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Abstract

The last decade of technological advancements have set architects free to explore

a vast variety of shapes, which in e�ect has given rise to a trend of complex free-

form buildings in contemporary architecture. These shapes are generally based

on pure aesthetics which often results in awkward and over-dimensioned struc-

tures or very costly construction. As a consequence, engineers have developed

methods to inform the shape design such that form follows force. While these

structures are highly e�ective, they lack considerations of practical constraints

and reduce the need for interaction between the architect and engineer.

This research o�ers a novel free-form modelling technique with inherent shapes

suitable for sti�ening of shells through curvature. The methodology has been

implemented in a software tool to help guide the design at the conceptual stage

by providing upfront feedback to changes of form, thus integrating architectural

vision with structural logic. The modelling approach is based on harmonics,

which makes it possible to parametrise a given mesh by a few variables and

simultaneously perform advantageous analysis of the geometry. The generated

shapes are subsequently evaluated in terms of their buckling capacity, where it

is evident that the inherent double curvature provides geometrical sti�ness to

better resist sudden failure due to high compressive forces.

Case studies of the British Museum Great Court Roof and other smaller ex-

amples, combined with a continuous dialogue with people from the industry,

have been used to assess and enhance the applicability of the design tool in

practice.
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Chapter 1

Introduction

This chapter highlights tendencies and describes current approaches within con-

temporary shell design. It motivates the development of a tool, which balances

visual expression with structural rationality rather than focusing on one or the

other. A number of objectives for this research are identi�ed and an overall

structure of the thesis is outlined.

1.1 Free-form surface design

Architectural forms have changed remarkably over the last 20 years as a con-

sequence of technological advancements. Previously, designs were sketched by

hand using pencil and paper and di�erent tools such as rulers and compasses

helped to guide this process. Today the computer, with its computer aided

design (CAD) packages, is an integrated part of the design process, provid-

ing the architects with more freedom. Almost every imaginable shape can be

modelled by means of Non-Uniform Rational B-Splines (NURBS) or subdivi-

sion surfaces. As a result, organic free-form shapes are more commonly seen in

contemporary architecture. They have the advantage of being visually express-

ive, creating interesting spaces and spanning long distances without the need

for supports. A good example of these aesthetically pleasing structures is the

Heydar Aliyev Center by Zaha Hadid Architects as shown in Figure 1.1.1.

The design �exibility that the modelling tools provide is of great importance
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Chapter 1: Introduction

Figure 1.1.1 � Heydar Aliyev Center by Zaha Hadid Architects (Photo by Hufton+Crow
Photographers)

to maintain the creative and innovative role of the architect who thereby can

keep on pushing the limits of what is possible. However, CAD packages make

it easy for a designer to create complex doubly curved surfaces with no under-

standing of how the shape is generated geometrically, performs structurally or

its constructability, which can be crucial factors for a successful realisation of a

project.

Some architects have succeeded in integrating some of those factors in the design

process and used it to develop their architectural language. As an example,

Frank O. Gehry has developed his signature by only using developable sur-

faces (zero Gaussian curvature) for his designs. They express a high level of

complexity but the surfaces can be created from folded sheet materials, which

signi�cantly increase the constructability and reduce the cost in relation to fab-

rication.

1.2 Structural rationalisation

Every free-form surface design contains three aspects: shape, topology and siz-

ing. The shape is the spatial con�guration of a surface (geometry), the topology

refers to the connectivity of structural members within that shape domain and

the sizing is concerned with the dimensioning of those members. Usually, the

architect is responsible for the shape and perhaps the topology and the engineer

2
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for the sizing. If the free-form surface design is complex, it is sometimes the

case that the engineer is responsible for the topology as well i.e. the architect

provides the engineer with a given surface design and the task for the engineer

then becomes to develop a scheme of structural members to approximate that

shape in the best way and subsequently dimension the members. While this

is generally possible, it often leads to very awkward structures where the size

of the elements completely remove the focus from the visual expression of the

surface (if not externally then internally).

Due to the interesting nature of shell structures, engineers have developed dif-

ferent methods to determine e�cient shapes under given loadings. The hanging

chain model is one of the oldest methods published by Robert Hooke in 1676

and described as: �As hangs the �exible line, so but inverted will stand the rigid

arch� (Hooke, 1676). This method takes advantage of the hanging chain being

in pure tension and free of bending under its own weight and thus when inverted

will obtain a pure compression state under the same load. This principle can be

transferred to shells in order to �nd a compression-only shape, which is bene�-

cial as the forces only act in the tangential plane of the shell and therefore only

need a small cross section. Antoni Gaudi (1852-1926) is well-known for having

applied this physical form-�nding technique using weighted strings to mimic

the load e.g. for the design of Colónia Güell in Barcelona. The architectural

engineers Frei Otto (1925-2015) and Heinz Isler (1926-2009) are also famous

for having implemented this form-�nding principle to experiment with soap-

�lm and fabric respectively, which helped to guide the design of projects like

the German Pavilion at the Montreal Expo in 1967 and the Sicli SA Factory in

Geneva in 1970. These projects share the property that each individual shape is

derived from structural logic and thus expresses a high level of elegance as form

follows force. However, physical form-�nding methods can be very time con-

suming to set up and the manual measurements that are necessary to describe

the new shape can be cumbersome to obtain and hence cause inaccuracy.

Advances in computer technology allows these physical form-�nding methods to

be translated into numerical form-�nding methods instead, led by the invention

of dynamic relaxation (DR) by Alistair Day in 1965 (Day, 1965). The method

can be summarised as a system of springs and particles with masses representing

the surface, where the applied load causes the particles to move according to

Newton's second law of motion through time (Adriaenssens et al., 2014). The

oscillating motion of the particles eventually stabilises around the equilibrium

3
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solution. As the springs only work by tension or compression forces, the equi-

librium shape mimics a shell that only works by membrane action. Another

recent digital form-�nding technique is �Thrust Network Analysis� (TNA), de-

veloped by Philippe Block in 2009. It can be characterised as a more geometrical

approach to �nding three-dimensional equilibrium shapes. The method di�ers

from DR by exploiting the indeterminacy of the shell structure thus allowing a

broader variety of possible equilibrium solutions to be explored. It is achieved

by separating the horizontal and vertical equilibrium, which allows the designer

to modify the force �ow (taking advantage of the dual relationship between the

form and force diagram) and this in e�ect changes the geometry (Block, 2009).

The transition to digital form-�nding techniques has many advantages such as

allowing multiple con�gurations to be explored in a short time and directly

exporting the new shape into other CAD programs. The described methods are

the engineers response to the shape aspect of surface design in contemporary

architecture. However, they completely exclude the architect from the design

process, and as the resulting shapes are purely guided by the applied load, they

are very restricted and thereby cannot take other practical design constraints

such as internal height at the boundaries or views into account. In practice it is

very rare that a structure is only in�uenced by one load case (for these methods

the self-weight) and it means that for example point loads and construction

tolerances push the design away from the �optimal�.

Figure 1.2.1 � Pavilions shaped by dynamic relaxation. Left: Trada Pavilion designed by
Ramboll Computational Design. Right: SJ DHL tent designed by Soren Jensen Consultant
Engineering

Compression-only shells are vulnerable to failure by buckling, especially in areas

where the curvature is low. Figure 1.2.1 shows two di�erent pavilions that have

been form found by DR and it can be seen that �at areas arise at the legs thus
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risking buckling in these zones as is evident from the right of Figure 1.2.1. To

prevent this behaviour, the edges along the openings in the Trada pavilion (left

of Figure 1.2.1) were strengthened with extra panels.

It is characteristic for these form found shells to occupy a large footprint in order

to achieve a desirable height for the internal volume, and as a consequence a

lot of space along the boundary is wasted. For the Trada pavilion this problem

was tackled by introducing a funnel in the middle.

In summary, the restricted design space dictated by the relationship between

form and force, the practical constraints, which push the solution away from the

�optimal�, the vulnerability against buckling and the large footprint to height

ratio suggest that the best solution in practice is not to only design for a pure

compression state.

1.3 Balancing form and force

Besides giving rise to non-elegant structures, it can be argued that it is no longer

su�cient to design from a pure aesthetic point of view, as the requirements for

low-energy buildings, as well as a focus on recycling, material economy and

structural e�ciency, are ever more stringent. On the other hand, it is not

desirable to let the engineer control the entire design process either for the

reasons highlighted above. The best solution in practice therefore merges the

creative and visually pleasing free-form surface design of the architect with the

structural logic of the engineer. This is achieved by changing the work �ow such

that the shape, topology and size aspects all become part of an iterative process

in the conceptual design stage. Figure 1.3.1 shows two di�erent pavilions that

emerged from this process. The shapes are geometrically more stringent but

it is evident from both that structural innovation is still possible within this

restricted design space and with remarkable results.

One way to achieve this enriched process is by enabling upfront feedback in the

modelling environment such that any changes to a shape can be immediately

quanti�ed in terms of some kind of structural logic. If the shape design is in

focus (rather than the topology), the problem �rstly becomes to parametrically

de�ne the geometry with a desired �exibility whilst at the same time keeping

the number of parameters low. This is to avoid controlling the position of each

point on the surface individually and hence better create smooth shapes that
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Figure 1.3.1 � Pavilions shaped by a balance between form and force. Left: Kreod Pavilion
designed by Chun Qing Li and Ramboll Computational Design. Right: SJ IASS Polyshell
designed by Soren Jensen Consultant Engineering

are easily modi�ed. Secondly, the structural behaviour needs to be quanti�ed

by some measure that is relevant to the speci�c project.

1.4 Aim and objectives

This research aims to bridge the gap between free-form surface design based

only on aesthetics and the pure engineering approach with a very restricted

relationship between form and force. In order to achieve this, the development

of a digital tool with the following objectives is necessary:

• Use a free-form modelling strategy with a low number of design parameters

• Be intuitive and �exible

• Improve the current cumbersome work �ow between the geometric surface

model and �nite element model

• Provide real-time structural feedback in terms of stresses, de�ection or

buckling capacity

• Help guide the shape in the concept design stage

By using several smaller examples and a large case study, combined with a con-

tinuous dialogue with people from the industry, a software tool will be developed

that is applicable to both the architectural and engineering setting.

6
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1.5 Thesis structure

Chapter 2: reviews relevant literature in relation to the objectives de�ned

above in order to identify current approaches and their limitations and thereby

concretise the path of this research.

Chapter 3: contains a description of the theoretical framework chosen to ob-

tain a low parametrisation, along with its implementation and validation. Fur-

ther re�nements are introduced to speci�cally target the development for an

architectural context.

Chapter 4: focuses on the structural feedback, which is linked to speci�c

properties of the shapes resulting from the implemented modelling strategy. It

presents a novel approach to quantify this structural behaviour where integra-

tion with the existing modelling environment and computational speed are key

priorities.

Chapter 5: conducts a case study on the British Museum Great Court Roof,

which demonstrates the applicability of the developed design tool on a real world

project and highlights the value it creates.

Chapter 6: concludes this thesis with a summery of what this research has

delivered and contains proposals for future work.
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Chapter 2

Literature review

This chapter provides an overview of relevant methods and examples of applic-

ations according to the objectives described in Section 1.4. A full review of each

technique is not within the scope of this thesis, but it is intended to build an

understanding of previous work to help to identify advantages, limitations and

gaps in order to concretise the path of this research. An interview with Zaha

Hadid Architects, famous worldwide for their organic free-form shapes, serves

to broaden the understanding of surface design in practice. Literature more

speci�c to the implementation is reviewed in subsequent chapters.

2.1 NURBS surfaces

A NURBS (Non-Uniform Rational B-Spline) surface is one method of achieving

a low parametrisation of a surface. In other words, it allows the creation of a

smooth surface by only de�ning a few parameters and an algorithm interpolates

the rest. As a NURBS surface and a NURBS curve is generated from the

same principles, the latter is brie�y explained to get an understanding of these

parameters and how they a�ect the underlying algorithm.

The most common way to describe a curve is by a parameter t, which can be

thought of as distance. For each value of t there is an associated point on the

curve, which can be described as P (t) = (x(t), y(t)). The curve is therefore

a result of a moving point as described by a given mathematical expression.

9



Chapter 2: Literature review

However, is not very intuitive or easy to think in terms of mathematical ex-

pressions when modelling free-form curves. Thus, the idea is to maintain the

t-parametrisation but exchange the mathematical expressions with a few intu-

itive parameters to create any desired curve. These parameters are: control

points, degree, weights and knot vector.

The control points form, when connected, a so called control polygon, which

the generated curve intuitively follows as seen in Figure 2.1.1. Furthermore, the

control polygon provides a very tangible handle for modi�cation of the curve.

Figure 2.1.1 � A NURBS curve with its control polygon

By moving a control point, local control of the curve is obtained. This local

control is achieved by the three other parameters in the following way. For

every t, the associated point is a weighted average of the control points. In

order to describe in which time interval and how strongly the moving point is

in�uenced by each control point, a basis function per control point is introduced

(the �B� in B-Spline stands for basis). The knot vector makes it possible for

some control points to in�uence larger time intervals and of di�erent intensities

than others. It essentially divides the curve into time intervals and the degree

speci�es the polynomial degree of the basis functions and for how long in relation

to the knot vector that each function has a non-zero value. Hence, the �Non-

Uniform� property. The knot vector can furthermore be used to ensure that the

curve passes through the end points in the control polygon and allow kinks to

be created. Lastly, each control point has a weight parameter associated with

it, which intuitively attracts the curve more for higher values. It allows rational

curves to be generated (the �R� in NURBS), which is necessary to e.g. create

a circle (Schneider, 2015). Since a surface is most commonly represented by a

(u, v) parametrisation, it is possible to translate the described principle to this

setting by replacing the t parameter with u and v.

10
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NURBS successfully implement a low-parametrisation strategy of a given sur-

face and the described parameters are very intuitive. Especially the control

polygon provides a very spatial handle of the geometry, which makes it easy to

create and modify surfaces. Only the knot vector requires a bit more technical

understanding and experience to use as a modi�cation tool. However, in many

cases the control polygon su�ces to create a desirable surface geometry, leav-

ing the rest of the parameters as non-utilised features. This �exibility makes

NURBS a very straightforward tool that is widely used in practice.

As a NURBS surface de�nition is based on a (u, v) parametrisation, it has cer-

tain limitations related to this representation. The (u, v) parameters span a

rectangular two-dimensional region and a certain mapping is responsible for the

translation of this into a three-dimensional surface. Thus, any (u, v) point inside

this rectangle is mapped to a spatial point, which in e�ect makes it impossible

to de�ne holes in the surface and trim operations become di�cult. This rep-

resentation furthermore requires an attentive de�nition of the (u, v) intervals to

e.g. avoid that two di�erent (u, v) points map to the same spatial point (Press-

ley, 2012). As a result, NURBS surfaces are de�ned as patches that have to be

�glued together� to create more complex surfaces. It is generally hard to ensure

the same tangent along those seams and that can cause undesirable visual dis-

ruptions. In the context of building design, a smooth surface representation also

has the disadvantage of requiring additional steps to translate the shape from

computer model to a realisable project in the real world, where only discrete

elements exist.

Sasaki (2014) has developed a method called �the sensitivity analysis�, which

utilises the NURBS representation to embed some structural knowledge into

the shape with the aim of preserving the architectural vision. This method was

successfully used to modify the original shape of the Teshima Art Museum in

Japan (Figure 2.1.2), which spans an area of 42.7 x 60.2 m in plan and has a

maximum height of 5.12 m.

The methodology is illustrated in Figure 2.1.3. The control points of the original

NURBS surface provided by the architect are used as variables in an optimisa-

tion process, where the objective is to minimise the total strain energy of the

shell under self-weight. A measure for the strain energy for each con�guration

is obtained by an additional step, where the surface is discretised into a mesh,

which then forms the input for a �nite element analysis. The optimisation

problem is solved by a gradient descent strategy.
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Figure 2.1.2 � Teshima Art Museum, Japan 2010. Copyright Iwan Baan.

Figure 2.1.3 shows how the strain energy and maximum vertical displacement

are reduced compared to the initial shape during the optimisation process thus

injecting more structural logic into the shell shape. As the method tries to

minimise the modi�cations in relation to the original shape, in this case resulting

in a maximum deviation of 400 mm, the solution is heavily dependant on the

initial input. The optimised shape is subsequently used as a basis for thorough

structural analysis including stress validation and non-linear stability check.

Sensitivity analysis is a good example of how the reduced number of variables

of a NURBS representation can be used to embed structural logic into a shape.

The large number of projects this method has been applied to, including the

Kitagata Community Centre and the Kakamigahara Crematorium in Japan,

furthermore demonstrate its practical integrity obtained by respecting the ar-

chitectural vision. The only noticeable methodological disadvantage is the ad-

ditional step of converting the smooth surface to a mesh each time the shape is

updated in order to extract structural feedback.
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Figure 2.1.3 � Sensitivity analysis of Teshima Art Museum (Sasaki, 2014)

2.2 Subdivision surfaces

Another way of achieving a low parametrisation is by means of subdivision sur-

faces, which are based on a mesh representation. Usually, the smoothness of the

surface is lost when it is converted into a mesh, and thus there is a compromise

between the level of re�nement to achieve a certain accuracy and how much

information has to be stored. Subdivision surfaces solve this issue by being

de�ned from a coarse base mesh, which is the only necessary information to

store, and from this any desirable level of re�nement can be achieved from a

scheme description. A scheme is essentially an algorithm, which speci�es this

re�nement process. It consists of two parts: �rstly, a description of how to sub-

divide each face into several faces topologically by introducing new child vertices,

and secondly a procedure of how to move these child vertices (and maybe the
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original vertices) based on a weighted average of their original neighbour parent

vertices. Speci�c rules apply to the boundaries to obtain desirable results. The

scheme is called an interpolation scheme if only the child vertices are moved,

and an approximation scheme if both child vertices and the parent vertices are

moved. Within these two categories, several schemes exist, which operate on

di�erent base meshes. The so-called Loop scheme is an example of an approx-

imation scheme for triangular base meshes. The general idea is that the base

mesh converges towards a limit surface by repeating the subdivision scheme at

each level of re�nement as shown in Figure 2.2.1. This process has the e�ect

of smoothing the vertices, which in general ensures G2-continuity (Shepherd,

2014).

