in the structure did appear close to the position of the 

modelled NADP+ diphosphate (from 3JZ4) and the conserved ADP portion fitted well 

into this density.  The conformation of the ADP refined into the structure was 

significantly different from the conformation of this moiety in the modelled NADP+ from 

3JZ4; it is possible that substrate orientation in AcAldDH may be different, avoiding 

clashes with active site residues, although it should be acknowledged that the limited 

quality of the co-crystallised structure limits the reliability of any conclusions drawn.  

During the refinement, no other regions of additional density were observed 

corresponding to portions of NAD+ or acetyl-CoA molecules.  This supports the 

prediction of a single binding site for these two substrates.  Unfortunately, no similar 

protein structures were available with acetyl-CoA or CoA-SH bound, so the binding of 

this substrate could not be validated though modelling work.   

 

Residues close to the additional 3’ phosphate group of the ribose ring may present a 

suitable target for manipulation for optimisation of catalysis in the acetaldehyde 

generating direction.  CoA-SH must be released prior to NADH binding, so decreasing 

the affinity of AcAldDH for CoA-SH may overcome the product inhibition observed 

previously.  However, disruption of such binding interactions may significantly disrupt 

catalysis carried out by the enzyme.  The orientation of ADP in the co-crystallised 

AcAldDH structure also suggests that this 3’ phosphate region may not be directly 

interacting with the protein during substrate/product binding.  Residues interacting with 

the non-homologous regions of the substrates may also provide targets for 

manipulation, but regrettably these interactions were not observed here.   

 

Optimisation of co-crystallisation conditions with each of these molecules separately 

and of data collection conditions, will be required to allow this predication of a shared 
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binding site to be further investigated.  Of particular interest is the identification of any 

residues that solely interact with acetyl-CoA/Co-ASH, rather than NAD+, informing site-

directed mutagenesis attempts to overcome product inhibition.   

 

A particular focus will be the development of freezing conditions in an attempt to allow 

exposure to high-energy synchrotron radiation, increasing the resolution of the 

substrate/product bound structures.  This may also allow any structural changes 

required in the protein during catalysis to be identified.   

 

Another approach used in attempts to alleviate the product inhibition was to fuse the 

AcAldDH protein to the ADH protein Fragment 11, to facilitate substrate channelling 

between the two proteins (Chapter 8).  Structural models of the fusion proteins created 

in Chapter 8 were not produced due to the uncertainty of interactions that may form 

between the two fused domains (particularly for the more stable Fusion 1 protein); 

interactions may be non-native due to the artificial fusion of the two domains, and 

therefore more difficult to accurately predict compared to the physiologically-relevant 

ADHE model described in Chapter 5.   

 

In conclusion, the AcAldDH protein of G. thermoglucosidasius has been structurally 

resolved to 2.1 Å resolution by X-ray crystallography.  Active site residues have been 

identified; however, due to the limited resolution of the substrate/product bound 

structure, accurate identification of potential target residues for manipulation of 

enzymatic activity has proven elusive.  Confirmation of a likely shared binding site for 

NAD+ and CoA-SH suggests alleviating product inhibition through point mutations may 

not be feasible, due to shared interactions between the protein and substrates.   
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8 CREATION OF NOVEL ARTIFICIAL ADHE PROTEINS 

 

8.1 Introduction 

The aim of this section of the project was to produce a catalytically-active artificial 

ADHE enzyme, derived from the Fragment 11 and AcAldDH proteins expressed and 

characterised previously.  The effects of such fusions on the two domains in terms of 

stability and activity were monitored.  The kinetic efficiency of these enzymes 

expressed in isolation appeared to be limited by certain properties of the proteins.  The 

AcAldDH appeared to be subject to product inhibition, potentially due to the inefficient 

release of the products of the catalysed reaction.  Limitations in catalytic efficiency 

were observed for the ADH domain of the protein, indicated by a relatively high Km for 

acetaldehyde.  In vitro experiments showed co-incubation of the two proteins to be 

insufficient to allow conversion of acetyl-CoA to ethanol.  Either of these described 

limitations could provide an explanation as to why the two step catalysis was not 

observed.  Channelling of acetaldehyde may be induced by positioning the constituent 

proteins (and preferably the active sites) close together by expression with a physical 

link between them.   

 

It was considered of academic and industrial interest to observe the effect of 

expressing these two proteins as a single protein unit.  The proteins produced were 

evaluated in terms of in vitro catalytic properties and also in vivo in terms of modulation 

of ethanol production within Geobacillus strains.  The ability of the soluble Fragment 11 

protein to induce proper folding of the EutE aldDH protein, when expressed as a 

protein fusion, was also tested.   

 

Fusions of the AcAldDH and Fragment 11 proteins were made in two orientations.  

Fusion 1 consisted of an N-terminal Fragment 11 and a C-terminal AcAldDH.  Fusions 

2-4 were arranged in the opposite orientation as seen for the native ADHE protein.  A 

schematic diagram of the protein Fusions is shown in Figure 8-1.   
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Figure 8-1: Schematic diagram of the un-tagged Fusion proteins created during this chapter of 
the project.  “Linker” lengths shown are based on the amino acid sequence between 
structured domains of the proteins (determined from the crystal structures of the two 
domains) plus any additional sequence added through the vector used for the fusions.   

 

The variable DNA sequence of the linker region between the two domains for Fusion 

proteins 2-4 are shown in Figure 8-21.   

 

8.2 Materials and methods 

DNA templates for the PCR amplification of the genes described were either TM242 

genomic DNA (50 ng/µl), or the previously-described plasmid constructs.  These were 

carried out according to the method described in Section 2.3.2.  The DNA primer 

combinations used to amplify the genes are shown in the following Tables.  Primer 

DNA sequences are reported in Appendix 1.  Primers incorporated additional bases 

where required to keep the two proteins to be fused and any additional tags in frame.  

Reverse primers for the N-terminal gene sequences did not include a stop codon to 

allow read through.  Reverse primers for the C-terminal gene sequences incorporated 

a stop codon immediately prior to the 3’ restriction site.   

 

The PCR products for the generation of fusion proteins were A-tailed, ligated into the 

pGEM®-T easy Vector, ethanol-precipitated and transformed into JM109 cells for 

blue/white screening.  Successful cloning of the fragments was confirmed by DNA 

sequencing.  The fragments in pGEM®-T easy were then digested with the appropriate 

restriction enzymes, gel purified and ligated into the previously-digested expression 

vectors.  Ligations were transformed into JM109 cells, which were then subject to PCR 

colony screening.  Positive constructs from the PCR screen were screened by 

restriction digestion, and were then sent for DNA sequencing with vector-specific and 

internal primers for the appropriate gene orientation.  Bacterial strains transformed with 
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the various expression vector constructs were screened using appropriate antibiotic 

selection, using antibiotic resistance markers present in the vectors.   

 

8.2.1 Fusion 1 cloning 

The pLM303-mbp-eutE construct produced in Chapter 6 was used as the starting point 

of the Fusion 1 protein construction.  The maltose-binding protein was replaced by 

Fragment 11 to produce the pLM303-frag11-eutE construct, and the eutE gene was 

replaced with AcAldDH to produce Fusion 1.  For expression in Geobacillus the internal 

SacI site was disrupted using site-directed mutagenesis incorporating an additional 

codon GGT (G).  No His-tag was present on the Fusion 1 protein expressed from 

pUCG18-pLDH.  Primers used during this process are shown in Table 8-1.   

 

Cloning stage 
Restriction 

sites 
Forward 
primer 

Reverse 
primer 

Fragment 11 cloning for EutE fusion NcoI/SacI 
Frag11 for 

eutE fusion F1 
Frag11 for 

eutE fusion R1 

AcAldDH replacement of EutE in 
fusion 

SacI/XhoI 
ACaldDH 

fusion Fwd1 
ACaldDH 

pet28 rev1 

Removal of SacI site (mutagenesis) n/a 
11-AcaldDH 

NO SACI Fwd: 
11-AcaldDH 

NO SACI Rev 

Amplification of Fusion 1 for 
expression in pUCG18-pLDH vector 

XbaI/SacI 
GB 459-869aa 

Fwd1 
pUC F1 Rev1 

 

Table 8-1: PCR primers used for construction of the Fusion 1 protein.   

 

8.2.2 Fusions 2-4 cloning 

The fragment 11 DNA sequence was cloned into pET28a.  The acAldDH (without a 

stop codon) was then introduced at the N-terminus of this gene to allow read through, 

creating the N-terminal His-tagged Fusion 2 protein.  The Fusion 2 protein without the 

N-terminal His-tag was selected for expression in Geobacillus.  Primers used during 

this process are shown in Table 8-2.   

 

Cloning stage 
Restriction 

sites 
Forward 
primer 

Reverse 
primer 

Amplification of Fragment 11 for 
Fusion 2 

HindIII/XhoI 
Frag 11 28a 
Fusion 2 F1 

Frag11 
pET28a R 

Amplification of AcAldDH for Fusion 2 NheI/HindIII 
ACaldDH 
pet28 F1 

AcAldDH 28a 
Fusion2 R1 

Amplification of Fusion 2 for pUCG18-
pLDH vector 

XbaI/SacI pUC F2 Fwd1 pUC F2 Rev1 

 

Table 8-2: PCR primers used for construction of the Fusion 2 protein.   
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Proteolysis was observed within the linker region of the recombinantly-expressed 

Fusion 2 protein.  Truncation of the AcAldDH gene sequence with a slight extension of 

the Fragment 11 sequence was used to create Fusion 3.  Codons for two additional 

amino acids (GS) were introduced between the two domains of Fusion 3 using site-

directed mutagenesis, disrupting the HindIII restriction site.  The resulting protein was 

known as Fusion 4.  Primers used during this process are shown in Table 8-3.   

 

Cloning stage 
Restriction 

sites 
Forward 
primer 

Reverse primer 

Amplification of AcAldDH for Fusion 3 NheI/HindIII 
ACaldDH 
pet28 F1 

AcAldDH pet28a 
R1 Native link 

Amplification of Fragment 11 for 
Fusion 3 

HindIII/XhoI 
ADH native 

link F1 
Frag11pET28aR 

Mutagenesis of Fusion 3 to create 
Fusion 4 

n/a 
Fus4 Fwd 

primer 
Fus4 Rev primer 

 

Table 8-3: PCR primers used for construction of the protein Fusions 3 & 4.   

 

8.2.3 TM400 Fusion 1 vs ADHE fermentation run 

To evaluate the Fusion 1 protein in vivo, TM400-pUCG18-pLDH-adhE and fusion 1 

strains were grown under fermentative conditions using Biostat CT-DCU (1 L vessel) 

fermenter systems (Sartorius), following TMO Renewables standard protocols.  The 

methods used are summarised in the results section of this chapter.  The fermentation 

runs were carried out in conjunction with the fermentation team at TMO Renewables.  

The TMO analytical team determined metabolite concentrations using HPLC analysis, 

following standard protocols.   

 

8.3 Results 

The orientation of the component protein domains appeared to have a significant effect 

on the stability of the Fusion proteins.  Protein expression and characterisation results 

for the two orientations will be reported separately.   

 

8.3.1 Fusion 1 

8.3.1.1 Fusion 1 cloning 

Restriction digests of the final expression constructs are shown in Figure 8-2.  The 

pLM303-fusion 1 construct was used for expression in E. coli of the His-tagged 

Fusion 1 protein.  Later experiments expressing the protein in Geobacillus strains used 

the un-tagged pUCG18-pLDH-fusion 1 construct.   
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Figure 8-2: Agarose gel electrophoresis of restriction-digested constructs.  The predicted sizes 
of the various DNA fragments are shown over the respective lane for each digest.  M = 
DNA markers sizes given in kb, 1 = pLM303-frag11-eutE, 2 = pLM303-mbp-eutE (both 
triple digested SacI/NcoI/XhoI), 3 = pLM303-fusion 1 (no SacI site), 4 = pLM303-fusion 
1 (with SacI site) (both triple digested XbaI/SacI//XhoI) & 5 = pUCG18-pLDH-fusion 1 
(digested with XbaI/SacI).   

 

8.3.1.2 Fusion 1 (and Frag11-EutE) protein expression and characterisation 

The purified pLM303-frag 11-eutE & pLM303-fusion 1 plasmid constructs were 

transformed into the E. coli BL21 (DE3) protein expression strain.  Protein expression 

trials were carried out using 4.5 h of protein expression conditions.   

 

Figure 8-3: SDS-PAGE analysis of BL21 Fusion protein expression trial.  M = markers 
(Mr/1000), T = total, I = insoluble & S = soluble.  A = Frag 11-EutE (Mr = 100,924), B = 
Fusion 1 (Mr = 97,705).  Predicted His-tagged-protein bands are highlighted with a blue 
arrow, and the expected size (Mr/1000) of the protein is shown.   

 

The Frag11-EutE protein was produced insolubly under the expression conditions 

tested, whereas the Fusion 1 protein was expressed in the soluble cell extract.  

Fusion 1 produced under the described expression conditions was purified using metal 
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affinity chromatography, as shown in Figure 8-4 (column charged with Ni2+ according to 

the method outlined in Section 2.9).   

 

Figure 8-4: SDS-PAGE analysis of Fusion 1 metal affinity chromatography samples.  1 = flow 
through, M = markers (Mr/1000), 2 = 0%, 3 = 1%, 4 = 2 x 15% elution step pool, 5 = 
100%, 6 & 7 = 15% elution 0.5 and 2 x sample concentration & 8 = 15% pooled sample 
8 days post purification (% values = %HIS-ELUTE buffer diluted in HIS-BIND buffer).  
Predicted His-tagged-Fusion 1 band (Mr/1000 = 97.7) is highlighted with a blue arrow.   

 

The pooled 15% HIS-ELUTE sample containing the highest ADH and aldDH activities 

was dialysed overnight into 50 mM Tris-HCl pH 8.0, 150 mM NaCl.  Post dialysis, some 

protein had precipitated in the tubing, and therefore the sample was filtered using a 

0.44 µm syringe filter device (Millipore) prior to assays.  A 45% loss in protein 

concentration was observed post dialysis.  Although a significant loss of protein activity 

was also observed at this stage, significant ADH and aldDH activities remained present 

in the sample.  Assessment of the solution by SDS-PAGE following 8 days incubation 

at 4°C (lane 8 in Figure 8-4) showed the fusion protein had not been degraded over 

this time.   

 

Assays were undertaken to determine the kinetic parameters for the two domains of 

this protein.  As in Chapter 6, rapid curvature of the progress curves was observed for 

the AcAldDH assays.  Assays of this domain were carried out as described previously.   

 

Activity (Substrate) Km (mM) 
Standard 

Error 
Vmax 

(U mg-1) 
Standard 

Error 

AcAldDH: (acetyl-CoA) 0.032 +/- 0.001 30.2 +/- 1.0 

AcAldDH: (NADH) 0.057 +/- 0.002 28.2 +/- 1.0 

Frag 11: (acetaldehyde) 151.0 +/- 5.5 145.9 +/- 5.9 

Frag 11: (NADH) 0.131 +/- 0.004 110.6 +/- 4.3 
 

Table 8-4: Summary of kinetic parameters determined for the Fusion 1 protein.  Vmax reported 
has been adjusted for saturation with the fixed substrate.   
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Figure 8-5: Michaelis-Menten plot of aldDH enzymic activity (U mg
-1

 of protein) versus 
concentration of acetyl-CoA (mM) at a fixed concentration of NADH (0.22 mM) for the 
purified Fusion 1 protein.   
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Figure 8-6: Hanes-Woolf plot ([S]/v vs. [S]) for the variation of aldDH activity (U mg
-1

) with 
respect to concentration of acetyl-CoA (mM).   
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Figure 8-7: Michaelis-Menten plot of aldDH enzymic activity (U mg
-1

 of protein) versus 
concentration of NADH (mM) at a fixed concentration of acetyl-CoA (0.34 mM) for the 
purified Fusion 1 protein.   
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Figure 8-8: Hanes-Woolf plot ([S]/v vs. [S]) for the variation of aldDH activity (U mg
-1

) with 
respect to concentration of NADH (mM).   
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Figure 8-9: Michaelis-Menten plot of ADH enzymic activity (U mg
-1

 of protein) versus 
concentration of acetaldehyde (mM) at a fixed concentration of NADH (0.21 mM) for the 
purified Fusion 1 protein.   
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Figure 8-10: Hanes-Woolf plot ([S]/v vs. [S]) for the variation of ADH activity (U mg
-1

) with 
respect to concentration of acetaldehyde (mM). 
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Figure 8-11: Michaelis-Menten plot of ADH enzymic activity (U mg
-1

 of protein) versus 
concentration of NADH (mM) at a fixed concentration of acetaldehyde (240 mM) for the 
purified Fusion 1 protein.   
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Figure 8-12: Hanes-Woolf plot ([S]/v vs. [S]) for the variation of ADH activity (U mg
-1

) with 
respect to concentration of NADH (mM).   

 

Assays to determine whether the Fusion protein was capable of catalysing the 

conversion of acetyl-CoA to ethanol were carried out as described in Section 2.13.4.  

An average of three assays gave a ratio of 1.2:1 NADH converted to CoA-SH released.  

If the ADH domain of the protein was able to utilise the acetaldehyde produced by the 

AcAldDH domain, two NADHs would have been converted per CoA-SH released.   
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8.3.1.3 Fusion 1: optimum temperature and thermostability 

Assays to determine the temperature optimum were carried out for the purified Fusion 

1 protein as described in Section 2.13.5.   

 

Figure 8-13: Plot of % activity of maximum against temperature of assay (°C) for the two 
enzymatic activities of Fusion 1.   

 

The optimum temperatures for the two domains of the Fusion 1 protein were both 

approximately 55°C.   

 

Thermostability assays were carried out on the purified Fusion 1 protein as described 

in Section 2.13.6.  The protein was divided into 50 µl aliquots for incubation at the 

desired temperatures.   

 

Figure 8-14: Plot of ln % activity against time (s) at a defined temperature (°C) for the AcAldDH 
activity of Fusion 1.   
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Figure 8-15: Plot of ln % activity against time (s) at a defined temperature (°C) for the ADH 
activity of Fusion 1.   

 

The two domains of the Fusion 1 protein retained 68% of their original activity following 

30 min incubation at 60°C.  The half-life of the two domains at 65°C was approximately 

5 min.   

 

8.3.1.4 Fusion 1: estimation of Mr by gel filtration 

Gel filtration was carried out on the purified Fusion 1 protein in 50 mM Tris-HCl pH 8.0, 

150 mM NaCl.  Assays of activity were used to monitor the presence of the Fusion 1 

protein.  The retention time of the peaks of activity were compared to standard proteins 

to provide an estimate of the Mr.   

 

Figure 8-16: Chromatograph of a purified Fusion 1 gel filtration run.  Blue line = A280nm (mAU).  
Activity measurements (abs/min) for both ADH and aldDH are overlaid onto 
corresponding fractions (blue = ADH, red = aldDH).  An SDS-PAGE gel of the peak 
fractions is also shown.  L = load sample, M = markers (Mr/1000) 1-12 = fraction 
numbers A4-A15 (approximate elution volume 8 ml – 13.5 ml, 0.5 ml per fraction).   
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Protein peak identity Velution (ml) Mr Observed Mr Subunit Mr Observed/ Mr Subunit 

Fusion 1 peak 1 9.9 610,500 97,705 6.25 

Fusion 1 peak 2 12.54 194,000 97,705 1.99 
 

Table 8-5: Estimation of Mr of Fusion 1 from the gel filtration results.   

 

The Fusion 1 protein appeared to be poly-dispersed, eluting over a broad range of 

sizes.  The two major peaks of activity correspond to associations of 6 and 2 

polypeptides.   

 

8.3.2 Fusion 1 crystallisation trials 

His-purified Fusion 1 was selected for crystallisation trials in an effort to determine how 

the two domains may interact, and to suggest possible points of modification to 

improve the activity of the protein in vivo.   

 

The protein at 14 mg/ml (dialysed into 50 mM Tris-HCl pH 8.0, 150 mM NaCl and 0.1 

mM zinc acetate)  was screened at two different ratios of protein to well solution (1:1 

and 2:1 protein: well solution, 300 nl drop size) with Structural screen I & II, JCSG-plus 

and PGA screens (Molecular Dimensions, UK).  No hits were obtained for this protein 

under these conditions.   

 

8.3.3 Fusions 2-4 

8.3.3.1 Fusions 2-4 gene cloning 

Restriction digests of the final expression constructs of the three Fusion proteins with 

the domains in the same orientation as the native enzyme are shown in Figure 8-17.  

The pET28a-fusion 2 construct was used for expression of the His-tagged Fusion 2 

protein in E. coli.  Later experiments expressing the protein in Geobacillus strains used 

the un-tagged pUCG18-pLDH-fusion 2 construct.  Due to observed susceptibility of the 

Fusion 2 protein to proteolysis, Fusions 3 and 4 were created.  Fusions 3 and 4 were 

not selected for expression in Geobacillus strains.   
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Figure 8-17: Agarose gel electrophoresis of restriction-digested constructs.  The predicted sizes 
of the various DNA fragments are shown over the respective lane for each digest. M = 
DNA markers sizes given in kb.  1 = pET28a-fusion 2 (digested with NheI/XhoI), 2 = 
pUCG18-pLDH-fusion 2 (digested with XbaI/SacI), 3 = pET28a-fusion 3 (digested with 
HindIII/XhoI) & 4 = pET28a-fusion 4 HindIII site removed (digested with HindIII/XhoI).   

 

8.3.3.2 Fusion 2: protein expression and characterisation 

The purified plasmid construct was transformed into the E. coli BL21 (DE3) protein 

expression strain.  Protein expression was assessed following 4.5 h of protein 

expression conditions.  Protein of the predicted Mr was observed in the soluble cell 

extract under these conditions, and was purified using metal affinity chromatography 

(column charged with Ni2+ according to the method outlined in Section 2.9).  Analysis of 

the purification samples by SDS-PAGE and enzyme assays of the protein-containing 

fractions are shown in Figure 8-18 & Figure 8-19, respectively.   

 

 

Figure 8-18: SDS-PAGE analysis of Fusion 2 metal affinity chromatography samples.  T = total, 
I = insoluble, S = soluble, 1 = flow through, M = markers (Mr/1000), 2 = 0%, 3 = 2.5%, 4 
= 5%, 5 = 10%, 6 = 20%, 7 = 30%, 8 = 40%, 9 = 60%, 10 = 100% (% values = %HIS-
ELUTE buffer diluted in HIS-BIND buffer).  Predicted His-tagged-Fusion 2 band (Mr = 
98,712) is highlighted with a blue arrow.  The size of the two protein fragments that 
would result from proteolysis, assuming cleavage occurred exactly between the two 
domains, are also highlighted with blue arrows (Mr/1000 is indicated).   
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Figure 8-19: Enzyme activity assay results (U sample
-1

) for key fractions of the Fusion 2 metal 
affinity purification.  S = soluble, Ft = flow through, % values = % wash step & Pool = 
pooled 10 & 20% sample.   

 

As shown in Figure 8-19, the relative activities of the two enzymes present in the fusion 

samples varied between purification fractions.  SDS-PAGE gel analysis showed a 

number of other proteins present in the samples, some co-eluting with the purified 

Fusion 2 protein.  It was hypothesised that proteolysis between the two domains 

resulted in two functional enzymes, the His-tagged AcAldDH (seen to co-elute with 

Fusion 2) and the un-tagged ADH domain (observed in the 0% wash sample).  The 10 

& 20% fractions were therefore enriched with AcAldDH activity, whereas the 0% wash 

sample was enriched with ADH activity.   

 

In an effort to further resolve the hypothesised AcAldDH-containing degradation 

product, a pooled 10 & 20% fraction from the metal affinity purification was run on a gel 

filtration column.   

 

8.3.3.3 Fusion 2: purification by gel filtration 

Gel filtration was carried out on the purified Fusion 2 protein in 50 mM Tris-HCl pH 8.0, 

150 mM NaCl.  Assays of activity were used to monitor the presence of the protein of 

interest.  The retention time of the peaks of activity were compared to standard proteins 

to provide an estimate of the Mr.   
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Figure 8-20: Chromatograph of a partially-purified Fusion 2 gel filtration run.  Blue line = A280nm 
(mAU).  Activity measurements (abs/min) for both ADH and aldDH are overlaid onto 
corresponding fractions (blue = ADH, red = aldDH).  SDS-PAGE gels of the peak 
fractions are also shown.  L = load sample, M = markers (Mr/1000) & A5-B11 = fraction 
numbers.  

 

Two enzymatically active protein species were eluted from the gel filtration column.  

The first peak of enzyme activity contained both ADH and AcAldDH activity 

corresponding to the Fusion 2 protein.  A second peak of AcAldDH activity eluted 

shortly after; the protein responsible for this peak appeared to be the predicted 

degradation product of the Fusion.  ADH activity independent of AcAldDH was not 

detected, presumably because the ADH degradation product was eluted in the flow 

through and 0% wash step of the previously-run metal affinity purification.  The 

AcAldDH degradation product was not fully resolved from the Fusion 2 protein by gel 

filtration.  

 

SDS-PAGE analysis of the gel filtration fractions (Figure 8-20), gave an estimate of Mr 

for the dominant protein species in the AcAldDH containing fraction of 54,900.  This 

value for Mr was used for the prediction of AcAldDH subunit assembly.   
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Protein peak identity Velution (ml) Mr Observed Mr Subunit 
Mr Observed/ 
Mr Subunit 

Fusion 2 peak 1 10.5 470,000 98,712 4.8 

AcAldDH? peak 2 12.5 198,000 54,900 3.6 
 

Table 8-6: Peak analysis of Fusion 2 purification, Mr estimates for peak of protein activity are 
shown.   

 

8.3.3.4 NADH→NAD: CoA released ratio assays 

Assays to determine whether the Fusion 2 protein was capable of catalysing the 

conversion of acetyl-CoA to ethanol were carried out as described in Section 2.13.4.  

As observed for the Fusion 1 protein, an average of three assays gave a ratio of 1.2:1 

NADH converted to CoA-SH released.  Neither of the Fusion proteins appeared to be 

able to catalyse conversion of acetyl-CoA to ethanol in vitro.   

 

Due to the observed instability of the Fusion 2 protein and the difficulty in fully resolving 

the Fusion protein from high levels of degradation products, this Fusion was not 

kinetically characterised.   

 

8.3.3.5 Fusions 3 & 4 

The susceptibility of the Fusion 2 protein to proteolysis was thought to be due to the 

length of the amino acid sequence between the two protein domains.  The Fusion 2 

protein contained a longer “linker” region than the native ADHE protein, as illustrated in 

Figure 8-21.  Two further Fusion proteins were created with shorter “linker” sequences 

between the two domains of the protein (as described in Sections 8.2.2 and 8.3.3.1).   

 

Figure 8-21: Protein sequence alignment between the native ADHE protein and the 3 native 
orientation Fusion proteins (Fus = Fusion).  Identical residues highlighted in black and 
grey, “linker” sequence is indicated in red, and additional GS insertion is indicated in 
green.   

 

As this work was started prior to the resolution of the crystal structure of the AcAldDH 

protein, the protein structure prediction programme SWISS-MODEL (ExPASy (Kiefer et 

al. 2009)) was used to create a structural homology model of the AcAldDH domain.  

This was based on the aldDH domain of an ADHE from Vibrio parahaemolyticus (41% 

identity, 61% similarity, 5% gaps; PDB: 3MY7).  This model was used to guide the 

aldDH domain      ADH domain 
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shortening of the linker region, avoiding the loss of key structural features possibly 

required for protein activity.   

 

 

Figure 8-22: AcAldDH predicted protein structure from SWISS-MODEL.  Red arrows = β 
strands, Blue spirals = α helices.  The N and C termini are indicated as well as the 
hypothesised linker region.   

 

Sequence alignment showed the C-terminal NIKRxA motif was conserved between the 

AcAldDH and the aldDH domain of ADHE.  The model predicted this motif to be part of 

a C-terminal β strand in the AcAldDH protein.  This strand was hypothesised to be the 

end of the AcAldDH coding region.  The subsequently-resolved AcAldDH crystal 

structure (Chapter 7) confirms this residue as the end of the structured region of the 

protein.  The linker was truncated to the Alanine residue (467 in the His-tagged Fusion 

2 protein) at the C-terminal end of the β-strand (the terminal residue of the AcAldDH 

domain in Figure 8-21) to give Fusion 3.  Fusion 4 incorporated two additional amino 

acids (G and S) into the linker to increase its length slightly.   

 

8.3.3.6 Fusion 3 and 4: protein expression 

The purified plasmid constructs were transformed into the E. coli BL21 (DE3) protein 

expression strain.  Proteins of the predicted Mr were observed in the soluble cell 

extracts following 4.5 h of protein expression conditions, and were purified using metal 

affinity chromatography (according to the method outlined in Section 2.9).  Analysis of 

the purification samples by SDS-PAGE and enzyme assays of the protein-containing 

fractions are shown in Figure 8-23 & Figure 8-24.   

 

C-terminus 

N-terminus 

β-strand 

Hypothesised 
C-terminal 

linker 
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Figure 8-23: Enzyme activity assays (U sample
-1

) for fractions of the Fusions 3 & 4 metal affinity 
purifications (A = Fusion 3 B = Fusion 4).  S = soluble, Ft = flow through & % values = 
% wash step.   

 

Figure 8-24: SDS-PAGE analysis of Fusions 3 & 4 metal affinity chromatography samples (A = 
Fusion 3 (Mr = 96,455); B = Fusion 4 (Mr = 96,599)).  T = total, I = insoluble, S = 
soluble, M = markers (Mr/1000), 1 = flow through, 2 = 0%, 3 = 1%, 4 = 40% & 5 = 100% 
(% values = %HIS-ELUTE buffer diluted in HIS-BIND buffer).  Predicted His-tagged-
Fusion bands are highlighted with a blue arrow (Mr/1000).  Probable proteolysis 
products are highlighted with green arrows.   

 

Results of assays and SDS-PAGE analysis showed the susceptibility to proteolysis 

between the domains remained despite a reduction in the sequence length of the 

linker.  No further attempts were made to increase resistance to proteolysis.   

 

8.3.4 Fusions 1 & 2: in vivo evaluation 

Assays of Fusions 1 & 2 in vitro showed that the proteins were unable to catalyse the 

conversion of acetyl-CoA to ethanol under assay conditions.  Experiments to evaluate 

the Fusion proteins in vivo were undertaken to see if expression under fermentative 

(anaerobic) conditions would allow conversion to ethanol to occur.   

 

The TM400 strain (ADHE-knockout) is unable to grow under fermentative conditions.  

This strain was transformed with pUCG18-pLDH constructs coding for the native 
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ADHE, Fusions 1 & 2, as well as the Fragment 11 and AcAldDH proteins; screening 

used the kan resistance marker gene in this vector.   

 

8.3.4.1 Tube fermentation experiments 

Tube fermentations were carried out for the various TM400-pUCG18-pLDH strains on 

USM media containing 100 mM glucose and 0.5% yeast extract, as described in 

Section 2.5.1.  Kanamycin (12 µg/ml) was present for all strains transformed with the 

pUCG18-pLDH constructs.  This initial experiment evaluated the ability of the Fusion 

proteins and their component domains to restore to TM400 the ability to grow and 

produce ethanol, under fermentative conditions.   