Figure 2.2.1 � Subdivision surface at di�erent levels of re�nement (Shepherd, 2009)

The base mesh for a subdivision surface therefore functions similarly to a control

polygon of a NURBS surface in the way that the number of variables to control

the surface can be reduced to the number of vertices in the base mesh. Thus,

it exhibits the same advantage of providing a very intuitive and spatial handle

to control the underlying surface shape. The di�erent re�nement strategy from

control polygon to smooth surface for subdivision surfaces and NURBS surfaces

makes it possible to create shapes with holes and in general avoid the issue of

surface patches. The mesh representation also o�ers a direct link to performance

analysis software and the necessary level of re�nement for each analysis type can

easily be generated without any additional e�orts (Shepherd, 2014).

While it is easy to de�ne a coarse control mesh and study the resulting limit

surface it converges towards, it is much harder to go the other way i.e. model a

speci�c spatial shape by de�ning a coarse control mesh. However, the latter is

often the case in an architectural context when a sketched idea has to be trans-

lated into a digital format. Another disadvantage is that boolean operations for

subdivision meshes are not obviously de�ned, hence making mesh modelling a

challenging task.

Zaha Hadid Architects are famous worldwide for the use of organic shapes,
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which has become a signature of their projects including the London Aquatics

Centre, Heyday Aliyev Centre and Galaxy Soho. In an interview on 5 June

2015 with Shajay Bhooshan, Associate and founding member of the Compu-

tation and Design (co|de) group at Zaha Hadid Architects, the author gained

insight into how these complex shapes are modelled. During various projects

(Bhooshan and Sayed, 2012), the team has acquired so much experience in

working with subdivision surfaces that currently this is their primary modelling

strategy. Instead of seeing the di�culties of creating a coarse control polygon

from a desirable shape as a limitation, the work �ow within the team is rather

to explore the broad variety of �sketches� that subdivision surfaces o�er. In

other words, the implementation of the subdivision surface approach becomes

the sketch tool and not the other way around. It was explained that the spatial

control mesh encourages an �edit and observe� process, which combined with an

aesthetic evaluation at each step and interim performance evaluations, guides

the �nal design. Due to this modelling approach, the most commonly used

platform within the team is Autodesk Maya (Autodesk, 2015a), which o�ers

advanced modelling with meshes and subdivision surfaces and is customisable

via bespoke C++ scripts.

The design of a building envelope for the tropical hothouse in Aarhus by C.F.

Moeller Architects and Soren Jensen Consultant Engineers serves as a good

example of how subdivision surfaces can be used in an optimisation process to

increase the environmental performance. The architectural concept was a dome

structure, which was initially created as the limit surface of a 7 vertex control

mesh as seen from Figure 2.2.2 and later on re�ned by one subdivision step

to gain further control. This way of representing the smooth dome structure

signi�cantly reduced the number of variables needed to de�ne the shape.

Figure 2.2.2 � Optimisation with subdivision surfaces exploiting the coarse control mesh to
modify the shape (Shepherd, 2009)
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Since the dome-like structure was designed to function as a hothouse, several

criteria had to be met which included an increase of the internal enclosing

volume with minimal e�ect on the total surface area and a reduction of the

heating requirements in winter and cooling requirements in summer. From the

geographical location, the amount of solar radiation that reached the surface

for speci�c weather conditions and time of the year was calculated and used

to evaluate changes to the form. A total score based on a weighted average

of the di�erent requirements was used to arrive at the �nal optimised design

(Shepherd, 2009). The result is shown in Figure 2.2.3.

Figure 2.2.3 � Tropical hothouse in the botanical garden of Aarhus, Denmark 2013. Copy-
right Quintin Lake

The project highlights how subdivision surfaces o�er an e�cient way of model-

ling smooth complex geometries with only a few variables that can be used in

an optimisation process to inform the design. It demonstrates the integration

of the architectural concept in the optimisation process and furthermore how

the �nal design can be enriched by the embedded logic.

2.3 Eigenshells

Michalatos and Kaijima (2014) propose a novel way to obtain a low paramet-

risation of a surface by a linear combination of the eigenfunctions of a Laplacian

matrix. While the eigenfunctions of a Laplacian matrix are widely explored in

computer graphics, the application in architecture is to date very limited. Like

subdivision surfaces, this method is based on a mesh representation as initial
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input and consists of three steps; the construction of a Laplacian matrix based

on the topology (and possibly geometry) of the mesh, an eigendecomposition of

this matrix to extract a range of eigenvectors and eventually a combination of

these by a weighted sum, which is interpreted as a displacement �eld describing

the movement of each vertex. In general there exists as many eigenfunctions

as there are vertices in the mesh. However, it is possible to obtain a low para-

metrisation by introducing a �lter. As a result, the variables are reduced to the

weights associated with each eigenfunction in the linear combination.

Michalatos and Kaijima (2014) explain that these eigenfunctions can be under-

stood as the vibrational modes of a membrane with a given boundary sorted

according to their frequency from lowest to highest. This is useful as it is gen-

erally only desirable to work with shapes of low frequency (more smooth) in

an architectural context, which implies that it is su�cient only to extract the

lower range of the eigenvectors. The method therefore has many similarities

with Fourier analysis but operates on three-dimensional meshes instead.

The described method has been implemented in the Grasshopper plug-in called

�Millipede� (Michalatos and Kaijima, 2015). The author has tested this design

tool in order to obtain a better understanding of the methodology in the context

of shape generation and modi�cation. Millipede contains seven components

related to this topic, which can be described as follows:

• EigenSystem: calculates the spectrum of the Laplacian matrix, which

is constructed from the input mesh. The eigenvalues and eigenmodes are

sorted in ascending order. The eigensystem is used as input for the rest

of the components.

• Extract EigenVector: extracts a speci�c eigenvector from a de�ned

index value. The length of the eigenvector is 1.

• Extract spectrum: extracts the coordinate spectrum of the mesh for x,

y, and z respectively. E.g. for the x coordinate, the spectrum contains a

list of numbers specifying one value per mode in the eigensystem.

• Displace by Spectrum: deforms the mesh in the normal direction

based on a de�ned spectrum, which corresponds to the reduced variables

(weights) from the methodology description. It appears that the length of

the spectrum does not have to match the size of the eigensystem. In other

words, spectrum value number 1 gets assigned to mode 1, spectrum value
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number 2 gets assigned to mode 2 etc. When the spectrum is empty, the

spare eigenmodes get a zero value assigned.

• Reconstruct: similar functionality as the �Displace by Spectrum� but

the spectrum in this case refers to multipliers of the XYZ coordinates

(obtained from the �Extract spectrum� component) rather than normal

displacements.

• Spectral Filter: reconstructs the mesh from its x, y and z spectrum

using only a speci�ed range of the eigenmodes. This functionality links to

the noise removal aspect of the methodology description.

• Mesh Visualization: visualises a speci�c mode from a de�ned index

value as normal displacements and colouring of the mesh. Multiple indexes

can be speci�ed at once but the created meshes need to be separated

manually afterwards.

While the tool enables the generation of smooth free-form surfaces from only

a few weights by using the �Displace by Spectrum� component, it is not easily

understood by the uninitiated user. The so-called spectrum is a rather confus-

ing concept that is not well explained and is furthermore blurred by its relation

to both normal displacements and coordinate reconstruction. The author never

succeeded in using the �Extract spectrum� and �Reconstruct� component in any

meaningful way (unclear how the X, Y and Z spectrum are provided simultan-

eously) and suspects that the �Spectral Filter� can replace this functionality.

Additionally, the spectrum de�nition for the �Displace by Spectrum� compon-

ent makes it easy to reduce the number of variables if only the lower range

of the eigenmodes is considered but needs to be increased if control over the

higher frequency modes is desirable. In other words, it is not possible to select

the eigenmodes individually. In a larger scale, the most obvious disadvantage

of this tool is the lack of boundary control, which is a very important factor for

the tool to be applicable in an architectural context. The paper describes how

boundaries can be enforced by introducing a scalar �eld over the vertices of the

mesh with a value of one if the vertex is �xed and a zero value otherwise. This

scalar �eld is translated into a diagonal matrix, which is added to the Laplacian

matrix. In e�ect, the eigenvectors vanish in desirable regions but there is no

clear way of providing this information with the existing software tool. Since the

sorting of the vertex indexes is arbitrary, the most practical way to implement
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the described functionality is to select a number of nodes that are intended to

be �xed, search for those amongst the vertices in the mesh and automatically

generate the diagonal matrix from this information. Colouring the mesh with a

gradient, which is mapped back to a value per vertex in the range between 0-1

helps to acquire more control of the boundary transition. However, the latter is

not easily de�ned if the mesh is not symmetric.

In general, the method di�ers signi�cantly from NURBS and subdivision sur-

faces by having weights as parameters instead of the more visual control poly-

gon. It makes the method more abstract to understand and less intuitive to

use, but still o�ers a way of obtaining a low parametrisation of a surface. The

link to Fourier analysis is an interesting property, which provides this method

with a di�erent shape language and possibly enables advantageous analysis be-

sides noise removal to be an integrated part of the modelling process. These

unexplored properties and necessary re�nements to make it applicable within

an architectural context suggest several research opportunities.

Michalatos and Kaijima (2014) also demonstrate how the low parametrisation

of the eigenshells can be used in an optimisation process, where the objective

is to minimise the maximum de�ection. The mesh representation is, similarly

to subdivision surfaces, useful to provide a direct link to �nite element analysis

software. The method has not yet been implemented in the design process of a

real project but its potential is visualised through a case study by the authors

of the paper as shown in Figure 2.3.1 (the surface pattern is part of another

topic, which has been ignored for this context).

Figure 2.3.1 � Resulting eigenshell from structural optimisation (Michalatos and Kaijima,
2015)

19



Chapter 2: Literature review

2.4 Curvature sti�ened shells

In terms of structural performance, most shells are evaluated by means of a

maximum stress or de�ection measure in the conceptual design stage includ-

ing the previously described examples and traditional form-�nding techniques.

These measures are often used because they are simple and only require �rst

order analysis. However, buckling is more often the governing failure mode for

shells, as was experienced for the Trada and Soren Jensen DHL pavilions. The

�at areas were especially vulnerable to failure by buckling and this observation

suggests that curvature is an important design feature in sti�ening a shell.

Malek (2012) conducts a thorough parametric study on the impact of corrug-

ations in relation to the buckling load factor for a barrel vault structure. The

parameters include the location of the corrugations (cosine waves), the aspect

ratio (frequency and amplitude) and the span-to-height ratio of the shell leading

to one-hundred combinations to analyse for a continuous shell and three-hundred

for a grid shell. The study clearly proves the gain in buckling capacity by in-

troducing corrugations at either the edge, the crown or both locations at the

same time. In the continuous case, it is possible to increase the capacity up to

80 times with corrugations at both the edges and the crown for a 1 % increase

in volume. The gain in buckling capacity is less signi�cant for grid shells but

a similar behaviour is observed (up to a factor of 8 for less than 3 % increase

in volume). The buckling capacity is obtained from a linear buckling analysis

(eigenvalue problem), which for the barrel vault is shown to be a conservative

measure compared to a non-linear collapse analysis.

The study shows how double-curvature can be used as means of sti�ening shell

structures (increasing their buckling capacity) and it successfully provides rules

of thumb to include these considerations in the conceptual design stage, rather

than postponing buckling analysis until the �nal structural validation. Buckling

measurements require a second order analysis to take the deformed shape (or

initial stress state) into account, which in general reduces the computational

speed. In the study by Malek (2012), the work �ow to obtain such a meas-

ure utilises a bespoke Matlab script, which from the investigated parameters

generates a text �le with the necessary information about geometry, support

conditions and loads to use as input for the �nite element software ADINA.

While this work �ow is su�cient to set up a number of design rules based on a

parametric study, it is too slow to provide upfront feedback in a design process
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or integrated as part of an optimisation problem. The work �ow is furthermore

limited to speci�c types of shells e.g. the barrel vault but should ideally be able

to introduce corrugations to any type of shell.

The concept of using double curvature to sti�en shells is not new. In fact,

this technique has been used by famous architectural engineers such as Felix

Candela (1910-1997) and Eladio Dieste (1917-2000) as seen in Figure 2.4.1. The

introduced double curvature adds quality to both the aesthetic character and the

structural performance of the shell. Even though this is an appealing property,

little research or digital tools exist to explore and evaluate shells sti�ened by

their curvature.

Figure 2.4.1 � Shell design by Eladio Dieste and Felix Candela. Top: Iglesia cristo obrero by
E. Dieste, Uruguay 1952 (Wazeone, 2010). Bottom: Los Manantiales by F. Candela, Mexico
1958 (Miller, 2014)
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2.5 Thesis direction

The literature review identi�es little research exists into shell shapes in relation

to their buckling capacity, even though this is considered the dominant failure

mode for these structures (Malek, 2012). Experience of traditional form-�nding

techniques, observations of historic buildings and a newly conducted paramet-

ric study by Malek (2012) all point towards the in�uence of curvature as an

essential design parameter to increase the shell sti�ness and hence the buckling

capacity. The di�culties of obtaining a buckling measure have created oppor-

tunities for work �ow improvements and in general there exists a need to expand

the conclusions outlined in the parametric study of Malek to shell types other

than the barrel vault.

The wave-like shapes of the historic curvature sti�ened structures (Figure 2.4.1)

interestingly links to the eigenshell method, which exactly generates free-form

shapes by combining waves of di�erent amplitude and frequency. As discussed,

this strategy to obtain a low parametrisation in an architectural context has

many interesting unexplored properties and the mesh representation is useful to

create a direct link to a buckling analysis. NURBS and subdivision surfaces have

already been developed thoroughly and investigated in a structural context.

The speci�c direction for this research is therefore �rstly to explore and further

develop the eigenshell methodology to obtain a low parametrisation of a surface

with the same �exibility and level of intuition as the NURBS and subdivision

surface approaches. Secondly, to exploit the resulting wave-like shape with its

inherent doubly curved nature to sti�en the shell against failure by buckling.

2.6 Software development

In an attempt to reach a wider audience (not limited to engineers and pro-

grammers only), and for easy integration in practice, the author has chosen to

develop the software to interface with McNeel's 3D modelling program named

Rhinoceros (McNeel, 2015b). Rhinoceros is a widely used program within ar-

chitectural practices due to its ease of use, �exibility and high accuracy asso-

ciated with the modelling of spatial shapes by means of NURBS curves and

surfaces (McNeel, 2014a). Triangle and quad meshes are also an integral part

of the software, even though the mesh tools are more limited compared with
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other modelling programs such as Autodesk Maya. Rhinoceros supports cus-

tomisation through the creation of plug-ins, which are based on the open source

RhinoCommon Software Development Kit (SDK). That way it is possible, via

scripting, to access prede�ned geometry classes, take advantage of the exist-

ing graphical system to display and navigate around the geometry and use the

general functionality implemented in Rhinoceros to avoid writing every method

from scratch.

Grasshopper3D is one such free plug-in for Rhinoceros developed by David Rut-

ten (McNeel, 2015a), which has gained much popularity within the last ten

years. Due to the wide applicability of Grasshopper, the Rhinoceros modelling

program has started to grow into the engineering/contractor practices as well.

This makes Rhinoceros/Grasshopper the ideal platform for this software pro-

ject since it aims at encouraging the dialogue between the architect and engineer

in the conceptual design stage, which is enhanced by using the same software.

Bespoke components are written by the author in the object-oriented C# pro-

gramming language using Microsoft Visual Studio developer environment for

compiling the programs. For numerical calculations a Matlab COM interface is

used in order to call Matlab functions from within Grasshopper (MathWorks,

2015).

Since the harmonic modelling approach uses a mesh representation, a data struc-

ture to store the mesh information in an e�cient manner is essential. Several

di�erent structures exist and they consist of the same general classes (vertex,

edge, face and mesh class) but di�er in the way they store connectivity inform-

ation. For this thesis the following observations are made:

• Only 2-manifold meshes are considered i.e. each edge can only have two

adjacent faces. This excludes t-junctions and internal polygons (McGuire,

2000)

• The mesh can be of arbitrary topology

• E�cient adjacency queries are a high priority to improve computational

speed

A halfedge data structure supports these topological and algorithmic require-

ments (Botsch et al., 2010) and has recently been implemented under the project
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name �Plankton� in the chosen software platform (Piker and Pearson, 2015). For

these reasons a halfedge mesh structure forms the basis for the functionality im-

plementation as part of this thesis.
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Harmonic modelling

In this chapter the mathematical framework behind modelling with harmonics is

explained. Initial tests serve to verify a correct implementation and to develop

an intuitive understanding of the design tool. From the basic framework further

re�nements are introduced, guided by several smaller examples to make the tool

more suitable for architectural and engineering applications.

3.1 Framework

Harmonic modelling is essentially a method of performing Fourier analysis on

meshes (Lévy and Zhang, 2009). The reader is referred to Appendix A for a

more detailed description of this topic. It was originally developed by Taubin

(1995) in the context of surface fairing but has recently found several other

applications including mesh quadrangulation, mesh segmentation and geometry

compression (Zhang et al., 2010). In this thesis the method is used to achieve a

low parametrisation of a given mesh.

This low parametrisation is the key to developing a free-form modelling tool

that holds the same level of intuition and ease of modi�cation as NURBS and

subdivision surfaces. The main function of the low parametrisation is therefore

to create a relation between the vertices in the mesh to guarantee smoothness

and at the same time provide su�cient design �exibility, ideally such that any

shape can be modelled. The harmonic modelling approach is fundamentally
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di�erent from NURBS or subdivision surfaces. For the latter, the control poly-

gon and thus the modi�cation of surfaces becomes tangible due to the spatial

con�guration it operates on, whereas the variables associated with the harmonic

modelling are numerical values that control the summation of waves with dif-

ferent frequency. This concept is more abstract but it has other advantages:

It is known from Fourier analysis that representing a function in the frequency

domain provides information that it is not possible to extract from the spatial

domain, which enhances the understanding of what the function is composed

of and thereby allows data manipulation. Furthermore, the design language is

very di�erent due to the summation of waves and in some situations this may be

bene�cial to broaden the architectural expression of shells and provide e�cient

structural solutions.

Botsch et al. (2010) identify the translation of the theory behind Fourier analysis

to arbitrary meshes is not directly possible without the missing link observed

by Taubin (1995); �the classical Fourier transform of a signal can be seen as the

decomposition of the signal into a linear combination of the eigenvectors of the

Laplacian operator�. Mathematically, this can be expressed as

L · ~v = λ · ~v (3.1.1)

Where L is the Laplacian matrix, λ are the eigenvalues and ~v are the eigen-

vector. This eigenvalue problem has many similarities with a �nite element

modal analysis, which performs an eigendecomposition of the sti�ness matrix

of a structure in order to describe the vibrational modes (Cook, 1995). Various

information such as choice of material and degrees of freedom are necessary to

construct this sti�ness matrix, which is undesirable in the context of free-form

modelling in the conceptual design stage. The advantage of the Laplacian oper-

ator is that it is purely related to geometry but nevertheless it can be thought

of as a simpli�ed sti�ness matrix. This coherence gives a physical interpretation

of the eigenvectors as the vibrational modes of a mesh and the eigenvalues as

the squared frequencies
√
λ = f (Dong et al., 2006).

The following sections contain a more detailed description of the Laplacian

operator, its implementation and how to perform an eigendecomposition in order

to obtain a more intuitive understanding of the framework. Subsequently, these

parts are combined to form the harmonic modelling set-up.
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3.1.1 The discrete Laplacian

The Laplacian is a second order di�erential operator in n-dimensional space

de�ned by

4 =
∂2

∂x21
+ . . .+

∂2

∂x2n
(3.1.2)

It describes the divergence of the gradient, which for non-mathematicians can

be thought of in 3D as how much gradient comes into a point (in�nitesimal

cube). To get a better general understanding of the operator the rewriting of

the second derivative (Herholz, 2012) is helpful

∂2f

∂x2
= lim
h→∞

(
f(x+ h) + f(x− h)− 2f(x)

2h2

)
(3.1.3)

From this equation it is seen that the Laplacian describes the di�erence between

a function value in x and the average of a small neighbourhood. For meshes

this is equivalent to the di�erence between a function value in a speci�c vertex

and the (weighted) average of the 1-ring neighbourhood. The discrete Laplacian

operator is de�ned (Reuter et al., 2009) as

4f(vi) =
1

di
·
∑

j∈N(i)

wij · (f(vi)− f(vj)) (3.1.4)

Here wij = wji is a symmetric edge weight, N(i) is the set of vertices included in

the 1-ring neighbourhood of vertex vi and di is the mass associated with vertex

vi. Even though the Laplacian only incorporates local information it is still

capable of acting globally and reveals properties that are unique to the given

mesh (Zhang et al., 2007).

Equation 3.1.4 can be rewritten in matrix form as an n x n matrix where n is the

number of vertices in the mesh. Vallet and Lévy (2008) conclude that a discrete

Laplacian that meets all the properties of the continuous operator cannot exist

on general meshes. Therefore several di�erent discretisations of the Laplacian

exist, where each one tries to capture speci�c properties. Rewriting Equation

3.1.4 in matrix form generally does not result in a symmetric matrix due to the

possibly non-uniform mass. However, for the scope of this thesis the symmetry
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of the Laplacian matrix is essential to guarantee real eigenvectors that create

an orthogonal basis. This matrix structure can be written as

Lij =


−wij if i 6= j and vi is adjacent to vj∑
j∈N(i)

wij if i = j

0 otherwise

(3.1.5)

Here Lij is a symmetric matrix where each row and column sums up to zero. The

simplest discretisation of the operator is the graph Laplacian, which is de�ned

by an edge weight equal to 1 and with a uniform mass distribution. It means

that the matrix has -1 in o�-diagonal cells where two vertices are connected

by an edge, and the sum of the edge weights on the diagonals thus represents

the valence (Michalatos and Kaijima, 2014). Geometrically this is interpreted

as a vector pointing from a given vertex towards the barycentre of its 1-ring

neighbourhood.

This de�nition of the graph Laplacian was the one initially used by Taubin

(1995) to set up the framework. The de�nition of the graph Laplacian is very

simple and easy to compute and is applicable to arbitrary mesh topologies but

the drawback is that it solely depends on that topology. In other words, it does

not adapt to any non-uniform or spatial distribution of the vertices but it only

changes if the topology is modi�ed, which makes the vertex valence a sensitive

issue. Another consequence of the de�nition is that the Laplacian vector can

be non-zero even for a �at mesh. However, in such con�guration the Laplacian

is expected to be zero since it represents the divergence of the gradient and the

gradient for a �at mesh is zero. This motivates the de�nition of a Laplacian,

which is both topology and geometry aware with zero vectors for �at meshes.

As a result, Pinkall and Polthier (1993) have derived the widely used geometric

mesh Laplacian with cotangent weights based on mesh energy considerations. A

more intuitive derivation of the same formula by Desbrun et al. (1999) uses the

gradient of the area of all the triangles in the 1-ring neighbourhood of a vertex

to achieve the described property. This derivation is based on the observation

that the area does not change if the centre vertex moves in-plane whereas a

movement out of plane increases the area. In other words, the area function

has a local minimum for a �at mesh con�guration and therefore a zero gradient

value. Hence, the desired property of a zero Laplacian vector for locally �at

regions is obtained no matter the vertex valence, edge lengths or aspect ratio of
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faces. The cotangent edge weights are de�ned as

wij = cot(αij) + cot(βij) (3.1.6)

Where αij and βij are the angles opposite the the edge connecting the vertices

vi and vj as illustrated in Figure 3.1.1. In order to talk about an opposite angle

this implies that the mesh is triangulated. Due to the missing triangle for an

edge located at the boundary αij or βij is set to zero corresponding to Neumann

boundary conditions (Vallet and Lévy, 2008).

Figure 3.1.1 � The angles associated with calculation of the cotangent weights

A geometrical comparison between the graph Laplacian and the Laplacian with

cotangent weights is shown in Figure 3.1.2, which con�rms the desired zero

vector property for �at meshes. From this it is not surprising that the cotangent

weights are used in the calculation of the mean curvature of meshes as well.

Figure 3.1.2 � A geometrical comparison between the graph Laplacian (orange) and the
Laplacian with cotangent weights (blue)

The disadvantage of the cotangent weights is that for obtuse triangles the value

becomes negative, which have the potential to cause problems depending on the
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application (Botsch et al., 2010). Another disadvantage of this discretisation

of the Laplacian is that it lacks a proper mass weighting, which means that

the weights are dependent on the mesh density (Reuter et al., 2009). Desbrun

et al. (1999) solves this problem by introducing mass weightings based on the

area of a local neighbourhood associated with each vertex. The boundary of

this neighbourhood is created by straight lines connecting the midpoints of the

radiating edges from a given vertex and the barycentre of the adjacent faces

associated with the same vertex thereby forming so-called barycells as seen in

Figure 3.1.3. By de�nition this construction partitions one triangle into three

regions of equal area making it simple to compute the area of each barycell as

seen in Figure 3.1.4a. The area of one triangle is calculated as half the magnitude

of the cross product of two adjacent edge vectors in a face. Meyer et al. (2002)

modi�es this approach by using the area created by straight lines connecting

the midpoints of the radiating edges from a given vertex and the circumcenters

of the adjacent faces associated with the same vertex thereby forming so-called

voronoi cells as seen in Figure 3.1.3b-c.

In both cases a perfect tiling of the mesh is obtained meaning that no overlap-

ping or non-covered areas exist but Meyer et al. (2002) argues that the voronoi

cells give a better approximation of the values obtained from the continuous

Laplacian operator since the voronoi cells exactly contain the closest points to

each vertex. This means that the voronoi area only depends on vertex positions

and not the connectivity (Jacobson, 2010). Working with voronoi areas require

more attention and computation time because if obtuse triangles exist in the

mesh then the circumcenters lie outside the boundaries causing problems for the

area calculation. Meyer et al. (2002) have developed a hybrid approach to take

obtuse triangles into account by �xing the circumcentre to the midpoint of the

edge opposite to an obtuse angle whereby one of the edges in the voronoi cell

collapses to a point. The voronoi area calculation around each vertex therefore

includes a test of each adjacent triangle specifying whether it contains an obtuse

angle or not. Based on that evaluation the area contribution from one triangle

is calculated from (referring to Figure 3.1.4b-c)

Av =


1
8
·
(
‖ PR ‖2 · cot (∠Q)+ ‖ PQ ‖2 · cot (∠R)

)
non− obtuse

AT
2

obtuse and P ≥ π
2

AT
4

otherwise

(3.1.7)
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Figure 3.1.3 � a) barycell and b) voronoi cell for a �at and spatial con�guration

Figure 3.1.4 � Area calculation of a) barycell, b) voronoi cell (obtuse/right angle) and c)
voronoi cell (non-obtuse)

The vertex areas can be included in Equation 3.1.6 in several ways to account

for the mass however it often leads to an asymmetric matrix because the area

associated with vertex vi is not necessarily the same as the area associated with

the vertex vj . Vallet and Lévy (2008) propose a symmetrisation of the problem

and it is shown that this weighting meets the desired property of making the

Laplacian operator mesh independent but compromises the property of having
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a zero Laplacian vector for �at mesh regions (only small deviations). The edge

weight is de�ned as

wij =
cot(αij) + cot(βij)√

Ai ·Aj
(3.1.8)

The choice between the graph Laplacian and the cotangent Laplacian and the

di�erent area weighting options for the latter depends on the application but

it is summarised to the following observations. The graph Laplacian can be

constructed for any mesh topology, it is computationally very fast and only

needs to be calculated once (under the assumption that the mesh topology

remains unchanged). It performs well if the mesh is very regular with similar

edge lengths. The disadvantage is its sensitivity to vertex valence meaning

that vertices with low valence have less �sti�ness�. The cotangent Laplacian

works for triangulated meshes only and is advantageous if it is desirable to let

the spatial con�guration of the mesh in�uence the result. The area weighting

option is useful if the density of the vertices varies within the mesh, otherwise

the cotangent Laplacian without any area weighting su�ces. The area weighting

using barycells is less computationally heavy but the voronoi cells are the better

choice if it is desirable to be independent of the topology of the triangulated

mesh.

Implementation and validation

The di�erent discretisations of the Laplacian as discussed above are implemented

in two Grasshopper components (graph Laplacian and cotangent Laplacian)

where the output in both cases is characterised by a real symmetric n x n

matrix. Due to the more complex de�nition of the cotangent Laplacian a small

test case is created to validate the results, as shown in Figure 3.1.5 . The output

from the Grasshopper component with the three di�erent area weighting options

is shown in Figure 3.1.6.

This output is compared with results obtained by hand-calculations using Equa-

tion 3.1.6 and Equation 3.1.8. Initially, the areas associated with each vertex

are constructed manually and measured with Rhino's built-in area function with

the results shown in Table 3.1.1.
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Figure 3.1.5 � Test case to validate the implementation of the discrete Laplacian

Figure 3.1.6 � Grasshopper implementation of the cotangent Laplacian with di�erent area
weighting options
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v # Aii (Barycell) Aii (Voronoi cell)

0 33.58 42.08

1 14.98 11.23

2 14.14 14.23

3 18.61 16.66

4 19.44 16.55

Table 3.1.1 � Vertex areas from manually constructed voronoi- and barycells

The angles are measured with Rhino's angle dimension tool and used in the

calculation of the cotangent edge weights as seen in Table 3.1.2.

e # v # wij (unweighted) wij (Barycell) wij (Voronoi cell)

0, 1 0, 1 3.825 0.171 0.176

2, 3 1, 2 -1.082 -0.074 -0.086

4, 5 0, 2 3.183 0.146 0.130

6, 7 0, 3 0.884 0.035 0.033

8, 9 2, 3 0.887 0.055 0.058

10, 11 3, 4 0.268 0.014 0.016

12, 13 0, 4 2.065 0.081 0.078

14, 15 1, 4 -0.164 -0.010 -0.012

Table 3.1.2 � Cotangent edge weights from di�erent area options

The vertex weights are subsequently calculated as the sum of the adjacent edge

weights as seen in Table 3.1.3.

v # e # wii (unweighted) wii (Barycell) wii (Voronoi cell)

0 0, 5, 7, 13 9.960 0.433 0.418

1 2, 1, 15 2.580 0.087 0.078

2 3, 4, 8 2.990 0.127 0.102

3 9, 6, 10 2.040 0.104 0.107

4 11, 12, 14 2.170 0.085 0.082

Table 3.1.3 � Cotangent vertex weights from di�erent area options

A comparison between the o�-diagonal matrix values in Figure 3.1.6 and the

edge weights from Table 3.1.2 (note the opposite sign according to Equation

3.1.5) as well as the diagonal matrix values in Figure 3.1.6 and the vertex weights

from Table 3.1.3 shows compliance and thus validates the implementation. With

this con�dence, the implementation is re�ned to map the calculated areas into
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a prede�ned range from 0-10 in order to make the output independent on the

scale of the mesh. The upper limit ensures that rounding error problems in

Grasshopper are avoided (referring to Equation 3.1.8).

3.1.2 Eigendecomposition

As the discrete Laplacian operator is de�ned as a real symmetric matrix it has

real eigenvalues and a set of real and orthogonal eigenvectors (Lévy and Zhang,

2009), which form the desired basis equivalent to the complex exponential func-

tion used for the Fourier Transform (see Appendix A). However, one noteworthy

distinction is that the basis functions are �xed for the Fourier Transform but

change for the extension to meshes depending on mesh connectivity, geometry

and type of Laplacian (Zhang et al., 2007).

As mentioned, these eigenvectors are physically interpreted as the vibrational

modes of the mesh, whereas the eigenvalues are associated with the frequen-

cies. The �rst eigenvalue is always zero, which corresponds to an eigenvector

of constant values implying a rigid body motion. These physical properties are

important because they enable a sorting of the eigenvectors according to the

eigenvalues, such that the mode which requires the least energy for the original

shape to deform into (or geometrically speaking the most smooth shape) is lis-

ted �rst and it is exactly what makes this particular basis interesting compared

to any other orthogonal basis.

Implementation and validation

To calculate the eigenvalues and eigenvectors of a matrix in Grasshopper it

is sensible to use an external library. The author has chosen Matlab for this

purpose, based on the experience gained by Gebreiter (2012) in his work on ob-

taining a quadrilateral mesh from a similar spectral approach. Matlab provides

e�cient iterative algorithms to perform an eigendecomposition of a large sparse

matrix and it allows the speci�cation of a desired number (k) of eigenval-

ues/vectors to be computed given a reference eigenvalue. By default, the ei-

genvectors are sorted in ascending order according to the eigenvalues and nor-

malised to unit length.

To verify the implementation, a simple 3 x 3 real symmetric matrix is de�ned

as
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M =

 1 2 3

2 2 1

3 1 5


The eigenvalues/vectors are calculated using WolframAlpha (WolframAlpha,

2015), which is an online mathematical calculation engine, and subsequently

compared with the values obtained from the implemented Grasshopper com-

ponent (linking to Matlab). Since WolframAlpha scales the eigenvectors in such

a way that the last value of each vector equals one, it is necessary to �nd the

scale factors between the two outputs for comparison.

Figure 3.1.7 � Comparison of eigendecomposition results between the implemented
Grasshopper component (a) and WolframAlpha (b)

The result is shown in Figure 3.1.7. For the Grasshopper component the eigen-

values are shown in the upper list and the corresponding eigenvectors (columns

of the matrix) are shown in the matrix below. The eigenvectors are scaled

similarly to WolframAlpha with the displayed factors. The pairs of eigenval-

ues/vectors are sorted in ascending order for the Grasshopper component and

in descending order for the WolframAlpha results. With that in mind for the

comparison, it is clear that the results are identical.

The following example serves to build a better visual understanding of the de-

scribed harmonic behaviour from a decomposition of a Laplacian matrix asso-

ciated with a string.

Example - eigenvectors of a string

A graph representing a string is constructed from 8 equally spaced vertices with

edges connecting them. The Graph Laplacian is de�ned as
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L =



1 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 1


The result of computing the eigendecomposition of this matrix and plotting the

�rst 6 eigenvectors separately as the vertical displacement is shown in Figure

3.1.8. The displaced vertices are in each case connected by a polyline and

compared to a sinusoid with the same wave length and amplitude if possible.

Figure 3.1.8 � The �rst six modes of a 8-vertex string (blue) compared with sinusoids of
similar amplitude and frequency (grey)

The �gure clearly illustrates the harmonic behaviour of the eigenvectors and

thus the coherence with the Fourier transform. The string nicely approximates

a continuous sinusoid of the same wave length and amplitude for the �rst 4

modes but as the frequency increases, the spacing between the sample points

becomes too big to capture the details. Hence, the location of the vertices and

overall re�nement of the string are important to capture the peaks and troughs

and ensure symmetry of the solution.

37



Chapter 3: Harmonic modelling

3.1.3 Harmonic shape generation

When working in 3D with meshes, it is possible to move each vertex in the x, y

and z directions in order to control its position. An important design decision

therefore is to choose the number of degrees of freedom to be controlled by the

harmonic modelling tool. If all three translational degrees of freedom are to be

controllable, it means that each eigenvector has to be replicated three times in

order to assign one eigenvector to the movement in the x, y and z directions

respectively, which in e�ect triples the number of variables. Unfortunately,

the eigenvector replication does not take the sti�ness of the structure in each

direction into account and therefore introduces undesirable in-plane vibrational

modes as part of the lower frequency domain. In comparison, the sti�ness

matrix in a �nite element analysis takes three translational and three rotational

degrees of freedom into account and therefore holds information about the axial

and bending sti�ness of each element in relation to global directions. As a

result, the structure becomes much sti�er in-plane than out-of-plane, which in

e�ect makes the in-plane vibrational modes associated with higher frequencies

only. From these considerations, and to make the design tool more intuitive

by having fewer variables, the author has chosen to implement a single degree

of freedom approach. To be as versatile as possible within this restriction,

the vertex normals are chosen as the direction of movement. Each normal is

calculated as the weighted average of the adjacent face normals, where each

face normal is computed as the average of the cross products of all edge pair

vectors in that face. The face normals are not normalised since they contain

information about the face areas from their lengths. Thus, for each vertex the

adjacent face normals are summed up and eventually normalised. Some of the

limitations due to this single degree of freedom approach are discussed later in

this chapter.