 

Figure 8-25: Metabolite analysis of 48 h tube fermentation experiment.  Each sample is the 
average of 2 fermentation tubes (error bars = standard deviation from mean).  Data for 
ethanol and glucose are shown.   

 

A second tube fermentation experiment sought to confirm the observations of the first 

experiment, with an increased number of samples but also comparing the results to the 

TM242 strain grown under identical conditions.   
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Figure 8-26: Metabolite analysis of 48 h tube fermentation experiment.  Each sample is the 
average of 4 fermentation tubes (error bars = standard deviation from mean).   

 

Expression of ADHE using the pUCG18-pLDH vector confirmed the phenotype of 

ethanol production could be rescued using proteins expressed in this manner (the 

strain is now comparable to TM242).  The AcAldDH and Fragment 11 proteins in 

isolation (produced in previous chapters) were shown to be incapable of rescuing the 

ethanol production phenotype.  Fusions 1 and 2 were both able to rescue the 

phenotype and to catalyse the production of ethanol in vivo.  Yields of ethanol 

produced for the Fusion proteins did not reach the level of TM242 or TM400-ADHE.  

The highest yield for the Fusions was observed for the Fusion 1 protein.   

 

8.3.4.2 NADH→NAD: CoA released ratio assays 

The ability of the Fusion proteins to rescue the phenotype of ethanol production in the 

tube fermentation experiments was in contrast to the result of in vitro ratio assays 

carried out on the recombinant proteins.  Further assays were therefore undertaken to 

determine if the Fusion 1 protein expressed using the Geobacillus system (no His-tag), 

was different from that produced in the E. coli strains used in Section 8.3.1.2.  Cell 

extracts were produced from TM400 strains transformed with the Fusion 1 and ADHE 

constructs and grown under tube fermentation conditions for 24 h (5 tubes pooled to 

collect sufficient biomass).  Extracts were assayed using the method described in 

Section 2.13.4.   

 

Assays of the cell extract of the Fusion 1 sample gave a ratio of 0.95:1 NADH 

converted to CoA-SH released (average of two assays), in contrast to the ADHE 
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sample which gave a ratio of 1.7:1 NADH converted to CoA-SH released (average of 

two assays).  Thus the native ADHE protein appeared able to catalyse ethanol 

production in vitro whereas the Fusion 1 protein could not.   

 

8.3.4.3 Fusion 1 and ADHE: full fermentation experiment 

To further evaluate the ability of the Fusion 1 protein to catalyse ethanol production in 

vivo, fermentation runs on 2 and 4% glucose were carried out alongside TM400-ADHE 

(positive control).  The fermentations were carried out under the conditions defined in 

Table 8-7.   

Fermentation 
parameter 

TM400 
ADHE #1 

TM400 
ADHE #2 

TM400 
Fus 1 #1 

TM400 
Fus 1 #2 

% Glucose 2 4 2 4 

Media 
50 mM USM, X% Glucose (shown above) 2% Yeast 

Extract 2x AA mix 1  

Working volume (L) 1 

Inoculum (%v/v) 
100 ml (10%) of an 

OD600nm 8.7 seed culture 
100 ml (10%) of an 

OD600nm 8.0 seed culture 
Temperature (°C) 60 

pH 6.7 
Agitation (RPM) pre 
“anaerobic switch” 

600 

Aeration (L/min) pre 
“anaerobic switch” 

1 

Anaerobic switch 
(OD600nm) 

5 5.1 5 4 

Agitation (RPM) post 
“anaerobic switch” 

300 

Aeration (L/min) post 
“anaerobic switch” 

0.2 

 

Table 8-7: Experimental methodology of TM400-ADHE vs TM400-Fusion 1 (Fus 1) 
fermentations.   

 

The following figures summarise the fermentation runs carried out for the two 

constructs.  Wherever possible, conditions used for the two strains were identical.   
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Figure 8-27: Fermentation summary for TM400-ADHE with 2% glucose in the starting media.  
Black arrow indicates anaerobic switch.   

 

Figure 8-28: Fermentation summary for TM400-ADHE with 4% glucose in the starting media.  
Black arrow indicates anaerobic switch.   

 

Figure 8-29: Fermentation summary for TM400-Fus1 with 2% glucose in the starting media.  
Black arrow indicates anaerobic switch.   
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Figure 8-30: Fermentation summary for TM400-Fus1 with 4% glucose in the starting media.  
Black arrow indicates anaerobic switch.   

 

The TM400-ADHE strain was able to produce ethanol under fermentative conditions in 

a similar manner to TM242 on both 2% and 4% glucose.  The observed drop in OD600nm 

post anaerobic switch, followed by an increase as metabolism progresses, is typical of 

TM242 fermentations (TMO Renewables 2012 personal communication).  The TM400-

Fusion 1 strain was unable to metabolise glucose under fermentative conditions.  The 

observed drop in OD600nm post anaerobic switch was not followed by any recovery for 

this strain.   

 

Figure 8-31: CO2 evolution rates measured using in-line mass spectrometry for the TM400-Fus1 
and TM400-ADHE fermentations.  Anaerobic switch made at 2.3 h for TM400-Fus1 
strains and 2.6 h for TM400-ADHE strains.   

 

CO2 evolution rates are commonly used as a measure of metabolic activity.  CO2 is 

primarily produced by the PDH complex, so increases in CO2 evolution after the 

anaerobic switch indicate an increased rate of fermentative metabolism.  The initial 
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decrease observed for all strains in Figure 8-31 is due to both the lowering of the 

aeration rate post anaerobic switch and the switch from aerobic to fermentative 

metabolism.  The increase post switch observed for TM400-ADHE is similar to the 

observed pattern in TM242, where metabolic flux to ethanol is increasing.  The TM400-

Fusion 1 strain was unable to recover post anaerobic switch.  Initiation of sporulation is 

a likely explanation for the lack of ethanol production in this strain and, if correct, was 

probably triggered by the switching of conditions from aerobic to “anaerobic”.   

 

8.4 Discussion 

Artificial ADHE proteins were produced in this section of the project by creating fusions 

of the previously-characterised Fragment 11 and AcAldDH proteins.  Fusions of the 

domains in two different orientations were produced, and in both the ADH and 

AcAldDH were active.  However, the fusion of Fragment 11 with EutE protein resulted 

in an insoluble protein.   

 

The Fusion 1 protein (N-ADH-AcAldDH-C; i.e. opposite orientation to the native ADHE 

protein) appeared to be more stable in terms of proteolytic degradation than the fusions 

created in the native orientation (N-AcAldDH-ADH-C).  This Fusion 1 was shown to be 

thermostable at the growth temperatures of TM242 and both domains of the protein 

were shown to be optimally active at 55°C.  Fusion of the more thermostable AcAldDH 

(half-life greater than 30 min at 60°C) to the less thermostable Fragment 11 (half-life of 

10 min at 60°C), appeared to improve the thermostability of the Fragment 11 protein.  

The two domains of the Fusion 1 protein retained 68% of their original activity following 

30 min incubation at 60°C.  The mobile loops shown in the Fragment 11 crystal 

structure may be stabilised by the presence of the AcAldDH protein, thus explaining the 

improved thermostability observed.   

 

Co-expression of the two activities in the Fusion 1 protein caused changes in the 

kinetic parameters observed, as shown in Table 8-8.  As all the proteins were purified 

to virtual homogeneity the parameters can be directly compared.  As discussed in 

Chapter 3 values of kcat/Km should be treated with caution as the rates observed will 

depend on the physiological concentrations of substrates.   
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Activity Substrate 
Vmax (adjusted) 

(U mg-1) 
Km 

(mM) 
kcat 

(s-1) 
kcat /Km 

(mM-1•s-1) 

Fusion 1 

ADH 
Acetaldehyde 145.9 151.0 237.5 1.6 

NADH 110.6 0.131 180.1 1375.1 

AcAldDH 
Acetyl-CoA 30.2 0.032 49.2 1538.7 

NADH 28.2 0.057 45.9 806.4 

Fragment 11 

ADH 
Acetaldehyde 430.8 121.0 349.0 2.9 

NADH 427.2 0.062 346.1 5582.0 

AcAldDH 

AcAldDH 
Acetyl-CoA 37.5 0.024 32.6 1357.6 

NADH 34.5 0.042 30.0 713.7 
 

Table 8-8: Summary of the catalytic properties of the Fusion 1 protein and its constituent 
domains expressed independently.   

 

In terms of kcat, the AcAldDH protein appeared more catalytically active in the Fusion 

than when expressed independently.  The opposite was true for the Fragment 11 

domain where the kcat of the ADH activity was significantly lower in the Fusion than in 

isolation.  The Km values observed for the various substrates of the domains were 

similar for both the Fusion and the isolated proteins.  The significant exception to this is 

the Km value for Fragment 11 with respect to NADH.  The AcAldDH at the C-terminus 

of the protein (Fusion 1) appears to cause an increase in the Km observed for the ADH 

in the Fusion, compared to when expressed in isolation.  As shown in Chapter 5, the C-

terminus of the Fragment 11 protein is positioned such that the AcAldDH domain could 

interact with the predicted active site of Fragment 11.  This interaction may affect the 

activity of the proteins involved.  Competition for NADH between the two domains may 

also explain why the Km for this substrate increases so significantly.   

 

Proteolytic degradation was observed between the two domains of the native 

orientation Fusion proteins (2, 3 and 4).  Although different peptide linkers were tested 

for this orientation, the resulting fusions all appeared to remain susceptible to 

degradation.  Considering the now resolved Fragment 11 crystal structure, the 

unstructured region at the N-terminus of the protein is a possible site of proteolysis 

between the two domains in the native orientation Fusions.  As the N-terminal His-tag 

in the Fusion 1 protein was not cleaved in this region, and the native ADHE protein was 

not rapidly proteolysed this is considered less likely.  Future investigations could focus 

on the effect of truncating the N-terminal region of the Fragment 11 protein, to 



244 

investigate this region in terms of protease sensitivity.  Currently, the susceptibility of 

Fusions 2, 3 and 4 to degradation remains unresolved.  Due to the issues resolving the 

Fusion proteins from the AcAldDH fragment produced by inter-domain proteolysis, 

kinetic parameters were not determined for these fusion proteins.   

 

Evaluation of the ability of the Fusion proteins to catalyse the conversion of acetyl-CoA 

to ethanol was tested.  Neither of the orientations of the two domains appeared to be 

able to carry out the two reactions consecutively.  Factors such as the product 

inhibition observed for the AcAldDH protein in Chapter 6, and the high Km for 

acetaldehyde observed for the ADH domain, may be limiting flux to ethanol.   

 

Evaluation of the Fusion proteins in vivo using the tube fermentation method, showed 

the proteins to be capable of restoring the phenotype of ethanol production to an ADHE 

knock out strain TM400.  The Fusion 1 protein initially appeared capable of restoring 

comparable yields of ethanol to the ADHE protein expressed using the same construct.  

The less stable Fusion 2 protein was shown to produce significantly lower yields of 

ethanol than the ADHE protein and the Fusion 1 protein.  The Fusion 1 protein was 

selected for further evaluation using standard fermentation methods.   

 

The fermentation experiments gave contrasting results to the tube fermentations.  The 

Fusion 1 containing strains were unable to metabolise glucose to ethanol under 

fermentative conditions.  The strains expressing the native ADHE protein using the 

same construct were able to successfully metabolise glucose to ethanol under identical 

conditions.  It would therefore appear that limitations in the activity of the Fusion 1 

protein prevented successful fermentation by the TM400-Fusion 1 strain.  A possible 

explanation for the differences observed between these experiments was the nature of 

the anaerobic switch.  Under tube fermentation conditions, the switch to fermentative 

metabolism is controlled by the level of oxygen decreasing due to aerobic growth of the 

organism.  The oxygen in the tube is gradually used up which induces the switch in 

metabolic pathways.  This gradual switch may be considered much less of a “shock” to 

the organism compared to under fermenter controlled conditions.  Here the switch is 

forced through the decreased aeration and stirring of the culture.  The switch is a 

sudden change, which may be capable of triggering the stress response of sporulation 

in the organism.  Unfortunately, no sporulation deficient ADHE knock out strain was 

available to test this hypothesis.  Tube fermentations are used as an established high 

throughput screening method by TMO Renewables to characterise ethanol production 

of various strains.  However, it is not unusual for strains to behave differently between 
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the initial screen and full fermentation evaluation (TMO Renewables 2012 personal 

communication).   

 

The tube fermentation results demonstrated that under the correct metabolic 

conditions, the Fusion proteins were capable of catalysing ethanol production in the 

ADHE knock out strain TM400.  The ability of the TM400 strain to produce ethanol was 

not restored through expression of the Fragment 11 or AcAldDH proteins in isolation.  It 

is therefore tempting to suggest this as an indication that the ADHE protein is required 

for both enzymatic activities, rather than being supplemented by other proteins present 

in the cell extract (for example the other annotated ADH coding genes).  Due to the 

previously described limitations of the protein domains used, it would be unwise to 

draw such a conclusion.  Whether the key activities required for the conversion of 

acetyl-CoA to ethanol are indeed solely coded for by the ADHE protein remains un-

elucidated.   

 

A UK patent application (GB1114701.4) was filed in conjunction with TMO Renewables 

detailing the potential use of the Fusion proteins created here, in terms of their use in 

modulating ethanol production.   

 

To summarise, Fusion proteins comprising the AcAldDH and Fragment 11 proteins 

have been produced in a soluble form, presenting both aldDH and ADH activities.  Co-

expression of the two domains as a single protein does not appear to resolve key 

limitations of the individual component domains.  Preliminary tube fermentation 

experiments showed both orientations of the Fusion proteins to be capable of restoring 

the ability of the TM400 strain to produce ethanol.  Full fermentation evaluation did not 

demonstrate the same result.  Differences in the initiation of fermentative metabolism 

between these two experiments are a possible explanation for the differences in the 

results observed.   
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9 INVESTIGATION INTO THE EXPRESSION OF KEY METABOLIC ENZYMES 

THROUGH A FERMENTATION RUN 

 

9.1 Introduction 

TMO Renewables have engineered the organism G. thermoglucosidasius to produce 

the TM242 strain optimised for ethanol production.  This strain has been shown to 

fermentatively metabolise glucose to ethanol, with yields of ethanol approaching 90% 

of the theoretical maximum (0.51 g ethanol /g glucose) (Cripps et al. 2009).  The 

manipulated metabolic pathway in fermentative glucose metabolism of TM242 is shown 

in Figure 9-1.  Efficient metabolism of the carbon source is controlled by the metabolic 

enzymes present in the organism.  Directing the metabolic flux to the desired end 

products is influenced by a range of factors, including the relative expression levels of 

enzymes, enzyme kinetic properties and metabolite concentrations.   

 

Figure 9-1: An overview of fermentative metabolism in Geobacillus thermoglucosidasius TM242.  
Red crosses indicate gene knock-outs and purple arrows indicate up-regulation through 
promoter switching.  The dashed arrow for acetyl-CoA synthetase indicates a 
hypothesised activity yet to be confirmed.   

 

Under fermentative conditions two relevant competing enzyme activities exist for the 

consumption of acetyl-CoA in TM242.  These are the aldDH activity associated with 

ADHE and the phosphate acetyltransferase (PAT).  As mentioned previously, 

preliminary data suggest that PAT may be a more catalytically active enzyme than the 
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aldDH domain of ADHE (Hills, C 2011 unpublished work).  If this is the case in vivo 

these two enzyme activities must be under some form of regulation, to allow ethanol 

production to proceed to the yields observed.   

 

This chapter describes work carried out to investigate the expression and kinetic 

properties of the enzymes controlling ethanol production under standardised 

conditions.  This work includes the determination of enzyme expression patterns 

through a fermentation run.   