The key concept behind the modelling with harmonics is that any n-dimensional

vector (representing the normal displacements) can be constructed as a linear

combination of the computed eigenvector basis. The coe�cient (referred to as

a weight) related to each eigenvector determines the amplitude of that wave in

the total shape. A low parametrisation of the mesh is obtained when a certain

amount of the higher order frequencies are cut o� in order to only generate

smooth shapes. Thereby the number of variables is reduced from one value per

node to one weight per included mode!
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Mathematically, the construction of a new n-dimensional vector ~v from a col-

lection of eigenmodes is expressed by

~v = wa ·



e0,a

e1,a
...

en−2,a

en−1,a


+ wb ·



e0,b

e1,b
...

en−2,b

en−1,b


+ . . .+ wc ·



e0,c

e1,c
...

en−2,c

en−1,c


(3.1.9)

Where wa is the weight associated with eigenvector ~ea and a, b, c ∈ Z | 0 ≤
a, b, c < n. This vector describes the magnitude of movement of the vertices

along their normals. The weights are limited to a range between -1 and 1 (a

minus value reverses the wave) and an overall scale factor is introduced to resize

the shape as desired.

Implementation and validation

This functionality of translating the computed eigenvectors into normal dis-

placements by specifying the weights for a linear combination is implemented

in a new Grasshopper component as seen in Figure 3.1.9. In order to reduce

the number of variables, an additional component is implemented to extract the

desired k eigenvectors (columns) from the entire n x n matrix. The initial mesh,

reduced eigenvector matrix, vertex normals, weights and scale factor are given

as input to the component and the mesh with adjusted vertex positions is out-

put. The mesh is coloured to further visualise how the new shape is generated

by mapping each value from the vector resulting from the linear combination

into the integer interval from 0 - 255 used for grey scale. If the range of the

values in the vector is zero (constant vector values) then all vertices are assigned

a black colour.

By only extracting one eigenvector each mode can be visualised separately.

Alternatively, this can also be achieved by extracting the �rst k eigenvectors to

keep the number of variables �xed and subsequently assign one weight with a

value of 1 (or -1) and set the rest to zero. This is useful to verify that the results

correspond to the ones found in the literature.

A planar square mesh consisting of 10x10 quadrilateral faces is used as basis

for such a comparison The �rst nine eigenvectors are calculated (out of the
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121 possible) from the graph Laplacian matrix to illustrate the �rst eight non-

constant modes (the �rst mode is a pure translation). The result is seen in

Figure 3.1.9 and it corresponds well with the results obtained by Dong et al.

(2006) as shown in Figure 3.1.10. The only noticeable di�erence is that mode 4

and 5 have switched places but a further investigation shows that the eigenval-

ues/frequencies are the same for these two modes and the sorting thus becomes

arbitrary.

Figure 3.1.9 � The �rst 8 non-constant mode shapes of a �at square mesh resulting from
the Grasshopper implementation

Figure 3.1.10 � The �rst 8 non-constant mode shapes calculated by Dong et al. (2006)

Visualisation

As most shapes will be a combination of modes rather than an individual mode

it is important to enhance the intuition associated with the modelling such that
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it becomes more instinctive to choose and combine modes as well as adjust the

corresponding weights. For this purpose two visualisation Grasshopper com-

ponents are developed. One facilitates the display of a speci�ed range of the

modes arranged in a grid structure in the Rhino viewport as seen in Figure

3.1.11. This mode catalogue is useful for a general overview to better �nd the

desirable modes to include. The second component facilitates the display of

selected modes on the Grasshopper canvas by providing the necessary input for

the �Squid� plug-in (Zwierzycki, 2015). This visualisation component is mostly

useful when the desirable modes have already been chosen (see Figure 3.1.12).

The modes are displayed next to the slider weights such that the user knows

what is being controlled as shown in Figure 3.1.13.

Figure 3.1.11 � The implemented Grasshopper component to visualise a selected range of
the mode catalogue in the Rhino viewport

Figure 3.1.12 � The implemented Grasshopper component to visualise some selected modes
on the canvas to accompany the corresponding weights
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Figure 3.1.13 � Mode with corresponding weight slider so the user knows what is being
controlled

The meshes shown in the Rhino viewport are coloured per vertex and a gradient

scheme ensures a smooth colour perception whereas the more rough colouring

of the meshes on the Grasshopper canvas is due to a face based scheme (average

of face vertex colours).

3.2 Re�nements

The framework described in the previous section makes it possible to gener-

ate harmonic shapes from a starting mesh, only by controlling a few weight

parameters and an overall scale factor. However, it is essential to be able to

control the boundary conditions in order for this method to be applicable in

an architectural or engineering context. This is therefore the main focus of

the re�nements. Additionally, the coherence between the harmonic modelling

approach and the Fourier Transform is further explored with the intention to

approximate, analyse and remove noise from existing surfaces.

3.2.1 Boundary conditions

Due to the single degree of freedom design approach it is only possible to control

whether a vertex is �xed or not, hence no sliding boundary supports can be
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applied. The problem becomes to manipulate the Laplacian matrix in such a

way that this control is acquired. In other words, how to arti�cially manipulate

the values in the matrix such that the values in the computed eigenvectors

corresponding to the �xed vertices equal zero and the neighbouring vertices are

adjusted accordingly. This property is achieved by constructing the Laplacian

matrix according to its general de�nition (Equation 3.1.5) for the entire mesh

and then subsequently increase the diagonal values related to the �xed vertices

to a large number e.g. 100,000. That way the connectivity information is kept

intact and the large ratio between the arti�cial vertex sti�ness and the rest of

the values in the matrix ensures that the modes associated with a movement of

the vertices intended to be �xed appear last in the eigenvector list because they

require the most energy. It means that these modes still exist but are excluded

by only asking for the �rst k modes, where k is de�ned as

k ≤ n− c (3.2.1)

Here n is the number of vertices and c is the number of imposed constraints.

The result of this action is visualised for a 15-vertex string in Figure 3.2.1 and it

demonstrates how the ends are successfully �xed while the mode shapes at the

same time closely approximate sinusoids of similar frequency and amplitude.

Figure 3.2.1 � The �rst four displacement eigenfunctions of a 15-vertex string with �xed
ends (blue) in comparison with continuous sinusoids of similar wave lengths and amplitudes
(grey)

This methodology is similar to the one described by Michalatos and Kaijima
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(2014) as outlined in Chapter 2. However, a more detailed study of the boundary

conditions shows that adding a value of 1 to the diagonals of the Laplacian

matrix corresponding to the �xed vertices is insu�cient for the purpose of this

thesis (see Appendix B).

Implementation and validation

The described methodology is implemented in a Grasshopper component and

the �rst eight modes of a �at square mesh �xed along its boundary using the

graph Laplacian is shown in Figure 3.2.2. The component receives a list of

points which are intended to be �xed, searches for them amongst the vertices

of the mesh to �nd their indexes and eventually replaces the current diagonal

values with a high sti�ness value at these indexes in the Laplacian matrix.

Figure 3.2.2 � The �rst eight modes of a �at square mesh with �xed boundaries. The
Grasshopper component, which imposes the constraints is highlighted in blue

To validate the results, the modes are compared with the results obtained from a

modal analysis in Autodesk Robot (Autodesk, 2015b). A 10x10 m plate meshed

into a 10x10 grid forms the foundation for the analysis. In order to perform a

modal analysis in Robot the plate is assigned a concrete material of the type

C25/30, a thickness of 200 mm and pinned supports along its boundary. Even

though the calculation in Robot is based on a di�erent matrix with 6 times more

degrees of freedom, a coherence with the results obtained from Grasshopper is

expected because the same mesh is used where the uniform edge lengths for the

graph Laplacian approach correspond to the isotropic material properties and

uniform thickness in the �nite element approach. This is also seen from Figure

3.2.3 (the scale is arbitrary).
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Figure 3.2.3 � Comparison between the �rst eight mode shapes of a �at square mesh
calculated from an eigendecomposition of the graph Laplacian (left) and a modal analysis in
Autodesk Robot (right)
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Figure 3.2.4 � Frequency comparison between the results obtained from a modal analysis in
Autodesk Robot and the eigenvalues from an eigendecomposition of the di�erent discretisa-
tions of the Laplacian matrix for the ten �rst modes of a �at square mesh. A linear relation
is observed

The frequencies are also compared and a linear relation is observed as shown

in Figure 3.2.4. This is a surprising result, as Dong et al. (2006) identify that

the eigenvalues represent the squared frequencies, which is a reasonable expect-

ation since the natural frequencies of a structure in a �nite element analysis are

calculated by (Cook, 1995)

[
K− ω2M

]
~d = 0 (3.2.2)

whereK is the sti�ness matrix, M is the mass matrix, ω is the natural frequency

and ~d is the vibration mode. Since both methods are eigenvalue problems based

on a sti�ness matrix it is expected that ω and λ are directly comparable. How-

ever, the unexpected linear relation is most likely a consequence of the di�erent

strategies to include the mass, which again relates to the degrees of freedom of

the entire system. While the area weighting of the cotangent Laplacian mimics

the mass matrix in the �nite element method, it is unlikely that the chosen

symmetrisation method (Equation 3.1.8) is equivalent to the mass matrix con-

structed from shape functions and thus also includes rotary inertia. Another

e�ect of this methodological variation is evident from studying the mode shapes
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close to the boundaries. In these regions non-smooth transitions are observed

even though the purpose of the area weighting of the cotangent Laplacian is

to make the results independent of the mesh topology (see Figure 3.2.5). This

behaviour only arises when boundary constraints are imposed and it is a con-

sequence of an increased sti�ness of the edges connecting the boundary vertices

with the internal vertices. As the area surrounding a boundary vertex is smaller

than the area surrounding an internal vertex, the area product is smaller which

in turn increases the edge weight. In e�ect, the vertices connected to the bound-

aries are pulled too far down compared to the internal vertices. This behaviour

does not occur with the �nite element method, which emphasises the need for

further re�nements in relation to the boundary conditions.

Figure 3.2.5 � Non-smooth boundary transition for area-weighted cotangent Laplacian.

While the eigenvalues therefore have to be translated into natural frequencies

with caution, they are still useful as a means of sorting the modes according

to quantify how noisy they are. Regardless of the frequency relation, the im-

plementation provides su�cient accuracy to answer the question �Can one hear

the shape of a drum?� as the following example shows.

Example - Can one hear the shape of a drum?

Kac (1966) raised this question based on the observation that the tones from

a drum depend on the frequency at which the membrane vibrates. The ques-

tion can be reformulated as �Are the frequencies and thus the tones of a drum

unique to its shape?�. Only in 1992 were two di�erent 2D shapes with identical

frequencies successfully constructed (Wikipedia, 2015a), which proved that it

is not possible to hear the shape of a drum. The tool developed for this thesis

veri�es this result by using the planer geometries from 1992, creating a mesh

from them, �xing the meshes along their boundaries, de�ning the Laplacian

matrix (cotangent without area weighting) in each case and calculating the ei-

gendecomposition. The list of (very close to) identical frequencies, as well as
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the �rst mode shape of each drum, are shown in Figure 3.2.6.

Figure 3.2.6 � Two di�erent shapes with identical frequencies

Convergence

With imposed boundary conditions it is observed that some modes vary as the

mesh is re�ned as shown for a square mesh with �xed boundaries in Figure

3.2.7. For a coarse mesh it appears that a diagonal direction is favoured while a

straight orientation becomes more signi�cant with the mesh re�nement (evident

from mode 2, 3, 9, 10). The sorting of mode 5 and 6 is arbitrary since they have

the same frequency.

The reason for this behaviour can be explained from Figure 3.2.8, where the

blue circles indicate the �freedom� of each vertex measured as its distance to

the boundary. For the coarse mesh (left) the paths with the most freedom are

through the diagonals where the circles are largest. The mode shapes therefore

favour this direction in an attempt to minimise the energy to deform from its

original state. As the mesh is re�ned (right), more �freedom� is pushed towards

the boundaries, which allows more �exibility in a straight direction.

Mode shape variations are similarly observed when performing modal analyses

in Autodesk Robot and it is therefore evaluated to be a natural phenomenon

that is not a side-e�ect of the arti�cial boundary conditions.
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Figure 3.2.7 � Mode convergence from mesh re�nement (10x10, 20x20, 30x30). The
colouring is based on absolute values of the vertex displacements.
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Figure 3.2.8 � Diagonal versus straight mode behaviour from mesh re�nement. The dotted
lines are symmetry axes and the blue circles indicate the �freedom� of each vertex measured
as its distance to the boundary

Limitations

Due to the single degree of freedom design approach it is not possible to de�ne

sliding supports or control the rotation at these locations. The latter is useful

to specify the tangency at the boundaries, which is a desirable design handle.

An attempt to acquire this control can be thought of as coupling vertices in the

mesh together such that they move the same amount. One immediate limit-

ation hereof is that it will only work for a plane, cylinder or sphere (constant

curvature) because the values in the eigenvectors are translated into normal

displacements. Theoretically, identical values can be achieved by increasing the

vertex sti�ness for diagonal values in L corresponding to the coupled vertex pair

and replacing the o�-diagonal edge weights (e.g. -1) with a similarly high sti�-

ness value of opposite sign such that the rows and columns still sum up to zero.

In Figure 3.2.9 the �rst four modes of a 15-vertex string are illustrated, which

tries to mimic re�ective symmetry boundary conditions of a simply supported

beam. While the horizontal tangent is maintained, the transition to the internal

vertices is not taken into account and as a result just postpones the problems to

the vertex neighbours. In contrast, the 6 times larger sti�ness matrix in �nite

element analysis, which includes rotational degrees of freedom makes it possible

to adjust the vertex positions such that a smooth transition occurs.
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Figure 3.2.9 � Rotational d.o.f.'s by vertex coupling. Showing the �rst four modes of a 15
vertex string (blue) compared with the expected result (grey) for a simply supported beam
with re�ective symmetry boundary conditions

3.2.2 Target approximation and shape analysis

Figure 3.2.10 � Saville Garden conceptual sketch (copyright Glenn Howel)

With the given set-up, it is generally hard to �nd the desirable modes in the

mode catalogue and to mix them with proper weights to match e.g. a sketched

shape as shown in Figure 3.2.10 for the Saville Garden Gridshell. Thus, the

following question arises: �Given a starting mesh, is it possible to back-calculate

which modes to use and their corresponding weights in order to reach a target

surface?�

An initial approach may be to de�ne the problem as an optimisation exercise

and use a certain distance measurement from the generated mesh to the target

surface as the object function to be minimised. In order to obtain reasonable

results, it is necessary to limit the number of variables signi�cantly as the design
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space to search is too big with as many variables as there are vertices in the

mesh. However, there is no indication of which modes to look for in the mode

catalogue and the method is therefore not very suitable.

Fortunately, an analytical solution to this question is surprisingly simple - the

beauty of mathematics. In this case, the target can be expressed as a signal

which relates to the initial mesh. Since the vertices of the mesh are displaced

in the normal direction, the signal is exactly given as the vector that contains

n normal distance values measured from the n vertices in the initial mesh to

the target surface. Projecting this signal onto each eigenvector using the dot

product gives the weights (one weight per mode) and can be interpreted as the

amplitude of a speci�c wave that exists in the given signal. The theoretical

background for this observation is further explained in Appendix A. By sorting

the modes according to their corresponding weights in descending order such

that the modes with the highest weights (absolute value) are listed �rst, it

is possible to extract useful information about the primary ingredients of the

target surface and to signi�cantly reduce the number of variables. The reduction

of variables is possible because many of the modes do not exist in the de�ned

signal (or only with very small weights) and thus their weights can be rounded

o� to zero. This enables a sorting of the modes according to their signi�cance

in relation to the target surface, which is useful to obtain a low parametrisation

with a good approximation but also helps to understand what the target surface

is built up from and gives the designer control to remove undesirable noisy

ingredients.

While this method successfully solves the initial goal of approximating a target

surface, two questions may remain unclear in the larger picture of free-form

modelling and are thus outlined in the following.

1. If a target surface already exists, why not just use that for the design?

As this tool is intended for the early conceptual design stage, where no

�nal shape yet exists, this method opens up for new inspirational forms

emanating from the initial target. Thereby new shapes can be explored

within a more restricted design space.

2. Why is it useful to approximate the target surface from a di�erent starting

mesh instead of just converting the surface into a mesh and using that dir-

ectly with its right spatial con�guration? The approximation approach has

the advantage of making shape analysis possible as part of the modelling
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process itself. That way noise can be removed to create cleaner geomet-

ries and the decomposition of the target into its harmonic components in

relation to e.g. a �at structure gives an enriched geometrical understand-

ing of the shape. It is also possible to use the structure as starting mesh

and then approximate the target surface representing the façade from this

con�guration to e.g. determine the lengths of the sticks to attach the two

parts.

Implementation

The functionality of back-calculating the signi�cant modes with their weights

to approximate a target is implemented in a Grasshopper component as shown

in Figure 3.2.11. The initial mesh, target surface, vertex normals, eigenvectors,

number of variables, sorting option and pre-set slider value option are given as

input. The target is represented as a NURBS surface as the author considered

this to be the most common case in practice.

Figure 3.2.11 � The implemented Grasshopper component to back-calculate the necessary
weights and their corresponding modes to approximate a cube

As described, a distance signal is essential to the back-calculation process. The

construction of this signal involves more steps to take several scenarios into

account; �rstly the closest point on the target surface from a given vertex is

found and if the distance if less than a threshold it is assumed to already lie on

the surface and the distance is therefore zero. If it does not already lie on the

surface a �RayShoot� method from the RhinoCommon SDK (McNeel, 2014b)

is used to �nd the �rst intersection with the target surface by shooting a ray

pointing from a given vertex in the normal direction and afterwards calculating

the distance between the vertex and the intersection point (Figure 3.2.12 a).
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The shooting direction is reversed if no intersection point is found from the

�rst attempt (Figure 3.2.12 b). An error occurs if still no intersection point is

detected and it indicates that the initial mesh has to have a proper relation to

the target surface (Figure 3.2.12 c). One limitation associated with this method

is therefore that only the �rst intersection between the target surface and a

ray is detected, which means that it is not possible to approximate a double

layered surface. Overhangs can be handled to a certain degree by adjusting

the initial mesh to follow the target in a better way. Thus, it is evaluated that

this limitation does not impose any signi�cant restrictions for free-form surface

design seen from an architectural perspective.

Figure 3.2.12 � Rayshoot method to create a distance to target signal. a) The �rst
intersection with the surface from a ray in the normal direction. b) The �rst intersection with
the surface in the reversed normal direction since the �rst attempt failed. c) No intersection
between the surface and the ray in both directions is detected, which causes an error to be
raised

The component outputs the necessary information (mode indexes, weights and

scale factor) for the eigenfunction component to translate it into a normal dis-

placement of the vertices (to be consistent with the existing work �ow). The

approximation result is evaluated by means of a root mean square (RMS) value

of the distances from each vertex in the approximation mesh to the target sur-
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face measured in the normal direction from the initial mesh (i.e. in the direction

of the movement).

Accuracy

From Fourier analysis it is well-known that a better global approximation of

the target function is achieved by increasing the number of modes that are

included in the summation. Similarly, it is expected that an increasing number

of modes with corresponding weights results in a better approximation of the

target surface evident from a decreasing RMS value. In the discrete setting

only a �nite number of modes are available (equal to the number of vertices)

and as shown from the square wave example in Appendix A an accurate result,

which coincides with the sample points (distance signal) is obtained when all the

available waves are included. In other words, a RMS value of zero is expected

if all the modes with their calculated weights are combined. This property is

mostly useful to validate the correctness of the theory and implementation. In

practice the aim is rather to obtain a low parametrisation of the mesh in which

case a plot of the RMS value as a function of the number of included modes helps

to understand this trade-o� and decide a cut-o� limit. In this context, boundary

conditions are useful because they help to achieve a better approximation of the

target with fewer variables.

Simple approximation cases of a cone, cylinder and cube are used to verify

that the method exhibits the expected behaviour and thereby demonstrates the

Fourier transform extended to three-dimensional meshes.

Example - Approximation of a cone, cylinder and cube

A �at circular mesh divided in radial and tangential directions is used as the

initial mesh for the approximation of a cone and a cylinder respectively. The

cone surface is modelled with the same radius and an arbitrary height. The

cylinder is modelled as a translated disc since a cylinder cannot be represented

as a single NURBS surface patch. The boundary vertices are �xed and the graph

Laplacian is used to create the necessary matrix since the mesh consists of non-

triangular faces. The harmonic shapes generated from an increasing number of

the most signi�cant modes are illustrated in Figure 3.2.13 and Figure 3.2.14.
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Figure 3.2.13 � Approximation result for a cone

Figure 3.2.14 � Approximation result for a cylinder

A �at quadrangular mesh is used as the initial mesh for the approximation of

a cube. Similar to the cylinder, the cube is modelled as a translated square.

The boundary vertices are �xed and the graph Laplacian is used for the same

reason. The harmonic shapes resulting from an increasing number of the most

signi�cant modes are illustrated in Figure 3.2.15.
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Figure 3.2.15 � Approximation result for a cube

A plot of the RMS value as a function of the number of included signi�cant

modes to approximate each target surface is shown in Figure 3.2.16. The RMS

value decreases as the number of modes increases, which is expected based on the

knowledge from Fourier analysis. The reason why the RMS value for the cylinder

and the cube does not converge to zero is because the boundary vertices (�xed)

and the target surface do not coincide at this location so a certain deviation is

expected. The speed of convergence towards zero (or a constant) depends on

the complexity of the target. In this case 50 modes for the cube and 10 modes

for the cone and cylinder were necessary to achieve the minimum RMS value.

The example shows promising results in terms of the accuracy that is obtained

with 10 variables or less.

This analytical approach is superior in comparison with other optimisation

strategies. While the back-calculation method provides a solution in less than

25 ms for a cube with the �rst 10 modes, it takes the built-in Grasshopper com-

ponent �Galapagos� 1 minute and 44 seconds with a simulated annealing search

strategy and 17 minutes for an evolutionary strategy to achieve similar results.
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Figure 3.2.16 � Approximation accuracy for a cone, cylinder and cube

Application in practice

In practice it is most likely a mixed approach between the arbitrary harmonic

modelling and the target approximation that will be employed. This work �ow

is characterised by the following steps:

1. Model a NURBS surface to imply the spatial intention

2. Create a simple mesh of desirable re�nement to be used as basis for the

surface approximation

3. Impose boundary conditions (optional), choose the type of the Laplacian

matrix, compute the eigendecomposition, and back-calculate for example

the 10 most signi�cant modes and their weights to approximate the target

surface

4. Display these modes to achieve a better understanding of what the surface

is built up from. Optionally remove noisy modes. Adjust the weights from

this starting point to explore alternative design possibilities related to the

design space that is dictated by the original target surface

5. Look for inspiration in the mode catalogue and extract modes of interest

to blend with the approximation result
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3.2.3 Non-linear morphing

Morphing is the concept of changing one shape into another shape, which enables

the exploration of the design space in between. There has to be a certain relation

between the two shapes such that each point on one surface always can be

mapped to a point on the other surface. For a mesh representation this means

that the topology has to be consistent. The straight lines between corresponding

vertices in each mesh form the displacement paths and a percentage parameter

speci�es the distance amount along each path from which a new �in-between-

shape� emerges. This is referred to as linear morphing because the paths are

traversed by linear interpolation.

The harmonic modelling tool however, enables a non-linear morphing process

by taking advantage of the additional information that is available about the

mode shapes. The same mesh as footprint must be used in order to have a

consistent mode catalogue. The two desirable limit shapes to morph between

are modelled as NURBS surfaces and a number of signi�cant modes and their

weights are back-calculated for each shape based on the common footprint (note

that the de�ned number of signi�cant modes for each shape can vary). From this

information a shared list of modes that characterise both shapes is generated

(duplicates are removed) and a percentage parameter per mode controls the

non-linear morphing process. Thus, the number of parameters depends on the

number of signi�cant modes that is chosen to approximate each NURBS surface

and how many modes they share. If all parameters are set to the lower limit

(0%) the emerging surface coincides with the �rst NURBS surface and likewise

if all the parameters are set to the upper limit (100%) the emerging surface

coincides with the second NURBS surface.

More technically the morphed shape is calculated as the sum of displacements

related to each mode shape from Equation 3.2.3

~D =
∑

m∈modes

λm ~Am + (1− λm) ~Bm (3.2.3)

Where ~D is a n-dimensional vector specifying the vertex normal displacements

of the common footprint, λm is a parameter between 0.0 and 1.0 that con-

trols the amount of mode m that exists in the morphed shape in relation to

the limit shapes, ~Am is the mode m scaled by the back-calculated weight to
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approximate the �rst limit shape and ~Bm is the mode m scaled by the back-

calculated weight to approximate the second limit shape. The methodology

is implemented in a Grasshopper component, which requires the footprint and

mode catalogue (shared properties) as well as the signi�cant mode indexes, cor-

responding weights and scale factor (unique to each limit shape). The morphed

shape, shared mode list and corresponding weight intervals are output to better

understand the process. The result of a non-linear morphing between a cone and

a cylinder is shown in Figure 3.2.17, where the percentage parameters towards

either of the limit shapes are highlighted in blue.

Figure 3.2.17 � Non-linear morphing between a cone and a cylinder based on a �at circular
footprint

In an architectural context morphing is useful to explore di�erent solutions in

between two prede�ned limits that may result from pure aesthetics or actual

design constraints.
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Curvature-sti�ened shells

Double curvature is a key design parameter for the shape of a shell to sti�en

it against buckling failure. To evaluate the response of di�erent shell shapes

it is necessary to develop a tool that is capable of calculating this buckling

capacity. Since it is desirable that this measure can be used to inform the shell

shape in the conceptual design stage it is essential that this tool is an integrated

part of the modelling environment to enable real-time interaction. This chapter

brie�y describes buckling as a structural failure mode to create the foundation

for developing such a tool. Di�erent options are investigated and a barrel vault

study serves to evaluate the reliability of the tool.

4.1 Buckling behaviour

Buckling is an instability problem of a structure in compression, which leads to a

sudden failure before the ultimate compressive stress of the material is reached.

The buckling behaviour is evident from a plot of the force versus displacement

as shown in Figure 4.1.1. Initially, the displacements follow the applied load

with an approximate linear relation, but at a certain point (bifurcation) a crit-

ical load is reached, beyond which an in�nitesimally small load increment causes

a signi�cant change in the displacement. Mathematically, this means that two

di�erent equilibrium states exist for the same load. This new buckled con�gura-

tion can either be adjacent to the original con�guration such that the structure
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quickly �nds new stability and the load capacity thereby continues to increase

although with a slower rate (a) or it can be a so-called snap-through where there

is no adjacent equilibrium con�guration resulting in large displacements before

stability is reached again (b) (Cook, 1995).

Figure 4.1.1 � Buckling behaviour from load versus displacement plot. a) Adjacent equi-
librium con�guration. b) �Snap-through�

The buckling capacity is usually quanti�ed by means of a buckling load factor

(BLF), which speci�es how much the applied load can be scaled before buck-

ling occurs. Generally, a buckling problem can be divided into two solution

strategies; a linear and a non-linear approach. The linear approach is based

on the original undeformed con�guration from which the stress state resulting

from the applied load is computed and used to construct a geometric sti�ness

matrix Kσ. The purpose of this matrix is to either increase the conventional

sti�ness matrix K if the structure is in tension or decrease it if the structure is

in compression. The buckling problem is subsequently solved as an eigenvalue

problem given by

[K+ λ ·Kσ] δ = 0 (4.1.1)

Where λ is the buckling load factor and δ is the displacement associated with

the buckling shape (Cook, 1995). As mentioned, this approach does not take the

deformed shape into account, which might alter the force distribution di�erently

than a pure scaling of the initial stress state. As a consequence, linear buckling

analysis often overestimates the capacity and provides a result on the unsafe

side. However, the simplicity of the method makes it widely used.

The non-linear approach aims to account for the change in response due to

the large deformations. This complicates the problem because the solution has
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to incorporate information about the actual con�guration, which is not fully

known until the solution is known. The procedure is therefore to obtain the

solution through multiple linear load steps and trace the displacements. Dif-

ferent numerical techniques exists to make sure that this traced curve stays as

close as possible to the correct (in reality unknown) solution curve, the simplest

one being Euler's method (Cook, 1995). Other more advanced methods include

bisection (Weisstein, 2015a), Newton-Raphson (Cook, 1995) and dynamic re-

laxation (Day, 1965). The bifurcation point is characterised by the gradient of

the curve being equal to zero, which means that the structure has zero sti�ness

for this mode shape. For snap-through problems it is often more stable to in-

crementally prescribe the displacements and trace the reaction forces instead in

order to obtain the entire post-buckling behaviour as shown in Figure 4.1.1 (b).

Otherwise it is not possible to trace the part of the curve below the dotted line.

4.2 Buckling measure

Di�erent options to obtain a measure for the buckling capacity were investigated.

Integration with the developed harmonic modelling tool and low computational

time (possibly at the cost of less accuracy) were the main priorities.

The initial idea was to use the �rst eigenvalue (di�erent from zero), calculated

from the already implemented framework with the Laplacian matrix, as a meas-

ure to compare the buckling capacity for di�erent shapes due to the similarities

between this approach and the linear buckling analysis. Even though the cotan-

gent Laplacian takes the geometry into account, it was observed that the �rst

eigenvalue remained almost constant for di�erent shapes and hence unsuitable

as a measure.

Karamba (Karamba3D, 2015) is a �nite element analysis software embedded in

Grasshopper and with the most recent version 1.1.0 (released 14 March 2015)

it is possible to perform a linear buckling analysis. While this is a fast way

to calculate the buckling load factor, it failed to work when integrated in an

optimisation process with more than 5 variables (the weights to control the

shape) as the program consistently crashed. For this reason it was decided not

to use Karamba.

The option of manually constructing the conventional and geometric sti�ness

matrix from �nite element formulations was also considered. This matrix for-
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mulation �ts well with the already implemented framework. However, for three-

dimensional shell elements this formulation becomes rather complicated. There-

fore it was concluded that there was no point in reinventing the wheel and it was

furthermore unknown what could be gained from it in terms of computational

speed.

Piker (2015) recently released a completely rewritten version of Kangaroo, which

is a plug-in for Grasshopper useful for simulating physics. With this new ver-

sion it is possible to employ the dynamic relaxation method to solve a set of

non-linear equations with improved stability and remarkable convergence speed.

Based on these promising improvements, it was chosen to investigate this option

further.

4.2.1 Non-linear buckling with Kangaroo

The Kangaroo engine uses Newton's second law, which relates the residual force

acting on an object with its mass and acceleration (Fres = m·a). Di�erent phys-
ical behaviours are translated into so-called �Goals�, which specify the directions

and magnitudes of forces acting on the prede�ned geometry e.g. a mesh. These

forces are summed for each vertex and the residual force dictates where this

vertex will move to and how fast it will get there. The new positions are sub-

sequently obtained in an iterative process and if the goals are con�icting, the

solution becomes a compromise between them. This framework enables a dy-

namic relaxation process (as described in Chapter 1) by converting the edges

of the mesh into springs with a rest length and sti�ness, assigning masses to

the vertices, converting selected vertices into anchor points and applying a load.

The engine calculates the new positions that represent the equilibrium state

where the residual force at each vertex is zero.

As the edges in the original mesh are converted into springs, only axial forces

can be transferred, which mimics a truss structure rather than a plate-shell

structure. As a consequence, if the faces in the mesh are n-gons with n > 3

they loose their in-plane sti�ness and hence the ability to transfer shear forces.

A simple way to account for that is to brace the structure with diagonal members

to transfer this shear force as shown in Figure 4.2.1. For a mesh this can be

formulated into a triangulation requirement.
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Figure 4.2.1 � Structural systems for shell and truss equivalence to transfer the shear force

Concept

The general idea behind the buckling simulation is to de�ne the anchor points

and edge springs as �xed goals referring to the undeformed mesh, initiate a

load increment loop and in each step scale and update the applied load goal

and calculate the equilibrium state. That way the response of the deformed

structure is taken into account and evaluated against a de�ned criteria in order

to detect when buckling occurs. To better mimic shell behaviour it is possible to

add a hinge goal (again referring to the undeformed mesh), which simulates rigid

connections between two adjacent triangular faces to transfer bending moments.

The �ow diagram for the implementation, which takes advantage of the new

scripting opportunities with Kangaroo is shown in Figure 4.2.2.

Force goals

Each edge in the original mesh is converted into a spring goal by specifying the

start and end vertex it acts between, its rest length equal to its current length

and a sti�ness value. The latter is divided by the rest length to mimic material

behaviour where the stress is proportional to the strain. Selected vertices are

converted into anchor goals by assigning a very high sti�ness value of a zero-

length spring to each of them, which connects the vertex with a target particle

of in�nite mass. This corresponds to a pinned support (all translational d.o.f.'s

�xed) in a �nite element analysis. To simulate bending behaviour, each edge

with two adjacent triangular faces is converted into a hinge goal, which works

by applying out-of-plane forces to the four vertices in an attempt to maintain

the angle between the triangular faces in the undeformed mesh. The angle is

calculated from the two face normals and the hinge strength is de�ned as 1/10

of the average spring strength (sti�ness divided by rest length) to ensure that
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Figure 4.2.2 � Flow diagram for non-linear buckling with Kangaroo. K.E. is an abbreviation
for kinetic energy and it is measured as the average squared magnitude of the velocity of
the particles. The buckling criteria is a combination of the gradient (grad) of the load-
displacement graph and the displacement (d) itself.
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the structure mainly resists the load by axial forces. The applied load mimics

the self-weight of the structure and it is calculated by a separate Grasshopper

component as a lumped force on each vertex represented by a vertical vector

pointing in the negative direction with a magnitude corresponding to the area

of its associated voronoi cell (see Chapter 4). This load case is only converted

to force goals during the next phase.

Load increments

A loop is initialised where the original load case is multiplied by a load factor

and converted to force goals. The load factor incrementally increases in each

iteration based on a start value and a step size. The process is visualised in

Figure 4.2.3.

Figure 4.2.3 � Non-linear buckling procedure with Kangaroo. a) Initial shape. b) Equilibrium
shape 1. c) Equilibrium shape 1 with increased load. d) Equilibrium shape 2.

The anchor, spring and optionally hinge force goals are all de�ned from the
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undeformed structure with rest lengths and rest angles inherent from this con-

�guration (Figure 4.2.3 a). Thus, the structure only starts to move when the

�rst load step is applied and settles when the spring and hinge forces equilibrate

the load (Figure 4.2.3 b). The displacements between the vertices in the initial

con�guration and the new con�guration are calculated and evaluated against a

de�ned buckling criteria. The loop is repeated if buckling does not occur i.e.

the load case is scaled, the force goals are updated (Figure 4.2.3 c), and equi-

librium is calculated from the deformed structure determined from the previous

equilibrium step (Figure 4.2.3 d).

Buckling criteria

Figure 4.2.4 � Combined gradient (left) and displacement (right) buckling criteria

The buckling criteria aims to detect a sudden change in vertex displacements

during the load increments. The gradient of the load-displacement curve is a

useful measure in this regard. The values from the previous and current load step

are used to calculate this rate of change. When buckling occurs, the gradient

increases signi�cantly as shown in Figure 4.2.4 (left). Due to the reversed axes,

the behaviour is opposite to Figure 4.1.1 where the gradient vanishes at the

bifurcation point and as a result it is only possible to trace the curve above the

dotted line. The vertex displacements can be quanti�ed in several di�erent ways

for example as individuals, a RMS value or a maximum value. The �rst method

ensures that local buckling of an element is detected while the other methods

act more globally. The maximum displacement is used for the implementation

as part of this thesis. The gradient is evaluated against a buckling criteria,

which in this case is prede�ned as the gradient corresponding to the maximum

displacement in the current equilibrium con�guration being 0.5 times larger

than in the previous con�guration (the maximum displacement is calculated
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according to the original mesh). In addition to the gradient criteria, a maximum

displacement criteria is introduced (default value is 1m), which is useful if the

structure exhibits ductile behaviour as shown in Figure 4.2.4 (right). However,

it is possible to adjust both the gradient and displacement buckling criteria for

the speci�c application.

Accuracy

The accuracy of the buckling analysis based on this methodology is mainly in-

�uenced by three factors; the start load factor (which the load initially is scaled

by), the step size and the threshold speci�ed for equilibrium to be reached.