 

The work reported in this part of the project was the result of a combined effort of the 

author, Christopher Hills and TMO Renewables.  Christopher is a fellow PhD student 

working in conjunction with TMO Renewables with a focus on the competing branch of 

metabolism to ADHE.  This is made up of the phosphate acetyl transferase (PAT), 

acetate kinase (AK) and the hypothesised acetyl-CoA synthetase (ACS) enzymes.  

Data on these three enzymes were therefore determined by him and are included in 

this chapter with his permission.   

 

TMO Renewables are continuing to modify the TM242 strain to optimise various 

aspects of metabolism.  The TM444 strain was the current production strain at this 

stage of the project.  This strain is identical to TM242 except for one additional 

modification removing the ability of the organism to sporulate.  This further optimised 

strain was used for the fermentation run carried out during these experiments.  The 

activities associated with the PAT, AK, ADHE and also the acetyl-CoA producing 

pyruvate dehydrogenase complex (PDH), were all monitored during assays of 

fermentation samples.   

 

9.2 Materials and methods 

9.2.1 Enzyme assays 

Unless otherwise stated, enzyme assays were carried out in 50 mM HEPES buffer pH 

6.5, 0.1 mM zinc acetate, and with a maintained ionic strength of 0.1 M using NaCl.  

This buffer was selected as it was important to assay aldDH activity in phosphate-free 

conditions, preventing PAT interference during the assays.  All assays monitored 

enzyme activities at 60°C using a Varian Cary 50 Bio UV/visible light 

spectrophotometer with a Peltier temperature controller.   

 

AldDH assays used the DTNB-based assay and ADH assays were carried out using 

the NADH assay as described in Section 2.13.  For the samples from the fermentation 
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run, the aldDH assays contained 0.35 mM acetyl-CoA and 0.18 mM NADH.  ADH 

assays contained 40 mM acetaldehyde and 0.18 mM NADH.   

 

9.2.1.1 Pyruvate dehydrogenase complex (PDH) activity assays 

The assay used for PDH activity was based on assays developed by Dr Tracey Goult 

(University of Bath) in a postdoctoral research project in conjunction with TMO 

Renewables.  The pyruvate-dependent reduction of NAD+ in the presence of the TPP 

cofactor and CoA-SH was measured at 340 nm.   

 

Chemical 
Stock 
concn 
(mM) 

Volume 
added 

(µl) 

Assay 
concn 
(mM) 

KPO4 (pH 7.0) 53 

950 

~50 

NAD+ 2.9 2.8 

Thiamine pyrophosphate 
(TPP) 

0.2 0.2 

MgCl2 1.1 1.0 

Coenzyme A 6.5 
20 

0.13 

DL-cysteine 130 2.6 

Sodium pyruvate 100 20 2 

Enzyme / cell extract 
 

10 
 

 

Table 9-1: PDH assay conditions.   

 Buffer pre-incubated at 60°C 

 Substrates stored on ice 

 Reaction started by addition of enzyme 

 

9.2.1.2 Phosphate acetyltransferase (PAT) activity assays 

The assay used for PAT activity monitored the phosphate-dependent cleavage of 

DTNB to NTB2- by CoA-SH (Ellman 1959) at 412 nm (ε412 = 13,600 M-1.cm-1).   

 

Chemical 
Stock 
concn 
(mM) 

Volume 
added 

(µl) 

Assay 
concn 
(mM) 

HEPES buffer pH 6.5, 
0.1 mM zinc acetate 

50 920 ~50 

Sodium dihydrogen 
orthophosphate (dihydrate) 

1000 50 50 

DTNB 10 10 0.10 

Acetyl-CoA 11.51 10 0.12 

Enzyme / cell extract  10  
 

Table 9-2: PAT standard assay conditions.   
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 Buffer pre-incubated at 60°C 

 Substrates stored on ice 

 DTNB dissolved in 1 M Tris-HCl pH 8.0 

 Reaction started by addition of enzyme 

 Ionic strength maintained using phosphate (and NaCl where required) at 0.1 M 

9.2.1.3 Acetate kinase (AK) activity assays 

The assay used for AK activity was a coupled assay monitoring the acetyl-phosphate 

dependent NADP+ reduction at 340 nm.  The coupled assay scheme is described 

below: 

1. Acetate kinase 

Acetyl-phosphate + ADP   Acetate + ATP  

 

2. Hexokinase 

Glucose + MgATP2-  Glucose-6-phosphate + MgADP- + H+ 

 

3. Glucose-6-phosphate dehydrogenase 

Glucose-6-phosphate + NADP+ + H2O   6-Phospho-gluconate + NADPH + H+ 

 

Coupling substrates and enzymes were in excess during the assays.  Although these 

coupling enzymes were from mesophilic sources, they were stable enough at 60°C for 

the rate to only be dependent on the concentration of acetate kinase.  The reported AK 

activity measurements are the result of single enzyme assays.   

 

Chemical 
Stock 
concn 
(mM) 

Volume 
added 

(µl) 

Assay 
concn 
(mM) 

HEPES buffer pH 6.5, 
0.1 mM zinc acetate, 5 mM 
MgCl2 

50 830 ~50 

NaCl  4000 20 80 

Acetyl-phosphate 100 10 1 

NADP+ 8 50 0.4 

ADP 50 20 1 

Glucose 50 50 2.5 

Enzyme / cell extract  5  

Coupling Enzyme 
Activity in assay 

(U) 
Volume 

added (µl) 

Hexokinase (HK) 400 U/ml 2 5 

Glucose-6-phosphate 
dehydrogenase (G6P-DH) 
200 U/ml 

2 10 

 

Table 9-3: AK coupled assay standard conditions.   
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 Buffer pre-incubated at 60°C  

 G6P-DH dissolved in 5 mM glycine 

 Substrates and HK made up in assay buffer 

 Substrates stored on ice 

 Reaction started by addition of enzyme 

 Ionic strength maintained at 0.1 M with NaCl 

 

9.2.2 Fermentation run (TM444) 

TM444 fermentation cell pellets used for this section of the project were produced 

using a Biostat CT-DCU 5-2 fermenter system (Sartorius) following TMO Renewables 

standard protocols.  The method used is summarised in Table 9-4.  The fermentation 

run of TM444 was carried out by the fermentation team at TMO Renewables.  The 

analytical team determined metabolite concentrations using HPLC analysis, following 

standard protocols.   

 

Fermentation parameter Value 

Media 
50 mM USM + 6% Glucose  

+ 2% YE + 2x AA Mix 1 

Working volume (L) 5 

Inoculum (%v/v) 
500 ml (10%) of an OD600nm 

12.6 seed culture 

Temperature (°C) 60 
pH 6.7 

Agitation (RPM) pre “anaerobic switch” 400 
Aeration (L/min) pre “anaerobic switch” 5 

Anaerobic switch (OD600nm) 6.3 
Agitation (RPM) post “anaerobic switch” 220-350 (redox control) 

Aeration (L/min) post “anaerobic switch” 1 
Post switch redox control (mV) -330 

 

Table 9-4: TM444 fermentation parameters.   

 

50 ml samples of the fermenter culture were taken at each time point.  Cells were 

harvested by centrifugation (3220 x g for 20 min at 4°C); the supernatant was taken for 

HPLC analysis and the cell pellets were frozen at -20°C.   

 

Cell extracts were produced as described in Section 2.6, and protein concentrations for 

each soluble cell-extract sample were determined by the Bradford assay.   
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9.3 Results 

9.3.1 TM242 kinetic parameter determination (aldDH and PAT) 

Kinetic parameters for aldDH and PAT were determined in a TM242 fermentation cell 

extract prepared as in Section 2.6.  AldDH activities were determined using the DTNB 

assay (as described in Section 2.13.1.1).  Substrate inhibition was not observed for 

aldDH under these assay conditions.   
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Figure 9-2: Michaelis-Menten plot of the dependence of aldDH enzymic activity (U mg
-1

 of 
protein) in a TM242 cell extract on the concentration of acetyl-CoA (µM) at a fixed 
concentration of NADH (0.18 mM).   
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Figure 9-3: Hanes-Woolf plot ([S]/v vs. [S]) for the variation of aldDH activity (U mg
-1

) with 
respect to the concentration of acetyl-CoA (µM).   
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Figure 9-4: Michaelis-Menten plot of the dependence of aldDH enzymic activity (U mg
-1

 of 
protein) in a TM242 cell extract on the concentration of NADH (mM) at a fixed 
concentration of acetyl-CoA (0.46 mM). 
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Figure 9-5: Hanes-Woolf plot ([S]/v vs. [S]) for the variation of aldDH activity (U mg
-1

) with 
respect to the concentration of NADH (mM).   

 

PAT activities were determined using a 5 x 5 variation of the described PAT assay 

(Section 9.2.1.2).  That is, activities were determined with 5 different concentrations of 

one substrate, in the presence of 5 different concentrations of the other substrate.  

Kinetic parameters for each substrate were then determined using secondary plots.   
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Activity (substrate) Km (mM) 
Standard 

Error 
Vmax 

(U mg-1) 
Standard 

Error 

aldDH: (acetyl-CoA) 0.052 +/- 0.001 0.094 +/- 0.004 

aldDH: (NADH) 0.104 +/- 0.004 0.134 +/- 0.004 

PAT: (acetyl-CoA) 0.065 +/- 0.006 2.51 +/- 0.14 

PAT: (Pi) 7.21 +/- 0.38 2.86 +/- 0.09 
 

Table 9-5: Summary of kinetic parameters determined for aldDH and PAT in TM242 cell 
extracts.  Assays carried out in 50 mM HEPES buffer pH 6.5, 0.1 mM zinc acetate with 
a maintained ionic strength of 0.1 M.  Vmax reported for aldDH was adjusted for 
saturation.   

 

9.3.2 TM444 fermentation profiles 

A characteristic glucose fermentation profile was observed for the TM444 fermentation 

run (TMO Renewables 2012 personal communication).   

 

Figure 9-6: Fermentation profile of TM444 used for expression level experiments (OD600nm & 
metabolite concentrations (mM) against time (h)).  Black arrow indicates “anaerobic 
switch”.   

 

Figure 9-7: Fermentation profile of TM444 used for expression level experiments (CO2 evolution 
rate (g/min) (CER) & metabolite concentrations (mM) against time (h)).  Black arrow 
indicates “anaerobic switch”.   
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9.3.3 Specific activity measurements 

With the exception of AK, assays on each cell extract were carried out in triplicate and 

an average taken.  Assays of PAT and AK activity were carried out on the same cell 

extract samples as the ADHE and PDH assays.   

 

Figure 9-8: Plot of OD600nm & average specific activity measurements (U mg
-1

 protein) against 
time (h) for the TM444 fermentation run.  Black arrow indicates “anaerobic switch”.   

 

It is interesting to observe that AK appears to be the highest activity within the cell 

extract whereas the aldDH activity appears to be the lowest.  To allow the expression 

pattern of each enzyme to be compared, the percentage activity of the maximum 

specific activity observed for each enzyme was calculated.   

 

9.3.4 Percentage activity measurements 

These transformations of the assay data show that the various enzymes assayed here 

are under different expression patterns.   

 

Figure 9-9: Plot of ethanol concentration (mM) and average enzyme activity measurements (% 
of maximum observed) against time (h) for the TM444 fermentation run.  Black arrow 
indicates “anaerobic switch”.   
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Results from each of the distinct areas of metabolism are visualised independently for 

clarity.   

 

9.3.5 PDH expression 

PDH expression appeared to increase following the switch into “anaerobic” conditions.  

The initial accumulation of pyruvate in the fermentation medium indicates PDH activity 

may be limiting pyruvate metabolism.  Once PDH expression is up-regulated, this 

excess pyruvate appears to be metabolised coincident with a rapid increase in 

metabolism of glucose to ethanol.  PDH expression appears to increase to a maximum 

and remain constant until cell numbers begin to fall.   

 

Figure 9-10: Plot of metabolite concentration (mM) and average PDH activity measurements (% 
of maximum observed) against time (h) for the TM444 fermentation run.  Error bars 
indicate the standard deviation of 3 enzyme assays.  Black arrow indicates “anaerobic 
switch”.   

 

Figure 9-11: Enlarged plot of pyruvate concentration (mM) against time (h) (0-10 h) for the 
TM444 fermentation run.  Black arrow indicates “anaerobic switch”.   
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9.3.6 AldDH and ADH expression 

The aldDH and ADH activities associated with ADHE follow the same expression 

pattern and appear to be correlated with the rate of ethanol production observed for the 

fermentation.  Unlike the other activities observed during this experiment, the 

expression of ADHE appears to be transient.  Initial expression of ADHE increased 

until a majority of the glucose had been utilised, after which the activity then appeared 

to decrease rapidly.   

 

Figure 9-12: Plot of metabolite concentration (mM) and ADHE activity measurements (% of 
maximum observed) against time (h) for the TM444 fermentation run.  Error bars 
indicate the standard deviation of 3 enzyme assays.  Black arrow indicates “anaerobic 
switch”.   

 

 

Figure 9-13: Plot of Ethanol production rate (g/h/OD) and ADHE activity measurements (% of 
maximum observed) against time (h) for the TM444 fermentation run.  Black arrow 
indicates “anaerobic switch”.   

 

-20

0

20

40

60

80

100

120

0 5 10 15 20 25

0

100

200

300

400

500

Time (h) 

Activity  
(% of maximal 

activity) 

Metabolite  
concn  
(mM) 

EtOH (mM)

Glucose (mM)

aldDH

ADH

0

20

40

60

80

100

120

0.0

0.5

1.0

1.5

2.0

0 5 10 15 20 25

Activity 
(% of maximal  

activity) 

EtOH  
production rate  

(g/h/OD) 

Time (h) 

Ethanol production rate (g/h/OD)

aldDH

ADH



257 

9.3.7 PAT and AK expression 

PAT and AK expression appears to be influenced less by the switch to anaerobic 

conditions than the other enzymes monitored.  Acetate production through the 

fermentation appears to partially reflect the expression of PAT.  Significant acetate 

accumulation does not occur until a majority of the glucose has been utilised.   

 

 

Figure 9-14: Plot of metabolite concentration (mM), PAT & AK activity measurements (% of 
maximum observed) against time (h) for the TM444 fermentation run.  Error bars 
indicate the standard deviation of 3 enzyme assays for PAT activity measurements.  
Black arrow indicates “anaerobic switch”.   

 

9.4 Discussion 

Experiments carried out here aimed to determine the expression profiles of various key 

enzymes through a fermentation run.  The kinetic properties of two acetyl-CoA 

consuming enzymes (PAT and aldDH) were also determined under identical 

conditions.   

 

As discussed in the introduction to this chapter, the TM242 and TM444 strains have 

been shown to metabolise glucose to ethanol efficiently under fermentative conditions; 

yields of ethanol can approach 90% of the theoretical maximum (0.51 g ethanol /g 

glucose) (Cripps et al. 2009).  It is important to develop an understanding of the 

enzymes responsible for producing ethanol or other by-products during this process.   

 

Acetyl-CoA metabolism is a potential bottle-neck in ethanol production (as illustrated by 

the accumulation of pyruvate observed during these experiments), two relevant 

competing activities act on this metabolite under fermentative conditions.  Under these 

conditions a majority of the carbon flux is assumed to be towards ethanol, as this is the 

major product seen during fermentation.  The possibility of redundant cycling via the 
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hypothesised ACS although unlikely to be physiologically relevant should also be 

considered.  Enzyme expression levels, kinetic properties, metabolite concentrations 

and the presence of other regulatory factors may all play a role in directing the carbon 

flow.   