The accuracy improves if all of these values are decreased. However, this comes

with the cost of increased computational time. The in�uence of the threshold

is evaluated by calculating the ratio between the sum of the applied load and

the reaction forces. As the threshold is lowered this ratio gets closer to 1.0.

Prioritising computational speed over accuracy for the conceptual design stage,

no other accuracy improving algorithms such as bisection were implemented.

Additionally, the strength ratio between the membrane and bending action is of

importance and was set to a default value of 1/10 based on small tests. It is es-

sential to be able to model bending, as many structures would otherwise collapse

under their own weight. However, if the load is primarily resisted by bending

then the structural behaviour becomes more ductile and no sudden change in

displacements can be detected. In a �nite element analysis, the thickness of the

shell has a similar e�ect (in�uencing the moment of inertia and thus the ability

to transfer forces via bending).

A buckling analysis of a half sphere shell structure (span of 20 m) performed

with the developed tool is shown in Figure 4.2.5. It shows promising results in

terms of computational speed (only 2.1 seconds to calculate this example) and

the shape just before buckling occurs is consistent with structural intuition.

To the knowledge of the author, no such buckling analysis tool exists in a para-

metric modelling environment like Grasshopper and with the observed compu-

tational speed.
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Figure 4.2.5 � Buckling analysis of a half sphere using Kangaroo

4.2.2 Linear buckling with Autodesk Robot

A work �ow with Autodesk Robot Structural Analysis is established to validate

the results obtained from the above described buckling analysis tool. It is simil-

arly integrated as a parametric tool in Grasshopper and utilises the Robot API

to export the geometry to this platform, perform a linear buckling analysis and

retrieve the �rst buckling load factor. The linear buckling analysis is employed

due to its simplicity. Since Autodesk Robot is a widely used �nite element soft-

ware in the industry it is evaluated as a trustworthy source for validation. The

work �ow enables a fast way to generate the complex shell geometries in the

�nite element software and repeated manual work with the risk of human errors

is avoided by specifying all the necessary properties such as support conditions,

material properties, shell thickness, load and analysis type as generic values.

The work �ow integrating Autodesk Robot in Grasshopper and the results re-

trieved from a linear buckling analysis of the same half sphere geometry is shown

in Figure 4.2.6. The solution is calculated within 42.5 seconds, which is a signi-

�cant performance overhead compared with the developed Kangaroo buckling

analysis tool.
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Figure 4.2.6 � Linear buckling analysis of a half sphere with Autodesk Robot integrated in
Grasshopper. The �rst modal shape is shown

4.3 Barrel vault study

A barrel vault structure represented by a mesh with 567 vertices and 1040 faces

is illustrated in Figure 4.3.1 and used as test case to evaluate the reliability of

the developed buckling analysis tool. The evaluation is based on a comparison

between the results obtained from the Kangaroo buckling analysis and Autodesk

Robot. A number of di�erent harmonic shapes with areas restricted to a 0.5%,

1% and 3% increase from the barrel vault reference are used as input for the

analysis. The area restriction is useful to compare the shells like for like as it

is otherwise expected that a shape with a larger area has more material and

therefore more sti�ness to withstand the applied load compared to a shape with

a smaller area. However, given the same area it is possible to draw conclusions

about e�cient geometries to sti�en the structure and hence study the best

locations to add curvature.

The harmonic shapes used for this study follow the same corrugation principles

as described by Malek (2012) and are thus divided into the same three categories;

edge-, crown and in-phase corrugations. Each corrugated shape is generated by

an approximation of a parametrically constructed surface with an integrated

cosine function to de�ne the corrugations. The approximation is based on the

reference cylinder and uses the 10 most signi�cant weights (cotangent Laplacian

with voronoi area weighting). This process is necessary because a single mode

shape that only corrugates e.g. the edges and leaves the crown �at does not

exist and also better mimics the intended optimisation process (shown in the

case study), where a number of modes are combined with di�erent weights to

form a curvature-sti�ened shell. The di�erent shapes are shown in Figure 4.3.2
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Figure 4.3.1 � The barrel vault reference geometry [m]

where the colours represent the area category they belong to (orange=0.5%,

blue=1% and grey=3%). Pinned supports at the ground-level vertices and a

load mimicking self-weight are applied to each structure.

For each shape the buckling load factor is calculated using the developed Kangaroo

approach and Autodesk Robot. For the Kangaroo approach it is important to

include bending action as the arch cross-section otherwise collapses under its

own weight. The computed buckling load factor is normalised according to

the performance of the barrel vault reference such that a value larger than 1.0

indicates a better shaped shell to avoid buckling failure. Speci�c to the non-

linear Kangaroo approach is a start load factor of 0.5, a load step size of 0.05,

a sti�ness of 500 and a threshold of 1 · 10−6. The results from the two di�erent

analysis methodologies are shown in Figure 4.3.3 and 4.3.4.

General observations

The order of the curves (orange, blue, grey) is consistent throughout the study,

which con�rms that a larger surface area increases the sti�ness of the shell.

Additionally, all the shapes have a buckling load factor larger than 1.0 indicating

that the corrugations have a positive e�ect on sti�ening the shell. The three

plots for each corrugation location approximately exhibit the same tendency

where the spacing in-between the curves re�ects the di�erence in area increase.
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Figure 4.3.2 � Shape variations from the barrel vault reference geometry with area increase
restrictions (orange=0.5%, blue=1% and grey=3%)
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Figure 4.3.3 � The buckling load factor for edge-, crown- and in-phase corrugations of a
barrel vault using Kangaroo
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Figure 4.3.4 � The buckling load factor for edge-, crown- and in-phase corrugations of a
barrel vault using Autodesk Robot
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Edge corrugations

Both analyses show that an increasing number of edge corrugations initially has

a positive e�ect on the BLF but seems to have a peak value for shape 3 after

which the BLF decreases. A further investigation of the buckling modes from

the Robot analysis shows that the �rst buckling mode changes from swaying

in the longitudinal direction to the transverse direction between shape 2 and

3, which explains the increasing value for shape 3. However, the decreasing

value for shape 4 indicates that there is a compromise between more waves and

smaller amplitude or fewer waves and larger amplitude in order to satisfy the

area requirement. For shape 4 the amplitude is so small that the edges almost

become �at and the shell therefore gains less sti�ness from its curvature.

Crown corrugations

Increasing the number of crown corrugations has a negative e�ect on the BLF

according to both analyses. The tendency is less clear for the 0.5% and 1% area

increase from the Robot analysis, but in general no additional capacity is gained

from shape 1 to 4. As a corrugation of the crown has a similar e�ect as adding a

sti�ened longitudinal beam to the barrel vault (Malek, 2012), this behaviour can

be explained by the decreasing moment of inertia due to the smaller amplitude

as the number of waves in the crown is increased.

In-phase corrugations

For a 0.5% and 1% area increase the in-phase corrugations have a positive

e�ect on the BLF with peak values for shape 2 and 3. For a 3% area increase

both analyses show signi�cant gains in BLF but the behaviour between them

di�ers. While the Kangaroo analysis amplify the behaviour from the 0.5% and

1% cases, the results from the Robot analysis continuously grow although with

a much slower rate between shape 3 and 4. Corrugating the edge and the

crown simultaneously helps to increase the bending sti�ness of the entire shell

due to cross section variations (Malek, 2012). The decreasing BLF for shape

4 therefore implies that the amplitude becomes too small to provide enough

cross-section variation thereby reducing the sti�ness in the transverse direction.

Shape 1 su�ers from too few edge corrugations to make the shell su�ciently

sti� in the longitudinal direction, which results in large deformations of the free

edges. Shape 2 and 3 are therefore the best compromise. A further investigation

of the di�erent tendency for the Robot analysis of the 3% case shows that
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the transverse sti�ness is reduced at a later stage due to the increased area,

which means that the best compromise rather exists between shape 3 and 4.

An additional test case with more in-phase corrugations veri�es that the BLF

starts to decrease after this point. In general, the BLF level for both analyses

shows that the in-phase corrugations are more e�cient than the edge- and crown

corrugations separately.

Evaluation

This barrel vault study shows promising results in terms of observing similar

behaviour between the Kangaroo and Robot buckling analysis, which helps to

increase con�dence in the implementation. The linear versus non-linear analysis

type, combined with the e�ect of the strength ratio de�ned for the Kangaroo

analysis and its relation to the chosen 200 mm thickness in the �nite element

analysis, are the most likely explanations for the observed deviations. As the

Kangaroo buckling analysis takes less than 2 seconds to perform and the av-

erage computational time for the Robot buckling analysis is 1.1 minutes, the

similarity in results makes the Kangaroo analysis tool attractive for the concep-

tual design stage. Malek (2012) experiences an increase in buckling capacity for

an increasing number of waves at each corrugation location and observes that

the in-phase corrugations are the most e�ective means of sti�ening the barrel

vault. However, several aspects make it di�cult to compare the results from

this study with those conclusions, including the boundary conditions, a di�erent

cross-section, the span-to-height ratio and wave amplitudes. If the same struc-

tural behaviour is expected, it is crucial that the boundary conditions match.

The boundary conditions in this study are limited to pinned supports due to

the stage of development at the time of writing, and for comparability reasons

prioritised to be similar in the Robot model. The boundary conditions in the

study by Malek are di�erent but questionable, as they include vertical supports

at the ends of the barrel vault. Equally important is the fact that the amplitude

of the corrugations in Malek's study are de�ned as a ratio of the height or the

length rather than controlled by the area increase and her conclusions in this

regard are therefore not surprising. An area weighting is introduced at a later

stage but with the purpose of determining the most e�cient location to corrug-

ate the vault. In general this discussion highlights the di�culties of comparing

the buckling capacity between di�erent shapes.
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Case study

This chapter demonstrates the applicability of the developed software tool in an

architectural and engineering context using the British Museum Great Court

Roof as a case study.

5.1 The British Museum Great Court Roof

Figure 5.1.1 � The British Museum Great Court Roof

The British Museum Great Court Roof in London as seen in Figure 5.1.1 was

completed in 2000 and designed by Foster + Partners in collaboration with Buro

Happold and Chris Williams. Since then it has attracted much attention due
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to its architectural quality and unique geometric de�nition and the project has

in general encouraged the design of gridshell structures even though it was not

the �rst of its kind.

The roof surface is de�ned as a sum of three mathematical functions in order to

ful�l speci�c site constraints and only transfer horizontal thrust to the corners

of the building that supports it (Williams and Shepherd, 2010). The three

functions are illustrated in Figure 5.1.2.

Figure 5.1.2 � The mathematical functions de�ning the British Museum roof surface. a)
level change function, b) function without curvature singularity and c) function with curvature
singularity (Williams and Shepherd, 2010)

The aim of this case study is threefold: Firstly to decompose the surface into

its harmonic components to gain a better understanding of what it is built up

from. Secondly to investigate the trade-o� between the approximation accuracy

and the number of included modes, whilst simultaneously evaluating the e�ect

of each mode with regard to the buckling capacity. And thirdly to explore

di�erent variations of the shape by a modi�cation of the modal components

based on pure aesthetics and a buckling optimisation.

5.1.1 Shape analysis

A DXF �le of the original geometry of the British Museum roof structure is used

as basis for this study. A point cloud is created from the intersections between

all the curves and approximated by a NURBS surface patch as shown in Figure

5.1.3.

The harmonic modelling framework requires a mesh as input. A mesh similar to

the one used for the grid of the British Museum before it was relaxed over the

mathematically de�ned surface is downloaded from GeometryGym (Mirtschin,

2009). It consists of 1806 vertices and 3372 faces and is symmetric about the

x-axis (see Figure 5.1.4). The vertices of the mesh are projected vertically onto

a ruled surface spanning between the boundary curves (located in two di�erent
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levels) to be able to �x the mesh at these locations. Fixing the boundaries helps

to ensure a good approximation with a limited number of variables.

Figure 5.1.3 � Surface patch approximation of the British Museum roof structure

Figure 5.1.4 � The mesh used for the harmonic modelling framework

From a construction of the graph Laplacian followed by an eigendecomposi-

tion, the 10 most signi�cant modes to approximate the NURBS surface patch

are back-calculated, as visualised in Figure 5.1.5. The approximation result is

smooth and has a RMS value of 0.14 m, which is acceptable when compared

to the size of the structure (72 x 96 m) and the fact that only 10 variables

are used. The modal components are both fascinating and revealing at the

same time. Especially the �rst 3 modes, which have very recognisable shape

characteristics.
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Figure 5.1.5 � The 10 most signi�cant harmonic modes of the British Museum and the
approximation result

5.1.2 Approximation accuracy and buckling capacity

The plot in Figure 5.1.6 serves to gain a better understanding of the trade-o�

between the number of variables (mode shapes with weights) and the approx-

imation accuracy (quanti�ed by means of a RMS value) and the in�uence of

the choice of Laplacian. For less than 25 variables the graph Laplacian gives

the best accuracy after which the cotangent Laplacian without area weighting

becomes more e�cient. The area weighted cotangent Laplacian consistently

results in lower accuracy for any number of variables. This behaviour is due to
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the very regular distribution of the vertices in the mesh. The plot also shows

how the RMS value rapidly decreases towards zero for the �rst 20 modes and

afterwards has a much slower rate. This is promising as it means that a good

approximation of the British Museum Great Court Roof can be achieved with

less than 20 variables for a mesh with 1806 vertices.

Figure 5.1.6 � Approximation accuracy of the British Museum with di�erent discretisations
of the Laplacian

It is often the case that the structural performance of a shell can be noticeably

a�ected by only small changes to the geometry. The buckling capacity is one

such measure that is very sensitive to its shell form and it is therefore interesting

to study how the addition of extra modes in�uences the performance. Some

modes may only be of aesthetic character while others improve the buckling

capacity. A plot of the buckling load factor as a function of the number of

modes included to approximate the target shape therefore helps to guide the

�nal design towards a good compromise.

For this analysis the boundary conditions are simpli�ed to pinned supports along

the two boundary curves instead of the sliding supports, which were used for the

real project to only allow horizontal thrust to be transferred at the corners. This

is due to the limitations of the software implementation related to buckling at

the time of writing. It is therefore important to emphasise that the conclusions

and results outlined in this case study do not take the structural constraints into
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account, which were critical for the original shell. However, it still demonstrates

the capabilities of the developed design tool.

The buckling load factor for each shape is calculated with both the non-linear

Kangaroo approach (including bending action) and a linear buckling analysis

in Autodesk Robot. As expected, the failure is observed to be a collapse of the

dome-like part with the longest span. The computational time for the Kangaroo

component is on average 10 seconds while the Robot component uses at least 3

minutes to calculate the solution. The Robot analysis is therefore only feasible

because 10 shapes are studied but is not suitable for an optimisation work �ow.

The result is shown in Figure 5.1.7.

A similarity between the results is noticeable up until the addition of 7 modes.

After that the BLF signi�cantly decreases according to the Robot analysis while

the Kangaroo analysis predicts a continuous increase. The di�erent calculation

strategies (linear versus non-linear) and the arbitrarily de�ned strength ratio

between membrane and bending action of the shell for the Kangaroo simulation

are concluded to be the most signi�cant cause for the deviation. Due to the

latter, two di�erent shell thickness are examined (t=200 mm and t=400 mm)

for the Robot analysis. It is evident how this alters the force distribution and

therefore a�ects the BLF results even within the same analysis software. This

highlights the di�culties of obtaining a buckling measure from a generic set-up.

From Figure 5.1.7 it is concluded that adding the six most signi�cant modes

has a positive in�uence on the buckling capacity while at the same time approx-

imating the target better. The di�erent analyses agree that mode three (see

Figure 5.1.5) has a negative e�ect on the structural performance and therefore

is of pure aesthetic value. The design tool makes it possible to remove this

mode and study the shape consisting of mode 1+2+4+5+6 instead. The buck-

ling load factor increases from this action (Kangaroo: 4.75, Robot (t=0.2): 58.9

and Robot (t=0.4): 145.2) compared to the values from Figure 5.1.7 (number

of modes = 6). This method is therefore an e�ective means of improving the

structural performance with little deviation from the target.
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Figure 5.1.7 � The buckling load factor as a function of the number of included modes.
The measurement is obtained from Kangaroo (orange), Autodesk Robot with a thickness of
200 mm (blue) and 400 mm (grey)
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5.1.3 Shape variations

With the 10 short-listed modal components for the British Museum Great Court

Roof it is easy to explore a variety of other design possibilities emanating from

the original shape by modifying the quantities of these components and adding

new interesting ones as well.

Aesthetics

A few examples of shapes created from a pure aesthetic point of view are shown

in Figure 5.1.8. They highlight the wide range of designs that can be achieved

from the target surface, which can be used as inspiration for the architect in the

conceptual stage.

Figure 5.1.8 � Shape variations of the British Museum Great Court Roof from a modi�cation
of the harmonic ingredients and quantities from an aesthetic perspective

Optimisation

The modi�cation of the mode shapes can also be based on an evaluation of the

buckling capacity in an optimisation process. This work �ow is supported by the

low-parametrisation of the mesh and the computational speed of the non-linear

Kangaroo buckling component. Thus, the variables become the weights of the

10 most signi�cant modes plus the scale factor and the objective function for the

optimisation is to maximise the buckling load factor. The built-in �Galapagos�

component in Grasshopper with a simulated annealing search strategy is used

for this purpose.

In order to compare the results like for like it is essential that the generated

shapes share the same area increase from the target surface such that the best

shape re�ects geometric sti�ness rather than sti�ness from more material. As
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the vast majority of the generated shapes will have an area which does not cor-

respond to the desirable increase, an algorithm is developed to avoid discarding

all these potential solutions. The algorithm calculates the area of the target

mesh and the area of the newly generated mesh and evaluates whether the

weights need to be increased or decreased in order to reach a de�ned percentage

(the desirable area increase). Based on this evaluation the weights are changed

in small steps de�ned as a factor of the deviation between the weights of the

target and the weights of the generated shape. After each step, the area of the

mesh from the adjusted weights determines whether the desirable percentage is

hit or the process shall continue. A bisection strategy is embedded to adjust

the step size if the target percentage is passed. This way it is avoided to use

an ine�cient area �lter and all potential solutions get a chance to be evaluated

in terms of their buckling capacity by being rescaled. In this case, the weight

corresponding to mode number 1 is limited to negative values only (referring to

Figure 5.1.5) to avoid hanging structures.