 

The activity of PAT within cell extracts of TM242 is consistently higher than that 

observed for the aldDH domain of ADHE.  Kinetic characterisation of these two 

activities under near identical conditions demonstrated that the Vmax of PAT (2.5 

U mg-1) is significantly higher than for the aldDH domain of ADHE (0.09 U mg-1).  The 

relatively high Km observed for PAT with respect to phosphate suggests this substrate 

may play a role in regulating enzyme activity in vivo, as the Km values observed for 

acetyl-CoA for the two proteins are similar.  This is further illustrated by the significant 

difference between the Vmax/Km values for the aldDH and PAT activities.  As described 

in Chapter 3, Vmax/Km values should be treated with caution as the rate obtained in vivo 

will be dependent on physiological substrate concentrations.   

 

Activity Substrate 
Vmax 

(U mg-1) 
Km 

(mM) 
Vmax/Km 

((U mg-1)/mM) 

TM242 cell extract ADHE 

aldDH Ac-CoA 0.09 0.05 1.8 

aldDH NADH 0.13 0.10 1.3 

TM242 cell extract PAT 

PAT Ac-CoA 2.50 0.07 38.6 

PAT Pi 2.90 7.21 0.4 
 

Table 9-6: Kinetic parameters for acetyl-CoA consuming activities in TM242 cell extract.   

 

Control of metabolic flux to ethanol observed in TM444 cells may be regulated by free 

phosphate concentrations.  Phosphate has been suggested as an effector of metabolic 

enzymes (Goel et al. 2012).  For example, it has been shown using NMR that 

phosphate concentration levels vary significantly throughout metabolism in 

Lactococcus lactis (between 5 to 35 mM) in response to glucose levels (Neves et al. 

2002).  In Zymomonas mobilis fermentations on glucose, the intracellular free 

phosphate concentration was determined by NMR to be 0.5 mM (De Graaf et al. 1999).  

If the intracellular phosphate concentration was around this figure for TM444, PAT 

would be operating well under its maximum velocity.  It can be conceived that the 

variation in phosphate concentration within cells may play a key role in the regulation of 

PAT activity.  However, without determining the intracellular concentration of 
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phosphate within TM242/TM444 cells through a fermentation run, it is not possible to 

confirm this hypothesis.   

 

Substrate inhibition was not observed for the aldDH activity of ADHE under these 

assay conditions.  The DTNB assay reflects the NADH-dependent CoA-SH release, 

corresponding to the aldDH activity in isolation.  Inhibition was observed previously for 

the aldDH domain using the NADH assay.  As this assay was shown to be a measure 

of metabolic flux to ethanol, inhibition may have been caused by limitations in the flux 

of acetaldehyde to the ADH domain of the protein.  As the DTNB assay cannot be 

carried out at the pH of the normal assay buffer used for ADHE, it was not confirmed 

whether the lack of inhibition was due to pH/buffer effects or effects of co-assaying with 

the ADH domain.   

 

Assays of enzyme activities through a TM444 fermentation run were carried out.  It 

should be noted that although samples were taken over a 23 h period, the production 

phase of the fermentation is considered complete at the point of maximal ethanol yield 

(at approximately 8 h).  Specific activities, which are based on protein concentration, 

were used in an effort to allow enzyme activities independent of cell number to be 

quantified.  The peaks of enzyme activities appear to be independent of OD600nm; this 

implies that activities reported have been successfully resolved from cell number.  

There are limitations to these assays but the results serve as an indication as to where 

the peak of enzyme expression lies for each activity.  As different expression patterns 

were observed for the activities monitored through the fermentation, it is suggested that 

varied mechanisms of gene regulation may be involved for the enzymes monitored.   

 

Steady-state assays cannot be carried out under truly physiological conditions, and 

they were not fully optimised for each of the activities measured; therefore comparing 

the specific activities directly would be inappropriate.  It is an interesting observation 

that AK appeared to be the most active enzyme measured, whereas the aldDH activity 

of ADHE appeared to be the lowest.  If these assays were a true reflection of 

expression levels, the intracellular concentrations of phosphate and NADH are likely to 

be crucial in regulating metabolic flux to ethanol.   

 

The production of acetyl-CoA is regulated by the PDH protein complex.  The 

expression of PDH has been up-regulated by placing the operon under the control of 

an anaerobic LDH promoter.  The expression pattern observed here is consistent with 

anaerobically regulated expression.  The initial pyruvate accumulation within the 
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fermentation medium is likely to be caused by a shortfall in PDH activity.  This was 

quickly overcome following the anaerobic switch due to induction of PDH expression.  

Once expression of PDH had been induced, the activity increased to a maximum level 

where it remained constant prior to the loss of activity due to the initiation of cell death.   

 

AldDH and ADH activities observed within the cell extract followed the maximal rate of 

ethanol production as would be predicted.  As discussed in the Introduction to this 

thesis, a REX repressor protein target site has been identified within the adhE promoter 

region.  The anaerobic induction of expression is consistent with the suggested REX 

control over the promoter.  The protein in Bacillus subtilis has been proposed to bind to 

operator regions of DNA within the promoter of the target gene.  This binding is linked 

to the redox balance within the cell through NADH/NAD+ interactions.  When NADH 

levels are low, REX can interact with the DNA and repress expression; when NADH 

levels are high, REX interacts with NADH and is released from the DNA target region, 

thereby removing repression (Wang et al. 2008).   

 

Once a majority of the glucose had been metabolised during the fermentation run, the 

ADHE activities rapidly decreased.  This transient activity observed for ADHE is 

unusual and suggests that this protein may be rapidly turned-over within the cell.  This 

decrease is coincident with the rapid decrease in CO2 evolution rate when the carbon 

source has been exhausted.  There may also be a fall in NADH levels as glycolysis is 

reduced due to glucose depletion, hence a shutdown in expression of REX-regulated 

genes.  As no aldDH-independent peak of ADH activity was observed during these 

experiments, it would appear that the hypothesised “ADH2” activity (described in 

Chapter 3) mirrors ADHE expression. 

 

Acetate production appeared to follow the PAT expression pattern observed through 

the fermentation.  A majority of the acetate accumulated once glucose had been 

exhausted, and was coupled with a rapid reduction in CO2 evolution rate, all of which 

occurred outside the production phase of fermentation.  This increase in acetate may 

be a combination of cell lysis (which begins to occur once the carbon source has been 

fully utilised) and the secondary metabolism of ethanol.  AK is highly expressed during 

both the aerobic and anaerobic stages of growth.  PAT expression appears to occur 

during both aerobic and anaerobic phases, but expression levels increased as the 

anaerobic phase progressed.  The expression patterns observed indicate that it may be 

metabolite concentrations, rather than enzyme expression levels, which control 

metabolic flux to ethanol instead of acetate.  The essential regeneration of NAD+ from 
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NADH, as well as the intracellular concentration of phosphate, are both likely regulatory 

factors of the PAT – aldDH metabolic competition.   

 

Attempts to produce viable PAT and AK knock-out strains have been unsuccessful 

(TMO Renewables 2012 personal communication) suggesting these activities are 

essential for cell survival.  This requirement is thought to be due to the essential 

regeneration of ATP.  The low levels of acetate produced initially during glucose 

fermentation would suggest this is not a major metabolic conversion.  Attempts are 

continuing to produce PAT/AK knock-out strains to observe the effect on metabolism.  

If such a strain cannot be obtained, attempts to down-regulate these enzymes through 

promoter switching may be tested.   

 

In conclusion, under the assay conditions used here, the maximum specific activity of 

PAT appears to be significantly higher than that of the aldDH activity of ADHE.  Values 

of Km for the enzymes suggest that a possible regulator of metabolic flux to ethanol is 

the intracellular concentrations of phosphate and NADH.  As the intracellular 

concentrations of phosphate and NADH in TM242/TM444 are yet to be determined, 

this hypothesis remains untested.  Expression of both ADHE and PDH appear to be 

under anaerobic regulation, whereas AK and PAT expression levels show little 

variation between aerobic and anaerobic growth conditions.  More information may be 

obtained through a similar set of experiments on either fed-batch or continuous-

fermentation cell samples.  Such experiments would provide further information 

regarding the expression patterns of the enzymes, particularly the transient expression 

of ADHE.  Enzyme expression patterns during a fermentation where higher levels of 

acetate accumulate (e.g. xylose as carbon source (TMO Renewables 2012 personal 

communication)) may also prove informative.   
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10 GENERAL DISCUSSION AND FUTURE WORK 

 

Bioethanol produced from ligno-cellulosic waste materials has the potential to have a 

significant impact on the global dependence on petrol as a transportation fuel.  Clearly 

a range of different technologies will be required to meet current energy requirements 

free from fossil fuels.  Without the development of such technologies the environment 

in which we reside is likely to be adversely affected during future generations.  The 

organism Geobacillus thermoglucosidasius TM242 has the potential to offer 

commercially-viable ethanol production on a large scale, utilising a range of sustainable 

feedstocks.  Further manipulation of this organism to optimise ethanol yields could 

substantially improve the technology currently under development by TMO 

Renewables Ltd.  The ADHE protein that has been the subject of this investigation has 

been shown to be a key enzyme required for the production of ethanol by the TM242 

organism.  The work presented here seeks to further the understanding of this key 

protein and aid the optimisation of ethanol production in the TMO Renewables process.   

 

Ethanol production has been shown to be dependent on the presence of the adhE 

gene product, despite an additional 7 genes being annotated in the TM242 genome as 

alcohol dehydrogenases (ADHs).  A second ADH activity (“ADH2”) within cell extracts 

of TM242 was detected here, but the gene coding for the responsible protein remains 

to be determined.  The possibility of ADHE presenting the major aldDH activity in vivo, 

with other proteins contributing further ADH activities, cannot be ignored.  The role of 

these proteins in metabolism could be demonstrated using gene knock-out 

experiments, followed by strain characterisation.  Cloning and recombinant expression 

of these genes followed by kinetic characterisation may also prove informative.   

 

The relationship between ADHE and the PAT-AK branches of metabolism has been 

investigated through preliminary studies carried out here.  Coincident with the induction 

of fermentative metabolism, increases in the enzyme activities associated with ADHE 

in cell extracts (indicative of gene expression) were observed, but the PAT and AK 

activities appeared to vary much less significantly.  This type of examination will be 

carried out on samples from a continuous or fed batch fermentation system, to 

investigate further the balance of metabolic activities during ethanol production.  

Differences in enzyme activity levels during growth on different substrates are also of 

particular interest.  The specific activities of the competing enzymes in vitro suggest 

that the direction of metabolic flux may be heavily influenced by the intracellular 
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concentrations of phosphate and NADH, and therefore quantification of the 

concentrations of these key metabolites will prove informative.  Techniques such as 

31P-NMR may be used to determine the levels of intracellular phosphate (De Graaf et 

al. 1999), whereas adapted methods developed for other organisms, e.g. extraction 

followed by HPLC separation and UV-Vis absorbance detection (Sporty et al. 2008), 

may allow concentrations of NAD+ and NADH to be determined.  Attempts to knock-out 

or down-regulate the PAT and AK genes are on-going, as this branch of metabolism is 

in direct competition with ethanol production.  It currently seems unlikely that viable 

knock-out strains can be produced, but determining the minimum level of gene 

expression through promoter switching may enable further optimisation.  The effect of 

up-regulating the ADHE gene expression through the use of a stronger promoter 

sequence is also currently under investigation.   

 

The characterisation of ADHE and PAT provides significant insight into the catalytic 

activity of the proteins; characterisation of the activities under native conditions would 

provide further insight into the in vivo activity of these enzymes.  Purification and assay 

of the ADHE protein under anaerobic conditions would allow the aldDH activity of the 

protein to be resolved free from the aerobic loss of activity observed for this domain.  It 

is hypothesised that oxidation of the catalytic cysteine (Cys257) described during the 

Introduction, may be the cause of the instability through purification of this protein.   

 

Although the experiments performed as part of Chapter 9 go some way to elucidating 

the expression pattern of ADHE in relation to other key metabolic enzymes, evaluation 

of gene expression patterns through an ethanol-generating fermentation may be more 

comprehensively resolved using RNA analysis techniques.  This will form part of a 

recently commenced project at The University of Bath in conjunction with TMO 

Renewables, where RNA-seq techniques will be used to identify and monitor all 

mRNAs produced under various culture conditions.  These studies will provide valuable 

information concerning the influence of gene expression on the regulation of metabolic 

flux within the fermenting organism.   

 

The redox sensing protein REX is a likely regulator of gene expression of adhE (Paget, 

M. S. 2012 unpublished work).  This regulation of genes will also be a significant focus 

of future research to illuminate the mechanisms involved in fermentative gene 

expression.   
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The ADH domain of the ADHE protein has been structurally resolved independently of 

the aldDH activity; this is the first reported high-resolution structure of this domain of an 

ADHE.  Several loop regions show significant differences compared to those observed 

in homologous structures within the PDB, and it is hypothesised that interactions with 

the aldDH domain may be coordinated through some of these loops.  In silico 

modelling work has predicted a potential interaction between the two domains of 

ADHE, such that spirosome-like assemblies could form.  This is consistent with the 

large Mr complexes observed for ADHE during Chapter 3.  The relatively high Km 

consistently observed for the ADH domain of ADHE for acetaldehyde might be 

alleviated by substrate channelling between the two ADHE domains.  This would 

prevent the accumulation of the potentially toxic intermediate within the cell, and 

maximise the efficiency of NAD+ regeneration under anaerobic conditions.  In silico 

modelling work has not currently been able to confirm this hypothesis due to the 

significant distance predicted between active sites of the two domains.  The formation 

of the spirosome complexes observed for ADHE proteins may also influence the 

mechanism of substrate channelling.   

 

The resolved structure of the ADH domain is already providing a valuable resource for 

guiding the manipulation of the ADHE protein activity through site-directed 

mutagenesis.  The phenotypic effect of the point mutations described by Brown et al. 

(2011) and Shao et al. (2011) in Clostridium thermocellum are currently being 

investigated in the ADHE of G. thermoglucosidasius.  Modifications of other key 

residues validated using the solved ADH domain structure are also being investigated 

to observe the effect of modifying the ADH activity of ADHE.  The effect on enzyme 

activities as well as phenotypic effects in fermentation experiments will be monitored, to 

determine the biochemical basis of any industrially significant changes observed.  

Some promising results have already been obtained and are currently being fully 

evaluated (TMO Renewables. 2012 personal communication).  An example of such a 

targeted residue is Asp558, which was shown to be potentially involved in hydrogen 

bonding of the nicotinamide ring.  The effect of removing the steric and electrostatic 

clash of the Asp493 of ADHE (Asp57 in Fragment 11) with the additional phosphate 

group of NADP+, is also being evaluated to determine the effect on nicotinamide 

cofactor preference, and potential implications thereof for fermentative metabolism.  

These experiments will be focussed initially around “loss of charge” mutations, 

replacing the residue with a similarly sized un-charged residue such as asparagine, or 

“loss of bulk” mutations by replacing with significantly smaller residues such as glycine.   
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Although X-ray crystallography has shown a coordinated metal ion within the active site 

of the ADH domain, the physiologically relevant ion has not been unambiguously 

determined here.  Activity was observed in the absence of additional metal ions, but 

stimulation of activity with several metal ions was also shown in cell extracts; however, 

this was not the case for the purified recombinant proteins studied here.  It is 

hypothesised that the use of metal-affinity purification for these proteins may have 

allowed scavenging of additional metal ions during that purification, thus saturating the 

recombinant ADH domains and preventing further stimulation through the addition of 

metal ions to the assays.  Zn2+ was used for most of the assays during this project 

whereas Fe2+ has previously been suggested to be a key cofactor for ADHE proteins 

(Kessler et al. 1992).  The ADH domain also shows significant sequence homology to 

the Fe2+ containing ADH superfamily.  To resolve the physiologically relevant ion, the 

fully-purified native ADHE protein should be subject to ion analysis experiments.  As 

the native ADHE protein was not fully resolved during this work, such experiments 

could not be carried out during the experimental phase of the project.   

 

Despite several different sized aldDH coding fragments being generated during this 

project, the aldDH activity of ADHE could not be resolved independently of the ADH 

domain.  Other groups have achieved this isolation for the ADHE of Entamoeba 

histolytica (Chen et al. 2004), but similar fragmentation carried out here did not yield 

active protein.   

 

Structural resolution of the full-length ADHE protein remains a priority.  Information on 

the formation of the large multimeric structures observed, any potential channelling of 

acetaldehyde between the aldDH and ADH domains, and identification of key residues 

that may be manipulated to modulate the activities of the ADHE protein may be inferred 

from such a structure.  If crystal formation remains elusive, optimisation of high-

resolution electron microscopy techniques, or Small Angle X-ray Scattering (SAXS) 

methods, may provide further structural insights into the nature of the interactions 

between the domains of ADHE.  Disruption of interacting residues predicted to be 

involved in multimeric assembly through site-directed mutagenesis, may allow 

disruption of the spirosome structures, and potentially allow a high-resolution crystal 

structure to be determined for the ADHE protein in isolation.  The flexible nature of the 

linker between the two domains of ADHE may however persist in hindering crystal 

formation.   
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Although the AcAldDH protein identified and characterised here shows a high catalytic 

activity, it appears that product inhibition of this protein may limit its current usefulness 

in terms of maximising metabolic flux to ethanol in TM242.  The high-resolution crystal 

structure determined for this protein may provide sufficient insight to manipulate the 

activity to overcome this product inhibition.  Structurally-informed site-directed 

mutagenesis has been used previously to overcome inhibition of enzymes (Hu et al. 

2010; Kai et al. 2006), although investigation of this was not possible in the timescale 

of this project.  Further optimisation of co-crystallisation conditions may allow a higher 

resolution structure for the AcAldDH protein (with substrate/product bound) to be 

obtained.  Such a structure could better inform the mutagenesis targeting required to 

overcome the product inhibition observed.   

 

The successful creation of stable artificial ADHE proteins (Fusions) was demonstrated 

during this project.  The catalytic effectiveness of these Fusion proteins appeared 

limited, although experiments to evaluate these proteins gave contrasting results.  

Evaluation of the performance of the Fusion 1 protein in a sporulation-deficient 

G. thermoglucosidasius strain would allow assessment of the hypothesised difference 

between tube fermentation and full fermentation conditions.  Successful optimisation of 

the AcAldDH protein activity through site-directed mutagenesis may yield an improved 

Fusion component domain that may demonstrate improved activity in vivo.   

 

The ADHE enzyme studied here is an essential enzyme in ethanol production in 

G. thermoglucosidasius.  The characteristics of ADHE and its component domains that 

have been reported in this thesis are now being studied further, and hopefully 

exploited, at TMO Renewables where the role of this protein in terms of the rate of 

ethanol production and tolerance of the organism to ethanol are of particular interest.   
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APPENDIX 1 

 

Gene and corresponding amino acid sequences 

G. thermoglucosidasius ADHE 

DNA coding sequence: 

ATGCGTATGGCTGTGGAGGAGAGAGTCGTCGATAAAAAAATCGAAGTAGCAAAAATGATTGATGAGCTTGTCGCTA
ATGCACAGAAAGCGTTGGAACAAATTCGCGCTTACGATCAAGAAACGATCGATCATATCGTGAAAGAAATGGCGTT
AGCCGGGCTCGACAAGCATATGGCATTAGCCAAGCTTGCAGTAGAAGAAACAAAACGCGGTGTATATGAAGATAAA
ATCATAAAAAACCTTTTTGCGACAGAATATATATACCACAATATTAAGTATGATAAAACAGTCGGGATTATTCATGAAA
ATCCGCATGAAGAAATTATCGAAATTGCTGAGCCTGTTGGTGTTATTGCTGGGATTACGCCAGTGACAAACCCGAC
ATCGACAACGATGTTTAAAGCGTTAATCTCGATAAAAACACGCAACCCGATTATTTTCGCTTTCCATCCATCGGCGC
AACGATGCAGCAGCGAAGCGGCAAGAGTGCTGCGCGATGCGGCGGTCCGGGCAGGGGCTCCAGAACATTGCATT
CAATGGATTGAAACTCCTTCGCTTGATGCAACCAATCAGCTTATGCACCATCCTGGCGTTTCTCTCATTTTGGCAAC
TGGTGGCGCCGGCATGGTGAAAGCAGCGTACAGCTCTGGAAAACCAGCTTTGGGCGTCGGACCTGGCAATGTGC
CTTGCTATATTGAAAAAACGGCAAACATAAAACGGGCGGTAAATGACTTAATTTTATCGAAAACGTTTGATAACGGC
ATGATTTGCGCTTCTGAACAAGCAGTCATTATTGATAAAGAAATTTATGAACAAGTAAAGAAAGAAATGATAGAAAAC
CATTGTTATTTCTTAAATGAAGAAGAAAAGAAAAAAGTAGAAAAACTCGTTATCAATGAAAATACATGCGCCGTCAAC
CCGGATATCGTCGGAAAGCCAGCTTATGAAATTGCGAAAATGGCCGGCATCGCTGTGCCGGAAGACACAAAAATTC
TTGTTGCTGAGTTAAAAGGGGTCGGGCCAAAATATCCGTTGTCTCGGGAAAAATTAAGCCCTGTCCTTGCTTGCTAT
AAAGTTAACAGCACGGAAGAAGGATTTAAGCGCTGTGAAGAAATGCTGGAATTTGGCGGCTTGGGACATTCGGCTG
TCATCCATTCCGATAATCAAAACGTGGTTACCGAATTTGGCAAACGGATGAAAGCGGGACGGATTATCGTTAATGC
GCCATCTTCGCAAGGAGCAATCGGCGATATTTACAATGCGTACATTCCGTCATTAACGCTGGGATGCGGCACATTT
GGCGGAAACTCTGTTTCGACAAACGTCAGTGCGATTCATCTTATCAATATAAAAAGAATGGCAAAAAGGACGGTAAA
TATGCAATGGTTTAAAGTGCCGCCGAAAATTTATTTCGAAAAAAATGCTGTACAATACTTAGCGAAAATGCCGGATAT
TTCCAGAGCTTTTATCGTCACCGACCCGGGAATGGTCAAGCTCGGATATGTCGATAAAGTGCTGTATTACTTGCGC
AGACGCCCGGATTATGTGCATAGTGAAATTTTCTCCGAAGTAGAGCCAGATCCTTCAATTGAGACGGTAATGAAAG
GTGTCGATATGATGAGAAGTTTCGAGCCGGATGTGATTATCGCGCTTGGAGGCGGCTCGCCAATGGATGCGGCAA
AAGCGATGTGGCTCTTTTACGAGCATCCGACAGCGGATTTCAACGCATTAAAACAAAAATTTTTAGATATTCGAAAA
CGCGTTTATAAATATCCAAAACTGGGCCAAAAAGCGAAATTTGTCGCCATTCCGACGACATCAGGAACAGGATCGG
AAGTAACGTCCTTTGCCGTCATTACCGATAAAAAAACGAATATAAAATATCCGTTGGCAGATTATGAATTGACACCG
GACGTCGCGATTGTGGATCCGCAATTTGTCATGACCGTGCCAAAACATGTCACCGCCGATACGGGAATGGATGTAT
TGACACATGCGATCGAAGCGTATGTCTCCAATATGGCAAATGATTATACCGATGGTCTTGCCATGAAAGCAATCCAA
CTCGTATTTGAATATTTGCCGCGGGCATATCAAAACGGAGCGGATGAGCTTGCCCGGGAGAAAATGCATAACGCCT
CTACGATTGCGGGAATGGCATTTGCCAACGCGTTTTTAGGCATTAACCATAGTTTGGCTCATAAACTTGGCGCGGA
ATTCCATATTCCGCATGGGCGCGCGAATACCATTTTGATGCCGCATGTCATTCGCTATAACGCAGCGAAACCGAAA
AAATTTACCGCATTTCCGAAATACGAATATTTCAAAGCGGACCAGCGCTATGCAGAAATTGCGAGAATGCTCGGCTT
GCCGGCCCGCACAACGGAAGAAGGGGTCGAAAGCCTCGTTCAGGCGATCATTAAGCTGGCAAAACAGTTGGATAT
GCCGCTGAGCATTGAAGCATGCGGCGTCAGCAAACAAGAATTTGAAAGCAAAGTTGAAAAATTAGCCGAATTGGCT
TTCGAAGACCAATGTACTACTGCTAACCCGAAACTCCCGCTTGTTAGCGATTTAGTTCATATTTATCGCCAAGCGTT
TAAAGGAGTTTAA 

 

Amino acid sequence: 

MRMAVEERVVDKKIEVAKMIDELVANAQKALEQIRAYDQETIDHIVKEMALAGLDKHMALAKLAVEETKRGVYEDKIIKNL
FATEYIYHNIKYDKTVGIIHENPHEEIIEIAEPVGVIAGITPVTNPTSTTMFKALISIKTRNPIIFAFHPSAQRCSSEAARVLRDA
AVRAGAPEHCIQWIETPSLDATNQLMHHPGVSLILATGGAGMVKAAYSSGKPALGVGPGNVPCYIEKTANIKRAVNDLIL
SKTFDNGMICASEQAVIIDKEIYEQVKKEMIENHCYFLNEEEKKKVEKLVINENTCAVNPDIVGKPAYEIAKMAGIAVPEDT
KILVAELKGVGPKYPLSREKLSPVLACYKVNSTEEGFKRCEEMLEFGGLGHSAVIHSDNQNVVTEFGKRMKAGRIIVNAP
SSQGAIGDIYNAYIPSLTLGCGTFGGNSVSTNVSAIHLINIKRMAKRTVNMQWFKVPPKIYFEKNAVQYLAKMPDISRAFIV
TDPGMVKLGYVDKVLYYLRRRPDYVHSEIFSEVEPDPSIETVMKGVDMMRSFEPDVIIALGGGSPMDAAKAMWLFYEHP
TADFNALKQKFLDIRKRVYKYPKLGQKAKFVAIPTTSGTGSEVTSFAVITDKKTNIKYPLADYELTPDVAIVDPQFVMTVPK
HVTADTGMDVLTHAIEAYVSNMANDYTDGLAMKAIQLVFEYLPRAYQNGADELAREKMHNASTIAGMAFANAFLGINHSL
AHKLGAEFHIPHGRANTILMPHVIRYNAAKPKKFTAFPKYEYFKADQRYAEIARMLGLPARTTEEGVESLVQAIIKLAKQLD
MPLSIEACGVSKQEFESKVEKLAELAFEDQCTTANPKLPLVSDLVHIYRQAFKGV- 

 

Fragment 11 

DNA coding sequence: 

ATGAATATGCAATGGTTTAAAGTGCCGCCGAAAATTTATTTCGAAAAAAATGCTGTACAATACTTAGCGAAAATGCC
GGATATTTCCAGAGCTTTTATCGTCACCGACCCGGGAATGGTCAAGCTCGGATATGTCGATAAAGTGCTGTATTACT
TGCGCAGACGCCCGGATTATGTGCATAGTGAAATTTTCTCCGAAGTAGAGCCAGATCCTTCAATTGAGACGGTAAT
GAAAGGTGTCGATATGATGAGAAGTTTCGAGCCGGATGTGATTATCGCGCTTGGAGGCGGCTCGCCAATGGATGC
GGCAAAAGCGATGTGGCTCTTTTACGAGCATCCGACAGCGGATTTCAACGCATTAAAACAAAAATTTTTAGATATTC
GAAAACGCGTTTATAAATATCCAAAACTGGGCCAAAAAGCGAAATTTGTCGCCATTCCGACGACATCAGGAACAGG
ATCGGAAGTAACGTCCTTTGCCGTCATTACCGATAAAAAAACGAATATAAAATATCCGTTGGCAGATTATGAATTGA
CACCGGACGTCGCGATTGTGGATCCGCAATTTGTCATGACCGTGCCAAAACATGTCACCGCCGATACGGGAATGG
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ATGTATTGACACATGCGATCGAAGCGTATGTCTCCAATATGGCAAATGATTATACCGATGGTCTTGCCATGAAAGCA
ATCCAACTCGTATTTGAATATTTGCCGCGGGCATATCAAAACGGAGCGGATGAGCTTGCCCGGGAGAAAATGCATA
ACGCCTCTACGATTGCGGGAATGGCATTTGCCAACGCGTTTTTAGGCATTAACCATAGTTTGGCTCATAAACTTGGC
GCGGAATTCCATATTCCGCATGGGCGCGCGAATACCATTTTGATGCCGCATGTCATTCGCTATAACGCAGCGAAAC
CGAAAAAATTTACCGCATTTCCGAAATACGAATATTTCAAAGCGGACCAGCGCTATGCAGAAATTGCGAGAATGCTC
GGCTTGCCGGCCCGCACAACGGAAGAAGGGGTCGAAAGCCTCGTTCAGGCGATCATTAAGCTGGCAAAACAGTTG
GATATGCCGCTGAGCATTGAAGCATGCGGCGTCAGCAAACAAGAATTTGAAAGCAAAGTTGAAAAATTAGCCGAAT
TGGCTTTCGAAGACCAATGTACTACTGCTAACCCGAAACTCCCGCTTGTTAGCGATTTAGTTCATATTTATCGCCAA
GCGTTTAAAGGAGTTTAA 
 

Amino acid sequence: 

MNMQWFKVPPKIYFEKNAVQYLAKMPDISRAFIVTDPGMVKLGYVDKVLYYLRRRPDYVHSEIFSEVEPDPSIETVMKGV
DMMRSFEPDVIIALGGGSPMDAAKAMWLFYEHPTADFNALKQKFLDIRKRVYKYPKLGQKAKFVAIPTTSGTGSEVTSFA
VITDKKTNIKYPLADYELTPDVAIVDPQFVMTVPKHVTADTGMDVLTHAIEAYVSNMANDYTDGLAMKAIQLVFEYLPRAY
QNGADELAREKMHNASTIAGMAFANAFLGINHSLAHKLGAEFHIPHGRANTILMPHVIRYNAAKPKKFTAFPKYEYFKAD
QRYAEIARMLGLPARTTEEGVESLVQAIIKLAKQLDMPLSIEACGVSKQEFESKVEKLAELAFEDQCTTANPKLPLVSDLV
HIYRQAFKGV- 
 

EutE 

DNA coding sequence: 