Figure 5.1.9 shows the optimised results for a 1%, 3% and 5% area increase

from the approximated target surface using 10 weights. For a 1% area increase

there is not much freedom to signi�cantly alter the geometry from the original

roof shape but it is noted that the corners (where the biggest spans occur) are

in�ated while the middle parts with the shortest spans are de�ated and by doing

so the BLF is increased from 5.5 to 6.25. A similar tendency is observed for the

3% area increase where it furthermore becomes clear how the harmonics help

to sti�en the in�ated parts of the shell through curvature in e�ect doubling the

buckling load factor! The form-found shape for the 5% area increase does not

follow the same material distribution pattern, which results in a disappointing

buckling load factor. This may be a consequence of the large search space

and computational speed to calculate one solution (10 seconds) as the best �t is

in�uenced by the run time. Another option is that it re�ects a compromise with

the self-weight of the structure but it needs further investigation. In general it

is noted that the results obtained from the Kangaroo and Robot analysis agree

in terms of ranking the shapes according to their buckling capacity, which make

the results more reliable.

It is important to highlight that the shells shown in Figure 5.1.9 are optimised

for buckling only, whereas a real structure has other structural performance

requirements that needs to be ful�lled as well.
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Figure 5.1.9 � The results from a buckling optimisation with di�erent requirements to the
area increase from the original roof
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Conclusions

6.1 Summary

The aim of this research was to develop a software tool to assist in the design of

shells in the conceptual design stage to encourage the interaction between the

architect and the engineer rather than either/or. This has been accomplished by

an implementation of a low parametrisation modelling strategy with an inherent

shape language suitable for the sti�ening of shells through their curvature and

quanti�ed by a real-time buckling measure. The software tool was developed

as a plug-in to Grasshopper (see Appendix C) to make it accessible for a wide

range of users and integrate it with current work �ows.

The modelling strategy was based on harmonics, with a direct link to Fourier

analysis to achieve the low parametrisation. A literature review highlighted that

the framework behind this was well-known and widely used in computer graph-

ics but had not yet been satisfactorily adapted to an architectural context. A

number of initiatives were introduced, which included a single degree of freedom

design approach for simplicity, the ability to impose boundary conditions, aids

for visualisation and guidelines towards speci�c spatial con�gurations. The res-

ult was a �exible free-form modelling tool that not only enabled the creation of

arbitrary doubly-curved surfaces, but also allowed simultaneous shape analysis

to achieve a better understanding of the spatial components, remove noise and

inspire new shapes emanating from the original shape.
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The inherently di�erent shapes compared to NURBS and subdivision surfaces

(given the same amount of parameters) made buckling an interesting structural

performance criteria to asses the e�ciency of the shape. Furthermore the liter-

ature review identi�ed that buckling was considered the dominant failure mode

for shell structures, yet a capacity check was only calculated in the late struc-

tural veri�cation phase, whilst other more common quantities such as stress

or de�ection were used to inject logic into the shape design. Only one study

that related shell geometry with the buckling capacity was found, however the

work �ow was too cumbersome for integration in the conceptual design stage

and thus rather provided rules of thumb to use at this stage. Kangaroo, a

force based algorithm that integrates Newton's second law of motion, was scrip-

ted for bespoke application in relation to buckling to simulate shell behaviour

under an increasing load. The implementation showed very promising results

in terms of computational speed and from comparisons with results obtained

from Autodesk Robot it was concluded to be of su�cient accuracy to provide a

quantitative buckling measure for the conceptual design stage.

The software was applied to the roof structure of the British Museum Great

Court, which demonstrated how the most signi�cant mode shapes could be used

to gain a better understanding of the original geometry and help improve it by

evaluating each mode in terms of its contribution to the overall approximation

accuracy and buckling capacity. It also showed how di�erent shape variations

of the original geometry could be explored, either from a pure aesthetic point of

view or based on an optimisation process if more design freedom was allowed.

The optimised shell geometries all had their harmonic components ampli�ed

and they exhibited up to a doubling in buckling capacity for a 3% increase in

roof surface area.

6.2 Discussion and future work

One of the main disadvantages of the harmonic modelling tool is the lack of

tangible spatial control like the control polygon for NURBS and subdivision

surfaces. The numerical parameters are more abstract and it is generally hard

to predict the result of adding multiple mode shapes together. However, this is

counterbalanced by the ability to analyse the shape whilst modelling. Therefore

the biggest advantage of this tool is realised through a combination of modelling

techniques such that, for example NURBS surfaces are used to imply the spatial
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design intent and subsequently the harmonic modelling tool is used to analyse

this shape, make it cleaner and possibly inspire new shapes. The Specialist

Modelling Group at Foster + Partners expressed positive feedback about this

approach and imagined it would be useful when sculpting surfaces.

The ability to impose boundary constraints was one of the main initiatives to

adapt the mathematical framework behind the harmonics into an architectural

setting. Pinned supports were successfully assigned to speci�cally chosen ver-

tices, but it is associated with a number of limitations. First of all, the chosen

single degree of freedom design approach only made it possible to de�ne pinned

supports, which from an architectural perspective limited the control of the

tangency at these locations. Furthermore, it was observed that the area weight-

ing of the cotangent Laplacian caused non-smooth boundary transitions even

though its purpose was to make the harmonic behaviour independent of the

mesh. This suggests a further investigation into rotational degrees of freedom

to improve these shortcomings while at the same time prioritising a simplistic

design tool would be bene�cial.

In general the area weighting of the cotangent Laplacian did not show its po-

tential, as it performed worse than the simple graph Laplacian or unweighted

cotangent Laplacian in most cases for target approximation purposes. Whether

this was due to the implementation, or the uniform vertex distributions masked

its e�ects, is unknown but needs further investigation. Since other linear oper-

ators can be used for the harmonic framework as well, another interesting area

of study would be to investigate the Biharmonic operator, which is the second

order Laplacian (Botsch et al., 2010) and observe if any behavioural di�erences

occur. While the Laplacian operator tries to average the gradient (pushing each

vertex towards the barycenter of its 1-ring neighbours to make it �at), the Bi-

harmonic operator tries to average the curvature by taking the 2-ring neighbours

into account. This behaviour is interesting because it mimics bending and the

inclusion of the 2-ring neighbours might allow more control of the tangency at

the boundaries.

Currently the slowest part of the software work�ow is the calculation of the

eigenvalues/vectors by linking to Matlab. Matlab was chosen for its reliability,

option to sort the eigenvectors in ascending order according to the frequencies

and capability to only extract a desired range of eigenvectors based on a reference

eigenvalue. However, to make the plug-in independent of proprietary software

and possibly improve computational speed it is recommended to investigate
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other libraries for this task. Matlab can then serve as a good platform to

validate the new implementation.

In contrast to other structural performance measurements such as stress or

de�ection, buckling of shell structures is more di�cult to quantify because the

associated large de�ections alter the way the applied load is resisted by the struc-

ture and results in a non-linear relation. The implemented physical simulation

of this buckling behaviour using Kangaroo highlighted a sensitivity to several

issues, including the load step size, equilibrium tolerance, the ratio between

membrane and bending action and a generic criteria to determine when buck-

ling occurred. The ratio between membrane and bending action was mostly

based on trial and error and needs further investigation to improve the accur-

acy of the simulation. Ideally this would lead to some guidelines that relates the

ratio to the intended thickness of the structure. This factor is crucial, because

without it, a barrel vault fails under its own weight, whereas a ratio that makes

bending action too dominant results in more ductile behaviour of the struc-

ture and causes the buckling load factor to be determined from a maximum

de�ection criteria rather than a sudden change in displacements. This research

only included the self-weight of the structure, however the buckling component

is such that any load case can be applied without further complications. The

next step is to include sliding supports as the shell behaviour is very dependent

on its boundary conditions. This is straight forward since a Kangaroo force

goal (�AnchorXYZ�) that only restrains a vertex along de�ned global directions

already exists.

On a �nal note, it is essential to emphasise that the harmonic modelling tool

and the buckling analysis can be seen as separate parts, which means that it

is possible to use subdivision surfaces for example as the low parametrisation

strategy instead and let the control points be modi�ed according to a buckling

evaluation. Another option is to link the harmonic modelling tool to another

structural quantity such as maximum stress level or even exclude any kind of

structural logic. However, what binds the two parts together is the inherent

doubly curved nature of the harmonic shapes, which has proven very useful to

sti�en shells against buckling failure as the barrel vault and the British Mu-

seum Great Court Roof demonstrated. When used together in an optimisation

process, care has to be exercised concerning the area in order to compare like

for like and thereby obtain results that re�ect an increased sti�ness through

geometry instead of sti�ness through extra material.
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Overall a harmonic form-�nding tool for the design of curvature-sti�ened shells

has been developed and tested through multiple case studies with promising

results for the application in the conceptual design stage.
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Appendix A

Fourier analysis

This appendix contains a description of the relevant aspects of Fourier analysis

in relation to the harmonic modelling framework and it serves to form the the-

oretical foundation for extending these principles to meshes in three dimensions.

Figure A.0.1 � Continuous square wave function approximated by a Fourier Series with an
increasing number of sinusoids

Fourier analysis enables the global approximation of a function by a sum of sinus-

oids as shown in Figure A.0.1 for a continuous square wave function. The more

sinusoids that are included in the summation, the better approximation. This

approximation is advantageous because it enables a possibly complex expres-

sion to be reduced to terms of trigonometric functions thus simplifying various

problems.
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In order to do so, the function de�ned in the spatial domain is transformed

into the frequency domain by means of the Fourier Transform and then back

to the spatial domain as a sum of sinusoids via the Inverse Fourier Transform.

At �rst, this transformation from the spatial domain to the frequency domain

may seem mysterious but the purpose is to change the perspective from �what

can I see?� to �what is it made of?� (Azad, 2012). Imagine the function as a

cake, then the Fourier Transform �nds the recipe for that cake e.g 3.5 dl �our,

1.0 dl sugar, 2.0 dl water. This decomposition into ingredients is very useful

because it describes the original input much better such that it can be analysed,

compared and modi�ed. Continuing with the cake analogy, the inverse Fourier

Transform is then responsible for mixing the ingredients back together to the

original cake.

The Fourier Transform is able to �nd the recipe by running the function through

various �lters that catch the di�erent ingredients. Each �lter has the property

of only catching one speci�c ingredient and in total there must be as many �lters

as there are ingredients in order to catch them all. The idea is that any function

(signal) can be �ltered into various di�erent circular paths and be rebuild again

from them (Azad, 2012).

Figure A.0.2 � Traversing a circle in two di�erent ways described by Euler's formula

A circular path (meaning how to move in circles) can be described in two di�er-

ent ways according to Euler's formula (Azad, 2010) and is visualised in Figure
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A.0.2

eix = cos(x) + i · sin(x) (A.0.1)

Due to its simplicity and compactness the complex exponential function is used

in the formula for the Fourier Transform. Euler's formula describes the move-

ment along a unit circle (implicit a factor of 1 in front of the expression) but

to make it more general any factor multiplied with the expression determines

the amplitude (radius). The idea behind the Fourier Transform is therefore to

�lter any signal into cycles of di�erent frequencies (as many as needed to catch

all the ingredients), where each cycle is uniquely de�ned from the polar form of

Euler's Equation (r · eix) specifying the amplitude (radius) and phase (angle of

starting point). The inverse Fourier Transform combines these cycles again to

rebuild the signal. When di�erent cycles are combined it causes constructive or

destructive interference between them and it it this behaviour that is exploited

to reach a speci�c target value.

Only the discrete version of the Fourier Transform (DFT) is described in the

following as it is the most relevant version to practical applications where only

a �nite number of sample points exist. It also better relates to the application

in this thesis since the generated 3-dimensional shape is represented by a mesh,

which is the discrete version of a smooth surface.

A given signalX consisting ofN real or complex numbersX = [x0, x1, . . . , xN−1]
T

can be transformed into a same-sized N -periodic signal of complex numbers by

the following de�nition also known as the Discrete Fourier Transform (DFT)

X̃k =
1

N
·
N−1∑
n=0

xn · e−2πikn/N , n ∈ Z, k = 0, 1, . . . , N − 1 (A.0.2)

In total N new values are obtained (one per frequency). It is generally the case

that each new value X̃k is a complex number even if the signal only consists of

real values. As mentioned, this complex number represents both the amplitude

and phase of a circular path of frequency k cycles per N samples (Weisstein,

2015b), which gives an overall measure for the amount of a certain frequency

that exists in the original signal. Thus, the signal has been transformed from the

spatial domain into circular path ingredients in the frequency domain. From

each circular path corresponding to a frequency k in the complex plane, the

familiar sinusoidal curve (as seen from Figure A.0.1) can be obtained by tracing
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the real value of the moving point along the circle and it can be visualised by the

expression (derived as the real part of the right-hand-side of Euler's equation)

f(x) = r · cos ((2πk/N) · x+ ϕ) (A.0.3)

The original signal can subsequently be reconstructed by the Inverse Discrete

Fourier Transform (IDFT) de�ned by

xn =

N−1∑
k=0

X̃k · e2πikn/N , k ∈ Z, n = 0, 1, . . . , N − 1 (A.0.4)

The reconstructed signal can be visualised by adding all the sinusoids together

and the desirable behaviour is achieved as the combined wave passes through all

the sample points. What happens in between is irrelevant because it is unknown

how the signal travels there.

The discrete version of the square wave from Figure A.0.1 is used as an example

to better understand the concepts and formulas described above.

Example - Discrete square wave

Figure A.0.3 � Discrete square wave with its frequency components

A discrete square wave signal consisting of six values (N=6) is given by

X = [1, 1, 1,−1,−1,−1]T
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The signal is visualised in Figure A.0.3 as vertical lines. The Discrete Fourier

Transform (DFT) �lters the signal into its frequency components as follows by

inserting in Equation A.0.2

x̃0 = 1
6 · (1 + 1 + 1− 1− 1− 1) = 0

x̃1 = 1
6 ·
(
1 + e−

1·π
3 ·i + e−

2π
3 ·i − e− 3π

3 ·i − e− 4π
3 ·i − e− 5π

3 ·i
)
= 2

3 · e
−π3 ·i

x̃2 = 1
6 ·
(
1 + e−

2π
3 ·i + e−

4π
3 ·i − e− 6π

3 ·i − e− 8π
3 ·i − e− 10π

3 ·i
)
= 0

x̃3 = 1
6 ·
(
1 + e−1·π·i + e−2·π·i − e−3·π·i − e−4·π·i − e−5·π·i

)
= 1

3

x̃4 = 1
6 ·
(
1 + e−

4π
3 ·i + e−

8π
3 ·i − e− 12π

3 ·i − e− 16π
3 ·i − e− 20π

3 ·i
)
= 0

x̃5 = 1
6 ·
(
1 + e−

5π
3 ·i + e−

10π
3 ·i − e− 15π

3 ·i − e− 20π
3 ·i − e− 25π

3 ·i
)
= 2

3 · e
π
3 ·i

It is observed that all of the even frequency components do not exist in the

signal as their amounts are zero. The amplitude and phase of each frequency

component that exist in the signal can be directly extracted from the complex

numbers given on polar form as follows

a1 = 2
3 , ϕ1 = −π3

a3 = 1
3 , ϕ3 = 0

a5 = 2
3 , ϕ5 = π

3

The sinusoids with frequency k=1, k=2 and k=3 and with their corresponding

amplitude and phase are also plotted in Figure A.0.3 using Equation A.0.3. The

sum of these sinusoids is highlighted in blue and it is observed how this curve

exactly passes through the sample points of the original signal. It is further-

more noted how the three waves of di�erent frequency reach the target value

when they are summed up by either constructive or destructive interference.

The �gure proves that the values at the sample point locations exactly match

the original signal when approximated by a sum of sinusoids. It can also be

calculated and veri�ed by the inverse discrete Fourier Transform (see Equation

A.0.4) in a similar way.

The Discrete Fourier Transform has many practical applications which all take

advantage of the ability to extract the ingredients of a given signal. A vibra-

tional signal can be recorded from an earthquake and its ingredients (waves of
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di�erent frequency and amplitude) are useful to building designers who can use

the information to design structures with vibrational modes that do not interact

with the strongest waves. Decomposing a sound wave into its ingredients makes

it possible to remove certain noisy frequencies or to better compare the sound

recipe with other sound waves, which is what music recognition software utilises.

An image can also be interpreted as a two-dimensional signal and by �nding its

ingredients the less important ones can be ignored, which helps to compress the

�le and hence reduce the size (Azad, 2012). The following example describes

the JPEG compression process in more detail.

Example - jpeg compression

Figure A.0.4 � Cosine waves used for JPEG compression

The Discrete Fourier Transform (more speci�cally the Discrete Cosine Trans-

form, DCT) is used for compression of JPEG images, thereby enabling a trade-

o� between image quality and �le size. An image consists of a 2D spatial domain

of pixels ordered in rows and columns, where each pixel has a value between

0-255 specifying a colour. For the human eye to perceive an image, sharp trans-

itions in intensity are ignored. These sharp transitions in intensity correspond

to values calculated by the DCT in the higher frequency domain. Since these
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are all small, the general idea is to discard that information. This is why it is

useful to extract the ingredients of the image, which is exactly what the Fourier

Transform is responsible for.

The procedure is to subdivide the image into smaller domains of 8 x 8 pixel and

construct a corresponding 8 x 8 matrix representing the colour value in each

pixel. Since the matrix is a 2D domain, a two-dimensional DCT is applied and

the result is a new 8 x 8 matrix with values that each represents the amount

of a wave with speci�c frequency that exists in the image signal. The 64 2D

spanning cosine waves of increasing frequency are illustrated in Figure A.0.4.

Any image signal can be constructed by a linear combination of these waves.

Since the new matrix contains as many values as the image signal itself this

is a lossless process and nothing has been achieved. The value arises when a

certain amount (speci�ed by compression ratio) of the smaller coe�cients are

rounded o� to zero. By this operation the 64 new values can be reduced to

the number of non-zero values and this is the only information the computer

needs to store thus reducing the �le size. This process is possible because the

64 waves illustrated in the �gure are constant due to the �xed structure of the

8 x 8 row/column pixel blocks and the image can therefore be reconstructed

from the knowledge of the non-zero coe�cients and which waves they belong to

(Wikipedia, 2015b) .