ATGAGCGTGGATGCACAAAAAATTGAGAAACTTGTAAGAAAAATACTGGAGGAAATGGAAGAGAAAAAGAAGCCGG
CAGAAACCGAATGCGAATGGGGCATATTTGACCATATGAATCAAGCAATTGAAGCAGCTGAAATCGCCCAAAAAGA
ACTTGTGCAACTATCTCTTGGGCAAAGAGGGAAACTGATTGAGGCAATTCGCAAAGCTGCCAAGGAGAATGCGGAA
AAATTTGCAAGAATGGCAGTGGACGAAACAGGGATGGGTAAATATGAAGATAAGATAGTAAAAAATTTACTTGCAGC
CGAAAAAACTCCAGGCATTGAAGACTTGCGGACAGAAGTTTTTTCTGGCGATGATGGTTTAACGCTTGTTGAACTTT
CGCCTTATGGTGTTATAGGAGCGATCACACCGACAACAAATCCTACTGAGACGATTATTTGTAATTCAATCGGAATG
ATCGCTGCAGGAAATGCCGTTGTTTTCAGCCCGCATCCGAGAGCAAAAAATACATCTTTGTATGCGATTAAAATTTT
CAATCAAGCAATCGTTGAAGCAGGCGGGCCGAAGAACTTGATAACAACGGTTGCAAATCCTTCCATTGAGCAAGCG
GAGATCATGATGAAACATAAAACCATTAAAATGCTGGTGGCTACCGGAGGGCCAGGAGTGGTAAAAGCAGTGCTCT
CAAGCGGGAAAAAAGCGATAGGTGCCGGTGCTGGAAATCCGCCAGTAGTTGTGGATGAGACGGCAGATATTGAAA
AGGCAGCGAAAGATATTATCGCTGGATGCAGCTTTGACAATAATCTTCCGTGTGTTGCAGAAAAAGAAGTAATTGCT
GTCGAATCGATTGCCGACCGTTTAATTGATTATATGAAAAAACACGGTGCATATGAAATAACGAATAAAGAACAAATA
CAACAACTAACTGATTTAGTGGTAGAGAATGGACATGCCAATAAAGAATTTGTTGGTAAAGATGCAGCCTATATTTTA
AAACATATTGGCATCAATGTTCCGCCTGACATCCGTGTAGCAATAATGGAAGTAGATGGTAAACATCCATTAGTAAC
AGTCGAGTTAATGATGCCAATTTTGCCTATTGTCCGCGTCAAAAACGTGGATCAAGCTATCGAGCTAGCTGTGGAA
GTTGAACATGGGTTCCGACATACGGCGATTATGCATTCTAAAAATGTAGATCATTTAACAAAATTCGCAAAGGCAAT
CCAAACTACGATTTTTGTAAAAAATGCTCCATCTTATGCCGGCATTGGCGTAGGCGGTGAAGGATATGCTACCTTCA
CCATAGCGGGGCCTACAGGTGAAGGCTTAACTTCAGCAAAAGACTTTGCAAGAAAAAGAAAATGTGTCTTAGTGGA
TGCTTTGTCGATAAGATAA 
 

Amino acid sequence: 

MSVDAQKIEKLVRKILEEMEEKKKPAETECEWGIFDHMNQAIEAAEIAQKELVQLSLGQRGKLIEAIRKAAKENAEKFARM
AVDETGMGKYEDKIVKNLLAAEKTPGIEDLRTEVFSGDDGLTLVELSPYGVIGAITPTTNPTETIICNSIGMIAAGNAVVFSP
HPRAKNTSLYAIKIFNQAIVEAGGPKNLITTVANPSIEQAEIMMKHKTIKMLVATGGPGVVKAVLSSGKKAIGAGAGNPPVV
VDETADIEKAAKDIIAGCSFDNNLPCVAEKEVIAVESIADRLIDYMKKHGAYEITNKEQIQQLTDLVVENGHANKEFVGKDA
AYILKHIGINVPPDIRVAIMEVDGKHPLVTVELMMPILPIVRVKNVDQAIELAVEVEHGFRHTAIMHSKNVDHLTKFAKAIQT
TIFVKNAPSYAGIGVGGEGYATFTIAGPTGEGLTSAKDFARKRKCVLVDALSIR- 
 

AcAldDH 

DNA coding sequence: 

ATGTTGCGTGACATCGATTTGCAATCCATCCAAGAGGTCAGAAATTATCTTGAAGAAGCGAAAGCAGCACAAAAAAT
CCTTGAAAAAATGACACAAAGCGAGATTGACAAGATTGTCGAAAGCATGGCAAATGCAGCGAGAGAAGAGGCTGG
CCGTTTAGCAGCGATGGCAGTCGAAGAGACCGGCTTCGGGAATGTGGAAGATAAAACGTTGAAAAATTTGTTCGCA
GCGAATGATGTTTACAACTCTATCAAAGATGTGAAAACAGTTGGGATTATTCGCCGTGATGAAGAAAACCGCGTTTG
GGAAATTGCTCAACCTGTCGGGATTGTTGCAGGAATCATCCCATCTACCAACCCAACTTCAACAGTTATTTTTAAAG
CATTGATCGCAGTTAAAGCAAGAAATGCCATTGTTTTCAGTCCGCACCCATCAGCAGCAAAATGTACAGCAGAAGC
AGCAAGAATCATGCAAGAAGCAGCGGAGCGCGCCGGAGCGCCAAAAGGGTTGATTTCTTGCATCACACAACCGAC
AATGGCTGCAACAAACGAGTTAATGAAACATAAATTAACTGACGTCATTTTAGCAACAGGCGGCCCTGGTTTGGTGA
AAGCAGCGTACAGTTCCGGAAAACCAGCATATGGCGTTGGGCCTGGAAACGTGCCAGTATATATCCATGAAAGTGC
CAATATCGCCAAAGCTGTTCAATTAATCATCCAAAGCAAGACTTTTGACTATGGAACCATTTGCGCTTCTGAACAAG
CTCTTTTAGTGGATGAGTCGATTAAAGAAAAAGTGGTTGCTGAGTTAAAACAACAAGGCGCTTACTTCTTGAATGAA
GAAGAAAAACAAAAAGTAGCATCCATCATTATGGTTAACGGTTCATTAAATGCGAAGATCGTTGGAAAAGCGCCGCA
AGTAATCGCGGAAATGGCTGGGATTGAGATTCCATCTGACGTGAAGTTGCTTGTGGCAGAAGAAACAGAAGTGGG
GAAAGAATATCCATTCTCCATTGAAAAATTGTCTCCAATTCTAGCATTCTATATAGTGAAAGGGATGGAAGAAGCAA
GCGAGCTTGCCCAAAAATTGCTTGAAGTGGGCGGACTCGGCCATACAGTTGGAATTCACGCTGAAGATGAAAAAGT
GATCGAAGCGTACACCATCGATAAACCAGCCGGACGGATTGTTGTAAATGCTGGTACAACGTTTGGCGGAATTGGT
GCAACAGTGAATGTTAAACCATCCTTGACACTTGGATGCGGTGCTATCGGTAACAACATTACATCAGACAACGTGAC
AGTAACTCATTTATTCAACATTAAACGCGTGGCATTTGGAGTCCGCGAGATGCCAAAAAAAGTTGAAGGCGCACAAA
AAGAACCTGCATTAACTAAATAA 
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Amino acid sequence: 

MLRDIDLQSIQEVRNYLEEAKAAQKILEKMTQSEIDKIVESMANAAREEAGRLAAMAVEETGFGNVEDKTLKNLFAANDV
YNSIKDVKTVGIIRRDEENRVWEIAQPVGIVAGIIPSTNPTSTVIFKALIAVKARNAIVFSPHPSAAKCTAEAARIMQEAAERA
GAPKGLISCITQPTMAATNELMKHKLTDVILATGGPGLVKAAYSSGKPAYGVGPGNVPVYIHESANIAKAVQLIIQSKTFDY
GTICASEQALLVDESIKEKVVAELKQQGAYFLNEEEKQKVASIIMVNGSLNAKIVGKAPQVIAEMAGIEIPSDVKLLVAEETE
VGKEYPFSIEKLSPILAFYIVKGMEEASELAQKLLEVGGLGHTVGIHAEDEKVIEAYTIDKPAGRIVVNAGTTFGGIGATVNV
KPSLTLGCGAIGNNITSDNVTVTHLFNIKRVAFGVREMPKKVEGAQKEPALTK- 
 

Fusion 1 (SacI site removed) 

DNA coding sequence: (AcAldDH sequence underlined) 

ATGAATATGCAATGGTTTAAAGTGCCGCCGAAAATTTATTTCGAAAAAAATGCTGTACAATACTTAGCGAAAATGCC
GGATATTTCCAGAGCTTTTATCGTCACCGACCCGGGAATGGTCAAGCTCGGATATGTCGATAAAGTGCTGTATTACT
TGCGCAGACGCCCGGATTATGTGCATAGTGAAATTTTCTCCGAAGTAGAGCCAGATCCTTCAATTGAGACGGTAAT
GAAAGGTGTCGATATGATGAGAAGTTTCGAGCCGGATGTGATTATCGCGCTTGGAGGCGGCTCGCCAATGGATGC
GGCAAAAGCGATGTGGCTCTTTTACGAGCATCCGACAGCGGATTTCAACGCATTAAAACAAAAATTTTTAGATATTC
GAAAACGCGTTTATAAATATCCAAAACTGGGCCAAAAAGCGAAATTTGTCGCCATTCCGACGACATCAGGAACAGG
ATCGGAAGTAACGTCCTTTGCCGTCATTACCGATAAAAAAACGAATATAAAATATCCGTTGGCAGATTATGAATTGA
CACCGGACGTCGCGATTGTGGATCCGCAATTTGTCATGACCGTGCCAAAACATGTCACCGCCGATACGGGAATGG
ATGTATTGACACATGCGATCGAAGCGTATGTCTCCAATATGGCAAATGATTATACCGATGGTCTTGCCATGAAAGCA
ATCCAACTCGTATTTGAATATTTGCCGCGGGCATATCAAAACGGAGCGGATGAGCTTGCCCGGGAGAAAATGCATA
ACGCCTCTACGATTGCGGGAATGGCATTTGCCAACGCGTTTTTAGGCATTAACCATAGTTTGGCTCATAAACTTGGC
GCGGAATTCCATATTCCGCATGGGCGCGCGAATACCATTTTGATGCCGCATGTCATTCGCTATAACGCAGCGAAAC
CGAAAAAATTTACCGCATTTCCGAAATACGAATATTTCAAAGCGGACCAGCGCTATGCAGAAATTGCGAGAATGCTC
GGCTTGCCGGCCCGCACAACGGAAGAAGGGGTCGAAAGCCTCGTTCAGGCGATCATTAAGCTGGCAAAACAGTTG
GATATGCCGCTGAGCATTGAAGCATGCGGCGTCAGCAAACAAGAATTTGAAAGCAAAGTTGAAAAATTAGCCGAAT
TGGCTTTCGAAGACCAATGTACTACTGCTAACCCGAAACTCCCGCTTGTTAGCGATTTAGTTCATATTTATCGCCAA
GCGTTTAAAGGAGTTCGGAGCGGTTCCAACATGTTGCGTGACATCGATTTGCAATCCATCCAAGAGGTCAGAAATT
ATCTTGAAGAAGCGAAAGCAGCACAAAAAATCCTTGAAAAAATGACACAAAGCGAGATTGACAAGATTGTCGAAAG
CATGGCAAATGCAGCGAGAGAAGAGGCTGGCCGTTTAGCAGCGATGGCAGTCGAAGAGACCGGCTTCGGGAATG
TGGAAGATAAAACGTTGAAAAATTTGTTCGCAGCGAATGATGTTTACAACTCTATCAAAGATGTGAAAACAGTTGGG
ATTATTCGCCGTGATGAAGAAAACCGCGTTTGGGAAATTGCTCAACCTGTCGGGATTGTTGCAGGAATCATCCCAT
CTACCAACCCAACTTCAACAGTTATTTTTAAAGCATTGATCGCAGTTAAAGCAAGAAATGCCATTGTTTTCAGTCCGC
ACCCATCAGCAGCAAAATGTACAGCAGAAGCAGCAAGAATCATGCAAGAAGCAGCGGAGCGCGCCGGAGCGCCA
AAAGGGTTGATTTCTTGCATCACACAACCGACAATGGCTGCAACAAACGAGTTAATGAAACATAAATTAACTGACGT
CATTTTAGCAACAGGCGGCCCTGGTTTGGTGAAAGCAGCGTACAGTTCCGGAAAACCAGCATATGGCGTTGGGCC
TGGAAACGTGCCAGTATATATCCATGAAAGTGCCAATATCGCCAAAGCTGTTCAATTAATCATCCAAAGCAAGACTT
TTGACTATGGAACCATTTGCGCTTCTGAACAAGCTCTTTTAGTGGATGAGTCGATTAAAGAAAAAGTGGTTGCTGAG
TTAAAACAACAAGGCGCTTACTTCTTGAATGAAGAAGAAAAACAAAAAGTAGCATCCATCATTATGGTTAACGGTTCA
TTAAATGCGAAGATCGTTGGAAAAGCGCCGCAAGTAATCGCGGAAATGGCTGGGATTGAGATTCCATCTGACGTGA
AGTTGCTTGTGGCAGAAGAAACAGAAGTGGGGAAAGAATATCCATTCTCCATTGAAAAATTGTCTCCAATTCTAGCA
TTCTATATAGTGAAAGGGATGGAAGAAGCAAGCGAGCTTGCCCAAAAATTGCTTGAAGTGGGCGGACTCGGCCATA
CAGTTGGAATTCACGCTGAAGATGAAAAAGTGATCGAAGCGTACACCATCGATAAACCAGCCGGACGGATTGTTGT
AAATGCTGGTACAACGTTTGGCGGAATTGGTGCAACAGTGAATGTTAAACCATCCTTGACACTTGGATGCGGTGCT
ATCGGTAACAACATTACATCAGACAACGTGACAGTAACTCATTTATTCAACATTAAACGCGTGGCATTTGGAGTCCG
CGAGATGCCAAAAAAAGTTGAAGGCGCACAAAAAGAACCTGCATTAACTAAATAA 
 

Amino acid sequence: (AcAldDH sequence underlined) 

MNMQWFKVPPKIYFEKNAVQYLAKMPDISRAFIVTDPGMVKLGYVDKVLYYLRRRPDYVHSEIFSEVEPDPSIETVMKGV
DMMRSFEPDVIIALGGGSPMDAAKAMWLFYEHPTADFNALKQKFLDIRKRVYKYPKLGQKAKFVAIPTTSGTGSEVTSFA
VITDKKTNIKYPLADYELTPDVAIVDPQFVMTVPKHVTADTGMDVLTHAIEAYVSNMANDYTDGLAMKAIQLVFEYLPRAY
QNGADELAREKMHNASTIAGMAFANAFLGINHSLAHKLGAEFHIPHGRANTILMPHVIRYNAAKPKKFTAFPKYEYFKAD
QRYAEIARMLGLPARTTEEGVESLVQAIIKLAKQLDMPLSIEACGVSKQEFESKVEKLAELAFEDQCTTANPKLPLVSDLV
HIYRQAFKGVRSGSNMLRDIDLQSIQEVRNYLEEAKAAQKILEKMTQSEIDKIVESMANAAREEAGRLAAMAVEETGFGN
VEDKTLKNLFAANDVYNSIKDVKTVGIIRRDEENRVWEIAQPVGIVAGIIPSTNPTSTVIFKALIAVKARNAIVFSPHPSAAKC
TAEAARIMQEAAERAGAPKGLISCITQPTMAATNELMKHKLTDVILATGGPGLVKAAYSSGKPAYGVGPGNVPVYIHESA
NIAKAVQLIIQSKTFDYGTICASEQALLVDESIKEKVVAELKQQGAYFLNEEEKQKVASIIMVNGSLNAKIVGKAPQVIAEMA
GIEIPSDVKLLVAEETEVGKEYPFSIEKLSPILAFYIVKGMEEASELAQKLLEVGGLGHTVGIHAEDEKVIEAYTIDKPAGRIV
VNAGTTFGGIGATVNVKPSLTLGCGAIGNNITSDNVTVTHLFNIKRVAFGVREMPKKVEGAQKEPALTK- 

 

Fusion 2 

DNA coding sequence: (AcAldDH sequence underlined) 

ATGTTGCGTGACATCGATTTGCAATCCATCCAAGAGGTCAGAAATTATCTTGAAGAAGCGAAAGCAGCACAAAAAAT
CCTTGAAAAAATGACACAAAGCGAGATTGACAAGATTGTCGAAAGCATGGCAAATGCAGCGAGAGAAGAGGCTGG
CCGTTTAGCAGCGATGGCAGTCGAAGAGACCGGCTTCGGGAATGTGGAAGATAAAACGTTGAAAAATTTGTTCGCA
GCGAATGATGTTTACAACTCTATCAAAGATGTGAAAACAGTTGGGATTATTCGCCGTGATGAAGAAAACCGCGTTTG
GGAAATTGCTCAACCTGTCGGGATTGTTGCAGGAATCATCCCATCTACCAACCCAACTTCAACAGTTATTTTTAAAG
CATTGATCGCAGTTAAAGCAAGAAATGCCATTGTTTTCAGTCCGCACCCATCAGCAGCAAAATGTACAGCAGAAGC



279 

AGCAAGAATCATGCAAGAAGCAGCGGAGCGCGCCGGAGCGCCAAAAGGGTTGATTTCTTGCATCACACAACCGAC
AATGGCTGCAACAAACGAGTTAATGAAACATAAATTAACTGACGTCATTTTAGCAACAGGCGGCCCTGGTTTGGTGA
AAGCAGCGTACAGTTCCGGAAAACCAGCATATGGCGTTGGGCCTGGAAACGTGCCAGTATATATCCATGAAAGTGC
CAATATCGCCAAAGCTGTTCAATTAATCATCCAAAGCAAGACTTTTGACTATGGAACCATTTGCGCTTCTGAACAAG
CTCTTTTAGTGGATGAGTCGATTAAAGAAAAAGTGGTTGCTGAGTTAAAACAACAAGGCGCTTACTTCTTGAATGAA
GAAGAAAAACAAAAAGTAGCATCCATCATTATGGTTAACGGTTCATTAAATGCGAAGATCGTTGGAAAAGCGCCGCA
AGTAATCGCGGAAATGGCTGGGATTGAGATTCCATCTGACGTGAAGTTGCTTGTGGCAGAAGAAACAGAAGTGGG
GAAAGAATATCCATTCTCCATTGAAAAATTGTCTCCAATTCTAGCATTCTATATAGTGAAAGGGATGGAAGAAGCAA
GCGAGCTTGCCCAAAAATTGCTTGAAGTGGGCGGACTCGGCCATACAGTTGGAATTCACGCTGAAGATGAAAAAGT
GATCGAAGCGTACACCATCGATAAACCAGCCGGACGGATTGTTGTAAATGCTGGTACAACGTTTGGCGGAATTGGT
GCAACAGTGAATGTTAAACCATCCTTGACACTTGGATGCGGTGCTATCGGTAACAACATTACATCAGACAACGTGAC
AGTAACTCATTTATTCAACATTAAACGCGTGGCATTTGGAGTCCGCGAGATGCCAAAAAAAGTTGAAGGCGCACAAA
AAGAACCTGCATTAACTAAAAAGCTTATGAATATGCAATGGTTTAAAGTGCCGCCGAAAATTTATTTCGAAAAAAATG
CTGTACAATACTTAGCGAAAATGCCGGATATTTCCAGAGCTTTTATCGTCACCGACCCGGGAATGGTCAAGCTCGG
ATATGTCGATAAAGTGCTGTATTACTTGCGCAGACGCCCGGATTATGTGCATAGTGAAATTTTCTCCGAAGTAGAGC
CAGATCCTTCAATTGAGACGGTAATGAAAGGTGTCGATATGATGAGAAGTTTCGAGCCGGATGTGATTATCGCGCT
TGGAGGCGGCTCGCCAATGGATGCGGCAAAAGCGATGTGGCTCTTTTACGAGCATCCGACAGCGGATTTCAACGC
ATTAAAACAAAAATTTTTAGATATTCGAAAACGCGTTTATAAATATCCAAAACTGGGCCAAAAAGCGAAATTTGTCGC
CATTCCGACGACATCAGGAACAGGATCGGAAGTAACGTCCTTTGCCGTCATTACCGATAAAAAAACGAATATAAAAT
ATCCGTTGGCAGATTATGAATTGACACCGGACGTCGCGATTGTGGATCCGCAATTTGTCATGACCGTGCCAAAACA
TGTCACCGCCGATACGGGAATGGATGTATTGACACATGCGATCGAAGCGTATGTCTCCAATATGGCAAATGATTAT
ACCGATGGTCTTGCCATGAAAGCAATCCAACTCGTATTTGAATATTTGCCGCGGGCATATCAAAACGGAGCGGATG
AGCTTGCCCGGGAGAAAATGCATAACGCCTCTACGATTGCGGGAATGGCATTTGCCAACGCGTTTTTAGGCATTAA
CCATAGTTTGGCTCATAAACTTGGCGCGGAATTCCATATTCCGCATGGGCGCGCGAATACCATTTTGATGCCGCAT
GTCATTCGCTATAACGCAGCGAAACCGAAAAAATTTACCGCATTTCCGAAATACGAATATTTCAAAGCGGACCAGCG
CTATGCAGAAATTGCGAGAATGCTCGGCTTGCCGGCCCGCACAACGGAAGAAGGGGTCGAAAGCCTCGTTCAGGC
GATCATTAAGCTGGCAAAACAGTTGGATATGCCGCTGAGCATTGAAGCATGCGGCGTCAGCAAACAAGAATTTGAA
AGCAAAGTTGAAAAATTAGCCGAATTGGCTTTCGAAGACCAATGTACTACTGCTAACCCGAAACTCCCGCTTGTTAG
CGATTTAGTTCATATTTATCGCCAAGCGTTTAAAGGAGTTTAA 
 

Amino acid sequence: (AcAldDH sequence underlined) 

MLRDIDLQSIQEVRNYLEEAKAAQKILEKMTQSEIDKIVESMANAAREEAGRLAAMAVEETGFGNVEDKTLKNLFAANDV
YNSIKDVKTVGIIRRDEENRVWEIAQPVGIVAGIIPSTNPTSTVIFKALIAVKARNAIVFSPHPSAAKCTAEAARIMQEAAERA
GAPKGLISCITQPTMAATNELMKHKLTDVILATGGPGLVKAAYSSGKPAYGVGPGNVPVYIHESANIAKAVQLIIQSKTFDY
GTICASEQALLVDESIKEKVVAELKQQGAYFLNEEEKQKVASIIMVNGSLNAKIVGKAPQVIAEMAGIEIPSDVKLLVAEETE
VGKEYPFSIEKLSPILAFYIVKGMEEASELAQKLLEVGGLGHTVGIHAEDEKVIEAYTIDKPAGRIVVNAGTTFGGIGATVNV
KPSLTLGCGAIGNNITSDNVTVTHLFNIKRVAFGVREMPKKVEGAQKEPALTKKLMNMQWFKVPPKIYFEKNAVQYLAKM
PDISRAFIVTDPGMVKLGYVDKVLYYLRRRPDYVHSEIFSEVEPDPSIETVMKGVDMMRSFEPDVIIALGGGSPMDAAKA
MWLFYEHPTADFNALKQKFLDIRKRVYKYPKLGQKAKFVAIPTTSGTGSEVTSFAVITDKKTNIKYPLADYELTPDVAIVDP
QFVMTVPKHVTADTGMDVLTHAIEAYVSNMANDYTDGLAMKAIQLVFEYLPRAYQNGADELAREKMHNASTIAGMAFAN
AFLGINHSLAHKLGAEFHIPHGRANTILMPHVIRYNAAKPKKFTAFPKYEYFKADQRYAEIARMLGLPARTTEEGVESLVQ
AIIKLAKQLDMPLSIEACGVSKQEFESKVEKLAELAFEDQCTTANPKLPLVSDLVHIYRQAFKGV- 
 

DNA primer details 

Primer name 
Restriction 

site 
DNA Sequence (5’-3’) 

C-Tag ADHE F1 NcoI 
CATCCGCCATGGTGCGTATGGCTGTGGAGGAGAG
AGTCG 

C-Tag ADHE R1 XhoI CATCCGCTCGAGAACTCCTTTAAACGCTTGG 

ADHE F1 MUT n/a 
CTTTAAGAAGGAGATATACCATGCGTATGGCTGTG
GAGGAGAG 

ADHE F1R MUT n/a 
CTCTCCTCCACAGCCATACGCATGGTATATCTCCTT
CTTAAAG 

Fragment 1 (AldDH) F NheI CTAGCTAGCATGCGTATGGCTGTGGAGG 

Fragment 1 (AldDH) R XhoI CCGCTCGAGCTACGTCTCAATTGAAGGATCTGG 

Fragment 2 (ADH) F NdeI CCGCATATGATTTACAATGCGTACATTCCG 

Fragment 2 (ADH) R XhoI CCGCTCGAGTTAAACTCCTTTAAACGCTTGG 

Fragment 3 (AldDHs) F NheI CTAGCTAGCATGCGTATGGCTGTGGAGG 

Fragment 3 (AldDHs) R XhoI CCGCTCGAGTTAATGAATCGCACTGACGTTTGTCG 

Frag11pET28aF NdeI 
CCGCATATGATTTACATGAATATGCAATGGTTTAAA
G 

Frag11pET28aR XhoI CCCTCGAGGCTTAAACTCCTTTAAACGCT 

pUCG18F n/a CAATAGTCAAACAATCGCCACAA 

pUCG18Rev n/a TATGCTTCCGGCTCGTAT 

GB ADHE Fwd1 XbaI GCTCTAGAGCATGCGTATGGCTGTGG 

GB ADHE Rev1 SacI CGAGCTCGTTAAACTCCTTTAAACGCT 
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GB ADH Fwd1 (Frag 2) XbaI GCTCTAGAGCATGATTTACAATGCGTACATTCCG 

GB aldDHshort Rev1 
(Frag 3) 

SacI CGAGCTCGTTAATGAATCGCACTGACG 

GB 1-345aa Rev1 
(Frag 4) 

SacI CGAGCTCGTTACAACGGATATTTTGGC 

GB 1-400aa Rev1 
(Frag 5) 

SacI CGAGCTCGTTATTTCATCCGTTTGCC 

GB 1-505aa Rev1 
(Frag 6) 

SacI CGAGCTCGTTACACTTTATCGACATATC 

GB 1-600aa Rev1 
(Frag 7) 

SacI CGAGCTCGTTAAAATTTCGCTTTTTGGC 

GB 1-745aa Rev1 
(Frag 8) 

SacI CGAGCTCGTTACCCATGCGGAATATG 

GB 1-800aa Rev1 
(Frag 9) 

SacI CGAGCTCGTTATTCGACCCCTTCTTCC 

GB 517-869aa Fwd1 
(Frag 10) 

XbaI GCTCTAGAGCATGAGTGAAATTTTCTCCG 

GB 459-869aa Fwd1 
(Frag 11) 

XbaI GCTCTAGAGCATGAATATGCAATGGTTTAAAG 

GB 267-869aa Fwd1 
(Frag 12) 

XbaI GCTCTAGAGCATGGAAATTTATGAACAAGTAAAG 

eutEpET45bF KpnI GGGGTACCATGAGCGTGGATGCACAA 

eutEpET45bR XhoI CCCTCGAGGGTTATCTTATCGACAAAGCATCCACTA 

eutEpUCG18F XbaI CTCTAGAGCATGAGCGTGGATGCACAAAAAATTG 

eutEpUCG18R SacI CGAGCTCGTTATCTTATCGACAAAGCATCCACTA 

eutE pLM303 KpnI GGGTACCCATGAGCGTGGATGCACAA 

eutE pLM303 (seq) n/a CAGTTTCCCTCTTTGCCCAAG 

GB ACaldDH Fwd1 XbaI GCTCTAGAGATGTTGCGTGACATCGATTTGC 

GB ACaldDH Rev1 SacI CGAGCTCGTTATTTAGTTAATGCAGGTTCTTTTTG 

ACaldDH pet28 F1 NheI GCTAGCATGTTGCGTGACATCGATTTGC 

ACaldDH pet28 rev1 XhoI CCGCTCGAGTTATTTAGTTAATGCAGGTTCTTTTTG 

Frag11 for eutE fusion 
F1 

NcoI CCATGGCATGAATATGCAATGGTTTAAAG 

Frag11 for eutE fusion 
R1 

SacI GAGCTCCGAACTCCTTTAAACGCTTG 

ACaldDHfusion Fwd1 
(pLM303) 

SacI GAGCTCCAACATGTTGCGTGACATCG 

11-acaldDH Fus int1 n/a CGGAAGAAGGGGTCGAA 

11-acaldDH Fus 
int2rev 

n/a CATCATTCGCTGCG 

pUC F1 Rev1 SacI CGAGCTCGTTATTTAGTTAATGCAGGTTCTTTTTG 

11-AcaldDH NO SACI 
Fwd 

n/a 
TTAAAGGAGTTCGGAGCGGTTCCAACATGTTGCGT
GA 

11-AcaldDH NO SACI 
Rev 

n/a 
TCACGCAACATGTTGGAACCGCTCCGAACTCCTTT
AA 

Frag 11 28a Fusion 2 
F1 

HindIII AAGCTTATGAATATGCAATGGTTTAAAG 

AcAldDH 28a Fusion2 
R1 

HindIII AAGCTTTTTAGTTAATGCAGGTTCTTTT 

pUC F2 Fwd1 XbaI TCTAGAATGTTGCGTGACATCGATTTGC 

pUC F2 Rev1 SacI CGAGCTCGTTAAACTCCTTTAAACGCT 

Fus2 int1 n/a GTTGGAAAAGCGCC 

Fus2 mut 1 F n/a 
CAAAAAGAACCTGCATTAACTAAAAAGGGTCTTATG
AATATGCAATGGTTTAAAGTG 
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Fus2 mut 1 R n/a 
CACTTTAAACCATTGCATATTCATAAGACCCTTTTTA
GTTAATGCAGGTTCTTTTTG 

AcAldDH pET28a R1 
Native link 

HindIII AAGCTTTGCCACGCGTTTAATGTTGA 

ADH native link F1 HindIII AAGCTTACGGTAAATATGCAATGGTTTA 

Fus4 Fwd primer n/a 
ACATTAAACGCGTGGCAAAGGGGAGCCTTACGGTA
AATATGCAATG 

Fus4 Rev primer n/a 
CATTGCATATTTACCGTAAGGCTCCCCTTTGCCACG
CGTTTAATGT 

AcAldDH-11 int rev n/a TCGATCGCATGTGTCA 

Fus4 int F 2 n/a GCAAGAAATGCCATTG 

pADHEfwd1 pstI CTGCAGTAGCTTAAATGAGGTTTTAGAC 

pADHErev1 XbaI TCTAGATTCTCCCTCCTGATTGTGAA 

pUCG18 prom F1 n/a ATCGGTGCGGGCCT 

 

Vector maps: 

 

pGEM
®
-T easy vector map and multiple cloning site details.  Image adapted from product 
handbook (Promega).   
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pET28a vector map and multiple cloning site details.  Image adapted from product handbook 
(Novagen).   
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pET45b vector map and multiple cloning site details.  Image adapted from product handbook 
(Novagen).   
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pUCG18-pLDH-pheB vector map.  Image produced from the vector sequence using the Plasma 
DNA programme (Angers-Loustau et al. 2007).   



285 

 

pLM303 vector map and multiple cloning site details.  Image produced from the vector 
sequence using the Plasma DNA programme (Angers-Loustau et al. 2007).   

 


	1 Thesis i (cover acknowledgments contents abstract abbrev)
	2 Thesis chapter 1 (intro)
	3 Thesis chapter 2 (M+M)
	4 Thesis chapter 3 (ADHE)
	5 Thesis chapter 4 (Fragment)
	6 Thesis chapter 5 (crystal frag 11)
	7 Thesis chapter 6 (AcaldDH)
	8 Thesis chapter 7 (AcaldDH cryst)
	9 Thesis chapter 8 (Fusion)
	10 Thesis chapter 9 (expression)
	11 Thesis chapter 10 (discussion)
	12 Thesis chapter 11 (references)