The transformation from the spatial domain to the frequency domain is essen-

tially a change of basis. A basis is a set of linearly independent vectors (Rowland,

2015), which implies that one vector cannot be represented as a scalar multiple

of another vector in this set. Thus, it is possible to represent any vector as a

linear combination of all the basis vectors. The concept of two di�erent bases

({vi} and {ui}) is shown in Figure A.0.5. Any vector av can be described from

each of those bases. A change of basis from {vi} to {ui} can be achieved by an

orthogonal projection of the vector av via the vector dot product. This concept

is not restricted to 2D or 3D but it is obviously easier to illustrate it in these

dimensions. However, the following example serves to increase the understand-

ing of how this concept can be used to reformulate the equations related to the

Fourier Transform by expanding it to higher order dimensions.
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Figure A.0.5 � Change of basis of an arbitrary vector av

Example - Change of basis

A standard orthonormal basis (denoted �st�) is de�ned by the set of normalised

vectors

~v1 =


1

0

0

0

 , ~v2 =


0

1

0

0

 , ~v3 =


0

0

1

0

 , ~v4 =


0

0

0

1


The dot product of any vector with another vector in this set is equal to zero. A

given signal X in this basis can therefore be represented by a linear combination

of the set

X =


3

2

5

8


st

= 3 ·


1

0

0

0

+ 2 ·


0

1

0

0

+ 5 ·


0

0

1

0

+ 8 ·


0

0

0

1


Another orthonormal basis (denoted �new�) is de�ned by the set of normalised

vectors
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~u1 =


1
2
1
2
1
2
1
2

 , ~u2 =


1
2
1
2

− 1
2

− 1
2

 , ~u3 =


1
2

− 1
2

− 1
2

1
2

 , ~u4 =


1
2

− 1
2

1
2

− 1
2


Again, the dot product of any vector with another vector in this set is equal to

zero. The change of basis (projection of the signal X from the standard basis

onto the new basis) gives the following coe�cients

a1 =


3

2

5

8

 ·


1
2
1
2
1
2
1
2

 = 9, a2 =


3

2

5

8

 ·


1
2
1
2

− 1
2

− 1
2

 = −4

a3 =


3

2

5

8

 ·


1
2

− 1
2

− 1
2

1
2

 = 2, a4 =


3

2

5

8

 ·


1
2

− 1
2

1
2

− 1
2

 = −1

The signal in each basis is therefore


3

2

5

8


st

=


9

−4
2

−1


new

Multiplying the coe�cients with the corresponding vectors in the new basis and

summing those, reconstructs the original signal in the standard basis

∑
ai · ~ui = 9 ·


1
2
1
2
1
2
1
2

−4 ·


1
2
1
2

− 1
2

− 1
2

+ 2 ·


1
2

− 1
2

− 1
2

1
2

−1 ·


1
2

− 1
2

1
2

− 1
2

 =


3

2

5

8


st
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The Fourier Transform can therefore be explained as a change of basis where the

desirable signal (function) to approximate is de�ned in space by the standard

basis (~i, ~j, ~k unit vectors following the x, y and z axes respectively) and changed

during the transformation into a frequency basis build from the complex expo-

nential function ek = e2πikn/N . In both cases the set of vectors de�ning the

basis are orthogonal to each other (the dot product of a pair of vectors equals

zero). According to the previous example, this change of basis can be achieved

by a projection of the spatial vector signal X onto the frequency basis vectors

ek. As a result, the DFT as de�ned in Equation A.0.2 can be reformulated as

X̃k =< X, ek > (A.0.5)

Here <,> symbolises the dot product. As the dot product geometrically de-

scribes how much of one vector is contained in another vector, the coe�cient

X̃k is simply a measure of the amplitude of the sinusoid with frequency k that

is contained in the spatial signal X. The IDFT as de�ned in Equation A.0.4 can

similarly be reformulated as (Botsch et al., 2010)

xn =

N−1∑
k=0

< X, ek > ·ek (A.0.6)
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Boundary conditions study

This appendix contains a detailed study on how to arti�cially impose boundary

conditions by a manipulation of the Laplacian matrix. The study is based on a

simple 2D example of a string with the reference shown in Figure B.0.1 (top).

Figure B.0.1 � The reference string set-up where the boxes symbolise �xities

The graph Laplacian for this 4-vertex string is de�ned as

L =


1 −1 0 0

−1 2 −1 0

0 −1 2 −1
0 0 −1 1


The corresponding eigenvalues and eigenvectors are

λ0 = 0.0, λ1 = 0.586, λ2 = 2.0, λ3 = 3.414
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~v0 =


−0.5
−0.5
−0.5
−0.5

 , ~v1 =


0.653

0.271

−0.271
−0.653

 , ~v2 =


0.5

−0.5
−0.5
0.5

 , ~v3 =


−0.271
0.653

−0.653
0.271


The eigenvectors interpreted as vertex displacements of the reference string are

illustrated in Figure B.0.2.

Figure B.0.2 � The displacement eigenfunctions of a 4-vertex string where (a) represents
v0, (b) v1, (c) v2 and (d) v3

To evaluate the in�uence of the di�erent matrix manipulation options, the 4-

vertex reference string is expanded with one additional vertex in both ends as

shown in Figure B.0.1 (bottom) where the goal is to �x those vertices.

Row/column elimination or equivalent stiffness method

One option is to ignore the vertices that are speci�ed as �xed and thus only

set up the Laplacian matrix for internal vertices or in other words elimin-

ate rows/columns corresponding to the �xed vertices. The outcome with this

strategy is in this case a 4 x 4 matrix with the same eigenvalues and eigenvectors

as the reference. Since the string consists of six vertices, these four values are

only mapped back to the internal vertices and the �xed vertices stay in place.

In relation to Figure B.0.2 it means that the end points of the string are connec-

ted back to points located at the zero line. However, when the simple string is

replaced with a complex mesh, where the vertices may be sorted in an arbitrary

order, it becomes cumbersome to keep track of which value in the eigenvector

corresponds to which vertex.
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To avoid this complexity it is desirable to maintain the size of the Laplacian

matrix such that each value in the eigenvectors is mapped to one vertex. As the

Laplacian matrix functions similarly to the sti�ness matrix in a �nite element

program, it can be thought of in terms of sti�ness as well. The sti�ness matrix

in a �nite element program is part of another equation though
(
~F = K · ~d

)
and in this case a zero displacement is obtained by setting the force element to

zero, replace row/columns values with zero and set one as the diagonal value

in K for the relevant nodes. An equivalent to this action, which can be used

for this framework instead, is to increase the sti�ness of a vertex i.e. set the

diagonal value to a large number and the row/column values to zero. Thereby,

the modi�ed graph Laplacian for the 6-vertex string becomes

L =



1000 0 0 0 0 0

0 1 −1 0 0 0

0 −1 2 −1 0 0

0 0 −1 2 −1 0

0 0 0 −1 1 0

0 0 0 0 0 1000


By doing so, the same result as the row/column elimination is obtained but the

eigenvector now consists of six values instead of four with values equal to zero

for the �xed vertices. Since the Laplacian matrix now is a 6 x 6 matrix it also

means that six eigenvalues and eigenvectors are obtained instead of only four.

These are listed below and visualised in Figure B.0.3.

λ0 = 0.0, λ1 = 0.586, λ2 = 2.0, λ3 = 3.414, λ4 = 1000.0, λ5 = 1000.0

~v0 =



0.0

−0.5
−0.5
−0.5
−0.5
0.0


, ~v1 =



0.0

0.653

0.271

−0.271
−0.653
0.0


, ~v2 =



0.0

0.5

−0.5
−0.5
0.5

0.0


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~v3 =



0.0

−0.271
0.653

−0.653
0.271

0.0


, ~v4 =



1.0

0.0

0.0

0.0

0.0

0.0


, ~v5 =



0.0

0.0

0.0

0.0

0.0

1.0



Figure B.0.3 � The initial displacement eigenfunctions of a 6-vertex string with �xed ends
where (a) represents v0, (b) v1, (c) v2, (d) v3, (e) v4 and (f) v5

It is observed that the last two eigenvectors do not have zero values correspond-

ing to the �xed vertices and they are therefore excluded. Thus, the number of

desirable eigenvectors k can more generally be expressed as

k = n− c

Where n is the number of vertices and c is the number of imposed constraints.

It is useful that the excluded eigenvectors are located last in the list because

then it is safe to only ask for k eigenvalues and eigenvectors as part of the eigen-

decomposition. It is furthermore noticeable that the last two eigenvectors have

signi�cantly larger eigenvalues which mirror the manipulated value for the ver-

tex sti�ness. It means that it takes much more energy to displace the arti�cially

��xed� vertices than it does for the internal vertices. As the eigenvectors are sor-

ted in ascending order according to the eigenvalues the only requirement to the

vertex sti�ness is that it has to be larger than the highest eigenvalue obtained

for the 4-vertex string reference. Otherwise the desirable excluded eigenvectors
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will no longer be located last in the list. The downside of this method is the

non-smooth boundary transitions due to the lack of connectivity information in

the Laplacian matrix.

Inclusion of edge connectivity information

To address this problem the edge connectivity information for the �xed vertices

is included to avoid the isolated behaviour. Hence, zero gets replaced with minus

one in the row/column element of a �xed vertex if it is connected to another

vertex by an edge. Following this rule the modi�ed graph Laplacian is written

as

L =



1000 −1 0 0 0 0

−1 1 −1 0 0 0

0 −1 2 −1 0 0

0 0 −1 2 −1 0

0 0 0 −1 1 −1
0 0 0 0 −1 1000


The corresponding eigenvalues and eigenvectors are listed below

λ0 = −0.001, λ1 = 0.585, λ2 = 1.999, λ3 = 3.414, λ4 = 1000.001, λ5 = 1000.001

~v0 =



0.001

0.5

0.5

0.5

0.5

0.001


, ~v1 =



−0.001
−0.653
−0.271
0.271

0.653

0.001


, ~v2 =



−0.001
−0.5
0.5

0.5

−0.5
−0.001



~v3 =



0.0

0.271

−0.653
0.653

−0.271
0.0


, ~v4 =



−0.718
0.001

0.0

0.0

0.001

−0.696


, ~v5 =



−0.696
0.001

0.0

0.0

−0.001
0.718


The �xities are weakened by the inclusion of the edge connecticity information

as evident from the eigenvector values and the plot in Figure B.0.4. In other
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Figure B.0.4 � Weakened �xities due to the inclusion of edge connectivity information. The
�rst eigenvector is plotted

words, the vertex next to the �xed vertex pulls it upwards by its edge because

it now knows it is connected to it. The ratio between the arti�cial sti�ness to

�x a vertex and the edge weight determines the amount of movement. Hence, if

the vertex sti�ness is decreased the movement becomes larger. Since the ratio

in this case is 1/1000, the solution is very close to the previous example only

with an irrelevant change of sign, which is arbitrary. However, this weakening

of the �xities is in general undesirable. As a consequence, the arti�cial vertex

sti�ness for the �xities is further increased to avoid these e�ects and the edge

connectivity information is kept in the matrix as it captures changes in topology,

which the sti�ness for internal vertices may not detect on its own as shown in

Figure B.0.5.

Figure B.0.5 � Example of how the edge connectivity information captures changes in the
topology of a string. The highlighted vertex have the same vertex sti�ness in both cases but
is connected by di�erent edges and therefore a di�erent behaviour is expected

Inclusion of vertex connectivity information

The diagonal values in the matrix associated with the vertices have to include

the connectivity information as well. It means that a vertex connected to a

�xity has to update its sti�ness to its new valence, which changed when the

additional �xed end vertices were attached to the string. The modi�ed Graph
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Laplacian with the increased sti�ness for �xed vertices and updated sti�ness for

vertices connected to a �xity is written as

L =



100000 −1 0 0 0 0

−1 2 −1 0 0 0

0 −1 2 −1 0 0

0 0 −1 2 −1 0

0 0 0 −1 2 −1
0 0 0 0 −1 100000


The result from the eigendecomposition is listed below and visualised in Figure

B.0.6. The desirable e�ect can mainly be recognised from the �rst two modes

due to the coarseness of the string. It is observed how the increased sti�ness

of a vertex connected to a �xity results in a larger resistance to move and the

edge connectivity information helps to tie down the adjacent vertex whereby

it nicely approximates a sinusoid with a smooth boundary transition. It is

furthermore seen that the �rst eigenvalue is no longer zero and the corresponding

pure translation mode has disappeared.

λ0 = 0.382, λ1 = 1.382, λ2 = 2.618, λ3 = 3.618, λ4 = 100000.0, λ5 = 100000.0

~v0 =



0.0

0.372

0.602

0.602

0.372

0.0


, ~v1 =



0.0

−0.602
−0.372
0.372

0.602

0.0


, ~v2 =



0.0

−0.602
0.372

0.372

−0.602
0.0



~v3 =



0.0

−0.372
0.602

−0.602
0.372

0.0


, ~v4 =



1.0

0.0

0.0

0.0

0.0

0.0


, ~v5 =



0.0

0.0

0.0

0.0

0.0

1.0


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Figure B.0.6 � The displacement eigenfunctions of a 6-vertex string with �xed ends (�nal)
where (a) represents v0, (b) v1, (c) v2, (d) v3, (e) v4 and (f) v5

Summary

In summary, vertex �xities can be imposed by constructing the Laplacian matrix

from its general de�nition (see Equation 3.1.4) considering the entire mesh to

begin with and subsequently replace the sti�ness of �xed vertices with a much

larger number e.g. 100,000. That way both edge and vertex connectivity is

included. The above described process merely serves to highlight the in�uence of

the di�erent parameters involved in the arti�cial manipulation of the Laplacian

matrix.

A further re�ned string as shown in Figure B.0.7 is used as a more convincing

example to visualise the resulting modes from �xing the end vertices (blue)

and a comparison with continuous sinusoids of similar amplitude and frequency

(grey). The importance of the embedded connectivity info is clearly seen by a

comparison with the modes resulting from a matrix decomposition without that

information included (orange).

The smoothness of the result heavily relies on the equally spaced vertices in the

string beacuse the matrix and therefore also the computed eigenvectors remain

unchanged when the geometry is modi�ed. It is therefore obvious that the
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plotted modes will deviate from the shape of sinusoids when the displacement

values stay intact but the vertices are repositioned.

Figure B.0.7 � The �rst four displacement eigenfunctions of a re�ned string with �xed
ends (blue) in comparison with continuous sinusoids of similar wave lengths and amplitudes
(grey). The eigenfunctions with non-smooth boundary transitions as a result of omitting
connectivity information are also shown (orange)
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Appendix C

Plug-in manual

A harmonic form-�nding plug-in for Grasshopper is the outcome of this research.

It consists of a number of components as seen in Figure C.0.1, which are grouped

into the following six categories: Mesh, Matrix, Harmonics, Buckling, Display

and Utility. A small manual with a brief overview of the components in each

category is provided in the following.

Mesh

The components in this category aim to support the modelling with Plankton

meshes. See Table C.0.1.

Matrix

The components in this category build the necessary matrices and perform linear

algebra operations to establish the framework for harmonic modelling. See Table

C.0.2.

Harmonics

These components utilise the framework to model with harmonics and extend

the advantageous properties of Fourier analysis to meshes. See Table C.0.3.

Buckling

The components in this category aid to evaluate the buckling capacity of the

harmonic shapes in a pursuit to exploit their doubly curved nature. The tools
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Figure C.0.1 � Harmonic form-�nding plug-in for Grasshopper

are ideal for an optimisation work �ow due to their integrity and computational

speed. See Table C.0.4.

Display

These components help to visualise the mode shapes in an attempt to increase

the level of intuition associated with this tool. See Table C.0.5.

Utility

Lastly, the components in this category help to support the work �ow and

provide additional useful information. See Table C.0.6.

120



Chapter C: Plug-in manual

Name Functionality

PlanktonFromPolylines Creates a Plankton mesh from face polylines
(CCW direction) and vertex points

PlanktonTagging Tags vertex, halfedge and face indexes to display
the mesh connectivity

vertexNormals Computes the vertex normals as a weighted
average of the neighbouring face normals
(eventually normalised)

Table C.0.1 � Mesh components

Name Functionality

GraphLaplacian Constructs the Laplacian matrix based on the
topology of the Plankton mesh

CotangentLaplacian Construct the Laplacian matrix based on the
geometry and topology of the Plankton mesh

BoundaryConditions Manipulates the Laplacian matrix to impose
boundary conditions

EigenDecomposition Computes the eigendecomposition of the
Laplacian matrix to obtain the desired
orthonormal basis (eigenvectors) with harmonic
behaviour

ExtractEigenvectors Extracts speci�c eigenvectors from the
eigenvector matrix according to an index list

Table C.0.2 � Matrix components

Name Functionality

Eigenfunction Generates harmonic shapes by a linear
combination of eigenvectors with prede�ned
arbitrary weights

BackCalculateWeights Back-calculates the most signi�cant eigenvectors
(modes) and their corresponding weights to
approximate a target surface from a base mesh.
The output is suitable for the �Eigenfunction�
component

Morphing Explores the design space in-between two limit
surfaces in a non-linear way

Table C.0.3 � Harmonics components
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Name Functionality

LoadDistribution Calculates the lumped forces in each vertex based
on the voronoi areas to mimic self-weight

KangarooBuckling Performs a non-linear buckling analysis of a shell
using a dynamic relaxation approach with
Kangaroo

RobotExport Performs a linear buckling analysis of a shell with
Autodesk Robot

Table C.0.4 � Buckling components

Name Functionality

GHmodeVisualiser Generates the necessary input for the
�SquidPreview� component to display the mode
shapes as bitmaps on the Grasshopper canvas

SquidPreview Creates 10 Squid bitmaps as default

RHmodeVisualiser Visualises the mode shape catalogue in the Rhino
viewport to obtain a better overview

Table C.0.5 � Display components

Name Functionality

AutoWeightSliders Auto generates sliders to specify weights in a
range between -1 and 1 (two decimals) with
useful labelling

PeaksAndTroughs Calculates the number of peaks and troughs for
each mode shape from the mesh geometry and
topology

Table C.0.6 � Utility components
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